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ABSTRACT 
 

Overloading of the back can cause instability such that buttressing the instability is a 

primary objective of many of the leading edge therapeutic approaches. However, a challenge 

lies in determining the location of the instability or the least stable vertebral joint. A 

mathematical analysis, based on a commonly used approach in engineering for determining 

structural stability, has been developed for the lumbar spine. The purpose of this investigation 

was to determine the feasibility of a method for mathematically locating potential areas of 

instability within a computer-based model of the lumbar spine. To validate this method, the 

eigenvector from the stability analysis was compared to the output from a geometric equation 

that approximated individual vertebral joint rotational stiffness with the idea that the entry in 

the eigenvector with the largest absolute value would correspond to the vertebral joint and axis 

with the lowest stiffness. Validation of the eigenvector was not possible due to computational 

similarities between the stability analysis and the geometric rotational stiffness method. 

However, it has been previously demonstrated that the eigenvector can be useful for locating 

instability, and thus warrants future study. Determining the least stable vertebral joint and axis 

can be used to guide proper motor pattern training as a clinical intervention. It was also shown 

in this investigation that an even distribution of fascicle force and stiffness generated stability. 

This supports the idea that well-coordinated efforts of muscle activation are beneficial for 

improving stability of the lumbar spine. 
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I. INTRODUCTION 
 

Overloading of the back can cause instability such that buttressing the instability is a 

primary objective of many of the leading edge therapeutic approaches. It has been shown that 

the osteoligamentous lumbar spine will buckle at compressive loads near 90 N (Crisco et. al., 

1992). The lumbar spine is routinely required to carry compressive loads far in excess of these 

tolerances. For example, the mass of the upper body, for an 80 kg person, will exert 

approximately 400 N of compressive load on the L4-L5 joint of the lumbar spine. This clearly 

illustrates the importance of the spine’s musculature for improving the spine’s ability to 

withstand compressive load without buckling. Moreover, it is important to locate the joints and 

rotational motions that could potentially lead to spinal instability so that appropriate motor 

patterns can be identified for improving the stability around a joint, and specifically around an 

axis that is considered to be weak in terms of stability.  

 

 Joint instability for the spine has been defined as abnormal motion patterns (Panjabi, 

2003), or a loss of normal vertebral joint stiffness (Pope & Panjabi, 1985; McGill et. al., 2003). 

Physically, instability has been manifested as a temporary, abnormally large rotation about a 

single axis and at a single vertebral joint (McGill, 2001). These instabilities are either the result 

of previous injury to the spine that causes a reduction in vertebral joint stiffness (Oxland et. al., 

1991) or can be the result of motor control errors that disturb the balance of muscle forces 

surrounding the spine (McGill et. al., 2003). Subsequently, lumbar spine stability is improved 

by appropriate coordination of muscle activation that produces muscle force and stiffness 

(McGill et. al., 2003). The ability of a muscle to influence the stability of the lumbar spine is 
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dependent on the posture and the externally applied load (Cholewicki & VanVliet, 2002) such 

that no single muscle is most important for improving the overall stability of the lumbar spine 

(Kavcic et. al., 2004). However, activation of particular muscles could be more beneficial for 

improving the stability around a particular rotational axis and at a given vertebral level that has 

been determined to be potentially unstable. The concept applied here is the symmetry of 

appropriate muscle stiffness influencing vertebral joint stiffness. 

 

 In vitro studies have investigated the hypothetical effect of muscles on the 

force/moment versus displacement/angle relationship by attaching wires, with a known 

tension, to functional spinal units (Kaigle et. al., 1995; Ulrich et. al., 1998). These studies 

provide a sufficient basis for illustrating the potential of muscles for improving the stability of 

the spine, but they do not give any indication of how spine stability is actively controlled, and 

they often lack a sufficient complement of muscles for adequately modeling the muscular 

potential for improving stability. Thus, mechanical models of the lumbar spine that include an 

analysis of stability are imperative for investigating the in vivo stabilizing effects of the spine’s 

musculature. Based on mechanical principles of minimizing potential energy, these models 

provide instant insight into the in vivo quantification and control of lumbar spine stability 

(Cholewicki & McGill, 1996). Moreover, the theory of mechanical stability quantification 

allows for investigation of structural buckling configurations (Farshad, 1994). Crisco and 

Panjabi (1992) illustrated the process for determining the buckled configuration in the frontal 

plane for an osteoligamentous spine whereby the relative contributions of each vertebral joint 

to the final buckled configuration were given by the entries of the eigenvector associated with 

the smallest eigenvalue that was determined from the mathematical analysis of the lumbar 
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spine’s stability. In order to determine the precise rotations at each vertebral level, the 

eigenvector was used as an initial guess to the system of five equilibrium equations defined 

from the first partial derivatives of the potential energy function. This method allows the 

investigators to locate potential areas of instability within their uni-planar osteoligamentous 

model of the lumbar spine.  

 

1.1 Investigative Questions and Purpose 

 

The purpose of this investigation is to validate a method for mathematically locating 

potential areas of instability within the in vivo lumbar spine. Given the ability of the 

eigenvector for locating potential instability in a uni-planar osteoligamentous model of the 

lumbar spine (Crisco & Panjabi, 1992), the questions to be answered by this investigation are: 

 

1. Can the use of the eigenvector associated with the smallest eigenvalue be extended to 

locating potential lumbar spine instability in a three dimensional model of the lumbar 

spine with a full complement of active muscles? 

2. What are the characteristics of motor patterns that improve stability? 
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1.2 Hypotheses 

 

Although the eigenvector may not indicate the exact rotations at each joint, it does 

provide a measure of the relative contributions of each degree of freedom (a single joint and 

axis pair) to the final buckled configuration. Thus, it is hypothesized that: 

 

1. The absolute value of the largest component of the eigenvector will indicate the degree 

of freedom that is least stable.  

2. The stability of the system will depend on the coordination of muscle fascicle 

activation. 
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II. REVIEW OF LITERATURE 
 

2.1 Clinical Determination of Instability and Biological Factors that Influence Spine 

Stability 

 

 Clinically spinal instability has been defined in previous work as either a loss of joint 

stiffness (Pope & Panjabi, 1985; McGill et. al., 2003), excessive range of motion (Posner et. 

al., 1982; Farfan & Gracovetsky, 1984), or as abnormal motion patterns (Panjabi, 2003). All 

three of these classifications imply that the vertebral joint has somehow been compromised in 

order for instability to occur (Oxland et. al., 1991). However, McGill and colleagues (2003) 

have noted that instability can be both the result and cause of injury. Stokes and Gardner-

Morse (1995) noted that injury to the spine could be caused by inappropriate muscle activation 

patterns. For example, Cholewicki and McGill (1992) observed the excessive rotation of a 

single vertebral level during a competitive lift from an experienced power lifter. This excessive 

rotation has been classified as a temporary instability (McGill, 2001), and was likely the result 

of a motor control error. The lifter experienced pain in their lower back causing them to drop 

the weight. However, the lifter returned to lifting following this episode. Prior to this episode, 

the lifter had not experienced any injuries to their spine, and was in good health. The majority 

of the literature that focuses on the clinical definitions previously presented quantified 

instability of the lumbar spine as a function of injury.  
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2.1.1 In Vitro Quantification of Instability Using Osteoligamentous Lumbar Spines 

 

 Early in vitro studies quantified instability of functional spinal units (FSU’s) as 

excessive range of motion (ROM) (Posner et. al., 1982). The ROM criteria from this study 

were used to develop a clinical checklist for detecting instability in patients. Panjabi (2003) 

gives an example of a clinical checklist for detecting instability. Their clinical criteria include 

displacement and rotational ROM limits as observed from sagittal plane radiographs under full 

flexion/extension. For the purposes of in vitro research a new measure termed the “neutral 

zone” (NZ) was defined (Panjabi et. al., 1989), and has been shown to be a better indicator of 

spinal instability onset (Oxland & Panjabi, 1992). It is important to note that these 

investigations were performed without applying a compressive preload to the specimen prior to 

testing. Applying this compressive preload would act to increase the stiffness of the specimen 

being tested. Specifically, the NZ is the residual displacement/rotation from the neutral 

position when no load is applied to the FSU (Panjabi et. al., 1989). However, it has been noted 

that the definition of the NZ is arbitrary (Scannell & McGill, 2003). In this light, the NZ is less 

formally defined as the portion of the moment-angle curve where large displacements occur 

with minimal applied load (ie. region of low stiffness) (Panjabi, 2003). The less formal 

definition of the NZ provides a picture of the vertebral joint’s increased laxity following injury 

(Oxland & Panjabi, 1992). Typically, in vitro instability testing involves determining the force-

displacement relationship of intact FSU’s, and subsequently determining the force-

displacement relationship of the FSU following serial sectioning of the passive elements 

surrounding the intervertebral joint. This method of “injuring” the spine is not an adequate 

representation of how injury to the tissues surrounding the spine occurs. Nonetheless this 
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testing method does yield an impression of the effects that sectioning various tissues has on the 

force-displacement relationship and more importantly the mechanical stiffness in both 

rotational and translational modes. A novel testing approach by Oxland and colleagues (1991) 

artificially created injuries to the spine by dropping a known mass from a known height onto 

the mounted FSU. Rapid compressive loading was performed as an attempt to generate burst 

fractures. Using a similar protocol to document the initiation and progression of spinal injury, 

Panjabi et al (1998) showed that the NZ increased as the injury’s severity increased. Crisco and 

Panjabi (1992) documented the buckling load and relative vertebral rotations for whole 

osteoligamentous spines under the conditions of an uninjured spine, compromised facets, and 

compromised disc for applied compressive loads. Their results showed that injury to the disc 

and facets reduced the critical buckling load. The primary conclusion from this study was that 

injury to the spine was associated with a loss of stiffness that subsequently reduced the stability 

of the lumbar spine.   

