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Abstract

This thesis addresses the need for fl exible parametric design tools.  It focuses on the 

implementation of a particular tool, Bentley Systems’ Generative Components, by exploring 

features, strengths and weaknesses, and how features can be implemented in design.  

An exposition of Generative Components is introduced to bridge the gap between the 

potential and existing power of parametric tools.  Through a case study of the Bahá’í Temple 

for South America this thesis explores the implementation of Generative Components.  The 

exposition argues for the validity of parametric research, specifi cally its ability to streamline 

and enhance an architectural design process.

The topic of parametric design is further documented in a survey submitted to researchers 

and developers in the fi eld of parametric research and design.  The purpose of this 

documentation is to place the progression of parametric tools within the context of current 

development, initiating an open-ended discussion focusing on future research.

This thesis adds to the current development of parametric technology by making particular 

contributions to tools within the realm of parametric research.  Primary contributions 

include array seeking scripts that search for and replace or duplicate objects, routines for 

nesting functions within scripts, ideological workfl ow development and conceptual training 

through practical application.
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This thesis examines parametric design in architecture by exploring the application 

of Bentley Systems’ Generative Components, using the author’s original contributions 

to the Bahá’í Temple by Hariri Pontarini Architects.  These contributions include the 

development of array seeking scripts, routines for nesting Functions within scripts,  

ideological workfl ow development and conceptual training through practical 

application.

The thesis has three major components.  The fi rst chapter contains a case study of the 

Bahá’í Temple for South America.  The second is composed of a graphic exposition of 

Generative Components.  The thesis is concluded with a survey issued to practitioners 

and developers working in the fi eld of parametric research and design.

The Bahá’í Temple by Hariri Pontarini Architects is used as a case study in this thesis for 

a number of reasons; its designers employed sophisticated parametric software and 

its formal aspects are unique in the sense that it has an irregularly shaped exterior.  

At the Temple’s conception I was commissioned to prepare several renderings that 

captured the eff ects of the buildings’ luminescent skin.  The case study introduces the 

Temple and its formal programme, presents the software tool CATIA and demonstrates 

some of its features.  A critique of CATIA is expressed in a brief analysis that outlines the 

workfl ow of this product.  The case study contributes to the thesis by revealing a type of 

parametric architectural process.  It documents a familiar route and the tasks associated 

with this route of compiling building documentation.

The exposition of Generative Components is introduced to demonstrate the potential 

power of parametric tools.  It focuses on my original contributions to Generative 

Components.  I focus on applied modeling methodologies, customized software features, 

user interface enhancement, and the generalized testing and assessment of pre-release 

technologies.  The tool establishes a unique idiom not commonly found in software 

technologies:  it includes the ability to graphically create and add customized features 

back into the application.  I argue for the potency of parametric tools in their ability  to  

streamline and enhance the design process.

The concluding segment of this thesis is entitled Framework.  Its function is to distill 
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the content of the case study and expository chapters within the context and state 

of current research eff orts.  It also contributes pertinent historical references, and 

demonstrates how practitioners and researchers have developed their own unique 

parametric processes.  The comments within Framework give this thesis a comparative 

voice, that juxtaposes various working methodologies.  This chapter distills the thesis 

and exposes possible topics of future development.

The original contributions off ered in this thesis are an attempt to enhance the 

relationship between a user and his tool.  Customized software components (aspects 

of the software that enhance its usability) make it easier for the user to communicate 

or control ideas.  For example, embedding graphical controllers within the modeling 

interface of the Temple controllers allows a user to visually interact with design 

components.  Equations and variables do the math while the user creates changes to 

the geometry.  The technical aspects of this process are completely transparent to the 

user.  Simple exponential equations and short scripts process the information from the 

visual inputs to produce a result.  It is the production of these scripts and association of 

these functions that are unique.

The notion that a building can be constructed digitally is no ground-breaking 

revelation.1 However I believe few architects and designers are utilizing the full potential 

of the tools available and even fewer are exploring the development of their own tools 

for design space exploration and manufacturing.  The Bahá’í Temple project represents 

the integration of parametric design tools and aff ordable manufacturing technologies.  

These tools allow Hariri Pontarini to create a fl exible test environment as they design 

architectural details and components.

By using parametric modeling tools we are able to explore many design iterations with 

greater accuracy.  Parametric relationships are hierarchical and planar, meaning each 

component is capable of redirecting the system.  Therefore every component has to be 

intelligent, as well as capable of taking control in the event another component fails. 

Changing the parameters of an algorithm or form aff ects each successive element.  The 

interactions are incredibly simple whereas the base code or algorithm is exceedingly 

complex.  Important parameters of the behaviour of the entire set of uncertain systems 

can be extracted; once the system is built, several values can be extrapolated from 

instanced variations of a form.  Embedding this sensibility in three dimensional models LE
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and drawings can strengthen the rigour of the architectures’ formal concerns.

While parametric tools have existed for decades in engineering disciplines, their 

availability for architectural practice has only recently emerged.  A number of articles and 

papers have been made available by the introduction of several organizations whose 

primary focus is designing with digital media.  CumInCAD is one such resource.  It has 

had a profound impact on the content of this thesis, primarily in placing the current 

tools within a larger historical context.  “CumInCAD is a cumulative index of publications 

about computer aided architectural design.”2  Currently parametric tool development is 

primarily focused on the construction and documentation aspects of engineering and 

architecture.  Several vendors off er parametric products and in some cases a vendor 

will have more then one product in its development cycle.  Notable parametric products 

include Autodesk’s Revit and Inventor, Bentley’s Generative Components, Dassault 

Systemes’ CATIA and Solidworks, Gehry Technologies’ Digital Project (a derivative of 

CATIA), GraphiSoft’s ArchiCAD, and PTC’s Pro Engineer.  The features of these tools 

were established to satisfy their respective target industries.  ArchiCAD, Digital Project 

and Revit were designed to suit architectural applications.  Their features are primarily 

focused on streamlining the integration of building components, extrapolating two 

dimensional drawings and instilling tools to facilitate project management.  Inventor, 

Solidworks and Pro Engineer were designed for engineers and industrial designers.  

They are primarily used to document “small” products such as power tools, lawn 

mowers and small to moderately sized mechanical equipment.  CATIA was invented for 

the aircraft, boat building and automobile industries.  It is a very robust and powerful 

application and is now being used in certain sophisticated architectural applications.  

Generative Components (not yet released) cannot be categorized and was developed 

for architects and designers.  Conceptually it can be used by any individual that requires 

a fl exible tool to visually solve design related issues.  Although parametric tools have 

developed into powerful and useful drawing tools, they still cannot be considered 

eff ective architectural design tools.. 

For  the purpose of this thesis two parametric design tools have been selected to 

illustrate how to achieve similar principles in process through diff ering approaches:  

CATIA, chosen for its robust strengths in modeling and manufacturing; and Generative 

Components (GC), chosen for its promising openness as a parametric design tool.
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CATIA is an extensible engineering and manufacturing tool that facilitates the production 

of extremely complex architectural forms.3  CATIA off ers a robust visual interface and 

propagates change throughout a model by constraining objects to one another.  

Although CATIA facilitates the use of custom macros it tends to limit the designer to 

the context of the tools available within the given software constraints.  The interface 

is extremely sophisticated, its many features are buried within its Workbenches.  CATIA 

is a tool that is designed to help facilitate the physical construction and cataloguing of 

components.  CATIA is considered to be a practical tool.

CATIA and Generative Components pursue a diff erent approach to employing the 

principles of parametric technology.  This thesis uses CATIA to document the Fins of the 

Bahá’í Temple and Generative Components to explore alternative formal variations.

Generative Components (GC) is a fl exible design ‘toolbox’ that allows the creation of 

embedded data-driven constructs for conceptual designers.4  The framework consists of 

essential design tools as well as a highly customizable suite of modeling tools.  Linking 

Components generates a high level system that distributes computationally driven 

design problems across an entire network of Sub-Components.  The designer can 

either rationalize an architectural design through a series of Generative Components, 

or create form based on the derivation of a generative system of Components.  GC’s 

inherent bidirectional attributes, and parametric qualities, allow the designer to embed 

the intent of an architectural design within the construct of an overall system.  GC is 

considered to be a conceptual tool.

Having a single, fl exible, and dynamic three dimensional model appeals to most 

designers.   Complex parametric models currently aff ect performance so greatly that 

applications become unstable, rendering models useless.  Changing factors such as 

building envelope, square footage and overall form are the most aff ected by parametric 

technology.  Features of a design that are repetitive, such as windows and doors, are 

aff ected by their relation to changing factors.  While many parametric tools exist, none 

are fl awless.  Establishing a dynamic between static and parametric design components 

engages the true power of parametric tools.
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This chapter of the thesis is a case study on the Bahá’í Temple for South America.  It establishes 

the ideologies behind the conceptual design, the context of the Bahá’í faith and contains a 

purely descriptive assessment of process through the resolution of common architectural 

design issues.

The chapter is sub-categorized to delineate design issues faced throughout the process.  

Categories within the Composition component of the chapter, such as Conceptual 

Sculpting, Organizational Components, Structural Integrity, Axis of Rotation, and Part 

Detailing describe the distinct dichotomy between design and the post rationalization of 

components through parametric modeling.  Each category outlines an issue and describe 

a solution. 

Skin and Structure describes the relationship between components of the exterior fi ns; it 

documents the relationship between cladding materials and space frame super-structure.  

An orthogonal set of vertical sections (cut along the Z-axis) is the most eff ective way of 

documenting this relationship.  It is a conventional architectural method of describing such 

a relationship, and in the case of the Temple, has the distinct advantage of being the most 

descriptive.

Programmable Analysis addresses certain components of CATIA and how it is used within 

an architectural process.  The content in this section is not meant to be a walkthrough of 

the application; it is a brief introduction to some of the components of the tool in relation 

to aspects of the Temple model.  As a brief applied study of the tool it provides a quick 

primer of some of the benefi ts and weaknesses of CATIA.  This sub-section illustrates the 

progression of  the current process of the Temple model.

The CATIA model and plans were supplied by Hariri Pontarini Architects for this study.  All 

other drawings and models, including stress tests, visualization models, and diagrams were 

created by the author.  The translation of parametric CATIA models into static mesh models 

consisted of complex four or fi ve step processes.  The CATIA components were exported CH
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piece by piece, normals were corrected, curved surfaces were then meshed and patched, 

and the components were then imported into static visualization software.  Two dimensional 

drawings, sections and other documentation were directly extracted from within CATIA, 

exported to third party CAD software and then translated into editable vector graphics.

This chapter provides a base by which the Exposition is founded.  It documents the existing 

process used in the documentation of the Temple and reveals some of the driving concepts 

of the project.  While the content is almost entirely original, for the purpose of staying true 

to the current process the CATIA model has not been altered.  The visualization studies 

consist of original modeling components, all components presented in these renderings 

are meant to express and enhance the possible reality of the Temple.
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Bahá’u’lláh is an Arabic word, which means “The Glory of God.”1  The religion was established 

as a vision to re-establish the fundamental defi nition of human relationships.  The faith 

focuses on human beings themselves, the relationship between human beings and the 

natural world, the relationship between the individual and society, and the relationship 

between the members of society and its institutions.

Bahá’u’lláh asserts the deep connection between the practical and spiritual dimensions of 

human existence.  The creation of social structures that promote the development of both 

individual and collective capacities are of utmost importance.

The nine pointed star is a prominent symbol of the Bahá’í Faith, the signifi cance of the 

number nine is disputed amongst scholars but is offi  cially defi ned in the following  text;  

First, it symbolizes the nine great world religions of which we have any defi nite historical 

knowledge, including the Babi and Bahá’í Revelations; second, as the highest single digit 

number it represents the number of perfection; third, it is the numerical value of the word 

“Baha.”2  The Faith regards humanity as an organic entity which has developed through its 

embryonic state to infancy, then to adolescence and is now coming of age.  The number 

nine refl ects a sense of fulfi lment or culmination.  All Bahá’í Houses of Worship have nine 

sides.

While the symbolic use of numbers in Sacred Writings is important, there is no occult 

meaning to them, nor do Bahá’ís subscribe to divination by numbers.

The Bahá’í Faith, established by Bahá’u’lláh
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The Bahá’í Temple in Santiago, Chile is designed by Toronto based fi rm, Hariri Pontarini 

Architects.  The design stands atop a mountain, glowing outwards through a cast glass 

and alabaster skin.  HPA were able to guide the manufacturing of structural components 

by using Dassault Systemes’ CATIA to accurately detail the digital model and provide the 

fabricator with the necessary information to manufacture scale mock-ups.  Problems arose 

during the CATIA modeling process that were not considered at the conceptual phase:  

problems such as limitations to the facetization of the complex shell structure due to the 

physical limitations of the materials.  Using static tools for the conceptual design process 

increased the amount of work required on the back end of the project; a considerable 

amount of design data required reconstruction.  Using parametric tools (in this instance,  

CATIA) required the designer to reconsider the construction of the digital model.

The design intent for The Bahá’í Temple for South America is captured in an excerpt of  

Siamak Hariri’s abstract entitled, “A Temple of Light.”3  It provides a poetic account of the 

project from concept to structure:

Light is the fundamental connecting force of the universe. The Temple 

of Light we have designed employs both translucent stone and the 

newest glass technology as the means of generating and manifesting 

both the physiological and spiritual delights of natural light embodied 

in architecture.

The Temple’s nine enfolding wings, identical in form, are organically 

shaped and twisted slightly to produce, in aggregate, a rather nest-like 

structure, readable as a soft undulating dome positioned around a raised 

base. The Temple is to be sited amidst an extensive radiating garden 

comprising nine refl ecting lily pools and nine prayer-gardens.

The Bahá’í Temple for South America
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The conceptual sketches of the Bahá’í Temple by HPA employed traditional three-

dimensional modeling software.  Since these products do not typically require a high level 

of precision it is simple to establish form while dismissing any sense of constructability.  This 

process is sculptural as opposed to buildable.

Controlling the amount of extraneous conceptual data strengthens the relationship 

between concept and construct.  Using dedicated manufacturing software only allows for 

the un-buildable to become buildable and progressively distills concepts as the process 

advances.  

The design for the Bahá’í Temple abides by the guidelines of the traditional design process.  

It begins with conceptual sketches, preliminary drawings and comprehensive details, which 

are then used to fabricate the building and its components.

The following description of the Temple employs animated sequences to demonstrate the 

complexity of the geometry, through visual variations in pattern and form (see 2.02 and 

2.03).

Conceptual Sculpting



2.02 Frames from an early conceptual version of the design

2.03 These sections were completed during the preliminary stages of design
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Siamak Hariri’s “Temple of Light” describes the conceptual principles underlying the formal 

aspects of the Bahá’í Temple for South America.  In the following section of the thesis, we 

examine the Temple’s ‘Fin’ elements..

The Parts of the Fins are modeled as independent components and referenced within the 

fi nal CATIA Product.  The Fin Product contains the triangulated alabaster stone, the steel 

framing, the space frame structure, along with the ball joints, custom cut iron plates, and 

cast-glass cladding.  The Parts are individual CATIA fi les (.CATPart) that were created as  

independent components of the Product (.CATProduct).  When the Parts are placed inside 

the Product, they adapt to surrounding Parts through dimensional constraints.  The CATIA 

model’s structure is a digital mock-up of the physical Temple.  The model is used to test 

physical variation and document every aspect of the Temple’s construction.  The hierarchy 

of the Parts in the CATIA model follows the same  hierarchy of the Fins physical building 

components.

