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Abstract

Measurement of visual quality is crucial for various image and video processing
applications.

The goal of objective image quality assessment is to introduce a computational
quality metric that can predict image or video quality. Many methods have been
proposed in the past decades. Traditionally, measurements convert the spatial
data into some other feature domains, such as the Fourier domain, and detect the
similarity, such as mean square distance or Minkowsky distance, between the test
data and the reference or perfect data. However only limited success has been
achieved. None of the complicated metrics show any great advantage over other
existing metrics.

The common idea shared among many proposed objective quality metrics is that
human visual error sensitivities vary in different spatial and temporal frequency
and directional channels. In this thesis, image quality assessment is approached by
proposing a novel framework to compute the lost information in each channel not
the similarities as used in previous methods. Based on natural scene statistics and
several image models, an information theoretic framework is designed to compute
the perceptual information contained in images and evaluate image quality in the
form of entropy.

The thesis is organized as follows. Chapter I gives a general introduction about
previous work in this research area and a brief description of the human visual
system. In Chapter II statistical models for natural scenes are reviewed. Chapter
III proposes the core ideas about the computation of the perceptual information
contained in the images. In Chapter IV, information theoretic criteria for image
quality assessment are defined. Chapter V presents the simulation results in detail.
In the last chapter, future direction and improvements of this research are discussed.
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Chapter 1

General Introduction

1.1 Motivation for Image Quality Assessment

A great effort has been made over many years to improve computational methods
to evaluate the quality of images. Generally speaking, there are three areas in which
image quality metrics play an important role.

First, metrics can be used to monitor an image acquisition system. In most
storage systems designed for images, compression technologies are used to save
memory. For instance, digital cameras use lossy compression technology (JPEG)
for saving memory. In other words, a captured image will be compressed and then
saved to a memory card. The compression process will cause some details in the
original image to disappear. Consequently, if more compression is applied to an
image, more space is saved but the compressed image has lower quality. For critical
work that requires higher image quality, less compression should be used. One
problem here is how to evaluate the compressed image quality.

Second, image quality assessment is needed to compare the results of different
image processing systems. Suppose several algorithms may be considered for a
specific task. Image quality assessment can select the algorithms with the best
performance.

Third, a metric can be embedded into image processing systems to optimize the
algorithm and configuration files, especially for real-time applications. For example,
in digital television broadcasting networks, image quality assessment technologies
are embedded to ensure a ’user-oriented’ quality of service. In this case, a para-
metric model is needed for an image quality metric that relies on the evaluation
of characteristic coding and transmission impairments with a set of features. This
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allows assessment of the approach and future developments for quality of service
monitoring in digital television.

The best way to evaluate the quality of images is to ask several viewers, because
human beings are the ultimate viewers in most image applications. A mean opin-
ion score (MOS) of the human judgments is computed as the subjective evaluation.
This method has been used for several years, however it also has an obvious limita-
tion. Subjective video quality measurement usually is costly and time-consuming,
and requires many human viewers to obtain statistically meaningful results.

The goal is to approach the quality assessment(QA) problem by proposing com-
putational algorithms to predict the quality of images or video. Several methods
have been presented in the past years. The following section reviews the basic
concepts of the previous methods and assesses their performances.

1.2 Subjective Image Quality Assessment

Presently, the most reliable judgment of image quality assessment is subjective
rating by human observers. Typically, the observer group includes ”nonexpert”
observers and ”expert” observers. A nonexpert viewer may pay more attention on
the overview, but a trained viewer may focus on the details.

There are two common kinds of subjective evaluation: full reference judgment
and blind judgment. In the former case, observers are provided standard reference
images that act as the calibrations in the subjective judgment. In the later case,
observers have to judge the image quality based on the test image without the
comparison.

Subjective testing for visual quality assessment has been finalized in ITU-R
Recommendation BT.500-10 (2000) [1].The three most commonly used procedures
are the following:

¦ Double Stimulus Continuous Quality Scale (DSCQS) Method[1]: ”Each trial
consists of a pair of stimuli: one stimulus is the reference, and the other is the test.
The test stimulus is usually the reference after undergoing some type of processing.
The two stimuli are each presented twice in a trial, in alternating fashion, with the
order of the two randomly chosen for each trial. To aid the test subjects in staying
on track in their assessments, audio cues are used to indicate when a trial begins,
when a new stimulus begins, when to vote, and what the current trial number is in
the sequence of trials making up a test session.” (Subjective testing for visual quality
assessment has been finalized in ITU-R Recommendation BT.500-10 (2000), P25)
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Figure 1.1: Presentation sequence for the DSCQS test method
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Figure 1.2: Rating scales for a trial with the DSCQS method

¦ Double Stimulus Impairment Scale (DSIS) Method[1]: The DSIS experiment
procedure is illustrated in Figure 1.3. As in the DSCQS method, each trial consists
of a pair of stimuli: the reference and the test. However, in the DSIS method, the
two stimuli are always presented in the same order: the reference is always first,
followed by the test. In the DSIS method, test subjects compare the two stimuli in
a trial and rate the impairment of the test stimulus with respect to the reference,
using a five-level degradation scale. Thus, only one vote is made for each DSIS
trial.

Trail 
 Trail 

Vote 


Time 

Vote 


Trial
 Trial


Figure 1.3: Presentation sequence for the DSIS test method

¦ Single Stimulus Continuous Quality Evaluation (SSCQE)[1]: Instead of seeing
separate short sequence pairs, viewers watch a program of typically 20-30 minutes
duration which has been processed by the system under test; the reference is not
shown. Using a slider, the subjects continuously rate the instantaneously perceived
quality on the DSCQS scale from ”bad” to ”excellent”.

In the subjective evaluation procedure, there are several points that should be
emphasized. First of all, the number of the observers should be large enough to
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Figure 1.4: Rating scales for a trial with the DSIS method
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Figure 1.5: Presentation sequence for the SSCQE test method

ensure statistical confidence in image quality experiments, according to the Cramer-
Rao bound. Second, the results of subjective testing are influenced by the exper-
imental conditions, which means the experimental viewing conditions should be
designed to match the viewing conditions in practice as closely as possible. In
addition, there are a number of other procedural elements worth noting, such as:
choice of observers, reference conditions, signal sources for the test scenes, timing
of the presentation of the various test scenes, selection of a range of test scenes.

Generally speaking, subjective testing has the following weaknesses:

(1) a wide variety of possible methods and experiment parameters must be
considered;

(2) necessary experiment controls are required;

(3) numerous observers must be selected;

(4) the experiment complexity makes the whole procedure very time-consuming.

The database set used in this thesis is the subjective judgment result from Lab-
oratory for Image and Video Engineering, University of Texas, Austin [2]. Twenty-
nine high-resolution 24-bits/pixel RGB color images (typically 768×512) were dis-
torted using five distortion types: JPEG2000, JPEG, white noise, Gaussian blur,
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and transmission errors in the JPEG2000 bit stream using a fast-fading Rayleigh
channel model. A database was produced from the 29 reference images so that each
reference image had test versions with each distortion type and different distortion
level. Observers were asked to provide their perception of quality on a continuous
linear scale that was divided into five equal regions marked with adjectives “Unsat-
isfactory”, “Poor”, “Fair”, “Good” and “Excellent”. 20-29 human observers rated
each image. Each distortion type was evaluated by different subjects in different
experiments using the same equipment and viewing conditions. In total, 982 images
are evaluated by test viewers. Finally, a Mean Opinion Score (MOS) value for each
distorted image was computed as a quantitative validation tool for objective image
quality assessment.

1.3 Classical Objective Image Quality Assessment

Typically, image and video QA algorithms may be classified into three broad cate-
gories:

Full-Reference (FR) QA methods, in which the QA algorithm has access
to a ’perfect version’ of the image or video which acts as the reference during the
quality evaluation procedure. The reference image generally comes from a high-
quality acquisition device.

No-Reference (NR) QA methods, in which the QA algorithm has the access
only to the distorted signal and must estimate the quality of the signal without any
knowledge of the reference image. Since NR methods do not require any reference
information, they can be used in any application where a quality measurement is
required.

Reduced-Reference (RR) QA methods, in which partial information re-
garding the reference image is available. QA algorithms use this partial reference
information to judge the quality of the distorted signal.

1.3.1 Distance Metrics

Generally speaking, in the area of full reference quality assessment, each method
defines its own distance metric in a specific domain. Numerous distance metrics
have been presented which can be divided into two major groups: those based on
the statistical properties of the data (statistical distance metrics) and those without
considering statistics (algebraic distance metrics).

5



Assume for each pixel or segmentation, a corresponding feature vector is F
(F = [F (1), F (2), F (3), ..., F (N)]T ) and the distance between the feature vector X
of a test image and the feature vector Y of the reference is defined as:

a. Algebraic Distance Metrics

1) Minkowsky metrics

This measurement is widely used:

D = { 1

N

N∑
i=1

|X(i)− Y (i)|γ} 1
γ (1.1)

If γ = 2, the well-known mean square distance:

D1 = { 1

N

N∑
i=1

|X(i)− Y (i)|2} 1
2 (1.2)

If γ = 1, the mean absolute distance:

D2 =
1

N

N∑
i=1

|X(i)− Y (i)| (1.3)

If γ = ∞, the Minkowsky metric reduces to maximum distance measurement:

D3 = max
i
|X(i)− Y (i)| (1.4)

2) Weighted Minkowsky metrics

D = { 1

N

N∑
i=1

ωi|X(i)− Y (i)|γ} 1
γ (1.5)

where ωi is the weight for each element in feature vector.

If γ = 2, the well-known weighted mean square distance:

D4 = { 1

N

N∑
i=1

ωi|X(i)− Y (i)|2} 1
2 (1.6)

3) Moments of the angles [3]
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D5 =
2

π
cos−1 X ¯ Y

||X|| · ||Y || (1.7)

D6 = [
2

π
cos−1 < X, Y >

||X|| · ||Y || + 1][
||X − Y ||

max(||X||, ||Y ||) + 1]− 1 (1.8)

b. Statistical Distance Metrics

If pX is the probability density function of the feature X, pY is the probability
density function of the feature Y , and pXY is the joint distribution of the feature
(X,Y )

1) Kullback-Leibler divergence (relative entropy) [4]:

D7 =

∫

x∈X
pX(x)log[

pY (x)

pX(x)
]dx (1.9)

2) Information theoretic distortion measures [5]

D = g{EpX
[f(

pY (y)

pX(x)
)]} (1.10)

EpX
is the expectation with respect to pX

Hellinger distance:

f(x) = (
√

x− 1)2

g(x) =
1

2
x

Substitute f(x) and g(x) into Formula (1.10), Hellinger distance will be derived.

D8 =
1

2

∫

x∈X
(

√
pY (x)

pX(x)
− 1)2dx

=
1

2

∫

x∈X
(

√
pY (x)−

√
pX(x)√

pX(x)
)2dx

=
1

2

∫

x∈X

(
√

pY (x)−
√

pX(x))2

pX(x)
dx

=
1

2

∫

x∈X
(
√

pY (x)−
√

pX(x))2dx
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Generalized Matusita distance: Substitute f(x) and g(x) into Formula (1.10),
Generalized Matusita distance will be derived.

f(x) = |1− x1/r|r
g(x) = x1/r (1.11)

D9 = r

√∫

x∈X
|pY (x)1/r − pX(x)1/r|rdx

3) Mutual Information [6]

D10 = I(X, Y ) =

∫

x∈X ,y∈Y
−pXY (x, y)log(

pXY (x, y)

pX(x)pY (y)
)dxdy (1.12)

4) Normalized Mutual Information Measure [7]

D11 =
H(X) + H(Y )

H(X, Y )
(1.13)

H(X) =

∫

x∈X
−pX(x)log(pX(x))dx

H(Y ) =

∫

x∈X
−pY (x)log(pY (x))dx

H(X, Y ) =

∫

x∈X ,y∈Y
−pXY (x, y)log(pXY (x, y))dxdy

5) Entropy correlation coefficient [8]

D12 =
2I(X,Y )

H(X) + H(Y )

=

∫
x∈X ,y∈Y −pF1F2(x, y)log(

pF1F2
(x,y)

pF1
(x)pF2

(y)
)dxdy

∫
x∈X −pX(x)log(pX(x))dx +

∫
x∈X −pY (x)log(pY (x))dx

(1.14)

6) Weighted relative entropy [9]

D13 = A

∫

x∈X
pX(x)log(

pY (x)

pX(x)
)dx + B

∫

x∈X
pY (x)log(

pX(x)

pY (x)
)dx (1.15)

8



7) Kolmogorov-Smirnov distance [10]

D14 = max
x∈X

{|pi
X(x)− pi

Y (x)|} (1.16)

where pi
X(x) =

∫
t<x

pi
X(t)dt,pi

X(t) is the distribution of ith component of feature
X

8) Squared Euclidean distance between the CDFS

D15 =

∫

x∈X
|pi

X(x)− pi
Y (x)|2dx (1.17)

9) χ2 -statistic [11]

D16 =

∫

x∈X

pX(x)− p̂(x)

p̂(x)
dx (1.18)

where p̂(x) = [pX(x) + pX(x)]/2

10) Jeffrey-divergence [12]

D17 =

∫

x∈X
pX(x)log(

pY (x)

p̂(x)
)dx +

∫

x∈X
pY (x)log(

pX(x)

p̂(x)
)dx (1.19)

where p̂(x) = [pX(x) + pX(x)]/2

In Table 1.1, the performance of the different distance metrics is listed. During
the simulation, the feature vector is simply defined as the value of each pixel in the
test image and the reference image.