 

2.1.2 In Vitro Quantification of Instability with Simulated Muscle Forces 

 

 In vitro studies have focused on documenting the force-displacement relationship, and 

subsequent stability for a completely passive spine (Posner et. al., 1982; Oxland et. al., 1991; 

Oxland & Panjabi, 1992). Bergmark (1989) introduced the mechanical importance of the 

surrounding musculature, for improving the stability of the lumbar spine. In this work, he 

formalized the ability of the muscles to improve spine stability through the coordination of 

muscle force and stiffness. While Bergmark’s (1989) formalism was purely theoretical, other 

researchers have attempted to document the effect of simulated muscle forces on the in vitro 
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stability of the lumbar spine FSU’s (Panjabi et. al., 1989; Wilke et. al., 1995; Ulrich et. al., 

1998).  

 

Muscle forces are simulated by attaching cables to the FSU that pull from the 

anatomical origin or insertion points of the actual muscles, and along a similar line of action 

(ie. tangent to the direction of muscle pull from the point of attachment). The general 

conclusion from these studies is that muscle force and/or stiffness improves the stability of the 

lumbar spine. While these studies come to similar conclusions, the measures used for 

indicating instability are somewhat different. Panjabi et al (1989) showed that the NZ 

decreased with simulated muscle force when compared to loading situations with no added 

muscle forces. Moreover, Panjabi and colleagues (1989) argued that the proximity of the 

deeper, and smaller, muscles to the joint center of rotation would make them likely candidates 

for stabilizing the spine while the larger muscles that are further from the spine were used for 

moment generation. Ulrich et al (1998) found that L4-L5 ROM was reduced following muscle 

activation. Interestingly, this result was only observed for ROM in both lateral bend and axial 

rotation. These authors observed an increase in flexion/extension ROM when a similar moment 

was applied to the FSU. One possible explanation for this result could be a difference in 

moment arm lengths between the anterior (psoas), and posterior (multifidus) muscles. The 

investigators attempted to control the simulated muscle force. Thus, any differences in the 

moment arm lengths would create an unbalanced muscle moment that would subsequently lead 

to an increased flexion/extension ROM when the external moment was applied. 
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2.1.3 In Vivo Stabilizing Effects of Muscle Force and Muscle Stiffness 

 

 The previous in vitro results indicated that the musculature surrounding the spine was 

important for improving lumbar spine stiffness. Several in vivo investigations have been 

conducted to determine how the motor control system recruits muscles under different loading 

conditions, and different conditions of stability. Callaghan and McGill (1995) postulated that 

the recruitment of muscles under different loading condition was not aimed towards 

minimizing joint loading, and instead was directed towards improving spine stability. Firstly, it 

has been shown that as the load placed on the spine increases, muscle activation increases, and 

subsequently the stability of the spine increases (Cholewicki et. al., 2000). Furthermore, 

Granata and Orishimo (2001) demonstrated that increasing the potential energy of an 

externally applied load while maintaining a constant externally applied load caused 

cocontraction of the spine flexors and extensors to increase. For this investigation, the authors 

maintained the mass of the externally applied force, and the horizontal distance from the 

participant while varying the vertical height of the mass. This ensured that the moment about 

L4-L5 was equal in all cases while the potential energy of the external mass was allowed to 

increase. The increase in abdominal activity with increasing load height was deemed to 

improve the stability of the spine while the increased activation of the lumbar extensor muscles 

counteracted the net flexor muscle moment generated by the abdominal muscle activation 

(Granata & Orishimo, 2001). The cocontraction response of the motor control system has been 

shown to be advantageous in conditions with a low externally applied moment (Granata & 

Marras, 2000). The results of this investigation showed, through the use of a simplified 

mathematical model of the lumbar spine, that cocontraction of the musculature surrounding the 
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spine produced an increase in the maximum compressive load that could be applied to the 

spine without buckling. Furthermore, the beneficial effect of increased stability outweighed the 

deleterious effect of added compressive load from the muscle coactivation. The beneficial 

stabilizing effect of cocontraction has been postulated as an explanation for the increased 

cocontraction observed during lifting tasks in patients diagnosed with instability when 

compared to controls (Van Dieen et. al., 2003). In this regard, people with instability (or loss of 

joint stiffness) will compensate for compromised passive joint stiffness by increasing the active 

joint stiffness controlled by the musculature. The ability of muscle coactivation for improving 

the stability of the spine is elegantly explained by the analogy of adding compressive load to a 

fishing rod with and without supporting guy-wires (McGill, 2002). In this analogy, a fishing 

rod stood on its butt end, without additional support, will buckle almost immediately following 

application of compressive load to its tip. Addition of guy-wires arranged symmetrically about 

the rod’s longitudinal axis, with equivalent force and stiffness characteristics allows the rod to 

buckle at a much higher applied compressive load. In addition, the ability of the rod with guy-

wires to accept compressive load is compromised if there is an imbalance in the force and/or 

stiffness of one of the guy-wires. Thus, while the muscles can improve the stability of the 

lumbar spine through activation that generates muscle force and stiffness, it has been 

hypothesized that motor control errors resulting in a temporary loss of stiffness in a single 

degree of freedom could cause lumbar spine instability in a static instant (Cholewicki & 

McGill, 1992; Gardner-Morse et. al., 1995). Furthermore, these motor control errors allow the 

spine to remain in equilibrium, but can cause instability (Gardner-Morse et. al., 1995). 
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2.1.4 Optimal Improvements in Spine Stability with Muscle Activation 

 

 Another issue of importance in rehabilitating the unstable spine is to determine the 

motor patterns that are most beneficial for restoration of functional spine stability. Specifically, 

identifying the motor patterns that improve the stability of the lumbar spine while allowing the 

patient to functionally carry out daily activities explains the concept of “sufficient stability” 

(McGill, 2001). Common therapeutic approaches for rehabilitating the unstable spine have 

attempted to focus on activating specific muscles that have been identified as being 

“stabilizers”. In particular, the approach of the Queensland group advocates activating the 

transversus abdominis for improving the stability of the lumbar spine (Hodges & Richardson, 

1997). Recent research has shown that there is not one single muscle that is most important for 

improving the stability of the lumbar spine (Kavcic et. al., 2004). In particular, the ability of a 

given muscle to influence the stability of the lumbar spine is highly dependent on body posture 

and the external loading condition (Cholewicki & VanVliet, 2002).  

 

2.1.5 Influences of Intra-abdominal Pressure on Spine Stability 

 

 Another means for improving spine stability in vivo is through intra-abdominal 

pressure (IAP). Cholewicki and colleagues (1999) used a physical model to simulate the effects 

that IAP can have on the stability of the lumbar spine. In their model, the muscles were 

represented by springs that stretched across the whole length of a column. The addition of a 

pneumatic piston mimicked the effect of IAP. The outcome of this study showed that the 

combination of muscle activation and IAP improved the stability of the lumbar spine. It has 
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been hypothesized that the stabilizing effect of IAP could be masked by the presence of 

abdominal muscle activation that accompanies generation of IAP (Cholewicki et. al., 1999). 

Namely, Callaghan and McGill (1995) observed an association between elevated IAP and 

increased abdominal muscle activity. Recently, Hodges et al (2005) conducted a study whereby 

the phrenic nerve was artificially stimulated in order to increase the intra-abdominal pressure 

in isolation from activation of the abdominal musculature. They tested the posteroanterior 

stiffness of the lumbar spine under the conditions of low IAP and elevated IAP to determine 

the effects that IAP might have on the spine’s stiffness. A very small sample of participants 

was used for this investigation due to the invasive nature of recording IAP in vivo. 

Nonetheless, the results indicated that posteroanterior stiffness of the lumbar spine increased 

with the presence of IAP (Hodges et. al., 2005). The ability of IAP to increase the spine’s 

stiffness independent of abdominal muscle activation indicates that IAP alone, along with the 

subsequent elastic stretch of surrounding tissues improves the stability of the lumbar spine. 

However, it remains to be shown whether this increase in stability is significant in the presence 

of abdominal muscle activity. 

 

 This section has outlined the importance of the different systems (active, passive) 

surrounding the spine for improving the stability of the lumbar spine. The musculature has the 

ability to improve the stability of the lumbar spine through properly coordinated patterns of 

muscle force and stiffness. Moreover, recruitment of the spine’s musculature appears directed 

towards maintaining spine stability under various loading conditions.  
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2.2 Mechanical Computation of Spine Stability 

 

2.2.1 The Energy Approach to Stability Computation – Mathematical Formalism and 

Pedagogical Analogy 

 

 A system is deemed to be mechanically stable if small changes in the system 

parameters or external loading conditions cause small changes to the existing physical state of 

the system (Farshad, 1994). Conversely, a system is deemed to be unstable if a large change in 

the existing physical state of the system occurs for a small change in the system parameters or 

external loading conditions (Farshad, 1994). The minimum potential energy approach to 

stability is a traditional method for determining the stability state of a system. More formally, 

Thompson and Hunt (1984) state, “a complete relative minimum of the potential energy with 

respect to the generalized coordinates is necessary and sufficient for the stability of an 

equilibrium state of the system”. Mathematically, the condition for a local minimum is that the 

second variation of the potential energy function must be positive definite. Positive 

definiteness implies that all eigenvalues of the Hessian matrix for the potential energy function 

are greater than zero for the case of a system with n degrees of freedom (n > 2). Physically, the 

smallest eigenvalue represents the load at which the column will buckle (Farshad, 1994). Thus, 

buckling and instability occur when one or more of the eigenvalues becomes negative. For 

pedagogical purposes, the quantification of structural stability is best explained by the analogy 

of a ball rolling in a bowl (Figure 2.1).  
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Figure 2.1 - The ball will move on the surface with an applied perturbation, and in the case of a ball in bowl (a, b), 
the ball’s (gravitational) potential energy will increase. The ball’s system is unstable if the energy given to the ball 
by the perturbation is sufficient to cause the ball to seek a new point of equilibrium by exiting the bowl. The 
surfaces indicated in (c) and (d) show systems that are in equilibrium, but are unstable. This is because once the 
ball is perturbed, it will not return to the same point. 
 

This analogy is briefly explained here. McGill (2001) and Howarth and colleagues (2004) 

present a similar analogy that is specific to determination of lumbar spine stability. 

