An Ontology-Based Approach to
Concern-Specific Dynamic
Softwar e Structure Monitoring

by

Barry Robert Pekilis

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Electrical and Computer Engineering

Weaterloo, Ontario, Canada, 2006

©Barry Robert Pekilis, 2006

| hereby declarethat | am the sole author of thisthesis. Thisis atrue copy of my thesis, including any

required final revisions, as accepted by my examiners.

| understand that my thesis may be made electronically available to the public.

Abstract

Software reliability has not kept pace with computing hardware. Despite the use reiability
improvement techniques and methods, faults remain that lead to software errors and failures. Runtime
monitoring can improve software reliability by detecting certain errors before failures occur.
Monitoring is also useful for online and electronic services, where resource management directly
impacts reliability and quality. For example, resource ownership errors can accumulate over time
(eg., as resource leaks) and result in software aging. Early detection of errors allows more time for
corrective action before failures or service outages occur. In addition, the ability to monitor individual
software concerns, such as application resource ownership structure, can help support autonomic
computing for self-healing, self-adapting and self-optimizing software.

This thesis introduces ResOwn - an application resource ownership ontology for interactive
session-oriented services. ResOwn provides software monitoring with enriched concepts of
application resource ownership borrowed from real-world legal and ownership ontologies. ResOwn is
formally defined in OWL-DL (Web Ontology Language Description Logic), verified using an off-
the-shelf reasoner, and tested using the call processing software for a small private branch exchange
(PBX). The ResOwn Prime Directive states that every object in an operational software system is a
resource, an owner, or both simultaneously. Resources produce benefits. Beneficiary owners may
receive resource benefits. Nonbeneficiary owners may only manage resources. This approach
distinguishes resource ownership use from management and supports the ability to detect when a
resource’ s role-based runtime capacity has been exceeded.

This thesis also presents a greybox approach to concern-specific, dynamic software structure
monitoring including a monitor architecture, greybox interpreter, and algorithms for deriving
monitoring model from a monitored target’s formal specifications. The target’s requirements and
design are assumed to be specified in SDL, a formalism based on communicating extended finite state
machines. Greybox abstraction, applicable to both behavior and structure, provides direction on what
parts, and how much of the target to instrument and what types of resource errors to detect.

The approach was manually evaluated using a number of resource alocation and ownership
scenarios. These scenarios were obtained by collecting actual call traces from an instrumented PBX.
The results of an analytical evaluation of ResOwn and the monitoring approach are presented in a
discussion of key advantages and known limitations. Conclusions and recommended future work are
discussed at the end of the thesis.

Acknowledgements

First and foremost, | would like to thank my two co-supervisors, Professor K. Czarnecki and
Professor R.E. Seviora, for their support and guidance during the writing and defense of this Ph.D.
thesis. | would also like to thank my Ph.D. examination committee, Professor J.H. Weber-Jahnke,
Professor K. Kontogiannis, Professor P. Dasiewicz, Professor JM. Atlee and Professor P. Ward,

whaose comments and advice helped to improve the quality of this thesis.

I must also express my deep gratitude to Karl Trygve Kalleberg, Sean Lau and Vlad Ciubotariu for
their useful discussions, encouragement and thought provoking comments during the final stages of
my research and thesis. | would also like to acknowledge the colleagues | have had the pleasure of
knowing over the years from the Software Engineering Group, the Bell Canada Software Reliability
Lab, the Generative Software Development Lab and the Waterloo Formal Methods group. In
addition, | would like to thank Audrey Heutzenroeder for the formidable task of proofreading the

contents of thisthesis.

As every graduate student knows, it is the Graduate Secretary that really runs the program. | would
like to express a sincere thank you to Wendy Boles, Graduate Studies Coordinator, Department of
Electrical and Computer Engineering for her valuable assistance in ensuring that all my paperwork

was always done correctly and on time.

While living in Waterloo, | have been fortunate to make new friends who helped keep me going
through the peaks and the valleys that inevitably occur during any Ph.D. In no particular order, | wish
to thank my friends: Eric, Shawn, Alana, Rob, Cathie, Janelle, Peter, Ethan, Saul, Jason, Sunita, Julia,
Kristing, Christine, Mark, Pete, Julie, Chris, Jen, Audrey, Phil, Fernando, Paul, Sanjay, Katherine,

Robert, Larry, Heather, Lambrini and Angela. Y ou know who you are and why your nameis here.

I would like to extend a very special thank you to Teresa Huegle, co-owner of Angi€'s Kitchenin
Waterloo, for the years of weekend breakfasts and for willingly becoming my “adopted mom” who
made sure, repeatedly, that | did in fact finished this PhD degree successfully.

Lastly, and most importantly, | acknowledge that it is impossible for me to express in words alone
the full extent of my appreciation and gratitude owed to my family for their unconditional love and

support, and their many willing sacrifices made, so that | could successfully complete my Ph.D.

Dedication

For my mother Shirley, my sister Deborah,
my daughter Megan and my son Brandon.
Thank you for always being there.
Thisthesisis for you.

Table of Contents

N 01 1 = o S iii
ACKNOWIEAGEIMENTS ...ttt ettt ettt b e b e s bt e b e e sae e e b e e s beesaneebeesnnennneen iv
=0 (o= 1 o] o 1RSSR v
TADIE OF COMEENES ...ttt sttt ae et s b e st e e e nbe e sae e e b e e nbeennneeneennes Vi
LISE OF FIQUIES ...ttt ettt ettt et et e st et e e sbe e snn e e nneennneennean XVi
LISt OF T@AIES ...ttt b et e st sae e ab e e e e ennean Xix
Chapter 1 INErOQUCTION.......eeeieeie ittt st e st b e se et e e b e e s seesnneeseenneenanean 1
0 Y o 1Y 1] o TSP U PP OPRSTRR 1
1.2 Software Failure, Error, and FAUITovvviiiiiiiiiiiiiiiieiieieiieieeeeeseeevessssesssssssssssssssssssssssssssssrsren 2
1.2.1 SOtWAIE AGING .. eeeiueeetie ittt ettt ettt sttt e sae et be e s st e et e e s bt e sae e et e e nbeesaneenneenneenaes 2

1.3 RUNEIME MONITONNGveetieiitietie sttt ettt sttt e e s e s e e e b e e sae e et e e nbe e s nneenneenneas 2
1.4 Interactive SesSioN-OrieMEd SENVICES.......ccuiiiiiiierie ettt snnas 3
1.4.1 Why Session-Oriented SEIVICES?........ooiiiiieiieieiesie ettt se e sn e 3
1.4.2 Why RESOUIrCE OWNEISNIP?eeiiieiiiiiie ettt sttt 4

1.5 SOFtWAIE CONCEITIS. ...t eieietie sttt ettt ettt sttt et e e s e e bt et e s ae e et e e b e e e sneeteesbeeenneenneenneas 4
1.5.1 Concern-Specific EVOIVING SITUCLUIE...........oiviiiieiie et 4
oo o< TSP P PP PPPP PR 6
1.6.1Why APPlICALION-LEVEI? ...ttt 8
1.6.2 Application Domain CONSIAENEA..........ccueeiiiiiieiieiee e 8
1.6.3 Individual Software Concern CONSIAENEd..........cceeiiiiieiiieiie e 8
1.6.4 SPECIaliZING RESOWN ...ttt ettt et st et b e nnes 9

@ o= ol L= TSP U PR OPR TS 9
1.8 COMITDULIONS.......ee ettt ettt e bt e e bt et e e b e e e ae e et e e beeeneennneenneas 9
1.9 TNESIS OrQaNIZALTIONeeveeieeeeie ettt st e b e s s e san e et e e ae e sareeneesneennes 10
Chapter 2 Background and ReEl@Ed WOIKccoiieiiiiiieieneeeee et 12
P20 1 1 oo 81 o o RSP URRUPTPROPRPIN 12

Vi

2.2 DEFINITIONS 8N0 CONCEPLSeeeeieiieiieeiee sttt ettt ss e e sae e b e e sseesaeesnbeesseesnreenneans 12

2.2.1 Resource and RESOUrCE ManagemMENT........cc.ueieerieenieeiee ettt neas 12
2.2.2 OWNEISHIP. .ttt ettt r e b ne s 13
2.2.3 R0OIES AN ROIE CONMEXES ...ttt 14
2.3 SOfWAIr€ MOUEIING ...ttt st et b e sae e san e e b e e nneesaneen 15
2.3.10Nt0l0gICal MOTEIING ...ccuvveieiiieeiee et 15
2.3 1.1 SEMANIC WED ...ttt an e e e 17
2.3.1.2 Ontology for Software ENGINEENNGoovverieiiiiieesee e 17
2.4 The Web Ontology Language (OWL)coceiieiiieeriie ittt sttt 18
2.4.1 OWL Ontology MOdeling TOOIS.cc.ueiiuieriiiiieeiiesiee et 20
2.5 OWL-DL ONEOIOQIESceuteerieeeiiestee sttt esiee sttt esteeste e sttt esseessseeseesaeesaseebeesaeesaseenseesneesnneans 21
2.5.1 Components of OWL-DL ONtOlOQIES.......ccuueiuiiiieiieiieeieesee st 21
2.5. 1.1 OWETRING .ttt ettt e st et b et et e e sbeesnn e e b e e nneenaes 23
2.5.1.2 Named or PrimitivVe ClaSSES........ccceiiiriieiieiie sttt ettt 23
2.5. 1.3 SUDCIGSSESceeiieiiti ettt sttt ettt et h et e e ne e enr e ne e ne e 23
2.5. 1.4 DI OINT ClBSS.....ueiiueiiiieiieieite ettt ettt e ettt e e b e et e e neesnneenseesneennns 24
2.5.2 OWL PrOPETIESeeeieieiee sttt sttt sttt sttt e ettt esae e snb e e b e e sneennbeeneas 24
2.5.3 1NVErSEPrOPEITIES (1) .ouveeureesieeiii ettt et b e nneas 25
2.5.4 OWL Property CharaCleriStiCS.uuuiriiiiiieiie sttt 26
2.5.5 Property Domain @nd RANGEScc.eeiiiiiieiie ettt ne s 28
2.5.6 Describing and Defining CIassEScoiviiiieiieriieiie et 29
2.5.7 EXIStential RESIICLIONS.coviiiieiie ittt nneas 29
2.5.8 ReaSONES AN RACER ..ot nnee s 29
2.5.9 Necessary and Sufficient CONAITIONSccuorueiiienie e 30
2.5.10 AUtOmMaLiC ClaSSITICALIONc.veeiieeriiiiie ettt neas 31
2512 UNIVErSal RESIIICIIONS ...ttt sttt sttt be e e snneeneas 32
2.5.12 Open WOrId REASONINGcoivieiieiiieiieesiee sttt sttt e et sneesse e seesne e s e snnas 32
2.5.13 ClOSUIE AXIONISeeeueieiie st ete ettt ettt sie sttt se et be e s ae e ssn e e bt e sanesan e e b e e sbeenaneenneas 32
2.5.14 Extending OWL-DL with Value Partitions............cccoceeriiiieniiiieesiesee e 33
2.5.15 COVENNG AXIOITIS ...cutiitiiiieeeteesteesiee et et siee st sbe e s e e eseeesbe e s e e anseesbeesaseanseenbeesnnesnneenneas 33
2.5.16 Cardinality RESIIICHIONS........civiiiieiiieeie ettt enns 34
2.5.17 hasValue RESITICHIONS........ccuviiiieiee ittt ettt snneeneas 35

Vii

2.6 Metamodeling WIth UMLc.ooiiiiiiiiei ettt ne e 35

208 L UML ..ttt h ettt b et et e b e e nnnennneenen 37
2.7 SDL . bbbt R e e he e bt e b e e e e e e be e neenneenaneen 38
2.8 RUNEIME M ONITOTTNG ..euveeteeeite ettt sttt sttt ettt e s ae e s s e e b e e s se e st e e nbeesnnennneen 39

2.8.1What is RUNIME MONITOING?ccveeiiiiiiieitie ettt sn e e 39

282 RTIM Ty . ettt ettt ettt ettt e bt e sttt sab e e e ne e e sabe e e sab e e e anr e e s be e e smbeeeanreeeneeas 40

2.8.3 Date StrUCtUre MONITONTNG. ... eeiuvieieeiiee et ettt b e snreeneas 42

2.8.4 MOdel-Based MONITOINGooveeueeiiieiieesiee sttt sne s e e sneenreesnnas 43

2.8.5 Other Related MONitOring WOrKccouiiiieiiiiieee e 45
2.9 Interactive Session Oriented ServiCE DOMAINcocviiiiiriieie et 46

2.9.1 Real-Time SOftWare SYSLEIMS......cccueiiiiiiieiie sttt en e 46

2.9.2 RTSSWith SOft DEAAIINES......cceiiiieiiieieeee e 47

2.9 3 INEEIACHIVITY ..ttt ettt b et et e e b et e ebe e se e e nreenreeneas 47

2.9.4 SESSION-ONTEMALIONeeeueieiiee ettt e et b e e e et e e seesnneebeenneas 47

2.9.5 Discrete EVent-Driven SOftWEI€..........oouiiiieiiiiieeiie ettt 47

2.9.6 SEMI-SLALIONANY SYSLEITIS....cueiiiieitee it ettt ettt e e ss e b e sae et e e seesnresnreenneas 48

2.9.7 NONFCIITICAITY ..ttt e bt e san e ns e e be e s e e snneenneas 48
210 TREPBX ...ttt ettt ettt h et b e h e bt b e e he e e bt e b e e e e enbe e te e neennnean 49

ChEPEEr 3 OVEIVIEI ...ttt ettt et e bt e s ae et e e bt e sae e et e e beesan e e e e e neennes 52
00 1110 o 11 o o PSP PPPURTPROPRPIN 52
3.2 Dynamic Software Structure MONITOMNGueeveerieerreeieesee sttt sie e seeens 52

Chapter 4 The RESOWN ONEOIOQYc.vveeurieieerieeeiiesiie sttt e siee e st sse s e e ne e s e e sneenneesneeenes 56
v R 1o [0 [o] o TSP P TR PPR PR RTR 56

4.1.1 Suggestion for Reading ThiS Chaptercooueiieiieiieieee s 58

4.1.2 Chapter OrganiZaliONooveerueeiee st esiee et e st e ettt e saeesseesbeesseeenbeenseesnneanneenneenens 58
4.2 CONCEPLUAl OVEIVIEIW. ...ttt ettt ettt ettt e s e s b e et e neeebeesbeesnneenneeneas 59

4.2.1 The ResOWN Prime DirECLIVE.cceeiiiiiieieie ettt 59

4.2.2 Top-Level Concepts and Properties.........eoieiiieeiierie et 60

4.2.3 RESOUICES BENEFITS.....couiiieiiiiesiie ettt n e 62

4.2.4 Beneficiary and Nonbeneficiary OWner ROIEScooviiiiiiiiiiiieieere e 63

viii

4.2.5 Direct and Indirect Proof Of OWNErSNIPccueiiiiiiiiiie e 64

4.3 TAXONOMY OVENVIEWuveiiiiiiiieiie st eteesiee st e et sbeesite et e sbeesaeeabeesae e saeeebeesseeaabeenseesnneenneenneas 64
4.3.1 Traversing the RESOWN taXONOIMYcoiuiiiuiiiieeiee sttt ss e sr e sseesieesne e 65
4.3.2TOP-LEVE Class OrigiNS........cueuiieiieiiieieesiee ettt sas e b sne e 66
4.3.3 Basdline and Specialized ResOwn Class Hierarchies............cccovviviiiicnic e 66
4.3.4 RESOWN COMPIELENESS. ... ittt sttt be e sreeennas 67
4.3.5 Sdf-Contained and Distributed Subclass Hierarchies.............covvviieiiiiieenic e 67

T 00 T= 1= OO PR R TP PR PP 68
4.4.1 ReSOWN Property EXTENSIONScceeiiiiiieiie ettt 69
4.4.2 RESOWN PropeErty TYPES. . .cei ettt ettt s ne e s nnn e neas 69

4.4.2.1 Asserted Property ChaiNiNgcooeeieeeeeiie et eneens 71

4.5 ResOwn Core, Support, and Value ClaSSES..........eviiiieiiiee e esiee st see e sree e stee e snaeeennees 72

4.6 Proof of OWNErShip INSITUMENES.coiviiiieiieieiesiee sttt 73
A.6. 1 INSITUMENE ClBSS.....eeiueieiiiieiiee et e see st e e e e s e e s teestee e s teeessaeesnsaeessteeesneeesnseeesnseeensees 73

4.6.1.1 INSrUMENT CAPACITY......veeeieiirieiee sttt ettt sttt sbe e e te e s e e enneenreens 74
4.6.1.2 INSITUMENT PEISISIENCY ...ttt n e sne e ne e enneens 75

4.7 Defined INSITUMENE ClaSSES......eoiviieiieeeiiee ettt e st e et e ettt e s e e ssteeessaeestae e snteeensaeesnsaeesnsaeennnens 75
4.7.1 BaseiNSIrUMENTE ClBSS.......ueiiiieeiiiie e see et ee st e et e e e e e e e tae e snteeesnaeesnseeesnneeeneeas 75
4.7.2 EXIENtINSITUMENT ClBSS......ceiiuieeiieee e esee st see et e tee e e et e e e nae e stee e snaeeenaeesnseeennnees 76
4.7.3 Transferabl el NStrUMENt ClaSS........cciueiiiiee et e e e sneeas 76
4.7.4 NontransferablelNSrUMENt ClaSS........coiciveiiee e 77
4.7.5 ClosedINSIrUMENE ClIESS......cciuieeiiiie e esiee et e see e ste et e e se e e sseeeee e e snteeessaeesnteeesnreeennneas 77
4.7.6 OpENINSITUMENT ClBSS.....c.ueiiiiiiieiiie ettt e et ne e nne e e e 77
4.7.7 LifeLongINSIrUMENT ClaSS........ciiuieiiieiiieiee ittt 77
4.7.8 LifeLimitedINStrUmMENt ClaSS........ceeiiiiiiieeiie e ciee ettt e e et e et e e e snaeeenae e sreeennneas 77

4.8 Named INSErUMENT CIaSSESueiiiiieiieeeiiee st esee sttt e eee e st e e ssteeetaeesbeeesnteeessaeeanseeesnsaeennnens 77
A.8. 1 TItlEdEEA CIBSS.......coeieiieiiei ittt e bttt e se e enn e e ne e neenees 78

4.8.1.1 EmbeddedTitledead SUDCIESS...........cooeiiiiiii i 78
4.8.1.2 NontransferableTitledeed SUDCIASS..........cccoveiiiiiiiii e 79
4.8.1.3 TransferableTitledead SUDCIESS..........c.coiiiiiiiiice e 79
4.8.1.3.1 NonreusableTransferableTitledeed SUDCIBSS...........ccceviiiiienicnieeee e 79
4.8.1.3.2 ReusableTransferableTitledeed SUBCIaSS...........cooveviieiiiiiiic e 79

8.2 LICENSE ClBSS... . e ee ettt ettt et ettt e e e et e e e et et e e e e e et e e e e ea e e e eeeeeeeenaaaeeeaeeeenennaan 79

4.8.2.1 SerialLiCenSe SUDCIASScoeivieeiiiee ittt et e et e e rae e saee e 80
4.8.2.2 ConcurrentLicense SUBCIASSc.uveiieiiiiee et 80
A.8.3 PIOXY ClSS....uuiiuiiiiieiie sttt ettt ettt ettt he e ab e bt he e bt e e b ne e 80
4.8.4 POWErOFATIOINEY ClBSS......cciuiiiiieitie ittt sttt st b e n e 81
4.8.5 PermitTOHOIA ClaSS.....ccccuiiiiiieiiiee et steesree et ste e e ee e e e ssae e erae e snte e esnaeesteeesnreeennneas 81
4.9 APPlICATON RESOUICESveiiiiietee ittt ettt ettt e bt e e st e e naeesnneenneeneas 82
G I B == o U o O =1 TR 82
4.9.1.1 RESOUICE CBPACITY ... veeuveeeeerieieieesiee st eieesiee sttt e s esieeebeesbeessneeseesbeesaneeneenneesanean 82
4.9.1.2 RESOUICE PEISISLENCYeeveeiitiitiesiee sttt sttt sttt st be e e s snnennneen 83
4.10 DEfiNEd RESOUICE ClaSSESeeiieieiieeeeiiee ettt e see e st e s stteestee e ssteeesaeeste e e snteeennaeesnsaeesnsenennnens 84
4.10.1 Transferabl ERESOUICE ClaSS........uieiiieeiiee e cee e e et e e e e e e s e e sraeesrae e snreeennnes 84
4.10.2 Nontransferabl eRESOUICE ClaSS........ccicuiriiiieiiie et eennee s 84
4.10.3 Embedded RESOUICE CIaSS.......ccvieiieeeiiee et e cee et e et e e ee e snve e e snae e e snaeesnee s 85
4.10.4 ClOSEURESOUICE ClaSSeeeiureeeieieeteeesteeesteesteeesteestee e s e e essaeesteeesstesssaeesnreeesneeessees 86
4.10.5 OPENRESOUICE ClBSS........ueiiieieiiesiie sttt sttt ettt ettt be e et e e sbeesineene e e e 86
4.10.6 NonconsumablERESOUICE ClaSS........cciiieeiiiee e cee s e e snre e saee s 86
4.10.7 ConsUMADIERESOUICE ClaSS........vieiieeeiieeeiieeesieeesteeestte e s ee e steeenseeesteeesaseeenseeesreeenneeas 86
4.10.8 External GatewayRESOUICE ClaSScccuieiiieiieiiiesiee sttt 86
4.10.9 INtErNAlRESOUICE ClaSSES.......eiiiueieiieeestee et eeee e se e estee e st e e sste e e rae e steeessaeesseeesnteeenneeas 87
4.10.10 ComMPOUNARESOUICE ClBSS.......ceiueiiiieiiiesite ettt sttt 87
4.10.10.1 CompoundResource Class asa Supplier Class.........cccocveveerienienieenee e 87
4.10.11 DispatchableConsumer (Inferred Resource) Class...........covevieeeieeneenieeniee e 87
4.11 AppPlication RESOUICE OWNEIS.ciiiieiieiiie ettt sttt tee st sbe e sie et e e s e sneennneeneas 88
4.11.1 Owner, OwnerRole and OWNErBase ClaSSES.........cevvevviviiiiieieeiiiiiieeeeeeeeeeeeeeeeeeeeeeeseeseeeees 88
4.12 Defined OWNErBase ClaSSES.......uuiiiiiiiiiieiieeesee e steeeste e s ee st e e ssae e s stae e steeessaeeensaeesnaeennnes 89
4.12.1 PasSiVE BASE ClaSSccccuieiiieiiiie et see e st e s tee st e stte e s e e e ssteaennaeesntaeesnseeennaeesnseeennnens 20
4.12.2 ACHIVE BASE ClBSS......ceiicieie e eee st s et te e s e e e e et e e snte e e snaeesbe e e snbe e e nnaeennrees 20
4.13 Defined OWNErROIE ClIaSSES.uviiiiieiieee e sttee st see e ste e e sate e st eeste e e snaeesseeesnbeeenraneas 91
4.13.1 BenefiClaryOWNEN ClBSS........oiuieiuieiiiiieesiie sttt sttt b e ne e 91
4.13.1.1 CurrentOWNEr SUDCIASSccuvee et et e e 91
4.13.2 LicensedOWNEr SUDCIESS.......ccciuieiiieeiiee e seesee st e ste e e e te e se et e e snae e erae e snneeennnes 92

4.13.2.1 EXCluSIVEL icensSedOWNE SUDCIBSS...... ..ot eeeeeee e e e e e e e eeennnns 92

4.13.2.2 SharedLicensedOWNEr SUDCIBSS.........ooovieiieiiieiiesee st enee s 92
4.13.2.3 ProxiedOWNEr SUBCIESS........ccceeiiiiiieie e 93
4.13.3 NONDENEFICIary OWNEN ClaSS......ccuuiiiieiieriiereeeiiee sttt sb e sne e 93
4.13.3.1 ContaiNMENtOWNEr SUDCIBSSeiiiieiieiie ittt 93
4.13.3.2 PermanetOWNEr SUDCIASS.cccuiiiiiiieiie ettt nee s 9
4.13.3.3 DEFaUItOWNEr SUBCIBSS.........ooiieiiiiiieeiees et 94
4.13.3.4 SUITOgatEOWNES SUDCISS.......c.eieiiiiieeeiiesiee sttt sttt nne e 95
4.13.3.5 TemporaryOWNEr SUBCIASS.........cciiiiiiiiiie e 95
4.13.3.6 PreviouSOWNES SUDCIASS........cc.oiiiiiiiiiiesiee et 95
4.13.3.6.1 The Virtual Previous OWNEr SEACKcccveiiviriieiienieesiee e 95
4.14 Defined OWNEr SUDCIASSES.........ooiiiiiieiee e 96
4.14.1 ConSUMErOWNEN SUDCIBSS......c.ueiiiiiiiieiie sttt 96
4.14.1.1 Dedicated CONSUMES SUDCIASSccueeiiieiiiiiieieesee sttt 96
4.14.1.2 Dispatchabl eConsumer SUBCIESS.........cc.eeiiiiiiiiiei e 97
4.14.1.3 Classifying a DispatchableConsumer as a Nonconsumable Resource...................... 97
4.14.2 SUPPHEN SUDCIBSS......ccueiiiieiie ettt sttt 98
4.14.2.1 ACtIVESUPPIIEr SUDCIBSS ... oottt 98
4.14.2.2 PassiveSupplier SUDCIESS..........coiiiiiiiie e 98
4.14.2.3 CachedResourceSupplier SUDCIASS..........ccviiiiiiieiii e 98
4.14.2.4 ManagedResourceSupplier SUDCIESS.........ccoiiiiiienie e 99
4.14.2.5 PooledResourceSupplier SUBCIESS..........cooviiiiiiieii e 99
4.14.2.6 SurrogateResourceSUPPlier SUDCIBSSuiiiiiiieiei e 99
4.14.2.7 CompoundResource (Inferred Supplier) SUBCIass..........ccceiiiiiienicce e 99
4.14.3 DiSPaCher SUDCIESS.......c..eiiiiiiiecee e 99
4.15 OWnershipRIight ValUE ClaSSEScc.eiiiiiriieiiieeieesiee ettt 100
4.15.1 ACCESSRIGNTeeutieieeeteet ettt ettt n e b na e nan e b neennneen 100
4.15. 1.1 DBIGACCESS.....ccuveeueeiuteeteesseesiseaseesseesaeeabeesbeesateabeesbeesae e e bt e sbeesan e et e e nseesnneenneeneas 100
4.15.1.2 CONMIOIACCESScouveiiutietee sttt et ettt ettt s ettt s b e sie e et e e s be e san e e b e e sneesnneenneenneas 100
4.15.2 CONSUMPLION RIGNT ...ttt nnne e 100
4.15.3 EXCaNgERIGNTeiiiieiie ittt s 100
4.15.3. 1 HOIAINGRIGNE. ...ttt n e 100

Xi

4.15.3.2 TraNSFEIRIGNTceieieiieiee ettt sn e n e 101

4.15.3.3 RAEBSERIGNT ...ttt r e 101
4.15.4 DA gatioNRIGNTcoovieiieiie e nne e 101
4.15.4.1 ProxXYiNGRIGNTcouiiiiieie et n e 101
4.15.4.2 PermittiNgRIGNToiiiiiieiee et 102
4.15.4.3 LiCeNSINGRIGNTc.veiiiieiieciie ettt 102
4.15.4.4 ATOIrNEYINGRIGNT.....cueiiiieitie ittt r et 102
Chapter 5 ResOwn Instance Example and OWNership SCENArioSccvvveeiieeeiieesieeesieeeseee e 103
ST 10 (0o 81 o o O P TSP RSP RPR 103
5.2 An Asserted ResOWN INStance EXAMPIE.......cooiiiiiiieeie s 104
5.2. 1 ASSUIMPLIONS ...t eiteetee ettt ettt ettt et b e s st e e b e e sae e st e e b e e s aseenseesbeennneeseennnennnean 104
5.2.2 ResOwn Specialization MethodolOgyc.ceieeiiiiiieiiesierieesee e 104
5.3 A Specialized Inferred ResOwn Instance EXample.........cooovieiiiiiinieeneceeeeee e 107
5.3.1 ResOWN SPECIaliZation [SSUEScoiuiiiiiiiiesiee ettt 110
5.4 Resource Acquisition and OWNErship SCENANOS.coiuiriririieiie e 111
5.4.1 Monitoring Event-Driven SNapShOLS.cuviieeiiiiiieiiesec e 112
5.4.2 Transferable RESOUICE SCENAITO.c.uiiiuiereiiiiesiee ettt snneene e 113
5.4.2.1 SCENAITO SEIMANTICS. ...uveeueeririeieesiee et esiee et steesiee et sseessneebeesaeesareeseesnnesnneeeeas 113
5.4.2.2 EXamples Of SIrUCLUral EITOIS........coiviiiieiie ettt 114
5.4.3 Nontransferable RESOUICE SCENAIOueeiueiiiieriie it 115
5.4.3.1 SCENAITO SEIMANTICS. ...c.veeueeririeieesiee et esiee e st e st e sieesbeesseesse e beesse e saeeeseesnnesnneeneas 115
5.4.3.2 EXamples Of SIrUCLUral EITOIS........coiiiiiieiieiieesiie sttt 116
5.4.4 Embedded RESOUICE SCENAIOc..eeiiiiiieiieeieesiie sttt 117
5.4.4.1 SCENAITO SEIMANTICS. ...cuveeueerireeiiesieeeteesiee e sbeesieesiee bt e sseessseebeesaeesaseeseesnnesnneeneas 117
5.4.4.2 EXamples Of SITUCLUrAl EITOIS........coiviiiieiieiieesiee ettt 119
5.4.5 Surrogate Resource Supplier Registration SCENAOc.cuervveereereeeiieesee e eiee e 119
5.4.5.1 SCENAITO SEIMANTICS.veeueeritieiiesiee et esiee et sie e s e b sse e s e e nbe e saeesaeeeseesnnesnneeneas 120
5.4.5.1.1 Orphaned Power Of AttOrNey SCENAIOccoveeieeriieiiesie et 121
Chapter 6 Session-Oriented Model of COMPULBLIONeerverriieriirieeiiesee et 123
6.1 INEFOAUCTTION ...ttt ettt b ettt e e b e e s e et e e ae e ssnennneenneas 123

Xii

6.1.2 Behavioral PartitioNinNg..........cccoeeiuiriiienie ettt nnne e 124
6.1.3 What iS SeSSION-Ori@NaliON?..........ceiiuieiieirieiiese et eesneeeeens 124
6.1.4 SOMOC: Internal SErUCTUrAl VIBW........cooueiiiiiiiesiee ettt 124
6.1.5 SOMOC: External Behavioral VIEWcccoiiuiiiieiiiniiesie e 125
6.1.5.1 Service ProviSioning Path...........couoiiiiiiiiiiiie s 126
6.1.5.2 Service ANNUIMENT PaLNS.........c.ooiiiiiieie e 126
6.1.5.3 101€ SUPEISIALE.c.eeeiieeiiee ettt st 127
6.1.5.4 RESYNCHIrONIZATON........eiiiiiiieee e 127
6.1.6 Specification Refinement and Refinement Mappingcccoceereereenieenie e 127
6.1.7 Epoch Of BEhaVior MOTEIS.........coiiiiiieieeeeiee e 128
6.1.7.1 EOB ANBLOMYuueieiuiieeiiee et siee ettt e st ssr e sbe e e sabe e e snneesne e e smbeeeanneesanes 129

L I @ N = o= g AR = - 130
6.1.7.3 EOB EXAMPIE ...ttt e 130
6.1.7.4 IMpPlemMentation SEALESc.ceiiiieeiiieree et 131
Chapter 7 Concern-Specific Dynamic Software Structure MOonitor...........ccooceeeieeeiieeescieeeciee e, 132
48 R 1 g (oo 81 o o PSSP PR RPR 132
A I 0/=3 1Yo] (o PSR PRO PP RURRPR 133
7.2.1.1 Behavioral CONSIAEraliONS.ueiueriieiieseeeiee e sttt se et ss e sse e e eneeneees 134
7.2.2The GreybOX INMEENPIELENcuee ettt re e 134
7.2.2. 1 INTEPreter EXTENSIONS. ...c.ueiiiiiiiieitee sttt ettt sttt n et e sanas 135
7.2.3The PatterN MEBLCNELcoiuiiieee e ee e 136
7.24The Dynamic KNOWIEAQE BASEcccueeiuiiiiiiiiesiee ettt 137
7.2.4.1 DYNAMIC OPEIBLIONS.ccueiiirieiiesieeeteestee et st e sieesise st e e sseess s sbeesaeesareebeesnnesnneeneas 137
7.2.4.2Tuple Lifespan and PErSISIENCYcocviiiieiieiieeiie et 138
7.2.5 Behavioral versus Structural CoNSIAEralionS..........coverveerieriieeniesee e st sieesne e 139
7.3 Monitoring Commands and Monitoring CONSIIUCESeereerieiieeieesiee e 139
7.3. 1 Monitoring ComMMEANG TYPES.......ciuiiiieriie ettt ne e sne e neesaeesnneens 140
7.3.2MONItOrNG CONSIIUCE TYPES...ccuuiiiuiiiiieiiee st estee sttt e s b sne e neesnnesnneens 141
7.3.3 SENSON PlaIN ...ttt b ettt e et b e b b n e e 141
7.3.3.1 State- versus Input-Oriented Implementation SErUCTUre..........c.ccveveevieeneeneeeieeeee. 141

Xiii

7.4 Dexriving Interpretal @ MOTEIS.........oouiiiieiieee e 142

7.4.1 SIrUCEUral REAUCTION. ...ttt 143
7.4.1.1 Classifying CEFSMS and SIgnalS..........cccoiuiriiiiienie et 143
7.4.2 State EVOlULION MONITOMNGeouvieiiieiiieiie ettt ne e 144
7.4.2.1 State Evolution MOdel DEVEALION.........cceiiiiiieiie et 145
7.4.2.2 E0B Entry Point MONItOring SCENAIIO.ciivieiieiieeieesiee st 148
7.4.2.3 EOB EXxit Point MONItOriNg SCENAMNO.......cciviiieeiieriee st 149
7.4.3 Structural TransaCtion MONITOMNGcooveereiiiieiie et eeee s 149
7.4.3.1 Instance Monitoring Command TYPESccuervieiieiieeieerie st 150
7.4.3.1.1 Object and ASSOCIALION TUPIES........cervieiiieirieiee et 151
7.4.3.2 Structural Transaction Monitoring Command TYPES........cevverreerieriieeneesee e 151
7.4.3.2.1 ACQUIRE Monitoring Command and Construct TYPe.........ccceveerverieereerinens 152
7.4.3.2.2 RELEASE Monitoring command and Construct TYPe........coceereereeriieesennnens 152
7.4.3.2.3 REGISTER Monitoring Command and Construct TYPeccccceeveereeriveennenne 153
7.4.3.2.4 UNREGISTER Monitoring Command and Construct TYpe..........ccceveereernenns 153
7.4.3.3 Structural Transaction SIgNaliNg.......c.ceieerieriieiie e 154
7.4.3.4 EoB Model Derivation AIQOrithm...........ccoviiiiiiiiiie e 156
Chapter 8 EVAIUALIONc..eeitieiee ettt ettt ettt ettt e e sse et e et e e ssnesneenaneen 160
8L INEFOUUCTTION ...ttt ettt he et et e e bt e e e et e e neessnennneenneas 160
B2 RESOWIN. ...ttt sttt e b et s e e eh e e s Re e e e b e e R e e e s Re e nn b e e e neeeenee s 160
B2 L AUVANTAGES ...ttt ettt ettt ettt ettt b et e bt he e et et e e ae e b e e b e neenneennnean 160
8.2.2 KNOWN LIMITALIONS ...cuveeiieiieeiee sttt sttt sneennne e 164
8.3 Software SIructure MONITONINGcoiueeiiiiieesie ettt n e sanes 165
8.3, L AUVANTAGES ...ttt etttk ettt ettt e bttt b e h e e an et e an e b b e e e e b e nneennneen 165
8.3.2 KNOWN LIMITALIONS ...ttt sttt sttt nnne e 167
Chapter O CONCIUSIONS.eetiiiieeiieestie ettt ettt ettt et s bt e st e bt esbeesseeeateesbeesseeanteesbeesnnenaneens 168
0.1 INEFOTUCTTION ..ttt ettt b e st et e e b e e s e et e e neeesneenneenneas 168
0.2 CONCIUSIONS ...tttk b ettt b e ae et e e bt e e st e et e et e e s bt e et e et e e snn e et e enneenneas 168
9.3 RESEAICN CONITDULIONS ...ttt sttt eneas 169
04 FULUFE WOTK ...ttt ettt b et e et e e e et e e nneeneas 170

Xiv

Appendix A Protégé-Owl and Racer SCreenShOLS.ucviiieieiierie e 172

Appendix B INStrumentation EXamMPIES.coiiiiiiiiieiieeiesee et 175
Appendix C ReSOWN Class HIErarChycccooiiiiiiiieiie et 176
Appendix D Phone Handler EXamMPIEoooueiiiiiiieeeeeee e e 179
REFENEINCES. ..ottt b e a ettt e b e s ae e e bt e b e e e ae e e bt e be e nan e ne e b e s 184

XV

List of Figures

Figure 1-1: The concern-specific evolving SOftWare StrUCLUIE.eoiueerreiieeiie e 5
Figure 1-2: Organizational block diagram of greybox software structure monitor.coceeeveereene 7
Figure 2-1: Example architecture relevant for the verification [Jia05].........c.ccevveeneenieiiienienieeiens 15
Figure 2-2: Excerpt from host reSoUrceS ONtOlOgY.cccveeiveerieeiiesie sttt eee s 18
Figure 2-3: OWL in the semantic web architecture [Dju0S].covvervieiieiienieeee e 19
Figure 2-4: Continuum of formal ways to express knowledge [USCOB].coceereereeriieenieenieenieens 19
Figure 2-5: The three sublanguages Of OWL...........oouiiiieiiiiiierie et ene e 20
Figure 2-6: Representation of individualS [HOIOA].cc.ooiiiiiieiieeeeeeee e 22
Figure 2-7: Representation of properties [HOrO4].coiiiiiiiiieie e 22
Figure 2-8: Representation of classes containing individuals [HOrO4].........cocoveeieinienieeneenie s 23
Figure 2-9: The meaning of subclass in OWL [HOFO4].ooieiieiieiieesee et 24
Figure 2-10: Different types of OWL ProPETi€S........c.eeieeiiirieeiie e esiee et ssee e sneens 25
Figure 2-11: Example of an inverse property [HOIOA].oooiioieiiiiieeee e 26
Figure 2-12: Example of afunctional property characteristic [HOrO4].cccovovvvieeieeiiieeiienieeiens 26
Figure 2-13: Example of an inverse functional property characteristic [HOrO4]..........cccoovvvieenieninenns 27
Figure 2-14: Example of a transitive property characteristic [HOrO4].........cooovvvviiieeneeiieenienieeiens 27
Figure 2-15: An example of a symmetrical property characteristic [HOrO4].cocoveevieiieeneeniienns 28
Figure 2-16: An example domain and range for a property and inverse property [Hor04]. 28
Figure 2-17: Schematic description of a Pizza [HOIO4].........cccooiiiiiiiiieie e 30
Figure 2-18: Description Of ChEESYPIZZA.ooouiiiiieiieiieeeeee e 31
Figure 2-19: Example of ClOSUIE @XiOM.c.eciuiiiiiiiieiiee ettt ne e snneen 33
Figure 2-20: Example ValUE PartitioN.c.coieiiiiiiieiie ittt ne e 34
Figure 2-21: Effects of a covering axiom: (i) uncovered; (ii) covered [HOrO4].cccovvveeiieenecnnnnns 35
Figure 2-22: A general, 4-layer modeling architecture inspired by MDAcccooieiieiiiiieenieniens 36
Figure 2-23: Support UML CONStrUCES [BEIGL].covuiiiiieiieiieeiie sttt 37
Figure 2-24: Subset of SUPPOrted SDL CONSIIUCES.coiuriiiiiiiiesiie ettt 39
Figure 2-25: Example configuration for runtime monitoring for real-time software system............... 41
Figure 2-26: Organizational block diagram of real-time SUPENVISION..........ccoverveeieenie e 43
Figure 2-27: A typical event-driven software code distribution [MemOB].ccccevveriieeieeniieniinns 48

XVi

Figure 2-28: Layered interactive session-oriented service architecturefor the PBX.cccccevvenienne 50

Figure 3-1: Internet telephony gateway with embedded PBX and greybox monitor.cc.ceveee 53
Figure 3-2: Architectural overview of the software Structure Monitor.cocvevereeieriecneeseseene, 54
Figure 3-3: Block diagram overview Of apProaCh.ooeevueeiieiieiieeiee s 55
Figure 4-1: Organizational block diagram of the entire ResOwn ontology.ccceereerveeneerieeninens 57
Figure 4-2: Top-level ResOwn core classes and ResOWN Properties..........ovvvieeiiieeieneenesceeseee 62
Figure 4-3: Top-levels of the ResOwn class hierarchy..........ccoeevviiieic i 65
Figure 4-4: Top-level core classes and key object properties.oovvveeieeieiiieeseceeeee e 68
Figure 4-5: Asserted (defined and named) Instrument class hierarchy. ..., 73
Figure 4-6: Inferred (defined and named) Instrument class hierarchy.ccocevieieiiieiienieeiee 74
Figure 4-7: Asserted (defined) Resource class hierarchy.oocveviiiiiiiiinic e 83
Figure 4-8: Inferred (defined) Resource class hierarchy.cocveiiiiiiiiic i 83
Figure 4-9: Asserted (defined) Owner, OwnerRole, and OwnerBase class hierarchies. 89
Figure 4-10: Inferred (defined) Owner class hierarchy. ..o 20
Figure 4-11: OwnershipRight VP value partition class hierarchy...........ccoccvveeiiniienic e 101
Figure 5-1: Named Owner classes fromthe PBX.ooiiiiiicee e 105
Figure 5-2: Named Resource classes from the PBX.cooiiiiiiiiiiiieeeee e 106
Figure 5-3: Inherited Resource properties in an example of a Named Resourceclass..................... 107
Figure 5-4: Inferred Owner class hierarchy of the PBX’ s specialized ResOwn instance. 109
Figure 5-5: Inferred Resource class hierarchy of the PBX’s specialized ResOwn instance. 110
Figure 5-6: Transferable RESOUICE SCENAIO.oiviriiiriiiiiieriie et 114
Figure 5-7: Nontransferable RESOUICE SCENAIO.ueerieiiiieiiesiie st 116
Figure 5-8: Compound and Embedded RESOUICe SCENAITO.ccvrviiiriiiiciciece e 118
Figure 5-9: Surrogate Resource SUPPIIEr SCENAIIO.oivieriierierieeriie s 121
Figure 5-10: Orphaned Power Of AttOrNEY SCENAIO.eiuieriierrieiie e e esiee e siee e e 122
Figure 6-1: Dual-view model: internal StruCtural VIEW...........cccueruieiienieiieesee e 125
Figure 6-2: Dual-view model: external behavioral VIEW.cccceviiiiiiiieeiie e 126
Figure 6-3: Specification refinement and refinement MapPINg.ccovverreereereeereesee e 128
Figure 6-4: Example session behavior partitioned into epochs of behavior.cccooeviiieiinnnn 129
Figure 6-5: Example mappings DEWEeen SHand Siooovieiieiieeeee e 131
Figure 7-1: Organizational block diagram of monitoring approach.ccceevverieenin e 133
Figure 7-2: Internal organization of the greyboX iNtErPrefer.........coovvvie e 135

Xvii

Figure 7-3: One possible internal organization for the structural pattern matcher.ccoeeeevienne 136

Figure 7-4: Internal organization of the dynamic knowledgebase.cccooeverieeniinie e 138
Figure 7-5: Generic: (i) monitoring command; (2) monitoring CONSIIUCE...........ccevvveeneereennieesieenn 140
Figure 7-6: Block diagram of interpretable models derivation ProCess...........ccovveveeenieereeniieenieennns 143
Figure 7-7: Example: (i) message sequence chart; (ii) layered CEFSMsand signals.cccue..... 144
Figure 7-8: EoB ENTRY and EoB EXIT monitoring Command.cccoceereereenieeneeseesneeesee s 145
Figure 7-9: EoB entry point MONItOriNg SCENAITO.ueivirieeriiereeeteesieesreesseesieesseesseesaneeseesseesnes 148
Figure 7-10: EoB exit point MONITOriNg SCENAIIO.c.ueiviiiieriie st 149
Figure 7-11: Structural transaction monitoring COMMEANGS.coreerieriieeniesee e 150
Figure 7-12: MSC for Consumer and SUPPHIES.oueiiiiiieieeeeeeee e e 155
Figure 7-13: MSC Consumer and Compound RESOUICE.eeveerieeriinieeieeesiee s 155

Xviii

List of Tables

Table 2-1: Tabular comparison of UML and OWL-DL based on [USCOB].cocverveerverieenneennenne 38
Table 2-2: PBX class/ CEFSM TESCIPLIONS.coiveeiiiiiiesiie et esiee st 51
Table 4-1: ResOwn properties Modeling COre ClasSES.ooiviiiiiiieiie et 70
Table 4-2: ResOwn properties modeling SUPPOIt ClASSES.civieiieeiieriieesiee e 71
Table 4-3: ResOwn properties modeling ValUE ClaSSES.cceeiiiiieeiieieeeieesiee e 71
Table 4-4: Top-level Instrument class definition.c.oociiiieiiinieee e 74
Table 4-5: PErsiStenCy VEISUS TIME.ciiiiiiie ettt s nne e sne e 75
Table 4-6: Defined Instrument class defiNitionS.ocuviieiieiiieee e 76
Table4-7: Titledeed Class defiNitiONS.coicviieiie e e e e rae e see e 78
Table 4-8: License and Proxy Class definitions.cccoviiiieiieiiieee e 80
Table 4-9: Power Of Attorney and Permit To Hold class definitions.cccceevveeiiieeciiee s 82
Table 4-10: Top-level Resource Class defiNition.c.eiiieiiirieerie e 84
Table 4-11: Defined Resource Class defiNitiONS.ccoviiiieiieieeeiee e 85
Table 4-12: Top-level Owner, Owner Role, and Owner Base class definitions.cccccceevceeiieeens 88
Table 4-13: Defined OwnerBase class defiNitioNS.cocviiieiiiniienie e 91
Table 4-14: Effects of physical versus |0gical CapaCity...........ceiuirieeiieiiieenie e 92
Table 4-15: Defined Beneficiary Owner Role subclass definitions.c.eevcveeveeiiee e 93
Table 4-16: Nonbeneficiary Owner Role subclass definitions............oovvvveeiienieniieesee e 94
Table 4-17: Defined Owner SUbClass defiNitioNS.c.ovieeiieiiieie e 96
Table 4-18: Consumer SUDCIASS AEfINITIONS.coiueiiiiiiiesie e 97
Table 4-19: Supplier and Dispatcher subclass definitions.coevierieiieenieneeesee e 98
Table 5-1: Named Owner classes for the PBX.ooiiiiiiieceee e 107
Table 5-2: Named Resource class for the PBX.........c.voiiiiiiiiieiie e 108
Table 5-3: Transferable RESOUIrCE SCENAITO.uiiuiiiiieie et 113
Table 5-4: Nontransferable RESOUICE SCENAITO.c.cuveivieiiiiiieiie et 115
Table 5-5: Embedded RESOUICE SCENAIO.ccoveiiiiiriiesiie sttt sttt 117
Table 5-6: Surrogate Resource SUPPIIEr SCENAIIO.eoiueiiiierieeiie ettt 120

XiX

Table 7-1: INSTANCE monitoring COMIMANG.coiuiiiiiiierie e 151

Table 7-2: ACQUIRE / RELEASE COMMANGS........ccciuieiiiieiieeeiie e sieeesireessee e ses e e sree e e e enneeas 153
Table 7-3: REGISTER / UNREGISTER COMMAN tYPES.cuveieieiieiiiesiie e 153
Table 8-1: Comparison of MONItOring aPPrOBCHES.cciviiiueerie et 166

XX

Chapter 1

| ntroduction

“ The proliferation of new semantics may be fun for semanticists, but developing a practical
method for reasoning about systemsisa lot of work.”

