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Abstract 

Models for spatially interpolating hourly precipitation data and temporally disaggregating 

daily precipitation to hourly data are developed for application to multisite scenarios at 

the watershed scale.  The intent is to create models to produce data which are valid 

input for a hydrologic rainfall-runoff model, from daily data produced by a stochastic 

weather generator.  These models will be used to determine the potential effects of 

climate change on local precipitation events. A case study is presented applying these 

models to the Upper Thames River basin in Ontario, Canada; however, these models 

are generic and applicable to any watershed with few changes. 

 

Some hourly precipitation data were required to calibrate the temporal disaggregation 

model.  Spatial interpolation of this hourly precipitation data was required before 

temporal disaggregation could be completed.  Spatial interpolation methods were 

investigated and an inverse distance method was applied to the data.  Analysis of the 

output from this model confirms that isotropy is a valid assumption for this application 

and illustrates that the model is robust.  The results for this model show that further 

study is required for accurate spatial interpolation of hourly precipitation data at the 

watershed scale.   

 

An improved method of fragments is used to perform temporal disaggregation on daily 

precipitation data.  A parsimonious approach to multisite fragment calculation is 

introduced within this model as well as other improvements upon the methods 

presented in the literature.  The output from this model clearly indicates that spatial and 
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temporal variations are maintained throughout the disaggregation process.  Analysis of 

the results indicates that the model creates plausible precipitation events.   

 

The models presented here were run for multiple climate scenarios to determine which 

GCM scenario has the most potential to affect precipitation.  Discussion on the potential 

impacts of climate change on the region of study is provided.  Selected events are 

examined in detail to give a representation of extreme precipitation events which may 

be experienced in the study area due to climate change. 
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1 Introduction 
Climate change is a contributor to increasing temperatures; however, global warming 

also causes change in the amount of precipitation that is received.  This changes the 

amount of precipitation and the amount of fresh water that is available worldwide.  While 

climate change is creating drought in some parts of the world (United Nations 

Environment Programme, 1996), Canada and other northern regions have experienced 

increasing rates of precipitation, as can be seen in Figure 1-1.  

 

 
Figure 1-1: Global change in precipitation from 1900 to 1994 

(United Nations Environment Programme, 1996) 

 

Society relies on water resources infrastructure to protect urban and agricultural centers 

from the hydrological hazards of both flood and drought events.  Design of this 

infrastructure is based on specified design events to ensure that it will be able to 

withstand extreme hydrological events.  For this infrastructure to operate properly, 
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designers need to be able to accurately predict the extent to which extreme events will 

affect the location for which the infrastructure is being designed.  Without proper 

prediction of extreme hydrological events, these water resources systems could fail at 

unacceptable high rates, putting society at risk. 

 

There are two methods currently used to forecast these hydrological events: statistical 

frequency analysis and streamflow simulation.  Statistical frequency analysis is the 

more common of the two methods (Watt et al., 1989).  It is based on historical 

precipitation records and therefore is only valid for forecasting purposes if precipitation 

trends are stationary (Watt et al., 1989).  However, as shown above, due to climate 

change, precipitation data can no longer be considered stationary and therefore this 

method is not accurate in a changing climate.  Streamflow simulation is a relatively new 

method and requires estimations of precipitation data which are used in the simulation 

of potential streamflow conditions.  Since urban floods are almost always dominated by 

precipitation (Watt et al., 1989), good precipitation data are required to properly simulate 

streamflow.  The focus of this thesis is to generate precipitation data which are 

acceptable for use in streamflow simulation.  

 

1.1 Project Overview 

This thesis is part of a larger project aimed at assessing the risk of damage by flood or 

drought while taking into account the changing climate.  The various components of this 

project are shown in Figure 1-2, which also identifies the components of the project that 

compose this thesis.  The aim of this thesis is create models for spatially interpolating 
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hourly precipitation data and temporally disaggregating daily precipitation data to an 

hourly time scale for a multisite scenario.  These models will be used to create data 

which are valid for input to the event based hydrologic model used in this project. 

 

Weather 
Generator

Spatial 
Interpolation

Current Thesis

Temporal 
Disaggregation

Flood Risk 
Assessment

Flood Level 
Mapping

Event-Based 
Hydrologic 

Model

Drought Risk 
Assessment

Continuous 
Hydrologic 

Model
 

Figure 1-2: Project flowchart 

 

The first segment of this project involves the development of a statistical weather 

generator.  This is a statistical model that generates synthetic meteorological data for 

given climate scenarios.  This particular weather generator creates data on a daily time 

step.  More information on the workings of this weather generator can be found in 

Section 2.2. 

 

The next part of this project is to simulate streamflow using the meteorological data 

created by the weather generator as input.  While the daily weather generator data can 

be input directly to the continuous hydrological model used in this project, some 

manipulations of the data, namely spatial interpolation and temporal disaggregation, are 

required before these data can be input to the event-based hydrologic model used in 
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this project.  The models for interpolation and disaggregation of the precipitation data 

will be the focus of this thesis. 

 

The hydrologic event model requires hourly precipitation data to properly simulate 

streamflow during significant precipitation events.  It was determined to be more 

advantageous to disaggregate the weather generator output into hourly data than it 

would be to modify the weather generator to generate hourly weather data.  Therefore a 

model to disaggregate daily precipitation data to a finer timescale is required.   

 

The spatial interpolation model is required to facilitate the application of the temporal 

disaggregation.  Calibration of the temporal disaggregation model requires a small 

amount of hourly precipitation data at the same locations as the daily data being 

disaggregated.  Since hourly precipitation gauges were not available at the locations 

requiring disaggregation for the project, spatial interpolation was required to acquire this 

input. 

 

The streamflow output from the continuous hydrologic model is used to assess the risk 

and potential damage of drought in the region of study.  The streamflow output from the 

event hydrologic model is used to map flood levels of potential extreme hydrologic 

events.  These potential flood levels are then used to assess the risk and potential 

damage of floods in the region of study.   
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1.2 Scope of the Thesis 

The purpose of this study is to convert the daily data, which are output from the weather 

generator, into hourly data that can be used for streamflow simulation by the event 

based hydrologic model.  There are three main components to this study.  The first 

component is the development of a model for the spatial interpolation of hourly 

precipitation data.  The second portion of this study is the development of a model to 

disaggregate daily precipitation data into hourly precipitation data.  The third part of this 

study is the application of these two models to a case study.  The first two components 

comprise the shaded portions of Figure 1-2.   

 

The chapters of this thesis are presented as follows.  Chapter 2 is a review of literature 

as it applies to the different aspects of this research.  Chapter 3 covers the spatial 

interpolation method that was used, along with some basic results.  Chapter 4 describes 

the methods used in the temporal disaggregation model.  Chapter 5 reviews a case 

study applying the models presented in the previous two chapters.  Chapter 6 provides 

the results of the models and an analysis thereof.  The final chapter covers the 

conclusions and outcomes of this research. 
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2 Literature Review 

This literature review is comprised of four main sections: general circulation models, 

weather generators, spatial interpolation methods and temporal disaggregation 

methods.  The first two sections discuss some of the background information required to 

understand the input data used for this study.  The latter two sections examine previous 

studies that have been completed in the fields of spatial interpolation and temporal 

disaggregation, which are the main areas of study for this thesis.   

2.1 General Circulation Models 

General circulation models (GCMs), which have been in use since the mid 1990s are 

the main tool for predicting future global climate.  GCMs are three-dimensional models 

of global air and water circulation patterns.  There currently exist both atmospheric 

GCMs (AGCMs) and ocean GCMs (OGCMs) as well as the more complex atmosphere-

ocean GCMs (AOGCMs) also known as the coupled GCM (CGCM) (Canadian Institute 

for Climate Studies 2005; Intergovernmental Panel on Climate Change, 2001). 

 

GCMs are finite element models which divide the entire atmosphere (and/or ocean) into 

cells that are approximately 3° square and 1km high (Masters, 1998).  Figure 2-1 

provides a visual interpretation of how GCMs work.  The models are designed to track 

changes in climate by location, time of year and climate change scenario.  These 

changes are compared to the normal values from 1961-1990, which is known as the 

GCM baseline climate. 
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Figure 2-1: Schematic of GCM model (Masters, 1998) 

 

2.1.1 GCM Storylines and Scenarios 

The Intergovernmental Panel on Climate Change (IPCC) has suggested an ensemble of 

possible scenarios or storylines describing how the world could look for the next 

century.  These scenarios include predictions of global population, economy and 

pollutant emissions among other things.  The scenarios are split into four main 

categories known as the A1, A2, B1 and B2 storylines, which are discussed in detail in 

the IPCC Special Report on Emission Scenarios (2000). The commonly known outline 

of each storyline is given here for reference.   
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A1 
The A1 storyline and scenario family describes a future world of very 
rapid economic growth, global population that peaks in mid-century and 
declines thereafter, and the rapid introduction of new and more efficient 
technologies. Major underlying themes are convergence among regions, 
capacity-building, and increased cultural and social interactions, with a 
substantial reduction in regional differences in per capita income. The A1 
scenario family develops into three groups that describe alternative 
directions of technological change in the energy system. The three A1 
groups are distinguished by their technological emphasis: fossil intensive 
(A1FI), non-fossil energy sources (A1T), or a balance across all sources 
(A1B; where balanced is defined as not relying too heavily on one 
particular energy source, on the assumption that similar improvement 
rates apply to all energy supply and end use technologies). 

A2 
The A2 storyline and scenario family describes a very heterogeneous 
world. The underlying theme is self-reliance and preservation of local 
identities. Fertility patterns across regions converge very slowly, which 
results in continuously increasing population. Economic development is 
primarily regionally oriented and per capita economic growth and 
technological change more fragmented and slower than other storylines. 

B1 
The B1 storyline and scenario family describes a convergent world with 
the same global population that peaks in mid-century and declines 
thereafter, as in the A1 storyline, but with rapid change in economic 
structures toward a service and information economy, with reductions in 
material intensity and the introduction of clean and resource-efficient 
technologies. The emphasis is on global solutions to economic, social 
and environmental sustainability, including improved equity, but without 
additional climate initiatives. 

B2 
The B2 storyline and scenario family describes a world in which the 
emphasis is on local solutions to economic, social and environmental 
sustainability. It is a world with continuously increasing global population, 
at a rate lower than A2, intermediate levels of economic development, 
and less rapid and more diverse technological change than in the B1 and 
A1 storylines. While the scenario is also oriented towards environmental 
protection and social equity, it focuses on local and regional levels. 

(Intergovernmental Panel on Climate Change, 2000) 

 

2.1.2 Statistical Downscaling 

GCMs predict state variables and fluxes for each cell within the model; as described in 

Section 2.1 these cells are on the order of 3° square.  The size of these grid cells is 

limited by computational expense.  Most applications utilizing GCM predictions, 

including hydrologic models, require detail at much finer scales.  Therefore in order to 
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obtain data at the finer spatial scale, methods known as downscaling are required 

(Intergovernmental Panel on Climate Change, 2001).   

 

There are three main types of statistical downscaling: weather generators, transfer 

functions and weather typing.  Weather generators, which are discussed in more detail 

in Section 2.2, create sequences of synthetic weather on a regional scale (i.e. 

subregions of a GCM cell).  Transfer functions use direct relationships derived through 

regression, kriging or Artificial Neural Networks to develop spatially varying weather 

data within a GCM cell.  Weather typing attempts to relate the GCM cell data to a set of 

local climate variables based on synoptic climatology.  More information on the latter 

two methods can be found in IPCC (2001), these are not discussed in detail here 

because they were not used in this study. 

 

2.2 Weather Generators 

Weather generators are stochastic models which create synthetic weather sequences in 

a specific region of interest.  Weather generators are employed because the historical 

data record at most weather stations is not long enough, especially for the purposes of 

statistical testing and forecasting.  There are two main types of weather generators.  

The first and most common type is parametric weather generators.  The second type is 

non-parametric weather generators. 

 

Parametric weather generators such as the one created by Richardson (1981) are 

based on a first order Markov chain process.  Many of these models create precipitation 
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data first and then use this generated data to drive the generation of other parameters 

such as maximum and minimum temperature (Intergovernmental Panel on Climate 

Change, 2001; Richardson, 1981).  The Markov process of parametric weather 

generators utilizes a probability distribution function of the data being generated.  Since 

the probability distribution of precipitation is not well defined, assumptions regarding its 

form are required.  Also, many of these models intrinsically assume that the data are 

normally distributed (Sharif and Burn, 2004; 2006); since this is not necessarily the 

case, transformations may be required during pre-processing of the data.  Another 

downfall of this type of model is that it does not necessarily maintain spatial and 

temporal dependencies (Sharif and Burn, 2004; 2006), even when using the multisite 

extension by Wilks (1998; 1999).   Finally, these models are not portable as they require 

this site specific data processing before being used in a different region.  Non-

parametric weather generators overcome many of the issues experienced through the 

use of parametric models. 

 

The weather generator used in this project was created by Sharif and Burn (2004; 

2006).  It is a non-parametric stochastic weather generator based on a k-nearest 

neighbours (k-nn) algorithm.  The k-nn algorithm is a selective resampling approach that 

uses chosen days from the historical record to represent the required days in the 

generated set.  This model can be used to simulate historical data or to show the effects 

of specific global change phenomenon (e.g. global warming, wet springs, dry summers 

etc.)  A quick overview of the workings of this model will be given here, for a full 

explanation of the weather generator see Sharif and Burn (2004; 2006).  This model 
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generates synthetic precipitation, minimum temperature and maximum temperature for 

a specified number of years.  Resampling is performed in the following manner (as 

given in Sharif and Burn (2004; 2006)): 

1. First day in the generated sequence (e.g. January 1) is randomly chosen from all 

of the historical data, i.e. all January 1sts would have equal probability of being 

chosen. 

2. Regional means are calculated for each parameter (minimum temperature, 

maximum temperature and precipitation) for each day of the historical record. 

3. In order to maintain the seasonal variations in temperature and precipitation a 

subset of the historical data is identified as potential neighbours.  This is 

accomplished through the use of a moving temporal window of 14 days (w=14) 

across all years. 

4. The covariance matrix of all potential neighbours to the current generated day 

must be calculated for use in the next step. 

5. The Mahalanobis distance is calculated for each potential neighbour.  The 

Mahalanobis distance is used instead of the more common Euclidian distance 

because the Euclidian distance is based on the scale of the measurements.  This 

makes the Euclidian distance difficult to use in this case because temperature 

and precipitation have different units and therefore weights would have to be 

assumed.  The Mahalanobis distance is given by Equation 2-1, where X is the 

vector of regional means for each parameter and  is the covariance matrix 

calculated in step 4. 

C
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( ) ( )1 T
i t i t t id X X C X X−= − −  (2-1) 

t = current day of simulated data i= potential neighbour 

 
6. Using the Mahalanobis distances, the closest k neighbours are selected.  The 

choice of the value for k is important because if k is too low there will be a 

tendency for repetition in the data and if k is too large data that is too different 

from the original day could be chosen.  This could create patterns that do not 

match those from the historical record.   