Organizational Parts
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The fi ns are comprised of six layers of material and structure (see 2.05).  The innermost layer 

is composed of large faceted triangles of alabaster stone.  The alabaster is attached to the 

primary steel structure by steel framing, the steel framing functions similarly to a system 

of purlins and girders (seen in 2.11 and 2.14).  The primary steel structure is composed of 

structural tubes that are connected by several large ball joints.  The ball joints are poured from 

molten iron to form solid balls.  The structural tubes are welded to custom cut iron plates, 

the plates are then welded to the ball joints.  The secondary and tertiary steel structures are 

designed to inter-connect with the ball joints and support the large mass of the exterior 

cast-glass cladding.  The cast-glass cladding is connected to the tertiary structure via the 

steel framing also used to secure the interior cladding.  The physical characteristics of these 

building components is embedded within the Parts created in the CATIA model.

The space frame structure was designed to enhance the internal luminescence of the 

building as it is seen from the exterior.  In reality the structure will be denser than originally 

anticipated due to the extreme dead load of the interior and exterior cladding.  Wind loads 

play an important role in determining the structural integrity of the outer shell (the cast-

glass cladding).  The gaps between the panels of cladding are sealed with structural silicone.  

The services for the building are hidden within large aluminum tubes that run vertically 

throughout the steel space frame structure.

The facetization of the inner and outer cladding simplifi es the manufacturing and design 

process, while reducing the overall costs of machining these materials.  Using a large number 

of complex curves would increase the cost of fabrication and create excessive material waste.  

Both the cast-glass and the alabaster do not require any bending, only cutting and minimal 

milling.

Structural Integrity
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Interior Cladding Primary Structure Secondary Structure Tertiary Structure Exterior Cladding
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The Temple fi ns are arrayed every forty degrees about a central axis.  There are a total of nine 

entities, each comprised of the same components.  The radius of the exterior at the base of 

the fi ns is approximately sixteen metres.  The distance from the central opening at the peak 

of the fi ns to the extent of the structure of the skin is fourteen metres, and the diameter of 

the central opening is approximately two metres.

Axis of Rotation

R 16000

ø2000

14000

2.07 Crucial Temple dimensions
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2.08 The dimensions in this diagram are expressed in a radial pattern and revolve around the centre of the overall 

volume of the Temple

0 10,0005,000 15,000
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2.09 The dimensions in this diagram are expressed in a radial pattern and are drawn along the centre lines of each 

of the nine Fins

0 10,0005,000 15,000



30

2.10 Structural space frame detail of a Temple Fin



Part Detailing
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Several components of the Bahá’í Temple for South America contain a complex narrative.  

The exploded structural fi n diagram (see 2.17) describes one example of a series of 

complex layered components.  The structural system of the fi ns is broken down into several 

components, which are further separated into a series of sub-components.

The primary components of each fi n (as described in 2.05) are:

 •  Interior Cladding (Sealed Alabaster Stone)

 •  Space Frame Structure (Structural Steel Tubes)

 •  Exterior Cladding (Cast-Glass)

The primary components (seen in 2.05 and 2.17) consist of the following sub-components:

 •  Steel Framing

 •  Primary Steel Structure

 •  Secondary Steel Structure

 •  Tertiary Steel Structure

 •  Ball Joints

 •  Iron Plates

The application of these components is unique, the components are not.  The use of steel 

framing employs familiar construction methodologies.  Since the majority of the surfaces 

are divided and triangulated the structure is somewhat simple to determine.  With little 

modifi cation the grid lines are pre-existent.  Part of this is due to the intrinsic attributes of 

facetization as well as the pattern; the pattern is a crucial structural component.  The shape 

and size of the facets are a direct correlation of the Temple’s structural requirements.  Each 

section of steel framing is cut to fi t (seen in structural details 2.11-2.16), nine duplicates are 

made of each cut to complete the remaining Fins.

Once the basic form is established (sculpturally, methodically or otherwise calculated), a part 

schedule is generated to determine the placement of the building’s many components.
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2.12 Structural Detail (Top) 2.13 Structural Detail (Front)

2.11 Structural detail expressing materiality where Fins overlap (Front Perspective)
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2.15 Structural Detail (Side) 2.16 Structural Detail (Side)

2.14 Structural detail expressing materiality where Fins overlap (Reverse Perspective)
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Glazing Panels

2.17 Exploded detail revealing cladding and mullion construction conditions where Fins overlap

Irregularly-shaped glazing panels spanned 

between overlapping areas of arrayed fi ns.  

Clear glass, used to dampen the force of 

circulating air-fl ow and wind loads.

Bronze Cast Mullions

The mullions are cast in several sections 

and correspond to the glazing panel 

schedule.  They are connected to the steel 

framing by rectilinear steel fl anges.

Steel Framing

Steel framing supports the mullions 

and gives the primary, secondary and 

tertiary structure something to adhere 

to.  It supports both interior and exterior 

cladding systems.  The steel framing is  

fragmented by partitions that correspond 

to the schedule of both types of cladding.

Interior/Exterior Cladding

The interior cladding is comprised of large 

fragmented components of alabaster 

stone,  while the exterior cladding system 

consists of several pieces of cast-glazing.  

Both systems adhere to the system of 

structural steel banding beneath.
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Several components of the Bahá’í Temple for South America contain a complex narrative.  

The exploded structural fi n diagram (Fig. 2.11) describes one example of a series of complex 

layered components.  The structural system of the fi ns can be broken down into to several 

components; those components can then be separated into a series of sub-components.

The primary components of each fi n (as described in Fig. 2.06) are:

 •    Exterior Cladding (Cast-Glass)

 •    Variable Space Frame Construction

 •    Interior Cladding (Sealed Alabaster Stone)

The primary components (as seen in Fig’s. 2.06/2.11) consist of the following sub-

2.18 Detail that illustrates how the structural steel banding is attached to the interior cladding



SKIN & STRUCTURE

36



37

The following static fi gures provide a sense of animation, and describe a vertical shift 

in complexity.  The sections are cut horizontally in an orthogonal manner, revealing the 

luminescent qualities of the exterior skin which is meant to “dissolve [and] reappear in 

light.”4

Sectional Detailing
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2.20 Planametric Section at 9500mm Above Grade

40



2.21 Planametric Section at 11500mm Above Grade
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2.22 Planametric Section at 13500mm Above Grade
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2.23 Planametric Section at 15500mm Above Grade
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2.24 Planametric Section at 17500mm Above Grade
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2.25 Planametric Section at 19500mm Above Grade
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2.26 Planametric Section at 21500mm Above Grade
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2.27 Planametric Section at 23500mm Above Grade
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2.28 Planametric Section at 25500mm Above Grade
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2.29 Planametric Section at 27500mm Above Grade
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2.30 Planametric Section at 29500mm Above Grade
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2.31 Planametric Section at 31500mm Above Grade
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PROGRAMMABLE ANALYSIS
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Software advances have drastically changed the way we design and build architecture.5  

The more information we are able to procure, the more documented buildings become.  

There is an overwhelmingly large responsibility of information management inherent in 

the development of this data.  While generating adequate documentation to describe the 

assembly of a single product or component has become routine; the challenge as it stands, 

is how to organize data when you have hundreds of thousands, or even millions, of parts 

to assemble.

This process demands a level of self-discipline on the part of the designer.  Naming 

conventions, object grouping, layer organization, and general fi le maintenance, become 

integral components of the design process.  Information is useless without context.

Many systems allow for the bidirectional exchange of data, however few of them allow data 

to be readily accessible.    Most platforms off er access to information through commands.  

In some extreme cases the only way to generate certain types of data is through scripting 

or programming (a very systematic approach), while typically reserving the visual interface 

for common, routine tasks.  For the platform to be eff ective, systematic data needs to be 

visually accessible.  The easier it is to generate and extract data, the simpler it is to sort and 

maintain the fl ow of information.

CATIA is a powerful modeling tool, it can administer very large data-sets.  In CATIA, the 

structure of the three-dimensional model is what determines fi le layout and location (see 

2.32 and 2.33).  It uses a hierarchical approach to structural organization.  It groups models 

under two major headings, Parts and Products.  A Product can consist of several Parts or 

other Products.   CATIA is a Product Lifecycle Management (PLM) solution commonly used 

in aerospace engineering, industrial product manufacturing, ship building and vehicle 

Sorting Digital Data
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manufacturing; it is a robust and complex tool that has a very strong data management 

utility known as the Desk.  The Desk allows you to edit data structures such as fi le location 

and Part/Product associativity.

Visually organizing data allows us to comprehend the construction of a model, just as 

drawings allow us to visualize its underlying composition.  The following illustrations (2.32 

and 2.33) compare the interface of Windows Explorer—something common to almost 

every user—to the layout of the Specifi cation Tree within CATIA.6  Careful consideration has 

been taken to transcend a conventional workfl ow and make organizational aspects of the 

product familiar to the user.  The breadth of the content stored within the Specifi cation Tree 

is what makes CATIA such a powerful tool, every single aspect of an object’s construction, 

linkage or materiality is stored within the tree.  Tree objects can be modifi ed and reassigned 

at any point throughout the modeling process.

2.32 The Windows Explorer browser allows you to 

locate and organize your fi les

2.33 The CATIA Specifi cation Tree distributes your 

modeling components into collapsible branches, 

the root branch is the product, all sub-branches 

contain CATIA parts—further sub-branches store 

part construction and physical properties
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2.34 CATIA’s hierarchical tree stores all properties associated with a specifi c part or component
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The following fi gures are graphical expressions demonstrating the eff ects of the exterior 

and interior alabaster cladding on the underlying space-frame structure. The defl ection is 

minimal (0.0123 inches).  The space frame structure distributes the stress in an eff ective 

pattern, almost entirely even from member to member.  Since the members are allowed to 

defl ect (to a certain degree), they cannot be considered rigid members and thus transfer 

wind resonance eff ectively.

CATIA allows the user to interactively perform variable stress tests by selecting members 

by material.  When you assign a material to an object or model you assign all its physical 

attributes, as opposed to visualization software which assigns aesthetic properties.  The 

tests that were performed in fi gures 2.35 through 2.43 were performed with the chemical 

composition of standard steel members, the diagrams depict the results of the dead load 

of the structure.  Since the connection of these members plays an exceptionally large role 

in how they manage defl ection, two entirely unique joints were used in the test.  The Plated 

joint (see 2.44) restricts lateral movement and torsion and transfers forces to stress resistant 

plates through rigid rubber dampers.    The rigidity of the joint caused each connecting 

member to fail at its corresponding connection, shearing the member at several points.  

The initial size and mass of the Plated joints were grossly underestimated.  A preliminary 

plate thickness of 15mm required reconsideration and was eventually increased to 30mm, 

increasing the overall mass of the joint by 21.1952 kg.6  The performance of the Spherical 

joint (see 2.45) far exceed that of the Plated joint..  Although it nearly failed the test (and may 

fail when considering wind loading), its overall performance exceeded that of the fi rst joint.  

The Spherical joint weighed in at a graceful 6.1655 kg, an important fi gure considering there 

are well over 2,600 joints throughout the space frame structure.  Using this joint reduces the 

overall net weight of the joints by approximately 30,080 kg.  Manufacturing the joint with 

titanium further reduces the net weight by 6,800 kg and brings the weight of a single joint 

down to 3.5451 kg.

These joints are an educated projection of what form a fi nal joint might take.  Judging by 

the stress test of the second joint, further development could yield a result that would 

satisfy more precise stress conditions and generate an optimal connection.

Digital Detailing
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2.35 Structural Truss Rendering

2.36 Truss Models, CATIA 2.37 Defl ection Diagram, CATIA (in.)
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2.38 Structural Truss Rendering
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2.39 Truss Models, CATIA 2.40 Defl ection Diagram, CATIA (in.)
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2.41 Structural Truss Rendering

2.42 Truss Models, CATIA 2.43 Defl ection Diagram, CATIA (in.)
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2.44 Plated Joint Details

Joint Footprint:  300mm x 300mm

Joint Material:  Solid Machined Steel Plates
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2.45 Spherical Joint Details

Joint Diameter:  230mm

Joint Material:  Solid Machined Steel Bearing
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By using a product such as CATIA, Hariri Pontarini were able to build solid models of 

structure and skin and create scaled samples—milled by a fi ve-axis milling machine—to 

gain an understanding of how the fi nal component might behave.  Its tight integration with 

manufacturing technologies makes it eff ective as a professional tool.

However, a dichotomy between design and construction becomes evident when using 

this tool.  I suggest CATIA is not, in fact, a design tool, it is a manufacturing tool.  It has 

an extremely comprehensive toolset, but tends to require a path of production that leads 

directly from design to manufacturing with a minimum of revisions.

Generative Components (GC) consists of a set of tools built for conceptual designers, it 

was not designed to be an engineering and manufacturing application.  Although it 

employs “fabrication planning”  components, these components lack the breadth of the 

manufacturing tools found in CATIA.  I believe GC can be categorized as a tool for designers, 

while CATIA should be viewed as a tool for technologists, engineers and manufacturers.   

The sub-components of this chapter were used to evaluate the construction of the Bahá’í 

Temple model and to gain a better understanding of the building components.  The Skin 

and Structure and Digital Detailing components of this chapter exposed the complexities 

of the space frame structure through a number of descriptive diagrams.  Figure 2.46 reveals 

the unusual shape of the cladding components, these components have been cut to suit 

a visual aesthetic and not for the sake of structural optimization.  In the next chapter, the 

Exposition, the surface is not faceted in this way.  The Exposition focuses on the use of 

Generative Components to produce many alternative variations, as opposed to visually-

discrete solutions.