- M. Abadi and L. Lamport, 1991

1.1 Motivation

Rapid advances in computing hardware have led to more reliable platforms, but software reliability
has not kept pace [Hang02, Sul9l]. Software failures range from inconveniences in service
applications, to financial loss in mission-critical applications, to loss of human life in safety-critical
applications. To date, a substantial amount of research has been devoted to methods and techniques
intended to maintain or improve software reliability such as fault avoidance, fault eimination, fault
tolerance and formal verification [Ben03, Dod92, Gar98, HIa95, Leed0, Lyu9ds, Pek97, Schob,
Gao03]. Despite rigorous use of these methods in practice, faults remain in software in the order of
one to ten per thousand lines of code [Tas02]. These hidden faults often do not surface until a
software product has already been released and is operating in its production environment [Cha0o0,
Kuh87, Mol93, Ost02]. Runtime monitoring can play an important part detecting hidden faults and
ensure that a software system operates as intended in its production environments. This thesis
investigates an ontology-based, greybox approach to dynamic software structure monitoring of
interactive session-oriented services that are delivered by discrete event-driven, soft real-time
software systems. The selected software concern is application resource ownership, and the software

system used in the examples throughout this thesis is a small private branch exchange (PBX).

1.2 Software Failure, Error and Fault

The standard definitions are adopted from [1e€90]:

o A software failure is defined as the inability of a system or component to perform its required

functions within specified performance requirements.

o A software error is defined as the difference between a computed, observed or measured value or

condition and the true, specified or theoretically correct value or condition.
o A software fault is defined as an incorrect step, process or data definition in a computer program.

If encountered during program execution, a software fault, under the right activation circumstances
or conditions, may manifest as a software error. An error may propagate and result in other internal
errors and/or an externally observable failure. Software faults are characterized as Heisenbugs or
Bohrbugs [Vai0l]. Bohrbugs are software design faults that should have been eliminated during
testing, but were missed. Bohrbugs manifest an error upon each repeated activation. Heisenbugs are

usually transient and only manifest errors during specific collusions of events or execution sequences.

1.2.1 Software Aging

Software aging is a temporal phenomenon that can occur in long-running, shared-resource software
systems that must respond to asynchronous events, varying usage profiles and varying loads
[Cas01,Vai0l]. Software aging errors, such as resource leaks, may lead to service degradation as the

usable service capacity monotonically decreases until a failure or outage occurs [Avri97].

1.3 Runtime M onitoring

In general, runtime monitoring approaches may be classified according to the amount of intrusion into

the target software system they require:

e Blackbox monitors are unobtrusive and support failure detection. Blackbox monitors are limited
in their ability to detect errors because they only monitor the topmost layer of abstraction;
namely, those external processes that communicate directly with the environment. Some
reasoning about the state of certain internal processes that communicate with external processesis

possible, but typically limited again by space and time cost considerations. These approaches are

ideal for testing and for detecting failures in third-party production software whose requirements

or high-level design specifications are available, but whose source code access may be restricted.

e Whitebox monitors are highly intrusive and are thus able to support both failure and error
detection, but require intimate internal system knowledge and may literally require instrumenting
every line of source code. For example, whitebox monitoring is similar to whitebox testing where
the control structure of the procedural design of a system is used to derive test cases. The tester
has knowledge of the internal workings, components and specifications of the product under test
[Gao03]. Whitebox monitoring approaches areideal for software debugging and execution tracing

where storage, processing and retrieval of large volumes of collected, runtime data are possible.

e Greybox monitors offer a compromise. They are partially intrusive, thus allowing some degree of
error detection, but they abstract away certain internal implementation details, thus reducing the
amount of intrusion and runtime data processing requirements. This thesis presents a greybox

approach to dynamic software structure monitoring.

1.4 Inter active Session-Oriented Services

This thesis presents an ontology-based approach for application resource ownership structure
monitoring for the interactive session-oriented services application domain. Interactivity is a mode of
service operation with an “ input-compute-output” processing structure in which user commands (i.e.,
inputs) cause service responses (i.e., outputs) [Bac99, BroO1]. This thesis assumes that the service's
software implementation is a set of objects that exchange runtime information via interactions
[Amb88]. Session-orientation is a service delivery property in which an application executes
cyclically through repeated activations [Pek03]. The concept of a session is widely used for both an
end user and software system perspective [Chr01, Dos05, Haz01, Kol98, Mur98, Par0Q].

1.4.1 Why Session-Oriented Services?

The session-oriented concept is becoming increasingly important for interactive services [Dos05].
Many of today’s network applications are interactive session-oriented, and accumulate a unique
session state [Mur98, Par00, Son02]. For example, an e-service may be a discrete-oriented, short-
running service such as an eectronic shopping cart, or a session-oriented, long-running service such

as collaborative text chatting [ChrO1]. Other examples of interactive session-oriented services include

telephony, voice-over-Internet-protocol (VolP), video-on-demand (VoD), online banking, and online

ticketing.

1.4.2 Why Resour ce Owner ship?

In online and electronic interactive services, resource management directly impacts the ability of the
underlying software system to provide the specified (or contractual) quality of service (QoS) expected
by the service's end users [Chr01, Dos05, Hau01]. Consistent and efficient resource allocation and
management is hard, and often nonfunctional requirements depend heavily on the correct and
efficient management of resources [Kir04]. For example, resource management problems can go
undetected at low service loads causing only smoothly degrading service, while at higher loads, a
sudden increase in demand may cause afailure or amajor outage [Avr97]. This situation is analogous
to a civil or mechanical engineering structure wearing out gradually over time until a sudden stress

causes afailureto occur.

1.5 Software Concerns

In today’s highly competitive online and dectronic service environments, vendors and providers are
increasingly looking to autonomic concepts, such as self-healing, self-adapting and sdf-optimizing
software [Kep03], to help cope with maintaining stringent service dependability requirements and
contractual QoS obligations. The integration of autonomic concepts into software systems that are
responsible for delivering interactive session-oriented services presents an opportunity to software
designers, developers and maintainers to manage, control and monitor individual software concerns
within an operational software system. Examples of individual software concerns include resource
ownership, data security, intrusion detection, performance, maintenance and system adaptation.
Further, the ability to monitor the runtime health of a particular software concern would be very
valuable; however, a formal way to specify and derive a monitoring model of the state-dependent

structure of an individual concern is required.

1.5.1 Concer n-Specific Evolving Structure

In software engineering, “separation of concerns’ refers to the ability to identify, encapsulate and

manipulate those parts of software that are relevant to a particular concept, goal, purpose or issue

[Par72]. Traditionally, software requirements are divided into functional and nonfunctional concerns.
An individual behavioral or structural concern represents an abstraction of the software system’s fulll
behavior or structure, respectively. A clean separation of concerns reduces complexity, improves
comprehensibility, increases traceability, limits the impact of change and helps to facilitate software

evolution, adaptation, customization, integration and reuse [Tar99].

This thesis considers individual software concerns in terms of behavior and structure, as shown in
Figure 1-1. Further, at runtime, a software system’s concern-specific structure is not static; instead it
changes or evolves' over time in a state-dependent manner. This change occurs because there is a
correspondence between the concern-specific, behavioral interactions that occur between certain
internal objects in the operational software system and the corresponding association instances or
structural links that are created and/or destroyed as a result of those behavioral interactions.
Therefore, at any given execution point, only a subset of all the possible concern-specific structural

links that could occur will bein effect.

Software System

Behavior Structure

State-
Dependent
Evolving
Structure

Structural
Concern

Behavioral
Concern

Figure 1-1: The concer n-specific evolving softwar e structure.

In object-oriented software systems, the specification of evolving software structure takes place on

two levels: the object level and the conceptual class level. In this thesis (Chapter 5):

e An object diagram represents a state-dependent snapshot (i.e., individual view) of the selected

Y In thisthesis, “ the evolving software structure” is aruntime concept distinct from the notion of software
evolution that refers to the maintenance phase of the softwar e devel opment life cycle [Pfl06].

concern-specific software structure.

e A class diagram represents a state-independent family of snapshoats (i.e., compound view) of the

selected concern-specific software structure.

In this thesis, a behavior-driven, ordered sequence of individual snapshots is used to represent the
evolving software structure of the operational software system for the select software concern. The
addition and removal of individual links between pairs of objects represents a micro-step between
snapshots and the full transition from object diagram to the next in the state-dependent sequence
represents a macro-step. This approach provides a deeper understanding of the evolving structure of
software systems beyond the conventional visibility offered by simply observing the operational

software system’s runtime behavior.

1.6 Scope

This thesis proposes a greybox approach to concern-specific dynamic softwar e structure monitoring
that uses a concern-specific model, as shown in Figure 1-2. While the monitor executes as a separate
unit, the monitoring interface is comprised of software sensors woven into the target software
system’ s implementation according to a manually derived sensor plan. The concern-specific model is
derived (i.e, abstracted) from the target’s formal behavioral specifications. During the derivation
process, the model is extended with special model constructs called monitoring constructs. Each
monitoring construct in the model corresponds to a specific monitoring command produced by an

associated software sensor in the instrumented target software system.

The top-leve architecture of the monitor is comprised of a greybox interpreter and a tuple-based
dynamic knowledge base. The greybox interpreter uses the dynamic knowledge base to maintain a
representation of the operational target software system’'s concern-specific evolving software
structure. The greybox interpreter receives monitoring commands while interpreting the concern-
specific model and updates the contents of the dynamic knowledge base to match the monitored
portion of the target’s actual software structure. The main focus of the work in this thesis is on the
monitoring architecture and model derivations. A practical implementation of the monitor is outside

the thesis scope.

A novel Application Resource Ownership Ontology, called ResOwn, was created to provide a
vocabulary, along with a set of concepts, properties and property restrictions for modeling the

application resource ownership structure for interactive session-oriented services. ResOwn is
specified in the W3C's Ontology Web Language Description Logic (OWL-DL) [W3c04b]. The
behavior of the software system is orthogonal to ResOwn and specified using the Specification and
Description Language (SDL) [Itu9l], a formalism based on communicating extended finite state
machine (CEFSM) [Hie01]. This thesis assumes that the target software system’s source code, SDL -
based software requirements and SDL-based software design are available. The design is assumed to

be a refinement of the requirements, and the source code is assumed to be a refinement of the design.

Inputs Target Software | ouiputs
— —
System
E Monitoring Interface E
E Monitoring Records E
: y i
E Greybox Dynamic E
E Interpreter Knowledge Base '
E Concern- E
' Specific Model '
i Software Structure Monitor
S S (]

Figure 1-2: Organizational block diagram of greybox softwar e structure monitor.

Traditional model-driven monitoring approaches tend to focus on behavioral correctness [Dvo9l,
Gat04, Hlag5, Sava7] or performance tuning [Gar00, Pek03] rather than tracking evolving software
structure. Monitoring concern-specific software structures can be very valuable. This thesis assumes
that runtime structural knowledge can enhance blackbox monitoring, detect errors in operational
software before they manifest as failures and give time for manual or autonomic corrective actions to
be invoked. Runtime structural knowledge can also be used to make dynamic decisions with respect
to reconfiguration of adaptive systems. In addition, monitoring only an individual structural software

concern, such as application resource ownership, provides an abstraction that reduces the amount of

intrusion and complexity when compared to a full whitebox monitoring approach.

1.6.1 Why Application-L evel?

The familiar “ end-to-end” argument states that functions placed at low levels of abstraction in a
system may be redundant or of little value when compared with the cost of providing them at that low
level [Sal84]. The argument can be extended to application-level services, which know better than
operating systems or runtime environments what the goal of their resource alocations and
management decisions should be [Eng95]. An application-level monitor, like the one presented in this
thesis, could provide runtime knowledge useful for autonomic control, management and maintenance

and for dealing with generic error recovery from encountered application faults [Cha00].

1.6.2 Application Domain Considered

This thesis considers software systems that are real-time with soft deadlines, interactive, session-
oriented, discrete event-driven, semi-stationary and non-critical, and whose behavior is modeed
using CEFSMs. For concreteness, the PBX control program is used in many of the examples

presented throughout this thesis. A detailed description of the PBX is given in Chapter 2.

1.6.3 Individual Software Concern Considered

This thesis considers the individual concern of application resource ownership for interactive
session-oriented services whose concern-specific structure is formally described using the ResOwn
ontology. The ResOwn ontology was constructed using the Protégé-Owl ontology development
environment and verified and classified using the RacerPro reasoner® and inference engine”. These

tools are described in more detail in Chapter 2.

L A reasoner isa software tool that can derive new, formally annotated facts from a set of predefined, formally
annotated facts.

2 An inference engineis a computer program that tries to derive answers from a knowledge base.

1.6.4 Specializing ResOwn

A methodology to specialize the concern-specific portion of the ResOwn ontology with application-
level knowledge for a particular software system is presented in Chapter 5. The methodology is then
applied to a concrete example that creates an application-specific instance of ResOwn using the
object classes defined in the PBX. A reasoner is then used to automatically classify the inserted
application classes, resulting in an inferred class hierarchy of the application-specific ResOwn
instance. This inferred ResOwn instance is used in Chapter 6 for the derivation of the concern-
specific model, and at runtime by the greybox interpreter when processing incoming monitoring

commands from the instrumented target software system.

1.7 Objective

One of the primary objectives of the thesis is to investigate the use of a concern-specific ontologies
from Knowledge Engineering to model structural concerns for software monitoring. The intended use
of the ontology is for a concern-specific, model-based approach to greybox monitoring evolving
software structures in operational software systems. The selected structural concern’s vocabulary,
concepts, properties and restrictions are specified and modeled using the ontology. The selected
structural concern is application resource ownership. The application domain is interactive session-
oriented services. The exampletarget software system considered is the call processing softwarefor a

small private branch exchange (PBX).

1.8 Contributions

The major novel contributions of this thesis are:

e A reusable and extensible, concern-specific ontology called ResOwn provides enriched concepts
of application resource ownership borrowed from real-world legal and ownership ontologies.
ResOwn is defined in the Web Ontology Language Description Logic (OWL-DL), verified with a

reasoner and tested using the PBX example.

e A methodology to create an application-specific ResOwn instance that specializes the concern-
specific portion of the ResOwn ontology with application-level knowledge for a particular

software system.

e A dua-view, Session-Oriented Model of Computation (SOMOC) for interactive session-oriented

services that relates observable, external service behavior to internal, evolving software structure.

e A greybox, concern-specific dynamic software structure monitoring approach and architecture
devised for tracking the state-dependent evolving software structure of an operational software

system.
e A pair of algorithms for deriving the concern-specific monitoring model:

o An algorithm for deriving a state evolution model from the target’s software requirements
specification. The state evolution modd allows the greybox interpreter to track the

specification state (i.e., macro-stepsin the evolving structure) of the operational target.

o Analgorithm for deriving a set of epoch of behavior (EoB) models from certain slices of the
target’s software design specification. Each EoB model contains the monitoring constructs
that allow the greybox interpreter to track certain concern-specific structural transactions

(i.e., micro-steps in the evolving structure) as they are reported by the instrumented target.

1.9 Thesis Organization

The remainder of this thesisis organized as follow:

Chapter 2 introduces fundamental theories used in the thesis and discusses related work. A detailed
introduction is given to the OWL-DL as the formalism used to model knowledge in ResOwn. The

chapter also includes background concepts and related work in runtime monitoring.

Chapter 3 provides an overview of the approach presented in this thesis including ResOwn and the

greybox concern-specific monitor.

Chapter 4 forms the core of the thesis and describes, in detail, the top-level concepts, asserted and

inferred taxonomies, vocabulary, classes, properties and property restrictions of ResOwn.

Chapter 5 presents the methodology for mapping ResOwn to a concrete application software
example for PBX, resulting in an application-specific specialized ResOwn instance. The second part
of chapter presents a number runtime snapshots (i.e., object diagrams) that describe some of the

permissible dynamic resource ownership evolution patterns using the example PBX.

10

Chapter 6 introduces a session-oriented model of computation (SOMOC) for modeling interactive
session-oriented services that is used as the basis for deriving the concern-specific monitoring model
described in detail in Chapter 7.

Chapter 7 describes the actual greybox concern-specific dynamic software structure monitor
approach and architecture, the syntax and semantics of monitoring commands and constructs, and the

monitoring model derivation algorithms.

Chapter 8 discusses the analytical evaluation of the ontology-based monitoring approach presented

in the thesis, including the conceptual benefits and known limitations.

Chapter 9 summarizes the presented research and suggests some future research work.

11

Chapter 2
Background and Related
Work

“ Eventually, everything will just be knowledge.”
- K. Czarnecki, 2006.

2.1 Introduction

This chapter describes several topics which form the background and related material for the work
presented in this thesis. Highlights of the chapter include a tutorial on OWL -DL -based ontol ogies that

was compiled from a number of sources for this thesis and a review of related work.

2.2 Definitions and Concepts

2.2.1 Resour ce and Resour ce M anagement

In (business) process modeling, a resource is defined as a necessary item, tool or person and may
include equipment, time, office space, people and techniques [Pfl06]. In software, a resource is
defined as everything that is required by an application to provide its required service [ZscO4]. In this
thesis, the definition of an application resource is adapted from [Kir04] to be an entity (i.e., Resour ce
instance) that is available in limited supply such that there exists a requestor (i.e, Consumer
instance) that needs the entity to perform a function, and there exists a provider (i.e, Supplier

instance) that provides the entity upon request. Two important properties of a Resour ce instance are:

12

(1) it can be allocated and used by an application, and (2) it has a maximum capacity" [Zsc04].
Resource management is the process of controlling the availability of Resource instances for
Consumer instances to ensure that: Resource instances are available when needed, the resource
lifecycle is deterministic, and Resour ce instances are released in a timely manner to ensure software

system liveliness [Kir04].

2.2.2 Ownership

In the Anglo-American legal system, ownership is defined as a relationship between alegal person
(i.e, individual, group, corporation or government) and an object [Bri06]. The abject of concern may
be corporeal or completely a creature of the law such as a patent, copyright or annuity. Although
ownership can be treated as a single, conceptual object, it is often necessary to view ownership as a
bundle of rights [Mcca02, Sha05, Yip02, Yip03, Yip04]. The concept of ownership provides several

main perspectives:

The notion of possessing property.

e The notion of legal ownership rights that may vary according to one's relationship with some
property.

e The ability to prove those legal ownership rights have been properly granted via some legally

binding proof of ownership instrument.

e The concept of an owner (i.e.,, Owner instance), where an Owner instance can itself be viewed as

property and be owned by other Owner instances.

In this thesis, application resource ownership is defined as a relationship between a physical
Resour ce instance and one or more physical Owner instances. An Owner instances has certain
Ownership Right instances applicable to a Resour ce instance, along with the ability to prove those
rights viaalogical proof of ownership I nstrument instance. Lastly, an Owner instance itself can bea

Resour ce instance, and conversdy, a Resour ce instance can be an Owner instance.

! Resources with unlimited availability and unlimited capacity are not considered.

13

2.2.3 Roles and Role Contexts

Popular role theory, or the observation that human beings play multiple, context-sensitive roles with
corresponding identities, expectations and behaviors, originated in psychology and sociology in the
1960s and 1970s [Bid66, Bid79]. In today’s software domain, role theory has been integrated with the
object-oriented paradigm to be applied to areas such as role-based security access modeling [Cra03]
and role-based, interactive agent systems [Cab03, Wo0000]. In most object-oriented paradigms,
objects are independent, isolated entities with a unique identity and a uniform singleton set of
behavioral capabilities [Kri95]. However, in operational object-oriented software, objects tend not to
be isolated entities, but rather they relate to each other through interactions within a number of

different settings or contexts.

In accordance with [Kri95], an object is said to play arole when a role instance is assigned to that
object. In this thesis, the assignment of a role instance to an object is assumed to occur implicitly via
the structural context that the object finds itself in. For example, consider a sequence of interactions
between a set of objects, O, O,, and Os. An internal observer could deduce that O, plays a certain
role in the resulting state-dependent software structure (i.e. structural context) that has evolved
between Oy, O,, and Os. However, if that O, also participates in a sequence of interactions with Oy,
and Os, then an internal observer could conclude that O, now plays a different, second role in the
structural context that now exists between O,, O,4, and Os. Hence, in this example, the same object
(O,) may simultaneously play two distinct, context-sensitive roles. This approach is preferable to
viewing role instances as a static property because the assignment of role instances can change in

synchronization with evolving structure.

In [Jia05], a networked service composed of structural and behavioral arrangements of service
components is presented. Service components execute as nodes representing physical processing units
such as servers, routers, switches, phones, laptops and PDAs. A service component, as shown in
Figure 2-1, is a generic software component, called an actor, whose executable functionality, or role,
is based on downloadable Extended Finite State Machines (EFSM). A session role is a projection of
an actor’s role with respect to the interaction between pairs of actors. Actors play roles according to
manuscripts and a director manages their operations. In this thesis, objects are modeled as Owner or
Resour ce instances. In addition, an object may also play one or more Owner Role instances. The set
of Owner Role instances played depends of the different structural resource ownership contexts in
which the object finds itself.

14

Service

specifies
* * *
- 1 - 1
ServiceComponent Manuscript
* | fs_realized_by is_defined_by defines_the | superposition_of
1 * * * * 1 1 * *
Director Actor Role RoleSession
manages behaves_according_to projects

Figure 2-1: Example verification ar chitectur e [Jia05].

2.3 Software M odeling

Models are abstractions [Sel03] that eliminate irrelevant details or simplify concepts; that is, a
simplified view of a system that increases understandability, predictiveness and/or accuracy and
lowers cost. The three subsections that follow introduce three modeling paradigms [AtkO3]: ontology
modeling using the Web Ontology Language Description Logic (OWL-DL) [W3c04a, W3c04ab],
meta-modeling using the Unified Modeling Language (UML) [Omg05a, Omg05b] and behavioral
modeling using the Specification and Description Language (SDL) [1tu91]. The subsections provide
only a high-level discussion of the key modeling concepts of each paradigm. Interested readers are
directed to a suitably detailed reference or tutorial for further investigation.

2.3.1 Ontological M odeling

There are numerous definitions of what exactly constitutes an ontology, depending on the discipline
the applicable ontological concepts originate. In philosophy, “Ontology, understood as a branch of
meta-physics, is the science of being in general, embracing such issues as the nature of existence and
the categorical structure of reality. Different systems of ontology propose aternative categorical
schemes. A categorical scheme typically exhibits a hierarchical structure, with ‘being’ or ‘entity’ as
the topmost category, embracing everything that exists [Hon95].” Today’s interest in ontologies
extends well beyond meta-physics. In the knowledge representation domain, an ontology may be
defined as:

15

A specification of a conceptualization, an explicit specification of some topic, or a formal and

declarative representation of some subject area [Gru93, Guads].

A set of knowledgeable terms (i.e., vocabulary), the semantic interconnections, and some rules of

inference and logic for some particular topic [HenO1].

The basic structure, skeletal knowledge, or armature around which knowledge bases can be built
or integrated at the knowledge level, independent of any particular implementations [Dev99,
Swag9].

The main ontological components, relevant to a particular domain of discourse, are

conceptualizations or concepts (i.e., classes) organized into a hierarchical taxonomy, with relations

among the concept, and constraints, restrictions or axioms (i.e., properties) distinguishing concepts

and refining definitions and relations [Noy97]. A sample of the number of different kinds of

ontologies discussed in the literature includes:

An Upper Ontology [Noy97], Top-Level Ontology [Sha05], Foundation Ontology defines very
general base concepts that that are the same across all domains and thus support ontology
development and facilitate common-sense, human-like understanding and reasoning. The am is

to have a large number on ontologies accessible under this upper ontology.

A Domain Ontology [Noy97] defines the terminology and concepts relevant to a particular topic
or area of interest. As systems that rely on domain ontologies expand, they often need to merge
domain ontologies into a more general representation. Different ontologies in the same domain
can also arise due to different perceptions of the domain based on cultural background, education,

ideology or because a different representation language was chosen.

A Business Process Ontology [Noy97] defines the inputs, outputs, constraints, relations, terms
and sequencing information relevant to a business process. A business process ontology serves
two distinct purposes. Firstly, it makes knowledge explicit and allows for knowledge sharing
among domain experts and information technology people engaged in software design and
development. Secondly, since it includes machine-readable definitions of concepts, it serves as a

requirements specification from which a number of software artifacts can be generated.

An Interface Ontology [Noy97] defines the structure, content, messaging and other restrictions

for a particular interface (e.g., Application Programming Interface).

16

e A Service Ontology [Noy97] defines a core set of constructs for describing the vocabularies and
capabilities of services such as the World Wide Web Consortium (W3C) Web Service Modeling
Ontology".

e A Role Ontology defines terminology and concepts relevant for a particular end-user.

2.3.1.1 Semantic Web

Therole of ontologies in the Semantic Web is to establish additional levels of syntactic and semarntic
interoperability on the Web. Syntactic interoperability pertains to reusability in parsing data.
Semantic interoperability pertains to mappings between terms within the data using some form of
content analysis. Ontologies serve to standardize and provide interpretations for Web content using a

semantic markup to make that Web content machine-under standable.

2.3.1.2 Ontology for Software Engineering

In software engineering, ontologies may be used to model domain-specific concepts and software
structure. A domain-specific ontology provides a vocabulary of concepts from a selected application
domain, along with a set of logical statements that describe what concepts are, and how concepts can
or cannot be reated to each other. The philosophy of constructing ontologies free from
implementation bias, as studied in the ontology field [Gru93], is very attractive when modeling the
structure of an individual software concern. This was one of the key reasons this thesis choseto use a

concer n-specific ontology to model application resource ownership structure.

Ontologies for modeling software philosophically and practically support the use of platform
independent knowledge at the domain-level. In addition, these same domain-specific ontologies can
be extended and transformed into platform- or application-specific models via a process known as
specialization. In this way, ontological languages have declarative power that can improve object-
oriented models, plus support automatic reasoning and inferencing. Inference may be used to
determine multiple inheritance for specialized conceptualizations from the declared or asserted class
hierarchy of an ontology automatically, rather than manually. For example, this thesis uses automatic
inference with the concern-specific, Application Resource Ownership Ontology (ResOwn) (described

in Chapter 4) to automatically determine the possible Resour ce or Owner classes an object class may

! http://www.w3.0rg/ Submi ssi on/2005/SUBM-WSM O-20050603/

17

belong to from a target software system.

In [Yu5], an OWL-based ontological approach is presented to monitor grid resources. The
approach focuses on integrating and sharing real-time status information of voluntary nodes for
quality of service (QoS) management. The designed ontology originates from the Management
Information Base (MIB) in network management for open network devices monitoring and
management. The taxonomy of classes in the host resources ontology is displayed in Figure 2-2. The
presented ontology is similar to ResOwn in that it specified using OWL and focuses on resources.
The ResOwn ontology differsin that it provides a conceptually rich and concern-specific domain of
discourse for application resource ownership structure that integrates knowledge from a different
domain of discourse including the software domain, the client-server domain, the legal and real

property domains and the interactive service domain.

Resource
D Y- X

Figure 2-2: Excer pt from host resour ces ontology.

System
Description

2.4 The Web Ontology L anguage (OWL)

The Web Ontology Language (OWL) is a set of eXtensible Markup Language (XML) elements and
attributes, with well defined meaning, that are used to define terms and their reationships [Hor04,
W3c04a, W3c04b]. As shown in Figure 2-3, OWL is actually an extension of the Resource
Description Framework (RDF) and RDF Schema, which in turn extends XML and XML Schema

[Dju05]. OWL is one entry on the continuum of ways to express knowledge, as shown in Figure 2-4.

There are three species of OWL, as shown in Figure 2-5 [W3c04a, W3c04b]:

18

Logical Layer
OWL
(ontology languages) Semantics
Schema Layer RDF Schema
RDF
Meta-data Layer Syntax
XML/XML Schema
Resource Description Framework (RDF)
eXtensible Markup Language (XML)
Web Ontology Language (OWL)
RDF Schema (RDFS)
Figure 2-3: OWL in the semantic web ar chitecture [Dju05].
Glossaries / Controlled Vocabularies Data and Document Metamodels
XML Restricted Logics
structured Schema (OWL, Flogic)
Glossaries formal
Terms XML DTDs i
l A)| 1 l ' A | 1 A —
\j T T T \| \J T \f \f T =
‘ordinary’ Data Models
Glossaries (UML, STEP)
Data 10
Dictionaries Frames Glene.ral
DB (OKBC) L0gIc

(EDI)

Schema

Formal Knowledge Bases & Inference

Figure 2-4: Continuum of formal waysto express knowledge [Usc06].

OWL-Lite has limited expressiveness and is suitable for simple class hierarchies and constraints.

Cardinality isrestricted to values of O or 1.

OWL-DL supports description logics [Baa03] and automated reasoning and is the OWL species

used throughout this thesis. OWL-DL has maximum expressiveness while maintaining

computational completeness (i.e, all conclusions are guaranteed) and decidability (i.e., all

conclusions finish in a finite time). OWL-DL includes all language constructs but certain

constructs can only be used under certain restrictions (e.g., a class cannot be an instance of

19

another class).

e OWL-Full has the most expressiveness and syntactic freedom (eg., a class may be treated
simultaneously as a collection of individuals and as an individual itself), but offers no

computational guarantees and therefore, does not support automated reasoning.

OWL-DL

OWL-Full

Figure 2-5: Thethree sublanguages of OWL.

2.4.1 OWL Ontology Modeling Tools

The ResOwn ontology was constructed, tested, debugged, and visualized using the following tools:

e ProtégéOWL" is a tool and development environment for ontologies and knowledge-based
systems comprised of Protégé (v3.1.1) and the OWL-Plug-in (v2.1). The tool provides an
interactive facility to iteratively devise, construct, test, debug and classify the ResOwn ontology.
The tool runs on the Sun JVM? (v1.5.0_06) for Windows XP Professional (v2002, SP2). In this
thesis, Protégé-OWL provided the author with an interactive facility to iteratively devise,
construct, test, debug and classify the ResOwn ontology presented in Chapter 4.

e TheRacerPro® (v1.9.0) is a reasoner and inference engine used in conjunction with the Protégé-
OWL tool for OWL-DL-based ontologies. RacerPro allowed the author to automatically check

and manually debug the consistency of the ResOwn asserted class hierarchy. RacerPro also

! http://protege.stanford.edu/overview/protege-owl . html
2 http://www.sun.com/javal

% http://www.racer-systems.com/

20

automatically found implicit subclass relationships when generating the ResOwn inferred class
hierarchy and computed equivalent ResOwn classes. The RacerPro academic research license
was provided to the author free of charge upon request by Racer Systems GmbH and Co. KG.

This thesis used the Racer Pro reasoner.

OWLViZ' (v14) is a plug-in that allows Protégé-OWL users to visually display selected portions
of both an OWL-DL ontology’s asserted and inferred class hierarchies. The author used OWLViz

to create the various ResOwn screenshots presented throughout this thesis.

GraphviZ is an open source graph visualization program required specifically by OWLViz and is
used to represent structural ontological information as diagrams of abstract graphs and networks.

2.5 OWL-DL Ontologies

Much of the material information presented in the subsections that follow was condensed, adapted

and/or modified by the author from several sources [Hor04, Knu0O4a, Knu04b]. Many of the diagrams

were redrawn from those originally appearing in the detailed Protégé-OWL tutorial [Hor04].

2.5.1 Components of OWL-DL Ontologies

An OWL ontology consists of these components.

An individual (i.e, Instance) is a constant in Description Logic and represents an object in the
domain of discourse in OWL. OWL-DL, being based on Description Logic, does imposed the
Unique Name Assumption. This means that just because two names are different in OWL-DL
does not mean they refer to different individuals. Two different OWL-DL class names, for
example, may refer to the same individual. Therefore, it must be explicitly stated in OWL-DL
whether individuals are the same as each other or different from each other. A representation of

some individuals (represented by diamonds) is shown in Figure 2-6.

! http://www.co-ode.org/downl oads/owl viz/co-ode-index. php

2 http://www.graphviz.org/

21

1\

England

o

USA

<> <> Fluffy <> Gemma

Mathhew
<

o

Italy

Fido

Figure 2-6: Representation of individuals [Hor 04].

A Property (i.e., Slat) is role or binary predicate in Description Logic and represents a binary
relation in OWL that links two individuals together. In Figure 2-7, the property hasSibling links
the individual Matthew to the individual Gemma. Properties can have an inverse. For example,
the inverse of hasOwner is IsOwnerOf. Functional properties are limited to having a single
value. Properties can also be symmetrical or trandtive. These property characteristics are
explained in Section 2.5.4.

%»o
England

Mathhew<>
liass,-b ling Gemma

Figure 2-7: Representation of properties[Hor 04].

A Classis a concept or unary predicate in Description Logic and represent a set of individuals in
OWL that are defined using formal, mathematical descriptions that state precisely the
requirements for membership in the class. For example, in Figure 2-8, the class Person contains
the individuals Matthew and Gemma, the class Pet contains Fluffy and Fido, and the class
Country contains Italy, England and USA. Classes are shown as circles or ovals similar to Venn
diagrams. Classes are concrete representations of concepts and may be organized in a superclass-
subclass hierarchy called taxonomy. Subclasses specialize, or are subsumed by, their
superclasses. Consider, for example, the classes Animal and Cat where Cat may be a subclass of
Animal so that Animal is the superclass of Cat. This says that: (1) al cats are animals, (2) all
members of the class Cat are also members of the class Animal, and (3) being a Cat implies
being an Animal. One of the key features of OWL-DL is that this subsumption relationship can

be automatically computed by a reasoner. OWL classes are essentially descriptions that specify

22

the conditions that must be satisfied by an individual for that individual to be a member of a

particular defined or primitive class.

o

Italy

England

Country

Mathhew

Person

Figure 2-8: Representation of classes containing individuals [Hor 04].

2.5.1.1 Owl: Thing

Every empty OWL ontology contains oneroot class called owl: Thing. owl: Thing is part of the OWL
vocabulary and represents the set containing all possible individuals. Therefore, all classes in an

OWL ontology are subsumed by owl: T hing.

2.5.1.2 Named or Primitive Classes

Although there is no mandatory naming convention, OWL classes are normally named using the
CamelBack notation; that is, starting with a capital letter and without any spaces. Examples of named
classes include Pizza, PizzaT opping, and M ar gheritaPizza.

2.5.1.3 Subclasses

In OWL, bdonging to a subclass is a necessary condition for that individual to also belong to the
subclass's superclass. For example, if a VegetableT opping is a subclass of PizzaTopping, then
being an instance of V egetableT opping implies being instances of PizzaT opping, without exception.
This means that if an individual is a VegetableT opping then it necessarily implies that the same
individual is also a PizzaT opping, as shown in Figure 2-9.

23

PizzaTopping

TomatoTopping

VegetableTopping

Figure 2-9: The meaning of subclassin OWL [Hor 04].

2.5.1.4 Digoint Class

If two or more classes are digjoint, then an individual cannot be an instance of more than one of those
digoint classes. This must be stated explicitly because OWL classes are assumed to overlap.
Therefore, one cannot assume that an individual is not a member of a particular class simply because
the individual has not been asserted to be a member of that class. Therefore, by making a group of
classes digoint, conceptually separates them and ensures that an individual asserted as a member of
one class in the group cannot be a member of another class in the group. This means that it is not
possible for an individual to be a member of a combination of these classes. For example, if the
classes Pizza, PizzaT opping, and PizzaBase are specified as disjoint, then an individual could not be

both a pizza and a pizza base.

2.5.2 OWL Properties

OWL properties represent relationships between pairs of individuals. There are types:

e Object properties link an individual to an individual. For example, Figure 2-10(i) shows an object
property hasSister linking the individual Barry to theindividual Debbie. The ResOwn ontology,

presented in Chapter 4, only uses object properties.

e Datatype properties link an individual to an XMLS datatype value or an RDF literal. For
example, Figure 2-10(ii) shows a datatype property hasAge linking the individual Barry to the
data literal ‘46’ which has type xml:| nteger.

e Annotation properties meta-data on the model which may be added to classes, individuals or

24

properties and are not instantiated with individuals'. For example, Figure 2-10(iii) shows an
annotation property dc:creator linking the individual ‘ Thesis' to the data literal (string) “Barry
Pekilis’.

hasSister hasAge dc:creator

Barry Debbie Barry 46"~ ~xsd:integer Thesis “Barry Pekilis”
(i (i) (i)

Figure 2-10: Different typesof OWL properties.

Although there is no mandatory naming convention, OWL properties are normally named starting
with alower case letter, no spaces and the remaining words capitalized. Normally, a property nameis
prefixed with the word has or is such as hasPart, isPartOf, hasManufacturer or isProducerof.
Further, in OWL, properties may have sub-properties that specialize a super-property in a hierarchy
of properties. For example, in a famous Pizza Ontology [Hor04, Rec04] the properties hasTopping
and hasBase are created as sub-properties of haslngredient. This implies that pairs of individuals
linked by either the hasTopping or hasBase property are also related to each other via the
hasl ngredient property.

2.5.3 Inverse Properties (1)

Each object property may have a corresponding inverse property (I). If some property links individual
a to individual b then its inverse property will link individual b to individual a. For example, as
shown in Figure 2-11, shows the property hasParent and its inverse property hasChild. This implies
that if Matthew hasParent Jean then because of the inverse property, it can be inferred that Jean
hasChild M atthew.

! Thisis similar to a Java comment.

25

hasParent

Matthew ‘ Jean

.
-~ -
-~ -
Seccaad com=""

hasChild

Figure 2-11: Example of an inver se property [Hor 04].

2.5.4 OWL Property Characteristics

In OWL, the meaning of propertiesis enriched through the use of property characteristic:

If a property is a functional property, then for a given individual, there can be at most one
individual that is rdated to the individual via the functional property. For example, Figure 2-12
shows the functional property hasBirthMother which means that an individual can only have one
birth mother. If the individua Jean hasBirthMother Peggy and the individua Jean
hasBirthMother Margaret, then because hasBirthMother is a functional property, it can be
inferred that Peggy and Margaret are the same individual. If Peggy and Margaret were
explicitly stated as two different individuals, then the above statements would be inconsistent.

If a property is an inverse functional property, then it means that the inverse property is
functional. Figure 2-13 shows an example of the inverse functional property isBirthMotherOf,
the inverse property of hasBirthMother. In this example, since hasBirthMother is functional,
isBirthMotherOf is also defined as functional. If Peggy is specified as the birth mother of Jean,
and Margaret is also specified as the birth mother of Jean, then it can beinferred that Peggy and

Margar et arethe same individual.

. ther
hasBlﬂhmo Peggy

Implies Peggy and
Margaret are the
same individual

Jean <>

e

S
&
é‘;
§
§
g
<

Margaret

Figure 2-12: Example of a functional property characteristic [Hor 04].

26

Peggy

Implies
same
individual

Jean

D T NT

Margaret <>

Figure 2-13: Example of an inver se functional property characteristic [Hor 04].

If a property is a transitive property, and the transitive property P relates an individual a to an
individual b, and also an individual b to anindividual c, then it can beinferred that individual ais
related to individual ¢ via P. For example, the example transitive property hasAncestor is given
in Figure 2-14. If an individual Matthew has an ancestor Peter, and Peter has an ancestor
William, then it can beinferred that M atthew has an ancestor William. If a property is transitive,

then its inverse should be transitive too. Transitive properties cannot be functional.

If aproperty isa symmetrical property, and the symmetrical property P relates an individual a to
anindividual b, then individual b is also related to individual a via property P. Figure 2-15 shows
an example in which the individual Matthew is related to the individual Gemma via the
symmetrical property hasSibling. Therefore, it can be inferred that Gemma must also be related
to Matthew via the hasSibling property. In other words, hasSibling is the inverse of itself and,

so, if Matthew is asibling of Gemma, then Gemma must be a sibling of Matthew.

William

Figure 2-14: Example of atransitive property characteristic [Hor 04].

27

hasSibling

.
“““““

hasSibling

Figure 2-15: An example of a symmetrical property characteristic [Hor 04].

2.5.5 Property Domain and Ranges

Every OWL property has a specified domain and a range, where a property links an individual from
its domain to an individual in its range. In the example excerpt from the Pizza ontology, as shown in
Figure 2-16, the property hasTopping links individuals from the class Pizza in the property’ s domain
to individuals belonging to the class PizzaT opping in the property’s range. Similarly, the inverse
property isToppingOf links individuals from PizzaT opping in the domain to individuals belonging to
Pizza in range. OWL property domains and ranges are axioms in reasoning. For example, consider
individual a and individual b along with the assertion that a hasTopping b. Then it can be inferred
that a is a member of class Pizza and b is a member of class PizzaT opping. Further, if the property
hasTopping has the domain Pizza and the property is applied to a class | ceCream (i.e., individuals
that are members of the class |ceCream), and if Pizza is not explicitly specified as disjoint from
IceCream, then it could be inferred that the class |ceCream is a subclass of Pizza. It is, however,
possible to specify multiple classes as the range for a property. Thisis interpreted as the union of the
classes. For example, if the range of a property has the classes Man and Woman, the range of the

property isinterpreted as Man union Woman.

hasTopping

hasTopping

PizzaTopping

Pizza

Figure 2-16: An example domain and range for a property and inver se property [Hor 04].

28

2.5.6 Describing and Defining Classes

In OWL, properties are used to create restrictions that describe and define classes. Restrictions restrict
the individuals that may belong to a particular class. Restrictions describe an anonymous or unnamed
class of individuals that can satisfy the restriction. Restrictions fall into three categories:

e Quantifier restrictions are composed of a quantifier, a property and a filler. In OWL-DL,

quantifiers produce an anonymous class of individuals. The two types of quantifiers are:

o Theexistential quantifier (3), which isinterpreted in OWL as* some values from.”

o Theuniversal quantifier (), which can beinterpreted in OWL as* all Values From.”
e Cardinality restrictions (i.e., minimum, maximum, exact).

e hasVauerestrictions (3).

2.5.7 Existential Restrictions

Existential restrictions (3) are the most common type of restriction used in OWL ontologies. For a set
of individuals, an existential restriction specifies the existence of at least one relationship along a
property to an individual that is a member of a specific class. For example (3 hasBase PizzaBase)
describes all the individuals that have at least one relationship along the hasBase property to an
individual that is a member of the class PizzaBase. Notice these are necessary conditions. As shown
in Figure 2-17, for something to be a Pizza, it is necessary for it to have (at least one) PizzaBase.

Therefore, aPizzais a subclass of the things that have at least one PizzaBase.

2.5.8 Reasoners and RacerPro

One of the key features of ontologies described using OWL-DL is that they can be processed by a
reasoner. One of the main services offered by a reasoner is subsumption testing which determines
whether or not one class is a subclass of another class. By performing these tests on the ontology’s
classes, it is possible for a reasoner to compute the inferred ontology class hierarchy. Further, a
reasoner can perform consistency checking. A reasoner can check on whether or not it is possible for
a class to have any instances based on the descriptions or conditions of that class. A class is deemed

inconsistent if it cannot possibly have any instances. To reason over ontologies constructed under

29

Protégé-OWL, a Description Logic Implementers Group (DIG) compliant reasoner may be used. This
thesis uses the RacerPro reasoner alowing the manually constructed ontology in Protégé-OWL,
called the asserted class hierarchy, to be sent to RacerPro reasoner to compute the classification
hierarchy and to check the logical consistency of the ontology. The reasoner’s automatically
computed ontology is called the inferred class hierarchy. The task of computing the inferred
hierarchy is called classifying the ontol ogy.

Pizza

hasBase

-
.=
chhd -
.=
-
-
-e

PizzaBase

Things that have at least
one PizzaBase

Figure 2-17: Schematic description of a Pizza[Hor 04].

2.5.9 Necessary and Sufficient Conditions

The OWL classes discussed so far have been described using only necessary conditions. A class
specified with only a necessary condition is known as a primitive class. A necessary condition reads

as

“1f something is a member of this class, then it is necessary to fulfill these conditions.”

However, with necessary conditions alone, it is not possible to infer whether something that fulfills
these conditions is actually a member of the class. For example, consider the subclass of Pizza called
CheesyPizza which is a Pizza that has at least one kind of CheesyTopping. Consider now the
primitive class description of CheesyPizza shown in Figure 2-18(i), which states that, if something is
a member of the class CheesyPizza, it is hecessary for it to be a member of the class Pizza and it is
necessary for it to have at least one topping that is a member of the class CheesyTopping. Suppose

that it is known that a particular individual is a member of the class Pizza and that this same

30

individual has at least one kind of CheesyT opping. Given the current primitive class description of
CheesyPizza, the knowledge about this particular individual is not sufficient to determine whether or
not the individual is a member of the class CheesyT opping.

NECESSARY CONDITIONS NECESSARY & SUFFICIENT CONDITIONS
[Condition] - [Condition]
NamedClass opie > l Condition l @ *Lhesb' l[E::::::::]l
[Condition] —
— [Condition]
[Condition |
Asserted Conditions O @@ ,léil T M Asserted Conditions R qﬁ-:’ i |
CESSARY & SUFFICIEN) SSARY & SUFFICI
ssaRY | LC)Pizza =
\C) Pizza = (33 hasTopping CheeseTopping
23 hasTopping CheeseTopping c E
- INHERITED - INHERITED
('3 hasBase PizzaBase [from Pizza][€ || (33 hasBase PizzaBase [from Pizza][C]
If CheesyPizza, then necessary to be a Pizza and have If Pizza and have at least one CheeseTopping, then
at least one CheeseTopping topping sufficient to determine individual is a CheesyPizza
(i) (i)

Figure 2-18: Description of CheesyPizza.

To be able to classify the individual, the conditions for the CheesyPizza need to be changed from
necessary conditions to necessary and sufficient conditions, as shown in Figure 2-18(ii). This means
that not only are the conditions necessary for membership in the class CheesyPizza, they are also
sufficient to determine whether any (random) individual that satisfies these conditions must be a
member of the class CheesyPizza. In OWL, primitive class description have only necessary
conditions, whereas define class definition have at least one necessary and sufficient condition. Any
individual that satisfies the definition will belong to the defined class.

2.5.10 Automatic Classification

Being able to use a reasoner to automatically compute the inferred class hierarchy is one of the major
benefits of building an ontology with OWL-DL. When constructing very large ontologies, which may
contain several thousand classes, the use of a reasoner to compute subclass-superclass relationships
becomes vital to maintaining the ontology and keeping it logically correct. Further, in multiple
inheritance cases where ontologies have classes that have one or more superclasses, it is often better
to construct the asserted class hierarchy as a smple tree. Then the reasoner is used for computing and

maintaining multiple inheritance hierarchy coordination. Doing this helps keep the ontology

31

maintainable, extensible, reusable and modular, and helps to minimize human error.

2.5.11 Universal Restrictions

Universal restrictions (V) mandate that the only relationships that exist for a given property must be
toindividuals that are members of the specified filler class; that is, universal restrictions constrain the
relationship along the specified property to individuals of a specified class. For example, V
hasTopping M ozzarellaT opping describes all the individuals all of whose hasTopping relationship
are to member of MozzarellaTopping. In other words, individuals do not have a hasTopping
relationships to individuals that are not members of MozzarellaTopping. Note that the universal
restriction V hasTopping M ozzar ellaT opping also describes the individuals that do not participate
in any hasTopping relationships. An individual that does not participate in any hasTopping
relationships by definition does not have any hasTopping relationships to individuals that are not
members of MozzarellaTopping, and the restriction is therefore satisfied. Therefore, for a given
property, universal restrictions do not specify the existence of a relationship, but merely statethat if a

relationship exists for the property then it must be to individuals that are members of a specified class.

2.5.12 Open World Reasoning

Reasoning in OWL-DL is based on the Open World Assumption (OWA), and is often referred to as
Open World Reasoning (OWR). OWA means that it cannot be assumed that something does not exist
until it has been explicitly stated that it does not exist. In other words, just because something has not
been stated as true, it cannot be assumed to be false. Instead, it must be assumed that the knowledge
has just not yet been added to the knowledge base.

