
Automated Selection

of Modelling Coordinates

for Forward Dynamic Analysis

of Multibody Systems

by

Mathieu Serge Léger
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Abstract

Modelling mechanical systems using symbolic equations can provide many advantages over

the more widely-used numerical methods of modelling these systems. The use of symbolic

equations produces more efficient models, which can be used for many purposes such as

real-time simulation and control. However, the number, complexity, and computational

efficiency of these equations is highly dependent on which coordinate set was used to

model the system.

One method of modelling a mechanism’s topology and formulating its symbolic equa-

tions is to model the system using a graph-theoretical approach. This approach models

mechanisms using a linear graph, from which spanning trees can be used to define a mech-

anism’s coordinate set. This report develops two tree selection algorithms capable of

estimating the tree set, and hence coordinate set, that produces models having the fastest

forward dynamic simulation times.

The first tree selection algorithm is a heuristic-based algorithm that tries to find the

coordinate set containing the minimal possible number of modelling variables. Most of this

algorithm’s heuristics are based on tree selection criteria found in the literature and on

observations of a series of benchmark problems. It uses the topology information provided

by a system’s graph to find the coordinates set for the given system that produce very low

simulation times of the system.

The second tree selection algorithm developed in this report also uses graph theory. It

bases most of its heuristics on observations of one of the methods developed to obtain a

mechanical system’s symbolic equations using graph theory. This second algorithm also

makes use of, and improves upon, a few of the heuristics developed in the first tree selection

algorithm.

A series of examples for both algorithms will demonstrate the computational efficiency

obtained by using the modelling variables found by the automated tree selection algorithms

that are proposed in this report.
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Chapter 1

Introduction and Literature Review

1.1 Background

There exist a number of techniques for automatic modelling of the kinematics and dynamics

of multibody systems. Most techniques, such as the ones used by software packages such

as ADAMS, DADS and Working Model, rely heavily on numerical methods to model such

systems. These techniques model a mechanical system in a relatively simple, generalized,

and inefficient manner, such as using Absolute Coordinates. This results in the need to

use very large numerical matrices that must be re-evaluated for each time step in order

to simulate a mechanical system. Because of this, these numerical methods are often slow

and cumbersome. Furthermore, they keep the system model hidden from the user, who is

only provided with numerical results.

Another technique that can be used to model a mechanical system is to find the sys-

tem’s governing equations in a symbolic form (e.g. hand derivation). Mechanical systems

are modelled with two types of equations, kinematic and dynamic equations. Kinematic

equations are non-linear algebraic equations used to describe the constraints existing be-

tween the different coordinates of the system. Dynamic equations, on the other hand, are

differential equations that keep track of the forces within the system. Together they form

a set of DAEs (Differential Algebraic Equations). Unlike the numerical models presented

above, these equations only need to be formulated once and are valid at every time step,

1
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which can lead to models that are much more efficient. In this case and throughout this

report, an efficient model will be considered as a model for which the simulation time is

minimized when solved using a standard numerical approach.

The generation of symbolic equations can be simplified and multiplications by zero or

one can be eliminated from the equations. Furthermore, a mechanism’s symbolic equations

can be sent to code generation optimization routines, later referred to as code optimization,

capable of restructuring the computation sequence of the procedure code containing the

equations so that repeated terms only need to be evaluated once. These techniques can help

increase the computational efficiency of the mechanism’s model and hence helps reduce its

simulation time.

The added efficiency of using symbolic equations to model mechanical systems makes

them essential for real-time simulations. Furthermore, mechanism models that are com-

posed of symbolic equations are rather small in size compared to their numerical counter-

parts that have to save large matrices of numerical values. The combination of fast simu-

lation time and minimal storage makes symbolic models ideal for implementation within a

mechanism’s control algorithm. Furthermore, these same characteristics make it possible

to create much more complex and complete models capable of simulation times that are

equal to numerical models where many features such as friction and contact models are

omitted for the sake of model efficiency.

Finally, since the system’s equations are not hidden from the user, he can gain further

insight on the model’s characteristics by observing and dissecting its equations. In addi-

tion, since symbolic models are used in most physics and dynamics courses at school and

university, the pedagogical aspect of these equations can not be overlooked.

Traditionally, these symbolic models were derived by hand - a process that was both

tedious and error-prone. This is especially true in the field of robotics where a manipulator’s

symbolic equations can prove quite useful. Many methods of deriving symbolic equations

of individual complex manipulators, especially parallel manipulators, have been developed

over the years, such as the Stewart-Gough model developed by Liu et al. [17].

To eliminate the need of such complex hand derivations, methods of automating the

formulation of a mechanism’s symbolic equations have been developed [1, 15, 16, 19, 31].

Many of these methods are based on the use of graph methods such as Bond Graphs and
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Linear Graphs. This report will focus on the latter of these techniques.

Since one of the primary objectives of modelling mechanical systems using its symbolic

equations is to generate efficient simulations, a large amount of care must be taken to

ensure that every possible method of model simplification is considered when generating

such models. Methods of equation simplification and code optimization can be performed

after the formulation of a given model’s symbolic equations. Moreover, one can also focus

one’s attention on methods that can be used prior to the formulation of the mechanism’s

symbolic equations to ensure that these equations will be generated in the most efficient

form possible.

When generating a set of symbolic equations used to model mechanical systems, a set

of coordinates or modelling variables, in which these equations will be formulated, must be

chosen. The chosen coordinates can be directly related to the number and complexity of the

equations selected. Because of this, it is extremely important to choose coordinates wisely.

The present report will focus on the automated selection of a mechanism’s coordinate set

so that the simulations of this mechanism can be very efficient.

1.2 Literature Review

Most of the commercial software used to model mechanical systems, such as DADS, Adams

and Working Model, use Absolute Coordinates [8] to model these mechanical systems. In

this coordinate set, the position and orientation of each body is described relative to the

global (also called ground) reference frame. For general spatial systems, this results in each

body’s translation being modelled by its three Cartesian Coordinates (xi, yi, zi) relative to

the global reference frame. Its rotation is modelled by three rotations relative to the global

reference frame (ζi, ηi, xi), which can take a few different forms, such as the various types

of Euler angles.

This coordinate set is generally used because the formulation of kinematic and dynamic

equations is easily programmable when the system is modelled using these coordinates and

it does not require intelligent coordinate selection.

However, this coordinate set models mechanisms using a very large number of modelling

variables. Mechanical models require the use of one dynamic equation for each modelling
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variable and require n − DOF number of kinematic equations, where n is the number of

variables used to model the system and DOF represents the system’s degrees of freedom.

The degrees of freedom of a system is the number of independent displacements that have

to be specified in order to locate all parts of the mechanism. Modelling a system using

the large number of modelling variables required by Absolute Coordinates results in the

mechanism being modelled using a very large number of dynamic and kinematic equations.

Solving all of these equations simultaneously is slow and inefficient.

Other methods of modelling mechanical systems use Joint Coordinates. This coordinate

set describes the position and orientation of a body relative to its adjacent body in the

system, which results in the variables of the various joints in the system being used to

model the system. Joint Coordinates often prove more efficient than Absolute Coordinates,

since it models the system using fewer coordinates, thus necessitating fewer equations.

For example, when using Joint Coordinates to model serial mechanisms, the number of

modelling variables equals the system’s DOF. However, the equations generated using

Joint Coordinates are generally more complex in nature than the many equations used in

the case of Absolute Coordinates. The equations generated using Joint Coordinates are

also more highly-coupled.

In systems having closed-loops, the values of some joint variables depend on the values

of other joint variables. Wittenburg [31] used the concept of cut-joints to deal with this

problem. In this method, a joint variable is removed from the modelling variables of each

closed-loop in the system. Then, all the constraints and all the inertial joint forces are

re-introduced in the system thus generating a series of kinematic equations (also called

constraint equations) to be solved simultaneously with the system’s dynamic equations.

To insure the selection of appropriate cut-joints from a mechanism’s model, Wittenburg

[31] created a linear graph model of the system. A linear graph is a series of nodes connected

together by edges. In this graph, he depicted the mechanism’s bodies as nodes and depicted

each of the system’s joints as edges relating these nodes together. The use of graph theory

to model mechanical systems was first proposed by Andrews and Kesavan [1], who used

graph theory to model multidimensional particle mass systems. This theory was improved

by many subsequent authors and was eventually generalized to model spatial multibody

systems of rigid bodies [16, 19, 31]. In graph theory, a spanning tree, often shortened to
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simply tree, is a series of edges that connect to every node but do not form a closed-loop.

Every edge not found in the tree is considered in the co-tree. Wittenburg stated that the

Joint Coordinates generated by the variables found in each edge of a system graph’s valid

tree constitutes a set of suitable Joint Coordinates, with the edges in the cotree being

appropriate cut-joints.

Wittenburg also established a criterion for coordinate selection that stated that the

systems using the fewest number of modelling variables, and hence the fewest number of

system equations, will result in the most efficient coordinate set, since each equation will

add extra complexity to the model. He used this criterion to establish a method of selecting

appropriate cut-joints/cotree edges by proposing that the joint having the fewest number

of constraints should be used as cut-joints, since this would result in fewer kinematic

equations used to model the system. However, Wittenburg did not propose any criteria

for choosing between joints with a similar number of constraints.

Li and Andrews [16] also used a graph-theoretical approach to model mechanical sys-

tems. However, as opposed to Wittenburg, they used separate graphs for translation and

rotation, and hence separate trees, to model mechanical systems. They also added body

edges, which related each body node to the ground, in their graphs. This had a large effect

on coordinate selection, since it was now possible to select body edges in the tree and

hence model the systems using Absolute Coordinates. Furthermore, it allowed different

cut-joints to be selected for translation and rotation.

As a coordinate selection criterion, Li and Andrews also used the criterion of selecting

a minimal set of modelling coordinates to model the system. They provided a list of edges

to be placed in the tree and cotree of each of the two graphs. This list took advantage

of the dual trees. For example, it placed the revolute joints in the translational tree, as

they do not include modelling variables in translation. It placed these revolute joints in

the rotational graph’s cotree because, in this case, it would include one modelling variable

to the system if it were not used as the cut-joint.

However, Li and Andrews’s tree and cotree lists only deal with planar systems and are

rather strict, requiring certain edges to always be in the tree or cotree with sometimes

conflicting results. It also strayed from the use of Joint Coordinates by always placing

body edges in the rotational tree and revolute joints in the rotational cotree.
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Later, Huston et al. [9] analysed the efficiency of the use of Absolute Coordinates to

model multibody systems. They found that models of planar systems and spatial systems

composed of purely spherical joints could be simulated more efficiently if they were mod-

elled using Absolute Coordinates for rotation and Joint Coordinates for translation. This

set of coordinates is called Absolute Angular Coordinates. The improved efficiency obtained

by Absolute Angular Coordinates justifies Li and Andrews’s choice of using body rotation

variables instead of the rotation variables of revolute joints to model planar systems. It also

shows that the selection of the most efficient set of coordinates is more complex than sim-

ply selecting appropriate Joint Coordinates because other coordinate types can prove more

efficient. Finally, Huston et al.’s findings agree with the general concept that modelling sys-

tems with the fewest possible modelling variables produces more efficient simulations since

the use of Absolute Coordinates in the circumstances they described also use a minimal

set of coordinates.

In this same year, Fayet and Pfister [5] established a more general set of modelling

coordinates for open-loop systems called Indirect Coordinates. In this set of coordinates,

the motion of each of the system’s frames can be described relative to any other frame

in the system. The “joints” used to measure the relative motion of two frames where no

actual joint exists were called virtual joints.

Fayet and Pfister showed that for three specific system geometries, the use of some

Indirect Coordinates can result in very efficient system models. They first showed that if

two revolute joints have parallel axis, it is best to measure the rotation of the distal frame

of the distal joint relative to the proximal frame of the proximal joint, where the term

distal signifies farther from the ground, while the term proximal signifies closer to ground.

Secondly, they extended this rule to two prismatic joints with parallel axes. In this case

as well, it is preferable to measure the displacement of the distal frame of the distal joint

relative to the proximal frame of the proximal joint. Finally, Fayet and Pfister noted that

it is better to model the distal body attached to a spherical joint using Absolute Angular

Coordinates as Huston et al. [9] had concluded. Indirect Coordinates were later extended

to closed-loop systems by Redmond and McPhee [25].

