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Abstract 

Software reliability has not kept pace with computing hardware. Despite the use reliability 

improvement techniques and methods, faults remain that lead to software errors and failures. Runtime 

monitoring can improve software reliability by detecting certain errors before failures occur. 

Monitoring is also useful for online and electronic services, where resource management directly 

impacts reliability and quality. For example, resource ownership errors can accumulate over time 

(e.g., as resource leaks) and result in software aging. Early detection of errors allows more time for 

corrective action before failures or service outages occur. In addition, the ability to monitor individual 

software concerns, such as application resource ownership structure, can help support autonomic 

computing for self-healing, self-adapting and self-optimizing software. 

This thesis introduces ResOwn - an application resource ownership ontology for interactive 

session-oriented services. ResOwn provides software monitoring with enriched concepts of 

application resource ownership borrowed from real-world legal and ownership ontologies. ResOwn is 

formally defined in OWL-DL (Web Ontology Language Description Logic), verified using an off-

the-shelf reasoner, and tested using the call processing software for a small private branch exchange 

(PBX). The ResOwn Prime Directive states that every object in an operational software system is a 

resource, an owner, or both simultaneously. Resources produce benefits. Beneficiary owners may 

receive resource benefits. Nonbeneficiary owners may only manage resources. This approach 

distinguishes resource ownership use from management and supports the ability to detect when a 

resource’s role-based runtime capacity has been exceeded.  

This thesis also presents a greybox approach to concern-specific, dynamic software structure 

monitoring including a monitor architecture, greybox interpreter, and algorithms for deriving 

monitoring model from a monitored target’s formal specifications. The target’s requirements and 

design are assumed to be specified in SDL, a formalism based on communicating extended finite state 

machines. Greybox abstraction, applicable to both behavior and structure, provides direction on what 

parts, and how much of the target to instrument and what types of resource errors to detect.  

The approach was manually evaluated using a number of resource allocation and ownership 

scenarios. These scenarios were obtained by collecting actual call traces from an instrumented PBX. 

The results of an analytical evaluation of ResOwn and the monitoring approach are presented in a 

discussion of key advantages and known limitations. Conclusions and recommended future work are 

discussed at the end of the thesis. 
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Chapter 1 

Introduction 

“The proliferation of new semantics may be fun for semanticists, but developing a practical 
method for reasoning about systems is a lot of work.” 

 
- M. Abadi and L. Lamport, 1991 

1.1 Motivation 

Rapid advances in computing hardware have led to more reliable platforms, but software reliability 

has not kept pace [Hang02, Sul91]. Software failures range from inconveniences in service 

applications, to financial loss in mission-critical applications, to loss of human life in safety-critical 

applications. To date, a substantial amount of research has been devoted to methods and techniques 

intended to maintain or improve software reliability such as fault avoidance, fault elimination, fault 

tolerance and formal verification [Ben03, Dod92, Gar98, Hla95, Lee90, Lyu95, Pek97, Sch95, 

Gao03]. Despite rigorous use of these methods in practice, faults remain in software in the order of 

one to ten per thousand lines of code [Tas02]. These hidden faults often do not surface until a 

software product has already been released and is operating in its production environment [Cha00, 

Kuh87, Mol93, Ost02]. Runtime monitoring can play an important part detecting hidden faults and 

ensure that a software system operates as intended in its production environments. This thesis 

investigates an ontology-based, greybox approach to dynamic software structure monitoring of 

interactive session-oriented services that are delivered by discrete event-driven, soft real-time 

software systems. The selected software concern is application resource ownership, and the software 

system used in the examples throughout this thesis is a small private branch exchange (PBX). 
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1.2 Software Failure, Error and Fault 

The standard definitions are adopted from [Iee90]: 

• A software failure is defined as the inability of a system or component to perform its required 

functions within specified performance requirements. 

• A software error is defined as the difference between a computed, observed or measured value or 

condition and the true, specified or theoretically correct value or condition. 

• A software fault is defined as an incorrect step, process or data definition in a computer program. 

If encountered during program execution, a software fault, under the right activation circumstances 

or conditions, may manifest as a software error. An error may propagate and result in other internal 

errors and/or an externally observable failure. Software faults are characterized as Heisenbugs or 

Bohrbugs [Vai01]. Bohrbugs are software design faults that should have been eliminated during 

testing, but were missed. Bohrbugs manifest an error upon each repeated activation. Heisenbugs are 

usually transient and only manifest errors during specific collusions of events or execution sequences. 

1.2.1 Software Aging 

Software aging is a temporal phenomenon that can occur in long-running, shared-resource software 

systems that must respond to asynchronous events, varying usage profiles and varying loads 

[Cas01,Vai01]. Software aging errors, such as resource leaks, may lead to service degradation as the 

usable service capacity monotonically decreases until a failure or outage occurs [Avri97]. 

1.3 Runtime Monitoring 

In general, runtime monitoring approaches may be classified according to the amount of intrusion into 

the target software system they require: 

• Blackbox monitors are unobtrusive and support failure detection. Blackbox monitors are limited 

in their ability to detect errors because they only monitor the topmost layer of abstraction; 

namely, those external processes that communicate directly with the environment. Some 

reasoning about the state of certain internal processes that communicate with external processes is 

possible, but typically limited again by space and time cost considerations. These approaches are 
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ideal for testing and for detecting failures in third-party production software whose requirements 

or high-level design specifications are available, but whose source code access may be restricted. 

• Whitebox monitors are highly intrusive and are thus able to support both failure and error 

detection, but require intimate internal system knowledge and may literally require instrumenting 

every line of source code. For example, whitebox monitoring is similar to whitebox testing where 

the control structure of the procedural design of a system is used to derive test cases. The tester 

has knowledge of the internal workings, components and specifications of the product under test 

[Gao03]. Whitebox monitoring approaches are ideal for software debugging and execution tracing 

where storage, processing and retrieval of large volumes of collected, runtime data are possible. 

• Greybox monitors offer a compromise. They are partially intrusive, thus allowing some degree of 

error detection, but they abstract away certain internal implementation details, thus reducing the 

amount of intrusion and runtime data processing requirements. This thesis presents a greybox 

approach to dynamic software structure monitoring. 

1.4 Interactive Session-Oriented Services 

This thesis presents an ontology-based approach for application resource ownership structure 

monitoring for the interactive session-oriented services application domain. Interactivity is a mode of 

service operation with an “input-compute-output” processing structure in which user commands (i.e., 

inputs) cause service responses (i.e., outputs) [Bac99, Bro01]. This thesis assumes that the service’s 

software implementation is a set of objects that exchange runtime information via interactions 

[Amb88]. Session-orientation is a service delivery property in which an application executes 

cyclically through repeated activations [Pek03]. The concept of a session is widely used for both an 

end user and software system perspective [Chr01, Dos05, Haz01, Kol98, Mur98, Par00]. 

1.4.1 Why Session-Oriented Services? 

The session-oriented concept is becoming increasingly important for interactive services [Dos05]. 

Many of today’s network applications are interactive session-oriented, and accumulate a unique 

session state [Mur98, Par00, Son02]. For example, an e-service may be a discrete-oriented, short-

running service such as an electronic shopping cart, or a session-oriented, long-running service such 

as collaborative text chatting [Chr01]. Other examples of interactive session-oriented services include 
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telephony, voice-over-Internet-protocol (VoIP), video-on-demand (VoD), online banking, and online 

ticketing. 

1.4.2 Why Resource Ownership? 

In online and electronic interactive services, resource management directly impacts the ability of the 

underlying software system to provide the specified (or contractual) quality of service (QoS) expected 

by the service’s end users [Chr01, Dos05, Hau01]. Consistent and efficient resource allocation and 

management is hard, and often nonfunctional requirements depend heavily on the correct and 

efficient management of resources [Kir04]. For example, resource management problems can go 

undetected at low service loads causing only smoothly degrading service, while at higher loads, a 

sudden increase in demand may cause a failure or a major outage [Avr97]. This situation is analogous 

to a civil or mechanical engineering structure wearing out gradually over time until a sudden stress 

causes a failure to occur. 

1.5 Software Concerns 

In today’s highly competitive online and electronic service environments, vendors and providers are 

increasingly looking to autonomic concepts, such as self-healing, self-adapting and self-optimizing 

software [Kep03], to help cope with maintaining stringent service dependability requirements and 

contractual QoS obligations. The integration of autonomic concepts into software systems that are 

responsible for delivering interactive session-oriented services presents an opportunity to software 

designers, developers and maintainers to manage, control and monitor individual software concerns 

within an operational software system. Examples of individual software concerns include resource 

ownership, data security, intrusion detection, performance, maintenance and system adaptation. 

Further, the ability to monitor the runtime health of a particular software concern would be very 

valuable; however, a formal way to specify and derive a monitoring model of the state-dependent 

structure of an individual concern is required. 

1.5.1 Concern-Specific Evolving Structure 

In software engineering, “separation of concerns” refers to the ability to identify, encapsulate and 

manipulate those parts of software that are relevant to a particular concept, goal, purpose or issue 
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[Par72]. Traditionally, software requirements are divided into functional and nonfunctional concerns. 

An individual behavioral or structural concern represents an abstraction of the software system’s full 

behavior or structure, respectively. A clean separation of concerns reduces complexity, improves 

comprehensibility, increases traceability, limits the impact of change and helps to facilitate software 

evolution, adaptation, customization, integration and reuse [Tar99]. 

This thesis considers individual software concerns in terms of behavior and structure, as shown in 

Figure 1-1. Further, at runtime, a software system’s concern-specific structure is not static; instead it 

changes or evolves1 over time in a state-dependent manner. This change occurs because there is a 

correspondence between the concern-specific, behavioral interactions that occur between certain 

internal objects in the operational software system and the corresponding association instances or 

structural links that are created and/or destroyed as a result of those behavioral interactions. 

Therefore, at any given execution point, only a subset of all the possible concern-specific structural 

links that could occur will be in effect. 

 

 

Figure 1-1: The concern-specific evolving software structure. 

In object-oriented software systems, the specification of evolving software structure takes place on 

two levels: the object level and the conceptual class level. In this thesis (Chapter 5): 

• An object diagram represents a state-dependent snapshot (i.e., individual view) of the selected 

                                                   

1 In this thesis, “the evolving software structure” is a runtime concept distinct from the notion of software 
evolution that refers to the maintenance phase of the software development life cycle [Pfl06].  
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concern-specific software structure. 

• A class diagram represents a state-independent family of snapshots (i.e., compound view) of the 

selected concern-specific software structure. 

In this thesis, a behavior-driven, ordered sequence of individual snapshots is used to represent the 

evolving software structure of the operational software system for the select software concern. The 

addition and removal of individual links between pairs of objects represents a micro-step between 

snapshots and the full transition from object diagram to the next in the state-dependent sequence 

represents a macro-step. This approach provides a deeper understanding of the evolving structure of 

software systems beyond the conventional visibility offered by simply observing the operational 

software system’s runtime behavior. 

1.6 Scope 

This thesis proposes a greybox approach to concern-specific dynamic software structure monitoring 

that uses a concern-specific model, as shown in Figure 1-2. While the monitor executes as a separate 

unit, the monitoring interface is comprised of software sensors woven into the target software 

system’s implementation according to a manually derived sensor plan. The concern-specific model is 

derived (i.e., abstracted) from the target’s formal behavioral specifications. During the derivation 

process, the model is extended with special model constructs called monitoring constructs. Each 

monitoring construct in the model corresponds to a specific monitoring command produced by an 

associated software sensor in the instrumented target software system. 

The top-level architecture of the monitor is comprised of a greybox interpreter and a tuple-based 

dynamic knowledge base. The greybox interpreter uses the dynamic knowledge base to maintain a 

representation of the operational target software system’s concern-specific evolving software 

structure. The greybox interpreter receives monitoring commands while interpreting the concern-

specific model and updates the contents of the dynamic knowledge base to match the monitored 

portion of the target’s actual software structure. The main focus of the work in this thesis is on the 

monitoring architecture and model derivations. A practical implementation of the monitor is outside 

the thesis scope. 

A novel Application Resource Ownership Ontology, called ResOwn, was created to provide a 

vocabulary, along with a set of concepts, properties and property restrictions for modeling the 
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application resource ownership structure for interactive session-oriented services. ResOwn is 

specified in the W3C’s Ontology Web Language Description Logic (OWL-DL) [W3c04b]. The 

behavior of the software system is orthogonal to ResOwn and specified using the Specification and 

Description Language (SDL) [Itu91], a formalism based on communicating extended finite state 

machine (CEFSM) [Hie01]. This thesis assumes that the target software system’s source code, SDL-

based software requirements and SDL-based software design are available. The design is assumed to 

be a refinement of the requirements, and the source code is assumed to be a refinement of the design. 

 

 

Figure 1-2: Organizational block diagram of greybox software structure monitor. 

Traditional model-driven monitoring approaches tend to focus on behavioral correctness [Dvo91, 

Gat04, Hla95, Sav97] or performance tuning [Gar00, Pek03] rather than tracking evolving software 

structure. Monitoring concern-specific software structures can be very valuable. This thesis assumes 

that runtime structural knowledge can enhance blackbox monitoring, detect errors in operational 

software before they manifest as failures and give time for manual or autonomic corrective actions to 

be invoked. Runtime structural knowledge can also be used to make dynamic decisions with respect 

to reconfiguration of adaptive systems. In addition, monitoring only an individual structural software 

concern, such as application resource ownership, provides an abstraction that reduces the amount of 
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intrusion and complexity when compared to a full whitebox monitoring approach. 

1.6.1 Why Application-Level? 

The familiar “end-to-end” argument states that functions placed at low levels of abstraction in a 

system may be redundant or of little value when compared with the cost of providing them at that low 

level [Sal84]. The argument can be extended to application-level services, which know better than 

operating systems or runtime environments what the goal of their resource allocations and 

management decisions should be [Eng95]. An application-level monitor, like the one presented in this 

thesis, could provide runtime knowledge useful for autonomic control, management and maintenance 

and for dealing with generic error recovery from encountered application faults [Cha00]. 

1.6.2 Application Domain Considered 

This thesis considers software systems that are real-time with soft deadlines, interactive, session-

oriented, discrete event-driven, semi-stationary and non-critical, and whose behavior is modeled 

using CEFSMs. For concreteness, the PBX control program is used in many of the examples 

presented throughout this thesis. A detailed description of the PBX is given in Chapter 2. 

1.6.3 Individual Software Concern Considered 

This thesis considers the individual concern of application resource ownership for interactive 

session-oriented services whose concern-specific structure is formally described using the ResOwn 

ontology. The ResOwn ontology was constructed using the Protégé-Owl ontology development 

environment and verified and classified using the RacerPro reasoner1 and inference engine2. These 

tools are described in more detail in Chapter 2. 

                                                   

1 A reasoner is a software tool that can derive new, formally annotated facts from a set of predefined, formally 
annotated facts. 

2 An inference engine is a computer program that tries to derive answers from a knowledge base. 
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1.6.4 Specializing ResOwn 

A methodology to specialize the concern-specific portion of the ResOwn ontology with application-

level knowledge for a particular software system is presented in Chapter 5. The methodology is then 

applied to a concrete example that creates an application-specific instance of ResOwn using the 

object classes defined in the PBX. A reasoner is then used to automatically classify the inserted 

application classes, resulting in an inferred class hierarchy of the application-specific ResOwn 

instance. This inferred ResOwn instance is used in Chapter 6 for the derivation of the concern-

specific model, and at runtime by the greybox interpreter when processing incoming monitoring 

commands from the instrumented target software system. 

1.7 Objective 

One of the primary objectives of the thesis is to investigate the use of a concern-specific ontologies 

from Knowledge Engineering to model structural concerns for software monitoring. The intended use 

of the ontology is for a concern-specific, model-based approach to greybox monitoring evolving 

software structures in operational software systems. The selected structural concern’s vocabulary, 

concepts, properties and restrictions are specified and modeled using the ontology. The selected 

structural concern is application resource ownership. The application domain is interactive session-

oriented services. The example target software system considered is the call processing software for a 

small private branch exchange (PBX). 

1.8 Contributions 

The major novel contributions of this thesis are: 

• A reusable and extensible, concern-specific ontology called ResOwn provides enriched concepts 

of application resource ownership borrowed from real-world legal and ownership ontologies. 

ResOwn is defined in the Web Ontology Language Description Logic (OWL-DL), verified with a 

reasoner and tested using the PBX example. 

• A methodology to create an application-specific ResOwn instance that specializes the concern-

specific portion of the ResOwn ontology with application-level knowledge for a particular 
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software system. 

• A dual-view, Session-Oriented Model of Computation (SOMOC) for interactive session-oriented 

services that relates observable, external service behavior to internal, evolving software structure. 

• A greybox, concern-specific dynamic software structure monitoring approach and architecture 

devised for tracking the state-dependent evolving software structure of an operational software 

system. 

• A pair of algorithms for deriving the concern-specific monitoring model: 

o An algorithm for deriving a state evolution model from the target’s software requirements 

specification. The state evolution model allows the greybox interpreter to track the 

specification state (i.e., macro-steps in the evolving structure) of the operational target. 

o An algorithm for deriving a set of epoch of behavior (EoB) models from certain slices of the 

target’s software design specification. Each EoB model contains the monitoring constructs 

that allow the greybox interpreter to track certain concern-specific structural transactions 

(i.e., micro-steps in the evolving structure) as they are reported by the instrumented target. 

1.9 Thesis Organization 

The remainder of this thesis is organized as follow: 

Chapter 2 introduces fundamental theories used in the thesis and discusses related work. A detailed 

introduction is given to the OWL-DL as the formalism used to model knowledge in ResOwn. The 

chapter also includes background concepts and related work in runtime monitoring. 

Chapter 3 provides an overview of the approach presented in this thesis including ResOwn and the 

greybox concern-specific monitor. 

Chapter 4 forms the core of the thesis and describes, in detail, the top-level concepts, asserted and 

inferred taxonomies, vocabulary, classes, properties and property restrictions of ResOwn. 

Chapter 5 presents the methodology for mapping ResOwn to a concrete application software 

example for PBX, resulting in an application-specific specialized ResOwn instance. The second part 

of chapter presents a number runtime snapshots (i.e., object diagrams) that describe some of the 

permissible dynamic resource ownership evolution patterns using the example PBX. 
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Chapter 6 introduces a session-oriented model of computation (SOMOC) for modeling interactive 

session-oriented services that is used as the basis for deriving the concern-specific monitoring model 

described in detail in Chapter 7. 

Chapter 7 describes the actual greybox concern-specific dynamic software structure monitor 

approach and architecture, the syntax and semantics of monitoring commands and constructs, and the 

monitoring model derivation algorithms.  

Chapter 8 discusses the analytical evaluation of the ontology-based monitoring approach presented 

in the thesis, including the conceptual benefits and known limitations. 

Chapter 9 summarizes the presented research and suggests some future research work. 
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Chapter 2 

Background and Related 

Work 

 “Eventually, everything will just be knowledge.” 

- K. Czarnecki, 2006. 

2.1 Introduction 

This chapter describes several topics which form the background and related material for the work 

presented in this thesis. Highlights of the chapter include a tutorial on OWL-DL-based ontologies that 

was compiled from a number of sources for this thesis and a review of related work. 

2.2 Definitions and Concepts 

2.2.1 Resource and Resource Management 

In (business) process modeling, a resource is defined as a necessary item, tool or person and may 

include equipment, time, office space, people and techniques [Pfl06]. In software, a resource is 

defined as everything that is required by an application to provide its required service [Zsc04]. In this 

thesis, the definition of an application resource is adapted from [Kir04] to be an entity (i.e., Resource 

instance) that is available in limited supply such that there exists a requestor (i.e., Consumer 

instance) that needs the entity to perform a function, and there exists a provider (i.e., Supplier 

instance) that provides the entity upon request. Two important properties of a Resource instance are: 
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(1) it can be allocated and used by an application, and (2) it has a maximum capacity1 [Zsc04]. 

Resource management is the process of controlling the availability of Resource instances for 

Consumer instances to ensure that: Resource instances are available when needed, the resource 

lifecycle is deterministic, and Resource instances are released in a timely manner to ensure software 

system liveliness [Kir04]. 

2.2.2 Ownership 

In the Anglo-American legal system, ownership is defined as a relationship between a legal person 

(i.e., individual, group, corporation or government) and an object [Bri06]. The object of concern may 

be corporeal or completely a creature of the law such as a patent, copyright or annuity. Although 

ownership can be treated as a single, conceptual object, it is often necessary to view ownership as a 

bundle of rights [Mcca02, Sha05, Yip02, Yip03, Yip04]. The concept of ownership provides several 

main perspectives: 

• The notion of possessing property. 

• The notion of legal ownership rights that may vary according to one’s relationship with some 

property. 

• The ability to prove those legal ownership rights have been properly granted via some legally 

binding proof of ownership instrument. 

• The concept of an owner (i.e., Owner instance), where an Owner instance can itself be viewed as 

property and be owned by other Owner instances. 

In this thesis, application resource ownership is defined as a relationship between a physical 

Resource instance and one or more physical Owner instances. An Owner instances has certain 

Ownership Right instances applicable to a Resource instance, along with the ability to prove those 

rights via a logical proof of ownership Instrument instance. Lastly, an Owner instance itself can be a 

Resource instance, and conversely, a Resource instance can be an Owner instance. 

                                                   

1 Resources with unlimited availability and unlimited capacity are not considered. 
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2.2.3 Roles and Role Contexts 

Popular role theory, or the observation that human beings play multiple, context-sensitive roles with 

corresponding identities, expectations and behaviors, originated in psychology and sociology in the 

1960s and 1970s [Bid66, Bid79]. In today’s software domain, role theory has been integrated with the 

object-oriented paradigm to be applied to areas such as role-based security access modeling [Cra03] 

and role-based, interactive agent systems [Cab03, Woo00]. In most object-oriented paradigms, 

objects are independent, isolated entities with a unique identity and a uniform singleton set of 

behavioral capabilities [Kri95]. However, in operational object-oriented software, objects tend not to 

be isolated entities, but rather they relate to each other through interactions within a number of 

different settings or contexts. 

In accordance with [Kri95], an object is said to play a role when a role instance is assigned to that 

object. In this thesis, the assignment of a role instance to an object is assumed to occur implicitly via 

the structural context that the object finds itself in. For example, consider a sequence of interactions 

between a set of objects, O1, O2, and O3. An internal observer could deduce that O2 plays a certain 

role in the resulting state-dependent software structure (i.e. structural context) that has evolved 

between O1, O2, and O3. However, if that O2 also participates in a sequence of interactions with O4, 

and O5, then an internal observer could conclude that O2 now plays a different, second role in the 

structural context that now exists between O2, O4, and O5. Hence, in this example, the same object 

(O2) may simultaneously play two distinct, context-sensitive roles. This approach is preferable to 

viewing role instances as a static property because the assignment of role instances can change in 

synchronization with evolving structure.  

In [Jia05], a networked service composed of structural and behavioral arrangements of service 

components is presented. Service components execute as nodes representing physical processing units 

such as servers, routers, switches, phones, laptops and PDAs. A service component, as shown in 

Figure 2-1, is a generic software component, called an actor, whose executable functionality, or role, 

is based on downloadable Extended Finite State Machines (EFSM). A session role is a projection of 

an actor’s role with respect to the interaction between pairs of actors. Actors play roles according to 

manuscripts and a director manages their operations. In this thesis, objects are modeled as Owner or 

Resource instances. In addition, an object may also play one or more Owner Role instances. The set 

of Owner Role instances played depends of the different structural resource ownership contexts in 

which the object finds itself. 
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Figure 2-1: Example verification architecture [Jia05]. 

2.3 Software Modeling 

Models are abstractions [Sel03] that eliminate irrelevant details or simplify concepts; that is, a 

simplified view of a system that increases understandability, predictiveness and/or accuracy and 

lowers cost. The three subsections that follow introduce three modeling paradigms [Atk03]: ontology 

modeling using the Web Ontology Language Description Logic (OWL-DL) [W3c04a, W3c04ab], 

meta-modeling using the Unified Modeling Language (UML) [Omg05a, Omg05b] and behavioral 

modeling using the Specification and Description Language (SDL) [Itu91]. The subsections provide 

only a high-level discussion of the key modeling concepts of each paradigm. Interested readers are 

directed to a suitably detailed reference or tutorial for further investigation. 

2.3.1 Ontological Modeling 

There are numerous definitions of what exactly constitutes an ontology, depending on the discipline 

the applicable ontological concepts originate. In philosophy, “Ontology, understood as a branch of 

meta-physics, is the science of being in general, embracing such issues as the nature of existence and 

the categorical structure of reality. Different systems of ontology propose alternative categorical 

schemes. A categorical scheme typically exhibits a hierarchical structure, with ‘being’ or ‘entity’ as 

the topmost category, embracing everything that exists [Hon95].” Today’s interest in ontologies 

extends well beyond meta-physics. In the knowledge representation domain, an ontology may be 

defined as: 
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• A specification of a conceptualization, an explicit specification of some topic, or a formal and 

declarative representation of some subject area [Gru93, Gua98]. 

• A set of knowledgeable terms (i.e., vocabulary), the semantic interconnections, and some rules of 

inference and logic for some particular topic [Hen01]. 

• The basic structure, skeletal knowledge, or armature around which knowledge bases can be built 

or integrated at the knowledge level, independent of any particular implementations [Dev99, 

Swa99]. 

The main ontological components, relevant to a particular domain of discourse, are 

conceptualizations or concepts (i.e., classes) organized into a hierarchical taxonomy, with relations 

among the concept, and constraints, restrictions or axioms (i.e., properties) distinguishing concepts 

and refining definitions and relations [Noy97]. A sample of the number of different kinds of 

ontologies discussed in the literature includes: 

• An Upper Ontology [Noy97], Top-Level Ontology [Sha05], Foundation Ontology defines very 

general base concepts that that are the same across all domains and thus support ontology 

development and facilitate common-sense, human-like understanding and reasoning. The aim is 

to have a large number on ontologies accessible under this upper ontology. 

• A Domain Ontology [Noy97] defines the terminology and concepts relevant to a particular topic 

or area of interest. As systems that rely on domain ontologies expand, they often need to merge 

domain ontologies into a more general representation. Different ontologies in the same domain 

can also arise due to different perceptions of the domain based on cultural background, education, 

ideology or because a different representation language was chosen. 

• A Business Process Ontology [Noy97] defines the inputs, outputs, constraints, relations, terms 

and sequencing information relevant to a business process. A business process ontology serves 

two distinct purposes. Firstly, it makes knowledge explicit and allows for knowledge sharing 

among domain experts and information technology people engaged in software design and 

development. Secondly, since it includes machine-readable definitions of concepts, it serves as a 

requirements specification from which a number of software artifacts can be generated. 

• An Interface Ontology [Noy97] defines the structure, content, messaging and other restrictions 

for a particular interface (e.g., Application Programming Interface). 
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• A Service Ontology [Noy97] defines a core set of constructs for describing the vocabularies and 

capabilities of services such as the World Wide Web Consortium (W3C) Web Service Modeling 

Ontology1. 

• A Role Ontology defines terminology and concepts relevant for a particular end-user. 

2.3.1.1 Semantic Web 

The role of ontologies in the Semantic Web is to establish additional levels of syntactic and semantic 

interoperability on the Web. Syntactic interoperability pertains to reusability in parsing data. 

Semantic interoperability pertains to mappings between terms within the data using some form of 

content analysis. Ontologies serve to standardize and provide interpretations for Web content using a 

semantic markup to make that Web content machine-understandable. 

2.3.1.2 Ontology for Software Engineering 

In software engineering, ontologies may be used to model domain-specific concepts and software 

structure. A domain-specific ontology provides a vocabulary of concepts from a selected application 

domain, along with a set of logical statements that describe what concepts are, and how concepts can 

or cannot be related to each other. The philosophy of constructing ontologies free from 

implementation bias, as studied in the ontology field [Gru93], is very attractive when modeling the 

structure of an individual software concern. This was one of the key reasons this thesis chose to use a 

concern-specific ontology to model application resource ownership structure. 

Ontologies for modeling software philosophically and practically support the use of platform 

independent knowledge at the domain-level. In addition, these same domain-specific ontologies can 

be extended and transformed into platform- or application-specific models via a process known as 

specialization. In this way, ontological languages have declarative power that can improve object-

oriented models, plus support automatic reasoning and inferencing. Inference may be used to 

determine multiple inheritance for specialized conceptualizations from the declared or asserted class 

hierarchy of an ontology automatically, rather than manually. For example, this thesis uses automatic 

inference with the concern-specific, Application Resource Ownership Ontology (ResOwn) (described 

in Chapter 4) to automatically determine the possible Resource or Owner classes an object class may 

                                                   

1 http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/ 
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belong to from a target software system. 

In [Yu5], an OWL-based ontological approach is presented to monitor grid resources. The 

approach focuses on integrating and sharing real-time status information of voluntary nodes for 

quality of service (QoS) management. The designed ontology originates from the Management 

Information Base (MIB) in network management for open network devices monitoring and 

management. The taxonomy of classes in the host resources ontology is displayed in Figure 2-2. The 

presented ontology is similar to ResOwn in that it specified using OWL and focuses on resources. 

The ResOwn ontology differs in that it provides a conceptually rich and concern-specific domain of 

discourse for application resource ownership structure that integrates knowledge from a different 

domain of discourse including the software domain, the client-server domain, the legal and real 

property domains and the interactive service domain. 

 

 

Figure 2-2: Excerpt from host resources ontology. 

2.4 The Web Ontology Language (OWL) 

The Web Ontology Language (OWL) is a set of eXtensible Markup Language (XML) elements and 

attributes, with well defined meaning, that are used to define terms and their relationships [Hor04, 

W3c04a, W3c04b]. As shown in Figure 2-3, OWL is actually an extension of the Resource 

Description Framework (RDF) and RDF Schema, which in turn extends XML and XML Schema 

[Dju05]. OWL is one entry on the continuum of ways to express knowledge, as shown in Figure 2-4. 

There are three species of OWL, as shown in Figure 2-5 [W3c04a, W3c04b]: 
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Figure 2-3: OWL in the semantic web architecture [Dju05]. 

 

 

Figure 2-4: Continuum of formal ways to express knowledge [Usc06]. 

• OWL-Lite has limited expressiveness and is suitable for simple class hierarchies and constraints. 

Cardinality is restricted to values of 0 or 1. 

• OWL-DL supports description logics [Baa03] and automated reasoning and is the OWL species 

used throughout this thesis. OWL-DL has maximum expressiveness while maintaining 

computational completeness (i.e., all conclusions are guaranteed) and decidability (i.e., all 

conclusions finish in a finite time). OWL-DL includes all language constructs but certain 

constructs can only be used under certain restrictions (e.g., a class cannot be an instance of 
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another class).  

• OWL-Full has the most expressiveness and syntactic freedom (e.g., a class may be treated 

simultaneously as a collection of individuals and as an individual itself), but offers no 

computational guarantees and therefore, does not support automated reasoning. 

 

 

Figure 2-5: The three sublanguages of OWL. 

2.4.1 OWL Ontology Modeling Tools 

The ResOwn ontology was constructed, tested, debugged, and visualized using the following tools: 

• Protégé-OWL1 is a tool and development environment for ontologies and knowledge-based 

systems comprised of Protégé (v3.1.1) and the OWL-Plug-in (v2.1). The tool provides an 

interactive facility to iteratively devise, construct, test, debug and classify the ResOwn ontology. 

The tool runs on the Sun JVM2 (v1.5.0_06) for Windows XP Professional (v2002, SP2). In this 

thesis, Protégé-OWL provided the author with an interactive facility to iteratively devise, 

construct, test, debug and classify the ResOwn ontology presented in Chapter 4. 

• The RacerPro3 (v1.9.0) is a reasoner and inference engine used in conjunction with the Protégé-

OWL tool for OWL-DL-based ontologies. RacerPro allowed the author to automatically check 

and manually debug the consistency of the ResOwn asserted class hierarchy. RacerPro also 

                                                   

1 http://protege.stanford.edu/overview/protege-owl.html 
2 http://www.sun.com/java/ 
3 http://www.racer-systems.com/ 
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automatically found implicit subclass relationships when generating the ResOwn inferred class 

hierarchy and computed equivalent ResOwn classes. The RacerPro academic research license 

was provided to the author free of charge upon request by Racer Systems GmbH and Co. KG. 

This thesis used the RacerPro reasoner. 

• OWLViz1 (v14) is a plug-in that allows Protégé-OWL users to visually display selected portions 

of both an OWL-DL ontology’s asserted and inferred class hierarchies. The author used OWLViz 

to create the various ResOwn screenshots presented throughout this thesis. 

• Graphviz2 is an open source graph visualization program required specifically by OWLViz and is 

used to represent structural ontological information as diagrams of abstract graphs and networks. 