 

 The system is in a state of equilibrium when the ball is stationary and residing at the 

bottom of the bowl. The ball represents the equilibrium state of the system, and the bowl 

represents a two dimensional simplification of a complex potential energy surface. Application 

of an external force to a ball residing in the bottom of a bowl would cause the ball to move up 

the bowl’s slope. The ball will return to its original equilibrium state (original position on the 

potential energy surface) if the applied load is insufficient to cause the ball to leave the bowl’s 

local potential energy minimum. However, instability occurs if the applied perturbation is 

sufficient to cause the ball to leave its original local potential energy bowl. At this point, the 

ball will seek out a new local potential energy minimum under a new system configuration that 

is called the buckled configuration. It is also possible for the ball to initially reside at a 

maximum point on the potential energy surface. In this case, any applied perturbation will 

cause the ball to not return to its initial position on the potential energy surface. 
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2.2.2 Application of the Energy Approach for Computing Stability of the Lumbar Spine 

 

  Professor Anders Bergmark undertook the initial attempt for mechanically defining the 

stability of the lumbar spine in the late 1980’s. This work outlined the conditions of minimum 

potential energy for maintenance of stable equilibrium using a three-dimensional model of the 

lumbar spine that comprised of 40 muscle fascicles, and representative passive properties 

(Bergmark, 1989). The concept of spine stability quantification, via the potential energy 

method, was extended by Cholewicki and McGill (1996). This model included a ribcage, 

pelvis, and the five intervening lumbar vertebrae as well as a set of 90 muscle fascicles (which 

has been updated to 118 with the bilateral addition of transversus abdominis), and a lumped 

passive parameter (McGill et. al., 1994) that included the stiffening effects of the ligaments, 

disc, and facets. While Bergmark (1989) had formulated individual muscle short-range 

stiffness as being proportional to the muscle force, and inversely proportional to its length 

k q
F
L

=
⎛
⎝⎜

⎞
⎠⎟ , Cholewicki and McGill (1996) utilised a Distribution Moment (DM) model for 

deriving individual muscle force, and stiffness directly from measured electromyographic 

activity. This is significant since the value of q has been shown to be dependent on muscle 

activation and the ratio of tendon to muscle length (Cholewicki & McGill, 1995). This 

approximation to muscle stiffness is avoided by the DM model since it directly determines 

muscle stiffness from the muscle’s assigned activation. However, the activation of some 

muscles is inferred from the measured activation of another muscle. For example, the 

activation for the modelled psoas muscle is derived from the internal oblique activation. Thus, 

some error in the muscle stiffness derivation using the DM model could be expected based on 

supposed muscle activities. Moreover, Cholewicki and McGill (1996) displayed the equations 
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whereby spine stability was determined from a sum of potential energies stored in the muscles, 

passive tissues, and the work done by an external load. Recent work by Brown and Potvin 

(2005) has demonstrated a geometrical method, based on a derived potential energy function, 

for the stability of a single lumbar joint (L4-L5) in two dimensions. The equations from this 

model were also used to derive an equation that determined the stabilizing potential of a 

muscle based on its attachment points and moment arm length to the instantaneous joint center 

of rotation (Potvin and Brown, 2005). 

 

2.2.3 Stiffness Approach to Stability Computation Based on a Linearization of the Energy 

Method – Stability and Post-buckling Analyses 

 

 While the previous models focused on quantifying stability of the lumbar spine, they 

did not present a detailed mathematical account of the lumbar spine’s post-buckling behaviour. 

Other attempts to quantify the mechanical stability of the lumbar spine have derived a 

stiffness-based approach that is a linearization of the equilibrium equations (first partial 

derivatives) of the lumbar spine’s potential energy. Gardner-Morse and colleagues (1995) 

determined the critical value of the parameter q that would make the spine stable by solving the 

eigenproblem ( ) ( ) 0vGGvKK MSMS =+++ λ . The investigators indicated that the smallest 

positive eigenvalue (λmin) indicated the stability of lumbar spine, and that its associated 

eigenvector (v) determined the buckling configuration. The matrices in the previous equation 

represent the global spine (KS) and muscle (KM) stiffness, as well as the geometric spine (GS) 

and muscle (GM) stiffness. It is important to note that the investigators determined the spine to 

be stable when λmin > 1 while other classical analyses of mechanical stability consider a 
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system to be stable when λmin > 0  (Thompson & Hunt, 1984). The authors present a figure 

(Figure 2.2) of the buckled configuration for the first three modes.  

 

 

Figure 2.2 – The first three buckling modes of the lumbar spine as determined by eigenvectors (Reprinted with 
permission from Gardner-Morse et al, 1995). 
 

These configurations are derived from the eigenvectors associated with the three lowest 

eigenvalues. However, no specific explanation is given of how the authors arrived at the final 

buckled configurations. A similar method was used by Crisco and Panjabi (1992) who 

developed a five degree of freedom model that determined the stability of the osteoligamentous 

lumbar spine under intact, compromised disc, and compromised facet conditions. The frontal 

plane (lateral bend) rotation at each vertebral joint in the lumbar spine was represented by a 

single degree of freedom in the mathematical model. Motion of the model was constrained to 

the frontal plane due to limitation in applying the theory of Euler column buckling to curved 

columns. In this manner, the model of the lumbar spine was constructed by arranging the 

vertebrae so that they formed a column in which, initially, the joint centers of rotation were 
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aligned vertically. Akin to the work of Gardner-Morse and colleagues (1995), the model of 

Crisco and Panjabi (1992) determined lumbar spine stability by solving the eigenproblem 

( ) 0vIKL =−− λ1  where L-1 is the inverse of a 5 x 5 matrix of vertebral lengths, K is a diagonal 

5 x 5 stiffness matrix, λ are the eigenvalues, and v are the associated 5 x 1 eigenvectors. Again, 

the eigenvalues represented the critical buckling load, and the eigenvectors determined the 

buckled configurations in the frontal plane. The individual entries in the eigenvector associated 

with the smallest eigenvalue represented the relative contributions of each joint to the spine’s 

buckled configuration. These relative contributions of each degree of freedom were used as an 

initial guess for a solution to the system of five equilibrium equations that would yield the 

precise vertebral rotations in the buckled configuration. The results from this study also 

showed that the eigenvector entries were sensitive to changes in vertebral joint rotational 

stiffness either through a compromised disc or facets. This result, and the interpretation of the 

5 x 1 eigenvector in this model is similar to the interpretation of the entries for an 18 x 1 

eigenvector determined from an 18 degree of freedom passive model of the lumbar spine 

(Howarth & McGill, 2005). The passive stiffness values for the work of Howarth & McGill 

(2005) were obtained from exponential curves fitted to moment-angle data collected in vivo 

while participants were harnessed jig that was free to float on a frictionless surface (McGill et 

al, 1994). 

 

2.2.4 Simplified Models of Spine Stability for Quantitative Explanation of Biological Results 

 

 Other approaches to quantifying lumbar spine stability have utilised simplified models 

whereby the spine is treated as a rigid vertical column with a single degree of freedom 
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(Cholewicki et. al., 1999; Granata & Marras, 2000; Granata & Orishimo, 2001). The simplicity 

of these models allows for easy implementation. Such simple models are primarily used to 

provide insights to biologically observed phenomena, and not for direct, or precise 

computation of spine stability. For example, the work of Granata and Marras (2000) used the 

derivation of an equation for the stability of a simplified spine outfitted with springs and 

dampers that represented the flexor and extensor muscles of the spine for evaluating the 

benefits of antagonistic cocontraction. Similarly, Granata and Orishimo (2001) used a similar 

model for evaluating the effects of increasing the height of an externally applied load (ie. 

increasing potential energy of the external load) while maintaining the externally applied flexor 

moment (ie. identical mass and moment arm length). Likewise, Cholewicki and colleagues 

(1999) constructed a single degree of freedom model with springs to represent the flexor and 

extensor muscles, and a pneumatic piston to mimic the effects of intra-abdominal pressure on 

the ability of the column for accepting an applied compressive load prior to buckling. The 

results from these studies have been presented above in more detail. However, these studies 

illustrate the importance of simplified models of lumbar spine stability for providing insight 

into biologically observed or suspected results. 



 20

III. METHODS 
 

3.1 – Overview of Methods 

 

 The feasibility of the eigenvector for locating the least stiff vertebral joint and axis was 

tested using set of carefully constructed muscle fascicles that were allowed to contribute active 

force and stiffness to the lumbar spine. The rotational stiffness at each vertebral joint and about 

the three axes (flexion/extension, lateral bend, axial rotation) were computed from the muscle 

geometry, force and stiffness and was compared to the entries of the eigenvector. Following 

the comparison, all instances of discrepancies between the eigenvector and geometric vertebral 

rotational joint stiffness methods were recorded and analysed. This overview is summarized in 

Figure 3.1. 

 

 

Figure 3.1 – A visual overview of the methods used for this investigation. 

 

Muscle Fascicle Creation 

Traditional Stability Analysis 
(Cholewicki & McGill, 1996) 

Geometric Simplification 
(Potvin & Brown, 2005) 

COMPARE 

Analyses 
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3.2 – Creation of Individual Muscle Fascicles for Actively Controlling Vertebral Joint 

Stiffness 

 

3.2.1 – Grouping of Fascicles and General Attachment Point Locations 

 

 Artificial muscle fascicles were created to actively control the stiffness at each modeled 

lumbar vertebral joint. The muscle fascicles were grouped into bilateral artificial muscle 

fascicle pairs, and were divided into three categories; axis fascicles, quardrant fascicles, 

multisegmental fascicles. Axis and quadrant fascicles were created such that a single fascicle 

controlled stiffness at a single vertebral level. Hence these fascicles were called intersegmental 

muscle fascicles. 

 

 The following equation (1) demonstrates the general equation for determining the 

fascicle attachment locations in the case of an intersegmental fascicle (Figure 3.2). 