Once again, the situation in which Fayet and Pfister demonstrated the added efficiency

of Indirect Coordinates fell within the concept of selecting a minimal set of modelling
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coordinates.

There also exists a coordinate set called Natural Coordinates [3], as well as its closely re-

lated Point Coordinates [23]. These coordinates use the Cartesian Coordinates of points for

planar mechanisms or unit vectors in spatial mechanisms, placed at various strategic points

on the mechanism’s bodies to model the system in purely Cartesian Coordinates. In an

analysis done by Unda et al. [29], planar mechanisms modelled using Natural Coordinates

are shown to produce more efficient simulations than those modelled using Absolute Co-

ordinates. However, the use of purely Cartesian Coordinates can prove cumbersome when

dealing with angular quantities. These coordinate sets usually model mechanical systems

with a number of modelling coordinates that is higher than those of Joint Coordinates and

lower than those of Absolute Coordinates.

In addition, there exist some authors [12, 20] who have proposed coordinate sets using

velocity transformations. These methods express the system’s symbolic equations relative

to velocities, found through the use of velocity transformations, that are not the direct time

derivatives of the position variables used to model the system. These coordinate sets can

be shown to produce more efficient simulations if the velocity transformations are selected

wisely.

McPhee [19] also developed a graph-theoretical approach to model multibody systems.

As with Li and Andrews [16]’s technique, McPhee used two graphs to model mechanical

systems, one for rotation and one for translation. McPhee also established a list of edges

that should be found in the trees of planar mechanisms. Unlike Li and Andrews’s lists,

McPhee’s list did not force any edge in the tree or cotree and simply provided lists of the

graph’s edges in the order in which they should be selected in the trees. The tree selection

preference lists developed by McPhee were also based on the selection of a coordinate set

having a minimal set of modelling variables. As with all previous coordinate selection

criteria, no guidelines are given in order to distinguish between coordinate sets having the

same number of modelling variables to the system.

McPhee [19] introduces the term Branch Coordinates to refer to the coordinate set

obtained by the selection of appropriate trees from the system’s graphs. He later gener-

alizes his tree edge preference list to spatial systems [18] and Redmond and McPhee [25]

demonstrate the possibility of adding virtual joints to mechanisms modelled using a graph-
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theoretical approach. This allows the selection of Branch Coordinates corresponding to the

Indirect Coordinates proposed by Fayet and Pfister.

The only fully automated coordinate selection algorithm was developed by Kim and

Vanderploeg [12] who, like many others, looked into the selection of the system’s coordi-

nates using graph theory to enforce a minimal modelling variables approach to coordinate

selection. To every edge representing a joint in the graph, Kim and Vanderploeg gave a

weight corresponding to the number of modelling variables of the edge. They then used

a minimal spanning tree algorithm developed by Kevin and Whitney [11] to find the tree

with the minimal weight.

However, this algorithm is very limited. First of all, as with Wittenburg’s tree selection

criterion, Kim and Vanderploeg’s algorithm selects a coordinate set having the fewest mod-

elling variable. However, Kim and Vanderploeg’s algorithm is incapable of distinguishing

which coordinate set is the most efficient among coordinate sets composed of the same

number of modelling variables and in such cases it simply selects one at random. This

problem is not trivial since many mechanical systems can be modelled with a large number

of possible coordinate sets each having the same low number of modelling variables.

Secondly, Kim and Vanderploeg’s algorithm was used strictly under the context of Joint

Coordinates. This is because their graph edges only represent joints and as such they do

not relate every body to the ground with an edge as done by Li and Andrews [16] and

McPhee [19]. Also, there are no virtual joints present in Kim and Vanderploeg’s models.

Furthermore, one single graph was used in their coordinate selection algorithm. This does

not allow a separation of the coordinate selection process into rotation and translation such

as the ones proposed by Li and Andrews, and McPhee.

1.3 Thesis Goals and Structure

From the analysis of the previous section, it is clear that there is no coordinate type that

always produces the most efficient simulations and that different mechanical systems will

benefit differently from each coordinate set mentioned.

Also, much of the literature deals with the advantages and disadvantages of one partic-

ular type of coordinate set. There is very little documentation of how various coordinate
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sets can be used in conjunction, or how the formation of a hybrid coordinate set affects

the system equations.

However, one coordinate selection criterion that seems to be generally accepted is the

fact that modelling a system with the minimal set of modelling coordinates will require

fewer equations and will hence provide more efficient simulations. This concept was even

the basis for the only known fully automated coordinate selection algorithm [12] developed

thus far. However, it can be noted that this criterion has not been extensively studied and

no mathematical proof of its validity has been established.

Furthermore, no general criteria is ever given in order to select between sets of coor-

dinates comprised of the same number of modelling variables. However, the studies made

of various specific coordinate sets, as well as comparison studies between these coordinate

sets [5, 9, 25, 29], could probably shed some light on this problem and help to establish

such criteria.

Linear graph theory has been widely used when trying to establish coordinate sets. This

is because linear graph theory provides information on a model’s topology. Topology refers

to how a system’s various components are connected together. This topology information

proves to be crucial to proper coordinate selection. For example, graph theory is capable of

identifying closed kinematic chains within a system. It also provides methods, such as tree

selection [12], capable of properly identifying the number of closed chains and indicating

potential locations one can divide these chains for proper system analysis.

Another great advantage of methods using linear graph theory to model mechanical sys-

tems is that the formulation of the equations can be automated by using graph-theoretical

techniques. This saves countless time and energy that would be required to formulate the

symbolic equations of many mechanical systems for many different coordinate sets required

when establishing tree selection criteria and coordinate selection algorithm validation. Fi-

nally, these methods are often very flexible and allow the possibility of modelling systems

using many different coordinate sets as well as allowing mechanisms to be modelled using

hybrid coordinate sets.

From the graph-theoretical methods capable of modelling mechanical systems, Mc-

Phee’s method [19, 25, 26] seems to provide the most broad and flexible coordinate se-

lection properties. This method is presently capable of modelling systems using Absolute
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Coordinates, Joint Coordinates, Absolute Angular Coordinates, Indirect Coordinates as

well as combinations of these coordinates [25].

The goal of this research will be to develop a tree selection algorithm capable of quickly

and efficiently selecting coordinates that are as close to the system’s optimal coordinates

as possible. Here, the term optimal coordinates shall be used to define the coordinates that

provides the most efficient simulations (simulations having the lowest solution times) for a

given model and which are included within the coordinate sets considered in this report.

These new tree selection algorithms will be developed using a graph-theoretical ap-

proach similar to Kim and Vanderploeg’s [12] coordinate selection algorithm. In other

words, the coordinates selection shall be done by the selection of minimal spanning trees

from the mechanism’s graphs. This shall be done within the context of McPhee’s graph-

theoretical approach to modelling mechanical systems [19, 25] since it seems to provide the

broadest and most flexible coordinate selection properties.

The selection of McPhee’s graph-theoretical approach will not allow the selection of

purely Cartesian coordinate sets such as Natural and Point Coordinates. Furthermore,

velocity transformation methods shall be beyond the scope of this report; though, these

are included within McPhee’s approach by the selection of different trees at the position

and velocity levels.

The major types of analyses that are typically performed on models of mechanical

systems are kinematic, static, inverse dynamic, and forward dynamic simulations. Of

these, the forward dynamic analysis, which requires the calculation of the mechanism’s

motion when forces are applied to the mechanism, is the slowest and most computationally

intensive. This is because it requires the simultaneous solution of the system’s complete

set of DAEs. For these reasons, the coordinate selection algorithm developed in this report

will focus on improving the simulation efficiency for forward dynamic simulations.

This report will be divided in five chapters of which the present chapter is the first.

Chapter 2 will present an overview on the use of graph-theoretical methods of formulating

mechanical system’s symbolic equations. In this chapter, a particular attention will be

placed on the methods used by McPhee [19], since this is the equation formulation that

shall be utilized throughout this report.
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The two following chapters will each present a proposed tree selection algorithm. Chap-

ter 3 shall present a method based on tree selection criteria found in the literature as well

as heuristics based on simulation observations of multiple benchmark problems and will be

called the Variable-Based Coordinate Selection. This method shall use the concepts of Kim

and Vanderploeg’s tree selection algorithm [12] as a basis for its development. Chapter 4

will present a second tree selection algorithm based on the equation formulation procedure

used by McPhee [19] to formulate a mechanism’s symbolic equations using graph theory.

This tree selection method shall be called the Formulation-Based Coordinate Selection.

Chapter 5, the final chapter of this report, will present conclusions and discuss the

results obtained in this report. It will also contain suggestions for future work in the field

of coordinate selection.



Chapter 2

Multibody System Dynamics

This chapter presents a short overview of how the symbolic equations of multibody systems

are obtained using graph theory. First a brief description of graph theory as applied to

mechanical systems is presented. To illustrate this concept, an example will be presented

in parallel with the theory. Finally a brief description of a computer implementation of the

symbolic equation formulation method for mechanical systems discussed in this chapter

will be presented.

2.1 Graph Theory Applied to Mechanical Systems

In this report, mechanical systems are modelled using graph theory [19]. Graph theory is

a method that is used to describe a system’s topology and then uses this description to

systematically obtain the system’s symbolic equations. To accomplish this, the topology of

the system is described using nodes and edges. Nodes are schematically represented by dots

and, in mechanical systems, represent body-fixed reference frames. Edges are schematically

represented by arrows that connect two nodes together. In mechanical systems, an edge

represents a component of the system and defines the allowable motions and forces between

the two reference frames it connects.

Some of the components, or edge types, used to model mechanical systems are as

follows:

12



Multibody System Dynamics 13

Rigid Body Elements (m): Body elements start at the ground node and end at the

node representing a reference frame at the center of mass of a rigid body. The body

element contains the information necessary to describe the body, such as its mass

and inertia matrix.

Rigid Arm Elements (r): Arm elements are used to define new reference frames, rela-

tive to the mass center frame, at fixed locations on a rigid body. They start at the

center of mass node of the body and end at the desired node (reference frame).

Joint Elements: Joint elements define the allowable motions between two bodies com-

prising a kinematic pair. There is a different edge type for each different joint. The

joint elements considered in this report are: revolute joints (h), prismatic joints (s),

universal joints (u), spherical joints (b), planar joints (p), cylindrical joints (c), weld

(0- Degree of Freedom (DOF)) joints (w), free (6-DOF) joints (fr), and XYZ (3-DOF)

translational joints (tr).

Motion Drivers (md): This component is used to define a prescribed motion between

two nodes.

Force/Torque Drivers (fd/td): This component is used to define forces and torques

between two nodes.

Spring-Damper-Actuators (SDA): This component represents a spring, damper, and

force/torque actuator that act in parallel between two reference frames.

An example of how a mechanism’s graph is created is depicted in Figures 2.1 and 2.2,

where Figure 2.2 presents the graph of the slider-crank mechanism shown in Figure 2.1.

The graph edges m1-m3 represent the three rigid bodies in the mechanism. The edges

r4-r7 are used to define the positions, relative to the body’s center of mass frame, where

the joints are connected to each of the bodies. The edges h8-h10 characterize the three

revolute joints in the system, while the edge s11 represents the prismatic joint connecting

the third body to the ground. Finally, the edge td12 represents the torque applied to the

first body, the crank.
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Figure 2.1: Slider-crank mechanism.

Figure 2.2: Linear graph of the slider-crank mechanism.
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There are two important types of subsets used in graph theory. The first type is called

a circuit and is composed of a series of edges connected together to form a closed-loop. In

the graph found in Figure 2.2, the edges m1, r4 and h8 form a circuit.

The second subgraph of importance is called a cutset. A cutset consists of a series of

edges that, if removed, would separate the graph in two unconnected parts. A cutset also

has the restriction that no subset of this subgraph possesses the property of separating the

graph in two unconnected parts. The subgraph created by the edges m2, h9 and h10 in

the graph found in Figure 2.2 are a good example of a cutset. If these edges were removed

the graph would be divided into two unconnected sections because the section consisting

of edges r6 and r7 would be separated from the rest of the graph.

In graph theory there are across variables and through variables associated with each

edge. In the case of a mechanical system, the across variables are vectors representing the

relative position, velocity, and acceleration of the two nodes that the edge connects. These

variables are divided into the translational and rotational domains. In the translational

domain, the across variables are expressed as the vectors ~r for displacement, ~v for velocity,

and ~a for acceleration.

In rotation, there exists one notable exception to the use of vectors as across variables.