Parametric Processes
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transaction modelBased "CS"{feature GC.CoordinateSystem CoordinateSystem01{CoordinateSystem = baseCS; Xtranslation = <free> (5); Ytranslation = <free> (5); Ztranslation = 0.0; } feature GC.CoordinateSystem 
CoordinateSystem04 { CoordinateSystem = baseCS; Xtranslation = <free> (5); Ytranslation = <free> (-5); Ztranslation = 0.0; } feature GC.CoordinateSystem CoordinateSystem02 { CoordinateSystem = baseCS;      
Xtranslation = <free> (-5); Ytranslation = <free> (5); Ztranslation = 0.0; } feature GC.CoordinateSystem CoordinateSystem03 { CoordinateSystem = baseCS; Xtranslation = <free> (-5); Ytranslation = <free> (-5);    
Ztranslation = 0.0; }} transaction modelBased "GC Placement" { feature GC.GraphVariable RAD3 { Value = 3; } feature GC.GraphVariable RAD2 { Value = 3; }    feature GC.GraphVariable RAD4 { Value = 3; } 
feature GC.GraphVariable RAD { Value = 3; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { CoordinateSystem01 = CoordinateSystem03; RAD = RAD3; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00102 { CoordinateSystem01 = CoordinateSystem02; RAD = RAD2; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { CoordinateSystem01 = CoordinateSystem04; RAD = 
RAD4; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { CoordinateSystem01 = CoordinateSystem01; RAD = RAD; }} transaction modelBased "Mod Graph" { feature GC.GraphVariable RAD4 
{ SymbolXY = {104, 102}; } feature GC.GraphVariable RAD2 { SymbolXY = {102, 102}; } feature GC.GraphVariable RAD { SymbolXY = {101, 102}; } feature GC.GraphVariable RAD3 { SymbolXY = {103, 
102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { SymbolXY = {104, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { SymbolXY = {102, 101}; } feature 
GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { SymbolXY = {101, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { SymbolXY = {103, 101}; }} transaction modelBased 
RAD Limit" { deleteFeature RAD4; deleteFeature RAD3; deleteFeature RAD2; feature GC.GraphVariable RAD { UsesNumericLimits = true; NumericHighLimit = 10.0; SymbolXY = {106, 101}; } feature 
GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { RAD  = RAD; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { RAD = RAD; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00101 { SymbolXY = {105, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { RAD = RAD; }} transaction modelBased "Mod Graph" { feature GC.GraphVariable 
RAD { SymbolXY = {106, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { SymbolXY = {103, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { SymbolXY      
= {102, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { SymbolXY = {101, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { SymbolXY = {104, 102}; } 
feature GC.CoordinateSystem baseCS { SymbolXY = {99, 100}; }} transaction modelBased "Upper Line Limit" { feature GC.GraphVariable SYS01_L01 { Value = 7; } feature GC.GraphVariable SYS01_RAD02 { 
Value = 0.5; } feature GC.GraphVariable SYS01_L03 { Value = 4; } feature GC.GraphVariable L_LIM { Value = RAD*10; } feature GC.GraphVariable SYS01_RAD03 { Value = 0.8; } feature GC.GraphVariable 
SYS01_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS01_L02 { Value = 5; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { L1 = SYS01_L01; L2 = SYS01_L02; L3 = SYS01_L03;      
RAD1 = SYS01_RAD01; RAD2 = SYS01_RAD02; RAD3 = SYS01_RAD03; SymbolXY = {99, 102}; }} transaction modelBased "More GV" { feature GC.GraphVariable SYS02_L03 { Value = 5; } feature 
GC.GraphVariable SYS02_RAD03 { Value = 0.8; } feature GC.GraphVariable SYS02_L02 { Value = 7; } feature GC.GraphVariable SYS02_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS02_RAD01 { Value  
= 0.1; } feature GC.GraphVariable SYS02_L01 { Value = 6; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { L1 = SYS02_L01; L2 = SYS02_L02; L3 = SYS02_L03; RAD1 = SYS02_RAD01; 
RAD2 = SYS02_RAD02; RAD3 = SYS02_RAD03; }} transaction modelBased "More GV" { feature GC.GraphVariable SYS03_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS03_L01 { Value = 6; } feature 
GC.GraphVariable SYS03_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS03_RAD03 { Value = 0.8; } feature GC.GraphVariable SYS03_L03 { Value = 3; } feature GC.GraphVariable SYS03_L02 { Value        
= 4; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { L1 = SYS03_L01; L2 = SYS03_L02; L3 = SYS03_L03; RAD1  = SYS03_RAD01; RAD2 = SYS03_RAD02; RAD3 = SYS03_RAD03; }}
transaction modelBased "More GV" { feature GC.GraphVariable SYS04_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS04_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS04_RAD03 { Value = 0.8; }
feature GC.GraphVariable SYS04_L02 { Value = 6; } feature GC.GraphVariable SYS04_L03 { Value = 8; } feature GC.GraphVariable SYS04_L01 { Value = 5; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00104 { L1 = SYS04_L01; L2 = SYS04_L02; L3 = SYS04_L03; RAD1 = SYS04_RAD01; RAD2 = SYS04_RAD02; RAD3 = SYS04_RAD03; }} transaction modelBased "Radian Limits" { 
transaction modelBased "State at which new feature type, GC._cvGenerator_Multi_001, created" {} transaction modelBased "CS"{feature GC.CoordinateSystem CoordinateSystem01{CoordinateSystem = baseCS; 
Xtranslation = <free> (5); Ytranslation = <free> (5); Ztranslation = 0.0; } feature GC.CoordinateSystem CoordinateSystem04 { CoordinateSystem = baseCS; Xtranslation = <free> (5); Ytranslation = <free> (-5); 
Ztranslation = 0.0; } feature GC.CoordinateSystem CoordinateSystem02 { CoordinateSystem = baseCS;      Xtranslation = <free> (-5); Ytranslation = <free> (5); Ztranslation = 0.0; } feature GC.CoordinateSystem 
CoordinateSystem03 { CoordinateSystem = baseCS; Xtranslation = <free> (-5); Ytranslation = <free> (-5);    Ztranslation = 0.0; }} transaction modelBased "GC Placement" { feature GC.GraphVariable RAD3 { Value 
= 3; } feature GC.GraphVariable RAD2 { Value = 3; }    feature GC.GraphVariable RAD4 { Value = 3; } feature GC.GraphVariable RAD { Value = 3; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00103 { CoordinateSystem01 = CoordinateSystem03; RAD = RAD3; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { CoordinateSystem01 = CoordinateSystem02; RAD = 
RAD2; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { CoordinateSystem01 = CoordinateSystem04; RAD = RAD4; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { 
CoordinateSystem01 = CoordinateSystem01; RAD = RAD; }} transaction modelBased "Mod Graph" { feature GC.GraphVariable RAD4 { SymbolXY = {104, 102}; } feature GC.GraphVariable RAD2 { SymbolXY = 
{102, 102}; } feature GC.GraphVariable RAD { SymbolXY = {101, 102}; } feature GC.GraphVariable RAD3 { SymbolXY = {103, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { 
SymbolXY = {104, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { SymbolXY = {102, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { SymbolXY = {101, 
101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { SymbolXY = {103, 101}; }} transaction modelBased RAD Limit" { deleteFeature RAD4; deleteFeature RAD3; deleteFeature RAD2; 
feature GC.GraphVariable RAD { UsesNumericLimits = true; NumericHighLimit = 10.0; SymbolXY = {106, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { RAD  = RAD; } feature 
GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { RAD = RAD; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { SymbolXY = {105, 101}; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00104 { RAD = RAD; }} transaction modelBased "Mod Graph" { feature GC.GraphVariable RAD { SymbolXY = {106, 102}; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00103 { SymbolXY = {103, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { SymbolXY = {102, 102}; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00101 { SymbolXY = {101, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { SymbolXY = {104, 102}; } feature GC.CoordinateSystem baseCS { SymbolXY = {99, 
100}; }} transaction modelBased "Upper Line Limit" { feature GC.GraphVariable SYS01_L01 { Value = 7; } feature GC.GraphVariable SYS01_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS01_L03 { Value 
= 4; } feature GC.GraphVariable L_LIM { Value = RAD*10; } feature GC.GraphVariable SYS01_RAD03 { Value = 0.8; } feature GC.GraphVariable SYS01_RAD01 { Value = 0.1; } feature GC.GraphVariable 
SYS01_L02 { Value = 5; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { L1 = SYS01_L01; L2 = SYS01_L02; L3 = SYS01_L03;      RAD1 = SYS01_RAD01; RAD2 = SYS01_RAD02; RAD3 
= SYS01_RAD03; SymbolXY = {99, 102}; }} transaction modelBased "More GV" { feature GC.GraphVariable SYS02_L03 { Value = 5; } feature GC.GraphVariable SYS02_RAD03 { Value = 0.8; } feature 
GC.GraphVariable SYS02_L02 { Value = 7; } feature GC.GraphVariable SYS02_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS02_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS02_L01 { Value = 
6; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { L1 = SYS02_L01; L2 = SYS02_L02; L3 = SYS02_L03; RAD1 = SYS02_RAD01; RAD2 = SYS02_RAD02; RAD3 = SYS02_RAD03; }} 
transaction modelBased "More GV" { feature GC.GraphVariable SYS03_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS03_L01 { Value = 6; } feature GC.GraphVariable SYS03_RAD02 { Value = 0.5; } 
feature GC.GraphVariable SYS03_RAD03 { Value = 0.8; } feature GC.GraphVariable SYS03_L03 { Value = 3; } feature GC.GraphVariable SYS03_L02 { Value = 4; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00103 { L1 = SYS03_L01; L2 = SYS03_L02; L3 = SYS03_L03; RAD1  = SYS03_RAD01; RAD2 = SYS03_RAD02; RAD3 = SYS03_RAD03; }}transaction modelBased "More GV" { feature 
GC.GraphVariable SYS04_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS04_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS04_RAD03 { Value = 0.8; }feature GC.GraphVariable SYS04_L02 { 
Value = 6; } feature GC.GraphVariable SYS04_L03 { Value = 8; } feature GC.GraphVariable SYS04_L01 { Value = 5; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { L1 = SYS04_L01; L2 = 
SYS04_L02; L3 = SYS04_L03; RAD1 = SYS04_RAD01; RAD2 = SYS04_RAD02; RAD3 = SYS04_RAD03; }} transaction modelBased "Radian Limits" { transaction modelBased "State at which new feature type, 
GC._cvGenerator_Multi_002, created" {} transaction modelBased "CS"{feature GC.CoordinateSystem CoordinateSystem01{CoordinateSystem = baseCS; Xtranslation = <free> (5); Ytranslation = <free> (5); 
Ztranslation = 0.0; } feature GC.CoordinateSystem CoordinateSystem04 { CoordinateSystem = baseCS; Xtranslation = <free> (5); Ytranslation = <free> (-5); Ztranslation = 0.0; } feature GC.CoordinateSystem 
CoordinateSystem02 { CoordinateSystem = baseCS;      Xtranslation = <free> (-5); Ytranslation = <free> (5); Ztranslation = 0.0; } feature GC.CoordinateSystem CoordinateSystem03 { CoordinateSystem = baseCS; 
Xtranslation = <free> (-5); Ytranslation = <free> (-5);    Ztranslation = 0.0; }} transaction modelBased "GC Placement" { feature GC.GraphVariable RAD3 { Value = 3; } feature GC.GraphVariable RAD2 { Value = 3; 
}    feature GC.GraphVariable RAD4 { Value = 3; } feature GC.GraphVariable RAD { Value = 3; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { CoordinateSystem01 = CoordinateSystem03; 
RAD = RAD3; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { CoordinateSystem01 = CoordinateSystem02; RAD = RAD2; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 
{ CoordinateSystem01 = CoordinateSystem04; RAD = RAD4; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { CoordinateSystem01 = CoordinateSystem01; RAD = RAD; }} transaction 
modelBased "Mod Graph" { feature GC.GraphVariable RAD4 { SymbolXY = {104, 102}; } feature GC.GraphVariable RAD2 { SymbolXY = {102, 102}; } feature GC.GraphVariable RAD { SymbolXY = {101, 102}; 
} feature GC.GraphVariable RAD3 { SymbolXY = {103, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { SymbolXY = {104, 101}; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00102 { SymbolXY = {102, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { SymbolXY = {101, 101}; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00103 { SymbolXY = {103, 101}; }} transaction modelBased RAD Limit" { deleteFeature RAD4; deleteFeature RAD3; deleteFeature RAD2; feature GC.GraphVariable RAD { 
UsesNumericLimits = true; NumericHighLimit = 10.0; SymbolXY = {106, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { RAD  = RAD; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00102 { RAD = RAD; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { SymbolXY = {105, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { 
RAD = RAD; }} transaction modelBased "Mod Graph" { feature GC.GraphVariable RAD { SymbolXY = {106, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { SymbolXY = {103, 102}; } 
feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { SymbolXY = {102, 102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { SymbolXY = {101, 102}; } feature 
GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { SymbolXY = {104, 102}; } feature GC.CoordinateSystem baseCS { SymbolXY = {99, 100}; }} transaction modelBased "Upper Line Limit" { feature 
GC.GraphVariable SYS01_L01 { Value = 7; } feature GC.GraphVariable SYS01_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS01_L03 { Value = 4; } feature GC.GraphVariable L_LIM { Value = RAD*10; } 
feature GC.GraphVariable SYS01_RAD03 { Value = 0.8; } feature GC.GraphVariable SYS01_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS01_L02 { Value = 5; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00101 { L1 = SYS01_L01; L2 = SYS01_L02; L3 = SYS01_L03;      RAD1 = SYS01_RAD01; RAD2 = SYS01_RAD02; RAD3 = SYS01_RAD03; SymbolXY = {99, 102}; }} transaction 
modelBased "More GV" { feature GC.GraphVariable SYS02_L03 { Value = 5; } feature GC.GraphVariable SYS02_RAD03 { Value = 0.8; } feature GC.GraphVariable SYS02_L02 { Value = 7; } feature 
GC.GraphVariable SYS02_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS02_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS02_L01 { Value = 6; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00102 { L1 = SYS02_L01; L2 = SYS02_L02; L3 = SYS02_L03; RAD1 = SYS02_RAD01; RAD2 = SYS02_RAD02; RAD3 = SYS02_RAD03; }} transaction modelBased "More GV" { feature 
GC.GraphVariable SYS03_RAD01 { Value = 0.1; } feature GC.GraphVariable SYS03_L01 { Value = 6; } feature GC.GraphVariable SYS03_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS03_RAD03 { Value 
= 0.8; } feature GC.GraphVariable SYS03_L03 { Value = 3; } feature GC.GraphVariable SYS03_L02 { Value = 4; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { L1 = SYS03_L01; L2 = 
SYS03_L02; L3 = SYS03_L03; RAD1  = SYS03_RAD01; RAD2 = SYS03_RAD02; RAD3 = SYS03_RAD03; }} transaction modelBased "More GV" { feature GC.GraphVariable SYS04_RAD01 { Value = 0.1; } 
feature GC.GraphVariable SYS04_RAD02 { Value = 0.5; } feature GC.GraphVariable SYS04_RAD03 { Value = 0.8; } feature GC.GraphVariable SYS04_L02 { Value = 6; } feature GC.GraphVariable SYS04_L03 { 
Value = 8; } feature GC.GraphVariable SYS04_L01 { Value = 5; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { L1 = SYS04_L01; L2 = SYS04_L02; L3 = SYS04_L03; RAD1 = 
SYS04_RAD01; RAD2 = SYS04_RAD02; RAD3 = SYS04_RAD03; }} transaction modelBased "Radian Limits" { transaction modelBased "State at which new feature type, GC._cvGenerator_Multi_003, created" {} 
transaction modelBased "CS"{feature GC.CoordinateSystem CoordinateSystem01{CoordinateSystem = baseCS; Xtranslation = <free> (5); Ytranslation = <free> (5); Ztranslation = 0.0; } feature GC.CoordinateSystem 
CoordinateSystem04 { CoordinateSystem = baseCS; Xtranslation = <free> (5); Ytranslation = <free> (-5); Ztranslation = 0.0; } feature GC.CoordinateSystem CoordinateSystem02 { CoordinateSystem = baseCS;      
Xtranslation = <free> (-5); Ytranslation = <free> (5); Ztranslation = 0.0; } feature GC.CoordinateSystem CoordinateSystem03 { CoordinateSystem = baseCS; Xtranslation = <free> (-5); Ytranslation = <free> (-5);    
Ztranslation = 0.0; }} transaction modelBased "GC Placement" { feature GC.GraphVariable RAD3 { Value = 3; } feature GC.GraphVariable RAD2 { Value = 3; }    feature GC.GraphVariable RAD4 { Value = 3; } 
feature GC.GraphVariable RAD { Value = 3; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { CoordinateSystem01 = CoordinateSystem03; RAD = RAD3; } feature GC._cvGenerator_Single_001 
_cvGenerator_Single_00102 { CoordinateSystem01 = CoordinateSystem02; RAD = RAD2; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { CoordinateSystem01 = CoordinateSystem04; RAD = 
RAD4; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { CoordinateSystem01 = CoordinateSystem01; RAD = RAD; }} transaction modelBased "Mod Graph" { feature GC.GraphVariable RAD4 
{ SymbolXY = {104, 102}; } feature GC.GraphVariable RAD2 { SymbolXY = {102, 102}; } feature GC.GraphVariable RAD { SymbolXY = {101, 102}; } feature GC.GraphVariable RAD3 { SymbolXY = {103, 
102}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00104 { SymbolXY = {104, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00102 { SymbolXY = {102, 101}; } feature 
GC._cvGenerator_Single_001 _cvGenerator_Single_00101 { SymbolXY = {101, 101}; } feature GC._cvGenerator_Single_001 _cvGenerator_Single_00103 { SymbolXY = {103, 101}; }} transaction modelBased 
RAD Limit" { deleteFeature RAD4; deleteFeature RAD3; deleteFeature RAD2; feature GC.GraphVariable RAD { UsesNumericLimits = true; NumericHighLimit = 10.0; SymbolXY = {106, 101}; } feature 
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The Exposition section of this thesis uses the contents of Bahá’í Temple as a tool to explore 

and evaluate Bentley’s  Generative Components (GC).  GC is a parametric design tool 

that facilitates the creation and extraction of design concepts through virtual modeling 

or scripting.  GC has four primary workspaces (see 3.08), Transaction, Model, Symbolic and 

Script.  The Transaction workspace records changes in the state of the model.  This is a 

user initiated process.  Transaction steps are added automatically when a user generates a 

Feature.  The Modeling workspace is where parametric models are built; it contains tools that 

are visually accessible through a tab in the Transaction workspace.  The Symbolic workspace 

is where the Symbolic Graph resides.  The graph provides a visual diagram of the relationship 

between the Features in the model (see 3.03).  The Scripting workspace is also accessible 

through an icon within the Transaction workspace.  The Script contains all of the information 

necessary to build a model within GC (see 3.02).  If you were to copy and paste compatible 

code from a text document into the Script Editor, GC would construct a model from its 

contents.  Precise material that relates to the defi nition of terms used in the software can 

be found in the content following this introduction.  Documentation and tutorials can be 

found in the form of texts and example fi les available in print from Bentley Systems1 and 

online from the Smart Geometry Design Science website, hosted by the Canadian Research 

and Design Network.2

This work examines components of a new tool for design.  An introduction to the tool 

frames its features:  the tool is divided into manageable components to evaluate aspects 

that address its fl exibility, breadth of features and integration with other technologies.  The 

application of this tool to the Temple geometry is also divided into several sub-components.  