7. At this point each of the k-nearest neighbours is weighted according to its 

closeness of fit (or distance) to the original data.   

8. The stochastic component of the model comes in the random selection of one of 

the weighted k neighbours.  The day immediately following this chosen neighbour 

in the historical set is used to represent the next day in the synthetic sequence. 

9. Steps 4 through 8 must be repeated for each day of the synthetic data set.   

 

A graphical representation of a k-nn model is given in Figure 2-2.  In this figure, each 

axis can be viewed as one of the parameters to be generated (minimum and maximum 

temperature and precipitation) and each red dot is a historical data point.  The Wójcik 

and Buishand (2003) model, from which this figure was taken, did not use a moving 

window to maintain seasonality.  If it had, each seasonal window would be represented 

by a subset of the red points, causing a different subset to be generated for each day.  

Starting at day one, the black dot is the randomly chosen first generated day.  From a 
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seasonal subset of the red dots the k closest are identified (displayed in blue), one of 

these is then randomly selected (shown in yellow with black outline).  The historical day 

immediately following this chosen day is used to represent the next day in the 

generated set.  This next day is displayed as the black dot in iteration two.  The entire 

process is then repeated from this new black dot (Wójcik and Buishand, 2003). 

 

 
Figure 2-2: K-nearest neighbour diagram (Wójcik and Buishand, 2003) 

 

By using the k-nn algorithm in this weather generator, Sharif and Burn (2004; 2006) and 

others with similar models (i.e. Yates et al., 2003) were able to accurately reproduce 

many statistical properties of the historical weather.  Spatial dependencies which were a 

known deficiency in parametric weather generators are automatically preserved by 

resampling all stations simultaneously in the k-nn model.  As well it has been shown 

that temporal dependencies were maintained at daily, monthly and annual frequencies 

(Sharif and Burn, 2004; 2006).  The k-nn model required no assumptions regarding the 
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probabilistic distribution of any parameters.  Furthermore, very few changes would be 

required to apply this model to another watershed since no calibration process is 

required. 

 

2.3 Spatial Interpolation Methods 

Spatial interpolation can be an important aspect of managing data.  There are two main 

reasons for this.  The first reason is to obtain data at locations where there is no 

historical record.  The second is to generate data at a finer resolution than the historical 

record. 

 

For this project it was required to have hourly data at the same locations as the daily 

data being disaggregated for calibration of the temporal disaggregation model.  As 

hourly data was not available at many of these locations, spatial interpolation was used 

to generate the required hourly data.  It is noted by the IPCC that “spatial and temporal 

scales in atmospheric phenomena are often related, approaches for increasing spatial 

resolution can also be expected to improve information at high-frequency temporal 

scales” (2001, p.751).  This was an added benefit of the spatial interpolation for the 

project.   
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2.3.1 Method Options 

There are numerous acceptable methods for spatially interpolating data.  The reader is 

referred to Dingman (2002) and Tabios and Salas (1985) for a full review of many of 

these methods as they pertain to climatic data. 

 

In the Thiessen polygon method every location is assumed to have data equal to the 

closest gauging station.  As can be seen in Figure 2-3, polygons are a graphical method 

of determining which station is closest to a particular site.  These polygons are created 

by connecting each station to neighbouring stations and then drawing the perpendicular 

bisectors.  Drawing the polygons is not necessary however, if another way of 

determining the closest site is implemented.  Although no reference was given to 

Theissen Polygons, Gutierrez-Magness and McCuen (2004) directly transferred hourly 

precipitation data from one site to another in their studies, assumedly using the closest 

gauge station for each site.  Through their research Gutierrez-Magness and McCuen 

(2004) determined that direct transfer from one station to another gave poor results and 

the results deteriorated as the distance between the stations increased.  Another 

downfall of this method is that weather trends can be lost by directly moving data from 

one location to another. 
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Figure 2-3: Example of Thiessen Polygons (adapted from Anhalt, 2004) 

 
Another method for transferring precipitation data from a gauging site to other 

locations is known as the isohyetal method.  This method is superior to Thiessen 

polygons because it transfers data from a site with potentially similar rainfall as 

opposed to transferring data from the closest site spatially.  In this method, lines are 

drawn connecting locations of equal precipitation values.  These lines, which are 

similar to contour lines on a topographical map, are known as isohyets.  All locations 

are assigned a precipitation value according to the distance to each of the closest 

isohyets (i.e. a point halfway between isohyet 20 and isohyet 30 would be assigned 

a value of 25).  This method is highly subjective as it does not lend itself well to 

computer programming and therefore the isohyets are generally drawn by hand.  In 

order to accurately determine isohyet locations many gauge stations are required.  

This method becomes quite time consuming as isohyets must be determined for 

each precipitation event.  Figure 2-4 shows an example of the isohyetal method, for 

further explanation see Hornberger (1998). Another method similar to the isohytal 
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method is the hypsometric method.  This is only appropriate where topography is a 

major factor in precipitation patterns (i.e. in mountain ranges etc.) (Dingman, 2002). 
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Figure 2-4: Isohyetal method schematic 

 

There are many non-graphical methods of spatial interpolation available.  The most 

basic of these is the inverse distance weighting method, which is discussed in more 

detail in Section 2.3.2.  The other methods in this category are more complicated 

and will be discussed here only briefly as they are not implemented in this research.  

Multiquadratic interpolation uses quadratic relationships to determine cones of 

influence around each gauging station.  At any location these cones of influence can 

be added together to determine the value at that point.  Polynomial interpolation, 

which is also known as regression (Tabios and Salas, 1985), is a surface fitting 

method not an interpolation method, meaning that it may not reproduce the recorded 
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data at the gauging stations (Dingman, 2002).  Surface fitting was not desirable for 

this project, so this method was not investigated further.  The final two methods 

investigated are quite similar.  Both optimal interpolation and kriging determine the 

weighting of each gauge station on the required site by minimizing the variance of 

error for the interpolation.  The main difference between these two methods is that 

optimal interpolation is based on correlation between the stations while kriging is 

based on variograms (Tabios and Salas, 1985).  Both of these methods assume 

isotropic conditions over the entire region. 

 

2.3.2 Inverse Distance Weighting 

Inverse distance weighting is a common method of spatial interpolation.  It is popular 

because of its simplicity and accuracy in relation to other methods (Lapen and Hayhoe, 

2003).  Inverse distance weighting is based on the theory that precipitation 

measurements taken closer to the location requiring data should have more influence 

on the interpolation than stations which are farther away.  Equation 2-2, below, shows 

how the interpolated data at a given location Z, is calculated from measured data.   

1
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1where   
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i i
i
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=

=

= =
∑

∑
(2-2)

 

 

P  is the known data at station i and dIn this equation Zi i is the distance from station i to 

the required location raised to the exponent P.  In order to determine Z, both the 

numerator and the denominator are summed over all n stations.  Historically the most 
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common value used for P has been two; this is a special case of inverse distance 

weighting known as inverse distance squared.  For the general case, as P increases 

more precedence is placed on the stations closer to the required location.   

 

Lapen and Hayhoe (2003) did an extensive study on spatial interpolation techniques 

based on monthly data from southern Ontario, Canada.  This study is of particular 

importance because the study area coincides with the region of interest of the current 

project.  A summary of their results is presented in Figure 2-5.  This figure compares the 

relative mean square error of their outputs for each of the techniques tested. 
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OK = ordinary kriging 
MRK = modified residual kriging 

IDW = inverse distance weighting 
LR = linear regression 

Figure 2-5:Comparison of spatial interpolation methods at South-Western Ontario 
(Lapen and Hayhoe, 2003) 

 

Through analysis of these results Lapen and Hayhoe (2003) determined that either 

inverse distance weighting or modified residual kriging are the best options for climate 

interpolations in this area.  Lapen and Hayhoe (2003) used the distance to the coast of 

Lake Huron as a secondary variable for the modified residual kriging.  This was 

because of the lake effect climate known to be present in this area (see Section 5.1.2).  

This makes the modified residual kriging much more complicated to calculate than the 
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inverse distance weighting method; therefore since similar results were achieved the 

inverse distance weighting method appears to be the best method for this application. 

 

A noted limitation of the inverse distance weighting method occurs if there are multiple 

gauge stations particularly close to each other.  In this situation the inverse distance 

weighting method does not discriminate between this redundant data and the location 

with two stations will have twice as much influence on the output data as it should 

(Tabios and Salas, 1985).   

 

2.4 Temporal Disaggregation Methods 

Precipitation data are often required at a finer scale than what is measured, such as 

hourly rather than daily, for many hydrologic models.  One option for creating data at 

this timescale is to modify the weather generator to produce hourly data, while another 

is to disaggregate the daily data, which are output from the weather generator, into 

hourly data.  Porter and Pink (1991) recognized that generation of monthly data rarely 

preserves the annual statistics of the time series.  They noted that disaggregation of 

generated annual data was a good way to maintain the necessary statistical properties 

of the data, at both the annual and monthly scale.  Wòjcik and Buishand (2003) 

extended this theory to the disaggregation of daily climate data.  They compared these 

two options for 6-hour precipitation and temperature data and determined that 

disaggregation of daily data preserved the second order statistics much better than 

directly generating data at the finer timescale.   

 

 20



2.4.1 Methods Formerly Used 

The most basic disaggregation method is uniform disaggregation.  This method simply 

takes the daily data and divides it evenly into 24 hours.  As is intuitively assumed this 

method does not produce data that compared well to actual rainfall (Gutierrez-Magness 

and McCuen, 2004).  This is because precipitation events do not last for 24 hours with 

equal intensity in all hours.  Another method tested by Gutierrez-Magness and McCuen 

(2004), known as weather pattern disaggregation, uses weather patterns based on site 

specific meteorological studies.  The weather patterns used still spread the precipitation 

values across all 24 hours; however the uniform distribution was replaced.  This method 

was not deemed to be much better than the uniform distribution (Gutierrez-Magness 

and McCuen, 2004).  This method is also not desirable as it is not transferable to other 

locations, because the weather patterns which are developed by the USGS are site 

specific.   

 

Socolofsky et al. (2001) produced a stochastic disaggregation which divided daily 

rainfall into a random number of events each starting at a random time throughout the 

day.  The random number generators for this model were based on the cumulative 

density function of selected events at an hourly station near the daily station being 

disaggregated.  In the case that events overlapped the intensities that fell in the same 

hour were added together.  However, events were not permitted to crossover from one 

day to the next, which would cause problems in the case of events that lasted longer 

than one day.  There is no way to extend this model to a multisite scenario as there 

would be no way to preserve the correlations between stations.  
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The scaling based cascade model presented by Olsson and Berndtsson (1998) is a 

stochastic model based upon empirical observations of rainfall events. Figure 2-6 gives 

a visual representation of this model.  This model splits the rainfall at each level based 

on patterns determined by calibrating the model with actual data and estimating the 

probability distribution of rain in each section.  Through this method the model was able 

to accurately reproduce a variety of statistics for the rainfall at the study site (Olsson 

and Berndtsson, 1998).  While there is no way to extend this model to a multisite 

scenario, it may be functional at other sites.  However, Olsson and Berndtsson (1998) 

did not discuss how portable the probability distributions would be to other locations.  

This model has been shown to work at timescales as fine as 45 minutes and so could 

be effective in this study, however this method does not provide for maintaining 

correlations between stations.  Olsson and Berndtsson (1998) do not mention overnight 

storms or the model’s ability to handle such events. 

 

25 20 20 35

25 10 5 5 20 35

25 15 5 20 35

45 55

100

= no rain observed 5 = 5mm of rain observed  
Figure 2-6: Diagram of scaling based cascade model (Olsson and Berndtsson, 1998) 
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Along similar lines of thought, Kottegoda et al. (2003) proposed a method which used 

geometric distributions to determine wet and dry periods.  An advancement they made 

over Socolofsky et al. (2001) is that Kottegoda et al. (2003) were able to utilize their 

model in a multisite scenario.  This model was based on historical hyetographs and 

disaggregated daily rainfall based on a beta distribution.  Although this model was used 

for a multisite application, due to the statistical nature of the model, it was not able to 

ensure events maintained consistent start times across the region, and station cross 

correlations were not well preserved.  It was noted, however, that even with these 

spatial deficiencies, downstream hydrographs were reproduced well. 

 

The above models are parametric in nature and therefore would require determination 

of site specific parameters in order to be used at locations other than the one they were 

originally developed for.  These models therefore are not very portable.  Since the 

objective of this project is to create a set of models that will be adaptable to other 

watersheds for future use, these parametric models are not desirable for use on this 

project.  The following paragraphs detail some of the non-parametric models available 

for temporal data disaggregation.   

 

Although methods had previously been employed for data disaggregation (eg. the 

Thomas-Fiering Method), they “never caught on because of very obvious theoretical 

shortcomings” (Salas et al., 1980, p.421).  Valencia and Schaake (1973) proposed a 

model that became the first well accepted method for this purpose.  The basic form of 

this model has linear dependence as given in Equation 2-3. 
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(2-3)Y AX Bε= +  
 

In this equation Y is a matrix of the disaggregated data, X is the data being 

disaggregated, A and B are matrices of estimated parameters and ε is a matrix of 

random numbers.  A and B are estimated from the covariances of X and Y in the 

following manner, as presented by Valencia and Schaake (1973). 

1
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YX XX

T
YY YX XX XY
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−

−

=

= −
(2-4) 

 

From these equations it is apparent that there are infinite solutions for B.  This model is 

computationally expensive because beyond the parameter estimates this method also 

requires all data to be normal with a mean of zero.  This means that data 

transformations may be necessary before the model can be used.  There are several 

other drawbacks to this method.  Despite the number of required parameters, this model 

is not able to maintain relationships from one original data point, X, to the next.  If data 

transformation is required to achieve normal data with a mean of zero, then the sum of 

the disaggregated data will not equal the original data (Salas et al., 1980).  Since this is 

not generally acceptable in disaggregation, further adjustments to the data must be 

made. 

 

In an attempt to improve Valencia and Schaake’s method, Mejia and Rouselle (1976) 

made revisions to maintain the temporal relationships from one data point to another. 

This extended model is similar in form to the original, with an extra term.  Equation 2-5 

shows the form of the extended model (Mejia and Rouselle, 1976).   
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(2-5)Y AX B CZε= + +  
 

In this new term, Z is a matrix of previously disaggregated data.  As can be seen in the 

following equation (Salas et al., 1980) the parameter terms become markedly more 

complex in this model. 
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A third variation on this model was provided by Lane (1983).  This variation is a 

condensed version of the model to reduce the number of parameters required.  The 

form of this model is given by Equation 2-7.  The subscript τ in this equation refers to 

the period currently being generated (i.e. the current season, hour etc.).  Due to the 

nature of this model significantly less parametric estimation is required, however, it does 

not maintain cross-correlations and the sum of the disaggregated parts still does not 

equal the whole (Salas et al., 1980).  The formula for the condensed model as 

presented by (Lane, 1983) is given in Equation 2-7. 