2.5 OWL-DL Ontologies 

Much of the material information presented in the subsections that follow was condensed, adapted 

and/or modified by the author from several sources [Hor04, Knu04a, Knu04b]. Many of the diagrams 

were redrawn from those originally appearing in the detailed Protégé-OWL tutorial [Hor04]. 

2.5.1 Components of OWL-DL Ontologies 

An OWL ontology consists of these components. 

• An individual (i.e., Instance) is a constant in Description Logic and represents an object in the 

domain of discourse in OWL. OWL-DL, being based on Description Logic, does imposed the 

Unique Name Assumption. This means that just because two names are different in OWL-DL 

does not mean they refer to different individuals. Two different OWL-DL class names, for 

example, may refer to the same individual. Therefore, it must be explicitly stated in OWL-DL 

whether individuals are the same as each other or different from each other. A representation of 

some individuals (represented by diamonds) is shown in Figure 2-6. 

                                                   

1 http://www.co-ode.org/downloads/owlviz/co-ode-index.php 
2 http://www.graphviz.org/ 



 22

 

Figure 2-6: Representation of individuals [Hor04]. 

• A Property (i.e., Slot) is role or binary predicate in Description Logic and represents a binary 

relation in OWL that links two individuals together. In Figure 2-7, the property hasSibling links 

the individual Matthew to the individual Gemma. Properties can have an inverse. For example, 

the inverse of hasOwner is IsOwnerOf. Functional properties are limited to having a single 

value. Properties can also be symmetrical or transitive. These property characteristics are 

explained in Section 2.5.4. 

 

 

Figure 2-7: Representation of properties [Hor04]. 

• A Class is a concept or unary predicate in Description Logic and represent a set of individuals in 

OWL that are defined using formal, mathematical descriptions that state precisely the 

requirements for membership in the class. For example, in Figure 2-8, the class Person contains 

the individuals Matthew and Gemma, the class Pet contains Fluffy and Fido, and the class 

Country contains Italy, England and USA. Classes are shown as circles or ovals similar to Venn 

diagrams. Classes are concrete representations of concepts and may be organized in a superclass-

subclass hierarchy called taxonomy. Subclasses specialize, or are subsumed by, their 

superclasses. Consider, for example, the classes Animal and Cat where Cat may be a subclass of 

Animal so that Animal is the superclass of Cat. This says that: (1) all cats are animals, (2) all 

members of the class Cat are also members of the class Animal, and (3) being a Cat implies 

being an Animal. One of the key features of OWL-DL is that this subsumption relationship can 

be automatically computed by a reasoner. OWL classes are essentially descriptions that specify 
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the conditions that must be satisfied by an individual for that individual to be a member of a 

particular defined or primitive class. 

 

 

Figure 2-8: Representation of classes containing individuals [Hor04]. 

2.5.1.1 Owl:Thing 

Every empty OWL ontology contains one root class called owl:Thing. owl:Thing is part of the OWL 

vocabulary and represents the set containing all possible individuals. Therefore, all classes in an 

OWL ontology are subsumed by owl:Thing. 

2.5.1.2 Named or Primitive Classes 

Although there is no mandatory naming convention, OWL classes are normally named using the 

CamelBack notation; that is, starting with a capital letter and without any spaces. Examples of named 

classes include Pizza, PizzaTopping, and MargheritaPizza. 

2.5.1.3 Subclasses 

In OWL, belonging to a subclass is a necessary condition for that individual to also belong to the 

subclass’s superclass. For example, if a VegetableTopping is a subclass of PizzaTopping, then 

being an instance of VegetableTopping implies being instances of PizzaTopping, without exception. 

This means that if an individual is a VegetableTopping then it necessarily implies that the same 

individual is also a PizzaTopping, as shown in Figure 2-9. 
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Figure 2-9: The meaning of subclass in OWL [Hor04]. 

2.5.1.4 Disjoint Class 

If two or more classes are disjoint, then an individual cannot be an instance of more than one of those 

disjoint classes. This must be stated explicitly because OWL classes are assumed to overlap. 

Therefore, one cannot assume that an individual is not a member of a particular class simply because 

the individual has not been asserted to be a member of that class. Therefore, by making a group of 

classes disjoint, conceptually separates them and ensures that an individual asserted as a member of 

one class in the group cannot be a member of another class in the group. This means that it is not 

possible for an individual to be a member of a combination of these classes. For example, if the 

classes Pizza, PizzaTopping, and PizzaBase are specified as disjoint, then an individual could not be 

both a pizza and a pizza base. 

2.5.2 OWL Properties 

OWL properties represent relationships between pairs of individuals. There are types: 

• Object properties link an individual to an individual. For example, Figure 2-10(i) shows an object 

property hasSister linking the individual Barry to the individual Debbie. The ResOwn ontology, 

presented in Chapter 4, only uses object properties. 

• Datatype properties link an individual to an XMLS datatype value or an RDF literal. For 

example, Figure 2-10(ii) shows a datatype property hasAge linking the individual Barry to the 

data literal ‘46’ which has type xml:Integer. 

• Annotation properties meta-data on the model which may be added to classes, individuals or 
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properties and are not instantiated with individuals1. For example, Figure 2-10(iii) shows an 

annotation property dc:creator linking the individual ‘Thesis’ to the data literal (string) “Barry 

Pekilis”. 

 

Barry Debbie

(i) (ii)

Barry “46”^^xsd:integer

(iii)

Thesis “Barry Pekilis”

 

Figure 2-10: Different types of OWL properties. 

Although there is no mandatory naming convention, OWL properties are normally named starting 

with a lower case letter, no spaces and the remaining words capitalized. Normally, a property name is 

prefixed with the word has or is such as hasPart, isPartOf, hasManufacturer or isProducerof. 

Further, in OWL, properties may have sub-properties that specialize a super-property in a hierarchy 

of properties. For example, in a famous Pizza Ontology [Hor04, Rec04] the properties hasTopping 

and hasBase are created as sub-properties of hasIngredient. This implies that pairs of individuals 

linked by either the hasTopping or hasBase property are also related to each other via the 

hasIngredient property. 

2.5.3 Inverse Properties (I) 

Each object property may have a corresponding inverse property (I). If some property links individual 

a to individual b then its inverse property will link individual b to individual a. For example, as 

shown in Figure 2-11, shows the property hasParent and its inverse property hasChild. This implies 

that if Matthew hasParent Jean then because of the inverse property, it can be inferred that Jean 

hasChild Matthew. 

                                                   

1 This is similar to a Java comment. 
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Figure 2-11: Example of an inverse property [Hor04]. 

2.5.4 OWL Property Characteristics 

In OWL, the meaning of properties is enriched through the use of property characteristic: 

• If a property is a functional property, then for a given individual, there can be at most one 

individual that is related to the individual via the functional property. For example, Figure 2-12 

shows the functional property hasBirthMother which means that an individual can only have one 

birth mother. If the individual Jean hasBirthMother Peggy and the individual Jean 

hasBirthMother Margaret, then because hasBirthMother is a functional property, it can be 

inferred that Peggy and Margaret are the same individual. If Peggy and Margaret were 

explicitly stated as two different individuals, then the above statements would be inconsistent. 

• If a property is an inverse functional property, then it means that the inverse property is 

functional. Figure 2-13 shows an example of the inverse functional property isBirthMotherOf, 

the inverse property of hasBirthMother. In this example, since hasBirthMother is functional, 

isBirthMotherOf is also defined as functional. If Peggy is specified as the birth mother of Jean, 

and Margaret is also specified as the birth mother of Jean, then it can be inferred that Peggy and 

Margaret are the same individual. 

 

 

Figure 2-12: Example of a functional property characteristic [Hor04]. 
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Figure 2-13: Example of an inverse functional property characteristic [Hor04]. 

• If a property is a transitive property, and the transitive property P relates an individual a to an 

individual b, and also an individual b to an individual c, then it can be inferred that individual a is 

related to individual c via P. For example, the example transitive property hasAncestor is given 

in Figure 2-14. If an individual Matthew has an ancestor Peter, and Peter has an ancestor 

William, then it can be inferred that Matthew has an ancestor William. If a property is transitive, 

then its inverse should be transitive too. Transitive properties cannot be functional. 

• If a property is a symmetrical property, and the symmetrical property P relates an individual a to 

an individual b, then individual b is also related to individual a via property P. Figure 2-15 shows 

an example in which the individual Matthew is related to the individual Gemma via the 

symmetrical property hasSibling. Therefore, it can be inferred that Gemma must also be related 

to Matthew via the hasSibling property. In other words, hasSibling is the inverse of itself and, 

so, if Matthew is a sibling of Gemma, then Gemma must be a sibling of Matthew. 

 

 

Figure 2-14: Example of a transitive property characteristic [Hor04]. 
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Figure 2-15: An example of a symmetrical property characteristic [Hor04]. 

2.5.5 Property Domain and Ranges 

Every OWL property has a specified domain and a range, where a property links an individual from 

its domain to an individual in its range. In the example excerpt from the Pizza ontology, as shown in 

Figure 2-16, the property hasTopping links individuals from the class Pizza in the property’s domain 

to individuals belonging to the class PizzaTopping in the property’s range. Similarly, the inverse 

property isToppingOf links individuals from PizzaTopping in the domain to individuals belonging to 

Pizza in range. OWL property domains and ranges are axioms in reasoning. For example, consider 

individual a and individual b along with the assertion that a hasTopping b. Then it can be inferred 

that a is a member of class Pizza and b is a member of class PizzaTopping. Further, if the property 

hasTopping has the domain Pizza and the property is applied to a class IceCream (i.e., individuals 

that are members of the class IceCream), and if Pizza is not explicitly specified as disjoint from 

IceCream, then it could be inferred that the class IceCream is a subclass of Pizza. It is, however, 

possible to specify multiple classes as the range for a property. This is interpreted as the union of the 

classes. For example, if the range of a property has the classes Man and Woman, the range of the 

property is interpreted as Man union Woman. 

 

 

Figure 2-16: An example domain and range for a property and inverse property [Hor04]. 
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2.5.6 Describing and Defining Classes 

In OWL, properties are used to create restrictions that describe and define classes. Restrictions restrict 

the individuals that may belong to a particular class. Restrictions describe an anonymous or unnamed 

class of individuals that can satisfy the restriction. Restrictions fall into three categories: 

• Quantifier restrictions are composed of a quantifier, a property and a filler. In OWL-DL, 

quantifiers produce an anonymous class of individuals. The two types of quantifiers are: 

o The existential quantifier (∃), which is interpreted in OWL as “some values from.” 

o The universal quantifier (∀), which can be interpreted in OWL as “all Values From.” 

• Cardinality restrictions (i.e., minimum, maximum, exact). 

• hasValue restrictions (∋). 

2.5.7 Existential Restrictions 

Existential restrictions (∃) are the most common type of restriction used in OWL ontologies. For a set 

of individuals, an existential restriction specifies the existence of at least one relationship along a 

property to an individual that is a member of a specific class. For example (∃ hasBase PizzaBase) 

describes all the individuals that have at least one relationship along the hasBase property to an 

individual that is a member of the class PizzaBase. Notice these are necessary conditions. As shown 

in Figure 2-17, for something to be a Pizza, it is necessary for it to have (at least one) PizzaBase. 

Therefore, a Pizza is a subclass of the things that have at least one PizzaBase. 

2.5.8 Reasoners and RacerPro 

One of the key features of ontologies described using OWL-DL is that they can be processed by a 

reasoner. One of the main services offered by a reasoner is subsumption testing which determines 

whether or not one class is a subclass of another class. By performing these tests on the ontology’s 

classes, it is possible for a reasoner to compute the inferred ontology class hierarchy. Further, a 

reasoner can perform consistency checking. A reasoner can check on whether or not it is possible for 

a class to have any instances based on the descriptions or conditions of that class. A class is deemed 

inconsistent if it cannot possibly have any instances. To reason over ontologies constructed under 



 30

Protégé-OWL, a Description Logic Implementers Group (DIG) compliant reasoner may be used. This 

thesis uses the RacerPro reasoner allowing the manually constructed ontology in Protégé-OWL, 

called the asserted class hierarchy, to be sent to RacerPro reasoner to compute the classification 

hierarchy and to check the logical consistency of the ontology. The reasoner’s automatically 

computed ontology is called the inferred class hierarchy. The task of computing the inferred 

hierarchy is called classifying the ontology. 

 

 

Figure 2-17: Schematic description of a Pizza [Hor04]. 

2.5.9 Necessary and Sufficient Conditions 

The OWL classes discussed so far have been described using only necessary conditions. A class 

specified with only a necessary condition is known as a primitive class. A necessary condition reads 

as: 

 

 “If something is a member of this class, then it is necessary to fulfill these conditions.” 
 

However, with necessary conditions alone, it is not possible to infer whether something that fulfills 

these conditions is actually a member of the class. For example, consider the subclass of Pizza called 

CheesyPizza which is a Pizza that has at least one kind of CheesyTopping. Consider now the 

primitive class description of CheesyPizza shown in Figure 2-18(i), which states that, if something is 

a member of the class CheesyPizza, it is necessary for it to be a member of the class Pizza and it is 

necessary for it to have at least one topping that is a member of the class CheesyTopping. Suppose 

that it is known that a particular individual is a member of the class Pizza and that this same 
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individual has at least one kind of CheesyTopping. Given the current primitive class description of 

CheesyPizza, the knowledge about this particular individual is not sufficient to determine whether or 

not the individual is a member of the class CheesyTopping. 

 

If CheesyPizza, then necessary to be a Pizza and have
at least one CheeseTopping topping

(i)

If Pizza and have at least one CheeseTopping, then
sufficient to determine individual is a  CheesyPizza

(ii)
 

Figure 2-18: Description of CheesyPizza. 

To be able to classify the individual, the conditions for the CheesyPizza need to be changed from 

necessary conditions to necessary and sufficient conditions, as shown in Figure 2-18(ii). This means 

that not only are the conditions necessary for membership in the class CheesyPizza, they are also 

sufficient to determine whether any (random) individual that satisfies these conditions must be a 

member of the class CheesyPizza. In OWL, primitive class description have only necessary 

conditions, whereas define class definition have at least one necessary and sufficient condition. Any 

individual that satisfies the definition will belong to the defined class. 

2.5.10 Automatic Classification 

Being able to use a reasoner to automatically compute the inferred class hierarchy is one of the major 

benefits of building an ontology with OWL-DL. When constructing very large ontologies, which may 

contain several thousand classes, the use of a reasoner to compute subclass-superclass relationships 

becomes vital to maintaining the ontology and keeping it logically correct. Further, in multiple 

inheritance cases where ontologies have classes that have one or more superclasses, it is often better 

to construct the asserted class hierarchy as a simple tree. Then the reasoner is used for computing and 

maintaining multiple inheritance hierarchy coordination. Doing this helps keep the ontology 
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maintainable, extensible, reusable and modular, and helps to minimize human error. 

2.5.11 Universal Restrictions 

Universal restrictions (∀) mandate that the only relationships that exist for a given property must be 

to individuals that are members of the specified filler class; that is, universal restrictions constrain the 

relationship along the specified property to individuals of a specified class. For example, ∀ 

hasTopping MozzarellaTopping describes all the individuals all of whose hasTopping relationship 

are to member of MozzarellaTopping. In other words, individuals do not have a hasTopping 

relationships to individuals that are not members of MozzarellaTopping. Note that the universal 

restriction ∀ hasTopping MozzarellaTopping also describes the individuals that do not participate 

in any hasTopping relationships. An individual that does not participate in any hasTopping 

relationships by definition does not have any hasTopping relationships to individuals that are not 

members of MozzarellaTopping, and the restriction is therefore satisfied. Therefore, for a given 

property, universal restrictions do not specify the existence of a relationship, but merely state that if a 

relationship exists for the property then it must be to individuals that are members of a specified class. 

2.5.12 Open World Reasoning 

Reasoning in OWL-DL is based on the Open World Assumption (OWA), and is often referred to as 

Open World Reasoning (OWR). OWA means that it cannot be assumed that something does not exist 

until it has been explicitly stated that it does not exist. In other words, just because something has not 

been stated as true, it cannot be assumed to be false. Instead, it must be assumed that the knowledge 

has just not yet been added to the knowledge base. 

2.5.13 Closure Axioms 

A closure axiom on a property consists of a universal restriction that acts along the property to 

specify that it can only be filled by the list of specified fillers. The restriction has a filler that is the 

union of the fillers that occur in the existential restrictions for the property. For example, Figure 2-19 

shows the closure axiom on the hasTopping property for MargheritaPizza is a universal restriction 

that acts along the hasTopping property, with a filler that is the union of MozzarellaTopping and 

TomatoTopping; that is, ∀ hasTopping (MozzarellaTopping ⊔ TomatoTopping). This restriction 
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says that if an individual is a member of MargheritaPizza, then the individual must be a member of 

NamedPizza, and it must have at least one topping of the kind MozzarellaTopping, and it must have 

at least one topping that is a member of TomatoTopping, and the toppings must only be of the kinds 

MozzarellaTopping or TomatoTopping.  

 

 

Figure 2-19: Example of closure axiom. 

2.5.14 Extending OWL-DL with Value Partitions 

A Value Partition (VP) [Hor04, W3c05] is not part of OWL, nor any other ontology language. VPs 

are used to refine the descriptions of OWL classes. A VP is essentially an ontological design pattern, 

analogous to a design pattern in meta-modeling, whose value classes, as shown in the example in 

Figure 2-20(i), are disjoint and their union makes up a set that is covered, as shown in the example in 

Figure 2-20(ii). VPs are solutions to modeling problems that occur repeatedly across a number of 

different ontologies or domains and model descriptive features such as qualities or attributes as OWL 

properties whose range specifies the constraints on the values the property can assume. Consider the 

example VP called SpicinessValuePartition, as shown in Figure 2-20, that describes the spiciness of 

PizzaToppings. The VP restricts the range of possible values to an exhaustive list. For example, 

SpicinessValuePartition, modeled as the functional object property hasSpiciness, restricts the range 

of hasSpiciness to the disjoint subclasses Mild, Medium and Hot, as shown in Figure 2-20(i), 

represent degrees of spiciness. In Figure 2-20(ii), SpicinessValuePartition is defined with a covering 

axiom to make the list of spiciness exhaustive. 

2.5.15 Covering Axioms 

A VP partition uses a covering axiom. A covering axiom consists of two parts: 

• The class being covered. 
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• The classes that form the covering. 

For example, consider three classes: class A, class B and class C, where B and C are subclasses of 

A, as shown in Figure 2-21(i). Suppose that a covering axiom specifies that A is covered by B and C. 

This means that a member of A must be a member of B and/or C. If B and C are specified to be 

disjoint, then a member of A must be a member of either B or C. Recall that normally, if B and C are 

subclasses of A, then an individual may be a member of A without being a member of either B or C. 

However, a covering axiom manifests itself as a class that is the union of the classes being covered 

and conceptually forms a superclass of the classes that is being covered. In this case, A would have a 

superclass of B ⊔ C, as shown in Figure 2-21(ii). 

 

 

Figure 2-20: Example value partition. 

2.5.16 Cardinality Restrictions 

In OWL, a class of individuals can be described by cardinality restrictions to have at least, at most or 

exactly some specified number of relationships with other individuals or datatype values. For a given 

property P: 

• A minimum cardinality restriction specifies the minimum number of P relationships that an 

individual must participate in. 
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• A maximum cardinality restriction specifies the maximum number of P relationships that an 

individual can participate in. 

• A cardinality restriction specifies the exact number of P relationships that an individual must 

participate in. 

Relationships between pairs of individuals are only counted as separate if it can be determined that 

the individuals are in fact different from each other. 

 

 

Figure 2-21: Effects of a covering axiom: (i) uncovered; (ii) covered [Hor04]. 

2.5.17 hasValue Restrictions 

A hasValue restriction (∋) describes the set of individuals that have at least one relationship along a 

specified property to a specific individual. For example, the hasValue restriction 

hasCountryOfOrigin ∋ Italy, where Italy is an individual, describes the set of individuals of the 

anonymous class that have at least one relationship along the hasCountryOfOrigin property to the 

specific individual Italy. This thesis does not use hasValue restrictions. 

2.6 Meta-modeling with UML 

A meta-model makes statements about what can be expressed in the valid models of a certain 



 36

modeling language [Sei03]. A Meta-model is a model of a modeling language that defines the 

correspondence between a model and a system. A meta-model makes statements about what can be 

expressed in the valid models of a certain modeling language. For example, the common 

understanding of the 4-layer Model Driven Architecture (MDA) is given in the general modeling 

architecture shown in Figure 2-22. The MDA architecture provides a standard meta-modeling 

framework for model and meta-data driven systems as follows: 

 

A
b
s
t
r
a
c
t
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n

 

Figure 2-22: A general, 4-layer modeling architecture inspired by MDA. 

• The M3 Meta-Object Facility (MOF) Layer is the self-defining, MDA meta-meta-model layer 

that provides a standard framework for model-driven and meta-data-driven systems. MOF is the 

basic mechanism for defining modeling languages. MOF is essentially a subset of Unified 

Modeling Language (UML) class diagrams plus Object Constraint Language (OCL). 

• The M2 Meta-Model Layer is the layer where modeling languages are defined. Examples of 

applicable modeling language include: the Unified Modeling Language (UML), the Common 

Warehouse Metamodel (CWM) and the Ontology Definition Metamodel (ODM). MOF uses a 

UML graphical notation. 
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• The M1 Model Layer is where real-world models (i.e., domain models) are developed using 

concepts such as classes, relations and states. UML constructs such as classes, relations and states 

are instance of meta-model concepts. 

• The M0 Instance Layer contains concrete instances such as object, data and executions that 

model real world things.  

2.6.1 UML 

The Unified Modeling Language (UML) is an object-oriented modeling paradigm and graphical 

notation that has become a de facto academic and industrial standard for modeling software systems 

[Lar98, Omg05a, Omg05b]. UML has recently been extended by the semi-formal Object Constraint 

Language (OCL) which allows UML models to express constraints on object semantics [War98]. 

However, there are still many aspects of UML that rely heavily on natural language descriptions. 

OWL-DL-based ontologies rely on description logic [Baa03] to provide a well understood, semantic 

basis. Object models for software engineering are a hierarchy of classes and their attributes and 

methods with overridable inheritance. This thesis assumes UML is generally better-known and well 

understood by most software engineering practitioners compared to OWL-DL. As a result, this thesis 

uses only a subset UML, as shown in Figure 2-23 and used predominantly in Chapter 5. The reader is 

directed to [Fow04] for a condensed reference guide of UML 2.0. Table 2-1 presents a comparison of 

UML and OWL-DL based on the tables presented in [Usc06]. 
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Class
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Subclass
Class
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Class
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Figure 2-23: Support UML constructs [Bel91]. 
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UML OWL-DL 

Classes are templates for creating objects Classes are sets of individuals with common characteristics 

Every instance has a unique class (not necessarily) An individual can be in multiple classes 

Instances always in the same class Individuals can change class at runtime 

Set of classes fixed compile time Can add new classes and edit classes at runtime 

Classes are primitive Class expressions are possible (not in Protégé-OWL) 

Attributes are defined locally to a class 

Properties are defined independently from any particular class and 

associated to multiple classes via domain and range constraints and 

inheritance 

Can have different attributes with same name in different 

classes 
Property names are unique 

Associations may be n-ary where binary association ends 

are analogous to OWL domain and range 
Binary properties only 

No property hierarchies (but association refinement) Property hierarchies are supported 

Classes are primitive, not defined using properties Properties are used to define classes 

Instances can have values only for attached attributes Individuals can have arbitrary values for any property 

Inheritance is like an overridable template for creating 

instances for programming convenience not inference 

Inheritance is strictly logic-based, no overridable defaults – inference is 

key 

Computation-based Inference-based 

Closed-Word where unknown = FALSE Open World where unknown = UNKNOWN 

Compiler problems indicate errors at build time only Reasoners check consistency at build time and at run time 

Mature with range of commercial tools and products Still maturing with commercial tools and products still emerging 

Table 2-1: Tabular comparison of UML and OWL-DL based on [Usc06]. 

2.7 SDL 

The International Telecommunications Union (ITU) developed the Specification and Description 

Language (SDL) to give telecom administrations and manufacturers a common language precisely 

and unambiguous specifying the behavior of telecom systems [Bel91]. SDL has become a general 

language for specifying the discrete stimuli-response behavior of most interactive, real-time system 

[Mit99]. The theoretical foundation of SDL is that of communicating extended finite state machines 

(CEFSM) [Hie01]. Examples of other CEFSM-based languages include Estelle and Lotos [Tur93]. 

The structure of the language is hierarchal and the use of abstract data types is supported. SDL has a 

graphical syntax called SDL/GR and a linear (textual) form called SDL/PR that share a common 

abstract syntax. Communication between SDL processes is performed asynchronously via channels 
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and infinite, but not unbounded first-in-first-out (FIFO) queues. A detailed description of the formal 

static and dynamic semantics of SDL is given in [Bel91, Itu91]. In this thesis, only the SDL/GR 

notation is used. The subset of supported SDL constructs for his thesis is given in Figure 2-24. The 

reader is directed to [Bræ93] for a tutorial paper on the basic concepts, ideas and features of SDL. 

 

 

Figure 2-24: Subset of supported SDL constructs. 

2.8 Runtime Monitoring 

This section introduces the concepts behind runtime monitoring (RTM) and includes several model-

based runtime monitoring approaches from the literature related to the work presented in this thesis. 

The reader is directed to [Sch95] for a tutorial on runtime monitoring and to [Gat04] for a 

comprehensive taxonomy and catalog of runtime software-fault monitoring tools. 

2.8.1 What is Runtime Monitoring? 

In software engineering, the concept of runtime monitoring (RTM) is normally associated with 

software dependability1 [Pla84]. RTM is applicable to software testing during development and 

maintenance, and to ensure that software systems execute as intended in their production 

environments. RTM allows the observation and tracking of genuine runtime data in the laboratory or 

the production environment. The monitored data collected may be used for statistical purposes or to 

detect when a program has entered an illegal or unexpected state. Many of the RTM tools described 

in the literature require a software engineer to have intimate knowledge of the target. In other words, 
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most RTM tools take a whitebox monitoring approach. 

Traditionally, RTM has been used to observe the behavior of operational, real-time applications for 

statistical data collection or to detect behavioral failures. It is paramount that RTM should not 

appreciably alter the internal timing constraints of the target system and therefore, monitored data is 

usually logged and analyzed off-line. This is still true for most resource-limited, embedded system 

environments. However, with the recent significant advances in raw processing power present, 

especially for heavyweight servers in online application environments, it is not unreasonable to assign 

some percentage of CPU processing time (e.g., < 10%), specifically for RTM purposes. 

Figure 2-25 provides an overview of the traditional approaches to RTM. Early approaches used 

stand-alone hardware, software embedded into the target or a combination of both external hardware 

and internal software. More recently, monitoring software has migrated out of the target software 

system and runs on a separate, stand-alone host. With the advent of aspect-oriented approaches, there 

is new interest in using automated aspect-weaving technology to facilitate software instrumentation. 

These aspect-based software sensors range in capability from those that report raw to those that 

provide local processing and report value-added monitoring data [Det01, Tha01a, Tha01b]. 

2.8.2 RTM Types 

In general, these are the categories of RTM systems. 

• A hardware monitor is a class of monitoring tool that can be attached to a target via test probes, 

keeping the hardware monitor completely separate from the target. Attaching test probes requires 

detailed knowledge of the target’s hardware architecture and implementation as well as a clear 

specification of which signals are to be monitored. The degree of sophistication of these tools is 

based on the level of self-control they possess. For example, simple, unintelligent hardware 

monitors are manually controlled and often require human intervention. On the other hand, 

intelligent hardware monitors use programmable logic running under microcomputer control. 

Examples include sophisticated test equipment such in-circuit emulators, logic analyzers that 

attach directly to a system’s internal data bus and communications analyzers that can monitor 

                                                                                                                                                              

1 Software dependability is the trustworthiness of a software system such that reliance can be justifiably placed 
on the service the software delivers [Lyu96]. 
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data and control traffic flowing across complex networks. One major drawback to hardware 

monitors is that it is very difficult to identify interesting events in a problem-oriented manner or 

deal with certain dynamic aspects, such as process creation and destruction. In general, hardware 

monitors are excellent for use in debugging system software and firmware, but fall short in 

monitoring and measuring application programs. 

 

 

Figure 2-25: Example configuration for runtime monitoring for real-time software system. 

• A software monitor is a program, or program fragments, that executes on the monitored target, 

presenting the opportunity to employ an application-oriented approach to monitoring. However, 

the execution of additional instructions (i.e., software sensors) embedded in a target can cause 

serious time and space interference in time-critical, real-time or embedded software systems. 

Unlike hardware monitors that tend to be sample-driven, software monitors are typically event-

driven. There are three general classes of software monitors: (1) those that measure and gather 

accounting statistics, (2) those that detect and report internal error and failures, and (3) those that 

measure and/or command performance. Statistical monitors are commonly used to measure and 

command values from a predefined data set, such as the number of times a particular resource is 

accessed, or the time of day a resource was used. Error and failure detection monitors typically 

do not perform any measurements, but instead carry out an internal audit function such as 

counting the number of times a particular error, once detected, occurs. Response performance 

monitors are designed to collect performance data for statistical purposes. Software monitors are 
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often not suitable for continuous monitoring and measurement activities in a full production 

environment because of the excessive amount of data reduction that may be necessary before 

collected event traces can be made meaningful. Software monitors are often suitable only for a 

particular application domain or implementation. 

• A hybrid monitor uses a combination of specialized hardware devices and interfaces in 

conjunction with a software monitor. The software monitor may reside within the target system or 

may actually run on a physically separate host processor. The hybrid monitor approach offers a 

reasonably good trade-off between the hardware and software approaches. A hybrid monitor can 

observe and track the behavior of target as well as collect trace data and detect illegal or 

unexpected process states. 

2.8.3 Date Structure Monitoring 

Software audit programs monitor the evolving data structures of real-time software systems to detect, 

and possibly correct, software data errors before they manifest as failures [Con72, Pen80]. A 

software audit program typically consists of additional software that periodically accesses and checks 

some or all of a target software system’s data structures for errors. Audits are designed to use three 

main error checks: (1) direct comparison error checks using duplicate data structures for comparison 

purposes to check data integrity, (2) association comparison error checks using data structure 

redundancy such as doubly-linked lists to check the structural integrity of the data structures, and (3) 

format comparison error checks to perform commonsense checks to identify out of range or bound 

errors. While audits are able to detect software errors before they manifest as failures, they are limited 

in scope and may themselves contain faults which could potentially reduce the reliability of the target 

software system. The monitoring approach proposed in this thesis uses additional software, called 

software sensors, and differs in that sensors produce commands that are sent to an external monitor 

and used to construct a representation of the instrumented target’s evolving software structure, rather 

than for comparison purposes with internal data structures. 

In [Rod97], the Nanites approach is described that simplifies the task of monitoring complex data 

structures to address the difficult problem of monitoring system component interactions in data-

centric systems. The Nanites is an object-oriented approach that incorporates a Monitor object 

attachment; that is, a watcher module attaches a Monitor object to each data object in its scope-of-

interest. When a method is invoked on the data object, the same method is invoked on each Monitor 
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object attached to it, thus giving each attached Monitor object an opportunity to respond to the 

method invocation. Monitor objects can be given pre- and post-opportunities to respond by calling the 

Monitor’s method both before and after the change is made. This approach requires each data object 

to store a list of references to Monitor objects that are attached to it. This approach is similar to the 

monitoring approach in [Gha03] in which a local monitor attached to a process reports state changes 

to a central monitoring point that performs the required state consistency checks. 

2.8.4 Model-Based Monitoring 

Real-time supervision (RTS) is a blackbox behavioral monitoring approach that passively observes the 

external inputs and outputs of an operational software system while interpreting a supervisor-model 

derived from the target’s software requirements specification [Hay91, Hla95, Ior94, Sav97]. The 

organization block diagram for RTS is shown in Figure 2-26. The RTS reports a discrepancy between 

the observed and expected behavior of the operational software systems as a failure. One of the chief 

disadvantages of RTS is that detection is complicated by the state explosion problem [Hie01] due to 

the occurrence of specification nondeterminism in the SDL-based supervisor-model as the RTS 

attempts to account for all possible observed behaviors. 

 

 

Figure 2-26: Organizational block diagram of real-time supervision. 

The monitoring approach in this thesis also uses an interpretable specification-based model, but 
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differs from RTS in a number of ways: 

• The model is concern-specific; that is, derived using both the target’s SDL-based software 

requirements and software design specification for a selected structural software concern. 

• The interpreter is greybox; that is both external and internal instrumented knowledge is used to 

interpret the concern-specific. 

• The monitor maintains a representation of the evolving software structure of the operational 

target for selected software concern. 

