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ABSTRACT 
 

The main goal of a drinking water treatment plant is to provide safe drinking water for its 

consumers.  Historically, this was accomplished through monitoring the influent and effluent 

water quality to ensure that the water quality met a set of guidelines and regulations.  However, 

as the limitations of relying on compliance monitoring become more evident, water utilities and 

drinking water treatment plants are beginning to utilize risk management frameworks to help 

provide safe drinking water and to mitigate potential risks.  Applying a risk management 

framework requires an evaluation of potential risks.  This systematic evaluation can be 

performed through using risk analysis methods.   

 

The overall goal of this research is to analyze and evaluate risk analysis methodologies that are 

used in a variety of engineering fields, select two risk analysis methods, and use them to evaluate 

the probability of producing non-compliant drinking water from a rapid gravity filtration unit 

with respect to turbidity. 

 

The risk analysis methodologies that were used in this research were the consequence frequency 

assessment and computer modelling combined with probabilistic risk analysis.  Both of the risk 

analysis methodologies were able to determine the probability of producing non-compliant water 

from a rapid gravity filtration unit with respect to turbidity.   However, these methodologies were 

found to provide different numerical results with respect to each other.  The consequence 

frequency assessment methodology was found to be easier to implement; however, the 

consequence frequency assessment was only able to be performed on one parameter at a time.  



 iv

Computer modelling and probabilistic risk analysis enabled the inclusion of multiple parameters 

which provided a more comprehensive understanding of the filtration unit. 

 

The primary conclusion from this research is that the risk analysis methods, as they are described 

in this thesis, are not sufficient to use directly on a rapid gravity filtration unit without further 

modification.  Furthermore, although the risk analysis methods provided some guidance, these 

methods should only be used as a part of a complete risk management process. 



 v

ACKNOWLEDGEMENTS 
 

I would not have been able to complete this thesis without the help and support of a number of 

people and institutions.   

 

I would initially like to thank my supervisor, Dr. Huck, for his guidance over the last two years, 

during both my research and during the preparation of the thesis. 

 

I would also like to thank all of those involved in the NSERC Chair in Drinking Water 

Treatment, especially William B. Anderson, for comments and advice along the way.   

 

I must also thank NSERC for the funding to complete this project and the City of Brantford 

Water Purification Plant for providing the necessary data to undertake the analysis. 

 

Finally, I would like to thank my friends and family for their support throughout this time.  Your 

constant presence and advice, whether wanted or not, has kept me going when nothing else has.  

Words cannot express my gratitude. 

 

To all those whose names I left out, I offer my apologies for not mentioning you, but know that I 

truly am thankful for your help. 



 vi

TABLE OF CONTENTS 
 

AUTHOR’S DECLARATION .................................................................................................... ii 

ABSTRACT.................................................................................................................................. iii 

ACKNOWLEDGEMENTS ......................................................................................................... v 

TABLE OF CONTENTS ............................................................................................................ vi 

LIST OF TABLES ....................................................................................................................... xi 

LIST OF FIGURES ................................................................................................................... xiii 

CHAPTER 1 INTRODUCTION............................................................................................. 1 

1.1 Background..................................................................................................................... 1 
1.2 Objectives and Significance of Research........................................................................ 3 
1.3 Outline of Thesis............................................................................................................. 4 

CHAPTER 2 LITERATURE REVIEW ................................................................................ 6 

2.1 The Terminology of Risk and Risk Based Methods....................................................... 6 
2.1.1 Risk ......................................................................................................................... 6 
2.1.2 Risk Management Frameworks .............................................................................. 7 
2.1.3 Risk Assessment and Risk Analysis ..................................................................... 11 

2.2 Risk Analysis Methodologies ....................................................................................... 12 
2.2.1 Conservative Approach......................................................................................... 13 
2.2.2 Algebraic Analysis................................................................................................ 14 

2.2.2.1 Combining Probability Distributions............................................................ 15 
2.2.2.2 Approximate Methods of Combining Probability Distributions .................. 15 

2.2.3 Qualitative Methods.............................................................................................. 15 
2.2.4 Fault Trees ............................................................................................................ 16 
2.2.5 Event Trees ........................................................................................................... 17 
2.2.6 Critical Component Analysis................................................................................ 17 
2.2.7 Simulation Methodologies .................................................................................... 18 

2.2.7.1 Consequence Frequency Assessment ........................................................... 19 
2.3 Use of Risk Assessments in Water Treatment.............................................................. 23 

2.3.1 Algebraic Risk Assessments ................................................................................. 23 
2.3.2 Evaluation of Mechanical Risks ........................................................................... 24 
2.3.3 Evaluation of Operational Risks ........................................................................... 25 
2.3.4 Evaluation of Mechanical and Operational risks .................................................. 29 
2.3.5 Water Treatment Risk Analysis as a Part of Microbial Risk Assessments........... 32 



 vii

2.4 Critique of Past Risk Assessments................................................................................ 33 
2.5 A Method of Combining Modelling and Risk Assessment .......................................... 35 
2.6 Computer Modelling in Water Treatment..................................................................... 38 

2.6.1 OTTER.................................................................................................................. 39 
2.6.2 Stimela .................................................................................................................. 40 
2.6.3 Metrex................................................................................................................... 40 
2.6.4 WTP ...................................................................................................................... 41 
2.6.5 TAPWAT.............................................................................................................. 41 
2.6.6 EnviroPro .............................................................................................................. 41 
2.6.7 WatPro .................................................................................................................. 42 

CHAPTER 3 METHOD OF ANALYSIS............................................................................. 43 

3.1 Focus of Risk Analysis Research.................................................................................. 43 
3.1.1 Selection of Risk Analysis Methods ..................................................................... 43 

3.2 Computer Modelling Software Used in Analysis ......................................................... 44 
3.3 Treatment Process for Analysis: Rapid Gravity Filtration Unit ................................... 46 

3.3.1 Rapid Gravity Filtration Unit................................................................................ 46 
3.3.2 Theoretical Description of a Rapid Gravity Filtration.......................................... 48 
3.3.3 Rapid Gravity Filtration Design............................................................................ 52 
3.3.4 Description of how OTTER Models Filtration..................................................... 53 

3.4 System for Analysis: Brantford Water Treatment Plant ............................................... 57 
3.4.1 System Description ............................................................................................... 57 
3.4.2 Description of Filtration Units at Brantford.......................................................... 59 
3.4.3 Data Collection ..................................................................................................... 59 
3.4.4 Choice of Filter Unit for Analysis ........................................................................ 59 
3.4.5 Filter One Influent and Effluent Turbidity Readings............................................ 60 

3.5 Statistical Analysis Techniques .................................................................................... 63 
3.5.1 Parametric and Non-Parametric Distributions ...................................................... 63 
3.5.2 Theoretical Distributions ...................................................................................... 64 
3.5.3 Parameter Estimation Methods ............................................................................. 65 

3.5.3.1 Method of Matching Moments ..................................................................... 66 
3.5.3.2 Probability Plotting Method.......................................................................... 68 
3.5.3.3 Method of Maximum Likelihood.................................................................. 69 
3.5.3.4 Comparison of Parameter Estimation Methods ............................................ 70 

3.5.4 Selecting a Theoretical Distribution ..................................................................... 70 
3.5.4.1 Probability Plotting ....................................................................................... 71 

3.5.5 Probabilistic Risk Assessment, Variability and Uncertainty ................................ 71 
3.5.6 Simulation Techniques.......................................................................................... 72 

3.5.6.1 Monte Carlo Analysis ................................................................................... 72 
3.5.6.2 First Order Monte Carlo Analysis................................................................. 73 
3.5.6.3 Second Order Monte Carlo Analysis ............................................................ 73 

3.5.7 Simulating Data from Probability Distributions ................................................... 74 
3.5.8 Random Number Generation ................................................................................ 76 
3.5.9 Correlated Water Quality Parameters ................................................................... 77 



 viii

3.6 Summary of Analysis Methodologies........................................................................... 78 
3.6.1 Summary of CFA Methodology ........................................................................... 79 

3.6.1.1 Step 1: Define Water Treatment Plant .......................................................... 79 
3.6.1.2 Step 2: Determine Parameters to Analyze .................................................... 79 
3.6.1.3 Step 3: Determine the Influent Water Quality and the Percent Removal 
Distributions...................................................................................................................... 79 
3.6.1.4 Step 4: Perform Monte Carlo Simulation ..................................................... 80 
3.6.1.5 Step 5: State Conclusions.............................................................................. 80 

3.6.2 Summary of the Risk Analysis Method which Combines Computer Modelling and 
Probabilistic Risk Analysis ................................................................................................... 80 

3.6.2.1 Step 1: Define Water Treatment Plant and Set-Up Model ........................... 80 
3.6.2.2 Step 2: Determine Parameters to Analyze .................................................... 81 
3.6.2.3 Step 3: Calibrate the Computer Model ......................................................... 81 
3.6.2.4 Step 4: Determine Distributions of Water Quality Parameters..................... 81 
3.6.2.5 Step 5: Simulate Incoming Water Quality Data ........................................... 81 
3.6.2.6 Step 6: Run Calibrated Model with Simulated Data..................................... 82 
3.6.2.7 Step 7: State Conclusions.............................................................................. 82 

CHAPTER 4 RESULTS AND DISCUSSION USING THE CONSEQUENCE 
FREQUENCY ASSESSMENT.................................................................................................. 83 

4.1 Application of CFA Methodology to Filter 1 ............................................................... 83 
4.1.1 Data Manipulation for Percent Reduction Calculation......................................... 85 
4.1.2 Distribution Fitting of Data................................................................................... 87 
4.1.3 Simulation Convergence....................................................................................... 91 

4.2 CFA Simulation Output ................................................................................................ 93 
4.3 Factors That Could Affect the CFA Output.................................................................. 97 

4.3.1 Conditional Reliability Effect ............................................................................... 97 
4.3.2 Influence of the Data Record .............................................................................. 101 

4.4 Discussion of the CFA Methodology ......................................................................... 103 
4.5 Risk Evaluation........................................................................................................... 105 
4.6 Implications for the Brantford Water Treatment Plant ............................................... 106 

CHAPTER 5 RESULTS AND DISCUSSION USING COMPUTER MODELLING AND 
PROBABILISTIC RISK ANALYSIS..................................................................................... 109 

5.1 Application of the Computer Modelling and Probabilistic Risk Analysis to Filter 1. 109 
5.2 Model Set-Up.............................................................................................................. 111 

5.2.1 Preliminary Experiments .................................................................................... 111 
5.2.2 Static and Operational Data ................................................................................ 113 
5.2.3 OTTER Model Calibration ................................................................................. 114 

5.2.3.1 Recommended Calibration Procedure ........................................................ 114 
5.2.3.2 Calibration Parameters................................................................................ 115 

5.2.4 Input Data Record ............................................................................................... 120 
5.2.4.1 Distribution Fitting of Data......................................................................... 120 
5.2.4.2 Data Record ................................................................................................ 121 



 ix

5.2.5 Description of Calibrated OTTER Model........................................................... 124 
5.2.6 Simulation Convergence Study........................................................................... 126 

5.3 Simulation Results for a Full System Analysis........................................................... 128 
5.3.1 Risk Evaluation................................................................................................... 130 
5.3.2 Effect of Time Series Filter Flow Rate ............................................................... 131 

5.3.2.1 Results from Filter Analysis by Modified Probabilistic Methodology with 
Pseudo-Time Series for Flow Demand........................................................................... 133 
5.3.2.2 Risk Evaluation........................................................................................... 134 

5.3.3 Comparison between Calibrated OTTER model with random flow demand and 
calibrated OTTER model with time-flow series................................................................. 134 

5.4 Predictive Modelling and Risk Analysis..................................................................... 137 
5.4.1 Predictive Study Set-Up...................................................................................... 137 
5.4.2 Simulation Output............................................................................................... 140 
5.4.3 Discussion of Predictive Study ........................................................................... 142 

5.5 Risk Analysis Implications for the Brantford Water Treatment Plant........................ 151 

CHAPTER 6 DISCUSSION OF RISK ANALYSIS METHODOLOGIES.................... 157 

6.1 Numerical Differences ................................................................................................ 157 
6.2 External Differences ................................................................................................... 163 
6.3 Risk Analysis Implications for the Brantford Water Treatment Plant........................ 164 

CHAPTER 7 CONCLUSIONS ........................................................................................... 166 

7.1 Conclusions for Risk Analysis in Water Treatment ................................................... 166 
7.2 Conclusions for Risk Analysis Performed in on a Filtration Unit .............................. 167 
7.3 Conclusions for the Brantford Water Treatment Plant ............................................... 169 

CHAPTER 8 RECOMMENDATIONS AND FUTURE WORK .................................... 170 

8.1 Recommendations for the Brantford Water Treatment Plant ..................................... 170 
8.2 Recommendations for Regulatory Agencies and Risk Assessors............................... 170 
8.3 Future Work: Strengthen Methodology and Current Results ..................................... 171 

REFERENCES.......................................................................................................................... 174 

ACRONYMS............................................................................................................................. 183 

APPENDIX A:  BRANTFORD WATER TREATMENT PLANT RAW DATA FOR 2004
..................................................................................................................................................... 184 

APPENDIX B:  FULL CUMULATIVE DISTRIBUTION FUNCTIONS FOR ALL 
SIMULATOINS AND SIMULATION COMPARISONS .................................................... 197 

APPENDIX C:  PRELIMINARY ANALYSIS WITH THE OTTER FILTRATION 
MODEL ..................................................................................................................................... 201 



 x

APPENDIX D: MODIFIED CALIBRATION PROCEDURE............................................. 213 

APPENDIX E: YATE’S METHOD CALCULATIONS FOR PREDICTIVE MODELLING 
AND RISK ANALYSIS............................................................................................................ 220 

 



 xi

LIST OF TABLES 

TABLE 3.1: COMPUTER SOFTWARE PLATFORM COMPARISON TABLE ............................................................................45 

TABLE 3.2: PHYSICAL PROPERTIES OF FILTER 1............................................................................................................59 

TABLE 3.3: SUMMARY STATISTICS OF FILTER 1 AND FILTER 2 EFFLUENT DURING THE 2004 CALENDAR YEAR ............60 

TABLE 3.4: SUMMARY STATISTICS FOR THE INFLUENT AND EFFLUENT TURBIDITY FROM FILTER 1 OVER THE 2004 
CALENDAR YEAR.................................................................................................................................................63 

TABLE 3.5: RELATIONSHIP BETWEEN DISTRIBUTION PARAMETERS AND THE MEAN AND VARIANCE OF A MEASURED 
DATA SET (ADAPTED FROM ANG & TANG, 1975) ................................................................................................67 

TABLE 4.1: SUMMARY STATISTICS FOR THE PERCENTAGE OF INFLUENT TURBIDITY REMAINING FOR FILTER 1.............87 

TABLE 4.2: DISTRIBUTION FITTING STATISTICS FOR INFLUENT TURBIDITY ...................................................................87 

TABLE 4.3: DISTRIBUTION FITTING STATISTICS FOR PERCENTAGE OF INFLUENT TURBIDITY REMAINING......................88 

TABLE 4.4: LOGNORMAL DISTRIBUTION PARAMETERS FOR INFLUENT TURBIDITY AND PERCENTAGE OF TURBIDITY 
REMAINING .........................................................................................................................................................91 

TABLE 4.5: SUMMARY STATISTICS OF EFFLUENT TURBIDITY FOR A FULL CFA SIMULATION ........................................94 

TABLE 4.6: LOGNORMAL DISTRIBUTION PARAMETERS FOR INFLUENT TURBIDITY DISTRIBUTIONS MODIFIED BY 
CONDITIONAL RELIABILITY .................................................................................................................................98 

TABLE 4.7: SUMMARY STATISTICS OF EFFLUENT TURBIDITY FOR A CFA MODIFIED FOR CONDITIONAL RELIABILITY.100 

TABLE 4.8: LOGNORMAL DISTRIBUTION PARAMETERS FOR PERCENTAGE OF TURBIDITY REMAINING FOR SIMULATIONS 
WITH SUB-SETS OF THE 2004 DATA ...................................................................................................................101 

TABLE 4.9: SUMMARY OF OUTPUT FROM CFA SIMULATIONS WITH SUB-SETS OF THE 2004 DATA ..............................102 

TABLE 4.10: RISK EVALUATION FOR TARGET LEVELS THROUGH THE CFA.................................................................105 

TABLE 4.11: RISK EVALUATION FOR TARGET LEVELS FOR MEASURED DATA AND CFA SIMULATED DATA.................107 

TABLE 4.12: CONDITIONAL RELIABILITY ANALYSIS OF CFA METHODOLOGY ............................................................107 

TABLE 5.1: PARAMETERS FOR INITIAL MODEL SET-UP................................................................................................113 

TABLE 5.2: MODIFIED VALUES FOR VOIDAGE AND SPHERICITY ..................................................................................116 

TABLE 5.3: LOGNORMAL DISTRIBUTION FITTING STATISTICS FOR FILTER FLOW RATE................................................121 

TABLE 5.4: LOGNORMAL PARAMETERS FUSED FOR SIMULATING INPUTS TO THE OTTER MODEL ..............................121 

TABLE 5.5: WATER QUALITY PARAMETERS USED IN THE OTTER MODEL ....................................................................123 



 xii

TABLE 5.6: SUMMARY OF OUTPUT FROM CALIBRATED OTTER SIMULATION.............................................................129 

TABLE 5.7: RISK EVALUATION FOR TARGET LEVELS THROUGH THE CALIBRATED OTTER MODEL.............................130 

TABLE 5.8: SUMMARY OF OUTPUT FROM CALIBRATED OTTER SIMULATION WITH TIME SERIES FILTER FLOW RATE 
PROFILE.............................................................................................................................................................134 

TABLE 5.9: RISK EVALUATION FOR TARGET LEVELS THROUGH THE CALIBRATED OTTER MODEL USING A TIME SERIES 
FOR FILTER FLOW RATE.....................................................................................................................................134 

TABLE 5.10: COMPARISON BETWEEN PROBABILISTIC RISK EVALUATION USING A CALIBRATED OTTER MODEL WITH 
AND WITHOUT A TIME SERIES FOR WATER FLOW ...............................................................................................135 

TABLE 5.11: COMPARISON OF PROBABILISTIC RISK ANALYSIS OUTPUT USING A CALIBRATED OTTER MODEL WITH AND 
WITHOUT A TIME SERIES FOR WATER FLOW.......................................................................................................135 

TABLE 5.12: PREDICTIVE STUDY USING COMPUTER MODELLING SET-UP ....................................................................138 

TABLE 5.13: INPUT DATA FOR THE DIFFERENT SIMULATIONS FOR THE PREDICTIVE STUDY.........................................139 

TABLE 5.14: RESULTS FROM PREDICTIVE STUDY: CALCULATION OF PROBABILITY VALUES FOR EACH SIMULATION AT 
THREE CHOSEN REFERENCE LEVELS ..................................................................................................................141 

TABLE 5.15: SIGNIFICANCE OF THE THREE EVALUATED PARAMETERS FOR THE PREDICTIVE STUDY...........................142 

TABLE 5.16: T-TEST TO COMPARE THE TURBIDITY REMOVAL BETWEEN SIMULATION 11 AND SIMULATION 13...........145 

TABLE 5.17: F-TEST FOR THE PROBABILITY OF EFFLUENT TURBIDITY GREATER THAN 0.05 NTU...............................148 

TABLE 5.18: F-TEST FOR THE PROBABILITY OF EFFLUENT TURBIDITY GREATER THAN 0.10 NTU...............................148 

TABLE 5.19: F-TEST FOR THE PROBABILITY OF EFFLUENT TURBIDITY GREATER THAN 0.30 NTU...............................149 

TABLE 5.20: CONDITIONAL RELIABILITY ANALYSIS OF CALIBRATED OTTER MODEL................................................152 

TABLE 5.21: SIMULATIONS 10 AND 11 FROM THE PREDICTIVE STUDY RUN WITH A 0.30 NTU TURBIDITY BACKWASH 
TRIGGER COMPARED TO THE ORIGINAL SIMULATIONS 10 AND 11 .....................................................................156 

TABLE 6.1: COMPARISON OF RISK ANALYSIS METHODOLOGIES USING OUTPUT FROM THE SIMULATIONS ...................158 

 



 xiii

LIST OF FIGURES 

FIGURE 2.1: THE U.S. PRESIDENTIAL/CONGRESSIONAL COMMISSION FRAMEWORK.  (SOURCE: UNITED STATES, 
PRESIDENTIAL/CONGRESSIONAL COMMISSION ON RISK ASSESSMENT AND RISK MANAGEMENT, 1997)..............8 

FIGURE 2.2: FRAMEWORK FOR MANAGEMENT OF DRINKING WATER QUALITY (SOURCE: NATIONAL HEALTH AND 
MEDICAL RESEARCH COUNCIL, 2004) ................................................................................................................10 

FIGURE 2.3: RELATIONSHIP BETWEEN RISK ANALYSIS, RISK ASSESSMENT AND RISK MANAGEMENT  (ADAPTED FROM 
RAK, 2003) .........................................................................................................................................................11 

FIGURE 2.4: DIAGRAM OF RISK ANALYSIS USING SIMULATION .....................................................................................19 

FIGURE 2.5: DIAGRAM OF A SINGLE BARRIER TREATMENT SYSTEM..............................................................................20 

FIGURE 2.6: DIAGRAM OF A MULTIPLE BARRIER TREATMENT SYSTEM .........................................................................21 

FIGURE 2.7: DIAGRAM OF THE CONSEQUENCE FREQUENCY ASSESSMENT ...................................................................22 

FIGURE 2.8: DIAGRAM OF A RISK ANALYSIS METHODOLOGY THAT COMBINED MODEL DEVELOPMENT WITH 
PROBABILISTIC RISK ANALYSIS ...........................................................................................................................26 

FIGURE 2.9: DIAGRAM OF A WASTEWATER TREATMENT PLANT RISK ANALYSIS METHODOLOGY..................................37 

FIGURE 3.1: DIAGRAM OF THE SELECTED TREATMENT PROCESS FOR RISK ANALYSIS ...................................................47 

FIGURE 3.2: TRANSPORT AND ATTACHMENT OF PARTICLES IN A FILTRATION BED (AMIRTHARAJAH, 1988).................48 

FIGURE 3.3: HEADLOSS OVER TIME IN A FILTER ...........................................................................................................50 

FIGURE 3.4: EFFLUENT TURBIDITY FROM A FILTER UNIT OVER TIME ............................................................................51 

FIGURE 3.5: SCHEMATIC OF THE BRANTFORD WATER TREATMENT PLANT AS OF MAY 1999 (CITY OF BRANTFORD, 
2006) ..................................................................................................................................................................58 

FIGURE 3.6: FILTER 1 INFLUENT TURBIDITY CUMULATIVE DISTRIBUTION FUNCTION FOR TURBIDITY DATA DURING THE 
2004 CALENDAR YEAR ........................................................................................................................................61 

FIGURE 3.7: FILTER 1 EFFLUENT TURBIDITY CUMULATIVE DISTRIBUTION FUNCTION FOR TURBIDITY DATA DURING THE 
2004 CALENDAR YEAR ........................................................................................................................................62 

FIGURE 3.8: CONSTRUCTION OF THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION (FREY, 1992) ...........................75 

FIGURE 3.9: INVERSE TRANSFORM METHOD .................................................................................................................76 

FIGURE 4.1: DIAGRAM OF CFA METHODOLOGY APPLIED TO FILTRATION UNIT ............................................................84 

FIGURE 4.2: CUMULATIVE DISTRIBUTION FUNCTION OF THE PERCENTAGE OF INFLUENT TURBIDITY REMAINING FOR 
FILTER 1 ..............................................................................................................................................................86 



 xiv

FIGURE 4.3: PROBABILITY PLOTS FOR DISTRIBUTION FITTING OF INFLUENT TURBIDITY DATA: CLOCKWISE FROM TOP 
LEFT, NORMAL DISTRIBUTION, LOG-NORMAL DISTRIBUTION, GUMBELL DISTRIBUTION, EXPONENTIAL 
DISTRIBUTION .....................................................................................................................................................89 

FIGURE 4.4: PROBABILITY PLOTS FOR DISTRIBUTION FITTING OF THE PERCENT OF INFLUENT TURBIDITY REMAINING 
DATA: CLOCKWISE FROM TOP LEFT, NORMAL DISTRIBUTION, LOG-NORMAL DISTRIBUTION, GUMBELL 
DISTRIBUTION, EXPONENTIAL DISTRIBUTION ......................................................................................................90 

FIGURE 4.5: CONVERGENCE OF THE CFA SIMULATION: 90TH PERCENTILE AND BELOW ................................................92 

FIGURE 4.6: CONVERGENCE OF THE CFA SIMULATION: 95TH PERCENTILE AND ABOVE.................................................92 

FIGURE 4.7: CUMULATIVE DISTRIBUTION FUNCTION FOR A FULL CFA SIMULATION ....................................................94 

FIGURE 4.8: COMPARISON BETWEEN MEASURED TURBIDITY EFFLUENT AND CFA SIMULATED EFFLUENT ...................96 

FIGURE 4.9: COMPARISON BETWEEN MEASURED TURBIDITY EFFLUENT AND CFA SIMULATED EFFLUENT FOR A 
CUMULATIVE PROBABILITY OF 90% AND ABOVE ................................................................................................96 

FIGURE 4.10: AVERAGE PERCENT OF TURBIDITY REMAINING FOR TURBIDITY PERCENTILES.........................................98 

FIGURE 4.11: CUMULATIVE DISTRIBUTION FUNCTION OF EFFLUENT TURBIDITY FOR A CFA MODIFIED FOR 
CONDITIONAL RELIABILITY .................................................................................................................................99 

FIGURE 4.12: COMPARISON BETWEEN THE ORIGINAL CFA AND CFA MODIFIED FOR CONDITIONAL RELIABILITY: 
FOCUSING ON THE TOP 10 % OF THE CUMULATIVE DISTRIBUTION FUNCTION....................................................100 

FIGURE 4.13: COMPARISON BETWEEN THE ORIGINAL CFA TO THE CFA WITH SUB-SETS OF DATA USING CUMULATIVE 
DISTRIBUTION FUNCTIONS: FOCUSING ON THE TOP 10 % OF THE CUMULATIVE DISTRIBUTION FUNCTION .........102 

FIGURE 4.14: SUMMARY OF EFFLUENT VALUES FOR ALL CFA SIMULATIONS .............................................................103 

FIGURE 4.15: RISK EVALUATION FOR TARGET LEVELS THROUGH THE CFA................................................................105 

FIGURE 5.1: DIAGRAM OF COMPUTER MODELLING AND PROBABILISTIC ANALYSIS METHODOLOGY APPLIED TO 
FILTRATION UNIT ..............................................................................................................................................110 

FIGURE 5.2: COMPARISON OF MEASURED VALES AND MODEL CALCULATED VALUES FOR FILTER HEADLOSS: 
CLOCKWISE FROM TOP LEFT, AVERAGE FILTER RUN, LOW FILTER RUN, HIGH FILTER RUN, MAXIMUM 
ACCUMULATION FILTER RUN.............................................................................................................................118 

FIGURE 5.3: COMPARISON OF MEASURED VALES AND MODEL CALCULATED VALUES FOR FILTER EFFLUENT: 
CLOCKWISE FROM TOP LEFT, AVERAGE FILTER RUN, LOW FILTER RUN, HIGH FILTER RUN, MAXIMUM 
ACCUMULATION FILTER RUN.............................................................................................................................119 

FIGURE 5.4: OTTER MODEL OF BRANTFORD FILTER 1 ..............................................................................................124 

FIGURE 5.5: STATIC DATA FOR CALIBRATED BRANTFORD WTP OTTER MODEL .......................................................125 

FIGURE 5.6: OPERATING DATA FOR CALIBRATED BRANTFORD WTP OTTER MODEL ................................................125 

FIGURE 5.7: CALIBRATION DATA FOR CALIBRATED BRANTFORD WTP OTTER MODEL.............................................126 

FIGURE 5.8: CONVERGENCE OF THE CALIBRATED OTTER MODEL SIMULATION: 90 PERCENTILE AND BELOW...........127 



 xv

FIGURE 5.9: CONVERGENCE OF THE CALIBRATED OTTER MODEL SIMULATION: 95 PERCENTILE AND ABOVE ...........127 

FIGURE 5.10: CDF OF TURBIDITY EFFLUENT FROM CALIBRATED OTTER SIMULATION USING 13,358 SHOTS ............128 

FIGURE 5.11: COMPARISON BETWEEN MEASURED TURBIDITY EFFLUENT AND TURBIDITY EFFLUENT SIMULATED WITH A 
CALIBRATED MODEL AND RANDOM FILTER FLOW RATE ....................................................................................130 

FIGURE 5.12: MEASURED FILTER 1 FLOW RATE FOR JANUARY 2004..........................................................................132 

FIGURE 5.13: SIMULATED FILTER 1 FLOW RATE FOR APPROXIMATELY 1 MONTH .......................................................132 

FIGURE 5.14: CDF OF TURBIDITY EFFLUENT FROM CALIBRATED OTTER SIMULATION WITH TIME-SERIES FILTER FLOW 
RATE PROFILE....................................................................................................................................................133 

FIGURE 5.15: COMPARISON OF THE CDF OUTPUT FROM THE PROBABILISTIC RISK ASSESSMENT FOR THE CALIBRATED 
OTTER MODELS WITH AND WITHOUT USING A TIME SERIES: FOCUSING ON THE TOP 10% OF THE CDF ...........136 

FIGURE 5.16: HIGH AND LOW DISTRIBUTIONS FOR INFLUENT TURBIDITY FOR THE PREDICTIVE STUDY.......................139 

FIGURE 5.17: HEADLOSS BUILD UP IN THE FILTRATION UNIT OVER TIME FOR SIMULATIONS 11 AND 13 .....................143 

FIGURE 5.18: BACKWASHES OVER TIME FOR SIMULATIONS 11 AND 13 ......................................................................144 

FIGURE 5.19: TURBIDITY EFFLUENT FROM THE FILTRATION UNIT OVER TIME FOR SIMULATIONS 11 AND 13..............146 

FIGURE 5.20: NORMAL PROBABILITY PLOT FOR THE PROBABILITY OF EFFLUENT TURBIDITY GREATER THAN 0.05 NTU 
(A: FILTER FLOW RATE, B: FILTER DEPTH, C: INFLUENT TURBIDITY).................................................................150 

FIGURE 5.21: NORMAL PROBABILITY PLOT FOR THE PROBABILITY OF EFFLUENT TURBIDITY GREATER THAN 0.10 NTU 
(A: FILTER FLOW RATE, B: FILTER DEPTH, C: INFLUENT TURBIDITY).................................................................150 

FIGURE 5.22: NORMAL PROBABILITY PLOT FOR THE PROBABILITY OF EFFLUENT TURBIDITY GREATER THAN 0.30 NTU 
(A: FILTER FLOW RATE, B: FILTER DEPTH, C: INFLUENT TURBIDITY).................................................................151 

FIGURE 6.1: COMPARISON OF RISK EVALUATION FROM DIFFERENT ANALYSIS METHODOLOGIES FOR PROBABILITY OF 
PRODUCING WATER GREATER THAN 0.05 NTU .................................................................................................158 

FIGURE 6.2: COMPARISON OF RISK EVALUATION FROM DIFFERENT ANALYSIS METHODOLOGIES FOR PROBABILITY OF 
PRODUCING WATER GREATER THAN 0.10 NTU .................................................................................................159 

FIGURE 6.3: COMPARISON OF RISK EVALUATION FROM DIFFERENT ANALYSIS METHODOLOGIES FOR PROBABILITY OF 
PRODUCING WATER GREATER THAN 0.30 NTU .................................................................................................159 

FIGURE 6.4: CDF OF THE OUTPUT FROM THE DIFFERENT RISK ANALYSIS METHODOLOGIES AND THE MEASURED 
EFFLUENT: FOCUSING ON THE TOP 10% OF THE CDF........................................................................................160 

FIGURE 6.5: CDF OF THE OUTPUT FROM THE DIFFERENT RISK ANALYSIS METHODOLOGIES AND THE MEASURED 
EFFLUENT: FOCUSING ON THE TOP 10% OF THE CDF AND BETWEEN 0 - 0.5 NTU.............................................161 



 1

CHAPTER 1  
INTRODUCTION 

 

1.1 Background 

The primary goal of any water treatment plant is to provide safe, quality drinking water to the 

public.  To achieve this goal, water treatment plants have historically monitored the effluent 

water quality to ensure that the concentration of specific effluent parameters is below a 

regulation or guideline.  This reliance on effluent monitoring as a tool of ensuring that safe 

drinking water is produced has some inherent problems which need to be addressed.  