2.5.13 Closure Axioms

A closure axiom on a property consists of a universal restriction that acts along the property to
specify that it can only be filled by the list of specified fillers. The restriction has afiller that is the
union of thefillers that occur in the existential restrictions for the property. For example, Figure 2-19
shows the closure axiom on the hasTopping property for MargheritaPizza is a universal redtriction
that acts along the hasTopping property, with a filler that is the union of M ozzarellaT opping and
TomatoT opping; that is, V hasTopping (MozzarellaTopping U TomatoTopping). This restriction

32

says that if an individual is a member of M argheritaPizza, then the individual must be a member of
NamedPizza, and it must have at least onetopping of the kind M ozzar ellaT opping, and it must have
at least one topping that is a member of TomatoT opping, and the toppings must only be of the kinds
M ozzar ellaT opping or TomatoT opping.

Asserted Conditions ” Fﬁ 4 @ X

£ NamedPizza SES
-Ef;'v hasTobpina (MozzarellaToppina LI TomatoToopina) E
('3 hasTopping TomatoTopping E
33 hasTopping MozzarellaTopping c
i@ 3 hasBase PizzaBase za][€]

Figure 2-19: Example of closure axiom.

2.5.14 Extending OWL -DL with Value Partitions

A Value Partition (VP) [Hor04, W3c05] is not part of OWL, nor any other ontology language. VPs
are used to refine the descriptions of OWL classes. A VP is essentially an ontological design pattern,
analogous to a design pattern in meta-modeling, whose value classes, as shown in the example in
Figure 2-20(i), are digjoint and their union makes up a set that is covered, as shown in the example in
Figure 2-20(ii). VPs are solutions to modeling problems that occur repeatedly across a number of
different ontologies or domains and mode descriptive features such as qualities or attributes as OWL
properties whose range specifies the constraints on the values the property can assume. Consider the
example VP called SpicinessValuePartition, as shown in Figure 2-20, that describes the spiciness of
PizzaT oppings. The VP restricts the range of possible values to an exhaustive list. For example,
SpicinessValuePartition, modeled as the functional object property hasSpiciness, restricts the range
of hasSpiciness to the digoint subclasses Mild, Medium and Hot, as shown in Figure 2-20(i),
represent degrees of spiciness. In Figure 2-20(ii), SpicinessValuePartition is defined with a covering

axiom to make thelist of spiciness exhaustive.

2.5.15 Covering Axioms
A VP partition uses a covering axiom. A covering axiom consists of two parts:

e Theclass being covered.

33

e Theclasses that formthe covering.

For example, consider three classes: class A, class B and class C, where B and C are subclasses of
A, as shown in Figure 2-21(i). Suppose that a covering axiom specifies that A is covered by B and C.
This means that a member of A must be a member of B and/or C. If B and C are specified to be
disoint, then a member of A must be a member of either B or C. Recall that normally, if B and C are
subclasses of A, then an individual may be a member of A without being a member of either B or C.
However, a covering axiom manifests itself as a class that is the union of the classes being covered
and conceptually forms a superclass of the classes that is being covered. In this case, A would have a

superclass of B U C, as shown in Figure 2-21(ii).

< =y
I

For Project: L] pizza.owl

€ po Y .
yserted Hierarchy % tt_' x &3 ¢El

LC) owl Thing
b C)DomainConcept

¥ (C)ValuePartition

Agserted | Inferred

¥ |C)SpicinessValuePartition Asserted Conditions & g R
C:IIHUI) HE e Ak & SLIFF =]
=) Hot L Medium Ui Mid [&]
L C) Medlium e
.C) Mild |.C) ValuePartition [c]
(i) (ii)

Figure 2-20: Example value partition.

2.5.16 Cardinality Restrictions

In OWL, aclass of individuals can be described by cardinality restrictions to have at least, at most or
exactly some specified number of relationships with other individuals or datatype values. For a given

property P:

e A minimum cardinality restriction specifies the minimum number of P relationships that an

individual must participate in.

e A maximum cardinality restriction specifies the maximum number of P relationships that an

individual can participatein.

e A cardinality restriction specifies the exact number of P relationships that an individual must

participate in.

Relationships between pairs of individuals are only counted as separate if it can be determined that

theindividuals arein fact different from each other.

C
B
A
Without a covering axiom, B and C are With a covering axiom, B and C are subclasses of
subclasses of A. A and A is a subclass of B union C

® (i)

Figure 2-21: Effects of a covering axiom: (i) uncovered; (ii) covered [Hor04].

2.5.17 hasValue Restrictions

A hasValue restriction (3) describes the set of individuals that have at least one reationship along a
specified property to a specific individual. For example, the hasValue restriction
hasCountryOfOrigin > Italy, where Italy is an individual, describes the set of individuals of the
anonymous class that have at least one relationship along the hasCountryOfOrigin property to the

specific individual Italy. This thesis does not use hasValue restrictions.

2.6 M eta-modeling with UM L

A meta-model makes statements about what can be expressed in the valid modes of a certain

35

modeling language [Sei03]. A Metamodel is a model of a modeling language that defines the
correspondence between a model and a system. A meta-model makes statements about what can be
expressed in the valid models of a certain modeling language. For example, the common
understanding of the 4-layer Model Driven Architecture (MDA) is given in the general modeling
architecture shown in Figure 2-22. The MDA architecture provides a standard meta-modeling

framework for model and meta-data driven systems as follows:

Defines
Meta-metamodels
Meta-

metamodel M 3

Abstraction

Figure 2-22: A general, 4-layer modeling ar chitecture inspired by MDA.

e The M3 Meta-Object Facility (MOF) Layer is the self-defining, MDA meta-meta-model layer
that provides a standard framework for model-driven and meta-data-driven systems. MOF is the
basic mechanism for defining modeling languages. MOF is essentially a subset of Unified
Modeling Language (UML) class diagrams plus Object Constraint Language (OCL).

e The M2 Meta-Model Layer is the layer where modeling languages are defined. Examples of
applicable modeling language include: the Unified Modeling Language (UML), the Common
Warehouse Metamodel (CWM) and the Ontology Definition Metamodel (ODM). MOF uses a
UML graphical notation.

36

e The M1 Mode Layer is where real-world models (i.e.,, domain models) are developed using
concepts such as classes, relations and states. UML constructs such as classes, relations and states

areinstance of meta-model concepts.

e The MO Instance Layer contains concrete instances such as object, data and executions that

model real world things.

2.6.1UML

The Unified Modeling Language (UML) is an abject-oriented modeling paradigm and graphical
notation that has become a de facto academic and industrial standard for modeling software systems
[Lar98, Omg05a, Omg05b]. UML has recently been extended by the semi-formal Object Constraint
Language (OCL) which allows UML models to express constraints on object semantics [War98].
However, there are still many aspects of UML that rely heavily on natural language descriptions.
OWL-DL -based ontologies rely on description logic [Baa03] to provide a well understood, semantic
basis. Object models for software engineering are a hierarchy of classes and their attributes and
methods with overridable inheritance. This thesis assumes UML is generally better-known and well
understood by most software engineering practitioners compared to OWL-DL. As aresult, this thesis
uses only a subset UML, as shown in Figure 2-23 and used predominantly in Chapter 5. Thereader is
directed to [Fow04] for a condensed reference guide of UML 2.0. Table 2-1 presents a comparison of
UML and OWL-DL based on the tables presented in [Usc06].

Object Class L Multiplicity
Generalization
1
Class Name Super Class exactly one
Class
Object / Role * zero or more
Class (many)
id : Class Name
ol e
Association (optional)
A roleofB| . Composition m.n pumerically
role of A Class ¢ Class specified

Figure 2-23: Support UML constructs [Bel91].

37

UML OWL-DL

Classes are templates for creating objects Classes are sets of individuals with common characteristics
Every instance has a unique class (not necessarily) An individual can be in multiple classes

Instances always in the same class Individuals can change class at runtime

Set of classes fixed compile time Can add new classes and edit classes at runtime

Classes are primitive Class expressions are possible (not in Protégé-OWL)

Properties are defined independently from any particular class and
Attributes are defined locally to a class associated to multiple classes via domain and range constraints and
inheritance

Can have different attributes with same name in different

Property names are unique
classes perty 4

Associations may be n-ary where binary association ends

are analogous to OWL domain and range Binary properties only

No property hierarchies (but association refinement) Property hierarchies are supported

Classes are primitive, not defined using properties Properties are used to define classes

Instances can have values only for attached attributes Individuals can have arbitrary values for any property

Inheritance is like an overridable template for creating Inheritance is strictly logic-based, no overridable defaults — inference is
instances for programming convenience not inference key

Computation-based Inference-based

Closed-Word where unknown = FALSE Open World where unknown = UNKNOWN

Compiler problems indicate errors at build time only Reasoners check consistency at build time and at run time

Mature with range of commercial tools and products Still maturing with commercial tools and products still emerging

Table 2-1: Tabular comparison of UML and OWL-DL based on [Usc06].

2.7 SDL

The International Telecommunications Union (ITU) developed the Specification and Description
Language (SDL) to give telecom administrations and manufacturers a common language precisely
and unambiguous specifying the behavior of telecom systems [Bel91]. SDL has become a general
language for specifying the discrete stimuli-response behavior of most interactive, real-time system
[Mit99]. The theoretical foundation of SDL is that of communicating extended finite state machines
(CEFSM) [Hie01]. Examples of other CEFSM-based languages include Estelle and Lotos [Tur93].
The structure of the language is hierarchal and the use of abstract data types is supported. SDL hasa
graphical syntax called SDL/GR and a linear (textual) form called SDL/PR that share a common

abstract syntax. Communication between SDL processes is performed asynchronously via channels

38

and infinite, but not unbounded first-in-first-out (FIFO) queues. A detailed description of the formal
static and dynamic semantics of SDL is given in [Bel91, 1tu9l]. In this thesis, only the SDL/GR
notation is used. The subset of supported SDL constructs for his thesis is given in Figure 2-24. The
reader is directed to [Bra3] for atutorial paper on the basic concepts, ideas and features of SDL.

block input g delaying)channel v \

nondelay channel

(state) output) >
process ¢

signalroute
\) task - -[comment 9 >

Figure 2-24: Subset of supported SDL constructs.

2.8 Runtime Monitoring

This section introduces the concepts behind runtime monitoring (RTM) and includes several model-
based runtime monitoring approaches from the literature related to the work presented in this thesis.
The reader is directed to [Sch95] for a tutorial on runtime monitoring and to [Gat04] for a

comprehensive taxonomy and catalog of runtime software-fault monitoring tools.

2.8.1 What is Runtime M onitoring?

In software engineering, the concept of runtime monitoring (RTM) is normally associated with
software dependability* [Pla84]. RTM is applicable to software testing during development and
maintenance, and to ensure that software systems execute as intended in their production
environments. RTM allows the observation and tracking of genuine runtime data in the laboratory or
the production environment. The monitored data collected may be used for statistical purposes or to
detect when a program has entered an illegal or unexpected state. Many of the RTM tools described

in the literature require a software engineer to have intimate knowledge of the target. In other words,

39

most RTM tools take a whitebox monitoring approach.

Traditionally, RTM has been used to observe the behavior of operational, real-time applications for
statistical data collection or to detect behavioral failures. It is paramount that RTM should not
appreciably alter the internal timing constraints of the target system and therefore, monitored data is
usually logged and analyzed off-line. This is still true for most resource-limited, embedded system
environments. However, with the recent significant advances in raw processing power present,
especially for heavyweight serversin online application environments, it is not unreasonable to assign

some percentage of CPU processing time (e.g., < 10%), specifically for RTM purposes.

Figure 2-25 provides an overview of the traditional approaches to RTM. Early approaches used
stand-alone hardware, software embedded into the target or a combination of both external hardware
and internal software. More recently, monitoring software has migrated out of the target software
system and runs on a separate, stand-alone host. With the advent of aspect-oriented approaches, there
is new interest in using automated aspect-weaving technology to facilitate software instrumentation.
These aspect-based software sensors range in capability from those that report raw to those that
providelocal processing and report value-added monitoring data [DetO1, ThaOla, ThaOlb].

282 RTM Types

In general, these are the categories of RTM systems.

e A hardware monitor is a class of monitoring tool that can be attached to a target via test probes,
keeping the hardware monitor completely separate from the target. Attaching test probes requires
detailed knowledge of the target’s hardware architecture and implementation as wel as a clear
specification of which signals are to be monitored. The degree of sophistication of these tools is
based on the level of sdf-control they possess. For example, simple, unintelligent hardware
monitors are manually controlled and often require human intervention. On the other hand,
intelligent hardware monitors use programmable logic running under microcomputer control.
Examples include sophisticated test equipment such in-circuit emulators, logic analyzers that

attach directly to a system’s internal data bus and communications analyzers that can monitor

! Software dependability is the trustworthiness of a software system such that reliance can be justifiably placed
on the service the software delivers [Lyu96].

40

data and control traffic flowing across complex networks. One major drawback to hardware
monitors is that it is very difficult to identify interesting events in a problem-oriented manner or
deal with certain dynamic aspects, such as process creation and destruction. In general, hardware
monitors are excellent for use in debugging system software and firmware, but fall short in

monitoring and measuring application programs.

Software
Development
Process

\ i \ 4

Symboll_c hardware probes Executable
Information or software
monitoring A
A interface
\J y
SI:tTI::e > Real-World
GUI < RTM — 7] Environment
Systems
1k
y

Log

Figure 2-25: Example configuration for runtime monitoring for real-time softwar e system.

A software monitor is a program, or program fragments, that executes on the monitored target,
presenting the opportunity to employ an application-oriented approach to monitoring. However,
the execution of additional instructions (i.e., software sensors) embedded in a target can cause
serious time and space interference in time-critical, real-time or embedded software systems.
Unlike hardware monitors that tend to be sample-driven, software monitors are typically event-
driven. There are three general classes of software monitors: (1) those that measure and gather
accounting statistics, (2) those that detect and report internal error and failures, and (3) those that
measure and/or command performance. Satistical monitors are commonly used to measure and
command values from a predefined data set, such as the number of times a particular resource is
accessed, or the time of day a resource was used. Error and failure detection monitors typically
do not perform any measurements, but instead carry out an internal audit function such as
counting the number of times a particular error, once detected, occurs. Response performance

monitors are designed to collect performance data for statistical purposes. Software monitors are

41

often not suitable for continuous monitoring and measurement activities in a full production
environment because of the excessive amount of data reduction that may be necessary before
collected event traces can be made meaningful. Software monitors are often suitable only for a

particular application domain or implementation.

e A hybrid monitor uses a combination of specialized hardware devices and interfaces in
conjunction with a software monitor. The software monitor may reside within the target system or
may actually run on a physically separate host processor. The hybrid monitor approach offers a
reasonably good trade-off between the hardware and software approaches. A hybrid monitor can
observe and track the behavior of target as well as collect trace data and detect illegal or

unexpected process states.

2.8.3 Date Structure Monitoring

Software audit programs monitor the evolving data structures of real-time software systems to detect,
and possibly correct, software data errors before they manifest as failures [Con72, Pen80]. A
software audit program typically consists of additional software that periodically accesses and checks
some or all of atarget software system’s data structures for errors. Audits are designed to use three
main error checks: (1) direct comparison error checks using duplicate data structures for comparison
purposes to check data integrity, (2) association comparison error checks using data structure
redundancy such as doubly-linked lists to check the structural integrity of the data structures, and (3)
format comparison error checks to perform commonsense checks to identify out of range or bound
errors. While audits are able to detect software errors before they manifest as failures, they are limited
in scope and may themselves contain faults which could potentially reduce the reliability of the target
software system. The monitoring approach proposed in this thesis uses additional software, called
software sensors, and differs in that sensors produce commands that are sent to an external monitor
and used to construct a representation of the instrumented target’s evolving software structure, rather

than for comparison purposes with internal data structures.

In [Rod97], the Nanites approach is described that simplifies the task of monitoring complex data
structures to address the difficult problem of monitoring system component interactions in data-
centric systems. The Nanites is an object-oriented approach that incorporates a Monitor object
attachment; that is, a watcher module attaches a Monitor object to each data object in its scope-of-

interest. When a method is invoked on the data object, the same method is invoked on each Monitor

42

object attached to it, thus giving each attached Monitor object an opportunity to respond to the
method invocation. Monitor objects can be given pre- and post-opportunities to respond by calling the
Monitor’s method both before and after the change is made. This approach requires each data object
to store a list of references to Monitor objects that are attached to it. This approach is similar to the
monitoring approach in [Gha03] in which a local monitor attached to a process reports state changes

to a central monitoring point that performs the required state consistency checks.

2.8.4 M odel-Based Monitoring

Real-time supervision (RTS) is a blackbox behavioral monitoring approach that passively observes the
external inputs and outputs of an operational software system while interpreting a supervisor-model
derived from the target’s software requirements specification [Hay91, HIa95, lor94, Sav97]. The
organization block diagram for RTS is shown in Figure 2-26. The RTS reports a discrepancy between
the observed and expected behavior of the operational software systems as a failure. One of the chief
disadvantages of RTS is that detection is complicated by the state explosion problem [Hie01] due to
the occurrence of specification nondeterminism in the SDL-based supervisor-model as the RTS

attempts to account for all possible observed behaviors.

inputs Target outputs
Supervisor
> interpreter .| expected observed |«
P “1 behavior behavior
buffer buffer
supervisor
model

)

failure report
Figure 2-26: Organizational block diagram of real-time supervision.

The monitoring approach in this thesis also uses an interpretable specification-based model, but

43

differsfrom RTS in a number of ways.

e The modd is concern-specific; that is, derived using both the target’s SDL-based software

requirements and software design specification for a selected structural software concern.

e The interpreter is greybox; that is both external and internal instrumented knowledge is used to

interpret the concern-specific.

e The monitor maintains a representation of the evolving software structure of the operational

target for selected software concern.

Response performance monitoring is a blackbox response time monitoring approach that observes
atarget’s external inputs and outputs, interprets a timepost-model derived from a combination of the
target’s SDL -based software requirements specification and tabular response objectives specifications
[Pek97, Pek03]. The timepost-model is extended using a new SDL construct called an Interval
Timing Directive. The interpreter tracks the specification state of the target, interprets the timepost-
model, and directs response time interval measurements using the interval timing directives for
guidance. The monitor can detect response time failures during the current observation interval and
response performance failures that have occurred over a number of previous observation periods. The
monitoring approach in this thesis also extends the concern-specific model with several new model
constructs. These new constructs are used to direct the interpreter on how to match and process
incoming monitoring commands that have been produced by the instrumented operational target

software system and delivered to the monitor’s greybox interpreter via the monitoring interface.

In [Zul04], a pseudo-greybox monitoring approach is presented where information about the certain
internal behavioral conditions is sent from the target to the monitor whenever the target enters a
stable state. The approach is pseudo-greybox because only limited behavioral reporting is possible at
high loads because the target may not enter a stable state for long periods of time. The monitoring
model consists of a set of concurrently executing nodes, where the state of each node is modeled such
that a state transition is only fired upon receipt of a message from another node or from the
environment. Rather than sessions, the system is assumed composed of a number of communicating
processes where the global state consists of the current state of all the processes in conjunction with
the state of the communication channels connecting each node. The monitoring approach in this
thesis is similar because it considers quiescent states, which are similar to the idea of stable states.

However, while a stable state is a global property of the target, a quiescent state is a session-oriented

property. The notion of session-orientation and quiescent states are explained in Chapter 6. For how

it is sufficient to know that every macro-step begins and ends in a quiescent state.

2.8.5 Other Related Monitoring Work

In [San93], a methodology for continuously monitoring a program for specification consistency at
runtime is described. The target program is annotated with formal specification constructs from a
formal specification language. The constructs are transformed into checking code, which is inserted
into the target program. Further, calls to this checking code are inserted into the target program
wherever at locations where the program may potentially become inconsistent with its specification.
If an inconsistency is detected, diagnostic information is provided. According to the authors,
significant effort is required each time the monitoring approach is applied to a different product line
family. The related monitoring approach may not detect al failure types. For example, lost or
superfluous signals would not activate checking code. In other cases, checking code may be
inadvertently activated while the program is in the wrong state. The monitoring approach in this
thesis uses model constructs and embedded software sensors that produce monitoring commands

rather than formal specification constructs and checking code.

In [Det01], the advantages and costs of using aspects to instrument a target to harvest runtime
information for offline (dynamic) analysis is examined. Information is harvested concerning program
state, memory state, and real-time requirements. Analysis aspects are inserted where execution-flow
join points are advised to collect on analysis data. Reference-probing aspects keep track of checking
legal, Java scoping hierarchies. Death-probing aspects determine when objects become unreachable.
Other analysis aspects include instantiation and collection behavior of live objects and threads, inter-
class behavior including references and call behavior, dead code removal for code that is never
executed and class preloading. This related approach also uses software sensors to collect runtime
information. However, location of software sensors is determined when the formal concern-specific

monitoring model is derived; that is, to facilitate application resource ownership monitoring.

e State evolution sensors are inserted into the program to command when the target executes a
macro-step and enters (or exits) a specification state according to the software requirements.
Recall from Chapter 1 that a macro-step indicates that a new state-dependent snapshot of the

evolving concern-specific structure has come into effect.

e Structural transaction sensors are inserted into the program to command when the target executes

45

a micro-step and completes a structural transaction according to the software design. Recall from
Chapter 1 that a micro-step only partially transforms the existing concern-specific structure of the
target to atransient state between macro-steps (i.e., between snapshaots).

Software health monitoring is another approach to error detection that promotes the continuous
monitoring of an operational target to provide an indication of well-being or health [Gha02, Lau05,
ThaOla, ThaOlb]. Software health monitoring strives for early detection of state and/or data
inconsistencies through the use of intelligent software sensors called health indicators. Software
hedlth, as a statigtical measure, is intended to be a comprehensive and diverse notion, rather than a
simple error or afailure indicator. Each software indicator monitors one or more specific facets of a
software system’s execution. From the perspective of this thesis, a facet may be viewed as some
concern-specific piece of runtime knowledge for an individual software concern, whose runtime
health is to being monitored. 1n taking the analogy further, the statistical measure produced by health
monitoring could be used to provide the well-being (or health) of either an individual software
concern or a collective set or basket of software concerns. Instrumentation for software health
monitoring tends to be more ad hoc and implementation-driven, whereas in the approach presented in
this thesis, instrumentation is driven by the need to provide runtime knowledge according to an

interpretable concern-specific monitoring model.

2.9 Interactive Session Oriented Service Domain

The application domain considered in this thesis is the interactive session-oriented service domain.
Interactive session-oriented services are typically delivered by software systems that are real-time
with soft deadlines, interactive, session-oriented, discrete event-driven, semi-stationary and non-
critical. It is assumed that the software system’s behavior requirements and design are specified using

SDL, aformalism based on communicating extended finite state machines.

2.9.1 Real-Time Softwar e Systems

Real -time software systems (RTSS) are tightly coupled to the external world and must respond to the
real-world in a suitable timeframe or by a specified deadline. In general, an RTSS is comprised of two
key component sub-systems: a controlling sub-system and a controlled sub-system. For the PBX, the

controlling sub-system is the call processor and control software and the controlled sub-system is the

46

switching network and subscriber circuits. It is the controlling sub-system that interacts with the

sarvice environment.

2.9.2 RTSS with Soft Deadlines

A soft RTSS depends on time constraints or deadlines where the inability of the RTSS to meet a
prescribed deadline does not necessary mean that a failure has occurred. In a soft RTSS, there is a
trade-off between minimizing the number of late transactions and minimizing the mean lateness. The
trade-off occurs because any attempt to minimize lateness usually results in even more deadlines
being missed. Instead, resources remain unavailable for new tasks because the resources are being
utilized by tasks whose deadlines have still not yet been met. Therefore, a soft RTSS is usualy only
concerned with achieving good average performance. The control program in the PBX used in this

thesisis a soft, real-time software system.

2.9.3 Interactivity

Interactivity is a mode of service operation with an “ input-compute-output” processing structure in
which end user commands (i.e., inputs) cause service responses (i.e., outputs) [Bac99, Bro01]. This
interactivity could be with humans, external hardware or other external software system. The control

program of the PBX is an interactive software system.

2.9.4 Session-Orientation

Session-orientation is an application-level attribute reflected in the behavior of the overall software
system. An application may consist of one or more non-terminating processes that operate through
repeated activations, possibly for an infinite number of times, resulting in the concept of cyclic
application. In general, these types of applications are referred to as session-oriented because they
aways return to a predetermined idle state upon completion of a current session before the

commencement of a new session. The control program of the PBX is session-oriented.

2.9.5 Discrete Event-Driven Software

Discrete event-driven software (EDS) is a particular class of software that is fast becoming ubiquitous

[MemO06]. All EDS systems share a common event-driven model in that they take sequences of events

47

(eg., messages, signals, mouse-clicks) as inputs, change their state, and (sometimes) produce an
event sequence as an output. A typical EDS code distribution is given in Figure 2-27. The control
program of the PBX in this thesisis a discrete EDS system.

2.9.6 Semi-Stationary Systems

A semi-stationary software system has specification states that may be categorized according to each
state's average holding times as either stable or transient [Gha03]. Semi-stationariness is a CFSM-
based process level property where:

e A dtable state has a rdatively long holding time compared to the sum of the maximum
communication channel delay and the local clock drift, such that a CFSM-based process spends
most of itstime in stable states.

e A transient state has a comparatively short average holding time. Periodically, an external input
is received by a process that then leaves a stable state, passes through a sequence of transient
states, and eventually settles again in a stable state.

The probability of observing a particular process in a stable state is much higher than the
probability of observing the same process in a transient state. Interactive, session-oriented services

exhibit asimilar process or system-wide semi-stationary property, but on a session-by-session basis.

Initialization
Code
15%

Exception
Handlers
25%

Event
Handlers
50%

Figure 2-27: A typical event-driven softwar e code distribution [M em06].

48

2.9.7 Non-Criticality

The monitoring approach presented in this thesis may not be suitable for software systems that are
classified as mission- or safety-critical. Critical software systems are typically RTSS with hard
deadlines whose catastrophic failure could have an impact on human safety, loss of life or major

financial or social losses. The PBX is a soft RTSS and, therefore, non-critical.

2.10 The PBX

For concreteness, the control program of a small private branch exchange (PBX) was selected for a
running example of an interactive session-oriented service and provides the reader with concrete
illustrations of the modeling concepts in this thesis. The PBX makes an ideal example target software
system service because it exhibits most of the characteristic and properties of the application domain.
Further, the control program’'s SDL requirements specification, SDL design specification and Java
source code were available. An operational Java implementation from a number of previous research
efforts was also available that could have been instrumented and used to collect operational state
evolution and ownership transaction traces. The layered architecture for the PBX in [Gha02, Lau05,
Tha0la] is adapted for example PBX used in this thesis and is shown in Figure 2-28. The PBX
control program is organized into a number of functional layers, as shown by the labels on the right
hand side of Figure 2-28. Each layer also has a corresponding ResOwn classification, as shown on the
left hand side of Figure 2-28. These classifications will be explained in the ResOwn description of
Chapter 4 and ResOwn specialization examplein Chapter 5. The different classes implemented in the
PBX control program are described in Table 2-2. A description of the PBX hardware can be found in
[Ece00]. To simplify the examples presented throughout this thesis, the functionality of the PBX has
been limited to those basic telephony services referred to as Plain Old Telephone Services (POTS)
and each line card is dedicated to an associated phone handler at PBX initialization.

49

Consumer
Layer

Phone Handler

(PH)

TTRX Scanner Line Card Scanner Cadence Service
(TSCAN) (LSCAN) (CSERY)

Serl-
Layer

Application
Resource
Layer

API Layer

Call Progress Tone
Manager (CPTM) J |

Channel Manager
(&)

TTRX Manager
(TM)

Channel
Channel
Channel

(CH)

Channel

(T'.I‘.liX)

TTRX Card
TTRX Card
TTRX Card

TTRX Card

Line Card
Line Card

)

Line Card
Line Card

| Hardware Application Program Interface |

| Hardware Memory Map Interface

Service
Delivery
Layer

Community
Service
Layer

Hardware
Abstraction
Layer

Hardware
Layer

Figure 2-28: L ayered interactive session-oriented service ar chitecture for the PBX.

50

PBX Class / ResOwn Max .
CEFSM Class Id Num Thread Description
.]] Manages idle line cards and dispatches phone handlers to call

Wait For Call Service Dispatcher WFC 1 yes request when offhook detected

Phone Handler Consumer PH 60 ves May be statically or dyn;njlca_lly assigned t_o a _Ilne card to handle
call requests for both originating and terminating phones

. . Periodically scans line card registered with LSCAN for switch hook

Line Card Scanner Supplier LSCAN ! yes change in switch hook status (i.e., offhook and onhook)

TTRX (Digit) Scanner Supplier TSCAN 1 ves Perl_odlcal_ly scans tou_ch tone receiver card registered with TSCAN
for incoming dialed digits
(1) Ringer Cadence: periodically cycles ringer relay on a
registered line card registered to make phone start and stop

Cadence Service Supplier CSERV 2 yes ringing
(2) Tone Cadence: periodically cycles idle relay on a registered
line card so tones will turn on and off

Call Progress Tone Provides managed access by connected line card and requested

9 Supplier CPTM 1 no dial, ring, idle, slow busy, or fast busy tone generator card to

Manager I
switching network.

Switching Network Supplier SN 1 no Conceptua_lly connects phones_ to resources or phones - actually
connects line cards to cards via uni-directional channels

Phone Handler . Manages a pool of dispatchable phone handlers - not required if

Manager Supplier PM ! no phone handlers are dedicated to line cards.

Line Card Manager Supplier M 1 no Man_ages a po_ol of line cards - not required if phone handlers are
dedicated to line cards.

Channel Manager Supplier CM 1 no Manages a pool of uni-directional space channels

Touch Tone Receiver :)

Card Manager Supplier ™ 1 no Manages a pool of touch tone receiver cards

Line Card Resource LC 60 n/a External_gateway (portal) between reaI-V_/orId phone a_nd phone
handler instance - one per phone - contains relay devices

Idle Relay Device Resource R 60 n/a Produ_ces idle tor_1e t_hat logically dlsconnect_s enclosing line card
from internal switching network - one per line card

Ringer Relay Device Resource RR 60 n/a Causes phone to start and stop ringing - one per line card
Used to connect two cards through the switching network - one

Space Channel Resource CH 30 n/a per uni-directional path through the switching network

Touch Tone Receiver Resource TTRX 7 n/a Used to detect statu_s change_ keys on a phone’s keypad, which

Card are converted to a dialed digit

Idle Tone Generator Resource IDLE 1 n/a Connected t_o aline c_ard by call ,progress tone manager to

Card produce an idle tone in a phone’s handset

Dial Tone Generator Resource DIAL 1 n/a May be conr_1ected t<_) aline car,d by call progress tone manager to

Card produce a dial tone in a phone’s handset

Ring Tone Generator Resource RING 1 n/a May be con_nected to_ aline carsl by call progress tone manager to

Card produce a ring tone in a phone’s handset

Slow Busy Tone Resource SBUSY 1 n/a May be connected to a IlneT card by c,aII progress tone manager to

Generator Card produce a slow busy tone in a phone’s handset

Fast Busy Tone Resource FBUSY 1 n/a May be connected to a line card by call progress tone manager to

Generator Card

produce a fast busy tone in a phone’s handset

Table 2-2: PBX class/ CEFSM descriptions.

51

Chapter 3

Overview

3.1 Introduction

This chapter provides an overview of the greybox approach to concern-specific, dynamic software
structure monitoring presented in this thesis. The intent of the chapter is to introduce the reader to

some of the important concepts used throughout this thesis.

3.2 Dynamic Software Structure Monitoring

This thesis describes a novel greybox approach of monitoring the evolving resource ownership
structure for interactive session-oriented services. Figure 3-1 shows the concern-specific software
structure monitor executing as a separate program. The monitor has limited access to the operational
target’s internal implementation via a monitoring interface. The monitoring interface is comprised of
software sensors that are embedded into the operational target’s source code implementation. In this
thesis, the monitored target software system is the call processing program of a small private branch
exchange (PBX). The PBX (Section 2.10) is assumed to be embedded into an Internet Telephony
Gateway (ITG) [Rosed8], as shown in Figure 3-1. The ITG operates as an application-level proxy and
provides protocol translation services for the Internet Protocol (IP) network and the PBX. When a
cal from an IP host arrives, the ITG ensures it reaches the intended destination. Similarly, a
subscriber must connect through the ITG to place a call through an IP host. Monitoring is performed
at the application-level; that is, that layer responsible for implementing network appliances and
applications [Kur01]. The monitor is capable of tracking the evolving resource ownership structure

for calls originating on both Internet trunks and subscriber lines.

52

Internet Telephony
Gateway

Subscriber
Lines

General-
Purpose
Computer

Virtual
Trunk Handler

Telephone
Switch

Monitoring
Interface

Greybox
Monitor

Internet
Phone

Packetized
Internet
Trunks

Telephony
Gateway

Figure 3-1: Internet Telephony Gateway with embedded PBX and greybox monitor.

An architectural overview of the monitor’s typical working environment is given in Figure 3-2. The

manually derived sensor plan specifies the location of embedded software sensors in the PBX source

code implementation. The dynamic knowledge base contains a representation, implemented in tuples,

of the evolving resource ownership structure of the operational PBX. The monitor interprets the

concern-specific model, which is actually comprised of two derived models:

e The state evolution mode is automatically derived from the target’'s SDL-based software

requirement specification and allows the greybox interpreter to track the specification state (i.e., a

macro-step in the evolving structure) of the operational PBX on a session-by-session basis.

e The EoB modd library is automatically derived from certain slices of the target’s SDL-based

software design specification. Each EoB model contains constructs that direct the interpreter so

that it can process the incoming structural resource ownership transactions (i.e,, micro-stepsin

the evalving structure) as they arereported by the instrumented target.

The monitor’'s greybox interpreter receives monitoring commands from the operational target via

the monitoring interface. Two types of monitoring commands are produced:

e A state evolution monitoring command indicates the beginning or end of a macro-step or

requirements level state transition in the instrumented target. At the beginning of a macro-step,

the greybox interpreter loads the appropriate EoB model from the EoB library and begins
interpreting the model. As explained in detail in Chapter 6, a macro-step occurs between two

guiescent states in the state evolution model.

53

Inputs Target Software Outputs
—_— —
System

_.e Monitoring Interface

wyed fO55-
Sensor S]_e_r[_.-
Plan /l/Monitoring Commands

Y Structure Monitor

Greybox Interpreter| ;. s 0
Concern-Specific Model

[}

(] (]

' '

' -

‘| state FoB E Dynamic

i| Evolution Library | Knowledge
1| Model " | Base

[}

Leccdecccccccncanas v

.
\ \
s derived from 3 .
\ \ derived from
‘l 'l
\ \

Requirements Design
Specification Specification

Figure 3-2: Architectural overview of the softwar e structure monitor.

e A sdtructural transaction monitoring command indicates a micro-step or design-level state
transition has occurred in the instrumented target. Each micro-step corresponds to the successful
completion of an individual structural resource ownership transaction and causes the interpreter to
add, remove or update an appropriate number of tuples in the dynamic knowledge base. Each
structural transaction is essentially a graph transformation rule that synchronizes the evolving
resource ownership structure stored in the dynamic knowiedge base with the actual evolving

resource ownership structure inside the instrumented target.

An overview of ResOwn in the concern-specific software structure monitor approach is given in
Figure 3-3. As shown, the baseline ResOwn ontology (Chapter 4) can be specialized with application-
specific ontological classes derived from the PBX (Chapter 5). The specialized ResOwn ontology is
then automatically classified using a reasoner, resulting in a specialized ResOwn instance (Chapter 5).
The resulting specialized ResOwn instance is then used to manually construct tables (Chapter 7) that
the interpreter uses to convert structural transaction monitoring commands to tuples for insertion into,

or removal from, the dynamic knowledge base during runtime monitoring.

Application-Specific

Knowledge

(PBX application classes/CEFSMs)

Baseline l
ResOwn |«----%---]

Ontology InstanceOf

Specialized
ResOwn

Instance
(Classified)

ExtractedFrom

Figure 3-3: Block diagram overview of approach.

Interpreter's Command-to-Tuple
Translation Tables

(INSTANCE, ACQUIRE, REGISTER commands)

(Consumer, Supplier, Resource List) > Tuple Format

Although the greybox approach to concern-specific dynamic software structure monitoring

presented in this thesis uses a number of projections of the target’s behavioral specifications to derive

the concern-specific model, the monitor’s objective is not to detect behavioral errors or failures.

Rather, its prime objective is to track the runtime evolution of the target’s resource ownership

structure. The objective is very specific and narrow in scope. If the monitor does detect any behavior

errors due to one or more incorrectly ordered structural transactions, then this is a side-benefit of the
approach, and not the monitor’s true intent.

55

Chapter 4
The ResOwn Ontology

“Thefirst step towards wisdom is calling things by there right names.”

- Chinese Proverb

4.1 Introduction

This chapter introduces ResOwn, a novel ontology for Application Resource Ownership Ontology.

ResOwn provides a vocabulary along with a set of concepts and properties for modeling the

application resource ownership structure of operational software systems. ResOwn is:

Concern-specific because its domain of discourse is the individual software concern for

application resource ownership structure in object-oriented software systems.

Application domain-specific because its intended application domain is interactive session-

oriented services that are delivered by discrete, event-driven, soft real-time software systems.

Role-based because it supports the notion that objects in the operational software system are

capable of playing different, context-sensitive resource ownership roles.

Flexible because the resource ownership structure it models is not hard-coded into the resource
and owner model concepts, but instead built upon a dedicated concept of proof of ownership
instruments. These instruments support a rich notion of resource ownership that allows different
owners to play different ownership roles, each with different ownership rights, even with the

Same r esour ce.

Modular, as shown in Figure 4-1, because its structure has been intentionally constructed as two

main subontologies, where a subontology is defined as a top-level subclass of the domain of

56

discourse which subsumes either:

o All concern-specific knowledge is encapsulated as core concepts or classes and manually
placed (i.e, asserted) under the ResOwn core subontology. In this thesis, core concepts

pertain to the selected application resource ownership concern.

o Any related knowledge not directly part of the selected concern is encapsulated as support
concepts or classes and manually placed (i.e, asserted) under the ResOwn support
subontology. Support concepts are used to support property restrictions of defined classes in
the ResOwn core subontology. In this thesis, support concepts pertain to the interactive

session-ariented service application domain, resource capacity, and object persistency.

: Grouping Concepts owl: Thing o
I:l Ontological Concepts Y meeeedecaan s
L} * "
']
Domain Of Discourse E Genleral H
P Yalue |
? ! Partition | ,
i iaiaigelvivivivis niviriuisisii it I Saiaiiulviviviled drieiuinisiel H ;
' . Application I ?* '
' CONCERN-SPECIFIC | concern- Specific ¢ D PP P I H
v KNOWLEDGE Concept [CUIENDR T ' | General |}
H (CORE ' ' Concept I Value !
\ SuBONTOLOGY) HE I Class '
: 1 f. P Y 1 i :
' [' GENERAL
[} L]
' Core e ' Support Support | | t KNOWLEDGE H
: Concept ULl : ' Concept pale I !
' Partition ' ! Partition |, “°°°°°°°°°°<
' ' s '
] []
H Core Core Core H : Support Support |}
H Defined Named Value H H Named Value H
' Class Class Class ' Class Class !
sy Il N '
reccccccadecccccaaa . H NON-CONCERN-SPECIFIC
: il ' ' KNOWLEDGE '
E Named ' ' (SUPPORT SUBONTOLOGY) E
' Application ' Lecccccccccccccccccccns .
H Class '
(]
N [}
! APPLICATION-SPECIFIC H
' KNOWLEDGE '
H (SPECIALIZED) '
L

Figure 4-1: Organizational block diagram of the entire ResOwn ontology.

Extensible because its concern-specific, core classes in the ResOwn core subontology can be

extended with application-level knowledge using process known as application-specific

57

specialization (Chapter 5) and new support classes may be added to support subontology.

o Automatically classifiable by a reasoner because it is defined using the standard Web Ontology
Language Description Logic (OWL-DL).

The organizational block diagram given in Figure 4-1 is intended to help readers organize their
thoughts as they read through the major sectionsin this chapter. This diagram is a schema or template
to be interpreted as follows:. an instance of a UML class diagram will be a containment hierarchy of
objects which is then reinterpreted as an inheritance hierarchy within the context of this thesis. This
thesis considers only a single, concern-specific ontology for application resource ownership structure
(i.e, ResOwn). The applicability of Figure 4-1 as a concern-specific ontology template to organize
knowledge for other software concerns is possible. However, a definitive statement of applicability

would require a number of test cases, and is therefore a subject of future work.

It will become apparent later in this chapter that the separation of core and support knowledge in
ResOwn is used to impose an important invariant on ResOwn object properties. This invariant
constrains how ResOwn property restrictions may be defined from an originating core class, in the
ResOwn core subontology, to aterminating support or value class (or classes) in the ResOwn support

subontology or value partitions, respectively.

4.1.1 Suggestion for Reading This Chapter

This chapter serves as a reference guide for readers already familiar with ResOwn. Unfortunately,
first-time readers will find reading this chapter from start to finish impractical and difficult without
the visual understanding of the ResOwn dynamic semantics obtained from Chapter 5. Asaresult, it is
suggested that a first-time reader of this thesis read this chapter up to the end of Section 4.4, then read
al of Chapter 5, and then return to Section 4.5 to complete reading the remaining chapter.

4.1.2 Chapter Organization

The remainder of this chapter is organized as follows. First, an overview of the main principles and
conceptualizations, including the ResOwn Prime Directive, resource benefits, the difference between
beneficiary and nonbeneficiary owners and the notion of proof of ownership is given. Second, a step-
by-step discussion is given to introduce the ResOwn top-level core, support and value partition

concepts and class hierarchies. Third, the ResOwn foundation, self-contained, bridging and inferred

58

properties types are defined, along with an annotated table containing al of the ResOwn object
properties. Lastly, the chapter concludes with a complete reference guide to all ResOwn classes
complete with individual natural language descriptions and the corresponding description logic (DL)

definitions that are presented in a hierarchical, tabular form.

4.2 Conceptual Overview

ResOwn is a modular, reusable, extensible and specializable concern-specific ontology that provides
the required vocabulary, concepts and properties, from the knowiedge representation domain, for
modeling application resource ownership structure, in the object-oriented software domain.
ResOwn’'s underlying application resource allocation and management scheme relies on an
ownership role- and ownership rights-based proof of ownership scheme that is presently applicable
for interactive session-oriented services. The modularization of knowledge encoded in ResOwn
implies that the ontology, in its current form, could be adapted to other shared-resource domains.
This might include low-level runtime environments that use lightweight resources such as memory
alocations, file handles and CPU execution time In this thesis, the scope of ResOwn was
intentionally limited for the heavyweight application resources. Therefore, from this point forward,
the terms resource and resource ownership should be interpreted by the reader to mean application

resour ce and application resource owner ship, respectively.

4.2.1 The ResOwn Prime Directive

ResOwn has been devised and constructed as a role-based resource ownership ontology under a

guiding philosophy or principle called the ResOwn Prime Directive' which states:

Every object that participates in the evolving resour ce ownership structure of
an operational software systemis assumed, under ResOwn, to be a Resource,

an Owner, or both a Resource and an Owner simultaneously.

Y In thefictional universe of the 1960s television show Star Trek, the Prime Directive is Starfleet’ s General
Order #1 and is the most prominent guiding principle of the United Federation of Planets [Wik06].

59

From a dynamic modeling or monitoring perspective, each object in the runtime system may be
represented as either a Resource and/or Owner in ResOwn depending on the particular structural
ownership context the objects findsitself in'. For example, in the PBX, a phone handler is an Owner,
aline card is a Resour ce to the phone handler and also an Owner to the card' sidle relay, which isa
Resour ce embedded into the line card. As will be seen later in this chapter, the Prime Directive
impacts ResOwn's static and dynamic semantics and this permits Resour ce subclasses to be also be
classified as an Owner subclass (i.e, multiple inheritance), and vice versa, in ResOwn's

automatically generated inferred class hierarchy.

4.2.2 Top-Level Concepts and Properties

Consider the top-level ResOwn classes and ResOwn properties, as shown in Figure 4-2.

e The concern-specific, core Resource class and core Owner class are used to represent the

existing physical objects of an operational software system.

e The Owner class subsumes the Consumer subclass, which essentially requests resources, the
Supplier subclass, which essentially provides resources, and Dispatcher subclass, which may

request and provide resources simultaneously. In the PBX:

o A phone handler is a Consumer instance because it may own and consume the benefits®

provided by a Resour ce instance.

o A channel manager is a Supplier instance because it can provide channels to phone handlers

upon request.

o A wait for call service is a Dispatcher instance because it can assign a phone handler to

process a call request when an originating phone goes off hook.

e The Resource class subsumes the Transfer able, Nontransfer able, Embedded and Compound

Resour ce subclasses. Inthe PBX:

! Thisis similar to the notion that a mobile software agent’ s role depends on the agent’ s local context [Ken99].
2 The definition for aresource benefit is given in Section 4.2.3.

60

o A touch tone receiver card is a Transfer able Resour ce instance because its ownership may

be directly transferred to a Consumer instance for exclusive use.

o A dial tone generator card is a Nontransfer able Resour ce instance because its ownership is

not directly transferable, but only beindirectly acquired via the call progress tone manager.

o Anidle relay device is an Embedded Resource instance because it is contained in a line
card. Theline card is a Transfer able Compound Resour ce instance because it contains an
idlerelay device and aringer relay device. Ownership of these embedded devices can only be

indirectly acquired via the line card.

The concern-specific, core proof of ownership Instrument class is used to represent the logical
association instances that are created or destroyed between Resour ce and Owner instancesin the

evolving resource ownership structure of an operational software system.

o Every Resource instance is logically bound to a unique Instrument instance via the

isBoundTo property.

o Every Instrument instance is logically bound to a holding Owner instance via the

hasHolder property and to an issuing Owner instance via the hasl ssuer property.

o The Instrument class subsumes the Base Instrument and the Extent |nstrument
subclasses. An Extent Instrument instance logically extends the ownership scope of an
associated Base Instrument instance via the hasExtent property (not shown). Looking
ahead, an example of an Extent Instrument instance (i.e, Serial License instance)
extending a Base | nstrument instance (i.e., Nontransfer able Titledeed instance) isgivenin
Figure 5-7 of Chapter 5.

o The ownership scope of an | nstrument instance is the n-ary association that includes at least
the Instrument instance and its holding Owner instance, issuing Owner instance and

associated Resour ce instance.

The concern-specific, core value partition containing the Owner ship Right value classis used to
represent predefined sets of ownership rights that are designated to a particular |nstrument
instance via the hasRight property for the associated Resource instance and are normally

assigned to the holder and/or the issuer of the I nstrument instance.

While the Instrument class is specified as digoint from the Resource and Owner classes, the

61

Resource and Owner classes are not specified as disjoint specifically because of the ResOwn Prime
Directive. Further, in Figure 4-2, inferred links are shown between the Owner and Resour ce classes
via the inferred inverse properties hasOwner and isOwnerOf. A detailed description of the ResOwn
properties is given in a tabular format in Section 4.4. The use of asserted and inferred properties will
be discussed in Section 4.4.1.

hasOwner (Resource,Owner) isOwnerOf (Owner,Resource)
/ ’ hasExtent (Instrument, ExtentInstrument) \
hasHolder \
isBoundTo \ (Instrument,
(Instrument, OwnerRole) o
Resource Resource) Instrument - v;n_er
(benefit) isBoundTo (proof of ownership) (beneficiary or
nonbeneficiary)
(Instrument, hasIssuer
Resource) j (Instrument,
OwnerRole)
. niVP)
ipnghtv
C logicalclass) physical class
/ \ (In#
A value class
Ownership =
Right — 3sserted properly (domain, range)
—~ = « « == jnferred property (domain, range)

Figure 4-2: Top-level ResOwn core classes and ResOwn pr operties.