In this case, due to the fact that rotations are non-commutative, rotation matrices are

used to describe rotation. In this report, a rotation matrix is expressed by the symbol

[R(θ1, θ2, θ3)], where θ1, θ2, and θ3 are the variables representing each of the three possi-

ble rotations. In the case where an edge allows fewer than three rotations, the symbols

[R(θ, û)] and [R(θ1, θ2, û1, û2)] are used to represent rotation matrices that define rotations

about one and two axes respectively. Here, the unit vectors about which the rotations

occur are expressed by û. These rotation matrices can represent body-fixed or space-fixed

rotations. Rotational velocities and accelerations, on the other hand, are commutative and

can therefore be expressed in vector form as ~ω and ~α respectively. Finally, the vector space

spanned by the time-variant across variables is called the motion space of the edge (e.g. û

for rotation about a single axis).

Through variables are vectors representing the relative forces and torques between the

two nodes that the edge connects. These can also be divided into the translational and

rotational domains as force vectors ~F and torque vectors ~T respectively. The reaction space
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of the edge can be defined as the vector space spanned by these through variables.

The through and across variables are regulated by two postulates. The first postulate,

known as the Circuit Postulate, stipulates that the directed sum of the across variables

in any circuit must equal zero, where the term directed sum refers to the fact that each

edge’s orientation is taken into account during the summation. Once again, there is one

important exception to this postulate in the case of rotations. In this case, since rotations

are not expressed by vectors, instead of adding the rotation matrices in a circuit, the

product of these matrices in the order in which they appear in the circuit is used instead.

An example of the application of the circuit postulate in the context of displacements on a

circuit of the slider-crank graph (Figure 2.2) is presented in equation (2.1). When dealing

with rotations, the application of the circuit postulate on this same circuit changes to the

form shown in equation (2.2), where ~r1, ~r4, ~r8 represent the displacement vectors associated

to the edges r1, r4 and r8 respectively. The rotation matrices of the edges r1, r4 and r8 are

represented by [R1], [R4] and [R8] respectively and [I] represents an identity matrix. The

rotation matrix [R8] is transposed in equation (2.2) due to the fact that edge r8 point in the

opposite direction than the edges r1 and r4 in the circuit (shown in equation (2.1) by the

minus sign before the vector ~r8). In mechanical systems the Circuit Postulate corresponds

to the summation of vector displacements (or velocities, or accelerations) that should be

equal to zero for any given closed kinematic chain. The equation obtained by applying the

Circuit Postulate to a circuit subset found in the graph is called a circuit equation.

~r1 + ~r4 − ~r8 = 0 (2.1)

[R1][R4][R8]
T = [I] (2.2)

The second postulate is called the Vertex Postulate and states that the directed sum of

the through variables at each node must equal zero. From the point of view of mechanical

systems, this postulate simply ensures that at every node in the model, the sum of the

forces, as well as the sum of the torques, will equal zero. The Vertex Postulate can be

generalized to stipulate that the directed sum of the through variables of the edges in

a cutset equal zero. This wider definition of the Vertex Postulate allows one to get the

dynamic equilibrium for any body or combination of bodies of a mechanical graph. The
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equation obtained by applying the Vertex Postulate to a cutset in the graph is called a

cutset equation.

Finally, each edge is assigned terminal equations, determined from experiments, that

regulate the edge’s across and through variables and their relationship to each other. The

terminal equations associated with four of the most commonly-used components are pre-

sented in Appendix B.

2.2 Spanning Trees

The two postulates presented above, combined with the terminal equations of each edge,

are sufficient to form a set of equations capable of obtaining a system’s symbolic equations.

However, to automate the extraction of a system’s symbolic equations, some type of formu-

lation procedure, which organizes the application of each postulate and terminal equation,

must be used. There exist a few different formulation procedures such as the nodal formu-

lation [13], the branch-chord formulation [19] and the tableau methods of formulation [15].

In this report, the branch-chord formulation procedure, which is based on the selection of

a spanning tree, will be used. This will be augmented by orthogonal projection techniques

to eliminate non-working constraint reactions, which was developed by McPhee [19] and

will be presented in detail in Section 2.3. A graph-theoretical approach based on analytical

mechanics (i.e. virtual work) was also developed by Shi and McPhee [26]. This method

is especially useful when trying to model mechanisms with flexible bodies. However its

development shall not be demonstrated in this report.

A spanning tree, simply referred to as a tree, is a series of edges, called branches, that

reach all the nodes in the graph without forming a closed-loop. All edges not included in

the tree are called chords and form the cotree. In mechanical systems there are two trees,

one for translation and one for rotation. An example of the trees that can be selected

for the slider-crank depicted in Figure 2.1 are shown in Figures 2.3 and 2.4, where the

branches are depicted in bold. When the system’s governing equations are derived using a

certain tree, the equations of motion of this system will be expressed relative to the branch

across variables and the chord through variables, which together are called the primary

variables. In contrast, the branch through variables and the chord across variables are called
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secondary variables. This implies that, when using graph theory to model a mechanical

system, optimal coordinate selection is accomplished by selecting the optimal trees for the

system.

Figure 2.3: A translational tree of the slider-crank mechanism.

Figure 2.4: A rotational tree of the slider-crank mechanism.

Once a tree is established for a given graph, a new type of circuit and cutset, called

fundamental circuit (f-circuit) and fundamental cutset (f-cutset), can now be defined. An

f-circuit is a circuit that consists of one single chord and a series of branches. There exists

one unique f-circuit for each chord in the graph. The equation obtained by using the

f-circuit equation to express the chord’s across variables as a function of branch across

variables is called the branch transformation equation. On the other hand, an f-cutset is

a cutset composed of a series of chords and one single branch. There exists one unique
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f-cutset for each branch in the graph. The equation obtained by using the f-cutset equation

to express the branch’s through variables as a function of chord through variables is called

the chord transformation equation.

A typical method used to select a tree is to use a weighted graph and to find the

tree having the minimal weight, called a minimal spanning tree. A weighted graph is a

graph for which each edge is assigned a weight based on how advantageous it is to put

the given edge in the tree. The edges with the lowest weights are the ones that are the

most advantageous to put into the tree. When modelling mechanical systems, there will

be two different weighted graphs constructed for each system, one for translation and one

for rotation. This will enable the selection of distinct translational and rotational trees.

There exist three major minimal spanning tree algorithms that are commonly-used and

upon which many subsequent tree selection algorithms are based. These algorithms are

Boru̇vka’s algorithm [22], Kruskal’s algorithm [14] and Prim’s algorithm [24].

Boru̇vka’s algorithm [22] is based on the premise that for every node in the system, the

edge with the lowest weight attached to the given node is selected as a branch. This is

done without taking into account if this edge was already placed in the tree by other nodes.

If this does not immediately result in a valid tree for the graph, all the nodes related to

each other by tree edges form what are called super nodes. Then the lowest weight edge

connecting super nodes to each other is placed in the tree. This process continues until a

final tree is selected.

A simple example of this process can be seen in Figure 2.5(a), where the number found

next to each edge corresponds to this edge’s weight. In the first step of Boru̇vka’s algorithm,

the node A adds edge BA to the tree since this is the minimal weight edge to which it

is connected. In a similar fashion node B adds the same edge to the tree, node C adds

edge CB and nodes D and E add edge DE. The resulting tree is shown in bold in Figure

2.5(a). However, this is not a valid tree since a tree must be a connected graph. The term

connected graph refers to a graph where each node found in the graph can be related to any

other node in the graph by a series of the graph’s edges. In order to find a valid tree, nodes

A, B, and C, which are connected together by tree edges, are grouped into super node F

and nodes D and E are grouped together to form the super node G as shown in Figure
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2.5(b). Super node F then adds edge CD to the tree, since the edge AC is considered

part of the super node F. Finally the super node G adds the same edge to the tree, thus

resulting in the minimal weight tree of the graph.

(a) (b)

Figure 2.5: A tree selection example.

Kruskal’s algorithm [14] takes a different approach to tree selection. This algorithm

progressively adds to the tree the lowest weighted edge not already in the tree whose two

nodes are not found in the same tree section (a series of branches forming a connected

graph). This is done repeatedly until a valid tree is selected.

Once again referring to Figure 2.5(a), the first edge that would be added to the tree

would be edge BA since it has the lowest weight. The next edge added would be edge

BC. At this stage it is important to note that edge AC can no longer be placed in the tree

because both its nodes are part of the same tree section composed of the nodes A, B, C

and their connecting tree edges. Because of this, the next edge selected in the tree will be

the edge DE, which will provide the tree demonstrated in bold in Figure 2.5(a). Finally,

the last edge to be added is the edge CD, since it has the lowest weight and has nodes in

two different tree sections.

Prim’s algorithm [24] starts by placing one of the graph’s nodes in the tree. From there,

the potential edges are found. The potential edges are edges already connected to one node

in the tree and one node not yet in the tree. Of these potential edges, the one with the

lowest weight is placed in the tree (as well as its nodes). This process continues until a

valid tree for the graph is found.

Taking the same graph used to demonstrate the two other algorithms found in Figure

2.5(a), the first step is to place the node A in the tree. This node was selected randomly
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since any of the graph’s nodes can be placed in the tree in this first step. From there the

potential edges consist of edges AB, AC and AD of which the edge AB is placed in the

tree. Now the potential edges are BC, AC, and AD of which edge BC is placed in the tree.

This same process is repeated adding the edge CD and finally the edge DE to the tree.

Minimal spanning tree algorithms require the assignment of appropriate weights to

each edge of the graph. This aspect of tree selection proves to be complex in the case of

mechanical systems, and will be a major focus of subsequent chapters of this report.

There exist other minimal spanning tree methods not presented above, some of which

have improved solution time, especially for large graphs. Graham and Hell [7] give a

particularly good overview of these methods spanning from Boru̇vka’s’s algorithm, the first

known minimal spanning tree algorithm, to the invention of Fibonacci heaps. However,

in the case of mechanical systems, whose graphs are relatively small, the solution time of

such systems using the three algorithms presented above is already sufficient for our needs.

There are also other tree selection methods than the minimal spanning tree that can

be used to select valid trees from graphs. For example there exist algorithms, such as

Dijkstra’s algorithm [4], which are capable of finding the shortest path between every node

in the graph and, while doing so, they find a valid tree whose branches are the edges

used by all these paths. For the time being, we shall not look into the details of other

tree selection methods and algorithms. If, during the establishment of an appropriate

tree selection algorithm for mechanical system, a certain tree characteristic requires a tree

selection method with specialized features, these algorithms shall be discussed at this time.

2.3 Generating the System’s Equations

Once a tree is selected, the formulation of the system’s symbolic equations can be auto-

mated by four steps, developed by McPhee [19] and described below.

Step I

The first step is to obtain the dynamic equations of the system. These equations are gen-

erated by projecting the f-cutset equations of the bodies, passive joints, and the forces/tor-
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ques in the trees onto their motion space. By projecting these equations onto their motion

space, the reaction forces and torques of passive kinematic constraints are eliminated. This

will generate one dynamic equations for each of the n coordinates in {q}, where {q} rep-

resents the column matrix containing a given system’s modelling variables. In the case

of the trees selected in Figures 2.3 and 2.4, the coordinates of the systems will take the

form {q} = [β8, β10]
T . Generally, the dynamic equations equations generated in this step

will not correspond to the final form of the dynamic equations as they usually still include

secondary variables that will be eliminated in subsequent steps of the equation formulation

procedure.

To illustrate this process, the result of the first step when applied to the slider-crank

depicted in Figure 2.3 and 2.4, is given in the following equations:

(~T1 + ~T8 − ~T9 + ~T12) · k̂G = 0 (2.3)

(~T2 + ~T9 + ~T10) · k̂G = 0 (2.4)

where ~Ti represents the torque vector of the ith edge and k̂G represents a unit vector along

the ground reference frame’s Z axis.

These two equations were obtained from the f-cutset equations of the edges h8 and h10

in rotation. In this case, none of the translational branches generate dynamic equations

since none of them have any translational motion space. After substitution of the terminal

equations presented in Appendix B, the equations (2.3) and (2.4) become:

(−~~J1 · ~α1 − ~ω1 ×
~~J1 · ~ω1 − l4ı̂1 × ~F4 − l5ı̂1 × ~F5 + ~T8 − ~T9 + ~T12(t)) · k̂G = 0 (2.5)

(−~~J2 · ~α2 − ~ω2 ×
~~J2 · ~ω2 − l6ı̂2 × ~F6 − l7ı̂2 × ~F7 + ~T9 + ~T10) · k̂G = 0 (2.6)

where
~~Ji represents the inertia dyadic of the body represented by the edge mi and ~ωi, ~αi

represent the rotational velocity vector and rotational acceleration vector of the ith edge.