 

vca s+=  (1) 
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Figure 3.2 – Illustration of the terms in Equation (1). a is a fascicle attachment location, c is the vertebral joint 
center associated with the fascicle, v is a vector that defines the fascicle attachment location  relative to the 
vertebral joint center, s is a scaling factor to control both the length and the moment arm length for each fascicle. 
The right handed coordinate system used in the model of the lumbar spine is defined by the X, Y and Z axes that 
respectively represent the lateral bend, axial rotation and flexion/extension axes. 
 

The value of s was set to 0.025. It is important to note that the value of v in equation (1) will 

change depending on the attachment location. The different values for v are presented with the 

description of each set of intersegmental muscles (axis and quadrant). Moreover, the 

attachement locations for the multisegmental fascicles cannot be described using this exact 

formulation, but will be described in a later section. 

 3.2.2 – Orientation and Location of Axis Fascicles 

 

 Axis fascicles were placed and oriented such that they would contribute to the vertebral 

joint rotational stiffness of a single axis (either flexion/extension or lateral bend) at a single 

vertebral level. A total of 24 axis fascicles were modeled (6 joints x 4 fascicles per joint). At 

each vertebral joint, one fascicle pair was placed anteriorly and posterioly while the other 

fascicle pair was placed laterally relative to the vertebral joint center (Figure 3.3). 

c = (cx, cy, cz) 

a = (ax, ay, az) 

c + sv 

X 

Y 

Z 



 23

 

Figure 3.3 – The attachment locations for all axis fascicles. Vertebral joint centers are shown as the grey cubes 
with black lines indicating the positive X and Z axes at each vertebral joint. Muscle fascicle attachment locations 
are represented by light grey spheres. 
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The values for the attachment locations relative to each vertebral joint center (v in equation 

(1)) for the axis fascicles are listed below (Table 3.1). 

 

Location v Top Attachment v Bottom Attachment 
Anterior (1,1,0) (1,-1,0) 
Posterior (-1,1,0) (-1,-1,0) 
Left (0,1,-1) (0,-1,-1) 
Right (0,1,1) (0,-1,1) 
 
Table 3.1 – Locations of axis fascicle attachments relative to a vertebral joint center. These locations were applied 
to generate the attachment points for each set of axis fascicles surrounding a vertebral joint. 
 

3.2.3 – Orientation and Location of Quadrant Fascicles 

 

 Quadrant fascicles were placed and oriented such that they contributed to the vertebral 

joint rotational stiffness about both of the flexion/extension and lateral bend axes at a single 

vertebral level. A total of 24 quadrant fascicles were modeled (6 joints x 4 fascicles per joint). 

At each vertebral joint, one fascicle pair was placed anteriorly on both sides of the vertebral 

joint center, and the other pair was placed posteriorly on both sides of the vertebral joint center 

(Figure 3.4). 
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Figure 3.4 – The attachment locations for all quadrant fascicles. Vertebral joint centers are shown as the grey 
cubes with black lines indicating the positive X and Z axes at each vertebral joint. Muscle fascicle attachment 
locations are represented by light grey spheres. 
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The values for the attachment locations relative to each vertebral joint center (v in (1)) for the 

quadrant fascicles are listed below (Table 3.2). 

 

Location v Top Attachment v Bottom Attachement 
Anterior Right (1,1,1) (1,-1,1) 
Anterior Left (1,1,-1) (1,-1,-1) 
Posterior Right (-1,1,-1) (-1,-1,1) 
Posterior Left (-1,1,-1) (-1,-1,-1) 
 
Table 3.2 – Locations of quadrant fascicle attachments relative to a vertebral joint center. These locations were 
applied to generate the attachment points for each set of quadrant fascicles surrounding a vertebral joint. 
 
 

3.2.4 – Orientation and Location of Multisegmental Fascicles 

 

 The multisegmental muscles were placed and oriented such that they contributed to the 

vertebral joint rotational stiffness about both of the flexion/extension and lateral bend axes at 

all of the modeled vertebral levels. A total of 4 multisegmental fascicles were modeled. Similar 

to the quadrant fascicles, one pair of multisegmental fascicles was placed anteriorly on both 

sides of the vertebral joint centers, and the other pair was placed posteriorly on both sides of 

the vertebral joint centers (Figure 3.5).  
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Figure 3.5 – The attachment locations for all multisegmental fascicles. Vertebral joint centers are shown as the 
grey cubes with black lines indicating the positive X and Z axes at each vertebral joint. Muscle fascicle 
attachment locations are represented by light grey spheres. 
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Unlike the intersegmental fascicles, the attachment locations of the multisegmental 

fascicles cannot be described by a single equation. However, the attachment coordinates for the 

multisegmental fascicles were derived in a similar manner by using combinations of individual 

vertebral joint center coordinates that pertained to the modeled Ribcage-L1 and L5-Pelvis 

joints (Table 3.3). 

 

Location Top Attachment Bottom Attachment 
Anterior Right (Px + 0.025, Ry + 0.025, 0.025) (Px + 0.025, Py - 0.025, 0.025) 
Anterior Left (Px + 0.025, Ry + 0.025, -0.025) (Px + 0.025, Py - 0.025, -0.025) 
Posterior Right (Rx - 0.025, Ry + 0.025, 0.025) (Rx - 0.025, Py - 0.025, 0.025) 
Posterior Left (Rx - 0.025, Ry + 0.025, -0.025) (Rx - 0.025, Py - 0.025, -0.025) 
 
Table 3.3 – Vertebral attachment locations for the multisegmental fascicles. The top attachments are made with 
the modeled ribcage and the bottom attachments are made with the modeled pelvis. Px, Py, Rx, Ry respectively are 
the X and Y coordinates of the Pelvis-L5 and Ribcage-L1 joints. 
 

 The multisegmental fascicles were also modeled in two different manners that were 

tested with separate simulations to determine the effects of modeling style on the computation 

of stability and determining the location of likely buckling. The first method modeled each 

multisegmental fascicle as a single segment that spanned from the ribcage to the pelvis. The 

second method utilised nodal points to break each multisegmental fascicle into a connected 

series of six segments of equal length. Equation (2) demonstrates the process for determining 

the location of the nodal points for a multisegmental muscle. 

 

( )
ba
babxi −

−
+=

6
miL

 (2) 

 

Here xi is the vector denoting the location of the ith nodal point for fascicle m, a and b  are the 

endpoint attachments for the multisegmental fascicle, Lm is the length of the fascicle between 
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the endpoints, i (i = 1, 2, 3, 4, 5) is an integer value indicating the nodal point number. Nodal 

points were utilised by Cholewicki and McGill (1996) to model the curvature of a muscle 

fascicle. Adding nodal points to the multisegmental fascicles modeled for this investigation 

may illustrate why discrepancies occur between the two computational procedures that are 

explained later. 

 

3.3 – Muscle Fascicle Parameters 

 

Each modeled fascicle (both intersegmental and multisegmental) was assigned a 

physiological cross-sectional area of 10 cm2 to avoid differences in stiffness due to differences 

in physiological cross-sectional area. The length of each modeled fascicle was computed as the 

distance between fascicle attachment points (3). 

 

ba −=mL  (3) 

 

Here Lm is the fascicle length, a and b are fascicle endpoint locations. The length of each 

intersegmental (both axis and quadrant) fascicle was 0.05 m, and the length of each 

multisegmental fascicle was 0.231 m. In the case when the multisegmental fascicles were 

modeled with nodal points, the length of each section was 0.0385 m (0.231 m per fascicle / 6 

sections per fascicle). 

 

 For every iteration in each simulation, an activation value that ranged from 0 to 1 was 

assigned to each fascicle in order to produce active force and stiffness contributions to 
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mechanical stability. Each iteration involved randomly generating a total of 19 activation 

values that will be referred to as a motor pattern. Each pair of axis fascicles (either an 

anterior/posterior or lateral pair at a single vertebral joint) was randomly assigned identical 

activation values in order to maintain the assumption of balanced moments that is inherent in 

the mechanical computation of stability. Thus a total of 12 activation values were assigned to 

axis fascicles (6 joints x 2 axis pairs per joint) for each iteration. Each set of quadrant fascicles 

surrounding a vertebral joint, and the set of multisegmental fascicles were also randomly 

assigned identical activation values. Thus for the quadrant fascicles a total of 6 activation 

values were generated, and a single activation value was generated for the multisegmental 

fascicles for each iteration.  

 

The randomly generated motor pattern of the current iteration was compared to the 

motor patterns of all previous iterations in the current simulation in order to eliminate the 

possibility of duplicate motor patterns. The current iteration was issued a new randomly 

generated motor pattern in the event of a duplicate motor pattern and the same comparisons 

were carried out until a novel randomly generated motor pattern was created. 

 

Fascicle force and stiffness were computed following the assignment of an activation 

value. The active force for each fascicle was determined using the EMG to force model 

demonstrated by McGill and Norman (1986) and modified for use in this investigation (4). 

 

m
m

m
m A
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EMG

F
3.1
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⎞
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⎝

⎛
=  (4) 

 



 31

Here Fm is the fascicle force, 
m

m

MAXEMG
EMG

 is the normalized fascicle activation level, and Am is 

the fascicle’s physiological cross-sectional area. Subsequently, the stiffness of each fascicle 

was determined using the relationship between force and fascicle length presented by 

Bergmark (1989) (5).  

 

m

m
m L

F
qk =  (5) 

 

Here, km is the fascicle stiffness, Fm is the fascicle force, Lm is the current fascicle length, and q 

is a dimensionless proportionality constant. A nominal q value of 10 was used for this 

investigation which is consistent with the documented range of q values for skeletal muscle 

(Cholewicki & McGill, 1995), and has been used in a previous investigation (Potvin & Brown, 

2005). 

 

3.4 – Eigenvalue and Eigenvector Computation for Stability Analysis 

 

An eigenvalue (λ) of a square matrix H is a real number that satisfies the following 

equation for a non-zero vector vx . 

 

xHx λ=  (6) 
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Any non-zero vector that satisfies this equation for a given eigenvalue is called an eigenvector 

associated with the eigenvalue λ. Alternatively this equation can be rewritten as a homogenous 

system. 