(2-7)
1τ τ τ τ τε −= + +Y A X B C Y  

 

Commenting on the computer package written to perform his model Lane notes: 

While the programs were developed with streamflow in mind, they could 
be applied to other variables, such as rainfall, evaporation, water quality, 
sediment, and crop water requirements, either alone or in combination… 
This package is not presently designed to be applicable to event 
dominated series such as daily rainfall or runoff. (Lane, 1983, p. I-1) 
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This shows that although models may be written for streamflow, they may well be valid 

with respect to precipitation data.  As well the user of any model must be aware of the 

impacts of working at a small scale, particularly with daily precipitation data.  In further 

studies it was determined that this set of methods performed poorly for data with high 

variance (Srikanthan and McMahon, 1982).  Therefore, while they may be valid for 

annual stream flow data they are not appropriate for use with daily precipitation data. 

 

Another model was proposed by Gutierrez-Magness and McCuen (2004).  This model is 

known as satellite ratio disaggregation.  In this model hourly data are generated at a 

daily gauge station by using the distribution of hourly data at an hourly gauge station 

from a nearby watershed.  This requires data sets at two sites for the same time period 

as it simply transfers data from one site to another, using ratios.  This model created a 

negative bias in the data because there is no way to accommodate for days with data at 

only one site, if there was no precipitation at either site, a dry period was created in the 

disaggregated data.  This model cannot be extended to a multisite situation, but is 

mentioned here for reference only. 

 

2.4.2 Method of Fragments 

The method of fragments was first introduced in the early 1960’s by G.G. Svanidze.  

This method was an improvement upon previous statistical disaggregation methods as 

it did not require the assumptions and vast amounts of data associated with probability 

distribution fitting that was required by the previous methods (Svanidze, 1977).  From a 
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survey of the literature, it appears that the method of fragments is currently the most 

popular method for disaggregation of precipitation data.  

 

2.4.2.1 Basic Method 

In order to perform the method of fragments, data at both the original and the 

disaggregated time scale are necessary.  The benefit is that the amount of data 

required at the smaller time scale is much less than the amount of data that is being 

disaggregated. 

 

For each piece of daily data that is to be disaggregated, a set of fragments must be 

formed.  The fragments are the fraction of daily precipitation that occurred in each hour 

of the day, thus the fragments sum to unity.  Equation 2-8 and Equation 2-9 show the 

general form of the method of fragments.  In Equation 2-8, wi is the fragment to be 

calculated for hour i, hi is the data from the series chosen to produce fragments (e.g. the 

chosen hourly data) and n is the number of data in that series (e.g. 24 hours). 
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Each fragment is then multiplied by the daily data (d in Equation 2-9) being 

disaggregated such that the total precipitation in the day is not altered. This produces 

the new hourly values (hi’ in Equation 2-9). 

(2-9)' *i ih w d=  
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The series of hourly data to be used as fragments can be chosen by any number of 

methods.  The original method involved choosing a random series for fragments; 

however, this was shown to inadequately reproduce the necessary statistics (Srikanthan 

and McMahon, 1982).  It is better to choose the series which most closely matches the 

data being disaggregated (Srikanthan and McMahon, 1982).  For instance, in the case 

of precipitation data, it is best to choose a series with a total daily precipitation that 

closely matches the daily data being disaggregated.  This is because the shapes of 

large precipitation events are not the same as those of small events.  Other factors that 

may be included in the matching process for precipitation data include time of year, 

temperature, humidity and air pressure.  Choosing a closely matching set of fragments 

will ensure that precipitation events are generated with the proper shapes and 

characteristics.   

 

2.4.2.2 Method of Synthetic Fragments 

One problem that can occur with the method of fragments, especially if the data set 

being used for fragment generation is small in relation to the original data set, is 

fragment repetition causing a cyclic pattern in the output.  Porter and Pink (1991) 

propose a method of synthetic fragments to be used in this case.  Their method involves 

creating synthetic data at the time scale to be used for the fragments (i.e. generating an 

hourly data set to draw fragments from).  This could be done using a k-nearest 

neighbour or any other reasonable approach.  This synthesized data set should be long 

enough to allow the selection of different fragments for each disaggregation period, thus 

removing the repetitive pattern occurring in the basic method of fragments.  Porter and 
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Pink also note that this method will improve the accuracy of disaggregation of large 

events as events of this magnitude may not be seen in the short historical record of 

(hourly) data, but are more likely to be present in the generated fragment set.  Since 

extreme events are one of the main interests of hydrologic models, this is a key feature.  

The synthetic fragments will create more options for the disaggregation of large events.   

 

Wòjcik and Buishand (2003) propose another method for reducing repetition in the 

chosen fragments.  They suggest choosing a randomly selected fragment set from the k 

closest matches instead of choosing the fragment set that most closely matches the 

data being disaggregated for each day.  This adds the stochastic aspects of a k-

nearest-neighbour approach to the fragment selection process and could potentially 

reduce the amount of repetition in the final output.  

 

2.4.2.3 Smoothing Methods 

Svanidze’s original model, which disaggregated stream flow from annual data to 

monthly data, reproduced monthly statistics well, but was not able to satisfactorily 

maintain annual moments (Svanidze, 1977).  Porter and Pink (1991) note that even with 

the use of synthetic fragments some statistical properties are not maintained in their 

output.  Their study also involved the disaggregation of annual data into monthly data.  

They identified that although they managed to maintain the monthly statistics, they were 

not able to maintain the correlation between the first month of the year and the last 

month of the preceding year. 

 

 29



Maheepala and Perera (1996) improved upon this design by adding a smoothing factor 

into selecting the series to be used as fragments.  Along with matching the total of the 

chosen fragments to the value of the data being disaggregated, they compared the data 

directly preceding the fragments to the last data point previously disaggregated.  Their 

smoothing method is presented in Equation 2-10 for use at a single site (adapted from 

Maheepala and Perera, 1996).  By doing this they were able to preserve the correlation 

between the disaggregated data at the larger time scale. 
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D=generated daily data 
H=historical hourly data 
h=last hour of hourly data (example 11pm) 

j=day of hourly data 
k=day of daily data 
S=standard deviation 

 

2.4.2.4 Multi-Site Tactics 

The selection of fragments becomes more complicated when a study area of more than 

one site is considered.  In this case the process for matching a set of fragments to the 

data being disaggregated is no longer well defined.  This is still a developing field, “the 

use of method of fragments for the temporal disaggregation of multisite weather data 

requires further study” (Wójcik and Buishand, 2003). 

 

One solution to this problem is to treat each site individually and choose a set of 

fragments for each site.  This approach is known as random selection.  This approach is 
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reasonable only if the cross-correlation between stations is low because it does not 

maintain the correlations among stations (McMahon and Mein, 1986, p.262).  This 

approach is implemented by running multiple cases of a single site analysis. 

 

The key site approach is presented by McMahon and Mein (1986, p.262).  This 

approach is acceptable if one site stands out from the others as being of greater 

importance or influence.  Perhaps this key site has considerably better data than the 

others, or is the focus of interest in the study.  If a key site is used in the selection 

process of the fragments, comparison of all fragment possibilities are made at this site 

alone.  Once the selection of fragments has been completed at this site the fragments 

corresponding to the same historical period are used at all stations.  This approach 

maintains cross-correlations among stations because the same historical period is used 

for all stations. 

 

Porter and Pink (1991) determined that the key site approach was not valid in their 

study because of the variability between their sites.  It was not deemed suitable to 

assume that one site could be representative of what was occurring at the other sites.  

In order to maintain station correlation without the use of a key site they performed a full 

analysis of all stations and chose a set of fragments that fit best with each site.  This 

approach is computationally expensive, especially as the number of sites increases.   
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2.4.2.5 Usage for Daily Precipitation Data 

Although the majority of studies in the literature using the method of fragments were 

disaggregating annual streamflow data, there is evidence that this method is applicable 

for use on daily precipitation data as well.  Research completed at a fine timescale 

includes a study by Wójcik and Buishand (2003).  They studied the disaggregation of 

daily precipitation into 6-hour segments.  This is the finest timescale on which 

precipitation disaggregation was performed that could be found in the literature.  Wójcik 

and Buishand (2003) disaggregated daily precipitation data (which had been generated 

through the k-nearest neighbour technique) into 6-hourly data using the method of 

fragments.  Positive results were achieved through this method (Wójcik and Buishand, 

2003), therefore, although the effectiveness on an hourly scale is still untested, these 

methods are acceptable for use with precipitation data on a sub-daily scale.   

 

In summary, this literature review discussed the process utilized by the weather 

generator which was produced in earlier portions of this project.  It was determined that 

the inverse distance weighting method is the most appropriate for the spatial 

interpolation of hourly precipitation data.  Finally, although many options are available 

for temporal disaggregation of daily precipitation data, this review of the literature aided 

in deciding upon the use of the method of fragments for the disaggregation required in 

this project.  
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3 Spatial Interpolation 

Spatial interpolation was required in this study to generate hourly data at the same 

locations as the daily precipitation gauge sites.  Data at these locations was a required 

input for the temporal disaggregation of the future daily climate data from the k-nn daily 

weather generator.  After considering the available methods, as discussed in Section 

2.3, it was decided that the inverse distance weighting method would be used for this 

application. 

 

3.1 Input Data 

Historical hourly data composed the main input for this portion of the study.  A small 

amount of preprocessing was performed on the historical hourly data.  This 

preprocessing involved the removal of outliers from the data set; however data missing 

from the historical data set were not filled in.  Since the nature of the spatial 

interpolation model did not require data at each station for all time steps, it was deemed 

more appropriate to leave the data missing than to create more uncertainty by filling in 

the missing data. 

 

3.2 Methodology 

3.2.1 Inverse Distance Weighting 

Spatial interpolation for this study was performed by using the inverse distance 

weighting method.  Inverse distance weighting was chosen because the method is fairly 
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simple to implement and the literature studied (refer to Section 2.3 for more detail) did 

not provide any reason to assume that another method would provide superior results.  

Furthermore, other portions of the project which this study was a part of, have also 

employed inverse distance weighting for the interpolation of hourly precipitation data.  

Therefore consistency was maintained throughout the project by choosing the same 

method.  More information including the formulae used in this method can be found in 

Section 2.3.2. 

 

3.2.2 Different Exponents 

Inverse distance weighting may be more commonly referred to as inverse distance 

squared because the most common exponent used in the formulation is two.  No 

literature could be found which used this method (or any method for that matter) with 

hourly precipitation data and no reasoning for the use of the number two as an 

exponent was found.  Therefore, it was determined that more extensive modelling was 

required to determine the value of the exponent to be used with the inverse distance 

weighting method for this application. 

 

A subset containing five of the historical hourly stations was used to calibrate the 

exponent.  For each station, interpolation was completed using the data from all stations 

except the station in question.  This process was repeated with various exponents for 

each of the five stations.  Statistical testing was then completed on the interpolated 

hourly data to determine which exponent produced acceptable results.  Once a 

permissible exponent was chosen, interpolation was performed on the full set of 
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locations of daily stations for validation purposes.  The interpolated data at the daily 

station locations were then compared to the historical data to determine which exponent 

best reproduced the historical data.   

 

3.2.3 Distance Types 

It was assumed that all precipitation events move in a common direction; therefore, 

either the latitudinal or the longitudinal distance could be more significant than the 

absolute distance to the interpolation.  This reasoning was based upon examination of 

the historical weather patterns over the watershed used in this study, as will be 

discussed in Section 5.1.  Because of these trends, interpolations were run for each of 

the three distance types in order to determine which type reproduced the original data 

most accurately.  A schematic of these distance types can be seen in Figure 3-1. 
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Figure 3-1: Diagram of distance types 

 

3.3 Results 

A paired t-test was used to compare the interpolated hourly data to the historical hourly 

data for various interpolation runs during the analysis of the output from the spatial 

interpolation model.  The form of this test is given in Equation 3-1.  Based on this 
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equation the best interpolated data will minimize the absolute value of t.  To be 

considered acceptable the calculated t value must be within the range of some specified 

critical t-values.  Examples of widely used critical values are the 10% critical t-value and 

the 1% critical t-value.  When determining the critical values used for assessing the 

calculated t-value, the parameter n was assumed to be infinite due to the large data set.  

For further details on this test see Montgomery (2001).   

( )
( )X Y

X Y
t

n
σ −

−
=  

(3-1) 
X=spatially interpolated hourly data 
σ=standard deviation  

Y= historical hourly data 
n=number of data points  

 

3.3.1 Exponent 

To determine the proper exponent to use in the inverse distance weighting equations, a 

t-test was used to compare the interpolated data to the historical hourly data for a 

variety of possible exponents.  As can be seen in Figure 3-2 the traditionally used 

inverse distance squared method (with an exponent value of two) did not produce 

results that fell within the 1% critical t-value range for the majority of the sites tested.  

Thus an exponent of two is not acceptable for use in the case of hourly precipitation 

data (at least in the region used in this study).   

 

Upon examination of Figure 3-2 it was determined that the most appropriate exponent 

for this application was either five or six.  When exponents of less than five were used in 

the inverse distance method, t values that were too large were calculated at most of the 

sites, and when an exponent of seven was used, t values began to drop significantly 
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below zero.  This downward trend in the value of t continued as the exponent was 

increased.   
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Figure 3-2: Paired T-Test comparison for different exponents 

 

After it was determined which exponents were permissible based on the t-test 

comparison, it was necessary to determine which exponent produced data with 

correlations that reasonably matched those of the historical data.  Interpolations on the 

entire set of required daily station locations were completed for exponents of both five 

and six.  The autocorrelation and the spatial correlations of the interpolated data were 

compared visually to those of the original data set.  Figure 3-3 and Figure 3-4 show the 

autocorrelation and spatial correlation of the historical and interpolated data sets 

respectively with each exponent.   
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Figure 3-3: Autocorrelation results with different exponents 
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Figure 3-4: Spatial correlation of hourly data with different exponents 
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Figure 3-3 and Figure 3-4 are both based on interpolation by absolute distance.  Further 

discussion on distance types is provided in Section 3.2.3 and Section 3.3.2.  Figure 3-3 

is averaged over all stations and Figure 3-4 shows only the trend line of the interpolated 

data using each exponent for clarity purposes.   