4.2.3 Resour ces Benefits

In the legal domain, a benefit is any profit or acquired right or privilege, primarily through a contract
[Far06b]. In ResOwn, every Resource instance is assumed to be capable of producing a benefit. A
benefit occurs in ResOwn whenever a Resour ce instance produces or receives application-level data,
or produces an application-related control action, to the benefit of one (or more) Owner instances. A
benefit normally propagates to, or from, the environment. A valid benefit recipient must hold an
I nstrument instance with the necessary Data or Contr ol Access Ownership Right corresponding to
the associated Resour ce instance. In the PBX, a touch tone receiver card (i.e., Resource instance)
delivers dialed digit (i.e, a benefit) from the environment on behaf of a phone handler (i.e,
Consumer instance). Similarly, a dial tone generator card (i.e.,, Resource instance) delivers a dial
tone (i.e., a benefit) for the phone handler (i.e.,, Consumer instance) to the environment. This thesis

considers the exact nature of a benefit to be behavioral in scope and specified orthogonal to structure.

62

4.2.4 Beneficiary and Nonbeneficiary Owner Roles

In the legal domain, an owner is one who has legal title or right to something and a beneficiary is any
person or entity who receives assets or profits from any instrument in which there is distribution. In
ResOwn, the Consumer, Supplier and Dispatcher subclasses are specialized types (i.e. subclasses)
of Owner instances. However, each Owner type may also play one or more Owner Role instances.
While an Owner type is static, Owner Role instances may change dynamically according to the
resource ownership context(s) an Owner instance finds itsdf in. Therefore, types and roles are

specified separately in ResOwn.
An Owner instance may play a beneficiary owner role and/or nonbeneficiary owner role:

e A beneficiary owner holds the necessary I nstrument instance that alows it to own a Resource
instance and receive the Resour ce instance's benefit. Normally, only a Consumer instance may

be a beneficiary owner.

e A nonbeneficiary owner holds the necessary Instrument instance that allows it to own a
Resource instance but not to receive the Resource instance's benefit. Normally, all Owner

instance may be a honbeneficiary owner.

Contrary to the adage "Possession is nine-tenths of the law," possession in ResOwn does not
necessarily make one a beneficiary owner. In the PBX, the same line card (i.e., Resour ce instance)
may have a single phone handler (i.e., Consumer instance) as its beneficiary owner, and line scanner
(i.e,, Supplier instance) as a nonbeneficiary owner. Yet only the phone handler is entitled to receive

the switch hook status (i.e., the benefit) from the line card.

Distinguishing Owner Role instances in ResOwn provides an important means for dealing with
role-based resource capacity and capacity-based cardinality restrictions at runtime. In general, a
Resour ce instance may have multiple Owner instances, but not all of them are entitled to receive a
benefit. For example, consider a touch tone receiver (ttrx) card from the PBX with a specified user

capacity of 1 beneficiary owner:

o If thettrx card is owned by a phone handler and, at the same time, owned by a ttrx scanner, then

the card has one beneficiary owner and one nonbeneficiary owner; the capacity is not violated.

e |f the ttrx card is owned by two phone handlers at the same time, then the card has two

beneficiary owners; the capacity is violated.

63

Therefore, ResOwn's use of role-based resource ownership provides a means to distinguish

between Owner instances that can be monitored and checked at runtime.

4.2.5 Direct and Indirect Proof of Owner ship

In ResOwn, ownership is defined between an Owner instance and a Resour ce instance, and proof of
ownership is provided to an Owner instancethat is the holder of an appropriate Instrument instance

that is (directly or indirectly) bound to the associated Resour ce instance.

e Direct proof of ownership occurs when an Owner instance holds a Base I nstrument instance

that is directly bound to the owned Resour ce instance via an isBoundTo property restriction.

e Indirect proof of ownership occurs when an Owner instance holds an Extent |nstrument
instance that is bound to the Base | nstrument instance of the owned Resour ce instance via an
isExtentOf property restriction. The Extent Instrument instance facilitates the evolution of
resource ownership structure at runtime by extending a predefined set of Ownership Right
instances from the extended Base | nstrument instance to the holding Owner instance of the
Extent Instrument instance. Looking ahead again, two examples of how Extent |nstrument
instances facilitate the evolution of resource ownership structure at runtime are given in Figure 5-
7 and Figure 5-8 of Chapter 5.

4.3 Taxonomy Overview

The top-level of the ResOwn asserted class hierarchy is shown in Figure 4-3. ResOwn encodes and
integrates support and core knowledge into a single, unified application resource ownership domain
of discourse. The organizational block structure of ResOwn follows the diagram presented in Figure
4-1. Labes, shown in SMALL CAPS ITALICS with the ResOwn taxonomy in Figure 4-3, relate back to
corresponding blocks in Figure 4-1. These systematic, enforced modularizations of the overall
ResOwn ontology structure itself promotes extensibility, reusability, comprehensibility and
maintainability, and provides a path for creating a specialized ResOwn instance that extends the
baseline ResOwn ontology with application-specific knowledge. An example of a specialized
ResOwn instance for the PBX is presented in Chapter 5.

is-a
- 75‘3\
SuPPORT e Consum_pt|on
owl:Thing SUBONTOLOGY Delegation

is-a is-a

Instrument « Base = Titledeed
&2 CORE NAMED CLASSES
CORE CLASSES & Extent 43_7’:"’ License
VALUE PARTITIONS ‘% Proxy
K PermitToHold
is-a PowerOfAttorney

Resource ¢————— Transferable

\ Nontransferable
is-a Embedded

Compound
CORE
SUBONTOLOGY 3 sa
*/I?i’/ Owner & —————— Consumer
ResOwnCore s s Supplier
Dispatcher
= is-a CORE DEFINED &
is-a -
OwnerBase «——>2 Active VaLuE Crasses
Domain oF : hetive.
Discourse is-a

OwnerRole <2 Beneficary

is-a Nonbeneficary

ResourceOwnership

OwnershipRightVvP £2 pccess

Exchange

ResOwnSupport
is-a GENERAL VALUE ?PPOR; CLASSES & Sl:/mmé_v:”fp &
PARTITION /ALUE PARTITIONS _ /ALUE CLASSES
. - - 1s-a =
Persict. P GENERAL VALUE SessionOrientedService «—= ServiceThread
ersistency’ CLasSES ‘is-a\ SessionAccessPortal

is-a\ s~ PerS|ster_|t CapacityVP 54 SingleUser

Nonpersistent js-a Multiuser

Transient

Figure 4-3: Top-levels of the ResOwn class hierar chy.

4.3.1 Traversing the ResOwn taxonomy

Traversing down the ResOwn taxonomy from the owl: Thing root, as shown in Figure 4-3.

The top-level of the asserted class hierarchy consists of the ResourceOwnership domain of

discourse and the Persistency VP general (knowledge) value partition.

ResourceOwnership subsumes the ResOwnCore subontology and the ResOwnupport

subontol ogy.

The ResOwnCore subontology is disjoint from the ResOwnSupport subontology and is

comprised of concern-specific concepts:

o Core subclasses subsumed by the core Resour ce, Owner, Instrument classes.

65

o Core value classes subsumed by the Ownership Right VP core value partition.

The ResOwnSupport subontology is digoint from the ResOwnCore subontology and is
comprised of:

o Support subclasses subsumed by Session Oriented Service class.

o Support value classes subsumed by the Capacity VP value partition.

4.3.2 Top-Level Class Origins

The conceptualizations that make up the top-level classes in ResOwn, as shown in Figure 4-3, have

originated from a number of related or orthogonal domains of interest.

The Resour ce class originated from the client-server software domain [Cou01, Lew98] and the
DAML scheduling (resource) ontology [Dam00b].

The Owner class originated from a blend of thereal property and legal domains [FarO6b, Mcc02,

Yip04] and the client-server software domain [CouO1, Lew98].

The Instrument class originated from the real property and legal domains [FarO6b, Mcc02,
Yip04].

The Session Oriented Service class originated the interactive service domain [BroO1, KurO1]
and from previous work [Pek97, Pek03].

The Access and Consumption Ownership Right value classes originated from the software
domain [Mcca02, Pfl06].

The Exchange and Delegation Owner ship Right value classes originated from the real property
and legal domains [Far06b, Mcc02, Yip04].

The Capacity value class originated from the DAML scheduling (capacity) ontology [DamQ0a].

The Persistency value class originated from the object-oriented software domain [Cou0Q1].

4.3.3 Baseline and Specialized ResOwn Class Hierar chies

The basdline ResOwn ontology is application-general and, therefore, pertinent to a wide range of

software systems from the interactive session-oriented service application domain. A specialized

66

ResOwn ontology is application-specific; that is, the baseline ResOwn ontology is specialized or
extended with application-specific ontological classes that have been derived directly from a software
system’s actual object classes, resulting in a specialized ResOwn instance. An example to illustrate
how the basdline ResOwn class hierarchy is specialized using object classes from the PBX is
presented in Chapter 5.

4.3.4 ResOwn Completeness

This thesis does not claim that ResOwn is a complete ontology. The thesis aims to consolidate core
and support knowledge about resource ownership into a practical, workable and, maost importantly,
extensible resource ownership ontology for the selected interaction session-oriented service domain.
These factors make ResOwn useful inits current form, as well as adaptable to other new applications

or concerns, even if ResOwn is not complete.

4.3.5 Salf-Contained and Distributed Subclass Hier ar chies

In ResOwn, the top-level classes subsume either self-contained or distributed subclass hierarchies.

e Most of the top-level classes in ResOwn are self-contained; that is, al knowledge pertaining to
the particular top-level core class (eg., Resource or Instrument) is subsumed by a single
subclass hierarchy originating from the top-level core class itself. The self-contained approach is

used when knowledge is to be encoded into a single top-level class hierarchy.

e Thetop-level Owner class is distributed; that is, all knowledge pertaining to the particular top-
level core classis contained in a single subclass hierarchy that is subsumed by a single, top-level
core class (e.g., Owner) and called the main class plus one or more subclass hierarchies, each
subsumed by its own top-level core class (Owner Base, Owner Role) called a library class'.
Each library classis disjoint from its main class and from the other library classes. Library classes
are normally modeled as ResOwn properties. For example, Owner Role and Owner Base are
modeled as hasRole and hasBase, respectively, as shown in Figure 4-4. The distributed approach

promotes modularization and extensibility and uses property restrictions to related knowledge

! Analogous to a software library.

67

between the main class and each of the library classes.

FOUNDATION

(FD)
PROPERTY

isBoundTo

SELF-CONTAINED

PROPERTIES

Base
Instrument

hasExtent

(SC)

isExtentOf|

Extent
Instrument

hasIssuer

BRIDGING
(BG)
PROPERTIES

isIssuerof Owner

hasHolder

hasIssuer

hasHolder

isHolderOf
hasRole

SELF-CONTAINED
(SC)
PROPERTIES

hasBase

isOwnerOf

.......................... Owner

INFERRED
(INF)

PROPERTIES

Figure 4-4: Top-level coreclassesand key object properties.

4.4 Properties

In addition to an asserted class hierarchy, ResOwn also defines a number of properties'. In OWL,
object properties are used to formally specify links (i.e, property restrictions) between pairs of
individuals like those shown in Figure 4-4. For example, a Resource instance is linked to a
corresponding Base Instrument instance via the isBoundTo property. For presentation purposes,
ResOwn properties are grouped in a tabular format according to whether a property models a core,
support or value classin Table 4-1, Table 4-2, and Table 4-3. Each property in the tables is specified
along with its applicable property characteristics (i.e., Functional (F), Inverse (1), Inverse Functional
(IF) and/or Symmetrical (S), the corresponding inverse property (if applicable) and the property’s
associated domain and range. The definition of these property terms was given in the OWL-DL

tutorial in Section 2.5 of Chapter 2. While mostly self-explanatory, the meanings of each property

! ResOwn only uses OWL object properties.

68

will become more apparent once the reader sees how these properties are used in various property

restrictions to specify the ResOwn define classes shown later in this chapter.

4.4.1 ResOwn Property Extensions

In ResOwn, OWL object properties are extended in two ways.

e A property’s domain and range in ResOwn is constrained depending on whether the class the
property models is a core ResOwn concept, or merely providing a ResOwn support or value

concept, in accordance with the organizational block diagram of Figure 4-1.

o A core property models a core class from the core subontology and may only contain
individuals from other core classes in its domain and range. The ResOwn core properties are
shown in Table 4-1.

o A support property models a support class from the support subontology and may only
contain individuals from other core classes in its domain and individuals from other support

classesin its range. The ResOwn support properties are shown in Table 4-2.

o A value property models a value class from a value partition and may only contain
individuals from other core classes in its domain and individuals from value partition value

classesin its range. The ResOwn val ue properties are shown in Table 4-3.

4.4.2 ResOwn Property Types

Each ResOwn property has a property type, as shown in Table 4-1, Table 4-2 and Table 4-3. These
property types enforce the invariants imposed on the property restriction used to define the core

ResOwn classes as follows:

e A foundation (FD) property in ResOwn is used to create a symmetrically, context-free' property
restriction that asserts a bidirectional link between pairs of individuals from two digjoint, top-
level, core classes in the core subontology. An example is the isBoundTo property between the

Resour ce and Base I nstrument classes, as shown in Figure 4-4 and Table 4-1. Individuals from

! In ResOwn, context-free means individuals are acceptable in a property’ s domain or range, interchangeably.

69

these two core classes may appear separately in either the FD property’ s domain or range, but not

both.

Property Ch:::::)tzr rtiystic Pr:;::;ty :::::::y Property Domain Property Range
hasContainer F, I sC isContainerOf Resource Resource
hasDispatcher F I sC isDispatcherOf DispatchableConsumer Dispatcher
hasExtension F, IF, I sC isExtensionOf Instrument Instrument
hasHolder F, I BG isHolderOf Instrument OwnerRole
hasIssuer F, I BG isIssuerOf Instrument OwnerRole
hasOwner I INF isOwnerOf Resource Owner
hasBase F BG - Owner OwnerBase
hasRole BG - Owner OwnerRole
isBoundTo F, IF, S, I FD isBoundTo Resource U Instrument Instrument U Resource
isContainerOf I sC hasContainer Resource Resource
isDispatcherOf I sC hasDispatcher Dispatcher DispatchableConsumer
isExtensionOf F, IF, I sC hasExtension Instrument Instrument
isHolderOf I BG hasHolder OwnerRole Instrument
isIssuerOf I BG hasIssuer OwnerRole Instrument
isOwnerOf I INF hasOwner Owner Resource

Table 4-1: ResOwn properties modeling cor e classes.

o A sdf-contained (SC) property in ResOwn is used to create a context-sensitive’ property
restriction that asserts a unidirectional link between pairs of individuals from the same top-
level core class in the core subontology. An example is the hasExtent property between the
Base Instrument and Extent Instrument classes, as shown in Figure 4-4 and Table 4-1.
Only individuals from subclasses subsumed by a single core class may appear in the SC
property’ s domain and range. A SC property with aninverse (e.g., hasExtent and i sExtentOf)
results in a pair of unidirectional links between a pair of individuals from the two core

classes, respectively.

o A bridging (BG) property in ResOwn is used to create a context-sensitive property restriction

that asserts a unidirectional link between individuals from a single, core class to individuals

70

from a disjoint core, support or value class. An example is the hasRight property between the
Instrument and Ownership Right VP classes, as shown in Figure 4-2 and Table 4-3.
Another example is the hasHolder and inverse isHolderOf properties between the

Instrument and Owner Role classes, as shownin Figure 4-4 and Table 4-1.

o Aninferred (INF) property in ResOwn is used to create an inferred property restriction that
implicitly deduces the existence of a virtual link between pairs of individuals from one or
more core classes. Thisis contrasted by an asserted (i.e., normal) property restriction, which
is explicitly stated in the ontology and does not rdy on any implicit constraints. An example
is the hasOwner and inverse isOwnerOf properties between the Resource and Owner classes,
asshownin Figure 4-2, Figure 4-4, and Table 4-1. An INF property restriction can be derived

using a process known as asserted property chaining.

Property Property Inverse Property
Proper L . Property Range
perty Characteristic Type Property Domain perty 9
hasPortal F BG - Resource SessionAccessPortal
hasServiceThread F BG - OwnerBase ServiceThread

Table 4-2: ResOwn properties modeling support classes.

Property Property Property Property Domain Property Range
Characteristic Type
hasCapacity F BG Resource u Instrument CapacityVP
hasPersistency F BG Resource u Instrument © Owner PersistencyVP
hasRight BG Instrument OwnershipRightvP

Table 4-3: ResOwn properties modeling value classes.

4.4.2.1 Asserted Property Chaining

Asserted property chaining uses Functional Composition to formally specify or define INF properties

in ResOwn by logically chaining the domain of one asserted property in a chain to the range of

! In ResOwn, context-sensitive means different individuals are acceptable in the domain or range, but not both.

71

another property, in an appropriate way, until the required INF property is defined®. The resultant INF
property will have the domain of the first asserted property in the chain, and the range of the last
asserted property in the chain. The use of INF properties, in conjunction with the concept of proof of
ownership, as shown in Figure 4-2 and Figure 4-4, gives ResOwn the power to dynamically model an
operational software system’'s evolving resource ownership structure. Consider the INF property
isOwnerOf, as shown in Figure 4-2, Figure 4-4, and Table 4-1, which may be defined using the

following asserted property chain:

isOwnerOf (Owner, Resource) < hasRole(Owner, OwnerRole) o
isHolderOf (OwnerRole, Instrument) o

isBoundTo (Instrument, Resource)

This chain specifies that an inferred ownership relationship exists between an Owner instance and a
Resour ce instance, if and only if the Owner instance has the appropriate Owner Role, and that
Owner Role is permitted to be the holder of the necessary I nstrument instance associated with the
Resour ce instance. Since isOwnerOf and hasOwner are inverse INF properties (i.e., isOwnerOf

implies hasOwner, and vice versa), the same chain specifies either INF property in the inverse pair.

4.5 ResOwn Core, Support, and Value Classes

The sections which follow provide the reader with a detailed presentation of the subclass hierarchies,
natural language class descriptions, and OWL-DL-based definitions for the core, support, and value
classes of the ResOwn ontology. The sections are essentially a reference guide for those readers who
wish to acquire an indepth, detailed understanding of ResOwn. The figures containing the various
asserted subclass hierarchies were manually drawn based on the Protégé-Owl tool version of
ResOwn. The figures containing the various inferred subclass hierarchies are actually screenshots
from the Protégé-Owl tool’s OWLViz plugin. The OWL-DL-based class definitions are presented to

the reader in tabular format. To simplify the description logic definitions themselves, closure axioms,

! In mathematics, a composite function, formed by the composition of one function on another, represents the
application of the former to theresult of the application of the latter to the argument of the composite. The
functionsf: X — Y and g: Y — Z can be composed by first applying f to an argument x and then applying g to

72

present in the Protégé-Owl version of ResOwn, have been intentionally left out of the tables.

4.6 Proof of Ownership Instruments

The self-contained, asserted class hierarchy of the top-level I nstrument class is given in Figure 4-5
and includes both the defined and named (i.e., primitive) I nstrument subclasses. The more interesting
inferred class hierarchy, shown in Figure 4-6, was obtained by classifying ResOwn automatically
using the RacerPro reasoner and inference engine.

DerFIneD
CLASSES

Baselnstrument Namep
CLASSES

B ExtentInstrument R
is-a__ SerialLicense

is& OpenlInstrument License
Top-Lever is- % ConcurrentLicense
Crass ‘y ClosedInstrument is-a Proxy
is-a + . - .
Instrument = NamedInstr «is-a- PermitToHold
is-a ‘\I}a\
-~ LifeLimitedInstrument > PowerOfAttorney ; .
: s is-a L NonreusableTitledeed
& ™ LifeLongInstrument Titledeed =———"— TransferableTitledeed is-
A 9 B ~+2_peusableTitledeed
TransferableInstrument > NontransferableTitledeed
18-
NontransferableInstrument EmbeddedTitledeed

Figure 4-5: Asserted (defined and named) I nstrument class hierarchy.

4.6.1 I nstrument Class

An instrument is a written, legal document, such as a contract, lease, deed, will or bond, that lays out
the parties involved, triggering events and terms of the contract, communicates the intended purpose
and scope and represents a share of a liability or ownership [FarO6b, FarO6¢]. In ResOwn, an
Instrument instance conveys a set of Ownership Right instances upon a holding Owner instance
and provides that Owner instance with proof of ownership of an associated Resource instance. The
OWL-DL for thelInstrument classis givenin Table 4-4.

theresult. Thus one obtainsa function g o f: X — Z defined by (g o f)(x) = g(f(x)) for al x in X.

73

LII'tLI::nIIr|:|‘1:|urnlnt_-:_\'_I

) @nﬂe@ .
- L
7 Hontransferablelnstrument 214
Bl Embedded Reusable
- s 1

S A o
i ([M Thled _\-l:-\\t 3
Baselnstiument - = = Q!_,E_M/L"' e
[g

[" Fpa i -
A instument B4 Tranderableinstiument = e 3 @"bﬁ
i —F

L A
+a -

K Elustdlnmummt_f }— -
1-_1" ', i . ‘-
'\.- P e

Extentinstiument '.f—----'-—'—@@
A3 ,@_glﬂfﬂﬂﬁfﬁf_\-}}

- UifeLimitedinatrument g
Opaninstiume nt‘_) - : | N
[Defined class o gD
— M License
: Primitive or Named Class)

Figure 4-6: Inferred (defined and named) I nstrument class hierar chy.

Asserted and Inferred Property Name and Range L
Core Class .. [N = necessary] Disjoint
Conditions |
[S = necessary and sufficient]
Instrument (N) ResOwnCore isBoundTo (single Instrument 1 Resource) Resource
(N) VisBoundTo Resource isExtentOf (single Instrument) Owner

hasHolder (multiple OwnerRole) OwnerRole
hasIssuer (multiple OwnerRole) OwnerBase
hasExtent (multiple Instrument) OwnershipRightvP
hasCapacity (single CapacityVP) ResOwnSupport
hasPersistency (single PersistencyVP)
hasRight (multiple OwnershipRightVP)

Table 4-4: Top-level Instrument class definition.

4.6.1.1 Instrument Capacity

Capacity is defined as the ability to receive, hold or absorb [Far06a]. In ResOwn, The openness of an
Instrument instance is based on its associated Capacity value instance. The Capacity VP value

74

partition is modeled as the property hasCapacity, as shown in Table 4-3, whose range may hold an
individual from either the disjoint Single User Capacity or Multi User Capacity value class. A
Single User Capacity value instance represents a cardinality restriction of land a Multi User

Capacity value instance represents a cardinality restriction of N.

4.6.1.2 Instrument Persistency

Persistence is the property of a continuous and connected period of time [FarO6a]. An object that is
guaranteed to live between activations is called a persistent object [Cou01]. Lifespan is the average or
maximum length of time an organism, material or object can be expected to survive or last [Far06a].
In ResOwn, the lifespan of an Instrument instance is based on its associated Persistency value
instance. The Persistency VP value partition is modeled as the property hasPersistency, as shownin
Table 4-3, whose range may hold an individual from the disjoint Persistent, Nonpersistent or
Transient value class. An explanation of these general value classes is given in Table 4-5. The table
column headings specify temporal boundaries (i.e,, windows of time) that relate to the natural
runtime life of an object or aruntime binary association instance (i.e., link) between a pair of abjects.

The table row headings specify Persistency.

Persistent

Nonpersistent

Transient

Exists for runtime life of

Exists from system start until event

Exists from some intermediate period

transaction

event before end of transaction

System system before end of system runtime life during the system runtime life
s . Exists for runtime life of Exists from session start until event Exists from some intermediate period
ession session before end of session during a session
- Exists for runtime life of Exists from transaction start until Exists from some intermediate period
Transaction

during a transaction

Table 4-5: Perdstency versus Time.

4.7 Defined I nstrument Classes

The subsections that follow describe and define the defined | nstrument classes in ResOwn.

4.7.1 Basel nstrument Class

A base is defined as the fundamental principle or underlying concept of a system or theory [Far06a].

75

In ResOwn, each Base Instrument instance is bi-directionally linked to a particular Resource
instance via an isBoundTo property restriction. The OWL-DL definition is given in Table 4-6. The

bi-directional link is permanent, unless the Resour ce is consumable.

Defined Instrument
Class

Subsumed By Class

Active Asserted Conditions
[N = necessary]

Asserted Inferred [S = necessary & sufficient]
BaseInstrument (S) Instrument (S) Instrument (S) 3 isBoundTo Resource
(S) isExtentOf = 0
ExtentInstrument (S) Instrument (S) Instrument (S) isBoundTo =0
(N) TransferableInstrument (S) 3 isExtentOf Instrument
Openlnstrument (S) Instrument (S) Instrument (S) 3 hasCapacity MultipleUser

ClosedInstrument (S) Instrument (S) Instrument (S) 3 hasCapacity SingleUser

LifeLongInstrument (S) Instrument (S) Instrument (S) 3 hasPersistency Persistent

LifeLimitedInstrument (S) Instrument (S) Instrument (S) 3 hasPersistency Nonpersistent

TransferableInstrument (S) Instrument (S) Instrument (S) 3 isBoundTo TransferableResource 1 isBoundTo =0

(S) isBoundTo =0

NontransferableInstrument | (S) Instrument (S) Instrument (S) — TransferableInstrument

Table 4-6: Defined I nstrument class definitions.

4.7.2 Extentl nstrument Class

An extent is a writ alowing a creditor to assume temporary ownership of a debtor's property
[FarO6b]. In ResOwn, an Extend Instrument instance, when in effect, forms pairs of temporarily,
unidirectional links between itsdf and either a Base Instrument instance or another Extent
Instrument instance, via the isExtentOf and hasExtent property restrictions. The OWL-DL
definitionis given in Table 4-6.

4.7.3 Transferablel nstrument Class

In ResOwn, a Transferable Instrument instance may be issued by the Instrument instance's
current holding Owner instance to a new holding Owner instance. Therefore, a Transferable
Instrument instance may, over its lifespan, potentially have many different holding Owner
instances. An Extent I nstrument is inherently a Transfer able I nstrument. The OWL-DL definition

isgivenin Table 4-6.

76

4.7.4 Nontransfer ablel nstrument Class

In ResOwn, a Nontransfer able I nstrument instance remains with its initial holding Owner instance
for the I nstrument instance's lifespan. Therefore, a Nontr ansfer able | nstrument instance may only
be issued indirectly to other Owner instances via an Extent Instrument instance. The OWL-DL
definitionis given in Table 4-6.

4.7.5 Closedl nstrument Class

A Closed Instrument instance is one that has been specified with a Single User Capacity value
instance. This creates a cardinality restriction of “1” between a holding Owner instance and the
Closed I nstrument instance. The OWL-DL definition is given in Table 4-6.

4.7.6 Openl nstrument Class

An Open Instrument instance is one that has been specified with a Multi User Capacity value
instance. This creates a cardinality restriction of “N” between a set of holding Owner instances and
the Open I nstrument instance. The OWL-DL definition is given in Table 4-6.

4.7.7 LifeLongl nstrument Class

A Life Long Instrument instance is one that has been specified with a Persistent value instance,
meaning the | nstrument instance remains in effect for the runtime life of the software system. The
OWL-DL definition isgiven in Table 4-6.

4.7.8 LifeLimitedl nstrument Class

A Life Limited Instrument instance is one that has been specified with a Nonpersistent value
instance, meaning the I nstrument instance remains in effect for some period of time less than the

runtime life of the software system. The OWL-DL definition is given in Table 4-6.

4.8 Named | nstrument Classes

The subsections that follow describe and define the named | nstrument classes in ResOwn. Note that

7

in Figure 4-6, the identifier names of the Named I nstrument classes were shortened so that the

inferred class hierarchy would fit on the page. The sections that follow use the full class names.

4.8.1 Titledeed Class

A deed is a written document that transfers ownership or an interest in real property from a
transferring party (i.e., issuer) to areceiving party (i.e., holder) [FarO6b]. In ResOwn, the Titledeed
class is a Base Instrument. ResOwn defines three main Titledeed subclasses: Embedded,
Nontransferable, and Transferable, described below and each corresponding to a Resource
subclass with the same prefix. The Titledeed class is digoint from all other Named | nstrument
classes. The OWL-DL definitionis givenin Table 4-7.

Named Instrument Subsumed By Class Active Asserted Conditions

Class [N = necessary]
Asserted Inferred [S = necessary & sufficient]
Titledeed (N) NamedInstrument (N) NamedInstrument (N) 3 isBoundTo Resource
(N) BaseInstrument (N) isExtentOf = 0
EmbeddedTitledeed (N) Titledeed (N) Titledeed (N) 3 isBoundTo EmbeddedResource
(N) LifeLongInstrument (N) 3 hasCapacity SingleUser
(N) NontransferableInstrument | (N) 3 hasPersistency SystemPersistent
(N) ClosedInstrument (N) 3 hasRight DataAccessRight
(N) 3 hasRight ControlAccessRight
(N) 3 hasRight ProxingRight
NontransferableTitledeed | (N) Titledeed (N) Titledeed (N) 3 isBoundTo NontransferableResource
(N) LifeLongInstrument (N) 3 hasPersistency SystemPersistent
(N) NontransferableInstrument | (N) 3 hasRight DataAccessRight
(N) 3 hasRight ControlAccessRight
(N) 3 hasRight LicensingRight
TransferableTitledeed (N) Titledeed (N) Titledeed (N) 3 isBoundTo TransferableResource
(N) ClosedInstrument (N) 3 hasCapacity SingleUser
(N) TransferableInstrument (N) 3 hasRight DataAccessRight
(N) 3 hasRight ControlAccessRight
(N) 3 hasRight ReleaseRight
(N) 3 hasRight PermittingRight
(N) 3 hasRight TransferRight
NonreusableTitledeed (N) TransferableTitledeed (N) TransferableTitledeed (N) 3 hasPersistency SystemNonpersistent
(N) LifeLimitedInstrument (N) 3 hasRight ConsumptionRight
ReusableTitledeed (N) TransferableTitledeed (N) TransferableTitledeed (N) 3 hasPersistency SystemPersistent
(N) LifeLongInstrument (N) 3 hasRight AttorneyingRight

Table4-7: Titledeed class definitions.

4.8.1.1 EmbeddedTitledeed Subclass
An Embedded Titledeed instance is a Nontransfer able, Life Long, Closed Titledeed that is directly

bound to an Embedded Resour ce instance and may only be held by a Compound Resour ce instance

78

acting as a nonbeneficiary containment owner. The OWL-DL definition is given Table 4-7. An
Embedded Titledeed instance may be extended by a Proxy instance.

4.8.1.2 NontransferableTitledeed Subclass

A Nontransferable Titledeed instance is a Nontransferable, Life Long Titledeed that is directly
bound to a Nontransferable Resource instance and may only be held by a Managed Resour ce
Supplier instance acting as a honbeneficiary permanent owner. The OWL-DL definition is given in
Table4-7. A Nontransferable Titledeed instance may be extended by a L icense instance.

4.8.1.3 TransferableTitledeed Subclass
A Transferable Titledeed instance is a Transferable, Closed Titledeed that is directly bound to a

Transferable Resource instance and may only be held by a Consumer instance acting as a
beneficiary current owner or by a Pooled Resource Supplier instance acting as a nonbeneficiary
default owner. The OWL-DL definition is given in Table 4-7. A Transferable Titledeed instance
may be extended by a Permit To Hold instance.

4.8.1.3.1 NonreusableTransferableTitledeed Subclass

A Nonreusable Transferable Titledeed instanceisaLifeLimited, Transferable Titledeed directly
bound to a Consumable Resour ce instance. The OWL-DL definitionis givenin Table 4-7.

4.8.1.3.2 ReusableTransferableTitledeed Subclass

A Reusable Transfer able Titledeed instanceisalLife Long, Transferable Titledeed directly bound
to a Nonconsumable Resour ce instance. The OWL-DL definition is given in Table 4-7. A Reusable
Transferable Titledeed instance may be extended by a Power Of Attor ney instance.

4.8.2 License Class

A license is a certificate that proves that one has official or legal permission to do or own a specified
thing [Far06b]. In ResOwn, a License instance is a Life Limited, Extent Instrument that is
indirectly bound to a Nontr ansfer able Resour ce instance via a Nontr ansfer able Titledeed instance.
The L icense instance extends beneficiary ownership from the Nontr ansfer able Titledeed instanceto
the holding Consumer instance acting as a beneficiary licensed owner. The License instance is

issued by the Managed Resource Supplier instance, which acts as the nonbeneficiary permanent

79

owner of the Nontransferable Resource instance. The License class is digoint from al other
Named | nstrument classes. The OWL-DL definition is given in Table 4-8.

4.8.2.1 SerialLicense Subclass

In ResOwn, a Serial License instance is a Closed License. The Serial License subclass is disjoint
from all other License subclasses. The OWL-DL definition is given in Table 4-8. A Serial License
instance may be extended by a Power Of Attorney instance or Permit To Hold instance.

4.8.2.2 ConcurrentL icense Subclass

In ResOwn, a Concurrent License instance is an Open, Extent License. The Concurrent License
subclass is digjoint from all other License subclasses. The OWL-DL definition is given in Table 4-8.

A Concurrent License instance may not be extended.

Named Subsumed By Class Active Asserted Conditions
Instrument [N = necessary]
Class Asserted Inferred [S = necessary & sufficient]
License (N) NamedInstrument | (N) NamedInstrument (N) 3 isExtentOf NontransferableTitledeed
(N) ExtentInstrument (N) isBoundTo = 0
(N) LifeLimitedInstrument (N) 3 hasPersistency SessionNonpersistent
(N) 3 hasRight DataAccessRight
Concurrent (N) License (N) License (N) 3 hasCapacity MultipleUser
License (N) Openlnstrument
Serial (N) License (N) License (N) 3 hasCapacity SingleUser
License (N) ClosedInstrument (N) 3 hasRight ControlAccessRight
(N) 3 hasRight AttorneyingRight
(N) 3 hasRight PermittingRight
Proxy (N) NamedInstrument | (N) NamedInstrument (N) 3 isExtentOf EmbeddedTitledeed
(N) ExtentInstrument (N) isBoundTo = 0
(N) ClosedInstrument (N) 3 hasCapacity SingleUser
(N) 3 hasPersistency (SystemPersistent L SessionNonpersistent)
(N) 3 hasRight ControlAccessRight
(N) 3 hasRight DataAccessRight
(N) 3 hasRight AttorneyingRight
(N) 3 hasRight PermittingRight

Table 4-8: License and Proxy class definitions.

4.8.3 Proxy Class

A proxy is awritten authorization to act in place of another person as an agent or substitute [FarO6b].
In ResOwn, a Proxy instance is a Closed, Life Limited, Extent I nstrument that is indirectly bound
to an Embedded Resource instance via an Embedded Titledeed instance. The Proxy instance

80

extends beneficiary ownership from the Embedded Titledeed instance to holding Consumer
instance acting as a beneficiary proxied owner. The Proxy instance is issued by the Compound
Resour ce instance, which acts as the nonbeneficiary containment owner of the Embedded Resource
instance. The Proxy class is disjoint from al other Named Instrument classes. The OWL-DL
definitionis given in Table 4-8. A Proxy instance may be extended by a Power Of Attor ney instance

or Permit To Hold instance.

4.8.4 Power OfAttor ney Class

A power of attorney is a written document, signed by a person, giving another person the power to
act in conducting the signer's business activities in the name of the signer, where an attorney is an
agent or someone authorized to act for another [FarO6b]. In ResOwn, a Power Of Attor ney instance
is a Closed, Life Limited, Extent Instrument that extends nonbeneficiary ownership from a
Transferable Titledeed, a Serial License or a Proxy instance to a holding nonbeneficiary owning
Surrogate Resour ce Supplier instance. The Power Of Attorney instance is indirectly bound to the
Resour ce instance via the I nstrument instance it extends. The Power Of Attor ney instance is issued
by a beneficiary owning Consumer instance that holds the Transfer able Titledeed, Serial License,
or Proxy instance. The Power Of Attorney class is disjoint from all other Named Instrument
classes. The OWL-DL definition is given in Table 4-9. A Power Of Attorney instance may not be
extended.

4.8.5 PermitToHold Class

A permit is a document given by an authorized public official or agency to allow a person or business
to perform certain acts [Far06b]. In ResOwn, a Permit To Hold instance is a Closed, Life Limited,
Extent I nstrument that extends nonbeneficiary ownership from a Transferable Titledeed, a Serial
License, or a Proxy instance to a holding nonbeneficiary owning Cached Resource Supplier
instance. The Permit To Hold instance is indirectly bound to the Resource instance via the
Instrument instance it extends. The Permit To Hold instance is issued by a beneficiary owning
Consumer instancethat holds of the Transferable Titledeed, Serial License or Proxy instance. The
Permit To Hold classis disjoint from all other Named | nstrument classes. The OWL-DL definition

isgivenin Table4-9. A Permit To Hold instance may not be extended.

81

Named

Subsumed By Class

Active Asserted Conditions

Instrument [N = necessary]
Class Asserted Inferred [S = necessary & sufficient]
PermitToHold (N) NamedInstrument | (N) NamedInstrument (N) 3 isExtentOf (SerialLicenseProxy U TransferableTitledeed)
(N) ExtentInstrument (N) isBoundTo = 0
(N) ClosedInstrument (N) hasExtent = 0
(N) LifeLimitedInstrument (N) 3 hasCapacity SingleUser
(N) 3 hasPersistency SessionNonpersistent
(N) 3 hasRight HoldingRight
PowerOfAttorney | (N) NamedInstrument | (N) NamedInstrument (N) 3 isExtentOf (SerialLicense 1 Proxy U TransferableTitledeed)
(N) ExtentInstrument (N) isBoundTo = 0
(N) ClosedInstrument (N) hasExtent = 0
(N) LifeLimitedInstrument (N) 3 hasCapacity SingleUser
(N) 3 hasPersistency SessionNonpersistent
(N) 3 hasRight ControlAccessRight

Table 4-9: Power Of Attorney and Permit To Hold class definitions.

4.9 Application Resources

The self-contained, asserted class hierarchy of the top-level Resource class is given in Figure 4-7
and includes the defined Resour ce subclasses. The more interesting inferred class hierarchy, shown

in Figure 4-8, was obtained by classifying ResOwn automatically using RacerPro.

4.9.1 Resour ce Class

In ResOwn, a Resour ce instance represents a physical object that provides a benefit to a beneficiary
owner in the evolving resource ownership structure of an operational software system. The OWL-DL

for the Resour ce classis given in Table 4-10.

4.9.1.1 Resour ce Capacity

Once acquired, a Resour ce instance may be used concurrently by multiple users or by a single user
[Kir04]. In ResOwn, closeness or openness of a Resour ce instance is based on the physical and/or
logical capacity to provide its benefit to one or more beneficiary owners either serially or
concurrently, respectively. A Resour ce instance may have either a Single User Capacity or a M ulti

User Capacity value class. See Section 4.6.1.1 for more details.

82

ClosedResource

OpenResource

ConsumableResource
Topr-LEVEL

CLASS NonconsumableResource

CompoundResource DEFINED

CLASSES
Resource <—Is—a— EmbeddedResource
=-a
\l.s_a\ TransferableResource
NontransferableResource
InternalResource INSERT APPLICATION-
ExternalGatewayResource SPECIFIC SUBCLASSES
UNDER HERE

NamedResource @l =—— = e e e c—

Figure 4-7: Asserted (defined) Resour ce class hierar chy.

y N
_ __ ~_(Consumer pb—— 53 -
o NS i DispatchableConsumer
1 Lwner _l‘é.:-ﬂ?.—.l____ ~

B 5-3Aﬁ"':_"_____'*r_-L———f-———

™

¢ NancomsumableResaurce i
— = < —— ExternalGatewayResource
/ R N is-a
.// ¢ NontransferableResource
% _

TN o IntemalResource <7 s
{ Resource ’ﬁ;?_ - i< ConsumableResource
—a_. < ClosedR te - 5-a b=
~i5-a C _se esou_r_ = ; TransferableResource
~——]

(I.EmbeddedResource-. :‘
:l Defined Class :l Primitive or Named Class

Figure 4-8: Inferred (defined) Resour ce class hierarchy.

4.9.1.2 Resour ce Persistency

In ResOwn, a Resource instance may have a Persistent, a Nonpersistent or a Transient value class.
See Section 4.6.1.2 for more details. The consumability of a Resource instance is based on the

persistency of the Resour ce instance to provide its benefit to a designated beneficiary owner.

83

Property Name and Range

Core Asserted and Inferred .
. [N = necessary] Disjoint
Class Conditions _ -
[S = necessary and sufficient]
Resource (N) ResOwnCore isBoundTo (single Instrument 1 Resource) OwnerRole
(N) VisBoundTo Instrument hasContainer (single Resource) OwnerBase
isContainerOf (multiple Resource) Instrument
hasPortal (single SessionAccessPortal) OwnershipRightvP
hasCapacity (single CapacityVP) ResOwnSupport

hasPersistency (single PersistencyVP)
hasOwner (multiple Owner)

Table 4-10: Top-level Resour ce class definition.

4.10 Defined Resour ce Classes

The subsections that follow describe and define the defined Resour ce class in ResOwn.

4.10.1 Transfer ableResour ce Class

A Transferable Resource instance is directly bound to a Transferable Titledeed instance via an
isBoundTo property restriction. A Consumer instance may request beneficiary ownership of an
unallocated Transferable Resource instance either from another Consumer instance (i.e, the
Transfer able Resour ce instance s current owner) or from an appropriate Pooled Resour ce Supplier
instance (i.e, the Transferable Resource instance's default owner). The OWL-DL definition is
givenin Table4-11. In the PBX, a space channel is an example of a Transfer able Resour ce instance

asit can betransferred between beneficiary owners (i.e., caller and calleg).

4.10.2 Nontransfer ableResour ce Class

A Nontransfer able Resour ce instance is directly bound to a Nontr ansfer able Titledeed instance via
an isBoundTo property restriction. To obtain beneficiary ownership of a Nontransfer able Resour ce
instance, a Consumer instance may request a License instance from the appropriate Managed
Resour ce Supplier instance (i.e., the Nontr ansfer able Resour ce instance s permanent owner). The
OWL-DL definition is givenin Table4-11. Inthe PBX, a dial tone generator card is an example of a
Nontransfer able Resour ce instance as it resides per manently with the call progress tone manager.
This means that a dial tone generator card can only ever be accessed by a beneficiary owner via the

call progress tone manager.

Defined Resource Class

Subsumed By Class

Asserted Inferred

Active Asserted Conditions
[N = necessary]
[S = necessary & sufficient]

EmbeddedResource

(S) Resource (S) Resource

(S) 3 isBoundTo EmbeddedTitledeed
(S) 3 hasContainer CompoundResource

NontransferableResource

(S) Resource (S) Resource

(N) NonconsumableResource

(S) 3 isBoundTo NontransferableTitledeed
(S) 3 hasPersistency SystemPersistent

TransferableResource

(S) Resource (S) Resource

(N) ClosedResource

(S) 3 isBoundTo TransferableTitledeed
(S) hasContainer = 0
(S) 3 hasCapacity SingleUser

OpenResource

(S) Resource (S) Resource

(N) NonconsumableResource

(S) 3 hasCapacity MultipleUser
(S) 3 hasPersistency SystemPersistent

ClosedResource

(S) Resource (S) Resource

(S) 3 hasCapacity SingleUser

ConsumableResource

(S) Resource (S) Resource
(N) InternalResource

(N) DistributableResource

(S) 3 isBoundTo NonreusableTransferableTitledeed
(S) = hasPortal =0

(S) 3 hasCapacity SingleUser

(S) 3 hasPersistency SystemNonpersistent

NonconsumableResource

(S) Resource (S) Resource

(S) JhasPersistency SystemPersistent

InternalResource

(S) Resource (S) Resource

(S) hasPortal = 0

ExternalGatewayResource

(S) Resource (S) Resource

(S) NonconsumableResource

(S) JhasPortal SessionAccessPortal
(S) JhasPersistency SystemPersistent

CompoundResource

(S) Resource (S) Resource

(N) NonconsumableResource

(S) isContainerOf > 1
(S) JhasOwnerRole ContainmentOwner

(N) Supplier

Table 4-11: Defined Resour ce class definitions.

4.10.3 Embedded Resour ce Class

An Embedded Resource instance is directly bound to an Embedded Titledeed instance via an
isBoundTo property restriction. Further, an Embedded Resour ce instance is bound to a Compound
Resour ce instance via a hasContainer property restriction. To obtain beneficiary ownership of an
Embedded Resource instance, a Consumer instance may request a Proxy instance from the
Compound Resour ce instance (i.e., the Embedded Resour ce instance’ s containment owner). Under
normal circumstances, it is assumed that when a Consumer instance obtains beneficiary ownership of
a Compound Resour ce instance, it also obtains beneficiary ownership of any contained Embedded
Resour ce instances as well. The OWL-DL definition is given in Table 4-11. In the PBX, a ringer
relay is an example of an Embedded Resour ce instance asiit is contained by aline card. This means

that aringer relay can only ever be accessed by a beneficiary owner viaaline card.

85

4.10.4 ClosedResour ce Class

A Closed Resource instance is one that has been specified with a Single User Capacity value
instance and thus provides its benefit serially. This creates a cardinality restriction of “1” between a
beneficiary Owner instance and the Closed Resour ce instance. The OWL-DL definition is given in
Table 4-11. In the PBX, atouch tonereceiver card is an example of a Closed Resour ce instance as it

is capable of supporting only one beneficiary owner at atime.

4.10.5 OpenResour ce Class

An Open Resource instance is one that has been specified with a Multi User Capacity value
instance and thus provides its benefit serially. This creates a cardinality restriction of “N” between a
st of beneficiary Owner instances and the Open Resource instance. The OWL-DL definition is
given in Table 4-11. In the PBX, a dial tone generator card is an example of an Open Resource

instance as it is capable of supporting multiple beneficiary owners simultaneous.

4.10.6 NonconsumableResour ce Class

A Nonconsumable Resour ce instance is one that has been specified with a System Persistent value
and therefore is capable of providing its benefit for the runtime life of the system. The OWL-DL

definitionis given in Table 4-11. All PBX resources are Nonconsumable Resour ce instances.

4.10.7 ConsumableResour ce Class

A Consumable Resour ce instance is one that has been specified with a System Nonpersistent value
and therefore is only capable of providing its benefit for some limited number of times or length of
time. A Consumable Resour ce instanceis directly bound to a Nonr eusable Transfer able Titledeed
and is always specified with a Single User Capacity value class. The OWL-DL definitionis givenin
Table4-11.

4.10.8 Exter nalGatewayResour ce Class

An External Gateway Resource instance is one that has been specified as being directly bound to a

Session Access Portal instance via a hasPortal property restriction. The Session Access Portal

86

instance allows the Resour ce instance to communicate directly with the service environment and is
described in more detail in Section 6.1.4. An External Gateway Resource instance is always
specified with a System Persistent value class. The OWL-DL definition is given in Table 4-11. In
the PBX, a line card is an example of an External Gateway Resource instance as all external

communication with the service environment must pass through line cards.

4.10.9 I nter nalResour ce Classes

An Internal Resource instance is one that has been specified with a hasPortal = 0 cardinality
restriction. The OWL-DL definition is given in Table 4-11. All PBX resources, except the line card,

are examples of I nternal Resour ce instances

4.10.10 CompoundResour ce Class

A Compound Resour ce instance is one that has been specified as containing at least one Embedded
Resour ce instance via an isContainerOf property restriction. The beneficiary current or licensed
owner of a Compound Resour ce instance is also the beneficiary proxied owner of any contained

Embedded Resour ce instances.

4.10.10.1 CompoundResour ce Class as a Supplier Class

Consider the inferred defined Resource class hierarchy, as shown in Figure 4-8 and the OWL-DL
definition given in Table 4-11. For the Compound Resour ce class row and the Subsumed By Class:
Inferred column of the table, an individual belonging to the Compound Resource class
automatically belongs to the Supplier class. As a direct result of the invariant imposed by the
ResOwn Prime Directive that requires the top-level Resour ce and Owner classes not to be digoint, a
Compound Resour ce instance is both a resource itself and a supplier of resources. In the PBX, a
line card is an example of a Compound Resour ce instance as it contains an idle relay and a ringer

relay.