From Table 1.1, the performance of the objective judgments varies a lot. Al-
though some distance metrics have poor correspondence to human judgment under
the simulation condition listed above, according to references [3][4][5][6][7][8], these
distance metrics will achieve much better results under more complicated assump-
tions and simulation conditions. The details of the implementation of the above
metrics are listed in Appendix.

1.3.2 Image Quality Metrics

Hundreds of image quality metrics [3],[4],[5],[6],[7],[8],[9],[10],[11],[12] have been proposed.
It is difficult to compare the performances of different criteria without the imple-
mentation detail mentioned in the literature. It is more useful to give a general

9



Gaussian Blur White Noise J2k Distortion
Minkowsky Distance (D1) 0.8248 0.8394 0.8739

Minkowsky Distance (D2) 0.8754 0.8605 0.8901

Minkowsky Distance (D3) 0.9301 0.9303 0.9351

Moments of Angels (D5) 0.8570 0.8981 0.8684

Moments of Angels (D6) 0.8640 0.8807 0.8592

Relative Entropy (D7) 0.3091 0.7576 0.5172

Matusita (D9) 0.6728 0.9020 0.5528

Mutual Information (D10) 0.8704 0.7073 0.9227

Entropy Correlation (D12) 0.8741 0.6558 0.9325

Normalized Mutual Information (D11) 0.8480 0.8831 0.9088

Kolmogorov Distance (D14) 0.5017 0.8763 0.6584

SquaredCDF (D15) 0.4204 0.6729 0.4303

Xstatistics (D16) 0.3402 0.4307 0.1469

Table 1.1: Performance of different distance metrics (Linear Correlation between
Subjective Judgments and Objective Judgments)

description of the development process for the full reference image quality assess-
ment algorithm than to just list certain criteria.

Figure 1.6 presents a graphical depiction of the development process. The li-
brary of test scenes provides a set of images which exhibits various amounts of
spatial information content. In the following design, these images serve as the
references. The impairment generator produces the degraded images with differ-
ent types of distortions, such as blur impairment, noise injection and compression
degradation. Before the algorithm design, the subjective test is an essential step to
get the human judgment in order to validate the quality metric. Then the algorithm
designer proposes the models to compute the distortion between the test image and
the reference. The analyses of the correlation between the distortion and the cor-
responding objective feedback the information to the parameters setting (the dash
line). This optimal set of parameters is then used to develop a quality assessment
algorithm that gives objective results that agree closely with human results.

Among the present quality metrics, there are many measurements which share
a human visual system (HVS) paradigm. These measurements aim to quantify the
strength of the errors between the reference and the distorted image by mimicking
the human eye’s behaviors. Figure 1.7 shows a generic quality assessment frame-
work that is based on HVS modeling. Most quality assessment algorithms that
model the HVS can be explained with this framework [14], although they may differ
in the specifics.
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Figure 1.6: Development process for image quality assessment algorithm
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Figure 1.7: HVS Based Image Quality Assessment Algorithm
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The first step of HVS based image quality assessment algorithm is a preprocess-
ing stage, which may contain alignment and transformations of color spaces. The
purpose of the alignment operation is to eliminate the misalignment due to various
reasons such as unstable transmission or very low bit compression. In this case, it is
necessary to establish the point-to-point correspondence between the reference and
test image. The color space transformation is typically used in order to convert the
signal into another color space which has better conformance to HVS, for instance
the RGB space to the HSV space.

A Contrast Sensitivity Function (CSF) is broadly applied in numerous measures.
The basic idea of CSF comes from the variation in the sensitivity of the HVS to the
visual stimulus in the different spatial and temporal frequency domains. CSF may
be implemented before the channel decomposition using linear filters to approximate
the frequency responses. Meanwhile some metrics choose to implement CSF as a
weighting for channels after the channel decomposition.

Quality metrics commonly model the frequency selective channels in the HVS
with different transform tools. The channels serve to separate the visual stimulus
into different spatial and temporal subbands. Some quality assessment measures
use Gabor filters, some criteria employ different wavelet families, and some other
simple methods even implement the discrete cosine transform.

Distortion computation is typically implemented within each channel. Numer-
ous distance metrics (listed in section 1.3.1) can be defined in this step to compute
the distortion between the reference signal and the test signal in each channel.

Distortion pooling is the process of combining the distortion from different chan-
nels into a single distortion or quality interpretation. For most quality assessment
methods, the following formula is used:

C = (
∑

j

|Dj|β)1/β (1.20)

where Dj is the distortion computed in the ith channel. β is a constant typically
with a value between 1 and 4. This form of distortion pooling is commonly called
Minkowski distortion pooling.
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1.4 Human Visual System

1.4.1 Structure of the Human Visual System

”Vision is a process that produces from images of the external world a description
that is useful to the viewer and not cluttered with irrelevant information.” (Marr
and Nishihara) The human visual system (HVS) can be divided into two major
components: the eyes, which capture light and convert it into bio-signals, and the
visual pathways in the brain, a set of neural systems in which these signals are
transmitted and processed. Because of the complexity of the HVS, the following
section briefly describe the components and corresponding functions [15].

a. Structure of human eye

For most animals on the planet, the eye is the organ to perceive visual signals.
Roughly speaking, the human eye has the same structure as a camera. As illustrated
in Figure 1.8 [16], the optical system of the human eye is composed of the cornea,
the aqueous humor, the lens, and the vitreous humor. The light first passes through
the refractive system that contains the cornea and the lens. The light is focused on
the retina, the organ that converts the light signals into bio-signals.

Light


Cornea


Aqueous Humor


Pupil


Retina


Fovea


Optic Nerve


Vitreous Humor


Lens


The volume of the eye is around 6.5 cm3.
The diameter is about 24 mm and the weight is approximately 7 gram.

Figure 1.8: Human eye structure[16]

Generally, our human optical imaging system follows the Gaussian lens formula:

1

ds

+
1

di

=
1

f
(1.21)
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where ds is the distance between the source and the lens, di is the distance
between the image and the lens, and f is the focal length of the lens.

The retina connects the human eye and visual pathways. There are five main
kinds of cells in the retina in Figure 1.9 [17]:

(1)Photoreceptors (rods & cones): rods are responsible for low intensity vision;
cones are responsible for high intensity vision;

(2)Horizontal cells: allow for lateral interactions

(3)Amacrine cells: influence temporal characteristics of the ganglion cells’ re-
sponses;

(4)Bipolar cells: connect photoreceptors to retinal ganglion cells;

(5)Retinal ganglion cells: form the optic nerve.

Figure 1.9: The structure of retina [17]
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b. Visual pathways

Figure 1.10 [18] shows the optical path in the visual system. The optic nerves
from the retina meet at the optic chiasm, in which the fibers are rearranged. All
the fibers from the nasal halves of each retina cross to the opposite side, where they
join the fibers from the temporal halves of the opposite retinas to form the optic
tracts. Since the retinal images are reversed by the optics, the left visual field is
thus processed in the right hemisphere, and the right visual field is processed in
the left hemisphere. Most of the fibers from each optic tract synapse in the lateral
geniculate nucleus (LGN). From there fibers pass by way of the optic radiation to
the visual cortex. Throughout these visual pathways, the neighborhood relations
of the retina are preserved, i.e. the input from a certain small part of the retina is
processed in a particular area of the LGN and of the primary visual cortex.

Retina


Optic nerve


Lateral

geniculate

body


Optic tract


Optic

radiations


Visual cortex


Optic chiasm


Figure 1.10: The optical path in the visual system[18]
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1.4.2 Psychophysical HVS Features

An intuitive method to design an efficient evaluation algorithm for image quality is
to mimic the human visual system. Understanding the psychophysical properties of
the HVS and its corresponding mathematical models will be helpful. The following
section will briefly discuss the HVS features. And some of which will play important
roles in the algorithm presented later.

Foveal and Peripheral Vision

The densities of the cone cells and the ganglion cells are not uniform across
the retina. We have the peak resolution at the fovea and rapidly decreasing low
resolution away from the fovea. The high spatial resolution vision due to fixation on
a region is called foveal vision, while the lower resolution vision is called peripheral
vision. Most image quality assessment algorithms employ foveal vision.

Figure 1.11: Foveal and Peripheral Vision [48]

Light Adaptation and Dark Adaptation

One of the important properties of the human visual system is the adaptation
to a large range of light levels.

Light Adaptation: This phenomenon occurs when we move from the dark
into bright light. Because the sensitivity of the receptors is set to dim light, when
human eyes are exposed to a bright light environment, rods and cones are both
stimulated. In the following several seconds, adaptation occurs in two ways: the
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sensitivity of the retina decreases dramatically; retinal neurons rapidly inhibit rod
function and arouse the cone system.

Dark Adaptation: Dark adaptation is the reverse of light adaptation. It
occurs when we go from a bright light area to a dark area. Initially human eyes
perceive nothing but blackness because cones cease to function in low intensity
light. Once in the dark, rhodopsin (the pigment sensitive to red light in the retinal
rods)is generated, and the sensitivity of the retina increases. The pupil size will
also increase to allow more light to reach the retina.

Contrast Sensitivity Function

The contrast sensitivity function (CSF) tells us how sensitive we are to the
various spatial frequencies of visual stimuli. If the spatial frequency of visual stimuli
is too high we will not be able to recognize the stimulus pattern any more. Imagine
an image consisting of vertical black and white stripes, as shown in 1.12[19].

Figure 1.12: Contrast Sensitivity Chart

If the stripes are very thin, we will be unable to see individual stripes. All visible
is a gray image. If the stripes then become wider and wider, there is a threshold
width beyond which we are able to distinguish the stripes. That threshold width
corresponds the cut-off frequency of the human eyes, which means one basic function
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of the human visual system is a low pass filter to get rid of the high frequency details
of the natural scene.

On the other hand, for each stripe, as the luminance decreases, the lowest de-
tectable luminance varies from low frequency to high frequency. As shown in 1.13,
the contrast sensitivity function appears as the envelope of visibility of the modu-
lated pattern. The contrast sensitivity function proposed by Manos and Sakrison
[20] is

A(f) = 2.6(0.0192 + 0.114f)e(−0.114f)1.1

(1.22)

f is the spatial frequency of the visual stimuli given in cycles/degree. The function
has a peak of value 1 approximately at f = 8.0 cycles/degree, and is insignificant
for frequencies above 60 cycles/degree. 1.13 shows the contrast sensitivity function
A(f).

Figure 1.13: Contrast Sensitivity Function

In the algorithm proposed in this thesis, the contrast sensitivity phenomenon is
explained as a quantization with the step size defined as the luminance threshold at
different frequencies. This quantization process acts as a nonlinear operation in the
human visual system model proposed here. The details about the implementation
and its benefits will be discussed in Chapter III.