 

( ) 0xIH =− λ  (7) 

 

In this case I is an identity matrix, where all the entries along the main diagonal are 1 and all 

other entries in the matrix are 0. Mathematically, solving for the eigenvalues of H requires the 

matrix ( )IH λ− to be singular (ie. ( ) 0det =− IH λ ). Computing the determinant of this matrix 

produces a polynomial of an order that is equivalent to the dimension of H that is called the 

characteristic polynomial. The roots of this polynomial are the eigenvalues of the matrix H. 

Substituting an eigenvalue, λ, into (7), and solving (7) will produce an eigenvector associated 

with the eigenvalue λ. The eigenvector can then be normalized so that 1=x . 

 

 For the purposes of lumbar spine stability computation, the matrix H in (6) and (7) is 

the Hessian matrix of the potential energy function. For our 18 dimensional model of the 

lumbar spine, the Hessian matrix is an 18 x 18 square, symmetric, and real-valued matrix of all 

possible second partial derivatives of the potential energy function (Cholewicki & McGill, 

1996; Howarth et. al., 2004). The potential energy function for the analysis of lumbar spine 

stability is a summation of the contributions from the muscle fascicles, passive tissues, and the 

deleterious contribution from any externally applied load (8). 

 

extpassivemuscle WUUV −+=  (8) 
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A complete description, and derivation of each term in (8), and the partial derivatives of (8) is 

given by Cholewicki and McGill (1996), and is reproduced here in Appendix A. 

  

Since H is symmetric, and contains only real numbers, in the stability analysis, we are 

guaranteed a complete set of 18 real-valued eigenvalues. Each eigenvalue of the Hessian 

matrix represents the slope of the potential energy surface in a particular degree of freedom in 

the neighbourhood of a critical point (i.e. point where all first partial derivatives of the 

potential energy function are zero) (Thompson & Hunt, 1984). The eigenvalues and 

eigenvectors associated with the potential energy function’s Hessian matrix were determined 

using the Matlab “eig” command. 

 

[eVecs, eVals] = eig(Hessian) 

 

This command returns the complete numerically ordered set of eigenvalues (in ascending 

order) in the variable eVals, and a matrix where the columns are the individual eigenvectors 

(eVecs). The order of the columns in eVecs is identical to the order of the eigenvalues in eVals 

(i.e. the first column in eVecs is the eigenvector associated with the first eigenvalue in eVals). 

 



 34

3.5 – Simplified Geometric Approach to Individual Joint and Axis Stability  

 

The equation (9) from Potvin and Brown (2005) was used to determine the stabilizing 

potential of a given fascicle about a given axis at a vertebral joint that was spanned by the 

fascicle (Figure 3.6). 
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Figure 3.6 – Illustration of the geometrical parameters in the equation for determining the stabilizing potential of a 
fascicle at a particular vertebral joint and along a particular orthopaedic axis. 

a = (ax, ay, az) 

(0,0,0) 

b = (bx, by, bz) 

X

Y

Z 

rZ l 



 35

In this expression, SZ
m is the contribution of fascicle m to stability about the Z-axis, a is the 

three dimensional vector of coordinates for the origin of fascicle m, b is the three dimensional 

vector of coordinates for the insertion of fascicle m, rZ  is the projection of the moment arm 

onto the Z-axis for fascicle m, l  is the length of the fascicle m between a and b, Fm is the force 

supplied by fascicle m, km is the stiffness of fascicle m. Similar equations can be derived for the 

individual fascicle contributions to stability about the other two axes (X, Y).  

 

The individual contributions, at each vertebral joint and about each of the three axes, 

for each fascicle that spanned the joint were added along with the passive and external load 

components from the relevant entries in the Hessian matrix (this is congruent with the method 

of Brown and Potvin, 2005) to yield the total contribution to stability at each vertebral joint 

and along each axis (10). 
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Here, SZ,j is the stability including the contribution of all fascicles crossing a particular 

vertebral level and the passive tissues and external load, M is the total number of fascicles that 

cross that vertebral level. A similar equation can be developed for the stability about the other 

two axes (X, Y). This method is an approximation to the terms on the main diagonal of the 

Hessian matrix that is described in the previous section. Each of the stability values for each 

vertebral joint and each axis were organized according to the proposed form of the eigenvector 

that is explained in 3.7 to allow for comparisons. 
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 3.6 – Simulation Conditions 

 

 The passive contribution about the axial twist axis was increased for computation of the 

terms in the Hessian matrix due to the lack of a fascicle (modeled in this investigation) that 

could independently control the stiffness about the axial twist axis for each vertebral joint. This 

eliminated the possibility that the axial twist axis for any vertebral joint would be the least stiff 

axis. 

 

 A series of simulations with differing degrees of complexity were run in order to test 

the feasibility of using the eigenvector for locating the most likely mode of buckling. Each 

simulation consisted of 10000 iterations with distinct randomly generated motor patterns. The 

following is a list of the simulations that were tested in this investigation. 

 

1. Axis fascicles 

2. Axis and quadrant fascicles 

3. Axis, quadrant and multisegmental fascicles without nodal points 

4. Axis quadrant and multisegmental fascicles without nodal points and vertebral joint 

centers aligned 

5. Axis quadrant and multisegmental fascicles with nodal points 

6. Axis quadrant and multisegmental fascicles with nodal points and vertebral joint 

centers aligned 

7. Axis and multisegmental muscles without nodal points 
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Aligning the vertebral joint centers was performed in simulations 4.), and 6.), in order to 

test the assumption of a straight column for mechanical stability computation. Simulation 7.) 

was performed in order to allow for comparisons of the number of stable versus unstable cases 

between simulations 1.), 2.), and 3.). 

 

3.7 – Comparison of Eigenvector with Individual Joint and Axis Stability 

 

 Crisco and Panjabi (1992) illustrated that each entry in the eigenvector associated with 

the smallest eigenvalue corresponded to the rotation at a given degree of freedom in their 

uniplanar model of the osteoligamentous lumbar spine. From the construction of the Hessian 

matrix for determining stability, Howarth and McGill (2005) have proposed a similar form of 

the 18 dimensional eigenvector associated with the smallest eigenvalue (Figure 3.7). 

 

 

Figure 3.7 – In the proposed form of the eigenvector, each entry is associated with a particular joint and axis in the 
model of the lumbar spine. 
 

Here, v is the eigenvector associated with the smallest eigenvalue. The entries vi (i = 1…18) 

are the individual eigenvector entries. F/L/A are flexion-extension/lateral bend/axial rotational 

degrees of freedom at a single joint given by J. Again, the magnitude of each eigenvector entry 
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is related to a rotation about a particular axis at a specific vertebral joint in the 18 dimensional 

model of the lumbar spine. 

 

 It has been demonstrated that the least stable joint and axis combination in the modeled 

osteoligamentous lumbar spine is represented by the largest absolute value in the eigenvector 

(Crisco & Panjabi, 1992; Howarth & McGill, 2005). In order to determine the ability of the 

eigenvector for locating potential instability in the modeled lumbar spine with muscle 

fascicles, the proposed form of the eigenvector was compared to the individual joint and axis 

stability values obtained from the equation of Potvin and Brown (2005). The comparison for 

every iteration began by finding the index (an integer value between 1 and 18) of the 

eigenvector entry with the largest absolute value, and subsequently determining the index of 

the smallest value computed using Potvin and Brown’s equation. The two indices were 

compared for every iteration, the motor patterns, smallest eigenvalue, absolute value of the 

eigenvector entries, outputs from Potvin and Brown’s equation, and the indices from each 

computational method were recorded when a discrepancy between the two indices occurred. 
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3.8 – Comparison Analyses 

 

 The number of discrepancies for each set of 1000 iterations (thus each simulation was 

broken into 10 subsets of 1000 iterations) were recorded in order to demonstrate the 

randomness of the motor pattern generation, and to allow for statistical comparison between 

the different simulation conditions (this was only done for the first six simulations because the 

last simulation was added to allow for a different comparison that will be explained later). The 

likelihood of a discrepancy between the indices predicted by both methods for each vertebral 

joint and axis combination was also compiled for simulations 1.), 2.), 3.), 5.) in order to test if 

discrepancies were biased towards particular vertebral joint and axis combinations. When a 

discrepancy occurred, the different joint and axis combination predicted by the equation of 

Potvin and Brown (2005) was recorded to determine the distribution of discrepancies across 

the different joint and axis combinations. 

 

 A separate analysis was performed to determine the conditions for generating a stable 

case in the first simulation with only axis fascicles. The range of fascicle activation for each 

axis (flexion/extension and lateral bend), across all the modeled vertebral joints was recorded 

for each iteration. Iterations were grouped according to whether the motor pattern generated a 

stable or an unstable case as indicated by the smallest eigenvalue.  
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3.9 – Statistical analyses 

 

 Differences in the likelihood of a discrepancy occurring for each simulation were tested 

with a one way analysis of variance (ANOVA). Tukey’s HSD post hoc test was used to 

identify the differences for this analyses. Two T-tests with unequal sample sizes and unequal 

variances were run to compare the range of fascicle activation between the stable and unstable 

cases in the simulation with only axis fascicles. Statistical differences were accepted as 

significant when p < 0.05.  
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IV. RESULTS 
 

4.1 – Comparison Between Eigenvector and Simplified Geometric Approach (Simulation 

Analysis) 

 

The traditional model for computing lumbar spine stability and the simplified geometric 

computational approach predicted the same location of likely buckling in 99.21% and 99.22% 

of the instantiations respectively for the simulation with only axis fascicles and the simulation 

with the combined axis and quadrant fascicles (i.e. simulations where the fascicles were 

oriented so that they spanned a single joint) (Figure 4.1). The addition of multisegmental 

fascicles to the model significantly increased the likelihood that the two models would not 

predict the identical degree of freedom as being the most likely to buckle (Figure 4.1, p < 

0.0001). The matching between the two models improved after adding nodal points to the 

multisegmental fascicles, and running the same set of motor patterns that were run for the 

simulation containing multisegmental fascicles without nodal points. Adding nodal points to 

the multisegmental fascicles reduced the likelihood of non-matching between the two models 

relative to the simulation with multisegmental muscles without nodal points (p < 0.0001), but 

was not successful in creating identical or similar likelihoods of matching between the two 

models as in the cases with only intersegmental fascicles (Figure 4.1, p < 0.0001). Aligning the 

vertebral joint centers into a vertical column had no effect on the outputs of either model in the 

case with the complete set of intersegmental and multisegmental fascicles (Figure 4.1). 
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Figure 4.1 – The percentage (100% = 10000 iterations) of iterations where the index of the eigenvector entry with 
the largest absolute value did not match the index with the highest computed stability from the simplified 
geometrical approach. The legend above the graph indicates the set of fascicles that were used for the different 
simulations. Means with the same letter are not statistically different. Different letters indicate statistical 
differences between means (p < 0.0001). 
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vertebral joint centers is identical for both methods. However, the introduction of 

multisegmental fascicles creates a difference in this set of vectors between the two 

computational approaches and reduces the likelihood that the eigenvector and the simplified 

geometrical approach would predict the same vertebral joint and axis as being the least stable. 