4.10.11 DispatchableConsumer (I nferred Resour ce) Class

Another significant result of the ResOwn Prime Directive is the classification of the Dispatchable
Consumer class, as shown in the inferred Resource class hierarchy shown in Figure 4-8. The
Dispatchable Consumer classis detailed in Section 4.14.1.3.

87

4.11 Application Resource Owners

The distributed asserted class hierarchy of the top-level Owner, Owner Role and Owner Base
classes and their defined subclasses are given in Figure 4-9. The inferred class hierarchy for the top-

level Owner classis shown in Figure 4-10 and was obtained by classifying ResOwn.

4.11.1 Owner, Owner Role and Owner Base Classes

In ResOwn, an Owner instance represents a physical object in the evolving resource ownership
structure of an operational software system that may, or may not, receive benefits. Each Owner
instance is capable of playing one or more logical OwnerRole instances. The OWL-DL for the
Owner, OwnerRole and OwnerBase classes is given in Table 4-12. The main and library parts of

the distributed Owner class are digoint from each other as well as from all other top-level classes,

except the Resour ce class.

Property Name and Range

Core Asserted and Inferred Conditions [N = necessary] Disjoint
Class -
[S = necessary and sufficient]
Owner (S) ResOwnCore hasBase (single OwnerBase) OwnerRole
(N) 3 hasBase OwnerBase hasRole (multiple OwnerRole) OwnerBase
(N) 3 hasRole OwnerRole hasPersistency (single PersistencyVP) Instrument
(N) 3 hasPersistency SystemPersistent isOwnerOf (multiple Resources) OwnershipRightvP
ResOwnSupport
OwnerBase (N) ResOwnCore hasServiceThread (single OwnerBase) OwnerRole
(S) ActiveBase U PassiveBase Owner
Instrument
OwnershipRightvP
ResOwnSupport
OwnerRole (N) ResOwnCore isHolderOf (single Instrument) Owner
(S) BeneficiaryOwner 1 NonbeneficiaryOwner | isIssuerOf (single Instrument) OwnerBase
Instrument
OwnershipRightvP
ResOwnSupport

Table 4-12: Top-level Owner, Owner Role and Owner Base class definitions.

88

ActiveSupplier

PassiveSupplier

. PooledResourceSupplier
4/is-l:‘a/

Supplier — ManagedResourceSupplier

I1s-a

SurrogateResourceSupplier

CachedResourceSupplier

NamedSupplier ¢

— -~
~~ INSERT
. APPLICATION-
is-a DedicatedConsumer ~ SpECIFIC
Consumer <52 DispatchableConsumer _ ~ SUBCLASSES
€8 A UNDER HERE
NamedConsumer /

ToP-LEVEL
CIASS

/
is-a

Dispatcher «————— NamedDispatcher [

/s-a__ passiveBase DEFINED
OwnerBase < CLASSES
is-a — ActiveBase
is-a_—SharedLicensedOwner
is-a LicensedOwner
is-a ~ s — ExclusiveLicensedOwner

BeneficiaryOwner «=———— ProxiedOwner
is-a
is-a CurrentOwner

OwnerRole ContainmentOwner

I1s-a
s PermanentOwner
A DefaultOwner

‘\isi .
PreviousOwner

is-a

NonbeneficiaryOwner

is-5 SurrogateOwner

TemporaryOwner

Figure 4-9: Asserted (defined) Owner, Owner Role and Owner Base class hier archies.

4.12 Defined Owner Base Classes

The subsections that follow describe and define the defined Owner Base class in ResOwn. The

Owner Base classis modeled as the ResOwn property hasBase.

89

e e

-/?‘uuredl?e suurceﬁupplie_r:)

I:I Primitive or Named Class
|:| Defined Class

—

o
ActiveSupplier)
— _,_,.,-o-"""

2 s
= .
ManagedResa S lier
gedRe uru:a_ upp_Q

Dispatcher P

———— e e

-

(Supplier e :: CachedResourceSupplier-‘:)
— "'-—._____ ____,__,-o-F
] ____'_‘—‘——___
: S
) ‘EP_T{ETERESDUFES_UPP_IEf 2

——

e,
F’asshresw

- e

< Dedicated{:unsu@
H-_‘-\—_

R —

i B g T ——

i - =
4 Resource HNuncomsumableResuurce !
S —

S — e —_

Figure 4-10: Inferred (defined) Owner class hierarchy.

4.12.1 Passive Base Class

A Passive Base instance represents an unthreaded object in an operational software system and is
assumed to be comprised of a set of attributes and a functional interface that supports a synchronous
method invocation protocol. The OWL-DL definitionis given in Table 4-13.

4.12.2 Active Base Class

An Active Base instance represents a threaded object in an operational software system and is
assumed to be comprised of a set of attributes, an application-level thread of execution and a
functional interface that supports an asynchronous message passing protocol and/or a synchronous
method invocation protocol. The OWL-DL definitionis given in Table 4-13.

90

Defined

Subsumed By Class

Active Asserted Conditions

Disjoint

N = necessa
OwnerBase Class Asserted Inferred : i
[S = necessary & sufficient]
ActiveOwnerBase (S) OwnerBase (S) OwnerBase (S) 3 hasServiceThread ActiveBase PassiveBase
PassiveOwnerBase (S) OwnerBase (S) OwnerBase (S) hasServiceThread = 0 ActiveBase

4.13 Defined Owner Role Classes

Table 4-13: Defined Owner Base class definitions.

The subsections that follow describe and define the defined Owner Role classes in ResOwn. The

Owner Role classis modeled as the ResOwn property hasRole.

4.13.1 BeneficiaryOwner Class

The Beneficiary Owner class covers a group of beneficiary Owner Role subclasses. The OWL-DL
definitionis given in Table 4-15.

4.13.1.1 CurrentOwner Subclass

A Current Owner instance acts as a beneficiary and is permitted to:

Hold aTransfer able Titledeed instance.

Receive benefits from an owned Tr ansfer able Resour ce instance.

Consume a Consumable Resour ce instance.

Transfer a Transfer able Titledeed instance to a new current owner.

Issue a Power Of Attorney instance against a Transferable Titledeed instance to a

nonbeneficiary surrogate owner.

Issue a Permit To Hold instance against a Transferable Titledeed instance to a nonbeneficiary

temporary owner.

The OWL-DL definition is given in Table 4-15.

91

4.13.2 LicensedOwner Subclass

The Licensed Owner class covers the Exclusive and Shared License subclasses. The effects of
logical licensed capacity versus physical resource capacity are shown in Table 4-14. The OWL-DL
definitionis given in Table 4-15.

4.13.2.1 Exclusivel icensedOwner Subclass

An Exclusive Licensed Owner instance acts as a beneficiary and is permitted to:
e HoldaSerial Licenseinstance.

o Receive benefits from a Closed Nontr ansfer able Resour ce instance.

o Issue a Power Of Attorney instance against a Serial License instance to a nonbeneficiary

surrogate owner.

e IssueaPermit To Hold instance against a Serial License instanceto a nonbeneficiary temporary

owner.
The OWL-DL definition is given in Table 4-15.
4.13.2.2 SharedL icensedOwner Subclass
A Shared Licensed Owner instance acts as a beneficiary and is permitted to:
e HoldaConcurrent Licenseinstance.
o Receive benefits from an Open Nontransfer able Resour ce instance.

The OWL-DL definition is given in Table 4-15.

Physical Capacity Closed
Versus Open Resource Resource
Logical Capacity
Serial License Access logically restricted to a single Access physically restricted to a single (Exclusive)
(Closed Titledeed) (Exclusive) Licensed Owner Licensed Owner
Concurrent License Access unrestricted to multiple (Shared) Access physically restricted to a single (Exclusive)
(Open Titledeed) Licensed Owners Licensed Owner

Table 4-14: Effects of physical versuslogical capacity.

92

Defined
OwnerRole Class

Subsumed By Class

Asserted & Inferred

Active Asserted Conditions
[N = necessary]
[S = necessary & sufficient]

BeneficiaryOwner
(covering class)

(N) OwnerRole

(S) LicensedOwner - CurrentOwner 1 ProxyOwner

(covering class)

CurrentOwner (S) BeneficiaryOwner (S) 3 isHolderOf TransferableTitledeed

(S) V isIssuerOf (TransferableTitledeed 1 PermitToHold 1 PowerOfAttorney)
ProxyOwner (S) BeneficiaryOwner (S) 3 isHolderOf Proxy

(S) V isIssuerOf (PermitToHold ' PowerOfAttorney)
LicensedOwner (S) BeneficiaryOwner SharedLicensedOwner U ExclusiveLicensedOwner

SharedLicensedOwner

(S) LicensedOwner

(S) 3 isHolderOf ConcurrentLicense
(S) isIssuerOf = 0

ExclusiveLicensedOwner

(S) LicensedOwner

(S) 3 isHolderOf SerialLicense
(S) V isIssuerOf (PermitToHold ' PowerOfAttorney)

Table 4-15: Defined Beneficiary Owner Role subclass definitions.

4.13.2.3 ProxiedOwner Subclass

A Proxied Owner instance acts asa beneficiary and is permitted to:

e Hold aProxy instance.

e Receive benefits from an Embedded Resour ce instance.

e Issue a Power Of Attorney instance against a Proxy instance to a nonbeneficiary surrogate

owner.

e |ssueaPermit To Hold instance against a Proxy instance to a nonbeneficiary temporary owner.

The OWL-DL definition is given in Table 4-15.

4.13.3 Nonbeneficiary Owner Class

The Nonbeneficiary Owner class covers a group of nonbeneficiary Owner Role subclasses. The
OWL-DL definition is given in Table 4-16.

4.13.3.1 ContainmentOwner Subclass

A Containment Owner instance acts as a nonbeneficiary and is permitted to:

e Hold an Embedded Titledeed instance.

93

e |ssueaProxy instance against the Embedded Titledeed instance to a beneficiary proxied owner.
The OWL-DL definition is given in Table 4-16.

4.13.3.2 PermanentOwner Subclass

A Permanent Owner instance acts as a nonbeneficiary and is permitted to:

e Hold aNontransferable Titledeed instance.

e Issuea (Serial or Concurrent) License instance against the (Closed or Open) Nontransferable

Titledeed instance to a beneficiary (exclusive or shared) licensed owner.
The OWL-DL definition is given in Table 4-16.
4.13.3.3 DefaultOwner Subclass
A Default Owner instance acts as a nonbeneficiary and is permitted to:
e HoldaTransferable Titledeed instance.
o Issuethe Transferable Titledeed instance itself to a beneficiary current licensed owner.

The OWL-DL definition is given in Table 4-16.

Defined Subsumed By Class Active Asserted Conditions
OwnerRole [N = necessary]

Class Asserted & Inferred [S = necessary & sufficient]
NonbeneficiaryOwner | (N) OwnerRole (S) ContainmentOwner 1 PermanentOwner 1 DefaultOwner 1 SurrogateOwner 1
(covering class) TemporaryOwner L PreviousOwner
PreviousOwner (S) NonbeneficiaryOwner (S) isHolderOf = 0

(S) V isIssuerOf TransferableTitledeed

ContainmentOwner (S) NonbeneficiaryOwner (S) 3 isHolderOf EmbeddedTitledeed
(S) V isIssuerOf Proxy

PermanentOwner (S) NonbeneficiaryOwner (S) 3 isHolderOf NontransferableTitledeed
(S) V isIssuerOf License

DefaultOwner (S) NonbeneficiaryOwner (S) V isHolderOf TransferableTitledeed
(S) V isIssuerOf TransferableTitledeed

SurrogateOwner (S) NonbeneficiaryOwner (S) V isHolderOf PowerOfAttorney
(S) isIssuerOf = 0

TemporaryOwner (S) NonbeneficiaryOwner (S) V isHolderOf PermitToHold
(S) isIssuerOf = 0

Table 4-16: Nonbeneficiary Owner Role subclass definitions.

94

4.13.3.4 SurrogateOwner Subclass

A Surrogate Owner instance acts as a honbeneficiary and is permitted to hold a Power Of Attor ney
instance issued against an associated Transfer able Titledeed, Exclusive License, or Proxy instance.
A Surrogate Owner instance is afforded only a Control Access Ownership Right instance via the
Power Of Attorney instance. The OWL-DL definition is givenin Table 4-16.

4.13.3.5 TemporaryOwner Subclass

A Temporary Owner instance acts as a nonbeneficiary and is permitted to hold a Permit To Hold
instance issued against an associated Transfer able Titledeed, Exclusive License, or Proxy instance.
A Temporary Owner instance is afforded only a Holding Owner ship Right instance via the Per mit
To Hold instance. The OWL-DL definition is given in Table 4-16.

4.13.3.6 PreviousOwner Subclass

A Previous Owner instanceis a special nonbeneficiary Owner Role subclass that was created to deal
with traceability of Transferable Resource instances and is permitted to issue a Transferable
Titledeed instance it holds as a Current Owner instance to a beneficiary current licensed owner.
The OWL-DL definition is given in Table 4-16.

4.13.3.6.1 The Virtual Previous Owner Stack

Recall that a Current Owner instance may transfer a Transferable Resource instance to another
requesting Current Owner instance without first returning the Resource instance back to the
originating Pooled Resour ce Supplier instance. In this scenario, the Previous Owner instance is a
command or log of the last (i.e., previous) beneficiary owner that held the Transferable Resour ce
instance. Note that a Previous Owner instance is a nonbeneficiary owner and no longer receives a
benefit from the Transferable Resource instance. Every Transferable Resource instance not
residing with its Default Owner instance has a single Current Owner plus a stack of zero of more
Previous Owners instances. This virtual “ previous owner stack” dynamically grows (or shrinks)
each time the associated Transfer able Titledeed instance is acquired by (or released to) a Current
(or Previous) Owner instance. The stack is reset whenever the Transferable Titledeed instance is

returned to its Default Owner instance.

95

4.14 Defined Owner Subclasses

The subsections that follow describe and define the defined Owner subclass in ResOwn. These
Owner subclasses may be thought of as Owner types; that is, while an Owner instance’s Owner
Role may dynamically change according to the current structural resource ownership context an
Owner instance finds itsef in at runtime, the Owner typeis static. The OWL-DL for the Consumer,
Supplier, and Dispatcher Owner subclassesis givenin Table 4-17.

Defined Subsumed By Class Active Asserted Conditions
Owner Property Name & Range [N = necessary]
Class Asserted Inferred [S = necessary & sufficient]
Consumer (S) Owner (S) Owner hasDispatcher (single Dispatcher) (S) 3 hasBase ActiveOwnerBase

(S) 3 hasRole BeneficiaryOwnerRole

Supplier (S) Owner (S) Owner isDispatcherOf (multiple Consumer) (S) 3 hasRole NonbeneficiaryOwnerRole
Dispatcher (S) Owner (S) Owner (S) 3 hasRole BeneficiaryOwnerRole
(N) Supplier (S) 3 hasRole NonbeneficiaryOwnerRole

Table 4-17: Defined Owner subclass definitions.

4.14.1 Consumer Owner Subclass

A Consumer instance is bound to an Active Base instance via a hasBase property restriction and is

capable of acting as a nonbeneficiary owner or as a beneficiary owner that receives benefits.

4.14.1.1 Dedicated Consumer Subclass

A Dedicated Consumer instance is statically assigned (or dedicated) to a unique Session Access
Portal instance for the runtime life of the operational software system. The assignment remains in
place even when the Session Access Portal instance is idle. The OWL-DL for the Dedicated
Consumer subclass is given in Table 4-18. In the PBX, a phone handle that is permanently assigned

toaline cardisan example of a Dedicated Consumer instance.

Defined Subsumed By Class owl: Equivalent Active Asserted Conditions
Consumer Properties [N= necessary]_)
Class Asserted Inferred [S = necessary & sufficient]
DedicatedConsumer | (S) Consumer (S) Consumer - (S) hasDispatcher = 0
Dispatchable (S) Consumer (S) Consumer Resource:hasOwner = (S) hasDispatcher = 1
Consumer (N) NonconsumableResource | Consumer:hasDispatcher | (S) 3 hasPersistency SystemPersistent

96

Table 4-18: Consumer subclass definitions.

4.14.1.2 DispatchableConsumer Subclass

A Dispatchable Consumer instance may be dynamically assigned (i.e., dispatched) from a pool
Dispatchable Consumer instances and temporarily assigned to a unique Session Access Portal
instance for the duration of a current session (i.e., in-progress service request). The Dispatchable
Consumer instance is returned to the pool once the Session Access Portal instance becomes idle
again. The OWL-DL for the Dispatchable Consumer subclassis given in Table 4-18. In the PBX, a
phone handle that is dynamically assigned to aline card when the associated phone goes off hook and
then unassigned when the same phone goes on hook is an example of a Dedicated Consumer

instance.

4.14.1.3 Classifying a DispatchableConsumer as a Nonconsumable Resource

A Dispatchable Consumer instance is also are classified under ResOwn as a Nonconsumable
Resour ce instance, as shown in Figure 4-8, Figure 4-10 and Table 4-18. For the Dispatchable
Consumer subclass row and the Subsumed By Class. Inferred column of the table, an individual
belonging to the Dispatchable Consumer class automatically belongs to the Nonconsumable
Resour ce class. As stated previously, this dual inheritance is a direct result of the ResOwn Prime

Directive that requires the Resour ce and Owner classes not to be digjoint from each other.

Now consider the hasOwner and hasDispatcher properties specified in Table 4-18. Notice

ow: equivalentProperty construct column in the Dispatchable Consumer class row, which contains:
Resour ce:hasOwner = Consumer :hasDispatcher

The owl: equivalentProperty construct states that the two specified properties have the same values
(i.e., the same property extension), but may have different intensional meaning (i.e., denote different
concepts). When automatically classifying the ResOwn class hierarchy, RacerPro treats hasOwner
and hasDispatcher as equivalent. Since a Dispatchable Consumer instance belongs to the Owner
class, it must therefore also belong to the Resour ce class. Further, since a Dispatchable Consumer
instance is specified with a System Persistent value instance, the Dispatchable Consumer instance

is classified correctly as belonging to the more specialized Nonconsumable Resour ce class.

97

4.14.2 Supplier Subclass

A Supplier instance is bound to a either an Active or Passive Base instance via a hasBase property

restriction and is only capable of acting as a nonbeneficiary owner.

4.14.2.1 ActiveSupplier Subclass

An Active Supplier instance is one that has been specified with an Active Base value instance via a
hasBase property restriction. The OWL-DL definition is given in Table 4-19. Inthe PBX, aline card

scanner is an example of an Active Supplier instance sinceit has a service thread.

4.14.2.2 PassiveSupplier Subclass

A Passive Supplier instance is one that has been specified with a Passive Base instance via a
hasBase property restriction. The OWL-DL definition is given in Table 4-19. In the PBX, a touch

tone receiver manager is an example of a Passive Supplier instance sinceit is unthreaded.

Subsumed By Class Active Asserted Conditions
Defined Supplier Class [N = necessary]
Asserted Inferred [S = necessary & sufficient]
ActiveSupplier (S) Supplier (S) Supplier (S) 3 hasBase ActiveOwnerBase
PassiveSupplier (S) Supplier (S) Supplier (S) 3 hasBase PassiveOwnerBase
CachedResourceSupplier (S) Supplier (S) Supplier (S) 3 hasRole TemporaryOwnerRole
ManagedResourceSupplier (S) Supplier (S) Supplier (S) 3 hasRole PermanentOwnerRole
PooledResourceSupplier (S) Supplier (S) Supplier (S) 3 hasRole DefaultOwnerRole
SurrogateResourceSupplier (S) Supplier (S) Supplier (S) (hasRole SurrogateOwnerRole
Dispatcher (S) Owner (S) Owner (S) 3 hasRole BeneficiaryOwnerRole
(N) Supplier (S) 3 hasRole NonbeneficiaryOwnerRole
CompoundResource (S) Resource (S) Resource (S) isContainerOf > 1
(N) Supplier (S) 3 hasOwnerType ContainmentOwnerType
(N) NonconsumableResource

Table 4-19: Supplier and Dispatcher subclass definitions.

4.14.2.3 CachedResourceSupplier Subclass

A Cached Resource Supplier instance is one that has been specified with a Temporary Owner
Role instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. The
Cached Resour ce Supplier subclass is included in ResOwn specifically to support the Architectural
Resource Caching Pattern introduced and described in [Kir04]. Consider a variation of the PBX that

98

stores all local phone extension information (i.e., phone number to line card mappings) in a database.
In this case, it might be possible for a phone handler to cache phone extension information that has

recently been looked up in a previous session using a Cached Resour ce Supplier instance.

4.14.2.4 M anagedResour ceSupplier Subclass

A Managed Resource Supplier instance is one that has been specified with a Permanent Owner
Role instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. In

the PBX, acall progress tone manager is an example of a Managed Resour ce Supplier instance.

4.14.2.5 PooledResour ceSupplier Subclass

A Pooled Resour ce Supplier instance is one that has been specified with a Default Owner Role
instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. In the

PBX, a space channel manager is an example of a Pooled Resour ce Supplier instance.

4.14.2.6 SurrogateResourceSupplier Subclass

A Surrogate Resource Supplier instance is one that has been specified with a Surrogate Owner
Role instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. In

the PBX, a space channel manager is an example of a Pooled Resour ce Supplier instance.

4.14.2.7 CompoundResource (Inferred Supplier) Subclass

A Compound Resour ce instance is one that has been specified with a Containment Owner Role
instance via a hasRole property restriction. The OWL-DL definition is given in Table 4-19. See
Section 4.10.10 and Table 4-11 for more details on the Compound Resource class.

4.14.3 Dispatcher Subclass

A Dispatcher instance is one that has been specified with both a Beneficiary and Nonbeneficiary
Owner Role instance via two hasRole property restrictions. This makes a Dispatcher instance
capable of receiving benefits and supplying Resour ces instances. A Dispatcher instance is capable of
dispatching a Dispatchable Consumer instance (which is classified as both a Resource and a
Consumer instance), from a pool of Dispatchable Consumer instances, to temporarily service a
Session Access Portal instance. The Dispatchable Consumer class definition specifies that a
Consumer instance is owned by a Dispatcher instance via the hasDispatcher property restriction.
The OWL-DL definition is given in Table 4-19. In the PBX, a call manager that monitors idle line

99

cards and dispatches a phone handler when an off hook is detected is an example of a Dispatcher

instance.

4.15 Owner shipRight Value Classes

Recall that in ResOwn, every proof of ownership I nstrument class is specified with a predefined set
of Ownership Right value instances. The Ownership Right VP value partition is modeled as the
property hasRight, as shown in Table 4-3. The class hierarchy of the Ownership Value VP value

partition is given in Figure 4-11.

4.15.1 AccessRight

The Access Right value instance permits either Data or Control Access.

4.15.1.1 DataAccess

The Data Access Right value instance permits a beneficiary owner to receive benefits.

4.15.1.2 Control Access

The Control Access Right value instance only permits an owner to control aresource.

4.15.2 Consumption Right

The Consumption Right value instance permits a beneficiary owner to consume a resource.

4.15.3 ExchangeRight

The Exchange Right value instance permits the swapping of a proof of ownership |nstrument

instance between an issuer and a holder.

4.15.3.1 HoldingRight

The Holding Right value instance permits a nonbeneficiary owner to hold an I nstrument instance on

behalf of a beneficiary owner.

100

(':-.ReleaseRighth_\::u

"3;&'-"/__.-- e

(HoldingRight)

o A{J___ _issa—N ddingRig t
(Exch Right) -

\"“-H)_(E: ai] gf _I_g_. il e

?_ TransferRight)

AttomeyingRight.
is- /-___
/ .: ProxingRight)
I i A _ 1Sage——" _
- : . \é} L
DelegationRight P
- a Sd— = @ 82—
>3 - v\ . (_ PermittingRight)
(_ ConsumptionRight) \ o
- LicensingRight)

« OwershipRight

' AccessRight \fdl—-““-"—’_: ControIAccessRight_:'_‘,' o
[covering Class - . (ReadDataAccessRight >
(DataAccessRight o B o
: Value Class __Q“—“*-l—____ .
(_WriteDataAccessRight)

Figure 4-11: Owner shipRight VP value partition class hierarchy.

4.15.3.2 TransferRight

The Transfer Right value instance permits a beneficiary owner to transfer an I nstrument instance to

another beneficiary owner.

4.15.3.3 ReleaseRight

The Release Right value instance permits a beneficiary owner to return an I nstrument instance to

the original issuing nonbeneficiary owner.

4.15.4 DelegationRight

The Delegation Right value instance permits an owner to delegate (i.e, issue) some subset of

ownership rights to another owner via an Extent | nstrument instance.

4.15.4.1 ProxyingRight

The Proxying Right value instance permits a nonbeneficiary owner (i.e, Compound Resource

101

instance) to issue a Proxy instance to a beneficiary owner.

4.15.4.2 PermittingRight

The Per mitting Right value instance permits a beneficiary owner (i.e., Consumer instance) to issue

a Permit To Hold instance to a nonbeneficiary owner (i.e., Cached Resour ce Supplier instance).

4.15.4.3 LicensingRight

The Licensing Right value instance permits a nonbeneficiary owner (i.e, Managed Resource
Supplier instance) to issue a License instance to a beneficiary owner (i.e,, Consumer instance).
4.15.4.4 AttorneyingRight

The Attor neying Right value instance permits a beneficiary owner (i.e., Consumer instance) to issue
a Power Of Attorney instance to a nonbeneficiary owner (i.e, Surrogate Resource Supplier
instance).

102

Chapter 5
ResOwn | nstance Example

and Owner snip Scenarios

“ Managing resources is hard; managing them efficiently is even harder.”
- M. Kircher and P. Jain, 2004

5.1 Introduction

This chapter presents the reader with a detailed, three-stage example intended to illustrate the main
modeling concepts of the ResOwn ontology presented in Chapter 4, and to provide an example of the

practical use of ResOwn in the software engineering domain.

e The first stage of the example shows the reader how ResOwn can be specialized with
application-specific ontological classes derived directly using object classes from the example

PBX. Theresulting ontology is called a specialized ResOwn instance.

e The second stage provides the reader with a visual illustration of how the automatically
generated inferred class hierarchy of the specialized ResOwn instance can be used to determine

the multiple inheritance characteristics of the ontological classes originating from the PBX.

e The third stage provides the reader with a nhumber of visual, role-based resource ownership
scenarios (i.e., resource ownership patterns) that show how the PBX’s application resource
ownership structure evolves in an ordered or state-dependent manner in synchronization with the
operational PBX. The software sensor plan is used to guide the manual PBX instrumentation

process, as discussed in Chapter 7.

103

5.2 An Asserted ResOwn Instance Example

Recall from Chapter 4 that a ResOwn instance is a specialized version of the baseline ResOwn

ontology that has been extended with application-specific ontological classes. This section presents a

ResOwn specialization methodology along with a specific example using the actual object classes
from the example PBX (Section 2.10).

5.2.1 Assumptions

The following assumptions are applicable for the ResOwn specialization methodology for the PBX:

The CEFSM-based software requirements specification and software design specification are
available. In this thesis, the PBX is specified using SDL.

The object-oriented source codeis available. In this thesis, the PBX isimplemented in Java.

Because the design is assumed to be a refinement of the requirements, and the source code a
refinement of the design (Section 6.1.6), externally observable states in the software requirements

map to equivalent states in the software design and source code.

Each CEFSM specified in the design specification maps to an equivalent object class (of the same

name) in the source code.

5.2.2 ResOwn Specialization M ethodol ogy

The ResOwn specialization methodology for constructing a specialized ResOwn instance is comprised

of these steps:

1. From the source code, construct an object class table such that each class in the table corresponds

to an equivalent CEFSM in the software design specification. The list of identified PBX classesis
givenin Table 2.2 of Chapter 2.

Place each CEFSM identified from Step 1 into an appropriate level of the layered interactive
service architecture like the one for the PBX shown in Figure 2.28 of Chapter 2. If a particular
CEFSM could potentially reside in more than one level, place the CEFSM in the primary or
dominant level. When the resulting specialized ResOwn instance is classified, the reasoner will

use the ontological class definition to automatically deal with cases of multiple inheritance.

104

3. Assign each CEFSM in the object class table created in Step 1 to a top-level core ResOwn class
(i.e., Resource, Consumer or Resource) as shown in the ResOwn Class column for the PBX in
Table 2.2 of Chapter 2. This assignment determines which Named class in the baseline ResOwn
ontology that the new application-specific ontological class will beinserted under, asfollows:

i. If the CEFSM resides in the service delivery layer, then an ontological class with the same
identifier name as the CEFSM is inserted into the baseline ResOwn ontology under the
Named Consumer or Named Dispatcher class. For the PBX, the CEFSMs wait for call
service and phone handler are inserted under the Named Dispatcher class and the Named

Consumer class, respectively, as shown in Figure 5-1.

SwitchingNetwark D)

 callProgressToneManager)

-;'.____.TaneTaDigitCardManager._:_'_'_‘,-'

RingerCadenceService D

/\/ C Unescannerservice D)
P < |Saa— P — §
C NamedSupleer rfJJ-'—-'—' ChanneIManager)
h =7 _is-a g

\5_.._1 -(___ DigitScannerSeNice D)

\ PhoneEventHandlerManager \1

(_ Supplier b 4 (_LineCardManager)
~— —
(_ ToneCadenceService)

1 Owner HF——"— CGnsumer bk gs-a—(Namedconsumer y<fs-a——— PhoneEventHandier)
Wl.g A S~ - ~

(Dlspatcher /.r-f]f—-‘—'.__ NamedDispatcher "_‘,KLP'—-‘—(:_"WaitForCaIIsService":'_"_u

Figure 5-1: Named Owner classes from the PBX.

ii. If the CEFSM resides in the community service layer, then an ontological class with the same
identifier name as the CEFSM is inserted into the baseline ResOwn ontology under the
Named Supplier class. For the PBX, the CEFSMs call progress tone manager and line card

scanner are inserted under the Named Supplier class, as shownin Figure 5-1.

105

iii. If the CEFSM resides in the hardware abstraction layer, then an ontological class with the
same identifier name as the CEFSM is inserted into the baseline ResOwn ontology under the
Named Resource class. For the PBX, the CEFSMs line card and idle relay device are

inserted under the Named Resour ce class, as shown in Figure 5-2.

C RingToneGeneratorCard >

" IdleRelayDevice)

/_’_’__

Channel

< FastBusyToneGeneratorCard >

Pl — —L5 " IdleToneGeneratorCard)
tResource WNamedResoume &g —
- 7 ~— V\ (_ LineCard
=l o \-_

@ (::-SIow8usyToneGeneratorCard__:)

_—

DialToneGeneratorC arcr\/

RingerRelayDevice)

ToneToDigitCard >

Figure 5-2: Named Resour ce classes from the PBX.

iv. For each Named class inserted into the baseline ResOwn ontology, any relevant or required
property restrictions must be instantiated according to the class properties or characteristics
of the actual PBX class for which the ontological Named class was created. An example set
of properties that would need to be considered for a Named Resour ce class is shown in the
Protégé-OWL screenshot of Figure 5-3. The Named Resour ce class properties are inherited

from the top-level Resour ce class, as shown in the class hierarchy in Figure 5-2.

After the necessary class property restrictions are instantiated, the reasoner is run to check
consistency. The resulting Named Owner and Resour ce classes for the PBX are shown in Table 5-1
and Table 5-2, respectively. The Subsumed By Class. I nferred column is explained in Section 5.3

106

cl)) owtClasses | [Pll| Properties | I Indivicuals | | OWLYiZ |

< Iﬂj DITOR SR T
For Project: @ NewResourceQOwnership For Class: \C) ExampleNamedClass (instance of owl:Class)
sserted Hierarchy W M U3 J8 | Assered [inferred PIll Properties (D] [Of B R &
¥ (C)Resource k=) 3 ¢ || [v [O]isBoundTo R
- n 1 Conan =
L) ClosedResource %) Instrument Resouy

(€} CompoundResource (0] hasCapacity

C) ConsumableResource [O] hasContainer

— | |C)NamedResource

._l;:I EmbeddedResource | g hasOwner
(C) ExternalGatewayResource #| | 1%V isBoundTo Instrument [O]hasPersistency
ClinternalResource —Q— hasPortal

¥ (C)NamedResource — Eistor\tainerOf

| C) ExampleNamedClass

L) NoncomsumableResource

L]

[[T»

Figure 5-3: Inherited Resour ce propertiesin an example of a Named Resour ce class.

Subsumed By Class

Named Owner Class Active Asserted Conditions
Asserted Inferred
WaitForCallsService NamedDispatcher NamedDispatcher 3 isDispatcherOf PhoneEventHandler
PhoneHandler NamedConsumer NamedConsumer 3 hasDispatcher WaitForCallsService

DispatchableConsumer

LineScannerService NamedSupplier NamedSupplier 3 hasOwnerBase ActiveOwnerBase
DigitScannerService ActiveSupplier 3 hasOwnerRole SurrogateOwnerRole
RingerCadenceService SurrogateResourceSupplier

ToneCadenceService

CallProgressToneManager NamedSupplier NamedSupplier 3 hasOwnerBase PassiveOwnerBase
PassiveSupplier 3 hasOwnerRole PermanentOwnerRole
ManagedResourceSupplier

SwitchingNetwork NamedSupplier NamedSupplier 3 hasOwnerBase PassiveOwnerBase

PassiveSupplier 3 hasOwnerRole SurrogateOwnerRole
SurrogateResourceSupplier

PhoneHandlerManager NamedSupplier NamedSupplier 3 hasOwnerBase PassiveOwnerBase
LineCardManager PassiveSupplier 3 hasOwnerRole DefaultOwnerRole
ChannelManager PooledResourceSupplier

ToneToDigitCardManager

Table 5-1: Named Owner classesfor the PBX.

5.3 A Specialized Inferred ResOwn Instance Example

Recall from Chapter 4 that the baseline ResOwn ontology actually consists of a manually created,
asserted class hierarchy from which ainferred class hierarchy can be generated automatically using a

reasoner. It is interesting to observe that the specialized ResOwn instance is merely just the asserted

107

class hierarchy of the basdine ResOwn ontology extended with application-specific ontological
classes from the PBX. Therefore, the asserted class hierarchy for the specialized ResOwn instance
can aso be classified, in the exact same way, using the reasoner. The result is an automatically
generated, application-specific inferred class hierarchy for the specialized ResOwn instance. This
result is significant because it means all ontological classes originating from the PBX can be tested

and any multiple inheritance automatically determined.

Subsumed By Class
Resource Class Active Asserted Conditions
Asserted Inferred
IdleRelayDevice NamedResource EmbeddedResource 3 isBoundTo EmbeddedTitledeed
RingerRelayDevice InternalResource 3 hasContainer LineCard
ClosedResource isContainerOf = 0
NonconsumableResource hasPortal = 0
3 hasCapacity SingleUser
3 hasPersistency SystemPersistent
LineCard NamedResource DistributableResource 3 isBoundTo ReusableTransferableTitledeed
CompoundResource 3 isContainerOf IdleRelayDevice
ExternalGatewayResource 3 isContainerOf RingerRelayDevice
3 hasPortal SessionAccessPortal
3 hasCapacity SingleUser
3 hasPersistency SystemPersistent
hasContainer = 0
Channel NamedResource DistributableResource 3 isBoundTo ReusableTransferableTitledeed
ToneToDigitCard InternalResource 3 hasCapacity SingleUser
NonconsumableResource 3 hasPersistency SystemPersistent
hasContainer = 0
isContainerOf = 0
hasPortal = 0
IdleToneGeneratorCard NamedResource StationaryResource 3 isBoundTo NontransferableTitledeed
DialToneGeneratorCard OpenResource 3 hasCapacity MultipleUser
RingToneGeneratorCard InternalResource 3 hasPersistency SystemPersistent
SlowBusyToneGeneratorCard hasContainer = 0
FastBusyToneGeneratorCard isContainerOf = 0
hasPortal = 0

Table 5-2: Named Resour ce class for the PBX.

For convenience and readability of the diagrams, the Owner and Resour ce class hierarchies of the

specialized ResOwn instance for the PBX are considered in these two separate sub-examples.

e Consider the asserted Owner subclass hierarchy presented in Figure 5-1 of the specialized
ResOwn instance for the PBX. The definitions for the defined Owner subclasses are given in
Table 4-15 of Chapter 4. The definitions of the Named Owner classes for the PBX are given in
Table 5-1. The resulting inferred Owner class hierarchy of the specialized ResOwn instance for

108

the PBX is shown in Figure 5-4. Any resulting multiple inheritance now apparent in the
specialized inferred Owner class hierarchy has been commanded in the Subsumed By Class:
Inferred column of Table 5-1.

e Consider the asserted Resource subclass hierarchy presented in Figure 5-2 of the specialized
ResOwn instance for the PBX. The definitions for the defined Resource subclasses are given in
Table 4-10 of Chapter 4. The definitions of the Named Resour ce classes for the PBX are given
in Table 5-2. The resulting inferred Resour ce class hierarchy of the specialized ResOwn instance
for the PBX is shown in Figure 5-5. Any resulting multiple inheritance now apparent in the
specialized inferred Resour ce class hierarchy has been commanded in the Subsumed By Class:
Inferred column of Table 5-2.

PhoneEventHandlerManager

|
) 5 ||

-
A —iea
(PooledResourceSupplier 7~ | o
— = S) | ToneToDigitCardManager
.// "3 Lg 4
\ // _5..
/ \ ~
/ N\ iz
P >// -Is.____ __# LineCardManager

A

I 5a
/ = 1"“-“’ 2 [P — ChannelManager
"'/ (PassiveSupplier =+
/ - s = v“;_-l'\' —iga
: ; CallProgressToneManager
N = - — }lE-J:_ —
/ . Managndnmuruﬁuppliol” \is-a

A SwitchingNetwork

e == T_NamedDispatcher =} =4 WaitForCallsServ

J— = is-a/
Supp __CachedR. Supp Ve — o
- — -
e s ed_ 7
is-3 i . DigitScannerSemice
4 Owner i ! i
- \ - RingerCadenceSerice
- o — \, — — — —
W 2 S 3 isa
(C | == II :;; { DedicatedConsumer _'\‘I
: lis-2 % :
" =N . - \ ios 4 ToneCadenceSenice
. " >
Nisa S = =
- - . isa)
T ,

ableR

- 153 .
== ~—(DispatchableConsumer)< PhoneEventHandler

Figure 5-4: Inferred Owner class hierarchy of the PBX's specialized ResOwn instance.

4 Resource =t :"

|

109

Ir.-f"" _\-"\-\.‘_‘
. iﬁ@upp}[g_h] — —_CompoundResource
o _J,_r.._;,--"" — y/' ._,____L&J__

- . !
Mowner o0, . fica.s
SR =

e T —— E 2
c k
L o s e) /

S, =

s — |
C;Nnnnnmmmahttnmurn \,%55:‘_;\-- el .____-_-.Iflr_h.___
—— e —"',,j"-'-- --.I x“__ k.. a -
/ K T~Jica ' - i RingToneGeneratorCard
N TE % gl

~ =
- RingeiRelayDevice

is -t — N
=~ |)
- g:_ 4= : FastBusyToneGeneratorCard
I P e al d IdleRelayDevice KN =
—— _}/ __'5._,1,___"-._?"““""‘Rm““ff_/"“' \<
{ Resource P_za —— '-i';ki',?'k gl /\‘J'K ;
S —— - e { |
= _Km'“““l““'“__-i, I _Tllnﬂiuhllﬁmumi) }_\ -
A e - \
iy

A P
\ e —
‘ > R
\ f.r./ J/ B

e N
-ﬁn;-malﬂnnumtﬁﬂ_d =i
R Ry —

o _l. q-_--""‘—- e 152 |
\'H.__ — -
\'“\-;h-%_"‘ isa]
t ., B — - 4
e R
e .H"‘“-::: ToneToDigitCard

Figure 5-5: Inferred Resour ce class hier ar chy of the PBX' s specialized ResOwn instance.

5.3.1 ResOwn Specialization | ssues

One other aspect to consider in the specialization process is the case where an ontological class
originating from an application (e.g., PBX) is inconsistent and therefore cannot be automatically
classified by areasoner. There are two main reasons why this might occur. First, the new class should
have been consistent, but the property restrictions associated with the inconsistent ontological class
were instantiated incorrectly (i.e., human error). Second, the range of a property (or possibly several
properties) in the ontology might not be specified to include a necessary value or object class needed
to define the inconsistent ontol ogical class. This would mean that the property range would need to be

110

extended to accommodate the new application-specific class definition. Another potential
specialization issue might occur when an application-specific ontological classis consistent, but is not
classified under any of the existing defined classes in the basdine ResOwn ontology. Assuming the
new ontological class definition was correct, this result would imply that the new ontology class itself
specifies a new type of defined class, which extends the baseline ResOwn ontology, rather than
simply specializing it. As a result, ResOwn could be extended by adding a new defined class to the

appropriate top-level ResOwn class taxonomy (e.g., Resource or Owne).

5.4 Resour ce Acquisition and Owner ship Scenarios

This section presents a number of role-based, resource acquisition and ownership scenarios for the
Transferable, Nontransferable, Embedded and Compound Resource classes. The various
scenarios described beow use every Named | nstrument class (Section 4.8), except where noted
below in Section 5.4.5. The following procedure was employed to obtain more realistic scenarios for

testing the monitoring approach described in Chapter 7 using a Javaimplementation of the PBX:

e The source code for the call processing software of the PBX was manually instrumented,

compiled to bytecode and run on a stand-alone Unix workstation.

e Several resource ownership call traces were generated for both single calls and multiple
concurrent calls. All call traces were verified to ensure the call processing software of the PBX

did adhereto its behavioral design specifications.

e The resulting resource ownership call traces were analyzed. Any observed structural resource
ownership transactions recorded. This recorded runtime knowledge was used by the author during
the manually derivation of the role-based resource acquisition and ownership scenarios presented

further on in this section.

Recall from Chapter 1 that the concern-specific, evolving software structure of an operational
software system can be represented or modeled by an ordered sequence of object diagrams. An object
diagram represents a state-dependent snapshot (i.e., individual view) of the selected concern-specific
software structure. A class diagram represents a state-independent family of snapshots (i.e,
compound view) of the selected concern-specific software structure. In this example, a scenario is a

behavior-driven, ordered sequence of individual snapshots of the evolving resource ownership

111

structure of the PBX. Each snapshot is comprised of one or more proof of ownership | nstrument

instances, plus one or more related Owner and Resour ce instances.
Each role-based resource allocation and ownership scenarios is presented with:

e A natural language description that explains the addition and removal of individual links (i.e,
association instances) between I nstrument, Resource, Supplier and Consumer instances that
occur as the resource ownership structure of a current snapshot evolves into the next snapshot in

the ordered sequence.

e A UML-like object transformation rules, loosely based on Attributed Graph Grammar (AGG)
notation from [Tae03], used to visually describe the Instrument-based resource ownership

structure of each snapshot in a particular scenario.

The reader should note that some nonstandard UML notations are used in the object diagrams for
the bel ow-noted scenarios. Specifically, the stereotypes shown on the objects in the snapshots are just
for information purposes in the object diagrams so that the reader can easily see from where the
application-specific object was derived in the inferred class hierarchy of the specialized ResOwn
instance described in Section 5.3. Finally, it should be noted that one could take the specialized
ResOwn instance and trandate it to a simpler UML model by mapping ontological concepts to UML

classes and ontological propertiesto UML attributes.

5.4.1 Monitoring Event-Driven Snapshots

In the monitoring approach described in Chapter 7, the sequencing of resource allocation and
ownership snapshots is state-dependent and normally requires runtime knowledge from the operation
target in the form of monitoring commands. For now, it is sufficient to only introduce these

monitoring commands, without parameters, that will be used in the scenarios that follow.

e ACQUIRE is reported to indicate when a Consumer instance has acquired direct or indirect
beneficiary ownership of a particular Transferable, Nontransferable or Embedded Resource
instance from a granting Pooled Resource Supplier, Managed Resource Supplier or

Compound Resour ce instance, respectively.

o RELEASE isreported to indicate when a Consumer instance has returned beneficiary ownership

of a particular Resour ce instance back to its originator.

112

REGISTER is reported to indicate when a Consumer instance has given nonbeneficiary
ownership of a Transfer able, Nontransfer able or Embedded Resour ce instance to a Surrogate

Resour ce Supplier or Cached Resour ce Supplier instance.

UNREGISTER is reported to indicate when a Consumer instance has relinquished

nonbeneficiary ownership.

5.4.2 Transfer able Resour ce Scenario

Consider the snapshots for the Transferable Resource scenario, as shown in Figure 5-6. The
applicable objects are defined in Table 5-3.

PBX Class Identifier ID ResOwn Superclass
Touch Tone Receiver Card :TTRX ttrx5 Transferable Resource
Touch Tone Receiver Card Manager ™ tm1 Pooled Resource Supplier
Phone Handler :PH phi Dedicated Consumer
Transferable Titledeed :TTD ttd1 Base Instrument

Table 5-3: Transfer able Resour ce scenario.

5.4.2.1 Scenario Semantics

At time t: Figure 5-6(i) shows ttd1 bound to ttrx5, as indicated by the isBoundTo link between
the Transfer able Titledeed instance and the Transfer able Resour ce instance. Further, ttrx1 has
only a default owner as indicated by the fact that the hasHolder and hasl ssuer links from ttd1 are
both connected to tm1.

At time t+1: Figure 5-6(ii) shows what happens after the instrumented target produces an
ACQUIRE indicating that phl has successfully acquired beneficiary ownership of ttrx5 from
tml. Therefore, the hasHolder link of ttd1l must be disconnected from tml and connected to phl
so that the snapshot reflects the new ownership structure. Because the hasHolder and hasl ssuer
links now connect to different objects, phl may be inferred as the current owner of ttrx5 and tml

remains the default owner of ttrxb.

At time t+2: Figure 5-6(i) shows what happens after the instrumented target produces a
REL EASE indicating that phl has reinquished beneficiary ownership of ttrx5 back to tml. To
keep the snapshot synchronized with the target’s evolving ownership structure, the hasHolder

113

link of ttd1 must be disconnected from phl and subsequently reconnected to tml, indicating again

that ttrx5 has no beneficiary owner.

Current Owner Role

<<Transferable Resource>> <<Transferable Resource>>
TTRX <<Consumer>> “TTRX
id=5 iPH id=5
id=1
isBoundTo isBoundTo
TTD hasHolder TTD
id=1 id=1
hasHolder hasIssuer Acquire haslIssuer
<<Pooled Resource Supplier>> < <Pooled Resource Supplier>>
:TM Release :TM
id=1 P id=1
Default Owner Role Default Owner Role
(i) (ii)

Figure 5-6: Transferable Resour ce scenario.

5.4.2.2 Examples of Structural Errors

Here are some samples of the possible structural errorsthat could be detected during a Transfer able

Resour ce acquisition and release.

e The Transferable Resource instance is made an orphan because the Transferable Titledeed
instance is not released back to the original default owner before the end of the current, in-

progress service request (i.e., telephone call).

e The same Transferable Titledeed instance, with a single user capacity, is issued to more than

one current owner creating a multiplicity violation.

e The target reports that the acquired Transferable Resource instance is actually bound to a
Nontransfer able or Embedded Titledeed instance at initialization time. Therefore the resource
ownership acquisition violates the invariant that states that a Consumer instance playing a
current owner role may only directly hold a Transferable Resour ce instance that is bound to

Transferable Titledeed instance and issued from Pooled Resour ce Supplier instance.

114

The acquired Transferable Resour ce instance is reease back to a different Pooled Resour ce
Supplier instance than from which it was originally acquired. Therefore, the invariant that states
that if the holder of a Transferable Titledeed instance is not a current owner, it must be the

default owner is violated:

error — (—CurrentOwner A (hasHolder (DefaultOwner) # hasl ssuer (DefaultOwner)))

5.4.3 Nontr ansfer able Resour ce Scenario

Consider the snapshots for the Nontransferable Resource scenario shown in Figure 5-7 where the
applicable objects are defined in Table 5-4.