 

As can be seen in the above figures, neither an exponent of five nor six was able to 

reproduce the correlations of the historical data.  This prompted the calculation of 

correlations through the use of various other exponents.  The results of this test showed 

that the correlations of the interpolated data were similar and therefore the exponent 

had little impact on the correlations.  Based on these tests there does not appear to be 

a significant difference between using an exponent of five or six.  Since an exponent of 

six appears to provide slightly better correlations, it was chosen as the exponent that 

would be used for the remainder of this study. A detailed analysis of these results can 

be found in Section 6.1

 

3.3.2 Distance Types 

Once an exponent was decided upon, the type of distance used for interpolation was 

examined.  Interpolation was completed for each of the three distance types: latitudinal, 

longitudinal and absolute.  This was done to determine which method of calculating the 

distance for the inverse distance formulae produced the most accurate interpolation 

results.  The results of these interpolations are displayed in Figure 3-5.  The exponent 

value determined in the previous section was checked in this step by visually comparing 

 39



a variety of exponents with each distance type.  This test confirmed the results noted in 

the previous section. 

 

From Figure 3-5 it is obvious that using the absolute distance in the inverse distance 

formulae was acceptable for use with hourly data in the region of study.  Using the 

longitudinal distance in the interpolation created erratic results in the spatial 

correlations.  While using the latitudinal distance in the interpolation created data that 

followed the general downward trend in correlation with distance, it did not create as 

smooth a trend as was required.  Therefore the absolute distance was chosen as the 

distance type for use in the inverse distance interpolation of hourly precipitation data.   
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Figure 3-5: Spatial correlation of hourly data for interpolation with different distance calculations 
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3.3.3 Number of Stations Required for Interpolation 

The number of data stations used within the inverse distance weighting method, when 

interpolating on an unknown site, can have an effect on the interpolated data.  If there 

are not enough gauge sites with valid data then there will not be a proper distribution of 

precipitation across the entire watershed.  An extreme case would occur if only one site 

was used during interpolation.  In this case, interpolation at all desired locations would 

result in the same value being produced; this would result in no regional variation.   

 

To determine the minimum number of sites required to achieve reasonable regional 

variation, interpolations were completed multiple times with an exponent of six utilized in 

the inverse distance formulae,.  For each run, a constraint was implemented limiting 

interpolation to only the hours that had a minimum number of sites with data.  For 

example, in 1960 only three hourly stations were operating within the study region; 

therefore the data from 1960 was not included in any run with a specified minimum 

number of stations more than three.  However, by 1984 there were 12 operational 

hourly data stations in the study region; therefore the data from 1984 would be included 

in all runs with a specified minimum of 12 stations or less.  The specified minimum 

number of sites used in this testing ranged from one (in which all available times were 

used) to twenty (only times that had twenty or more sites with valid data were used) at 

increments of five.  The t-test depicted in Figure 3-6 was used to compare the 

interpolated data sets to the original data at the selected stations. 
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Figure 3-6: Number of sites required to have valid data for interpolation 

 

It can be seen from Figure 3-6 that minimums of both five and ten produce acceptable 

results within the confidence interval limits.  Figure 3-6 does not show a consistent 

increase in accuracy as the minimum number of sites increases.  This is because the t-

test value is also dependent on the number of data points available (refer to Equation 3-

1).  As the minimum number of gauge stations increased, the size of the overall data set 

decreased because not all of the gauge stations were operational for the entire 

historical record period (e.g. as noted in Section 5.1.2 gauges are prone to failure in 

winter), this can be seen in Table 3-1.  This caused the data set to be smaller if fifteen 

or twenty gauge stations were required, which in turn caused an increase in the t-test 

value.  Since a large data set was desirable for the upcoming temporal disaggregation 

and there did not seem to be a significant difference in the accuracy of interpolation 

when using a minimum of five or ten stations, a minimum of five stations was used in 

the remainder of this study. 
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Table 3-1: Number of data points used in the creation of Figure 3-6

Minimum 
Number of 
Stations 

Exeter London Stratford Woodstock Conestogo 

150123 336142 359426 359451 365943 1 
150123 136816 144712 144737 151229 5 
147506 130732 138279 138304 144796 10 
102953 74944 77992 78017 85252 15 
22642 15085 13833 13856 13855 20 
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4 Temporal Disaggregation 

The main focus of this research was the temporal disaggregation model.  Temporal 

disaggregation was performed on daily precipitation data to produce data at an hourly 

timescale for use in hydrologic models created in a later portion of the project which this 

thesis is a part of.  Upon examination of the available methods for temporal 

disaggregation (see Section 2.4) it was determined that the method of fragments 

showed the most potential for success within this study.  A diagram of data flow within 

this model is provided in Figure 4-1.  Figure 4-1 is only a summary of the process, for a 

detailed flow chart of the model developed in this study refer to Appendix A. 
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properties
Fragments Disaggregated 

Hourly Data

Historical Data Input Previous Work Current Thesis  

Figure 4-1: Flow chart of data in the temporal disaggregation model 

 

4.1 Input Data 

There were two main inputs used in the temporal disaggregation model for this study: 

daily and hourly data. 
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The daily data input for temporal disaggregation was produced by the K-nn weather 

generator as described in Section 2.2.  This weather generator produced daily data sets 

for different climate scenarios as required for this portion of the project. 

 

The hourly data input was produced by the spatial interpolation model discussed in 

Chapter 3.  This data was required to reproduce the precipitation trends of the study 

region.  For this study the hourly data used were created with the spatial interpolation 

method presented in Chapter 3.  Although use of the spatial interpolation model is not 

ideal, it was used in this case because the hourly data were required to be at the same 

locations as the daily data that was output by the weather generator.  Other potential 

sources of hourly data include the direct use of historical precipitation records.  This is 

only possible if the locations of the hourly precipitation gauges coincide with the daily 

gauge sites.   

 

4.2 Data Preprocessing 

The time of day at which a daily gauge station is measured creates the definition of a 

day for that station.  For example, if a daily station is measured and recorded at 8 a.m. 

every day, a day is defined as 8 a.m. to 8 a.m. the following morning, for that station.  

Therefore, the measurement time, (by Environment Canada, etc.) of the daily data had 

to be determined before temporal disaggregation could be performed.  For all of the 

stations in this study that had both hourly and daily precipitation gauges, the hourly data 

were summed for each day using different definitions of a day (i.e. midnight-midnight, 1 
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a.m. to 1 a.m. etc.) in order to determine the measurement time of the data.  These 

sums were then compared to the historical daily data from the same period to determine 

when the daily data were recorded.  The standard deviation of the difference between 

the daily data and the sum of the hourly data was minimized at the time the daily data 

were recorded.  The results of this test can be seen in Figure 4-2.   
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Figure 4-2: Daily data recording time 

 

From Figure 4-2 it can easily be seen that the daily data used was recorded at different 

times of the day; therefore the definition of a day, as measured by Environment 

Canada, etc., was ill-defined.  Because of this discrepancy, temporal disaggregation 

was completed with both the actual daily recording times as determined for each 

station, as well as with a common start time for all stations.  These two methods were 

then compared to determine the significance of the daily data recording time. 
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4.3 Methodology 

The method of fragments was the temporal disaggregation method used in this study. 

More information on the method of fragments can be found in Section 2.4.2.  A flow 

chart of the temporal disaggregation process developed for this research and described 

below is located in Appendix A for reference.   

 

4.3.1 Event Model 

It was determined that it would be infeasible to disaggregate the entire set of daily data 

produced by the weather generator due to the computational time required to run such a 

model.  The time required for this model to run would increase dramatically with the 

number of stations involved as well as with the length of the generated daily data set.  

Since output from this model is intended to estimate potential floods only and not 

droughts, it was determined that only those days with significant amounts of 

precipitation needed to be disaggregated.  This is sufficient because drought 

assessment can be completed with the generated daily data and does not require a 

finer timescale.  The days with significant precipitation will herein be referred to as event 

days.  By only disaggregating event days the time required to run the model was 

dramatically decreased.  For the purposes of this thesis, an event is defined as all 

consecutive event days, with at least one non-event day separating events. 
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4.3.2 Multisite Approach 

Although many methods are available for selecting a set of fragments in studies 

containing more than one gauge station (see Section 2.4.2.4 for a review of these 

methods), a new variation is proposed here.  This new method is a hybrid between the 

key site approach (McMahon and Mein, 1986; Porter and Pink, 1991) and the method 

used by Maheepala and Perera (1996) which took every station into consideration when 

choosing fragments.   

 

The key site approach is thought to be applicable in two scenarios.  The first scenario 

occurs if one site has greater significance to the area than any other site.  The second 

scenario occurs if there is very little spatial variation across the entire area under 

consideration, such that a single site could provide a good representation of the entire 

region.  Maheepala and Perera’s (1996) approach is applicable in more situations than 

the key site approach, but it is computationally expensive, because it includes every 

data station in the calculation.  The proposed method is thought to maintain a balance 

between the key site approach and Maheepala and Perera’s (1996) approach. 

 

The proposed approach involves multiple key sites, thereby representing the distribution 

across the watershed without the expense of examining all sites in the study area.  This 

multiple key site method requires the user to select the number of key sites to be used 

for a specific application.  By increasing the number of key sites, the user decreases the 

ambiguity of the selection process; however, by decreasing the number of keys sites, 
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the user decreases the required computational time for fragment selection.  It is 

important to select enough sites to accurately represent the region of study. 

 

Key sites should be chosen so that the entire area being disaggregated is well 

represented.  The key sites should be spread out across the study area and any 

geographically or climatically significant areas should be represented.  Consideration of 

data quality should be made when determining the key sites to be used.  Sites with 

good quality data should be used as these sites will be used to determine the fragments 

chosen for the entire study area. 

 

In order to obtain credible results from the equations presented in Section 4.3.3, there 

must be precipitation at a minimum of one of the key stations on each event day.  If 

there is no precipitation at any of the key sites on a specific event day, the results 

acquired from the disaggregation will be completely arbitrary.  In this case it is proposed 

that all sites with recorded precipitation on that event day be temporarily used as key 

sites, regardless of these sites’ ability to meet the criteria for key site selection as stated 

above.  This will rectify the problem of having no precipitation at the key stations during 

an event day, without going to the extent of using all of the stations for comparison. 

 

4.3.3 Method for Choosing Fragments 

It was presumed that in order to produce acceptable results, the fragments should be 

created from the hourly data best suited to the daily data being disaggregated.  

Srikanthan and McMahon (1982) determined that using randomly selected fragments 

 49



did not produce desirable data, so randomly selected fragments were not applied in this 

study. 

 

Although deterministic models using the method of fragments are known to be 

susceptible to repetition, this study employs a strictly deterministic approach.  This 

approach was implemented for a variety of reasons including time constraints and the 

lack of evidence to support the success of stochastic methods. Wójcik and Buishand 

(2003) provided a method for performing a stochastic method of fragments, and suggest 

that it will remove the repetition in the output, but no results were published by the time 

the current study was completed. Since a large data set was available from the spatial 

interpolation model output, it was assumed that repetition would not be a great concern 

in this study and that the deterministic method would suffice. 

 

4.3.3.1 First Event Day of an Event 

During the disaggregation of the first event day of any event there is no hourly data in 

the previous day to compare it to because, by definition, the day prior to the beginning 

of an event must be a non-event day.  Therefore, no smoothing methods are required 

on the first day of an event.  Although there may have been some precipitation in the 

day previous to the first day of an event, the precipitation must not have been a large 

enough volume for the previous day to be considered an event day.  Therefore it is not 

necessary to incorporate the previous day’s precipitation into the pattern being 

produced for the event. There is no precedence put on the time of day when the 

precipitation occurs during the fragment selection process for the first event day of an 
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event.  By selecting the fragments for the first day of an event in this manner, no 

assumptions were made regarding the precipitation on the previous day. 

 

That being the case, Equation 2-10 presented in Section 2.4.2.3 cannot be fully 

calculated.  The fragments for the first event day of each event were chosen by 

Equation 4-1 which is a simplified version of the equations provided by Maheepala and 

Perera (1996).   
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D=generated daily data 
H=historical hourly data 
h=last hour of hourly data (example 11pm) 
S=standard deviation 

i=gauge station 
j=day of hourly data 
k=day of daily data 

 
The series of hourly data chosen to be used as fragments for disaggregation will be that 

which provides the minimum value of α, calculated using all of the key sites, i.  α is a 

parameter created to determine the similarity of a series of hours (Hj) to the daily data 

point (D) being disaggregated.  While serving more functions if applying a smoothing 

factor (refer to Section 4.3.3.2), the standard deviation in the denominator of Equation 

4-1 standardizes all of the key stations to each other for a multi-site application.  

Equation 4-1 used by itself without any smoothing factors is essentially the method 

suggested by Srikanthan and McMahon (1982) with an extension added for multi-site 

capabilities.   
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4.3.3.2 Subsequent Event Days 

While the first event day to be disaggregated for an event is not influenced by preceding 

precipitation, all subsequent event days must maintain some continuity with the former 

portion of the event.  This ensures that the event responds as a single unit with proper 

sequencing and not as multiple single day events that happen to occur in succession.  

For instance if a large event is occurring overnight, it should be able to continue itself 

into the next day and not just abruptly stop because that’s when the next daily data 

were recorded.  A method was proposed by Maheepala and Perera (1996) to maintain 

statistical properties at timescales larger than the intended disaggregated data. 

 

All subsequent event days in this study had fragments chosen using the standard 

comparison methods presented in Section 4.3.3.1, with an added smoothing function to 

maintain any precipitation patterns that existed on the day turnover.  This results in the 

use of Equation 2-10 (Maheepala and Perera, 1996) in its full form, for a multisite 

application.  For a further explanation of the work by Maheepala and Perera (1996) 

including this equation refer to Section 2.4.2.3.  The equation in its expanded form is 

given in Equation 4-2.   
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D=generated daily data 
H=historical hourly data 
h=last hour of hourly data (example 11pm) 
S=standard deviation 

i=gauge station 
j=day of hourly data 
k=day of daily data 
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The optimal hourly series for fragment creation of event days after the beginning of an 

event will minimize the value of α β+ .  As noted previously, α is used to compare a 

series of hours to a daily data point.  However, β is a parameter created to determine 

the similarity between the last hour of historical data prior to the hourly series currently 

under examination (hj-1) to the last hour of the disaggregated hourly series (hk-1).  In 

Equation 4-2 the standard deviation is used to standardize the key stations as well as 

standardize α to β.  The beta portion of Equation 4-2 serves as the smoothing function 

for events that span over more than one day in the daily record. 

4.3.3.3 Seasonality 

Precipitation patterns vary depending on the season.  As will be discussed in Section 

5.1.2, in the region of study summer weather patterns tend to produce thunderstorms 

while spring and fall weather patterns tend to produce longer less intense rainfall events 

influenced by lake effects.  In order to maintain this distinction in the disaggregated 

data, it is vital to choose fragments that originate in the correct season, thereby 

selecting precipitation patterns that correspond to the proper season.  For this model a 

season was defined as 30 days in either direction of the day being disaggregated.   