 

Monitoring effluent water quality is limited in its scope because only a limited number of the 

possible parameters present in treated water can be monitored on a regular basis (Sinclair & 

Rizak, 2004).  This limitation of scope exists since there is not enough time or money to monitor 

every possible water treatment parameter.  Consequently, indicator water quality parameters are 

used to monitor a set of parameters as opposed to monitoring each parameter individually.  

However, when using indicator water quality parameters, there can be a lack of correlation 

between the indicator water quality parameter and the parameter of interest.  For example, 

although microbiological parameters are monitored by a set of indicator organisms which 

correlate well with the presence of bacteria, the same indicator organisms do not provide an 

accurate measurement of the amount of viruses and protozoa present in the water (Sinclair & 

Rizak, 2004). 
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Secondly, monitoring often is performed by sampling the effluent water quality on an 

intermittent basis.  This intermittent sampling is then considered representative of the water 

quality throughout the entire time period of interest (Sinclair & Rizak, 2004).  However, it is 

possible that a water quality parameter exceeds a guideline or regulation during the time period 

between sampling points.  

 

Finally, reliance on compliance monitoring promotes a system that corrects failures after they 

have occurred, not a system that focuses on the elimination of these failures before they happen 

(Sinclair & Rizak, 2004).  This can create a situation where a water treatment plant corrects a 

specific problem over the short term to avoid being out of compliance with a guideline or 

regulation without attempting to stop these situations from occurring again.  

 

The limitations stated above concerning compliance monitoring and the effect of these 

limitations on treatment systems can be seen through evaluating the Walkerton outbreak in May 

2000.  Hrudey (2004), states that the outbreak did not occur because of an inadequacy in the 

level of stringent regulations and guidelines, but rather through a failure within the overall 

management of water quality.  Therefore, to avoid the limitations of compliance monitoring, 

there has begun a transition in the water treatment sector to manage water quality through risk 

management frameworks.   

 

Even with the shift to risk management frameworks, as recently as 1996, it has been reported that 

the use of risk assessment techniques is not widespread in the water treatment field (Egerton, 

1996).  Currently, the Australian Drinking Water Guidelines (National Health and Medical 
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Research Council, 2004) provide one of the most comprehensive frameworks for the 

management of water quality.  In Canada the use of water management frameworks has also 

begun to develop as exemplified by Saskatchewan’s 2005-06 Provincial Budget Performance 

Plan – Safe Drinking Water Strategy (Saskatchewan Environment, 2005). 

1.2 Objectives and Significance of Research 

The goal of this research is to examine the concepts of risk management, risk assessment and 

risk analysis as they apply to water treatment.  As risk management becomes more commonly 

applied, water utilities will eventually begin to use risk assessment and risk analysis tools.  While 

there are tools available for risk analysis to assess a treatment failure, there is currently no 

consensus on the methods to be used in such an analysis.  Therefore, this research focuses on risk 

analysis methods and their use to evaluate risks associated with the production of safe drinking 

water.  Specifically the objectives of this research are as follows: 

 Provide a brief overview of risk analysis methods that have been used in analyzing water 

treatment processes for the risk of producing non-compliant water; 

 Select and modify one or more of the evaluated risk analysis methods so they can be 

applied to water treatment for the analysis of operational risks, as opposed to mechanical 

risks, for producing non-compliant water; 

 Determine the risk of producing non-compliant water on a properly operated water 

treatment plant with respect to turbidity using two risk analysis techniques; 

 Comment on the information that can be ascertained from the two different operational 

risk analyses; and 
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 Discuss the ability of the two operational risk analysis methods to adequately assess the 

risk of producing non-compliant water from a rapid gravity filter specifically and from a 

water treatment plant in general. 

1.3 Outline of Thesis 

Risk management is a complex process composed of different parts.  Therefore, to establish a 

frame of reference for a discussion concerning risk management, Chapter 2 begins with a review 

of some of the basic principles of risk management, risk assessment, and risk analysis and the 

relationship between these three elements.  Sections 2.2 - 2.5 review some of the more common 

methods of performing risk analysis and discuss if they have been used to analyze the risk of 

producing non-compliant water in a water treatment facility.  Finally, Section 2.6 provides a 

review of different computer software packages that are currently available to model drinking 

water treatment processes.   

 

Chapter 3 focuses on providing an overview of the analysis methods that were used in 

completing the rest of the thesis.  This discussion will include a detailed description of the 

selected risk analysis methods including a description of the system that was analyzed, a 

theoretical discussion of the chosen treatment unit (rapid gravity filtration), and a discussion of 

the statistical and numerical methods that were used during the risk analysis. 

 

Chapters 4 and 5 present the results and discussion related to the individual risk analysis 

methods.  These chapters will focus on how that particular risk analysis mechanism is able to 

provide an estimate of the risk of producing non-compliant water from a properly operated 

filtration unit. 
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A comparison between the two risk analysis methodologies is provided in Chapter 6.  Focus is 

placed on how the two analysis methodologies analyze the risk or producing non-compliant 

water in a filter and what affect the risk analysis can have on an understanding of the filtration 

process.  A general discussion of these two risk analysis methodologies and their use in assessing 

water treatment performance is also given. 

 

Several conclusions and recommendations are made in Chapter 7 and 8 so that the operational 

risk analysis process can be improved to provide a more comprehensive and accurate analysis of 

a system in the future. 
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CHAPTER 2  
LITERATURE REVIEW 

 

2.1 The Terminology of Risk and Risk Based Methods 

The term “risk” has multiple meanings depending on when and how it is used.  This issue is 

emphasized by Jardine and Hrudey (1997), who identify the need for all parties involved in a 

discussion concerning risk to eliminate misunderstandings before they occur.  Consequently, 

before discussing risk and the use of risk based methods to assess water treatment performance, a 

clear understanding of the terms used during the discussion is needed.  This discussion provides 

a frame of reference for the rest of the thesis; however, it should be noted that there is no 

comprehensive agreement for some of the definitions provided.  Thus the discussion is provided 

so the terminology and its use can be related to this thesis alone. 

2.1.1 Risk 

A number of definitions for risk are available within the field of risk management and risk 

assessment.  Kaplan and Garrick (1981) provide a comprehensive definition of risk while Jardine 

and Hrudey (1997) provide a discussion on the many possible meanings of risk.  However, for 

this thesis, the following definition from the U.S. Presidential/Congressional Commission on 

Risk Assessment and Risk Management (1997) will be used as a definition of risk. 

 

Risk is “the probability that a substance or situation will produce harm under specified 

conditions. Risk is a combination of two factors: the probability that an adverse event will occur 

(such as a specific disease or type of injury) and the consequences of the adverse event” (U.S. 
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Presidential/Congressional Commission on Risk Assessment and Risk Management, 1997).  This 

definition of risk incorporates the three components of risk that are most commonly used in a 

discussion of specific risks.  The threat must be identifiable, it must be able to occur and it must 

cause harm under a specific set of situations.   

2.1.2 Risk Management Frameworks 

Risk management frameworks can be loosely described as organized methodologies that are 

designed to help understand what risks are present in a situation and to help mitigate these risks.  

The following definition from the U.S. Presidential/Congressional Commission on Risk 

Assessment and Risk Management (1997) provides a better overview of the actions and process 

of risk management.   

 

Risk Management is “the process of identifying, evaluating, selecting, and implementing actions 

to reduce risk to human health and to ecosystems.  The goal of risk management is scientifically 

sound, cost-effective, integrated actions that reduce or prevent risks while taking into account 

social, cultural, ethical, political, and legal considerations” (U.S. Presidential/Congressional 

Commission on Risk Assessment and Risk Management, 1997). 

 

An example of a risk management framework is the U.S. Presidential/Congressional 

Commission Framework.  A pictorial representation of the framework is shown in Figure 2.1.  

From this figure it is evident that the U.S. Presidential/Congressional Commission Framework 

separates the management of risks into seven integrated stages.  These stages provide a 

methodological way of evaluating and managing the risks associated with environmental health.  

These stages are described in detail in U.S. Presidential/Congressional Commission on Risk 
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Assessment and Risk Management (1997) or in Krewski et al. (2002); however, a brief summary 

will be presented here.   

1. Define the problems and place them in their context 
2. Analyze risks using risk assessment to accurately characterize the risk 
3. Estimate options for managing the risk 
4. Make a decision based on the best available knowledge 
5. Take action to implement the solutions 
6. Evaluate the results to determine if new action should be undertaken and whether the 

action taken was sufficient 
7. Engage the stakeholders throughout the process 

 

 
Figure 2.1: The U.S. Presidential/Congressional Commission Framework.  (Source: United States, 

Presidential/Congressional Commission on Risk Assessment and Risk Management, 1997) 

 

Risk management frameworks, such as the U. S. Presidential/Congressional Commission 

Framework, were not specifically designed for the water treatment field.  Although these 
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frameworks are useful to understand some issues in water treatment (Sinclair & Rizak, 2004), 

there are some principles of risk management, such as those described by Hrudey (2001, 2004), 

that directly relate to the water treatment field.  Consequently, risk management frameworks that 

are directly applicable to the water treatment field have recently been developed.  . 

 

One example of a risk management framework developed for a water utility is provided by 

Considine (2004) who presented an outline of a risk management framework that has been 

implemented by Barwon Water, a water authority in the Victoria Region of Australia.  A general 

framework is provided by the Australian Drinking Water Guidelines (ADWG) which has 

implemented one of the first risk management frameworks for water treatment with the 

Framework for Management of Drinking Water Quality.  This framework was developed after a 

review of a number of existing risk management frameworks and it focuses specifically on issues 

related to the management of drinking water (Sinclair & Rizak, 2004).  Although a full 

evaluation will not be completed here, Figure 2.2 outlines the basic principles of the Framework. 



 
Figure 2.2: Framework for Management of Drinking Water Quality (Source: National Health and Medical Research Council, 2004) 
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An important aspect of the Framework for Management of Drinking Water is that it does not rely 

on one system of compliance, such as compliance monitoring; however, the framework 

incorporates all elements of providing water to consumers from water supply to the final delivery 

of potable water (National Health and Medical Research Council, 2004).  Therefore, this 

framework provides a complete guide to water quality management which starts with an 

organizational commitment to drinking water quality management.  Once this organization 

commitment is in place, a series of steps can be taken which include developing a system wide 

analysis and management plan, developing supporting requirements such as employee training 

and providing a regular review of how the framework is functioning (Sinclair & Rizak, 2004). 

2.1.3 Risk Analysis, Risk Assessment and Risk Management 

Risk management frameworks regularly incorporate a process called risk assessment as part of 

their overall approach.  This is evident as both the more general U.S. Presidential/Congressional 

Commission Framework and the Australian Framework for Management of Drinking Water 

Quality have an element that can be described as risk assessment.  Furthermore, risk assessment 

incorporates the process of risk analysis.  The overall relationship between risk analysis, risk 

assessment and risk management is shown in Figure 2.3.   

 
Figure 2.3: Relationship between risk analysis, risk assessment and risk management  (adapted from Rak, 

2003) 
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Specifically, risk assessment is “an organized process used to describe and estimate the 

likelihood of adverse health outcomes…” (U.S. Presidential/Congressional Commission on Risk 

Assessment and Risk Management, 1997).  The use of risk assessments is common in many 

fields such as microbial risk assessments, human health risk assessments, or ecological risk 

assessments.  The formal process of risk assessment can be broken down into the analysis of the 

three components of risk proposed by Kaplan and Garrick (1981).  These components are 

identifying possible hazards, evaluating the probability of a specific hazard occurring and 

determining the consequence of the hazard if it occurs.   

 

Risk analysis provides a mechanism to evaluate the different risks identified within a formal risk 

assessment (Rak, 2003).  Therefore, risk analysis methodologies focus on the probability of a 

risk occurring and the consequences of that risk.  From Figure 2.3 it can be seen that risk analysis 

is a unique element of both risk assessment and risk management.  The rest of this thesis will 

focus on the topic of risk analysis and the mechanisms used to perform a risk analysis on a water 

treatment plant; however, the reader is encouraged to consult the above mentioned articles for 

more information on risk management frameworks or on risk assessment. 

2.2 Risk Analysis Methodologies 

After a series of risks have been identified through a risk assessment and risk management 

process, it is necessary to evaluate these risks.  There are many different methodologies and 

techniques that are used to perform risk analysis.  This next section briefly covers some common 

risk analysis methodologies.  It is not the intent that the following discussion be comprehensive 

or sufficient for a full understanding of all the different risk analysis methodologies available, 

but that a broad picture of different methodologies is provided. 
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One aspect of risk analysis to take into account during the following discussion is that, although 

by definition risk analysis is concerned with the probability of an event and the consequence of 

that event, in many instances the methodologies evaluated focus solely on the probability of the 

event occurring.  The implication here is that it is up to the risk evaluator to take into account the 

consequences of an event occurring.    

2.2.1 Conservative Approach 

The output from a system can be represented by the combination of the model of the system and 

a given set of inputs to the system.  The model of the system can be represented as a 

mathematical performance function, g(X1,X2..Xn), while the set of inputs can be represented by 

the vectors of possible inputs to the model, X1, X2..Xn.  The vectors of inputs reflect the variable 

nature of the input.  During the conservative approach, a value of X1, X2..Xn is chosen which 

would result in the worst possible outcome if run through the performance function that 

describes the system.  If the system can handle this situation, then it is said to be reliable or it is 

able to deal with the specific risk.  This concept is common in fields such as structural 

engineering (Ang & Tang, 1984), human health and environmental engineering (Cullen & Frey, 

1992).  

 

Although this method is common, Ang and Tang (1984) state that there is difficulty in choosing 

the worst case scenario for a system because determining the worst case is often based on a 

subjective judgment.  Furthermore, both Ang and Tang (1984) as well as Cullen and Frey (1992) 

indicate that there is difficulty in using a single numerical value to represent an input that may 

not be accurately known and therefore inputs may be better represented by a distribution.  Even 
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with these difficulties, conservative estimates are still used but sometimes only as a screening 

tool for more complicated assessments (Cullen & Frey, 1992). 

2.2.2 Algebraic Analysis 

Algebraic methods of analysis were developed so that conservative values would not have to be 

used.  The algebraic analysis uses the same model of the performance function of the system as 

defined before, g(X1,X2..Xn), and the same set of input variables, X1, X2..Xn,.  However, instead 

of choosing a conservative value of the input variables, the input values to the model are 

characterized as probability distributions.  The performance function of the system is then 

analyzed to see how often the input variables will produce a situation which causes a failure 

within the model over the entire range of all input values.   

 

The result of using probability distributions of input variables is that the output is also a 

distribution; thus the risk is defined by a distribution instead of a single value (Verdonck, 2003).  

There are a variety of different methods used to determine the output distribution including 

combining probability distributions, and approximate solutions.   Although the approximate 

methods allow for algebraic methods to be used in a larger number of situations, even with a 

well-defined performance function the mathematics necessary to undertake a risk analysis using 

one of the methods are often difficult or impossible to perform.  Furthermore, all algebraic 

methods, whether exact or approximate, require a situation where the mathematical performance 

function of the system is explicitly known.  If the performance function is not known, algebraic 

methods are not possible. 
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2.2.2.1 Combining Probability Distributions 

If the probability distribution of the different incoming variables is known precisely, it is 

possible to mathematically combine the separate distributions together within the performance 

function to determine the output distribution.  For example, if a performance function of a 

system is defined as Z = X*Y and both X and Y can be described as exponential distributions 

with cumulative distribution functions of F(X) = 1-e-X/α and F(Y) = 1-e-Y/β, then the cumulative 

distribution function of Z is F(Z) = 1-e-Z*(α+β)/αβ) (Vose, 1996).  This method is difficult to 

implement as the number of variables and the level of complexity of the performance function 

increases.  Furthermore, complexities can arise from a variety of sources such as correlation.  If 

X and Y are correlated, then the above analysis is not correct. 

2.2.2.2 Approximate Methods of Combining Probability Distributions 

As the complexity of the performance function increases, it becomes difficult to combine the 

individual probability distributions; therefore, a number of approximate methods have been 

developed.  Some of these methods are the First-Order Second Moment Method (FOSM or 

MVFOSM), Advanced First-Order Second Moment Method (AFOSM) or the First-Order 

Reliability Method (FORM) (Pandey, 2004).  These methods simplify the analysis by using 

approximating techniques, such as Taylor series expansion, enabling more complex performance 

functions to be analyzed. 

 

2.2.3 Qualitative Methods 

In some situations it is not possible or necessary to perform a numerical risk analysis of a 

system; under these conditions risk analyses can be performed qualitatively.  This method of 

analyzing risk involve listing possible risks and then determining their approximate level in a 
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qualitative manner such as “low” or “high” (Pollard, Strutt, Macgillivray, Hamilton, & Hrudey, 

2004).  A qualitative risk analysis can be performed using any number of criteria such as the 

chance of a risk occurring or the cost of a risk after it occurs.  The result from a qualitative risk 

analysis is then an understanding of what risks should be addressed based upon the analysis 

criteria.  The qualitative nature of this assessment allows the analysis to be performed without 

the presence of a mathematical performance function. 

 

A specific qualitative method is provided by the Australian Drinking Water Guidelines (National 

Health and Medical Research Council, 2004).  This method analyzes risks based on two criteria: 

the likelihood of an event occurring and the outcome of an event.  The likelihood of an event is 

evaluated based on a scale that ranges from rare to almost certain, while the outcome of such an 

event is evaluated based on a scale that ranges from insignificant to catastrophic.  An overall risk 

level is then determined, ranging from low to very high, through a combination of the two 

criteria.  For example, if an event was almost certain to occur but the consequences of the event 

were low; the resulting risk level could be classified as moderate (National Health and Medical 

Research Council, 2004).   

2.2.4 Fault Trees 

A fault tree analysis can be used in either a quantitative or qualitative manner.  The fault tree 

methodology begins with a failure, called a fault, and then identifies and describes the series of 

events leading up to the fault (Ang & Tang, 1984).  The primary mechanism of analysis is 

through a pictorial tree diagram where different events are represented by symbols and the 

relationship between the events represented by lines. 
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Through a fault tree analysis, it is possible to understand what mechanism or mechanisms can 

cause one fault, enabling a qualitative understanding of the system.  To obtain a quantitative 

analysis of a fault tree, a probability value is assigned to each event in the fault tree.  The overall 

probability of the fault is then calculated through a probabilistic analysis of its related events.  

2.2.5 Event Trees 

The event tree methodology is similar to a fault tree, except that the methodology begins with an 

initiating event and identifies a series of events that occur after the initial event to see if any of 

the future events lead to a failure (Ang & Tang, 1984).  In that respect, fault and event trees are 

different ways to analyze the same system.  Fault trees start with a fault and see what events can 

lead up to it, while event trees take an event and see if they result in a fault.   

 

Event trees are also described by pictorial diagrams with symbols representing events and lines 

representing the relationship between the events.  Qualitatively, event tree analysis allows for an 

understanding of how an event will affect a system.  An event tree can also be analyzed 

quantitatively by assigning probabilities to each of the identified events and calculating any 

adverse fault through probabilistic analysis. 

2.2.6 Critical Component Analysis 

The critical component analysis (CCA) is a method developed by the Unites States 

Environmental Protection Agency (EPA) in 1982 for use within the wastewater treatment 

industry (as cited in Eisenberg, Soller, Sakaji, & Olivieri, 1998).  The method uses past 

maintenance and repair records to determine the reliability of each individual component in the 

wastewater treatment system (Eisenberg et al., 1998).  The overall reliability of the system is 
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then calculated using historical data and probability concepts to combine the individual 

reliability of each component into overall system reliability.   

2.2.7 Simulation Methodologies 

The use of simulation during a risk analysis involves performing a risk calculation a number of 

times with different input values to get a representation of the overall risk.  Although simulations 

are often used when performing a probabilistic risk analysis, this is not always the case.  A 

probabilistic risk analysis is a type of risk analysis that uses probability models to calculate and 

represent risk levels (EPA, 2001).  Using these definitions, it is possible for some of the above 

discussed methods such as FORM to fall into the category of probabilistic risk analysis methods 

but not use simulation to perform the analysis.   

 

Simulations are useful when a model of the system is available but the algebraic analysis 

required for methodologies such as FORM and AFOSM is not possible due to the complexity of 

the system.  Furthermore, because mathematical manipulation is not needed, a model of the 

system which is not a mathematical performance function, such as a computer model, can be 

used to represent the system in a simulation risk analysis. 

 

For a simulation risk analysis, a model of a system is developed such as g(X), where g(X) can be 

a mathematical equation or some other model of the system in question.  A system of variables, 

X1, X2..Xn, represent the inputs to the model.  Similar to the algebraic analysis, the input values 

are characterized as probability distributions which represent the variability of the inputs.  Input 

values are randomly selected from the input distributions and inputted into the model to produce 

an output.  Performing this simulation many times creates a series of outputs from the model that 
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represent possible outcomes for the system under different situations.  This procedure is shown 

in Figure 2.4 where the distributions are represented as probability distribution functions (PDFs).  

Although simulation is mathematically easier to perform than algebraic analysis, the method is 

data intensive and numerous trials are necessary to accurately characterize the possible output 

from the system. 

 

 
Figure 2.4: Diagram of risk analysis using simulation 

 

As with any risk analysis, for any simulation methodology, a correct model of the system is 

needed to undertake the analysis.  Without a correct model, the output will not be representative 

of how the system functions. 

2.2.7.1 Consequence Frequency Assessment 

One specific type of simulation risk analysis is the consequence frequency assessment (CFA).  

The CFA is a risk analysis method that uses statistical analysis to provide a model of the 
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performance of multiple barriers in a system and to determine the performance level of the 

system.  In a water treatment plant the CFA methodology models each barrier as a separate 

probability distribution of removal efficiencies for that barrier.  This probability distribution 

represents the possible range of removal efficiencies that a barrier can experience and the 

probability that a given removal efficiency will occur; therefore, the barrier no longer “fails” or 

“does not fail”, but the barrier performs within a range (National Research Council, 1998).   

 

Mathematically, the performance of any treatment barrier, such as that shown in Figure 2.5, can 

be described as (C1/C0) where C0 is the incoming concentration of the parameter and C1 is the 

outgoing concentration of the parameter.   

 

 
Figure 2.5: Diagram of a single barrier treatment system 

 

However, the performance of a treatment barrier will not always remain the same, causing the 

treatment barrier to be represented as F1(C1/C0), where F1 is a function representing the 

probability distribution of the treatment efficiency of the first barrier (Haas & Trussell, 1998).  

Calculating the effluent concentration of the treatment barrier is a matter of evaluating the 

integral  

1
1

1 0

1
1 C

bC

aC
d

C

C
F∫ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
 

 

 
Equation 1 

 
 

Treatment  Co C1 



 21

This analysis will provide the effluent concentration probability distribution, between C1a and 

C1b,, for a given influent concentration, C0 (Haas & Trussell, 1998).  If, however, C0 is not a 

constant value but a function representing the influent concentration, the integral becomes

∫∫ 10100 dCdC)F(Cf  Equation 2

where )(Cf 00  represents the influent distribution and F1 represents the first treatment process 

(Haas & Trussell, 1998). 

 

The effluent of a multiple barrier system, such as that shown in Figure 2.6, can then be 

mathematically represented as 

∫∫∫= 21021002 dCdCdCF)F(CfC  Equation 3

where C2 is the effluent concentration, )(Cf 00  is the influent probability distribution, F1 

represents the first treatment step and F2 represents the second treatment step (Haas & Trussell, 

1998).   

 

 
Figure 2.6: Diagram of a multiple barrier treatment system 

 

Mathematically, the evaluation of the integrals described in Equation 3 may be difficult and/or 

impossible in many situations (Haas & Trussell, 1998).  Therefore simulation methods are often 

used to determine the effluent concentration while using the CFA methodology.   
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Using simulation risk analysis techniques involves representing Equation 3 as:
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where the ratios of outgoing to incoming concentrations are represented by probability 

distributions that show the relative treatment efficiency of that step (Haas & Trussell, 1998).  

Figure 2.7 describes this process, where the outgoing concentration (C2) probability distribution 

function is determined by, randomly selecting an influent concentration (C0), treatment 

efficiency 1 (C1/C0), and treatment efficiency 2 (C2/C1) from their representative probability 

distribution functions  This calculation is performed a number of times to determine the 

probability distribution function of the effluent from the treatment train. 

 

 
Figure 2.7: Diagram of the Consequence Frequency Assessment  
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2.3 Use of Risk Assessments in Water Treatment 

Pollard et al. (2004) list a number of risks including financial risk, commercial risk, public health 

risk, environmental risk, reputation risk, and compliance/legal risk that can be experienced by 

water utility managers.  However, a water treatment plant in operation can experience two types 

of risks that will affect the output water quality: risks of mechanical failures and risks of 

operational failures (Baxter & Barbara, 2003).  Mechanical failures occur because of a 

mechanical defect or error within the system.  These can be due to pump shutdowns or other 

problems associated with the mechanical operation of a component.  Operational failures are 

connected to the operation of the system including changes in process efficiency associated with 

the changes in influent water quality, where the reduction is not due to an error within the 

mechanical equipment.  Because of the differences between the two types of risks, mechanical 

risks focusing more on equipment and operational risks focusing on more performance, different 

methodologies have developed to analyze these different types of risk.    

2.3.1 Algebraic Risk Assessments 

Algebraic risk assessment techniques, such as those described in Section 2.2.2, are rarely used in 

environmental engineering or in water treatment process analysis.  One example of the use of 

algebraic methods is by Vasquez, Maier, Lence, Tolson, and Foschi (2000), where FORM is 

used along with genetic algorithms to estimate the probability that a given amount of waste 

dumped into river in Oregon will cause environmental parameters, such as the dissolved oxygen, 

to drop below regulatory levels.  Another example is provided by Portielje, Hvitved-Jacobsen, 

and Schaarup-Jensen (2000) who use the FORM methodology along with deterministic water 

quality models to analyze the probability that a stream will experience low levels of dissolved 

oxygen.  However, the use of the FORM methodology is possible in both cases because a 
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performance function, namely the Streeter-Phelps equation, is available for use.  Performance 

functions may be available for water treatment but they are not as reliable or transferable 

between treatment systems because of the complex processes involved in water treatment; 

consequently algebraic methods are not used. 

2.3.2 Evaluation of Mechanical Risks 

Mercer (1988) performed a comprehensive assessment of the risks associated with the 

chlorination process within a water treatment plant such as the risk of the chlorine pressure 

falling in the headers or the risk that a chlorinator becomes plugged.  These risks were evaluated 

using a combination of fault trees and event trees while the risks were calculated quantitatively 

by assigning probability values to the different sub-events.  This analysis was able to provide a 

comprehensive analysis of the chlorination process, but the level of complexity involved in such 

an analysis is shown by the fact that an entire Master’s thesis work was performed on one 

process within the treatment system. 

 

Eisenberg et al. (1998) used the critical component analysis to evaluate the mechanical reliability 

of a water treatment plant.  The method calculated an overall operating availability number 

which was a numerical way of expressing the reliability of a component.  This number took into 

account all aspects of a components reliability including the failure rate of a component and the 

overall time a component was available (Eisenberg, Soller, Sakaji, & Olivieri, 2001).  This 

analysis was able to show which components required further analysis or which components 

were failing at a fast rate. 
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Fault trees, event trees, and critical component analysis are common methods used in the 

analysis of mechanical risks; however, other methods have been used to assess the mechanical 

reliability of a water treatment system.  When performing an assessment on a waste water 

treatment plant, Harris (1985) used availability modelling to determine the reliability of a 

treatment process.  For each treatment component that was analyzed, a series of logic diagrams 

was prepared to identify how the component could fail.  Using records of failure rates and repair 

times, the unavailability of the system was calculated.  This method is a combination of critical 

component analysis and fault tree analysis.    

 

The evaluation of mechanical risks within water treatment is similar to the evaluation of 

mechanical risks in other industries such as the nuclear industry (Keller & Modarres, 2005) or 

the aerospace industry (Pate-Cornell & Dillon, 2001); consequently, the methods used for this 

analysis are often the same.  Therefore, although the evaluation of mechanical risks is an 

important part of a complete risk analysis, the focus of this thesis will be on evaluating risks that 

do not have a well-defined method of analysis, namely operational risks. 