Masking

Masking is a very important phenomenon in vision and image processing, which
describes interactions between stimuli. Spatial masking occurs when a stimulus
that is visible by itself cannot be detected in the presence of another. Several ex-
periments show that masking is strongest when the interacting stimuli have similar
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characteristics, i.e. similar frequencies, orientations, colors, etc. Masking also oc-
curs between stimuli of different orientations or spatial frequency, but such masking
is generally weaker. Figure 1.14 gives us a simple explanation of the relationship
between the masking and image quality assessment. In the right figure the Gaus-
sian noise is added to the upper part and the same amount noise is implanted into
the lower part in the left figure. The noise is masked by the original image acting
as the background stimuli. In the first case, the background stimuli is the plain sky,
the noise is disturbing in this area. In the second case, the background stimuli are
much more complex and unfamiliar, the noise stimuli is less noticeable. Hence the
masking results in different subjective quality evaluations even though the noise is
same.

Figure 1.14: Masking and Image Quality Assessment

Temporal Masking: temporal masking is an elevation of visibility thresholds due
to temporal discontinuities in intensity, for example scene cuts. This phenomenon
plays an important role in video quality assessment.

1.5 Chapter Summary

This chapter starts with the motivation of image quality assessment and its appli-
cations in image processing areas. It continues with a literature review about sub-
jective image quality assessment and image quality evaluation algorithms. Finally,
this chapter briefly introduced the structure of the human eye, and psychophysical
HVS features. The final goal of this thesis is to present an efficient algorithm for the
image quality (IQ) task. The intuitive method for us to access IQ is to propose a
HVS model to simulate the bio-processing in human brains. Then the first problem
we face is how to mathematically represent the natural scenes. In the next chapter,
we will discuss how to describe the images statistically with proper models.
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Chapter 2

Statistical Modeling of Natural
Scenes

Given a photograph, people can distinguish certain textures from others, analyze
motions or measure objectives. In general, people abstract visual information from
images or videos. How much visual information is contained in one image? Here
is a simple game to serve as an inspiration about how to compute perceptual or
visual information. Suppose that you are the only person allowed to see a picture,
while other people want to know its content. The only way for others to gather
information is to ask questions about the image. The game rule says that when you
answer the question, the only word that you can say is YES or NO. For example,
”Are there people in the image?” Suppose that finally people use N questions to
learn about the image. Intuitively, the perceptual/visual information within the
image can be defined as the number of the questions asked. Following that simple
idea, how many different images can be described by the N questions and the
corresponding answers? 2N images.

How many question are necessary for people to obtain the content within one
image? It greatly depends on the random fluctuations in intensity, color, texture
object boundary/shape. The causes for these fluctuations are diverse and complex.
The factors can be non-uniform lighting, random fluctuations in object surface
orientation and texture, complex scene geometry, or even noise. In Chapter 4, the
connection between the statistical properties and perceptual information will be
defined and explained in detail.
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2.1 Random Field

A random field X is the collection of random variables on a lattice L:

X = {Xi, i ∈ L} (2.1)

In general, the lattice L can be any collection of discrete points. In this thesis, the
shape of lattice L is chosen as a rectangle, the simplest one shown in Figure 2.1:

L = {(i, j)|1 ≤ i ≤ N, 1 ≤ j ≤ M} (2.2)

L


L

L


L


Figure 2.1: The Lattice

The random field can be represented as:

X = {Xi,j, (i, j) ∈ L} (2.3)

The direct way to achieve the distribution of the random field is to compute the
probability of each element in X. Suppose we have a set of images with the size of
M ×N . To describe the random field of images, we need to characterize the joint
statistics of M × N . Just consider M = 256, N = 256, to describe a random field
of 65536 (M × N = 65536) elements will be a cumbersome and time-consuming
mission. One important property is introduced by Geman [21] as Markovianity to
derive a good approximation of a random field.

2.2 Markov Random Field

The basic idea of Markovianity is conditional independence. To illuminate this idea,
let us consider a one dimensional random field, which is characterized by the joint
probability function p{(X1, X2, X3, ..., XN) = (x1, x2, x3, ..., xN)}, (x1, x2, x3, ..., xN) ∈
X n.
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Definition 2.1: A one-dimensional random field is said to be stationary
if the joint distribution of any subset of the sequences of random variables
is invariant with respect to shifts in the time index, i.e.,

p{(X1, X2, X3, ..., XN) = (x1, x2, x3, ..., xN)} = (2.4)

p{(Xl+l, X2+l, X3+l, ..., XN+l) = (x1, x2, x3, ..., xN)}

for every shift l and for all x1, x2, x3, ...xn ∈ X .

Definition 2.2: A discrete random field (Xl+l, X2+l, X3+l, ..., XN+l) is said
to be a Markov process, if for l, m, n, p = 1, 2, 3, ... and p < n,

p(Xl+1 = xl+1, ..., Xl+m = xl+m|Xl+m+1 = xl+m+1, ..., Xn+l) = (2.5)

p(Xl+1 = xl+1, ..., Xl+m = xl+m|Xl+m+1 = xl+m+1, ..., Xp+l)

Definition 2.2 describes a Markov random field with the property that ‘the
past’ is decoupled with ‘the future’ by knowing ‘the now’: p(Xfuture|Xnow, Xpast) =
p(Xfuture|Xnow), p(Xpast|Xnow, Xfuture) = p(Xpast|Xnow).

Definition 2.3: The Markov process is said to be time invariant if the
conditional probability p(Xn+1|Xn) does not depend on n, i.e., for n =
1, 2, ...

p{Xn+2 = b|Xn+1 = a} = p{X2 = b|X1 = a} (2.6)

The above three concepts can be easily extended to two-dimension random
fields. The Markovianity for two-dimensional random field can be defined as follows:

Definition 2.4: A two-dimensional random field is said to be a Markov Process
if

p{Xi|Xb, Xo} = p{Xi|Xb} (2.7)

p{Xo|Xb, Xi} = p{Xo|Xb}

The natural concepts of ‘the past’ and ‘the future’ will be changed by the con-
cepts of ‘the boundary’, ‘the inner’ and ‘the outer’, as shown in Figure 2.2. Defi-
nition 2.4 tells us that the knowledge of the boundary Xb decouples the inner Xi

and the outer Xo.

The two-dimensional Markov concept above is elegant and intuitive, but still
too general to implement in real applications. The simplified version of the above
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Figure 2.2: Two-dimensional Markov Process

concept is to consider a single element Xi,j conditioned on a local neighborhood
Ni,j, as shown in Figure 2.2. The neighborhood Ni,j in Figure 2.2 has a noncausal
structure, which is more typical and with less limitation compared with the ca-
sual structure [22]. Hence in the following discussion, the neighorbood structure is
noncasual.

sp{Xi,j|Xk,l, (k, l) ∈ L, k 6= i, l 6= l} = p{Xi,j|Xk,l, (k, l) ∈ Ni,j} (2.8)

The concept of time invariance for one-dimensional Markov random field will be
replaced by ‘position invariance’, which means the conditional probability p{Xi|Xb}
does not depend on where Xi happens.

2.3 Gaussian-Markov Random Field & Gibbs Ran-

dom Field

A simplifying assumption of the random field X as a Gaussian distribution leads
to a famous statistical image model: Gaussian-Markov Random Field (GMRF) [23].
The conditional density is given by the expression

p{Xi,j|Xk,l, (k, l) ∈ Ni,j} =
1√

2πσ2
exp{− 1

2σ2
[Xi,j −

∑

(k,l)∈Ni,j

gi,j;k,lXi,j]
2} (2.9)

where σ is variance of the zero-mean process Xi,j and gi,j;k,l are the model pa-
rameters. This model is also known as the conditional autoregressive (AR) model.
More details are introduced in [23]. The significant advantage of GMRF comes with
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the famous property of a Gaussian Process, for which uncorrelatedness means in-
dependence. Thus, given the GMRF Xi,j with the neighborhood Ni,j, the Bayesian
estimate E[Xi,j|L] = E[Xi,j|Ni,j] becomes a linear expectation:

Xi,j =
∑

(k,l)∈Ni,j

gi,j;k,lXk,l + ξi,j E[Xk,lξi,j] = 0 ∀(k, l) ∈ Ni,j (2.10)

Gibbs Random Field (GRF) was originally used in statistical physics to study
the characteristics of particle interactions, GRF were introduced to the image pro-
cessing by J. Besag[24]. In the GRFs representation of images, the joint probability
distribution of X is given by Gibbs distribution:

p{X = x} =
1

Z
e−

U(X)
T (2.11)

U(X) =
∑
i∈C

Vi(X) (2.12)

Z =
∑
X

e−U(X) (2.13)

where U is the energy function, C is the set of cliques, Vi is the clique potential, T
is the temperature constant.

Definition 2.5: A clique C is a subset of neighborhood N . Single pixels
are also considered cliques. The set of all cliques on a grid is called C.

Theorem 2.1: X is an GMRF with respect to the neighborhood system
N if and only if X is a Gibbs distribution with respect to C, where C is
the set of cliques based on the neighborhood N .

2.4 Multiscale Transform and Statistics

During the development of the statistical representation for images, the inadequacy
of the Gaussian model was apparent. There are several reasons which triggered the
development of the multiscale statistical model:

1) Many signals, especially images, have sparse multiscale representation [25];

2) The dependencies between phases of different frequencies in the Fourier do-
main do not seem to be well captured by the GMRF [26];

3) The property of the multi-resolution transform implies coarse-to fine depen-
dencies among the coefficients [25].
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2.4.1 Marginal Models

The many developed statistical model can be divided into two groups: marginal sta-
tistical models and joint statistical models. This section reviews several important
marginal statistical models, which share a common assumption that the transform
coefficients are independent.

1. Double-exponential dustrubution [43]

p(w) =
1

2
√

2σ
e−2

√
2σ|w|

2. Generalized Laplacian [44]

p(w) = e−|w/s|p2
s

p
Γ(1/p)

where p ∈ [0.5, 0.8] and s varies with the scale variances.

3. Mixture of Gaussians [45]

p(w) =
M∑

j=1

p(w|j)p(j)

where
M∑

j=1

p(j) = 1 and p(w|j) = N(µj, σj)

4.Mixture of a Gaussian and a point mass function [46]

p(w) = kN(µ, σ) + (1− k)δ(µ)

where δ(µ) is a point mass function at µ.

5.Generalized Gaussian distribution (GGD) [47]

p(w) = C(σw, β)e−[α(σw,β)|w]β

where α(σw, β) = σ−1
w [

Γ(3/β)

Γ(1/β)
]
1/2

C(σw, β) =
βα(σw, β)

2Γ(1/β)
, and Γ(t) =

∫∞
0

e−uut−1du

The above models are proposed to describe the heavy-tailed distribution of the
transform coefficients. In Figure 2.3, the original image ’bikes’[2] is decomposed into
seven scales. In order to depict the marginal distribution of wavelet coefficients in
the third scale and horizontal direction, the coefficients are converted into 32 bins.
The solid line is the Gaussian mixture model, and the dashed line is the Gaussian
distribution with the same variance as the Gaussian mixture model.
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Figure 2.3: Heavy-tailed Distribution

2.4.2 Joint Models

The marginal model is significantly more powerful than the classic Gaussian model.
For instance, in denoising, the use of the Generalized Gaussian model yields sig-
nificant improvements over the Gaussian model [27]. Despite the successes brought
by the muti-resolution marginal models, it is also easy to see the disadvantage of
marginal models because of the independence assumption. For instance, in the
following case, the task is to improve the detail in the retina image for the doctors.
The left part in Figure 2.4 is the original retina image, and the right part is the
enhanced retina image. The wavelet transform is applied on the original image and
the coefficients in each scale and direction are considered as independent. In the
right figure, besides the enhanced details, such as small vessels, there are also some
irregular textures appearing. The artificial effect injected into the enhanced image
comes from the independence assumption.

Experimental tests expose the structure similarity/correlation across the adja-
cent scales and different orientations. The figure gives an intuitive example for the
intra-scale and inter-scale joint statistical properties of the transform coefficients.
The image ’bike’ is decomposed by db4 wavelet and the figure shows the amplitude
of the coefficients. It’s easy to note that the large-magnitude coefficients tend to
occur near each other within subbands (intra-scale), and also occur at the same rel-
ative spatial location in subbands at adjacent scales and orientations (intra-scale).