The terms li represent the length of the arm element ri, while the term ~Fi represents the

force vector associated to the ith edge. The terms ı̂i represents the unit vector along the

the ith edge’s end node’s local X axis. Finally, ~T12(t) represents the user-defined torque of

the torque driver represented by the edge td12.
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The symbols depicted in bold are the secondary variables. This was done in order to

help clarify the substitutions of secondary variables that will be performed throughout the

equation formulation procedure. As mentioned previously, the equations (2.5) and (2.6)

still include secondary variables such as the body rotational velocities and accelerations as

well as the arm forces.

Step II

The second step consists of acquiring the system’s kinematic equations, which are gener-

ated by obtaining the fundamental circuit equations for each chord having active or passive

constraints and projecting them onto their reaction space. The number of kinematic equa-

tions will be equal to the number of modeling variables n minus the number of degrees of

freedom possessed by the mechanical system. Once the terminal equations are substituted,

these equations correspond to nonlinear algebraic equations that are functions of time. As

with the dynamic equations, these equations generally still contain secondary variables

that will be eliminated in the next step of the equation formulation procedure.

The kinematic equation for the slider-crank depicted in Figure 2.3 is obtained by using

the fundamental circuit equation of s11 in translation and is given in equation (2.7). This

fundamental circuit equation should also be projected onto the prismatic joint’s second

reaction vector (k̂G). However, since this mechanism is planar, projecting the translational

fundamental circuit equation onto k̂G will give a kinematic equation that can be simplified

to 0 = 0. This is also true for the projection of the fundamental circuit equation of h9 in

the rotational cotree onto its reaction space.

(~r4 − ~r5 + ~r6 − ~r7 − ~r8 − ~r9 + ~r10) · ̂G = 0 (2.7)

where ̂G represents a unit vector along the ground reference frame’s Y axis.

The corresponding terminal equations can be substituted into equation (2.7) to obtain:

((l4 − l5)̂ı1 + (l6 − l7)̂ı2) · ̂G = 0 (2.8)
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Step III

The third step in the equation formulation procedure is to eliminate any secondary variables

appearing in the equations found in the first two steps. To do this, the branch and chord

transformations are substituted into the equations. This process can be divided into three

parts that must be performed in a specific order that is described below:

First, the rigid arm forces are found by using the chord transformation equations of

the arm components in the translational graph. These equations are substituted into the

dynamic equations. The rigid arm forces for the slider-crank depicted in Figure 2.3 are:

~F4 = ~F1 + ~F2 + ~F3 + ~F11 (2.9)

~F5 = −~F2 − ~F3 − ~F11 (2.10)

~F6 = ~F2 + ~F3 + ~F11 (2.11)

~F7 = −~F3 − ~F11 (2.12)

The terminal equations associated with each of the chord forces are then substituted,

and the secondary variables are highlighted in bold, giving:

~F4 = −m1~a1 −m2~a2 −m3~a3 + ~F11 (2.13)

~F5 = m2~a2 + m3~a3 − ~F11 (2.14)

~F6 = −m2~a2 −m3~a3 + ~F11 (2.15)

~F7 = m3~a3 − ~F11 (2.16)

where mi represent the mass of the body depicted by the edge mi and ~ai represents the

translational acceleration vector of the ith edge.

Secondly, the translational branch transformation equations are substituted in the dy-

namic and kinematic equations. The translational acceleration branch transformation

equations for the slider-crank of Figure 2.3 are:
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~a1 = −~a4 + ~a8 (2.17)

~a2 = −~a4 + ~a5 − ~a6 + ~a8 + ~a9 (2.18)

~a3 = −~a4 + ~a5 − ~a6 + ~a7 + ~a8 + ~a9 − ~a10 (2.19)

~a11 = −~a4 + ~a5 − ~a6 + ~a7 + ~a8 + ~a9 − ~a10 (2.20)

The appropriate terminal equations are then substituted in the equations and the sec-

ondary variables are highlighted in bold, giving:

~a1 = −~α1 × l4ı̂1 + ~ω1 × (~ω1 × l4ı̂1) (2.21)

~a2 = −~α1 × (l4 − l5)̂ı1 + ~ω1 × (~ω1 × (l4 − l5)̂ı1)− ~α2 × l6ı̂2 +

~ω2 × (~ω2 × l6ı̂2) (2.22)

~a3 = −~α1 × (l4 − l5)̂ı1 + ~ω1 × (~ω1 × (l4 − l5)̂ı1)− ~α2 × (l6 − l7)̂ı2 +

~ω2 × (~ω2 × (l6 − l7)̂ı2) (2.23)

~a11 = −~α1 × (l4 − l5)̂ı1 + ~ω1 × (~ω1 × (l4 − l5)̂ı1)− ~α2 × (l6 − l7)̂ı2 +

~ω2 × (~ω2 × (l6 − l7)̂ı2) (2.24)

The position and velocity-level branch transformation equations are acquired in a sim-

ilar fashion.

Finally, the rotational branch transformation equations are substituted in the dynamic

and kinematic equations. The rotational velocity branch transformation equations for the

slider-crank, depicted in Figure 2.4, are:

~ω1 = −~ω4 + ~ω8 (2.25)

~ω2 = −~ω7 + ~ω10 + ~ω11 (2.26)

~ω3 = ~ω11 (2.27)

~ω9 = ~ω4 − ~ω5 + ~ω6 − ~ω7 − ~ω8 + ~ω10 + ~ω11 (2.28)
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After substituting the terminal equations, and highlighting the secondary variables in

bold, these equations become:

~ω1 =
d

dt
β1(t)k̂G (2.29)

~ω2 =
d

dt
β3(t)k̂11 (2.30)

~ω3 = ~0 (2.31)

~ω9 = − d

dt
β1(t)k̂G +

d

dt
β3(t)k̂11 (2.32)

where β1(t) and β3(t) represent the rotation of the revolute joints h8 and h10, as depicted

in Figure 2.1. The terms k̂11 and k̂G represent the unit vector about the local z axis of the

edge h11’s end node and the unit vector about the ground frame’s Z axis respectively.

Step IV

The fourth and final step in formulating the system’s symbolic equations is to evaluate

the dot products and simplify and reorganize the equations so that they can be presented

in a standardized form. In this standardized representation, the kinematic equations are

written as a column matrix:

{Φ(q, t)} = 0 (2.33)

While the dynamic equations are generated in the form:

[M ]{q̈}+ {Φ}T
q {λ} = {Q(q, q̇, t)} (2.34)

where [M ] is a symmetric n × n mass matrix, {Φq} is the Jacobian of the constraint

equations (in equation (2.33)), {λ} are unknown Lagrange multipliers associated with

cotree joint reactions, and {Q} contains forcing and quadratic velocity terms.

After evaluating the dot products and simplifying and reorganizing the equations for

the slider-crank depicted in Figure 2.1, the following kinematic equation is obtained:

Φ(β1, β2, t) = −(l4 − l5) sin(β1(t))− (l6 − l7) sin(β3(t)) = 0 (2.35)
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Applying the same steps to the dynamic equations gives the following entries for equation

(2.34):

M[11] = Izz1 + m1l
2
4 + (m2 + m3)(l4 − l5)

2 (2.36)

M[12] = M[21] = (l4 − l5)(m2l6 + m3(l6 − l7)) cos(−β1(t) + β3(t)) (2.37)

M[22] = Izz2 + m2l
2
6 + m3(l6 − l7)

2 (2.38)

{q} =

{
β1

β2

}
(2.39)

{Φ}T
q =

{
(l4 + l5) cos(β1(t))

(l6 + l7) cos(β3(t)

}
(2.40)

λ = F11 (2.41)

Q[1] = (l4 − l5)((m2 + m3)l6 −m3l7) sin(β3(t)− β1(t))(
d

dt
β3(t))

2 + T12(t) (2.42)

Q[2] = −(l4 − l5)((m2 + m3)l6 −m3l7) sin(β3(t)− β1(t))(
d

dt
β1(t))

2 (2.43)

where M[ij] represents the value of the mass matrix’s ith row and jth column, Q[i] represents

the value of the {Q}’s ith value, Izzi represents the moment of inertia about the line through

the centroid, parallel to the Z axis of the body represented by the edge mi.

One can observe that, in this case, the planar nature of the slider-crank allowed for

its symbolic equations to be greatly simplified, generating the compact model found in

equations (2.35) to (2.43).

When modelling a system using the graph-theoretical approach presented previously,

Branch Coordinates are inevitably used to model the system. The symbolic equations of

a mechanism modelled in this fashion will be expressed in terms of the graph’s primary

variables (branch across variables and chord through variables). However, once the primary

variables are known, if the values of secondary variables are required during the analysis

of the model, these values can quickly be obtained through back-substitution using the

branch and chord transformation equations.

For this reason, even if one variable is of particular interest in the system’s analysis, it

does not necessarily need to be explicitly found in the system’s coordinates. Hence, the
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most efficient set of modelling coordinates can always be used to model the system, which

should help to increase model efficiency in many circumstances.

2.4 Computer Implementation

In order to test the validity of the tree selection algorithms developed in this report,

these algorithms will be incorporated in DynaFlexPro, a Maple package that uses graph-

theoretical methods to generate a system’s equations of motion in symbolic form. It uses a

Java graphical user interface called ModelBuilder to allow the user to describe the system

that is being modelled. ModelBuilder then generates the graph model of the mechanism

that is sent to the DynaFlexPro Maple package. DynaFlexPro uses this graph model to

generate system equations using the methods described in the previous sections. These

equations can then be solved within Maple or exported as optimized simulation code (e.g.

C procedure or Matlab S-function).

In DynaFlexPro, it can take a certain amount of time to formulate a system model.

For example, the 3-DOF spatial parallel manipulator presented in Appendix A.12 takes

an average of 19.0 s to formulate and simplify the system’s symbolic equations using

the system’s optimal coordinate set using a Pentium 4 of 1.80 GHz with 768 MB of

RAM . However, other coordinate sets take up to 99.3 s for the exact same formulation

and simplification process. Furthermore, using another coordinate sets, this same model’s

symbolic equations could not even be formulated and simplified within one hour. Since one

of the goals of this report is to develop algorithms that are quick and efficient, it was deemed

infeasible to use an optimization method to evaluate various fully-formulated system models

since formulating many system models would be too time-consuming. Because of this, the

tree selection algorithms in this report were developed in a pre-processing environment of

ModelBuilder in which the system models did not have to be formulated.

ModelBuilder will enable the selection of the trees of the system’s graph before it is

sent to the DynaFlexPro equation generating routines. This will enable the user to have

a visual outlook on the coordinate selection process, thus allowing much more interaction

with the user so he can clearly see and understand which coordinates are being selected

and their relation to the model.
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By implementing the algorithm in ModelBuilder, which is built using the Java language,

rather than implementing it directly in the DynaFlexPro Maple package, one can generate a

much quicker tree selection algorithm due to the low-level programming language involved.

However, this choice is not without its drawbacks. By placing the tree selection algo-

rithm in this pre-processing environment, some model information could prove difficult to

obtain. Since the main function of ModelBuilder is to generate the system’s graph, the

topology of the mechanism will be easily accessible in this environment. However, the

mechanism’s geometry will be much more difficult to extract. Furthermore, the purely

numerical nature of Java will make it difficult to predict the equation simplification and

code optimization that can be performed on system equations in symbolic environments

such as Maple.

A major part of the coordinate selection criteria proposed in the literature thus far

are based in a large part on mechanism topology. Consequently, the pre-processing envi-

ronment provided by ModelBuilder should be sufficient for the implementation of a tree

selection algorithm and its advantages to the user seems to greatly outweigh the possible

disadvantages it may entail.

When trying to determine the efficiency of certain models, the complexity of the me-

chanical system’s symbolic equations can also be used. Though the term efficiency is still

defined as the mechanism’s simulation time, this extra criterion can help shed some light

on certain mechanism properties. Using Maple, it is possible, through the use of a cost

function, to estimate the complexity of a given set of equations by finding the sum of all

the additions, multiplications, and function calls used to define the set of equations.