Response performance monitoring is a blackbox response time monitoring approach that observes 

a target’s external inputs and outputs, interprets a timepost-model derived from a combination of the 

target’s SDL-based software requirements specification and tabular response objectives specifications 

[Pek97, Pek03]. The timepost-model is extended using a new SDL construct called an Interval 

Timing Directive. The interpreter tracks the specification state of the target, interprets the timepost-

model, and directs response time interval measurements using the interval timing directives for 

guidance. The monitor can detect response time failures during the current observation interval and 

response performance failures that have occurred over a number of previous observation periods. The 

monitoring approach in this thesis also extends the concern-specific model with several new model 

constructs. These new constructs are used to direct the interpreter on how to match and process 

incoming monitoring commands that have been produced by the instrumented operational target 

software system and delivered to the monitor’s greybox interpreter via the monitoring interface. 

In [Zul04], a pseudo-greybox monitoring approach is presented where information about the certain 

internal behavioral conditions is sent from the target to the monitor whenever the target enters a 

stable state. The approach is pseudo-greybox because only limited behavioral reporting is possible at 

high loads because the target may not enter a stable state for long periods of time. The monitoring 

model consists of a set of concurrently executing nodes, where the state of each node is modeled such 

that a state transition is only fired upon receipt of a message from another node or from the 

environment. Rather than sessions, the system is assumed composed of a number of communicating 

processes where the global state consists of the current state of all the processes in conjunction with 

the state of the communication channels connecting each node. The monitoring approach in this 

thesis is similar because it considers quiescent states, which are similar to the idea of stable states. 

However, while a stable state is a global property of the target, a quiescent state is a session-oriented 
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property. The notion of session-orientation and quiescent states are explained in Chapter 6. For now 

it is sufficient to know that every macro-step begins and ends in a quiescent state. 

2.8.5 Other Related Monitoring Work 

In [San93], a methodology for continuously monitoring a program for specification consistency at 

runtime is described. The target program is annotated with formal specification constructs from a 

formal specification language. The constructs are transformed into checking code, which is inserted 

into the target program. Further, calls to this checking code are inserted into the target program 

wherever at locations where the program may potentially become inconsistent with its specification. 

If an inconsistency is detected, diagnostic information is provided. According to the authors, 

significant effort is required each time the monitoring approach is applied to a different product line 

family. The related monitoring approach may not detect all failure types. For example, lost or 

superfluous signals would not activate checking code. In other cases, checking code may be 

inadvertently activated while the program is in the wrong state. The monitoring approach in this 

thesis uses model constructs and embedded software sensors that produce monitoring commands 

rather than formal specification constructs and checking code. 

In [Det01], the advantages and costs of using aspects to instrument a target to harvest runtime 

information for offline (dynamic) analysis is examined. Information is harvested concerning program 

state, memory state, and real-time requirements. Analysis aspects are inserted where execution-flow 

join points are advised to collect on analysis data. Reference-probing aspects keep track of checking 

legal, Java scoping hierarchies. Death-probing aspects determine when objects become unreachable. 

Other analysis aspects include instantiation and collection behavior of live objects and threads, inter-

class behavior including references and call behavior, dead code removal for code that is never 

executed and class preloading. This related approach also uses software sensors to collect runtime 

information. However, location of software sensors is determined when the formal concern-specific 

monitoring model is derived; that is, to facilitate application resource ownership monitoring. 

• State evolution sensors are inserted into the program to command when the target executes a 

macro-step and enters (or exits) a specification state according to the software requirements. 

Recall from Chapter 1 that a macro-step indicates that a new state-dependent snapshot of the 

evolving concern-specific structure has come into effect. 

• Structural transaction sensors are inserted into the program to command when the target executes 
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a micro-step and completes a structural transaction according to the software design. Recall from 

Chapter 1 that a micro-step only partially transforms the existing concern-specific structure of the 

target to a transient state between macro-steps (i.e., between snapshots). 

Software health monitoring is another approach to error detection that promotes the continuous 

monitoring of an operational target to provide an indication of well-being or health [Gha02, Lau05, 

Tha01a, Tha01b]. Software health monitoring strives for early detection of state and/or data 

inconsistencies through the use of intelligent software sensors called health indicators. Software 

health, as a statistical measure, is intended to be a comprehensive and diverse notion, rather than a 

simple error or a failure indicator. Each software indicator monitors one or more specific facets of a 

software system’s execution. From the perspective of this thesis, a facet may be viewed as some 

concern-specific piece of runtime knowledge for an individual software concern, whose runtime 

health is to being monitored. In taking the analogy further, the statistical measure produced by health 

monitoring could be used to provide the well-being (or health) of either an individual software 

concern or a collective set or basket of software concerns. Instrumentation for software health 

monitoring tends to be more ad hoc and implementation-driven, whereas in the approach presented in 

this thesis, instrumentation is driven by the need to provide runtime knowledge according to an 

interpretable concern-specific monitoring model. 

2.9 Interactive Session Oriented Service Domain 

The application domain considered in this thesis is the interactive session-oriented service domain. 

Interactive session-oriented services are typically delivered by software systems that are real-time 

with soft deadlines, interactive, session-oriented, discrete event-driven, semi-stationary and non-

critical. It is assumed that the software system’s behavior requirements and design are specified using 

SDL, a formalism based on communicating extended finite state machines. 

2.9.1 Real-Time Software Systems 

Real-time software systems (RTSS) are tightly coupled to the external world and must respond to the 

real-world in a suitable timeframe or by a specified deadline. In general, an RTSS is comprised of two 

key component sub-systems: a controlling sub-system and a controlled sub-system. For the PBX, the 

controlling sub-system is the call processor and control software and the controlled sub-system is the 
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switching network and subscriber circuits. It is the controlling sub-system that interacts with the 

service environment. 

2.9.2 RTSS with Soft Deadlines 

A soft RTSS depends on time constraints or deadlines where the inability of the RTSS to meet a 

prescribed deadline does not necessary mean that a failure has occurred. In a soft RTSS, there is a 

trade-off between minimizing the number of late transactions and minimizing the mean lateness. The 

trade-off occurs because any attempt to minimize lateness usually results in even more deadlines 

being missed. Instead, resources remain unavailable for new tasks because the resources are being 

utilized by tasks whose deadlines have still not yet been met. Therefore, a soft RTSS is usually only 

concerned with achieving good average performance. The control program in the PBX used in this 

thesis is a soft, real-time software system. 

2.9.3 Interactivity 

Interactivity is a mode of service operation with an “input-compute-output” processing structure in 

which end user commands (i.e., inputs) cause service responses (i.e., outputs) [Bac99, Bro01]. This 

interactivity could be with humans, external hardware or other external software system. The control 

program of the PBX is an interactive software system. 

2.9.4 Session-Orientation 

Session-orientation is an application-level attribute reflected in the behavior of the overall software 

system. An application may consist of one or more non-terminating processes that operate through 

repeated activations, possibly for an infinite number of times, resulting in the concept of cyclic 

application. In general, these types of applications are referred to as session-oriented because they 

always return to a predetermined idle state upon completion of a current session before the 

commencement of a new session. The control program of the PBX is session-oriented. 

2.9.5 Discrete Event-Driven Software 

Discrete event-driven software (EDS) is a particular class of software that is fast becoming ubiquitous 

[Mem06]. All EDS systems share a common event-driven model in that they take sequences of events 
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(e.g., messages, signals, mouse-clicks) as inputs, change their state, and (sometimes) produce an 

event sequence as an output. A typical EDS code distribution is given in Figure 2-27. The control 

program of the PBX in this thesis is a discrete EDS system. 

2.9.6 Semi-Stationary Systems 

A semi-stationary software system has specification states that may be categorized according to each 

state’s average holding times as either stable or transient [Gha03]. Semi-stationariness is a CFSM-

based process level property where: 

• A stable state has a relatively long holding time compared to the sum of the maximum 

communication channel delay and the local clock drift, such that a CFSM-based process spends 

most of its time in stable states. 

• A transient state has a comparatively short average holding time. Periodically, an external input 

is received by a process that then leaves a stable state, passes through a sequence of transient 

states, and eventually settles again in a stable state. 

The probability of observing a particular process in a stable state is much higher than the 

probability of observing the same process in a transient state. Interactive, session-oriented services 

exhibit a similar process or system-wide semi-stationary property, but on a session-by-session basis. 

 

 

Figure 2-27: A typical event-driven software code distribution [Mem06]. 
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2.9.7 Non-Criticality 

The monitoring approach presented in this thesis may not be suitable for software systems that are 

classified as mission- or safety-critical. Critical software systems are typically RTSS with hard 

deadlines whose catastrophic failure could have an impact on human safety, loss of life or major 

financial or social losses. The PBX is a soft RTSS and, therefore, non-critical. 

2.10 The PBX 

For concreteness, the control program of a small private branch exchange (PBX) was selected for a 

running example of an interactive session-oriented service and provides the reader with concrete 

illustrations of the modeling concepts in this thesis. The PBX makes an ideal example target software 

system service because it exhibits most of the characteristic and properties of the application domain. 

Further, the control program’s SDL requirements specification, SDL design specification and Java 

source code were available. An operational Java implementation from a number of previous research 

efforts was also available that could have been instrumented and used to collect operational state 

evolution and ownership transaction traces. The layered architecture for the PBX in [Gha02, Lau05, 

Tha01a] is adapted for example PBX used in this thesis and is shown in Figure 2-28. The PBX 

control program is organized into a number of functional layers, as shown by the labels on the right 

hand side of Figure 2-28. Each layer also has a corresponding ResOwn classification, as shown on the 

left hand side of Figure 2-28. These classifications will be explained in the ResOwn description of 

Chapter 4 and ResOwn specialization example in Chapter 5. The different classes implemented in the 

PBX control program are described in Table 2-2. A description of the PBX hardware can be found in 

[Ece00]. To simplify the examples presented throughout this thesis, the functionality of the PBX has 

been limited to those basic telephony services referred to as Plain Old Telephone Services (POTS) 

and each line card is dedicated to an associated phone handler at PBX initialization. 
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Figure 2-28: Layered interactive session-oriented service architecture for the PBX. 
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Table 2-2: PBX class / CEFSM descriptions. 

PBX Class / 
CEFSM 

ResOwn 
Class 

Id 
Max 
Num 

Thread Description 

Wait For Call Service Dispatcher WFC 1 yes 
Manages idle line cards and dispatches phone handlers to call 
request when offhook detected 

Phone Handler Consumer PH 60 yes 
May be statically or dynamically assigned to a line card to handle 
call requests for both originating and terminating phones 

Line Card Scanner Supplier LSCAN 1 yes 
Periodically scans line card registered with LSCAN for switch hook 
change in switch hook status (i.e., offhook and onhook) 

TTRX (Digit) Scanner Supplier TSCAN 1 yes 
Periodically scans touch tone receiver card registered with TSCAN 
for incoming dialed digits 

Cadence Service Supplier CSERV 2 yes 

(1) Ringer Cadence: periodically cycles ringer relay on a 
registered line card registered to make phone start and stop 
ringing 
(2) Tone Cadence: periodically cycles idle relay on a registered 
line card so tones will turn on and off 

Call Progress Tone 
Manager 

Supplier CPTM 1 no 
Provides managed access by connected line card and requested 
dial, ring, idle, slow busy, or fast busy tone generator card to 
switching network.  

Switching Network Supplier SN 1 no 
Conceptually connects phones to resources or phones - actually 
connects line cards to cards via uni-directional channels 

Phone Handler 
Manager 

Supplier PM 1 no 
Manages a pool of dispatchable phone handlers - not required if 
phone handlers are dedicated to line cards. 

Line Card Manager Supplier LM 1 no 
Manages a pool of line cards - not required if phone handlers are 
dedicated to line cards. 

Channel Manager Supplier CM 1 no Manages a pool of uni-directional space channels 

Touch Tone Receiver 
Card Manager 

Supplier TM 1 no Manages a pool of touch tone receiver cards 

Line Card Resource LC 60 n/a 
External gateway (portal) between real-world phone and phone 
handler instance - one per phone - contains relay devices 

Idle Relay Device Resource IR 60 n/a 
Produces idle tone that logically disconnects enclosing line card 
from internal switching network - one per line card 

Ringer Relay Device Resource RR 60 n/a Causes phone to start and stop ringing - one per line card 

Space Channel Resource CH 30 n/a 
Used to connect two cards through the switching network - one 
per uni-directional path through the switching network  

Touch Tone Receiver 
Card 

Resource TTRX 7 n/a 
Used to detect status change keys on a phone’s keypad, which 
are converted to a dialed digit 

Idle Tone Generator 
Card 

Resource IDLE 1 n/a 
Connected to a line card by call progress tone manager to 
produce an idle tone in a phone’s handset 

Dial Tone Generator 
Card 

Resource DIAL 1 n/a 
May be connected to a line card by call progress tone manager to 
produce a dial tone in a phone’s handset 

Ring Tone Generator 
Card 

Resource RING 1 n/a 
May be connected to a line card by call progress tone manager to 
produce a ring tone in a phone’s handset 

Slow Busy Tone 
Generator Card 

Resource SBUSY 1 n/a 
May be connected to a line card by call progress tone manager to 
produce a slow busy tone in a phone’s handset 

Fast Busy Tone 
Generator Card 

Resource FBUSY 1 n/a 
May be connected to a line card by call progress tone manager to 
produce a fast busy tone in a phone’s handset 
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Chapter 3 

Overview 

3.1 Introduction 

This chapter provides an overview of the greybox approach to concern-specific, dynamic software 

structure monitoring presented in this thesis. The intent of the chapter is to introduce the reader to 

some of the important concepts used throughout this thesis.  

3.2 Dynamic Software Structure Monitoring 

This thesis describes a novel greybox approach of monitoring the evolving resource ownership 

structure for interactive session-oriented services. Figure 3-1 shows the concern-specific software 

structure monitor executing as a separate program. The monitor has limited access to the operational 

target’s internal implementation via a monitoring interface. The monitoring interface is comprised of 

software sensors that are embedded into the operational target’s source code implementation. In this 

thesis, the monitored target software system is the call processing program of a small private branch 

exchange (PBX). The PBX (Section 2.10) is assumed to be embedded into an Internet Telephony 

Gateway (ITG) [Rose98], as shown in Figure 3-1. The ITG operates as an application-level proxy and 

provides protocol translation services for the Internet Protocol (IP) network and the PBX. When a 

call from an IP host arrives, the ITG ensures it reaches the intended destination. Similarly, a 

subscriber must connect through the ITG to place a call through an IP host. Monitoring is performed 

at the application-level; that is, that layer responsible for implementing network appliances and 

applications [Kur01]. The monitor is capable of tracking the evolving resource ownership structure 

for calls originating on both Internet trunks and subscriber lines. 
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Figure 3-1: Internet Telephony Gateway with embedded PBX and greybox monitor. 

An architectural overview of the monitor’s typical working environment is given in Figure 3-2. The 

manually derived sensor plan specifies the location of embedded software sensors in the PBX source 

code implementation. The dynamic knowledge base contains a representation, implemented in tuples, 

of the evolving resource ownership structure of the operational PBX. The monitor interprets the 

concern-specific model, which is actually comprised of two derived models: 

• The state evolution model is automatically derived from the target’s SDL-based software 

requirement specification and allows the greybox interpreter to track the specification state (i.e., a 

macro-step in the evolving structure) of the operational PBX on a session-by-session basis. 

• The EoB model library is automatically derived from certain slices of the target’s SDL-based 

software design specification. Each EoB model contains constructs that direct the interpreter so 

that it can process the incoming structural resource ownership transactions (i.e., micro-steps in 

the evolving structure) as they are reported by the instrumented target. 

The monitor’s greybox interpreter receives monitoring commands from the operational target via 

the monitoring interface. Two types of monitoring commands are produced: 

• A state evolution monitoring command indicates the beginning or end of a macro-step or 

requirements level state transition in the instrumented target. At the beginning of a macro-step, 

the greybox interpreter loads the appropriate EoB model from the EoB library and begins 

interpreting the model. As explained in detail in Chapter 6, a macro-step occurs between two 

quiescent states in the state evolution model. 
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Figure 3-2: Architectural overview of the software structure monitor. 

• A structural transaction monitoring command indicates a micro-step or design-level state 

transition has occurred in the instrumented target. Each micro-step corresponds to the successful 

completion of an individual structural resource ownership transaction and causes the interpreter to 

add, remove or update an appropriate number of tuples in the dynamic knowledge base. Each 

structural transaction is essentially a graph transformation rule that synchronizes the evolving 

resource ownership structure stored in the dynamic knowledge base with the actual evolving 

resource ownership structure inside the instrumented target. 

An overview of ResOwn in the concern-specific software structure monitor approach is given in 

Figure 3-3. As shown, the baseline ResOwn ontology (Chapter 4) can be specialized with application-

specific ontological classes derived from the PBX (Chapter 5). The specialized ResOwn ontology is 

then automatically classified using a reasoner, resulting in a specialized ResOwn instance (Chapter 5). 

The resulting specialized ResOwn instance is then used to manually construct tables (Chapter 7) that 

the interpreter uses to convert structural transaction monitoring commands to tuples for insertion into, 

or removal from, the dynamic knowledge base during runtime monitoring. 
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Figure 3-3: Block diagram overview of approach. 

Although the greybox approach to concern-specific dynamic software structure monitoring 

presented in this thesis uses a number of projections of the target’s behavioral specifications to derive 

the concern-specific model, the monitor’s objective is not to detect behavioral errors or failures. 

Rather, its prime objective is to track the runtime evolution of the target’s resource ownership 

structure. The objective is very specific and narrow in scope. If the monitor does detect any behavior 

errors due to one or more incorrectly ordered structural transactions, then this is a side-benefit of the 

approach, and not the monitor’s true intent. 
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Chapter 4 

The ResOwn Ontology 

“The first step towards wisdom is calling things by there right names.” 

- Chinese Proverb 

4.1 Introduction 

This chapter introduces ResOwn, a novel ontology for Application Resource Ownership Ontology. 

ResOwn provides a vocabulary along with a set of concepts and properties for modeling the 

application resource ownership structure of operational software systems. ResOwn is: 

• Concern-specific because its domain of discourse is the individual software concern for 

application resource ownership structure in object-oriented software systems. 

• Application domain-specific because its intended application domain is interactive session-

oriented services that are delivered by discrete, event-driven, soft real-time software systems. 

• Role-based because it supports the notion that objects in the operational software system are 

capable of playing different, context-sensitive resource ownership roles. 

• Flexible because the resource ownership structure it models is not hard-coded into the resource 

and owner model concepts, but instead built upon a dedicated concept of proof of ownership 

instruments. These instruments support a rich notion of resource ownership that allows different 

owners to play different ownership roles, each with different ownership rights, even with the 

same resource. 

•  Modular, as shown in Figure 4-1, because its structure has been intentionally constructed as two 

main subontologies, where a subontology is defined as a top-level subclass of the domain of 
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discourse which subsumes either: 

o All concern-specific knowledge is encapsulated as core concepts or classes and manually 

placed (i.e., asserted) under the ResOwn core subontology. In this thesis, core concepts 

pertain to the selected application resource ownership concern. 

o Any related knowledge not directly part of the selected concern is encapsulated as support 

concepts or classes and manually placed (i.e., asserted) under the ResOwn support 

subontology. Support concepts are used to support property restrictions of defined classes in 

the ResOwn core subontology. In this thesis, support concepts pertain to the interactive 

session-oriented service application domain, resource capacity, and object persistency. 

 

 

Figure 4-1: Organizational block diagram of the entire ResOwn ontology. 

• Extensible because its concern-specific, core classes in the ResOwn core subontology can be 

extended with application-level knowledge using process known as application-specific 
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specialization (Chapter 5) and new support classes may be added to support subontology. 

• Automatically classifiable by a reasoner because it is defined using the standard Web Ontology 

Language Description Logic (OWL-DL). 

The organizational block diagram given in Figure 4-1 is intended to help readers organize their 

thoughts as they read through the major sections in this chapter. This diagram is a schema or template 

to be interpreted as follows: an instance of a UML class diagram will be a containment hierarchy of 

objects which is then reinterpreted as an inheritance hierarchy within the context of this thesis. This 

thesis considers only a single, concern-specific ontology for application resource ownership structure 

(i.e., ResOwn). The applicability of Figure 4-1 as a concern-specific ontology template to organize 

knowledge for other software concerns is possible. However, a definitive statement of applicability 

would require a number of test cases, and is therefore a subject of future work. 

It will become apparent later in this chapter that the separation of core and support knowledge in 

ResOwn is used to impose an important invariant on ResOwn object properties. This invariant 

constrains how ResOwn property restrictions may be defined from an originating core class, in the 

ResOwn core subontology, to a terminating support or value class (or classes) in the ResOwn support 

subontology or value partitions, respectively.  

4.1.1 Suggestion for Reading This Chapter 

This chapter serves as a reference guide for readers already familiar with ResOwn. Unfortunately, 

first-time readers will find reading this chapter from start to finish impractical and difficult without 

the visual understanding of the ResOwn dynamic semantics obtained from Chapter 5. As a result, it is 

suggested that a first-time reader of this thesis read this chapter up to the end of Section 4.4, then read 

all of Chapter 5, and then return to Section 4.5 to complete reading the remaining chapter. 

4.1.2 Chapter Organization 

The remainder of this chapter is organized as follows. First, an overview of the main principles and 

conceptualizations, including the ResOwn Prime Directive, resource benefits, the difference between 

beneficiary and nonbeneficiary owners and the notion of proof of ownership is given. Second, a step-

by-step discussion is given to introduce the ResOwn top-level core, support and value partition 

concepts and class hierarchies. Third, the ResOwn foundation, self-contained, bridging and inferred 
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properties types are defined, along with an annotated table containing all of the ResOwn object 

properties. Lastly, the chapter concludes with a complete reference guide to all ResOwn classes 

complete with individual natural language descriptions and the corresponding description logic (DL) 

definitions that are presented in a hierarchical, tabular form. 

4.2 Conceptual Overview 

ResOwn is a modular, reusable, extensible and specializable concern-specific ontology that provides 

the required vocabulary, concepts and properties, from the knowledge representation domain, for 

modeling application resource ownership structure, in the object-oriented software domain. 

ResOwn’s underlying application resource allocation and management scheme relies on an 

ownership role- and ownership rights-based proof of ownership scheme that is presently applicable 

for interactive session-oriented services. The modularization of knowledge encoded in ResOwn 

implies that the ontology, in its current form, could be adapted to other shared-resource domains. 

This might include low-level runtime environments that use lightweight resources such as memory 

allocations, file handles and CPU execution time. In this thesis, the scope of ResOwn was 

intentionally limited for the heavyweight application resources. Therefore, from this point forward, 

the terms resource and resource ownership should be interpreted by the reader to mean application 

resource and application resource ownership, respectively. 

4.2.1 The ResOwn Prime Directive 

ResOwn has been devised and constructed as a role-based resource ownership ontology under a 

guiding philosophy or principle called the ResOwn Prime Directive1 which states: 

 

Every object that participates in the evolving resource ownership structure of 

an operational software system is assumed, under ResOwn, to be a Resource, 

an Owner, or both a Resource and an Owner simultaneously. 

                                                   

1 In the fictional universe of the 1960s television show Star Trek, the Prime Directive is Starfleet’s General 
Order #1 and is the most prominent guiding principle of the United Federation of Planets [Wik06]. 
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From a dynamic modeling or monitoring perspective, each object in the runtime system may be 

represented as either a Resource and/or Owner in ResOwn depending on the particular structural 

ownership context the objects finds itself in1. For example, in the PBX, a phone handler is an Owner, 

a line card is a Resource to the phone handler and also an Owner to the card’s idle relay, which is a 

Resource embedded into the line card. As will be seen later in this chapter, the Prime Directive 

impacts ResOwn’s static and dynamic semantics and this permits Resource subclasses to be also be 

classified as an Owner subclass (i.e., multiple inheritance), and vice versa, in ResOwn’s 

automatically generated inferred class hierarchy. 

4.2.2 Top-Level Concepts and Properties 

Consider the top-level ResOwn classes and ResOwn properties, as shown in Figure 4-2. 

• The concern-specific, core Resource class and core Owner class are used to represent the 

existing physical objects of an operational software system. 

• The Owner class subsumes the Consumer subclass, which essentially requests resources, the 

Supplier subclass, which essentially provides resources, and Dispatcher subclass, which may 

request and provide resources simultaneously. In the PBX: 

o A phone handler is a Consumer instance because it may own and consume the benefits2 

provided by a Resource instance.  

o A channel manager is a Supplier instance because it can provide channels to phone handlers 

upon request. 

o A wait for call service is a Dispatcher instance because it can assign a phone handler to 

process a call request when an originating phone goes off hook. 

• The Resource class subsumes the Transferable, Nontransferable, Embedded and Compound 

Resource subclasses. In the PBX: 

                                                   

1 This is similar to the notion that a mobile software agent’s role depends on the agent’s local context [Ken99]. 
2 The definition for a resource benefit is given in Section 4.2.3. 
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o A touch tone receiver card is a Transferable Resource instance because its ownership may 

be directly transferred to a Consumer instance for exclusive use.  

o A dial tone generator card is a Nontransferable Resource instance because its ownership is 

not directly transferable, but only be indirectly acquired via the call progress tone manager. 

o An idle relay device is an Embedded Resource instance because it is contained in a line 

card. The line card is a Transferable Compound Resource instance because it contains an 

idle relay device and a ringer relay device. Ownership of these embedded devices can only be 

indirectly acquired via the line card. 

• The concern-specific, core proof of ownership Instrument class is used to represent the logical 

association instances that are created or destroyed between Resource and Owner instances in the 

evolving resource ownership structure of an operational software system.  

o Every Resource instance is logically bound to a unique Instrument instance via the 

isBoundTo property. 

o Every Instrument instance is logically bound to a holding Owner instance via the 

hasHolder property and to an issuing Owner instance via the hasIssuer property. 

o The Instrument class subsumes the Base Instrument and the Extent Instrument 

subclasses. An Extent Instrument instance logically extends the ownership scope of an 

associated Base Instrument instance via the hasExtent property (not shown). Looking 

ahead, an example of an Extent Instrument instance (i.e., Serial License instance) 

extending a Base Instrument instance (i.e., Nontransferable Titledeed instance) is given in 

Figure 5-7 of Chapter 5. 

o The ownership scope of an Instrument instance is the n-ary association that includes at least 

the Instrument instance and its holding Owner instance, issuing Owner instance and 

associated Resource instance.  

• The concern-specific, core value partition containing the Ownership Right value class is used to 

represent predefined sets of ownership rights that are designated to a particular Instrument 

instance via the hasRight property for the associated Resource instance and are normally 

assigned to the holder and/or the issuer of the Instrument instance. 

While the Instrument class is specified as disjoint from the Resource and Owner classes, the 
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Resource and Owner classes are not specified as disjoint specifically because of the ResOwn Prime 

Directive. Further, in Figure 4-2, inferred links are shown between the Owner and Resource classes 

via the inferred inverse properties hasOwner and isOwnerOf. A detailed description of the ResOwn 

properties is given in a tabular format in Section 4.4. The use of asserted and inferred properties will 

be discussed in Section 4.4.1. 

 

 

Figure 4-2: Top-level ResOwn core classes and ResOwn properties. 

4.2.3 Resources Benefits 

In the legal domain, a benefit is any profit or acquired right or privilege, primarily through a contract 

[Far06b]. In ResOwn, every Resource instance is assumed to be capable of producing a benefit. A 

benefit occurs in ResOwn whenever a Resource instance produces or receives application-level data, 

or produces an application-related control action, to the benefit of one (or more) Owner instances. A 

benefit normally propagates to, or from, the environment. A valid benefit recipient must hold an 

Instrument instance with the necessary Data or Control Access Ownership Right corresponding to 

the associated Resource instance. In the PBX, a touch tone receiver card (i.e., Resource instance) 

delivers dialed digit (i.e., a benefit) from the environment on behalf of a phone handler (i.e., 

Consumer instance). Similarly, a dial tone generator card (i.e., Resource instance) delivers a dial 

tone (i.e., a benefit) for the phone handler (i.e., Consumer instance) to the environment. This thesis 

considers the exact nature of a benefit to be behavioral in scope and specified orthogonal to structure. 
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4.2.4 Beneficiary and Nonbeneficiary Owner Roles 

In the legal domain, an owner is one who has legal title or right to something and a beneficiary is any 

person or entity who receives assets or profits from any instrument in which there is distribution. In 

ResOwn, the Consumer, Supplier and Dispatcher subclasses are specialized types (i.e. subclasses) 

of Owner instances. However, each Owner type may also play one or more Owner Role instances. 

While an Owner type is static, Owner Role instances may change dynamically according to the 

resource ownership context(s) an Owner instance finds itself in. Therefore, types and roles are 

specified separately in ResOwn. 

An Owner instance may play a beneficiary owner role and/or nonbeneficiary owner role: 

• A beneficiary owner holds the necessary Instrument instance that allows it to own a Resource 

instance and receive the Resource instance’s benefit. Normally, only a Consumer instance may 

be a beneficiary owner. 

• A nonbeneficiary owner holds the necessary Instrument instance that allows it to own a 

Resource instance but not to receive the Resource instance’s benefit. Normally, all Owner 

instance may be a nonbeneficiary owner. 

Contrary to the adage "Possession is nine-tenths of the law," possession in ResOwn does not 

necessarily make one a beneficiary owner. In the PBX, the same line card (i.e., Resource instance) 

may have a single phone handler (i.e., Consumer instance) as its beneficiary owner, and line scanner 

(i.e., Supplier instance) as a nonbeneficiary owner. Yet only the phone handler is entitled to receive 

the switch hook status (i.e., the benefit) from the line card. 

Distinguishing Owner Role instances in ResOwn provides an important means for dealing with 

role-based resource capacity and capacity-based cardinality restrictions at runtime. In general, a 

Resource instance may have multiple Owner instances, but not all of them are entitled to receive a 

benefit. For example, consider a touch tone receiver (ttrx) card from the PBX with a specified user 

capacity of 1 beneficiary owner: 

• If the ttrx card is owned by a phone handler and, at the same time, owned by a ttrx scanner, then 

the card has one beneficiary owner and one nonbeneficiary owner; the capacity is not violated. 

• If the ttrx card is owned by two phone handlers at the same time, then the card has two 

beneficiary owners; the capacity is violated. 
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Therefore, ResOwn’s use of role-based resource ownership provides a means to distinguish 

between Owner instances that can be monitored and checked at runtime. 

4.2.5 Direct and Indirect Proof of Ownership 

In ResOwn, ownership is defined between an Owner instance and a Resource instance, and proof of 

ownership is provided to an Owner instance that is the holder of an appropriate Instrument instance 

that is (directly or indirectly) bound to the associated Resource instance. 

• Direct proof of ownership occurs when an Owner instance holds a Base Instrument instance 

that is directly bound to the owned Resource instance via an isBoundTo property restriction. 

• Indirect proof of ownership occurs when an Owner instance holds an Extent Instrument 

instance that is bound to the Base Instrument instance of the owned Resource instance via an 

isExtentOf property restriction. The Extent Instrument instance facilitates the evolution of 

resource ownership structure at runtime by extending a predefined set of Ownership Right 

instances from the extended Base Instrument instance to the holding Owner instance of the 

Extent Instrument instance. Looking ahead again, two examples of how Extent Instrument 

instances facilitate the evolution of resource ownership structure at runtime are given in Figure 5-

7 and Figure 5-8 of Chapter 5. 

4.3 Taxonomy Overview 

The top-level of the ResOwn asserted class hierarchy is shown in Figure 4-3. ResOwn encodes and 

integrates support and core knowledge into a single, unified application resource ownership domain 

of discourse. The organizational block structure of ResOwn follows the diagram presented in Figure 

4-1. Labels, shown in SMALL CAPS ITALICS with the ResOwn taxonomy in Figure 4-3, relate back to 

corresponding blocks in Figure 4-1. These systematic, enforced modularizations of the overall 

ResOwn ontology structure itself promotes extensibility, reusability, comprehensibility and 

maintainability, and provides a path for creating a specialized ResOwn instance that extends the 

baseline ResOwn ontology with application-specific knowledge. An example of a specialized 

ResOwn instance for the PBX is presented in Chapter 5. 
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Figure 4-3: Top-levels of the ResOwn class hierarchy. 

4.3.1 Traversing the ResOwn taxonomy 

Traversing down the ResOwn taxonomy from the owl:Thing root, as shown in Figure 4-3. 

• The top-level of the asserted class hierarchy consists of the ResourceOwnership domain of 

discourse and the Persistency VP general (knowledge) value partition. 

• ResourceOwnership subsumes the ResOwnCore subontology and the ResOwnupport 

subontology. 

• The ResOwnCore subontology is disjoint from the ResOwnSupport subontology and is 

comprised of concern-specific concepts: 

o Core subclasses subsumed by the core Resource, Owner, Instrument classes. 
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o Core value classes subsumed by the Ownership Right VP core value partition. 