2.3.3 Evaluation of Operational Risks 

The evaluation of operational risks does not have a standard method for analysis and, through an 

investigation of available literature; operational risks were found to be one of the lesser-known 

areas of risk analysis within a treatment process.  Stated another way, there is not a standard 

method available to evaluate the risk that water which does not comply with drinking water 

standards will be produced by a properly functioning water treatment system.   
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One method to determine the risk that non-compliant water is produced by a properly operating 

treatment system is through a combination of modelling and probabilistic risk analysis as 

described in Figure 2.8.  Through experimentation on a treatment processes, a model can be 

developed that accurately predicts output concentrations from input values.  Once this model is 

developed, represented by the functional notation F(x), probabilistic risk analysis is performed 

on the model.  Probabilistic risk analysis represents input parameters to the model as probability 

distributions.  A simulation methodology is then used to randomly select the input values to the 

model.  The output of such a probabilistic risk analysis is a probability distribution describing the 

different possible output concentration levels.  The quantification of the risk from that parameter 

can then take different forms, the simplest method involves calculating the probability that the 

output concentration is above some defined concentration limit.  

 

 
Figure 2.8: Diagram of a risk analysis methodology that combined model development with probabilistic risk 

analysis 
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This methodology is illustrated by Sadiq, Husain, Al-Zahrani, Sheikh, and Shaukat (2003), 

where a regression model of the average removal efficiency of total coliforms was used to model 

the slow sand filtration process.  The model took into account filtration rate, sand bed depth, and 

effective media grain size.  The regression equation model was then used to analyze the 

probability of failure through using probabilistic risk analysis.  Modelling and probabilistic risk 

analysis was also used by Sadiq, Al-Zahrani, Sheikh, Husain, and Shauka (2004), to evaluate the 

performance of slow sand filters for the removal of total coliforms using fuzzy rule-based 

modelling.  Probabilistic risk analysis and the fuzzy rule-based model were then used to analyze 

the probability of failure of the slow sand filter.   

 

The use of modelling in risk analysis has also been used for non-microbial risk analysis such as 

the analysis by Song, Minear, Westerhoff, and Amy (1996) on the risk of bromate formation.  A 

regression model that predicted bromate formation was developed from experimentation and 

then used to determine the risk of bromate formation.  However, the risk was evaluated using 

conservative values for inputs, not through probabilistic risk analysis. 

 

All of the above risk analyses focused on one parameter; therefore, for a complete analysis of a 

treatment system it would be necessary to construct a new model for each parameter of interest, 

unless a multiple-parameter model was developed.  Thus, although use of modelling and 

probabilistic risk analysis is useful for focusing on one parameter, the analysis of an entire 

treatment system for multiple parameters could be time consuming and could overlook critical 

components such as the correlation of water quality variables to other parameters.   
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The consequence frequency assessment (CFA), as outlined by Haas and Trussell (1998) and by 

the National Research Council (1998), does not require an explicit model for the treatment 

process, but the CFA uses the distribution of removal efficiencies for a treatment process.  The 

CFA methodology was used by Olivieri et al. (1999) to estimate pathogen removal over a water 

treatment facility.  During this study, the removal efficiency of each treatment process was 

determined through a series of seeding studies.  These seeding studies focused on each treatment 

process individually, allowing for a characterization of the removal efficiency of each particular 

process and a determination of the removal efficiency probability distribution function.  To 

determine the ability of a given treatment train to remove viruses, the CFA methodology was 

used, allowing for a characterization of the effluent virus distribution over the full range of 

circumstances that the proposed treatment plant could experience.   

 

The procedure, as outlined by Olivieri et al. (1999) and commented on by Eisenberg et al. 

(2001), provides a way to determine treatment efficiency under a variety of different conditions; 

however, the analysis focused on one parameter.  Thus to implement a full CFA for a number of 

parameters in a water treatment plant, seeding studies would have to be performed on each 

process for each parameter that is included in the risk analysis. 

 

Baxter, Barbara, and Coffey (2003) used the CFA methodology to evaluate the turbidity levels at 

an oxidation demonstration project plant in La Verne California.  After performing this analysis 

Baxter et al. (2003) state that although the CFA assumes that parameter removal can be 

expressed as a function of incoming and outgoing concentration, parameter removal is a 

complex, non-linear event.  This is one of the major criticisms of the CFA method.  To deal with 
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this issue, Baxter et al. (2003) performed a second analysis using a combination of modelling 

and probabilistic risk analysis, which is similar in methodology to that used by Sadiq et al. 

(2003) and Sadiq et al. (2004).  The analysis by Baxter et al. (2003) used artificial neural 

networks as the model for the probabilistic risk analysis and included multiple variables in the 

analysis.  By including influent temperature, influent turbidity, influent pH, ferric chloride dose, 

polymer dose, filter aid dose, filtration rate and filter influent turbidity Baxter et al. (2003) were 

able to obtain a more detailed analysis of the entire system.   

 

Thus, the analysis by Baxter et al. (2003) avoided two of concerns of operational risk analyses in 

water treatment: the focus on only one parameter and the expression of a treatment process only 

by the efficiency of reduction of a parameter from influent to effluent. 

2.3.4 Evaluation of Mechanical and Operational risks 

The above discussion shows that there have been a limited number of attempts to analyze the 

operational risks experienced by a water treatment plant; however, a comprehensive risk analysis 

of a water treatment process would include an analysis of both operational and mechanical risks.  

 

A probabilistic approach to performing a complete risk analysis is described in Laîné, Démotier, 

Odeh, Schön, and Charles (2002) and in Démotier et al. (2002).  This approach uses a 

combination of fault trees and transfer functions to determine the overall probability of 

producing non-compliant water with respect to a standard.  Transfer functions are a reduction 

factor applied to incoming parameter levels which describe how a treatment process operates 

with respect to the removal of a certain parameter.   
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Initially a transfer function for each treatment unit is determined.  This involves determining the 

removal efficiency of a given treatment process for a given incoming concentration for each 

parameter of interest.  Because the removal efficiency of a treatment process is not constant, this 

results in a graph of output concentration versus input concentration, where the percent reduction 

changes for each input value.  This transfer function is called the nominal transfer function 

because it is the transfer function under normal operating conditions.  The second step is to 

determine the different failure modes that can occur.  These failures could be simple such as a 

filter failing due to a catastrophic flood.  For each failure mode a degraded transfer function is 

determined which shows how the treatment system operates during that failure mode for each 

parameter of interest.  During the third step the input probability distribution function of each 

parameter is defined.  The final step is to set up fault trees for each parameter of interest, 

describing all the possible situations that could occur where treatment plant could produce non-

compliant water.  The output from an entire treatment train is then the multiplication of an 

incoming parameter level by the different transfer functions, whether nominal or degraded, 

which represent each treatment process.   

 

This method takes into account both mechanical and operational failures of the system and is 

comprehensive in its analysis.  However, an assumption of the methodology is that the transfer 

functions are constant and only change during a degraded mode.  Furthermore, the transfer 

function focuses on the percent reduction of a parameter and does not mechanistically model the 

treatment system.  Consequently, the effect of a particular input value such as high pH cannot be 

assessed through this method.   
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In some situations the data needed for the above described probabilistic analysis are not 

available.  To deal with this situation Démotier et al. (2003a) and Démotier, Denoeux, and Schön 

(2003b) have developed a risk analysis methodology based on belief functions.  According to 

Démotier et al. (2003a) the methodology is equivalent to the probabilistic methodology 

described in Laîné et al. (2002) and Démotier et al. (2002) if the data were known with perfect 

accuracy. 

 

The use of belief functions allows for the representation of data if a known value of this 

information, such as failure rates, is not known.  The final output from such an analysis provides 

a series of possible outcomes which cover the different plausible solutions from the input values.   

 

The use of belief functions allows for ambiguity to be represented within a risk analysis and it 

also incorporates the positive aspects of the probabilistic model described by Laîné et al. (2002) 

and Démotier et al. (2002).  However, the transfer functions are still percent reductions, which 

do not allow for mechanistic modelling of the system. 

 

A final possible method to perform an overall risk analysis is described by Eisenberg et al 

(2001).  The mechanical risk could be evaluated using CCA and then operational risk could be 

evaluated using CFA.  Although there are criticisms of the CFA methodology, as described in 

Section 2.3.3, the overall method of analyzing the two systems separately provides a simple 

method of analyzing the risks to the entire water treatment system.   
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2.3.5 Water Treatment Risk Analysis as a Part of Microbial Risk Assessments 

The use of risk analysis in water treatment has an important influence on the field of microbial 

risk assessments.  In the book “Quantitative Microbial Risk Assessment,” Haas, Rose, and Gerba 

(1999) outline the procedures for undertaking a microbial risk assessment.  One of the steps that 

must be performed is an exposure assessment, which determines both the number of 

microorganisms and the frequency of exposure that a population experiences.  When performing 

an analysis on the number of microorganisms ingested through drinking water, an exposure 

assessment can use raw water followed by the reduction in microorganisms through a treatment 

process instead of directly using the drinking water.  Haas et al. (1999) state that to properly 

model the reduction of microorganisms during water treatment it might be necessary to construct 

a detailed process model which can describe all of the interactions that are experienced during 

the treatment process.  However, Haas et al. (1999) proceeds to describe a methodology similar 

to the CFA, which models each treatment unit as a probability distribution of removal 

efficiencies and calculates the overall removal through a water treatment plant as the 

multiplication of a random incoming water quality concentration by each successive reduction 

factor.  This approach is reasonable if the treatment processes are both simple and first-order 

(Haas et al., 1999).  

 

Haas, Crockett, Rose, and Gerba (1996) used an average reduction value experienced by a 

conventional water treatment plant to calculate the associated risks of the occurrence of oocysts 

in drinking water.  Teunis, Medema, Kruidenier, and Havelaar (1997) modeled the removal of 

Cryptosporidium and Giardia through a treatment plant as a beta distribution and calculated the 

probability of occurrence of microorganisms in the finished water using the CFA methodology.  
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Masago, Katayama, Hashimoto, Hirata, and Ohgaki (2002) analyzed the risk of Cryptosporidium 

parvum in drinking by modelling the treatment efficiency using a binomial distribution with a 

removal rate of 99.96% for an operational treatment system and a 70.6% removal rate for a failed 

treatment system system.  Medema et al. (2003) performed three different case studies to 

quantitatively determine the risk of Cryptosporidium in surface water.  The third case study fitted 

Beta-Binomial distributions to the removal efficiencies of Cryptosporidium through 

coagulation/lamellae separation and filtration and then used these distributions to calculate the 

overall risk of the occurance of Cryptosporidium in the treated water. 

 

An assumption that is made throughout all of the microbial risk assessments examined above is 

that the complex water treatment process can be modelled using the simplified procedure of 

reduction efficiencies described by the CFA or by the approach used by Haas et al. (1999).  

Throughout the microbial risk assessments examined, although this assumption is made, there 

has been no justification given for its use and as Baxter et al. (2003) point out, parameter 

removal can be a complex, non-linear event.  This assumption is important because without a 

proper understanding of the treatment process in a drinking water treatment plant the risk 

calculations associated with any risk analysis are theoretical (Teunis et al., 1997).  This indicates 

the importance of accurately characterizing the removal process in microbial risk assessments.   

2.4 Critique of Past Risk Assessments 

For the evaluation of mechanical risks, the methods are well understood and have been used in 

many different engineering fields; therefore, no critique will be given here.  Many of the 

operational risk analyses reported in the literature focus only on one parameter, such as the 

analysis performed by Sadiq et al. (2003) and Sadiq et al. (2004), or required extensive 
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laboratory experiments to obtain the data necessary for an analysis, such as the analysis 

performed by Olivieri et al. (1999).  Furthermore, many of the proposed operational risk analysis 

methodologies assumed that a distribution of reduction efficiencies was sufficient to model the 

treatment process.  The use of reduction efficiencies does not take into account possible effects 

of individual changes in the treatment process that a mechanistic model would consider. 

 

For an analysis of both mechanical and operational risks, two methods are possible; a 

comprehensive analysis method or an analysis of the mechanical and operational risks 

separately.  The risk analysis methodologies outlined and used by Laîné et al. (2002), Démotier 

et al. (2002), Démotier et al. (2003a) and Démotier et al. (2003b) are promising in their scope of 

analysis.  However, the methodology still models the treatment process through percent 

reduction and assumes no change in the transformation ratios over time.  This assumption could 

affect any risk analysis associated with a treatment process such as a filter where the 

performance decreases near to the end of a filter run.  The methodology proposed by Eisenberg 

et al. (2001) is promising, but the method used to assess operational risks still is able to evaluate 

only one parameter and uses a distribution of removal efficiencies to represent the treatment 

process. 

 

Summarizing the criticisms of the different methods of risk analysis, an ideal risk analysis 

methodology should have the following characteristics: it should be available for common use, it 

should be able to be used on a variety of parameters, it should not be dependant on expensive 

and time consuming laboratory challenge studies, and it should not make the assumption that a 

treatment process can be expressed as a linear function of incoming and outgoing concentration 
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but be based on the actual removal processes.  Aside from combining the methodology proposed 

by Baxter et al. (2003) for assessing the operational risks with a separate method for evaluating 

mechanical risks, none of the evaluated methods are able to undertake an ideal risk analysis. 

2.5 A Method of Combining Modelling and Risk Assessment  

Within the wastewater treatment field, the WEST software modelling program can be used for 

computer modelling of treatment process.  The WEST program is a modelling and simulation 

platform for different processes including wastewater, river and fermentation modelling 

(Hemmis, 2004).  The program uses models developed for specific treatment processes and 

combines them to form a treatment train.  For activated sludge, many of the models are 

developed in conjunction with the International Water Association (IWA) and the IWA 

Specialist Group on Activated Sludge Population Dynamics (IWA, 2004).  One specific example 

of a model is described in Henze et al. (1999) and its use in conjunction with the WEST 

modeling platform is shown in Carrette, Bixio, Thoeye, and Ockier (2001).  The combination of 

specialist groups, modeling programs and models allows for the widespread use of computer 

simulation packages in design and problem identification within the wastewater treatment field. 

 

Rousseau et al. (2001) proposed a methodology, Figure 2.9, to help with designing or retrofitting 

of a wastewater treatment plant.  This methodology takes raw water parameters, determines a 

removal value through utilizing a calibrated WEST model of the treatment plant, and then 

compares this value with the standard.  The WEST model is a deterministic model which 

provides output parameter concentrations based on input data and the individual treatment 

processes.  To incorporate the variable nature of wastewater treatment and incoming water 

quality, the deterministic model is used within a probabilistic risk analysis framework.  A 
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simulation engine determines a raw water data record, which is then run through the 

deterministic model.  The result of this analysis is a cumulative distribution function of the 

output concentrations.  The cumulative distribution function can then be used to construct a risk 

analysis of the parameter or parameters of interest.  The procedure is similar to that described in 

Figure 2.8 except the model is no longer represented by the function F(x) but by a computer 

simulation model and a data series is generated before being input into the deterministic model.  

The use of this methodology, outlined in Figure 2.9, in the design of a wastewater treatment 

system is described in Ockier, Thoeye, and De Gueldre (2001) and Bixio et al. (2002). 



 
Figure 2.9: Diagram of a wastewater treatment plant risk analysis methodology 
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Although the methodology was developed for designing or retrofitting a treatment plant, it can 

be used for an analysis of an existing treatment plant by calibrating the software model to an 

existing system before generating a data record and running the simulations. 

 

The described method allays the criticisms that were stated for the other risk analysis 

methodologies that were analyzed.  Specifically, this methodology can incorporate any 

parameter into the assessment that the software package analyzes, it is not dependant on 

extensive laboratory analysis, it can function under any conditions for which it is calibrated, and 

it is based on mechanistic modelling, not on percent reduction.  It is necessary to recognize that 

the above methodology focuses on operational risks and that mechanical risk still must be 

considered (Bixio et al., 2001).  Therefore to evaluate situations that are not covered under 

operational risk analysis, such as a process completely failing because of mechanical defect, 

another analysis methodology should be used (Bixio et al., 2001). 

 

This risk analysis methodology has not only been used in the wastewater treatment industry, but 

it has also been attempted in pharmaceutical production.  Petrides (2006) used a combination of 

computer modelling and risk analysis to evaluate a batch pharmaceutical process.  Here the 

SuperPRO Designer® modelling software from Intelligen, Inc. was used along with Monte Carlo 

simulations, effectively combining deterministic modelling with probabilistic simulation. 

2.6 Computer Modelling in Water Treatment 

Within drinking water treatment, software modeling programs are beginning to develop, but their 

use has been for individual treatment process, not the entire treatment train (Stimela, 2003).  A 

few of the programs currently available for modeling an entire drinking water treatment process 
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are OTTER, Metrex, WTP, TAPWAT, Stimela, EnviroPRO Designer® and WatPRO.  A full 

description of the programs is not provided here, but an overview of the different computer 

packages that are available.  One of the computer programs discussed below will be chosen and 

used for future analysis.  This process is discussed in detail in Chapter 3, Section 3.2. 

2.6.1 OTTER 

OTTER is a stand-alone program that dynamically simulates specific treatment processes 

including, but not limited to, chemical coagulation, clarification and ozonation.  MP & 

Associates (2005) state that OTTER can simulate treatment processes for pH adjustment, 

chemical coagulation, flocculation, clarification, sedimentation, plate settlers, clarifiers, rapid 

gravity filtration, slow sand filtration, ozone, GAC, chlorination, as well as other treatment 

process.  Furthermore, OTTER has the ability to include over fifty (50) water quality parameters 

including turbidity, colour, pH, TOC, UV 254, metals, alkalinity, trihalomethanes, cysts in any 

model (MP & Associates, 2005).  According to Head, Shepherd, Butt, and Buck (2002), the 

OTTER framework utilizes a variety of techniques including mechanistic equations, partial 

differential equations, and empirical approaches to model each individual process.  Each of the 

individual treatment process models are coded using the FORTRAN computer language and are 

then linked together through a graphical interface.  Therefore, a series of individual treatment 

processes models can be selected and combined to model an entire water treatment plant.   

 

For site specific applications, the OTTER program can model an existing system thorough 

adjusting a series of calibration parameters that are determined by experimental or process data.  

Head et al. (2002) describe some scenarios in which OTTER has been used.   
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2.6.2 Stimela 

Stimela is an open-source environment water treatment process computer modelling program 

developed by DHV Water BC and the Delft University of Technology, which uses the 

Matlab/Simulink® environment (van der Helm & Rietveld, 2002).  The Stimela program 

provides models of individual water treatment process, which are then linked together in a 

graphical interface enabling the creation of different treatment trains.  These treatment trains are 

then able to be calibrated to existing plants to model the performance of a given water treatment 

plant.  An added benefit of Stimela is that it is coded in the Matlab/Simulink® structure which 

allows for modifications to existing models and construction of new models (Stimela, 2003).  

The use of Stimela is demonstrated by van der Helm and Rietveld (2002) for a gas transfer 

model.   

 

Currently the models available in the Stimela program have been focused on groundwater 

treatment processes, thus concentrating on removal of gasses, ions, and organic micropolutants 

(Stimela, 2003).  Thus the major processes are focused on aeration and degassing including 

processes such as weir aerator, packed column aerator, and other; and filtration consisting of 

single, double or triple media, GAC, and biofilters. 

2.6.3 Metrex 

The Metrex program focuses on particle removal of surface water treatment and was developed 

at the University of Duisburg (Stimela, 2003).  Similar to Stimela, the Metrex program provides 

individual treatment process models, which are coded in the Matlab/Simulink® structure, and 

then links individual treatment processes together to form a treatment train (Stimela, 2003).  



 41

2.6.4 WTP 

Water Treatment Plant Model (WTP) was developed by the Environmental Protection Agency 

(EPA) to help support of the Disinfectant/Disinfection Byproducts Rule (Stimela, 2003).  

According to the EPA, WTP is used to understand the central tendency and not for individual 

treatment at municipalities (USEPA, 2005).  It is primarily developed for scenario studies and is 

based on global regression analysis, which makes it not suitable for individual design and 

analysis (Stimela, 2003). 

2.6.5 TAPWAT 

Tool for the Analysis of the Production of drinking Water (TAPWAT) has been used by the 

National Institute of Public Health and the Environment (RIVM) in the Netherlands.  Verseegth 

et al. states that the model uses both percentage removals and process models to describe 

individual treatment processes which are then incorporated into one treatment train (as cited in 

Stimela, 2003).  However, the model is not yet complete and that constant updates should be 

made on the percentage removal values to provide better results and the program is currently not 

used outside of RIVM (Verseegth et al. as cited in Stimela, 2003). 

2.6.6 EnviroPro Designer® 

EnviroPro Designer® is a computer simulation package used to simulate environmental 

processes produced by Intelligen, Inc.  EnviroPro Designer® uses a graphical interface that 

combines process models to replicate actual conditions within a treatment plant including waste 

recycle, treatment and disposal.  The individual treatment processes perform the material and 

energy balances associated with that particular treatment unit (Santamarina, 1997).    
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EnviroPro Designer® is based on the same principles of process simulators that have been used 

in the chemical industry.  Consequently, EnviroPro Designer® describes the incoming water and 

subsequent treated water in terms of its individual chemical components and each treatment step 

modifies a particular chemical component of the water (Santamarina, 1997).  The use of 

SuperPro Designer® v.2.7, the parent software to EnviroPro Designer®, to model a treatment 

plant can be seen in Flora, McAnally, and Petrides (1998). 

2.6.7 WatPro 

WatPro, produced by Hydromantis, Inc., can be used to model the formation of disinfection by-

products, calculate Ct parameters anywhere within the treatment system, and determine the 

inactivation and reduction of microbiological contaminants through the use of disinfectants and 

treatment processes (Hydromantis, 2006).  WatPro uses series of modelling equations and 

calibration techniques for each unit process which are then combined together in a graphical 

interface.   
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CHAPTER 3  

METHOD OF ANALYSIS 
 

This study focuses on risk analysis methods and their applicability in the water treatment field to 

evaluate the production of non-compliant water.  As discussed earlier, these risks associated with 

a water treatment plant can be described as either mechanical or operational (Baxter & Barbara, 

2003) and different methods are available to analyze the two types of risks.  However, although 

methods for analyzing mechanical risks are common, such as the analysis by Mercer (1988), the 

use of operational risk analysis methodologies is less widespread.  Therefore this study focuses 

on the use of operational risk analysis methodologies for water treatment plant analysis.  An 

approach is developed and described in the following sections along with the consequence 

frequency assessment, which will be used to compare the new approach to existing methods  

3.1 Focus of Risk Analysis Research 

3.1.1 Selection of Risk Analysis Methods 

The risk analysis methodology that will be used to evaluate the risk of producing non-compliant 

water in a water treatment plant is the method that is described in Section 2.5.  As a summary, 

this method uses a combination of computer modelling and probabilistic risk analysis to model 

the complexity of the treatment process and to incorporate randomness into the risk analysis.  

This method uses computer modelling of treatment processes which can incorporate multiple 

parameters in the analysis and thus has the potential to perform a comprehensive risk analysis of 

a water treatment plant if it is combined with a mechanical risk analysis method.  The chosen 

risk analysis methodology also uses proven probabilistic risk analysis techniques that are 
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accepted by such organizations as the EPA (USEPA, 2001).  To provide a frame of reference for 

the new risk analysis methodology, a CFA will also be performed on the system.  This will be 

done to provide a benchmark for discussion concerning the new risk analysis methodology.  

 

Four distinct factors are necessary to perform the two separate risk analyses: a model, a treatment 

train, a treatment plant, and a statistical procedure.  Initially, a model of the system must be 

available.  For the CFA this model is simply a statistical function but for the method that 

combines computer modelling and probabilistic risk analysis a computer model needs to be 

selected.  Secondly, to perform a risk analysis a treatment process or series of treatment 

processes must be decided on.  Thirdly, a treatment plant for analysis must be selected.  This 

could be a hypothetical treatment plant or an actual treatment plant that is currently in operation.  

Finally, the statistical techniques that will be used throughout the analysis must be defined.  

Probabilistic risk analyses use many different statistical techniques; thus, before performing an 

analysis, the different statistical techniques that will be used need to be determined and 

described.  These four factors are outlined in the following sections. 

3.2 Computer Modelling Software Used in Analysis 

A comprehensive comparison of the different water treatment plant computer models is provided 

by Stimela (2003) including a discussion concerning the advantages and disadvantages of each 

software package.  This comparison did not include SuperPRO Designer® or WatPro.  For the 

purposes of the proposed risk analysis on a water treatment system three factors were considered 

important: ease of use, availability of unit processes and the performance of mechanistic models.  

WatPro currently concentrates on the different processes associated with disinfection and the 

removal and inactivation of microorganisms.  Thus the removal of parameters such as turbidity 
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or metals is not included.  For this reason WatPro was not considered for analysis.  TAPWAT 

uses percentage removals and WTP uses regression analysis from experimental data; therefore, it 

is recommended that these two are no longer considered as they are not based on mechanistic 

models.  Stimela and Metrex are open source code modelling platforms which would require a 

larger effort to model processes.  Stimela (2003) indicates that in choosing between OTTER and 

Stimela and Metrex, OTTER provides easier calibration, optimization and learning.  Finally, 

OTTER has more process models than Stimela or Metrex (Stimela, 2003).  SuperPRO 

Designer® has an extensive set of process models and is based on the fundamental principles of 

mass and energy balance.  However, this complexity, while valuable in many situations, requires 

a large input of resources into the modelling of the treatment unit itself.  Table 3.1 shows a 

summary table of this comparison between computer software packages. 

 
Table 3.1: Computer software platform comparison table 

Computer Software 
Platform 

Ease of Use 
(High/Low) 

Sufficient Availability of Unit 
Processes (Yes/No) 

Mechanistic Models 
(Yes/No) 

WatPro  No  

TAPWAT   No 

WTP   No 

Stimela Low Yes Yes 

Metrex Low Yes Yes 

SuperPRO Designer® Low Yes Yes 

OTTER High Yes Yes 

 

Through this preliminary analysis of available software programs, the OTTER program is the 

most promising software package available to undertake a risk analysis of a water treatment plant 

because it incorporates a wide range of treatment processes and parameters as well as allows the 
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risk analyst to focus on the risk analysis and not concentrate on the modelling adjustments that 

could be necessary with open source code programs such as Metrex and Stimela.   

3.3 Treatment Process for Analysis: Rapid Gravity Filtration Unit 

3.3.1 Rapid Gravity Filtration Unit 

Although both the CFA risk assessment methodology and the proposed risk analysis 

methodology can be performed simultaneously on a number of different treatment steps, it was 

decided for simplicity to pick one treatment process for analysis.  This would allow for a more 

comprehensive look at the differences between the two methodologies without complicating the 

analysis with a number of treatment processes. 

 

One of the main benefits of the proposed methodology over the CFA and other methodologies is 

the ability to both incorporate a number of different parameters into a single analysis and to show 

how different external parameters influence the overall probability of producing non-compliant 

water.  This comprehensive analysis of multiple parameters was not a part of the first phase 

analysis as it was decided to focus exclusively on one parameter for both the CFA and the 

proposed methodology to provide a direct comparison between the two methods. 

 

Keeping these two restrictions in mind, the initial analysis was performed on a rapid gravity 

filtration unit, focusing on turbidity as the parameter of concern.  A diagram of the process that 

was analyzed can be seen in Figure 3.1. 
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Figure 3.1: Diagram of the selected treatment process for risk analysis 

 

The use of turbidity, a measurement of the overall clarity of water, to evaluate filter performance 

is advocated by Health Canada (2003).  As water passes through a filtration unit the clarity 

improves by the amount of particles that are removed from the water.  Since turbidity is a 

measure of the overall clarity of water, a high turbidity value can represent a large number of 

particles ranging from silt and sand to natural organic matter.  Therefore, a reduction in turbidity 

can be correlated to a reduction in a large number of different parameters.  Increases in turbidity 

can indicate increases in Giardia cysts and Cryptosporidium oocysts (MWH, 2005).  High 

turbidity has also been associated with taste and odor problems (Atkins & Tomlinson, 1963).  

Furthermore, turbidity is the relevant regulated parameter by drinking water treatment guidelines 

such as the Ontario Drinking Water Standards (Ontario Ministry of the Environment, 2001).  

 

Although turbidity is a useful measure of the amount of material present in water, it is not a 

direct measure the amount of material but relies on the principle that particles in water scatter 

light.  Therefore a high degree of scatter would indicate a larger number of particles within the 

water.  It is important to realize that turbidity cannot be directly related to either the number of 

particles or the size of particles in the water since different particles exhibit different properties 

when they interact with light (MWH, 2005).   

Rapid Gravity Filter Turbidity 
Influent 

Turbidity 
Effluent 
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3.3.2 Theoretical Description of a Rapid Gravity Filtration 

The filtration process within a water treatment plant is used to remove particulate matter from 

the water.  During the filtration process, water passes through a treatment unit that is packed with 

a single type or multiple types of media.  This packed treatment unit, known as a filter, is then 

used to remove both suspended matter and microorganisms from the water source (Kawamura, 

1999).  This process is normally considered to proceed in two states, in the first stage particles in 

the water are transported to the media in the filter, and in the second stage the particles attach to 

the media.  The first stage, known as transport, is primarily a physical process, while the second 

stage, known as attachment, is dependent on solution chemistry and the particle and media 

surface properties (O’Melia, 1985).  This two stage process is shown in Figure 3.2. 

 

 

Figure 3.2: Transport and attachment of particles in a filtration bed (Amirtharajah, 1988)1 

 

                                                 
1 Reprinted from the Journal of the American Water Works Association, Vol. 80, No. 12, from 
Amirtharajah, A., Some theoretical and conceptual views of filtration, pages 36-46, Copyright 
1988, with permission from AWWA. 
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Amirtharajah (1988) describes the transportation stage of filtration through a series of 

mechanisms which include diffusion, a result of Brownian motion; interception, a result of 

particles moving close to the media particle and coming into contact with the media surface; 

sedimentation, a result of particle settling due to gravity; hydrodynamic action, a result of a 

particle rotating across streamlines; and inertia, a result of a particle’s motion.  Although all of 

these processes play a role in the transportation of a particle to the surface of the filter media, 

within water filtration the dominant mechanisms of transportation are diffusion and 

sedimentation (Amirtharajah, 1988).  In an attempt to model the different processes associated 

with transport Yao, Tabibian and O’Melia (1971) and Rajagopalan and Tien (1976) have 

developed equations to predict the total transport efficiency, which is the measure of the ability 

to transport a particle to the media. 