The computation employed by Cholewicki & McGill (1996) in the case of multisegmental 

fascicles without nodal points uses two vectors (one for each of the upper and lower 

attachment locations) that connects the vertebral joint center at the level of the attachment to 

the attachment location for computation of the fascicles contribution to stability at all joints 

spanned by the fascicle (Figure 4.2). Conversely, the method employed by Potvin & Brown 

(2005) considers a set of vectors from each vertebral joint to the attachment locations when 

computing the stabilizing contribution of fascicle at a particular vertebral joint that is spanned 

by the fascicle (Figure 4.2). 
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Figure 4.2 – An example of the difference in the set of vectors connecting vertebral joint centers and fascicle 
attachment locations considered by the method employed by Cholewicki & McGill (1996) and the method 
designed by Potvin & Brown (2005) in the case of a multisegmental fascicle without nodal points. Here the thick 
light grey bars indicate vectors used by Cholewicki and McGill (1996) and the thick dark grey bars indicate 
vectors used by Potvin and Brown (2005) for computation of the fascicle contribution at the L2-L3 vertebral joint. 
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The addition of nodal points to the multisegmental fascicles was performed to bring the two 

models back to better agreement on the vertebral joint and axis combination that was the least 

stiff. However, a second difference occurs in how the two models handle multisegmental 

fascicles with nodal points. The computational approach of Potvin & Brown (2005) only 

computed the stabilizing contribution of the segment that crossed the vertebral joint in question 

for a multisegmental fascicle with nodal points. On the other hand, Cholewicki & McGill 

(1996) consider the additive effects of the fascicle’s other segments on stability at a given 

vertebral joint and axis. 

 

4.2 – Comparison Between Eigenvector and Simplified Geometric Approach (Joint and Axis 

Analysis) 

 

 The likelihood of a discrepancy in the predicted location of likely buckling for the 

simulation with only axis fascicles was largest in lateral bend at the L4-L5 joint while the 

likelihood of a discrepancy was largest in flexion/extension at the L3-L4 joint for the 

simulation with the combined axis and quadrant fascicles (Figure 4.3). 
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Figure 4.3 – The percentage of instances when the eigenvector predicted a given joint and axis as being the least 
stable and when the simplified geometric approach predicted a different joint and axis (100% = all instances when 
the eigenvector predicted a given joint and axis had discrepancies).  Each bar in this figure represents a joint and 
axis combination with the two different patterns indicating different simulations and the different shades 
indicating different axes. 

0 

0.5 

1 

1.5 

2 

2.5 

RC-L1 L1-L2 L2-L3 L3-L4 L4-L5 L5-PV 

Eigenvector Vertebral Joint 

P
er

ce
nt

ag
e 

of
 n

on
-m

at
ch

in
g 

ca
se

s 
(%

) 

Flexion/extension; Axis fascicles 

Flexion/extension; Axis and quadrant fascicles 

Lateral bend; Axis fascicles 

Lateral bend; Axis and quadrant fascicles 



 47

 
 

The addition of multisegmental fascicles that spanned the entire modeled lumbar spine 

without nodal points, to the existing set of axis and quadrant intersegmental fascicles generated 

the most likely discrepancies between the two models in flexion/extension at L3-L4, L4-L5, 

L5-Pelvis, and in lateral bend at L5-Pelvis (Figure 4.4a). The scales on the vertical axis for 

Figures 4.3 and 4.4 have different ranges to ensure that the data was visible. Adding nodal 

points to the multisegmental fascicles, and running the same instantiations as when the 

multisegmental fascicles did not have nodal points, reduced the likelihood of a discrepancy in 

flexion/extension at L3-L4, L4-L5, L5-Pelvis, and in lateral bend at L5-Pelvis. However, the 

addition of nodal points to the multisegmental fascicles increased the likelihood of 

discrepancies between the two models in lateral bend at L1-L2, L2-L3, L3-L4, and L4-L5 and 

in flexion/extension at L1-L2 (Figure 4.4b). 
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Figure 4.4 – The percentage of instances when the eigenvector predicted a given joint and axis as being the least 
stable and when the simplified geometric approach predicted a different joint and axis (100% = all instances when 
the eigenvector predicted a given joint and axis had discrepancies) for simulations with multisegmental muscles 
modeled without (a.) and with (b.) nodal points.  
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The simplified geometric approach tended to favour the lateral bend axis as being the 

least stable when the multisegmental fascicles were modeled without nodal points, and when a 

particular joint and axis combination was predicted by the eigenvector and a discrepancy 

occurred in the joint and axis combination predicted by the simplified geometric approach 

(Figure 4.5a). Conversely, the simplified geometric approach tended to favour the 

flexion/extension axis as being the least stable when a discrepancy occurred, and when 

modeling the multisegmental fascicles with nodal points (Figure 4.5b). When modeling the 

multisegmental fascicles without nodal points, the simplified geometric approach predicted 

flexion/extension at L3-L4 most frequently as the alternative joint and axis (Figure 4.5a). The 

simplified geometric approach predicted lateral bend at L4-L5 most frequently as the 

alternative joint and axis when using nodal points to model the multisegmental fascicles. 
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Figure 4.5 – The percentage of times that the simplified geometric method predicts each joint and axis when a 
discrepancy occurs between the joint and axis predicted by the eigenvector and the simplified geometric approach 
(100% = geometric method predicted this joint and axis in every case that there was a discrepancy) for 
simulations with multisegmental muscles modeled without (a.) and with (b.) nodal points. 
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4.3 – Cases Tested and Conditions for Achieving Stability 

 

 Stable and unstable configurations of muscle fascicle activity were tested in simulations 

1.) – 3.) and 7.) (axis; axis and quadrant; axis, quadrant and multisegmental without nodal 

points; axis and multisegmental without nodal points) (Figure 4.6). The other simulations (4.) – 

6.)) were omitted from this graph because simulation 4.) produced the same results as 

simulation 3.), and the results of simulations 5.) and 6.) were very similar to simulation 3.). 

 

 The percentage of stable configurations that were tested in each simulation, presented 

in Figure 4.6, was smallest for the simulation with axis and multisegmental muscle fascicles 

while the configurations with combined axis and quadrant muscle fascicles, and also 

multisegmental muscle fascicles tested many more mechanically stable cases (Figure 4.7). 

There was also a decrease in the number of mechanically stable configurations tested between 

the simulation with forty-eight muscle fascicles and the simulation with fifty-two muscle 

fascicles (Figure 4.7). 
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 Figure 4.6 – The eigenvalues for each iteration for showing that both stable (smallest eigenvalue > 0) and 
unstable (smallest eigenvalue < 0) cases were tested. The legend above the graph indicates the set of fascicles that 
were used for the different simulations. The eigenvalues from each simulation were sorted in ascending order for 
this figure and is not indicative of the random order in which the different iterations were tested. 
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Figure 4.7 – The percentage (100% = 10000 iterations) of iterations that were deemed to be unstable by having a 
smallest eigenvalue that was less than zero. The legend above the graph indicates the set of fascicles that were 
used for the different simulations. 
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and subsequent force and stiffness, was spread over a smaller range in the stable cases than the 

unstable cases for both the flexion/extension and lateral bend degrees of freedom (p < 0.0001 

for the fascicles controlling both the flexion/extension and lateral bend stiffness, Figure 4.8). 
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Figure 4.8 – Average range of fascicle activity across the flexion/extension (a.) and lateral bend (b.) axes for the 
simulation with axis fascicles. * indicates stable was significantly less than unstable (p <0.0001). 
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V. DISCUSSION 
 

5.1 – Feasibility of the eigenvector for locating instability 

 

5.1.1 – Comparison of the Eigenvector to Vertebral Joint and Axis Rotational Stiffness Values 

 

 The first purpose of this investigation was to determine the feasibility of using the 

eigenvector for locating the least stiff vertebral joint and axis in a mathematical model of the 

human lumbar spine. The use of the eigenvector for locating the most likely joint and axis to 

buckle had been established in a model of the lumbar spine that consisted of only passive 

tissues which contributed to the vertebral joint rotational stiffness (Howarth & McGill, 2004). 

A second computational approach was employed to determine the contributions of individual 

muscle fascicles to vertebral joint and axis rotational stiffness. The rotational stiffness at each 

vertebral joint was used as a comparison to the outputs from the eigenvector determined using 

the traditional stability approach of analysing the second partial derivatives of the Hessian 

matrix. It was hypothesized that under an assumed form of the eigenvector, where each entry 

was associated with a particular vertebral joint and axis combination, the largest absolute value 

in the eigenvector would indicate the vertebral joint and axis with the least stiffness which is 

also the most likely joint and axis to become unstable. 