• The ResOwnSupport subontology is disjoint from the ResOwnCore subontology and is 

comprised of: 

o Support subclasses subsumed by Session Oriented Service class. 

o Support value classes subsumed by the Capacity VP value partition. 

4.3.2 Top-Level Class Origins 

The conceptualizations that make up the top-level classes in ResOwn, as shown in Figure 4-3, have 

originated from a number of related or orthogonal domains of interest. 

• The Resource class originated from the client-server software domain [Cou01, Lew98] and the 

DAML scheduling (resource) ontology [Dam00b]. 

• The Owner class originated from a blend of the real property and legal domains [Far06b, Mcc02, 

Yip04] and the client-server software domain [Cou01, Lew98]. 

• The Instrument class originated from the real property and legal domains [Far06b, Mcc02, 

Yip04]. 

• The Session Oriented Service class originated the interactive service domain [Bro01, Kur01] 

and from previous work [Pek97, Pek03]. 

• The Access and Consumption Ownership Right value classes originated from the software 

domain [Mcca02, Pfl06]. 

• The Exchange and Delegation Ownership Right value classes originated from the real property 

and legal domains [Far06b, Mcc02, Yip04]. 

• The Capacity value class originated from the DAML scheduling (capacity) ontology [Dam00a]. 

• The Persistency value class originated from the object-oriented software domain [Cou01]. 

4.3.3 Baseline and Specialized ResOwn Class Hierarchies 

The baseline ResOwn ontology is application-general and, therefore, pertinent to a wide range of 

software systems from the interactive session-oriented service application domain. A specialized 
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ResOwn ontology is application-specific; that is, the baseline ResOwn ontology is specialized or 

extended with application-specific ontological classes that have been derived directly from a software 

system’s actual object classes, resulting in a specialized ResOwn instance. An example to illustrate 

how the baseline ResOwn class hierarchy is specialized using object classes from the PBX is 

presented in Chapter 5. 

4.3.4 ResOwn Completeness 

This thesis does not claim that ResOwn is a complete ontology. The thesis aims to consolidate core 

and support knowledge about resource ownership into a practical, workable and, most importantly, 

extensible resource ownership ontology for the selected interaction session-oriented service domain. 

These factors make ResOwn useful in its current form, as well as adaptable to other new applications 

or concerns, even if ResOwn is not complete. 

4.3.5 Self-Contained and Distributed Subclass Hierarchies 

In ResOwn, the top-level classes subsume either self-contained or distributed subclass hierarchies. 

• Most of the top-level classes in ResOwn are self-contained; that is, all knowledge pertaining to 

the particular top-level core class (e.g., Resource or Instrument) is subsumed by a single 

subclass hierarchy originating from the top-level core class itself. The self-contained approach is 

used when knowledge is to be encoded into a single top-level class hierarchy. 

• The top-level Owner class is distributed; that is, all knowledge pertaining to the particular top-

level core class is contained in a single subclass hierarchy that is subsumed by a single, top-level 

core class (e.g., Owner) and called the main class plus one or more subclass hierarchies, each 

subsumed by its own top-level core class (Owner Base, Owner Role) called a library class1. 

Each library class is disjoint from its main class and from the other library classes. Library classes 

are normally modeled as ResOwn properties. For example, Owner Role and Owner Base are 

modeled as hasRole and hasBase, respectively, as shown in Figure 4-4. The distributed approach 

promotes modularization and extensibility and uses property restrictions to related knowledge 

                                                   

1 Analogous to a software library. 
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between the main class and each of the library classes. 

 

 

Figure 4-4: Top-level core classes and key object properties. 

4.4 Properties 

In addition to an asserted class hierarchy, ResOwn also defines a number of properties1. In OWL, 

object properties are used to formally specify links (i.e., property restrictions) between pairs of 

individuals like those shown in Figure 4-4. For example, a Resource instance is linked to a 

corresponding Base Instrument instance via the isBoundTo property. For presentation purposes, 

ResOwn properties are grouped in a tabular format according to whether a property models a core, 

support or value class in Table 4-1, Table 4-2, and Table 4-3. Each property in the tables is specified 

along with its applicable property characteristics (i.e., Functional (F), Inverse (I), Inverse Functional 

(IF) and/or Symmetrical (S), the corresponding inverse property (if applicable) and the property’s 

associated domain and range. The definition of these property terms was given in the OWL-DL 

tutorial in Section 2.5 of Chapter 2. While mostly self-explanatory, the meanings of each property 

                                                   

1 ResOwn only uses OWL object properties. 
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will become more apparent once the reader sees how these properties are used in various property 

restrictions to specify the ResOwn define classes shown later in this chapter. 

4.4.1 ResOwn Property Extensions 

In ResOwn, OWL object properties are extended in two ways. 

• A property’s domain and range in ResOwn is constrained depending on whether the class the 

property models is a core ResOwn concept, or merely providing a ResOwn support or value 

concept, in accordance with the organizational block diagram of Figure 4-1. 

o A core property models a core class from the core subontology and may only contain 

individuals from other core classes in its domain and range. The ResOwn core properties are 

shown in Table 4-1. 

o A support property models a support class from the support subontology and may only 

contain individuals from other core classes in its domain and individuals from other support 

classes in its range. The ResOwn support properties are shown in Table 4-2. 

o A value property models a value class from a value partition and may only contain 

individuals from other core classes in its domain and individuals from value partition value 

classes in its range. The ResOwn value properties are shown in Table 4-3. 

4.4.2 ResOwn Property Types 

Each ResOwn property has a property type, as shown in Table 4-1, Table 4-2 and Table 4-3. These 

property types enforce the invariants imposed on the property restriction used to define the core 

ResOwn classes as follows: 

• A foundation (FD) property in ResOwn is used to create a symmetrically, context-free1 property 

restriction that asserts a bidirectional link between pairs of individuals from two disjoint, top-

level, core classes in the core subontology. An example is the isBoundTo property between the 

Resource and Base Instrument classes, as shown in Figure 4-4 and Table 4-1. Individuals from 

                                                   

1 In ResOwn, context-free means individuals are acceptable in a property’s domain or range, interchangeably. 
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these two core classes may appear separately in either the FD property’s domain or range, but not 

both. 

 

Table 4-1: ResOwn properties modeling core classes. 

o A self-contained (SC) property in ResOwn is used to create a context-sensitive1 property 

restriction that asserts a unidirectional link between pairs of individuals from the same top-

level core class in the core subontology. An example is the hasExtent property between the 

Base Instrument and Extent Instrument classes, as shown in Figure 4-4 and Table 4-1. 

Only individuals from subclasses subsumed by a single core class may appear in the SC 

property’s domain and range. A SC property with an inverse (e.g., hasExtent and isExtentOf) 

results in a pair of unidirectional links between a pair of individuals from the two core 

classes, respectively.  

o A bridging (BG) property in ResOwn is used to create a context-sensitive property restriction 

that asserts a unidirectional link between individuals from a single, core class to individuals 

Property 
Property 

Characteristic 

Property 

Type 

Inverse 

Property 
Property Domain Property Range 

hasContainer F, I SC isContainerOf Resource Resource 

hasDispatcher F, I SC isDispatcherOf DispatchableConsumer Dispatcher 

hasExtension F, IF, I SC isExtensionOf Instrument Instrument 

hasHolder F, I BG isHolderOf Instrument OwnerRole 

hasIssuer F, I BG isIssuerOf Instrument OwnerRole 

hasOwner I INF isOwnerOf Resource Owner 

hasBase F BG - Owner OwnerBase 

hasRole  BG - Owner OwnerRole 

isBoundTo F, IF, S, I FD isBoundTo Resource ⊔ Instrument Instrument ⊔ Resource 

isContainerOf I SC hasContainer Resource Resource 

isDispatcherOf I SC hasDispatcher Dispatcher DispatchableConsumer 

isExtensionOf F, IF, I SC hasExtension Instrument Instrument 

isHolderOf I BG hasHolder OwnerRole Instrument 

isIssuerOf I BG hasIssuer OwnerRole Instrument 

isOwnerOf I INF hasOwner Owner Resource 
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from a disjoint core, support or value class. An example is the hasRight property between the 

Instrument and Ownership Right VP classes, as shown in Figure 4-2 and Table 4-3. 

Another example is the hasHolder and inverse isHolderOf properties between the 

Instrument and Owner Role classes, as shown in Figure 4-4 and Table 4-1. 

o An inferred (INF) property in ResOwn is used to create an inferred property restriction that 

implicitly deduces the existence of a virtual link between pairs of individuals from one or 

more core classes. This is contrasted by an asserted (i.e., normal) property restriction, which 

is explicitly stated in the ontology and does not rely on any implicit constraints. An example 

is the hasOwner and inverse isOwnerOf properties between the Resource and Owner classes, 

as shown in Figure 4-2, Figure 4-4, and Table 4-1. An INF property restriction can be derived 

using a process known as asserted property chaining. 

 

Table 4-2: ResOwn properties modeling support classes. 

 

Table 4-3: ResOwn properties modeling value classes. 

4.4.2.1 Asserted Property Chaining 

Asserted property chaining uses Functional Composition to formally specify or define INF properties 

in ResOwn by logically chaining the domain of one asserted property in a chain to the range of 

                                                                                                                                                              

1 In ResOwn, context-sensitive means different individuals are acceptable in the domain or range, but not both. 

Property 
Property 

Characteristic 

Property 

Type 

Inverse 

Property 

Property 

Domain 
Property Range 

hasPortal F BG - Resource SessionAccessPortal 

hasServiceThread F BG - OwnerBase ServiceThread 

Property Property 

Characteristic 

Property 

Type 

Property Domain Property Range 

hasCapacity F BG Resource ⊔ Instrument CapacityVP 

hasPersistency F BG Resource ⊔ Instrument ⊔ Owner PersistencyVP 

hasRight  BG Instrument OwnershipRightVP 
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another property, in an appropriate way, until the required INF property is defined1. The resultant INF 

property will have the domain of the first asserted property in the chain, and the range of the last 

asserted property in the chain. The use of INF properties, in conjunction with the concept of proof of 

ownership, as shown in Figure 4-2 and Figure 4-4, gives ResOwn the power to dynamically model an 

operational software system’s evolving resource ownership structure. Consider the INF property 

isOwnerOf, as shown in Figure 4-2, Figure 4-4, and Table 4-1, which may be defined using the 

following asserted property chain: 

 

isOwnerOf (Owner, Resource) � hasRole(Owner, OwnerRole) o 

isHolderOf (OwnerRole, Instrument) o 

isBoundTo (Instrument, Resource) 

 

This chain specifies that an inferred ownership relationship exists between an Owner instance and a 

Resource instance, if and only if the Owner instance has the appropriate Owner Role, and that 

Owner Role is permitted to be the holder of the necessary Instrument instance associated with the 

Resource instance. Since isOwnerOf and hasOwner are inverse INF properties (i.e., isOwnerOf 

implies hasOwner, and vice versa), the same chain specifies either INF property in the inverse pair. 

4.5 ResOwn Core, Support, and Value Classes 

The sections which follow provide the reader with a detailed presentation of the subclass hierarchies, 

natural language class descriptions, and OWL-DL-based definitions for the core, support, and value 

classes of the ResOwn ontology. The sections are essentially a reference guide for those readers who 

wish to acquire an indepth, detailed understanding of ResOwn. The figures containing the various 

asserted subclass hierarchies were manually drawn based on the Protégé-Owl tool version of 

ResOwn. The figures containing the various inferred subclass hierarchies are actually screenshots 

from the Protégé-Owl tool’s OWLViz plugin. The OWL-DL-based class definitions are presented to 

the reader in tabular format. To simplify the description logic definitions themselves, closure axioms, 

                                                   

1 In mathematics, a composite function, formed by the composition of one function on another, represents the 
application of the former to the result of the application of the latter to the argument of the composite. The 
functions f: X → Y and g: Y → Z can be composed by first applying f to an argument x and then applying g to 
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present in the Protégé-Owl version of ResOwn, have been intentionally left out of the tables.  

4.6 Proof of Ownership Instruments 

The self-contained, asserted class hierarchy of the top-level Instrument class is given in Figure 4-5 

and includes both the defined and named (i.e., primitive) Instrument subclasses. The more interesting 

inferred class hierarchy, shown in Figure 4-6, was obtained by classifying ResOwn automatically 

using the RacerPro reasoner and inference engine. 

 

 

Figure 4-5: Asserted (defined and named) Instrument class hierarchy. 

4.6.1 Instrument Class 

An instrument is a written, legal document, such as a contract, lease, deed, will or bond, that lays out 

the parties involved, triggering events and terms of the contract, communicates the intended purpose 

and scope and represents a share of a liability or ownership [Far06b, Far06c]. In ResOwn, an 

Instrument instance conveys a set of Ownership Right instances upon a holding Owner instance 

and provides that Owner instance with proof of ownership of an associated Resource instance. The 

OWL-DL for the Instrument class is given in Table 4-4. 

                                                                                                                                                              

the result. Thus one obtains a function g o f: X → Z defined by (g o f)(x) = g(f(x)) for all x in X. 
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Figure 4-6: Inferred (defined and named) Instrument class hierarchy. 

 

Core Class 
Asserted and Inferred 

Conditions 

Property Name and Range 
[N = necessary] 

[S = necessary and sufficient] 
Disjoint 

Instrument (N) ResOwnCore 

(N) ∀isBoundTo Resource 

isBoundTo (single Instrument ⊔ Resource) 

isExtentOf (single Instrument) 

hasHolder (multiple OwnerRole) 

hasIssuer (multiple OwnerRole) 

hasExtent (multiple Instrument) 

hasCapacity (single CapacityVP) 

hasPersistency (single PersistencyVP) 

hasRight (multiple OwnershipRightVP) 

Resource 

Owner 

OwnerRole 

OwnerBase 

OwnershipRightVP 

ResOwnSupport 

Table 4-4: Top-level Instrument class definition. 

4.6.1.1 Instrument Capacity 

Capacity is defined as the ability to receive, hold or absorb [Far06a]. In ResOwn, The openness of an 

Instrument instance is based on its associated Capacity value instance. The Capacity VP value 
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partition is modeled as the property hasCapacity, as shown in Table 4-3, whose range may hold an 

individual from either the disjoint Single User Capacity or Multi User Capacity value class. A 

Single User Capacity value instance represents a cardinality restriction of 1and a Multi User 

Capacity value instance represents a cardinality restriction of N. 

4.6.1.2 Instrument Persistency 

Persistence is the property of a continuous and connected period of time [Far06a]. An object that is 

guaranteed to live between activations is called a persistent object [Cou01]. Lifespan is the average or 

maximum length of time an organism, material or object can be expected to survive or last [Far06a]. 

In ResOwn, the lifespan of an Instrument instance is based on its associated Persistency value 

instance. The Persistency VP value partition is modeled as the property hasPersistency, as shown in 

Table 4-3, whose range may hold an individual from the disjoint Persistent, Nonpersistent or 

Transient value class. An explanation of these general value classes is given in Table 4-5. The table 

column headings specify temporal boundaries (i.e., windows of time) that relate to the natural 

runtime life of an object or a runtime binary association instance (i.e., link) between a pair of objects. 

The table row headings specify Persistency.  

 

 Persistent Nonpersistent Transient 

System 
Exists for runtime life of 

system 

Exists from system start until event 

before end of system runtime life 

Exists from some intermediate period 

during the system runtime life 

Session 
Exists for runtime life of 

session 

Exists from session start until event 

before end of session 

Exists from some intermediate period 

during a session 

Transaction 
Exists for runtime life of 

transaction 

Exists from transaction start until 

event before end of transaction 

Exists from some intermediate period 

during a transaction 

Table 4-5: Persistency versus Time. 

4.7 Defined Instrument Classes 

The subsections that follow describe and define the defined Instrument classes in ResOwn. 

4.7.1 BaseInstrument Class 

A base is defined as the fundamental principle or underlying concept of a system or theory [Far06a]. 
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In ResOwn, each Base Instrument instance is bi-directionally linked to a particular Resource 

instance via an isBoundTo property restriction. The OWL-DL definition is given in Table 4-6. The 

bi-directional link is permanent, unless the Resource is consumable. 

 

∃

∃

∃

∃

∃

∃

∃

 

Table 4-6: Defined Instrument class definitions. 

4.7.2 ExtentInstrument Class 

An extent is a writ allowing a creditor to assume temporary ownership of a debtor's property 

[Far06b]. In ResOwn, an Extend Instrument instance, when in effect, forms pairs of temporarily, 

unidirectional links between itself and either a Base Instrument instance or another Extent 

Instrument instance, via the isExtentOf and hasExtent property restrictions. The OWL-DL 

definition is given in Table 4-6. 

4.7.3 TransferableInstrument Class 

In ResOwn, a Transferable Instrument instance may be issued by the Instrument instance’s 

current holding Owner instance to a new holding Owner instance. Therefore, a Transferable 

Instrument instance may, over its lifespan, potentially have many different holding Owner 

instances. An Extent Instrument is inherently a Transferable Instrument. The OWL-DL definition 

is given in Table 4-6. 
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4.7.4 NontransferableInstrument Class 

In ResOwn, a Nontransferable Instrument instance remains with its initial holding Owner instance 

for the Instrument instance’s lifespan. Therefore, a Nontransferable Instrument instance may only 

be issued indirectly to other Owner instances via an Extent Instrument instance. The OWL-DL 

definition is given in Table 4-6. 

4.7.5 ClosedInstrument Class 

A Closed Instrument instance is one that has been specified with a Single User Capacity value 

instance. This creates a cardinality restriction of “1” between a holding Owner instance and the 

Closed Instrument instance. The OWL-DL definition is given in Table 4-6. 

4.7.6 OpenInstrument Class 

An Open Instrument instance is one that has been specified with a Multi User Capacity value 

instance. This creates a cardinality restriction of “N” between a set of holding Owner instances and 

the Open Instrument instance. The OWL-DL definition is given in Table 4-6. 

4.7.7 LifeLongInstrument Class 

A Life Long Instrument instance is one that has been specified with a Persistent value instance, 

meaning the Instrument instance remains in effect for the runtime life of the software system. The 

OWL-DL definition is given in Table 4-6. 

4.7.8 LifeLimitedInstrument Class 

A Life Limited Instrument instance is one that has been specified with a Nonpersistent value 

instance, meaning the Instrument instance remains in effect for some period of time less than the 

runtime life of the software system. The OWL-DL definition is given in Table 4-6. 

4.8 Named Instrument Classes 

The subsections that follow describe and define the named Instrument classes in ResOwn. Note that 
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in Figure 4-6, the identifier names of the Named Instrument classes were shortened so that the 

inferred class hierarchy would fit on the page. The sections that follow use the full class names. 

4.8.1 Titledeed Class 

A deed is a written document that transfers ownership or an interest in real property from a 

transferring party (i.e., issuer) to a receiving party (i.e., holder) [Far06b]. In ResOwn, the Titledeed 

class is a Base Instrument. ResOwn defines three main Titledeed subclasses: Embedded, 

Nontransferable, and Transferable, described below and each corresponding to a Resource 

subclass with the same prefix. The Titledeed class is disjoint from all other Named Instrument 

classes. The OWL-DL definition is given in Table 4-7. 
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∃
∃

 

Table 4-7: Titledeed class definitions. 

4.8.1.1 EmbeddedTitledeed Subclass 

An Embedded Titledeed instance is a Nontransferable, Life Long, Closed Titledeed that is directly 

bound to an Embedded Resource instance and may only be held by a Compound Resource instance 
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acting as a nonbeneficiary containment owner. The OWL-DL definition is given Table 4-7. An 

Embedded Titledeed instance may be extended by a Proxy instance.  

4.8.1.2 NontransferableTitledeed Subclass 

A Nontransferable Titledeed instance is a Nontransferable, Life Long Titledeed that is directly 

bound to a Nontransferable Resource instance and may only be held by a Managed Resource 

Supplier instance acting as a nonbeneficiary permanent owner. The OWL-DL definition is given in 

Table 4-7. A Nontransferable Titledeed instance may be extended by a License instance. 

4.8.1.3 TransferableTitledeed Subclass 

A Transferable Titledeed instance is a Transferable, Closed Titledeed that is directly bound to a 

Transferable Resource instance and may only be held by a Consumer instance acting as a 

beneficiary current owner or by a Pooled Resource Supplier instance acting as a nonbeneficiary 

default owner. The OWL-DL definition is given in Table 4-7. A Transferable Titledeed instance 

may be extended by a Permit To Hold instance.  

4.8.1.3.1 NonreusableTransferableTitledeed Subclass 

A Nonreusable Transferable Titledeed instance is a Life Limited, Transferable Titledeed directly 

bound to a Consumable Resource instance. The OWL-DL definition is given in Table 4-7. 

4.8.1.3.2 ReusableTransferableTitledeed Subclass 

A Reusable Transferable Titledeed instance is a Life Long, Transferable Titledeed directly bound 

to a Nonconsumable Resource instance. The OWL-DL definition is given in Table 4-7. A Reusable 

Transferable Titledeed instance may be extended by a Power Of Attorney instance. 

4.8.2 License Class 

A license is a certificate that proves that one has official or legal permission to do or own a specified 

thing [Far06b]. In ResOwn, a License instance is a Life Limited, Extent Instrument that is 

indirectly bound to a Nontransferable Resource instance via a Nontransferable Titledeed instance. 

The License instance extends beneficiary ownership from the Nontransferable Titledeed instance to 

the holding Consumer instance acting as a beneficiary licensed owner. The License instance is 

issued by the Managed Resource Supplier instance, which acts as the nonbeneficiary permanent 
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owner of the Nontransferable Resource instance. The License class is disjoint from all other 

Named Instrument classes. The OWL-DL definition is given in Table 4-8. 

4.8.2.1 SerialLicense Subclass 

In ResOwn, a Serial License instance is a Closed License. The Serial License subclass is disjoint 

from all other License subclasses. The OWL-DL definition is given in Table 4-8. A Serial License 

instance may be extended by a Power Of Attorney instance or Permit To Hold instance. 

4.8.2.2 ConcurrentLicense Subclass 

In ResOwn, a Concurrent License instance is an Open, Extent License. The Concurrent License 

subclass is disjoint from all other License subclasses. The OWL-DL definition is given in Table 4-8. 

A Concurrent License instance may not be extended. 
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Table 4-8: License and Proxy class definitions. 

4.8.3 Proxy Class 

A proxy is a written authorization to act in place of another person as an agent or substitute [Far06b]. 

In ResOwn, a Proxy instance is a Closed, Life Limited, Extent Instrument that is indirectly bound 

to an Embedded Resource instance via an Embedded Titledeed instance. The Proxy instance 
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extends beneficiary ownership from the Embedded Titledeed instance to holding Consumer 

instance acting as a beneficiary proxied owner. The Proxy instance is issued by the Compound 

Resource instance, which acts as the nonbeneficiary containment owner of the Embedded Resource 

instance. The Proxy class is disjoint from all other Named Instrument classes. The OWL-DL 

definition is given in Table 4-8. A Proxy instance may be extended by a Power Of Attorney instance 

or Permit To Hold instance. 

4.8.4 PowerOfAttorney Class 

 A power of attorney is a written document, signed by a person, giving another person the power to 

act in conducting the signer's business activities in the name of the signer, where an attorney is an 

agent or someone authorized to act for another [Far06b]. In ResOwn, a Power Of Attorney instance 

is a Closed, Life Limited, Extent Instrument that extends nonbeneficiary ownership from a 

Transferable Titledeed, a Serial License or a Proxy instance to a holding nonbeneficiary owning 

Surrogate Resource Supplier instance. The Power Of Attorney instance is indirectly bound to the 

Resource instance via the Instrument instance it extends. The Power Of Attorney instance is issued 

by a beneficiary owning Consumer instance that holds the Transferable Titledeed, Serial License, 

or Proxy instance. The Power Of Attorney class is disjoint from all other Named Instrument 

classes. The OWL-DL definition is given in Table 4-9. A Power Of Attorney instance may not be 

extended. 

4.8.5 PermitToHold Class 

A permit is a document given by an authorized public official or agency to allow a person or business 

to perform certain acts [Far06b]. In ResOwn, a Permit To Hold instance is a Closed, Life Limited, 

Extent Instrument that extends nonbeneficiary ownership from a Transferable Titledeed, a Serial 

License, or a Proxy instance to a holding nonbeneficiary owning Cached Resource Supplier 

instance. The Permit To Hold instance is indirectly bound to the Resource instance via the 

Instrument instance it extends. The Permit To Hold instance is issued by a beneficiary owning 

Consumer instance that holds of the Transferable Titledeed, Serial License or Proxy instance. The 

Permit To Hold class is disjoint from all other Named Instrument classes. The OWL-DL definition 

is given in Table 4-9. A Permit To Hold instance may not be extended. 
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Table 4-9: Power Of Attorney and Permit To Hold class definitions. 

4.9 Application Resources 

The self-contained, asserted class hierarchy of the top-level Resource class is given in Figure 4-7 

and includes the defined Resource subclasses. The more interesting inferred class hierarchy, shown 

in Figure 4-8, was obtained by classifying ResOwn automatically using RacerPro. 

4.9.1 Resource Class 

In ResOwn, a Resource instance represents a physical object that provides a benefit to a beneficiary 

owner in the evolving resource ownership structure of an operational software system. The OWL-DL 

for the Resource class is given in Table 4-10. 

4.9.1.1 Resource Capacity 

Once acquired, a Resource instance may be used concurrently by multiple users or by a single user 

[Kir04]. In ResOwn, closeness or openness of a Resource instance is based on the physical and/or 

logical capacity to provide its benefit to one or more beneficiary owners either serially or 

concurrently, respectively. A Resource instance may have either a Single User Capacity or a Multi 

User Capacity value class. See Section 4.6.1.1 for more details. 
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Figure 4-7: Asserted (defined) Resource class hierarchy. 

 

 

Figure 4-8: Inferred (defined) Resource class hierarchy. 

4.9.1.2 Resource Persistency 

In ResOwn, a Resource instance may have a Persistent, a Nonpersistent or a Transient value class. 

See Section 4.6.1.2 for more details. The consumability of a Resource instance is based on the 

persistency of the Resource instance to provide its benefit to a designated beneficiary owner. 
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Core 

Class 

Asserted and Inferred 

Conditions 

Property Name and Range 
[N = necessary] 

[S = necessary and sufficient] 
Disjoint 

Resource (N) ResOwnCore 

(N) ∀isBoundTo Instrument 

isBoundTo (single Instrument ⊔ Resource) 

hasContainer (single Resource) 

isContainerOf (multiple Resource) 

hasPortal (single SessionAccessPortal) 

hasCapacity (single CapacityVP) 

hasPersistency (single PersistencyVP) 

hasOwner (multiple Owner) 

OwnerRole 

OwnerBase 

Instrument 

OwnershipRightVP 

ResOwnSupport 

Table 4-10: Top-level Resource class definition. 

4.10 Defined Resource Classes 

The subsections that follow describe and define the defined Resource class in ResOwn. 

4.10.1 TransferableResource Class 

A Transferable Resource instance is directly bound to a Transferable Titledeed instance via an 

isBoundTo property restriction. A Consumer instance may request beneficiary ownership of an 

unallocated Transferable Resource instance either from another Consumer instance (i.e., the 

Transferable Resource instance’s current owner) or from an appropriate Pooled Resource Supplier 

instance (i.e., the Transferable Resource instance’s default owner). The OWL-DL definition is 

given in Table 4-11. In the PBX, a space channel is an example of a Transferable Resource instance 

as it can be transferred between beneficiary owners (i.e., caller and callee). 

4.10.2 NontransferableResource Class 

A Nontransferable Resource instance is directly bound to a Nontransferable Titledeed instance via 

an isBoundTo property restriction. To obtain beneficiary ownership of a Nontransferable Resource 

instance, a Consumer instance may request a License instance from the appropriate Managed 

Resource Supplier instance (i.e., the Nontransferable Resource instance’s permanent owner). The 

OWL-DL definition is given in Table 4-11. In the PBX, a dial tone generator card is an example of a 

Nontransferable Resource instance as it resides permanently with the call progress tone manager. 

This means that a dial tone generator card can only ever be accessed by a beneficiary owner via the 

call progress tone manager. 
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Table 4-11: Defined Resource class definitions. 

4.10.3 Embedded Resource Class 

An Embedded Resource instance is directly bound to an Embedded Titledeed instance via an 

isBoundTo property restriction. Further, an Embedded Resource instance is bound to a Compound 

Resource instance via a hasContainer property restriction. To obtain beneficiary ownership of an 

Embedded Resource instance, a Consumer instance may request a Proxy instance from the 

Compound Resource instance (i.e., the Embedded Resource instance’s containment owner). Under 

normal circumstances, it is assumed that when a Consumer instance obtains beneficiary ownership of 

a Compound Resource instance, it also obtains beneficiary ownership of any contained Embedded 

Resource instances as well. The OWL-DL definition is given in Table 4-11. In the PBX, a ringer 

relay is an example of an Embedded Resource instance as it is contained by a line card. This means 

that a ringer relay can only ever be accessed by a beneficiary owner via a line card. 
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4.10.4 ClosedResource Class  

A Closed Resource instance is one that has been specified with a Single User Capacity value 

instance and thus provides its benefit serially. This creates a cardinality restriction of “1” between a 

beneficiary Owner instance and the Closed Resource instance. The OWL-DL definition is given in 

Table 4-11. In the PBX, a touch tone receiver card is an example of a Closed Resource instance as it 

is capable of supporting only one beneficiary owner at a time. 

4.10.5 OpenResource Class 

An Open Resource instance is one that has been specified with a Multi User Capacity value 

instance and thus provides its benefit serially. This creates a cardinality restriction of “N” between a 

set of beneficiary Owner instances and the Open Resource instance. The OWL-DL definition is 

given in Table 4-11. In the PBX, a dial tone generator card is an example of an Open Resource 

instance as it is capable of supporting multiple beneficiary owners simultaneous. 

4.10.6 NonconsumableResource Class 

A Nonconsumable Resource instance is one that has been specified with a System Persistent value 

and therefore is capable of providing its benefit for the runtime life of the system. The OWL-DL 

definition is given in Table 4-11. All PBX resources are Nonconsumable Resource instances. 

4.10.7 ConsumableResource Class 

A Consumable Resource instance is one that has been specified with a System Nonpersistent value 

and therefore is only capable of providing its benefit for some limited number of times or length of 

time. A Consumable Resource instance is directly bound to a Nonreusable Transferable Titledeed 

and is always specified with a Single User Capacity value class. The OWL-DL definition is given in 

Table 4-11. 

4.10.8 ExternalGatewayResource Class 

An External Gateway Resource instance is one that has been specified as being directly bound to a 

Session Access Portal instance via a hasPortal property restriction. The Session Access Portal 
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instance allows the Resource instance to communicate directly with the service environment and is 

described in more detail in Section 6.1.4. An External Gateway Resource instance is always 

specified with a System Persistent value class. The OWL-DL definition is given in Table 4-11. In 

the PBX, a line card is an example of an External Gateway Resource instance as all external 

communication with the service environment must pass through line cards. 

4.10.9 InternalResource Classes 

An Internal Resource instance is one that has been specified with a hasPortal = 0 cardinality 

restriction. The OWL-DL definition is given in Table 4-11. All PBX resources, except the line card, 

are examples of Internal Resource instances 

4.10.10 CompoundResource Class 

A Compound Resource instance is one that has been specified as containing at least one Embedded 

Resource instance via an isContainerOf property restriction. The beneficiary current or licensed 

owner of a Compound Resource instance is also the beneficiary proxied owner of any contained 

Embedded Resource instances. 

4.10.10.1 CompoundResource Class as a Supplier Class 

Consider the inferred defined Resource class hierarchy, as shown in Figure 4-8 and the OWL-DL 

definition given in Table 4-11. For the Compound Resource class row and the Subsumed By Class: 

Inferred column of the table, an individual belonging to the Compound Resource class 

automatically belongs to the Supplier class. As a direct result of the invariant imposed by the 

ResOwn Prime Directive that requires the top-level Resource and Owner classes not to be disjoint, a 

Compound Resource instance is both a resource itself and a supplier of resources. In the PBX, a 

line card is an example of a Compound Resource instance as it contains an idle relay and a ringer 

relay. 

4.10.11 DispatchableConsumer (Inferred Resource) Class 

Another significant result of the ResOwn Prime Directive is the classification of the Dispatchable 

Consumer class, as shown in the inferred Resource class hierarchy shown in Figure 4-8. The 

Dispatchable Consumer class is detailed in Section 4.14.1.3.  
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4.11 Application Resource Owners 

The distributed asserted class hierarchy of the top-level Owner, Owner Role and Owner Base 

classes and their defined subclasses are given in Figure 4-9. The inferred class hierarchy for the top-

level Owner class is shown in Figure 4-10 and was obtained by classifying ResOwn. 