In the past twenty years, researchers have proposed various joint models. The
following section will review the popular joint models:

a. Gaussian Scale Mixtures Model (GSMs) [26]

b. Hidden Markov Models (HMMs) [28],[29],[30]
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Figure 2.4: Marginal models and its enhancement application[13]

1)Gaussian Scale Mixtures (GSMs) [26]

a. Definition:

Mathematically, a Gaussian scale mixture vector is defined as:

X =
√

zu (2.14)

where the Gaussian random vector u is distributed as N(0, Cu) and the positive
scalar random variable z is the multiplier or mixing variable. From Equation (2.14)
the vector X is an infinite mixture of Gaussian vectors, thus the density of a
GSM vector can be represented as an integral of a Gaussian distribution and scalar
variable.

p(X) =

∫
p(X|z)p(z)dz (2.15)

=

∫
exp(−XT (zCu)

−1X/2)

(2π)N/2|zCu|1/2
p(z)dz

b. Properties

The GSM family includes the α-stable family (including the Cauchy distribu-
tion), the generalized Gaussian family, and the symmetrized Gamma family [26].
According to the definition of the GSM vector, GSM density has the following
properties:
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1. Symmetric:

p(−X) =

∫
exp(−(−X)T (zCu)

−1(−X)/2)

(2π)N/2|zCu|1/2
p(z)dz

=

∫
exp(−XT (−I)(zCu)

−1(−I)X/2)

(2π)N/2|zCu|1/2
p(z)dz

=

∫
exp(−XT (−I)(−I)(zCu)

−1X/2)

(2π)N/2|zCu|1/2
p(z)dz

=

∫
exp(−XT (zCu)

−1X/2)

(2π)N/2|zCu|1/2
p(z)dz

= p(X)

2. Zero-mean:

E{X} =

∫

X

Xp(X)dX

=

∫

X

Xp(−X)dX

= −
∫

−X

(−X)p(−X)d(−X)

= −E{X}
⇒ E{x} = 0

3. Heavy-tailed distributions:

The following example shows a simple GSM density with only two Gaussian
distribution parts: p(z) = 0.3δ(1) + 0.7δ(4), Cu = 1

p(X) =

∫
p(X|z)p(z)dz

=

∫
p(X|z)(0.3δ(1) + 0.7δ(4))dz

= 0.3N(0, Cu) + 0.7N(0, 4Cu)

= 0.3N(0, 1) + 0.7N(0, 4)

4. Normalized vector
X√
u

is whitened.

c. GSM modeling for the image coefficients in the Wavelet domain
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Figure 2.5: Heavy-tailed distribution

In the left figure, the grey part is N(0,4) and the black part is N(0,1); the right
figure is the distribution of Gaussian scale mixture.

Consider an image decomposed into oriented subbands at multiple scales. The
fine layers contain the detailed information, and the coarse layers contain the fun-
damental information, which is largely structural information. In this section, GSM
model is applied to describe the statistical properties of the fine layers and coarse
layers. xc

s,o(m,n) is denoted as the decomposed coefficient at the position (m,n) in
the scale s and the orientation o. And xs,o(m,n) is denoted as the neighborhood of
coefficients surrounding xc

s,o(m,n), as shown in Figure 2.6.

Figure 2.6: Gaussian Scale Mixture Model

In general, the neighborhood can come from the same subband, adjacent scale
or a different orientation in the same scale. In the implemetation, the neighborhood
located in the same subband is used, as in Figure 2.6. The subband is partitioned
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into non-overlapping blocks of N coefficients each, and each block is modeled as a
vector X with Gaussian Scale Mixture model. To be specific, a GSM vector X is
modeled by the product of two independent random variables, namely a positive
scalar random variable z known as the multiplier or mixing variable and a Gaussian
random vector u is distributed as N(0, Cu).

Theoretically, there is correlation within each subband at different scales and
correlation across different subbands. As a compromise between accuracy and com-
putational cost,we partition a subband into several non-overlapping blocks with
the following assumption: each partitioned block is independent of the others, and
sample z with logarithmically uniform spacing, which we have observed to require
fewer samples, for the same quality, than linear sampling. Simulation results show
that the approximation is acceptable. Without loss of generality, we can assume
E{z} = 1, which implies Cx = Cu.

Then the GSM model is

PrX
i
s,o =

∑
j

[P (zj)×N(0, zjCX
i
s,o)] (2.16)

where X i
s,o is the ith block in the subband of the scale s and the orientation o,

Prz(z) is the density of the mixing variable, and N is the dimension of the random
vector X i

s,o.

d. GSM model parameters estimation

As depicted above, the Gaussian Scale Mixture Model is represented as N(0, zCx).
As a compromise between accuracy and computational cost, in the implementation
z is sampled with logarithmically uniform spacing which is observed to require fewer
samples, for the same quality, than linear sampling. Only 13 samples of log(z) are
considered in GSM model over an interval [log(zmin), log(zmax))] using steps of size
1. log(zmin) = −3. log(zmax) = 9. Hence, the GSM model as implemented can be
represented as:

PrX
i
s,o =

j=13∑
j=1

[P (zj)×N(0, zjCX
i
s,o)]

PrX
i
s,o =

j=13∑
j=1

[P (zj)× fj(X
i
s,o)]

(2.17)

where fj = N(0, zjCx), zj = −3,−2, ..., 8, 9
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CX can be easily computed as:

CX =
1

N
{X − 1

N

n=M∑
n=1

Xn} × {X − 1

N

n=M∑
n=1

Xn}T (2.18)

From the observation data X1,X2, ...XM, the GSM model parameters are estimated
by maximizing the likelihood of the observed set of wavelet coefficients. To be
specific, the EM method is applied to yield P (zj), j = 1, 2, ..., 13. :

a. Initialize Pr0(zj) = 1/13, j = 1, 2, 3..., 13

b. Prq+1(zj) =
1

N

n=M∑
n=1

Prq(zj)fj(Xn)
j=13∑
j=1

Prq(zj)fj(Xn)

c. Iterate step b until Prq+1(zj) converges

e. Performance of GSM models

The following example shows the performance of a GSM for modeling wavelet
coefficients statistics. Figure 2.7 shows a comparison of coefficient statistics from
an example image subband (left colum) with those from the simulation of the GSM
model (right colum). Model parameters (covariance matrix and the multiplier z
density) are estimated by the method presented above.

Original Wavelet coefficients histogram Simulated histogram from GSM

Figure 2.7: Marginal histograms of original wavelet coefficients and GSM simulated
[26]
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2) Hidden Markov Model (HMMs) [28]

A hidden Markov model is one of the most important concepts proposed in
stochastic processing. In the past several years, it has made great accomplishments
in speech processing, image processing, information theory and other areas. Y. Xu
[28], M. Crouse [29] J. Romberg [30], Choi [31],Nowak [32] and G. Fan [33] extended
hidden Markov model multi-resolution image statistics and made great effort to
develop it into a powerful analytical tool for images.

Generally, HMMs are designed to model the coefficient statistics by propos-
ing coefficients’ hidden state dependencies through intrascale or across inter-scales.
Typically HMMs are based on an assumption that given the state of parent, the
child is decoupled from the tree on the other side of its parents (hidden Markov
property). HMMs depict statistics by a Markov chain, but unfortunately Markov
chains for image coefficients are not stationary. There is no analytical representa-
tion for such Markov chains in information theory, and it will be extremely time-
consuming to compute the entropy for all nonstationary Markov chain. Hence, in
the following chapter, we will focus on GSM and its applications in the theoretic
information criteria for image quality assessment.

2.5 Chapter Summary

This chapter answered several significant questions. At the beginning, the random
filed is introduced and followed by an important concept: a Markov Random Field.
In the rest of this chapter, a literature review about image modeling is given,
which especially focuses on Gaussian Scale Mixture Model(GSM). In the following
chapters, GSM model is applied to represent the images . A method is proposed to
compute the ‘perceptual information’ contained in an image based on the human
visual system described in the next chapter.
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Chapter 3

Human Visual System Model

3.1 HVS Model Definition

Chapter 1 gave a brief introduction about the human visual system and its psy-
chophysical features. One fundamental psychophysical property is contrast sensi-
tivity, as shown in Figure ??.

Figure 3.1: Contrast Sensitivity Chart

Campbell-Robson contrast sensitivity chart (Campbell and Robson, 1968). The spatial CSF
appears as the envelope of visibility of the modulated pattern.

In the previous quality evaluation algorithms, contrast sensitivity was first im-
plemented as a low-pass filter in [35]. Contrast sensitivity is also modeled as weight
function in [36],[37].

As shown in Figure ??, human eyes are unable to perceive the contrast differ-
ence around the dash line. This phenomenon implies that human eyes only perceive
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light energy above certain minimum amounts. This is also the basic idea in quan-
tum physics. In 1905, Einstein proposed that electro magnetic radiation (light) is
quantized and exists in elementary amounts (quanta) that we now call photons.
This gives us an idea to explain the contrast sensitivity as the quantization pro-
cess with the step size defined as the luminance threshold at different frequencies.
In the HVS model here the light is converted to ‘photons’ by human eyes. From
the definition below, this quantization process acts as a nonlinear operation. The
details about the implementation and its benefits will be discussed in the following.

Definition 3.1: If the image coefficient is X and the quantization step is 4,
then the perceived signal in the human brain is X4

X4 =
X

4 (3.1)

3.2 HVS Model Implementation

This section will discuss how to implement a Human Visual System Model. The
model parameters are the quantization step in each subband. The method given
here is based on the assumption that the quantization step in each subband is
constant. The following steps will help us to compute the quantization step in the
Xs0,o0 subband:

i) Constrain other subbands to zero, e.g. Xs′,o′ = 0, for s′ 6= s0,o
′ 6= o0; recon-

struct the image with inverse wavelet transform, e.g., I ′ = IWT (0, 0, ..., Xs0,o0 , 0, ...)

ii) Change the coefficients in the current subband until the viewer can detect
the change of the reconstructed image, e.g., I ′′ = IWT (0, 0, ..., Xs0,o0 + 4, 0, ...)
, max(|I ′′ − I ′|) ≥ threshold. In our implementation, threshold = 4 gray levels,
for the orginal images with 256 gray levels. The simulation result shows that the
threshold between 3 to 6 gray levels will achieve the best performance.

iii) Treat 4s0,o0 = augmin{4|max(|I ′′ − I ′|) ≥ threshold} as the quantization
step in the subband Xs0,o0

To define the threshold in the above steps, consider 3.2 first. The left figure
is the original image ‘Lena’; the middle figure is the changed image. It is very
difficult for human eyes to detect the difference between these two figures. In the
right figure, the red boxes indicate the areas in which the pixels values are changed.
How large a pixel value change can we detect the difference? For an 8-bit gray
level image, the threshold in the spatial domain is 2 bit, namely for an image pixel
values belong to [0, 255], threshold = 4.
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Figure 3.2: An example for detectable threshold in spatial domain

Based on psychovisual tests, human eyes are more sensitive to contrast change
in the low frequency range. In the following examples, Lena is decomposed into
6 scales, and Figure 3.3 depicts the quantization step in each subband: the quan-
tization steps in the finest scales are bigger than those in the coarse scales. This
indicates that the proposed HVS model with quantization steps is consistent with
the properties of human eyes.

Figure 3.3: Threshold for HVS model
HVS model: quantization step in each decomposed layer. The quantization step in the fine layers
(high frequency domain) is higher than the step in the coarse layers (low frequency domain). This
implies our HVS model is sensitive to contrast stimuli of low frequency.

For common distortions: contrast degradation, blurring, compression degrada-
tion, noising, the human visual system model proposed above can explain the lost
information due to contrast degradation, blurring and compression degradation.
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Essentially, these three kinds of degradation share the same distortion model:

Xdistorted = g ×Xoriginal (3.2)

where g is distortion parameter, and 0 ≤ g ≤ 1

In the following, a simple example to motivate the HVS model is given. Xdistorted =
1/4 × Xoriginal. Through the HVS model, Xoriginal4, Xdistorted4 are derived. If we
are only given Xdistorted4, it is impossible to completely reconstruct the original
quantized signal Xoriginal4 from Xdistorted4, even if a very complicated adaptive
filter is applied, which means some information is lost. Or we can understand the
information lost in the quantization process in a simpler way. Suppose we only
have Xdistorted4. It is impossible for us to retrieve the original signal Xoriginal4 and
the information is lost.