This was used as a measure of efficiency by Redmond and McPhee [25], but was shown

to sometimes improperly predict the actual efficiency of the mechanism’s simulations. How-

ever, Redmond and McPhee had estimated the equation cost prior to the code optimiza-

tion of the equations. In this report, the equation complexity was estimated using Maple’s

cost function after the optimization process was completed. This results in the relative

difference in solution time between different models and coordinate sets to be relatively

accurately reflected within this estimation of equation complexity. For this reason, the

system model’s estimated complexity shall always be included in the efficiency analysis of

different models in this report.



Chapter 3

Variable-Based Tree Selection

A major part of the literature dealing with coordinate selection states that the fewer the

modelling variables, the more efficient the model’s simulations will be [12, 16, 19, 31].

Other authors do not state this directly, but their analysis and/or proposed coordinate set

fits this description [5, 9, 25]. The only known coordinate selection algorithm, developed

by Kim and Vanderploeg [12], uses this single criterion for coordinate selection. However,

no research seems to have been made on how to select between coordinates systems having

the same number of variables.

Since McPhee’s [19] graph-theoretical method will be used to obtain the symbolic equa-

tions of mechanical systems, and that coordinate selection in this method is the result of

the spanning tree selection, the goal of the algorithms developed in this report will be

expanded from automated coordinate selection to automated tree selection. As will be

discussed later, tree selection has more influence on the system’s equation than simply

coordinate selection. These influences will also be taken into account in this tree selection

method.

The tree selection algorithm in this chapter will be based on the notion of minimal

coordinate selection and will also expand this theory by proposing criteria capable of

distinguishing between different coordinate sets having the same number of variables.

In order to verify the extra heuristics needed to automate the selection of a mechanical

system’s trees, a series of benchmark problems were established. A major focus of these

benchmark problems was placed on closed-loop systems, since these systems require special

30



Variable-Based Tree Selection 31

care during tree selection due to their closed kinematic chains. This makes them partic-

ularly challenging from the point of view of coordinate selection and hence tree selection.

Each of these benchmark problems were then solved using various trees that model the

system with a similar number of modelling variables using both traditional coordinate set

types (i.e. Joint and Absolute Coordinates), and hybrid types. Their solution time, as

well as their equation complexity, were compared in order to gain insight on the factors

affecting tree selection. The benchmark problems and their simulation results can be found

in Appendix A.

First, the series of heuristics developed for this tree selection algorithm will be presented

in Section 3.1, followed by a description of the algorithm itself in Section 3.2 and a detailed

analysis of the application of this algorithm on two benchmark problems in Section 3.3.

Finally, the shortcomings of this algorithm will be presented in Section 3.4.

3.1 Heuristics

Based on the results of the benchmark problems when modelled using various tree selections

that result in a minimal set of coordinates (Appendix A), as well as information from

the literature, a series of heuristics were developed for automated tree selection. These

heuristics are presented in order of importance.

3.1.1 Absolute Branch and Chord Heuristics

Since we are using McPhee’s [19] graph-theoretical method of obtaining a mechanical

system’s symbolic equations, it is important to be aware of this method’s tree selection

limitations. According to McPhee [19]: “The only restriction on the selection of trees in

this current work is that all rigid-arm elements must be in the translational tree”. This

limitation is not very significant and, as will be shown in this section, is actually the basis

for a useful set of heuristics.

We know that there will be a dynamic equation generated for each of the n Branch

Coordinates. This gives a system of n equations with n + m variables, where m is the

number of chord through variables whose value through time is also unspecified. The m
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kinematic equations contain the same Branch Coordinates, thus providing a system of

n + m equations with n + m unknown variables. Note that n − m = DOF , where DOF

refers to the degree of freedom of the system.

From this brief overview of the equation formulation procedure of Section 2.3, McPhee

[19] deduces that edges whose across variables are known functions, such as motion drivers

and arm elements, should always be placed in the tree. This will be known as the absolute

branch heuristic. If these elements are placed in the tree, no dynamic equation will be

generated by these edges. On the other hand, if these same edges were placed in the cotree,

they would generate three kinematic equations since the forces associated to motion drivers

and arms are unknown. To make matters worse, if these edges are placed in the cotree,

other edges, probably containing a few unknown across variables, must be placed in the tree

in their place. This would generate more dynamic equations. This heuristic also clearly

shows that the limitation of McPhee’s graph-theoretical symbolic equation formulation

method for mechanical systems does not negatively affect the system’s tree selection and

that this limitation is automatically avoided by using the absolute branch heuristic

An example of this fact can be demonstrated by a simple pendulum whose graph is

illustrated in Figures 3.1(a) and 3.1(b), where the trees are shown in bold. A model whose

trees both consist of the tree illustrated in bold in Figure 3.1(a), with both arms selected

in the tree, would be modelled using only one dynamic equation due to the revolute joint

in the rotational tree. If this same pendulum was modelled with both trees taking the

form of the tree in bold in Figure 3.1(b), the situation would be different. This model’s

trees would contain an arm in the cotree, forcing the body element to be placed in the

trees. The pendulum generated in this fashion would generate seven dynamic equations

(six due to the translation and rotation of the body element and one due to the rotation of

the revolute joint) and six kinematic equations. In order to keep this report concise, all of

these equations were not transcribed; however the fact remains clear that the first model

of the pendulum will be much more compact and simple than the second model.

McPhee [19] uses the same thought process to elaborate what will be called the absolute

chord heuristic that states that edges whose through variables are known functions, such

as force and torque drivers and spring-damper-actuators (SDAs), should always be placed

in the cotree. The SDAs, also like drivers, allow six degree of freedom movements. Hence,
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(a) All Arms in the
Rotational Tree

(b) Only One Arm in
the Rotational Tree

Figure 3.1: Pendulum with different rotational trees.

if they are placed in a tree, they will generate six dynamic equations, three in translation

and three in rotation.

3.1.2 Minimal Variable Heuristic

This heuristic, called the Minimal Variable Heuristic, states that minimizing the number of

modelling variables will result in more efficient simulations, as proposed by many authors

[12, 16, 19, 31]

The logic behind this heuristic can be explained by knowing, as stated earlier, that

modelling mechanical systems using n variables results in the use of n dynamic equations

and n − DOF kinematic constraint equations. To simulate a mechanism, all of these

equations must be solved simultaneously. When n = DOF , the equations consist of a set

of ordinary differential equations (ODEs). However, when n > DOF (this is inevitable with

most closed-loop systems) the equations consist of a set of differential-algebraic equations

(DAEs) for which numerical solution methods are more complex and time-consuming.

From these observations, it can be theorized that the fewer the variables that are used to

model the mechanism, the fewer the equations that must be solved simultaneously, which

will very likely lower the solution time.
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3.1.3 Minimal Variable Chain Heuristic

To the best of the author’s knowledge, there exist no universal criteria capable of providing

insight on how to predict the optimal set of coordinates from different sets comprised of

the same number of modelling variables. However, Huston [9] does show that if, in such

circumstances, rotations expressed relative to the global reference frame are used, efficient

simulations are produced. Furthermore, Fayet and Pfister show that whenever a body’s

translation along an axis or rotation about an axis can be modelled, using a virtual joint,

relative to a body that is more closely related to the ground than its adjacent body, and

that this process does not add any extra modelling variables, this model will produce a

more efficient model.

Combining these facts with observations made from various benchmark problems, it

is possible to formulate a general heuristic, called the Minimal Variable Chain Heuristic,

that states that for a given body, the more variables present in the chain of bodies relating

this body to the ground, the more complex will be the equations describing the motion of

this body.

This can be explained by considering that if there exists a long chain of modelling

variables relating a given body to the ground, every time the absolute position, orien-

tation, velocity or acceleration of this body appears in the system’s equations, they will

be expressed according to this long series of variables. By reducing the number of mod-

elling variables relating every body to the ground, the system’s equations will reduce in

complexity.

For example, let us look at a planar five-bar mechanism, depicted in Figure 3.2, whose

graph is depicted in Figure 3.3. In this graph, the edges h14 to h18 represent the five

revolute joints of the system. The edges m1 to m4 represent the four bodies of the system

and link the ground node to the center of mass of each body. Finally, the edges r5 to r13

are the arm elements that define the location of each revolute joint, relative to the body’s

center of mass.

If we look at the rotational tree of this system, since the body edges allow three degrees

of freedom in rotation, four revolute joints must be selected in order to obtain a valid tree

if one wants to model the system with the fewest variables as possible. There are many

possible trees allowing four revolute joints in the tree. If we model the system using the
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Figure 3.2: A five-bar mechanism.

(a) (b)

Figure 3.3: Pendulum with different rotational trees.
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tree depicted in bold in Figure 3.3(a) the modelling coordinates will be β14 to β17, which

correspond to the rotation of h14 to h17. Notice that the body m4 is related to the ground

using all four variables. Suppose we want to know the position in the global X axis of the

center of mass of body m4, represented by the symbol x4. The resulting equation is given

in equation (3.1).

x4 = (l6 + l7) cos(β14) + (l8 + l9) cos(β14 + β15)+

(l10 + l11) cos(β14 + β15 + β16) + l12 cos(β14 + β15 + β16 + β17)
(3.1)

where li represent the length of the arm element ri.

Now suppose we use the tree depicted in Figure 3.3(b) to model the rotation of the

system. In this case, the modelling variables are β14, β15, β17, and β18, representing the

rotation of the revolute joints h14, h15, h17, and h18. Notice that every body in the mech-

anism now has a maximum of two variables relating it to the ground. If we again try to

model the position in the global X axis of the center of mass of the body m4, we obtain

equation (3.2). This equation is clearly much less complex than the one obtained using the

the tree in Figure 3.3(a). Imagining that this body’s position, velocity, and acceleration

will be defined in a similar manner, it becomes clear that the second tree depicted in Figure

3.3(b) will produce a much more efficient model than would the tree depicted in Figure

3.3(a).

x4 = L5 + L13 cos(β18) (3.2)

The full tree selection results for this benchmark problem can be found in Appendix

A.2.

3.1.4 Minimal Joint Chain Heuristic

It is important to extend our heuristics to select proper trees if many possibilities still

exist after the enforcement of the heuristics presented thus far. For example, all of the

edges in the translational graph of the five-bar mechanism depicted in Figure 3.3 have no

translational across variables other than the three provided by each body edge. Because

of this, the Minimal Variable and Minimal Variable Chain Heuristics will only allow any
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tree consisting of only arm edges and revolute joints to be selected. Since there are many

such possibilities, we must establish which is preferable.

Clearly, in the case of this planar five-bar mechanism, the selection of any translational

tree consisting of only arm edges and revolute joints will not affect the choice of modelling

coordinates, since none are added to the system in any of those cases. However, the trans-

lational tree will be used for more than just coordinate selection as it plays an important

role in the symbolic equation formulation procedure described in Section 2.3. For example,

Step III of the equation formulation procedure uses the translational tree in its first two

parts and uses the rotational tree in the last part. Step III is applied to all the system’s

equations, no matter if they are dynamic or kinematic equations generated by the transla-

tional or rotational tree. This means that both trees always play a role in generating the

model and have a certain influence whether they contain modelling variables or not.

Through observations of the benchmark problems presented in Appendix A, it can be

seen that even when no modelling variables are present in a tree, it is still better for the

chain of edges relating each body to the ground to contain the fewest number of joints as

possible. This extension to the Minimal Variable Chain Heuristic will be called the Minimal

Joint Chain Heuristic.

In the case of the five-bar mechanism depicted in Figure 3.2, the Minimal Joint Chain

Heuristic will ensure that the mechanism’s translational tree takes the form of the tree

depicted in the Figure 3.3(b). This tree will ensure that each body is connected to the

ground by a maximum of two revolute joints in the tree.

3.1.5 Tree Similarity Heuristic

Even with the heuristics developed thus far, there still exist cases where many trees are

possible. A good example of this can be seen in the four-bar mechanism in Figure 3.4 whose

graph is depicted in Figure 3.5. The four revolute joints are represented by the edges h11

to h14 and the bodies are represented by the edges m1 to m3. These three edges relate

the ground nodes to each body’s center of mass. Finally, the edges r4 to r10 represent

the location where each joint is connected, relative to each body’s center of mass. For

this mechanism, there are two rotational and two translational trees capable of satisfying

all the heuristics presented thus far. These two trees are the same in both rotation and
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translation and are presented in bold in Figures 3.5(a) and (b) and are denoted by the

names Tree A and Tree B.