4.11.1 Owner, OwnerRole and OwnerBase Classes 

In ResOwn, an Owner instance represents a physical object in the evolving resource ownership 

structure of an operational software system that may, or may not, receive benefits. Each Owner 

instance is capable of playing one or more logical OwnerRole instances. The OWL-DL for the 

Owner, OwnerRole and OwnerBase classes is given in Table 4-12. The main and library parts of 

the distributed Owner class are disjoint from each other as well as from all other top-level classes, 

except the Resource class. 

 

Core 

Class 
Asserted and Inferred Conditions 

Property Name and Range 
[N = necessary] 

[S = necessary and sufficient] 
Disjoint 

Owner (S) ResOwnCore 

(N) ∃ hasBase OwnerBase 

(N) ∃ hasRole OwnerRole 

(N) ∃ hasPersistency SystemPersistent 

hasBase (single OwnerBase) 

hasRole (multiple OwnerRole) 

hasPersistency (single PersistencyVP) 

isOwnerOf (multiple Resources) 

OwnerRole 

OwnerBase 

Instrument 

OwnershipRightVP 

ResOwnSupport 

OwnerBase (N) ResOwnCore 

(S) ActiveBase ⊔ PassiveBase 

hasServiceThread (single OwnerBase) OwnerRole 

Owner 

Instrument 

OwnershipRightVP 

ResOwnSupport 

OwnerRole (N) ResOwnCore 

(S) BeneficiaryOwner ⊔ NonbeneficiaryOwner 

isHolderOf (single Instrument) 

isIssuerOf (single Instrument) 

Owner 

OwnerBase 

Instrument 

OwnershipRightVP 

ResOwnSupport 

Table 4-12: Top-level Owner, Owner Role and Owner Base class definitions. 
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Owner

Supplier

PooledResourceSupplier

ManagedResourceSupplier

NamedSupplier

PassiveSupplier

SurrogateResourceSupplier

DispatchableConsumer

CachedResourceSupplier

ActiveSupplier

DedicatedConsumer

Dispatcher

OwnerBase

OwnerRole

Consumer

NamedConsumer

NamedDispatcher

PassiveBase

ActiveBase

DefaultOwner

PreviousOwner

LicensedOwner

ContainmentOwner

SurrogateOwner

TemporaryOwner

PermanentOwner

CurrentOwner

ProxiedOwner
ExclusiveLicensedOwner

SharedLicensedOwner

BeneficiaryOwner

NonbeneficiaryOwner

 

Figure 4-9: Asserted (defined) Owner, OwnerRole and OwnerBase class hierarchies. 

4.12 Defined OwnerBase Classes 

The subsections that follow describe and define the defined Owner Base class in ResOwn. The 

Owner Base class is modeled as the ResOwn property hasBase. 



 90

 

Figure 4-10: Inferred (defined) Owner class hierarchy. 

4.12.1 Passive Base Class 

A Passive Base instance represents an unthreaded object in an operational software system and is 

assumed to be comprised of a set of attributes and a functional interface that supports a synchronous 

method invocation protocol. The OWL-DL definition is given in Table 4-13. 

4.12.2 Active Base Class 

An Active Base instance represents a threaded object in an operational software system and is 

assumed to be comprised of a set of attributes, an application-level thread of execution and a 

functional interface that supports an asynchronous message passing protocol and/or a synchronous 

method invocation protocol. The OWL-DL definition is given in Table 4-13. 
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Table 4-13: Defined OwnerBase class definitions. 

4.13 Defined OwnerRole Classes 

The subsections that follow describe and define the defined Owner Role classes in ResOwn. The 

Owner Role class is modeled as the ResOwn property hasRole. 

4.13.1 BeneficiaryOwner Class 

The Beneficiary Owner class covers a group of beneficiary Owner Role subclasses. The OWL-DL 

definition is given in Table 4-15. 

 

4.13.1.1 CurrentOwner Subclass 

A Current Owner instance acts as a beneficiary and is permitted to: 

• Hold a Transferable Titledeed instance. 

• Receive benefits from an owned Transferable Resource instance. 

• Consume a Consumable Resource instance. 

• Transfer a Transferable Titledeed instance to a new current owner. 

• Issue a Power Of Attorney instance against a Transferable Titledeed instance to a 

nonbeneficiary surrogate owner. 

• Issue a Permit To Hold instance against a Transferable Titledeed instance to a nonbeneficiary 

temporary owner. 

The OWL-DL definition is given in Table 4-15. 
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4.13.2 LicensedOwner Subclass 

The Licensed Owner class covers the Exclusive and Shared License subclasses. The effects of 

logical licensed capacity versus physical resource capacity are shown in Table 4-14. The OWL-DL 

definition is given in Table 4-15. 

4.13.2.1 ExclusiveLicensedOwner Subclass 

An Exclusive Licensed Owner instance acts as a beneficiary and is permitted to: 

• Hold a Serial License instance. 

• Receive benefits from a Closed Nontransferable Resource instance. 

• Issue a Power Of Attorney instance against a Serial License instance to a nonbeneficiary 

surrogate owner. 

• Issue a Permit To Hold instance against a Serial License instance to a nonbeneficiary temporary 

owner. 

The OWL-DL definition is given in Table 4-15. 

4.13.2.2 SharedLicensedOwner Subclass 

A Shared Licensed Owner instance acts as a beneficiary and is permitted to: 

• Hold a Concurrent License instance. 

• Receive benefits from an Open Nontransferable Resource instance. 

The OWL-DL definition is given in Table 4-15. 

 

Physical Capacity 

Versus 

Logical Capacity 

Open Resource 
Closed 

Resource 

Serial License 

(Closed Titledeed) 

Access logically restricted to a single 

(Exclusive) Licensed Owner 

Access physically restricted to a single (Exclusive) 

Licensed Owner 

Concurrent License 

(Open Titledeed) 

Access unrestricted to multiple (Shared) 

Licensed Owners 

Access physically restricted to a single (Exclusive) 

Licensed Owner 

Table 4-14: Effects of physical versus logical capacity. 
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Table 4-15: Defined Beneficiary Owner Role subclass definitions. 

4.13.2.3 ProxiedOwner Subclass 

A Proxied Owner instance acts as a beneficiary and is permitted to: 

• Hold a Proxy instance. 

• Receive benefits from an Embedded Resource instance. 

• Issue a Power Of Attorney instance against a Proxy instance to a nonbeneficiary surrogate 

owner. 

• Issue a Permit To Hold instance against a Proxy instance to a nonbeneficiary temporary owner. 

The OWL-DL definition is given in Table 4-15. 

4.13.3 Nonbeneficiary Owner Class 

The Nonbeneficiary Owner class covers a group of nonbeneficiary Owner Role subclasses. The 

OWL-DL definition is given in Table 4-16. 

4.13.3.1 ContainmentOwner Subclass 

A Containment Owner instance acts as a nonbeneficiary and is permitted to: 

• Hold an Embedded Titledeed instance. 
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• Issue a Proxy instance against the Embedded Titledeed instance to a beneficiary proxied owner. 

The OWL-DL definition is given in Table 4-16. 

4.13.3.2 PermanentOwner Subclass 

A Permanent Owner instance acts as a nonbeneficiary and is permitted to: 

• Hold a Nontransferable Titledeed instance. 

• Issue a (Serial or Concurrent) License instance against the (Closed or Open) Nontransferable 

Titledeed instance to a beneficiary (exclusive or shared) licensed owner. 

The OWL-DL definition is given in Table 4-16. 

4.13.3.3 DefaultOwner Subclass 

A Default Owner instance acts as a nonbeneficiary and is permitted to: 

• Hold a Transferable Titledeed instance. 

• Issue the Transferable Titledeed instance itself to a beneficiary current licensed owner. 

The OWL-DL definition is given in Table 4-16. 
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Table 4-16: Nonbeneficiary Owner Role subclass definitions. 
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4.13.3.4 SurrogateOwner Subclass 

A Surrogate Owner instance acts as a nonbeneficiary and is permitted to hold a Power Of Attorney 

instance issued against an associated Transferable Titledeed, Exclusive License, or Proxy instance. 

A Surrogate Owner instance is afforded only a Control Access Ownership Right instance via the 

Power Of Attorney instance. The OWL-DL definition is given in Table 4-16. 

4.13.3.5 TemporaryOwner Subclass 

A Temporary Owner instance acts as a nonbeneficiary and is permitted to hold a Permit To Hold 

instance issued against an associated Transferable Titledeed, Exclusive License, or Proxy instance. 

A Temporary Owner instance is afforded only a Holding Ownership Right instance via the Permit 

To Hold instance. The OWL-DL definition is given in Table 4-16. 

4.13.3.6 PreviousOwner Subclass 

A Previous Owner instance is a special nonbeneficiary Owner Role subclass that was created to deal 

with traceability of Transferable Resource instances and is permitted to issue a Transferable 

Titledeed instance it holds as a Current Owner instance to a beneficiary current licensed owner. 

The OWL-DL definition is given in Table 4-16. 

4.13.3.6.1 The Virtual Previous Owner Stack 

Recall that a Current Owner instance may transfer a Transferable Resource instance to another 

requesting Current Owner instance without first returning the Resource instance back to the 

originating Pooled Resource Supplier instance. In this scenario, the Previous Owner instance is a 

command or log of the last (i.e., previous) beneficiary owner that held the Transferable Resource 

instance. Note that a Previous Owner instance is a nonbeneficiary owner and no longer receives a 

benefit from the Transferable Resource instance. Every Transferable Resource instance not 

residing with its Default Owner instance has a single Current Owner plus a stack of zero of more 

Previous Owners instances. This virtual “previous owner stack” dynamically grows (or shrinks) 

each time the associated Transferable Titledeed instance is acquired by (or released to) a Current 

(or Previous) Owner instance. The stack is reset whenever the Transferable Titledeed instance is 

returned to its Default Owner instance.  
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4.14 Defined Owner Subclasses 

The subsections that follow describe and define the defined Owner subclass in ResOwn. These 

Owner subclasses may be thought of as Owner types; that is, while an Owner instance’s Owner 

Role may dynamically change according to the current structural resource ownership context an 

Owner instance finds itself in at runtime, the Owner type is static. The OWL-DL for the Consumer, 

Supplier, and Dispatcher Owner subclasses is given in Table 4-17. 

 

∃
∃

∃

∃
∃

 

Table 4-17: Defined Owner subclass definitions. 

4.14.1 ConsumerOwner Subclass 

A Consumer instance is bound to an Active Base instance via a hasBase property restriction and is 

capable of acting as a nonbeneficiary owner or as a beneficiary owner that receives benefits. 

4.14.1.1 Dedicated Consumer Subclass 

A Dedicated Consumer instance is statically assigned (or dedicated) to a unique Session Access 

Portal instance for the runtime life of the operational software system. The assignment remains in 

place even when the Session Access Portal instance is idle. The OWL-DL for the Dedicated 

Consumer subclass is given in Table 4-18. In the PBX, a phone handle that is permanently assigned 

to a line card is an example of a Dedicated Consumer instance.  

∃
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Table 4-18: Consumer subclass definitions. 

4.14.1.2 DispatchableConsumer Subclass 

A Dispatchable Consumer instance may be dynamically assigned (i.e., dispatched) from a pool 

Dispatchable Consumer instances and temporarily assigned to a unique Session Access Portal 

instance for the duration of a current session (i.e., in-progress service request). The Dispatchable 

Consumer instance is returned to the pool once the Session Access Portal instance becomes idle 

again. The OWL-DL for the Dispatchable Consumer subclass is given in Table 4-18. In the PBX, a 

phone handle that is dynamically assigned to a line card when the associated phone goes off hook and 

then unassigned when the same phone goes on hook is an example of a Dedicated Consumer 

instance. 

4.14.1.3 Classifying a DispatchableConsumer as a Nonconsumable Resource 

A Dispatchable Consumer instance is also are classified under ResOwn as a Nonconsumable 

Resource instance, as shown in Figure 4-8, Figure 4-10 and Table 4-18. For the Dispatchable 

Consumer subclass row and the Subsumed By Class: Inferred column of the table, an individual 

belonging to the Dispatchable Consumer class automatically belongs to the Nonconsumable 

Resource class. As stated previously, this dual inheritance is a direct result of the ResOwn Prime 

Directive that requires the Resource and Owner classes not to be disjoint from each other. 

Now consider the hasOwner and hasDispatcher properties specified in Table 4-18. Notice 

owl:equivalentProperty construct column in the Dispatchable Consumer class row, which contains: 

Resource:hasOwner ≡ Consumer:hasDispatcher 

The owl:equivalentProperty construct states that the two specified properties have the same values 

(i.e., the same property extension), but may have different intensional meaning (i.e., denote different 

concepts). When automatically classifying the ResOwn class hierarchy, RacerPro treats hasOwner 

and hasDispatcher as equivalent. Since a Dispatchable Consumer instance belongs to the Owner 

class, it must therefore also belong to the Resource class. Further, since a Dispatchable Consumer 

instance is specified with a System Persistent value instance, the Dispatchable Consumer instance 

is classified correctly as belonging to the more specialized Nonconsumable Resource class. 
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4.14.2 Supplier Subclass 

A Supplier instance is bound to a either an Active or Passive Base instance via a hasBase property 

restriction and is only capable of acting as a nonbeneficiary owner. 

4.14.2.1 ActiveSupplier Subclass 

An Active Supplier instance is one that has been specified with an Active Base value instance via a 

hasBase property restriction. The OWL-DL definition is given in Table 4-19. In the PBX, a line card 

scanner is an example of an Active Supplier instance since it has a service thread. 

4.14.2.2 PassiveSupplier Subclass 

A Passive Supplier instance is one that has been specified with a Passive Base instance via a 

hasBase property restriction. The OWL-DL definition is given in Table 4-19. In the PBX, a touch 

tone receiver manager is an example of a Passive Supplier instance since it is unthreaded. 

 

∃

∃

∃

∃

∃

∃
∃

∃

 

Table 4-19: Supplier and Dispatcher subclass definitions. 

4.14.2.3 CachedResourceSupplier Subclass 

A Cached Resource Supplier instance is one that has been specified with a Temporary Owner 

Role instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. The 

Cached Resource Supplier subclass is included in ResOwn specifically to support the Architectural 

Resource Caching Pattern introduced and described in [Kir04]. Consider a variation of the PBX that 
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stores all local phone extension information (i.e., phone number to line card mappings) in a database. 

In this case, it might be possible for a phone handler to cache phone extension information that has 

recently been looked up in a previous session using a Cached Resource Supplier instance. 

4.14.2.4 ManagedResourceSupplier Subclass 

A Managed Resource Supplier instance is one that has been specified with a Permanent Owner 

Role instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. In 

the PBX, a call progress tone manager is an example of a Managed Resource Supplier instance. 

4.14.2.5 PooledResourceSupplier Subclass 

A Pooled Resource Supplier instance is one that has been specified with a Default Owner Role 

instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. In the 

PBX, a space channel manager is an example of a Pooled Resource Supplier instance. 

4.14.2.6 SurrogateResourceSupplier Subclass 

A Surrogate Resource Supplier instance is one that has been specified with a Surrogate Owner 

Role instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. In 

the PBX, a space channel manager is an example of a Pooled Resource Supplier instance. 

4.14.2.7 CompoundResource (Inferred Supplier) Subclass 

A Compound Resource instance is one that has been specified with a Containment Owner Role 

instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. See 

Section 4.10.10 and Table 4-11 for more details on the Compound Resource class. 

4.14.3 Dispatcher Subclass 

A Dispatcher instance is one that has been specified with both a Beneficiary and Nonbeneficiary 

Owner Role instance via two hasRole property restrictions. This makes a Dispatcher instance 

capable of receiving benefits and supplying Resources instances. A Dispatcher instance is capable of 

dispatching a Dispatchable Consumer instance (which is classified as both a Resource and a 

Consumer instance), from a pool of Dispatchable Consumer instances, to temporarily service a 

Session Access Portal instance. The Dispatchable Consumer class definition specifies that a 

Consumer instance is owned by a Dispatcher instance via the hasDispatcher property restriction. 

The OWL-DL definition is given in Table 4-19. In the PBX, a call manager that monitors idle line 
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cards and dispatches a phone handler when an off hook is detected is an example of a Dispatcher 

instance. 

4.15 OwnershipRight Value Classes 

Recall that in ResOwn, every proof of ownership Instrument class is specified with a predefined set 

of Ownership Right value instances. The Ownership Right VP value partition is modeled as the 

property hasRight, as shown in Table 4-3. The class hierarchy of the Ownership Value VP value 

partition is given in Figure 4-11.  

4.15.1 AccessRight 

The Access Right value instance permits either Data or Control Access. 

4.15.1.1 DataAccess 

The Data Access Right value instance permits a beneficiary owner to receive benefits. 

4.15.1.2 ControlAccess 

The Control Access Right value instance only permits an owner to control a resource. 

4.15.2 Consumption Right 

The Consumption Right value instance permits a beneficiary owner to consume a resource. 

4.15.3 ExchangeRight 

The Exchange Right value instance permits the swapping of a proof of ownership Instrument 

instance between an issuer and a holder. 

4.15.3.1 HoldingRight 

The Holding Right value instance permits a nonbeneficiary owner to hold an Instrument instance on 

behalf of a beneficiary owner. 
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Figure 4-11: OwnershipRight VP value partition class hierarchy. 

4.15.3.2 TransferRight 

The Transfer Right value instance permits a beneficiary owner to transfer an Instrument instance to 

another beneficiary owner. 

4.15.3.3 ReleaseRight 

The Release Right value instance permits a beneficiary owner to return an Instrument instance to 

the original issuing nonbeneficiary owner. 

4.15.4 DelegationRight 

The Delegation Right value instance permits an owner to delegate (i.e., issue) some subset of 

ownership rights to another owner via an Extent Instrument instance. 

4.15.4.1 ProxyingRight 

The Proxying Right value instance permits a nonbeneficiary owner (i.e., Compound Resource 
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instance) to issue a Proxy instance to a beneficiary owner. 

4.15.4.2 PermittingRight 

The Permitting Right value instance permits a beneficiary owner (i.e., Consumer instance) to issue 

a Permit To Hold instance to a nonbeneficiary owner (i.e., Cached Resource Supplier instance). 

4.15.4.3 LicensingRight 

The Licensing Right value instance permits a nonbeneficiary owner (i.e., Managed Resource 

Supplier instance) to issue a License instance to a beneficiary owner (i.e., Consumer instance). 

4.15.4.4 AttorneyingRight 

The Attorneying Right value instance permits a beneficiary owner (i.e., Consumer instance) to issue 

a Power Of Attorney instance to a nonbeneficiary owner (i.e., Surrogate Resource Supplier 

instance). 
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Chapter 5 

ResOwn Instance Example 

and Ownership Scenarios 

“Managing resources is hard; managing them efficiently is even harder.” 

- M. Kircher and P. Jain, 2004 

5.1 Introduction 

This chapter presents the reader with a detailed, three-stage example intended to illustrate the main 

modeling concepts of the ResOwn ontology presented in Chapter 4, and to provide an example of the 

practical use of ResOwn in the software engineering domain. 

• The first stage of the example shows the reader how ResOwn can be specialized with 

application-specific ontological classes derived directly using object classes from the example 

PBX. The resulting ontology is called a specialized ResOwn instance. 

• The second stage provides the reader with a visual illustration of how the automatically 

generated inferred class hierarchy of the specialized ResOwn instance can be used to determine 

the multiple inheritance characteristics of the ontological classes originating from the PBX. 

• The third stage provides the reader with a number of visual, role-based resource ownership 

scenarios (i.e., resource ownership patterns) that show how the PBX’s application resource 

ownership structure evolves in an ordered or state-dependent manner in synchronization with the 

operational PBX. The software sensor plan is used to guide the manual PBX instrumentation 

process, as discussed in Chapter 7. 
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5.2 An Asserted ResOwn Instance Example 

Recall from Chapter 4 that a ResOwn instance is a specialized version of the baseline ResOwn 

ontology that has been extended with application-specific ontological classes. This section presents a 

ResOwn specialization methodology along with a specific example using the actual object classes 

from the example PBX (Section 2.10). 

5.2.1 Assumptions 

The following assumptions are applicable for the ResOwn specialization methodology for the PBX: 

• The CEFSM-based software requirements specification and software design specification are 

available. In this thesis, the PBX is specified using SDL. 

• The object-oriented source code is available. In this thesis, the PBX is implemented in Java. 

• Because the design is assumed to be a refinement of the requirements, and the source code a 

refinement of the design (Section 6.1.6), externally observable states in the software requirements 

map to equivalent states in the software design and source code. 

• Each CEFSM specified in the design specification maps to an equivalent object class (of the same 

name) in the source code.  

5.2.2 ResOwn Specialization Methodology 

The ResOwn specialization methodology for constructing a specialized ResOwn instance is comprised 

of these steps: 

1. From the source code, construct an object class table such that each class in the table corresponds 

to an equivalent CEFSM in the software design specification. The list of identified PBX classes is 

given in Table 2.2 of Chapter 2.  

2. Place each CEFSM identified from Step 1 into an appropriate level of the layered interactive 

service architecture like the one for the PBX shown in Figure 2.28 of Chapter 2. If a particular 

CEFSM could potentially reside in more than one level, place the CEFSM in the primary or 

dominant level. When the resulting specialized ResOwn instance is classified, the reasoner will 

use the ontological class definition to automatically deal with cases of multiple inheritance. 
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3. Assign each CEFSM in the object class table created in Step 1 to a top-level core ResOwn class 

(i.e., Resource, Consumer or Resource) as shown in the ResOwn Class column for the PBX in 

Table 2.2 of Chapter 2. This assignment determines which Named class in the baseline ResOwn 

ontology that the new application-specific ontological class will be inserted under, as follows:  

i. If the CEFSM resides in the service delivery layer, then an ontological class with the same 

identifier name as the CEFSM is inserted into the baseline ResOwn ontology under the 

Named Consumer or Named Dispatcher class. For the PBX, the CEFSMs wait for call 

service and phone handler are inserted under the Named Dispatcher class and the Named 

Consumer class, respectively, as shown in Figure 5-1. 

 

 

Figure 5-1: Named Owner classes from the PBX. 

ii. If the CEFSM resides in the community service layer, then an ontological class with the same 

identifier name as the CEFSM is inserted into the baseline ResOwn ontology under the 

Named Supplier class. For the PBX, the CEFSMs call progress tone manager and line card 

scanner are inserted under the Named Supplier class, as shown in Figure 5-1. 
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iii. If the CEFSM resides in the hardware abstraction layer, then an ontological class with the 

same identifier name as the CEFSM is inserted into the baseline ResOwn ontology under the 

Named Resource class. For the PBX, the CEFSMs line card and idle relay device are 

inserted under the Named Resource class, as shown in Figure 5-2. 

 

 

 

Figure 5-2: Named Resource classes from the PBX. 

iv. For each Named class inserted into the baseline ResOwn ontology, any relevant or required 

property restrictions must be instantiated according to the class properties or characteristics 

of the actual PBX class for which the ontological Named class was created. An example set 

of properties that would need to be considered for a Named Resource class is shown in the 

Protégé-OWL screenshot of Figure 5-3. The Named Resource class properties are inherited 

from the top-level Resource class, as shown in the class hierarchy in Figure 5-2. 

After the necessary class property restrictions are instantiated, the reasoner is run to check 

consistency. The resulting Named Owner and Resource classes for the PBX are shown in Table 5-1 

and Table 5-2, respectively. The Subsumed By Class: Inferred column is explained in Section 5.3 
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Figure 5-3: Inherited Resource properties in an example of a Named Resource class. 

 

Subsumed By Class 
Named Owner Class 

Asserted Inferred 

Active Asserted Conditions 

WaitForCallsService NamedDispatcher NamedDispatcher ∃ isDispatcherOf PhoneEventHandler 

PhoneHandler NamedConsumer NamedConsumer 

DispatchableConsumer 

∃ hasDispatcher WaitForCallsService 

LineScannerService 

DigitScannerService 

RingerCadenceService 

ToneCadenceService 

NamedSupplier NamedSupplier 

ActiveSupplier 

SurrogateResourceSupplier 

∃ hasOwnerBase ActiveOwnerBase 

∃ hasOwnerRole SurrogateOwnerRole 

CallProgressToneManager NamedSupplier NamedSupplier 

PassiveSupplier 

ManagedResourceSupplier 

∃ hasOwnerBase PassiveOwnerBase 

∃ hasOwnerRole PermanentOwnerRole 

SwitchingNetwork NamedSupplier NamedSupplier 

PassiveSupplier 

SurrogateResourceSupplier 

∃ hasOwnerBase PassiveOwnerBase 

∃ hasOwnerRole SurrogateOwnerRole 

PhoneHandlerManager 

LineCardManager 

ChannelManager 

ToneToDigitCardManager 

NamedSupplier NamedSupplier 

PassiveSupplier 

PooledResourceSupplier 

∃ hasOwnerBase PassiveOwnerBase 

∃ hasOwnerRole DefaultOwnerRole 

Table 5-1: Named Owner classes for the PBX. 

5.3 A Specialized Inferred ResOwn Instance Example 

Recall from Chapter 4 that the baseline ResOwn ontology actually consists of a manually created, 

asserted class hierarchy from which a inferred class hierarchy can be generated automatically using a 

reasoner. It is interesting to observe that the specialized ResOwn instance is merely just the asserted 
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class hierarchy of the baseline ResOwn ontology extended with application-specific ontological 

classes from the PBX. Therefore, the asserted class hierarchy for the specialized ResOwn instance 

can also be classified, in the exact same way, using the reasoner. The result is an automatically 

generated, application-specific inferred class hierarchy for the specialized ResOwn instance. This 

result is significant because it means all ontological classes originating from the PBX can be tested 

and any multiple inheritance automatically determined. 

 

Subsumed By Class 
Resource Class 

Asserted Inferred 

Active Asserted Conditions 

IdleRelayDevice 

RingerRelayDevice 

NamedResource EmbeddedResource 

InternalResource 

ClosedResource 

NonconsumableResource 

∃ isBoundTo EmbeddedTitledeed 

∃ hasContainer LineCard 

isContainerOf = 0 

hasPortal = 0 

∃ hasCapacity SingleUser 

∃ hasPersistency SystemPersistent 

LineCard NamedResource DistributableResource 

CompoundResource 

ExternalGatewayResource 

∃ isBoundTo ReusableTransferableTitledeed 

∃ isContainerOf IdleRelayDevice 

∃ isContainerOf RingerRelayDevice 

∃ hasPortal SessionAccessPortal 

∃ hasCapacity SingleUser 

∃ hasPersistency SystemPersistent 

hasContainer = 0 

Channel 

ToneToDigitCard 

NamedResource DistributableResource 

InternalResource 

NonconsumableResource 

∃ isBoundTo ReusableTransferableTitledeed 

∃ hasCapacity SingleUser 

∃ hasPersistency SystemPersistent 

hasContainer = 0 

isContainerOf = 0 

hasPortal = 0 

IdleToneGeneratorCard 

DialToneGeneratorCard 

RingToneGeneratorCard 

SlowBusyToneGeneratorCard 

FastBusyToneGeneratorCard 

NamedResource StationaryResource 

OpenResource 

InternalResource 

∃ isBoundTo NontransferableTitledeed 

∃ hasCapacity MultipleUser 

∃ hasPersistency SystemPersistent 

hasContainer = 0 

isContainerOf = 0 

hasPortal = 0 

Table 5-2: Named Resource class for the PBX. 

For convenience and readability of the diagrams, the Owner and Resource class hierarchies of the 

specialized ResOwn instance for the PBX are considered in these two separate sub-examples. 

• Consider the asserted Owner subclass hierarchy presented in Figure 5-1 of the specialized 

ResOwn instance for the PBX. The definitions for the defined Owner subclasses are given in 

Table 4-15 of Chapter 4. The definitions of the Named Owner classes for the PBX are given in 

Table 5-1. The resulting inferred Owner class hierarchy of the specialized ResOwn instance for 
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the PBX is shown in Figure 5-4. Any resulting multiple inheritance now apparent in the 

specialized inferred Owner class hierarchy has been commanded in the Subsumed By Class: 

Inferred column of Table 5-1. 

• Consider the asserted Resource subclass hierarchy presented in Figure 5-2 of the specialized 

ResOwn instance for the PBX. The definitions for the defined Resource subclasses are given in 

Table 4-10 of Chapter 4. The definitions of the Named Resource classes for the PBX are given 

in Table 5-2. The resulting inferred Resource class hierarchy of the specialized ResOwn instance 

for the PBX is shown in Figure 5-5. Any resulting multiple inheritance now apparent in the 

specialized inferred Resource class hierarchy has been commanded in the Subsumed By Class: 

Inferred column of Table 5-2. 

 

 

Figure 5-4: Inferred Owner class hierarchy of the PBX’s specialized ResOwn instance. 
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Figure 5-5: Inferred Resource class hierarchy of the PBX’s specialized ResOwn instance. 

5.3.1 ResOwn Specialization Issues 

One other aspect to consider in the specialization process is the case where an ontological class 

originating from an application (e.g., PBX) is inconsistent and therefore cannot be automatically 

classified by a reasoner. There are two main reasons why this might occur. First, the new class should 

have been consistent, but the property restrictions associated with the inconsistent ontological class 

were instantiated incorrectly (i.e., human error). Second, the range of a property (or possibly several 

properties) in the ontology might not be specified to include a necessary value or object class needed 

to define the inconsistent ontological class. This would mean that the property range would need to be 
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extended to accommodate the new application-specific class definition. Another potential 

specialization issue might occur when an application-specific ontological class is consistent, but is not 

classified under any of the existing defined classes in the baseline ResOwn ontology. Assuming the 

new ontological class definition was correct, this result would imply that the new ontology class itself 

specifies a new type of defined class, which extends the baseline ResOwn ontology, rather than 

simply specializing it. As a result, ResOwn could be extended by adding a new defined class to the 

appropriate top-level ResOwn class taxonomy (e.g., Resource or Owner). 

5.4 Resource Acquisition and Ownership Scenarios 

This section presents a number of role-based, resource acquisition and ownership scenarios for the 

Transferable, Nontransferable, Embedded and Compound Resource classes. The various 

scenarios described below use every Named Instrument class (Section 4.8), except where noted 

below in Section 5.4.5. The following procedure was employed to obtain more realistic scenarios for 

testing the monitoring approach described in Chapter 7 using a Java implementation of the PBX: 

• The source code for the call processing software of the PBX was manually instrumented, 

compiled to bytecode and run on a stand-alone Unix workstation. 

• Several resource ownership call traces were generated for both single calls and multiple 

concurrent calls. All call traces were verified to ensure the call processing software of the PBX 

did adhere to its behavioral design specifications. 

• The resulting resource ownership call traces were analyzed. Any observed structural resource 

ownership transactions recorded. This recorded runtime knowledge was used by the author during 

the manually derivation of the role-based resource acquisition and ownership scenarios presented 

further on in this section. 

Recall from Chapter 1 that the concern-specific, evolving software structure of an operational 

software system can be represented or modeled by an ordered sequence of object diagrams. An object 

diagram represents a state-dependent snapshot (i.e., individual view) of the selected concern-specific 

software structure. A class diagram represents a state-independent family of snapshots (i.e., 

compound view) of the selected concern-specific software structure. In this example, a scenario is a 

behavior-driven, ordered sequence of individual snapshots of the evolving resource ownership 
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structure of the PBX. Each snapshot is comprised of one or more proof of ownership Instrument 

instances, plus one or more related Owner and Resource instances. 

Each role-based resource allocation and ownership scenarios is presented with: 

• A natural language description that explains the addition and removal of individual links (i.e., 

association instances) between Instrument, Resource, Supplier and Consumer instances that 

occur as the resource ownership structure of a current snapshot evolves into the next snapshot in 

the ordered sequence. 

• A UML-like object transformation rules, loosely based on Attributed Graph Grammar (AGG) 

notation from [Tae03], used to visually describe the Instrument-based resource ownership 

structure of each snapshot in a particular scenario. 

The reader should note that some nonstandard UML notations are used in the object diagrams for 

the below-noted scenarios. Specifically, the stereotypes shown on the objects in the snapshots are just 

for information purposes in the object diagrams so that the reader can easily see from where the 

application-specific object was derived in the inferred class hierarchy of the specialized ResOwn 

instance described in Section 5.3. Finally, it should be noted that one could take the specialized 

ResOwn instance and translate it to a simpler UML model by mapping ontological concepts to UML 

classes and ontological properties to UML attributes. 

5.4.1 Monitoring Event-Driven Snapshots 

In the monitoring approach described in Chapter 7, the sequencing of resource allocation and 

ownership snapshots is state-dependent and normally requires runtime knowledge from the operation 

target in the form of monitoring commands. For now, it is sufficient to only introduce these 

monitoring commands, without parameters, that will be used in the scenarios that follow. 