 

The literature suggested that historically a season in this region could be defined as 

three months; however, this study employed a season of 61 days.  The season was 

decreased in order to ensure clearly defined seasonal patterns as well as to decrease 

computational expense.  This shorter season could potentially increase fragment 

repetition due to a smaller effective data set, but this is not anticipated to be an issue 

because of the large historical data set created by spatial interpolation.  During the 
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selection of an hourly series for the creation of fragments, only hourly series that fell 

within the required season were considered as potential fragments.  A longer season 

would cause more hourly data to be examined as potential fragments for each event 

day and this would increase processing time.   

 

Another point of interest regarding seasons is that in the literature (Ruhf and Cutrim, 

2003) the three month seasons were the same three months all the time (i.e., 

December to February, March to May, June to August and September to November).  

Through the proposed method, the seasonal window is constantly changing based on 

the date of the event day.  Therefore for an event day that would have occurred on the 

cusp of the seasons in former studies (i.e., Ruhf and Cutrim, 2003) the proposed 

method is assumed to provide more seasonal accuracy.  

 

4.3.4 Closest Precipitation Model 

While calculating hourly precipitation values after the fragments have been selected 

some special cases can occur.  A discussion of these special cases and proposed 

methods for rectifying potential errors are presented below.  The formulae used to 

calculate hourly precipitation values from fragments are repeated in Equation 4-3 for 

reference, more information on this Equation can be found in Section 2.4.2.   
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As can be seen from Equation 4-3, rational output occurs if there is precipitation in the 

fragments, even if there is none in the daily data being disaggregated.  In this case 

there will be no precipitation in the disaggregated data because the fragments are 

multiplied by the zero precipitation of the daily data. 

 

Complications do arise however if there is precipitation at a certain site on the day being 

disaggregated, but there is no precipitation in the fragments that were chosen for that 

site.  This will cause irrational results since there will be division by zero during the 

calculation of the fragments.  A similar case was discovered by Gutierrez-Magness and 

McCuen (2004) in their studies.  To overcome this problem they assumed that if there 

was no precipitation in the fragments being used, then there would be no precipitation in 

the disaggregated data.  This assumption resulted in a loss of precipitation volume, 

which was deemed unacceptable for the current study. 

 

To correct this problem, the closest precipitation model is introduced here.  The theory 

behind this model is that there must be precipitation at one or more sites, or this set of 

fragments would not have been chosen.  That being the case, it is proposed that the 

fragments chosen for the closest site with precipitation be used for this site as well.  By 

doing this two sites will have exactly the same pattern throughout the particular day, but 

each will maintain its proper daily precipitation value.  This method is not perfect as 

some of the spatial patterns of an event may be lost; however, it is an improvement over 

the solution found in the literature.  It is assumed that if a sufficient number of key sites 

are utilized, the closest precipitation model will not be utilized often.   
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5 Case Study Application 

5.1 Thames River Basin 

5.1.1 General Background 

The study area for this research is the Upper Thames River basin.  The Thames River 

is located in south-western Ontario as shown in Figure 5-1.   

 

 
Figure 5-1: Location of Thames River Basin 

(Thames River Background Study Research Team, 1998) 
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As can be seen in Figure 5-1, there are three main branches of the Thames River, the 

North Thames, Middle Thames and the South Thames.  These branches originate at 

the towns of Mitchell, Hickson and Tavistock, respectively.  The river is 273 km from 

source to outlet and has a catchment area of 5,825 square kilometres (Canadian 

Heritage Rivers System, 2006).  The Thames carries an average of 30.8 cubic metres 

per second (May to October average) to its outlet at Lighthouse Cove in Lake St. Clair 

(Thames River Background Study Research Team, 1998).   

 

The Thames River is often thought of as having two main sections, the Upper Thames 

and the Lower Thames, because the topography and therefore the river’s properties are 

quite different in these two sections.  The Upper Thames includes the area above and 

including London, while the Lower Thames consists of the region from below London to 

the outlet.  As can be seen in Figure 5-2, the Upper Thames has a moderate profile 

while the Lower Thames is relatively flat.  This difference in topography is also present 

in the river’s cross-sections.  Referring again to Figure 5-2 it can be seen that the Lower 

Thames may be prone to flooding due to its large floodplains and shallow banks.  A 

map of the Upper Thames River watershed is provided in Figure 5-3.  The majority of 

the data used in this study were recorded in this portion of the watershed. 
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Figure 5-2: Thames valley profile and general cross sections 

(Thames River Background Study Research Team, 1998) 

 

The majority of land use in the Upper Thames basin is rural in nature; however, there 

are three main urban centers within the basin: London, Woodstock and Stratford.  The 

Thames watershed contains some of the most prosperous farming land in Canada 

(Thames River Background Study Research Team, 1998).  The largest human input to 

the river is from London sewage (Thames River Background Study Research Team, 

1998).  Sewage treatment in London began operations in 1901, and there are now six 

treatment plants in London with an output totalling 1500 m3/day (City of London, 2006).   
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Figure 5-3: Map of the Upper Thames River Watershed (Upper Thames River Conservation 
Authority, 1995) 

 59



The Thames River is classified as having Category 1 flow, which is defined by the  

Canadian Heritage River System as extreme annual flow variation and a pronounced 

discharge peak with major year-to-year variation (as quoted in Thames River 

Background Study Research Team, 1998).  According to the Thames River Background 

Study Team, 40% of the precipitation that falls on the Thames watershed flows to the 

outlet (1998).  Historically (e.g., July 1883) severe floods on the Thames have occurred 

due to intense rainfall over a short period (Thames River Background Study Research 

Team, 1998).   However, the Thames is also susceptible to flooding because snowmelt 

on the watershed occurs before the outlet at Lake St. Clair melts.  

 

5.1.2 Climate and Climate Change 

The Thames River basin falls within the Carolinian Life Zone.  It is the only river in 

Canada with the majority of its watershed in this zone (Thames River Background Study 

Research Team, 1998).  The weather statistics displayed in Table 5-1 represent the 

mean value of the precipitation parameters for each month of the year. The sampling 

period for this data covers 30 years from 1961 to 1990 (The Weather Network, 2006), 

which coincides with the GCM baseline (see Section ).  It should be recognized that 

r

2.1

ain gauges in this region may not work properly in the winter due to freezing 

temperatures (Helsten, 2006).   

Table 5-1: Climate normals for London Ontario (The Weather Network, 2006) 

 J F M A M J J A S O N D 
25 27 53 70 74 82 77 90 86 74 73 50 Rain (mm) 
55 42 26 10 1 0 0 0 0 3 21 55 Snow (cm) 
69 61 75 79 74 82 77 90 86 76 91 95 Total (mm) 
15 9 1 0 0 0 0 0 0 0 2 9 Snow Cover(cm) 
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Due to the nature of the Carolinian Life Zone in Canada, this region has a highly 

variable climate, both spatially and seasonally.  Figure 5-4 shows the spatial variation of 

precipitation in a region including the Thames River.  In their study of seasonal 

precipitation in southern Ontario, Lapen and Hayhoe (2003) determined that weather 

patterns in the region of the Thames River varied by season.  They noted that the 

majority of summer events were of a convective thunderstorm nature while most 

autumn events were the results of lake effect precipitation from Lake Huron.  Lake effect 

events tend to be less intense with longer durations than convective events.  There is 

also a significant seasonal difference in the wind patterns over the river basin, as can be 

seen in Figure 5-5.   

 
Figure 5-4: Southern Ontario mean annual precipitation in inches (Brown et al., 1980) 
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Figure 5-5: Wind patterns over London Airport (Klock et al., 2002) 

 

The precipitation map shown in Figure 5-4 shows that over the Upper Thames basin 

there is a well defined ridge of high precipitation oriented from north to south and the 

wind patterns displayed in Figure 5-5 show that there are definite trends in the direction 

which precipitation events would be pushed.   

 

From the literature, very little work has been done with precipitation at the hourly time 

scale, however, an analysis of hourly historical precipitation data was completed in 

southern Michigan (Ruhf and Cutrim, 2003).  This study is referred to here because of 

its close proximity to the Upper Thames watershed.  The southern Michigan study did 

not attempt to model data but rather was a detailed analysis of the characteristics of the 

measured data.  Due to the proximity of the southern Michigan study to the Thames 

River, similar trends will be assumed in the present study. 
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Ruhf and Cutrim (2003) determined a season to be defined as three month spans. 

Table 5-2 is a summary of their findings for each season; Figure 5-6A shows the annual 

average of precipitation accumulation for each hour of the day while Figure 5-6B shows 

the annual average of rainfall occurrences in each hour of the day.   

 

Table 5-2: Summary of findings by Ruhf and Cutrim (2003) 

 Highest Accumulation Time Highest Occurrence Time 
Morning Late Afternoon Winter 

Night Night Spring 
Morning Morning Summer 

Afternoon and evening Morning Autumn 
 

Along with the seasonal analysis, Ruhf and Cutrim (2003) also performed analysis on 

extreme values in their data.  The most notable finding in this section of their research is 

that the highest single-hour rainfall that occurred in their dataset was 46mm. 

 

It is known that climate change as a part of global warming is already occurring in the 

area of the Thames River.  Annual precipitation has increased 7-12% on average over 

the 20th century in the 30°N to 80°N latitude zone(Intergovernmental Panel on Climate 

Change, 2001).  This mid-latitudinal region has had annual precipitation totals 

exceeding the 1961-1990 normal every year since 1995.   
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Figure 5-6: Daily rainfall cycle, (A) precipitation accumulation (B) precipitation occurrences  

(Ruhf and Cutrim, 2003) 
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5.2 GCM Scenarios Used 

From the GCM scenarios presented in Section 2.1.1, two were selected for use within 

this study.  The chosen scenarios were taken from the B1 and B2 storylines.  The first 

chosen scenario is the first simulation with Australia's Commonwealth Scientific and 

Industrial Research Organisation model (CSIROM2kb) based on the B1 storyline 

(referred to simply as CSIROM2kb B11).  The second scenario used is the first 

simulation using the Center for Climate System Research at the University of Tokyo’s 

model (CCSRNIES) based on the B2 storyline (referred to as CCSRNIES B21).  These 

scenarios and models were chosen based on the availability of data for all three of the 

required parameters for the weather generator. 

 

Both of these scenarios provide information regarding the climate change that will have 

occurred by the year 2050.  This climate change is expressed as change fields which 

are calculated by the GCM models for various weather parameters including 

temperature and precipitation as required for this study.  These change fields are 

calculated by the equations given in Equation 5-1.  The change field calculations were 

provided for the GCM cell centered at 43.01°N and 78.75°W because the study area is 

located in this cell.  The change fields for each month in this cell as output by the 

CSIROM2kb B11 and CCSRNIES B21 models are provided in Table 5-3 and Table 5-4 

respectively.  It is recognized that along with the changes in these variables, changes in 

the variances could occur as well.  An increase in variance would cause proportionately 

more change in the frequency of extreme events than a change in the mean values of 

the parameters would (Intergovernmental Panel on Climate Change, 2001). 

 65



 

Temperature: Precipitation: 
(5-1)

future period - base climatechange field =  100
base climate

x change field = future period - base climate

 

 

Table 5-3: CSIROM2kb B11 (43.01, -78.75)(Mortsch, 2005) 

Mean 
Temperature

Minimum 
Temperature

Maximum 
TemperatureMonth Precipitation 

 °C °C °C % 
January 3.66 4.13 3.35 10.41 
February 3.37 3.29 3.18 5.74 
March 4.11 4.52 7.02 -0.98 
April 6.09 5.78 4.77 -11.41 
May 3.39 4.50 1.88 19.13 
June 2.41 3.32 2.43 4.56 
July 3.50 3.59 4.01 5.87 
August 3.20 4.09 2.41 15.32 
September 3.08 2.11 3.66 -6.65 
October 3.17 3.11 2.51 5.39 
November 3.55 4.64 3.34 -6.12 
December 2.48 1.43 3.06 5.09 

 

Table 5-4: CCSRNIES B21 (41.53, -78.75) (Mortsch, 2005) 

Mean 
Temperature

Minimum 
Temperature

Maximum 
TemperatureMonth Precipitation 

 °C °C °C % 
January 6.89 6.84 6.84 17.67 
February 5.11 4.95 5.24 6.38 
March 6.13 5.83 6.43 15.07 
April 6.23 5.91 6.51 22.84 
May 5.89 5.60 6.09 24.14 
June 4.35 4.25 4.60 18.55 
July 4.18 4.25 4.14 5.03 
August 4.89 4.85 5.02 7.88 
September 4.83 4.57 5.20 4.27 
October 4.91 4.47 5.51 -11.51 
November 5.63 5.26 6.13 -15.55 
December 6.11 5.80 6.43 -3.10 
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5.3 Spatial Interpolation 

5.3.1 Precipitation Gauge Stations 

In this study of the Thames River watershed 15 daily and 28 hourly gauge stations were 

used.  A list of these stations and their locations can be found in Table 5-5 for the daily 

stations and Table 5-6 for the hourly stations.  The data from the daily stations was 

supplied by Environment Canada so the identification numbers for these stations have 

been included in Table 5-5.  The data for the hourly gauge stations was supplied in part 

by Environment Canada and in part by the Upper Thames River Conservation Authority.  

Because of this, not all hourly stations have identification numbers associated with them 

and so these are not presented in Table 5-6.   

 

Table 5-5: Daily data stations 

Station Name ID Number* Latitude Longitude 
Blyth 6120819 43°43' 81°23' 

Dorchester 6142066 43°0' 81°2' 
Embro Innes 6142295 43°15' 80°56' 

Exeter 6122370 43°21' 81°29' 
Foldens 6142420 43°1' 80°47' 
Fullarton 6142627 43°23' 81°12' 

Glen Allen 6142803 43°41' 80°43' 
Ilderton Bear Creek 6143722 43°3' 81°26' 

London A 6144475 43°2' 81°9' 
St. Thomas WPCP 6137362 42°46' 81°13' 

Stratford MOE 6148105 43°22' 81°0' 
Tavistock 6148212 43°19' 80°50' 

Waterloo WPCP 6149386 43°29' 80°31' 
Woodstock 6149625 43°8' 80°46' 
Wroxeter 6129660 43°52' 81°9' 

*Environment Canada identification number 
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Table 5-6: Historical hourly data stations 

Station Name Latitude Longitude 
Avon 43°21' 81°7' 

Conestogo 43°33' 80°31' 
Dingman Creek. 42°56' 81°21' 

Dutton 42°40' 81°32' 
Ethel 43°43' 81°7' 

Exeter 43°21' 81°29' 
Ingersoll 43°3' 80°53' 
Innerkip 43°12' 80°41' 
Listowel 43°45' 80°58' 

London CS 43°2' 81°9' 
Medway Creek 43°0' 81°17' 

Millbank 43°35' 80°44' 
Mitchell 43°27' 81°12' 

New Hamburg 43°22' 80°43' 
Orr dam 43°22' 80°59' 

Oxbow Cr. 42°58' 81°25' 
Parkhill 43°10' 81°42' 
Pittock 43°16' 80°49' 

Plover Mills 43°9' 81°11' 
Reynolds 42°59' 80°57' 

Springbank 43°4' 81°40' 
St. Mary's 43°15' 81°11' 
Stratford 43°22' 81°0' 

Thamesford 43°4' 81°0' 
Thamesville 42°32' 81°58' 
Trout Creek 43°17' 80°58' 
Waubuno 43°0' 81°7' 

Woodstock 43°8' 80°46' 
 

Figure 5-7 shows the location of each gauge station; the outline of the Upper Thames 

basin has been included for reference purposes.  The circles identify the key sites used 

for temporal disaggregation (see Section 5.4) 
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Figure 5-7: Watershed map showing rain gauges and key sites 

 

5.3.2 Data Cleanup 

For this research, missing data points were not filled in.  The method used for spatial 

interpolation used as many data points as were present for each time step.  If a data 
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point was missing it was simply not used.  However, outlying data were removed.  Since 

the highest single-hour rainfall recorded by Ruhf and Cutrim (2003) in their study was 

46mm (see Section 5.1.2), any data over 40mm was considered a potential outlier.  