 

The likelihood of the traditional stability approach and the simplified geometric 

approach for determining vertebral rotational stiffness with the inclusion of muscle fascicles 

was dependent on the conditions of the simulations. Specifically, the likelihood was dependent 
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on the number, and type (intersegmental or multisegmental) of fascicles that were modeled. In 

the simulations that consisted of only intersegmental fascicles (axis; axis and quadrant) the 

eigenvector and the simplified geometric approach predicted the same vertebral joint and axis 

as being the least stable in over 98% of the cases tested. The high degree of congruency can be 

attributed to the similarities between the computational procedures, and how the set of fascicles 

were constructed for these simulations. Likewise, the higher likelihood of a discrepancy in the 

least stable joint and axis between the two methods can be explained by differences in how the 

two models compute the contributions of multisegmental fascicles to stability at each vertebral 

joint that is spanned by the fascicle. 

 

 The simplified geometric approach for determining joint stiffness is an approximation 

of the terms on the main diagonal of the Hessian matrix. Thus, a discrepancy between the joint 

and axis selected as being the least stable between the two methods could occur if the off-

diagonal terms in the Hessian matrix would influence the eigenvalue and subsequent 

eigenvector computation. The off-diagonal terms of the Hessian matrix represent the effects of 

one joint and axis on another. In the case of intersegmental fascicles, they have the ability to 

affect stability at a single joint, and will minimally affect off-diagonal terms in the Hessian 

matrix at very few entries if they are either rotated, or not aligned with the vertebral joint 

center (e.g. quadrant fascicles). If there is minimal activity in the off-diagonal terms of the 

Hessian matrix, then the set of eigenvalues will be very similar to the terms on the main 

diagonal of the Hessian matrix. Since the Hessian matrix is mathematically related to the 

complete set of eigenvalues, and their corresponding eigenvectors, there will be a value very 

close to 1 in the eigenvector entry that is associated with that particular Hessian matrix entry. 
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A simple example of a 3x3 symmetric matrix is shown below to illustrate the previous 

argument.  

 

Example 1. 

 

Consider the symmetric 3x3 matrix 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

913
1240
3034

M . The corresponding eigenpairs (an 

eigenvalue with its eigenvector) for M are: 

 

( )9911.0,0643.0,117.0,5811.8 −−  

( )0625.0,9979.0,0189.0,0626.24 −  

( )1179.0,0114.0,9930.0,3563.34 −−−  

 

Thus, assuming that the interpretation of the eigenvector (explained in section 3.7) is accurate, 

the simulations with only intersegmental fascicles produced a high likelihood of matching 

between the joint and axis that is most likely to be unstable primarily because of similarities 

between the computational approaches designed by Cholewicki & McGill (1996) and Potvin & 

Brown (2005) for this specific case. 

 

 Upon addition of the multisegmental fascicles to the model, the likelihood of a non-

matching in the joint and axis determined to be the least stable increased. Although the 

addition of multisegmental fascicles will increase the off-diagonal contributions in the Hessian 

matrix because of their ability to affect the rotational degrees of freedom at many vertebral 
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joints, these contributions were not large enough to produce a significant change in the 

eigenvalues relative to the entries on the main diagonal of the Hessian matrix. Thus, a 

computational discrepancy in how the two methods determine the contributions of a 

multisegmental fascicle to stability is likely the cause of the increased likelihood of achieving a 

discrepancy between the traditional, and simplified geometric approaches. Specifically, the 

discrepancy was deemed to most likely occur in the set of vectors that each computational 

approach considered for computing a fascicle’s contribution to stability at a joint that the 

fascicle spanned, but did not contain a vertebra to which the fascicle was attached. For 

example, there would be a discrepancy in the computational approaches when computing the 

contribution, at the L2-L3 vertebral joint, of a fascicle with attachments to the ribcage and 

pelvis (without intervening nodal points). The simplified geometric approach determines 

vectors from a vertebral joint center to the attachment points on the fascicle that spans the joint 

in order to determine the coordinates of the fascicle attachments relative to the current 

vertebral joint which is then used in the computation of the moment arm length along each of 

the three axes at a single vertebral joint. Conversely, approach employed by Cholewicki & 

McGill (1996) will determine a vector from each attachment location to each vertebra on the 

joint(s) to which the fascicle is attached. Again using the example of a multisegmental fascicle 

that spans from the ribcage to the pelvis (without intervening nodal points), the implementation 

of Cholewicki & McGill (1996) will determine one vector from the ribcage attachment to the 

Ribcage-L1 joint, and a second vector from the pelvic attachment to the Pelvis-L5 joint. These 

two vectors are then used in the computation of the fascicle’s contribution to stability at each 

vertebral joint spanned by the fascicle. 
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 Adding nodal points to the multisegmental fascicles was performed as an attempt to 

account for the aforementioned computational difference between the traditional stability 

approach, and the simplified geometric approach that approximated rotational stiffness for each 

vertebral joint and each axis. The addition of nodal points to create a multisegmental fascicle 

with a total of 6 segments creates the same set of vectors from the vertebral joint center to the 

fascicle attachment and nodal locations for the traditional stability approach and the simplified 

geometric approach for determining vertebral joint stiffness. Computationally, this should have 

created a situation that was similar to the simulations where only intersegmental fascicles were 

modeled. Thus we would expect to see similar results between the simulation with 

multisegmental fascicles with nodal points, and the simulations that only used intersegmental 

fascicles.  

 

Although this adjustment improved the likelihood that the two computational 

approaches would determine the same vertebral joint and axis as being the most likely to 

buckle, adding nodal points to the multisegmental fascicles did not achieve similar levels of 

agreement that were observed for the cases with only intersegmental fascicles. This can be 

attributed to another difference in how the two computational methods assess the contributions 

of a multisegmental fascicle to each joint and axis that it spans. The simplified geometrical 

approach to determine vertebral joint stiffness only considers the effect of the single segment 

of a multisegmental fascicle with nodal points that crosses each vertebral joint on the vertebral 

joint’s stiffness. Comparatively, the traditional stability approach will consider the effect of the 

single segment of a multisegmental fascicle with nodal points that crosses a vertebral joint in 

conjunction with the additive effects of the fascicle’s other segments on the stability of that 
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vertebral joint. 

  

5.1.2 – The Assumption of a Vertical Column and its Influence on the Eigenvector’s Ability to 

Predict the Location of Likely Buckling 

 

 Traditionally, the eigenvector is used to determine the buckled configuration of a 

vertical column under an applied compressive load (Farshad, 1994). Previous work by Crisco 

and Panjabi (1992) has used the eigenvector to determine the buckled configuration of a 

mathematical model of the passive lumbar spine (no muscles were included) in the frontal 

plane. Their analysis was restricted to the frontal plane because the curvature of the lumbar 

spine would violate the assumption of a vertical and straight column that is inherent in 

structural stability analysis. However, this investigation showed that the assumption of a 

straight and vertical column is likely not violated by the mathematical construction of the local 

coordinate systems at each vertebral joint. In the model described by Cholewicki & McGill 

(1996), the local coordinate system at each vertebral joint is aligned with the global coordinate 

system which is consistent with the ISB defined convention for the spine (Wu et al, 2002). 

Hence, when the vertebral joint centers were aligned to generate a straight column, the outputs 

from the comparison between the two methods were identical because the inputs to the 

computations were identical. Based on the reasoning of Crisco and Panjabi (1992), and the 

evidence of the current investigation with regards to the assumption that the column must be 

straight, the eigenvector appears to be a suitable means for determining the least stable 

vertebral joint and axis. 
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5.1.3 – Biases in Discrepancies 

 

 The likelihood of a discrepancy occurring between the eigenvector and the simplified 

geometrical approach for determining the location of the least stable vertebral joint and axis 

varied depending on the vertebral joint and the set of fascicles used in the simulation. This was 

particularly evident in the simulations that included multisegmental fascicles. Unlike the 

intersegmental fascicles, the multisegmental fascicles could not be created in a manner that 

completely balanced the moments at every vertebral joint. In particular, the addition of 

multisegmental fascicles without nodal points creates more unbalanced moments at the 

vertebral joints near the apex of the lumbar curvature (L3-L4, and L4-L5) and at the 

flexion/extension axis of these joints. The difference in the likelihood of a discrepancy at each 

combination of vertebral joints and axes indicates a relative degree of certainty that one can 

have if using the eigenvector for locating the least stable vertebral joint and axis. Changing the 

way in which the multisegmental fascicles were modeled (i.e. adding nodal points) changed the 

likelihood of a discrepancy at each joint and axis combination. This suggests that the way in 

which fascicles are modeled should be considered when evaluating the effectiveness of the  

eigenvector for locating the least stable vertebral joint and axis. 

 

5.1.4 – Limitations 

 

 The methods used for identifying the feasibility of the eigenvector for are mathematical 

approximations of reality. Thus, even if it was certain that the eigenvector was able to 

determine the least stable vertebral joint and axis, any conclusion with regards to the stability 
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of the lumbar spine must consider that the mathematical approximation may not directly reflect 

reality. This investigation considered a very specific set of fascicles that were designed to 

provide simple manipulation over the vertebral joint stiffness about either the 

flexion/entension, lateral bend, or a combination of both axes. Although the orientations of the 

fascicles were contrived with a specific purpose, they were oriented in a manner that could also 

provide biological validity. Consequently, it was difficult to create a set of fascicles that 

independently controlled the axial twist degree of freedom at each vertebral level and 

maintaining biological validity. Thus, the passive contributions to stability in the mode of axial 

rotation at each vertebral joint were increased to disallow this rotational degree of freedom 

from being selected as the least stable via its lack of stiffness provided by active fascicles. 

Increasing the passive tissue properties in the mode of axial rotation did not affect the stability 

of the other vertebral joints and axes. Thus, it was deemed feasible to eliminate the mode of 

axial rotation from the analysis. 

 

 The contribution of bodyweight to stability was added to Ribcage-L1 joint, and 

mathematically increased the stiffness at this joint. The increase in stiffness was large enough 

that neither the eigenvector, nor the simplified geometrical approach predicted either of the 

axes (flexion/extension or lateral bend) as being the least stable for any iteration in any of the 

simulations. It would be less realistic to consider the stability of the spine without the inclusion 

of a mass above the spine. Thus, bodyweight was included in all simulations to increase the 

biological validity at the expense of being able to test the feasibility of the eigenvector for 

locating the Ribcage-L1 joint as being the least stable.  
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 The feasibility of the eigenvector for locating instability remains largely unknown. 