• ACQUIRE is reported to indicate when a Consumer instance has acquired direct or indirect 

beneficiary ownership of a particular Transferable, Nontransferable or Embedded Resource 

instance from a granting Pooled Resource Supplier, Managed Resource Supplier or 

Compound Resource instance, respectively. 

• RELEASE is reported to indicate when a Consumer instance has returned beneficiary ownership 

of a particular Resource instance back to its originator.  
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• REGISTER is reported to indicate when a Consumer instance has given nonbeneficiary 

ownership of a Transferable, Nontransferable or Embedded Resource instance to a Surrogate 

Resource Supplier or Cached Resource Supplier instance. 

• UNREGISTER is reported to indicate when a Consumer instance has relinquished 

nonbeneficiary ownership. 

5.4.2 Transferable Resource Scenario 

Consider the snapshots for the Transferable Resource scenario, as shown in Figure 5-6. The 

applicable objects are defined in Table 5-3. 

 

PBX Class Identifier ID ResOwn Superclass 

Touch Tone Receiver Card :TTRX ttrx5 Transferable Resource 

Touch Tone Receiver Card Manager :TM tm1 Pooled Resource Supplier 

Phone Handler :PH ph1 Dedicated Consumer 

Transferable Titledeed :TTD ttd1 Base Instrument 

Table 5-3: Transferable Resource scenario. 

5.4.2.1 Scenario Semantics 

• At time t: Figure 5-6(i) shows ttd1 bound to ttrx5, as indicated by the isBoundTo link between 

the Transferable Titledeed instance and the Transferable Resource instance. Further, ttrx1 has 

only a default owner as indicated by the fact that the hasHolder and hasIssuer links from ttd1 are 

both connected to tm1. 

• At time t+1: Figure 5-6(ii) shows what happens after the instrumented target produces an 

ACQUIRE indicating that ph1 has successfully acquired beneficiary ownership of ttrx5 from 

tm1. Therefore, the hasHolder link of ttd1 must be disconnected from tm1 and connected to ph1 

so that the snapshot reflects the new ownership structure. Because the hasHolder and hasIssuer 

links now connect to different objects, ph1 may be inferred as the current owner of ttrx5 and tm1 

remains the default owner of ttrx5. 

• At time t+2: Figure 5-6(i) shows what happens after the instrumented target produces a 

RELEASE indicating that ph1 has relinquished beneficiary ownership of ttrx5 back to tm1. To 

keep the snapshot synchronized with the target’s evolving ownership structure, the hasHolder 
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link of ttd1 must be disconnected from ph1 and subsequently reconnected to tm1, indicating again 

that ttrx5 has no beneficiary owner. 

 

 

Figure 5-6: Transferable Resource scenario. 

5.4.2.2 Examples of Structural Errors 

Here are some samples of the possible structural errors that could be detected during a Transferable 

Resource acquisition and release. 

• The Transferable Resource instance is made an orphan because the Transferable Titledeed 

instance is not released back to the original default owner before the end of the current, in-

progress service request (i.e., telephone call). 

• The same Transferable Titledeed instance, with a single user capacity, is issued to more than 

one current owner creating a multiplicity violation. 

• The target reports that the acquired Transferable Resource instance is actually bound to a 

Nontransferable or Embedded Titledeed instance at initialization time. Therefore the resource 

ownership acquisition violates the invariant that states that a Consumer instance playing a 

current owner role may only directly hold a Transferable Resource instance that is bound to 

Transferable Titledeed instance and issued from Pooled Resource Supplier instance. 
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• The acquired Transferable Resource instance is release back to a different Pooled Resource 

Supplier instance than from which it was originally acquired. Therefore, the invariant that states 

that if the holder of a Transferable Titledeed instance is not a current owner, it must be the 

default owner is violated: 

 

( ) ( )( )( )erDefaultOwnhasIssuererDefaultOwnhasHoldererCurrentOwnerror ≠∧¬→  

5.4.3 Nontransferable Resource Scenario 

Consider the snapshots for the Nontransferable Resource scenario shown in Figure 5-7 where the 

applicable objects are defined in Table 5-4. 

 

PBX Class Identifier ID ResOwn Superclass 

Dial Tone Generator Card :DIAL dial2 Nontransferable Resource 

Call Progress Tone Manager :CPTM cptm1 Managed Resource Supplier 

Phone Handler :PH ph1 Dedicated Consumer 

Nontransferable Titledeed :NTD ntd2 Base Instrument 

Serial License :LIC lic1 Extent Instrument 

Table 5-4: Nontransferable Resource scenario. 

5.4.3.1 Scenario Semantics 

• At time t: Figure 5-7(i) shows ntd2 bound to dial2, as indicated by the isBoundTo link between 

the Nontransferable Titledeed instance and the Nontransferable Resource instance. Further, 

dial2 has only a permanent owner as indicated by the fact that the hasHolder and hasIssuer links 

from ntd2 are both connected to cptm1. 

• At time t+1: Figure 5-7(ii) shows what happens after the instrumented target produces an 

ACQUIRED indicating that ph1 has successfully acquired beneficiary ownership of dial2 from 

cptm1. Therefore, ntd2 is extended by lic1, as indicated by the hasExtent link between the Serial 

License instance and the Nontransferable Titledeed instance. Further, lic1 hasIssuer link 

connected to cptm1 and hasHolder link connected to ph1 so that the snapshot will accurately 

reflect the evolving ownership structure of the operational target. Further, because the hasExtent 
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now connects to Extent Instrument instance held by the ph1. It may be inferred that ph1 is an 

exclusive licensed owner of dial2, while cptm1 remains the permanent owner of dial2. 

• At time t+2: Figure 5-7(i) shows what happens after the instrumented target produces a 

RELEASE indicating that ph1 has relinquished beneficiary ownership of dial2 back to cptm1. 

Therefore, to keep the snapshot ownership structure synchronized with the evolving target, the 

hasHolder and hasIssuer links of lic1 must be disconnected from ph1 and cptm1, respectively, 

and the hasExtent link must subsequently be disconnected from lic1. 

 

 

Figure 5-7: Nontransferable Resource scenario. 

5.4.3.2 Examples of Structural Errors 

Here are some samples of the possible structural errors that could be detected during a 

Nontransferable Resource acquisition and release. 

• The Nontransferable Resource instance is made an orphan because the Serial License instance 

is not released back to the original permanent owner before the end of the current, in-progress 

service request. 

• The same Serial License instance, with a single user capacity, is issued to more than one 

exclusive licensed owner creating a multiplicity violation. 
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• The target reports that the acquired Nontransferable Resource instance was one which is 

actually bound to a Transferable or Embedded Titledeed instance at initialization time. 

Therefore the resource ownership acquisition violates the invariant that states that a Consumer 

instance playing a licensed owner role may only own Nontransferable Resource instance 

through licensing from a Managed Resource Supplier instance. 

• The acquired Nontransferable Resource instance is release back to a different Managed 

Resource Supplier instance than from which the Serial License instance was originally 

acquired. 

5.4.4 Embedded Resource Scenario 

Consider the snapshots for the Embedded Resource scenario, as shown in Figure 5-8 where the 

applicable objects are defined in Table 5-5. 

 

PBX Class Identifier ID ResOwn Superclass 

Ringer Relay Device :RR rr8 Embedded Resource 

Line Card :LC lc1 Transferable Compound Resource 

Line Card Manager :LM lm1 Pooled Resource Supplier 

Phone Handler :PH ph1 Dedicated Consumer 

Transferable Titledeed :TTD ttd2 Base Instrument 

Embedded Titledeed :ETD etd3 Base Instrument 

Proxy :PRX prx1 Extent Instrument 

Table 5-5: Embedded Resource scenario. 

5.4.4.1 Scenario Semantics 

• At time t: Figure 5-8(i) shows etd2 bound to rr8, as indicated by the isBoundTo link between the 

Embedded Titledeed instance and the Embedded Resource instance. Further, rr8 has only a 

containment owner as indicated by the fact that the hasHolder and hasIssuer links from etd2 are 

both connected to lc8. In addition, ttd3 is bound to lc8, as indicated by the isBoundTo link 

between the Transferable Titledeed instance and the Transferable Compound Resource 

instance. Further, lc8 has only a default owner as indicated by the fact that the hasHolder and 

hasIssuer links from ttd3 are both connected to lm1. 
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• At time t+1: Figure 5-8(ii) shows what happens after the target produces an ACQUIRE 

indicating that ph1 has successfully acquired beneficiary ownership of both lc8 from lm1 and rr8 

from lc8. Therefore, hasHolder link of ttd3 must be disconnected from lm1 and connected to ph1 

and etd2 is extended by prx1, as indicated by the hasExtent link between the Proxy instance and 

the Embedded Titledeed instance. Further, prx1 hasIssuer link connected to lc8 and hasHolder 

link connected to ph1. Note that ph1 may be inferred as both the current owner of lc8 and the 

proxied owner of rr8, while lc8 remain the containment owner of rr8 and lm1 remains the default 

owner of lc8. 

 

Figure 5-8: Compound and Embedded Resource scenario. 
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• At time t+2: Figure 5-8(i) shows what happens after the target produces a RELEASE indicating 

that ph1 has relinquished beneficiary ownership both rr8 and lc8 back to lc8 and lm1, 

respectively. Therefore, to keep the snapshot ownership structure synchronized with the evolving 

target, the hasHolder and hasIssuer links of prx1 must be disconnected, the hasExtent link must 

disconnected from prx1 and the hasHolder link of ttd2 must be disconnected from ph1 and 

reconnected to lm1. 

5.4.4.2 Examples of Structural Errors 

Here are some samples of the possible structural errors that could be detected during Embedded 

Resource acquisition and release. 

• The Embedded Resource instance is made an orphan because the Transferable Titledeed 

instance for the Transferable Compound Resource instance containing the Embedded 

Resource instance is not released back to the original default owner before the end of the current, 

in-progress service request. 

• The Embedded Resource instance is made an orphan because the Proxy instance for the 

Embedded Resource instance is not released back to the original containment owner before the 

end of the current, in-progress service request. 

• The same Proxy instance, with a single user capacity, is issued to more than one proxied owner 

creating a multiplicity violation. 

• The target reports that the acquired Embedded Resource instance is one which is actually not 

bound to a Compound Resource instance at initialization time. 

• The acquired Embedded Resource instance is release back to a different Compound Resource 

instance than the one that acted as the containment owner of the Embedded Resource instance. 

5.4.5 Surrogate Resource Supplier Registration Scenario 

Consider the snapshots for the Surrogate Resource Supplier registration scenario1, as shown in 

                                                   

1 The Cached Resource Supplier registration scenario is essential the same except a temporary owner role 
would replace the surrogate owner role and a Permit To Hold replace the Power Of Attorney. 
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Figure 5-9 where the applicable objects are defined in Table 5-6. 

 

PBX Class Identifier ID ResOwn Superclass 

Touch Tone Receiver Card :TTRX ttrx5 Transferable Resource 

Touch Tone Receiver Card Manager :TM tm1 Pooled Resource Supplier 

TTRX Scanner :TSCAN tscan1 Surrogate Resource Supplier 

Phone Handler :PH ph1 Dedicated Consumer 

Transferable Titledeed :TTD ttd1 Base Instrument 

Power Of Attorney :POA poa1 Extent Instrument 

Table 5-6: Surrogate Resource Supplier scenario. 

5.4.5.1 Scenario Semantics 

• At time t+1: Figure 5-9(i) shows the scenario from 5.4.2, after the ACQUIRE, where ttd1 is 

bound to ttrx5, the hasHolder link is connected to ph1, the current owner of ttrx5 and the 

hasIssuer link is connected to tm1, the default owner of ttrx5. 

• At time t+2: Figure 5-9(ii) shows what happens after the target produces a REGISTER to 

indicate that ph1 has successfully registered nonbeneficiary ownership of ttrx5 with tscan1. The 

ttd1 is extended by the poa1, as indicated by the hasExtent link between the Power Of Attorney 

instance and the Transferable Titledeed instance. Further, poa1 has the hasIssuer link 

connected to ph1 and the hasHolder link connected to tscan1. Since tscan1 holds poa1, tscan1 is 

the inferred nonbeneficiary owner of ttrx5 and only controls when ttrx5 will scan for digits. 

Further, since ph1 still holds ttd1, it remains the inferred current owner and beneficiary owner of 

ttrx5 and will ultimately be the receiver of any dialed digits. 

• At time t+2: Figure 5-9(i) shows what happens again after the target produces the 

UNREGISTER. The UNREGISTER disconnects hasIssuer link between ph1 and poa1, the 

hasHolder link between tscan1 and poa1 and the hasExtent link between poa1 and ttd1, thus 

returning to the current owner snapshot. 
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Figure 5-9: Surrogate Resource Supplier scenario. 

5.4.5.1.1 Orphaned Power Of Attorney Scenario 

Consider now the snapshots for the extended Surrogate Resource Supplier unregistration scenario, 

as shown in Figure 5-10 using the same objects as defined in Table 5-6. In this case, the target reports 

that a RELEASE indicating that beneficiary ownership of ttrx5 has been relinquished by ph1 back to 

tm1. However, this result is erroneous because the target did not first report an UNREGISTER 

indicating that ph1 has relinquished nonbeneficiary ownership of ttrx5 from tscan1. As a result, a 

resource leak occurs as indicated by the orphaned Power Of Attorney instance. The Power Of 

Attorney instance is said to be orphaned because ttrx5 is still registered with tscan1 on behalf of 
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ph1, but ph1 no longer holds the Transferable Titledeed instance for ttrx5. Therefore, ttrx5 no 

longer has a beneficiary owner for which the surrogate owner, tscan1, acts on behalf of. This error 

was actually detected in the PBX. The fault occurred in a certain execution path of ph1 where the 

Phone Hander did not inform the TTRX Scanner to stop scanning for digits before the Phone Handler 

released the TTRX back to the TTRX Manager. 
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Figure 5-10: Orphaned Power Of Attorney scenario. 
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Chapter 6 

Session-Oriented Model of 

Computation 

6.1 Introduction 

This chapter presents a detailed description of a session-oriented model of computation (SOMOC) 

that is used as a basis for monitoring interaction applications. The SOMOC is a dual-view model that 

bridges the semantic gap between an interactive session-oriented service’s observable behavior and 

its underlying software system’s evolving structure. The SOMOC decomposes an interactive session-

oriented service into two levels of abstraction: 

• A requirements1-level that provides an external behavioral view or modeling perspective of the 

interactive session oriented service. 

• A design-level that provides an internal structural view or modeling perspective of the service’s 

underlying software system. 

Concepts from the SOMOC described in this chapter are used, as described in detail in Chapter 7, for 

deriving a concern-specific monitoring model from the target software system’s formal specifications. 

To the best of the author’s knowledge, a dual-view, session-oriented model of computation has not 

                                                   

1 In this thesis, requirements-level mean a high-level SDL design specification, and design-level means low-
level, detailed SDL design specification. 
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been described previously in the literature. 

6.1.1 Hierarchical Abstract Layering 

Hierarchical abstract layering formulates general concepts organized into abstraction levels from 

common properties, where higher-level concepts are dependent on lower-level ones [Szp02]. The 

SOMOC organizes object classes into a non-strict, hierarchical abstract layered architecture. Non-

strict layering allows objects instantiated from classes on one layer of the architecture to interact with 

objects instantiated from other classes on any lower layer. A class’s position in the architecture is 

position-sensitive. For the example PBX, as shown in Figure 2.28 of Chapter 2, Resource instances 

reside in the lowermost layer, Consumer instances in the topmost layer, and Supplier instances in 

the middle layer. Control only flows down. Data may flow up from the service environment or down 

to the service environment. 

6.1.2 Behavioral Partitioning 

Behavioral partitioning separates a whole into its parts [Iee90]. The SOMOC uses partitioning to 

logically separate an interactive service’s observable behavior into a set of functionally equivalent, 

concurrent sessions1. Doing this partitions the service’s input state-space and reduces the number of 

behavioral alternatives that must be simultaneously considered during monitoring.  

6.1.3 What is Session-Orientation? 

The SOMOC is session-oriented. The SOMOC adopts an object-based definition of a session as sets 

of externally observable interactions that bind sets of objects to users, for a given activity, over a 

bounded time period [Tex03]. 

6.1.4 SOMOC: Internal Structural View 

The internal view models the structure of an interactive service as a set of n logical sessions <S1, ..., 

Si, ..., Sn>. Consider the internal structural view given in Figure 6-1. For the selected structural 

                                                   

1 The SOMOC is also capable of supporting sessions with different functional (i.e., behavioral) requirements. 
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software concern, each Si (i.e., dashed oval) is logically comprised of an end user, Ui, a session 

access portal, Pi , a computational thread of execution, Ti (i.e., Consumer instance) and a local 

software structure, Li (i.e., set of owned Resource instances). Each Ti executes concurrently with 

other portions of the software and delivers the service’s functionality to each Ui via a Pi. Each Pi 

represents an ingress between the service environment and the software system implementation. The 

global software structure is comprised of a set of regional software structures, Ri, (i.e., dashed 

trapezoid). An Ri has an associated Supplier instance and its owned Resource instances. The monitor 

is capable of tracking the evolving software structure on a local, regional and global basis. 

 

 

Figure 6-1: Dual-view model: internal structural view. 

6.1.5 SOMOC: External Behavioral View 

This external view models the observable session behavior as a finite state machine (FSM) of 

superstates. Consider the external behavioral view given in Figure 6-2. The SOMOC distinguishes 

between those service execution phases that differ in their resource usage, making the use of finite 

state machines suitable for formalizing this model. An inactive Si is idle and has no pending service 

requests on Pi. An active Si is processing an in-progress service request on Pi and transitions through 

some or all of the shown model superstates. The monitor is capable of detecting when an interactive 

service enters or leaves a model superstate on a session-by-session basis. 
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Figure 6-2: Dual-view model: external behavioral view. 

6.1.5.1 Service Provisioning Path 

The model’s service provisioning path is the trajectory followed by the service during normal 

operation. In Figure 6-2, the service provisioning path of a session is the superstate sequence: Idle / 

Setup / Established / Teardown / Idle, where the Established / Teardown transition only occurs 

due to a service cancel initiated by a user. If a session is on its service provisioning path, then it’s 

evolving software structure must adhere to certain state-dependent invariants. 

6.1.5.2 Service Annulment Paths 

The model’s service annulment path is the trajectory followed by the service during exceptional 

operation. An operational exception occurs when a user initiates a service cancel before the service is 

established, or anytime the service itself initiates a service abort. A service abort indicates 

exceptional runtime circumstances such as detection of an invalid service parameter or violation of 

some computational constraint such as depletion of a shared resource. In Figure 6-2, two possible 

service annulment paths are the superstate sequences: Idle / Setup / Teardown / Idle, or Idle / Setup 

/ Established / Teardown / Idle, where Established / Teardown only occurs after a service abort. If 

a session is on a service annulment path, then its evolving software structure may no longer adhere to 

certain state-dependent invariants in the same way a provisioning session would. 
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6.1.5.3 Idle Superstate 

An inactive session in the SOMOC normally resides in its Idle superstate. The Idle superstate has a 

memoryless property that states that any side effects1 from a previous active session are never carried 

forward through the Idle superstate to a new session. When an inactive session is in its Idle superstate, 

it is the underlying software structure for that session that is said to be at a its minimal or baseline. 

6.1.5.4 Resynchronization 

Resynchronization allows an automated observer to continue tracking the state of an operational 

target software system after a behavioral failure has been detected [Ior94, Hua99, Pek03, Sav97]. If a 

structural error occurs and is detected during a particular session, then the Idle superstate is an ideal 

resynchronization point because a monitor can reset the session’s software structure back to its 

baseline once the associated session becomes inactive. 

6.1.6 Specification Refinement and Refinement Mapping 

The notion of specification refinement, as shown in Figure 6-3, consists of iteratively creating a 

number of increasingly detailed projections to transform an abstract specification into a more concrete 

one, until source code is produced [Gez03, Pfl06, Liu02, Sha96]. The process of specification 

refinement must preserve the externally visible behavior of the software system. On the other hand, a 

refinement mapping is a function that maps the state-space of a less abstract projection, SL, onto the 

state-space of a more abstract projection, SH, while preserving safety and liveness properties [Aba91, 

Lam84, Lam83, Pav01]. If a refinement mapping holds between SL and SH, then the external signals 

specified in SL must map to an equivalent set of external signals in SH. For example, to guarantee a 

requesting client without implementation knowledge access to a server through a published interface, 

a software developer must ensure that any possible behavior of SL can be mapped to at least one 

expected behavior of SH. 

The monitoring approach in Chapter 7 assumes that the software design and source code have been 

refined from the requirements and a refinement mapping holds between each pair of adjacent 

specification projections. Therefore, the observable specification states and signals specified in the 

                                                   

1 Excluding auxiliary variables and history logs as they are orthogonal to the service’s functional requirements. 
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software requirements must be preserved (and identifiable) in the software design and 

implementation. These assumptions are essential for defining an epoch of behavior (Section 0) and a 

quiescent state (Section 6.1.7.2). It is assumed that: 

• SL is machine-closed meaning that the communicating extended finite state machine (CEFSM) 

representing SL defines its complete behavior. 

• SH has finite nondeterminism; that is, given any finite number of externally observable behaviors 

allowed by SH, there are only a finite number of possible choices for the set of all possible 

corresponding internal state changes. 

• SH is internally continuous meaning that any complete behavior (i.e., interactive transaction) 

allowed can be determined by observing and examining some finite portion of the service’s 

externally observable behavior. 
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Figure 6-3: Specification refinement and refinement mapping. 

6.1.7 Epoch of Behavior Models 

Each active superstate in the SOMOC, as shown in Figure 6-1, is comprised of a set of finite state 

machines that specify “chunks” of application-specific logic, such as the example shown in Figure 

6-4. An epoch of behavior (EoB) is a specification slice or fragment from the software design 

specification, demarcated by a set of quiescent states from the software requirements specification. 
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Further, an EoB model is comprised of a set of one or more structural transactions pertaining to a 

selected software concern formally derived (Section 7.4) from a target software system’s software 

design specification. Consider an internal observer using an EoB model to track the evolving 

software structure of an operational software system for a selected software concern. When the 

operational target executes that portion of the code corresponding to the software design from which 

the EoB model was derived, a series of concern-specific transaction-like interactions are produced 

that indicate that the dynamic software structure of the target has evolved. For example, in this thesis, 

each EoB model specifies one or more successful structural resource ownership transactions. 

 

 

Figure 6-4: Example session behavior partitioned into epochs of behavior. 

6.1.7.1 EoB Anatomy 

As depicted in Figure 6-4, an EoB model consists of three main parts: 

• A single EoB Entry point consisting of a unique quiescent state and input signal combination 

taken directly from the software requirements. 

• An EoB body derived from the software system’s software design specification and consisting of 
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a set of concern-specific structural transactions called EoB detection points that indicate when 

and how the software structure of the operational software system evolves. For example, Epoch1, 

as shown in Figure 6-4, produces a number of concern-specific structural transactions. 

• A set of one or more EoB Exit points, each consisting of a transition-ending quiescent state. 

Each EoB entry point, EoB exit point and EoB detection point matches an identifiable location in 

the software system’s source code where an appropriate software sensor must be embedded. When 

the instrumented software encounters an embedded software sensor, an appropriate monitoring 

command (Section 7.3) is produced to mark the internal runtime event. In general, for the selected 

resource ownership concern, a monitoring command will be produced by an appropriate software 

sensor every time the operational target enters an EoB model, exits an EoB model or successfully 

completes a resource ownership transaction. 

6.1.7.2 Quiescent States 

A quiescent state in the SOMOC is an externally observable specification state, specified in the 

software requirements, and preserved through refinement as an equivalent state in the software design 

and implementation. In this thesis, a session that is in a quiescent state is said to have exited the 

current EoB model, but not yet entered a new EoB model. From a runtime monitoring perspective, a 

session waits an indeterminate amount of time in a quiescent state until the operational software 

system reports, via a monitoring command, that the next EoB entry has been entered. Under normal 

operating conditions, if every session is quiescent, then it can be said that the service itself is in a 

system-wide quiescent state. The notion of a system-wide quiescent state is similar to that of a stable 

state which occurs when no processes are executing or messages are in transit [Zul04]. 

6.1.7.3 EoB Example 

Consider the example software requirements, design and source code excerpts given in Figure 6-5. A 

number of two-way correlations or abstraction pairs exist between adjacent projections between 

quiescent states and input signal combinations representing EoB entry points. It can be observed that 

every identified EoB always ends in a mapped quiescent state as well. In addition, any number of 

transient states may exist inside a demarcated EoB that are not mapped to higher level projections. 

Transient states are short-term states that are not normally visible to an external observer. Transient 

states normally occur within an EOB model, between pairs of concern-specific structural transactions. 
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6.1.7.4 Implementation States  

Consider a refinement mapped software source code implementation, SL, that satisfies a software 

design, SH, which in turn was refined from a software system’s software requirements. In this thesis, 

the equivalence between externally observable signals is assumed to hold between all three levels of 

abstraction; that is, the source code, the design and the requirements. Generally, the number of source 

code implementation states is far greater than the number of observable requirements states. 

Therefore, the number of quiescent states (i.e., EoB entry and exit points) is always less than the total 

number of possible source code implementation states through which an operational software system 

actually transitions. This fact is one of the general benefits of the model-based greybox monitoring 

over conventional whitebox approaches (Section 2.8.4). 
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Figure 6-5: Example mappings between SH and SL. 



 132 

Chapter 7 

Concern-Specific, Dynamic 

Software Structure Monitor 

 “Good engineering is about ruthlessly eliminating known ways of causing failures.”  

- L. Hatton, 2001. 

7.1 Introduction 

This chapter presents a detailed description of the proposed greybox approach to concern-specific, 

dynamic software structure monitoring for interactive session-oriented services. The monitor provides 

readers with an illustration of the use of ontologies for runtime monitoring, in general and the specific 

practical use of ResOwn for monitoring the evolving resource ownership structure of interactive 

session-oriented services. The first section of this chapter describes the monitor’s architecture and 

internal organization. The next section defines the syntax and semantics of the monitoring commands 

produced by the instrumented target and the model constructs added to the monitor’s specification-

based monitoring model. These model constructs direct the monitor’s interpreter on how to process 

the incoming monitoring commands. Finally, two algorithms are presented for deriving the 

specification-based monitoring model from the target’s SDL software requirements and design 

specifications. In this thesis, the selected software concern is application resource ownership 

structure and the selected interaction session-oriented service is the call processing software of a 

small private branch exchange (PBX). A session-oriented model of computation (SOMOC) for 

interactive services is presented in Chapter 6. A detailed description of the PBX is provided in 

Chapter 2. 
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7.2 The Monitor 

The presented monitoring approach is intended to detect and report certain concern-specific structural 

errors in interactive session-oriented services that are delivered by real-time software systems. An 

organizational block diagram of the monitor is presented in Figure 7-1. The monitor executes as a 

separate unit and is comprised of a greybox interpreter, a dynamic knowledge base and a pattern 

matcher. In addition, monitoring relies on a number of derived, application-specific models including 

a state evolution model, an EoB models library and a software sensor instrumentation plan (sensor 

plan). An application-specific monitoring interface of software sensors is woven into the target 

source code implementation in accordance with the sensor plan. The monitoring interface produces 

and transports monitoring commands at runtime from the instrumented target to the monitor’s 

greybox interpreter. 

 

 

Figure 7-1: Organizational block diagram of monitoring approach. 
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Monitoring is divided into two main stages. 

• During the tracking stage, the greybox interpreter receives, processes and stores timestamped 

monitoring commands that are produced and delivered from the operational target via the 

monitoring interface. The runtime knowledge is used to track both the specification state and the 

evolving software structure of the operational target on a session-by-session basis. The interpreter 

uses the runtime knowledge from the monitoring commands, in conjunction with the concern-

specific monitoring models, to maintain the contents of the dynamic knowledge base. 

• During the detection phase, the pattern matcher checks the consistency of the dynamic knowledge 

base as well as matches known error patterns against all or some of the contents of the dynamic 

knowledge base. These error patterns provide a declarative way to specify precise structural 

configurations and constraints. 

The two-phase monitoring approach allows the pattern matcher to perform consistency checks 

offline on a representation of the operational target’s evolving software structure separately from the 

interpretation process. Detected inconsistencies are reported as structural errors. For the selected 

application resource ownership concern, the tuples stored in the dynamic knowledge base represent: 

• Consumer, Supplier and Resource instances that correspond to actual objects in the operational 

target software system. 

• Proof of ownership Instrument instances that correspond to sets of active resource ownership 

links currently in effect in the dynamic software structure of the operational target. 

7.2.1.1 Behavioral Considerations 

Although the monitor requires some behavioral knowledge from the operational target, the approach 

does not consider behavioral correctness nor directly detect behavioral errors. The state evolution 

model and EoB models are only intended to act as roadmaps for tracking the evolving software 

structure of the operational target. Although the dynamic software structure monitor may complement 

behavioral monitoring, it is not intended to replace existing behavioral monitoring approaches. 

7.2.2 The Greybox Interpreter 

The organization of the greybox interpreter shown in Figure 7-2 is loosely based on the ITU-T’s 

Abstract SDL Machine (ASDLM) [Bel91, Itu91] and consists of a number of synchronously 
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communicating meta-processes. The system meta-process handles the creation and termination of 

CEFSM-instances. The global-time meta-process acts like a wall clock. Each interpretable meta-

process CEFSM-instance represents the logical state of a corresponding session so that the number of 

CEFSM-instances is equal to the number of session access portals. The interpreter notifies the pattern 

matcher whenever a session, or a set of sessions, is in a quiescent state (Chapter 6). 

 

 

Figure 7-2: Internal organization of the greybox interpreter. 

7.2.2.1 Interpreter Extensions  

The greybox interpreter extends and/or adapts the basic ASDLM in a number of ways. 

• The system meta-process handles the routing of monitoring commands (rather than signals) from 

the monitoring interface to the appropriate CEFSM-instance’s monitoring command queue. 

• The delaying path process, used for signals traversing channels, is removed to eliminate signal 

ordering issues due to nondeterministic channel delay. 

• All the CEFSM signal input queues are replaced with CEFSM monitor command queues. A 

CEFSM-instance may only consume a monitoring command from the queue if and only if the 

command satisfies an enabling condition, effectively disabling implicit transitions. 

• The EoB library is added to store the derived epoch of behavior specifications. When the 

enabling condition is satisfied, a monitoring command is consumed and the next EoB entry point 
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is deemed to have been reached. If the next EoB differs from the current EoB, the interpreter 

automatically unloads the current EoB and loads the next EoB. If the next EoB is the same as the 

current EoB, the current EoB remains unchanged. 

• A tuple-based dynamic knowledge base is added to store runtime knowledge. When a monitoring 

command is consumed, a monitoring construct embedded into the associated fired transition of 

the monitoring model consumes the monitoring command. The interpreting the monitoring 

construct directs the interpreter on how to encode the runtime knowledge from the consumed 

monitoring command into a tuple. The resulting tuple is then delivered or removed from the 

dynamic knowledge base, depending on the type of monitoring command. 

7.2.3 The Pattern matcher 

This section describes only some initial ideas on the architecture and organization of the pattern 

matcher. One possible architecture for the pattern matcher is presented in Figure 7-3. 

 

 

Figure 7-3: One possible internal organization for the structural pattern matcher. 

The focus of this thesis is on tracking the evolving software structure of an operational software 

system. Some possible manually-derived error detection scenarios were previously described 

(Chapter 5). However, a complete set of error detection and reporting algorithms is beyond the scope 
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of this thesis and left as a matter for future work. The matcher consists of a number of synchronously 

communicating meta-processes whose collective purpose is to match state-dependent error patterns 

and detect inconsistencies in the contents of the dynamic knowledge base. The components are a 

reusable detection processor, a reusable pattern matcher, a random access working memory and an 

error pattern library. Detected inconsistencies are reported as structural errors. An invariant is a 

declarative, formal constraint that precisely states some condition(s) that must always be obeyed by 

any object configuration [War98]. The use of the word “always” with regard to invariants is not 

necessarily suitable for runtime monitoring as invariants may be violated during intermediate 

computational stages. Therefore, the presented approach assumes that the contents of the dynamic 

knowledge base can only be verified at specific points in time to ensure invariants are being enforced 

correctly. An example of error detection points was given in Figure 6-4. 