Each point over 40mm was examined for evidence that the value was legitimate.  It was 

assumed that a high hourly rainfall would show some evidence either in an adjacent 

hour and/or at an adjacent station.  If the data point in question was not accompanied 

by either of these, it was considered to be an errant point and was removed.  Although 

this method is highly subjective, there was no method for outlier removal in precipitation 

data found in the literature.  

 

During the process of outlier removal, questions were raised regarding the gauge 

station at Plover Mills.  This station had a high number of occurrences of outlying data 

accompanied by numerous negative values in this historical record.  Due to the 

uncertainty produced by this, it was decided that it would be more appropriate to 

remove the entire record of this station from the study’s data set rather than try to 

determine which portion of this record was usable. 

 

5.4 Temporal Disaggregation Model 

The key stations used for this study are identified in Figure 5-7.  These stations were 

chosen because they all had both hourly and daily historical records so they were the 

stations used to calibrate the inverse distance method.  They are expected to have the 

most accurate spatially interpolated data because of having both historical records.  
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Also, they are well spread out across the study region and so should give a good 

representation of the variation occurring in the entire watershed. 

 

Table 5-7: Daily data recording times by station (Mortsch, 2006) 

Data Recoding 
Time Station Name 

Blyth 7:00 AM 
Dorchester 8:00 AM 
Embro Innes 6:30 AM 
Exeter 8:00 AM 
Foldens 8:00 AM 
Fullarton N/A 
Glen Allen 8:00 AM 
Ilderton Bear Creek 8:00 AM 
London A 1:00 AM 
St. Thomas WPCP 10:00 AM 
Stratford MOE 8:00 AM 
Tavistock N/A 
Waterloo WPCP N/A 
Woodstock 7:30 
Wroxeter 8:15 AM 

N/A: Not Available
 

The actual daily recording times for the historical daily data are presented in Table 5-7.  

The nature of the method of fragments required all of the stations to have recording 

times on the hour.  Changes to the given recording times were made in order to achieve 

the required times.  Wroxeter’s recording time was rounded to the closest hour, which 

was 8 a.m, other stations required more consideration because their actual recording 

time fell on the half hour.  In Section 4.2 Woodstock was determined to correlate better 

with an 8 a.m. recording time than with a 7 a.m. recording time (see Figure 4-2).  

Therefore Woodstock’s time was set to 8 a.m.  Since Woodstock was rounded up to 8 

a.m., Embro’s recording time was rounded up as well, to 7 a.m.  Stations with unknown 

 71



measurement times were filled in with 8 am as this was the most common.  It should be 

recognized that the majority of the stations have recording times in the morning hours.  

The only station whose time differs significantly from the others is the station at London.   
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6 Analysis of Results 

6.1 Spatial Interpolation  

Spatial interpolation was completed as part of this study to generate hourly data at the 

same locations as the daily precipitation gauge sites.  The inverse distance weighting 

method was used for spatial interpolation as described in Chapter 3.  The outcome of 

the interpolation is provided below.  

 

Although the correlations of the interpolated data could not be made to match the 

correlations of the historical data for the same region, an exponent value of six 

produced the best results from the inverse distance weighting method with hourly 

precipitation data.  The use of this exponent value, which is higher than the exponent 

value used in the common inverse distance squared method, puts an increased weight 

on data from gauge sites that are closer to the location being interpolated.  With this in 

mind, the need for a greater exponent value is logical because of the short time step 

involved.  For instance, daily precipitation depths may be similar in two neighbouring 

cities while the hourly precipitation values in those same cities, perhaps even on a day 

with similar daily precipitation, could differ greatly.  This is due to the relatively slow wind 

speeds, which are generally less than 25km/h in the region of study (Klock et al., 2002), 

that move weather systems (refer to Figure 5-5).  Due to differences in timestep scale, 

inverse distance squared may be appropriate for other applications, including perhaps 

daily precipitation, but a larger exponent value of six is required for use with the inverse 

distance weighting method when applied to hourly precipitation data. 
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While the exponent value of six in the inverse distance weighting method produced 

acceptable results at four of the five stations tested, upon examination of Figure 3-2 it 

can be seen that the interpolated data for Stratford did not fall within the range of the 

10% critical t-test value.  In fact the data for Stratford did not fall within the range of the 

10% critical t-test value unless the exponent had a value greater than seven; the reason 

for this is not known.  However, it is recognized that the interpolated data at Stratford 

may be unduly influenced by the data at the Orr Dam gauge because of its close 

proximity to Stratford, which can be seen in Figure 5-7.  This impact of closely 

neighbouring data sites is a known disadvantage of the inverse distance weighting 

method, as discussed in Section 2.3.2. 

 

Along with the impact of closely neighbouring data stations, another characteristic of the 

inverse distance weighting method that affects the output is the tendency for peak 

values to be muted.  Interpolation techniques create new data within the range of the 

original data; therefore, no interpolated point can be higher than the original maximum 

value or lower than the original minimum value.  This is a positive trait of interpolation 

because the output data will always fall within the bounds of the original data and thus 

no unrealistic extreme values are created.  However, the original maximum or minimum 

values of the data set may not be maintained, causing the new extremes to be closer 

together than in the original data set.  This is a negative trait of interpolation techniques, 

especially because in studies such as this one the extreme events are of the most 

interest.   
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It was shown in Section 3.3 that the spatially interpolated data were more correlated, 

both spatially and temporally, than the original data.  This occurred because inverse 

distance weighting tends to spread events out over multiple hours when perhaps they 

should have occurred in a single hour.  An example of this is depicted in Figure 6-1, 

which is explained below. 

 

TROUT CREEK

NEW HAMBURG

TAVISTOCK1:00

?

3:00

Legend:

Time of rainfall1:00  

X       Daily gauge station
+       Hourly gauge station

 
Figure 6-1: Spatial interpolation example 

 

In the simplistic example given in Figure 6-1, interpolation is performed on Tavistock 

using the data from the Trout Creek and New Hamburg gauges. In this example, if it 

rained at Trout Creek at 1 o’clock and at New Hamburg at 3 o’clock one could assume 

that it rained at Tavistock at 2 o’clock.  That is not how this situation would be modelled 

by inverse distance weighting however.  With inverse distance weighting, precipitation 

values would be created at Tavistock at both 1 o’clock and 3 o’clock, but not at 2 

o’clock, because there was no precipitation at the neighbouring stations at that time.  

Due to the precipitation data being simulated at 1 o’clock and 3 o’clock, both the 

autocorrelation and the spatial correlation values in the interpolated data of this example 

will be exaggerated.  The autocorrelation will be inflated because there should have 
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been rain only once at Tavistock in the three-hour time span of the example.  However, 

through inverse distance weighting, precipitation occurred in two of the three hours.  

Furthermore, from the example it can be seen that there will be a higher correlation 

between Trout Creek and Tavistock at 1 o’clock as well as a higher correlation between 

New Hamburg and Tavistock at 3 o’clock than there would have been if precipitation 

had been recorded at 2 o’clock in Tavistock.  Because of this, the overall spatial 

correlation of the interpolated data will be higher than the spatial correlation of the 

original data.  The exaggeration of these correlations, although always present, will be 

slightly reduced with the increase of the exponent value used in the formulae. 

 

In Section 3.3.2 it was determined that the most appropriate method for calculating the 

distance in the inverse distance weighting formulae in the region of study is the absolute 

distance.  The reason for this can be seen in Figure 5-5, which shows that weather 

systems in the region of study move in different directions based on the season.  This 

seasonality in the wind tendencies was not worked into the testing for distance type, but 

if included could have resulted in a different optimal distance type.  Since in each 

season the most common wind direction is neither latitudinal nor longitudinal, the 

absolute distance would likely remain the optimal distance type for use with the inverse 

distance weighting method even if seasonality was accounted for.  This confirms the 

findings of Lapen and Hayhoe (2003) who determined that isotropy could be assumed 

when using the inverse distance weighting method. 
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6.2 Temporal Disaggregation 

The main focus of this study was the temporal disaggregation model.  Temporal 

disaggregation was performed on daily precipitation data to produce data at an hourly 

timescale for use in hydrologic models with the purpose of flood analysis.  This 

disaggregation was completed through the method of fragments as described in 

Chapter 4.  The results of the temporal disaggregation model are presented below.  

6.2.1 Daily Data Measurement Time 

To determine if the time of historical daily data measurement affected the 

disaggregation model, two runs were completed for the selected climate scenario 

CCSRNIES B21.  The first run was completed assuming that all of the daily gauge 

stations took measurements at the same time of day, and the second run was 

completed using the actual times at which each station was measured (as given in 

Table 5-7).  For the first run, the most common measurement time was used for all 

stations.  The results of this test are shown in Figure 6-2 and Figure 6-3.   
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Figure 6-2: Average event magnitude by month for (a) common daily recording time and (b) actual 
varying daily recording time 
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Figure 6-3: Average event intensity by month for (a) common daily recording time and (b) actual 
varying daily recording time 

 

As can be seen from Figure 6-2 and Figure 6-3 the data output from the two runs of the 

model produced identical box plots.  This suggests that because the daily data were 

produced by the weather generator the historical measurement times do not apply.  

Through further analysis, some advantages of each daily measurement method were 

discovered.  With the use of the actual measurement times that vary from station to 

station, precipitation patterns were compromised because of an increase in the required 

use of the closest event model (refer to Section 6.2.3).  However, with a common start 

time assumed for all stations, volumes were slightly compromised.  This compromise 

was considered to be slight because no data were lost, however portions of it are 

potentially allotted to an adjacent day due to the potential error in the daily recording 

time. 

 

6.2.2 Proposed Multisite Approach 

The proposed multisite approach has been deemed a viable technique because it was 

able to complete disaggregation of multiple centuries of data at fifteen stations within a 
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reasonable amount of time.  While doing this, it was also able to maintain the expected 

variation across the watershed (see Section 6.2.4) and within each event (see Section 

6.2.5). 

 

6.2.3 Closest Precipitation Model 

The closest precipitation model was introduced in this study to overcome difficulties 

associated with the method of fragments in certain situations.  The reasoning and 

theory for this model are presented in Section 4.3.4.   

 

The assumption that the closest precipitation model would be used infrequently was 

determined to be correct.  For the case using daily recording times common to all 

stations this model was invoked only three times over a 100-year period.  This was 

considered to be an insignificant frequency and therefore was acceptable. 

 

In the case where the actual daily recording times were used for each station, the 

closest event model was utilized for 18 event days over the same 100-year period. 

Some of these event days required the closest precipitation model to be run for multiple 

stations.  The total occurrences of the closest precipitation model for this disaggregation 

run were 76.  During some of these runs the model was not able to detect precipitation 

in the daily period that was defined for that particular station.  In this case the closest 

precipitation model was forced to use the daily recording time of the neighbouring 

station to determine the fragments to be transferred.  In an extreme case, the same 

fragments were used for the entire watershed because the only precipitation that 
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occurred in the chosen hourly series fell in an hour that was only considered part of that 

event day at one station.  This complication was not desirable and reinforces the 

conclusion that a common daily recording time was the best option for use in the 

method of fragments. 

 

6.2.4 Spatial Variation in Output Data 

Along with the two selected GCM data sets produced by the weather generator, a data 

set was produced without any changes applied to the historical daily data’s attributes.  

This data set is referred to as the historical generated data set.  These data were 

created to determine the success of the disaggregation techniques; this will be 

determined through comparison of the disaggregated historical generated data to the 

spatially interpolated hourly data.  Since the spatially interpolated data was generated 

from the historical daily data, but was not created through the use of temporal 

disaggregation, these two data sets should be similar. 

 

As with the spatial interpolation model, the spatial correlation of hourly data was used 

as an assessment of the temporal disaggregation model’s success.  However, the 

autocorrelation was not used to assess the success of the temporal disaggregation 

model, since the output from this model was event based.  Event data are not 

continuous, and therefore the autocorrelation would have no relevance.  Figure 6-4 

shows the spatial correlation of both the spatially interpolated event data and the 

historical generated event data.  From Figure 6-4 it can be seen that spatial variation 

was maintained across the region of study through disaggregation.  The spatial 
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correlation of the disaggregated historical generated data matched the spatial 

correlation of the spatially interpolated data closely across the entire watershed.  It 

should be noted that Figure 6-4 cannot be directly compared to Figure 3-4 as the latter 

was calculated using all data and the former was calculated using only data from within 

event days.   
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Figure 6-4: Spatial correlation of hourly event data from the historically generated scenario data 

and the spatially interpolated input data 

 

Although Figure 6-4 is for the entire data set, it can be shown that spatial variation was 

maintained within each event as well.  Section 6.2.5 presents details of two example 

events.  From the isohyetal plots presented therein, it can be seen that plausible spatial 

variation is obtained within events.   
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6.2.5 Event Statistics of Output Data 

Some statistical properties of the events from the historical generated data are 

compared to the events of the spatially interpolated data here.  This is done to examine 

the types and severity of events that were generated by the disaggregation in each 

season.  In this portion of the study three properties of the event data were compared: 

event magnitude, event intensity and number of events.  The outcomes of these 

comparisons at an example station, Woodstock, on a monthly basis are given in Figure 

6-5, Figure 6-6 and Figure 6-7, respectively.  The entire set of comparison results can 

be found in Appendix B.1.   