Original signal Xoriginal and distorted signal Xdistorted

Quantized signal Xoriginal4 and Quantized signal Xdistorted4

Figure 3.4: An example for the lost information due to HVS model

3.3 Chapter Summary

This section built a computational human visual system to describe human vi-
sion: contrast sensitivity. Hence, mathematically a continuous signal in the real
world is processed to derive the corresponding discrete signal which is represented
as the ‘perceptual’ signal in human brain. The current question is how to com-
pute the information contained in that ‘perceptual’ signal. The next chapter will
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first introduce the foundation of information theory and describe the information
computation in detail.
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Chapter 4

Perceptual Information

When people are watching a picture or watching a video, how do they gather the
information? How much information can we abstract from a perfect image, namely
an image which is clear? How much information can we get from a distorted image,
namely an image with noise, compression distortion or other distortion? How can
we compute the information? Can we simply take the difference of the information
in the perfect image and the distorted image as the indicator for the evaluated
image? In this chapter, we will define a human visual model and propose a method
to compute the information in one image.

4.1 Foundation of Information Theory

Remember the beginning part in Chapter II, where we define the number of binary
questions needed to describe the information contained in an image. Although this
idea is simple and intuitive, it is inconvenient and time-consuming to count the
question number as the information. Researchers in the past several decades have
devoted huge efforts to look for and develop proper methods to describe the in-
formation within signals. In 1948, Claude E. Shannon published A Mathematical
Theory of Communication [38] in the Bell System Technical Journal. In the paper,
Shannon depicted the information of a source composed of a finite number of sym-
bols by measuring entropy. The basic idea of entropy is to compute the uncertainty
of the signal source based on the probability distribution of the source components.
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Definition 4.1: The entropy H(X) of a discrete random variable X is defined
by:

H(X) = −
∑
X∈X

p(X)log2(p(X)) (4.1)

Definition 4.2: The joint entropy H(X1, X2) of a pair of discrete random vari-
ables (X1, X2) with a joint distribution p(X1, X2) is defined by:

H(X1, X2) = −
∑

X1∈X1

∑
X2∈X2

p(X1, X2)log2(p(X1, X2)) (4.2)

Definition 4.3: Consider two random variables X1 and X2 with a joint probability
mass function p(X1, X2) and marginal probability mass functions p(X1) and p(X2).
The mutual information I(X; Y ) is defined as:

I(X1; X2) =
∑

X1∈X1

∑
X2∈X2

log2(
p(X1, X2)

p(X1)p(X2)
) (4.3)

The definition of the mutual information is not direct, but we can understand the
mutual information as the shared information between X1 and X2.

Theorem 4.1: Let X1, X2,..., Xn be drawn according to p(X1, X2..., Xn). Then:

H(X1, X2, ...Xn) ≤
n∑

i=1

H(Xi) (4.4)

with equality if and only if the Xi are independent.

Theorem 4.1 tells us if two X1, X2 random variables have nothing to do with
each other, the total information contained in the joint random variable (X1, X2)
is just the summation of the information contained in each variable.

Definitions 4.1 to 4.3 discuss the discrete random variable and its information
entropy and is the foundation of information theory. Recall the mutliresolution
transform and GSM in Chapter II where the statistical model used to represent the
natural scenes is continuous. In the next section the continuous random variable
and its information entropy: differential entropy, is introduced.

Definition 4.4: The differential entropy H(X) of a continuous random variable
X with a density p(X) is defined as

H(X) =

∫

X
p(X)log2(p(X))dX (4.5)
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where X is the support set of the random variable.

From the above definition, if we have Gaussian distribution p(X) = N(u, µ) =
1√

2πσ2
e−

X2

σ2 . Then the differential entropy of X is:

H(X) = −
∫ +∞

−∞
p(X)log2(p(X))dX =

1

2
log2(2πeσ2) (4.6)

Consider if X is an N dimensional Gaussian distribution vector with the covariance
matrix CX , which can be decomposed as:

CX = PΛQ

QCXP = Λ (4.7)

where Λ is a diagonal matrix, P is composed of eigenvectors, and P = QT . The
new Gaussian distribution vector Y = PX will have the independence property:
its components y1, y2, ..., yN are independently Gaussian distributed. The corre-
sponding variances of y1, y2, ..., yN are the diagonal coefficients in Λ. y1 ∼ N(0, λ1),
y2 ∼ N(0, λ2),..., yN ∼ N(0, λN)

Λ =




λ1 0 ... 0
0 λ2 ... 0
. . . .
0 0 ... λN




H(Y ) =
i=N∑
i=1

H(yi) (4.8)

=
i=N∑
i=1

H(N(0, λi)) (4.9)

=
i=N∑
i=1

1

2
log2(2πeλi) (4.10)

=
1

2
log2(

i=N∏
i=1

(2πeλi)) (4.11)
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=
1

2
log2((2πe)N

i=N∏
i=1

(λi)) (4.12)

=
1

2
log2((2πe)Ndet(Λ)) (4.13)

=
1

2
log2((2πe)Ndet(QCXP ) (4.14)

=
1

2
log2((2πe)Ndet(Q)det(CX)det(P )) (4.15)

=
1

2
log2((2πe)Ndet(CX)) (4.16)

where (4.7) follows from Theorem 4.1 (independence); (4.9) from Formula (4.6);
(4.10) from the property of logarithm function; (4.12) from the property of diagonal
matrix: the product of its diagonal coefficients is its determinant; (4.13) from (4.7);
(4.16) from det(P ) = det(Q) = 1, because P and Q are composed of eigenvectors.

Hence, finally the differential entropy of a Gaussian distribution vector X is:

H(X) =
1

2
log2((2πe)Ndet(CX)) (4.17)

Definition 4.5: The differential entropy of a set X1,X2,...,Xn of random variables
with density p(X1, X2, ..., Xn) is defined as:

H(X1, X2, ..., Xn) =

∫
p(X1, X2, ..., Xn)log2(p(X1, X2, ..., Xn))dX1dX2...dXn

(4.18)

Definition 4.6: For (X,Y ) ∼ p(X, Y ), then the conditional entropy H(Y |X) is
defined as:

if X and Y are discrete random variables.

H(Y |X) =
∑
X

p(X)
∑
Y

p(Y |X)log2(Y |X) (4.19)

if X and Y are continuous random variables.

H(Y |X) =

∫

X

p(X)

∫

Y

p(Y |X)log2(Y |X) (4.20)

if X is a discrete random variable, and Y is a continuous random variable.

H(Y |X) =
∑
X

p(X)

∫

Y

p(Y |X)log2(Y |X) (4.21)
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This definition is not straight forward. The conditional entropy can be explained
as the unknown information contained in the variable Y if X is known to us.

Definition 4.7: Consider two random variables X and Y with a joint probability
function p(X,Y ) and marginal probability functions p(X) and p(Y ). The mutual
information I(X; Y ) is the relative entropy between the joint distribution and the
product distribution p(X)p(Y ): if X and Y are discrete random variables.

I(X; Y ) =
∑
X

∑
Y

p(X,Y )log2(
p(X,Y )

p(X)p(Y )
) (4.22)

if X and Y are continuous random variables.

I(X; Y ) =

∫

X

∫

Y

p(X, Y )log2(
p(X,Y )

p(X)p(Y )
) (4.23)

The concept of mutual information can be understood as the shared information
between X and Y .

Theorem 4.2: Let X1, X2,...,Xn be drawn according to p(X1, X2, ..., Xn). Then
the joint entropy

H(X1, X2, ..., Xn) =
n∑

i=1

H(Xi|Xi−1, ..., X1) (4.24)

For example: H(X,Y ) = H(X) + H(Y |X), H(X, Y ) = H(Y ) + H(X|Y ). The
relationship between random variable entropy, joint entropy, conditional entropy
and mutual entropy:

I(X; Y ) = H(X)−H(X|Y ) (4.25)

I(X; Y ) = H(Y )−H(Y |X) (4.26)

I(X; Y ) = H(X) + H(Y )−H(X,Y ) (4.27)

I(X; Y ) = I(Y ; X) (4.28)

The above relationship can be easily expressed in a Venn diagram in Figure 4.1.

Theorem 4.3: Let X be a continuous random variable with the variance σ, the
differential entropy

H(X) ≤ 1

2
log2(2πeσ2) (4.29)
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H(X,Y)


H(X|Y)
 H(Y|X)
I(X;Y)


H(X)
 H(Y)


Figure 4.1: Relationship between entropy and mutual information

with equality if and only if the X is Gaussian.

Now, in the following section, we will discuss the relationship between the en-
tropy of continuous signal and the entropy of its quantized signal. Suppose we
divide the range of X into bins of length 4 (the quantization step is 4). Recall
the definition of the differential entropy and the basic idea of calculus, by the mean
value theorem, there exists a value X̃i within each bin such that, as shown in Figure
4.2:

p(X̃i)4 =

∫ (i+1)4

i4
p(X)dX (4.30)

Consider the quantized random variable:

X4 = X̃i if i4 ≤ X ≤ (i + 1)4 (4.31)

Then the probability that X4 = X̃i

Pi =

∫ (i+1)4

i4
p(X)dX = p(X̃i)4 (4.32)
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Then the entropy of the quantized version X4

H(X4) = −
+∞∑

i=−∞
Pilog2(Pi)

= −
+∞∑

i=−∞
p(X̃i)4 log2(p(X̃i)4)

= −
+∞∑

i=−∞
p(X̃i)4 log2(p(X̃i))−

+∞∑
i=−∞

p(X̃i)4 log2(4)

= −
+∞∑

i=−∞
p(X̃i)4 log2(p(X̃i))− log2(4)

since
+∞∑

i=−∞
p(X̃i)4 =

∫
p(X) = 1, the first term will approach the differential

entropy H(X) =
∫

p(X)log2(p(X))dX

Hence, we derive the following theorem about the relationship of the differential
entropy and discrete entropy.

Theorem 4.4: Consider a continuous variable X and its quantized random vari-
able X4

H(X4) → H(X)− log2(4) 4→ 0 (4.33)

where 4 is the quantization step.

From Theorem 4.4, the approximation of information entropy contained in the
quantized random variable X4 can be represented as:

H(X4) ' H(X)− log2(4) (4.34)

If log2(4) ≥ H(X), H(X4) = 0, hence the approximation formula should be

H(X4) =

{
H(X)− log2(4) if log2(4) ≤ H(X)

0 if log2(4) > H(X)
(4.35)

For an N dimensional continuous random vector X, the quantized random vector
X4 can be computed as:

H(X4) =

{
H(X)−Nlog2(4) if Nlog2(4) ≤ H(X)

0 if Nlog2(4) > H(X)
(4.36)
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Figure 4.2: Quantization of a continuous random variable

Figure 4.3: Performance of the approximation expression
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Figure 4.3 gives the performance of the approximation expression. In the left
figure, the light line is our approximation, and the dark line is the exact differential
entropy in the continuous variable X, which is Gaussian distribution with variance
σ = 1. The right figure shows the difference between the approximation and the
exact entropy. In the simulation comparison, the quantization step varies from 0.01
to 8. The simulation result shows that the approximation method is close to the
exact entropy in the large entropy area. Although the approximation difference
reaches the maximum (0.2658 bit) when the quantization step is around 4, in this
case, the exact entropy is only 0.3123 bit and this amount of entropy will not play
an important role in the total entropy contained in an image (total entropy is over
107 bits).

4.2 Perceptual Information

In the previous sections, we introduced the image statistical model, HVS model
(quantization procedure) and the foundation of information theory. Now we are
ready to propose a method to compute the perceptual information contained in an
image. Recall the GSM model in Chapter II.

The density of a GSM vector can be represented as an integral of Gaussian
distribution and a scalar variable. Theoretically, there is correlation within each
subband at different scales and correlation across different subbands. For the com-
promise between accuracy and computational cost,we partition a subband into sev-
eral non-overlapping blocks with the following assumption: each partitioned block
is independent of the others, and sample z with logarithmically uniform spacing.
The simulation result shows that the approximation is acceptable. Without loss of
generality, we can assume E{z} = 1, which implies Cx = Cu.Then the GSM model
is

PrX
i
s,o =

∑
j

[p(zj)×N(0, zjCX
i
s,o)] (4.37)

where X i
s,o is the ith block in the subband of the scale s with orientation o, Prz(z)

is the density of the mixing variable, and N is the dimension of the random vector
X i

s,o.

According to the independence assumption, the subband in the scale s with
orientation o is partitioned into no,s non-overlapping blocks and each partitioned
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Figure 4.4: Gaussian Scale Mixture Model

block is independent of the others. The perceptual information contained in the
image is:

H(X) =
∑

s

∑

o=h,d,v

no,s∑
i

H(X i
s,o) (4.38)

where X i
s,o is the N dimensional random vector for the ith block in the scale s with

orientation o.