 

The attachment step is a result of a number of separate forces and interactions between the 

particle and the filter media.  Electrokinetic, molecular forces and surface chemical interactions 

are significant in this step (Amirtharajah, 1988); consequently changes in the surface properties 

or the chemistry of either the particle or the media can have an affect on the attachment process.  

The attachment step is often discussed as an attachment efficiency which varies from one, where 

every collision results in an attachment, to zero, where no collisions result in attachment (MWH, 

2005). 

 

Filter operation is usually based on monitoring the headloss through the filter and/or the effluent 

water quality and/or the filter run time (Saatci & Oulman, 1980).  Headloss within a filter 

increases during filtration from the clean-bed headloss because the accumulation of solids within 
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the filter media decreases the porosity within the filter media (MWH, 2005).  As Figure 3.3 

shows, eventually, the headloss reaches a maximum value allowed within the system.   

 
Figure 3.3: Headloss over time in a filter 

 
Effluent water quality is measured during filtration to ensure that the output from the filter meets 

a standard.  A typical filter effluent turbidity curve can be seen in Figure 3.4.  The ripening 

process occurs as the clean filter media matures and becomes more efficient at capturing 

particles (MWH, 2005).  The second step, classified as effective filtration, is where the filter is 

operating optimally.  As the solids accumulate within a filter, eventually the output from the 

filter degrades and the system no longer produces water of sufficient quality.  At this point the 

filter has experienced a breakthrough.  Although Figure 3.4 seems to indicate a single peak 

during the ripening period, Amirtharajah and Wetstein (1980) have shown that this peak consists 

of two separate peaks caused by the backwash water present during the filter ripening process. 
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Figure 3.4: Effluent turbidity from a filter unit over time  

 

When either the headloss or the effluent water quality becomes too great the filter cycle is 

complete and the filtration unit is backwashed.  Backwashing involves washing the filter media 

so the filter is “reset” back to its original state, removing particles that have accumulated in the 

filter until that point.  Once the filter is clean, the filtration process starts again.  If the filter does 

not experience the maximum headloss or a breakthrough over a long time period, a backwash is 

sometimes initiated.  Cleasby (1990) states that the initiation of a backwash based on filter run 

time is often initiated to avoid the growth of microorganisms or to limit the total amount of 

solids captured in the filter (as cited in Suthaker, Smith, & Stanley, 1995). 

 

The discussion in Section 3.3.1 indicated that turbidity is a useful measure of the performance of 

a filter as it is related to the overall amount of particles and contaminants in the water.  This 

relationship is evident during the breakthrough stage of filtration as studies have shown that as 

the effluent turbidity increases, there can be a corresponding decrease in the removal efficiency 
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of Cryptosporidium parvum oocysts (Huck et al., 2001; Huck et al., 2002; Emelko, Huck & 

Douglas, 2003)   

3.3.3 Rapid Gravity Filtration Design 

The practical design of a filter unit is covered in considerable detail by Kawamura (1999) and 

MWH (2005).  For the design of rapid gravity filter units the elements of concern are primarily 

the hydraulic loading, the filter media, the headloss, the underdrain system, and the filter 

backwashing (Duen, 2000).   

 

Hydraulic loading refers to the volume of water that passes through the filter unit per surface 

area.  Hydraulic loading rates vary from filter unit to filter unit; however filter rates usually vary 

from 5 – 15 m/h (MWH, 2005).   

 

The filter media selected for a filtration unit also varies from situation to situation.  Common 

types of filter media are silica sand, anthracite, garnet, ilmenite and granular activated carbon 

(Duen, 2000).  However, other filter media types are possible including proprietary filter media.  

For the specification of filter media, the two design criteria are the effective size (d) and the 

uniformity coefficient.  The depth of the filter media, designated as L, and the effective media 

size are interrelated through the parameter L/d.  The L/d ratio provides a numerical rule of thumb 

relationship which should be between 1000 and 2000 for most filters (MWH, 2005).  Increases in 

the L/d ratio above this range can result in higher initial headloss, longer filter backwash times 

with no increase in filter performance (Kawamura, 1999). 
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The headloss within a filter can be calculated for a clean filter bed through the Carman-Kozeny 

equation (MWH, 2005).  This equation relates the headloss within the filter unit to a number of 

parameters including the size of media grains, the porosity, the flow rate and the friction within 

the system.  The Carman-Kozeny equation is applicable only for a clean filter bed under laminar 

conditions.  The Carman-Kozeny equation is:
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Equation 5 

 

where: 

hL is the headloss over the filter media depth  
ε is the porosity 
vs is the filtration rate 
ψ is the shape factor 
g is the acceleration due to gravity 
L is the media depth 
ffi is the friction factor 
xi is the proportion of media layer by weight 
di is the median media diameter for each segment 
n is the number of segments in the filter bed 
 

The underdrain system supports the filter media, collects the filtered water and distributives 

water for backwashing.  The backwashing system cleans the filter media, removing the captured 

particles from the filter bed so the filter can begin operation again. 

3.3.4 Description of how OTTER Models Filtration 

There are three basic methods that have been used to model the filtration process.  The first 

method is through phenomenological theories that use empirical expressions with empirical 

coefficients to model the process.  This method is evident within OTTER through the use of the 

logistic model.  The logistic model uses a logistic breakthrough curve to model the filtration 

process with respect to solids removal as shown in Equation 6 (Saatci & Oulman, 1980).  
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Equation 6 

 

where: 

Cin is the influent solids concentration (mg/L) 
Cout is the effluent solids concentration (mg/L) 
L is the filter bed depth (m) 
ν is the filtration rate (m/h) 
t is the filter run time (hrs) 
r is the attachment coefficient (h-1) 
k is the filter capacity (mg of solids/L of bed) 
ζ is the fraction of non-filterable solids (dimensionless) 

 

To model the headloss, the logistic model uses a relationship between headloss and the solids 

that are deposited in the filter as shown in Equation 7 (Adin & Rebhun, 1977).  

 

3)1( σβ+= oHH  Equation 7 

 

where: 

H is the headloss (m) 
Ho is the clean bed headloss (m) 
σ is the solids accumulation within the filter (mg of solids/L of filter) 
β is the rate of headloss build up ((L of filter/mg)0.5) 

 

The empirical coefficients used in this model are calculated from breakthrough curves.  Saatci 

and Oulman (1980) recommend using pilot plant studies from at least three filters at different 

depths operated to breakthrough to obtain the empirical coefficients, but acknowledge that using 

data from an existing filter is possible but less accurate.  The use of the logistic model can be 
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considered a macroscopic approach to modelling filtration because it focuses on the overall 

filtration process without describing the individual transportation and attachment processes 

associated with filtration.   

 

The second method that has been used to model filtration is still a macroscopic and empirical 

approach (Adin & Rebhun, 1977), but it includes solving the partial differential equations that 

are used to describe the filtration process (WRc plc, 2002).  Within OTTER, this method is 

described as the finite difference model, and it is based on the work by Adin and Rebhun (1977).  

The finite difference model focuses on modelling the material balance, the rate of accumulation 

solids and the headloss within the filter.  The material balance is described by Equation 8 (Adin 

& Rebhun, 1977). 
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X συ  Equation 8 

 

where: 

t is the time (hrs), 
X is the concentration of solids in suspension (g/m3) 
Z is the distance from the top of the filter (m) 
σ is the solid material deposited in the filter (g of solids/m3 of bed) 
ν is the filtration rate (m/h) 
 

The rate of accumulation of solids is described by Equation 9 (Adin & Rebhun, 1977) which 

calculates the overall rate of accumulation by evaluating both the rate of accumulation, as 

described by the first term in Equation 9, and the rate of detachment, as described by the second 

term in Equation 9. 
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Equation 9 

 

where: 

F is the maximum filter capacity (g of solis/m3 of bed) 
H is the filter headloss (m) 
k1 is the attachment coefficient (m2/g) 
k2 is the detachment coefficient (h-1) 
L is the filter media depth (m) 
C is the solids concentration (mg/L) 
 

The filter headloss, as calculated in Equation 10, is described by an empirical equation that was 

determined experimentally by Adin & Rebhun (1977). 
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Equation 10 

 
 

 

The third method that has been used to model the filtration process is through trajectory theories.  

Trajectory theories attempt to model the filtration process without empirical coefficients.  These 

methods use mathematical relationships that describe the different transportation and attachment 

mechanisms discussed in Section 3.3.2.  Adin and Rebhun (1977) and Amirtharajah (1988) both 

indicate difficulties in using a purely physical solution to describe the complex filtration process 

and in OTTER purely trajectory theories are not considered. 

 

Both the logistic method and the finite difference method include backwashing as part of 

modelling the filtration process; however the finite difference method is the only model that can 
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be used to look at the affects of backwashing directly (WRc plc, 2002).  The finite difference 

model uses a backwashing model from Amirtharajah (1985) to model the process.  The logistic 

method, however, resets the filter to its original state after a backwash is performed. 

3.4 System for Analysis: Brantford Water Treatment Plant 

3.4.1 System Description 

The Brantford Water Treatment Plant (WTP) treats Grand River raw water taken from the 

Holmedale Canal.  The treatment process consists of screening, coagulation, sand ballasted 

flocculation (US Filter Actiflo™), sedimentation, chlorination, filtration, chloramination and 

fluoridation (City of Brantford, 2005).  A schematic of the treatment plant layout can be seen in 

Figure 3.5. 

 



 
Figure 3.5: Schematic of the Brantford Water Treatment Plant as of May 1999 (City of Brantford, 2006)

58 



 59

3.4.2 Description of Filtration Units at Brantford 

The filtration units at the Brantford Water Treatment Plant are dual media, anthracite over sand, 

rapid gravity filters.  Some of the basic physical properties of Filter 1 are shown in Table 3.2.  

The other filtration units have comparable physical properties with some change in the filter 

surface area. 

Table 3.2: Physical properties of Filter 1 

Weir Height (m) 1.83 
Filter Surface Area (m2) 46.2 
Media Layers Anthracite over Sand 
Anthracite Depth (m) 0.457 
Sand Depth (m) 0.457 
Anthracite Effective Size (mm) 0.85-0.95 
Sand Effective Size (mm) 0.45-0.55 

 

3.4.3 Data Collection 

Measurements for settled water turbidity (influent turbidity), filter effluent turbidity (effluent 

turbidity), and filter flow rate were made for the 2004 year and were recorded as time-averaged 

values for every fifteen (15) minutes.  This created an extensive data set covering all major 

seasons for a one year period.  Operational and physical characteristics of the treatment units, 

including those described in Table 3.2, were recorded after consultation with employees at the 

Brantford Water Treatment Plant.   

3.4.4 Choice of Filter Unit for Analysis 

The data record obtained from the Brantford WTP showed that there are eight (8) separate filters 

in use as opposed to the five (5) indicated in Figure 3.5 since Filter 3, Filter 4 and Filter 5 are 

each separated into two separate filters.  To perform the risk analysis it was decided to select a 

single filtration unit from the eight available filters.  The data record showed that not every filter 
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had its own turbidity meter for the entire duration of 2004.  Consequently, the filters without 

their own turbidity meter (3a, 3b, 4a, 4b, 5a, 5b) were not chosen, leaving Filter 1 and Filter 2.   

 

The summary statistics for the effluent turbidity from Filter 1 and Filter 2, as shown in Table 3.3, 

indicates that Filter 1 experienced a greater maximum and standard deviation of effluent 

turbidity for the 2004 year.  Consequently Filter 1 was chosen so that the analysis would have 

more variability to consider. 

Table 3.3: Summary statistics of Filter 1 and Filter 2 effluent during the 2004 calendar year 

 Filter 1 Filter 2 
Maximum (NTU) 0.25 0.17 
Minimum (NTU) 0.01 0.01 
Standard Deviation (NTU) 0.037 0.026 

 

3.4.5 Filter One Influent and Effluent Turbidity Readings 

The parameter of concern is the effluent turbidity from the filter.  Over the 2004 year a series of 

measurements were made for the influent and effluent turbidity readings.  Theses values were 

measured and recorded at fifteen (15) minute intervals for the entire 2004 year.  Appendix A 

shows the filter influent and effluent values over time for each month period.  These filter 

readings included a small portion of filter ripening as the filters were operated with a five (5) 

minute filter to waste period.   

 

Another way to display the influent and effluent turbidity data is through a cumulative 

distribution function (CDF) as shown in Figure 3.6 and Figure 3.7 respectively.  The CDFs were 

calculated using the plotting function:



 61

( )1+n
i

  
 

Equation 11 

 

where 

i is the plotting point of interest 
n is the number of plotting points 
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Figure 3.6: Filter 1 influent turbidity cumulative distribution function for turbidity data during the 2004 

calendar year 
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Figure 3.7: Filter 1 effluent turbidity cumulative distribution function for turbidity data during the 2004 

calendar year 

On the CDF for both the influent and effluent turbidity is drawn the 95 percentile level.  The 95th 

percentile values are stated such that 95 percent of the recorded values are below the stated 

value.  In Figure 3.6 this would mean that 95 percent of the influent to Filter 1 was below 0.54 

NTU.  The influent to Filter 1 is low in comparison to filters at water treatment plants also 

treating Grand River Water due to the performance of the ActifloTM high rate settling process.  

For example, the average influent for Filter 1 at the Brantford Water Treatment Plant is 0.32 

NTU over the 2004 year while between August 2002 and June 2003 the influent turbidity to the  

Mannheim Water Treatment Plant filters ranged from 0.34 – 2.6 NTU (Li, 2004) 

 

Aside from looking at the cumulative distribution function for the influent and effluent turbidity, 

some summary statistics can be calculated for both data sets.  These statistics are shown in Table 

3.4 and will be used for comparison to the calculated risk analysis output.   
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Table 3.4: Summary statistics for the influent and effluent turbidity from Filter 1 over the 2004 calendar year 

 Filter 1 Influent (NTU) Filter 1 Effluent (NTU) 
Maximum 8.83 0.25 
Minimum 0.01 0.01 
Standard Deviation  0.18 0.04 
Average 0.32 0.04 
95th Percentile  0.54 0.11 
99th Percentile  0.69 0.15 

 

3.5 Statistical Analysis Techniques 

Probabilistic analysis is dependent on the data source that are used for analysis and on the 

statistical analysis methods that are used.  Discussions in books on probabilistic simulations and 

risk analysis provide a variety of methods to analyze and describe data sets.  For a full and 

complete discussion of many different methods, useful references are Ang and Tang (1975), Ang 

and Tang (1984), Vose (1996), Cullen and Frey (1999) and Verdonck (2003).  The following 

discussion will provide a brief overview of some methods and the rationale for the methods that 

will be used in further analysis. 

3.5.1 Parametric and Non-Parametric Distributions 

In dealing with distributions there is a distinction that can be made between distributions that are 

theoretically derived mathematical distributions and those that are defined directly by measured 

data.  These are respectively known as parametric and non-parametric distributions (Vose, 1996).  

Fitting data to parametric distributions requires an assumption that the data fit the known 

distribution.  The data fitting process then involves finding the parameters of the known 

distribution from the collected data.  Non-parametric distributions make no assumption on the 

distribution of the data but use only the data points that are gathered.   
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Vose (1996) strongly recommends using non-parametric distributions, but other authors such as 

Verdonck (2003) provide no rule as to when to use one method over the other.  However, Vose 

(1996) also states that the use of parametric distributions is allowable if there is evidence to 

suggest that the data are actually from the underlying theoretical distribution.  There has been 

some indication that water quality parameters follow parametric distributions such as the 

lognormal distribution (Novotny, 2004).  Therefore because of precedent and the simplicity of 

their use, any future analysis will use parametric distribution fitting techniques.  It is important to 

note that the use of parametric or non-parametric methods can have a bearing on the final risk 

result (Verdonck, 2003). 

3.5.2 Theoretical Distributions 

To use parametric distributions it is necessary to determine what theoretical distribution best 

represents the measured data set.  This is necessary as the distributional form can have a large 

effect on the outcome of a risk assessment, especially in situations where the relative standard 

deviation, the ratio of the standard deviation to the mean, is greater than one (Haas, 1997).   

 

There are a wide range of parametric distributions that the data set can be fitted to.  Some of 

them are the exponential, gamma, lognormal, normal, Weibull, and Gumbel (Vose, 1996).  It 

was decided to perform distribution fitting techniques on four (4) common distributions namely 

the normal, lognormal, exponential, and Gumbel distribution.  The lognormal and normal 

distributions were chosen because natural data tends to follow these distributions (Vose, 1996).  

The lognormal distribution has been used to model naturally occurring data by Eisenberg et al. 

(1998) while the normal distribution was used by Sadiq et al. (2003) to model filtration rate, even 

thought it was indicated that the normal distribution was used arbitrarily.  The Gumbel 
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distribution is an extreme value distribution and the exponential distribution is based on times for 

an occurrence of an event (Vose, 1996).  These distributions are included in the analysis to cover 

a range of possible distributions and because extreme value distributions have been used to 

model removal efficiencies, such as the removal efficiency of a slow sand filter for total 

coliforms (Saidq et al., 2003).  For the lognormal distribution, it is possible to use either the 

common lognormal, base 10, or the Napierian lognormal, base e, distribution.  The logarithmic 

base 10 distribution was used because Novotny (2004) states that water quality measurements 

may often follow lognormal (base 10) distributions and because both base 10 and base e 

distributions are similar (Burmaster & Hull, 1997).   

3.5.3 Parameter Estimation Methods 

To determine which of the theoretical distributions best represents the data set, it is necessary to 

determine the numerical values for the parameters that describe an each assumed distribution. 

There are different parameter estimation methods for parametric and non-parametric 

distributions; however, since the analysis will focus on parametric distributions, only parameter 

estimation methods for parametric distributions will be discussed here.  Further discussion on 

both parametric and non-parametric distributions can be seen in Cullen and Frey (1999), Vose 

(1996) and Verdonck (2003).  Three of the most common techniques for parameter estimation 

are the method of moments, the probability plotting method and the method of Maximum 

Likelihood. Ang and Tang (1975) and Vose (1996) provide a good description of the different 

methods and a mathematical reason for their use. 
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3.5.3.1 Method of Matching Moments  

For any given data set, statistical values such as the mean, standard deviation and kurtosis can be 

calculated.  These values are known as the moments of the data set where the mean is the first 

moment, standard deviation is the second moment, and kurtosis is the third moment.   

 

Any distribution is described by a set of parameters.  For example the normal distribution is 

described by µ and σ and the exponential distribution is described by µ  and β.    The moments 

of the data set have a relationship to the parameters of the distribution, so to determine the 

parameters of the distribution it is possible to first determine the moments of the data set and 

then calculate the parameters of the distribution.  Table 3.5 shows some of the relationships 

between the moments of the data set and the parameters of some common distributions.  In Table 

3.5, E(x) represents the mean and Var(x) represents the variance of the data set.



Table 3.5: Relationship between distribution parameters and the mean and variance of a measured data set (adapted from Ang & Tang, 1975) 

Distribution Probability Density Function (PDF) Parameters Relation to Mean and 
Variance* 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−=
2

2
1exp

2
1

σ
µx

πσ
fx(x)  

σ 
µ 

E(X) = µ 
Var(X) = σ2 

Lognormal 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
−=

2ln
2
1exp

2
1

ξ
λx

πxξ
fx(x)

λ 
ξ 

E(X) = exp(λ + ½ζ2) 

Var (X) = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−1

22 ξe(X)E  

Exponential 
β

µ

β

)(

e1f(x)

−
−

=

x

 

µ 
β 

E(X) = β + µ 
Var (X) =β2  

Gumbel 
β

µ)(x

ee

x

ef(x)

−
−

−
−

−
= β

µ

β

)(
1  

µ 
β 

E(X) = µ + 0.5772β 

Var(X) = 
2

6 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ β*π  

* E(X) represents the mean and Var(X) represents the variance 

 

 

67 



 68

3.5.3.2 Probability Plotting Method 

The probability plotting method plots the measured data set and the cumulative probability on 

specially constructed probability paper (Cullen & Fery, 1999).  Probability paper is constructed 

so that if the measured data set is from the assumed distribution the plot is a straight line. 

 

Every probability distribution has a cumulative distribution equation described as F(x) = some 

function of x where F(x) is the cumulative distribution of the measured data and x is some 

measured data point.  The measured data is sorted in increasing order and then ranked from one 

(1) to N where N is the number of data points.  The plotting position is then calculated using a 

plotting position equation such as m/(N+1) where m is the ranked number and N is the number 

of data points.  This numerical value is then the plotting position for that measured data point and 

the combination of all the plotting position points is the cumulative distribution function, F(x), 

for the measured data. 

 

When using probability plotting, the cumulative distribution function is convoluted such that it is 

represented as x = some function of F(x) (Pandey, 2004).  Then the data is plotted with x on one 

axis and the function of F(x) is plotted on the other axis.  Through plotting, the slope and y-

intercept can be calculated for the constructed line.  These values are then used to determine the 

parameters of the distribution.  It should be noted that as the number of parameters in a 

distribution increases to three or more, the number of dimensions for a probability plot would 

have to correspondingly increase.   An example for the Gumbel distribution is provided below. 

 

The cumulative distribution function for the Gumbel distribution is 
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Equation 12 

 

After convolution the equation can be represented as 

[ ] µβ +−−= )))(ln(ln( xFx  Equation 13

 

Therefore, the data set is plotted as x (y-axis) vs  [ ]))(ln(ln xF−  where F(x) is described by the 

plotting position of x.  From plotting the data the slope and y-intercept can be determined.  

Relating the slope and y-intercept back to Equation 13, β−  is the slope and µ  is the y-

intercept, which are the parameters of the Gumbel distribution.     

3.5.3.3 Method of Maximum Likelihood 

The method of Maximum Likelihood looks to determine the parameters of the distribution that 

are most likely to give the observed data set.  To determine the parameters of the distribution, a 

likelihood function is calculated which describes how likely it is that a given parameter value 

produces the measured data set.   

The likelihood function is (Cullen and Frey, 1999):

∏
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Equation 14 

 

where: 

L is the likelihood function 
θ1, θ2,… θk are the parameters of the probability distribution 
n is the total number of data points in the measure data record 
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The best estimate of the values of the parameters is then determined by maximizing the 

likelihood function using a maximization methodology such as differentiation or Taylor series 

expansion. 

3.5.3.4 Comparison of Parameter Estimation Methods 

Although the above methods are all parameter estimation methods, the parameters calculated 

from the different methods are not always the same.  Vose (1996) recommends using the 

Maximum Likelihood method but also acknowledges that the Maximum Likelihood method is 

sometimes difficult to implement and that one method is not always the best method.   

 

Vose (1996) also indicates that if the coefficient of determination is high (0.90 or 0.95) for the 

straight line in the probability plotting method, the method of moments and the probability 

plotting method provide similar results.  Cullen and Frey (1999) acknowledge that the method of 

moments is the most straightforward and practical method to implement.  For future analysis the 

method of moments will be used primarily for simplicity.  However, any risk analysis should be 

performed with the understanding that differences between the methods are possible.   

3.5.4 Selecting a Theoretical Distribution 

After determining the parameters for the different possible distributions, it is necessary to 

determine which of the distributions best represents the measured data set.  To perform this 

analysis probability plotting will be used both to calculate an r2 parameter and to provide a visual 

comparison of the degree to which the different distributions fit the data set.  The r2 parameter is 

defined as the coefficient of multiple determination.  This parameter will be used to determine 
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how well the measured data matches the assumed model, with 1 being a perfect match and 0 

being no match at all. 

3.5.4.1 Probability Plotting 

Section 3.5.3.2 outlines the construction of probability plots and their use to undertake parameter 

estimation.  Another use of probability plotting is with determining the goodness of fit of an 

assumed distribution to the data set.  The construction of a probability plot allows for the 

linearity of the graph to be used as an evaluation mechanism for the goodness of fit for a 

distribution (Ang & Tang, 1975).  Therefore, for a two-dimensional probability plot, the r2 value 

of the trend line provides a useful comparison value for different assumed distributions.  Since r2 

is a measure of the degree to which a line represents the data, a larger r2 number provides a 

stronger indication that the data set follows the assumed distribution.  Furthermore, this 

comparison can be performed visually. 

3.5.5 Probabilistic Risk Assessment, Variability and Uncertainty 

The nature of probabilistic risk assessments allows for a greater characterization of the 

variability and uncertainty in a population, and consequently a determination of the variability 

and uncertainty in a given risk. 

 

Variability can be described as naturally occurring differences in a parameter while uncertainty 

is lack of knowledge in that parameter (Cullen & Frey, 1999).  So while uncertainty can be 

reduced through further sampling, variability cannot.  However, both variability and uncertainty 

are properties of their respective sampled populations and must be incorporated into a final risk 
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estimate (Verdonck, 2003).  The use of simulation techniques allows for both variability and 

uncertainty to be taken into account during a risk assessment. 

3.5.6 Simulation Techniques 

There are a variety of numerical simulation techniques that can be used during a risk analysis 

including Monte Carlo simulation, Latin Hypercube Sampling, and Importance Sampling (Cullen 

& Frey, 1999).  Monte Carlo simulation, discussed in more detail in Sections 3.5.6.1 to 3.5.6.3, 

provides completely random sampling of the parent distribution or data set to generate inputs to 

the model.  Latin Hypercube Sampling reduces the number of simulations necessary by 

separating the original distribution into percentiles of equal probability and one sample is taken 

from each percentile (Cullen & Frey, 1999).  This has the effect of reducing the overall number 

of simulations necessary.  Importance Sampling focuses the sampling on a defined area of 

importance.  Thus this method is useful for looking at specific parts of a distribution, such as the 

tails, but not at a distribution as a whole (Cullen & Frey, 1999). 

 

The Monte Carlo technique will be used for future analysis because it is commonly used and thus 

easily understood, is not dependent on a set of assumptions about the nature of the variability and 

uncertainty, and is able to deal with both uncertainty and variability either separately or together 

(Verdonck, 2003).   

3.5.6.1 Monte Carlo Analysis 

The Monte Carlo simulation technique, developed in the 1940’s, was originally used to solve 

complex mathematical integration problems (Cullen & Frey, 1999).  Monte Carlo analysis 
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involves running a model repeatedly while constantly changing the input values which are 

chosen randomly from their overall parent distributions.   

 

This analysis generates a set of output values that characterize different possible outcomes.  For a 

more comprehensive description of the Monte Carlo simulation technique see Cullen and Frey 

(1999). 

3.5.6.2 First Order Monte Carlo Analysis 

A first order Monte Carlo analysis is another name for what is usually described as a Monte 

Carlo analysis.  The distinction is made here because of the following discussion on second order 

Monte Carlo analysis.  First order Monte Carlo analysis makes no distinction between 

uncertainty and variability (Verdonck, 2003).  Input variables are assumed to be completely 

characterized by the assumed “best fit” distribution and the values of the parameters of that 

distribution.  During first order Monte Carlo analysis, a random value is chosen from the 

distribution and run through the model.   

3.5.6.3 Second Order Monte Carlo Analysis 

In a Second Order Monte Carlo analysis, uncertainty and variability are separated (Verdonck, 

2003).  A second order Monte Carlo analysis recognizes that the values of the parameters 

calculated for the chosen distribution are based on a data set that may be incomplete.  Therefore 

the values of the parameters are considered to vary within a range specified by confidence limits.  

The simulation procedure then uses a looped technique to account for both the variability in the 

data set, captured by the distribution, and the uncertainty in the parameters of the distribution 
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Initially, numerical values of the parameters of the distribution are randomly chosen from within 

the confidence limits of the individual parameters, defining a specific distribution.  Once the 

distribution is characterized, random data values are chosen from this distribution and then input 

into the model.  For a second run, a new set of numerical values for the parameters of the 

distribution are chosen defining a second distribution.  The second set of random values is then 

chosen from this new distribution.  The procedure continues until the entire analysis is complete.  

This research will use first order Monte Carlo analysis; however, a more comprehensive review 

of Second Order Monte Carlo analysis can be seen in Verdonck (2003). 

3.5.7 Simulating Data from Probability Distributions 

To perform a Monte Carlo simulation it is necessary to determine random values from the 

chosen probability distribution.  One possible method to accomplish is through using the inverse 

transform method.  The inverse transform method is described below and was used throughout 

this thesis. 

 

Once the assumed distribution is known, a probability density function and a cumulative 

distribution function can be calculated.  From the cumulative distribution function, the inverse 

cumulative distribution function is determined as shown in Figure 3.8.   
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Figure 3.8: Construction of the inverse cumulative distribution function (Frey, 1992) 

 

To choose a random data point from the assumed distribution, a random number ranging from 

zero (0) to one (1) is chosen from a uniform distribution.  This random value is then input into 

the inverse cumulative distribution function to determine a random value from the original 

distribution.  This procedure is shown in Figure 3.9. 
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Figure 3.9: Inverse transform method 

The inverse transform method is performed repeatedly until the total number of random data 

points needed for analysis is determined. 

3.5.8 Random Number Generation 

In order to simulate data from probability distributions using the inverse transform method, as 

described in Section 3.5.7, a random number must be generated.  Therefore, it is necessary to 

construct a random number generator.   
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The research in this thesis will not focus on determining a new random number generator but 

will use generators that are currently available.  One of these is the built in random number 

generator in Microsoft Excel 2002 and Microsoft Excel 2003.  The use of Microsoft Excel 2002 

for statistical analysis of data and specifically for the use of the random number generator is 

cautioned by McCullough and Wilson (2002).  One of the errors noted by McCullough and 

Wilson (2002) is that Microsoft Excel 2002 returns highly improbable random values too 

frequently to be correct from a probabilistic perspective.  Through an analysis of Microsoft Excel 

2003 by McCullough and Wilson (2005) it was shown that this flaw was resolved for the RND 

function.  However, McCullough and Wilson (2005) still indicate a number of flaws with the 

random number generator in Microsoft Excel 2003.  Although the errors within the random 

number generator in Microsoft Excel 2003 are well documented, this random number generator 

will be used throughout this thesis.  It is important to note that statistical errors are possible and 

that a more detailed analysis should use a random number generator that satisfies all statistical 

tests.  Law and Kelton (1991) describe a series of different random number generators, along 

with some common problems with random number generators and methods of testing random 

number generators 

3.5.9 Correlated Water Quality Parameters 

If a risk analysis requires that a data set be generated for two or more incoming variables the 

concept of correlation becomes important.  Correlation is the degree that one variable is related 

to another (Verdonck, 2003).  As an example, for incoming water quality variables, this could 

mean that the microbial count in a water source varies directly with the temperature of the water.  