PBX Class Identifier ID ResOwn Superclass
Dial Tone Generator Card :DIAL dial2 Nontransferable Resource
Call Progress Tone Manager :CPTM cptm1 Managed Resource Supplier
Phone Handler :PH phi Dedicated Consumer
Nontransferable Titledeed :NTD ntd2 Base Instrument
Serial License :LIC licl Extent Instrument

Table 5-4: Nontr ansfer able Resour ce scenario.

5.4.3.1 Scenario Semantics

At time t: Figure 5-7(i) shows ntd2 bound to dial2, as indicated by the isBoundTo link between
the Nontransferable Titledeed instance and the Nontransfer able Resour ce instance. Further,
dial2 has only a permanent owner asindicated by the fact that the hasHolder and hasl ssuer links

from ntd2 are both connected to cptml.

At time t+1: Figure 5-7(ii) shows what happens after the instrumented target produces an
ACQUIRED indicating that phl has successfully acquired beneficiary ownership of dial2 from
cptml. Therefore, ntd2 is extended by licl, as indicated by the hasExtent link between the Serial
License instance and the Nontransferable Titledeed instance. Further, licl haslssuer link
connected to cptml and hasHolder link connected to phl so that the snapshot will accurately

reflect the evolving ownership structure of the operational target. Further, because the hasExtent

115

now connects to Extent I nstrument instance held by the phl. It may be inferred that phl is an

exclusive licensed owner of dial2, while cptml remains the permanent owner of dial2.

e At time t+2: Figure 5-7(i) shows what happens after the instrumented target produces a
REL EASE indicating that phl has relinquished beneficiary ownership of dial2 back to cptml.
Therefore, to keep the snapshot ownership structure synchronized with the evolving target, the
hasHolder and hasl ssuer links of licl must be disconnected from phl and cptml, respectively,
and the hasExtent link must subsequently be disconnected from licl.

Licensed Owner Role

<<Nontransferable Resource>> <<Consumer>> <<Nontransferable Resource>>
:DIAL :PH :DIAL
isBoundTo hasHolder isBoundTo
hasExtent
:NTD 'LIC :NTD
id=2 =1 id=2
hasHolder hasIssuer Acqmre hasHolder hasIssuer
- q hasIssuer -
<<Managed Resource Supplier>> <<M ged Resource Supplier>>
:CPTM Rel :CPTM
id=1 elease id=1
Permanent Owner Role s Permanent Owner Role
(i) (i)

Figure 5-7: Nontransfer able Resour ce scenario.

5.4.3.2 Examples of Structural Errors

Here are some samples of the possible structural errors that could be detected during a

Nontr ansfer able Resour ce acquisition and release.

e The Nontransferable Resour ce instance is made an orphan because the Serial License instance
is not released back to the original permanent owner before the end of the current, in-progress

service request.

e The same Serial License instance, with a single user capacity, is issued to more than one

exclusive licensed owner creating a multiplicity violation.

116

The target reports that the acquired Nontransferable Resource instance was one which is
actually bound to a Transferable or Embedded Titledeed instance at initialization time.
Therefore the resource ownership acquisition violates the invariant that states that a Consumer
instance playing a licensed owner role may only own Nontransferable Resource instance

through licensing from a Managed Resour ce Supplier instance.

The acquired Nontransferable Resource instance is release back to a different Managed
Resource Supplier instance than from which the Serial License instance was originally

acquired.

5.4.4 Embedded Resour ce Scenario

Consider the snapshots for the Embedded Resource scenario, as shown in Figure 5-8 where the
applicable objects are defined in Table 5-5.

PBX Class Identifier ID ResOwn Superclass
Ringer Relay Device :RR 8 Embedded Resource
Line Card :ILC lcl Transferable Compound Resource
Line Card Manager LM Im1 Pooled Resource Supplier
Phone Handler :PH phi Dedicated Consumer
Transferable Titledeed :TTD ttd2 Base Instrument
Embedded Titledeed :ETD etd3 Base Instrument
Proxy :PRX prx1 Extent Instrument

Table 5-5: Embedded Resour ce scenario.

5.4.4.1 Scenario Semantics

At time t: Figure 5-8(i) shows etd2 bound to rr8, asindicated by the isBoundTo link between the
Embedded Titledeed instance and the Embedded Resource instance. Further, rr8 has only a
containment owner as indicated by the fact that the hasHolder and hasl ssuer links from etd2 are
both connected to Ic8. In addition, ttd3 is bound to 1c8, as indicated by the isBoundTo link
between the Transferable Titledeed instance and the Transferable Compound Resource
instance. Further, 1c8 has only a default owner as indicated by the fact that the hasHolder and

hasl ssuer links from ttd3 are both connected to Im1.

117

At time t+1: Figure 5-8(ii) shows what happens after the target produces an ACQUIRE
indicating that phl has successfully acquired beneficiary ownership of both Ic8 from Im1 and rr8
from1c8. Therefore, hasHolder link of ttd3 must be disconnected from Iml and connected to phl
and etd2 is extended by prx1, as indicated by the hasExtent link between the Proxy instance and
the Embedded Titledeed instance. Further, prx1 hasl ssuer link connected to Ic8 and hasHolder
link connected to phl. Note that phl may be inferred as both the current owner of 1c8 and the

proxied owner of rr8, while 1c8 remain the containment owner of rr8 and Iml remains the default

owner of 1c8.
Containment Owner Role
<< Compound Resource>>
“TTD < <Distributable Resource>>
: isBoundTo
id=3 :LC
hasHolder hasIssuer id=8
hasHolder hasIssuer
<<Pooled Res.(;:ll:';e Manager>> -ETD
= id=2
id=1
isBoundTo

Default Owner Role

Acquire :RR
Release (M)

<<Embedded Resource>>

id=8

Containment Owner Role

<<Compound Resource>> <<Distributable Resource>>

:LC
id=8
isBoundTo hasIssuer hasHolder hasIssuer
:TTD :PRX hasExtent EElR
id=3 hasHolder =1 id=2
hasIssuer hasHolder isBoundTo
<<Pooled Resource Manager> > o e <<Embedded Resource>>
LM :PH :RR
id=1 id=1 id=8
Default Owner Role Current Owner Role .
Proxied Owner Role (if)

Figure 5-8: Compound and Embedded Resour ce scenario.

118

At time t+2: Figure 5-8(i) shows what happens after the target produces a REL EASE indicating
that phl has reinquished beneficiary ownership both rr8 and Ic8 back to Ic8 and Imi,
respectively. Therefore, to keep the snapshot ownership structure synchronized with the evolving
target, the hasHolder and hasl ssuer links of prx1 must be disconnected, the hasExtent link must
disconnected from prx1 and the hasHolder link of ttd2 must be disconnected from phl and

reconnected to Im1.

5.4.4.2 Examples of Structural Errors

Here are some samples of the possible structural errors that could be detected during Embedded

Resource acquisition and release.

The Embedded Resource instance is made an orphan because the Transferable Titledeed
instance for the Transferable Compound Resource instance containing the Embedded
Resour ce instance is not released back to the original default owner before the end of the current,

in-progress service request.

The Embedded Resource instance is made an orphan because the Proxy instance for the
Embedded Resour ce instance is not reeased back to the original containment owner before the

end of the current, in-progress service request.

The same Proxy instance, with a single user capacity, is issued to more than one proxied owner

creating a multiplicity violation.

The target reports that the acquired Embedded Resour ce instance is one which is actually not

bound to a Compound Resour ce instance at initialization time.

The acquired Embedded Resour ce instance is release back to a different Compound Resour ce

instance than the one that acted as the containment owner of the Embedded Resour ce instance.

5.4.5 Surrogate Resour ce Supplier Registration Scenario

Consider the snapshots for the Surrogate Resource Supplier registration scenario®, as shown in

! The Cached Resour ce Supplier registration scenario is essential the same except atemporary owner role

would replace the surrogate owner role and a Permit To Hold replace the Power Of Attor ney.

119

Figure 5-9 where the applicable objects are defined in Table 5-6.

PBX Class Identifier ID ResOwn Superclass
Touch Tone Receiver Card :TTRX ttrx5 Transferable Resource
Touch Tone Receiver Card Manager ™ tm1 Pooled Resource Supplier
TTRX Scanner ‘TSCAN tscanl | Surrogate Resource Supplier
Phone Handler :PH phi Dedicated Consumer
Transferable Titledeed :TTD ttd1 Base Instrument
Power Of Attorney :POA poal Extent Instrument

Table 5-6: Surrogate Resour ce Supplier scenario.

5.4.5.1 Scenario Semantics

At time t+1: Figure 5-9(i) shows the scenario from 5.4.2, after the ACQUIRE, where ttdl is
bound to ttrx5, the hasHolder link is connected to phl, the current owner of ttrx5 and the

hasl ssuer link is connected to tm1, the default owner of ttrx5b.

At time t+2: Figure 5-9(ii) shows what happens after the target produces a REGISTER to
indicate that phl has successfully registered nonbeneficiary ownership of ttrx5 with tscanl. The
ttdl is extended by the poal, as indicated by the hasExtent link between the Power Of Attorney
instance and the Transferable Titledeed instance. Further, poal has the haslssuer link
connected to phl and the hasHolder link connected to tscanl. Since tscanl holds poal, tscanl is
the inferred nonbeneficiary owner of ttrx5 and only controls when ttrx5 will scan for digits.
Further, since phl still holds ttd1, it remains the inferred current owner and beneficiary owner of

ttrx5 and will ultimately be the receiver of any dialed digits.

At time t+2: Figure 5-9(i) shows what happens again after the target produces the
UNREGISTER. The UNREGISTER disconnects haslssuer link between phl and poal, the
hasHolder link between tscanl and poal and the hasExtent link between poal and ttdl, thus
returning to the current owner snapshot.

120

Current Owner Role

< <Transferable Resource>>
<<Consumer>> TTRX
:PH id=5
id=1
isBoundTo
hasHolder TTD
id=1
hasIssuer
Register
<<Pooled Resource Supplier>>
:T™M
id=1
. Default Owner Role
Unregister
Current Owner Role
< <Transferable Resource>>
<<Cot|:’ul:\l1er>> “TTRX
- id=5
id=1
isBoundTo
hasIssuer hasHolder
:POA :TTD
id=1 hasExtent id=1
hasHolder hasIssuer
< <Surrogate Service Supplier>> <<Pooled Resource Supplier>>
:TSCAN :T™M
id=1 id=1
Surrogate Owner Role Default Owner Role

Figure 5-9: Surrogate Resour ce Supplier scenario.

5.4.5.1.1 Orphaned Power Of Attorney Scenario

Consider now the snapshots for the extended Surrogate Resour ce Supplier unregistration scenario,
as shown in Figure 5-10 using the same objects as defined in Table 5-6. In this case, the target reports
that a REL EASE indicating that beneficiary ownership of ttrx5 has been relinquished by phl back to
tml. However, this result is erroneous because the target did not first report an UNREGISTER
indicating that phl has relinquished nonbeneficiary ownership of ttrx5 from tscanl. As a result, a
resource leak occurs as indicated by the orphaned Power Of Attorney instance. The Power Of
Attorney instance is said to be orphaned because ttrx5 is still registered with tscanl on behalf of

121

phl, but phl no longer holds the Transferable Titledeed instance for ttrx5. Therefore, ttrx5 no
longer has a beneficiary owner for which the surrogate owner, tscanl, acts on behalf of. This error
was actually detected in the PBX. The fault occurred in a certain execution path of phl where the
Phone Hander did not inform the TTRX Scanner to stop scanning for digits before the Phone Handler
released the TTRX back to the TTRX Manager.

Current Owner Role
<<Transferable Resource>>
<<C >>
onsumer :_I_rRx
:PH =
id=1
isBoundTo
haslIssuer hasHolder
:POA :TTD
id=1 hasExtent id=1
hasHolder haslIssuer
<<Surrogate Service Supplier>> <<Pooled Resource Supplier>>
:TSCAN ™
id=1 id=1
Surrogate Owner Role Default Owner Role
Release
<<Transferable Resource>>
<<Consumer>> TTRX
:PH v id=5
id=1
isBoundTo
hasIssuer
:POA > :TTD
id=1 hasExtent id=1
hasHolder hasIssuer
hasHolder IsOwnerof
<<Surrogate Service Supplier>> (NBOWR) <<Pooled Res:)l:l;l:e Supplier>>
:TSCAN -
id=1 lSE

Surrogate Owner Role Default Owner Role

Figure 5-10: Or phaned Power Of Attorney scenario.

122

Chapter 6
Session-Oriented M odel of

Computation

6.1 Introduction

This chapter presents a detailed description of a session-oriented model of computation (SOMOC)
that is used as a basis for monitoring interaction applications. The SOMOC is a dual-view model that
bridges the semantic gap between an interactive session-oriented service's observable behavior and
its underlying software system’s evolving structure. The SOMOC decomposes an interactive session-

oriented service into two levels of abstraction:

e A requirements’-level that provides an external behavioral view or modeling perspective of the

interactive session oriented service.

o A design-level that provides an internal structural view or modeling perspective of the service's

underlying software system.

Concepts from the SOMOC described in this chapter are used, as described in detail in Chapter 7, for
deriving a concern-specific monitoring model from the target software system’s formal specifications.

To the best of the author’s knowledge, a dual-view, session-oriented model of computation has not

! In thisthesis, requirements-level mean ahigh-level SDL design specification, and design-level means |ow-
level, detailed SDL design specification.

123

been described previously in the literature.

6.1.1 Hierarchical Abstract Layering

Hierarchical abstract layering formulates general concepts organized into abstraction levels from
common properties, where higher-level concepts are dependent on lower-level ones [Szp02]. The
SOMOC organizes object classes into a non-strict, hierarchical abstract layered architecture. Non-
strict layering allows objects instantiated from classes on one layer of the architecture to interact with
objects instantiated from other classes on any lower layer. A class's paosition in the architecture is
position-sensitive. For the example PBX, as shown in Figure 2.28 of Chapter 2, Resour ce instances
reside in the lowermost layer, Consumer instances in the topmost layer, and Supplier instances in
the middle layer. Control only flows down. Data may flow up from the service environment or down

to the service environment.

6.1.2 Behavioral Partitioning

Behavioral partitioning separates a whole into its parts [Iee90]. The SOMOC uses partitioning to
logically separate an interactive service' s observable behavior into a set of functionally equivalent,
concurrent sessions’. Doing this partitions the service's input state-space and reduces the number of

behavioral alternatives that must be simultaneously considered during monitoring.

6.1.3 What is Session-Orientation?

The SOMOC is session-oriented. The SOMOC adopts an object-based definition of a session as sets
of externally observable interactions that bind sets of objects to users, for a given activity, over a
bounded time period [Tex03].

6.1.4 SOMOC: Internal Structural View

The internal view models the structure of an interactive service as a set of n logical sessions <S, ...,
S, ..., S;>. Consider the internal structural view given in Figure 6-1. For the selected structural

! The SOMOC is also capable of supporting sessions with different functional (i.e., behavioral) requirements.

124

software concern, each S (i.e., dashed oval) is logically comprised of an end user, U;, a session
access portal, P, , a computational thread of execution, T; (i.e, Consumer instance) and a local
software structure, L; (i.e, set of owned Resource instances). Each T; executes concurrently with
other portions of the software and delivers the service's functionality to each U; via a P,. Each P,
represents an ingress between the service environment and the software system implementation. The
global software structure is comprised of a set of regional software structures, R, (i.e., dashed
trapezoid). An R, has an associated Supplier instance and its owned Resource instances. The monitor

is capable of tracking the evolving software structure on a local, regional and global basis.

’’’’’
.
.
.

n R
’I . 'l' \“
: ! Global
. o . Structure
U <«—> P .
-~ n Iy i ’ ’] - “\
___________ v . Regional .-»-.
________________________________ / . Structure !)
. ¥ !
, .\
[] eellecccccccccaaan | | Py S -
------------------ g -

- -~
. N
- -~

. -~

e ~

Piad
.e

Figure 6-1: Dual-view model: internal structural view.

6.1.5 SOM OC: External Behavioral View

This external view models the observable session behavior as a finite state machine (FSM) of
superstates. Consider the external behavioral view given in Figure 6-2. The SOMOC distinguishes
between those service execution phases that differ in their resource usage, making the use of finite
state machines suitable for formalizing this model. An inactive S is idle and has no pending service
requests on P,. An active S is processing an in-progress service request on P; and transitions through
some or all of the shown model superstates. The monitor is capable of detecting when an interactive

service enters or leaves a model superstate on a session-by-session basis.

125

Idle (Inactive) I In-Progress (Active)
Session Session

Service Request

Established

Evolving
Structure

Baseline

Structure Service Cancel

or
Service Abort

I'é
{ Teardown)

Figure 6-2: Dual-view model: external behavioral view.

6.1.5.1 Service Provisioning Path

The model’s service provisioning path is the trajectory followed by the service during normal
operation. In Figure 6-2, the service provisioning path of a session is the superstate sequence: Idle/
Setup / Established / Teardown / Idle, where the Established / Teardown transition only occurs
due to a service cancel initiated by a user. If a session is on its service provisioning path, then it's

evolving software structure must adhere to certain state-dependent invariants.

6.1.5.2 Service Annulment Paths

The model’s service annulment path is the trajectory followed by the service during exceptional
operation. An operational exception occurs when a user initiates a service cancel before the serviceis
established, or anytime the service itself initiates a service abort. A service abort indicates
exceptional runtime circumstances such as detection of an invalid service parameter or violation of
some computational constraint such as depletion of a shared resource. In Figure 6-2, two possible
service annulment paths are the super state sequences: Idle/ Setup / Teardown / Idle, or Idle/ Setup
/ Established / Teardown / | dle, where Established / Teardown only occurs after a service abort. If
asession is on a service annulment path, then its evolving software structure may no longer adhere to

certain state-dependent invariants in the same way a provisioning session would.

126

6.1.5.3 Idle Superstate

An inactive session in the SOMOC normally resides in its Idle superstate. The Idle superstate has a
memoryless property that states that any side effects' from a previous active session are never carried
forward through the Idle superstate to a new session. When an inactive session is in its Idle superstate,

it is the underlying software structure for that session that is said to be at aits minimal or baseline.

6.1.5.4 Resynchronization

Resynchronization allows an automated observer to continue tracking the state of an operational
target software system after a behavioral failure has been detected [1or94, Hua99, Pek03, Sav97]. If a
structural error occurs and is detected during a particular session, then the Idle superstate is an ideal
resynchronization point because a monitor can reset the session’s software structure back to its

basdine once the associated session becomes inactive.

6.1.6 Specification Refinement and Refinement M apping

The notion of specification refinement, as shown in Figure 6-3, consists of iteratively creating a
number of increasingly detailed projections to transform an abstract specification into a more concrete
one, until source code is produced [Gez03, Pfl06, Liu02, Sha96]. The process of specification
refinement must preserve the externally visible behavior of the software system. On the other hand, a
refinement mapping is a function that maps the state-space of a less abstract projection, S, onto the
state-space of a more abstract projection, Sy, while preserving safety and liveness properties [Aba91,
Lam84, Lam83, Pav0l]. If a refinement mapping holds between S, and Sy, then the external signals
specified in S, must map to an equivalent set of external signals in Sy. For example, to guarantee a
requesting client without implementation knowledge access to a server through a published interface,
a software developer must ensure that any possible behavior of S can be mapped to at least one
expected behavior of S.

The monitoring approach in Chapter 7 assumes that the software design and source code have been
refined from the requirements and a refinement mapping holds between each pair of adjacent
specification projections. Therefore, the observable specification states and signals specified in the

! Excluding auxiliary variables and history logs as they are orthogonal to the service' s functional requirements.

127

software requirements must be preserved (and identifiable) in the software design and
implementation. These assumptions are essential for defining an epoch of behavior (Section 0) and a
guiescent state (Section 6.1.7.2). It is assumed that:

e S is machine-closed meaning that the communicating extended finite state machine (CEFSM)
representing S, defines its complete behavior.

e S, hasfinite nondeterminism; that is, given any finite number of externally observable behaviors
alowed by Sy, there are only a finite number of possible choices for the set of all possible

corresponding internal state changes.

e S, isinternally continuous meaning that any complete behavior (i.e., interactive transaction)
alowed can be determined by observing and examining some finite portion of the service's

externally observable behavior.

I, - requirements inputs O, - requirements outputs
Requirements

A 4
A 4

T y _
L==1I, . I Sh 0,==0,
derivable | mappable
v 5.
I, - design inputs O, - design outputs
P Design P
- = ! A - =
I,==1I,) | Sy 0,==0,
derivable | mappable
Y S
I, - actual inputs 0, - actual outputs

A 4

Implementation

v

Figure 6-3: Specification refinement and refinement mapping.

6.1.7 Epoch of Behavior M odels

Each active superstate in the SOMOC, as shown in Figure 6-1, is comprised of a set of finite state
machines that specify “chunks’ of application-specific logic, such as the example shown in Figure
6-4. An epoch of behavior (EoB) is a specification slice or fragment from the software design

specification, demarcated by a set of quiescent states from the software requirements specification.

128

Further, an EoB model is comprised of a set of one or more structural transactions pertaining to a
selected software concern formally derived (Section 7.4) from a target software system’s software
design specification. Consider an internal observer using an EoB model to track the evolving
software structure of an operational software system for a sdected software concern. When the
operational target executes that portion of the code corresponding to the software design from which
the EoB model was derived, a series of concern-specific transaction-like interactions are produced
that indicate that the dynamic software structure of the target has evolved. For example, in thisthesis,

each EoB model specifies one or more successful structural resource ownership transactions.

Quiescent State
(State 13/ —
__—— Input Signal
Input,
W EoB Entry Point

Epoch 1 : Concern-Specific Structural Transactions
——

EoB Exit Point

Figure 6-4: Example session behavior partitioned into epochs of behavior.

6.1.7.1 EoB Anatomy

As depicted in Figure 6-4, an EoB model consists of three main parts:

e A single EoB Entry point consisting of a unique quiescent state and input signal combination

taken directly from the software requirements.

e An EoB body derived from the software system'’s software design specification and consisting of

129

a sat of concern-specific structural transactions called EoB detection points that indicate when
and how the software structure of the operational software system evolves. For example, Epoch;,

as shown in Figure 6-4, produces a number of concern-specific structural transactions.
e A set of one or more EoB Exit points, each consisting of a transition-ending quiescent state.

Each EoB entry point, EoB exit point and EoB detection point matches an identifiable location in
the software system’s source code where an appropriate software sensor must be embedded. When
the instrumented software encounters an embedded software sensor, an appropriate monitoring
command (Section 7.3) is produced to mark the internal runtime event. In general, for the selected
resource ownership concern, a monitoring command will be produced by an appropriate software
sensor every time the operational target enters an EoB model, exits an EoB model or successfully

compl etes a resource ownership transaction.

6.1.7.2 Quiescent States

A quiescent state in the SOMOC is an externally observable specification state, specified in the
software requirements, and preserved through refinement as an equivalent state in the software design
and implementation. In this thesis, a session that is in a quiescent state is said to have exited the
current EOB model, but not yet entered a new EoB model. From a runtime monitoring perspective, a
session waits an indeterminate amount of time in a quiescent state until the operational software
system reports, via a monitoring command, that the next EoB entry has been entered. Under normal
operating conditions, if every session is quiescent, then it can be said that the service itsdf isin a
systemwide quiescent state. The notion of a system-wide quiescent state is similar to that of a stable

state which occurs when no processes are executing or messages are in transit [Zul04].

6.1.7.3 EoB Example

Consider the example software requirements, design and source code excerpts given in Figure 6-5. A
number of two-way correlations or abstraction pairs exist between adjacent projections between
guiescent states and input signal combinations representing EoB entry points. It can be observed that
every identified EoB always ends in a mapped quiescent state as well. In addition, any number of
transient states may exist inside a demarcated EoB that are not mapped to higher level projections.
Transient states are short-term states that are not normally visible to an external observer. Transient

states normally occur within an EOB model, between pairs of concern-specific structural transactions.

130

6.1.7.4 Implementation States

Consider a refinement mapped software source code implementation, S, that satisfies a software
design, Sy, which in turn was refined from a software system’s software requirements. In this thesis,
the equivalence between externally observable signals is assumed to hold between al three levels of
abstraction; that is, the source code, the design and the requirements. Generally, the number of source
code implementation states is far greater than the number of observable requirements states.
Therefore, the number of quiescent states (i.e., EOB entry and exit points) is always less than the total
number of possible source code implementation states through which an operational software system

actually transitions. This fact is one of the general benefits of the model-based greybox monitoring
over conventional whitebox approaches (Section 2.8.4)

S S _ .
~H L @prlvate int handleSessionIdleState(Object msg)
(Requirements) (Design) {
try
@ S T ______________ {

!
, ® if (msg instanceof ServiceReq())
{

((ServiceReq)msqg) .getServAccessPortal()

® state = WaitParams; ®

Procee Abort \
EDe EZDe

} catch(NoResourceException e) {
(WaitParams) (WaitCancel)

/ | | | \ ® System;err.println(e),
I Grant(Rﬁl)(I Deny (I ServCancel I
- R @ @ D en / |

state = WaitCancel; ®

]
I Res_2)I Abort)
_4___,% ®

, private void handleIdleState() throws NoResExcept
{

®(WaitRes_2) (WaltCanceI)@ / ¥

{

/ resl = ReslMgr.requestResource()

} catch(NoResExcep e) {

/ throw new NoResExcep
}

try
/ (

® res2 = Res2Mgr.requestResource()

("Resl");

I] /
‘\‘ I Grant(R n)(I Deny (ISewCancelI l

{

®I Proceed) I Abort)® / ® res n = Res_nMgr.requestResource() ;
N C z)J()

@ WaitParams WaltCanceI @

} catch(NoResExcep e) {

try

throw new NoResExcep ("Res n")

}
}

® EoB Entry Point
Figure 6-5: Example mappings between S;and S

@ Quiescent State ® Transient State

® EoB Exit Point

131

Chapter 7
Concer n-Specific, Dynamic

Software Sructure Monitor

“ Good engineering is about ruthlesdy eliminating known ways of causing failures.”
- L. Hatton, 2001.

7.1 Introduction

This chapter presents a detailed description of the proposed greybox approach to concern-specific,
dynamic softwar e structure monitoring for interactive session-oriented services. The monitor provides
readers with an illustration of the use of ontologies for runtime monitoring, in general and the specific
practical use of ResOwn for monitoring the evolving resource ownership structure of interactive
session-oriented services. The first section of this chapter describes the monitor’s architecture and
internal organization. The next section defines the syntax and semantics of the monitoring commands
produced by the instrumented target and the model constructs added to the monitor’s specification-
based monitoring model. These model constructs direct the monitor’s interpreter on how to process
the incoming monitoring commands. Finally, two algorithms are presented for deriving the
specification-based monitoring model from the target’'s SDL software requirements and design
specifications. In this thesis, the selected software concern is application resource ownership
structure and the selected interaction session-oriented service is the call processing software of a
small private branch exchange (PBX). A session-oriented model of computation (SOMOC) for
interactive services is presented in Chapter 6. A detailed description of the PBX is provided in
Chapter 2.

132

7.2 The Monitor

The presented monitoring approach is intended to detect and report certain concern-specific structural
erors in interactive session-oriented services that are delivered by real-time software systems. An
organizational block diagram of the monitor is presented in Figure 7-1. The monitor executes as a
separate unit and is comprised of a greybox interpreter, a dynamic knowledge base and a pattern
matcher. In addition, monitoring relies on a number of derived, application-specific models including
a state evolution model, an EoB models library and a software sensor instrumentation plan (sensor
plan). An application-specific monitoring interface of software sensors is woven into the target
source code implementation in accordance with the sensor plan. The monitoring interface produces
and transports monitoring commands at runtime from the instrumented target to the monitor’s

greybox interpreter.

Inputs Outputs
~OPw® ~ o] Target System SR,
m
v Monitoring Interface
Error
State Evolution & Report
Sensor Structural Transaction 4
Plan Information '
y Software Structure Monitor :
- -
Pattern
Greybox Interpreter
o P * Matcher
Concern-Specific Model
State Dynamic Error
Evolution Et:-I_SbModeI Knowledge Patterns
o Model k' rary Base
=

.
.
.
.

Figure 7-1: Organizational block diagram of monitoring approach.

133

Monitoring is divided into two main stages.

e During the tracking stage, the greybox interpreter receives, processes and stores timestamped
monitoring commands that are produced and delivered from the operational target via the
monitoring interface. The runtime knowledge is used to track both the specification state and the
evolving software structure of the operational target on a session-by-session basis. The interpreter
uses the runtime knowledge from the monitoring commands, in conjunction with the concern-

specific monitoring models, to maintain the contents of the dynamic knowledge base.

o During the detection phase, the pattern matcher checks the consistency of the dynamic knowledge
base as well as matches known error patterns against all or some of the contents of the dynamic
knowledge base. These error patterns provide a declarative way to specify precise structural

configurations and constraints.

The two-phase monitoring approach allows the pattern matcher to perform consistency checks
offline on a representation of the operational target’s evolving software structure separately from the
interpretation process. Detected inconsistencies are reported as structural errors. For the selected

application resource ownership concern, the tuples stored in the dynamic knowledge base represent:

e Consumer, Supplier and Resour ce instances that correspond to actual objects in the operational

target software system.

o Proof of ownership Instrument instances that correspond to sets of active resource ownership

links currently in effect in the dynamic software structure of the operational target.

7.2.1.1 Behavioral Considerations

Although the monitor requires some behavioral knowledge from the operational target, the approach
does not consider behavioral correctness nor directly detect behavioral errors. The state evolution
model and EoB models are only intended to act as roadmaps for tracking the evolving software
structure of the operational target. Although the dynamic software structure monitor may complement

behavioral monitoring, it is not intended to replace existing behavioral monitoring approaches.

7.2.2 The Greybox I nter preter

The organization of the greybox interpreter shown in Figure 7-2 is loosely based on the ITU-T's
Abstract SDL Machine (ASDLM) [Bel91, 1tu9l] and consists of a number of synchronously

134

communicating meta-processes. The system meta-process handles the creation and termination of
CEFSM-instances. The global-time meta-process acts like a wall clock. Each interpretable meta-
process CEFSM-instance represents the logical state of a corresponding session so that the number of
CEFSM-instances is equal to the number of session access portals. The interpreter notifies the pattern

matcher whenever a session, or a set of sessions, isin a quiescent state (Chapter 6).

Monitoring Records
Global \ \ |
Time Monitor Monitor Monitor
System Command Command e Command
Queue, Queue, Queue,
E A
N
¥ Monitoring
R Records ' Tuples ', Tuples ",'
(o) Tuples S _ ¥ "0'
N ﬁ. -) S o’
M External Ve . { EoB
E signals Instrumented \ Dynamic _ Model
—
N Target (Knowledge Base .
T) Library
N~ -

Figure 7-2: Internal organization of the greybox interpreter.

7.2.2.1 Interpreter Extensions

The greybox interpreter extends and/or adapts the basic ASDLM in a number of ways.

e The system meta-process handles the routing of monitoring commands (rather than signals) from

the monitoring interface to the appropriate CEFSM-instance' s monitoring command queue.

e The delaying path process, used for signals traversing channels, is removed to eiminate signal

ordering issues due to nondeterministic channel delay.

e All the CEFSM signal input queues are replaced with CEFSM monitor command queues. A
CEFSM-instance may only consume a monitoring command from the queue if and only if the

command satisfies an enabling condition, effectively disabling implicit transitions.

e The EoB library is added to store the derived epoch of behavior specifications. When the

enabling condition is satisfied, a monitoring command is consumed and the next EoB entry point

135

is deemed to have been reached. If the next EoB differs from the current EoB, the interpreter
automatically unloads the current EoB and loads the next EoB. If the next EOB is the same as the

current EoB, the current EoB remains unchanged.

e A tuple-based dynamic knowedge base is added to store runtime knowledge. When a monitoring
command is consumed, a monitoring construct embedded into the associated fired transition of
the monitoring model consumes the monitoring command. The interpreting the monitoring
construct directs the interpreter on how to encode the runtime knowledge from the consumed
monitoring command into a tuple. The resulting tuple is then delivered or removed from the

dynamic knowledge base, depending on the type of monitoring command.

7.2.3 The Patter n matcher

This section describes only some initial ideas on the architecture and organization of the pattern

matcher. One possible architecture for the pattern matcher is presented in Figure 7-3.

Error Report

RegionalCheck
LocalCheck
Interpeter GlobalCheck [Detection Working
P "\ Processor Memory
Unfreeze
Insert Freeze Read-Set Match

Remove 7 RN
Transform >
(= o matcher
Knowledge / o
Base S Read-Set
\
——_—— - /

Error Patterns

Figure 7-3: One possible internal organization for the structural pattern matcher.

The focus of this thesis is on tracking the evolving software structure of an operational software
system. Some possible manually-derived error detection scenarios were previously described

(Chapter 5). However, a complete set of error detection and reporting algorithms is beyond the scope

136

of this thesis and left as a matter for future work. The matcher consists of a number of synchronously
communicating meta-processes whose collective purpose is to match state-dependent error patterns
and detect inconsistencies in the contents of the dynamic knowledge base. The components are a
reusable detection processor, a reusable pattern matcher, a random access working memory and an
error pattern library. Detected inconsistencies are reported as structural errors. An invariant is a
declarative, formal constraint that precisely states some condition(s) that must always be obeyed by
any object configuration [War98]. The use of the word “aways’ with regard to invariants is not
necessarily suitable for runtime monitoring as invariants may be violated during intermediate
computational stages. Therefore, the presented approach assumes that the contents of the dynamic
knowledge base can only be verified at specific points in time to ensure invariants are being enforced

correctly. An example of error detection points was given in Figure 6-4.

7.2.4 The Dynamic K nowledge Base

The dynamic knowledge base is at the heart of the monitor and acts as a dual-ported, random-access,
tuple space® for both the interpreter and pattern matcher. As shown in Figure 7-4, the dynamic
knowledge base is conceptually viewed as three functional components; an input queue, a processor
and a tuple space. The interpreter sends tuples to the input queue via the synchronous Deliver signal
in the form of a dynamic operation (Section 7.2.4.1). The pattern matcher is capable of controlling
when the dynamic knowledge base is updated using the synchronous Freeze and Unfreeze signals. If
the dynamic knowledge base is frozen, the interpreter’s delivered dynamic operations simple queue

up in the FIFO input queue until the dynamic knowledge base is unfrozen by the pattern matcher.

7.2.4.1 Dynamic Operations
The processor and tuple space support these simple, non-blocking operations.
e The OUT (tuple) operation adds the specified tuple to the tuple space. If a matching tuple already

exists, the existing tuple is overwritten and a warning delivered to the pattern matcher, which

analyzes the old and new tuple contents and then decides whether or not to report an error.

1 An implementation of an associative memory paradigm originally proposed for parallel and distributed
computing that provides a concurrently accessible repository for collections of logically-ordered data sets
called tuples [Gel 85, Sto05].

137

e The IN(tuple) operation removes the specified tuple from the tuple space, if it exits. The
operation searches the tuple space. If a match is found, it is removed and returned. If a matching
tupleis not found, a NULL_TUPLE is returned and a warning delivered to the pattern matcher to

analyze and decide whether or not to report an error.

e The IN(tuple-set) operation works the same as the IN(tuple) operation except that a wildcard is
used during the search to remove a matched tuple-set from the tuple space. If aNULL_TUPLE is
returned, no warning is generated.

e TheREAD(tuple) and READ(tuple-set) operation are nondestructive IN operations.

Dynamic
Knowledge
Base

Read (match_tuple)
In (match_tuple)
tuple Out (tuple)
Processor

Input

Queue Tuple Space

Freeze, Unfreeze
Read-Set (match_tuple)

-«

Deliver (tuple) Tuple-Set (tuples) \

Warning (params)

Figure 7-4: Internal organization of the dynamic knowledge base.

7.2.4.2 Tuple Lifespan and Persistency

Every tuple has a lifespan determined by a timestamp and predefined persistency. The timestamp
provides the tuple with a time of birth. The persistency provides the tuple with an anticipated time of
death. The use of a maximum lifespan is necessary both to detect tuples that are removed from the
state space prematurely, and to prevent orphaned tuples from filling up in the dynamic knowledge
base. For the application resource ownership concern, tuples representing Consumer, Supplier,
Resource and Base Instruments instance are system persistent. A system persistent tuple, once

created and delivered to the dynamic knowledge base, remains in the tuple space for the runtime life

138

of the operational target’. Tuples representing Extent | nstruments instances are session-persistent

and are only supposed to remain in effect for the maximum duration of the current session.

7.2.5 Behavioral versus Structural Considerations

Although the greybox monitoring approach tracks the specification state of the operational target, the
approach does not attempt to validate the target’s trajectory against the software requirements or
design specifications to ensure behavioral correctness. This approach is analogous to automatically
monitoring the structural integrity of a supersonic jet without regard as to whether the plane is
actually on a correct heading, or if the jet will arrive at the prescribed destination on time. With
regard to the dynamic software structure monitoring, the monitor tracks the changing specification
state of the operational target only as it pertains to providing a state-dependent context for checking
the resource ownership structure of the target, without consideration as to whether the resources
involved provide their associated benefits correctly, which is considered to be a behavioral

monitoring issue.

7.3 Monitoring Commands and Monitoring Constructs

The proposed monitoring approach is greybox and relies on embedded software sensors that, when

encountered by the operational target, produce one of two types of monitoring:

e An EoB entry or exit monitoring command that allows the monitor to track the trajectory of the

operational target’s quiescent states on a session-by-session basis.

e An structural transaction monitoring command that allows the monitor to track the micro-steps
of evolving software structure of the operational target for some selected structural concern where

one structural transaction equals one micro-step.

The monitoring approach is also model-driven and relies on monitoring constructs that is a model
construct embedded into certain transitions in both the state evolution model and the EoB models.

Each monitoring construct type corresponds to a specific monitoring command type and each type of

! As stated previously, all resource rolesin this research work are assumed to be nonconsumable.

139

monitoring command is consumable only by its specific type of monitoring construct. A monitoring

construct guides the greybox interpreter in the consumption of the specific, corresponding monitoring

command, the creation of a tuple for delivery to the dynamic knowledge base, and the unloading or

loading of the current and next EoB model from the EoB library, respectively.

7.3.1 Monitoring Command Types

Monitoring commands are of the form (A, Di, TS) where A; is the command's addressing

information, D; is the command’ s payload and is comprised of data arguments (dy, ..., dy), and TS is

the command’ s logical timestamp. The logical timestamp is issued by the monitoring interface and is

used to both preserve order inside the interpreter and to advance the logical clock in the consuming

CEFSM-instance. Consider the generic monitoring command, as shown in Figure 7-5(i).

CommandType determines the format and semantics of the command payload.

Objectl d indicates the unique object from the operational target in which the producing software
sensor is embedded and tell greybox interpreter’s system meta-process to which CEFSM-

instance’ s monitor command queue the monitoring command is to be delivered.

L ocationl d indicates the unique location of the specific monitoring construct within the CEFSM-
instance specified by the Objectid.

An optional Payload contains the additional runtime knowledge required by the monitoring

construct to create a corresponding tuple.

(CommandType, LocationId, ObjectId, [PAYLOAD], Timestamp)
@

< DirectiveType, Locationld, [PAYLOAD], Clock >

I
(i)

Figure 7-5: Generic: (i) monitoring command; (2) monitoring constr uct.

140

7.3.2 Monitoring Construct Types

Consider the generic monitoring construct presented in Figure 7-5(ii). Each monitoring construct acts
as an enabling condition on the transition leading from the preceding state. As a result, an enclosing
CEFSM-instance can only fire the transition if and only if an appropriate monitoring command, as
specified by the monitoring construct, is present in the CEFSM-instance s monitor command queue.

Consider the contents of a generic monitoring construct, as shown in Figure 7-5(ii):

e ConstructType determines the monitoring command type that the monitoring construct

consumes as well as the format and semantics of the construct’s payload.

e Locationld indicates the unique location of the monitoring construct within the enclosing
CEFSM-instance.

e An optional Payload contains the additional runtime knowledge required by the monitoring

construct to create a corresponding tuple.

e Clock isthelogical clock sort of the enclosing CEFSM-instance.

7.3.3 Sensor Plan

As shown in Figure 7-6, the same state and signal details (i.e,, EoB entry and Exit points) that are
used to derive the state evolution model and the EoB models are also used to derive the sensor plan.
The application-specific sensor plan specifies the location and monitoring command format for the set
of embedded software sensors that is to be woven into the target implementation. An entry in the
sensor plan contains (1) a sensor’s unique location in the implementation, (2) the sensor’s
corresponding monitoring construct’ s unique location in the interpretable model, and (3) the sensor’s
monitoring command format (i.e., type and payload). |mplementing the resulting sensor plan allows
the monitoring interface to capture (1) whenever the operational target enters a new (or reenters the
current) EoB model, (2) whenever the operational target exits the current EoB model, and (3)
whenever the operational target successfully completes a concern-specific structural transaction. For
this research work, target instrumentation was accomplished using a manual procedure. An automated

approach to embedding software sensors using weaving technology is the subject of future work.

7.3.3.1 State- versus Input-Oriented Implementation Structure

For new software, instrumentation can be built into the development process. However, for legacy

141

code, the assumption that the software implementation is refined from the CEFSM-based software

design has these implications on the source code structure of the software implementation:

o A state-oriented implementation is implemented using a STATE-MESSAGE-ACTION source
code structure such that for each specification state, the operational software system may only
consume a predefined set of possible inputs. The fired implementation state transition depends on
the current specification state and the particular consumed input, implying that the source code
structure is organized according to the same actual structure of the corresponding CEFSM in the
software design. An example of state-oriented instrumentation is provided in Appendix C.

e Aninput-oriented implementation is implemented using a MESSAGE-STATE-ACTION source
code structure such that a given message may only be consumed if the operational software
systemisin one of a predefined set of specification states. The current state transition depends on
both the input and current specification state. In general, the state transition and input
combination does not typically follow the structure of the corresponding communicating extended
finite state machines (CEFSM) specified in the software design make the embedding process less
straightforward. An example of input-oriented instrumentation is provided in Appendix C.

7.4 Deriving Interpretable M odels

The greybox monitoring approach relies on a number of interpretable models that are formally
derived from the target software system’'s formal specifications, as given in Figure 7-6. The
interpretable state evolution model is derived from the target’s software requirements. The target’s
software design is assumed to be a refinement of the software requirements. The quiescent states and
input signals used to identify each EoB entry and exit point in the software requirements will also
demarcate the required EoB models in the software design. Each EoB model contains the required
structural transaction for the selected structural concern. The derivation of the state evolution model
and EoB model from a common frame of specification reference allows the greybox interpreter to
simultaneously monitor the operational target at two distinct, but related levels of abstraction (i.e.,
requirements and design). Therefore, the greybox interpreter employs a novel bi-level, monitoring
approach in which the evolving specification state of the operational target is tracked using a
requirements-based model while the evolving software structure of the operational target is tracked

for a sdected software concern using a design-based model.

142

EoB Entry & Sensor
Software Exit Points State Definitions
Requirements »] Evolution
Model
FoB Entry &
Exit Points
Sensor
EoB Models Sensor
Manually Y Plan
fisiind & Structural Definitions
entirie Softw Transactions EoB '
Transaction ClsliEts »| =°
Signals Design Hibrary

Figure 7-6: Block diagram of inter pretable models derivation process.

7.4.1 Structural Reduction

The concept of structural model reduction, where a model with a smaller state-space footprint is
derived from an existing model, has been previously used in protocols, interface design, and model
derivation to reduce model complexity and the likelihood of encountering nondeterminism [Floc03,
Peh83, Pek03]. In this work, the interpretable model derivation process includes steps to reduce
complexity through a structural reduction process called pruning. Pruning strategically removes those
specification details deemed unnecessary to the intended monitoring process. Before pruning, model
details must be categorized as either external, significant internal and insignificant internal based on

the notion of signal observability.

7.4.1.1 Classifying CEFSM s and Signals

Observability pertains to the amount of implementation details visible behind a software interface
[Szp02]. Blackbox and whitebox testing validate observable functionality and unobservable structures
and interactions, respectively [Gao03]. Consider the example message sequence chart and block

excerpt in Figure 7-7:

e Signals ServiceRequest and ServiceProceed are observable at the environment and classified as
external signals. CEFSM; and CEFSM, are classified as external because each has external
signals that travel to and from the environment over channels C1/C3 and C2/C4, respectively.

143

External signals may be used to demarcate EOB models.

e Dominant internal signals travel between external CEFSM; and CEFSM, over signalroutes

R1/R2. Dominant internal signals may be used to demarcate EOB models.

e CEFSM; is classified as internal because the instance does not directly communicate with the
environment. Recessive internal signals ResourceRequest and ResourceGrant travel between
external CEFSM; and internal CEFSM; over signalroutes R3/R4. Recessive internal signals are
pruned from the state evolution model, but used in EoOB models to demarcate the successful

completion of structural transactions for the selected structural concern.

e Insignificant internal signals SetQueue and Ack travel between internal CEFSM; and internal
CEFSM, over signalroutes R5/R6. Insignificant internal signals are pruned from both the state

evolution model and EoB models.

Environment

ENV Consumer Supplier Resource
(id=20) (id=1) (id=86)
——— ——— ——— ——
ServiceRequest
”| ResourceRequest
> SetQueue(20)
EoB R34 yR4
Ack
ResourceGrant(86) [€
ServiceProceed |€ N\ R5
T T T E CEFSM, CEFSM,
Observable Detectable Inferrable R6

(i) (i)

Figure 7-7: Example: (i) message sequence chart; (ii) layered CEFSMsand signals.

7.4.2 State Evolution M onitoring

There are two state evolution model monitoring command types, as shown in Figure 7-8: (1) an EoB
entry monitoring command type, and (2) an EoB exit monitoring command type. State evolution
model monitoring command types do not have a payload. The ENTER (EXIT) monitoring command

type is used to inform the interpreter whenever the operational target ENTER (EXIT) a particular

144

EoB model. The Objectld is used by the interpreter to route the monitoring command to the
appropriate monitor command queue. The Locationld is used by the interpreter to match the
monitoring command to the appropriate monitoring construct. If the interpreter consumes an EoB
entry monitoring command that does not match the current EoB model, then the interpreter
automatically loads the required EoB model from the EoB library. If the next EoB model is the same
asthe current EoB mode (i.e., looping), loading the new EoB model is not required.

(ENTRY, LocationId, Objectld, Timestamp)
(EXIT, Locationld, ObjectId, Timestamp)

Figure 7-8: EoB ENTRY and EoB EXIT monitoring command.

7.4.2.1 State Evolution M odel Derivation

The derivation of the state evolution model is general in that the same algorithm is applicable
regardless of the selected structural concern. This section presents the algorithm for deriving the
structurally reduced state evolution model from the target software system'’s software requirements
specification. The derivation process may be automated using the state evolution model derivation

algorithm. A line-by-line description follows the algorithm.

ALGORITHM: Derive-State-Evolution-Model
INPUT: Requirements-Specification
OUTPUT: State-Evolution-Model
COPY Requirements-Specification to State-Evolution-Model;
FORALL (Channel; € State-Evolution-Model) DO:
FORALL (Signal; € Channel; Signal List) DO:
TAG Signalj; = External;
ENDFOR;
FORALL (CEFSM; € State-Evolution-Model) DO:
TAG CEFSM; = Internal;
IF (Channel; connected-to CEFSM;) OR
(Channel; connected-from CEFSM;) THEN:
TAG CEFSM; = External;
BREAK ;
ENDIF;
ENDFOR;
. ENDFOR;
. FORALL (CEFSM; € State-Evolution-Model) DO:
IF (READTAG (CEFSM;) == Internal) THEN:
PRUNE (CEFSM;) ;
ENDIF;
. ENDFOR;

BV O a0 U W N R
o - oo T

NN R R R R R R R R R
N P O W o J o0 U1 b W N K

145

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64 .
65.
66.
67.
68.
69.
70.
71.
72.
73.
74 .
75.
76 .
77.
78.