In the following part, we derive how to compute H(X i
s,o). To simplify the

notation, B is used instead of X i
s,o in the derivation, and z is the corresponding

scalar random variable for the block B.
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H(B) = H(B, z) (4.39)

= H(B|z) + H(z) (4.40)

=

j=13∑
j=1

p(zj)H(B|zj) + H(z) (4.41)

=

j=13∑
j=1

p(zj)H(N(0, zjCB))−H(z) (4.42)

=

j=13∑
j=1

p(zj)
1

2
log2(det(2πezjCB))−H(z) (4.43)

=

j=13∑
j=1

p(zj)
1

2
log2(det(2πezjCB))−

j=13∑
j=1

p(zj)log2(p(zj)) (4.44)

where (4.27) follows from the fact that the information of z is totally contained in
B, because we can estimate the distribution of z from B according to the method in
Chapter II. This fact means that the joint entropy of (B, z) will not bring any ‘new’
information. (4.28) follows Theorem 4.2 (chain rule); (4.29) from the definition
of conditional entropy (Definition (4.6));(4.30) from the definition of the Gaus-
sian scale mixture model,B|zj ∼ N(0, zjCu); (4.31) from the differential entropy
of Gaussian distribution (4.6); and (4.32) from the definition of discrete random
variable.

The perceptual information contained in Block B, can be computed as:

H(B∆) =

j=13∑
j=1

p(zj)
1

2
log2(2πedet(zjCB))−

j=13∑
j=1

p(zj)log2(p(zj))−Nlog2(∆)

(4.45)

The total perceptual information contained is the summation of the perceptual
information in each block.

4.3 Minimum Perceptual Information between the

Reference Image and Distorted Image

Now it is possible for us to compute the remaining perceptual information after
degradation. Because of the different degradations, such as noising, blurring and
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compression distortion, it is very difficult to design a mathematical degradation
model. Although in [39], Niranjan proposed the famous degradation model:

Y = gX + v (4.46)

where 0 ≤ g ≤ 1 and v is a white noise, this model can explain noising, blurring.
But other degradation: such as compression distortion and fast fading distortion
are out of the range of this model. Niranjan tried to use the above degradation
model and compute the mutual information between the reference image and the
distorted image. Their algorithm is not only limited to certain degradations, but
also requires the estimation on the parameters of the degradation. Furthermore,
because there are no proper models for image enhancement techonolgies, it is also
impossible to compute the mutual information between the reference image and
the enhanced image. In this paper we define the minimum perceptual information
remaining in the distorted/enhanced image as the criterion for image quality.

The basic idea is explained below:

Theorem 4.4: If X is the original one dimensional random signal, Y is the dis-
torted signal from X, and distance between two signals is D = E[(X − Y )2] the
minimum mutual information between X and Y :

H(X)− 1

2
log2(2πeD) ≤ Imin(X; Y ) ≤ 1

2
log2(2πeσ2)− 1

2
log2(2πeD)

(4.47)

where σ is the variance of the signal X.

Theorem 4.5: If X is the original N-dimensional random vector, Y is the distorted
vector from X, and distance between two vectors is D = E[(X − Y )(X − Y )T ] the
minimum mutual information between X and Y :

H(X)− 1

2
log2((2πe)Ndet(D)) ≤ Imin(X; Y ) ≤ 1

2
log2((2πe)Ndet(CX))− 1

2
log2((2πe)Ndet(D))

(4.48)

where CX is the covariance matrix of X.

The foundation discussion introduced the basic idea of mutual information:
the information shared between two information sources. This gives us the idea
to compute the minimum perceptual information between the reference image and
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distorted image. What’s the relationship between the minimum mutual information
and the minimum perceptual information? Roughly speaking:

H(X)− 1

2
log2((2πe)Ndet(D)) ≤ Imin(X4; Y4) ≤ 1

2
log2((2πe)Ndet(CX))− 1

2
log2((2πe)Ndet(D))

If the quantization step is 4, the minimum perceptual information:

Imin(X4; Y4) ≤





1

2
log2((2πe)Ndet(CX))− 1

2
log2((2πe)Ndet(D))

if
1

2
log2((2πe)Ndet(CX)) ≥ log2(4−N) ,

1

2
log2((2πe)Ndet(D)) ≥ log2(4−N);

1

2
log2((2πe)Ndet(CX))−Nlog2(4)

if
1

2
log2((2πe)Ndet(CX)) ≥ log2(4−N) ,

1

2
log2((2πe)Ndet(D)) ≤ log2(4−N);

0
else

Imin(X4; Y4) ≥





H(X)− 1

2
log2((2πe)Ndet(D))

ifH(X) ≥ log2(4−N) ,
1

2
log2((2πe)Ndet(D)) ≥ log2(4−N);

H(X)−Nlog2(4)
ifH(X) ≥ log2(4−N) , 1

2
log2((2πe)Ndet(D)) ≤ log2(4−N);

0
else

The above expression can be easily explained as the following:

1) If the distance D is so small that human eyes are unable to detect the dis-

tortion, namely
1

2
log2(2πedet(D)) ≤ log2(4−N), then Imin(X4; Y4) belongs to the

range [H(X),
1

2
log2(2πedet(Cx))];

2) If the distance D is large enough to be detected by human eyes, namely
1

2
log2(2πedet(D)) ≥ log2(4−N), then the minimum perceptual information will

decrease;

3) If the original signal is very weak, namely H(X)− 1

2
log2(2πedet(D)), human

eyes will detect no information from X. Hence, there will be no mutual perceptual
information counted.
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The proof for the above theorems and formulas is complicated and listed in
Appendix.

From the independence assumption we made in Chapter II, The minimum per-
ceptual information contained in the image is:

Imin(X; Y ) =
∑

s

∑

o=h,d,v

no,s∑
i

Imin(X i
s,o; Y

i
s,o) (4.49)

where X i
s,o is the N dimensional random vector for the ith block in the scale s and

the orientation o, Y i
s,o is at the same spatial position as X i

s,o.

4.4 Information Theoretic Criteria for Image Qual-

ity Assessment

min|D{I(X; Y )} can be our information fidelity criterion that quantifies the sta-
tistical information that is shared between the source and the distorted images.
But perceptual information contained in images may vary a lot, which might cause
confusion when it is applied to different images. Accordingly, we normalize the
minimum mutual entropy and define the information theoretic criterion as:

ITC =
min|D{I(X; Y )}

H(X)
(4.50)

Sheikh proposed an information theoretic criterion (VIF) in [39] . Basically,
Sheikh implemented a degradation model:

Y = g ×X + v

where g is the degradation scale and v is white noise. In his paper, Sheikh tried
to use the above model to approximate the relationship between the source signal
and distorted signal. That model is proper for white noise injection if the wavelet
function is orthogonal. Meanwhile it is a good approximation of Gaussian Blur-
ring. Furthermore, the implementation of degradation model limits the application
of Sheikh’s algorithm to evaluate enhancement technologies. The method proposed
in this thesis does not need a degradation model but only computes the average dis-
tance between the reference image and the test image. It is possible for our method
to evaluate the image quality and the performance of enhancement technologies.

51



4.5 Chapter Summary

Chapter 4 starts with the question of how to define the ‘perceptual’ information
in an image. In the following section, the basic concepts of information theory
are introduced. From the relationship of differential entropy and discrete entropy,
we connect the natural scenes statistics with human visual system model to com-
pute the perceptual information contained in an image. This chapter also solves
the problem of how to describe the distorted image if its reference image is given.
Instead of independently computing the information in the reference image and
distorted image, we compute the shared information (mutual information) as a
possible criterion for image quality assessment. Finally, a normalized mutual in-
formation is defined as the information theoretic criterion. In the next chapter,
validation and discussion are given.
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Chapter 5

Results and Discussions

To test the performance of the proposed ITC algorithm, it was applied on a
database set from the University of Texas, Austin [2]. The simulation results were
compared with several famous image quality metrics. The results of experiments
using different model parameters, such as the size of neighborhood and wavelet
function are also discussed in this chapter. Meanwhile this chapter illustrates the
impact of implementing the HVS model in Chapter 3, and proposes a new method
to optimize the HVS model performance.

5.1 Algorithm Framework

The framework of the information theoretic criterion is shown in Fig 5.1. The test
(distorted) image and the reference image are first decomposed into corresponding
subbands T and R in the wavelet domain. Second, the distance d(T, R) is computed
as mean absolute distance or mean square distance. In the following step, reference
subbands R and test image subbands T are represented as random fields X and
Y by GSM. Third, through the HVS model, we derive the perceived signal X4
and Y4. The lower bound of mutual entropy between X4 and Y4 under the
condition of distance d(T, S) is computed as the perceptual information lost in the
distorted images. Finally, the information theoretic criterion ITC is defined as the
normalized mutual information.
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Figure 5.1: The framework of the information theoretic criterion

5.2 Experimental Results Using Different Wavelet

Functions

As described in the previous section, the reference image and the test image are
first decomposed into the wavelet domain. This section will give us a sense of the
performances of ITC using different wavelet functions.

From the simulation results in Table 5.1 and Table 5.2, it is found that the
wavelet function will not affect the algorithm performance much. For J2k com-
pression distortion, the correlation between the subjective judgments and objective
judgment varies between 0.9502 and 0.9787 using different wavelet functions; for
blurring degradation, the correlation varies between 0.9612 to 0.9757; for white
noise injection, the correlation varies between 0.9842 to 0.9901; and evaluating
various distortions, the over-all correlation varies between 0.9203 and 0.9792.
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Linear J2k Blurring Noise Over-all
Correlation

rbio 1.3 0.9657 0.9589 0.9881 0.9587
rbio 1.5 0.9747 0.9643 0.9892 0.9366
rbio 2.2 0.9767 0.9678 0.9866 0.9696
rbio 2.4 0.9785 0.9716 0.9883 0.9742
rbio 2.6 0.9774 0.9704 0.9887 0.9762
rbio 2.8 0.9778 0.9729 0.9887 0.9771
rbio 3.1 0.9747 0.9738 0.9886 0.9673
rbio 3.3 0.9787 0.9738 0.9890 0.9777
rbio 3.5 0.9786 0.9710 0.9900 0.9792
rbio 3.7 0.9784 0.9726 0.9892 0.9776
rbio 3.9 0.9787 0.9757 0.9889 0.9781
rbio 4.4 0.9784 0.9682 0.9884 0.9725
rbio 5.5 0.9770 0.9675 0.9892 0.9741
rbio 6.8 0.9767 0.9685 0.9892 0.9741

db5 0.9592 0.9610 0.9903 0.9444
db7 0.9627 0.9664 0.9892 0.9485
sym6 0.9502 0.9612 0.9901 0.9203
coif3 0.9604 0.9691 0.9890 0.9357

bior 3.3 0.9771 0.9703 0.9842 0.9690
bior 3.5 0.9736 0.9646 0.9893 0.9679

Table 5.1: The linear correlation between subjective judgments and objective judg-
ments
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Mean Absolute J2k Blurring Noise Over-all
Error

rbio 1.3 0.0897 0.0715 0.0785 0.0808
rbio 1.5 0.1041 0.0760 0.0802 0.0884
rbio 2.2 0.0605 0.0494 0.0865 0.0650
rbio 2.4 0.0799 0.0530 0.0851 0.0733
rbio 2.6 0.0939 0.0640 0.0829 0.0815
rbio 2.8 0.891 0.0654 0.0825 0.0818
rbio 3.1 0.0662 0.0571 0.0823 0.0741
rbio 3.3 0.0771 0.0571 0.0831 0.0729
rbio 3.5 0.0889 0.0716 0.0794 0.0808
rbio 3.7 0.0831 0.0658 0.0817 0.0774
rbio 3.9 0.0745 0.0611 0.0828 0.0730
rbio 4.4 0.0842 0.0602 0.0842 0.0770
rbio 5.5 0.0898 0.0723 0.0813 0.0819
rbio 6.8 0.1022 0.0739 0.0808 0.0872

db5 0.1945 0.0865 0.0768 0.1165
db7 0.1725 0.0825 0.0819 0.1262
sym6 0.2070 0.0830 0.0772 0.1302
coif3 0.1746 0.0751 0.0820 0.1165

bior 3.3 0.1120 0.0559 0.0955 0.0740
bior 3.5 0.9736 0.0737 0.0790 0.0904

Table 5.2: The mean absolute error between subjective judgments and objective
judgments
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J2k Blurring Noise Over-all Computation
Time

1× 1 0.1233 0.0715 0.0785 0.0808 3.950s/pic
3× 3 0.9784 0.9682 0.9884 0.9725 11.93s/pic
5× 5 0.9788 0.9695 0.9839 0.9741 32.17s/pic
7× 7 0.9780 0.9668 0.9844 0.9702 59.95s/pic

Table 5.3: Different block size VS Performance (Linear Correlation)

J2k Blurring Noise Over-all Computation
Time

1× 1 0.1233 0.0715 0.0785 0.0808 3.950s/pic
3× 3 0.0842 0.0603 0.0840 0.0769 11.93s/pic
5× 5 0.0663 0.0484 0.0975 0.0703 32.17s/pic
7× 7 0.0728 0.0535 0.0961 0.0740 59.95s/pic

Table 5.4: Different block size VS Performance (Absolute Error)

5.3 Experimental Results Using Different Sizes

of Neighborhood

In the Gaussian Scale Mixture modeling, the bottleneck in the implementation of
ITC is the computation time and the size of the neighborhood used in GSM. In the
experiments, 1× 1,3× 3,5× 5 and 7× 7 are used in GSM to derive the statistical
properties of images. The above table tells us the average computation time of
different neighborhood size and the corresponding performance of ITC. ITC using
1×1 neighborhood consume the least time to evaluate the image, but the objective
judgments are not as good as expected. As the neighborhood size increases, better
results are derived, however the computation time increases exponentially.