Performing a simple Monte Carlo simulation on these two variables would choose a random 

value of the microbial count independently of the temperature.  Since the two variables are 
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correlated, the assumption of independence is incorrect.  Therefore, a method that takes into 

account the correlations between the parameters would be necessary in this situation.  

 

The method of Iman and Canover (1982) is one method that has been developed to deal with 

correlated variables.  This method was developed in a way that several different parameter 

distributions can be combined together (Haas, 1999).  Restricted pairing techniques, described by 

Cullen and Frey (1999), are another method for dealing with correlated variables.  This method 

works when there is an independent distribution which has any number of dependent 

distributions.  A value is sampled from the independent distribution, and then based on the value 

of the independent variable, the distribution of the dependant variable can be determined.  A 

value from the new dependent distribution is then calculated.   

 

The risk analysis methodology used to calculate the risk of producing non-compliant water will 

not consider correlated incoming variables.  However the importance of correlations in risk 

assessments is shown by Burmaster and Anderson (1994) who, as one of their fourteen principles 

of good practice for conducting a Monte Carlo risk assessment, state that all moderate or strong 

correlations between parameters should be taken into account.  It is therefore recommended that 

any detailed risk analyses take into account correlated variables. 

3.6 Summary of Analysis Methodologies 

After choosing the different statistical and probabilistic techniques that will be used throughout 

the analysis, the final water treatment plant risk analysis methodologies can be re-stated 

incorporating the different factors previously determined. 
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3.6.1 Summary of CFA Methodology 

3.6.1.1 Step 1: Define Water Treatment Plant  

For the CFA methodology defining the water treatment plant involves deciding which treatment 

processes with the treatment plant to analyze.  During this process a schematic of the treatment 

unit or units that are analyzed should be drawn.  For the risk analysis performed in this study, the 

treatment process of interest is a dual media rapid gravity filtration unit. 

3.6.1.2 Step 2: Determine Parameters to Analyze 

The different parameters that will be used in the CFA should be determined.  Although a large 

number of parameters would give a better picture of the overall operation of the treatment unit or 

plant, as the number of parameters increase the amount of time and data needed for an analysis 

increases as well.  Currently there are no guidelines to determine what parameters to choose, but 

the choice will be a function of expert knowledge from both the water treatment plant operator 

and the risk analyst.  The CFA of the filter in this study focused on turbidity as the parameter of 

concern. 

3.6.1.3 Step 3: Determine the Influent Water Quality and the Percent Removal 

Distributions 

Using the method of moments the theoretical distribution parameters can determined.  Then 

using probability plotting and visual inspection of probability plots, the best fitting distribution 

can be determined.  This study requires that the probability distribution of the influent turbidity 

and the percentage reduction of turbidity across the filtration unit be determined.  
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3.6.1.4 Step 4: Perform Monte Carlo Simulation 

Using first order Monte Carlo simulation, a random influent value will be chosen from the 

influent distribution and a random percent reduction value will be chosen from the percent 

removal distribution.  These two values will be multiplied together and recorded as the simulated 

effluent distribution.  This overall process will be performed a number of times to take into 

account a large number of possible combinations of influent water quality and percent reduction.   

The relationship between influent turbidity concentration and the percent removal of turbidity 

across the filter was analyzed later on in this thesis to see whether or not the percent removal of 

turbidity is independent of the influent turbidity concentration.  

3.6.1.5 Step 5: State Conclusions 

For each parameter that is chosen in Step 2, a risk level can be generated.  This information can 

then be presented to managers and operators allowing for solutions to lower either overall risk or 

the risk associated with one specific parameter. 

 

3.6.2 Summary of the Risk Analysis Method which Combines Computer 

Modelling and Probabilistic Risk Analysis 

3.6.2.1 Step 1: Define Water Treatment Plant and Set-Up Model 

This step involves collecting the physical data that characterizes the system that will be analyzed 

and incorporating it into the computer model.  For this study, the number of filters, size of filters, 

and other data describing the filtration process was recorded.  This data was then used to 

accurately depict the water treatment process within the model.   
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3.6.2.2 Step 2: Determine Parameters to Analyze 

This step is important from a risk analysis perspective.  A greater number of parameters analyzed 

will increase the precision of the risk analysis results, but could also increase the computational 

time and difficulty.  Currently there are no guidelines to determine what parameters to choose, 

but the choice will be a function of expert knowledge from both the water treatment plant 

operator and the risk analyst.  The analysis of the filtration unit focused on turbidity as the 

parameter of concern.   

3.6.2.3 Step 3: Calibrate the Computer Model 

The calibration step is necessary to ensure accurate prediction results from the model.  The 

procedures for calibration should follow those described for the different process models with 

the modelling software.   

3.6.2.4 Step 4: Determine Distributions of Water Quality Parameters 

Using the method of moments the theoretical distribution parameters can determined.  Then 

using probability plotting and visual inspection of probability plots, the best fitting distribution 

that describes the water quality parameters can be determined.  This analysis required that the 

influent turbidity and filter flow rate distributions be determined. 

3.6.2.5 Step 5: Simulate Incoming Water Quality Data 

Using a random number generator and the inverse transform method, input data can be 

determined.  Initially a First-Order Monte Carlo simulation was done, so it was assumed that the 

parameters of the distribution calculated in Step 4 are correct.  For the analysis of the filtration 

unit, the input turbidity and input filter flow rate were simulated.  Since only one parameter was 

considered in this thesis, that of turbidity, correlation between incoming water quality parameters 
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was not taken into account.  However, a more comprehensive study which incorporates multiple 

parameters should look at the correlation between the influent water quality variables.   

3.6.2.6 Step 6: Run Calibrated Model with Simulated Data 

Once the raw water quality data have been simulated, the data is entered into the model.  The 

model will be run for the data series and the output stored.  This output can then be represented 

as a cumulative distribution function where the percent time that the data is less than a given 

level can be determined. 

3.6.2.7 Step 7: State Conclusions 

For each parameter that is chosen in Step 2, a risk level can be generated.  This information can 

then be presented to managers and operators allowing for solutions to lower either overall risk or 

the risk associated with one specific parameter. 
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CHAPTER 4  
RESULTS AND DISCUSSION USING 
THE CONSEQUENCE FREQUENCY 
ASSESSMENT 

 

4.1 Application of CFA Methodology to Filter 1 

The consequence frequency assessment was used on Filter 1 of the Brantford Water Treatment 

Plant.  To perform this analysis, it was necessary to take the principles of the CFA and directly 

apply them to a rapid gravity filtration unit, a process that is depicted in Figure 4.1.   
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Figure 4.1: Diagram of CFA methodology applied to filtration unit 

 

The influent turbidity (C0) is represented as a probability distribution function (PDF) and the 

rapid gravity filter is modelled as a percent reduction PDF (C1/C0)  The CFA methodology 

multiples a randomly selected value from the influent turbidity PDF by a randomly selected 

value from the percent reduction PDF to give a possible output value for the filter (C2).  After a 
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number of simulations, all the possible effluent turbidity values (C2) that are calculated can be 

represented as a cumulative distribution function (CDF) of the effluent turbidity.   

4.1.1 Data Manipulation for Percent Reduction Calculation 

Percent reduction is calculated by (influent-effluent)/influent.  This calculation was performed 

for every data point over the 2004 year data record.  A percentage reduction was not calculated 

when data were missing or not available from either the influent or effluent turbidity data record. 

 

In some situations the percent reduction was not able to be calculated because the influent values 

were “0”, causing the percent reduction value to be a non-integer.  In these conditions a percent 

reduction was not recorded.  An example of this occurrence is on July 25, 2004 from 10:00 am to 

11:30 am.  A further complication occurred when the percentage reduction values were negative, 

indicating that the effluent turbidity was greater than the influent turbidity.  One example is on 

July 25, 2004 at 9:45 AM another on July 25, 2004 at 11:45 am.  The influent turbidity values 

are 0.01 and 0.02 NTU respectively in these cases, while the effluent turbidity is around 0.60 

NTU.  During the analysis, the data was not offset to account for contact time in the process; 

however, as the use of the data was for risk analysis and the data set was large it was assumed 

that this assumption would have a negligible impact.  Future analysis should check this 

assumption. 

 

It was decided to keep all the data points, including those that gave a negative percentage 

reduction, since it is possible for a filter to experience detachment if captured particles are 

sloughed from the filter media (MWH, 2005).  However, if negative percentage removal values 

were included, the lognormal distribution could not be used to model the process, as negative 
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values are incompatible with the lognormal distribution.  Thus, to use the lognormal distribution, 

a value of percent remaining as opposed to percent reduction was used.  Using the percent of 

influent turbidity remaining in the effluent eliminated the negative values within the data record 

but still allowed for the effluent to be greater than the influent (Dunn, Frodsham, & Kilroy, 

1998).   

 

After performing the necessary calculations, a CDF for the percentage of influent turbidity 

remaining was determined.  This CDF is shown in Figure 4.2, while summary statistics for the 

percentage of influent turbidity remaining can be seen in Table 4.1. 
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Figure 4.2: Cumulative distribution function of the percentage of influent turbidity remaining for filter 1 
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Table 4.1: Summary statistics for the percentage of influent turbidity remaining for filter 1 

 Percent of Influent Turbidity 
Remaining (%) 

Maximum (%) 500 
Minimum (%) 0.4 
Average (%) 14.8 
Standard Deviation (%) 13.0 
95th Percentile (%) 40.0 
99th Percentile (%) 56.3 

 

4.1.2 Distribution Fitting of Data 

In order to perform the CFA, a distribution fitting process was undertaken to determine the 

probability distribution functions for the influent turbidity and the percent of influent turbidity 

remaining.  This process follows the procedure that was described in Section 3.5.3 and Section 

3.5.4.  

 

Initially the method of moments was used to obtain the distribution parameters for the four 

selected distributions.  These parameters were then used to characterize the four different 

distributions when undertaking the distribution fitting exercise.  Table 4.2 and Table 4.3 outline 

the distribution fitting comparison parameters while Figure 4.3, and Figure 4.4 provide a visual 

comparison of the distribution fitting process.  For a visual comparison, the closer the data points 

plot to a straight line, the better the assumed distribution fits the data set.   

Table 4.2: Distribution fitting statistics for influent turbidity 

 Probability Plotting (r2) 
Normal  0.613 
Lognormal 0.964 
Exponential 0.712 
Gumbel 0.708 
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Table 4.3: Distribution fitting statistics for percentage of influent turbidity remaining 

 Probability Plotting (r2) 
Normal  0.807 
Lognormal 0.963 
Exponential 0.965 
Gumbel 0.938 



 
Figure 4.3: Probability plots for distribution fitting of influent turbidity data: Clockwise from top left, normal distribution, log-normal distribution, 

Gumbell distribution, exponential distribution
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Figure 4.4: Probability plots for distribution fitting of the percent of influent turbidity remaining data: Clockwise from top left, normal distribution, 
log-normal distribution, Gumbell distribution, exponential distribution 
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From Table 4.2 and Table 4.3 it can be seen that the lognormal distribution provides the best fit 

to both the influent turbidity and the percentage of influent turbidity remaining data.  From this 

analysis it was decided that the lognormal distribution would be used for future analysis.  Table 

4.4 shows the final distribution parameters for the lognormal distribution.   

Table 4.4: Lognormal distribution parameters for influent turbidity and percentage of turbidity remaining 

 Influent Turbidity 
(NTU) 

Percentage of Influent 
Turbidity Remaining (%) 

µ -0.54 -0.98 
σ 0.19 0.37 

 

4.1.3 Simulation Convergence 

To determine the outcome of any simulation, the issue of simulation convergence, also referred 

to as numerical stability, is important.  Burmaster and Anderson (1994) stated, as principle 

twelve of their fourteen principles of good practice in the use of Monte Carlo simulation 

techniques, that the numerical stability of a simulation must be investigated.  One method of 

investigating the convergence of a simulation is through plotting the output from a simulation as 

a function of the number of shots performed during the simulation (Verdonck, 2003).  A shot is 

one calculation and a simulation is the entire set of calculations.  For each simulation different 

percentile levels are calculated and tracked.  Through tracking the percentile values for each 

simulation, the convergence of the simulation can be seen.  Percentile levels are calculated such 

that x% of the output is below the stated level.  For example, at the 95th percentile level, 95 

percent of the output is below the stated value.  Figure 4.5 and Figure 4.6 show the convergence 

of the CFA simulation for the rapid gravity filtration unit.   
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Figure 4.5: Convergence of the CFA simulation: 90th percentile and below 
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Figure 4.6: Convergence of the CFA simulation: 95th percentile and above 
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Figure 4.5 and Figure 4.6 show that the CFA performed on the rapid gravity filtration unit 

converges rapidly for low (10 – 50th) percentile levels (approximately 40,000 shots), as 

illustrated in Figure 4.5; however, takes a while for the 95th and 99th percentiles to converge 

(approximately 100,000 shots), as illustrated in Figure 4.6.  For analysis purposes, the 99th 

percentile is the highest percentile level to be used.  Thus the slight undulation of the 99.9th 

percentile is shown only to illustrate the difficulty that some simulations can have in stabilizing.  

Furthermore, because the 99.9th percentile has not yet converged at 180,000 shots, the maximum 

values recorded during a simulation at this number of shots should be used with extreme caution.  

From the simulation convergence study, it was decided to use 180,000 shots per simulation for 

all further CFA investigations since the 99th percentile and below have all converged by this 

number of shots. 

4.2 CFA Simulation Output 

A full CFA was performed for 180,000 shots and can be seen in Figure 4.7.  From the CFA 

output, a set of summary statistics was calculated and compared to the actual effluent turbidity 

experienced by the filtration unit for the 2004 year.  Table 4.5 shows these values. 
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Figure 4.7: Cumulative distribution function for a full CFA simulation 

 

Table 4.5: Summary statistics of effluent turbidity for a full CFA simulation 

 Filter 1 Effluent (NTU) CFA Effluent (NTU) 
Maximum  0.25 2.92 
Minimum  0.01 0.01 
Standard Deviation 0.04 0.06 
Average 0.04 0.05 
95 Percentile 0.11 0.15 
99 Percentile 0.15 0.28 

 

The summary values from Table 4.5 show a discrepancy between what is currently experienced 

by the filter and what could possibly occur according to the CFA.  Although the minimum, 

standard deviation and average turbidity values are similar, from a risk perspective, the 

simulation results indicate that there is a greater probability of higher effluent turbidity water 

being produced than what is currently experienced at the water treatment plant.   
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This increased probability of producing non-compliant water is illustrated by the increasing 

divergence in effluent turbidity values between the simulated data and the measured data at 

higher percentile levels, such as the 95th and 99th percentiles.  For example, while the filtration 

unit currently operates such that 99% of the effluent turbidity is below 0.15 NTU, the simulation 

indicates that the filtration unit is operating such that 99% of the effluent turbidity is below 0.28 

NTU.  The divergence at the 99 percentile level amounts to a 0.13 NTU difference between the 

simulated data and the measured data.  While the different in the effluent turbidity level does not 

seem large, this increase could have an effect on microbial contaminants as described in Huck et 

al., 2001; Huck et al., 2002; and Emelko et al., 2003. 

 

This divergence is shown visually in Figure 4.8 and Figure 4.9.  Figure 4.9 is identical to Figure 

4.8 but it concentrates on the percentile levels between 90 and 100 where the differences 

between the two data series become more significant.  The rest of the CDFs that will be 

displayed throughout this thesis will only concentrate on the area of interest; however, Appendix 

B displays the entire CDF for each graph shown.   
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Figure 4.8: Comparison between measured turbidity effluent and CFA simulated effluent 
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Figure 4.9: Comparison between measured turbidity effluent and CFA simulated effluent for a cumulative 

probability of 90% and above 
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While there are obvious differences between the CFA simulated effluent and the measured 

effluent, it is possible that some of the differences between the measured effluent and the CFA 

simulated effluent can be attributed to problems in the CFA methodology, not because of an 

increased risk level.  These possible problems were investigated through a series of simulation 

tests.  

4.3 Factors That Could Affect the CFA Output 

4.3.1 Conditional Reliability Effect 

One factor that could affect the CFA output is that of conditional reliability.  Conditional 

reliability occurs when the output is conditional upon one or more parameters (Baxter et al., 

2003).  In the analysis of Filter 1, conditional reliability could occur if the effluent turbidity was 

affected by another factor, such as the influent turbidity.   

 

To determine if there was a conditional reliability affect, the influent turbidity was separated into 

five percent (5%) intervals based on the range of influent turbidity values.  Summary statistics of 

the percent of turbidity remaining within each group were then calculated.  Figure 4.10 shows 

that although the overall percent of turbidity remaining is around 14%, as the influent turbidity 

increased the average percent of influent turbidity remaining decreased.  Thus a greater 

percentage of turbidity is removed when the influent turbidity is higher.  This can partially be 

explained by the filtration process.  In the measured data set a large number of effluent turbidity 

values were measured to be 0.01 NTU regardless of influent turbidity.  If the effluent turbidity 

remains approximately the same but the influent turbidity varies, then a higher influent would 

have a higher percentage removal.   
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Figure 4.10: Average percent of turbidity remaining for turbidity percentiles 

 

Because of the possible conditional reliability affect, the percent of turbidity remaining data were 

separated into two sections; below 0.88 NTU influent turbidity and above 0.88 NTU influent 

turbidity based on the analysis described in Figure 4.10.  Both data sets then underwent a 

distribution fitting exercise similar to that described in Section 4.1.2.  Table 4.6 shows the 

parameters of the new lognormal distributions.   

Table 4.6: Lognormal distribution parameters for influent turbidity distributions modified by conditional 
reliability 

 Below 0.88 NTU Above 0.88 NTU Overall 
µ -0.98 -1.56 -0.98 
σ 0.37 0.45 0.37 

 

Incorporating the principles of conditional reliability into the CFA simulation required a change 

in the CFA methodology.  During the modified CFA simulation, a check occurred where the 
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random influent turbidity value would simulate a percent of turbidity remaining from one 

distribution if the influent turbidity was over 0.88 NTU and from the other distribution if the 

influent turbidity was below 0.88 NTU.  The CDF for the CFA modified for conditional 

reliability is shown in Figure 4.11.   
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Figure 4.11: Cumulative distribution function of effluent turbidity for a CFA modified for conditional 

reliability 

 

The comparison between the CFA with and without taking into account conditional reliability, as 

shown in Table 4.7, and Figure 4.12, shows no distinct difference between the two simulations.  

Although there might be a desire to use the maximum values, as shown in Table 4.7, or the 

divergence between the two simulations in the upper tails, as shown in Figure 4.12, as proof that 

the CFA which was modified for conditional reliability eliminated some of the peak values, this 

cannot be concretely shown as Figure 4.6 shows that at the 99.9th
 percentile, or essentially the 
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maximum values, have not converged at 180,000 shots.  Although there is no discernable 

difference between the two analyses performed for this thesis, past research, Baxter et al. (2003), 

has shown that the principles of conditional reliability can be used to help with the analysis of a 

filtration unit.   

Table 4.7: Summary statistics of effluent turbidity for a CFA modified for conditional reliability 

 Simulated CFA Effluent 
(NTU) 

Simulated CFA Effluent Modified for 
Conditional Reliability (NTU) 

Maximum  2.92 2.40 
Minimum 0.01 0.00 
Standard Deviation 0.06 0.06 
Average 0.05 0.05 
95% Confidence 0.15 0.14 
99 % Confidence 0.28 0.27 
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Figure 4.12: Comparison between the original CFA and CFA modified for conditional reliability: Focusing 

on the top 10 % of the cumulative distribution function 

 

Part of the reason that no difference was noticed when using the principles of conditional 

reliability with the CFA is that the analysis used only the influent turbidity as a condition which 
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could affect the filtration process.  Effluent turbidity and the filtration process could be 

conditional upon a large number of other parameters that were not considered in this analysis 

such as filter flow rate, pH, temperature, coagulation conditions, or any number of other 

possibilities. 

4.3.2 Influence of the Data Record 

A concern with the CFA methodology is how it responds to data records collected at different 

times over the course of one year.  To test the robustness of the CFA methodology to the number 

of data points collected and the season during which they were collected, a series of CFAs were 

performed using different sizes of data records.  The outputs from these analyses were then 

compared to the CFA using all the data from the 2004 data record. 

 

To perform the analysis, the influent turbidity distribution that was calculated for the entire 2004 

data set in Section 4.1.2 was used for all simulations.  However, a new distribution fitting 

procedure was performed for the percent of turbidity remaining distribution for each sub-set of 

data that was chosen.  The sub-sets of data were chosen at even intervals throughout the year and 

then for one half of the year.  Table 4.8 shows the calculated lognormal distribution parameters 

for the percentage of turbidity remaining for each data sub-set.   

Table 4.8: Lognormal distribution parameters for percentage of turbidity remaining for simulations with 
sub-sets of the 2004 data 

 2004 Year January Data May Data September 
Data 

January – June 
Data 

µ -0.98 -1.33 -0.85 -0.46 -1.16 
σ 0.37 0.19 0.20 0.18 0.32 

 

The CDF output from all the different simulations is shown in Figure 4.13, while Table 4.9 

shows a set of summary statistics that were calculated for each of the performed simulations.  
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Figure 4.13: Comparison between the original CFA to the CFA with sub-sets of data using cumulative 

distribution functions: Focusing on the top 10 % of the cumulative distribution function 

 

Table 4.9: Summary of output from CFA simulations with sub-sets of the 2004 data 

 Original CFA 
(NTU) 

CFA with 
January Data 

(NTU) 

CFA with 
May Data 

(NTU) 

CFA with 
September 

Data (NTU) 

CFA with 
January – 
June Data 

(NTU) 
Maximum  2.92 0.22 0.64 2.41 0.90 
Minimum  0.01 0.00 0.00 0.01 0.00 
Standard Deviation  0.06 0.01 0.03 0.08 0.03 
Average  0.05 0.02 0.05 0.12 0.03 
95 Percentile 0.15 0.04 0.11 0.28 0.08 
99 Percentile 0.28 0.06 0.18 0.42 0.15 

 

The data presented in Figure 4.13 and Table 4.9, show the dependence of the CFA on the data 

record itself.  None of the sub-sets of data were able to generate output that was comparable with 

the original CFA.  Therefore, if the CFA methodology is used in a situation where only a small 

sample of data is known or where data was known over a short time period, there could be 

difficulty in having confidence in the final results. 
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4.4 Discussion of the CFA Methodology 

The analysis performed in Section 4.3 showed that the output from a CFA simulation can be 

affected by a number of different factors.  This wide range of possible outputs is illustrated by 

Figure 4.14. 

 

 
Figure 4.14: Summary of effluent values for all CFA simulations 

 

In Figure 4.14, the largest differences between the original CFA and the different CFA 

simulations are provided by the CFA simulations that were performed with sub-sets of the 2004 

data.  The smallest differences are between the original CFA and the CFA simulation that 

included conditional reliability in the analysis.  These two issues must be considered when 

performing future CFAs. 
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Another issue with the CFA that has not been discussed hitherto is that of the maximum values 

experienced by the CFA.  The CFA provides a number of effluent turbidity values which are 

above 1.0 NTU.  If a filter was analyzed that had a backwash trigger set to 1.0 NTU, these high 

effluent turbidity values should not be present, providing the backwashing process is properly 

functioning.  Thus these maximum values would then be experienced as part of a breakdown in 

the mechanical functionally of the treatment process.  Given that the breakdown of a 

backwashing sequence or of a mechanical component involved in the backwash should be 

identified through an evaluation of mechanical risks, these maximum turbidity values should not 

affect the operational risk analysis exercise.  Consequently, the effluent values above the 

backwash trigger that are experienced by the CFA should not appear during a proper operational 

risk analysis.  The filtration unit analyzed from the Brantford WTP operates on a headloss 

trigger, thus these maximum turbidity values cannot be directly discounted for this particular 

analysis, although they would normally not be expected as headloss triggers are typically set to 

initiate backwash before high turbidity values are experienced.  It should be mentioned that high 

turbidity values can also occur from other factors such as a problem with a turbidity meter or due 

to air bubbles in the system (Scardina, Letterman, & Edwards, 2006).  These issues were not 

taken into account at this stage of research and the extensive data set was assumed to remove 

these effects from the risk analysis.  

 

Although a number of concerns have been raised concerning the CFA,  Figure 4.14 shows that, if 

the measured effluent values are used as a benchmark, the CFA can provide a good indication of 

the output from a filtration unit with the possible exception of higher values at or above the 99th 

percentile. 
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4.5 Risk Evaluation 

One of the ways to classify the risk for a filter is to determine the likelihood that a filter will 

produce effluent turbidity greater than some threshold value.  Table 4.10 and Figure 4.15 show 

the risk evaluation for Filter 1 with the CFA. 

 

Table 4.10: Risk evaluation for target levels through the CFA 

 
Median 

(%) 
95% Confidence 
Upper Bound (%) 

95% Confidence 
Lower Bound (%) 

Probability Effluent Turbidity > 0.05 NTU 29.9 30.1 29.7 
Probability Effluent Turbidity > 0.10 NTU 10.4 10.5 10.3 
Probability Effluent Turbidity > 0.30 NTU 0.81 0.77 0.85 
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Figure 4.15: Risk evaluation for target levels through the CFA 

 

The confidence intervals shown in Table 4.10 are calculated based on the number of shots 

performed for each simulation.  This calculation is based on the standard deviation of the 
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simulation where the standard deviation is calculated as described in Equation 15 (Pandey, 

2005): 

( )
N

µµσ −
=

1
 

 

Equation 15 

 

where: 
 
µ is the mean probability that the output is greater than some reference level, 
N is the number of shots in the simulation, 
σ is the calculated standard deviation of the simulation. 

The upper and lower bound confidence intervals are then calculated using the equation:  
 

σµ *kBound ±=  
 

Equation 16 

 

 
where: 
 
k is the value from a normal distribution which corresponds to the chosen confidence level. 

4.6 Implications for the Brantford Water Treatment Plant  

Although some concerns related to the CFA have been stated and should be noted, some 

conclusions for the Brantford Water Treatment filtration unit can still be drawn. 

 

If this analysis was performed for a regulatory agency with a requirement that the turbidity must 

be below 0.30 NTU 95% of the time, then, as Table 4.11 shows, the measured data and the CFA 

simulated data currently meet this requirement.  The measured data show no observed value 

greater than or equal to 0.30 NTU and the CFA simulated data shows that effluent turbidity is 

greater than the 0.30 NTU level 0.80% of the time, which is much less than the guideline of 5%.  

However, if the guideline was made more stringent such that the turbidity should be less than or 

equal to 0.10 NTU in at least 95% of the measurements made, the guideline is not as easily met.  
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While the measured data indicate that the new guideline would be met approximately 93% of the 

time, the CFA shows that the new guideline would only be met approximately 90% of the time.  

While no conclusive statement can be made as to whether the CFA or the measure data set is 

more reliable, the measured data set is bound by the past data set while the CFA incorporates a 

wider range of possible effects into the analysis. 

 

Table 4.11: Risk evaluation for target levels for measured data and CFA simulated data 

 
Measured Data 

(mean %) 
CFA Simulated 
Data (mean %) 

Probability Effluent Turbidity > 0.10 NTU 6.9 10.4 
Probability Effluent Turbidity > 0.30 NTU 0.0 0.81 

 

Another way to analyze the results from the risk analysis is to incorporate the output from the 

risk analysis and combine it with the idea of conditional reliability.  Table 4.12 shows this 

analysis with the CFA.  The influent turbidity was broken down into three categories, less than 

the mean minus one standard deviation, between the mean minus one standard deviation and the 

mean plus one standard deviation, and greater than the mean plus one standard deviation.  Within 

each of the sections a cumulative distribution function was calculated such that the probability of 

producing water greater than some standard could be calculated. 

Table 4.12: Conditional reliability analysis of CFA methodology 

Condition Probability Effluent Turbidity > 0.05 NTU 
Influent Turbidity   

 
Influent Turbidity Less than (-0.732); υ−σ in the 
lognormal distribution 0.09 

 
Influent Turbidity Between (-0.732 and -0.353); 
υ−σ and υ+σ in the lognormal distribution 0.28 

 
Influent Turbidity Greater than (-.353); υ+σ in the 
lognormal distribution 0.56 
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From the results of Table 4.12, the indication is that the output is primarily dependent on the 

influent water quality since once the influent water quality is greater than the mean plus one 

standard deviation the probability of the turbidity effluent is greater than 0.05 NTU is 56%.  

Thus, to reduce the probability of producing high effluent turbidity, the influent turbidity should 

be lowered; however, this analysis can be misleading since only one condition is evaluated, 

which is an inherent constraint of the CFA.  
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CHAPTER 5  
RESULTS AND DISCUSSION USING 
COMPUTER MODELLING AND 
PROBABILISTIC RISK ANALYSIS 

 

5.1 Application of the Computer Modelling and Probabilistic Risk 

Analysis to Filter 1 

Before undertaking an analysis, it was necessary to adapt the principles of computer modelling 

and probabilistic risk analysis directly to a rapid gravity filtration unit.  This process, performed 

for Filter 1 of the Brantford Water Treatment Plant, is depicted in Figure 5.1.   
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Figure 5.1: Diagram of computer modelling and probabilistic analysis methodology applied to filtration unit 

 

Initially, the probability distribution functions of the filter flow rate (Q) and influent turbidity 

(C0) are determined.  From these distributions, random values are selected and input into a 

calibrated filtration model which was then run.  The output from this process is a CDF 

representing different possible effluent turbidity values (C1).  Although the filter flow rate was 
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not used in the CFA, the filter flow rate was used in this analysis as the OTTER model uses the 

filter flow rate to model the filtration process, as described in Section 3.3.4. 

5.2 Model Set-Up 

To set-up the OTTER filtration model, there were four separate categories of data that were 

determined: static data, which are the physical properties of the filter; operating data, which 

focus on the operation of the filter; calibration data, which allow OTTER to model the filtration 

process for the filter of interest; and input data.  However, before determining this information, a 

series of preliminary experiments were undertaken to determine how the OTTER model would 

perform under different conditions. 