 

In these graphs it can be seen that while the mean of the interpolated data falls within 

the range of the generated historical data for each parameter, the generated historical 

data does not simulate the spatially interpolated data very well.  From these figures it 

can be seen that the spatially interpolated data has a higher average intensity and 

magnitude than the events in the historical scenario’s data set.  However, the spatially 

interpolated data has fewer events in every month.  Therefore the spatially interpolated 

data set is composed of events of higher intensities and possibly higher durations than 

the events of the historical scenario’s data set.  It should be noted that while the 

historical scenario included 100 years of generated data, there were only 20 years of 

spatially interpolated data available for comparisons; this could cause some bias in the 

spatially interpolated data set.  However, since this was the full set of historical data 

available, there was nothing that could be done in regards to this issue. 
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Figure 6-5: Box and whisker plot of generated historic event intensity versus mean of spatially 

interpolated event intensity, at Woodstock 
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Figure 6-6: Box and whisker plot of generated historic event magnitude versus mean of spatially 

interpolated event magnitude, at Woodstock  
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Figure 6-7: Number of generated historic events box and whisker plot versus mean number of 

spatially interpolated events 

 

The discrepancy in these data sets is understandable because the historical daily data, 

from which the historical scenario was generated, were recorded over the period of 

1964-2001, while the historical hourly data, from which the spatially interpolated data 

were created, were recorded over the period of 1984-2003.  This means that the 

spatially interpolated data already contains a bias towards certain trends because 

weather patterns differed greatly between those two periods.  As can be seen in Figure 

6-8, climate change is already occurring as the average temperature from 1984-2003 is 

significantly higher than that of 1964-2001.  Since a change in precipitation can be 

assumed to accompany this change in temperature, the discrepancy in the above 

graphs does not necessarily indicate that the disaggregation was unsuccessful, but it 

could be a result of climate change that has already occurred. 
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Figure 6-8: Historical land surface air temperature trends 

(adapted from Intergovernmental Panel on Climate Change, 2001, p. 113) 

 

6.3 Potential Impacts of Climate Change on Precipitation 

in the Study Area 

This section consists of two parts, a comparison of the future scenarios to the historical 

scenario and a contrast between the two future scenarios.  The intent of this section is 

to determine the extent to which climate change will affect precipitation in the region of 

study. 

 

6.3.1 Future Scenario Data versus Historical Scenario Data 

Analysis was completed comparing both the CSIROM2kb B11 data set and the 

CCSRNIES B21 data set (the future scenarios) to the historical generated data set (the 

historical scenario).  Since it was determined that climate change has already affected 
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the spatially interpolated data, this data set was not used in any further comparisons.  

The same parameters as in the previous section (i.e., event intensity, event magnitude 

and number of events) were used in the comparisons of these data sets.  The results of 

these comparisons for Woodstock, the selected example station, can be seen in Figure 

6-9 through Figure 6-11.  Results for each station in the study can be found in Appendix 

B.2 and Appendix B.3, for CSIROM2kb B11 and CCSRNIES B21, respectively. 

 

It can be seen from Figure 6-9 that the event intensities produced through both of the 

future scenarios are similar to those produced through the historical scenario over the 

majority of the months.  However, it appears that both of the future scenarios produced 

slightly lower event intensities in the summer than the historical scenario did.  From 

Figure 6-10 it can be determined that the event magnitudes of the future scenarios are 

similar, but slightly lower than the historical scenario event magnitudes.  Figure 6-11 

shows that the future scenarios produced more events in the summer and fewer events 

in the spring than the historical scenario did. 
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Figure 6-9: Box and whisker plot of generated (a) CSIROM2kb B11 and (b) CCSRNIES B21 event 
intensity versus mean of generated historic event intensity, at Woodstock 
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Figure 6-10: Box and whisker plot of generated (a) CSIROM2kb B11 and (b) CCSRNIES B21 event 

magnitude versus mean of generated historic event magnitude, at Woodstock 
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Figure 6-11: Number of generated (a) CSIROM2kb B11 and (b) CCSRNIES B21 events box and 

whisker plot versus mean number of generated historic events 
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Referring again to Figure 6-8, it can be seen that the GCM baseline, from which the 

change fields given in Table 5-3 and Table 5-4 were calculated, are the normals from 

1961-1990.  However, the historical data set was generated from data recorded over 

the years 1964-2001.  As stated earlier, this means that some climate change is already 

represented in the historical data generated set.  Therefore some of the climate change 

that should be seen in the CSIROM2kb B11 and CCSRNIES B21 generated data sets is 

masked by the historical scenario’s data set.  This could explain why the differences 

between the future scenarios and the historical scenario are not as visible as may have 

been expected.  Since the historical data generated set was generated in a previous 

portion of this project (i.e. data generation was not within the scope of the current 

thesis), generation of a data set from data recorded over the years 1961-1990 was not 

feasible. 

 

The overall trends that were expected based on the change fields presented in Table 

5-3 and Table 5-4 for CSIROM2kb B11 and CCSRNIES B21, respectively are seen in 

the output data.  These trends include more events in the summer and fewer in the 

spring and autumn, with the summer events resulting in a lower average magnitude of 

precipitation than the spring and autumn events, even though there are higher extreme 

events in the summer.  Therefore the historical trends of lake-effect induced autumn 

precipitation and convection induced summer precipitation as noted in the literature (see 

Section 5.1.2) have been maintained through the climate change and through 

disaggregation.   
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6.3.2 Contrast between Two Future Scenarios 

Comparisons were made between the two future scenarios in order to determine which 

of the scenarios has the potential to produce the most flooding in the region of study.  

Again the event intensity, event magnitude and number of events were used to compare 

the scenarios.  For the sake of clarity only the mean of each data set was plotted.  The 

results of these comparisons at Woodstock can be found in Figure 6-12.  The entire set 

of results is presented in Appendix B.4.  Comparisons of the variation in the future 

scenario’s data can be made from the box plots presented in the previous section.   

 

It can be seen from Figure 6-12 that CSIROM2kb B11 has higher precipitation values 

than CCSRNIES B21 in autumn, particularly in October.  However, CCSRNIES B21 

produced higher values for all three parameters in winter, spring and summer, with the 

exception being the month of May.  In the winter months the event intensities and 

magnitudes produced by the two scenarios were very similar. 

 

As noted in Section 5.1.1, the majority of floods in the region of study occur due to 

intense rainfall events, such as those experienced by summer weather patterns, or 

during spring snowmelt.  Due to this, it is assumed that the CCSRNIES B21 presents 

the worst case scenario for flooding in the study region.  As can be seen in Figure 6-12, 

CCSRNIES B21 has higher values than CSIROM2kb B11 in the spring and summer for 

all of the event parameters that were tested.  This result is logical based on a 

comparison of the change fields presented in Table 5-3 and Table 5-4 for CSIROM2kb 

B11 and CCSRNIES B21, respectively, as larger precipitation increases are given by 
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the change fields for CCSRNIES B21 during these months.  Therefore the 

disaggregation process did not disrupt the trends that were applied to the data by the 

GCMs through the change fields. 
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Figure 6-12: Comparisons between CSIROM2kb B11 and CCSRNIES B21 (a) mean event intensity 

at Woodstock, (b) mean event magnitude at Woodstock, (c) mean number of events per year 
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Upon examination of Figure 6-9 through Figure 6-11 it was determined that CCSRNIES 

B21 produced data with greater variance of each parameter than CSIROM2kb B11 did 

for the majority of months.  Therefore there would be a greater occurrence of extreme 

events in the CCSRNIES B21 scenario.  This reinforces the conclusion that CCSRNIES 

B21 produces the worst case scenario for potential flooding in the region of study. 

 

6.4 Extreme Events 

A required outcome of this research was to determine potential extreme precipitation 

events for the region of study.  This section provides details of two events which were 

selected from the temporal disaggregation model output for further analysis using 

hyetographs and isohyets.  These two events are intended to give a representation of 

extreme precipitation events which may be experienced in the study area due to climate 

change.  One event was chosen from each of the two future scenarios studied here  

 

6.4.1 CSIROM2kb B11 Simulated Event #1403 

From the CSIROM2kb B11 scenario event number 1403 was selected for analysis.  

This event was chosen because of its high intensity.  This event possessed the traits 

characteristic of a convective summer event.  It had high intensities and tended to be 

localized, with some stations receiving a lot of rain while others received very little.  This 

event occurred on July 15 in the 60th year of the simulation and lasted for one event 

day.   
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The hyetograph of this event at Woodstock is presented in Figure 6-13.  From this 

hyetograph it can be seen that high intensities were experienced for short durations 

multiple times throughout the event.  The set of hyetographs for the entire watershed 

can be found in Appendix C.1.1. 
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Figure 6-13: Hyetograph of CSIROM2kb B11 Event #1403 at Woodstock 

 

thFigure 6-14 is an isohyetal plot for the study area at 4 p.m. on July 15  of this event.  

This figure clearly shows the highly localized nature of this event, as only a portion of 

the watershed is receiving heavy rainfall during this hour.  Isohyetal plots for each hour 

of this event can be found in Appendix C.2.1.   
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Figure 6-14: Isohyetal plot of CSIROM2kb B11 Event #1403 on July 15 at 16:00 

 

6.4.2 CCSRNIES B21 Simulated Event #1197 

Event number 1197 was chosen for analysis from the output of the CCSRNIES B21 

scenario because of its severe magnitude.  This event displays traits characteristic of a 

spring or autumn event with lake-effect influences.  Unlike the convective summer event 

presented above, this event was not localized.  While containing pockets of high 

intensity, the precipitation in this event was generally well spread out over the region of 

study.  This event occurred starting on September 6 in the 47th year of the simulation 

and lasted for two event days.  Therefore CCSRNIES B21 event 1197 implemented the 

smoothing methods which were presented in Section 4.3.3.   
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Figure 6-15 shows the hyetograph for this event at Woodstock, the example station.  A 

set of hyetographs for the entire study area can be found in Appendix C.1.2.  From 

Figure 6-15 it can be seen that while there was one hour with high intensities, the 

majority of this event consisted of low intensity precipitation.  The isohyetal plot for this 

event at 1 a.m. on September 7th is given in Figure 6-16.  This figure shows a 

precipitation front moving through the entire width of the watershed.  Isohyetal plots for 

each hour of this event can be found in Appendix C.2.2.  This event achieves its large 

magnitude through low intensity precipitation spread widely both spatially and 

temporally.   
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Figure 6-15: Hyetograph of CCSRNIES B21 Event #1197 at Woodstock 
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Figure 6-16: Isohyetal plot of CCSRNIES B21 Event #1197on September 7 at 01:00 

 

From the isohyetal plots in Appendix C.1.2 it can be seen that there was very little 

precipitation occurring at the end of the first event day.  Consequently there was very 

little precipitation at the beginning of the second event day.  This demonstrates that the 

fragment selection process for subsequent event days was successful. 
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7 Conclusions and Recommendations 

7.1 Conclusions 

7.1.1 Spatial Interpolation Model 

In this study it was determined that use of the basic inverse distance squared method 

was not acceptable for interpolation of hourly precipitation data, however, the more 

general inverse distance weighting method is acceptable for this application.  An 

exponent value of six should be used to achieve viable results when interpolating hourly 

precipitation data.  This greater exponent value was required because of the high 

variability, both spatially and temporally, of hourly precipitation data.  This study also 

showed that isotropy can be assumed when using the inverse distance weighting 

method for hourly precipitation data in the region of study.  Inverse distance weighting of 

hourly precipitation data is a robust method requiring only five gauge stations to 

accurately interpolate data at the watershed scale. 

 

7.1.2 Temporal Disaggregation Model 

The method of fragments appears to be an acceptable approach for disaggregation of 

daily precipitation data.  This study implemented some new variations to the method of 

fragments to overcome some deficiencies that hindered its use in previous studies 

which were presented in the literature.   

 

Testing was completed to determine the effect of daily recording time of the input data 

on the disaggregation model’s output.  It was determined that a common recording time 
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was required for all stations in the multisite scenario such that a ‘day’ was well defined.  

However, the assumption of a common daily recording time was found to be 

acceptable, if one did not exist. 

 

The multiple key sites tactic used in this study for choosing fragment sets in a multisite 

study was shown to be effective.  This tactic allowed the model to disaggregate data in 

a reasonable amount of time while maintaining spatial variation across the region of 

study.  As well, the smoothing methods used in the selection of fragments for 

subsequent event days produced acceptable results. 

 

The 61-day seasonality window appears to have been a success because the 

disaggregated data show well defined seasonal variation, including the types of events 

present in each season.  The data output from the temporal disaggregation model 

shows evidence that summer precipitation events will continue to be the result of 

convective thunderstorms and autumn events will continue to be influenced by lake-

effects.   

 

The closest precipitation model introduced in this study rectified the deficiency 

previously experienced by multisite models.  This new method allowed for the fragments 

of one station to be used at another when the fragments originally selected for that 

station proved insufficient.   
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The events output by the temporal disaggregation model acceptably reproduced the 

spatial correlation of the input data.  Furthermore, the trends applied to the data through 

the GCM change fields were not disrupted by the disaggregation process. 

 

7.1.3 Case Study Conclusions 

From the case study of the Thames River basin in Ontario, Canada, it was determined 

that the future scenarios produce results which are quite similar to those of the historic 

scenario. It was also determined that in the region studied the CCSRNIES B21 scenario 

presents a higher potential for flooding than the CSIROM2kb B11 does.  While the 

CSIROM2kb B11 has higher precipitation values than CCSRNIES B21 in autumn, the 

CCSRNIES B21 produced higher values for all three event parameters tested in both 

spring and summer.  Since the majority of floods in this region occur in the spring and 

summer, the CCSRNIES B21 creates the worst case scenario.   

 

7.2 Recommendations 

7.2.1 Previous Work 

A few recommendations are put forth here in regards to the data that were used as 

inputs in this study.  Implementation of these recommendations would improve the 

output of the temporal disaggregation model. 

 

The weather generator, which was developed in a previous portion of this project, 

should be run using data from the period of 1961-1990 only, instead of from the period 
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1964-2001.  By doing this, the data generated would match the properties of the GCM 

baseline and would provide a better basis for comparison.  Furthermore, scenarios 

generated from the data recorded during the period of the GSM baseline would facilitate 

better estimations of the effects of various climate change scenarios.   

 

A second recommendation is that the precipitation gauge systems should record data at 

the same time of day at each station.  It is assumed that this is becoming increasingly 

feasible as more gauge stations become automated and do not require human 

interaction at each reading.  By synchronizing the gauge stations in this way, the 

temporal disaggregation model would not need to make assumptions regarding the 

effect of data recording time on simulated data.  

 

7.2.2 Spatial Interpolation Model 

Although an exponent value of six was determined to produce acceptable results based 

on t-test comparisons, the correlations of the interpolated data could not be made to 

match the correlations of the historical data for the same region.  Therefore a better 

method for interpolation of precipitation data at this time scale is needed.  It is 

recognized that a mean square error test is an appropriate alternative approach to the t-

test for the testing done in this section. 