The geometry is separated by virtue of its architectural components:  the overall formal 

gesture (the form), interior cladding, exterior cladding and structure.  Each of the Temple 

components is accompanied by an explicit description of the application of Generative 

Components.  I include several customized features that I have developed (see 3.11 and 

3.12).  This chapter is concludes with an assessment of the state of Generative Components 

and possible areas of future research and development.
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Designers will use digital tools in manners other than which they were intended.  Typically 

they are used for the pre or post rationalization of a conceptual idea.  When we design or 

engineer architecture a large part of the process involves mass customization.  To save time 

and money we limit the amount of diff erentiation found in details, building components 

and building features; this adds clarity to the conceptual aspect of the design, reduces 

overhead and streamlines the design process.  Streamlined components from each project 

become part of a larger database of architectural solutions.  This is a scalar process that adds 

value at many levels.

Trimming budgets and streamlining project details are obvious uses for tools such as CATIA 

and Generative Components.  Architect Lucien Kroll wrote, “The computerized architect 

should surely not be limited to what can be run through his mill.” 3  The richness of such tools 

should be exploited and altered through their application.

About the Exposition
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Features and Functions

Generative Components has two major libraries which contain the bulk of its functionality.  

A library is defi ned as a collection of items that have been made available to the user to help 

facilitate the use of the tool.

Generative Components’ major libraries are composed of Features and Functions (also 

referred to as Global Functions).  Features are objects that aid in the creation of complex 

systems.  For example:  points, lines, arcs and shapes are all Features.4  GC contains an 

extensive list of base Features, but also allows the user to generate his own Features.  These 

are known as Components, hence the term Generative Components.  Functions are far more 

complex.  Functions are predefi ned equations that process geometric or mathematical 

data (see 3.15).  Functions can collect data which can be used to drive discrete variables 

within Components.    For example, the conceptual form of the GC Temple is based on a set 

of concentric circles.  The radius of the circles is determined by a Function which uses an 

exponent that increases by an increment of n.  This variable is generated by a formula that 

does not allow linear progression and therefore the size of the circles will never increase at a 

linear rate.  Functions available to the user include the ability to generate and return lists, the 

ability to evaluate and return a value from GC Script expressions, the ability to call Functions 

from within Functions, and the ability to identify the square root of a value.  GC has an 

extensive list of approximately eighty Functions.  A Graph Function is a Feature that facilitates 

the creation of customized Functions.  Customized Functions can be used in the event that 

existing Functions do not satisfy the functionality required.

These software components are at the heart of the Generative Components system.  The 

section entitled Programmable Structure provides a broader context of additional modeling 

tools available within Generative Components.
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The Economies of a Flexible Design Tool

Defi ning the fundamental principles of Generative Components positions the content of 

this chapter within the pretext of the process.  The platform in which GC was developed 

plays a signifi cant role in this evaluation and eff ects the process based on the premise of 

robustness and process driven performance.  The conceptual process behind the workfl ow 

of this tool is what makes it entirely unique, and at times quite diffi  cult to grasp.

Generative Components exists in a paradox, one which is bound by environmental 

computing constraints and yet unbound by the aspirations of the designer who commands 

it.  It creates profi cient results but requires unfathomable amounts of resources to do this 

responsively.  Content created in Generative Components is represented by three elegant 

models; Script Transactions, Symbolic Graphs and model geometry (see 3.01-3.07).  The 

physical geometry of a visual or three dimensional model is only created when the user 

tells the application to do so.  This reduces the amount of permanent storage and allows 

the user to edit the internal code outside of the context of the platform.  Unfortunately 

structuring the system in this way means that every change or modifi cation that is added 

to the transaction fi le puts a strain on computing resources.  Although it may seem more 

constrained than fl exible, the fi rst version of GC is simply a solid basis for future revisions.  

This software was developed on an advanced, modern and object oriented platform; one 

that is extensible, open and customizable.

Generative Components is a parametric design tool that facilitates the drawing or extraction 

of a design concept.  It can be initiated as an active or passive modeling environment.  The 

content that GC draws is parametric.  Changing pre-scripted elements of a transaction 

propagates change throughout the fi le, which dynamically updates the original script.  The 

developers of Generative Components defi ne it as “an application packed full of ideas,”5  

they go on to state that these ideas “are based on concepts drawn from computational 

geometry, design composition and procedural and declarative computer languages. These 

concepts are standard within their respective domains, but may be unfamiliar to designers 

in practice.”6  Dr. Aish addresses the need for such a tool in a Generative Components training 

document, “The Generative Components system has the potential to span the architectural 

process from concept formation to digital fabrication in a system of related design models.  RI
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transaction modelBased “C2”

{

    feature GC.CoordinateSystem utCS

    {

        SymbolXY                  = {100, 101};

    }

    feature GC.GraphVariable C1_RAD

    {

        UsesNumericLimits         = true;

        NumericLowLimit           = 1.0;

        NumericHighLimit          = 30.0;

        SymbolXY                  = {99, 103};

    }

    feature GC.Circle circle01

    {

        SymbolXY                  = {100, 103};

        Construction              = ConstructionOption.Construction;

    }

    feature GC.GraphVariable C2_RAD

    {

        Value                     = C1_RAD*Pow(2, C1_RAD/3);

        SymbolXY                  = {99, 105};

    }

    feature GC.Circle circle02

    {

        CenterPoint               = utCS;

        Radius                    = C2_RAD;

        Support                   = utCS.XYplane;

        Construction              = ConstructionOption.Construction;

    }

}

CoordinateSystem

baseCS

CoordinateSystem

utCS

GraphVariable

C1_RAD

GraphVariable

C2_RAD

Circle

circle01

Circle

circle02
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transaction modelBased “Create points”

{

    feature GC.Point point0001

    {

        Function = function(cs,a,b,c,LastLevel)

                         {

                         DPoint3d points = {};

                         value LastPointOnLevel=0;

                         value Rotation=0.0;

                         value Scale=0.0;

                         for(int Level = 0; Level <= LastLevel; Level++)

                         {

                         if(Level != 0)

                         {

                         LastPointOnLevel=3*LastPointOnLevel+2;

                          Rotation=Rotation+360.0/(LastPointOnLevel+1);

                         Scale=Scale+1.0/Level;

                         }

                         for(int PointOnLevel=0;PointOnLevel<=LastPointOnLevel;PointOnLevel++)

                         {

                         Point points1 = CreateChildFeature(“Point”,this);

                         value x=Scale*a*Cos(360.0*PointOnLevel/(LastPointOnLevel+1)-Rotation);

                         value y=Scale*b*Sin(360.0*PointOnLevel/(LastPointOnLevel+1)-Rotation);

                         value z=Scale*c;

                         points1.ByCartesianCoordinates(baseCS, x, y, z);

                         }

                         }

                         };

        FunctionArguments = {baseCS,a,b,c,LastLevel};

    }

}

Point

point001

Line

line01

Point

point002

GraphVariable

LastLevel

GraphVariable

c

GraphVariable

b

GraphVariable

a

CoordinateSystem

baseCS
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As a design tool for exploratory architecture it also addresses the need for designers to test 

and confi rm the practicality of such exploration.”7

This chapter focuses on the application of Generative Components to the Bahá’í Temple—a 

fundamental introduction to the tool is presented to reveal the underlying principles and 

eff ects of parametric tools in architectural process.  The use of this software demands a 

certain level of preemptive thought on the behalf of the designer.  Every aspect of the 

content one generates with Generative Components is calculated.  The tool is designed in 

such a way that it requires you to do so.  Whether the tool should require you to work in this 

manner is beyond the scope of this exposition.  The topic that is addressed here is how the 

tool aff ects the way we work with design tools, not why the tool suggests we work in this 

manner—this is an area of great breadth and will be categorized in the conclusion of this 

thesis as an area of future research.
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3.08 Screen shot of the Generative Components user interface (the Transaction list appears on the left, the Symbolic 

Model in the centre, followed by the modeling workspace to the right
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A Generative Bahá’í Temple

The following study divides the Temple into several manageable Components.  The Temple 

Fins are the primary focus of this exercise and are divided into the layers discussed in the 

chapter entitled Application.  The underlying Component based system is contingent 

upon a series of concentric circles that increase exponentially.  The following sketches (see 

3.10 and 3.11) describe the preliminary conceptual model of the Generative Component.  

The rings provide a basis for the overall system which is simply an array of the Generative 

Component.

Illustrations in fi gure 3.12 reveal the mechanics of the base Generative Component.  The 

expressions defi ne the circles relative to one another and ensure that they are not direct 

off sets.  Exponential growth adds tri-axial dynamism; this variable also administers compelling 

form.  The percent of exponential incrementation is controlled by an exponential divider. 

Decreasing this variable amplifi es the distance between circles; increasing this value brings 

the circles closer to one another.  The circles are meaningless in the absence of context.  

They are simply the base element for the Generative Component.

A point is locked to each circle and is manipulated by a controller that allows the modeler 

to adjust its position along the curve in radians.  The points act as nodes that determine 

the shape of the curve that is generated by interconnecting them.  This approach was 

established through a study that plotted nodes along key points of the Temple Fin geometry 

(see 3.13).  This data returned a visual representation of curvature that was used to establish 

the basis—along with the conceptual sketch—for the Generative Components model.

The triangulated alabster cladding and cast-glazing are off set from the base Component 

system used to establish the Generative Temple’s form.  The space frame structure and 

iron ball joints are built upon the base Component system itself.  After a foundation has 

been established, careful inspection and detail are required to expand components of 

structure, panelization of stone and glass, and overall form.  The physical building features 

are transposed and used to establish the basis for the GC modeling Features.



3.09 Detail representing fi n curvature and facetization (partial interior and exterior)
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3.10 This sketch represents the conceptual design for the base Component—preliminary variables and sketch 

diagrams showing the concentric rings are drawn up to defi ne the base system

3.11 This illustration reveals the association between arrayed base Components—points on each Component of 

rings are connected to form a network of curves, the curves are then used to create a surface
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Defined by C1

Radius = C1_RAD

Percent of Exponential

Incrementation = EXP_DIV01

Radius = C2_RAD

Radius = C3_RAD

Defined by C2

3.12 TOP TO BOTTOM:  Cx_RAD variable equations; Variable connections; Base Component with varying values 

for EXP_DIV01—These illustrations document the construction of the base Component along with any 

associated variables

GraphVariable

C3_RAD

GraphVariable

C1_RAD

GraphVariable

EXP_DIV01

GraphVariable

C2_RAD

User Defined Value User Defined ValueC1_RAD*2C1_RAD/EXP_DIV01 C2_RAD*2C2_RAD/EXP_DIV01
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3.13 The Generative Component point study reveals the location of the key points used to reconstruct the Fins



3.14 TOP TO BOTTOM: Cast Glass (bottom), Structure (front), Alabaster (top); Cast Glass (front), Structure (top), 

Alabaster (bottom); Cast Glass (top),   Structure (bottom), Alabaster (front)—these illustrations reveal the 

complexity in the formal structure of the Fins
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The term programmable structure refers to a three dimensional model capable of sending 

and receiving information (in the form of variables) which has the ability to alter form.  This 

does not include physical structures that instill the mechanics of animation.  This sub-

section exposes some common control features embedded within GC, namely Functions 

and Variables.  Here the Temple Components are combined to create a visual likeness of 

their CATIA counterparts.  The connections between components are exposed through a 

descriptive analysis of the Temple Components.

Generative Components uses several methods which allow the designer to facilitate the 

transfer of bidirectional data.  The most common is a Graph Variable.  Graph Variables act 

as virtual drivers; they consist of mathematical or code driven initiators that link to, and 

infl uence, geometric alteration.  The less typical sibling of the Graph Variable is the Graph 

Function; a Graph Function is far more robust and consists of object oriented programming 

code.  Creating loops, conditional statements and automated geometry (as seen in 3.05 

and 3.06) are just some of the strengths of a Graph Function.  Unfortunately the majority 

of the scripts written in Graph Functions force the user to relinquish visual control of an 

object.  Although this can be useful if the designer wishes to minimize graphical interaction 

or intervention.  A competent programmer uses Graph Functions as a means of adding 

Features to the functionality of Generative Components,  whereas Graph Variables are 

readily accessible and user friendly.  Functions are easily accessible through the interface 

which reduces the added overhead of having to memorize syntax (see 3.15).  Functions alter 

Components through their application of programming based modifi ers.  A Function is an 

indispensable tool.

The following work embeds this functionality throughout the three-dimensional modeling 

process.  Utilizing this functionality reduces the chances of becoming lost in the complexity 

of geometry and makes the model easier to interpret by individuals not involved in the 

creation of the model.  Ultimately the content created needs to be understood by a team 

of designers and not only the creator.  An essential phase of this process is embedding the 

documentation of progression; this allows others to understand the construction of your 

Component.
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3.15 Snapshot of GC’s Function base library
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UTCS_H01

UTCS_H02

UTCS_H03

UTCS_H04

UTCS_H05
GC05_TVALP01

GC05_TVALP02

GC05_TVALP03

GC02_TVALP01

GC02_TVALP03

GC04_TVALP01

GC04_TVALP02

GC04_TVALP03

GC03_TVALP01

GC03_TVALP02

GC03_TVALP03

GC02_TVALP02

GC01_TVALP01

GC01_TVALP03

GC01_TVALP02

3.16 Visual sliders aid in the manipulation of Global Variables and create a 

customizable user friendly modeling environment

3.17 Variable Connection Diagrams
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Base Components

The fi ve primary Components of this exposition are exterior faceted cast-glazing (see 3.18), 

interior faceted alabaster (see 3.19), interior/exterior triangular truss systems (see 3.21), 

simple singular struts (see 3.20) and ball joints (see 3.22).  The truss systems and struts are 

used to establish the space frame structure.  The diffi  culty in modeling these Components 

was assigning the appropriate objective functionality.  Learning and developing aspects of 

a tool through a practical exploration of geometry is an eff ective way of accelerating the 

modeling process.  As the geometry is modeled it becomes refi ned over several iterations.  