5.2.1 Preliminary Experiments 

The preliminary experiments evaluated how the output from the filter model would be affected 

by choosing either the logistic or finite difference model within the OTTER software, how water 

quality parameters that were not included in the overall risk analysis would affect the output, and 

how the method of input, either hourly or every fifteen minutes, would affect the output.  A 

summary of the findings are presented here, the entire analysis can be seen in Appendix C. 

 

During the discussion of the logistic and finite difference models in Section 3.3.3, it was noted 

that the two different models use different mathematical relationships to model the filtration 

process.  Furthermore, because of the modelling procedure; the finite difference model was the 

only model able to evaluate the effects of backwashing as the logistic model re-sets the filter to 

its original state while the finite difference model uses equations to determine how the filter is 

backwashed.  The analysis showed that the two models provided different output for the headloss 
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build up within the filter and the effluent turbidity itself, even though in some cases these 

differences were small.  However, this analysis was performed on an uncalibrated model.  Since 

calibration attempts to induce the model output to match the physical output, both calibrated 

models should theoretically operate similarly.  It was decided to use the logistic model primarily 

for its ease of use and because backwashing was not explicitly looked at during this analysis.   

 

Although the parameters of interest in this risk analysis are the input turbidity and the filter flow 

rate, the OTTER model allows for an analysis of a large number of other parameters.  These 

other water quality parameters were not included within the risk analysis but their presence 

within the OTTER model could have some effect on the output.  From the preliminary analysis, 

external water quality parameters were shown to have an effect primarily on the headloss build 

up within the filter but not on the effluent turbidity values.  This can be expected since 

parameters such as temperature were included in the analysis.  The temperature will affect the 

properties of water and thus affect the filtration process, particularly the headloss.  However, 

although some effect was noticed during the preliminary study, most water quality parameters 

analyzed would not affect the modeled filtration process described in Section 3.3.4 since the 

modelling equation focuses on the influent and effluent turbidity.  To compensate for any 

possible affect of external water quality parameters, all further simulations were performed using 

identical, input values for water quality parameters that were not directly included in the 

analysis.   

 

Within OTTER there is the ability to change the timing of inputs to the model.  Therefore, hourly 

data can be entered into a data record but fifteen minute inputs to the system can be chosen.  This 
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causes OTTER to interpolate between two successive data points for the other input values.  It 

was assumed that this method of interpolation should not be used because it strayed from the 

truly probabilistic methodology; thus a fifteen minute time frame was chosen for both the data 

record and the inputs to the filter. 

5.2.2 Static and Operational Data 

The calibrated OTTER filter model used static and operational data that were consistent with the 

basic characteristics of the Brantford WTP.  The initial static data were the same as was used for 

preliminary analysis and can be seen in Table 5.1, which was also depicted in Table 3.2. 

Table 5.1: Parameters for initial model set-up 

Weir Height (m) 1.83 
Filter Surface Area (m2) 46.2 
Media Layers Anthracite over Sand 
Anthracite Depth (m) 0.4572 
Sand Depth (m) 0.4572 
Anthracite Effective Size (mm) 0.85-0.95 
Sand Effective Size (mm) 0.45-0.55 

 

Operational data were primarily concerned with the method of backwashing.  Since the specifics 

of backwashing were not looked at explicitly, it was not necessary to completely characterize the 

backwashing cycle but only to determine when a backwash occurred.  For backwashing, the 

headloss trigger was set to 2.2 m after consultation with Brantford Water Treatment Plant 

employees.  No other backwash trigger was used, as was consistent with the treatment plant 

operating policy. 
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5.2.3 OTTER Model Calibration  

5.2.3.1 Recommended Calibration Procedure 

The calibration procedures necessary for any OTTER model are described in WRc OTTER 

2.1.3: Process Model Description (WRc plc, 2002).  For the logistic filter model, the calibration 

procedures are based on a series of parameters: 

• the attachment coefficient (r), 
• the filter capacity (κ), 
• the non-filterable solids fraction (ζ), 
• the hydraulic conductivity (β), and 
• the ripening period (tr). 

 

The attachment coefficient and the filter capacity are determined through analyzing a filter 

breakthrough curve for turbidity, the ripening period is determined through comparing model 

and experimental value for different trials, and hydraulic conductivity is determined from a 

regression equation comparing a modified headloss parameter to a modified solids accumulation 

parameter (WRc plc, 2002).  The non-filterable solids fraction must be assumed, however WRc 

plc (2002) recommends a value less than 0.1.  Along with the above five (5) parameters, the 

properties of the media voidage (ε) and sphericity (φ) can be used to help the calibration 

procedure. 

 

Saatci and Oulman (1980) recommend using pilot studies from at least three different filters at 

different depths to determine the calibration parameters of a filter.  However, the recommended 

calibration procedure could not be used for the calibration of the Brantford filtration model 

because no pilot studies were available for the filters.  Although less accurate, Saatci and 

Oulman (1980) state that it is possible to use data from an existing filter to determine the 
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calibration parameters.  This modified process is described in WRc plc (2002).  However, even 

this modified process could not be used on the filter of interest.  This occurred as the process 

recommended by WRc plc (2002) needs a filter breakthrough curve to be implemented.  The 

current operation of the Brantford Water Treatment Plant backwashes the filter before such an 

event occurs.  Thus a different method was developed to calibrate the existing data to the 

OTTER filter model with using the 2004 data record.  Within the 2004 data record there were 

142 different filter runs to evaluate.  Time constraints did not permit an analysis of all 142 filter 

runs, thus the modified calibration method was developed to determine the calibration 

parameters from a smaller number of filter runs.  Appendix D shows the modified calibration 

procedure.  This procedure involved selecting four different filter runs from the 2004 data record 

which would cover the range of conditions experienced by the filter.  The modified calibration 

procedure then determined the calibration parameters for the four selected filter runs. 

5.2.3.2 Calibration Parameters 

The following values are the calibration parameters calculated using the modified calibration 

procedure: 

• the attachment coefficient (r), 0.06 h-1; 
• the filter capacity (κ), 1100 mg/L; 
• the non-filterable solids fraction (ζ), 0.0; 
• the hydraulic conductivity (β), 0.06 (L/mg)1/2; and 
• the ripening period (tr), 5 hrs. 

 

Furthermore, the voidage and sphericity values were changed from their default values for both 

anthracite and sand.  These values were modified using data from Cleasby and Fan (1981) as a 

reference for modification.  Cleasby and Fan (1981) provide a series of values for different 

parameters of sand and anthracite over a large number of sieve size ranges.  The data from 
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Cleasby and Fan (1981) that correspond to the media size in the Brantford Water Treatment 

Plant can be seen in Table 5.2.  These values were used in the calibrated model. 

Table 5.2: Modified values for voidage and sphericity 

 Calculated Values from Cleasby and Fan 
(1981) 

 Sand Anthracite 
Porosity [voidage] 
(ε)  

0.468 0.564 

Shpericity (φ) 0.773 0.645 
 

Visually, the ability of the calibrated model to duplicate the output from the 2004 data record can 

be seen in Figure 5.2 for the headloss and Figure 5.3 for the effluent turbidity.  These two figures 

are plotted using the same vertical scale for comparison.  Appendix D provides the figures with 

varying scales to focus in on the differences between the filter runs.  Figure 5.2 indicates that the 

headloss comparison is reasonable for the average and maximum accumulation filter runs, but 

the model predicts lower headloss for the low filter run and higher headloss for the high filter 

run.  Figure 5.3 indicates that the effluent turbidity values are again reasonable for the average 

and maximum accumulation filter runs, but that the model predicts higher effluent turbidity for 

the low filter run and lower effluent turbidity for the high filter run.  Figure 5.3 does show that 

for the average filter run, the 5 hour ripening period specified for the model differs from the 

ripening period that can be determined from the graph of approximately 20 hrs.  A 5 hr filter 

ripening period was used for future simulations since, although it does not seem reasonable for 

the average filter runs, it was the calibrated value that best represented the range of filter runs 

described in Appendix D.  It is important to note that all work was performed with the 

assumption of a completely clean filter at the start of each filter run.  Thus, if a filter run in the 

data record did not start out as completely clean, the calibrated values would be incorrect.  This 
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is an assumption that could have a large effect and so should be checked in future work.  For a 

discussion on average, low and high filter runs see Appendix D. 
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Figure 5.2: Comparison of measured vales and model calculated values for filter headloss: Clockwise from top left, average filter run, low filter run, 

high filter run, maximum accumulation filter run
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Figure 5.3: Comparison of measured vales and model calculated values for filter effluent: Clockwise from top left, average filter run, low filter run, high 

filter run, maximum accumulation filter run 
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5.2.4 Input Data Record 

5.2.4.1 Distribution Fitting of Data 

The influent turbidity was previously fit to a distribution in Section 4.1.2; however to use the 

OTTER model, simulated filter flow rates were needed.  The use of simulated filter flow rates 

used in conjunction with simulated influent turbidity created a random input data record for use 

in the risk analysis, allowing for a wide range of possible inputs to be evaluated.  The process of 

simulating a water demand curve is a topic that in itself has experienced detailed research.  There 

has been research into determining water demand through models which correlate to other 

measurable parameters.  Protopapas, Katchamart, and Platonova (2000) looked at the effect of 

weather on daily water use while Alvisi, Franchini, and Marinelli (2003) used the Neyman-Scott 

stochastic process to model residential demand.  However, the above research focuses on the 

demand within distribution systems, not demand as it is experienced by a filter, which could 

differ significantly from the overall demand from a treatment system.  Since it was not the intent 

of this research to evaluate water demand simulation methodologies, the filter flow rate was 

determined in the same method as that of the influent turbidity distribution and percent of 

turbidity remaining distribution as discussed in Section 4.1.2.   

 

The distribution fitting statistics for the water demand distribution can be seen in Table 5.3.  

According to the r2 parameter, the Gumbel distribution provides the best-fit distribution.  

However, this analysis can be misleading as all the chosen distributions provide a reasonable fit 

to the data.  In looking at other research in simulated water demand profiles, it was seen that 

water demand has been modeled as a normal distribution, although this was an assumption of the 

research (Kapelan, Savic, & Walters, 2005; Xu and Goulter, 1998; and Lansey, Duan, Mays, and 
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Tung, 1998).  Xu and Goulter (1998) state that a large number of simulated flow demands had to 

be rejected because negative flows were simulated by the assumed normal distribution.  Again, 

the above research focuses on water demand, not the filter flow rate which would differ from 

water demand.  Therefore, to maintain continuity between the distributions chosen for the 

influent turbidity and the percentage of turbidity remaining, it was determined that the lognormal 

distribution would be used for future simulations.  

Table 5.3: Lognormal distribution fitting statistics for filter flow rate 

 Probability Plotting (r2) 
Normal  0.948 
Log-Normal 0.959 
Exponential 0.932 
Gumbel 0.986 

 

Table 5.4 shows the lognormal distribution parameters for the influent turbidity and the filter 

flow rate distributions which were used to simulate inputs to the OTTER model. 

Table 5.4: Lognormal parameters fused for simulating inputs to the OTTER model 

  Water Demand Turbidity 
µ 0.78 -0.54 
σ 0.10 0.19 

5.2.4.2 Data Record 

The input data record consisted of a series of simulated values from the previously determined 

lognormal distributions for the influent turbidity and the water demand.  Along with the 

simulated data, a numerical value for water quality parameters that were not explicitly included 

in the analysis needed to be entered.  As stated in Section 5.2.1, these values were kept constant 

for all the simulations.  The lognormal parameters for the influent turbidity and filter flow rate 

were shown in Table 5.4 while the default values allocated to the water quality parameters that 

were not explicitly included in the analysis are shown in Table 5.5.  These values are the default 

values provided by the OTTER program. 
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One parameter that was maintained as a constant over the course of the simulations which could 

provide some concern was that of temperature.  This simplification was applicable for this study 

since the thesis focused on the operation of a filter unit over the course of time, not with respect 

to one filter run at a specific time of the year.  However, although an average temperature value 

was maintained as a constant over the simulations, the temperature could affect the risk analysis 

output and should be considered in any future analysis. 
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Table 5.5: Water quality parameters used in the OTTER model 

Parameter Amount Parameter Amount Parameter Amount 
pH 7.5 Nitrate 0 Chlortoluron (µg/L) 0 

Temperature 
(oC) 

15 Nitrite 0 Diuron (µg/L) 0 

Apparent 
Colour 

(oHazen) 

50 Chloride 0 Isoproturon (µg/L) 0 

True Colour 20 Chlorite 0 MCPA (µg/L) 0 
Hardness 
(mg/L as 
CaCO3) 

150 Chlorate 0 MCPB (µg/L) 0 

Alkalinity 
(mg/L as 
CaCO3) 

100 Bromide (mg/L) 0 Mecoprop (µg/L) 0 

Conductivity 
(µS/cm) 

400 Bromate (mg/L) 0 2,4-D (µg/L) 0 

Total 
Suspended 

Solids (mg/L) 

Solids:Turbidity 
Ratio set at 2 

Sulphate (mg/L) 0 Diazinon (µg/L) 0 

Settleable 
Suspended 

Solids (mg/L) 

95% of the total 
suspended solids 

Dissolved Oxygen 
(mg/L) 

0 Chlorfenvinphos 
(µg/L) 

0 

Filtereable 
Suspended 

Solids (mg/L) 

95% of the total 
suspended solids 

Orthophosphate 
(mgP/L) 

0 Propetamphos 
(µg/L) 

0 

Free Chlorine 
(mg/L) 

0 UV Adsorbance at 
254 nm (/m) 

12 Cysts (number/L) 0 

Combined 
Chlorine 
(mg/L) 

0 Total Organic Carbon 
(mg/L) 

5 Coliforms 
(number/mL) 

0 

Chlorine 
Dioxide 
(mg/L) 

0 Dissolved Organic 
Carbon (mg/L) 

3 E. coli 
(number/mL) 

0 

Total 
Aluminium 

(mg/L) 

0 Particulate Organic 
Carbon (mg/L) 

2 Viruses 
(number/mL) 

0 

Total Iron 
(mg/L) 

0 Trihalomethanes 
(µg/L) 

0 Heterotrophs 
(number/mL) 

0 

Total 
Manganese 

(mg/L) 

0 Trihalomethane 
Formation Potential 

(µg/L) 

0 Algae (cells/mL) 0 

Dissolved 
Aluminium 

(mg/L) 

0 Haloacetic Acids 
(µg/L) 

0 Chlorophyll-A 
(µg/L) 

0 

Dissolved Iron 
(mg/L) 

0 Assimilable Organic 
Carbon (µg/L) 

0 Taste (number) 0 

Dissolved 
Manganese 

(mg/L) 

0 Atrazine (µg/L) 0 Odour (number) 0 

Ammonia 
(mg/L) 

0 Simazine (µg/L) 0 Particle Size 2 
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5.2.5 Description of Calibrated OTTER Model 

Visually, the calibrated OTTER model of Filter 1 can be seen in Figure 5.4.  Raw water is passed 

through a flow control valve which modifies the flow into the filter.  From the filter the treated 

water is collected in the process marked “final.”  The “wash water” is used for backwashing and 

the “waste water” shows the solids accumulation after backwash. 

 

 
Figure 5.4: OTTER model of Brantford Filter 1 

 

Figure 5.5, Figure 5.6, and Figure 5.7 show the set-up for Filter 1 including all the entered 

calibration data.  These parameters were constant throughout all the simulations.  The model 

value, number of CSTR stages, was kept to one (1) for all simulations as discussed in Appendix 

C.   

Filter Flow Control Valve 
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Figure 5.5: Static data for calibrated Brantford WTP OTTER model 

 

 
Figure 5.6: Operating data for calibrated Brantford WTP OTTER model 
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Figure 5.7: Calibration data for calibrated Brantford WTP OTTER model 

 

5.2.6 Simulation Convergence Study 

Similar to the CFA analysis, a simulation study was performed to see where the simulation 

converged.  To perform this study, a series of simulations was performed with varying number of 

shots.  New data sets were developed for each simulation and run through the calibrated OTTER 

model.  Figure 5.8 and Figure 5.9 show the results from the simulation study.  It can be seen that 

most percentiles converge well around 13,000 shots; however, as with the simulation study 

performed in Chapter 4, this does not hold true with the 99.9th percentile.  Future simulations will 

use around 13,000 shots but because the 99.9th percentile is not converged, the maximum values 

should not be relied on. 
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Figure 5.8: Convergence of the calibrated OTTER model simulation: 90 percentile and below 
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Figure 5.9: Convergence of the calibrated OTTER model simulation: 95 percentile and above 
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5.3 Simulation Results for a Full System Analysis 

The output from a full simulation with 13,358 shots is displayed as a CDF in Figure 5.10 and 

summary statistics of the simulation along with measured effluent summary statistics are 

presented in Table 5.6.  For the calibrated model the number of shots used varied from 

simulation to simulation because of the method that OTTER uses to handle backwashes.  When a 

backwash is triggered, for the next two time periods no water is produced from the filtration unit 

and the effluent turbidity is recorded as zero.  Thus when performing an analysis on the output, 

these effluent turbidity values are removed from the data record.  Since the number of 

backwashes varied from simulation to simulation, the total number of shots also varied from 

simulation to simulation.   
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Figure 5.10: CDF of turbidity effluent from calibrated OTTER simulation using 13,358 shots 
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Table 5.6: Summary of output from calibrated OTTER simulation 

 

Simulated Output from 
Calibrated OTTER 

Model (NTU) * 

Measured Filter 1 Effluent 
(NTU) 

Max 1.41 0.25 
Min 0.00 0.01 

Standard 
Deviation 0.04 

0.04 

Average 0.02 0.04 
95 Percentile 0.03 0.11 
99 Percentile 0.07 0.15 

* Simulation performed using 13,358 shots 

 

The summary values from Table 5.6 show a discrepancy between what is currently experienced 

by the filter and what could possibly occur according to the modelling and probabilistic risk 

analysis process.  Although the minimums and standard deviations are similar, from a risk 

perspective, the results indicate that the measured water quality, at the 95th and 99th percentile 

level, produces higher effluent turbidity water than what the model indicates.  In other words, the 

model predicts a lower actual probability of producing non-compliant water than what is 

currently experienced at the water treatment plant.   

 

This lowered probability of producing non-compliant water is illustrated by the divergence in 

effluent turbidity values between the simulated data and the measured data with increasing 

percentile levels, as shown visually in Figure 5.11.  Figure 5.11 shows that as the percentile 

levels increase the measured effluent values increase more rapidly than the simulated values.  

Chapter 6 provides a detailed discussion on the possible reasons for this difference, primarily 

focusing on the ideal versus non-ideal performance of the fitler. 
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Figure 5.11: Comparison between measured turbidity effluent and turbidity effluent simulated with a 

calibrated model and random filter flow rate 

 

5.3.1 Risk Evaluation 

The output from the simulation can be used to evaluate the probability of producing effluent 

turbidity greater than a reference level for the filter.  Table 5.7 compares the probability of 

producing water greater than a reference value between the simulated output and the measured 

data for different effluent turbidity targets.   

Table 5.7: Risk evaluation for target levels through the calibrated OTTER model 

 
Simulated OTTER model 

Effluent (%) 
Measured Filter 1 Effluent 

(%) 
Probability Effluent Turbidity > 0.05 NTU 1.3 35.8 
Probability Effluent Turbidity > 0.10 NTU 0.67 6.9 
Probability Effluent Turbidity > 0.30 NTU 0.64 0.0 

* Simulation performed with 13,356 shots 
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The output indicates that the filter is operating at a low probability of producing non-compliant 

water but this could be misleading especially when comparing the simulated level with the 

measured level calculated for the probability of effluent turbidity greater than 0.05 NTU.  The 

calculated value, 1.3%, differs considerably from that currently experienced by Filter 1, 35.8%.  

One possible condition that was evaluated to see if it affected the output was inputting the filter 

flow rate as a time-series. 

5.3.2 Effect of Time Series Filter Flow Rate 

One concern throughout the above analysis involved the filter flow rate that was inputted to the 

simulation.  This flow rate was assumed to be completely random; however, this assumption is 

incorrect.  Figure 5.12 shows the flow experienced by Filter 1 over January 2004 while Figure 

5.13 shows a simulated flow for approximately one month.  Figure 5.12 shows that while the 

filter flow rate is slightly random, there is a pattern to the flow which is not visible in Figure 

5.13. 
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Figure 5.12: Measured Filter 1 flow rate for January 2004 
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Figure 5.13: Simulated Filter 1 flow rate for approximately 1 month 
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5.3.2.1 Results from Filter Analysis by Modified Probabilistic Methodology with 

Pseudo-Time Series for Flow Demand 

 
The model set-up and input data initialization was performed as explained in Sections 5.2.  The 

difference for this simulation was that the filter flow rate profile was not simulated using the 

lognormal distribution, but the measured filter flow rate data from 2004 was used as input to the 

simulation.  It should be noted that by using the 2004 filter flow rate profile the simulation was 

no longer completely random and some bias could be input to the simulation.  The results from 

the simulation can be seen in Figure 5.14 and in Table 5.8. 
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Figure 5.14: CDF of turbidity effluent from calibrated OTTER simulation with time-series filter flow rate 

profile 
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Table 5.8: Summary of output from calibrated OTTER simulation with time series filter flow rate profile 

 Simulated Effluent Turbidity (NTU)* 
Max 1.45 
Min 0.00 

Standard 
Deviation 0.07 
Average 0.03 

95 0.04 
99 0.39 

*Simulation Run for 2004 Filter Flow Rate Profile 
 

5.3.2.2 Risk Evaluation 

The probability of Filter 1 exceeding target levels can then be calculated.  Table 5.9 shows the 

calculated and measured levels for Filter 1.  The levels that were calculated using a time-series 

for the filter flow rate have increased from the completely random filter flow rate shown in Table 

5.7; however, there is still some discrepancy between the simulated levels and the measured 

Filter 1 levels.  

Table 5.9: Risk evaluation for target levels through the calibrated OTTER model using a time series for filter 
flow rate 

 

Simulated 
OTTER 

Effluent (%) 

Measured Filter 
1 Effluent (%) 

Probability Effluent Turbidity > 0.05 NTU 3.1 35.8 
Probability Effluent Turbidity > 0.10 NTU 2.1 6.9 
Probability Effluent Turbidity > 0.30 NTU 1.2 0.0 

* Simulation performed with one year of actual water demand (34,296 shots) 
 

5.3.3 Comparison between Calibrated OTTER model with random flow demand 

and calibrated OTTER model with time-flow series 

The differences between using a time series for the filter flow rate and not using a time series can 

be seen in Table 5.10 and Table 5.11.  The numerical values of the probability of producing non-



 135

compliant water, as seen in Table 5.10, change by approximately 1-2 percentage points for the 

three different levels.  However, it is in the numerical effluent turbidity output that differences 

can be seen.  Table 5.11 shows that the time-series filter flow rate curve allows for slightly 

higher turbidity effluent on average and at the 95 percentile level and substantially higher 

effluent turbidity at the 99 percentile level.  This occurs because the time-series causes a greater 

percentage of the output values to be larger, as can be seen in Figure 5.15.   

Table 5.10: Comparison between probabilistic risk evaluation using a calibrated OTTER model with and 
without a time series for water flow 

  Calibrated OTTER Model* 
Calibrated OTTER Model Time 

Series ** 

 
Median 

(%) 

Upper 
Bound 

(%) 

Lower 
Bound 

(%) 
Range 

(%) 
Median 

(%) 

Upper 
Bound 

(%) 

Lower 
Bound 

(%) 
Range 

(%) 
Probability > 0.05 
NTU 1.3 1.5 1.1 0.4 3.1 3.3 2.9 0.4 
Probability > 0.10 
NTU 0.7 0.8 0.5 0.3 2.1 2.3 2.0 0.3 
Probability > 0.30 
NTU 0.6 0.8 0.5 0.3 1.2 1.4 1.1 0.2 

* Simulation performed using 13,358 shots 
** Simulation performed with 2004 year of actual filter flow rate (34,296 shots) 

 

Table 5.11: Comparison of probabilistic risk analysis output using a calibrated OTTER model with and 
without a time series for water flow 

  

Calibrated 
OTTER 
Model* 

Calibrated 
OTTER 

Model Time 
Series ** 

Max (NTU) 1.41 1.45 

Min (NTU) 0.00 0.00 
Standard Deviation 

(NTU) 0.04 0.07 

Average (NTU) 0.02 0.03 
95 Percentile (NTU) 0.03 0.04 
99 Percentile (NTU) 0.07 0.39 

Average Filter Run Time 
(hrs)  80 100 

* Simulation performed using 13,358 shots      
** Simulation performed with 2004 year of actual filter flow rate (34,296 shots) 
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Figure 5.15: Comparison of the CDF output from the probabilistic risk assessment for the calibrated OTTER 

models with and without using a time series: Focusing on the top 10% of the CDF 

 

One possible reason for the difference between the simulations with and without a time-series 

filter flow rate can be deduced from the average filter run times.  The calibrated model with 

random filter flow rate has an average of 80 hours per filter run, while the calibrated model using 

the time series has an average of 100 hours per filter run.  The longer filter runs for the time-

series flow rate allowed for higher effluent turbidity output and thus a higher probability of 

producing non-compliant water.  

 

This analysis shows how the mechanism used to model the filter flow rate can affect the output 

from the analysis.  However, because the 2004 data record is not random the rest of the thesis 

will use the results from the simulations performed with the completely random filter flow rate.  
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Any future study should evaluate in more detail the mechanism of incorporating filter flow rate 

into the analysis. 

5.4 Predictive Modelling and Risk Analysis 

The use of a calibrated computer model allows for a more comprehensive analysis of the 

treatment process, which is not possible with other risk analysis methodologies such as the CFA.  

One area of further analysis is through using the computer model and the risk analysis 

methodology to analyze predictive scenarios.  Predictive scenarios would involve changing the 

input or calibrated parameters within the computer model and determining how the final output 

would be affected.  It is possible to choose any number of different parameters to evaluate 

including any physical, operational or calibration parameters.  For the analysis three factors were 

changed: influent water turbidity, filter flow rate, and filter depth.  These three factors were 

chosen because Letterman (1987) mentions them during his evaluation of factors that affect 

filtered water quality and headloss development and because time constraints limited the analysis 

to only three factors. 

5.4.1 Predictive Study Set-Up 

The predictive study was set up in a manner similar to a 23 factorial study.  The three parameters 

were combined together to form eight different simulations which cover the range of input values 

for these parameters.  Table 5.12 shows the simulation set-up.  The simulation numbers in Table 

5.12  were chosen arbitrarily to identify the different filter runs.  They start at number 6 because 

numbers 1 through 5 were used during some preliminary analysis that is not reported on in this 

thesis. 
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Table 5.12: Predictive study using computer modelling set-up 

Simulation # Filter Depth 
Influent 
Turbidity 

Filter Flow 
Rate 

11 Low Low Low 

13 Low Low High 

12 Low High Low 

10 Low High High 

7 High Low Low 

9 High Low High 

8 High High Low 

6 High High High 

 

Saatci and Oulman (1980) caution against extrapolating data beyond the depths and filter flow 

rates used to generate the calibrated parameters.  Thus low and high values were chosen to be 

20% above and below the original values respectively.  Because the influent turbidity and filter 

flow rate are distributions and not single values, it was decided to increase and decrease the 

mean of the measured data and not modify the standard deviation.  Thus, increasing or 

decreasing the mean by 20% would represent a series of new measurements where the average 

would be 20% higher or lower than the original average but with the same standard deviation. 

 

Since the chosen distribution was lognormal, this required that both the mean and standard 

deviation of the lognormal distribution be modified so that only the mean of the data that is not 

logged would change.  Figure 5.16 shows this visually for simulated data for influent turbidity.  

The same procedure was followed for filter flow rate. 
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Figure 5.16: High and low distributions for influent turbidity for the predictive study 

 

The input data for the eight different simulations can be seen in Table 5.13.  For influent 

turbidity and filter flow rate, the values in Table 5.13 show the mean of the simulated data set. 

Table 5.13: Input data for the different simulations for the predictive study 

Simulation # 
Filter Depth 

(m) 

Influent 
Turbidity 
(NTU) 

Filter Flow 
Rate (MLD) 

11 0.7312 0.252 4.94 

13 0.7312 0.252 7.42 

12 0.7312 0.378 4.94 

10 0.7312 0.378 7.42 

7 1.0968 0.252 4.94 

9 1.0968 0.252 7.42 

8 1.0968 0.378 4.94 

6 1.0968 0.378 7.42 
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5.4.2 Simulation Output 

The output from the simulations was evaluated using Yates method.  This analysis determined 

the effects and sums of squares for each parameter of interest.  Appendix E shows the full 

calculations for all the simulations, while Table 5.14 and Table 5.15 provide an overview of the 

findings.  Table 5.14 shows the output from the analysis while Table 5.15 shows the calculated 

effects and interactions of each parameter in the analysis. 