Although other groups have used the eigenvector for determining buckled configurations 

(Crisco & Panjabi, 1992; Gardner-Morse et al, 1995), the relationship of the eigenvector’s 

individual entries to the buckled configuration and subsequent least stable location has never 

been presented. This study attempted to validate a form of the eigenvector that was proposed in 

an investigation of the stability of the passive lumbar spine (Howarth & McGill, 2005). The 

method used here to validate the form of the eigenvector was a derivative of the traditional 

stability approach described by Cholewicki & McGill (1996). Thus it can be argued that the 

validity of the eigenvector for determining the least stable location that was established in this 

investigation is merely a consequence of congruity between the two computational approaches. 

However, it has been demonstrated that while the two approaches are based on the same 

theory, their computational differences that are discussed above reduce the likelihood that 

agreement on the least stable vertebral joint and axis is an artefact of their common roots. 

 

5.2 – Recruitment of Fascicle Activation for Achieving Stability 

 

 The results discussed in the following sections are based on outputs from the traditional 

stability model (Cholewicki & McGill, 1996). Thus, stability is achieved when the smallest 

eigenvalue of the Hessian matrix is greater than zero, and instability occurs when the smallest 

eigenvalue of the Hessian matrix is less than zero. 
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5.2.1 – Intersegmental Versus Multisegmental Fascicles for Achieving Stability 

 

 Bergmark’s (1989) original work on mechanical stability computation for the lumbar 

spine defined muscle fascicles as being global or local fascicles. The intent here was that 

global fascicles could produce stiffness and stability over a larger range of vertebral joints than 

the local muscles. Panjabi (1989) extended the discrepancy between local and global fascicles 

by indicating that the global fascicles were designed for moment generation, while the local 

fascicles were used to provide stability. This investigation showed that adding multisegmental 

fascicles to a set of intersegmental fascicles reduced the ability of the spine to generate 

stability. This suggests that mutlisegmental fascicles, although efficient for providing stability 

to many vertebral joints, may lead to a higher likelihood of instability.  

 

For this investigation, multisegmental fascicles were designed to vertically span the 

entire modeled lumbar spine (see Figure 3.5). The curvature of the spine limits the ability to 

activate these fascicles in a manner that will achieve moment equilibrium at every vertebral 

joint. Moment equilibrium is a principal assumption in mechanical stability analysis, and is 

achieved in the complete model of the lumbar spine (Cholewicki & McGill, 1996) by using an 

EMG guided optimization routine for balancing muscle moments (Cholewicki & McGill, 

1995). However, the moments generated by the multisegmental fascicles at each vertebral joint 

were not balanced which subsequently led to a higher number of unstable cases tested when 

multisegmental fascicles were added to the model. However, the beneficial effects of 

multisegmental fascicles for simultaneously providing stability to many vertebral levels should 

not be ignored. The results from this investigation suggest that activating multisegmental 



 65

fascicles will increase the rotational stiffness of the spine, but will also require proper 

activation of other fascicles in order to achieve balancing of the moments at each vertebral 

joint. Thus, the paradox that arises when activating multisegmental fascicles is that they have 

the ability to influence stability at many different vertebral levels, but if not activated in a 

proper manner, the multisegmental fascicles can reduce the stability of the lumbar spine. This 

lends support to the idea put forth by McGill (2003), and Kavcic and colleagues (2004) that 

stability is achieved through the coordinated activation of many muscles surrounding the 

lumbar spine, and not by activating a single group of muscles. Clinically this implies that 

focusing on the activation of a single muscle for achieving stability may be a faulty approach 

because inappropriate activation of a  

 

The number of stable cases tested increased when the quadrant fascicles were added to 

the axis fascicles. Quadrant fascicles were designed to simultaneously influence the rotational 

stiffness about the flexion/extension and lateral bend axes at a single vertebral joint while the 

axis fascicles were designed to influence a the rotational stiffness about a single axis at a single 

vertebral joint. Control over the balance of the moments generated by the fascicles was 

achieved since both sets (axis and quadrant) of fascicles only spanned a single vertebral joint. 

Thus, the large increase in the number of stable cases, as determined by the smallest 

eigenvalue, tested in the simulation with the combined set of axis and quadrant fascicles was a 

result of increased vertebral joint rotational stiffness provided by the additional intersegmental 

fascicles. Clinically, this implies that intersegmental fascicles are efficient for controlling the 

stability of an individual vertebral level, and could also be beneficial for creating a balanced 

moment at each vertebral level in the presence of a multisegmental fascicle. The increased 
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number of stable cases with the addition of more intersegmental fascicles and the subsequent 

decrease in the number of stable cases upon the introduction of multisegmental fascicles also 

provides support for Panjabi’s (1989) concept that the larger, global muscles are used for 

moment generation while the smaller local muscles are important for providing stability.  

 

5.2.2 – Clinical Relevance of Coordinated Activation of Fascicle Activity for Achieving 

Stability 

 

 Debate currently exists over how to achieve stability within the lumbar spine. One 

method is to focus on activating specific muscles that have been termed “stabilizers” while 

another method focuses on activating a collection of muscles in order to achieve a stable spine. 

The second purpose of this investigation was designed to investigate the conditions that 

mathematically contribute to creating stability. 

 

 This investigation has shown that cases where the lumbar spine was deemed to be 

mechanically stable was characterised by a smaller range of fascicle activation across all 

vertebral joints and axes in a simulation where each fascicle controlled the stiffness  of a single 

axis at a single vertebral joint. The range of fascicle activity was used to quantify the 

coordination of the fascicle activity since it has been hypothesized that proper coordination of 

muscle activity can achieve stability (McGill et al, 2003). The rationale for using the range of 

fascicle activity was that a smaller range would indicate that the activity of all fascicles would 

be better coordinated and thus would increase the stability of the lumbar spine. The statistical 

analyses of the average range of fascicle activity indicate that there is very strong evidence to 
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support the claim that stability is governed by having a better balance between the activities of 

all fascicles. The requirement for a reduced range of fascicle activity that yields a more 

balanced pattern of fascicle activation contradicts the idea that there is a rank order of muscles 

for improving stability of the lumbar spine. In particular, the Queensland group emphasize 

retraining of the multifidus muscle for improving stability, and then incorporating the 

multifidus activity into daily activities (MacDonald et al, 2006). This approach is based on the 

observation that patients diagnosed with lumbar instability have a reduced ability to properly 

recruit the multifidus muscle during daily tasks. This group also emphasizes activation of the 

transversus abdominis muscle for improving stability of the lumbar spine (Hodges et al, 1997). 

Evidently, their approach for achieving stability is strongly focused on activating specific 

muscles. Conversely, the evidence from this investigation is supported by the fact that the 

relative importance of the muscles for providing stability is dependent on the position and 

external loading conditions (Cholewicki & VanVliet, 2002; Kavcic et al, 2004). Moreover, this 

evidence supports the claim that stability is achieved through well-coordinated patterns of 

muscle activation (McGill et al, 2003).  

 

5.2.3 – Limitations 

 

 The clinically relevant finding of this section is based on the stability outputs from a 

lumbar spine that consists of an artificial set of muscle fascicles. Each fascicle was given an 

identical PCSA, no tendon, and all intersegmental fascicles were given identical lengths while 

all multisegmental fascicles were also given identical lengths. This was done in order to 

control the effects of PCSA, non-linear tendon force-stiffness properties and fascicle length on 
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the stability and stiffness outputs for the primary purpose of this investigation. Furthermore, 

the orientation of each fascicle was kept vertical. Modeling the fascicles with an oblique line of 

action would be beneficial for mimicking the effects that muscles such as internal and external 

oblique have on stability. 
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VI. CONCLUSIONS AND CLINICAL IMPLICATIONS 
 

This study attempted to determine the feasibility of using the eigenvector, derived from 

a mathematical approach that calculates the stability of the lumbar spine, for locating the least 

stable vertebral joint and axis. Traditionally, the eigenvector is used as an indicator of the 

buckled configuration of structures. For this analysis, a proposed form of the eigenvector was 

compared to the outputs of a computational method that approximated individual vertebral 

joint stiffness for each rotational axis. However, due to congruency between the two methods, 

it is still unclear whether or not the eigenvector can successfully locate the least stable joint and 

axis in the presence of a set of active muscle fascicles. Nonetheless, evidence exists for using 

the eigenvector for determining the buckled configuration of the spine, and for determining the 

location of least stiffness in a passive system. The decision from this investigation is that the 

proposed form of the eigenvector provides an initial approximation of the least stable joint and 

axis, but it should not be used as the definitive indicator of the least stable joint and axis.  

 

The secondary purpose of this work was to determine the conditions for generating 

stability. The results presented here support the hypothesis that stability is achieved through 

coordinated activation of a group of muscles instead of focusing on the activation of a single 

muscle. This information is relevant for clinicians prescribing motor pattern training for 

improving the unstable lumbar spine. It was also determined that the ability of multisegmental 

muscles (e.g. rectus abdominis) to provide stability is dependent of the fine control of other 

muscles at each vertebral joint. 
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VII. FUTURE DIRECTIONS 
 

The current investigation did not consider what happens to stability and the eigenvector 

when the lumbar spine is rotated away from its initial geometrical configuration. Furthermore, 

the effects of an external load on the eigenvector should also be investigated. However, to test 

these conditions, it would be advisable to create a physical model with the identical 

musculature and passive properties to the computer generated model of the lumbar spine used 

for this investigation. This would allow for direct measurement of the resulting configuration 

from the applied compressive load and evaluation of the least stable vertebral joint and axis 

from the physical model. The parameters of fascicle force, stiffness and applied compressive 

load could be entered into the computer generated model to verify that the eigenvector 

predicted the same least stable location that was measured from the physical model. 
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VIII. APPENDICES 
 

Appendix A. 

 
 The contents of this appendix were taken from Cholewicki and McGill (1996) and is a 
mathematical derivation of the terms, and the subsequent partial derivatives of the potential 
energy function that is used in the mechanical analysis of lumbar spine stability.  
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