For example, the simple triangular exterior and interior truss Component was initially 

designed by nine points, but through several iterations it became obvious that in order 

to provide added functionality and allow the model to become more explicit it required 

eighteen.

Each sub-section in this text explores the functionality of the fi ve base Components.  These 

Components become Features which are then applied to the base Component system.
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3.18 Exterior Facets (Triangular) 3.19 Interior Facets (Triangular)

3.20 Singular Strut 3.21 Triangular Truss

3.22 Ball Joint
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Base System and Faceted Components

The interior and exterior facets are propagated amongst an array of points.  The system 

that drives the endpoints is quite simple.  The base component (as seen in 3.12) is arrayed 

vertically along the Z-axis.  The coincidental points of these Components are used to create 

three unique BSpline Curves.  The curves are then lofted to create the base BSpline Surface.

The BSpline Surface becomes the basis for the system that contains the remainder of the 

Fin.  This surface can still be controlled by the base Component which allows the user to 

change the location of the points that drive the BSpline Curves.  Changing these points 

eff ects both the surface and attached Components.  Several coordinate systems (CS’s) are 

propagated along the surface.  There are 20 across the U and V coordinates.  These CS’s are 

used to determine the off set of the interior and exterior cladding from the internal structure.  

The coordinate systems are all normal to the adjacent surface, which clarifi es the process by 

making sure that everything that is modeled on each coordinate system is perpendicular to 

the curvature of the surface.  This in turn, ensures a direct off set.

Once the coordinate systems and base surface are modeled we can prepare the interior 

and exterior faceted surfaces (alabster/cast-glass).  To model a surface or shape points that 

defi ne its boundaries must be selected.  The coordinate systems could be used as the points 

of defi nition, but doing so would not address the requirement for a surface off set variable.  

To fulfi ll this requirement an additional component is required.  A line which follows the 

Z-vector of each coordinate system completes the Component.  Adding a Graph Variable to 

control the length of the line provides the ability to increase and decrease distance of the 

facets from the internal structural elements.  This simple system is easy to manipulate and 

can be modifi ed to include additional detailing.
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3.23 CLOCKWISE FROM LEFT:  Base Shape System and Surface; BSpline Curves Connecting Base Components; 

Coordinate Systems Populated on Base Surface; Interior Shape Facets with Off set; Exterior Shape Facets with 

Off set
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3.24 Tweaking variables and sliders generates several modeling variations of the Fin, these images focus on how 

this variation has eff ected the exterior of the Fins
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3.25 Tweaking variables and sliders generates several modeling variations of the Fin, these images focus on how 

this variation has eff ected the interior of the Fins
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Triangular Truss Component

The triangular truss component is composed of a single element—a triangular shape.  The 

shape’s vertices act as endpoints for the three lines (one on each side) which act as rails for 

the four points that are bound to each of the aforementioned lines.  The sectional radius 

of the middle and end members is proportional to their lengths.  Start and End variables 

control the distance from the points of coincidence and a modifi er is used to lock the 

length of the end struts.  Changing these variables modifi es the proportions of the truss 

components.  This system is then remodeled to construct two more struts for the remaining 

sides of the triangle.  A Generative Component (or Feature) could have been created from 

one of the struts of the triangular truss.  It would have been possible to nest this Component 

within the triangular truss Component, alleviating the need to model three struts within the 

same Transaction Script.  Nesting GC’s makes it incredibly diffi  cult to access Graph Variables 

once the GC is recompiled.  Once the triangular truss model is complete it can then be 

compiled as a Generative Component.

The singular truss component is simply a Feature consisting of one truss member.  Slight 

modifi cation of the member’s radius equation is required to maintain proportional member 

sizing.

The truss component incorporates the same base system that is used to propagate the 

interior and exterior cladding model.  In fact, the system used for the cladding model is 

almost identical.  The only diff erence is that the line length used to off set the surfaces is 

slightly modifi ed in the triangular model.  The shape used to propagate the truss model is 

a triangular shape array.  The basis of the shape array is modeled on the array of end points 

attached to the coordinate systems.  This allows the truss component to be populated across 

the surface, which creates an array of structure that can be controlled or modifi ed from 

three implicit variables—the results of these scripts produce the space frame structure.
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3.26 CLOCKWISE FROM LEFT:  Single Triangular Truss Component; Base Shape and Control Points; Base Lines and 

Support Lengths; Single Strut; Triangular Truss Component.
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3.27 Tweaking variables and sliders generates several modeling variations of the Fin, these images focus on how 

this variation has eff ected the exterior triangular truss system of Components



95

3.28 Tweaking variables and sliders generates several modeling variations of the Fin, these images focus on how 

this variation has eff ected the interior triangular truss system of Components
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Ball Joint Component

The ball joint Component is simply a solid sphere modeled atop a base point.  The ball joint 

Feature has only one variable—scale.  Very little detail is required for this Component; its size 

is what infl uences the truss spacing and this determines the size of the truss members.

The ball joint is propagated amongst the structure at each endpoint of the interior and 

exterior off set lines.  This ensures that each joint has members that are normal to where 

they connect.
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3.29 CLOCKWISE FROM LEFT:  Propagated Joint Component; Ball Joint Base Point; Ball Joint
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3.30 Tweaking variables and sliders generates several modeling variations of the Fin, these images focus on how 

this variation has eff ected the exterior composition of structural Components, including the triangular truss 

system and ball joint
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3.31 Tweaking variables and sliders generates several modeling variations of the Fin, these images focus on how 

this variation has eff ected the interior composition of structural Components, including the triangular truss 

system and ball joint
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This segment of the chapter builds upon the previous content by nesting Components 

within one another.  This facilitates the extraction of data which can be used to fabricate 

components, plot the location of key points in space or give a general numerical assessment 

of the model.  Alternative control methods are explored as a means to adjust variables via 

diff erent methods.  The most prevalent method is via a Law Curve.  This segment expands 

on key features available in Generative Components and explores alternative control and 

rigging methods.

Complex Architectures are objects that contain several levels of depth and variation, this 

defi nition can be applied to both geometric and application models.  Designing complex 

models produces adaptable geometry.  It increases the amount of designer intervention, 

which enhances Components and the overall architecture of the model.

Generative Components has many tools that encourage the input and output of data 

in several diff erent ways.  Numerical or geometric information that is read or written by 

Generative Components can be inputted or outputted in the form of Excel spreadsheets.  

GC allows you to create rich and robust variable driven geometry (as shown in previous 

fi gures) with relative ease.

The previous geometric models (see 3.23, 3.26 and 3.29) were designed to be robust through 

the integration of Functions and Graph Variables.  Designing the system in this manner 

allows the designer to use existing software functionality as well as custom functionality 

to enhance both top-level components and sub-components.  The following fi gures build 

upon the base geometric Components, increasing the level of geometric refi nement and 

data extraction.
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Details, Complexity and Information Extraction

The interior and exterior CATIA geometry of the Bahá’í Temple is curved on all three axes.  The 

surfaces taper as they near edge boundaries creating a unique section (see 3.32).  Suppose 

we want to control the section; in Generative Components the most graphical means of 

doing this is through the use of a Law Curve.  Law Curves allow the designer to control 

almost any aspect of a Feature through the use of Dependant and Independent variables.  

The variables that are extracted from the Law Curve are extrapolated based on the curve’s 

position inside its frame (see 3.33). The following fi gures (see 3.33-3.38) use the profi le of a 

Law Curve to determine the shape of the surface and the distance the surface is off set from 

its point of registration.

The amount of complexity involved in the structural Components of the Temple Fin is 

remarkably large.  Generative Components has the ability to read and write spreadsheet 

data.  This data can be used to plot the location of integral design components in three 

dimensional space (see 3.44 and 3.46), which provides a numerical understanding of the 

architecture.

3.33 Preliminary sketch illustrating eff ects of Law Curve application—as the curve is adjusted the defl ection of the 

inner and outer skins would increase or decrease
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3.34 Law Curve Controlling Surface Off set Geometry 

(0.5 units)—line lengths increase marginally

3.35 Law Curve Controlling Surface Off set Geometry 

(1.5 units)—line lengths increase moderately

3.36 Law Curve Controlling Surface Off set Geometry 

(2.8 units)—line lengths increase exponentially
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3.37 The eff ects of the Law Curve can be seen on the illustration above—compare the shape of the curve to the 

line of curvature on the interior and exterior surfaces, they are a visible match (diagonal support struts were 

removed to increase the visibility of the main structural components)
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3.38 The eff ects of the Law Curve can be seen on the illustration above—compare the shape of the curve to the 

line of curvature on the interior and exterior surfaces.  The results are more noticeable in the previous example 

due to the grid-like structure
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3.39 Interior and exterior illustrations represent the relationship of the inner and outer skins to the structure 

(diagonal support struts were removed to increase the visibility of the main structural components)
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3.40 Complete Fin with additional structural 

elements

3.41 Fin neck detail 

3.42 Exterior view of the structure 3.43 Exterior detail of the structure



CS X CO-ORD CS Y CO-ORD CS Z CO-ORD CS U PARAM CS V PARAM

3.326 -4.578 0 0 0

3.892 -6.358 3.449 0.05 0.05

4.435 -8.095 6.934 0.1 0.1

4.935 -9.746 10.491 0.15 0.15

5.368 -11.269 14.156 0.2 0.2

5.715 -12.621 17.959 0.25 0.25

5.982 -13.764 21.884 0.3 0.3

6.184 -14.661 25.895 0.35 0.35

6.337 -15.275 29.953 0.4 0.4

6.458 -15.569 34.022 0.45 0.45

6.563 -15.507 38.064 0.5 0.5

6.668 -15.051 42.040 0.55 0.55

6.788 -14.165 45.915 0.6 0.6

6.941 -12.813 49.649 0.65 0.65

7.126 -10.998 53.222 0.7 0.7

7.261 -8.947 56.690 0.75 0.75

7.235 -6.961 60.141 0.8 0.8

6.937 -5.341 63.659 0.85 0.85

6.267 -4.362 67.323 0.9 0.9

5.277 -3.970 71.126 0.95 0.95
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X

Y

U

V

3.44 Coordinate system (CS) location and UV parameter diagrams—the data in the table can be used to determine 

the location of the coordinate systems relative to 0,0,0; the table addresses a single row of CS’s

3.45 Coordinate system variables written to spreadsheet from Generative Components

X

Z

U

V



111

EXT FACET AREA INT FACET AREA EXT OFFSET INT OFFSET

0.740 0.622 0.25 1.1

1.191 1.076 0.695 0.828

1.647 1.522 1.118 0.575

2.102 1.962 1.500 0.361

2.552 2.394 1.817 0.206

2.961 2.791 2.051 0.131

3.313 3.132 2.181 0.160

3.571 3.377 2.187 0.319

3.743 3.538 2.072 0.610

3.791 3.571 1.868 0.996

3.733 3.505 1.610 1.429

3.547 3.304 1.333 1.861

3.240 2.995 1.071 2.244

2.803 2.579 0.856 2.533

2.199 2.042 0.718 2.687

1.553 1.423 0.660 2.710

0.947 0.812 0.670 2.629

0.556 0.331 0.731 2.465

0.455 0.057 0.833 2.243

0.960 1.981

1.1 1.7

Facets

Interior

Offset

Exterior

Offset

3.47 Coordinate system variables written to a spreadsheet from Generative Components

3.46 Facet area and off set diagrams—the following diagrams address the location surface facets and interior/

exterior off sets; the off sets are the numerical value of the distance of the skins from central spine of the array
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Continuous Process

These Components are still works in progress.  Generative Components clearly attempts 

to position itself as a tool built for parametric designers.  The program itself is a work in 

progress..

The term “work in progress” implies that something is a fragment.  The Temple is composed 

of hundreds of fragments, some of which—even at its current advanced design stage—

have yet to be considered.  The accompanying sketches (3.48-3.51) illustrate the conceptual 

stages of organization when creating a parametric design model.

3.48 Conceptual Fin sketches, used as a GC planning exercise
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A Summary of the Process

This exposition tests both fundamental and advanced features of Generative Components.  

It challenges the response time of the tool through the application of extremely dense 

data-sets—the Fin structure contains over ten thousand components.  The exposition 

implements unique Features and scripts which provide a visual likeness to the CATIA model 

while establishing unique model making principles.  The Features and scripts are used to 

enhance the model and to provide an intuitive interface for others to explore the model 

and create their own unique variations.  The Components were not created in the mirror 

image of their CATIA counterparts, but rather as their own interactive application.  They 

were created with the notion that they would be modifi ed to a point where the result could 

possibly yield an unrecognizable variation of the existing form of the Temple.

GC has proven to be a very powerful tool.  However, it has failed to return results for models 

exceeding several thousand Components.  This example reveals the need for tools that instill 

powerful ways of dealing with replication.  Both CATIA and GC can only facilitate the editing of 

a single Temple Fin.  Advances made to enhance usability perform quite well, scripts function 

appropriately, and editable variables perform their intended functions.  Unfortunately the 

application cannot process the data quick enough to yield a timely response.  This creates 

a somewhat static process, a slight variance of what already exists.  Allowing the system to 

process modeling changes for an extended period of time eventually yields results.  GC is 

simply incapable of performing this task dynamically.

What distinguishes the content of this chapter from other work is the extensive investment 

in usability.  The nuts and bolts of scripts are virtually transparent to the user—as if the 

model was simply an interactive application in itself.  There is a signifi cant amount of work 

involved in this process.  The advantages of having such a customizable tool—as with GC—

is that the parametric controllers have the ability to be reshaped and customized to suit a 

user friendly aesthetic; unfortunately, this requires a considerable amount of intellectual 
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investment.  Buried within the Structural Feature is a script that searches the surrounding 

array for instances of the Generative Component.  If it detects a duplicate member it skips the 

member and continues populating the remainder of the array.  The concept of the array is 

a familiar idiom within Generative Components.  It seems that GC’s strength is in the use of 

such a familiar geometric construct.

The Features generated for this exposition test the robustness of Generative Components 

and challenge the idioms associated with a conventional process through the application 

of unique and complex Features.  The content aims to create a parametric skeleton that can 

be used to explore variation in form.
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This chapter positions this thesis within the larger context of the state of development of 

parametric software applications and their relevance to potential users.

The Framework  is an account of the current and historical development and use of parametric 

technologies in various disciplines.  The Framework situates the body of this thesis within 

the context of current development initiatives and supplies a point of reference by which 

the Exposition better illustrates the lack of maturity in current parametric technologies as 

a design tool.

This chapter concludes and unifi es the Application and Exposition chapters by relating the 

diffi  culties and concerns to a perpetually changing architectural process.  These concerns 

include issues of complexity, workfl ow management and practical integration.  The focus 

in this area of the industry appears to be in the documentation and translation of an idea 

and less about the advancement of the use of a tool for design space exploration.  The 

advancement of these tools has mainly evolved out of their practical application and ability 

to reduce costs and streamline repetitive process, therefore the less profi table regions of 

process garner far less attention.  According to survey participants this a familiar trend.

An investment in parametric research and development is spear-headed by a number of 

organizations,1 and is growing exponentially.  Software companies, institutions and private 

businesses are establishing a number of initiatives to help promote and advance the 

development of parametric tools.

Parametric tools have a signifi cant impact on conceptual design processes.  They allow the 

designer to decompose aspects of the design and precisely defi ne building concepts and 

“practical fault lines.”  Encouraging the customization and exploitation of these tools will 

accelerate their development.