 

 

 



Table 5.14: Results from predictive study: calculation of probability values for each simulation at three chosen reference levels 

Simulation # 
Filter 
Depth 

Influent 
Turbidity Filter Flow Rate

Probability > 0.05 
NTU (%) 

Probability > 
0.10 NTU (%) 

Probability > 
0.30 NTU (%) Backwashes 

11 Low Low Low 4.84 3.64 1.95 23 

13 Low Low High 2.56 1.34 0.49 48 

12 Low High Low 4.91 3.25 1.6 34 

10 Low High High 2.84 0.74 0.19 68 

7 
High Low Low 1.58 1.19 0.9 23 

9 High Low High 0.55 0.25 0.14 48 

8 High High Low 0.83 0.56 0.31 34 

6 High High High 0.37 0.05 0.02 63 
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Table 5.15: Significance of the three evaluated parameters for the predictive study 

Source 

Probability > 0.05 
NTU 

(Effect/Interaction) 

Probability > 0.10 
NTU 

(Effect/Interaction) 

Probability > 0.30 
NTU 

(Effect/Interaction) 

Filter Flow Rate (A) -1.460 -1.565 -0.980 

Influent Turbidity (B) -0.145 -0.455 -0.340 

Filter Depth (C) -2.955 -1.730 -0.715 

Flow x Turbidity(AxB) 0.195 0.055 0.130 

Flow x Depth (AxC) 0.715 0.840 0.455 

Depth x Turbidity (BxC) -0.320 0.040 -0.015 

Flow x Turbidity x Depth 
(AxBxC) 0.090 0.160 0.105 

 

5.4.3 Discussion of Predictive Study 

Some of the results presented in Table 5.14 could be expected.  On average the high filter depth 

produced better quality water then the low filter depth.  This is consistent with theoretical 

expectations, as shown in Section 3.3.4, and other findings (e.g. Letterman, 1987); however, 

some of the results are not what would be expected.  When the filter rate is increased the removal 

rates should decrease (Letterman, 1987), causing a higher probability of producing non-

compliant water; however, the filtration unit experienced a higher probability of producing water 

above a stated level when the filter flow rate was low as opposed to when it was high.  It would 

also be expected that the best scenario would be with a high filter depth, low filter flow rate, and 

low influent turbidity, but this did not occur.   
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The seemingly improbable observation that a low filter flow rate produced a worse situation than 

a high flow rate can be explained through the understanding of backwashes.  Initially, it is 

important to remember that an increase in filter flow rate increases the rate of headloss 

development (Letterman, 1987) which is also consistent with the Carman Kozeny equation as 

shown in Section 3.3.3.  This effect of filter flow rate on headloss development can be seen in 

Figure 5.17, as the low filter flow rate scenario in Simulation 11 has a lower rate of headloss 

build up than the high filter flow rate scenario (Simulation 13).   
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Figure 5.17: Headloss build up in the filtration unit over time for Simulations 11 and 13 

 

Since the filtration unit in question operates under a headloss trigger only, the model study shows 

that the filter flow rate is a major contributor to the number of backwashes.  For example, 

Simulations 11 and 13 have the exact same characteristics except for the filter flow rate and the 
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high filter flow rate causes a greater number of backwashes per volume of water filtered.  This 

can be seen in Figure 5.18.  
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Figure 5.18: Backwashes over time for Simulations 11 and 13 

 

A calculation for Simulation 11 and Simulation 13 showed that for equivalent filtered water 

volumes the two simulations removed the same amount of total solids.  This was determined by 

looking at the average turbidity removed per volume of water filtered for a series of filter runs 

for both simulations such that the total amount of water filtered was similar.  The unit of 

comparison is the ratio of the average amount of solids removed per filtered water volume, 

averaged for the total number of filter runs for Simulation 11 and for the number of filter runs for 

Simulation 13 which corresponds to approximately the same amount of total water filtered for 

Simulation 11.  This analysis is shown in Table 5.16.  Since the calculated t-statistic is below the 
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critical t-statistic, the two simulations are shown to remove approximately the same amount of 

solids per filtered water volume over an equal amount of filtered water volume.  The calculations 

performed in Table 5.16 were performed for the condition where the variances of the different 

simulations cannot be assumed to be equal. 

 

Table 5.16: T-test to compare the turbidity removal between simulation 11 and simulation 13 

 Simulation 11 Simulation 13 
N (number of filter runs) 22 29 
Average ratio of kg of solids 
removed per volume of water 
filtered (kg/m3) 

4.50E-04 4.59E-04 

Standard Deviation of the 
ratio of kg of solids removed 
per volume of water filtered 

1.75E-05 4.32E-05 

   
Observed T statistic 1.030  
Degrees of freedom 39  
Critical T statistic for t39,0.025 2.021  

 

Although the amount of solids per filtered water volume is similar, the higher filter flow rate in 

Simulation 13 caused a greater number of backwashes and lowered effluent turbidity values.  

Figure 5.19, although hard to evaluate, shows this decrease in turbidity by the larger proportion 

of higher effluent turbidity values from Simulation 11 as opposed to Simulation 13.   

 

With a fewer number of backwashes per unit volume, the lower flow rate allows the filter to 

experience more time with a higher solids loading in the bed.  As described in Section 3.3.4, the 

total attachment of particles to a filter bed is a function of the attachment and detachment.  With 

a longer period of time in the filter bed, there is the possibility that a greater number of particles 

could detach, contributing to the higher effluent water quality.  With the high filter flow rate, this 
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condition is not experienced.  Therefore, for the current filter operation, the situation of concern 

is one of low filter flow rate, which allows higher effluent turbidity.   
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Figure 5.19: Turbidity effluent from the filtration unit over time for Simulations 11 and 13 

 

One difficulty in using the factorial study methodology with simulated data occurred during the 

evaluation of the output.  Although each simulation was performed for the same number of input 

values, each time a backwash occurred the filter did not produce water for that time period.  This 

effectively lowered the total number of shots for the effluent turbidity.  Since each simulation 

had a different number of backwashes, each simulation also had a different number of shots.   

 

The evaluation of a factorial study uses a mean square error, a measurement related to the 

standard deviation, to determine whether a parameter is significant or not.  Since the standard 
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deviation is based on the number of shots and the mean of the simulation, see Section 4.5, each 

simulation will have a different standard deviation.  Over the course of the eight different 

simulations, the total number of shots varied by 90, but the standard deviation between one 

simulation and another varied by a factor of 100.  Thus a standard deviation or mean square error 

was not determined directly from the simulations.  

 

To calculate the significance of the different effects and interactions, a normal probability plot 

was used.  The normal probability plot evaluates the different calculated effects and interactions 

with the expectation that the differences between them are from to random variation (e.g. 

Montgomery, 2001), consequently the change of one or more variable would not have an effect 

on the output.  If this was true then all the effects and interactions would fall on a straight line on 

a normal probability plot while any factors that do not fall on a straight line can then be 

determined to be significant (Montgomery, 2001).  The normal probability plot can also be used 

to gain an estimate of the error associated with the analysis by using the insignificant effects as 

an estimate of the error (Montgomery, 2001), allowing for the use of an F-test to determine the 

significant effects.  Both of these methods were used in this analysis.   

 

Table 5.17, Table 5.18, and Table 5.19 provide the F-tests at the 5% significance level for the 

three different conditions.  The error was estimated in all situations from the three most 

insignificant effects: BC, ABC, AB.  These tables show that the filter flow rate (A) and filter 

depth (C) are both significant factors while the filter flow rate by filter depth interaction (AC) is 

significant for one of the conditions.  If the significance level was lowered, the filter flow rate by 

filter depth interaction would be significant for all three conditions. 
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Table 5.17: F-test for the probability of effluent turbidity greater than 0.05 NTU 

Source Effect SS DF MS F Significant 
Filter Flow Rate 

(A) -1.460 4.263 1 4.263 14.352 Yes 
Influent Turbidity 

(B) -0.145 0.042 1 0.042 0.142 No 

Filter Depth (C) 
-2.955 17.464 1 17.464 58.792 Yes 

Flow x 
Turbidity(AxB) 0.195 0.076 1 0.076 0.256 No 

Flow x Depth 
(AxC) 

0.715 1.022 1 1.022 3.442 No 
Depth x 

Turbidity (BxC) -0.320 0.205 1 0.205 0.689 No 

Flow x Turbidity 
x Depth (AxBxC) 

0.090 0.016 1 0.016 0.055 No 

Error     3 0.297     
 
  Note: fcrit = f1,3,0.05 = 10.13 

 
Table 5.18: F-test for the probability of effluent turbidity greater than 0.10 NTU 

Source Effect SS DF MS F Significant 
Filter Flow Rate 

(A) -1.565 4.898 1 4.898 81.033 Yes 
Influent Turbidity 

(B) -0.455 0.414 1 0.414 6.849 No 
Filter Depth (C) -1.730 5.986 1 5.986 99.021 Yes 

Flow x 
Turbidity(AxB) 0.055 0.006 1 0.006 0.100 No 
Flow x Depth 

(AxC) 0.840 1.411 1 1.411 23.345 Yes 

Depth x 
Turbidity (BxC) 

0.040 0.003 1 0.003 0.053 No 

Flow x Turbidity 
x Depth (AxBxC) 

0.160 0.051 1 0.051 0.847 No 

Error     3 0.060     
 
  Note: fcrit = f1,3,0.05 = 10.13 
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Table 5.19: F-test for the probability of effluent turbidity greater than 0.30 NTU 

Source Effect SS DF MS F Significant 
Filter Flow Rate 

(A) -0.980 1.921 1 1.921 34.117 Yes 
Influent Turbidity 

(B) -0.340 0.231 1 0.231 4.107 No 
Filter Depth (C) -0.715 1.022 1 1.022 18.161 Yes 

Flow x 
Turbidity(AxB) 0.130 0.034 1 0.034 0.600 No 

Flow x Depth 
(AxC) 

0.455 0.414 1 0.414 7.354 No 
Depth x 

Turbidity (BxC) -0.015 0.000 1 0.000 0.008 No 

Flow x Turbidity 
x Depth (AxBxC) 

0.105 0.022 1 0.022 0.392 No 

Error     3 0.056     
 
  Note: fcrit = f1,3,0.05 = 10.13 

 

Figure 5.20, Figure 5.21, and Figure 5.22 show the normal probability plots for three different 

conditions.  In all three conditions the factors of filter flow rate (A) and filter depth (C) appear to 

be significant while it can not be determined if the interaction effect between filter flow rate and 

influent turbidity (AC) is significant.  The lines in these figures were drawn by hand to provide 

further understanding to the tables shown above. 
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Figure 5.20: Normal probability plot for the probability of effluent turbidity greater than 0.05 NTU (A: filter 

flow rate, B: filter depth, C: influent turbidity) 
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Figure 5.21: Normal probability plot for the probability of effluent turbidity greater than 0.10 NTU (A: filter 

flow rate, B: filter depth, C: influent turbidity) 
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Figure 5.22: Normal probability plot for the probability of effluent turbidity greater than 0.30 NTU (A: filter 

flow rate, B: filter depth, C: influent turbidity) 

 

5.5 Risk Analysis Implications for the Brantford Water Treatment 

Plant 

If this analysis was performed for a regulatory agency with a requirement that the turbidity must 

be below 0.30 NTU 95% of the time, then the risk analysis methodology using a random filter 

flow rate in conjunction with the OTTER model and the measured data would satisfy this 

criteria.  However, if the regulatory requirement was 0.10 NTU 95% of the time, then the 

probabilistic analysis with the OTTER model would satisfy this criterion but the measured data 

would not.  This is described in Section 5.3.1.  The difference between the regulatory acceptance 

or rejection depending on whether measured or simulated data is used illustrates the importance 

that should be placed on determining how the calculations for compliance should be performed.   

Filter Depth  

Filter Flow Rate  
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The results from the risk analysis methodology using a random filter flow rate in conjunction 

with the OTTER model can be incorporated with idea of conditional reliability in a similar way 

that the results from the CFA were.  However, to analyze the results from the calibrated OTTER 

model, the methodology used for the CFA was expanded upon to evaluate three different 

conditional situations.  The first looked at the filter flow rate, the second at the influent turbidity, 

and the third analyzed a combination of the filter flow rate and the influent turbidity Table 5.20 

shows the output from this analysis.   

Table 5.20: Conditional reliability analysis of calibrated OTTER model 

Condition Probability Effluent Turbidity > 0.05 NTU 

Filter Flow Rate 
Filter Flow Rate Less than (0.679); υ−σ in the 
lognormal distribution  0.00 

 
Filter Flow Rate Between (0.679 and 0.880); 
υ−σ and υ+σ in the lognormal distribution  0.01 

 
Filter Flow Rate Greater than (.880); υ+σ in 
the lognormal distribution  0.04 

    

Influent Turbidity 
Influent Turbidity Less than (-0.732); υ−σ in 
the lognormal distribution  0.01 

 

Influent Turbidity Between (-0.732 and -
0.353); υ−σ and υ+σ in the lognormal 
distribution  0.01 

 
Influent Turbidity Greater than (-.353); υ+σ in 
the lognormal distribution  0.02 

    

Combination 
Filter Flow Rate Less than υ−σ and Influent 
Turbidity Less than υ−σ  0.00 

 
Filter Flow Rate Less than υ−σ and Influent 
Turbidity Between υ−σ and υ+σ  0.00 

 
Filter Flow Rate Less than υ−σ and Influent 
Turbidity Greater than υ+σ  0.01 

 
Filter Flow Rate Between υ−σ and υ+σ and 
Influent Turbidity Less than υ−σ  0.01 

 
Filter Flow Rate Between υ−σ and υ+σ and 
Influent Turbidity Between υ−σ and υ+σ  0.01 

 
Filter Flow Rate Between υ−σ and υ+σ and 
Influent Turbidity Greater than υ+σ  0.01 

 
Filter Flow Rate Greater than υ+σ and 
Influent Turbidity Less than υ−σ  0.04 

 
Filter Flow Rate Greater than υ+σ and 
Influent Turbidity Between υ−σ and υ+σ  0.04 

 
Filter Flow Rate Greater than υ+σ and 
Influent Turbidity Greater than υ+σ  0.06 
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The output from the calibrated model, as shown in Table 5.20, shows the probability of 

producing effluent turbidity greater than 0.05 NTU for a series of conditions.  Although 0.05 

NTU is not important from a regulatory prospective, it was used for this analysis as it might be 

important from an operational perspective.  Table 5.20 shows that the probability of producing 

effluent turbidity greater than 0.05 NTU increases with influent turbidity as would be expected.  

However, while the probability increases by a factor of two for the influent water quality 

between the low influent and the high influent, the filter flow rate shows an increase by a factor 

of four.  This indicates that filter flow rate has a greater effect on the effluent water quality than 

the influent turbidity, for the data analyzed.  This observation is illustrated more succinctly when 

the filter flow rate is greater than the mean plus one standard deviation.  Under these conditions, 

the probability of producing water quality greater than 0.05 NTU remains above 4% regardless 

of the influent turbidity.   

 

The predictive study, discussed in Section 5.4.3, corroborates the findings of the conditional 

reliability study by showing the significance of the filter flow rate and furthers this understanding 

by showing the importance of the filter depth for this filtration unit.  However, some 

discrepancies are noticed.  It should be mentioned that the conditional reliability methodology 

uses the output from the risk analysis with the OTTER model directly without any extrapolation 

of the input data.  However, the predictive study uses a series of inputs that result in higher and 

lower influent turbidity and filter flow rates than are seen through the 2004 data record.  This 

could account for some of the discrepancies. 
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Nevertheless, the predictive study indicates that the a decrease in the filter flow rate increases the 

probability of producing water above a stated level while an increase in filter flow rate decreases 

the probability.  The conditional reliability study shows a relationship where an increase in filter 

flow rate results in an increase in the probability of producing water above a stated level.  So 

while the predictive study indicates that a low flow condition is of concern, the conditional 

reliability study indicates that a high flow condition is of concern. 

 

In an attempt to reconcile this difference, two of the predictive simulations were run a second 

time with an added 0.30 NTU backwash turbidity trigger.  Table 5.21 shows that the backwash 

turbidity trigger lowered the probability of producing effluent turbidity greater than a standard.  

In the case of Simulation 11, a backwash turbidity trigger decreased the probability of producing 

effluent turbidity greater than 0.10 NTU from 3.46% to 0.46%.   

 

Evaluating Table 5.21 for the relationship between Simulations 10 and 11 without backwash 

turbidity triggers, it can be seen that Simulation 11, a low flow rate simulation, exhibits more 

risk than the high flow rate Simulation 10.  However, after including the backwash turbidity 

triggers, the high flow rate Simulation 10, contains more risk than the low flow rate Simulation 

11.  This is what was originally expected and what was seen in the conditional reliability study; a 

higher flow rate increases the probability of producing effluent turbidity greater than some value.  

Thus the discrepancy between the conditional reliability study and the predictive study is 

partially resolved by adding a turbidity trigger. 
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Theoretically, this study illustrates that a measure of caution should always be used before 

utilizing an analysis method.  Practically, this study illustrates that one method to decrease the 

risk associated with producing effluent turbidity greater than a reference is to ensure no low flow 

conditions occur, while another method is to add a backwash turbidity trigger to the filtration 

unit.  Adding a time trigger for backwashing would also lower the probability of producing 

effluent turbidity greater than some level however this condition was not evaluated in this thesis.  

 

 

 



Table 5.21: Simulations 10 and 11 from the predictive study run with a 0.30 NTU turbidity backwash trigger compared to the original Simulations 10 
and 11 

Simulation 
Average 
(NTU) 

75 
Percentile 

(NTU) 

95 
Percentile 

(NTU) 

99 
Percentile 

(NTU) 

Probability 
Effluent > 0.30 

NTU 

Probability 
Effluent > 0.10 

NTU 

Probability 
Effluent > 0.05 

NTU 
11 with Turbidity Trigger 
(Low Filter Flow Rate) 0.01 0.02 0.03 0.05 0.00 0.46 1.00 

11 without Turbidity 
Trigger (Low Filter Flow 

Rate) 
0.03 0.02 0.05 0.5 1.95 3.64 4.84 

10 with Turbidity Trigger 
(High Filter Flow Rate) 0.02 0.03 0.04 0.08 0.00 0.50 2.44 

10 without Turbidity 
Trigger (High Filter Flow 

Rate) 
0.02 0.03 0.04 0.09 0.19 0.74 2.84 

 

 

 

156 



 157

CHAPTER 6  
DISCUSSION OF RISK ANALYSIS 
METHODOLOGIES  

 

6.1 Numerical Differences 

A comparison of the two different risk analysis methodologies and the measured data can be 

seen in Table 6.1 and a comparison of the risk evaluation from the different methodologies for 

three different levels can be seen in Figure 6.1, Figure 6.2, and Figure 6.3.  From looking at 

Table 6.1, it is difficult to determine which risk analysis methodology should be used for future 

analysis.  The output from the CFA generally matches the turbidity effluent that is currently 

experienced by Filter 1; however, there are extremely high effluent values that are above 

anything seen presently by Filter 1.  The output from the probabilistic methodology using the 

calibrated OTTER model seems to underestimate the actual turbidity effluent, except for the 

maximums values. 

 

A comparison of the risk evaluation methodologies shows that at the 0.05 NTU level (Figure 

6.1), the CFA and the measured effluent are reasonably similar but the probabilistic methodology 

using the calibrated OTTER model differs considerably.  As the level increases to the 0.10 NTU 

(Figure 6.2), and the 0.30 NTU range (Figure 6.3), the different methodologies begin to produce 

similar results.  In evaluating the Figure 6.1, Figure 6.2, and Figure 6.3 it should be noted that the 

confidence limits in Figure 6.1, Figure 6.2, and Figure 6.3 remain reasonably similar as they are 
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based on the number of simulations, as discussed in Section 4.5, and that the scale changes from 

one figure to another. 

 

Table 6.1: Comparison of risk analysis methodologies using output from the simulations 

  

Consequence 
Frequency 

Assessment* 

Calibrated 
OTTER 
Model** 

Measured 
Filter 1 
Effluent 

Max 2.92 1.41 0.25 

Min 0.00 0.00 0.01 
Standard 
Deviation 0.06 0.04 0.04 

Average 0.05 0.02 0.05 
95 Percentile 0.15 0.03 0.11 
99 Percentile 0.28 0.07 0.15 

* CFA performed for 180,000 shots 
** Calibrated OTTER simulation performed for 13,358 shots 
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Figure 6.1: Comparison of risk evaluation from different analysis methodologies for probability of producing 

water greater than 0.05 NTU 
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Figure 6.2: Comparison of risk evaluation from different analysis methodologies for probability of producing 

water greater than 0.10 NTU 
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Figure 6.3: Comparison of risk evaluation from different analysis methodologies for probability of producing 

water greater than 0.30 NTU 
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A more comprehensive understanding of the different methodologies can be seen by looking at 

Figure 6.4.  In this figure, it is evident that until around the 95th percentile the measured effluent 

and the CFA are closely related while the probabilistic analysis with the OTTER model seems to 

underestimate the measured effluent until around the 99th percentile, above which it greatly 

exceeds it.  Figure 6.5 shows this difference more explicitly by limiting scale along the x-axis of 

Figure 6.4 to 0.5 NTU. 
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Figure 6.4: CDF of the output from the different risk analysis methodologies and the measured effluent: 

Focusing on the top 10% of the CDF 
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Figure 6.5: CDF of the output from the different risk analysis methodologies and the measured effluent: 

Focusing on the top 10% of the CDF and between 0 - 0.5 NTU 

 

The question is which methodology to use and what the different methodologies are measuring.  

There are three possible outcomes from this analysis and comparison: 

 

1) Combining modelling and probabilistic simulation produces more reasonable values from 

a risk perspective in comparison to other methodologies such as the CFA or in 

comparison to past measured data.   

 

2) The discrepancies between the CFA and the combination of probabilistic simulation with 

modelling can be accounted for because of the assumptions that were necessary to 

perform the analysis.   
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3) The different methodologies are measuring different aspects of risk.  

 

The first possible outcome cannot be stated with certainty before the assumptions of the analysis 

are checked and the other two possible outcomes are discounted.  Therefore to eliminate the 

second possible outcome, the basic assumptions of the OTTER modelling procedure and risk 

analysis procedure should be checked.  Some of the basic assumptions are that the modified 

calibration procedure was reasonable, that a time series filter flow rate curve could be simplified 

to be completely random, and that the OTTER filter model sufficiently describes the filtration 

process.  The assumption that a completely random filter flow rate could be used was tested by 

using the 2004 data record and some differences were seen between using the two different 

methods of generating filter flow rates.  However, the 2004 data record was not completely 

random and thus a random filter flow rate curve which incorporates the time-series component 

should be used in a future study to see of the output is affected. 

 

The third possible outcome provides an interesting discussion that should require more 

investigation.  In using a calibrated software model, the risk analysis is performed on a set of 

ideal operating conditions.  This was an initial goal of the analysis, to determine the probability 

of producing water above a specified reference level from a properly operated water treatment 

plant.  The simulations show that this probability for the filtration unit analyzed is between 1% 

and 3% depending whether the reference level is 0.3 NTU of 0.05 NTU.  However, the CFA is 

based on the past data record exclusively, which will include non-ideal conditions or situations 

where operational procedures were modified.  For example, the backwashing of a filter manually 
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because the operator perceives it is necessary.  The discrepancy between the CFA and the 

modelled risk evaluation would then be those conditions that could be classified as non-ideal.  

One assumption in making this comparison is that the data record used in the CFA would have 

no instances where the output would be affected by a mechanical failure, which would need to be 

analyzed using a mechanical risk analysis methodology.  There was no way of knowing this for 

the gathered data set. 

 

Therefore, the difference in output from the risk methodologies would converge when the 

modelled probabilistic methodology found a mechanism to incorporate non-ideal conditions into 

the analysis.  If, after further analysis, the third possible outcome was deemed to be reasonable, 

then a recommendation might be that an analysis mechanism such as the CFA is sufficient for 

simplified risk analysis, but that for a more comprehensive understanding of the system a risk 

methodology using modelling and probabilistic analysis could be performed with the 

understanding that it focuses on the ideal conditions.   

6.2 External Differences 

One of the major differences between the CFA and using modelling and probabilistic risk 

analysis is the wider range of capabilities with the use of computer modelling.  Using computer 

modelling allowed the effect of external parameters, such as filter flow rate, to be included in the 

overall analysis.  In this instance it showed that the filter flow rate was a greater contributor to 

producing non-compliant water than influent turbidity.  Also, using computer modelling allowed 

for predictive studies.  In this case, it was shown that adding a backwash turbidity trigger to the 

filtration unit would greatly reduce the probability of producing non-compliant water for low 

filter flow rate scenarios.  Furthermore, the predictive studies showed that the filter flow rate and 
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filter depth were the most significant effects on the probability of producing effluent turbidity 

greater than a reference level.  Influent turbidity, although not significant in this study, could be 

important in other situations.  The CFA, in its current form, is unable to analyze any of these 

things. 

6.3 Risk Analysis Implications for the Brantford Water Treatment 

Plant 

The results from the risk analysis using the two methods showed results that were at times highly 

divergent.  An example of this is the probability of producing turbidity effluent greater than 0.05 

NTU.  The consequence frequency assessment calculated a value of approximately 30% while 

the probabilistic methodology with model simulation calculated a value of approximately 1%.  

The Brantford WTP filtration unit is directed by the Ontario Drinking Water Standards which 

have a 5 NTU maximum turbidity at the point of consumption (Ontario Ministry of the 

Environment, 2003).  However a more comprehensive regulation of turbidity is provided by the 

Guidelines for Canadian Drinking Water which, for chemically assisted filtration, direct that 

turbidity “shall be less than or equal to 0.3 NTU in at least 95% of the measurements made, or at 

least 95% of the time each calendar month, and shall not exceed 1.0 NTU at any time” (Health 

Canada, 2003).  The results previously presented with respect to 0.05 NTU are not necessarily of 

concern, but they do illustrate a difference between the risk analysis methods. 

 

In looking at the 2004 turbidity data record for the filter of interest, it can be seen that these 

criteria are met as the maximum effluent turbidity is 0.25 NTU and the effluent turbidity is less 

than 0.11 NTU 95% of the time.  However, the application of risk analysis methods to the 

filtration unit demonstrates the possibility that the filter unit might violate these guidelines.  The 
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CFA and the calibrated OTTER model risk analysis methods indicate that the effluent turbidity is 

less than 0.3 NTU 95% of the time, but both risk analysis method show maximum turbidity 

levels over 1.0 NTU.  If the turbidity guideline was lowered to 0.10 NTU, or if an internal 

operational guideline was set at that value, the analysis shows that the filtration unit could either 

be in compliance of the guideline, or be in violation of the guideline depending on the analysis 

method chosen.  A problem with risk analysis that arises out of this research is that, depending 

on the method chosen, a water treatment plant could be in compliance or out of compliance.  A 

situation could occur where the predicated ability to achieve regulatory compliances, and 

potentially substantial related capital expenditures, could depend on the analysis method chosen.   

 

This illustrates the importance that should be placed on determining how the calculations for 

compliance should be performed.  Furthermore, this illustrates that risk analysis cannot be used 

as an arbitrary judgment tool for decision making.  As Hrudey (2004) states: risk analysis should 

guide risk management.  For the Brantford Water Treatment Plant, the overall analysis indicates 

that there is currently little probability of producing non-compliant water at the 0.30 NTU 

regulatory level, but any lowering of the guideline, or adoption of a stricter internal operating 

guideline, would require further analysis of the system.   
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CHAPTER 7  
CONCLUSIONS  

 

In this study, risk analysis methods that have been used in other engineering disciplines were 

evaluated for their ability to be used in analyzing a water treatment plant to evaluate the risk that 

a properly operated water treatment plant produces water that does not comply with a stated 

standard.  From a literature review, two risk analysis methods were chosen and evaluated; the 

consequence frequency assessment (CFA) and a method that combines water treatment plant 

modelling with probabilistic simulation.  Both of these methods were then applied to a full-scale 

anthracite/sand filter unit that was evaluated based on the effluent turbidity.  From this overall 

study, conclusions can be drawn for the Brantford Water Treatment Plant filtration unit 

specifically and for risk analysis in water treatment plants.   

7.1 Conclusions for Risk Analysis in Water Treatment 

For risk analysis in water treatment, the study highlights some broader points for consideration in 

future risk analyses which are the most significant conclusions for any future work in risk 

analysis and water treatment. 

 

1. The quantitative output of risk analysis is highly dependent on the methodology used.  

This principle is exemplified through the different results that were obtained using the 

different analysis methods. 
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2. Until the results from a risk analysis are better understood, risk analysis results should be 

used as a guiding tool, not a directive map to the “right” result: risk analysis should guide 

risk management (Hrudey, 2004).  Thus the risk analysis itself should not be the 

determining factor in deciding whether or not a system is operating acceptably but should 

be one component of a risk assessment and thus an entire risk management framework 

for drinking water.   

 

3. Risk analysis, regardless of methodology, can produce results that provide information to 

managers.  A beneficial understanding of the filtration unit can be acquired by using the 

idea of conditional reliability with risk analysis.  This idea focuses on what external 

conditions contribute to the probability of producing effluent water above a stated level 

and thus what external conditions contribute to the risk of producing non-compliant water 

to the greatest extent. 

 

4. Risk analysis, regardless of methodology, shows that a past data record might not be 

completely indicative of future performance.  Current drinking water guidelines base 

performance on the past monitoring record.  The use of risk analysis techniques attempt 

to examine the filtration unit under all possible conditions that are likely to occur.  

Consequently, the risk analysis can provide an estimation of the probability that the 

system would produce water not meeting the standard, regardless of the past data record.   

7.2 Conclusions for Risk Analysis Performed in on a Filtration Unit 

The following conclusions can be drawn with respect to performing a risk analysis on a dual 

media rapid gravity filter. 
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1. Undertaking a risk analysis with the CFA is a simpler procedure then undertaking a risk 

analysis with computer modelling and simulation. 

 

2. The use of percentage remaining as opposed to percentage reduction is a better parameter 

for use during the CFA as it allows for the incorporation of instances in the data record 

where the effluent turbidity is greater than the influent turbidity. 

 

3. The CFA methodology is dependent on the seasonality of the measured data used for 

analysis.  It was found that because the CFA uses the past data record, if the CFA is 

performed with a data set consisting of a portion of a year, the results could vary 

significantly from the results of a CFA that uses a data set consisting of an entire year 

 

4. Future risk analyses using computer modelling should incorporate the use of a random 

time series filter flow rate curve into the analysis.   

 

5. A two tiered risk analysis method is proposed for future analysis.  The CFA methodology 

can be used to gain an overview understanding of the probability of producing non-

compliant water, while the use of modelling and probabilistic risk analysis can be used to 

focus in on the specifics. 
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7.3 Conclusions for the Brantford Water Treatment Plant 

The following conclusions can be drawn with respect to the Brantford Water Treatment Plant. 

 

1. The filter flow rate and filter depth are the most significant effects when evaluating the 

probability of producing effluent water with turbidities greater than a reference level for 

the conditions analyzed. 

 

2. For the conditions analyzed, the influent turbidity was not a major factor when evaluating 

the probability of producing effluent water with turbidities greater than a reference level.   
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CHAPTER 8  
RECOMMENDATIONS AND FUTURE 
WORK  

 

The analysis performed on the filtration unit at the Brantford Water Treatment Plant was able to 

provide insight into its overall performance.  However, there are a number of possible future 

actions that will increase the understanding of risk analysis methodologies in water treatment and 

increase the ways that the methodologies can be used. 

8.1 Recommendations for the Brantford Water Treatment Plant 

1. Although the filtration unit is currently operating at a high level, the operation of the 

filtration unit should be evaluated if a new turbidity standard or internal operational 

guideline is introduced. 

 

2. Under low filter flow rate conditions a backwash turbidity trigger should be installed to 

reduce the potential for turbidity breakthrough. 

8.2 Recommendations for Regulatory Agencies and Risk Assessors 

1. Recognize that risk analysis should guide risk management decisions and not be used as 

the single tool that determines what action to perform. 