 

7.2.3 Temporal Disaggregation Model 

Recommendations for future work in disaggregation by the method of fragments include 

the use of the synthetic method of fragments.  This would increase the number of 
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potential fragments for each period being disaggregated.  Along with this, the stochastic 

k-nn method, presented by Wòjcik and Buishand (2003), for choosing fragments should 

be tested to determine its viability.  Both of these methods would aid in decreasing the 

repetition of event patterns known to adversely affect output from the method of 

fragments.   
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Appendix A. Flowchart of Temporal Disaggregation Model 
 

Start of a function

Call a function

Calculation

Decision

Parameters from calling function

Return to calling function

Input or output (generally from a file)

File function (open, close, rewind etc.)

On page reference

Off page reference

End of a function
 

Figure A-1: Legend of flow chart symbols 
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Appendix B. Output Data for All Stations 

B.1 Historical Generated versus Spatially Interpolated 
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Figure B-1: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Blyth; (a) intensity and (b) magnitude 
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Figure B-2: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Dorchester; (a) intensity and (b) magnitude 
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Figure B-3: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Embro; (a) intensity and (b) magnitude 
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Figure B-4: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Exeter; (a) intensity and (b) magnitude 
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Figure B-5: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Foldens; (a) intensity and (b) magnitude 
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Figure B-6: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Fullarton; (a) intensity and (b) magnitude 
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Figure B-7: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Glen Allan; (a) intensity and (b) magnitude 
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Figure B-8: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Ilderton; (a) intensity and (b) magnitude 
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Figure B-9: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at London; (a) intensity and (b) magnitude 
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Figure B-10: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at St. Thomas; (a) intensity and (b) magnitude 
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Figure B-11: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Stratford; (a) intensity and (b) magnitude 
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Figure B-12: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Tavistock; (a) intensity and (b) magnitude 
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Figure B-13: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Waterloo; (a) intensity and (b) magnitude 

(a) (b) 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Month

In
te

ns
ity

(m
m

/h
)

           J       F      M      A      M       J       J      A       S      O      N       D
0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Month

M
ag

ni
tu

de
 (m

m
)

           J       F      M      A      M      J       J      A      S      O      N      D

 
Figure B-14: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Woodstock; (a) intensity and (b) magnitude 
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Figure B-15: Box and whisker plot of generated historic event data compared to spatially 

interpolated event data at Wroxeter; (a) intensity and (b) magnitude 
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B.2 CSIROM2kb B11 versus Historical Generated 
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Figure B-16: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Blyth; (a) intensity and (b) magnitude 
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Figure B-17: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Dorchester; (a) intensity and (b) magnitude 
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Figure B-18: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Embro; (a) intensity and (b) magnitude 
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Figure B-19: Box and whisker plot of g CSIROM2kb B11 event data compared to generated 

historical event data at Exeter; (a) intensity and (b) magnitude 

 (a) (b) 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Month

In
te

ns
ity

 (m
m

/h
)

           J       F      M      A      M       J       J      A       S      O      N       D
0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Month

M
ag

ni
tu

de
 (m

m
)

           J       F     M      A      M      J       J      A      S     O      N      D

  
Figure B-20: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Foldens; (a) intensity and (b) magnitude 
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Figure B-21: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Fullarton; (a) intensity and (b) magnitude 
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Figure B-22: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Glen Allan; (a) intensity and (b) magnitude 
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Figure B-23: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Ilderton; (a) intensity and (b) magnitude 
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Figure B-24: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at London; (a) intensity and (b) magnitude 
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Figure B-25: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at St. Thomas; (a) intensity and (b) magnitude 
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Figure B-26: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Stratford; (a) intensity and (b) magnitude 
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Figure B-27: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Tavistock; (a) intensity and (b) magnitude 
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Figure B-28: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Waterloo; (a) intensity and (b) magnitude 
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Figure B-29: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Woodstock; (a) intensity and (b) magnitude 
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Figure B-30: Box and whisker plot of CSIROM2kb B11 event data compared to generated historical 

event data at Wroxeter; (a) intensity and (b) magnitude 
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B.3 CCSRNIES B21 versus Historical Generated 
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Figure B-31: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Blyth; (a) intensity and (b) magnitude 
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Figure B-32: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Dorchester; (a) intensity and (b) magnitude 
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Figure B-33: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Embro; (a) intensity and (b) magnitude 
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Figure B-34: Box and whisker plot of g CCSRNIES B21 event data compared to generated 

historical event data at Exeter; (a) intensity and (b) magnitude 
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Figure B-35: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Foldens; (a) intensity and (b) magnitude 
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Figure B-36: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Fullarton; (a) intensity and (b) magnitude 
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Figure B-37: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Glen Allan; (a) intensity and (b) magnitude 
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Figure B-38: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Ilderton; (a) intensity and (b) magnitude 
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Figure B-39: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at London; (a) intensity and (b) magnitude 
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Figure B-40: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at St. Thomas; (a) intensity and (b) magnitude 
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Figure B-41: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Stratford; (a) intensity and (b) magnitude 
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Figure B-42: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Tavistock; (a) intensity and (b) magnitude 
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Figure B-43: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Waterloo; (a) intensity and (b) magnitude 
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Figure B-44: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Woodstock; (a) intensity and (b) magnitude 
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Figure B-45: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Wroxeter; (a) intensity and (b) magnitude 
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B.4 CSIROM2kb B11 versus CCSRNIES B21 
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Figure B-46: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 
at Blyth; (a) intensity and (b) magnitude 
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Figure B-47: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Dorchester; (a) intensity and (b) magnitude 
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Figure B-48: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Embro; (a) intensity and (b) magnitude 
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Figure B-49: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Exeter; (a) intensity and (b) magnitude 
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Figure B-50: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Foldens; (a) intensity and (b) magnitude 
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Figure B-51: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Fullarton; (a) intensity and (b) magnitude 
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Figure B-52: Box and whisker plot of CCSRNIES B21 event data compared to generated historical 

event data at Glen Allan; (a) intensity and (b) magnitude 
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Figure B-53: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Ilderton; (a) intensity and (b) magnitude 
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Figure B-54: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at London; (a) intensity and (b) magnitude 
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Figure B-55: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at St. Thomas; (a) intensity and (b) magnitude 
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Figure B-56: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Stratford; (a) intensity and (b) magnitude 
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Figure B-57: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Tavistock; (a) intensity and (b) magnitude 
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Figure B-58: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Waterloo; (a) intensity and (b) magnitude 
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Figure B-59: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Woodstock; (a) intensity and (b) magnitude 
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Figure B-60: Mean of CSIROM2kb B11 event data compared to mean of CCSRNIES B21 event data 

at Wroxeter; (a) intensity and (b) magnitude 
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Appendix C. Data for Selected Extreme Events 

C.1 Hyetographs 

C.1.1 CSIROM2kb B11 Simulated Event #1403 
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Figure C-1: Hyetograph of CSIROM2kb B11 

Event #1403 at Blyth 
Figure C-2: Hyetograph of CSIROM2kb B11 

Event #1403 at Dorchester 
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Figure C-3: Hyetograph of CSIROM2kb B11 
Event #1403 at Embro 

Figure C-4: Hyetograph of CSIROM2kb B11 
Event #1403 at Exeter 
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Figure C-5: Hyetograph of CSIROM2kb B11 
Event #1403 at Foldens 

Figure C-6: Hyetograph of CSIROM2kb B11 
Event #1403 at Fullarton 
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Figure C-7: Hyetograph of CSIROM2kb B11 
Event #1403 at Glen Allan 

Figure C-8: Hyetograph of CSIROM2kb B11 
Event #1403 at Ilderton 
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Figure C-9: Hyetograph of CSIROM2kb B11 
Event #1403 at London 

Figure C-10: Hyetograph of CSIROM2kb B11 
Event #1403 at St. Thomas 
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Figure C-11: Hyetograph of CSIROM2kb B11 
Event #1403 at Stratford 

Figure C-12: Hyetograph of CSIROM2kb B11 
Event #1403 at Tavistock 
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Figure C-13: Hyetograph of CSIROM2kb B11 
Event #1403 at Waterloo 

Figure C-14: Hyetograph of CSIROM2kb B11 
Event #1403 at Woodstock 
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Figure C-15: Hyetograph of CSIROM2kb B11 
Event #1403 at Wroxeter 
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C.1.2 CCSRNIES B21 Simulated Event #1197 
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Figure C-16: Hyetograph of CCSRNIES B21 

Event #1197 at Blyth 
Figure C-17: Hyetograph of CCSRNIES B21 

Event #1197 at Dorchester 
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Figure C-18: Hyetograph of CCSRNIES B21 

Event #1197 at Embro 
Figure C-19: Hyetograph of CCSRNIES B21 

Event #1197 at Exeter 
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Figure C-20: Hyetograph of CCSRNIES B21 
Event #1197 at Foldens 

Figure C-21: Hyetograph of CCSRNIES B21 
Event #1197 at Fullarton 
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Figure C-22: Hyetograph of CCSRNIES B21 
Event #1197 at Glen Allan 

Figure C-23: Hyetograph of CCSRNIES B21 
Event #1197 at Ilderton 
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Figure C-24: Hyetograph of CCSRNIES B21 
Event #1197 at London 

Figure C-25: Hyetograph of CCSRNIES B21 
Event #1197 at St. Thomas 
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Figure C-26: Hyetograph of CCSRNIES B21 
Event #1197 at Stratford 

Figure C-27: Hyetograph of CCSRNIES B21 
Event #1197 at Tavistock 
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Figure C-28: Hyetograph of CCSRNIES B21 
Event #1197 at Waterloo 

Figure C-29: Hyetograph of CCSRNIES B21 
Event #1197 at Woodstock 
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Figure C-30: Hyetograph of CCSRNIES B21 
Event #1197 at Wroxeter 
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C.2 Isohyetal Plots for Selected Events 

C.2.1 CSIROM2kb B11 Simulated Event #1403 
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Figure C-31: Isohyets (mm) of July 15 at 08:00 Figure C-32: Isohyets (mm) of July 15 at 09:00 
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Figure C-33: Isohyets (mm) of July 15 at 10:00 Figure C-34: Isohyets (mm) of July 15 at 11:00 
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Figure C-35: Isohyets (mm) of July 15 at 12:00 Figure C-36: Isohyets (mm) of July 15 at 13:00 
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Figure C-38: Isohyets (mm) of July 15 at 15:00 Figure C-37: Isohyets (mm) of July 15 at 14:00 
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Figure C-39: Isohyets (mm) of July 15 at 16:00 Figure C-40: Isohyets (mm) of July 15 at 17:00 
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Figure C-42: Isohyets (mm) of July 15 at 19:00 Figure C-41: Isohyets (mm) of July 15 at 18:00 
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Figure C-43: Isohyets (mm) of July 15 at 20:00 Figure C-44: Isohyets (mm) of July 15 at 21:00 
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Figure C-46: Isohyets (mm) of July 15 at 23:00 Figure C-45: Isohyets (mm) of July 15 at 22:00 
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Figure C-47: Isohyets (mm) of July 16 at 00:00 Figure C-48: Isohyets (mm) of July 16 at 01:00 
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Figure C-50: Isohyets (mm) of July 16 at 03:00 Figure C-49: Isohyets (mm) of July 16 at 02:00 
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Figure C-51: Isohyets (mm) of July 16 at 04:00 Figure C-52: Isohyets (mm) of July 16 at 05:00 
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Figure C-53: Isohyets (mm) of July 16 at 06:00 Figure C-54: Isohyets (mm) of July 16 at 07:00 
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C.2.2 CCSRNIES B21 Simulated Event #1197 
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Figure C-56: Isohyets (mm) of Sept. 6 at 09:00 Figure C-55: Isohyets (mm) of Sept. 6 at 08:00 
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Figure C-57: Isohyets (mm) of Sept. 6 at 10:00 Figure C-58: Isohyets (mm) of Sept. 6 at 11:00 
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Figure C-59: Isohyets (mm) of Sept. 6 at 12:00 Figure C-60: Isohyets (mm) of Sept. 6 at 13:00 
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Figure C-61: Isohyets (mm) of Sept. 6 at 14:00 Figure C-62: Isohyets (mm) of Sept. 6 at 15:00 
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Figure C-63: Isohyets (mm) of Sept. 6 at 16:00 Figure C-64: Isohyets (mm) of Sept. 6 at 17:00 
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Figure C-65: Isohyets (mm) of Sept. 6 at 18:00 Figure C-66: Isohyets (mm) of Sept. 6 at 19:00 
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Figure C-67: Isohyets (mm) of Sept. 6 at 20:00 Figure C-68: Isohyets (mm) of Sept. 6 at 21:00 
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Figure C-69: Isohyets (mm) of Sept. 6 at 22:00 Figure C-70: Isohyets (mm) of Sept. 6 at 23:00 
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Figure C-71: Isohyets (mm) of Sept. 7 at 00:00 Figure C-72: Isohyets (mm) of Sept. 7 at 01:00 
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Figure C-73: Isohyets (mm) of Sept. 7 at 02:00 Figure C-74: Isohyets (mm) of Sept. 7 at 03:00 
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Figure C-75: Isohyets (mm) of Sept. 7 at 04:00 Figure C-76: Isohyets (mm) of Sept. 7 at 05:00 
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Figure C-77: Isohyets (mm) of Sept. 7 at 06:00 Figure C-78: Isohyets (mm) of Sept. 7 at 07:00 
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Figure C-79: Isohyets (mm) of Sept. 7 at 08:00 Figure C-80: Isohyets (mm) of Sept. 7 at 09:00 
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Figure C-81: Isohyets (mm) of Sept. 7 at 10:00 Figure C-82: Isohyets (mm) of Sept. 7 at 11:00 
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Figure C-83: Isohyets (mm) of Sept. 7 at 12:00 Figure C-84: Isohyets (mm) of Sept. 7 at 13:00 
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Figure C-85: Isohyets (mm) of Sept. 7 at 14:00 Figure C-86: Isohyets (mm) of Sept. 7 at 015:00 
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Figure C-87: Isohyets (mm) of Sept. 7 at 16:00 Figure C-88: Isohyets (mm) of Sept. 7 at 17:00 
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Figure C-89: Isohyets (mm) of Sept. 7 at 18:00 Figure C-90: Isohyets (mm) of Sept. 7 at 19:00 
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Figure C-91: Isohyets (mm) of Sept. 7 at 20:00 Figure C-92: Isohyets (mm) of Sept. 7 at 21:00 
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Figure C-93: Isohyets (mm) of Sept. 7 at 22:00 Figure C-94: Isohyets (mm) of Sept. 7 at 23:00 
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Figure C-95: Isohyets (mm) of Sept. 8 at 00:00 Figure C-96: Isohyets (mm) of Sept. 8 at 01:00 
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Figure C-97: Isohyets (mm) of Sept. 8 at 02:00 Figure C-98: Isohyets (mm) of Sept. 8 at 03:00 
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Figure C-99: Isohyets (mm) of Sept. 8 at 04:00 Figure C-100: Isohyets (mm) of Sept. 8 at 05:00 
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Figure C-102: Isohyets (mm) of Sept. 8 at 07:00 Figure C-101: Isohyets (mm) of Sept. 8 at 06:00 
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