The survey attempts to addresses two impending issues:  What is the signifi cance of these 

tools?  What are the current issues that aff ect development?CH
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A parametric design survey was prepared and issued to prominent members of the 

Smart Geometry Group.  This group is known for their vast contributions to the world wide 

community of parametric designers, developers and researchers.  The purpose of the group 

is “to bring together the worlds of practice, education and research.” 2

The survey consisted of two parts:  the fi rst part was a set of general questions; the 

second part was two questions directly linked to the participants’ own research interests.  

Additional or extraneous comments were accepted as non-required material.  The principle 

of the survey was to gain valuable insight into the fi eld of parametric research and design, 

including the current state of parametric tools, their historical context and the direction of 

future development.

Academia plays a large role in the development and testing of such systems, while the 

development of specifi c components stem from the needs of practice.  Testing these 

parametric design tools in an academic setting fosters creativity and generates many 

unforeseen uses, “The aim of the advanced design technology theme is to foster industry 

and academia in using, adapting and creating new tools for design.”3   The use of parametric 

tools is becoming a necessity in practice.  Such tools allow designers to focus more on 

design, and less on the risks commonly associated with the time, as with usage of static 

iterative design processes.  Most participants admit that the fi eld is still struggling through 

its infancy as it pertains to the realm of architecture, yet they agree that the process is rapidly 

progressing.  Although precedents such as boat building, vehicle manufacturing, and 

aeronautical engineering, provide context for the development of these tools, they mislead 

by focusing on mass customization of components for production purposes instead of 

conveying the architect’s desire for a discreet, customized solution.4  Architects frequently 

create new uses for existing tools.  They make use of software from the fi lm and video 

game industries.  However, the opportunity to design our own tools is a most desirable 

solution.  It can be argued that this is not the responsibility of the designer, and rather the 

job of yet another consultant, however as designs become more complex, the process of 

documenting and constructing these designs will require more sophisticated tools.  We 

Survey Context



Dr. Robert Aish, Director of Research, Bentley Systems, Incorporated

Lars Hesselgren, IT Director & Senior Associate Partner, KPF

Axel Killian, Dipl.-Ing., SMArchS, Ph.D Candidate, MIT

Hugh Whitehead, Partner, Foster & Partners

Dr. Chris J.K. Williams, Professor, Bath University

Dr. Rob Woodbury, Graduate Program Chair, Simon Fraser University

Programme Participants

should view this as an intellectual investment that enhances the quality of a body of work, 

and not as an intrusive obstruction of technology as it relates to the design process.

 These tools allow us to explore and foster a closer relationship between concept 

and process.  This allows architects to act as tool builders as well as designers:  a task that has 

been characteristic of architects throughout history.

The following commentaries are accounts of the status and direction of the development 

of these tools as they relate to the advancement of the architectural profession and the 

process of architectural design.
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GENERAL COMMENTARIES
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What disciplines have emerged out of the fi eld of parametric research?

How has the fi eld grown since its inception?

What aspects of parametric research require further development?

What factors are slowing down the progression of this research?

What are the conceptual and practical benefi ts of the tools developed from this research?

The Queries
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Robert Aish

What disciplines have emerged out of the fi eld of parametric research? 

Applications such as GC which combine design tools and software development therefore 

encourage “design related software development,” but that goes for many other disciplines, 

so really there is nothing new here. This combining of design and scripting was happening 

before GC with Rhino, Max and Maya, but with GC the whole platform is design oriented 

(rather than pure surface modeling—in the case of Rhino—or animation oriented—in the 

case of Max and Maya).

How has the fi eld grown since its inception?

I have no metrics, but the number of schools and practices using GC (and other similar 

tools) is expanding rapidly.

What aspects of parametric research require further development?

How to teach it.  I.E. how to train students and practitioners to combine design and 

algorithmic thought.

What factors are slowing down the progression of this research?

Teachers and design managers who have no such experience of algorithmic thought, or 

who are hesitant ‘hands-on’ users.

What are the conceptual and practical benefi ts of the tools developed from this research?

These tools essentially allow/force the designer to think. (Acid test: Does the student/

teacher/practitioner/design manager think that this is a good or bad thing?)



4.01  Generative Components graphical user interface (GUI).
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Lars Hesselgren

What disciplines have emerged out of the fi eld of parametric research? 

No new disciplines as such. Current disciplines such as mechanical engineering, architecture, 

structural engineering, environmental engineering have benefi ted in descending order.

How has the fi eld grown since its inception?

The fi eld grows by incorporating parametric techniques into existing CAD software it leaves 

some opportunity for new entrants but it is very small.

What aspects of parametric research require further development?

The whole system of understanding how a parametric model is structured needs far more 

development. Currently the content of a parametric model is a ‘black box’, its method of 

functioning only clear to the creator. And it doesn’t help that the ‘black box’ is software 

specifi c.

What factors are slowing down the progression of this research?

Primarily the issue of competition between software vendors. On the upside however 

competition ensures that parametric tools are appearing in software used by all CAD 

users.

What are the conceptual and practical benefi ts of the tools developed from this research?

All buildings are systems. Systems that are openly declared can be verifi ed in a more 

consistent manner. The declaration is in itself an intellectual tool for architectural thinking.
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Axel Kilian

What disciplines have emerged out of the fi eld of parametric research?

I don’t think there is a discipline emerging out of research around parametric studies. It is 

the other way round. Parametric descriptions of design problems have emerged out of the 

fi eld of computation and design theory and engineering. Parametrics is not a novel concept 

but has a long history in diff erent design domains. Its recent popularity is more a function 

of computing power and fabrication technology making buildings designed in this fashion 

more feasible.

How has the fi eld grown since its inception?

See above—I don’t think there is a fi eld of parametric research per se but rather it is a part 

of many research areas in architecture and engineering.

What aspects of parametric research require further development?

The current implementation of parametric systems are far too rigid still to correspond to the 

design process. They tend to be implemented in a hierarchical fashion and allow very little 

fl exibility in the defi nition. 

What factors are slowing down the progression of this research?

The concept of Parametrics is too limited in its object oriented implementation, but of course 

powerful systems can still be built with that approach. But in order to reach the next level 

of complexity and design process support a more fl exible and less hierarchical approach 

for capturing design intention is needed. This approach will certainly include parametric 

elements and concepts but probably be much more based on design exploration and 

variation on diff erent levels than just the geometric one.

What are the conceptual and practical benefi ts of the tools developed from this research?

Design exploration and variation are the main benefi ts and the reuse of generalized 

constructs in diff erent design context. The ability to build in a certain level of design 

intelligence in the componentry that constitutes the design assembly can help to integrate 

parallel domains like structural and performative design.

128

RI
G

H
T 

 4
.0

3
 C

a
rb

o
n

 fi 
b

re
 t

ri
cy

cl
e.



129



130

Hugh Whitehead

What factors are slowing down the progression of this research?

The issues of applying this borrowed technology in building tend to revolve around:

 

Scalability – When the desired level of detail is applied to complex buildings the resulting 

models tend to overpower current hardware capabilities.

 

Long Chain Dependencies – We must question whether full associativity is really required or 

even desirable? The eff ort involved both in setting up and maintaining associativity is not 

always justifi ed or rewarded by gains in productivity or quality of performance.

 

Premeditation – If the idea is to ‘encode design intent into models’ this is easier to achieve 

later in the process or as a retrospective. It is not often a good starting point.

 

However the motive for any critique should be to recognise and transcend limitations. The 

potential of ‘editable design’ lies in empowering designers with new forms of language and 

notation.

What are the conceptual and practical benefi ts of the tools developed from this research?

In representational mode the designer has to freeze the early strategic decisions in order to 

progress to increasing levels of detail. This involves cyclic explorations but the early decisions 

can only be challenged if there is both time and resources to re-work the downstream 

details. In relationship mode the ability to populate an associative framework with adaptive 

components allows us to defer the decision-making process until we are ready to evaluate 

the results. We are now able to generate far more options than we are able to evaluate.
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Chris Williams

What disciplines have emerged out of the fi eld of parametric research?

People naturally think parametrically, expecting a change in one thing to aff ect others. In 

particular comparing the sizes and proportions of things; you would expect a truck to have 

bigger wheels than a small car. Mathematics and, more recently, computing have always 

worked using parameters. Engineers and architects have also thought parametrically. 

What is new is the ability to use computers to automatically change lots of things as a few 

parameters are changed. 

Obviously there is lots of work being done about the details of how all this is done, mainly 

by mathematicians and computer programmers. Sometimes it might be better to describe 

this work as ‘development’ rather than ‘research’.

How has the fi eld grown since its inception?

Massively.  It’s diffi  cult to know quite how to reply, I suppose partly because it’s diffi  cult to 

pin down exactly what ‘parametric design’ really means. We are lucky in the building and 

civil engineering industries in that each project is a one-off , designed over a relatively short 

period by a relatively small design team.

Compare this with, say, the Boeing 747 which was designed in less than 16 months and fi rst 

fl ew in 1969. They still make it and it would be interesting to speak to the people who fi rst 

designed it (who must be pretty old by now) and those who look after the design today 

changing thousands of bits. 

So even though it is interesting to see what people like Gehry do with CATIA, one should 

really concentrate on Airbus, Boeing, Ford, etc.

 www.boeing.com/history/boeing/747.html

 www.boeing.com/commercial/747family/background.html

 www.aventec.com/abmeth.html

 www.boeing.com/commercial/777family/compute/compute4.html

 www.practicalcatia.com/Ford.htm
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What aspects of parametric research require further development?

Research tends to respond to a need. Much of the most interesting stuff  is driven by fi lm 

animation and this also includes technical things like fl uid dynamics.

What are the conceptual and practical benefi ts of the tools developed from this research?

The benefi ts can be over emphasized. Are the objects designed now—buildings, bridges, 

airplanes, cars, ships - that much better than those designed without computers?
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Rob Woodbury

What disciplines have emerged out of the fi eld of parametric research?

It is actually the other way around. What disciplines have been applied in the building of 

parametric systems? The fi rst CAD system was a parametric system (Sketchpad Sutherland 

1963). Since then, computer science, mechanical engineering, mathematics, chemical 

engineering and operations research have been the main drivers. Parametric systems are 

relatively new in architecture, where they are fostering a reconsideration of many design 

issues and languages.

I interpret your question as being what new design applications have emerged out of 

parametric research. I would identify two vectors, one towards mass customization and 

the other towards manipulatable architecture. Mass customization identifi es the complex 

of capabilities supported by the ever-decreasing gap between the price of mass-produced 

and customized items. Manipulatable architecture refers to buildings that move in some 

way. Parametric design is an enabling technology for both.

How has the fi eld grown since its inception?

Its inception was in computer science, most application has been in mechanical and 

aerospace engineering. In those fi elds, parametric systems are a mainstay. It is at the beginning 

of what looks like to be a growth curve in architecture, but it is at the beginning.

What aspects of parametric research require further development?

My view is that the interfaces are primitive, the useful methods of work using such systems 

largely unknown and that discrete parameterization is where the big gains and the greatest 

diffi  culties lie.

It takes a long time to do anything in a parametric system. I believe this is partly due to the 

design of interfaces for such systems. We simply do not have good tools for composing 

objects and for seeing reasonable ranges of parameterization.

The higher-order ways in which people use parametric systems are poorly understood. 

This will take some serious social science research to uncover. Parametric systems most 

easily support change when change is smooth. When jumps are made, for instance when 

LE
FT

  4
.0

5
 S

tu
d

y 
o

f s
h

el
l s

tr
u

ct
u

re
.



a new assembly is introduced depending on some parameter, current systems are weak in 

both representation and interface. Discrete parameterization sharply reveals the need for 

a design space representation, that is, an explicit representation of the space of alternative 

designs considered by the user (or users).

What factors are slowing down the progression of this research?

Scale of industry. In architecture it remains small.

Graduate programs with appropriate faculty expertise and courses of study. 

A clear body of work around the issue.

Of course, money. But that problem is always there.

In other words, the research fi eld is young and people in it can make rapid progress.

What are the conceptual and practical benefi ts of the tools developed from this research?

I include an excerpt from a recent proposal:

Design work is transiting to digital media and computer-based tools (Mitchell 

& McCullough 1994, Eastman 1999).  This has profound eff ects on both design 

work itself and the products of that work (Aish and Woodbury 2005). For 

example, the design of the new roof on the courtyard of the British Museum 

depended utterly on digital representation and simulation (Williams 2001).  In 

such work digital data are not limited to designers, for example, in buildings 

they are transferred between architects, structural engineers, and fabricators.  

Firms employing new digital tools can gain real advantage in national and 

international markets.  A major obstacle to progress is a lack of highly qualifi ed 

personnel who understand both design work and the new tools.  Another 

obstacle is an incomplete understanding, in both academia and industry, of 

how new design media can transform both design process and outcomes.  

The aim of the advanced design technology theme is to foster industry and 

academia in using, adapting and creating new tools for design. 

Conceptual benefi ts include a disciplined understanding of a form of change. Since design 

is the process of making proposals for change, such is important in the fi eld.

Practical benefi ts include the opening of new formal and construction possibilities. These 

create economic advantages for early adopters.
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Robert Aish

What is the conceptual programming model for Generative Components?

It is pretty rare to fi nd a building which is realized as a single discrete object. Normally we are 

considering assemblies of components which, at intermediate levels of aggregation, form 

identifi able sub-systems. While these components may be pre-defi ned, or the subsystems 

may follows established industry conventions, there are increasing opportunities for 

each design to use mass customization and digital fabrication to defi ne project specifi c 

components. The question then is: how do we break down the total building concept 

into sub-systems and components? What are the conceptual or practical ‘fault lines’ 

which might suggest this decomposition? There may in fact be multiple decompositions, 

some to be used in the conceptual, form fi nding phase, and others for realization and 

fabrications which, for example, might impose dimensions constraints associated with 

diff erent materials or fabrications processes. What is certain, is that developing and refi ning 

compositional strategies is a key aspect of design skills. There is a tremendous advantage 

in using computational design tools which directly support the idea of ‘composition’ and 

which allow these strategies to be developed and tested.

What scope of precision does Generative Components give to the designer?

Design has been described as making inspired decisions with incomplete information. True, 

we may use prior knowledge, we may even think we understand the causalities involved, 

but what really matters is exploration: of new forms, of new materials, and speculation about 

the response to the resulting eff ects.  Essentially, this exploration has its own dynamics, 

involving intuition and spontaneity, and without which there is no design.

But of course we all know that this is not the whole story. Design is diff erent to ‘craft’; to 

directly ‘making’ or ‘doing’. It necessarily has to be predictive in order to anticipate what 

the consequence of the ‘making’ or ‘doing’ will be. Therefore we inevitably have to counter 

balance our intuition with a well developed sense of premeditation. We have to be able to 

reason about future events, about the consequence of something that has not yet being 

made. There is always going to be an advantage if this reasoning can be achieved with a 

degree of precision.
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Lars Hesselgren

How does your research contribute to practice?

Until recently the research has been completely project focused. The result is seen in 

numerous buildings, such as the Bishops gate Tower, which simply would have been almost 

impossible to design with conventional means.

 

In-house expertise is continually building and at some point becomes indistinguishable 

from in-house software development.

Is there a polemic between practice and research in the industry?  Should the two be one in the 

same (please advocate your response)?

There is a polemic but it is disjoint. Much (most, almost all in fact) academic research does 

not impinge on practice. The most common link is by researchers moving into practice 

using their research ideas and methodologies.

 

There are two distinct areas: architectural design and software design. These two have 

developed into diff erent skill sets and software design has a larger impact because it spans 

multiple disciplines and may redefi ne the professional boundaries.

 

Architectural design operates on the level of ideas. In the academic world they often 

seem very remote from commercial practice, but there is currently nowhere else to ‘dream 

professionally’ (no risk of actually building the dream!)