Figure 3.4: A four-bar mechanism.

(a) Tree A (b) Tree B

Figure 3.5: Two trees of the four-bar mechanism.

Clearly, these two trees satisfy the Minimal Variable and Minimal Variable Chain

Heuristics in rotation since they both contain three modelling variables (one for each of

the three revolute joints in the tree) and the highest number of variables relating any body
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to the ground equals two, which is clearly the minimum in this case, considering that a

valid tree must be selected.

The same can be said for the translational graph, in which case both trees would

generate no translational across variables, hence easily satisfying the Minimal Variable

and Minimal Variable Chain Heuristics. Furthermore both relate each body to the ground

node via a maximum of two joints, thus each satisfying the Minimal Joint heuristic as

much as possible.

When trying the different combinations of trees for this system, whose results can be

found in Appendix A.1, as well as those for other systems allowing multiple trees even after

applying all the heuristics mentioned thus far, it was determined that the more similar the

translational and rotational trees are to each other, the more efficient were the models’

simulations. This shall be called the Tree Similarity Heuristic.

At this point in time, it is unclear why the Tree Similarity Heuristic affects the final

equations. However, a more detailed look at this phenomenon will be pursued in Section

4.1.6 when establishing heuristics for the second tree selection algorithm. This was only

done at this later stage since the present tree selection algorithm was mostly derived from

observations of benchmark problems, while the other tree selection algorithm of Chapter

4 will take a detailed look into the equation formulation procedure presented in Section

2.3 to find tree selection heuristics. This detailed analysis will provide better methods to

determine the exact cause of this observation.

3.2 Algorithm

As discussed in Section 2.2, when modelling mechanical systems using graph theory, the

selection of modelling coordinates is accomplished by selecting trees from the graph model

of the mechanism. A typical method used to select a tree is to use a weighted graph

and to find the minimal spanning tree. The following section will discuss how each of the

heuristics presented in Section 3.1 are included in the edge weighting process and how a

minimal spanning tree algorithm will be applied to find spanning trees. This tree selection

algorithm will be called the Variable-Based Tree Selection Algorithm.
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3.2.1 Edge Weights

The weight assigned to each edge is expressed according to five distinct factors. Each of

these factors enforces one of the heuristics presented in Section 3.1. These factors will have

distinct values for rotation and translation.

Absolute Factor: This factor enforces the Absolute Branch and Chord Heuristics. In or-

der to enforce the Absolute Branch Heuristic, the Absolute Factor for motion drivers

and arm elements will be equal to zero. This will ensure that these edges have the

lowest possible weight and are selected in the tree before other edges. Likewise, the

Absolute Chord Heuristic is implemented by assigning an Absolute Factor of two to

force/torque drivers and spring-damper-actuators (SDAs) to ensure that these have a

high weight and are not selected in the tree. All other edges are assigned an Absolute

Factor of one.

Edge Type Factor: This factor enforces the Minimal Variable Heuristic by assigning to

this factor the number of across variables the given edge type has within the tree

that is being selected. The Edge Type Factor of all the edge types are presented in

Appendix C.

Distance Factor: This factor will enforce the Minimal Variable Chain Heuristic by ensur-

ing that the edges with the fewest Branch Coordinates relating them to the ground

will be placed in the tree. The first step in determining this factor is to assign the

weight of each edge in each of the graphs to be equal to its Edge Type Factor. Sub-

sequently, Dijkstra’s algorithm [4], whose pseudo-code is presented in Figure D.2 of

Appendix D, is used to find the shortest path weight, or SPW, associated with each

node. The shortest path is the series of edges connecting a given node to the ground

node such that the sum of the weights of its constituent edges is minimized. Since

the edge weights (equal to the Edge Type Factors) are proportional to the number

of across variables of each edge, the SPW of each node will be proportional to the

minimum number of across variables relating it to the ground node.

Once the algorithm has executed, the SPW of the two nodes of each edge are com-

pared and the lower of these two shortest path weights is assigned as the edge’s
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Distance Factor.

Joint Factor: This factor will enforce the Minimal Joint Chain Heuristic. In this case,

each edge will be given a weight of one if it is a joint and a weight of zero if it is an

arm and a very high weight if it is a body edge. Then, similar to the method used to

find the Distance Factor, Dijkstra’s algorithm is once again used to find the shortest

path weight, or SPW, associated with each node. Then, each edge’s Joint Factor

is assigned the lowest of its two node’s SPW. This provides the minimal number of

joints that can relate each edge to the ground.

Similarity Factor: This factor enforces the Tree Similarity Heuristic by ensuring that

the translational and rotational trees are as similar as possible. In this case, when

the first tree is selected, the Similarity Factor is set to one for all edges. When the

second tree is weighted, the Similarity Factor of the edges that were included in the

first tree is set to zero, and is set to one for the rest of the edges.

3.2.2 Tree Selection

Once all the weighting factors of each of the edges are found, the final edge weight of each

of these edges is calculated. Since some heuristics, and hence weighting factors, are more

important than others, some of the factors need to be multiplied by priority factors in

order to have a bigger effect on the final edge weight. The equation needed to find the

edge’s final weight is presented in equation (3.3). This shows that the Distance Factor as

well as the Joint Factor are provided two digits in the final weight because their value can

get relatively large for edges in a complex system. These two digits will allow these factors

to range from 0 to 99 before catching up to the next-level factor.

Final Edge Weight = 1000000× (Absolute Factor)+

100000× (Edge Type Factor)+

1000× (Distance Factor)+

10× (Joint Factor)+

(Similarity Factor)

(3.3)
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Once the final weight of every edge of the given tree is found, Prim’s algorithm [24],

briefly described in Section 2.2, is used to find the minimal spanning tree. Any other

minimal spanning tree algorithm could have been used in this case, and Prim’s algorithm

was only chosen because of its simplicity and its wide-spread use. A pseudo-code of this

algorithm is presented in Figure D.1 of Appendix D.

This tree selection process is done for both the rotational and translational trees, where

each weighting factor, and hence final weight, are different for rotation and translation.

In general, a mechanical system’s rotations add more complexity to this mechanism’s

symbolic equations than its translations, due to the added trigonometry associated to

these rotations. Because of this, the rotational tree is chosen as the first tree to be selected

by the Variable-Based Tree Selection Algorithm.

3.3 Examples

Two examples, a spatial serial manipulator and a planar 3-RRR parallel manipulator, are

presented in this section to demonstrate the validity of the proposed Variable-Based Tree

Selection Algorithm and its ability to produce efficient mechanism simulations.

3.3.1 Spatial Serial Manipulator

This example will show that the Variable-Based Tree Selection Algorithm, discussed in

Section 3.2, is capable of selecting very efficient modelling variables when many coordinate

sets with the same number of modelling variables exist for a given system. It will also

demonstrate the algorithm’s ability to select Indirect Coordinates, provided that appropri-

ate virtual joints are added to the system model.

Fayet and Pfister [5] used the spatial serial manipulator shown in Figure 3.6(a) as an

example of a system that is best modelled using Indirect Coordinates. From this figure, it

can be observed that the axes of rotation û13 and û14 of the revolute joints h13 and h14 are

parallel. According to Fayet and Pfister’s rules for selecting Indirect Coordinates, described

in Section 1.2, measuring the rotation of body m3 relative to body m1 and measuring the

rotation of body m4 relative to the ground is the method of modelling the given system
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that will produce the most efficient simulations.

(a) (b)

Figure 3.6: The spatial serial manipulator and its graph.

McPhee and Redmond [25] later modelled this mechanism using a graph-theoretic ap-

proach and confirmed Fayet and Pfister’s findings while proving that Indirect Coordinates

could be exploited in a graph-theoretic formulation. The graph used by McPhee and Red-

mond, shown in Figure 3.6(b), was recreated and submitted to the Variable-Based Tree

Selection Algorithm in order to see if the algorithm would automatically select the Indi-

rect Coordinates. The relative motion of non-adjacent bodies, as proposed by Fayet and

Pfister, was modelled by a virtual planar joint vp16 between body m1 and body m3. No

joints were added to simulate the movement of body m4 relative to the ground since the

rigid body element (m4) of this edge already provides the appropriate Branch Coordinates.

The resulting weighted graphs for rotation and translation, as well as the tree selection in

bold, are shown in Figure 3.7(a) and 3.7(b). These trees were selected within an average

of 15 milliseconds on a Pentium 4 of 1.80 GHz with 768 MB of RAM .

Using these two trees, the model is generated using the Indirect Coordinates: β12, β13,

β16, ζ4, η4, and ξ4. The coordinates β12, β13, and β16 refer to the rotational variables of the
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(a) Rotational Tree (b) Translational Tree

Figure 3.7: The spatial serial manipulator’s trees.

revolute joints h12, h13 and the planar joint vp16, respectively. The variables ζ4, η4, and ξ4

refer to the rotation of body m4 relative to the ground.

A coordinate set typically used to model this system would be the Joint Coordinates

β12, β13, β14, ζ15, η15 and ξ15, which are the across variables for revolute joints h12 to h14

and the spherical joint b15. This coordinate set has the same number of modelling variables

as those selected by the Variable-Based Tree Selection Algorithm.

Fayet and Pfister [5] and McPhee and Redmond [25] have shown that the coordinate

set found by the Variable-Based Tree Selection Algorithm will generate the model with the

most efficient simulations when compared to the previously mentioned Joint Coordinates.

In order to reconfirm this, the same example was also used as a benchmark problem and is

presented in Appendix A.10, where McPhee and Redmond’s model dimensions and inertia

properties were used as the modelling parameters. This appendix models this mechanism

using many coordinate sets and shows that the Joint Coordinates described above result

in an average solution time that is 345% higher than the coordinate set found using the

Variable-Based Tree Selection Algorithm when virtual joints are added to the model’s

graph.

The coordinates selected by the Variable-Based Tree Selection Algorithm show that
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this algorithm takes full advantage of the benefits of Indirect Coordinates. It also shows

that the concept of Absolute Angular Coordinates [9] is also fully utilized since the rotation

of the body m4 was described relative to the ground as opposed to relative to its adjacent

body due to the spherical joint relating these two bodies.

3.3.2 Planar 3-RRR Parallel Manipulator

Joint Coordinates

The 3-RRR parallel manipulator is depicted in Figure 3.8, and its graph is depicted in

Figure 3.9. It is comprised of three legs, each having three revolute joints. The joints

connected to the ground (h25, h28 and h31) are generally referred to as the ankle joints.

The revolute joints connected to the platform (h27, h30 and h33) are called the hip joints.

Lastly, the revolute joints at the center of the legs (h26, h29 and h32) are called knee joints.

Figure 3.10 and Figure 3.11 show the weighted graphs for rotation and translation ob-

tained using the Variable-Based Tree Selection Algorithm. The weight of the arm elements

were not included in these figures in order for them not to become too cluttered. This omis-

sion in the figure does not affect one’s understanding of the tree selection algorithm since

it is already clear that the Absolute Branch Heuristic assures their selection in the trees.

These figures also show, using bold edges, the minimal spanning trees that were selected

to model the mechanism. These trees were selected within an average of 16 milliseconds

using the Variable-Based Tree Selection Algorithm.

First, one can observe that no body edges were selected in the rotational or translational

trees. This fact shows that the Minimal Variable Heuristic was respected since the body

edges each have three across variables in rotation and translation.

Since all the arms and none of the body elements are in the rotational tree, some, but

not all, of the revolute joints must be selected in the tree. In the rotational tree, since all

the revolute joints have one variables in rotation, the Minimal Variable Chain Heuristic

placed the ankle joints in the tree first, followed by the knee joints. This is because the

ankle joints each have zero variables relating them to the ground while the knee joints

have one variable (from the ankle joint) relating them to the ground. This was followed

by placing one hip joint in the tree. The hip joints each have two variables relating them
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Figure 3.8: The planar 3-RRR parallel manipulator.
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Figure 3.9: The planar 3-RRR parallel manipulator’s graph.

Figure 3.10: The planar 3-RRR parallel manipulator’s rotational tree.
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Figure 3.11: The planar 3-RRR parallel manipulator’s translational tree.

to the ground. Only one such joint was placed in the rotational tree because a valid tree

only required one of these joints to be placed in the tree. For the translational tree, the

Minimal Joint Chain Heuristic had the same effect on the tree selection. Finally, the Tree

Similarity Heuristic forced the same hip joint to be placed in the translational tree as the

hip joint placed in the rotational tree.