5.4 Experimental Results using Decomposition

in One Orientation

The default configuration used in the implementation is to model the statistical
properties of the image in three directions: horizontal, vertical and diagonal direc-
tions. It is interesting to take a look at the performances of ITC using only one
orientation. The table below demonstrates the efficiency of the method.
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Generally, the method using horizontal data has better correlation with human
judgement, although using vertical data will give us better results for J2k distortion.

5.5 Impact of Human Visual System Model on

the Information Theoretic Criterion

In this section,the impact of the human visual system model proposed in this thesis
will be discussed. As described in Chapter 3, the human visual system model is
implemented as a quantization procedure. The reason is that vision has different
psychophysical sensitivity in different frequency bands. Roughly speaking, if the
changes are too small the eye may not detect these tiny distortions. A simple
example of that phenomenon is given in Figure 3.2. The quantization step in each
subband indicates the sensitivity of human eyes. We make the assumption, namely
the quantization step is fixed, to derive a good approximation of the human vision
system. Figure 5.2 gives us a clear illustration about the impact of the human visual
system model to ITC. In the left part, the quantization step in each subband is
set to 1, which means we ignore that the contrast sensitivity of human eyes is
not same in different frequencies. The simulation results shows that the objective
judgments have poor consistency with human evaluations. The right figure shows
the experimental results which are consistent with objective judgments.

Figure 5.2: Impact of Human Visual System Model on the Information Theoretic
Criterion
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5.6 Optimization of Human Visual System Model

With the assumption that the quantization step in each subband is constant, the
following steps will help us to compute the quantization steps in the subbands:

Suppose C is a M dimensional vector composed of the corresponding quantiza-
tion steps for M subbands, C(i) is the quantization step for the ith subband:

a) Initialize the quantization step vector C1 and C2, for example C1(i) =
min{coefficients in ith subband }, C2(i) = max{coefficients in ith subband };

b) Compute the objective judgment of information theoretic criterion ITC1 and
ITC2 for the test images using C1 and C2 quantization step vector;

a) Compute the linear correlation L1 between ITC1 and subjective evaluations
DMOS, and the linear correlation L2 between ITC2 and DMOS;

d) Compute the new generation of C3 = W1 × C1 + W1 × C1, where

W1 =
1

1−L1

1
1−L1

+ 1
1−L2

, W2 =
1

1−L2

1
1−L1

+ 1
1−L2

;

e) Compute the ITC3 using C3 quantization step vector;

f) Compute the linear correlation L3 between ITC3 and DMOS;

g) Discard one quantization step vector, of which the linear correlation between
the objective judgments and subjective judgments is smallest; for example: if L3 >
L2 > L1, then C1 discarded;

h) Refresh the two remaining quantization vectors as newly generated C1 and
C2;

i) Iterate Step a) to Step h) until the correlation reaches the maximum.

In Step d) the weight W1 and W2 satisfy the property that W1 + W2 = 1. The
correlation parameters L1 and L2 belong to [0, 1]. If L1 > L2, so W1 > W2 if the
new generated quantization vector C3 is close to C1.

Tables 5.5 and 5.6 show us the optimization results. Although the above method
proposed above improves ITC, it is still very difficult to achieve the global opti-
mization.
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remaining


Figure 5.3: Optimization of Human Visual System Model

Gaussian J2k Gaussian Overall
Noise Distortion Blurring

ITCOriginal 0.9832 0.9773 0.9710 0.9723
ITCOptimized 0.9900 0.9792 0.9740 0.9775

Table 5.5: The performance of optimized ITC (Linear Correlation)

Gaussian J2k Gaussian Overall
Noise Distortion Blurring

ITCOriginal 0.0599 0.0490 0.0700 0.0605
ITCOptimized 0.0423 0.0448 0.0494 0.0450

Table 5.6: The performance of optimized ITC (Absolute Error)
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Gaussian Gaussian J2K Overall
Noise Blurring Distortion

PSNR 0.8916 0.7827 0.5409 0.6354
MSE 0.9147 0.6400 0.7247 0.7884

MSSIM 0.9457 0.8785 0.8969 0.8730
Universal Image 0.9551 0.9304 0.9342 0.9188

Quality Assessment
Non-reference Image -* - 0.8969 -
Quality Assessment

VIF 0.9795 0.9781 0.9751 0.9747
ITC 0.9900 0.9792 0.9740 0.9775

Table 5.7: The performance of ITC vs other metrics (Linear Correlation)

5.7 Comparison of ITC with Other Image Qual-

ity Metrics

To validate the information theoretic criterion proposed in this thesis, several exist-
ing image quality criteria were applied to the image database set. The results from
different image quality criteria, including PSNR, MSE, Mean Structure Similarity
(MSSIM) [41], Universal Image Quality Assessment [42], visual information fidelity
(VIF) [40] , and Information Theoretic Criterion (ITC) are shown below. In Tables
5.7 and 5.8, tests results are listed to illustrate the efficiency of different image
quality measurements. Table 5.7 lists the most important feature of the measure-
ment: linear correlation between objective judgments and subjective measurements
and Table 5.8 lists the mean absolute error. The simulation results show that ITC
outperforms the other image quality metrics. Visual Information Fidelity (VIF) is
proposed by Sheikh, Bovik and Veciana. By implementing a degradation model to
compute the mutual information between the reference and test images, VIF first
estimated degradation parameters and then computed mutual information compu-
tation as quality criteria. Note that the method in this thesis does not need a
degradation model - it has the ability to evaluate any distortion. From the simula-
tion results in Tables 5.7 and 5.8 , ITC has better consistency to human judgment
in Gaussian noise and Gaussian Blurring (absolute difference), but VIF has better
performance in J2k distortion.

its
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Gaussian Gaussian J2K Overall
Noise Blurring Distortion

PSNR 0.1673 0.2896 0.3241 0.2577
MSE 0.4380 0.2858 0.3318 0.3519

MSSIM 0.1007 0.1974 0.1214 0.1122
Universal Image 0.0810 0.1341 0.1214 0.1122

Quality Assessment
Non-reference Image -* - 0.1290 -
Quality Assessment

VIF 0.0649 0.0842 0.0577 0.0693
ITC 0.0423 0.0448 0.0494 0.0450

Table 5.8: The performance of ITC vs other metrics (Absolute Error)

5.8 ITC based on Reduced Test Image

Sometimes, it is impossible to access the full image. For instance, during the
transmission, partial information regarding the ’perfect version’ is available, then
how to estimate the image quality based on the limited reference information is a
practical problem. Hence evaluation of the ITC based on a reduced image will be
discussed in this section. In the simulations, the reduced test image is locate at the
upper left part of the test image, and the size varies from 64× 64 to 512× 512. In
the following table, the performance of ITC corresponding to different size and its
computation time is listed. Although the smaller partial image will greatly reduce
the computation time, the ITC performance will get worse.

ITC. decomposition

5.9 ITC using the Subbands in One Orientation

As each wavelet subband is treated independent of every other, in this section ITC
is validated using the subbands in horizontal, vertical and diagonal directions in-
dividually. From the simulation results, it is clear that the performance of ITC
changes slightly using different orientation. But there is no evidence to prove that
using certain direction is better than other directions. For instance, ITC in the hor-
izontal direction has better correlation with human judgments for Gaussian Noise
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Gaussian Gaussian J2K Overall
Noise Blurring Distortion

64×64 0.9162 0.8978 0.8835 0.8934
128×128 0.9598 0.9156 0.9210 0.9211
256×256 0.9643 0.9403 0.9658 0.9491
512×512 0.9771 0.9642 0.9734 0.9650
Full Size 0.9900 0.9792 0.9740 0.9775

Table 5.9: The performance of ITC based on reduced test image (Linear Correla-
tion)

Gaussian Gaussian J2K Overall
Noise Blurring Distortion

64×64 0.0887 0.0856 0.1084 0.0921
128×128 0.0612 0.0779 0.0898 0.0769
256×256 0.0594 0.0677 0.0617 0.0632
512×512 0.0497 0.0507 0.0528 0.0510
Full Size 0.0423 0.0448 0.0494 0.0450

Table 5.10: The performance of ITC based on reduced test image (Absolute Error)
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Linear Gaussian Gaussian J2K
Correlation Noise Blurring Distortion
Horizontal 0.9900 0.9792 0.9700
Vertical 0.9831 0.0642 0.9740
Diagonal 0.9822 0.9700 0.9717

Table 5.11: The performance of ITC based on reduced test image (Linear Corre-
lation)

Absolute Gaussian Gaussian J2K
Error Noise Blurring Distortion

Horizontal 0.0423 0.0448 0.0494
Vertical 0.0467 0.0460 0.0528
Diagonal 0.0430 0.0457 0.0533

Table 5.12: The performance of ITC based on reduced test image (Absolute Error)

and Gaussian Blurring, while ITC in the vertical direction has better consistency
for J2k distortion.

5.10 Chapter Summary

The information theoretic criterion ITC introduced in Chapter 4 is evaluated in
this chapter. Using the database set of 729 test images, ITC has been shown to
be a reliable measurement tool for image quality: ITC has been shown to perform
well over the wide range of scenes using different parameters of GSM. Meanwhile its
prediction performance is equivalent to or even superior to other advanced image
quality metrics, such as VIF, MSSIM. This chapter also proposed a new method
to derive the parameters in HVS model in Chapter 3. Finally, we tried to find a
tradeoff point between performance and running time.
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Chapter 6

Conclusions and Future work

The goal of this thesis was to propose an image quality assessment method using an
information theoretic framework. This chapter draws some conclusions by pointing
out the contributions. Furthermore, this chapter explains how limitations of ITC
raises the directions for future works.

6.1 Contributions and Limitations

The primary goal of this thesis is to propose a possible method to compute the
perceptual information contained in images and try to evaluate the image qual-
ity based on perceptual information. The goal has been met with the following
contributions:

6.1.1 Contributions of ITC

1. HVS model: This thesis presented a new human visual system model according
to one essential human psychophysical feature. In the new model, human contrast
sensitivity as the quantization procedure with the step size defined as the luminance
threshold in different frequency domain. Hence the natural (continuous) signals
will be represented as the perceptual (discrete) signals in the human brain. In
mathematics:

If the image coefficient is X and the quantization step is 4, then the perceived
signal in human brain is X4

X4 =
X

4
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2. Perceptual information: Based on a GSM, wavelet coefficients in each
subband are modeled as a continuous statistical signal X by a mixture of Gaussian
distributions.