 

I would say there is a place for ‘professional dreaming’ within practices; but it is hard because 

benefi ts are vague and long term. In many cases they turn into a branch of marketing.

How do signifi cant studies in the fi eld of parametric design relate to the ongoing battle between 

research and its relationship with architectural practice?

The academic world has its own concerns and aims which are not appreciated by practice.
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The race to publication which serves as almost the sole guideline of career advancement is 

particularly debilitating. It leads among other things to ‘cultural ghettoes’ where the insiders 

talk in code to each other.

 

Some of these ghettoes are signifi cant and will lead to changes in behaviour. Most are 

simply internal talking shops designed to enhance the members’ status.

 

Practices judge by a diff erent yardstick, in its own way as obnoxious. Built buildings and 

marketing publications are their yard sticks.

 

Ultimately it is a battle of ideas, some of which become embedded in technology and then 

become mundane. Other ideas are pervasive and have long-term eff ects, think architectural 

styles.
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Axel Kilian

How do you feel the eff ects of application programming in design will aff ect the culture and 

ideologies commonly associated with traditional process?

I think it is about adopting the process to the design problem at hand and how the digital 

realm can be integrated back into existing and developing design processes in what has 

been called the post-digital era in design. It could lead to a variant of craft that is not based 

on personal expertise and tradition but rather on the ruse of knowledge and fast adaptation 

in complex design process with the use of digitally represented and integrated design.

What are your thoughts about the infi ltration of parametric technology into the realm of 

architecture?  What aspects are deemed a valuable asset?  Which are not?

Parametric concepts and thinking is already present in design, the development of software 

environments to support these existing concepts allows them to be pushed much further 

and subsequently new aesthetic and conceptual approaches to emerge.  The variation and 

exploration of clearly defi ned highly constrained geometry-centric design problems profi t 

a lot from it.

Quickly changing, conceptually driven abstract design problems do not benefi t from the 

current batch of parametric software that is more centered at the dimensional descriptive 

intention of paramterics.
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Hugh Whitehead

How does the intense pressure of working in a project driven environment aff ect your working 

methodology?

At Foster and Partners the Specialist Modelling Group provides in-house consultancy to 

project teams at all stages from concept design to detailed fabrication.  Although we provide 

Tools, Techniques and Workfl ow these are developed in the reverse order. Starting with the 

formulation of the problem the fi rst step is to propose an appropriate workfl ow. Within 

this frame of reference suitable techniques are tried and tested in diff erent combinations. 

The results then form the brief for the development of custom tools that are tested by the 

design team in a continuing dialogue. Custom tool building ensures that rationale becomes 

an integral part of the design concept.

Tools are developed for use by the designers who are directly involved in the specifi cation 

and testing cycles which ensures a relationship that is more synergetic than symbiotic. 

By working in parallel with many design teams we are ideally placed to encourage cross-

fertilization of ideas and techniques. Tool building becomes a cumulative process. As well 

as capturing design intent we also distribute expertise.

This is achieved by taking a modular approach to building tools. Operations that can 

be written in a generic form are taken out to a function library, so that tools become 

progressively easier to build and maintain or adapt to new requirements.

How have parametric tools changed they way in which you troubleshoot design issues?  Have 

they altered your process specifi cally in any way?

The SwissRe building forced us to address the problem of how to design and produce 

programmatic details. At each fl oor the rules are always the same but the results are always 

diff erent. At the same time even if every plan, section and elevation could have been drawn, 

this still would not adequately describe the design intent even for tender purposes let alone 

construction. The building stands as a classic example of an associative framework providing 
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a context for adaptive parametric components, so that fabrication follows a consistent 

dialogue between structural and cladding node geometry.

The designer is in charge of the rehearsal but the contractor is responsible for the 

performance. We are limited in what we can build by what we are able to communicate. 

Many of the problems we now face are problems of language rather than technology. 

The experience of SwissRe established successful procedures for communicating design 

through a Geometry Method Statement.

Complex geometries involve very large parameter sets that are impossible to control by 

direct manipulation. With buildings like the Beijing Airport, which has a double curved roof 

that is three kilometres long, the approach was to develop control mechanisms that can be 

driven by law curves. Law curves control ‘rate of change’ and can be geometric (as graphs) 

or algebraic (as functions). By representing higher derivatives as curves or even surfaces, 

complex behaviour can be achieved with simple manipulation. For example the law curve 

for a spiral is a straight line, representing the linear relationship between off set and rotation 

angle. Manipulating the line dynamically generates a set of off sets that can be used to drive 

other parametric sub-assemblies.

Effi  ciency is about achieving ‘more with less’ in terms of the resources used for implementation. 

However at the concept stage we aim to do ‘less thinking, but with more intelligence’!  In 

order to reduce the solution space we also aim to produce less options but with more 

creativity. Design is not just a Darwinian process of natural selection that can rely entirely on 

brute-force computing. However the way we represent design ideas is becoming changed 

by the way we implement them. The power of the sketch is being augmented by the power 

of the schematic – which is the minimal digital representation of an idea or concept.
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Chris Williams

How do you establish what tools to use when optimizing form?

There is always some sort of algorithm—a set of rules so that the computer can generate 

lots of data. I prefer to write my own rules, but in general designers have to use rules written 

by someone else—a bit depressing.

Do mathematical precedents play a large role in your work or do you simply refer to them as the 

language by which the form is established?

Rules have to be expressed in terms of mathematics and Boolean relations—if this and 

that [are] true then do whatever. Computer programs give the impression of some sort of 

intelligence, but it is simply the application of thousands of lines of code.



147

Rob Woodbury

What key factors do you hold in high regard when designing an application?  What conceptual 

form do these factors take?

My answer is a caricature of what makes real estate valuable (location, location and location). 

Clarity, clarity and clarity. 

I design applications for academic reasons—to make points that are not being made 

in industry. Therefore I am less concerned with broad functionality than with the clear 

presentation of new ideas. I look for strong ideas that provide new insight into areas of 

design. Each of the applications I have built that others have used has provided something 

diff erent that was not available in other tools.  I implement to explain, so clarity is a foremost 

goal. 

How can building simulation and design space emulation be enhanced through parametric 

technology?

In a nutshell, parametric technology is one of the possible engines for a design space 

explorer. In fact, the ideas of creating variation (parametric technology) and managing 

variation (design space exploration) are highly complementary.
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This survey provides a historical context of the subject defi ned by individuals that have 

worked with parametric technologies over many decades.  The historical context they 

provide is one that returns to the days before this technology ever existed; when planes, 

boats and cars were built by “traditional methods.”  Chris Williams poses the question, “Are 

the objects designed now...that much better then the ones designed without computers?”5 

This thesis argues that it is not a matter of whether they are superior or inferior, but rather the 

impact the technology has on the process that allows us to achieve a fi nal result.  Certainly 

there are some practical advances that have come from being able to use parametric 

technology within the context of the design process but as Dr. Williams states it would be 

wrong to suggest whether or not this makes the new better than the old.  It simply allows 

designers to experiment in ways that were never thought possible in the past.

These tools have signifi cant impacts on conceptual design processes, they allow the 

designer to break down and precisely defi ne building concepts and “practical fault lines.”     

The designer can decompose aspects of the design throughout the many phases of the 

design process.  Defi ning the concepts and decompositions can be handled in many ways.  

These exercises generate several conceptual alternatives.

The introduction of these tools in architecture raises a number of developmental issues and 

constraints.  The current tools are centred on descriptive methods of design rather than  areas 

that are less defi ned (areas that do not require dimensional driven data).  The development 

of architectural parametric tools needs to integrate more expressive modeling methods, 

and perhaps the ability to defer parametric constraints between certain objects.  The largest 

developmental issue is the lack of integration in education and practice, the tools need to 

be taught and explored by a larger number of design researchers and professionals.

This thesis adds to the current development of parametric technology by making particular 

contributions to tools within the realm of parametric research.
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What disciplines have emerged out of the fi eld of parametric research?

Disciplines have not emerged out of the fi eld of parametric research, however, many jobs 

have.  Many of the participants in this survey (myself included) agree that this question 

should be re-written to ask:  How has the advent of parametric research evolved and 

progressed through the needs associated with practice and scholarly research initiatives?

How has the fi eld grown since its inception?

There is no fi eld specifi cally designated to advancing parametric technologies, there are 

several areas of study which incorporate the notion or ideology of what it means for an object 

or component to be parametric.  The defi nition of parametric technology has broadened 

and incorporated into products that could not be entirely defi ned as being parametric.  The 

maturation of this technology has occurred due to the needs and requirements of those 

that require easier ways of working through iterative process, the fi eld benefi ts and grows 

through the use and development of new and existing products.

What aspects of parametric research require further development?

Passing on the knowledge!  Convincing those in practice and academia that this is an area 

worth pursuing.  Teaching the fundamental concepts of what the software does and can 

do is a major hurdle at the moment.  There are a lot of options that exist, but there are many 

opinions on which products are worth teaching.  The mature products can cost hundreds 

of thousands of dollars, the relatively new products require further development to be seen 

as a practical alternative.  It is a catch twenty-two; businesses don’t want to play around 

with development software, and the software companies don’t want to fund a project that 

doesn’t have a large install base.  An open language that is platform independent that could 

allow users to easily transfer their work between applications would be both incredibly 

useful and ground breaking.

An Author’s Response to the General Queries
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What factors are slowing down the progression of this research?

Mainly competition amongst various software vendors and funding.  A competitive 

software economy is useful in the sense that it stimulates rapid growth and maturation of 

the products which compete, however it also creates delays.  Certain products get pushed 

back because they are lacking essential features that exist in within competing products.  

Funding is limited in this realm of research, although now that this technology is at the 

hands of so many we might see this change.  The most pressing factor is education.  How 

do we pass the torch to the next generation?  Right now, this seems to be one of the most 

pressing concerns—getting more people involved.

What are the conceptual and practical benefi ts of the tools developed from this research?

The conceptual benefi ts can be viewed in one of two ways, by their inclusion in conceptual 

design and their eff ects on process.  Conceptually these tools allow the designer to distill 

their intentions throughout the design concept, literally allowing the concept to drive 

the model.  The process is altered by the inherent nature of change due to altering how a 

model is changed.  The practical benefi ts are clear; many iterations can be generated, due to 

investing more time at the outset, which has the potential to increase the amount of detail 

generated and therefore reduce the amount of change and intervention required at the 

back-end of the project.  Another obvious practical benefi t is that we can experiment with 

these tools and invent new ways of deriving and controlling form.  The things we create 

with these tools are in no way better, they are merely diff erent or previously unexplored.
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The participants’ responses to the General Queries fi t appropriately within the limits of this 

thesis.  They all address how a historical process is being enhanced by new technologies.  If 

the notion that “people naturally think parametrically”6 is true, one would have to ask why is 

parametric technology such a novel concept?  It can be argued that this is due to the recent 

availability and infl ux of powerful modeling tools.

While the concept of having a single dynamic model is an appealing objective for most, 

it has the ability to drastically aff ect performance.  “Is full associativity even required or 

desired?”7  Typically it is not, and this is due to a number of factors; certain features or aspects 

of a design stay constant (i.e. windows, doors, etc.), in which case it does not make sense to 

create a large amount of overhead by making these components dynamic.  Factors such 

as building envelope, square footage and overall form might all change on a consistent 

basis.  The key is fi nding a healthy dynamic that satisfi es both static and dynamic building 

components.  “The potential of ‘editable design’ lies in empowering designers with new 

forms of language and notation.”8

While many parametric tools exist none can be considered exemplary or perfect by any 

means.  Almost all participants agree that the concept or language of what duties a 

parametric tool performs must be altered drastically.  The current state of the tools is “far 

too rigid” to be able to fully satisfy all requirements of a dynamic design process.  Parametric 

systems inherently demand defi nition, without defi ning relationships you cannot create.  

This is an issue directly related to language, notation and hard-wired limitations in the tools 

themselves.  Of course there is always a means of by-passing hard-wired limitations through 

scripting and other forms of development, but unless one has access to the nuts and bolts 

of a tool, these features can never be altered.  The participants agree that in order to create 

tools that are teachable a careful study of comprehensible user interface design is crucial.

The traditional model of the designer is being slightly altered by this technology.  At Foster 

An Assessment of the Queries
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and Partners it is almost entirely altered in the sense that individuals who were once engineers 

or designers have become computer scientists.  Although this may seem alarming, it is—at 

its core—benefi cial to all designers.  Allowing the individuals who use the tool to design 

it makes perfect sense.  “By working in parallel with many design teams we are ideally 

placed to encourage cross-fertilization of ideas and techniques. Tool building becomes a 

cumulative process. As well as capturing design intent we also distribute expertise.”9  The 

synergetic relationship that already exists in process is not altered but rather enhanced by 

parametric exploration.

The fi gures shown in the Application component of this thesis were generated in iterative 

phases.  Daily revisions of the geometry were captured and exported which maintained 

accurate and up to the minute versions of design alterations.  Images were in turn generated 

and returned, prompting additional changes.  This process could not have existed without 

the “cross-fertilization” of many individuals across many disciplines—designers, fabricators 

and engineers.  Parametric processes ensure that a wealth of data is generated promptly 

and accurately.

Many architecture fi rms are becoming aware of the benefi ts of this technology in practice 

and are also aware that it is still in its infancy.  Hugh Whitehead acknowledges this when 

he asks, “is full associativity even required?”  Lars Hesselgren, Axel Kilian and Dr. Woodbury 

maintain that the entire ideological construct of parametric software technologies needs to 

be re-evaluated and re-constructed to suit architects and designers.  Chris Williams argues 

that the benefi ts of this technology “can be over emphasized;”  currently, this may be true.  

All participants agree that parametric technology is going to drastically enhance the way 

designers draw and communicate their ideas to others.
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This thesis positions itself within the realm of the development of parametric technology 

through an exposition.  The potential of such technology is explored through the original 

contributions made in the Exposition and are meant to enhance and add to the Framework 

which places the work in a larger context.

The participants’ responses provide a clear view of the status of this technology as it relates 

to architecture—it is young and requires further development.  Although the software has 

yet to mature, it is already having an impact on projects that employ its use.10  Both KPF and 

Foster and Partners use this technology to convey their drawings to third parties.  They use 

it as an explanatory tool rather then a tool solely used for drawing.

The survey participants agree that the most prevalent area of development should be in 

establishing new conceptual relationships between the features within the tools.  This 

involves investing time in new software features as well as in an easier way to utilize these 

features.  Developing  three dimensional parametric models consists of careful planning 

exercises.  In order for this technology to become more popular the fundamental inner 

workings of parametric software needs to be changed to suit a dynamic design process.11  

The current state of the tools satisfi es the process of documentation and translation, and 

rightly so, as these areas of the architectural process facilitate the physical construction of 

an architectural idea.  For designers to truly embrace the tools they need to feel that their 

creative concerns have been addressed as well.  User friendly interfaces, the ability to create 

digital sketches, conceptual planning modules are but a few features that are non-existent 

within parametric tools.12

The documentation strengths of these tools have become the focus of  vendors developing 

parametric software technologies.  The most eff ective way of infl uencing the direction 

of the technology is to team up with a vendor to receive exclusive access to pre-release 

technologies.  Experimentation with these technologies throughout a “live” process is both 

Placing the Framework in Context
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frightening and enlightening.  Without this kind of experimentation the technologies 

have little chance of developing into holistic, feature packed and dynamic alternatives.13  

Integrating an explorative developmental process into the architectural process creates 

many synergetic design driven relationships.14

Experimentation fosters innovation.  The Bahá’í Temple, the content in this thesis, and the 

work of the participants in this survey are a testament to the relevance of this statement 

as it relates to an architectural process.  The research of the participants in this chapter is 

advancing the state of the tools.  The participants are members of the Smart Geometry 

Group, a network of practitioners and researchers whose objective is to unite the worlds of 

practice and research, to foster innovation and to promote the use of experimentation in 

process.