This results in the mechanism being modelled using the coordinates β25 to β29, β31, and

β32 representing the rotation of the revolute joints h25 to h29, h31, and h32 respectively. This

coordinate system shall be called the Algorithm Selected Coordinates. It models the three

DOF system using seven dynamic equations and four kinematic equations, as explained in

the equation formulation procedure described in Section 2.3.

In order to verify the efficiency of the trees selected by the Variable-Based Tree Selection

Algorithm, the mechanism was modelled with other trees that result in the same number

of modelling variables. Because of this, all of these models will be modeled with the same

number of dynamic and kinematic equations. Obviously, many tree containing all of the

arm elements and seven different revolute joints will be a valid tree with the minimal

possible number of modelling variables. First, we will suppose that the translational tree
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still uses the tree in Figure 3.11 and the rotational tree contains all the arm elements, the

three ankle joints (h25-h28, h31), all three hip joints (h27-h30, h33), and one knee joint (h26).

This new rotational tree shall be called the Alternative Tree. This model shall be called the

Minimal Variable Chain Violation tree set, since it clearly violates the Minimal Variable

Chain Heuristic.

A second tree set using the Alternative Tree as the translational tree and the rotational

tree of Figure 3.10 shall also be used for comparison and will be called the Minimal Joint

Chain Violation tree set since it violates the Minimal Joint Chain Heuristic.

A final model is created and given the name Tree Similarity Violation tree set since

it violates the Tree Similarity Heuristic. This model’s translation is modeled using the

translational tree of Figure 3.11. In contrast, this model’s rotational tree contains all of

the branches of the rotational tree of Figure 3.10, except for the hip joint h27, which is

replaced by the hip joint h30.

The geometry, inertial properties, and initial conditions of the manipulator are pre-

sented in Appendix A.7. The mechanism’s symbolic model was developed for every dif-

ferent tree set. Then, the kinematic equations were twice differentiated and simplification

and code optimization routines were performed on the resulting system equations in the

Maple. The resulting sets of ODEs were solved using a Runge-Kutta Fehlberg method with

an absolute error of 1 × 10−6 and a relative error of 1 × 10−5. The mechanism was then

simulated while starting at rest and falling for three seconds under the force of gravity,

which is directed in the global minus Y direction. The results, which are taken from an

average of ten simulations, are shown in Table 3.1.

The results clearly show that the trees that were selected by the Variable-Based Tree

Selection Algorithm were the most efficient of all tree sets presented and the only model

capable of real-time simulation in this case. The results also show the effect of some of

the various tree selection heuristics presented in Section 3.1. For example, one can see

a significant reduction in solution time, even for the seemingly-innocuous Tree Similarity

Violation coordinate set. Furthermore, these results show a good correlation between the

equation complexity and solution time. Finally, further simulations performed on this

benchmark problem can be found in Appendix A.7.

One of the main reasons of using symbolic equations to model mechanical systems is
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Table 3.1: Efficiency of Various coordinate sets

coordinate set Sol. Time Complexity

(s)

Algorithm Selected Coordinates 1.74 2718

Minimal Variable Chain Violation 5.88 7610

Minimal Joint Chain Violation 8.47 11948

Tree Similarity Violation 5.74 7798

to diminish the model’s simulation time. The simulation times presented in Table 3.1

are relatively high due to the use of the high-level programming language found in the

Maple software used to numerically solve the symbolic equations of the models. If these

models were exported to a more efficient programming language such as C procedure or

Matlab S-function, faster simulation times could be achieved. It is possible to perform

such exports in Maple (and, as such, in DynaFlexPro) and this method was used for

certain benchmark problems presented in the Appendix A. These models where exported

to Matlab S-functions and were then solved in Matlab/Simulink using various ODE solvers.

The results showed that a ten-fold reduction in simulation solution time could be achieved

using this method. It also showed that the relative efficiency between different coordinate

sets used to model the same system stayed relatively the same as the Maple solution when

the Matlab S-function was solved with various ODE solvers.

However, at the time these simulations were made, the act of exporting the system

model in Maple to a Matlab S-function was in its infant stages and required a lot of time

and effort. In order to not extend the completion time of this report, it was deemed

unnecessary to complete this process for every coordinate set of every benchmark problem,

since the relative solution time between these coordinate sets, which is what we are looking

at in this report, would stay the same as in Maple.
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Absolute Angular Coordinates

As mentioned earlier, the Variable-Based Tree Selection Algorithm is capable of selecting

the best possible trees using the best possible coordinate type, provided that the appro-

priate virtual joints are added to the system.

When modelling planar systems, the most efficient coordinates are often Absolute An-

gular Coordinates. In order to be able to model the planar 3-RRR parallel manipulator

using Absolute Angular Coordinates, virtual joints allowing rotations about only the global

Z axis need to be added between the ground and every body in the system. In this case,

the needed virtual joints can be simulated by adding planar joints between every body’s

center of mass and the ground node. The new system graph for one of the legs of the

3-RRR manipulator containing these extra planar joints (in bold) is illustrated in Figure

3.12.

Figure 3.12: The planar 3-RRR parallel manipulator’s graph with added virtual planar

joints.

The Variable-Based Tree Selection Algorithm was applied to this graph and the result-

ing weighed graph and tree selections (in bold) are illustrated in Figure 3.13(a) and Figure

3.13(b). As with the previous weighted graphs, the arm weights are not shown in order to

clarify the figures. As mentioned previously, only one of the manipulator’s legs is shown
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in order to clarify the illustration. The weighted graph and tree selection was the same

for every leg except that in translation one of the hip joints is in the tree, giving the same

translational tree as shown in Figure 3.11, where no planar joints had been added.

(a) Rotational Tree (b) Translational Tree

Figure 3.13: The trees when virtual joints are added to the model.

As predicted, the present tree selection algorithm selected the most appropriate trees

containing all the virtual planar joints in the rotational graph that were necessary in order

to obtain Absolute Angular Coordinates. This results in a model containing seven dynamic

equations and four kinematic equations, which is the same number of equations used in the

case of Joint Coordinates in the model that did not include the virtual joints. Furthermore,

it is possible to note that symbolic processing detects redundant constraints, reduces them

to 0 = 0, and eliminates them.

Using these trees, the planar 3-RRR manipulator was simulated under the same con-

ditions as the previous simulations. The results of this simulation are found in Table 3.2.

It is clear from these results, that using Absolute Angular Coordinates for this system

results in less complex equations and better simulation times. This example shows the

versatility of the Variable-Based Tree Selection Algorithm to choose the best tree, given a

well-modelled system graph.

Finally, further proof of the Variable-Based Tree Selection Algorithm’s validity is found

in the benchmark problems depicted in the Appendix A. A brief summery of these results
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Table 3.2: Results Using the Absolute Angular Coordinates

coordinate set Sol. Time Complexity

(s)

Absolute Angular Coordinates 1.26 1983

are presented in Table 3.3, where the column designated by Optimal Tree Set indicates

whether or not the tree set providing the best simulation times of all the trees tested in

the context of this report was found for the given mechanism using the Variable-Based

Tree Selection Algorithm. The column designated by % Longer Sim. Time indicates, in

percentage, how much longer the simulation time of the model using the tree set found

by the Variable-Based Tree Selection Algorithm is compared to the simulation time of the

optimal tree set.

3.4 Algorithm Shortcomings

Flaws in the Minimal Variable Heuristic

The Variable-Based Tree Selection Method presented in this chapter was developed around

the premise that the coordinate sets containing the fewest number of modelling variables

always produced the most efficient simulations, which is often stated in the literature.

Because of this, the benchmarks were mostly tested with coordinate sets containing the

minimal number of possible modelling coordinates. A particular attention was taken to

establish heuristics capable of distinguishing between these minimal modelling variable

coordinates sets. Within these confines, this tree selection method seemed to provide

excellent results.

However, in the later stages of development of the Variable-Based Tree Selection Al-

gorithm, certain benchmark problems were modelled with coordinate sets containing more

than the minimal possible number of modelling variables. Some of these coordinate sets

that contain slightly more modelling variables actually produced more efficient simulations.



Variable-Based Tree Selection 54

Table 3.3: Results of the Variable-Based Tree Selection for Various Mechanisms

Mechanism Appendix Optimal % Longer

Tree Set Sim. Time

Planar 4-Bar Mechanism A.1 yes –

Planar 5-Bar Mechanism A.2 yes –

Three Bodies Attached with Two Revolute Joints A.3 no 67

Planar Slider-Crank A.4 yes –

Planar Flexible Slider-Crank A.5 no 44

Spatial Slider-Crank A.6 no 21

Planar 3-RRR Parallel Manipulator A.7 yes –

Planar 3-RPR Parallel Manipulator A.8 no 21

Peaucellier-Lipkin Straight-Line Mechanism A.9 yes –

Spatial Serial Manipulator A.10 no 18

Stewart-Gough Platform A.11 no 184

3-DOF Spatial Parallel Manipulator A.12 no 162
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Many of these situations occurred when extra translational modelling variables were added

to the coordinate set. For example, in the spatial serial manipulator presented as an ex-

ample in Section 3.3.2, a model producing more efficient simulations can be obtained by

adding the edge m4 in the translational tree and removing the edge b15 from this tree. This

adds three translational variables to the coordinate set. Also, the spatial slider-crank in

Appendix A.6 is simulated faster if its prismatic joint is placed in the translational tree

than if it is not, even if this adds an extra modelling variable. Similarly, the Stewart-Gough

platform of Appendix A.11 is modelled more efficiently when all six of its prismatic joints

as well as the Cartesian Coordinates of its platform are used as modelling variables for

the system. Other benchmark problems seem to possess this property as well, such as the

benchmark problems presented in Appendices A.8 and A.12.

Furthermore, this phenomenon is not limited to extra translational modelling variables

as shown in the 3-DOF spatial parallel manipulator presented in Appendix A.12. This

benchmark problem is particularly interesting since its optimal coordinate set contains

15 modelling variables, which is much more than the minimal possible number of seven

modelling variables. This shows that the optimal coordinate set does not need to contain

a number of modelling variables that is close to the minimal possible number. In this case,

the coordinate set containing the minimal number of modelling variables seems to be one

of the most inefficient coordinate sets for the mechanism.

Looking at all the benchmark problems again after extensive testing of a much wider

variety of coordinate sets, one can see that the concept of modelling a system using a

minimal set of modelling variables does generally help in generating efficient simulations;

however, a large number of the benchmark mechanisms treated in this report have an

optimal coordinate set that contains more than the minimal number of modelling variables.

This discredits the perceived universal nature of the Minimal Variable Heuristic. Since this

heuristic is the main heuristic of this proposed tree selection method, this presents a major

problem.

Many solutions to this problem were tested, such as using the Minimal Variable Chain

Heuristic as the primary heuristic. This seems to greatly help with certain benchmark

problems such as the 3-DOF spatial parallel manipulator presented in Appendix A.12,

but produced poor results for other benchmark problems, primarily those containing a
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high number of DOF as well as those requiring many extra translational variables in the

optimal coordinate set. Furthermore, many methods were tried in order to estimate the

translational variables that should be added to the system. Most of these methods became

very elaborate and did not provide good results.

All of this showed that establishing heuristics based mostly on benchmark observations

produced only limited success. In order to establish better and more universal heuristics, it

seemed necessary to understand the underlying reasons why the Minimal Variable Heuristic

is not universally applicable. Establishing heuristics based on how the equations were

formulated rather than on simple benchmark observations seems to be a good option for

future tree selection algorithms. This will be the premise used to establish tree selection

heuristics in Chapter 4.

Priority Factors

The priority factor given to each weighting factor has a major effect on the tree selection

process. Presently, the Edge Type Factor is given priority over the Distance Factor, however

certain benchmark problems (e.g. the 3-DOF Spatial Parallel Manipulator presented in

Section A.12) indicate that this might not always be the most efficient solution. Future

research could be conducted to adapt the priority factor for different mechanism types.

Problematic Implementation of the Minimal Variable and Minimal Joint Chain

Heuristics

In most cases, the method used to determine the Distance Factor and the Joint Factor

produces valid results. However, certain situations can occur where these factors are not

given appropriate values. This problem arises mostly when multiple edges, each having

the same weight, are connected to the same node.