7.2.4 The Dynamic Knowledge Base 

The dynamic knowledge base is at the heart of the monitor and acts as a dual-ported, random-access, 

tuple space1 for both the interpreter and pattern matcher. As shown in Figure 7-4, the dynamic 

knowledge base is conceptually viewed as three functional components: an input queue, a processor 

and a tuple space. The interpreter sends tuples to the input queue via the synchronous Deliver signal 

in the form of a dynamic operation (Section 7.2.4.1). The pattern matcher is capable of controlling 

when the dynamic knowledge base is updated using the synchronous Freeze and Unfreeze signals. If 

the dynamic knowledge base is frozen, the interpreter’s delivered dynamic operations simple queue 

up in the FIFO input queue until the dynamic knowledge base is unfrozen by the pattern matcher. 

7.2.4.1 Dynamic Operations 

The processor and tuple space support these simple, non-blocking operations. 

• The OUT(tuple) operation adds the specified tuple to the tuple space. If a matching tuple already 

exists, the existing tuple is overwritten and a warning delivered to the pattern matcher, which 

analyzes the old and new tuple contents and then decides whether or not to report an error. 

                                                   

1 An implementation of an associative memory paradigm originally proposed for parallel and distributed 
computing that provides a concurrently accessible repository for collections of logically-ordered data sets 
called tuples [Gel85, Sto05]. 
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• The IN(tuple) operation removes the specified tuple from the tuple space, if it exits. The 

operation searches the tuple space. If a match is found, it is removed and returned. If a matching 

tuple is not found, a NULL_TUPLE is returned and a warning delivered to the pattern matcher to 

analyze and decide whether or not to report an error. 

• The IN(tuple-set) operation works the same as the IN(tuple) operation except that a wildcard is 

used during the search to remove a matched tuple-set from the tuple space. If a NULL_TUPLE is 

returned, no warning is generated. 

• The READ(tuple) and READ(tuple-set) operation are nondestructive IN operations. 

 

Tuple SpaceProcessor
Input
Queue

Dynamic

Knowledge

Base

 

Figure 7-4: Internal organization of the dynamic knowledge base. 

7.2.4.2 Tuple Lifespan and Persistency 

Every tuple has a lifespan determined by a timestamp and predefined persistency. The timestamp 

provides the tuple with a time of birth. The persistency provides the tuple with an anticipated time of 

death. The use of a maximum lifespan is necessary both to detect tuples that are removed from the 

state space prematurely, and to prevent orphaned tuples from filling up in the dynamic knowledge 

base. For the application resource ownership concern, tuples representing Consumer, Supplier, 

Resource and Base Instruments instance are system persistent. A system persistent tuple, once 

created and delivered to the dynamic knowledge base, remains in the tuple space for the runtime life 
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of the operational target1. Tuples representing Extent Instruments instances are session-persistent 

and are only supposed to remain in effect for the maximum duration of the current session. 

7.2.5 Behavioral versus Structural Considerations 

Although the greybox monitoring approach tracks the specification state of the operational target, the 

approach does not attempt to validate the target’s trajectory against the software requirements or 

design specifications to ensure behavioral correctness. This approach is analogous to automatically 

monitoring the structural integrity of a supersonic jet without regard as to whether the plane is 

actually on a correct heading, or if the jet will arrive at the prescribed destination on time. With 

regard to the dynamic software structure monitoring, the monitor tracks the changing specification 

state of the operational target only as it pertains to providing a state-dependent context for checking 

the resource ownership structure of the target, without consideration as to whether the resources 

involved provide their associated benefits correctly, which is considered to be a behavioral 

monitoring issue. 

7.3 Monitoring Commands and Monitoring Constructs 

The proposed monitoring approach is greybox and relies on embedded software sensors that, when 

encountered by the operational target, produce one of two types of monitoring: 

• An EoB entry or exit monitoring command that allows the monitor to track the trajectory of the 

operational target’s quiescent states on a session-by-session basis. 

• An structural transaction monitoring command that allows the monitor to track the micro-steps 

of evolving software structure of the operational target for some selected structural concern where 

one structural transaction equals one micro-step. 

The monitoring approach is also model-driven and relies on monitoring constructs that is a model 

construct embedded into certain transitions in both the state evolution model and the EoB models. 

Each monitoring construct type corresponds to a specific monitoring command type and each type of 

                                                   

1 As stated previously, all resource roles in this research work are assumed to be nonconsumable. 
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monitoring command is consumable only by its specific type of monitoring construct. A monitoring 

construct guides the greybox interpreter in the consumption of the specific, corresponding monitoring 

command, the creation of a tuple for delivery to the dynamic knowledge base, and the unloading or 

loading of the current and next EoB model from the EoB library, respectively. 

7.3.1 Monitoring Command Types 

Monitoring commands are of the form ( Ai, Di, TSi ) where: Ai is the command’s addressing 

information, Di is the command’s payload and is comprised of data arguments ( d1, ..., dn ), and TSi is 

the command’s logical timestamp. The logical timestamp is issued by the monitoring interface and is 

used to both preserve order inside the interpreter and to advance the logical clock in the consuming 

CEFSM-instance. Consider the generic monitoring command, as shown in Figure 7-5(i). 

• CommandType determines the format and semantics of the command payload.  

• ObjectId indicates the unique object from the operational target in which the producing software 

sensor is embedded and tell greybox interpreter’s system meta-process to which CEFSM-

instance’s monitor command queue the monitoring command is to be delivered. 

• LocationId indicates the unique location of the specific monitoring construct within the CEFSM-

instance specified by the ObjectId. 

• An optional Payload contains the additional runtime knowledge required by the monitoring 

construct to create a corresponding tuple. 

 

 

Figure 7-5: Generic: (i) monitoring command; (2) monitoring construct. 



 141 

7.3.2 Monitoring Construct Types 

Consider the generic monitoring construct presented in Figure 7-5(ii). Each monitoring construct acts 

as an enabling condition on the transition leading from the preceding state. As a result, an enclosing 

CEFSM-instance can only fire the transition if and only if an appropriate monitoring command, as 

specified by the monitoring construct, is present in the CEFSM-instance’s monitor command queue. 

Consider the contents of a generic monitoring construct, as shown in Figure 7-5(ii): 

• ConstructType determines the monitoring command type that the monitoring construct 

consumes as well as the format and semantics of the construct’s payload.  

• LocationId indicates the unique location of the monitoring construct within the enclosing 

CEFSM-instance. 

• An optional Payload contains the additional runtime knowledge required by the monitoring 

construct to create a corresponding tuple.  

• Clock is the logical clock sort of the enclosing CEFSM-instance. 

7.3.3 Sensor Plan 

As shown in Figure 7-6, the same state and signal details (i.e., EoB entry and Exit points) that are 

used to derive the state evolution model and the EoB models are also used to derive the sensor plan. 

The application-specific sensor plan specifies the location and monitoring command format for the set 

of embedded software sensors that is to be woven into the target implementation. An entry in the 

sensor plan contains (1) a sensor’s unique location in the implementation, (2) the sensor’s 

corresponding monitoring construct’s unique location in the interpretable model, and (3) the sensor’s 

monitoring command format (i.e., type and payload). Implementing the resulting sensor plan allows 

the monitoring interface to capture (1) whenever the operational target enters a new (or reenters the 

current) EoB model, (2) whenever the operational target exits the current EoB model, and (3) 

whenever the operational target successfully completes a concern-specific structural transaction. For 

this research work, target instrumentation was accomplished using a manual procedure. An automated 

approach to embedding software sensors using weaving technology is the subject of future work. 

7.3.3.1 State- versus Input-Oriented Implementation Structure 

For new software, instrumentation can be built into the development process. However, for legacy 
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code, the assumption that the software implementation is refined from the CEFSM-based software 

design has these implications on the source code structure of the software implementation: 

• A state-oriented implementation is implemented using a STATE-MESSAGE-ACTION source 

code structure such that for each specification state, the operational software system may only 

consume a predefined set of possible inputs. The fired implementation state transition depends on 

the current specification state and the particular consumed input, implying that the source code 

structure is organized according to the same actual structure of the corresponding CEFSM in the 

software design. An example of state-oriented instrumentation is provided in Appendix C. 

• An input-oriented implementation is implemented using a MESSAGE-STATE-ACTION source 

code structure such that a given message may only be consumed if the operational software 

system is in one of a predefined set of specification states. The current state transition depends on 

both the input and current specification state. In general, the state transition and input 

combination does not typically follow the structure of the corresponding communicating extended 

finite state machines (CEFSM) specified in the software design make the embedding process less 

straightforward. An example of input-oriented instrumentation is provided in Appendix C. 

7.4 Deriving Interpretable Models 

The greybox monitoring approach relies on a number of interpretable models that are formally 

derived from the target software system’s formal specifications, as given in Figure 7-6. The 

interpretable state evolution model is derived from the target’s software requirements. The target’s 

software design is assumed to be a refinement of the software requirements. The quiescent states and 

input signals used to identify each EoB entry and exit point in the software requirements will also 

demarcate the required EoB models in the software design. Each EoB model contains the required 

structural transaction for the selected structural concern. The derivation of the state evolution model 

and EoB model from a common frame of specification reference allows the greybox interpreter to 

simultaneously monitor the operational target at two distinct, but related levels of abstraction (i.e., 

requirements and design). Therefore, the greybox interpreter employs a novel bi-level, monitoring 

approach in which the evolving specification state of the operational target is tracked using a 

requirements-based model while the evolving software structure of the operational target is tracked 

for a selected software concern using a design-based model.  
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Figure 7-6: Block diagram of interpretable models derivation process. 

7.4.1 Structural Reduction 

The concept of structural model reduction, where a model with a smaller state-space footprint is 

derived from an existing model, has been previously used in protocols, interface design, and model 

derivation to reduce model complexity and the likelihood of encountering nondeterminism [Floc03, 

Peh83, Pek03]. In this work, the interpretable model derivation process includes steps to reduce 

complexity through a structural reduction process called pruning. Pruning strategically removes those 

specification details deemed unnecessary to the intended monitoring process. Before pruning, model 

details must be categorized as either external, significant internal and insignificant internal based on 

the notion of signal observability. 

7.4.1.1 Classifying CEFSMs and Signals 

Observability pertains to the amount of implementation details visible behind a software interface 

[Szp02]. Blackbox and whitebox testing validate observable functionality and unobservable structures 

and interactions, respectively [Gao03]. Consider the example message sequence chart and block 

excerpt in Figure 7-7: 

• Signals ServiceRequest and ServiceProceed are observable at the environment and classified as 

external signals. CEFSM1 and CEFSM2 are classified as external because each has external 

signals that travel to and from the environment over channels C1/C3 and C2/C4, respectively. 
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External signals may be used to demarcate EoB models. 

• Dominant internal signals travel between external CEFSM1 and CEFSM2 over signalroutes 

R1/R2. Dominant internal signals may be used to demarcate EoB models. 

• CEFSM3 is classified as internal because the instance does not directly communicate with the 

environment. Recessive internal signals ResourceRequest and ResourceGrant travel between 

external CEFSM3 and internal CEFSM1 over signalroutes R3/R4. Recessive internal signals are 

pruned from the state evolution model, but used in EoB models to demarcate the successful 

completion of structural transactions for the selected structural concern. 

• Insignificant internal signals SetQueue and Ack travel between internal CEFSM3 and internal 

CEFSM4 over signalroutes R5/R6. Insignificant internal signals are pruned from both the state 

evolution model and EoB models. 

 

Figure 7-7: Example: (i) message sequence chart; (ii) layered CEFSMs and signals. 

7.4.2 State Evolution Monitoring 

There are two state evolution model monitoring command types, as shown in Figure 7-8: (1) an EoB 

entry monitoring command type, and (2) an EoB exit monitoring command type. State evolution 

model monitoring command types do not have a payload. The ENTER (EXIT) monitoring command 

type is used to inform the interpreter whenever the operational target ENTER (EXIT) a particular 
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EoB model. The ObjectId is used by the interpreter to route the monitoring command to the 

appropriate monitor command queue. The LocationId is used by the interpreter to match the 

monitoring command to the appropriate monitoring construct. If the interpreter consumes an EoB 

entry monitoring command that does not match the current EoB model, then the interpreter 

automatically loads the required EoB model from the EoB library. If the next EoB model is the same 

as the current EoB model (i.e., looping), loading the new EoB model is not required. 

 

 

Figure 7-8: EoB ENTRY and EoB EXIT monitoring command. 

7.4.2.1 State Evolution Model Derivation 

The derivation of the state evolution model is general in that the same algorithm is applicable 

regardless of the selected structural concern. This section presents the algorithm for deriving the 

structurally reduced state evolution model from the target software system’s software requirements 

specification. The derivation process may be automated using the state evolution model derivation 

algorithm. A line-by-line description follows the algorithm. 

 

1. ALGORITHM: Derive-State-Evolution-Model 

2. INPUT: Requirements-Specification 

3. OUTPUT: State-Evolution-Model 

4. COPY Requirements-Specification to State-Evolution-Model; 

5. FORALL ( Channeli Є State-Evolution-Model ) DO: 

6.  FORALL ( Signalj Є Channeli Signal List ) DO: 

7.   TAG Signalj = External; 

8.  ENDFOR; 

9.  FORALL ( CEFSMj Є State-Evolution-Model ) DO: 

10.   TAG CEFSMj = Internal; 

11.   IF ( Channeli connected-to CEFSMj ) OR 

12.      ( Channeli connected-from CEFSMj ) THEN: 

13.    TAG CEFSMj = External; 

14.    BREAK; 

15.   ENDIF; 

16.  ENDFOR; 

17. ENDFOR; 
18. FORALL ( CEFSMi Є State-Evolution-Model ) DO: 
19.  IF ( READTAG ( CEFSMi ) == Internal ) THEN: 

20.   PRUNE ( CEFSMi ); 

21.  ENDIF; 

22. ENDFOR; 
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23. FORALL ( Timeri Є State-Evolution-Model ) DO: 
24.  FORALL ( Signalj Є Timeri Signal List ) DO: 

25.   TAG Signalj = Significant; 

26.  ENDFOR; 

27. ENDFOR; 
28. FORALL ( SRoutei Є State-Evolution-Model ) DO: 
29.  TAG SRoutei = Insignificant; 

30.  FORALL ( CEFSMm Є State-Evolution-Model ) DO: 

31.   FORALL ( CEFSMn Є State-Evolution-Model ) DO: 

32.    IF ( SRoutei connected-from CEFSMm ) AND ( SRoutei connected-to CEFSMn ) THEN: 

33.     TAG SRoutei = Significant; 

34.     BREAK; 

35.    ENDIF; 

36.   ENDFOR; 

37.  ENDFOR; 

38.  FORALL ( Signalj Є SRoutei Signal List ) DO: 

39.   TAG Signalj = READTAG ( SRoutei ); 

40.  ENDFOR; 

41. ENDFOR; 
42. FORALL ( SRoutei Є State-Evolution-Model ) DO: 
43.  IF ( READTAG ( SRoutei ) == Insignificant ) THEN: 

44.   PRUNE ( SRoutei ); 

45.  ENDIF; 

46. ENDFOR; 
47. FORALL ( CEFSMi Є State-Evolution-Model ) DO: 
48.  FORALL ( Statej Є CEFSMi ) DO: Q 

49.   TAG Statej = Transient; 

50.   FORALL ( Inputk Є Statej ) DO: 

51.    IF ( READTAG ( Inputk.Signal ) == External ) OR 

52.        ( READTAG ( Inputj.Signal ) == Significant ) THEN: 

53.     TAG Statej = Quiescent; 

54.     BREAK; 

55.    ENDIF; 

56.   ENDFOR; 

57.  ENDFOR; 

58. FORALL ( Constructj Є CEFSMi ) DO: 
59.   IF ((( Constructj.Type == Input ) AND 

60.       ( READTAG (Constructj ) == Insignificant )) OR 

61.       ( Constructj.Type == Output ) OR 

62.       ( Constructj.Type == Task ) OR 

63.       ( Constructj.Type == Timer ) THEN: 

64.    PRUNE ( Constructj ); 

65.    JOIN-TRANSITION ( Constructj-1, Constructj+1 ); 

66.   ELSEIF ( Constructj.Type == Save ) THEN: 

67.    PRUNE (Constructj ); 

68.   ELSEIF ( Constructj.Type == Decision ) THEN: 

69.    SET Constructj.Type = State; 

70.    TAG Constructj = Transient; 

71.   ENDIF; 

72.  ENDFOR; 

73.  FORALL ( Constructj Є CEFSMi ) DO: 

74.   IF (( Constructj.Type == State ) AND 

75.       ( READTAG ( Constructj ) == Transient ) AND 

76.       ( Constructj+1.Type == State ) AND 

77.       ( READTAG ( Constructj+1 ) == Transient )) THEN 

78.    PRUNE ( Constructj ); 
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79.    JOIN-TRANSITION ( Constructj-1, Constructj+1 ); 

80.   ENDIF; 

81.  ENDFOR; 

82.  FORALL ( Constructj Є CEFSMi ) DO: 

83.   IF (( Constructj.Type == State ) AND ( READTAG ( Constructj ) == Quiescent )) THEN 

84.    FORALL ( Inputk Є Constructj ) DO: 

85.     REPLACE ( Inputk, generateMonitorConstruct( Entry, j+k )); 

86.    ENDFOR; 

87.    IF ( Constructj-1.Type == State AND READTAG( Constructj-1 ) == Transient ) THEN 

88.     INSERT ( Constructj, generateMonitorConstruct( Exit, j ) ); 

89.    ELSEIF: 

90.     Newconstruct.Type := State; 

91.     TAG Newconstruct = Transient; 

92.     INSERT ( Constructj, Newconstruct ); 

93.     INSERT ( Constructj, generateMonitorConstruct( Exit, j ) ); 

94.    ENDIF; 

95.   ENDIF; 

96.  ENDFOR; 

97. ENDFOR; 
98. RETURN ( State-Evolution-Model ); 

 

In lines 1-4, the input and output to the algorithm is the target’s CEFSM-based software 

requirements specification and the state evolution model, respectively. The initial state evolution 

model is set to a copy of the software requirements specification. Lines 5-17 deal with external 

signals and CEFSMs. In lines 5-8, every signal belonging to a channel’s signal list is tagged as an 

External signal. In line 9-16, every CEFSM connected to a channel is tagged as External CEFSM in 

the model. In lines 18-22, every CEFSM tagged as Internal is pruned from the model. Lines 23-27 

deal with timer signals. Every signal belonging to a timer’s signal list is tagged as a Significant 

internal signal in the model. Lines 28-41 deal with internal signals. In lines 28-37, a signalroute 

connected between a pair of external CEFSMs is tagged as a Significant signalroute in the model; 

otherwise the signalroute is tagged as an Insignificant signalroute. In lines 38-41, a signal is tagged as 

a Significant signal if the signal belongs to a Significant signalroute’s signal list in the model; 

otherwise, the signal is tagged as an Insignificant signalroute. In lines 42-46, every signalroute tagged 

as Insignificant is pruned from the model. Lines 47-57 deal with identifying Transient state or a 

Quiescent state. If a state is followed by a signal tagged as either External or Significant, then the 

state is tagged as a Quiescent state in the model; otherwise, the state is tagged as a Transient state. 

Lines 58-72 deal pruning from, and replacing insignificant constructs in the state evolution model. In 

lines 59-65, if the current construct under consideration is either an input with a signal identifier that 

was tagged as Insignificant, an output construct, a task construct or a timer construct, then the 

construct is pruned from the model and the transition between the preceding and succeeding 

constructs is joined. In lines 66-67, if the current construct is a save construct, it is pruned from the 
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model. In lines 68-71, if the current construct is a decision construct, then the decision is replaced 

with a state construct that is tagged as a Transient state in the model. Lines 73-81 deal with collecting 

succeeding transient states into a single transient state. In line 78, each predecessor transient state in a 

chain of transient states is pruned until only one transient state remains from the original chain. Lines 

82-96 deal with embedding EoB Entry and Exit monitoring constructs into the structurally reduced, 

state evolution model. In lines 83-86, every input construct that follows each quiescent state is 

replaced with a unique EoB Entry monitoring construct. In lines 87-89, a unique EoB Exit monitoring 

construct is inserted immediately preceding the quiescent state and after an existing transient state. In 

lines 90-96, no transient state precedes the quiescent state and therefore a unique EoB Exit 

monitoring construct and transient state combination is inserted immediately preceding the quiescent 

state. In line 98, the resultant structurally reduced state evolution model is returned. 

7.4.2.2 EoB Entry Point Monitoring Scenario 

Consider the EoB entry point monitoring scenario presented in Figure 7-9. In the requirements 

excerpt, as shown in Figure 7-9(i), the transition from state S1 is initiated after input signal A is 

consumed by CEFSM-instance 21. The state evolution model derivation replaces signal A by an entry 

monitoring construct N01, as shown in Figure 7-9(ii). The transition from state S1 is then fired if and 

only if monitoring command N01 is consumed. The interpreter loads and begins interpreting the EoB 

model associated with N01. The CEFSM-instance’s logical clock advances to 10. 

 

 

Figure 7-9: EoB entry point monitoring scenario. 
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7.4.2.3 EoB Exit Point Monitoring Scenario 

Consider the EoB exit point monitoring scenario presented in Figure 7-10. In the software 

requirements excerpt, as shown in Figure 7-10(i), the transition from state S3 is initiated after input 

signal C is consumed by CEFSM-instance 34. The flag in the decision constructs determines whether 

the behavioral alternative ending in state S4 or state S5 is chosen. The state evolution model 

derivation process replaces the decision construct with transient state NS1 as shown in Figure 

7-10(ii), followed by two exit monitoring constructs, X01 and X02, inserted into the transitions 

leading from transient state NS1 to quiescent states S4 and S5, respectively. The transition from state 

S3 is fired when N03 is consumed. The interpreter loads and interprets the EoB model for N03. When 

interpretation of the current EoB model completes, the interpreter waits in NS1. Whether the 

operational target produces exit monitoring command X01 or X02 determines whether the interpreter 

enters the quiescent state S4 or S5, respectively. In this example, the CEFSM-instance consumes X01 

and enters S4, causing the logical clock to advance from 100 to 125. 

 

 

Figure 7-10: EoB exit point monitoring scenario. 

7.4.3 Structural Transaction Monitoring 

There are five context-sensitive monitoring command types, as shown in Figure 7-11. The 

ACQUIRE, RELEASE, REGISTER, and UNREGISTER monitoring commands are for reporting 

concern-specific structural transactions. The INSTANCE monitoring command is used for 

initialization purposes. The four structural transaction monitoring commands are each associated with 

monitoring constructs that were into various EoB models. Structural transaction monitoring construct 
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allow the greybox interpreter to handle and process the completion of certain successful structural 

transactions, as reported by the instrumented operational target, the selected structural concern. The 

INSTANCE monitoring command is a special and has no corresponding monitoring construct. As 

will be described later in this chapter, the INSTANCE monitoring command is handled and 

processed directly by the interpreter’s system meta-process. 

 

 

Figure 7-11: Structural transaction monitoring commands. 

7.4.3.1 Instance Monitoring Command Types 

The special initialization monitoring command has no matching monitoring construct. Instead, the 

INSTANCE monitoring command directs the greybox interpreter to create the appropriate tuple, in 

accordance with Table 7-1, and insert or remove the resultant tuple into or from the dynamic 

knowledge base, respectively. The greybox interpreter uses an INSTANCE monitoring command’s 

ObjectType to determine what object tuple type. The interpreter uses a static Object-Type-to-

ResOwn-Role lookup table. The lookup table is derived using the following procedure: 

• An application-specific specialized ResOwn instance is extended (i.e., specialized) by creating an 

implementation specific ontological class for each object class in the target software system. 

• All created application-specific classes are then classified under ResOwn using the RacerPro 

reasoner on the specialized ResOwn instance. 

• For each object tuple representing a Resource role, the greybox interpreter automatically creates 

and stores an associated tuple representing the named Titledeed instance that is logically bound 

to the Resource instance, as shown in Table 7-1. 

These object and association tuples are important for processing structural transaction monitoring 

commands as the set of object tuples stored in the dynamic knowledge base is used to translate the 

physical object Ids from a structural monitoring command to their corresponding logical class Id. If 
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an object plays a Resource role, then the resulting logical Resource class Id is also used to locate the 

specific Titledeed class Id bound to that Resource class. 

 

ResOwn 

Role 

Object Tuple 

Format 
Defined Class Titledeed Specialization 

Association Tuple Format 

(tuples are timestamped) 

Resource RES, Id, Oid Transferable Resource 

Nontransferable Resource 

Embedded Resource 

TransferableTitledeed 

NontransferableTitledeed 

EmbeddedTitledeed 

TTD, Id, Rid, Hid, Iid, Eid 

NTD, Id, Rid, Hid, Iid, Eid 

ETD, Id, Rid, Hid, Iid, Eid 

Supplier SUP, Id, Oid PooledResourceSupplier 

ManagedResourceSupplier 

SurrogateResourceSupplie

r 

CachedResourceSupplier 

CompoundResource 

n/a  

Consumer CON, Id, Oid Dedicated Consumer 

Dispatchable Consumer 
n/a  

Table 7-1: INSTANCE monitoring command. 

7.4.3.1.1 Object and Association Tuples 

An object tuple represents a corresponding physical object in the operational target that is specified 

by the INSTANCE monitoring command’s ObjectType and ObjectId. The object tuple parameters, 

as shown in Table 7-1, are: ResOwn Role Type (RES, SUP, CON), ResOwn Object Id (Id), Object Id 

(Oid), where RES is a Resource, SUP is a Supplier and CON is a Consumer. An association tuple 

represents a corresponding logical proof of ownership Instrument instance maintain by the greybox 

interpreter. For an INSTANCE command, all association tuples pertain to Titledeed instances. The 

association tuple parameters, as shown in Table 7-1, are: Instrument Type (TTD, NTD, ETD), 

InstrumentId, ResourceId (Rid), HolderId (Hid), IssuerId (Iid), ExtentId (Eid), where TTD is a 

Transferable Titledeed, NTD is a Nontransferable Titledeed, and ETD is an Embedded 

Titledeed. 

7.4.3.2 Structural Transaction Monitoring Command Types 

Structural transaction monitoring commands have a payload. The four structural transaction 

monitoring commands have the following fields: 

• The ACQUIRE, RELEASE, REGISTER or UNREGISTER identifies the command as a typed 

current structural transaction monitoring command for the current structural transaction. 

• The LocId corresponds to a specific monitoring construct for the current structural transaction 
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that will consume the monitoring command.  

• The ConId is the ObjectId of the object in the operational target that is playing the role of 

Consumer for the current structural transaction. 

• The SupID is the ObjectId of the object in the operational target that is playing the role of 

Supplier for the current structural transaction. 

• The set of one or more ResId are the set of ObjectIds of the objects in the operational target 

playing the role of Resource for the current structural transaction 

• The timestamp commands the logical sequence number for the monitoring command. 

7.4.3.2.1 ACQUIRE Monitoring Command and Construct Type 

An ACQUIRE command is produced by the instrumented target when the embedded software sensor 

corresponding to a specific ACQUIRE monitoring construct in an EoB model is encountered. The 

ACQUIRE monitoring command informs the interpreter of the successful completion of an 

associated structural resource ownership transaction in which a Consumer instance in the operational 

target has obtained beneficiary ownership of a Resource instance from a Supplier instance, as shown 

in Figure 7-12(i) and Figure 7-12(ii). For an ACQUIRE command, an association tuple is inserted 

into or updated in the dynamic knowledge base with parameters, as shown in Table 7-2: 

InstrumentType (TTD, LIC, PRX), InstrumentId (Id), ResourceId (Rid), TitledeedId (Tid) HolderId 

(Hid), IssuerId (Iid), ExtentId (Eid), where LIC is a License and PRX is a Proxy. 

7.4.3.2.2 RELEASE Monitoring command and Construct Type 

A RELEASE command is produced by the instrumented target when the embedded software sensor 

corresponding to a specific RELEASE monitoring construct in an EoB model is encountered. The 

RELEASE monitoring command informs the interpreter of the successful completion of a 

corresponding resource ownership in which an object playing a Consumer role in the operational 

target has relinquished beneficiary ownership of an object playing a Resource role to an object 

playing a Supplier role, as shown in Figure 7-12(i) and Figure 7-12(ii). For a RELEASE command, 

an association tuple is removed from or updated in the dynamic knowledge base with parameters, as 

shown in Table 7-2. 
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Consumer 

Class 

Defined Supplier 

Class 

Defined Resource 

Class 

Instrument 

Class 

Association Tuple 

(tuples are timestamped) 

Consumer PooledResourceSupplier TransferableResource TTD TTD, Id, Rid, Hid, Iid, Eid 

Consumer ManagedResourceSupplier NontransferableResource NTD - LIC LIC, Id, Tid, Hid, Iid, Eid 

Consumer CompoundResource EmbeddedResource ETD - PRX PRX, Id, Tid, Hid, Iid, Eid 

Table 7-2: ACQUIRE / RELEASE commands. 

7.4.3.2.3 REGISTER Monitoring Command and Construct Type 

A REGISTER command is produced by the instrumented target when the embedded software sensor 

corresponding to a specific REGISTER monitoring construct in an EoB model is encountered. The 

REGISTER monitoring command informs the interpreter of the successful completion of an 

associated structural resource ownership transaction in which a Consumer instance in the operational 

target assigned nonbeneficiary surrogate ownership of a Resource instance to a Supplier instance, as 

shown in Figure 7-12(iii). For a REGISTER command, an association tuple is inserted into or 

updated in the dynamic knowledge base with parameters, as shown in Table 7-3: InstrumentType 

(POA, PTH), InstrumentId (Id), and TitledeedId (Tid). LicenceId (Lid). ProxyId (Pid), HolderId 

(Hid), IssuerId (Iid), where POA is a Power Of Attorney and PTH is a Permit To Hold. 

 

Defined 

Supplier 

Class 

Consumer 

Class 

Defined Resource 

Class 

Instrument 

Class 

Association Tuple 

(tuples are timestamped) 

Surrogate Consumer TransferableResource 

NontransferableResource 

EmbeddedResource 

TTD 

LIC 

PRX 

POA, Id, Tid, Hid, Iid 

POA, Id, Lid, Hid, Iid 

POA, Id, Pid, Hid, Iid 

Cached Consumer TransferableResource 

NontransferableResource 

EmbeddedResource 

TTD 

LIC 

PRX 

PTH, Id, Tid, Hid, Iid 

PTH, Id, Lid, Hid, Iid 

PTH, Id, Pid, Hid, Iid 

Table 7-3: REGISTER / UNREGISTER command types. 

7.4.3.2.4 UNREGISTER Monitoring Command and Construct Type 

An UNREGISTER command is produced by the instrumented target when the embedded software 

sensor corresponding to a specific UNREGISTER monitoring construct in an EoB model is 

encountered. The UNREGISTER monitoring command informs the interpreter of the successful 

completion of an associated structural resource ownership transaction in which a Consumer instance 

in the operational target has relinquished nonbeneficiary surrogate ownership Resource instance 
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from a Supplier instance, as shown in Figure 7-12(iii). For a UNREGISTER command, an 

association tuple is inserted into or updated in the dynamic knowledge base with parameters, as 

shown in Table 7-3. 

7.4.3.3 Structural Transaction Signaling 

Consider the message sequence charts presented in Figure 7-12. For the selected structural software 

concern, there are several main types of structural transaction signaling considered. As shown, each 

structural transaction signal of interest travels between a Consumer instance and Supplier instance. 

Normally, it is the type of Supplier instance that ultimately determines which type of monitoring 

command should be produced by the corresponding code in the instrumented target as well as which 

type of monitoring construct should be embedded in the corresponding EoB model. The one 

exception is the scenario presented in Figure 7-13 where the presence of a Compound Resource 

instance predicates the need to also consider the Embedded Resource instance(s) contained there 

within. The ResOwn signal set to identify successful structural resource ownership transaction from 

includes: 

• For a Consumer, a Pooled Resource Supplier and a Transferable Resource, as shown in 

Figure 7-12(i), the Grant signal and the Return signal. The corresponding monitoring command / 

construct types are ACQUIRE and RELEASE, respectively. 

• For a Consumer, Managed Resource Supplier and a Nontransferable Resource, as shown in 

Figure 7-12(ii), the Activate signal and the Deactivate signal. The corresponding monitoring 

command / construct types are ACQUIRE and RELEASE, respectively. 

• For a Consumer, Surrogate Resource Supplier and a Resource, as shown in Figure 7-12(iii): 

the Start signal and the Stop signal. The corresponding monitoring command / construct types are 

REGISTER and UNREGISTER, respectively. 

Consider the scenario, as given in Figure 7-13, for a Consumer, a Pooled Resource Supplier, a 

Surrogate Resource Supplier and a Transferable Compound Resource that contains an 

Embedded Resource. In this scenario, the grant from the Pooled Resource Supplier to the 

Consumer causes two ACQUIRE monitoring commands to be produced: (1) one for the 

Transferable Compound Resource, and (2) one for the Embedded Resource that is contained 

inside the Compound Resource. As shown, the Embedded Resource can be registered with a 

Surrogate Resource Supplier, as indicated by the REGISTER monitoring command, independently 



 155 

of the Transferable Compound Resource. When the Transferable Compound Resource is finally 

returned to its original Pooled Resource Supplier, two RELEASE monitoring commands are 

produced, one each for the Transferable Compound Resource and the Embedded Resource.  