This content provides a working framework and context in which to place the thesis.  It 

contains both current and historical precedence that associate the relevance of the 

Application and Exposition sections within an architectural parametric process.
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This thesis evaluated a parametric design tool and focused on the implementation of 

this tool in an architectural process.  It addresses the burgeoning state of the tools that 

are currently available, and exposes an ever growing number of essential requisites 

that require further development in order for parametric modeling to become a viable 

alternative to static modeling.

The three components of this thesis—Application, Exposition and Framework—

organize the research by introducing the context of the issue, exploring the issue 

through the use of a discrete tool, assess the state of the implementation of parametric 

tools in research and industry, and most importantly, describe the benefi ts of parametric 

tools.

The chapter entitled Application, is a case study of the Bahá’í Temple for South 

America.  This chapter precedes the Exposition to objectify the content that is used 

throughout the thesis.  It touches  briefl y on the implementation of CATIA and how 

the implementation relates to the process  Hariri Pontarini Architects (HPA) is using 

to complete the project.  This component of the thesis defi nes the relationships and 

components of the building that are used to establish the parametric model created 

in the Exposition.

The exposition of Generative Components (GC) is introduced to create a correlation 

between the process of design and the implementation of parametric tools.  It focuses 

on describing the process of implementation for each component.  Several unique 

Features and Scripts are used to express Generative Components’ cumbersome user 

interface, open scripting capabilities and powerful array techniques.  The contents of 

the GC model are used in conjunction with the GC development process to expand 

and troubleshoot the Features that will be bundled with the software upon its release.  

The exposition asserts the validity of parametric drawing and modeling processes, and 

introduces their ability to enhance creative process.
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The thesis concludes with a survey entitled Framework, the survey places the thesis 

within the context of industry and research initiatives.  It off ers brief, pertinent historical 

references and documents how each participant integrates parametric technology 

into his own research.  The Framework has been assembled to corroborate the process 

of its selected participants and to present examples that exemplify their eff orts.  The 

contents of this chapter are analyzed and distilled in relation to the content of the 

thesis to dispel any obscurities.

This thesis explores and evaluates the implementation of parametric design 

technologies within the process of design and through the exploration of Generative 

Components.  It touches on the current state of parametric design tools, it investigates 

technology still undergoing development (Generative Components), and it places 

these fi ndings within the context of comments made by individuals implementing 

these technologies in their own research and practices.

The thesis delivers an analysis of the Bahá’í Temple by Hariri Pontarini Architects, an 

exposition of Bentley’s Generative Components, and a survey of the parametric research 

initiatives that are taking place in academia and practice.
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The following text presents additional areas of exploration and attempts to speculate 

on ideal features of a parametric design tool.  The text invites interest in future areas of 

parametric development.

I have focused on Generative Components (GC) as an alternative to CATIA.  This process 

involved maintaining the formal qualities of the original model while reconstructing 

the data using GC.  CATIA can be used to model any object.  The process of modeling 

a pre-existing object is explained through the process of documentation.  GC was 

developed in the eye of the designer.  Its strength lies in the ability to create model 

based representations of conceptual ideas.  This aspect of parametric technology is 

highly under-developed.  The current tools require the cumulative construction of 

modeling components, every component of a parametric model has a dependency, 

if the dependency is removed then all other objects based on that dependency are 

removed as well.1  The software is doing what it is meant to do because the developers 

are writing it do so.  They are writing software that stays true to the notion of what 

it means for an object to truly be parametric, they are creating software that allows 

the user to create models of complex interdependencies.  This is expressed in the 

Exposition chapter of this thesis.  Each Component description is written in the manner 

in which it was modeled, this exploits the hierarchical nature of the process.  Objects 

are built upon objects, which relate to, and drive other objects represented within the 

same network.  GC is an eff ective tool for creating parametric models of considerable 

scale and complexity.  Further research into the areas of optimization and scalability 

might yield a process that would allow the construction of more complicated models.  

Although the limitations are not within GC itself but rather the platform in which it was 

built on.

The content covered in this thesis documents current conventions and notes future 

avenues of research.  Areas such as the cognitive aspects associated with parametric 

tools and the act of design, software development,  sharing parametric projects (allowing 

multiple users to interact with the same model), and the use of parametric software as 



164



165

a means to design responsive building envelopes and structures—architecture that 

physically manipulates itself based on its response to various environmental factors.    

Mechanical engineers have been using this technology for years, mainly in robotics.   

Architects and designers are just starting to tap into the possibilities.  Phil Ayres, an 

English architect associated with the Bartlett School of Architecture, is using Autodesk 

Inventor for his case study of the Kiedler Forest in Northumberland, UK.2  He has 

devised digital parametric representations that are manipulated by data that has been 

gathered by environmental changes in the forest.  His demonstrations show the digital 

model responding to the variable environmental conditions.  This reveals that it would 

be possible to fabricate a full scale version of the digital model, instilling the software 

mechanics that would allow the constructed version to adapt itself as well.  There are 

many areas of parametric research and development that have yet to be realized, in 

order to eff ectively explore these areas we need to establish the tools that facilitate 

these explorations.

The rigid mechanics of parametric software need to be redefi ned in order for it to be 

considered a viable alternative to traditional CADD (Computer Aided Drafting and 

Design) applications.  A critical concern for future development is the exploration of 

an intuitive and fl exible modeling interface, currently this does not exist, the powerful 

features of existing tools is buried beneath miles of programming code.  A weakness 

of these tools is their requirement to initiate “dependencies.”3  The ability to create “lazy” 

dependencies—dependencies capable of becoming independent—would be useful.
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Application 1.  The following reference contains a repository of teachings and writings on the 

Bahá’í  Faith:  Bahá’í International Community. “The Bahá’Ís.” Bahá’í International 

Community. http://www.bahai.org/ (accessed 08/30, 2006).

2.  Extensive information for members of the Bahai Fatih can be found by visiting 

a respository managed by the Universal House of Justice at:  Universal House of 

Justice. “Nine-Pointed Star, the History and Symbolism.” UHJ Unpublished. http://

bahai-library.com/?fi le=uhj_nine_pointed_star#s3 (accessed 08/30, 2006).

3.  This website contains information specifi c to the Temple for South America:  

Hauser, Robert, and Fierling, Mark. “The Bahá’í Temple for South America.” Bahá’í 

Context 1.  Axel Kilian’s fourth response in the General Queries outlines the minimal capacity 

of building applications upon an object oriented platform:  Kilian, Axel. Digital 

Process Commentaries. (Toronto: Mark Cichy, 2006), 1.

2.  An online repository of papers relating to fabrication, digital design techniques 

and general CAD technologies can be found at:  Martens, Bob, and Turk, Ziga. 

“Cumincad.” SciX Open Publishing Services. http://cumincad.scix.net/cgi-bin/

works/Home (accessed 08/29, 2006).

3.  The following workbook has some very useful CATIA tutorials for beginners:   

Cozzens, Richard. CATIA V5 Workbook: Releases 10 & 11. 5th ed. Cedar City, Utah: 

Schroff  Development Corporation, 2003., I-1.

4.  This document is mainly a source for tutorials, but it also introduces the concepts 

behind GC and why it was created:  Aish, Robert. “Generative Components - 

Introduction. ”Bentley Systems, Inc., Exton., 2-5.
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Exposition 1.  This source is solely distributed in a digital Word document and is included 

with every installation of GC.  It is a manual that explains the user interface and 

features of the product.  To locate the fi le simply browse to where you installed the 

software :  Kilian, Axel, and Robert Aish. “Generative Components.”Bentley Systems, 

Inc., Exton.

International Community, http://temple.cl.bahai.org/html/en/slide1.htm, accessed 

09/04, 2004.

4.  This website contains information specifi c to the Temple for South America:  

Hauser, Robert, and Fierling, Mark. “The Bahá’í Temple for South America.” Bahá’í 

International Community, http://temple.cl.bahai.org/html/en/slide1.htm, accessed 

09/04, 2004.

5.  This book is a comprehensive resource of CAD/CAM technologies and how 

these technologies can be used to manufacture building components:  Schodek, 

Daniel L. Digital Design and Manufacturing : CAD/CAM Applications in Architecture 

and Design. Hoboken: John Wiley & Sons, 2005, http://www.loc.gov/catdir/

toc/ecip0419/2004014940.html; http://www.loc.gov/catdir/description/

wiley042/2004014940.html., 10, 23, 29.

6.  The introduction of this workbook clearly defi nes aspects of the CATIA interface:   

Cozzens, Richard. CATIA V5 Workbook: Releases 10 & 11. 5th ed. Cedar City, Utah: 

Schroff  Development Corporation, 2003., I-9.

7.  This website has a very fl exible steel calculator, it allows you to choose from a list of 

common steel sections or create your own section; it will also allow you to choose 

diff erent metals to compare weight and costs:  “Steel Tools and Conversion Tables.” 

MEsteel.com. http://www.mesteel.com/start.htm (accessed 02/28, 2006).
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2.  The Smart Geometry Archive is an excellent online resource for GC related content.  
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The dynamic eff ects of change can be activated or 

deactivated, passive updates occur only when initiated by 

the user.

Mathematical equation, either single or string.

Conceptual software models.

They way in which Parts, Products and fi les are connected.

The act of submitting and receiving information.

A curve composed of control points and a knot vector— 

with a defi ned degree or order of curvature.

A surface composed of control points or BSpline curves—

with a defi ned degree or order of curvature.

Constraint based parametric modeling application.

Surfaces curved on more then one axis.

A single object or group composed of a part or parts that 

make up a particular building feature.

Breaking up a single object into smaller parts.

Objects compiled from Features within Generative 

Components—can also be a Feature itself.

A Generative Component with single or nested 

Components.

Systems that are altered by variation in  mathematical 

equations and GC Script code.

active or passive modeling 

environment

algorithm

application models

associativity

bidirectional

BSpline Curves

BSpline Surfaces

CATIA

complex curves

component

componentization

Components

Component System

computationally driven
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constraining

controller

customized software features

data-sets

design space exploration

development cycle

direct off set

embedded data-driven constructs

end struts

essential design tools

expressions

fabricator

facetization

Employing variable limits amongst modeling components.

Any Component (geometric or otherwise) that can be 

used to change the values of variable or GC.

High-level features, not low-level programming code.

Dense bodies of information.  These can be statistical, 

geometric or numerical.

Using digital design tools as a method of exploring spatial 

relationships.

Yearly production timelines that bring products to the 

consumer or end-user.

Off setting an object in a straight line of projection.

The act of instilling information that has the ability of 

driving or piloting design decisions.

The ends of the strut that connect to the ball joint.

Basic Features required for visually modeling three-

dimensional components—points, lines, arcs, etc.

Simple mathematical formulas that return a usable value.

The individual or organization converting the three 

dimensional model into data that can be used to generate 

physical scale models.

Partitioning a surface into coplanar or non coplanar shape 

facets—may be quadrilateral or triangular.
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Feature

form

framework

Generative Components

geometric

geometric versus application 

model

Graph Function

Graph Variable

greater accuracy

grid lines

information management

Also referred to as a Generative Component—it is a 

functional software component that is either built into GC 

or is created by the user.

Three dimensional geometry.

The base feature set of the Generative Components 

application.

Script/Transaction based parametric modeling application.

Geometric data created with a three dimensional 

modeling application.

A model made up of three dimensional data as opposed 

to the conceptual outline of a software application.

A Generative Components Feature that facilitates the use 

of customized C# programming scripts.

A GC Feature that may be used to control any value within 

a Generative Component through the Graph Variables 

interface.

Increased variation throughout the conceptual design 

process, increases the relevance and precision of the 

model as it relates to the designers intentions.

Paths used to optimize the location of structural 

components—do not have to be linear. 

Organizing drawing and related data in a coherent way 

and legible manner.
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intelligible

intelligent

instances

internal code

internal structure

Law Curve

library

machining

macros

manufacturing technologies

milling

modeling methodologies

network

normal

Clear, concise, and easy to understand.

Aware of the other Components in the immediate vicinity.

Duplicate items, identical in every way.

Platform specifi c code—GC Script.

Enclosed components supporting building.

A type of curve that can be used to generate variables that 

have the ability to drive values within a GC.

A collection of items that have been made available to the 

user to help facilitate the use of the tool.

Fabricating digital data into physical objects—traditionally 

machining involves working with metals.

Small scripts that automate repetitive tasks.

Technology that allows the designer to submit digital data 

so that it can be machined into physical objects.

Fabricating digital data into physical objects using a 

multiple axis router.

The act of establishing ideological software constructs; 

inventing conceptual frameworks.

Groupings or arrays of Generative Components.

A vector which is perpendicular to a surface.



object-orietned

Parts

parametric design tools

physical geometry

platform

pre-scripted elements

pre-release technologies

Product

Product Lifecycle Management 

(PLM)

programming

radians

robust

robustness

A type of programming structure, the ability to categorize 

objects within containers—a combination of code.

A type of component modeled in CATIA.  A portion or 

segment of a Product.

Software tools that facilitate the use of variables and 

equations to modify objects on global and discreet scales.

Geometry that has been drawn by executing a Transaction 

in Generative Components.

The object oriented .NET programming language 

developed by Microsoft for Windows.

Components that have been created by GC Scripts.

Also known as Alpha or Beta testing, involves testing 

products at their early stages, when they are highly 

unstable and feature lacking.

The root assembly object in CATIA.  A collection of Parts.

Increasing the longevity of a product through digitally 

detailing every aspect of its construction, making it easier 

to modify and release updated products.

Application independent code—may be dependant upon 

operating system.

A circular unit of measure.

A fl exible and powerful geometric entity.

An application that is robust exhibits indestructible 
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scalable content economy

scalar process

scripting

Script Transactions

Smart Geometry Group

Specifi cation Tree

static

streamlined components

structure

Sub-Components

surface off set variable

qualities of persistence, an application that is un-crashable.

Finding ways of conserving computing resources 

throughout effi  cient three dimensional modeling 

processes.

Breaking down the process into several more manageable 

parts, can be used to solve issues of complexity.

Also referred to as the Graphical User Interface.

Hold the data that is used to draw the three-dimensional 

geometry to the display.

A group of professionals and academics dedicated to 

advancing parametric technology through the unifi cation 

of practice and academia.

The Specifi cation Tree contains the history of tools and 

processes used to create a Part or Product.

Refers to CAD data that is not parametric.

Building components that have been resolved and 

refi ned—absolving building details of any unforeseen 

eccentricities.

The elements of the building that maintain its stability.

Nested Generative Components—Components within 

Components.

The Graph Variable created to control the distance 

of internal and external surfaces from the point of 

registration.
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Symbolic Graphs

system

top-level Components

Transaction File

tri-axial dynamism

user interface enhancement

variations

visual interface

Workbenches

workfl ow

Z-vector

A symbolic representation of the parametric relationships 

created in a Generative Components model.

Interconnected objects.

The root Component of a Feature that contains nested 

Generative Components.

The native fi le format for fi les created with GC.

Adding perceptual interest to the model by exploiting all 

three dimensions. 

Using the tools avaiable in Generative Components to 

create visual controllers that add to the UI experience.

Diff erent revisions of three dimensional geometry that are 

related to the same conceptual idea.

Also referred to as the Graphical User Interface.

Toolkits for three dimensional modeling—the way CATIA 

organizes user feature sets.

The process of establishing a sequence of events that is 

optimized for maximum effi  ciency.

The direction vector of the z-axis.
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