 

2. Recognize the wide range of outputs that are possible from using different risk analysis 

methods. 

 



 171

3. Begin the process of developing risk analysis methods that can be used to evaluate 

drinking water treatment processes.  

8.3 Future Work: Strengthen Methodology and Current Results 

For the different risk analysis methodologies a number of statistical techniques and assumptions 

were used.  Future research should determine the extent to which these decisions affect the final 

output.   

 
Initially, the effect of the method of simulating the input water parameters should be looked at.  

This will include describing the affect of choosing a parametric or non-parametric distribution.  

Furthermore, if parametric distributions are used, the affect of the distribution type and 

distribution parameters should be looked at.  This analysis, although statistical in nature, should 

be looked at closely.  During the analysis it was decided that the influent turbidity, which is the 

settled water turbidity, could be modelled as a lognormal distribution.  Although the lognormal 

distribution has been used to model naturally occurring water quality parameters in the past 

(Eisenberg et al., 1998; Novotny, 2004), in this case the water quality parameter is not truly 

naturally occurring because it is a function of the previous treatment steps.  It may be more 

realistic to use a non-parametric bootstrapping method for the analysis. 

 

Regardless of the type of distribution, the effect of the type of random number generator should 

be investigated if the analysis requires one.  This study used a random number generator 

developed for Microsoft Excell, even though there have been errors noted in this random number 

generator (McCullough and Wilson, 2002, 2003). 
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The choice in the analysis to assume that incoming water quality parameters were not correlated 

was stated explicitly; however, literature such as Burmaster and Anderson (1994) and Verdonk 

(2003) state the need to see the effect of the correlation among incoming water quality 

parameters.  Therefore the incorporation of correlation should be analyzed as well.   

 

The water flow profile for the 2004 year was used as the input water demand in an attempt to 

show how a time-series water profile would affect the results from an analysis.  However, in 

using a past data record the analysis was no longer a true random simulation.  Therefore, a 

methodology should be developed to simulate a water flow profile that is realistic and random by 

using some time-series simulation mechanism.  A methodology to include correlation and time 

series data is shown by Rousseau et al. (2001). 

 

Finally, since the combination of probabilistic simulation and computer modelling is dependent 

on the output from the site specific model, more focus should be paid to the calibration of the 

filtration unit to the existing data.  The OTTER program provides a calibration procedure (WRc 

plc, 2002); however, because the data that was needed to follow the calibration procedure was 

not available a different mechanism was used.   

 

To provide a greater level of confidence in the risk analysis, the calibration procedures outlined 

by WRc plc (2002) should be followed.  This calibration procedure would require a pilot study to 

look at filter breakthrough curves for the filter of interest.  The experiment would need to 

measure the flowrate through the filter, the influent turbidity, the effluent turbidity, the headloss 

through the filter and the run time along with the basic filter parameters of length and area.  The 
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voidage and sphericity values can affect the output from the filtration unit; thus, instead of 

relying on past literature, the actual parameters of the media should be analyzed.  The calibration 

parameters, 

• the attachment coefficient (r), 
• the filter capacity (κ), and 
• the hydraulic conductivity (β) 

 
are dependant on the media itself as well as the conditions under which the filter is operated.  

Therefore, although the parameters could be calculated for the entire filter unit, realistically they 

would change from the anthracite to the sand.  To fully characterize the filter process, the 

parameters should be calculated for each media layer.  Furthermore, water quality parameters not 

included in the risk analysis should be investigated further so that the calibrated models are as 

accurate as possible.  There is the possibility that if these values change considerably during the 

analysis, a change in the risk analysis could be seen. 

 

Finally, the suitability of the OTTER software program to adequately evaluate the filtration 

process should be more thoroughly investigated.  A comprehensive analysis would also 

incorporate a second or third modeling package to determine how extensive the effect of the 

modelling program is on the output. 
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ACRONYMS 
 

ADWG   Australian Drinking Water Guidelines 

AFOSM   Advanced First-Order Second Moment Method 

CDF    Cumulative Distribution Function 

CFA    Consequence Frequency Assessment 

EPA    United States Environmental Protection Agency 

E(x)     Mean of a data set 

FOSM    First-Order Second Moment Method 

FORM    First-Order Reliability Method 

F(x)    Defines a cumulative distribution function of the variable “x” 

f(x)    Defines a probability distribution function of the variable “x” 

IWA     International Water Association  

MCRA    Monte Carlo Risk Assessment 

PDF    Probability Distribution Function 

r2    Coefficient of multiple determination 

TAPWAT   Tool for the Analysis of the Production of drinking WaTer 

Var(x)     Variance of a data set 

WTP    Water Treatment Plant Model 
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APPENDIX A:  
BRANTFORD WATER TREATMENT 
PLANT RAW DATA FOR 2004 



 185

0.0

0.5

1.0

1.5

2.0

2.5

1-Jan 6-Jan 11-Jan 16-Jan 21-Jan 26-Jan 31-Jan

Date

Tu
rb

id
ity

 (N
TU

)

Settled Water
Filter 1 Effluent

 
Figure A. 1: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of January, 2004 
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Figure A. 2: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of February, 2004 
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Figure A. 3: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of March, 2004 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1-Apr 6-Apr 11-Apr 16-Apr 21-Apr 26-Apr 1-May

Date

Tu
rb

id
ity

 (N
TU

)

Settled Water
Filter 1 Effluent

 
Figure A. 4: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of April, 2004 
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Figure A. 5: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of May, 2004 
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Figure A. 6: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of June, 2004 
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Figure A. 7: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of July, 2004 
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Figure A. 8: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of August, 2004 
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Figure A. 9: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of September, 

2004 
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Figure A. 10: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of October, 2004 



 190

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1-Nov 6-Nov 11-Nov 16-Nov 21-Nov 26-Nov 1-Dec

Date

Tu
rb

id
ity

 (N
TU

)

Settled Water
Filter 1 Effluent

 
Figure A. 11: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of November, 

2004 
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Figure A. 12: Fifteen minute influent and effluent turbidity values for Filter 1 for the month of December, 

2004 
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Figure A. 13: Fifteen minute filter flow rate values for Filter 1 for the month of January, 2004 
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Figure A. 14: Fifteen minute filter flow rate values for Filter 1 for the month of February, 2004 
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Figure A. 15: Fifteen minute filter flow rate values for Filter 1 for the month of March, 2004 
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Figure A. 16: Fifteen minute filter flow rate values for Filter 1 for the month of April, 2004 
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Figure A. 17: Fifteen minute filter flow rate values for Filter 1 for the month of May, 2004 
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Figure A. 18: Fifteen minute filter flow rate values for Filter 1 for the month of June, 2004 
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Figure A. 19: Fifteen minute filter flow rate values for Filter 1 for the month of July, 2004 
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Figure A. 20: Fifteen minute filter flow rate values for Filter 1 for the month of August, 2004 
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Figure A. 21: Fifteen minute filter flow rate values for Filter 1 for the month of September, 2004 
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Figure A. 22: Fifteen minute filter flow rate values for Filter 1 for the month of October, 2004 
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Figure A. 23: Fifteen minute filter flow rate values for Filter 1 for the month of November, 2004 
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Figure A. 24: Fifteen minute filter flow rate values for Filter 1 for the month of December, 2004 
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APPENDIX B:  
FULL CUMULATIVE DISTRIBUTION 
FUNCTIONS FOR ALL SIMULATOINS 
AND SIMULATION COMPARISONS  
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Figure B. 1: Comparison between measured turbidity effluent and CFA simulated effluent: Associated with 

Figure 4.8 
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Figure B. 2: Comparison between CFA and CFA modified for conditional reliability: Associated with Figure 

4.12 
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Figure B. 3: Comparison the original CFA to CFA with sub-sets of data using cumulative distribution 

functions: Associated with Figure 4.13 
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Figure B. 4: Comparison of the CDF output from the probabilistic risk assessment for the calibrated OTTER 

models with and without using a time series: Associated with Figure 5.14 
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Figure B. 5: CDF of the output from the different risk analysis methodologies and the measured effluent: 

Associated with Figure 6.4 
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APPENDIX C:  
PRELIMINARY ANALYSIS WITH THE 
OTTER FILTRATION MODEL 
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C.1 Preliminary Experiments with the OTTER Model 

The OTTER filter model developed to undertake the preliminary experiments used static that 

was consistent with the basic characteristics of the Brantford WTP, but without any of the 

calibration that would be necessary for a full system analysis.  Other parameters such as media 

voidage and sphercity were kept as their default values from the OTTER software model itself.  

The static data as used in the analysis can be seen in Figure C. 1.   

 

 
Figure C. 1: OTTER static data for preliminary analysis 

 

Operating data was also inputed and this data was kept close to model defaults.  One change was 

made with respect to the backwash triggers.  An automatic backwash trigger of 2.20 m headloss 

was used, from discussion with the Brantford WTP staff.  Furthermore, 1.0 NTU backwash 
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trigger was also chosen in this preliminary analysis.  The full set of operating data that was 

chosen can be seen in Figure C. 2. 

 

  
Figure C. 2: OTTER operating data for preliminary analysis 

 

Model calibration data was set to defaults; however, as Section 3.3.4 describes, the OTTER 

model uses two different methods to model the filtration process, finite difference and logistic.  

The model calibration data can be seen in Figure C. 3, but the model type was changed from 

finite difference to logistic to determine if there was an observable difference between the two.   

 

One calibration value that was not changed for either the preliminary analysis or for any future 

analysis is that of the number of CSTR stages.  This value was kept to the model default of one 

(1) for all simulations.  WRC plc (2002) states that calibration value, number of CSTR stages, is 

used for parameters that are not otherwise affected by the performance of the filter.  The concern 
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during this analysis is with turbidity removal, which is directly affected by the performance of 

the filter as can be seen in Section 3.3.4, thus according WRC plc (2002) the number of CSTR 

stages was did not need to be changed.  This assumption was checked using two identical 

simulations with CSTR numbers of one (1) and ten (10).  The outputs from both simulations 

were identical, thus the comments in WRc plc (2002) were verified and the number of CSTR 

stages was not modified for any future simulations. 

 
Figure C. 3: OTTER model calibration data for preliminary analysis 

 

C.2 Comparison Between the Logistic Model, the Finite Difference 

Model, and Measured Data using an Uncalibrated OTTER Model 

C.2.1 Input Data Record 
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To provide a comparison to actual data, the incoming water turbidity and water demand was 

taken directly from the data record between Jan 15 at 15:00 to Jan 19 at 10:00.  This time was 

arbitrarily chosen, but the length of the data record was limited to 365 data points because in the 

OTTER model, flow control valves are necessary to change the flow and they are limited to a 

maximum of 365 data points.  Other water quality parameters were kept to the default values 

presented by OTTER.  The input water turbidity and demand can be seen in Appendix A or in 

Figure C. 4 and Figure C. 5, while values of the input water quality parameters that were not 

directly changed are shown in Table C.1.  The water quality parameters shown in Table C.1 were 

kept constant throughout the simulation. 
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Figure C. 4: Influent turbidity to filter 1 from January 15 at 15:00 to January 19 at 10:00, 2004 

 



 206

150

170

190

210

230

250

270

290

310

15/01/2004
00:00

15/01/2004
12:00

16/01/2004
00:00

16/01/2004
12:00

17/01/2004
00:00

17/01/2004
12:00

18/01/2004
00:00

18/01/2004
12:00

19/01/2004
00:00

19/01/2004
12:00

20/01/2004
00:00

Date/Time

W
at

er
 D

em
an

d 
(m

3 /h
)

 
Figure C. 5: Filter flow rate for filter 1 from January 15 at 15:00 to January 19 at 10:00, 2004 
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Table C. 1: Water quality parameters used in OTTER model 

Parameter Amount Parameter Amount Parameter Amount 
pH 7.5 Nitrate 0 Chlortoluron (µg/L) 0 

Temperature 
(oC) 

15 Nitrite 0 Diuron (µg/L) 0 

Apparent 
Colour 

(oHazen) 

50 Chloride 0 Isoproturon (µg/L) 0 

True Colour 20 Chlorite 0 MCPA (µg/L) 0 
Hardness 
(mg/L as 
CaCO3) 

150 Chlorate 0 MCPB (µg/L) 0 

Alkalinity 
(mg/L as 
CaCO3) 

100 Bromide (mg/L) 0 Mecoprop (µg/L) 0 

Conductivity 
(µS/cm) 

400 Bromate (mg/L) 0 2,4-D (µg/L) 0 

Total 
Suspended 

Solids (mg/L) 

Solids:Turbidity 
Ratio set at 2 

Sulphate (mg/L) 0 Diazinon (µg/L) 0 

Settleable 
Suspended 

Solids (mg/L) 

95% of the total 
suspended solids 

Dissolved Oxygen 
(mg/L) 

0 Chlorfenvinphos 
(µg/L) 

0 

Filtereable 
Suspended 

Solids (mg/L) 

95% of the total 
suspended solids 

Orthophosphate 
(mgP/L) 

0 Propetamphos 
(µg/L) 

0 

Free Chlorine 
(mg/L) 

0 UV Adsorbance at 
254 nm (/m) 

12 Cysts (number/L) 0 

Combined 
Chlorine 
(mg/L) 

0 Total Organic Carbon 
(mg/L) 

5 Coliforms 
(number/mL) 

0 

Chlorine 
Dioxide 
(mg/L) 

0 Dissolved Organic 
Carbon (mg/L) 

3 E. coli 
(number/mL) 

0 

Total 
Aluminium 

(mg/L) 

0 Particulate Organic 
Carbon (mg/L) 

2 Viruses 
(number/mL) 

0 

Total Iron 
(mg/L) 

0 Trihalomethanes 
(µg/L) 

0 Heterotrophs 
(number/mL) 

0 

Total 
Manganese 

(mg/L) 

0 Trihalomethane 
Formation Potential 

(µg/L) 

0 Algae (cells/mL) 0 

Dissolved 
Aluminium 

(mg/L) 

0 Haloacetic Acids 
(µg/L) 

0 Chlorophyll-A 
(µg/L) 

0 

Dissolved Iron 
(mg/L) 

0 Assimilable Organic 
Carbon (µg/L) 

0 Taste (number) 0 

Dissolved 
Manganese 

(mg/L) 

0 Atrazine (µg/L) 0 Odour (number) 0 

Ammonia 
(mg/L) 

0 Simazine (µg/L) 0 Particle Size 2 
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C.2.2 Output from OTTER Models 

The effluent turbidity from the two models is shown in Figure C. 6, while the headloss within the 

filter is shown in Figure C. 7.  The output from the two models and the comparison between the 

two model types is not meant to show which model best represents the data, but to show that the 

different calculation mechanisms between the logistic and the finite difference models cause 

differences in uncalibrated outputs.  It also shows that calibration is necessary to accurately 

represent a system, regardless of the model type that is used.  Furthermore, the lower headloss 

and higher effluent turbidity values shown by both models in Figure C. 6, Figure C. 7 and Table 

C. 2 with respect to actual measurements makes sense because if the attachment efficiency was 

increased, through calibration, the headloss would increase and more particles would be removed 

by the filtration process.  It was decided to use the logistic model for future simulations and 

calibration, primarily for the simplicity of its use.   
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Figure C. 6: Comparison between output from uncalibrated OTTER models and measured effluent turbidity 
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Figure C. 7: Comparison between output from uncalibrated OTTER models and measured headloss 

 

Table C. 2: Summary of output from simulations with Sub-Sets of the 2004 Data 

 Measured 
Effluent (NTU) 

Logistic Model 
Effluent (NTU) 

Finite Difference 
Model Effluent 

(NTU) 
Maximum Turbidity  0.04 0.53 0.10 
Minimum Turbidity  0.01 0.01 0.02 
Turbidity Standard 
Deviation  

0.01 0.03 0.01 

Average Turbidity  0.01 0.01 0.04 
Turbidity 95% 
Confidence  

0.02 0.02 0.06 

Turbidity 99 % 
Confidence 

0.02 0.02 0.07 

 Measured 
Effluent (m) 

Logistic Model 
Effluent (m) 

Finite Difference 
Model Effluent (m) 

Maximum Headloss  1.94 0.77 0.72 
Minimum Headloss  0.50 0.26 0.26 
Headloss Standard 
Deviation  

0.41 0.13 0.12 

Average Headloss  1.11 0.51 0.49 
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C.3 Effect of Changes in Input Water Quality on Model Outputs 

C.3.1 Input Data Record 

Although different water quality will ultimately change the output from a treatment system, a 

preliminary test was carried out on the filtration system.  This test was to see how the filter 

effluent would change from a large change in the water quality characteristics that are not 

directly associated with the filtration as described in the OTTER model.  This meant changing 

the water quality values that were described in Table C.1, Section C.2.1.  Similar to the first 

preliminary experiment, the water quality parameters, once changed, were kept constant during 

the simulation.  For comparison, the same water demand and influent turbidity profile as for the 

first experiment was used.  Table C. 3 shows the changed water quality inputs.  Most of the 

parameters described in Table C. 3 are expected to have little or no effect as they are not directly 

related to the modelled filtration process described in Section 3.3.4. 
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Table C. 3: Changed water quality parameters used in the OTTER model 

Parameter Amount Parameter Amount Parameter Amount 
pH 6 Nitrate 5 Chlortoluron (µg/L) 5 

Temperature 
(oC) 

10 Nitrite 5 Diuron (µg/L) 5 

Apparent 
Colour 

(oHazen) 

100 Chloride 5 Isoproturon (µg/L) 5 

True Colour 40 Chlorite 5 MCPA (µg/L) 5 
Hardness 
(mg/L as 
CaCO3) 

300 Chlorate 5 MCPB (µg/L) 5 

Alkalinity 
(mg/L as 
CaCO3) 

200 Bromide (mg/L) 5 Mecoprop (µg/L) 5 

Conductivity 
(µS/cm) 

800 Bromate (mg/L) 5 2,4-D (µg/L) 5 

Total 
Suspended 

Solids (mg/L) 

Solids:Turbidity 
Ratio set at 2 

Sulphate (mg/L) 5 Diazinon (µg/L) 5 

Settleable 
Suspended 

Solids (mg/L) 

95% of the total 
suspended solids 

Dissolved Oxygen 
(mg/L) 

5 Chlorfenvinphos 
(µg/L) 

5 

Filtereable 
Suspended 

Solids (mg/L) 

95% of the total 
suspended solids 

Orthophosphate 
(mgP/L) 

5 Propetamphos 
(µg/L) 

5 

Free Chlorine 
(mg/L) 

5 UV Adsorbance at 
254 nm (/m) 

24 Cysts (number/L) 100 

Combined 
Chlorine 
(mg/L) 

2 Total Organic Carbon 
(mg/L) 

10 Coliforms 
(number/mL) 

100 

Chlorine 
Dioxide 
(mg/L) 

2 Dissolved Organic 
Carbon (mg/L) 

6 E. coli 
(number/mL) 

100 

Total 
Aluminium 

(mg/L) 

5 Particulate Organic 
Carbon (mg/L) 

4 Viruses 
(number/mL) 

100 

Total Iron 
(mg/L) 

5 Trihalomethanes 
(µg/L) 

5 Heterotrophs 
(number/mL) 

100 

Total 
Manganese 

(mg/L) 

5 Trihalomethane 
Formation Potential 

(µg/L) 

5 Algae (cells/mL) 100 

Dissolved 
Aluminium 

(mg/L) 

5 Haloacetic Acids 
(µg/L) 

5 Chlorophyll-A 
(µg/L) 

100 

Dissolved Iron 
(mg/L) 

5 Assimilable Organic 
Carbon (µg/L) 

5 Taste (number) 100 

Dissolved 
Manganese 

(mg/L) 

5 Atrazine (µg/L) 5 Odour (number) 100 

Ammonia 
(mg/L) 

4 Simazine (µg/L) 5 Particle Size 4 
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C.3.2 Output from OTTER Models 

Table C. 4 outlines the results from the simulation after changing the input data.  From Table C. 

4 it can be seen that the turbidity effluent does not change with the changing water quality, but 

that the water quality changes affect the headloss values.  For future analysis, it should be noted 

that introducing changes in the water quality can have an effect, depending on the input 

parameter that is changed.  However, further analysis was performed using the model defaults as 

shown in Table C.1, Section C.2.1, noting that other water quality parameters could have some 

effect. 

Table C. 4: Summary of output from simulations with sub-sets of the 2004 data 

 Measured 
Effluent 
(NTU) 

Logistic 
Model 

Effluent 
(NTU) 

Logistic Model 
Effluent New 
Water Quality 

(NTU) 

Finite 
Difference 

Model 
Effluent 
(NTU) 

Finite Difference 
Model Effluent 

New Water 
Quality (NTU) 

Maximum 
Turbidity  

0.07 0.53 0.53 0.10 0.10 

Minimum 
Turbidity  

0.01 0.01 0.01 0.02 0.02 

Turbidity Standard 
Deviation  

0.01 0.03 0.03 0.01 0.02 

Average Turbidity  0.01 0.01 0.01 0.04 0.04 
Turbidity 95% 
Confidence  

0.02 0.02 0.02 0.06 0.07 

Turbidity 99 % 
Confidence  

0.02 0.02 0.02 0.07 0.07 

 Measured 
Effluent (m) 

Logistic 
Model 

Effluent 
(m) 

Logistic Model 
Effluent New 
Water Quality 

(m) 

Finite 
Difference 

Model 
Effluent (m) 

Finite Difference 
Model Effluent 

New Water 
Quality (m) 

Maximum 
Headloss  

1.93 0.77 0.88 0.72 0.82 

Minimum 
Headloss  

0.50 0.26 0.30 0.26 0.30 

Headloss Standard 
Deviation 

0.41 0.13 0.15 0.12 0.14 

Average Headloss  1.11 0.51 0.58 0.49 0.55 
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APPENDIX D: 
MODIFIED CALIBRATION 
PROCEDURE 
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The modified calibration procedure methodically looked at the different calibration parameters to 

determine a combination of parameters that provided similar output to what was seen by the 

measured turbidity effluent and headloss values in the 2004 data record. 

 

It was necessary to compare the calibration parameters to the full data set; however, running each 

set of calibration parameters through all 142 filter runs experienced in the 2004 year was not 

practical or desirable.  Therefore, the different combinations of calibration parameters were 

assessed for their ability to model different runs chosen from the 2004 data record through a 

linear optimization model.  This linear optimization model was performed to find the most 

“average” filter run and the filter runs that deviated from the “average” run the greatest. 

A linear optimization model can be viewed as: 

 

 Minimize or Maximize ∑ jj xc  
  Where xj is the parameter of interest 
  And cj is the weight applied to the parameter. 
 
In terms of the model, the filtration process can be described by and is affected by a combination 

of the turbidity influent, turbidity effluent, filter headloss and filter flowrate.  An average filter 

run would then be one that had an average turbidity influent, average turbidity effluent, average 

headloss, and average filter flowrate over the filter run.  To determine this specific filter run, the 

median turbidity influent, turbidity effluent, filter headloss, and filter flowrate was calculated for 

the 2004 year.  The median values were then calculated for each filter run and the percent 

difference between the filter run median and the overall median value was determined.  The 

average filter run was then determined using linear optimization, where the goal was to minimize 

the percent difference over all four parameters.  The linear optimization can be seen in Equation 
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17, where all ci values were equal to provide equal weighting to each parameter that could affect 

the filtration process. 

∑ +++ iiiiiiii FcHcEcIc  

 

Equation 17 

 

Where I is the percent difference in average turbidity influent from the run of interest to the 

overall average, E is the percent difference in average turbidity effluent from the run of interest 

to the overall average, H is the percent difference in average headloss from the run of interest to 

the overall average, F is the percent difference in average filter rate from the run of interest to the 

overall average.  

 

Through this procedure, filter run 59 was found to be the most average filter run.  The procedure 

also allowed for the determination of the filter runs that deviated from the average the greatest 

both above and below the median values provided absolute value differences were not used.  

Thus the “high” filter run was determined to be filter run 80 and the “low” filter run was 

determined to be filter run 31.  Table D.1 shows the output from the analysis.



 

Table D.1: Filter Run Linear Programming for OTTER Model Calibration 

Filter Run Characteristics 
Absolute Value Percent Difference 

Between Filter Run Characteristics and 
Averge Values 

Percent Difference Between Filter Run 
Characteristics and Averge Values 

Filter 
Run 

Influent 
Mean 
(NTU) 

Effluent 
Mean 
(NTU) 

Headloss 
Mean 
(m) 

Flowrate 
Mean 
(MLD) 

Influent 
(%) 

Effluent 
(%) 

Headloss 
(%) 

Flowrate 
(%) 

Influent 
(%) 

Effluent 
(%) 

Headloss 
(%) 

Flowrate 
(%) 

31 (low) 0.26 0.01 0.55 3.94 18.0 79.3 48.7 37.3 -18.0 -79.3 -48.7 -37.3 
59( 

average) 0.45 0.05 1.11 6.87 39.2 3.4 3.7 9.3 39.2 -3.4 3.7 9.3 
80 (high) 0.50 0.13 1.14 8.54 55.5 173.5 5.8 36.1 55.5 173.5 5.8 36.1 
Overall 0.32 0.05 1.07 6.28         

 

Table D.1 continued 

  
Linear Programming 

ABS* Non ABS* 
45.8 -45.8 
13.9 12.2 
67.7 67.7 

  
*ABS stands for Absolute Value 
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The modified calibration procedure also took into account the accumulation within the filter.  For 

each filter run in 2004 the total amount of solids accumulated during the filter run was calculated 

assuming the filters were clean at the start of each filter run.  This allowed for the filter run 

which caused the maximum amount of accumulation to be determined. 

 

Visually, the ability of the calibrated model to duplicate the output from the 2004 data record can 

be seen in Figure D.1 for the headloss and Figure D.2 for the effluent turbidity 
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Figure D.1: Comparison of measured vales and model calculated values for filter headloss: Clockwise from top left, average filter run, low filter run, 

high filter run, maximum accumulation filter run
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Low Filter Run Average Filter Run 

Maximum Accumulation Filter Run Average Filter Run 
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Figure D.2: Comparison of measured vales and model calculated values for filter effluent: Clockwise from top left, average filter run, low filter run, 

high filter run, maximum accumulation filter run 
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APPENDIX E: 
YATE’S METHOD CALCULATIONS FOR 
PREDICTIVE MODELLING AND RISK 
ANALYSIS 



Table E.1: Yate’s method for calculating effect estimates for the probability that the effluent turbidity is greater than 0.05 NTU 

Simulation # 

Filter 
Depth 

(m) 

Influent 
Turbidity 
(NTU) 

Filter Flow 
Rate (MLD) 

Probability > 
0.05 NTU 

(%) [1] [2] [3] Divisor 
Effect 

Estimate  Source 
11 -1 -1 -1 4.84 0.0740 0.1515 0.1848 8 0.0231 Mean 
13 -1 -1 1 2.56 0.0775 0.0333 -0.0584 4 -0.0146 Flow 

12 -1 1 -1 4.91 0.0213 -0.0435 -0.0058 4 -0.0015 Turbidity

10 -1 1 1 2.84 0.0120 -0.0149 0.0078 4 0.0020 Flow x 
Turbidity

7 1 -1 -1 1.58 -0.0228 0.0035 -0.1182 4 -0.0296 Depth 

9 1 -1 1 0.55 -0.0207 -0.0093 0.0286 4 0.0072 Flow x 
Depth 

 
8 1 1 -1 0.83 -0.0103 0.0021 -0.0128 4 -0.0032 Depth x 

Turbidity

6 1 1 1 0.37 -0.0046 0.0057 0.0036 4 0.0009 
Flow x 

Turbidity 
x Depth 

Sum of 
Squares     0.0132 0.0263 0.0526    
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Table E.2: Yate’s method for calculating effect estimates for the probability that the effluent turbidity is greater than 0.10 NTU 

Simulation # 

Filter 
Depth 

(m) 

Influent 
Turbidity 
(NTU) 

Filter Flow 
Rate (MLD) 

Probability > 
0.10 NTU 

(%) [1] [2] [3] Divisor 
Effect 

Estimate  Source 
11 -1 -1 -1 3.64 0.0498 0.0897 0.1102 8 0.0138 Mean 
13 -1 -1 1 1.34 0.0399 0.0205 -0.0626 4 -0.0157 Flow 
12 -1 1 -1 3.25 0.0144 -0.0481 -0.0182 4 -0.0046 Turbidity

10 -1 1 1 0.74 0.0061 -0.0145 0.0022 4 0.0006 Flow x 
Turbidity

7 1 -1 -1 1.19 -0.0230 -0.0099 -0.0692 4 -0.0173 Depth 

9 1 -1 1 0.25 -0.0251 -0.0083 0.0336 4 0.0084 Flow x 
Depth 

 
8 1 1 -1 0.56 -0.0094 -0.0021 0.0016 4 0.0004 Depth x 

Turbidity

6 1 1 1 0.05 -0.0051 0.0043 0.0064 4 0.0016 
Flow x 

Turbidity 
x Depth 

Sum of 
Squares     0.0056 0.0112 0.0224    
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TableE.3: Yate’s method for calculating effect estimates for the probability that the effluent turbidity is greater than 0.30 NTU 

Simulation # 

Filter 
Depth 

(m) 

Influent 
Turbidity 
(NTU) 

Filter Flow 
Rate (MLD) 

Probability > 
0.30 NTU 

(%) [1] [2] [3] Divisor 
Effect 

Estimate Source  
11 -1 -1 -1 1.95 0.0244 0.0423 0.0560 8 0.0070 Mean 
13 -1 -1 1 0.49 0.0179 0.0137 -0.0392 4 -0.0098 Flow 
12 -1 1 -1 1.6 0.0104 -0.0287 -0.0136 4 -0.0034 Turbidity

10 -1 1 1 0.19 0.0033 -0.0105 0.0052 4 0.0013 Flow x 
Turbidity

7 1 -1 -1 0.9 -0.0146 -0.0065 -0.0286 4 -0.0072 Depth 

 

9 1 -1 1 0.14 -0.0141 -0.0071 0.0182 4 0.0046 Flow x 
Depth 

8 1 1 -1 0.31 -0.0076 0.0005 -0.0006 4 -0.0002 Depth x 
Turbidity

6 1 1 1 0.02 -0.0029 0.0047 0.0042 4 0.0011 
Flow x 

Turbidity 
x Depth 

Sum of 
Squares     0.0015 0.0030 0.0061    
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