 

 

Figure 7-12: MSC for Consumer and Supplier. 

 

 

Figure 7-13: MSC Consumer and Compound Resource. 
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7.4.3.4 EoB Model Derivation Algorithm 

This section describes EoB model derivation. Unlike the general derivation approach for the state 

transition model, each EoB model requires application-specific signal and CEFSM role-based 

knowledge to determine which aspects of the software design specification should go into an EoB 

model. The EoB model derivation algorithm may be automated. However, at present, a systematic 

manual procedure is required to identify the required structural transaction signal constructs for the 

selected structural concern from the software design specification. Each signal indicates when a 

specific structural transaction has successfully completed. Structural transaction signals are stored in a 

ResOwn signal set.  

In addition, EoB entry and exit information identified in the software requirements is required to 

demarcate each EoB specification in the software design specification since, unlike the state evolution 

model derivation, the EoB model algorithm is applied to software design specification slices. Each 

specification slice contains a set of transitions, demarcated by a single EoB entry point, and a set of 

one or more EoB exit points, that will constitute the resultant EoB model. The algorithm itself 

systematically traverses an EoB model’s transitions-set using a depth-first approach. During a 

transition traversal, structural transactions input or output signals are identified and replaced with an 

appropriate structural transaction monitoring construct. Further, during traversal, any encountered 

insignificant constructs are pruned from the resulting EoB model. The resulting, self-contained EoB 

model is a roadmap containing all the required structural transaction monitoring constructs for the 

selected structural concern being monitored. A line-by-line description follows the algorithm. 

 

99. ALGORITHM: Derive-EoB-Specification 
100. INPUT: Design-Specification, CEFSM, State, Input, Exit-State-Set, ResOwn-Signal-Set 

101. OUTPUT: EoB-Specification 

102. FORALL ( Statei Є CEFSM ) DO: 

103.  IF ( Statei == Entry-State) THEN: 

104.   FORALL ( Inputj Є Statei ) DO: 

105.    IF ( Inputj == Entry-Input ) THEN: 

106.     EoB-Entry == Inputj; 

107.     Break; 

108.    ENDIF; 

109.   ENDFOR; 

110.  ENDIF; 

111. ENDFOR; 

112. COPY CEFSM to EoB-Specification and CREATE EoB Entry point; 

113. Transition := EoB-Entry; 

114. Transition-Stack := EMPTY; 

115. EoB-Complete := FALSE; 

116. WHILE ( EoB-Complete == FALSE ) DO: 
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117.  FORALL ( Constructj Є Transition ) DO: 

118.   IF ( Constructj Є Exit-State-Set ) THEN: 

119.    CREATE EoB exit point in EoB-Specification 

120.    IF ( TOP (Transition-Stack) != EMPTY ) THEN: 

121.     Transition := POP (Transition-Stack); 

122.    ELSEIF: 

123.     EoB-Complete:= TRUE; 

124.    ENDIF; 

125.   ELSEIF: 

126.    FORALL ( Inputk Є Current-State ) DO: /* transient state */ 

127.     If ( Inputk != Constructj+1 ) THEN: /* don’t push current transition */ 

128.      PUSH ( Inputk, Transition-Stack ); 

129.     ENDIF; 

130.    ENDFOR; 

131.   ENDIF; 

132.   ELSEIF ( Constructj == Task ) THEN: 

133.    PRUNE ( Constructj ); 

134.    JOIN-TRANSITION (Constructj-1, Constructj+1); 

135.   ELSEIF ( Constructj == Timer ) THEN: 

136.    PRUNE ( Constructj ); 

137.    JOIN-TRANSITION (Constructj-1, Constructj+1); 

138.   ELSEIF ( Constructj == Save ) THEN: 

139.    PRUNE ( Constructj ); 

140.   ELSEIF ( Constructj == Decision ) THEN: 

141.    FORALL ( NextTransitionn Є Decision ) DO: /* convert to transient state */ 

142.     If ( NextTransitionn != Constructj+1 ) THEN: /* don’t push current */ 

143.      PUSH ( NextTransitionn, Transition-Stack ); 

144.     ENDIF; 

145.    ENDFOR; 

146.    REPLACE ( Constructj, generateTransientState () ); 

147.   ELSEIF ( Constructj == Input ) THEN: 

148.    FORALL ( Signalk Є ResOwn-Signal-Set ) DO: 

149.     IF ( Signalk == GRANT-SIGNAL ) THEN: 

150.      REPLACE (Constructj, generateMonitorConstruct( ACQUIRE, j+k ); 

151.     ELSE 

152.      PRUNE ( Constructj ); 

153.     ENDIF; 

154.    ENDFOR; 

155.   ELSEIF ( Constructj == Output ) THEN: 

156.    FORALL ( Signalk Є ResOwn-Signal-Set ) DO: 

157.     IF (( Signalk == REQUEST-SIGNAL ) OR 

158.         ( Signalk == ACTIVATE-SIGNAL ) THEN 

159.      INSERT ( Constructj, NewState ); 

160.      REPLACE (Constructj, generateMonitorConstruct( ACQUIRE, j+k ); 

161.     ELSEIF (( Signalk == RETURN-SIGNAL ) OR 

162.             ( Signalk == DEACTIVATE-SIGNAL ) THEN 

163.      INSERT ( Constructj, NewState ); 

164.      REPLACE ( Constructj, generateMonitorConstruct( RELEASE, j+k ); 

165.     ELSEIF (( Signalk == START-SIGNAL ) THEN 

166.      INSERT ( Constructj, NewState ); 

167.      REPLACE ( Constructj, generateMonitorConstruct( REGISTER, j+k ); 

168.     ELSEIF (( Signalk == STOP-SIGNAL ) THEN 

169.      INSERT ( Constructj, NewState ); 

170.      REPLACE ( Constructj, generateMonitorConstruct( UNREGISTER, j+k ); 

171.     ELSEIF 

172.      PRUNE ( Constructj ); 
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173.     ENDIF; 

174.    ENDFOR; 

175.   ENDIF; 

176.  ENDFOR; 

177. ENDWHILE; 

178. FORALL ( Constructi Є EoB-Specification ) DO: 

179.  IF (( Constructj.Type == State ) AND ( Constructj+1.Type == State ) THEN 

180.   PRUNE ( Constructj ); 

181.   JOIN-TRANSITION ( Constructj-1, Constructj+1 ); 

182.  ENDIF; 

183. ENDFOR; 

184. RETURN ( EoB-Specification ); 

 

In lines 99-101, the inputs to the algorithm are the target’s CEFSM-based software design 

specification, the CEFSM-state-input construct combination for the current EoB entry point, the set of 

quiescent end states for the current set of EoB Exit points and the set of ResOwn structural 

transaction signals that have been manually identified for the selected structural resource ownership 

concern from the software design specification. Lines 102-111 deal with locating the EoB entry point 

in the corresponding CEFSM of the software design specification. Line 113 initializes the current 

transition to the EoB entry point. Line 114 initializes the transition stack to empty. Line 115 

initializes the EoB completion flag to false. Lines 116 to 132 deal with the handling of transient and 

quiescent states in the current transition. Line 118 loops until every transition from the EoB entry 

point to each of the EoB exit points has been traversed and processed. Line 117 creates a loop for all 

constructs in the current transition. In lines 118 to 124, if a quiescent end state is encountered, an EoB 

exit point is created at the end of the current transition in the EoB-Specification and the next 

transition to be traversed is popped from the Transition-Stack. If the stack is empty, the flag is set to 

indicate that the current EoB-specification is complete. In lines 125 to 131, if the current state is a 

transient state (i.e., not an EoB exit point), the first transition following the state construct is selected 

for traversal, and the remaining transitions emanating from the transient state are pushed onto the 

Transition-Stack for future exploration. Lines 132 to 139 deal with the pruning of insignificant 

constructs. Lines 132 to 134 prune Task constructs, lines 135 to 137 prune Timer constructs and lines 

129 to 139 prune Save constructs. Lines 140 to 146 deal with the Decision constructs. The first 

transition following a decision is selected for traversal, and the remaining transition(s) emanating 

from the decision are pushed onto the Transition-Stack for future exploration. In line 146, the 

decision construct is replaced with a newly generated transient state. Lines 147 to 154 deal with the 

Input constructs. In lines 147 to 150, if the input signal has been identified as a GRANT from the set 

of manually identified ResOwn signals, then the Input construct is replaced by a corresponding 
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ACQUIRE monitoring construct. In lines 151 to 154, the insignificant Input is pruned. Lines 155 to 

177 deal with the Output constructs. In lines 155 to 160, if the output signal has been identified as a 

REQUEST or ACTIVATE from the set of manually identified ResOwn signals, then a transient state 

is inserted into the transition and the Output construct is replaced by a corresponding ACQUIRE 

monitoring construct. In lines 161 to 164, if the output signal has been identified as a RETURN or 

DEACTIVE, then a transient state is inserted and the construct is replaced by a RELEASE 

monitoring construct. In lines 165 to 167, if the output signal has been identified as a START, then a 

transient state is inserted and the construct is replaced by a REGISTER monitoring construct. In 

lines 168 to 170, if the output signal has been identified as a STOP, then the construct is replaced by a 

UNREGISTER monitoring construct. In line 171 to 175, an insignificant Output is pruned. Lines 

178 to 183 deal with collecting superfluous transient states from transitions in the EoB model. In line 

184, the resultant EoB model is returned. 
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Chapter 8 

Evaluation 

“There is a theory which states that if ever anybody discovers exactly what the Universe is 
for and why it is here, it will instantly disappear and be replaced by something even more 

bizarre and inexplicable. There is another theory which states that this has already 
happened.” 

- D. Adams (1952-2001) 

8.1 Introduction 

This chapter presents an analytical evaluation of the research presented in this thesis. The first section 

will discuss the ResOwn ontology and the second section will discuss the greybox approach to 

concern-specific dynamic software structure monitoring. 

8.2 ResOwn 

Software systems change over time in response to reliability and security needs, advances in 

technology and changing end user requirements. According to [Kir04], a resource allocation and 

management scheme should be formally specified, monitorable, traceable, extensible and 

upgradeable. The ResOwn ontology presented in this thesis is all that and more. 

8.2.1 Advantages 

• ResOwn integrates resource and ownership concepts into a single, unified model. The author is 

not aware of other ongoing research or published literature that uses an ontology to model 

application resource ownership structure. This makes ResOwn a novel contribution. 
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• ResOwn provides software monitoring and engineering with a new opportunity or way of 

thinking about resource allocation and management. ResOwn is specified using a well-defined 

vocabulary consisting of both resource and ownership concepts and properties that have been 

borrowed from other, existing domains (Section 4.3.2). There is a major advantage of ResOwn 

importing it’s existing terminology and concepts from both the legal and real property domains. 

These long established domains have an extremely rich and well understood set of ownership 

concepts that because of ResOwn, can now be used to support resource allocation and 

management in the software domain. For example: 

o ResOwn formally distinguishes between managing (or servicing) a resource as a 

nonbeneficiary owner versus actually benefiting from the use of a resource as a beneficiary 

owner (Section 4.2.2 and Section 4.2.3). This distinction is important from the design and 

implementation viewpoints when modeling both static and evolving software structure. 

ResOwn now provides the necessary vocabulary and concepts. 

o ResOwn incorporates the notion of single user capacity and multi user resource capacity 

(Section 4.6.1.1) as both a structural and legal, role-based, ownership concept. Only objects 

playing a beneficiary owner role are included when determining whether a resource’s 

structural ownership capacity has been exceeded. This approach provides a formally defined 

way to deal with evolving cardinality (i.e., multiplicity) restrictions that can be modeled and 

monitored at runtime. For example, consider a touch tone receiver (ttrx) card from the PBX 

(Section 2.10) with a specified user capacity of one (1) beneficiary owner: 

• If the ttrx card is owned by a phone handler, and also owned by a ttrx scanner, then the 

card has one beneficiary owner and one nonbeneficiary owner; the capacity is not 

violated, and 

• If the ttrx card is owned by two phone handlers at the same time, then the card has two 

beneficiary owners; the capacity is violated. 

• The use of ResOwn terminology, concepts and object properties has been applied successfully to 

at least one software system from the interactive session-oriented service domain - the control 

program of the PBX application (see Section 2.10 for PBX description). 

• A methodology (Section 5.2) has been devised and tested for creating a specialized ResOwn 

instance (Section 4.3.3) for a software product line and/or application instance from the baseline 
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ResOwn ontology (Section 4.3.3). This methodology was successfully applied to the PBX. 

o The author was able to define a ResOwn ontological class for every object class in the PBX 

using the current set of concepts and object properties provided by ResOwn (Section 5.2).  

o The author was then able to successfully create a specialized ResOwn instance (Section 5.2) 

for the PBX by inserting each of the new ontological classes, defined for the PBX, into the 

current baseline ResOwn class hierarchy. The resulting ResOwn instance was automatically 

shown to be consistent using a reasoner. 

o The author was able to automatically classify the specialized ResOwn instance (Section 5.3) 

using a reasoner and create an inferred ResOwn instance class hierarchy for the PBX. 

• The baseline ResOwn ontology, and any resulting specialized ResOwn instances created from the 

baseline, are formally defined using OWL-DL which provides a major advantage over visual 

UML-based models which lack formal semantics. 

• The modularity of ResOwn promotes reuse of its concern-specific, core subontology (Section 

4.3.1) with different, application-general support subontologies (Section 4.3.1). Since ResOwn 

models support and value partitions classes only as properties (Section 4.4), it is relatively easy 

and straightforward to identify where specific changes to the ResOwn core class definition are 

required, if a new support class or value partition is added or, if an entirely new application 

domain is to replace an existing one. 

• One advantage of ResOwn is that it deals with the implementation bias in ontology construction 

in a systematic and structured manner. Before creating ResOwn, the author reviewed literature on 

existing ontologies (general and OWL-based) [Cha99, Dar06, Hor04, Noy97, Rec04, Sta06]. A 

common theme was that, traditionally, ontologies are to be created with careful consideration so 

as not to introduce implementation bias into the taxonomy, classes or properties [Noy01]. 

o ResOwn’s modular construction logically compartmentalizes and separates concern-specific 

knowledge from application-general knowledge through implementation of the core and 

support subontologies (Section 4.1). Doing this helped to control the scope and the amount of 

implementation bias that inevitably needed to be introduced into the ontology to customize 

ResOwn for the interactive session-oriented service domain. 

o ResOwn’s creation and construction approach followed an iterative development procedure. 
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A concern-specific scope (i.e., structural resource ownership) was selected and any 

terminology listed. Over time, the list evolved. Terms not directly related to the scope were 

removed or revised. Sets of related concepts were collected into separate concept and 

property groups. Terms were added or revised based on new knowledge obtained from 

sources such as existing resource, scheduling, legal, real property and ownership ontologies, 

patterns for resource management and terminology and natural language definitions from 

legal and financial dictionaries. Any application-specific terms were separated out and placed 

into a separate list to limit the influence of implementation bias on core concepts. The next 

phase involved constructing the ontology itself in an iterative fashion. Separate top-level core 

class hierarchies (Section 4.2.2) were constructed and subclasses defined. At each iteration, 

the reasoner was used to test and debug the ontology by ensuring the class definitions were 

concerned and inferred class hierarchy correctly. In addition, the author constructed UML-

based models of the ontology to visually check the author’s interpretation and understanding 

of the ontological concepts and properties and ensure that, in fact, the ontology could be used 

in the software domain. Once the core ontology was reasonably mature, the author created the 

support subontology to add the required application-general concepts and properties to 

ResOwn. At each iteration, a conscious effort was made to ensure that implementation did 

not creep into the core subontology. 

• The extensibility of ResOwn allows resource ownership knowledge to be created, encoded, 

categorized and classified at multiple levels of abstraction (i.e., levels of specialization) within a 

single, unified model. Using specialization to create new, application-specific instances of 

ResOwn also promotes reuse across many different applications within a single domain. 

• For software product lines, it is possible to create a hierarchy of specialized ResOwn instances 

emanating from a single, baseline ResOwn ontology at the root. Beneath the root, the first tier in 

the hierarchy would contain a number of specialized ResOwn instances. Each first tier instance 

would be specialized with application-specific classes for a particular software product line from 

a family of products that belong to the selected interactive session-oriented service domain. On 

the second tier, each first tier instance would subsume one specialized ResOwn instance for every 

application instance in the product line. This approach has the advantage that only those 

ontological classes pertaining to a specific application need to be created to determine whether a 

new application adheres to the existing application structural resource ownership scheme.  
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8.2.2 Known Limitations 

• A limitation of ResOwn is that the ontology has not been exposed to the public domain so that it 

can be further evaluated by experts from both the knowledge representation domain as an 

ontology, and by experts from the software engineering domain as an ownership-based resource 

allocation and management schema. 

• ResOwn is currently limited to a single structural software concern: the resource ownership. 

There is a legitimate question as to whether the ResOwn approach to ontology modeling is 

adaptable to other software concerns such as data security or system adaptation. 

• ResOwn has only been tested and evaluated for the interactive session-oriented service domain 

using the PBX. ResOwn need to be tested on other applications. This imposes a number of 

limitations on the current version of ResOwn: 

o ResOwn needs to be tested and evaluated using other applications from the interactive 

session-oriented service domain to see if its applicability is general enough for applications 

across the interactive session-oriented service domain beyond telephony. 

o ResOwn needs to be tested and evaluated with other application domains to see if ResOwn’s 

structural approach to resource ownership is applicable to application domains other than 

interactive session-oriented services. 

• To be truly an ontology, ResOwn should be capable of supporting specializations of real 

application classes; that is, the existing ResOwn classes and properties must be capable of 

encoding all relevant knowledge necessary to represent the application-level knowledge of real-

world software systems for the selected application-domain. While the PBX provided a rich set of 

application-specific Resource, Consumer and Supplier subclasses, test cases are required to 

evaluate, identify and address the limitations of the current ResOwn implementation across a 

broader selection of applications. 

• The terminology and concepts from the legal and real property domains in ResOwn are mostly 

new to the software engineering domain, placing a limitation on ResOwn, at this time, as a 

resource ownership modeling and management standard for software. The question remains as to 

whether ResOwn will be understood and readily adopted for practical use in the software domain. 

To this end, more examples are needed to clearly demonstrate the meaning and applicability of 
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ResOwn’s legal- and real property-based concepts.  

• One of the limitations of the ResOwn construction process was the lack of empirical or formal 

methods or techniques to determine how much, if any, implementation bias had either crept into 

the core subontology, or was need in the support subontology for core class definitions. 

Determining how much, or how little, implementation bias is good for a concern-specific 

ontology such as ResOwn remains an open question. 

• A major limitation for adopting ResOwn in the software engineering domain is that most 

traditional software engineers are not familiar with the philosophy of ontology construction, 

OWL-DL, description logic, or tools such as Protégé-OWL and RacerPro. 

• Another related limitation, is that tools like Protégé-OWL lack the same rich, visual modeling 

experience provided by the current generation of UML-based modeling tools such as IBM’s 

Rational. However, it appears as though help is on the way. For example, UML profiles for OWL 

ontologies have emerged and may allow UML modeling tools to also facilitate ontological 

modeling. One possible solution is new tools that use a UML front-end for visual modeling, but 

keep the formal OWL-DL back-end for consistency checking and automatic classification 

purposes. 

8.3 Dynamic Software Structure Monitoring 

ResOwn implements application resource ownership as an individual structural software concern that 

can be monitored orthogonally from the operational software system’s functional behavior. The 

greybox approach to concern-specific dynamic software structure monitoring (Chapter 7) has 

advantages and known limitations. 

8.3.1 Advantages 

• Being concern-specific is a major advantage for the proposed monitoring approach. Today’s 

interactive session-oriented services are delivered by large and complex software systems. It is 

not possible to monitor everything. A greybox concern-specific approach offers a reasonable 

comprise. 

• Concern-specific monitoring provides an opportunity to create models of the evolving, concern-
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specific structure of operational software systems by fusing structural and behavioral knowledge 

into a concern-specific monitoring model. 

• In general, the concern-specific monitoring approach integrates nicely with autonomic systems 

that support concepts such as self-healing, self-adaptation and self-optimization. For example, a 

set of individual concern-specific monitors, each focused on a particular autonomic concept could 

be turned on or off at runtime, according to the dynamic monitoring requirements of the 

operational autonomic system. 

• The greybox aspect of the monitoring approach has several advantages and disadvantages over 

other blackbox and whitebox monitoring approaches as shown in Table 8-1.  

 

Blackbox Approaches Whitebox Approaches  Greybox Approach 

Runtime knowledge about evolving 

concern-specific structure enhances 

blackbox monitoring 

Runtime knowledge about evolving 

concern-specific structure including in 

whitebox monitoring 

Runtime knowledge about evolving structure 

focused on one, concern-specific aspect of the 

target software system  

Non-intrusive Highly intrusive  Some intrusion required 

Monitoring model derived using 

external behavioral knowledge 

Monitoring model derived from detailed, 

internal behavioral, structural and data 

flow knowledge 

Monitoring models derived using only that internal 

behavioral knowledge relevant to the concern-

specific structure to be monitored 

Tracks global specification state Shadows runtime implementation state 

Tracks state-dependent, evolving software structure 

for a selected software concern on a session-by-

session basis 

Detects behavioral failure and must 

infer internal runtime knowledge 

Detects behavioral and data errors and 

possesses detailed internal runtime 

knowledge 

Detects only context-sensitive, structural integrity 

errors. Internal runtime knowledge limited to select 

structural context 

Specification nondeterminism may lead 

to large space and time complexity 

Volume of monitored data to be 

transported and processed may lead to 

large error detection latencies 

Limited structural context reduces volume of 

monitored data to be transported and processed 

leading to reduced detection latency but limited 

monitoring focus may reduce error detection 

probability 

Limited error diagnosis and fault 

localization capability 

Enhanced error diagnosis and fault 

localization capability 

Not intended for detecting data and behavioral 

failures or errors 

Table 8-1: Comparison of monitoring approaches. 

• The greybox approach has an advantage over blackbox approaches because the greybox approach 

can detect structural errors and eliminates the specification nondeterminism encountered in 

blackbox models by embedding software sensors in the operational target implementation that 

maps monitoring constructs into the concern-specific model. 

• The greybox approach has an advantage over whitebox approaches because the greybox approach 

abstracts away unnecessary implementation details and focuses on an individual software concern 
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within the evolving structure of the operational target. This approach reduces or limits both the 

amount of required intrusion into the target and the volume of monitored data that must be 

collected, transported and processed by the monitor’s interpreter. 

• The monitoring application research ownership has benefits for detecting operational 

performance bottlenecks as well as implications for detecting performance degradation due to 

runtime phenomena such as software aging. 

• The monitoring approach is capable of detecting (and possibly localizing) resource ownership 

errors that a purely blackbox approach, which is dependent on externally observable knowledge, 

could not. For example, the orphaned power of attorney scenario (Section 5.4.5) is only 

detectable using the proposed approach for monitoring the evolving resource ownership structure 

of the PBX. Other examples of structural resource ownership errors are detailed in the other 

resource acquisition and ownership scenarios described in Section 5.4 of Chapter 5. 

8.3.2 Known Limitations 

• The current approach is limited to only manual placement of embedded software sensors in the 

instrumented target software system (Section 7.3.3). To be widely practical and on the same level 

of independence as autonomic software systems, an automated methodology or technique is 

necessity that would be capable of using the formal software specifications and the source code to 

automatically locate and then weave sensors into the appropriate location in the software source 

code. This is a nontrivial problem and would require the ability to locate features in source code. 

• A major limitation of the monitoring approach is that it does not have formal algorithms for 

resynchronizing the interpreter once an application resource ownership error is detected or an 

inconsistency in the dynamic knowledge base is found. These algorithms are nontrivial and would 

need to include how to deal with discrepancies such as missing, lost or extra monitoring 

commands. Presently, the greybox interpreter only reports warnings (Section 7.2.4). 

• The approach prunes away most of the SDL constructs when deriving the concern-specific model 

(Section 7.4.2 and Section 7.4.3.4). It is unclear whether the derivation approach used for 

application resource ownership monitoring would work with other software concerns such as data 

security or system adaptation. 



 168 

Chapter 9 

Conclusions 

“The sooner you get behind in your work, the more time you have to catch up.” 

- Anonymous 

9.1 Introduction 

This chapter contains conclusions drawn from the research work described in this thesis, followed by 

a summary of the novel research contribution of this thesis. The last section suggests some areas for 

possible future work. 

9.2 Conclusions 

This thesis introduced and presented ResOwn, a novel ontology for application resource ownership. 

ResOwn provides a vocabulary along with a set of concepts and properties for modeling the 

application resource ownership structure of operational software systems. ResOwn is OWL-DL-

based, role-based, modular, extensible and automatically classifiable by a reasoner. ResOwn models 

an application resource ownership structure scheme that is not hard-coded into the resource and 

owner model concepts, but instead built upon a dedicated concept of proof of ownership instruments. 

These instruments support a rich notion of resource ownership that allows different owners to play 

different ownership roles, each with different ownership rights, even with the same resource. This 

thesis also proposes a greybox approach for monitoring the state-dependent, evolving resource 

ownership structure in interactive session-oriented services. The monitor executes as a separate unit. 

A monitoring interface comprised of embedded software sensors is associated with the monitor, but 

woven into the target software system’s implementation according to a sensor plan. The monitor 
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interprets a concern-specific model that has been derived (i.e., abstracted) from the target’s formal 

specifications. During the derivation process, the model is extended with special monitoring 

constructs. Each monitoring construct in the model is associated with a specific monitoring command 

produced by a corresponding software sensor in the instrumented target. The top-level architecture of 

the monitor is comprised of a greybox interpreter and a tuple-based dynamic knowledge base. The 

greybox interpreter uses the dynamic knowledge base to maintain a representation of the operational 

target software system’s evolving software structure. The greybox interpreter receives monitoring 

commands while interpreting the concern-specific model and updates the contents of the dependent 

dynamic knowledge base to match the monitored portion of the target’s actual software structure. 

9.3 Research Contributions 

These are the major novel contributions that were presented in this thesis: 

• A reusable and extensible, concern-specific ontology called ResOwn provides enriched concepts 

of application resource ownership borrowed from real-world legal and ownership ontologies. 

ResOwn is defined in the Web Ontology Language Description Logic (OWL-DL), verified with a 

reasoner and tested using the PBX example. 

• A methodology to create an application-specific ResOwn instance that specializes the concern-

specific portion of the ResOwn ontology with application-level knowledge for a particular 

software system. 

• A dual-view, Session-Oriented Model of Computation (SOMOC) for interactive session-oriented 

services that relates observable, external service behavior to internal, evolving software structure. 

• A greybox, concern-specific dynamic software structure monitoring approach and architecture 

devised for tracking the evolving software structure of an operational software system. 

• A pair of algorithms for deriving the concern-specific monitoring model: 

o An algorithm for deriving a state evolution model from the target’s software requirements 

specification. The state evolution model allows the greybox interpreter to track the 

specification state (i.e., macro-steps in the evolving structure) of the operational target. 

o An algorithm for deriving a set of epoch of behavior (EoB) models from certain slices of the 
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target’s software design specification. Each EoB model contains the monitoring constructs 

that allow the greybox interpreter to track certain concern-specific structural transactions 

(i.e., micro-steps in the evolving structure) as they are reported by the instrumented target. 

9.4 Future Work 

Some key areas of future work for the ResOwn ontology can be investigated along two related 

dimensions. In the first dimension, ResOwn needs to be evaluated with other interactive session-

oriented service applications. In the second dimension, the modular approach of separating ResOwn 

into a core and a support subontology needs to be evaluated with other software concerns. 

Another key area of future work pertains to the formalization of algorithms for both structural error 

detection and monitor resynchronization in the presence of detected errors. Once this important future 

work is completed, a implementation of a prototype monitor could be constructed, and a practical 

evaluation of the monitoring approach conducted. A prototype monitor could also facilitate the 

collection and study of empirical data on type and frequency of software structure errors. 

SDL is a very rich specification language, and presently, the approach presented only dealt with 

SDL-based requirements and design specifications. Although SDL is expressive enough to allow for 

the specification of quite complex systems, another area of future work might pertain to further 

extending the approach to other CEFSM-based specification languages, including UML Statecharts. 

The monitoring approach has been intentionally constrained to consider only application resource 

ownership in interactive session-oriented services whose real-time software systems have been 

specified in SDL. An opportunity exists to extend the research of this thesis by widening the scope to 

other individual software concerns such as data security, intrusion detection, and adaptive systems. 

Another potential area of future work is to investigate the formal specification of a standard 

greybox monitoring interface for software components. This idea is similar to the notion of a built-in 

component testing interface already proposed in other related work that is designed into the 

component during development and can be used both during testing and software maintenance. 

Another important area of future work involves extending behavioral monitoring in a modular 

fashion to incorporate dynamic software structure monitoring. In this hybrid approach, the software 

structure monitor would maintain a dynamic knowledge base of the evolving concern-specific 
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structure of the operational target. The behavioral monitor queries the software structure monitor’s 

knowledge base whenever the behavior monitor needs to verify some concern-specific knowledge. 

For example, in the case of resource ownership, when the behavioral monitor detects that a particular 

event handler has received data from a particular resource, the behavioral monitor would query the 

dynamic resource ownership knowledge base and check if the event handler has the correct and 

necessary ownership rights to receive the resource’s benefit.  

One last area of related research that was not considered in this thesis is the effects of dynamic load 

on the integrity of the concern-specific evolving structure in general, and on the evolving resource 

ownership structure of the operational software system in particular. Investigation of the impacts of 

high offered loads on resource ownership structure could be valuable in a number of interesting ways. 

For example, there is the notion of concern-specific failure creep, in which the level of resource 

ownership structure errors continues to build at higher loads until a failure or service outage occurs. 

Failure creep, as it pertains to the corruption of the application resource ownership structure, may 

result from the long-term exposure of a soft, real-time software system to heavy loads. It would be 

useful to have a method to document and categorize different types of resource ownership errors and 

their likelihood of causing a failure. Another aspect to investigate is the rate of decline in service 

quality as a function of the evolving resource ownership structure consistency at high loads. 
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Appendix A 

Protégé-Owl and RacerPro 

Screenshots 

 

Figure A-1: Protégé-Owl classes view screenshot. 
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Figure A-2: Protégé-Owl properties view screenshot. 

 

Figure A-3: Protégé-Owl OWL Viz view screenshot. 
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Figure A-4: RacerPro Reasoner console screenshot. 

 

Figure A-5: RacerPro reasoner log screenshot. 
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Appendix B 

Instrumentation Examples 

 

Figure B-1: State-oriented structure: (i) original code; (ii) instrumented code. 

 

Figure B-2: Input-oriented structure: (i) original code; (ii) instrumented code. 
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Appendix C 

ResOwn Class Hierarchy 

The full asserted and inferred class hierarchies for the ResOwn ontology are shown in Error! 

Reference source not found. and Error! Reference source not found., respectively. The purpose of 

the diagrams is to give the reader a feel for the size, complexity, and scope of the asserted and 

inferred class hierarchies. Class shown in Yellow are named or primitive OWL classes. Classes shown 

in Orange are defined OWL classes. Classes shown with a Blue outline are specified using multiple 

inheritance; that is, those classes from the asserted class hierarchy that have been automatically 

classified and are subsumed by more than one Superclass in the inferred class hierarchy. 

Unfortunately, due to the size of the two class hierarchy diagrams, and the margin limits imposed on 

the page, it is recognized that many of the labels in the two class hierarchies are difficult to read. That 

is why these diagrams are in the appendix and smaller, more readable portions or entire sections of 

the two class hierarchies are presented, where relevant, in the main body of this thesis. 
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Figure C-1: The ResOwn ontology’s asserted class hierarchy. 
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Figure C-2: The ResOwn ontology’s inferred class hierarchy. 
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Appendix D 

Phone Handler Example 

The first part of this appendix shows an original SDL requirements specification excerpt for the 

Phone Handler from the example PBX described in Section 2.10, followed by the transformed Phone 

Handler excerpt shown as a sample excerpt of the entire state evolution model. 

The second part of this appendix shows an original SDL design specification excerpt for the Phone 

Handler from the example PBX described in Section 2.10, followed a number of corresponding EoB 

models derived from the excerpt representing just a sample of the entire EoB Library. 

The derivation algorithms are described in detail in Chapter 7. 
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Figure D-1: SDL requirements excerpt of Phone Handler. 
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Figure D-2: Sample excerpt from state evolution model for phone handler. 
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Figure D-3: SDL design excerpt for phone handler. 
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Figure D-4: Sample excepts from EoB library for phone handler. 
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