FORALL (Timer; € State-Evolution-Model

FORALL (Signal; € Timer; Signal List)

TAG Signal; = Significant;
ENDFOR;
ENDFOR;
FORALL (SRoute; £ State-Evolution-Model
TAG SRoute; = Insignificant;

) DO:

) DO:

FORALL (CEFSM, € State-Evolution-Model)

FORALL (CEFSM, € State-Evolution-Model
IF (SRoute; connected-from CEFSM,)

TAG SRoute; = Significant
BREAK ;
ENDIF;
ENDFOR ;
ENDFOR;

FORALL (Signalj € SRoute; Signal List)

TAG Signal; = READTAG (SRoute;) ;
ENDFOR;
ENDFOR;
FORALL (SRoute; € State-Evolution-Model

PRUNE (SRoute;);
ENDIF;
ENDFOR;
FORALL (CEFSM; € State-Evolution-Model
FORALL (Statejy € CEFSM;) DO: Q
TAG Statej; = Transient;
FORALL (Inputy € State;) DO:
IF (READTAG (Inputy.Signal

(READTAG (Input;.Signal)

TAG Statej; = Quiescent;
BREAK ;
ENDIF;
ENDFOR;
ENDFOR;
FORALL (Construct; € CEFSM;) DO:
IF (((Construct;.Type == Input)

(
(Construct;.Type == Output)
(

(Construct;.Type == Timer)
PRUNE (Construct;);

JOIN-TRANSITION (Constructj.i,

ELSEIF (Construct;.Type == Save) THEN:
PRUNE (Construct;);
ELSEIF (Construct;.Type == Decision) THEN:
SET Construct;.Type = State;
TAG Construct; = Transient;
ENDIF;
ENDFOR;
FORALL (Construct; € CEFSM;) DO:
IF ((Construct;.Type == State) AND
(READTAG (Constructjy) == Transient)
(Constructj,,.Type == State) AND
(READTAG (Constructj,,) == Transient

PRUNE (Construct;);

7

) DO:
IF (READTAG (SRoute;) == Insignificant)

) DO:

) ==

AND

OR

Construct;.Type == Task) OR

THEN :

146

DO:

DO:

))

DO:

AND (SRoute; connected-to CEFSM,

THEN :

External
== Significant)

READTAG (Construct;) == Insignificant))

Constructy,) ;

AND

THEN

79. JOIN-TRANSITION (Constructj.,, Constructj,:);

80. ENDIF;
81. ENDFOR;

82. FORALL (Construct; € CEFSM;) DO:

83. IF ((Construct;.Type == State) AND (READTAG (Construct;) == Quiescent)) THEN
84. FORALL (Inputy € Constructy) DO:

85. REPLACE (Inputyx, generateMonitorConstruct(Entry, j+k));

86. ENDFOR;

87. IF (Constructj.,.Type == State AND READTAG(Construct;.;) == Transient) THEN
88. INSERT (Constructj, generateMonitorConstruct(Exit, j));

89. ELSEIF:

90. Newconstruct.Type := State;

91. TAG Newconstruct = Transient;

92. INSERT (Construct;, Newconstruct);

93. INSERT (Constructj, generateMonitorConstruct(Exit, j));

94. ENDIF;

95. ENDIF;

96. ENDFOR;

97. ENDFOR;

98. RETURN (State-Evolution-Model) ;

In lines 1-4, the input and output to the algorithm is the target’s CEFSM-based software
requirements specification and the state evolution model, respectively. The initial state evolution
model is set to a copy of the software requirements specification. Lines 5-17 deal with external
signals and CEFSMs. In lines 5-8, every signal belonging to a channel’s signal list is tagged as an
External signal. In line 9-16, every CEFSM connected to a channel is tagged as External CEFSM in
the moddl. In lines 18-22, every CEFSM tagged as Internal is pruned from the modd. Lines 23-27
deal with timer signals. Every signal belonging to a timer's signal list is tagged as a Significant
internal signal in the model. Lines 28-41 deal with internal signals. In lines 28-37, a signalroute
connected between a pair of external CEFSMs is tagged as a Significant signalroute in the model;
otherwise the signalroute is tagged as an Insignificant signalroute. In lines 38-41, a signal istagged as
a Significant signal if the signal belongs to a Significant signalroute's signal list in the model;
otherwise, the signal istagged as an Insignificant signalroute. In lines 42-46, every signalroute tagged
as Insignificant is pruned from the model. Lines 47-57 deal with identifying Transient state or a
Quiescent state. If a state is followed by a signal tagged as either External or Significant, then the
state is tagged as a Quiescent state in the model; otherwise, the state is tagged as a Transient state.
Lines 58-72 deal pruning from, and replacing insignificant constructs in the state evolution modd. In
lines 59-65, if the current construct under consideration is either an input with a signal identifier that
was tagged as Insignificant, an output construct, a task construct or a timer construct, then the
construct is pruned from the model and the transition between the preceding and succeeding

constructs is joined. In lines 66-67, if the current construct is a save construct, it is pruned from the

147

model. In lines 68-71, if the current construct is a decision construct, then the decision is replaced
with a state construct that is tagged as a Transient state in the model. Lines 73-81 deal with collecting
succeeding transient states into a single transient state. In line 78, each predecessor transient statein a
chain of transient states is pruned until only one transient state remains from the original chain. Lines
82-96 deal with embedding EoB Entry and Exit monitoring constructs into the structurally reduced,
state evolution model. In lines 83-86, every input construct that follows each quiescent state is
replaced with a unique EoB Entry monitoring construct. In lines 87-89, a unique EoB Exit monitoring
construct is inserted immediately preceding the quiescent state and after an existing transient state. In
lines 90-96, no transient state precedes the quiescent state and therefore a unique EoB Exit
monitoring construct and transient state combination is inserted immediately preceding the quiescent

state. Inline 98, the resultant structurally reduced state evolution mode is returned.

7.4.2.2 EoB Entry Point M onitoring Scenario

Consider the EoB entry point monitoring scenario presented in Figure 7-9. In the requirements
excerpt, as shown in Figure 7-9(i), the transition from state S1 is initiated after input signal A is
consumed by CEFSM-instance 21. The state evolution model derivation replaces signal A by an entry
monitoring construct NO1, as shown in Figure 7-9(ii). The transition from state S1 is then fired if and
only if monitoring command NO1 is consumed. The interpreter loads and begins interpreting the EoB
model associated with NO1. The CEFSM-instance s logical clock advances to 10.

from environment - \ -
or external CEFSM /" CEFSM-instance /' CEFSM-instance \ from target
Self: 21 Self: 21 (ENTRY, 01, 21,10)

Sender: -> Env Clock : -> 10

A < <ENTRY, NO1, Clock>
!

Monitor
. . Record
\ . / - y, Queue
(i) (ii)

Figure 7-9: EoB entry point monitoring scenario.

148

7.4.2.3 EoB Exit Point M onitoring Scenario

Consider the EoB exit point monitoring scenario presented in Figure 7-10. In the software
requirements excerpt, as shown in Figure 7-10(i), the transition from state S3 is initiated after input
signal C is consumed by CEFSM-instance 34. The flag in the decision constructs determines whether
the behavioral alternative ending in state S4 or state S5 is chosen. The state evolution model
derivation process replaces the decision construct with transient state NS1 as shown in Figure
7-10(ii), followed by two exit monitoring constructs, X01 and X02, inserted into the transitions
leading from transient state NS1 to quiescent states S4 and S5, respectively. The transition from state
S3isfired when NO3 is consumed. The interpreter loads and interprets the EoB model for NO3. When
interpretation of the current EoOB mode completes, the interpreter waits in NS1. Whether the
operational target produces exit monitoring command X01 or X02 determines whether the interpreter
enters the quiescent state $4 or S5, respectively. In this example, the CEFSM-instance consumes X01
and enters $4, causing the logical clock to advance from 100 to 125.

from envir 4
or external CEFSM / CEFSM-instance N 7 CEFSM-instance N from target
C emen- . Self: 34 Self: 34 1=---- (EXIT, 01, 34,125)
' Sender: -> Env Clock: -> 100 -> 125
| v R (ENTRY, 03, 34,100)
(s3) v
< ENTRY, NO3, Clock
Input
Signal Y N _
Queue | | Monitor
1 Record
[X=1;] x> <EXIT, X01, Clock> <EXIT, X02, Clock> | gueye
* * n e »
(s4) (s5)
N\ /7 '\ /

@ (ii)

Figure 7-10: EoB exit point monitoring scenario.

7.4.3 Structural Transaction Monitoring

There are five context-sensitive monitoring command types, as shown in Figure 7-11. The
ACQUIRE, RELEASE, REGISTER, and UNREGISTER monitoring commands are for reporting
concern-specific structural transactions. The INSTANCE monitoring command is used for
initialization purposes. The four structural transaction monitoring commands are each associated with

monitoring constructs that were into various EoB models. Structural transaction monitoring construct

149

allow the greybox interpreter to handle and process the completion of certain successful structural
transactions, as reported by the instrumented operational target, the selected structural concern. The
INSTANCE monitoring command is a special and has no corresponding monitoring construct. As
will be described later in this chapter, the INSTANCE monitoring command is handled and
processed directly by the interpreter’ s system meta-process.

(ACQUIRE, Locld, Conld, Supld, Resld, Timestamp)
(RELEASE, Locld, Conld, Supld, ReslId, Timestamp)

(REGISTER, Locationld, Conld, Supld, Resld,, ..., Resld , Timestamp)
(UNREGISTER, Locationld, Conld, Supld, Resld,, ..., ResId , Timestamp)

(INSTANCE, ObjectType, Objectld, Timestamp)

Figure 7-11: Structural transaction monitoring commands.

7.4.3.1 Instance M onitoring Command Types

The special initialization monitoring command has no matching monitoring construct. Instead, the
INSTANCE monitoring command directs the greybox interpreter to create the appropriate tuple, in
accordance with Table 7-1, and insert or remove the resultant tuple into or from the dynamic
knowliedge base, respectively. The greybox interpreter uses an INSTANCE monitoring command’s
ObjectType to determine what object tuple type. The interpreter uses a static Object-Type-to-
ResOwn-Role lookup table. The lookup table is derived using the following procedure:

e An application-specific specialized ResOwn instance is extended (i.e., specialized) by creating an
implementation specific ontological class for each object classin the target software system.

e All created application-specific classes are then classified under ResOwn using the RacerPro

reasoner on the specialized ResOwn instance.

e For each object tuple representing a Resource role, the greybox interpreter automatically creates
and stores an associated tuple representing the named Titledeed instance that is logically bound

to the Resour ce instance, as shown in Table 7-1.

These object and association tuples are important for processing structural transaction monitoring
commands as the set of object tuples stored in the dynamic knowledge base is used to trandate the

physical object Ids from a structural monitoring command to their corresponding logical class Id. If

150

an object plays a Resour ce role, then the resulting logical Resource class Id is also used to locate the

specific Titledeed class Id bound to that Resour ce class.

ResOwn | Object Tuple) . L Association Tuple Format
] P Defined Class Titledeed Specialization . p
Role Format (tuples are timestamped)
Resource RES, Id, Oid Transferable Resource TransferableTitledeed TTD, Id, Rid, Hid, Iid, Eid
Nontransferable Resource NontransferableTitledeed NTD, Id, Rid, Hid, Iid, Eid
Embedded Resource EmbeddedTitledeed ETD, Id, Rid, Hid, Iid, Eid
Supplier SUP, Id, Oid PooledResourceSupplier
ManagedResourceSupplier
furrogateResourceSuplee n/a
CachedResourceSupplier
CompoundResource
Consumer CON, Id, Oid Dedicated Consumer n/a
Dispatchable Consumer

Table 7-1: INSTANCE monitoring command.

7.4.3.1.1 Object and Association Tuples

An object tuple represents a corresponding physical object in the operational target that is specified
by the INSTANCE monitoring command’s ObjectType and Objectld. The object tuple parameters,
as shown in Table 7-1, are ResOwn Role Type (RES, SUP, CON), ResOwn Object Id (I1d), Object Id
(Oid), where RES is a Resource, SUP is a Supplier and CON is a Consumer. An association tuple
represents a corresponding logical proof of ownership Instrument instance maintain by the greybox
interpreter. For an INSTANCE command, all association tuples pertain to Titledeed instances. The
association tuple parameters, as shown in Table 7-1, are: Instrument Type (TTD, NTD, ETD),
Instrumentld, Resourceld (Rid), Holderld (Hid), Issuerld (lid), Extentld (Eid), where TTD is a
Transferable Titledeed, NTD is a Nontransferable Titledeed, and ETD is an Embedded
Titledeed.

7.4.3.2 Structural Transaction Monitoring Command Types

Structural transaction monitoring commands have a payload. The four structural transaction

monitoring commands have the following fields:

e TheACQUIRE, RELEASE, REGISTER or UNREGISTER identifies the command as atyped

current structural transaction monitoring command for the current structural transaction.

e The Locld corresponds to a specific monitoring construct for the current structural transaction

151

that will consume the monitoring command.

e The Conld is the Objectld of the abject in the operational target that is playing the role of

Consumer for the current structural transaction.

e The SuplD is the Objectld of the object in the operational target that is playing the role of

Supplier for the current structural transaction.

e The set of one or more Resld are the set of Objectlds of the objects in the operational target
playing therole of Resour ce for the current structural transaction

e Thetimestamp commands the logical sequence number for the monitoring command.

7.4.3.2.1 ACQUIRE Monitoring Command and Construct Type

An ACQUIRE command is produced by the instrumented target when the embedded software sensor
corresponding to a specific ACQUIRE monitoring construct in an EoB model is encountered. The
ACQUIRE monitoring command informs the interpreter of the successful completion of an
associated structural resource ownership transaction in which a Consumer instance in the operational
target has obtained beneficiary ownership of a Resour ce instance from a Supplier instance, as shown
in Figure 7-12(i) and Figure 7-12(ii). For an ACQUIRE command, an association tuple is inserted
into or updated in the dynamic knowliedge base with parameters, as shown in Table 7-2:
InstrumentType (TTD, LIC, PRX), Instrumentld (1d), Resourceld (Rid), Titledeedld (Tid) Holderld
(Hid), Issuerld (lid), Extentld (Eid), where L1C isaLicense and PRX isa Proxy.

7.4.3.2.2 RELEASE Monitoring command and Construct Type

A RELEASE command is produced by the instrumented target when the embedded software sensor
corresponding to a specific RELEASE monitoring construct in an EoB model is encountered. The
RELEASE monitoring command informs the interpreter of the successful completion of a
corresponding resource ownership in which an object playing a Consumer role in the operational
target has relinquished beneficiary ownership of an object playing a Resource role to an aobject
playing a Supplier role, as shown in Figure 7-12(i) and Figure 7-12(ii). For a REL EASE command,
an association tuple is removed from or updated in the dynamic knowledge base with parameters, as
shown in Table 7-2.

152

Consumer Defined Supplier Defined Resource Instrument Association Tuple
Class Class Class Class (tuples are timestamped)
Consumer PooledResourceSupplier TransferableResource TTD TTD, Id, Rid, Hid, Iid, Eid
Consumer ManagedResourceSupplier NontransferableResource NTD - LIC LIC, Id, Tid, Hid, Iid, Eid
Consumer CompoundResource EmbeddedResource ETD - PRX PRX, Id, Tid, Hid, Iid, Eid

Table 7-2: ACQUIRE / RELEASE commands.

7.4.3.2.3 REGISTER Monitoring Command and Construct Type

A REGISTER command is produced by the instrumented target when the embedded software sensor
corresponding to a specific REGISTER monitoring construct in an EoB model is encountered. The
REGISTER monitoring command informs the interpreter of the successful completion of an
associated structural resource ownership transaction in which a Consumer instance in the operational
target assigned nonbeneficiary surrogate ownership of a Resour ce instanceto a Supplier instance, as
shown in Figure 7-12(iii). For a REGISTER command, an association tuple is inserted into or
updated in the dynamic knowledge base with parameters, as shown in Table 7-3: InstrumentType
(POA, PTH), Instrumentld (1d), and Titledeedld (Tid). Licenceld (Lid). Proxyld (Pid), Holderld
(Hid), Issuerld (lid), where POA is a Power Of Attorney and PTH isaPermit To Hold.

Defined . -
. Consumer Defined Resource Instrument Association Tuple
Supplier .
Class Class Class (tuples are timestamped)
Class

Surrogate Consumer TransferableResource TTD POA, Id, Tid, Hid, Iid
NontransferableResource LIC POA, Id, Lid, Hid, Iid
EmbeddedResource PRX POA, Id, Pid, Hid, Iid
Cached Consumer TransferableResource TTD PTH, Id, Tid, Hid, Iid
NontransferableResource LIC PTH, Id, Lid, Hid, Iid
EmbeddedResource PRX PTH, Id, Pid, Hid, Iid

Table 7-3: REGISTER / UNREGISTER command types.

7.4.3.2.4 UNREGISTER Monitoring Command and Construct Type

An UNREGISTER command is produced by the instrumented target when the embedded software
sensor corresponding to a specific UNREGISTER monitoring construct in an EoB model is
encountered. The UNREGISTER monitoring command informs the interpreter of the successful
completion of an associated structural resource ownership transaction in which a Consumer instance

in the operational target has relinquished nonbeneficiary surrogate ownership Resource instance

153

from a Supplier instance, as shown in Figure 7-12(iii). For a UNREGISTER command, an
association tuple is inserted into or updated in the dynamic knowledge base with parameters, as
shown in Table 7-3.

7.4.3.3 Structural Transaction Signaling

Consider the message sequence charts presented in Figure 7-12. For the selected structural software
concern, there are several main types of structural transaction signaling considered. As shown, each
structural transaction signal of interest travels between a Consumer instance and Supplier instance.
Normally, it is the type of Supplier instance that ultimately determines which type of monitoring
command should be produced by the corresponding code in the instrumented target as well as which
type of monitoring construct should be embedded in the corresponding EoB model. The one
exception is the scenario presented in Figure 7-13 where the presence of a Compound Resource
instance predicates the need to also consider the Embedded Resource instance(s) contained there
within. The ResOwn signal set to identify successful structural resource ownership transaction from

includes:

e For a Consumer, a Pooled Resource Supplier and a Transferable Resource, as shown in
Figure 7-12(i), the Grant signal and the Return signal. The corresponding monitoring command /
construct types are ACQUIRE and REL EASE, respectively.

e For aConsumer, Managed Resource Supplier and a Nontransfer able Resource, as shown in
Figure 7-12(ii), the Activate signal and the Deactivate signal. The corresponding monitoring
command / construct types are ACQUIRE and REL EASE, respectively.

e For a Consumer, Surrogate Resour ce Supplier and a Resour ce, as shown in Figure 7-12(iii):
the Sart signal and the Sop signal. The corresponding monitoring command / construct types are
REGISTER and UNREGISTER, respectively.

Consider the scenario, as given in Figure 7-13, for a Consumer, a Pooled Resource Supplier, a
Surrogate Resource Supplier and a Transferable Compound Resource that contains an
Embedded Resource. In this scenario, the grant from the Pooled Resource Supplier to the
Consumer causes two ACQUIRE monitoring commands to be produced: (1) one for the
Transferable Compound Resource, and (2) one for the Embedded Resource that is contained
inside the Compound Resource. As shown, the Embedded Resource can be registered with a
Surrogate Resour ce Supplier, as indicated by the REGISTER monitoring command, independently

154

of the Transferable Compound Resour ce. When the Transfer able Compound Resource is finally
returned to its original Pooled Resource Supplier, two RELEASE monitoring commands are

produced, one each for the Transfer able Compound Resour ce and the Embedded Resour ce.

Nontransferable
Resource
(r2)

Pooled Managed
Resource Transferable Monitori c Resource
Monitoring Consumer Supplier Resource I°:'r‘f’"“g °'Ez:')“er Supplier
Interface (c1) (s1) (r1) nterface Lel) 52
Activate(r2)
Grant(rl)

(ACQUIRE, A01, c1, s1, r1, 10)

Deactivate(12)

Request | (ACQUIRE, A02, c1, s2, 12, 30) Set

Return(r1)
(RELEASE, L01, c1, s1, r1, 20) (RELEASE, L02, c1, s2, r2, 40) Reset
- 1]
0] (i)
- - — — — —/ —/ " surrogate
Resource Transferable Transferable
Monitoring Consumer Supplier Resource Resource
Interface (c1) (s3) (r3) (rd)

Start(r3,r4)

(REGISTER, R03, cl, s3, 13, r4, 50)

Stop(r3,r4)

(UNREGISTER, U03, cl, s3, 13, r4, 60)

(i)

Figure 7-12: MSC for Consumer and Supplier.

Pooled Surrogate

Resource Compound Embedded Resource

Monitoring Consumer Supplier Resource Resource Supplier
Interface (c1) (s4) (r5) (r6) (s5)

Request

_ Grant(r5)

(ACQUIRE, A03, c1, s4, 15, 70)
(ACQUIRE, A04, c1, 15, r6, 80)

Start(r6)

(REGISTER, R03, cl, s5, r6, 90)

Stop(r6)

(UNREGISTER, U03, c1, s5, r6, 100)
< Return(r5)
(RELEASE, L04, c1, 15, r6, 80) >

(RELEASE, LO03, cl, s4, 5, 70)

Figure 7-13: MSC Consumer and Compound Resour ce.

155

7.4.3.4 EoB Model Derivation Algorithm

This section describes EOB model derivation. Unlike the general derivation approach for the state
transition model, each EoB model requires application-specific signal and CEFSM role-based
knowledge to determine which aspects of the software design specification should go into an EoB
model. The EoB model derivation algorithm may be automated. However, at present, a systematic
manual procedure is required to identify the required structural transaction signal constructs for the
selected structural concern from the software design specification. Each signal indicates when a
specific structural transaction has successfully completed. Structural transaction signals arestored in a
ResOwn signal set.

In addition, EoB entry and exit information identified in the software requirements is required to
demarcate each EoB specification in the software design specification since, unlike the state evolution
model derivation, the EOB model algorithm is applied to software design specification slices. Each
specification dice contains a set of transitions, demarcated by a single EoB entry point, and a set of
one or more EoB exit points, that will constitute the resultant EoB model. The algorithm itself
systematically traverses an EoB model’s transitions-set using a depth-first approach. During a
transition traversal, structural transactions input or output signals are identified and replaced with an
appropriate structural transaction monitoring construct. Further, during traversal, any encountered
insignificant constructs are pruned from the resulting EoB model. The resulting, self-contained EoB
model is a roadmap containing all the required structural transaction monitoring constructs for the

selected structural concern being monitored. A line-by-line description follows the algorithm.

99. ALGORITHM: Derive-EoB-Specification

100. INPUT: Design-Specification, CEFSM, State, Input, Exit-State-Set, ResOwn-Signal-Set
101. OUTPUT: EoB-Specification

102. FORALL (State; € CEFSM) DO:

103. IF (State; == Entry-State) THEN:

104. FORALL (Input; € State;) DO:

105. IF (Input; == Entry-Input) THEN:

106. EoB-Entry == Input;;

107. Break;

108. ENDIF;

109. ENDFOR;

110. ENDIF;

111. ENDFOR ;

112. COPY CEFSM to EoB-Specification and CREATE EoB Entry point;
113. Transition := EoB-Entry;

114. Transition-Stack := EMPTY;

115. EoB-Complete := FALSE;

116. WHILE (EoB-Complete == FALSE) DO:

156

117. FORALL (Constructy € Transition) DO:

118. IF (Construct; € Exit-State-Set) THEN:

119. CREATE EoB exit point in EoB-Specification

120. IF (TOP (Transition-Stack) != EMPTY) THEN:

121. Transition := POP (Transition-Stack) ;

122. ELSEIF:

123. EoB-Complete:= TRUE;

124. ENDIF;

125. ELSEIF:

126. FORALL (Inputyx € Current-State) DO: /* transient state */

127. If (Inputx != Constructj,;) THEN: /* don’t push current transition */
128. PUSH (Inputyx, Transition-Stack);

129. ENDIF;

130. ENDFOR;

131. ENDIF;

132. ELSEIF (Construct; == Task) THEN:

133. PRUNE (Construct;);

134. JOIN-TRANSITION (Constructj.;, Constructij.);

135. ELSEIF (Construct; == Timer) THEN:

136. PRUNE (Construct;);

137. JOIN-TRANSITION (Constructj.;, Constructi.);

138. ELSEIF (Construct; == Save) THEN:

139. PRUNE (Construct;);

140. ELSEIF (Construct; == Decision) THEN:

141. FORALL (NextTransition, € Decision) DO: /* convert to transient state */
142. If (NextTransition, != Constructj,;) THEN: /* don’t push current */
143. PUSH (NextTransition,, Transition-Stack);

144 . ENDIF;

145. ENDFOR ;

146. REPLACE (Construct;, generateTransientState ());

147. ELSEIF (Construct; == Input) THEN:

148. FORALL (Signalyx € ResOwn-Signal-Set) DO:

149. IF (Signalx == GRANT-SIGNAL) THEN:

150. REPLACE (Construct;, generateMonitorConstruct(ACQUIRE, j+k);
151. ELSE

152. PRUNE (Construct;);

153. ENDIF;

154. ENDFOR ;

155. ELSEIF (Construct; == Output) THEN:

156. FORALL (Signalx € ResOwn-Signal-Set) DO:

157. IF ((Signalx == REQUEST-SIGNAL) OR

158. (Signalyx == ACTIVATE-SIGNAL) THEN

159. INSERT (Construct;, NewState);

160. REPLACE (Constructj, generateMonitorConstruct(ACQUIRE, j+k);
161. ELSEIF ((Signalx == RETURN-SIGNAL) OR

162. (Signalyx == DEACTIVATE-SIGNAL) THEN

163. INSERT (Construct;, NewState);

164. REPLACE (Construct;, generateMonitorConstruct (RELEASE, j+k);
165. ELSEIF ((Signalx == START-SIGNAL) THEN

166. INSERT (Construct;, NewState);

167. REPLACE (Construct;, generateMonitorConstruct (REGISTER, j+k);
168. ELSEIF ((Signalx == STOP-SIGNAL) THEN

169. INSERT (Construct;, NewState);

170. REPLACE (Constructj, generateMonitorConstruct (UNREGISTER, j+k);
171. ELSEIF

172. PRUNE (Construct;);

157

173. ENDIF;

174 . ENDFOR ;

175. ENDIF;

176. ENDFOR ;

177. ENDWHILE;

178. FORALL (Construct; € EoB-Specification) DO:

179. IF ((Construct;.Type == State) AND (Constructj,;.Type == State) THEN
180. PRUNE (Constructj);

181. JOIN-TRANSITION (Constructj.,, Constructj,;);
182. ENDIF;

183. ENDFOR;

184 . RETURN (EoB-Specification);

In lines 99-101, the inputs to the algorithm are the target’s CEFSM-based software design
specification, the CEFSM-state-input construct combination for the current EoB entry point, the set of
quiescent end states for the current set of EoB Exit points and the set of ResOwn structural
transaction signals that have been manually identified for the selected structural resource ownership
concern from the software design specification. Lines 102-111 deal with locating the EoB entry point
in the corresponding CEFSM of the software design specification. Line 113 initializes the current
transition to the EoB entry point. Line 114 initializes the transition stack to empty. Line 115
initializes the EoB completion flag to false. Lines 116 to 132 deal with the handling of transient and
quiescent states in the current transition. Line 118 loops until every transition from the EoB entry
point to each of the EoB exit points has been traversed and processed. Line 117 creates aloop for all
constructs in the current transition. In lines 118 to 124, if a quiescent end state is encountered, an EoB
exit point is created at the end of the current trangtion in the EoB-Specification and the next
transition to be traversed is popped from the Transition-Stack. If the stack is empty, the flag is set to
indicate that the current EoB-specification is complete. In lines 125 to 131, if the current state is a
transient state (i.e., not an EoB exit point), the first transition following the state construct is selected
for traversal, and the remaining transitions emanating from the transient state are pushed onto the
Transition-Stack for future exploration. Lines 132 to 139 deal with the pruning of insignificant
constructs. Lines 132 to 134 prune Task constructs, lines 135 to 137 prune Timer constructs and lines
129 to 139 prune Save constructs. Lines 140 to 146 deal with the Decision constructs. The first
transition following a decision is sdected for traversal, and the remaining transition(s) emanating
from the decision are pushed onto the Transition-Stack for future exploration. In line 146, the
decision construct is replaced with a newly generated transient state. Lines 147 to 154 deal with the
Input constructs. In lines 147 to 150, if the input signal has been identified as a GRANT from the set
of manually identified ResOwn signals, then the Input construct is replaced by a corresponding

158

ACQUIRE monitoring construct. In lines 151 to 154, the insignificant Input is pruned. Lines 155 to
177 deal with the Output constructs. In lines 155 to 160, if the output signal has been identified as a
REQUEST or ACTIVATE from the set of manually identified ResOwn signals, then a transient state
is inserted into the transition and the Output construct is replaced by a corresponding ACQUIRE
monitoring construct. In lines 161 to 164, if the output signal has been identified as a RETURN or
DEACTIVE, then a transient state is inserted and the construct is replaced by a RELEASE
monitoring construct. In lines 165 to 167, if the output signal has been identified as a START, then a
transient state is inserted and the construct is replaced by a REGISTER monitoring construct. In
lines 168 to 170, if the output signal has been identified as a STOP, then the construct is replaced by a
UNREGISTER monitoring construct. In line 171 to 175, an insignificant Output is pruned. Lines
178 to 183 deal with collecting superfluous transient states from transitions in the EoOB model. In line
184, the resultant EoB model is returned.

159

Chapter 8

Evaluation

“Thereis a theory which states that if ever anybody discovers exactly what the Universeis
for and why it is here, it will instantly disappear and be replaced by something even more
bizarre and inexplicable. There is another theory which states that this has already
happened.”

- D. Adams (1952-2001)

8.1 Introduction

This chapter presents an analytical evaluation of the research presented in this thesis. Thefirst section
will discuss the ResOwn ontology and the second section will discuss the greybox approach to

concern-specific dynamic software structure monitoring.

8.2 ResOwn

Software systems change over time in response to reiability and security needs, advances in
technology and changing end user requirements. According to [Kir04], a resource allocation and
management scheme should be formally specified, monitorable, traceable, extensible and
upgradeable. The ResOwn ontology presented in this thesisis all that and more.

8.2.1 Advantages

e ResOwn integrates resource and ownership concepts into a single, unified model. The author is
not aware of other ongoing research or published literature that uses an ontology to model

application resource ownership structure. This makes ResOwn a novel contribution.

160

ResOwn provides software monitoring and engineering with a new opportunity or way of
thinking about resource allocation and management. ResOwn is specified using a well-defined
vocabulary consisting of both resource and ownership concepts and properties that have been
borrowed from other, existing domains (Section 4.3.2). There is a major advantage of ResOwn
importing it’'s existing terminology and concepts from both the legal and real property domains.
These long established domains have an extremely rich and well understood set of ownership
concepts that because of ResOwn, can now be used to support resource alocation and

management in the software domain. For example:

o ResOwn formally distinguishes between managing (or servicing) a resource as a
nonbeneficiary owner versus actually benefiting from the use of a resource as a beneficiary
owner (Section 4.2.2 and Section 4.2.3). This distinction is important from the design and
implementation viewpoints when modeling both static and evolving software structure.

ResOwn now provides the necessary vocabulary and concepts.

o ResOwn incorporates the notion of single user capacity and multi user resource capacity
(Section 4.6.1.1) as both a structural and legal, role-based, ownership concept. Only objects
playing a beneficiary owner role are included when determining whether a resource's
structural ownership capacity has been exceeded. This approach provides a formally defined
way to deal with evolving cardinality (i.e, multiplicity) restrictions that can be modeled and
monitored at runtime. For example, consider a touch tone receiver (ttrx) card from the PBX

(Section 2.10) with a specified user capacity of one (1) beneficiary owner:

o If thettrx card is owned by a phone handler, and also owned by a ttrx scanner, then the
card has one beneficiary owner and one nonbeneficiary owner; the capacity is not
violated, and

e |f thettrx card is owned by two phone handlers at the same time, then the card has two

beneficiary owners; the capacity is violated.

The use of ResOwn terminology, concepts and object properties has been applied successfully to
at least one software system from the interactive session-oriented service domain - the control

program of the PBX application (see Section 2.10 for PBX description).

A methodology (Section 5.2) has been devised and tested for creating a specialized ResOwn
instance (Section 4.3.3) for a software product line and/or application instance from the basdline

161

ResOwn ontology (Section 4.3.3). This methodol ogy was successfully applied to the PBX.

o The author was able to define a ResOwn ontological class for every object class in the PBX

using the current set of concepts and object properties provided by ResOwn (Section 5.2).

o Theauthor was then able to successfully creste a specialized ResOwn instance (Section 5.2)
for the PBX by inserting each of the new ontological classes, defined for the PBX, into the
current basdline ResOwn class hierarchy. The resulting ResOwn instance was automatically

shown to be consistent using a reasoner.

o Theauthor was able to automatically classify the specialized ResOwn instance (Section 5.3)

using a reasoner and create an inferred ResOwn instance class hierarchy for the PBX.

The baseline ResOwn ontology, and any resulting specialized ResOwn instances created from the
baseline, are formally defined using OWL-DL which provides a major advantage over visual
UML-based models which lack formal semantics.

The modularity of ResOwn promotes reuse of its concern-specific, core subontology (Section
4.3.1) with different, application-general support subontologies (Section 4.3.1). Since ResOwn
models support and value partitions classes only as properties (Section 4.4), it is relatively easy
and straightforward to identify where specific changes to the ResOwn core class definition are
required, if a new support class or value partition is added or, if an entirely new application

domain is to replace an existing one.

One advantage of ResOwn is that it deals with the implementation bias in ontology construction
in a systematic and structured manner. Before creating ResOwn, the author reviewed literature on
existing ontologies (general and OWL-based) [Cha99, Dar06, Hor04, Noy97, Rec04, Sta06]. A
common theme was that, traditionally, ontologies are to be created with careful consideration so

as not to introduce implementation bias into the taxonomy, classes or properties [NoyO1].

o ResOwn's modular construction logically compartmentalizes and separates concern-specific
knowledge from application-general knowledge through implementation of the core and
support subontologies (Section 4.1). Doing this helped to control the scope and the amount of
implementation bias that inevitably needed to be introduced into the ontology to customize

ResOwn for theinteractive session-oriented service domain.

o ResOwn's creation and construction approach followed an iterative development procedure.

162

A concern-specific scope (i.e, structural resource ownership) was seected and any
terminology listed. Over time, the list evolved. Terms not directly related to the scope were
removed or revised. Sets of related concepts were collected into separate concept and
property groups. Terms were added or revised based on new knowledge obtained from
sources such as existing resource, scheduling, legal, real property and ownership ontologies,
patterns for resource management and terminology and natural language definitions from
legal and financial dictionaries. Any application-specific terms were separated out and placed
into a separate list to limit the influence of implementation bias on core concepts. The next
phase involved constructing the ontology itself in an iterative fashion. Separate top-level core
class hierarchies (Section 4.2.2) were constructed and subclasses defined. At each iteration,
the reasoner was used to test and debug the ontology by ensuring the class definitions were
concerned and inferred class hierarchy correctly. In addition, the author constructed UML-
based models of the ontology to visually check the author’s interpretation and understanding
of the ontological concepts and properties and ensure that, in fact, the ontology could be used
in the software domain. Once the core ontology was reasonably mature, the author created the
support subontology to add the required application-general concepts and properties to
ResOwn. At each iteration, a conscious effort was made to ensure that implementation did

not creep into the core subontol ogy.

The extensibility of ResOwn allows resource ownership knowledge to be created, encoded,
categorized and classified at multiple levels of abstraction (i.e., levels of specialization) within a
single, unified modd. Using specialization to create new, application-specific instances of

ResOwn also promotes reuse across many different applications within a single domain.

For software product lines, it is possible to create a hierarchy of specialized ResOwn instances
emanating from a single, baseline ResOwn ontology at the root. Beneath the root, the first tier in
the hierarchy would contain a number of specialized ResOwn instances. Each first tier instance
would be specialized with application-specific classes for a particular software product line from
a family of products that belong to the selected interactive session-oriented service domain. On
the second tier, each first tier instance would subsume one specialized ResOwn instance for every
application instance in the product line. This approach has the advantage that only those
ontological classes pertaining to a specific application need to be created to determine whether a

new application adheres to the existing application structural resource ownership scheme.

163

8.2.2 Known Limitations

e A limitation of ResOwn is that the ontology has not been exposed to the public domain so that it
can be further evaluated by experts from both the knowledge representation domain as an
ontology, and by experts from the software engineering domain as an ownership-based resource

allocation and management schema.

e ResOwn is currently limited to a single structural software concern: the resource ownership.
There is a legitimate question as to whether the ResOwn approach to ontology modeling is

adaptable to other software concerns such as data security or system adaptation.

e ResOwn has only been tested and evaluated for the interactive session-oriented service domain
using the PBX. ResOwn need to be tested on other applications. This imposes a humber of

limitations on the current version of ResOwn:

o ResOwn needs to be tested and evaluated using other applications from the interactive
session-oriented service domain to see if its applicability is general enough for applications

across the interactive session-oriented service domain beyond telephony.

o ResOwn needs to be tested and evaluated with other application domains to see if ResOwn’s
structural approach to resource ownership is applicable to application domains other than

interactive session-oriented services.

e To be truly an ontology, ResOwn should be capable of supporting specializations of red
application classes; that is, the existing ResOwn classes and properties must be capable of
encoding all relevant knowledge necessary to represent the application-level knowledge of real-
world software systems for the selected application-domain. While the PBX provided a rich set of
application-specific Resource, Consumer and Supplier subclasses, test cases are required to
evaluate, identify and address the limitations of the current ResOwn implementation across a

broader sdection of applications.

e The terminology and concepts from the legal and real property domains in ResOwn are mostly
new to the software engineering domain, placing a limitation on ResOwn, at this time, as a
resource ownership modeling and management standard for software. The question remains as to
whether ResOwn will be understood and readily adopted for practical use in the software domain.

To this end, more examples are needed to clearly demonstrate the meaning and applicability of

164

ResOwn’s legal- and real property-based concepts.

One of the limitations of the ResOwn construction process was the lack of empirical or formal
methods or techniques to determine how much, if any, implementation bias had either crept into
the core subontology, or was need in the support subontology for core class definitions.
Determining how much, or how little, implementation bias is good for a concern-specific

ontology such as ResOwn remains an open question.

A major limitation for adopting ResOwn in the software engineering domain is that most
traditional software engineers are not familiar with the philosophy of ontology construction,

OWL-DL, description logic, or tools such as Protégé-OWL and RacerPro.

Another related limitation, is that tools like Protégé-OWL lack the same rich, visual modeling
experience provided by the current generation of UML-based modeling tools such as IBM’s
Rational. However, it appears as though help is on the way. For example, UML profiles for OWL
ontologies have emerged and may allow UML modeling tools to also facilitate ontological
modeling. One possible solution is new tools that use a UML front-end for visual modeling, but
keep the formal OWL-DL back-end for consistency checking and automatic classification

pUrpOsEs.

8.3 Dynamic Software Structure Monitoring

ResOwn implements application resource ownership as an individual structural software concern that

can be monitored orthogonally from the operational software system’s functional behavior. The

greybox approach to concern-specific dynamic software structure monitoring (Chapter 7) has

advantages and known limitations.

8.3.1 Advantages

Being concern-specific is a major advantage for the proposed monitoring approach. Today’'s
interactive session-oriented services are delivered by large and complex software systems. It is
not possible to monitor everything. A greybox concern-specific approach offers a reasonable

comprise.

Concern-specific monitoring provides an opportunity to create models of the evolving, concern-

165

specific structure of operational software systems by fusing structural and behavioral knowledge

into a concern-specific monitoring model.

In general, the concern-specific monitoring approach integrates nicely with autonomic systems
that support concepts such as self-healing, self-adaptation and sdf-optimization. For example, a
set of individual concern-specific monitors, each focused on a particular autonomic concept could
be turned on or off at runtime, according to the dynamic monitoring requirements of the

operational autonomic system.

The greybox aspect of the monitoring approach has several advantages and disadvantages over

other blackbox and whitebox monitoring approaches as shown in Table 8-1.

Blackbox Approaches

Whitebox Approaches

Greybox Approach

Runtime knowledge about evolving
concern-specific structure enhances
blackbox monitoring

Runtime knowledge about evolving
concern-specific structure including in
whitebox monitoring

Runtime knowledge about evolving structure
focused on one, concern-specific aspect of the
target software system

Non-intrusive

Highly intrusive

Some intrusion required

Monitoring model derived using
external behavioral knowledge

Monitoring model derived from detailed,
internal behavioral, structural and data
flow knowledge

Monitoring models derived using only that internal
behavioral knowledge relevant to the concern-
specific structure to be monitored

Tracks global specification state

Shadows runtime implementation state

Tracks state-dependent, evolving software structure
for a selected software concern on a session-by-
session basis

Detects behavioral failure and must
infer internal runtime knowledge

Detects behavioral and data errors and
possesses detailed internal runtime
knowledge

Detects only context-sensitive, structural integrity
errors. Internal runtime knowledge limited to select
structural context

Specification nondeterminism may lead
to large space and time complexity

Volume of monitored data to be
transported and processed may lead to
large error detection latencies

Limited structural context reduces volume of
monitored data to be transported and processed
leading to reduced detection latency but limited
monitoring focus may reduce error detection
probability

Limited error diagnosis and fault
localization capability

Enhanced error diagnosis and fault
localization capability

Not intended for detecting data and behavioral
failures or errors

Table 8-1: Comparison of monitoring approaches.

The greybox approach has an advantage over blackbox approaches because the greybox approach
can detect structural errors and eliminates the specification nondeterminism encountered in
blackbox models by embedding software sensors in the operational target implementation that

maps monitoring constructs into the concern-specific model.

The greybox approach has an advantage over whitebox approaches because the greybox approach

abstracts away unnecessary implementation details and focuses on an individual software concern

166

within the evolving structure of the operational target. This approach reduces or limits both the
amount of required intrusion into the target and the volume of monitored data that must be

collected, transported and processed by the monitor’ s interpreter.

The monitoring application research ownership has benefits for detecting operational
performance bottlenecks as well as implications for detecting performance degradation due to

runtime phenomena such as software aging.

The monitoring approach is capable of detecting (and possibly localizing) resource ownership
errors that a purely blackbox approach, which is dependent on externally observable knowledge,
could not. For example, the orphaned power of attorney scenario (Section 5.4.5) is only
detectable using the proposed approach for monitoring the evolving resource ownership structure
of the PBX. Other examples of structural resource ownership errors are detailed in the other

resource acquisition and ownership scenarios described in Section 5.4 of Chapter 5.

8.3.2 Known Limitations

The current approach is limited to only manual placement of embedded software sensors in the
instrumented target software system (Section 7.3.3). To be widely practical and on the same level
of independence as autonomic software systems, an automated methodology or technique is
necessity that would be capable of using the formal software specifications and the source code to
automatically locate and then weave sensors into the appropriate location in the software source

code. Thisis a nontrivial problem and would require the ability to locate features in source code.

A major limitation of the monitoring approach is that it does not have formal agorithms for
resynchronizing the interpreter once an application resource ownership error is detected or an
inconsistency in the dynamic knowledge base is found. These algorithms are nontrivial and would
need to include how to deal with discrepancies such as missing, lost or extra monitoring

commands. Presently, the greybox interpreter only reports warnings (Section 7.2.4).

The approach prunes away most of the SDL constructs when deriving the concern-specific model
(Section 7.4.2 and Section 7.4.3.4). It is unclear whether the derivation approach used for
application resource ownership monitoring would work with other software concerns such as data

security or system adaptation.

167

Chapter 9

Conclusions

“ The sooner you get behind in your work, the more time you have to catch up.”

- Anonymous

9.1 Introduction

This chapter contains conclusions drawn from the research work described in this thesis, followed by
a summary of the novel research contribution of this thesis. The last section suggests some areas for

possible future work.

9.2 Conclusions

This thesis introduced and presented ResOwn, a hovel ontology for application resource ownership.
ResOwn provides a vocabulary along with a set of concepts and properties for modeling the
application resource ownership structure of operational software systems. ResOwn is OWL-DL-
based, role-based, modular, extensible and automatically classifiable by a reasoner. ResOwn models
an application resource ownership structure scheme that is not hard-coded into the resource and
owner model concepts, but instead built upon a dedicated concept of proof of ownership instruments.
These instruments support a rich notion of resource ownership that allows different owners to play
different ownership roles, each with different ownership rights, even with the same resource. This
thesis also proposes a greybox approach for monitoring the state-dependent, evolving resource
ownership structure in interactive session-oriented services. The monitor executes as a separate unit.
A monitoring interface comprised of embedded software sensors is associated with the monitor, but

woven into the target software system’'s implementation according to a sensor plan. The monitor

168

interprets a concern-specific model that has been derived (i.e., abstracted) from the target’s formal
specifications. During the derivation process, the model is extended with special monitoring
constructs. Each monitoring construct in the model is associated with a specific monitoring command
produced by a corresponding software sensor in the instrumented target. The top-level architecture of
the monitor is comprised of a greybox interpreter and a tuple-based dynamic knowledge base. The
greybox interpreter uses the dynamic knowledge base to maintain a representation of the operational
target software system’'s evolving software structure. The greybox interpreter receives monitoring
commands while interpreting the concern-specific mode and updates the contents of the dependent

dynamic knowledge base to match the monitored portion of thetarget’s actual software structure.

9.3 Research Contributions

These are the major novel contributions that were presented in this thesis:

e A reusable and extensible, concern-specific ontology called ResOwn provides enriched concepts
of application resource ownership borrowed from real-world legal and ownership ontologies.
ResOwn is defined in the Web Ontology Language Description Logic (OWL-DL), verified with a

reasoner and tested using the PBX example.

e A methodology to create an application-specific ResOwn instance that specializes the concern-
specific portion of the ResOwn ontology with application-level knowledge for a particular

software system.

e A dua-view, Session-Oriented Model of Computation (SOMOC) for interactive session-oriented

services that relates observable, external service behavior to internal, evolving software structure,

e A greybox, concern-specific dynamic software structure monitoring approach and architecture

devised for tracking the evolving software structure of an operational software system.
e A pair of algorithms for deriving the concern-specific monitoring model:

o An algorithm for deriving a state evolution model from the target’s software requirements
specification. The state evolution modd allows the greybox interpreter to track the

specification state (i.e., macro-stepsin the evolving structure) of the operational target.

o Analgorithm for deriving a set of epoch of behavior (EoB) models from certain slices of the

169

target’s software design specification. Each EoB model contains the monitoring constructs
that allow the greybox interpreter to track certain concern-specific structural transactions

(i.e., micro-steps in the evolving structure) as they are reported by the instrumented target.

9.4 Future Work

Some key areas of future work for the ResOwn ontology can be investigated along two reated
dimensions. In the first dimension, ResOwn needs to be evaluated with other interactive session-
oriented service applications. In the second dimension, the modular approach of separating ResOwn

into a core and a support subontology needs to be evaluated with other software concerns.

Another key area of future work pertains to the formalization of algorithms for both structural error
detection and monitor resynchronization in the presence of detected errors. Once this important future
work is completed, a implementation of a prototype monitor could be constructed, and a practical
evaluation of the monitoring approach conducted. A prototype monitor could also facilitate the

collection and study of empirical data on type and frequency of software structure errors.

SDL is a very rich specification language, and presently, the approach presented only dealt with
SDL -based requirements and design specifications. Although SDL is expressive enough to allow for
the specification of quite complex systems, another area of future work might pertain to further

extending the approach to other CEFSM-based specification languages, including UML Statecharts.

The monitoring approach has been intentionally constrained to consider only application resource
ownership in interactive session-oriented services whose real-time software systems have been
specified in SDL. An opportunity exists to extend the research of this thesis by widening the scope to

other individual software concerns such as data security, intrusion detection, and adaptive systems.

Another potential area of future work is to investigate the formal specification of a standard
greybox monitoring interface for software components. Thisidea is similar to the notion of a built-in
component testing interface already proposed in other related work that is designed into the

component during development and can be used both during testing and software maintenance.