X =
√

zu

Through the HVS model proposed in Chapter 3, the natural (continuous) signals
will be processed to derive the perceptual signals. This thesis derives an analytical
representation of the differential entropy contained in natural signals, which gives
the relationship between the information in natural signal X and the information
in perceptual signals X4

H(X4) = H(X)− log2(4)

in which the differential entropy of X is as derived in Chapter 4:

H(X) = H(X|z) + H(z)

3. Minimum mutual information: How to describe the relationship be-
tween a test image and its reference image? Minimum mutual information between
the distorted signal and its reference signal is proved to be a proper description
for two images. Generally speaking, the mutual information tells us how much
information is still shared between the test image and its reference after various
degradations. The problem with mutual information is the complication to depict
the exact connections between the test image and its reference image, such as fade
channel distortion in wireless communication. This makes it impossible to derive
the mutual information or conditional information. In this thesis minimum mutual
information is chose to act as the approximation of the relationship between a test
image and its reference image.

4. Information theoretic criterion: As Chapter 4 provided an approxima-
tion for the common information shared by the test and reference images, this
thesis defined an information theoretic criterion as normalized minimum mutual
information:

ITC =
I(X; Y )

H(X)

Various experiments show that ITC has good consistency to human judgments.
Furthermore several simplified but efficient information theoretic criteria were pro-
posed.
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6.1.2 Limitations of ITC

Each image quality assessment method has its limitations. Generally speaking, ITC
has several parts: wavelet decomposition, statistical modeling in each frequency
band, human vision system implementation and perceptual information estimation.
In each part, there are some assumptions made to achieve a good performance with
limited computation resources and the limited knowledge we know about human
vision.

In the statistical modeling part, one important assumption is that each subband
is independent of the others, while that is not the fact. The coefficients in each
subband have relationships with the other coefficients in the other subbands within
the same scale. Furthermore, the coefficients have correlations with the ones in the
other subbands across the scales. There are some statistical models which depict
the statistical properties of an image acorss the scales, however as stated in Chapter
II, the definition and computation of the perceptual information will be out of our
scope.

In the implementation of the human vision system model, the contrast sensitiv-
ity in each frequency band is treated as a certain constant. It will not be adaptive to
different types of images or viewing conditions. Moreover, the methods proposed to
compute the parameters of human vision system is not perfect. Even the optimized
method can just search the local optimization.

In the last part of ITC, we tried to find a method to get a good approximation
of information defined based on the human vision introduced in Chapter 3. The
method has good performance when large information is contained in the signal,
while it has bigger estimation error for the signal with fewer information. Finally
the lost perceptual information due to degradation is banded to avoid computing the
exact lost information, for in the most cases there is no way to know the relationship
between the original signal and the degraded one if not informed ahead, and it is also
impossible to compute the exact lost information under some circumstances, such
as fade channel distortion in the practical communications. The method proposed
in this thesis is supposed to be a universal method for all kinds distortions and does
not need to be informed of the degradation type. Then the tradeoff between the
automation and performance of the metric must be achieved.
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6.2 Future Research Direction

6.2.1 Blind Reference Image Quality Assessment

In this thesis, a literature review about the full reference image quality assessment
is given, and an information theoretic metric is proposed and it achieved excellent
consistency with human judgments. The method needs the original images namely
references to compute the lost information. However, in practical applications,
sometimes there is no way to access the original data, image quality has to be
estimated based on the degraded one. This task is called blind reference image
quality assessment. The task should be pay more attention in the future, and
it will lead us to the better understanding of human vision system and statistical
properties of images. In the next section, an introduction about the statistics across
different scales is given to get us a sense of future research.

6.2.2 Correlation of Statistic Properties in Multi-resolution

There is high correlation between the wavelet coefficients in adjacent scales with
same orientations. The images used to gather such properties are of high resolution
(512x768) and each image is divided into blocks of 64x64 pixels. Hidden Markov
Model is applied to each 64x64 pixel block.

Here is a brief introduction to Hidden Markov Model:

In each subband, the wavelet coefficients are described by two-state Gaussian
mixture model. Each wavelet coefficient wi is associated with an unobserved hidden
state variable si ∈ S, L. The value of si dictates the components in the mixture
model. State S corresponds to a zero-mean, low-variance Gaussian:

g(x, µ, σ2
S) =

1√
2πσS

exp{−(x− µ)2

2σ2
S

so for the other state L:

g(x, µ, σ2
L) =

1√
2πσL

exp{−(x− µ)2

2σ2
L

Then the distribution of a wavelet coefficient based on two-state Gaussian mixture
model can be written as:

f(wi) = pS
i f(wi|si = S) + pL

i f(wi|si = L) (6.1)

wheref(wi|si = S) = g(x, µ, σ2
S;i)

f(wi|si = L) = g(x, µ, σ2
L;i)andσL;i > σS;i
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The following section shows some results about the relationship between the
wavelet coefficients in different layers and orientations. In Figure 6.1, X axis is:
log2(2πσ2

L) in one layer, which means the information contained in State L, and Y
axis is the information contained in State L in another adjacent layer.

 


Figure 6.1: Relationship between Two Adjacent Layers

Our simulation results are listed in the following two tables which give us a
sense of the correlations across different layers and different orientations.

The strong correlation between the wavelet coefficients within the two adjacent
layers triggers an idea to access the blind assessment. Suppose the information is
lost in one layer, based on the correlation it is possible to retrieve the lost informa-
tion from its neighbor frequency bands. How to take the advantage of the strong
correlation across layers is out of the scope of this thesis.

6.3 Chapter Summary

This chapter summarized the contents of the thesis, and outlined the advantages
and limitations of ITC compared with other existed image quality metrics. The
rest of this chapter made some efforts to depict the correlations across different
frequency bands and explore the blind quality assessment.
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Figure 6.2: The relationship between the information contained in State L of
wavelet coefficients in different layers and orientations

Figure 6.3: The relationship between the information contained in State S of wavelet
coefficients in different layers and orientations
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Appendix I

Chapter I listed several image quality metrics with the simulation results in
Table 1.1. It is necessary to make the details of implementations clear.

For Moments of the angels:

D5 =
2

π
cos−1 < X, Y >

||X|| · ||Y ||
in which < X, Y > is the cross product of vector X and Y , which X and Y are

composed by the pixel values within two corresponding neighborhoods.

For Kullback-Leibler divergence (relative entropy):

D7 =

∫

x∈X
pX(x)log(

pY (x)

pX(x)
)dx

in which the distribution of X or Y is defined based on the pixel value.

For Mutual Information :

D10 = I(X, Y ) =
∫

x∈X ,y∈Y −pXY (x, y)log( pXY (x,y)
pX(x)pY (y)

)dxdy

In the implementation, because the pixel value is discrete and varies between 0
and 255, the probability density of pX(x) or pXY (x, y) is changed to the discrete
probability, meanwhile the integrals should be changed to summations.
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Appendix II

This appendix gives the proofs of several theorems in Chapter 4. In this section,
we will first prove a lemma of ration distortion theory, and then apply this lemma
to Gaussian Scale Mixture Model used in this thesis.

Theorem 4.4: Consider a continuous variable X and its quantized random
variable X4

H(X4) → H(X)− log2(4) 4→ 0 (2)

where 4 is the quantization step.

Proof:

I(X; Y ) = H(X)−H(X|Y ) (1)

= H(X)−H(X − Y |Y ) (2)

≥ H(X)−H(X − Y ) (3)

≥ H(X)−H(N(0, E[(X − Y )2]) (4)

= H(X)− 1

2
log(2eπE[(X − Y )2]) (5)

= H(X)− 1

2
log(2eπD) (6)

where (3) follows from the fact that conditioning reduces entropy and (4) follows
from the fact that the normal distribution maximizes the entropy for a given
second moment(Theorem 4.3 ). It is easy to prove that if the difference between
the original signal X and distorted signal Y is Gaussian distributed, the lower
bound H(X)− 1

2
log(2eπD) can be achieved. Hence:

I(X; Y )min ≥ H(X)− 1

2
log(2eπD)

To prove the upper bound, let us consider the joint distribution as shown in the
figure below, and calculate the distortion and the mutual information between X
and Y . Since

Y =
σ2 −D

σ2
(X + Z) (7)

(8)
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Joint distribution for upper bound

E[(X − Y )2] = E(
D

σ2
X − σ2 −D

σ2
Z)2 (9)

= (
D

σ2
)2E(X2) + (

σ2 −D

σ2
)2E(Z2) (10)

= (
D

σ2
)2σ + (

σ2 −D

σ2
)2 Dσ2

σ2 −D
(11)

= D (12)

Also the mutual information is

I(X; Y ) = H(Y )−H(Y |X) (13)

= H(Y )−H(
σ2 −D

σ2
Z) (14)

Now

E(Y 2) = (
σ2 −D

σ2
)2E[(X + Z)2] (15)

= (
σ2 −D

σ2
)2(E(X2) + E(Z2)) (16)

= (
σ2 −D

σ2
)2(σ2 +

Dσ2

σ2 −D
) (17)

= σ2 −D (18)
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Hence, we have

I(X; Y ) = H(Y )−H(
σ2 −D

σ2
Z) (19)

= H(Y )−H(Z)− log(
σ2 −D

σ2
) (20)

≤ H(N(0, σ2 −D))− 1

2
log(2eπ

Dσ2

σ2 −D
)− log(

σ2 −D

σ2
) (21)

=
1

2
log(2eπ(σ2 −D))

1

2
log(2eπ

Dσ2

σ2 −D
)− log(

σ2 −D

σ2
) (22)

=
1

2
log(

σ2

D
) (23)

Hence,

I(X; Y )min ≤ 1

2
log(

σ2

D
)

Combine the upper bound and lower bound, we can get

H(X)− 1

2
log(2eπD) ≤ I(X; Y )min ≤ 1

2
log(2eπσ2)− 1

2
log(2eπD) (24)

If the original signal X and distorted signal Y are N dimensional and the distance
D between X and Y is defined as E[(X − Y )(X − Y )T ], we apply differential
entropy of N-dimensional Gaussian distribution vector (4.17) to Theorem 4.3 to
get Theorem 4.5

Theorem 4.5: If X is the original N-dimensional random vector, Y is the
distorted vector from X, and distance between two vectors is
D = E[(X − Y )(X − Y )T ] the minimum mutual information between X and Y :

H(X)− 1

2
log2((2πe)Ndet(D)) ≤ Imin(X; Y ) ≤ 1

2
log2((2πe)Ndet(CX))− 1

2
log2((2πe)Ndet(D))

(25)

where CX is the covariance matrix of X.

Following the ideas used to prove Theorem 4.3, we can easily get Imin(X4; Y4).
Please notice that each part in (25) corresponds to “a signal”. H(X) corresponds
to the original signal X. 1

2
log2((2πe)Ndet(D)) corresponds to a Gaussian

distributed vector G1 with the covariance matrix D. And 1
2
log2((2πe)Ndet(CX))
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corresponds to a Gaussian distributed vector G2 with the covariance matrix CX .
Apply Theorem 4.4 to each signal above if given the quantization step 4, then
the entropy of each quantized signal is given:

H(X4) =

{
H(X)−Nlog2(4) if Nlog2(4) ≤ H(X)

0 if Nlog2(4) > H(X)

H(G1
4) =

{
1
2
log2((2πe)Ndet(D))−Nlog2(4) if Nlog2(4) ≤ 1

2
log2((2πe)Ndet(D))

0 if Nlog2(4) > 1
2
log2((2πe)Ndet(D))

H(G2
4) =

{
1
2
log2((2πe)Ndet(CX))−Nlog2(4) if Nlog2(4) ≤ 1

2
log2((2πe)Ndet(CX))

0 if Nlog2(4) > 1
2
log2((2πe)Ndet(CX))

Combine the above three formulas, we can get the upper bound and lower bound
of minimum mutual information between X4 and Y4:

Imin(X4; Y4) ≤





1

2
log2((2πe)Ndet(CX))− 1

2
log2((2πe)Ndet(D))

if
1

2
log2((2πe)Ndet(CX)) ≥ log2(4−N) ,

1

2
log2((2πe)Ndet(D)) ≥ log2(4−N);

1

2
log2((2πe)Ndet(CX))−Nlog2(4)

if
1

2
log2((2πe)Ndet(CX)) ≥ log2(4−N) ,

1

2
log2((2πe)Ndet(D)) ≤ log2(4−N);

0
else

Imin(X4; Y4) ≥





H(X)− 1

2
log2((2πe)Ndet(D))

ifH(X) ≥ log2(4−N) ,
1

2
log2((2πe)Ndet(D)) ≥ log2(4−N);

H(X)−Nlog2(4)
ifH(X) ≥ log2(4−N) , 1

2
log2((2πe)Ndet(D)) ≤ log2(4−N);

0
else
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