Another important area of future work involves extending behavioral monitoring in a modular
fashion to incorporate dynamic software structure monitoring. In this hybrid approach, the software

structure monitor would maintain a dynamic knowledge base of the evolving concern-specific

170

structure of the operational target. The behavioral monitor queries the software structure monitor’s
knowledge base whenever the behavior monitor needs to verify some concern-specific knowledge.
For example, in the case of resource ownership, when the behavioral monitor detects that a particular
event handler has received data from a particular resource, the behavioral monitor would query the
dynamic resource ownership knowledge base and check if the event handler has the correct and

necessary ownership rights to receive the resource’' s benefit.

One last area of related research that was not considered in thisthesisis the effects of dynamic load
on the integrity of the concern-specific evalving structure in general, and on the evolving resource
ownership structure of the operational software system in particular. Investigation of the impacts of
high offered loads on resource ownership structure could be valuable in a number of interesting ways.
For example, there is the notion of concern-specific failure creep, in which the level of resource
ownership structure errors continues to build at higher loads until a failure or service outage occurs.
Failure creep, as it pertains to the corruption of the application resource ownership structure, may
result from the long-term exposure of a soft, real-time software system to heavy loads. It would be
useful to have a method to document and categorize different types of resource ownership errors and
their likelihood of causing a failure. Another aspect to investigate is the rate of decline in service

quality as afunction of the evolving resource ownership structure consistency at high loads.

171

Appendix A

Protégé-Owl and RacerPro

Screenshots

K3 PbxResOwn Protégé 3.1.1 (file:\C:\Documents%20and%20Settings\barry\Desktop\PhD% 20 Thesis\ONTOLOGY \PbxResOwn\P bxResOwn. pprj, OW. .. E“E”zl
Fle Edt Project OM Code Window Tools Hep
Ded B0 wu ¢% BEE $5 B BB a» ¢ <g|protégeé
| (€l omcisses | [Pl Properies | L) indvidusis || 1, 0wz |
SUBCLASS RELATIONSHIP <] CLASS EDITOR 17
For Project: @ PbxResOwn For Class: (C) Owner (instance of owl.Class)
Asserted Hierarchy W l:g' K 4}2 \}EJ |'Nnmc | [) Annotations ¥ E’f \B '
© owtThing 2] | [owner ") Property | Value [Lang |
¥ (C)GeneralvP)
> @Pe!s'men:v\m rdfs:comment }’
v I@Hasouoaf)mafshp
¥ (C)ResOwnCore
¥ (C)instrument
{C) Baseinstrument
{E) Closedinstrument |
() Extentinstrument ’
éuraummmum [Asserted | Inferred | [Fll] Properties
'_C)Ll‘l'eLonglnshunent Asserted Conditions \:;j‘) \EJ \.‘i ‘ > @hmwmsme (sing
¥ (L) Namedinstrument — nEcEssary & surricient | ||| M teCwrmrsil. 0
¥ (©License | |||» [O)haspersistency
\QCmcuremLicm @_ResOwnCote lsmeOl (muliple Reso
o [3nesownernae Cunarls
@ PemRTotiokd é; 3 hasPersistency SystemPersistent
-QPowaO‘lMomef
~@Pm:y
¥ (C) Teledeed
|C) EmbeddedTitledeed
\E)Nor!unsfumlaﬂlwud D) visjoints (7] G g 2
¥ (C)TransferableTitledeed =1 @hwunerl
© i ftledeed | C) ResOwnCoreVP
| C)ReusableTransferable Taledeed
() Nontransferableinstrument
() Openinstrument
() Transferableinstrument v
Hﬁa | & B @ Logic View () Properties View

Figure A-1: Protégé-Owl classes view screenshot.

172

K PbxResOwn Protégé 3.1.1 (file:\C:\Docum: g 6 205ettings\barry\WDesktop\PhD% 20ThesisVONTOLOGY WP bxRlesOwn\Pbodle
fle Edt Proect OWL Code Window Tools Help
Ned B0 s #% BEE ®&5 § B8 a» @pmregé
((c)omClsses | [Pl Properes |3 et | i omaviz |
. \ PROPERTY EDITOR
For Project: @ PhuResOwn For Property [0 sBoundTo (etance of operty operty)
Ellproperties (B 0] ¥ (5 (G [|(reme |(Embvairts’] [Janotatiorss ERCEY |
Ol hascapacty = | |isBoundTa [*] Preperty Vo [Lang |
R — Lt |
—_— G R e v CRVACY |
Lo %Mﬂu [©) instrument [Functional
Instrumert Resowrce
[IverseFunctional
[+ Symmetric.
[] Transtive
(Dl sstssueron — nasissuer
| [Olisownerot — nasowner =
- @ +
= — G QR
Super properties @ [} 'nﬂomﬂ'l’o
& B

Figure A-2: Protégé-Owl properties view screenshot.

KA phxResOwn Pro tégé 3.1.1

Ede Gt Project OWL Code Wndow

DeE R0 wd ¢ BN 5 B BE ar %

Tools Help

{file:\C:\Documents® 20an d% 205ettings\barryWeskio p\P h% 20 Thests\ONTOLOGY WP bxResOwn\P bodResCwn. ppr, OW....

| e o v 5, ovve |

[eJalv[@E[o]alx]mE [{J&](B]=][0]
{ Asserted odel | Inferied Wodl|

CLASS BROWSER

For Project @ PhaResCram

Assortad lerarchy
|.£) owt Thing

I

i

| C)Resource

|3 3 hasCapacity SingleUises -
| =) haeCortainer = 0
{3) 3 isBoundTo TransterabisTiledesd

') ¥ isBoundTo nstrument

HECESSARY & SUFFICIENT

[l |

Figure A-3: Protégé-Owl OWL Viz view screenshaot.

173

I IO

533 Welcome to RacerPro Version 1.9.8 2085-12-85¢

Racer: Renamed Abox and Concept Expression Reasoner
Supported description logic: ALCQHIr+(D)-
Supported ontology web language: subset of OWL DL (no so-called nominals)

Copyright (C) 2084, 2005 by Racer Systems GmbH & Co. KG

All rights reserved. See license terms for permitted usage.

Racer and RacerPro are trademarks of Racer Systems GmbH & Co. KG
For more information see: http://www.racer-systems.com

RacerPro comes with ABSOLUTELY HO WARRANTY; use at your own risk.

RacerPro is based on:

International Allegro CL Enterprise Edition 7.8 (Oct 19, 2004 13:28)
Copyright (C) 1985-2884, Franz Inc., Dakland, CA, USA. A1l Rights Reserved.
The XHL/RDF/RDFS/0ML parser is implemented with Wilbur developed

by Ora Lassila. For more information on Wilbur see
http://wilbur-rdf.sourceforge.net/.

T

Found license file
C:\Program Files\RacerPro-1-9-@\license.racerlicense
This copy of RacerPro is licensed to:

Barry R Pekilis

University Of Waterloo
Generative Programming Lab
200 University Avenue West
H2L3G1, Waterloo, Ontario
Ch

Initial license generated on B4%-28-2006, 13:34 for 1.9.0.
Desktop, Educational, on X86 Win32.

This license is valid up to version 1.9.999.

This license is valid until 18-31-2006, 17:59.

This timelimited demo license expires in 90 days, 21 hours and 32 minutes.

|[HTTP service enabled for: http://localhost:8080/
TCP service enabled for: http//localhost:8088/

Figure A-4: Racer Pro Reasoner console screenshot.

Finizhed: Classification complete

Reasoner log
V@ Check concept consistency

ild gquery = 0.011 seconds
send and receive from res
Protege-ChyL = 0,02
ierarchy

uery = less that 0.001

592 seconds

W@ Compute

¥ reasoner = 3 465
ate Protege-CWL =018

A %CO?T‘-[’.'\-".E
+%-@ Tirr

Ti query reasoner = 0.19 secor
Time 1 Protege-ChL = 003
Total time: 5.6 econds

Figure A-5: Racer Pro reasoner log screenshot.

174

Appendix B

Instrumentation Examples

String state = IDLE_STATE;

while (true)

{

Object msg = msgBuffer.get ();
switch (state)
{
case IDLE_STATE:
switch (msg.type)
{
case OFF_HOOK MSG:
state = handleOffHook (msg) ;
break;
case CALL_REQ MSG:
state = handleCallReq (msg) ;
break;

@

String state = IDLE STATE;

while (true)
{
Object msg = msgBuffer.get ();
switch (state)
{
case IDLE_STATE:
switch (msg.type)
{
case OFF_HOOK_MSG:
monEventDirective.send (E1, msg.from, msg.to, msg.param, clk.ts ());
state = handleOffHook (msg) ;
break;
case CALL_REQ MSG:
monEventDirective.send (E2, msg.from, msg.to, msg.param, clk.ts ());
state = handleCallReq (msg) ;
break;

(i)

Figure B-1: State-oriented structure: (i) original code; (ii) instrumented code.

String state = IDLE STATE;

while (true)

{

Object msg = msgBuffer.get ();
switch (msg.type)
{
case OFF_HOOK MSG:
switch (state)
{
case IDLE_STATE:
state = callOrigination (msg);
break;
case RINGER STATE:
state = callTermination (msg);
break;

®

String state = IDLE_STATE;

while (true)
{
Object msg = msgBuffer.get ();
switch (msg.type)
{
case OFF _HOOK MSG:
switch (state)
{
case IDLE_STATE:
monEventDirective.send (E1, msg.from, msg.to, msg.param, clk.ts ());
state = callOrigination (msg);
break;
case RINGER_STATE:
monEventDirective.send (E2, msg.from, msg.to, msg.param, clk.ts ());
state = callTermination (msg) ;
break;

Figure B-2: Input-oriented structure: (i) original code; (ii) instrumented code.

175

Appendix C

ResOwn Class Hierarchy

The full asserted and inferred class hierarchies for the ResOwn ontology are shown in Error!
Refer ence sour ce not found. and Error! Refer ence sour ce not found., respectively. The purpose of
the diagrams is to give the reader a fed for the size, complexity, and scope of the asserted and
inferred class hierarchies. Class shown in Yellow are named or primitive OWL classes. Classes shown
in Orange are defined OWL classes. Classes shown with a Blue outline are specified using multiple
inheritance; that is, those classes from the asserted class hierarchy that have been automatically
classified and are subsumed by more than one Superclass in the inferred class hierarchy.
Unfortunately, due to the size of the two class hierarchy diagrams, and the margin limits imposed on
the page, it is recognized that many of the labelsin the two class hierarchies are difficult to read. That
is why these diagrams are in the appendix and smaller, more readable portions or entire sections of

the two class hierarchies are presented, where relevant, in the main body of this thesis.

176

. HonswurableTeansterable Titledeed

FeusableTransferable Titledaed

Figure C-1: The ResOwn ontology’s asserted class hier archy.

177

Figure C-2: The ResOwn ontology’sinferred class hierarchy.

178

Appendix D

Phone Handler Example

The first part of this appendix shows an original SDL requirements specification excerpt for the
Phone Handler from the example PBX described in Section 2.10, followed by the transformed Phone

Handler excerpt shown as a sample excerpt of the entire state evolution model.

The second part of this appendix shows an original SDL design specification excerpt for the Phone
Handler from the example PBX described in Section 2.10, followed a number of corresponding EoB

models derived from the excerpt representing just a sample of the entire EoB Library.

The derivation algorithms are described in detail in Chapter 7.

179

Process Phone_Handler D _____Zfel;lsmws
del clr pid; (ot OB Wait Ofhk
del cle pid: B
pid;
del x integer;
o< (o e
: | Reques | clr::s;nder; | | state
Wait RR
1| R
/ Oank / | DenyI | G1rantI < | 1ng6:
T T .
[Rmidle > [Rmldle Wait RS
T T
| FBusy | Dial | OfHk | Cancel RmFBusy
I I I
Wait FB | nri=-1 | | RmRinger | RmRinger
- T I
set(n});varlZ, | Read}lz Tdle
*) | RmlIdle
[T1 ' |OnHkI |Dig(xl)
I I
RelR Reset T1 Reset T1 E———
[ResetT1 | | ResetTl | [Oonfk < [Canel l Onik [T1 .
YN |Cancel:1 |Idle : | Rese;‘tTl | |RmS]I3usy
RmSB RelR
[RumDial > [Rmldic : “; S : Z =
RelRes Fbusy
1dl OnHk
Sl)lnﬁ
1dI =
nr:= | Rmldle
10*nr+di
e dig M < ok < [fes
T T T
(Wait FB) | Cancel | Reset T1 | | RmRing
set(now+12, | RmRilng | Cancel:l | Corm(slelf,cle)
I
F.H) | RelRel:s | RmRiIng Talker
* | Fbusy | RelRes l Sk | c :
1 ance
: 1dI
Rl
C e) | ReConn(sel) | RelRos
OnIHk NotAIvail AvailI RelRel:s Idle I
[/|
T T
|RmIdlle | RmIdlle
| SbuS}: | Ring | (Tdle) | OnHk
set(now+20, set(now+25,
™ m

v v
(Wait_SB) (Wait RT)

Figure D-1: SDL requirements excer pt of Phone Handler.

180

<X03, clk > <X02, clk >
(Wait_ FB) ((Wait DG)
< NO04, clk > <NOS5. clk >
v
(_EoB03)(_EoB04)
X4 ek > 305 alic> <X06. ol > < X07. ol > < X08. k> < X09, ol >
v v v v v
(Wait_CRQ) (Wait FB) (Wait FB) (Wait DG) (Idle)
<N10, clk >
<X11, ek > <X12, clk >
v
(Wait_SB) (Wait RT)
<N13, clk > <N20, clk >
v v
(_EoB06) (_EoB07)
———— I i]
<X14, clk > <X13, clk > <X20, clk > <X21, clk > <X22, clk >
v v

(Wait FB) (Idle) (Wait FB) (Wait_Ofhk) (_ Talker)

Figure D-2: Sample excer pt from state evolution model for phone handler.

181

Process Phone_Handler Ic sh sl;

del nil Integer := -1;
del nr, x Integer;
del cin, cout Integer;

del sh, sl, tsh, ts! Integer;

del le, ttrx, partner Pid;

timer T1;

Boolean valid(IntegerInteger);
Boolean enough(Integer);

Avail
to partner

T
‘ Deny
Fbusy (sh,s1)

/ Onhk / ‘CallR‘eq

]
Grant
(cin,cout)

/ Onhk /‘CallR‘eq ‘Deny‘

NotAvail o
sender

RelCh
(cin,cout)

‘ OfHk ‘ Cancel ‘ CallReq
RmRi‘nger > RmRir‘nger > Nom\‘/ajl [u>
v e tole sender
e (rmom) (wal)
‘
Grant
(it tsh,tsl)

Conn
(sh,slcin tshytsl)

‘ Cancel

‘ CallReq
T

(sh,sLoout)

set(now+
12000,T1)

RmConn

Fbusy(sh,sl)

(sh,slcin,tshtsl)

I
[1dle to ic

: T T)
[NotAvail [[Avail [CallReq < [oOmHk]
T T T
[Rmidietolcy [Rmidleto s
SBusy Ring
(sh,sl,cout) (sh,sl,cout)
set(now+ set(now+
20000,T1) 25000,T1)
RmDial > Wait_SB Wait RT
I T
[CallReq < [T1 [OnHK Ready [OnHK [T1
RmConn — : v v
N NotAvail to RmSBusy reset T1 reset T1 Cancel
M sender > (sh,sl.ch) > to partner

RelCh
(cin,cout)

RmSBusy
(sh,sl,ch)

Idle to Ic

RmRing
(sh,sl,sh)

Conn

‘CallReq / OnHk / (Talker)

hsl)

A
Talker
r T {
‘ CallReq ‘ Cancel ‘ OnHk
T T T
NotAvail o\ [RmConn [cancel to ph
sender (sh,sl,cout,tsh,tsl)

RmConn
(sh,sl,cout,tsh,tsl)

Figure D-3: SDL design excer pt for phone handler.

182

RelCh
(cin,cout)

RmConn
(tshytsl cin,sh,sl)

RelCh
(cin,cout)

Cancel

to partner
RmRing
(sh,sl,cout)

RelCh
(cin,cout)

ScanOff{lc)

RmRing
(sh,sl,cout)

RelCh
(cin,cout)

FBusy(sh,s|

EoB 01 EoB 02 EoB 03 EoB 04

NS00

L02, self, cptm, fbusy, clk

@01, self, tscan, ttrx, chl, Icl, clk

L03, self, cptm, dial, ch2, lcl, clk

RO1, self, Iscan, 1c1, clk RO2, self, Iscan, 1c1, clk

RO4, self, Iscan, Ic1, clk

<A02, self, cp;m, fbusy, clk> <X01, self, cm: chl, ch2, cll>

I 1
101, self, cm, chl, ch2, cll> < A03, self, tm, ttrx, clk >

A04, self, cptm, fbusy, clk> @03, self, tscan, ttrx, chl, Ic1, clb

EoB 04 <405, self, cptm, dial, ch2, le1, B>

L04, self, tm, ttrx, clk

L035, self, cm, chl, ch2, clk

ROS5, self, Iscan, Ic1, clk

NS00

I T T 1
@01, self, tscan, ttrx, chl, Icl, cl@ @06, self, cptm, dial, ch2, lc1, clb @10, self, cptm, dial, ch2, Icl, c11> @04, self, tscan, ttrx, chl, Ic1, cl@

X

. [1 .
403’ self, optm, dial, ch2, lel, d@ @02, self, tscan, ttrx, chl, Ic1, clb @03, self, tscan, ttrx, chl, Ic1, clb @10’ self, optm, dial, ch2, lel, d@

< L07, self, tm, tirx, ok > < L09, self, tm, tirx, olk

X

L04, self, tm, ttrx, clk L11, self, tm, ttrx, clk

1035, self, cm, chl, ch2, clk L12, self, cm, chl, ch2, clk

L08, self, cm, chl, ch2, clk

RO5, self, 1scan, Ic1, clk A07, self, cptm, fbusy, clk

A06, self, cptm, fbusy, clk

EoB 05

EoB 06 EoB 07

- NS00
<A08, self, cptlm, sbusy, c1k> <A09, self, c;;tm, ring, clk>
X X

[1
<L13, self, cptm, sbusy, clk> <L15, self, cptm, sbusy, clk>

L17, self, cptm, ring, clk

NS04

<L14, self, cptm, ring, clk> <LlG, self, cm, chl, ch2, cll>

NS04

4
4

118, self, cm, chl, ch2, clk

NS04 NS04 <R07, self, lslcan, lel, c1k> <A11, self, cptlm, fbusy, clk
<A10, self, cptm, fbusy, c1k> <R06, self, 1scan, Ic1, c1k> >k >k

4
4

Figure D-4: Sample exceptsfrom EoB library for phone handler.

183

References

[Avr97]

[Abagl]

[Ambss]

[Atk03]

[Baz03]

[Bac9g]

[Bel9l]

[Ben03]

[Bid66]

[Bid79]
[Bra93]

[Bra93]
[Briog]

[BroO1]

[Cab03]

A. Avritzer, E.J. Koletis, “Monitoring smoothly degrading systems for increased
dependability,” In: Empirical Software Engineering, Vol. 2, No. 1, Kluwer, 1997, pp. 59-
77.

M. Abadi and L. Lamport, “The existence of refinement mappings,” In: Theoretical
Computer Science, Vol. 82, No. 2, Elsevier, 1991, pp. 253-284.

V. Ambriola, D. Notkin, “Reasoning about interactive systems,” In: |EEE Transactions on
Software Engineering, Vol. 14, No. 2, IEEE, 1988, pp. 272-276.

C. Atkinson, T. Kuhne, “Model-driven development: a metamodeling foundation,” In:
|EEE Software, Vol. 20, No. 5, IEEE, 2003, pp. 36-41.

F. Baader, D. Cavanese, D. McGuinness, D. Nardi, P. Patd-Schneider (Eds), The
description logic handbook: theory, implementation, and applications, Cambridge
University Press, 2003.

R. Back, A. Mikhajlova, J. von Wright, “Reasoning about interactive systems,” In:
Proceedings of the World Congress on Formal Methods in the Development of Computing
Systems, (FM Vol. 2), Lecture Notes in Computer Science, Vol. 1709, Springer, 1999, pp.
1460-1576.

F. Belina, D. Hogrefe, A. Sarma, SDL with applications from protocol specification,
Prentice-Hall, 1991.

A. Benveniste, S. Haar, E. Fabre, C. Jard, Distributed monitoring of concurrent and
asynchronous systems, Report No. 4842, The French National Institute for Research in
Computer Science and Control (INRIA), 2003.

B.J. Biddle, E.J. Thomas, Role theory: concepts and research, Wiley, 1966.
B.J. Biddle, Role theory: expectations, identities, and behaviors, Academic Press, 1979.

R. Brak, “SDL Basics,” In: Computer Networks and ISDN Systems, Vol. 28, No. 12,
Elsevier, 1996, pp. 1585-1602.

R. Brak, &. Haugen, Engineering real time systems. an object-oriented methodology
using SDL, Prentice Hall, 1993.

Britannica, Online Encyclopedia Britannica, http://www.britannica.com/.

M. Broy, K. Stelen, “Specification and development of interactive systems: focus on
streams, interfaces, and refinement,” In: Monographs in Computer Science, Springer,
2001.

G. Cabri, L. Leonardi, F. Zambonelli, “Implementing role-based interactions for Internet
agents,” In: Proceedings of the 2003 Symposium on Applications and the Internet
(SAINT), |EEE, 2003, pp. 380-389.

184

[Cas01]

[Chagg]

[Cha00]

[ChrO1]

[Con72]

[Cou01]

[Cra03]

[Dam00g]

[DamOob]

[Dar06]

[Det01]

[Devog]

[Dju0s]

[Dod92]

[Dos05]

V. Castdli, R.E. Harper, P. Heidelberger, SW. Hunter, K.S. Trivedi, K. Vaidyanathan,
W.P. Zeggert, “Proactive management of software aging,” In: IBM Journal, Val. 45, No.
2, 1BM, 2001, pp. 311-332.

B. Chandrasekaran, J.R. Josephson, V.R. Benjamins, “What are ontologies, and why do
we need them?” In: Intelligent Systems, Vol. 14, No. 1, IEEE, 1999, pp. 20-26.

S. Chandra, P.M. Chen, “Whither generic recovery from application faults? a fault study
using open-source software,” In: Proceedings of the International Conference Dependable
Systems and Networks (DSN), |EEE, 2000, pp. 97-106.

V. Christophides, R. Hull, G. Karvounarakis, A. Kumar, G. Tong, M. Xiong, “Beyond
discrete e-services. composing session-oriented services in telecommunications,” In:
Proceedings of the Second Annual Very Large Data Bases International Workshop on
Technologies for e-Services (VLDB-TES), Lecture Notes in Computer Science, 2193,
Springer, 2001, pp 58-73.

JR. Connet, E.J. Pasternak, B.D. Wagner, “Software defenses in real-time control
systems,” In: Proceedings of the Second Symposium on Fault-Tolerant Computing, 1EEE,
1972, pp. 94-99.

G. Coulouris, J. Dollimore, T. Kindberg, Distributed systems: concepts and design,
Addison-Wesley, 2001.

J. Crampton, G. Loizou, "Administrative scope: a foundation for role-based administrative
models,” In: ACM Transactions on Information and System Security, Vol. 6 , No. 2,
ACM, 2003, pp. 201-231.

DAML, Capacity Ontology, http://www.kestrel.edu/DAML/2000/12/CAPACITY .daml,
DARPA, 2000.

DAML, Resource Ontology, http://www.kestrel.edu/DAML/2000/12/RESOURCE.daml,
DARPA, 2000.

Defense Advanced Research Projects Agency (DARPA), The DARPA Agent Markup
Language (DAML) Program, http://www.daml.org/, DARPA, 2006.

M. Deters, R.K. Cytron, "Introduction of program instrumentation using aspects." In:
Proceedings of the OOPSLA Workshop on Advanced Separation of Concerns in Object-
Oriented Systems, ACM, 2001.

V. Devedzic, “Ontologies: borrowing from software patterns,” In: Intelligence, Val. 10,
No. 3, ACM, 1999, pp. 14-24.

D. Djuri¢, D. GaSevi¢, V. Devedzi¢, “Ontology modding and MDA,” In: Journal of
Object Technology, Vol. 4, No. 1, Chair of Software Engineering at ETH Zurich,
Switzerland, 2005, pp. 109-128.

P.S. Dodd, C.V. Ravishankar, “Monitoring and debugging distributed real-time
programs,” In: Software Practice and Experience, Vol. 22, No. 6, Wiley, 1992, pp. 863-
877.

B. Doshi, L. Benmohamed, A. DeSimone, “A hybrid end-to-end QoS architecture for
heterogeneous networks (like the global information grid),” In: Proceedings of the
Military Communications Conference (MILCOM), |EEE, 2005, pp. 1-9.

185

[Dvo91]

[Ece00]

[Eng95]

[Fac97]

[Far06a]
[Far06b]
[Far06c]

[Floc03]

[FowO03]
[Fow04]

[Gao03]

[Gar00]

[Gar79]

[Gar9g]

[Gat04]

[Gha02]

[Gha03]

D. Dvorak, B. Kuipers, “Process monitoring and diagnosis: a model-based approach,” In:
|EEE Expert, Vol. 6, No. 3, IEEE, 1991, pp. 67-74.

Department of Electrical and Computer Engineering, ECE 355 software engineering
course project, PBX hardware description - Version 1.2, University of Waterloo, Ontario,
Canada, 2000.

D.R. Engler, M.F. Kaashoek, J. O'Toole Jr., “Exokernel: an operating system architecture
for application-level resource management,” In: Proceedings of the Fifteenth Symposium
on Operating Systems Principles (SGOPS), ACM, 1995, pp. 251-266.

M. Faci, L. Logrippo, B. Stepien, “Structural models for specifying telephone systems,”
In: Computer Networks and ISDN Systems, Vol. 29, No. 4, Elsevier, 1997, pp. 501-528.

Farlex, The Free Dictionary, http://thefreedictionary.con, 2006.
Farlex, The Free Dictionary (Legal), http://legal-dictionary.thefreedictionary.com/, 2006.

Farlex, The Free Dictionary (Financial), http://financial-dictionary.thefreedictionary.
com/, 2006.

J. Floch, R. Brak, “Using projections for the detection of anomalous behaviors,” In:
Lecture Notes on Computer Science, Vol. 2708, Springer, 2003, pp. 251-268.

M. Fowler, Patterns of enterprise application architecture, Addison-Wesley, 2003.

M. Fowler, UML distilled: a brief guide to the standard object modedling language,
Addison-Wesley, 2004.

JZ. Gao, H.-SJ. Tsao, Y. Wu, Testing and quality assurance for component-based
software, Artech House, 2003.

J. Garcia, J. Entialgo, F.J. Suérez, D.F. Garcia, “Model-driven monitoring for the multi-
view peformance analysis of parale embedded applications,” In: Performance
Evaluation, Vol. 39, No. 1-4, Elsevier, 2000, pp. 81-98.

M.R. Garey, D.S. Johnson, Computers and intractability: a guide to the theory of NP-
completeness, W.H. Freeman and Company, 1979.

S. Garg, A. Pduligfito, M. Tdek, K. Trivedi, “Analysis of preventive maintenance in
transaction-based software systems,” In: |EEE Transactions on Computers, Vol. 47, No.
1, IEEE, 1998, pp. 96-107.

A.Q. Gates, S. Roach, N. Ddgado, "A taxonomy and catalog of runtime software-fault
monitoring tools, In: IEEE Transactions on Software Engineering, Vol. 30, No. 12, |IEEE,
2004, pp. 859-872.

N. Ghaffari, A. Lau, B. Pekilis, J. Thai, R. Seviora, “Horizontal and vertical (H&V)
consistency checking for software health monitoring,” In Proceedings of the First AOSD
Workshop on Aspects, Components and Patterns for Infrastructure Software, ACM, 2002,
pp. 30-35.

N.H. Ghaffari, Sate inconsistency detection in semi-stationary distributed systems,
Masters Thesis, Bell Canada Software Reliability Laboratory, University of Waterloo,
Waterloo, Ontario, Canada, 2003.

186

[Gel85]

[Gez03]

[Gru93]

[Guags]

[HauO1]

[Hay91]
[Haz01]
[HenO01]

[Hie01]

[Hla95]

[Hon95]
[Hor04]

[Huagg]

[1e90]
[lor94]

[1tu91]

D. Gelernter, N. Carriero, S. Chandran, S. Chang, “Paralld programming in Linda,” In:
Proceedings of the Fourteenth International Conference on Parallel Processing (ICPP),
|EEE, 1985, pp 255-263.

C. Gezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering, Prentice
Hall, 2003.

T.R. Gruber, “A tranglation approach to portable ontology specification”, In: Knowledge
Acquisition, Vol. 5, No. 2, Elsevier, 1993, pp. 199-220.

N. Guarino, “Formal ontology and information systems,” In: Proceedings of the First
International Conference on Formal Ontology in Information Systems, 10S Press, 1998,
pp. 3-15.

R. Hauck, |. Radisic, “ Service-oriented application management — do current techniques
meet requirements?,” In: Proceedings of the IFIP TC6 / WG 6.1 International Conference
on Distributed Applications and Interoperable Systems, Klumer, 2001, pp. 295-303.

D. Hay, R. Seviora, “A real-time validator,” In: Proceedings of the Third International
Conference on Software Engineering for Real-Time Systems, Vol. 344, |EE, 1991.

P. Hazy, Event trace based software supervision, Masters Thesis, Bell Canada Software
Reliability Laboratory, University of Waterloo, Waterloo, Ontario, Canada, 2001.

J. Hendler, “ Agents and the semantic web,” In: Intelligent Systems, Vol. 16, No. 2, |IEEE,
2001, pp. 30-37.

R.M. Hierons, “Checking states and transitions of a set of communicating finite state
machines,” In: Microprocessors and Microsystems, Vol. 24, No. 9, Elsevier, 2001, pp.
443-452,

M. Hlady, R. Kovacevic, J.J. Li, B.R. Pekilis, D. Prairie, T. Savor, and R.E. Seviora, "An
Approach to Automatic Detection of Software Failures,” In: Proceedings of the Fifth
International Symposium on Software Reliability Engineering (ISSRE), |IEEE, 1995, pp.
314-323.

Honderich, T. (Ed.), The oxford companion to philosophy, Oxford University Press, 1995.

M. Horridge, H. Knublauch, A. Rector, R. Stevens, C. Wroe, Building OWL Ontologies
Using The Protégé-OWL Plugin and CO-ODE Tools (Edition 1.0), University Of
Manchester, http://www.co-ode.org/resources/tutorials/ ProtegeOWL Tutorial .pdf , 2004.

L. Huang, Evaluation of Resynchronization Methods for Real-Time Software Supervision,
Masters Thesis, Bell Canada Software Reliability Laboratory, University of Waterloo,
Waterloo, Ontario, Canada, 1999.

IEEE 610.12-1990: standard glossary of software engineering terminology, |EEE, 1990.

R. lorgulescu, R.E. Seviora, “A resynchronization method for real-time supervision,” In:
Proceedings of the Sixth Euromicro Workshop on Real-Time Systems, IEEE, 1994, pp. 66-
71.

International Telecommunications Union / Telecommunications Standards Sector
(ITU/TSS), “Functional Specification and Description Language, In: ITU-T Blue Books:
Recommendation Z.100-104, , 1991.

187

[Jia05]

[K en99]

[KepO3]

[Kir04]

[Kol9g]

[Kri95]

[KnuO44]

[KnuO4b]

[Kuh87]

[Kur01]

[Lam83]

[LamB4]

[Larog]

[Lau05]

[Law90]

S. Jiang, C. Carrez, F.A. Aaagesen, “Automatic translation of service specification to a
behavioral type of dynamic service verification,” In: Proceedings of the First
International Workshop on Rapid Integration of Software Engineering Techniques (RISE),
Lecture Notesin Computer Science (LNCS), Vol. 3475, Springer, 2005, pp. 34-44.

E.A. Kendall, “Role models — patterns of agent system analysis and design,” In: British
Telecom (BT) Technical Journal, Vol. 17, No. 4, Springer, 1999, pp. 46-56.

J.O. Kephart, D.M. Chess, “The vision of autonomic computing,” In: IEEE Computer,
Vol. 36, No. 1, IEEE, 2003, pp. 41-50.

M. Kircher, P. Jain, Pattern-oriented software architecture patterns for resource
management (Volume 3), Wiley, 2004.

M. Kolberg, R. Sinnott, E.H. Magill, “Engineering of internetworking TINA-based
telecommunication services,” In: Proceedings of the Fourth International Conference on
Telecommunications Information Networking Architecture (TINA), IEEE, 1998, pp. 205-
213.

B.B. Kristensen, “Object-oriented modeling with roles,” In: Proceeding of the
International Conference on Object-Oriented Information Systems (OOIS), Springer,
1995, pp. 57-71.

H. Knublauch, R.W. Fergerson, N.F. Noy, M.A. Musen, “The Protégé-OWL plugin: an
open development environment for semantic web applications,” In: Proceedings of the
Third International Semantic Web Conference (ISWC), Lecture Notes In Computer
Science, Vol. 3298, Springer, 2004, pp. 229-243.

H. Knublauch, M.A. Musen, A.L. Rector, “Editing description logic ontologies with the
Protégé-OWL plugin,” In: Proceedings of the International Workshop on Description
Logics (DL), http://CEUR-WS.org/V ol-104/, CEUR-WS.org, 2004, #8.

D. Kuhn, “Sources of failure in the public switched telephone network,” In: IEEE
Computer, Vol. 30, No. 4, IEEE, 1997, pp.31-36.

J. Kurose, K. Ross, Computer Networking: A Top-Down Approach Featuring The
Internet, Addison-Wesley, 2001.

L. Lamport, “Specifying concurrent program modules,” In ACM Transactions on
Programming Languages and Systems, Val. 5. No. 2, ACM, 1983, pp. 190-222.

S.S. Lam, A.U. Shankar, “Protocal verification via projections,” In: IEEE Transactions on
Software Engineering, Vol. 10, No. 4., |EEE, 1984, pp. 325-342.

C. Larman, Applying UML and patterns; an introduction to object-oriented analysis and
design, Prentice-Hall, 1998.

A. Lau, R.E. Seviora, “Design patterns for software health monitoring,” In: Proceedings
of the Tenth International Conference Engineering of Complex Computer Systems
(ICECCS), IEEE, 2005, pp. 467-476.

K.H. Law, T. Barsalou, G. Wiederhold, “Management of complex structural engineering
objects in a rdational framework,” In: Engineering with computers, Vol. 6, No. 2,
Springer, 1990, pp.81-92.

188

[Lee90]

[Lew9s]

[Liu02]

[Lyu9s5]

[Lyu96]
[Mcc02]

[Memo6]

[Mil00]

[Mit9g]

[Mol93]

[Mur9s]

[Noy97]
[Noy01]

[OmgO52]
[OmgO5h]

[Ost02]

[Par72]

P.A. Lee, T. Anderson, “Fault-tolerance: principles and practice,” In: Dependable
Computing and Fault-Tolerant Systems Series, Val. 3, Springer, 1990.

S.M. Lewandowski, “Frameworks for component-based client/server computing,” In:
Computing Surveys, Vol. 30, No. 1, ACM, 1998, pp. 3-27.

S. Liu, “Capturing complete and accurate requirements by refinement,” In: Proceedings of
the Eighth International Conference on Engineering of Complex Computer Systems
(ICECCS), IEEE, 2002, pp. 57-67.

M.R. Lyu (Ed.), Software Fault Tolerance, Wiley, 1995.
M.R. Lyu (Ed.), Handbook of software reliability engineering, McGraw-Hill, 1996.

L.T. McCarty, “Ownership: a case study in the representation of legal concepts,” In:
Artificial Intelligence and the Law, Val. 10., No. 1-3, Springer, 2002, 135-161.

A.M. Memon, Testing event-driven software applications. issues, challenges, and
solutions, Invited Presentation, IEEE Computer Society Chapter, University of Waterloo,
http://www.cs.umd.edu/~atif/presentations/Waterl 00031606.pdf, 2006.

K.L. Mills, H. Gomaa, “A knowledge-based method for inferring semantic concepts from
visual models of system behavior,” In: ACM Transactions on Software Engineering and
Methodology, Val. 9, No. 3, ACM, 2000, pp. 306-337.

A. Mitschele, B. Mller-Clostermann, “Performance engineering of SDL/MSC systems,”
In: Computer Networks, Vol. 31, No. 7, Elsevier, 1999, pp. 1801-1815.

K-H. Moaller, D.J. Paulish, "An empirical investigation of software fault distribution,” In:
Proceedings of the First International Software Metrics Symposium (METRICS), |EEE,
1993, pp. 82-90.

K. Murakami, RW. Buskens, R. Ramjee, Y-J. Lin, T.F. LaPorta, “Design,
implementation, and evaluation of highly available distributed call processing systems,”
In: Digest of Papers of the Twenty-Eighth International Symposium of Fault-Tolerant
Computing (FTCS98), |IEEE, 1998, pp. 118-127.

N.F. Noy, C.D. Hafner, “ The state of the art in ontological design: a comparative review.”
In: Al Magazine, Vol. 18, No. 3, AAAI, 1997, 53-74.

N.F. Noy, D.L. McGuinness, Ontology development 101: a guide to creating your first
ontology, Knowledge Systems Laboratory, Technical Report, KSL-01-05, Stanford, 2001.

Object Management Group, Unified Modeling Language (UML) Version 2.0 —
infrastructure specification, OMG, 2005.

Object Management Group, Unified Modeling Language (UML) Version 2.0 -
super structur e specification, OMG, 2005.

T. J. Ostrand, E.J. Weyuker, "The distribution of faults in a large industrial software
system,” In: Proceedings of the SGSOFT International Symposium on Software Testing
and Analysis (ISSTA), ACM. 2002, pp. 55-64.

D.L. Parnas, “On the criteria to be used in decomposing systems into modules,” In:
Communications of the ACM, Vol. 15, No. 12, ACM, 1972, pp. 1053-1058.

189

[Par00]

[PavO1]

[Pehs3)]

[Pek97]

[Pek03]

[Pens0)]

[PflO6]

[Plag4]

[Rec04]

[Rod97]

[Ros98]

[RosD4]

[Sal84]

[San93]

Y. Park, S.S. Rappaport, “ Performance analysis of session oriented data communications
for mobile computing in cellular system,” In: Wireless Networks, Vol. 6, No. 6, Kluwer,
2000, pp. 441-456.

D. Pavlovic, D.R. Smith, “Composition and refinement of behavioral specifications,” In:
Proceedings of the Twenty-first International Conference on Automated Software
Engineering (ASE), |EEE, 2001, pp. 157-166.

B. Pehrson, “Abstraction by structural reduction,” In: Proceedings of the IFIP WG 6.1
Third International Symposium on Protocol Specification, Testing, and Verification
(PSTV), North-Holland, 1983, pp. 87-94.

B. Pekilis, R. Seviora, “Detection of Response Time Failures of Real-Time Software,” In:
Proceedings of the Seventh International Symposium On Software Reliability Engineering
(ISSRE), |IEEE, 1997, pp. 38-47.

B.R. Pekilis, R.E. Seviora, “Automatic response performance monitoring for real-time
software with nondeterministic behaviors,” In: Performance Evaluation, Vol. 53, No. 1,
Elsevier, 2003, pp. 1-22.

B. Penney, “The DMS-100: a switch that takes care of itself,” In: Telesis, Vol. 4, Bell
Canada, 1980, pp. 41-43.

S. Lawrence-Pfleeger, JM. Atlee, Software engineering: theory and practice, Prentice-
Hall, 2006.

B. Plattner, “Real-time execution monitoring,” In: IEEE Transactions on Software
Engineering, Vol. SE-10, No. 6, IEEE, 1984, pp. 756-764.

A.L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang,
C. Wroe, “OWL pizzas: practical experience of teaching OWL-DL: common errors and
common patterns,” In: Proceedings of the Fourteenth International Conference on
Knowedge Engineering and Knowiedge Management (EKAW), Lecture Notes in
Computer Science, Vol. 3257, Springer, 2004, pp. 63-81.

K.J. Rodham, D.R. Olsen Jr., "Nanites: an approach to structure-based monitoring,” In:
ACM Transactions on Computer-Human Interactions, Vol. 4, No. 2, ACM, 1997, pp. 103-
136.

J. Rosenberg, H. Schulzrinne, “Internet Telephony Gateway Location,” Seventeenth
Annual Conference on Computer Communications (INFOCOM), |IEEE, 1998, pp. 488-
496.

JM. Rosengard, M.F. Ursu, “Ontological representations of software patterns,” In:
Proceedings of the Eighth International Conference on Knowledge-Based Intelligent
Information and Engineering Systems (KES), Lecture Notes in Computer Science (LNCS),
Vol. 3215, Springer, 2004, pp. 31-37.

J.H. Saltzer, D.P. Reed, D.D. Clark, “End-to-end arguments in system design,” In: ACM
Transactions on Computer Systems, Vol. 2, No. 4, ACM, 1984, pp. 277-288.

S. Sankar, M. Mandal, “Concurrent run-time monitoring of formally specified programs,
In: IEEE Computer, Vol. 26, No. 3, IEEE, 1993, pp. 32-41.

190

[Sav97]

[Schos]

[Sei03]

[Sel03]

[Shag6]

[Sha05]

[Son02]

[Sta06]

[Sto05]

[Sul91]

[Swag9)]

[Szp02]

[Tae03]

[Tar9g]

[Tas02]

[Tex03]

T. Savor, R.E. Seviora, “Hierarchical supervisors for automatic detection of software
failures,” In: Proceedings of the Eighth International Symposium On Software Reliability
Engineering (ISSRE), IEEE, 1997, pp. 48 -59.

B. Schroeder, “On-line monitoring: a tutoria,” In: IEEE Computer, Vol. 28, No. 6, |IEEE,
1995, pp. 72-78.

E. Sedewitz, “What models mean,” In: IEEE Software, Vol. 5, No. 2, IEEE, 2003, pp. 26-
32.

B. Sdic, “The pragmatics of model-driven development,” In: IEEE Software, Vol. 5, No.
2, |IEEE, 2003, pp. 19.25.

M. Shaw, D. Garlan, Software architecture: perspectives on a emerging discipline,
Prentice-Hall, 1996.

J. Shaheed, A. Yip, J. Jim Cunningham, “A top-level language-biased legal ontology,” In:
Workshop Proceedings, Legal Ontologies and Artificial Intelligence Techniques,
International Association for Artificial Intelligence and Law, Workshop Series No 4, Wolf
Legal Publishers, 2005, pp. 13-24.

H. Song, H.H. Chu, N. Islam, S. Kurkake, M. Katagiri, “ Browser state repository service,”
In: Lecture Notesin Computer Science (LNCS), Vol. 2414, Springer, 2002, pp. 253-266.

Stanford University, OWL Ontology Library, http://protege.stanford.edu/plugins/owl/owl-
library/, 2006.

O. Storz, A. Friday, N. Davies, “Supporting ordering and consistency in a distributed
event heap for ubiquitous computing,” In: Personal and Ubiquitous Computing, Vol. 10,
No. 1, ACM, 2005, pp. 45-49.

M. Sullivan, R. Chillarge, “Software defects and their impact on system availability: a
study of field failures in operating systems,” In: Digest of Papers of the Twenty-First
International Symposium on Fault-Tolerant Computing (FTCS-21), |IEEE, 1991, pp. 2-9.

W. Swartout, A. Tate, “Ontologies: Guest Editors Introduction,” In: Intelligent Systems:
Secial Issue on Ontologies, Vol. 14, No. 1. IEEE, 1999, pp. 18-19.

C. Szypeski, D. Gruntz, S. Murer, Component software: beyond object-oriented
programming, Addison-Wesley, 2002.

G. Taentzer, “AGG: a graph transformation environment for modeling and validating
software,” In: Proceedings of the Second International Workshop on Applications of
Graph Transformations with Industrial Relevance (ACTIVE), Lecture Notes in Computer
Science, Vol. 3062, Springer, 2004, pp. 446-453.

P. Tarr, H. Ossher, W. Harrison, S.M. Sutton Jr., "N degrees of separation: multi-
dimensional separation of concerns, " In: Proceedings of the Twenty-First International
Conference on Software Engineering (ICSE), ACM, 1999, pp. 107-

G. Tassey, The economic impacts of inadequate infrastructure for software testing,
National Institute of Standards and Technology (NIST), Final report, 2002.

G. Texier, N. Plouzeau, “Automatic management of sessions in shared spaces,” In:
Journal of Qupercomputing, Vol. 24, No. 2, Kluwer, 2003, 173-181.

191

[Thaold]

[ThaO1b]

[Tur93]

[UscO6]

[Vai0l]

[War9s]

[Wiko8]
[Wo0000]

[W3c04a]

[W3c04b]

[W3c05]

[Yip02]

[Yip03]

[Yip04]

[Yu05]

J. Thai, B. Pekilis, A. Lau, R. Seviora, “Detection of errors using aspect-oriented state
consistency checks,” In: Supplemental Proceedings of the Twelfth International
Symposium on Software Reliability Engineering (ISSRE), |EEE, 2001, pp. 29-30.

J. Thai, B. Pekilis, A. Lau, R. Seviora, “Aspect-oriented implementation of software
health indicators,” In: Proceedings of the Eighth Asia-Pacific Software Engineering
Conference (APSEC), |EEE, 2001, 96-104.

K. Turner (ed), Using Formal Description Techniques: An Introduction to Estelle, Lotos,
and DL, Wiley, 1993.

M. Uschold, Introduction to ontologies and the semantic web, Presentation, Boeing
Technology, Phantom Works, http://courses.washington.edu/imt530/schedul &/8b.pdf,
2006.

K. Vaidyanathan, K. Trivedi, “ Extended classification of software faults based on aging,”
In: Proceedings of the Twelfth International Symposium on Software Reiability
Engineering (ISSRE), |IEEE, 2001, pp. 27-28.

J.B. Warmer, A.G. Keppe, The object constraint language: precise modeling with UML,
Addison-Wesley, 1998.

Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/, 2006.

M. Wooldridge, N.R. Jennings, D. Kinny, The Gaia Methodology for agent-oriented
analysis and design, In: Autonomous Agents and Multi-Agent Systems, Vol.3, No. 3,
Kluwer, 2000, 285-312.

World Wide Web Consortium (W3C), OWL Web Ontology Language Overview,
Recommendation 10, http://www.w3.org/, February 2004.

World Wide Web Consortium (W3C), OWL Web Ontology Language Guide,
Recommendation 10, http://www.w3.org/, February 2004.

World Wide Web Consortium (W3C), Representing Specified Values in OWL: value
partitions and value sets, Working Group Note 17, http://www.w3.org/, May 2005.

A. Yip, J. Cunningham, “Some issues in agent ownership,” In: Proceedings of the
Workshop on the Law and Electronic Agents (LEA) , CIRSFID, Universita di Bologna
2002, pp. 13-22.

A. Yip, J. Cunningham, “Ontological issues in agent ownership,” In: Proceedings of the
Workshop on the Law and Electronic Agents (LEA), Norwegian Research Center for
Computers and Law, Oslo, 2003, pp. 113-126.

A. Yip, J. Cunningham, “Legal event reasoning for software agents,” In: Proceedings of
the Workshop on the Law and Electronic Agents (LEA), CIRSFID, Universita di Bologna,
2004, pp. 35-53.

Y. Yu, H. Jn, “An ontology-based host resources monitoring approach in grid
environments.” In: Proceedings of the Sxth International Conference on Web-Age
Information Management (WAIM), Lecture Notes in Computer Science, Vol. 3739,
Springer, 2005, pp. 834-839.

192

[Zsc04]

[Zul04]

S. Zschaler, “Toward a semantic framework for non-functional specification of
component-based systems,” In: Proceedings of the Thirtieth EUROMICRO Conference,
|EEE, 2004, pp. 92-99.

M. Zulkernine and R.E. Seviora, "Towards automatic monitoring of component-based
software systems," In: Journal of Systems and Software, Special Issue on Automated
Component-Based Software Engineering, Vol. 74, No. 1, Elsevier, 2004, pp. 15-24.

193