For example, the mechanism presented in Figure 3.14 has such a problem. This mech-

anism consists of three bodies that are connected by two revolute joints (h4 and h5), none

of which connect the system to the ground. In this case, there are three body edges (m1,

m2, and m3) connected to the ground. These three edges are the only ones connecting the

mechanism to the ground. In the rotational domain, when Dijkstra’s algorithm is used to

find the shortest path to the ground for each node in rotation, the shortest path for the
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node labeled as N1 is simply m1, which has three modelling variables, giving this node

a SPW of three. Similarly, the shortest path for the node N2 is composed of the three

variables from the edge m2 and the shortest path for the node N3 is the three variables

from the edge m3. However, it is obvious that edges m1, m2, and m3 will not all be found

in the optimal tree for this model, since they all have three across variables in rotation and

the two revolute joints only have one such variable. This makes the SPW invalid since it

considers all three body nodes to be in the tree.

For example, the Distance Factor in rotation of each revolute joint is assigned a value

of three due to the SPW of three associated to all of the system’s nodes, as discussed

above. Let us assume that the rotational tree includes all the arm elements (r4-r9), both

revolute joints h10 and h11 and the body edge m1. In this case, the Distance Factor of

three, assigned to the revolute joint h11, is wrong since this joint is clearly related to the

ground with four variables, one rotational variable from the revolute joint h10 and three

from the body m1.

Figure 3.14: Three connected bodies not connected to the ground.

Here, the weights of all the other edges not labeled in the graph depend on the shortest

path found for N1, N2 and N3, which we just demonstrated are not always valid for every

possible tree. The full tree selection results for this benchmark problem can be found in

Appendix A.3.

This same problem can be shown for the Joint Factor that implements the Minimal

Joint Chain Heuristic.
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Edges with Similar Weights Having Different Effects on the Tree Selection

This algorithm shortcoming is closely linked with the previous algorithm shortcoming. In

the mechanism presented in Figure 3.14, m1, m2, and m3 will be given the same weight

in rotation by the Variable-Based Tree Selection Algorithm. This means that Prim’s algo-

rithm will place one of the three edges at random in the tree. This is not desirable, because

m2 is obviously the best edge to put into the tree, because this choice would relate the

bodies m1 and m3 to the ground by only four rotational variables (one rotational variable

from a revolute joint and three from the edge m2). If the body edges m1 or m3 are placed

in the tree instead of m2, one of the system’s bodies will be related to the ground by

five modelling variables (two variables provided by two revolute joints and three variables

provided by the body edge in the tree).

This problem is particularly difficult to solve since it requires knowledge of the edges

that will most likely be placed in the tree in the future.

Unidirectional Tree Similarity

Since the rotational tree is selected first in the Variable-Based Tree Selection Algorithm,

the translational tree can be chosen to resemble the rotational tree. However, in the present

algorithm, the rotational tree cannot be selected according to the translational tree since

this tree is not yet selected when the rotational tree must be selected.

Flexible Body Support

Techniques have been developed to be able to model flexible bodies within a graph-

theoretical approach to modeling multibody dynamics [26, 27]. The Variable-Based Tree

Selection Method only supports rigid bodies and no special heuristics were developed to

take into account the different properties of the flexible bodies as well as their effect on

the system’s symbolic equations, coordinate selection and tree selection.

Final Comments

The first algorithm shortcoming, which showed that the Minimal Variable Heuristic is not

always optimal, is a major problem for the Variable-Based Tree Selection Algorithm. Since
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no appropriate correction for this problem could be found using the present benchmark

observations, it was deemed necessary to abandon the present tree selection method and

to develop a new method from scratch. Because of this, even though some of the other

algorithm shortcomings presented in this section seemed relatively simple to fix, these

algorithm improvements were not pursued. Some of these shortcomings will reoccur during

the formulation of the tree selection algorithm presented in Chapter 4 and will therefore

be dealt with at that time.



Chapter 4

Formulation-Based Tree Selection

The Variable-Based Tree Selection presented in Chapter 3 was based on heuristics gathered

mostly from criteria found in the literature and the observations of the symbolic equations

as well as solution times of benchmark models. The main goal of this algorithm was to

model a system using the fewest number of modelling variables in order to obtain the most

efficient simulations of the system as possible. However, later simulations performed on

the benchmark problems proved that this criterion sometimes does not provide models

with the most efficient simulations. Simple benchmark observations are insufficient to get

the thorough understanding of the equation structure required to develop the necessary

heuristics.

To try and overcome this problem, a new tree selection method, called the Formulation-

Based Tree Selection, is developed in this chapter. In this method, the heuristics will be

based on the equation formulation procedure used to extract the system’s equations of

motion from its linear graph developed by McPhee [19]. These heuristics will be augmented

by heuristics already developed for the Variable-Based Tree Selection that have worked well

for the benchmark problems used in this study.

First, the formulation of the various heuristics used for the Formulation-Based Tree

Selection shall be presented in Section 4.1, followed by the development of the Formulation-

Based Tree Selection Algorithm in Section 4.2. Section 4.3 will present an example of the

application of this algorithm. Finally, Section 4.4 will present the algorithm’s shortcomings.

60
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4.1 Heuristics

This section will re-analyse some of the heuristics developed for the Variable-Based Tree

Selection as well as the equation formulation procedure presented in Section 2.3 and ex-

amine which aspects of this procedure affect the final system’s equations the most. Based

on these observations, a series of tree selection heuristics will be established. Finally, an

overview of these heuristics as well as the general method and order in which they should

be applied is presented in Section 4.1.7.

4.1.1 Absolute Branch and Chord Heuristics

The first step in establishing heuristics for the Variable-Based Tree Selection was to deter-

mine the tree selection limitations of McPhee’s symbolic equation formulation procedure

of mechanical systems using graph theory [19]. This limitation, which states that the arm

elements must always be placed in the translational tree, must also be enforced within the

Formulation-Based Tree Selection.

In Section 3.1.1, this limitation was combined with other observations made by McPhee

to formulate two heuristics. The first heuristic, called the Absolute Branch Heuristic, stated

that edges whose across variables are explicitly known functions, such as motion drivers

and arm elements, should always be placed in the tree. The second heuristic, called the

Absolute Chord Heuristic, stated that edges whose through variables are explicitly known

functions, such as force and torque drivers and spring-damper-actuators (SDAs), should

be placed in the cotree.

The first of these heuristics helps in avoiding the tree selection limitation of McPhee’s

equation formulation method. Furthermore, their conception was also based on logical

observations. Out of all the benchmarks tested using many different trees, these two

heuristics were never violated. Because of these facts, these two heuristics shall also be

used within the Formulation-Based Tree Selection.
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4.1.2 Rotational Dynamic Equations

Analysis of the Dynamic Equations

Forward dynamic problems require the solution of both the dynamic and kinematic equa-

tions of the mechanical system. The dynamic equations of a system consist of differential

equations that are often very complex in nature. Also, as mentioned in the previous

section, there will be as many dynamic equations as across variables used to define the sys-

tem (n). The kinematic equations are a series of m nonlinear algebraic equations, where

m = n − DOF , with DOF being the degrees of freedom of the system. This implies that

there are fewer kinematic equations than dynamic equations for a given mechanical model.

This fact demonstrates that the simplification of a mechanical system’s dynamic equations

should be a priority of the tree selection algorithm.

To try and predict the complexity of the system’s dynamic equations, each step of

the equation formulation procedure, presented in Section 2.3 and summarized in Figure

4.1, used to generate these equations will be analysed to see its effect on the equation

complexity.

The creation of a system’s dynamic equations starts at Step I of the equation formula-

tion procedure. This step generates the basic equations from which the dynamic equations

will be formed. In this report, these equations will be called the basic dynamic equations.

Let us now go to Step IV, the final step in formulating the dynamic equations. This step

adds a bit of complexity to the system’s dynamic equations since it projects the equations

onto their motion space (which is defined by q). This will require the evaluation of dot

products. However, generally speaking the number and complexity of these dot products

will be affected by the choice of the frame in which each terminal equation is expressed,

which can not be predicted in the pre-processing environment. Moreover, the results of

these dot products are extremely dependent on the mechanism’s geometry, which can

also prove difficult to treat in the pre-processing environment in which the tree selection

algorithm must be developed. Furthermore, the complexity added by performing the dot

products pales in comparison to the overall complexity of the dynamic equations and hence

these dot products will generally have little effect on the overall complexity of the system’s

dynamic equations. For these reasons, the added complexity of dot products shall not be
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Figure 4.1: Equation formulation summary.
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taken into consideration when establishing heuristics for dynamic equations.

In contrast, Step III of the equation formulation procedure has a major effect on the

complexity of the system’s dynamic equations. This step modifies the basic dynamic equa-

tions by substituting in expressions that eliminate secondary variables, and is composed of

three parts. This adds complexity to these equations but does not generate any new dy-

namic equations. This complexity generally grows exponentially depending on how many

of Step III’s parts must be used in the substitution process, since variables of the first part

are expanded by the second part, which in turn contain multiple variables that must each

be substituted for, and are hence also expanded, in the third part. By observing which

variables, found in the basic dynamic equations, are most likely to be expanded in Step

III, and how many of this step’s parts are required to perform this substitution, one can

create tree selection heuristics that minimize the number of these variables found in the

basic dynamic equations generated in step I.

Using this idea, the present section, as well as Section 4.1.3, will elaborate heuristics

to help in the selection of efficient dynamic equations generated by the rotational and

translational trees respectively.

Generation of the Rotational Dynamic Equations

Basic dynamic equations are generated in Step I and will be composed of various torque

vectors. These torque vectors will be replaced by the torque terminal equations corre-

sponding to the given torque vector’s edge type. In step III of the equation formulation

procedure, these torque terminal equations are expanded by various substitutions that

result in the basic dynamic equations being expressed relative to only primary variables.

These substitutions add a lot of complexity to the dynamic equations. By determining

which torque terminal equation requires the most substitutions in step III, it will be pos-

sible to determine the relative complexity that each of these terminal equations can add

to the system’s final equations. This will help determine which torques should be avoided

in the basic dynamic equations in order to produce the simplest dynamic equations.

Let us first look at the different torque terminal equations that can be found in the basic

dynamic equations generated by the rotational tree. There are six edge types that can be

found in these dynamic equations: joint elements, torque drivers, force drivers, rotational
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SDAs, translational SDAs, and body elements. The terminal equations associated with

the torque of each of these elements are presented in Table 4.1.

In this table, the vector ~T (t) represents the user-defined torque found in the torque

driver and the rotational SDA. The joint torque ~T is expressed relative to n̂1 . . . n̂n, which

represents the rotational reaction space of the joint. In the torque expression for the

rotational SDA, k is the spring stiffness, θini is the undeformed spring’s angle (the equivalent

of unstretched length for a linear spring), θ is the angle of rotation for the spring, d is the

damping constant and û is the rotational unit vector along which the rotation takes place.

In the rigid body’s torque terminal equation, the term
~~J represents the body’s inertia

dyadic, ~ω represents the body’s rotational velocity vector, and ~α represents the rotational

acceleration vector. The summation
∑

~rr× ~Fr represents the sum of the torques generated

by each arm attached to the body (rr), where ~rr and ~Fr represent the displacement vector

and force vector associated to one of the edges attached to the body respectively. Finally,

the summation
∑

~rt× ~Ft represents the sum of the torques generated by each joint allowing

translation that is attached to the body or one of it’s arms (rt), where ~rt and ~Ft represent

the displacement vectors and force vectors associated to one of these joints.

Note that the motion drivers and arm elements are not mentioned in this list. This

is because the absolute branch and chord heuristics states that both of these edges must

be placed in the tree. Furthermore, the f-cutsets of these branches will not be used to

generate dynamic equations as discussed in Section 2.3.

Torque Drivers:

First, let’s consider the terminal equation of the torque driver. Since by definition this

torque is already fully defined and torque driver elements must be in the cotree (as indicated

by the Absolute Chord Heuristic presented in Section 4.1.1), Step III will not have to

eliminate any secondary variables and the torque variables will stay as they are in the

basic dynamic equation. This means that it is very advantageous to have torque elements

in the basic dynamic equations since they only consist of one torque vector and will not

be transformed into a complex equation in Step III. (It can be noted that it is possible for

the user to enter a torque value that is dependent on other variables of the system, such as

body position. This could require Step III to replace these variables if they are secondary

variables. However, this possibility will not be considered in this report.)
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Table 4.1: Torque Terminal Equations Found in Basic Dynamic Equations

Element Type Torque Terminal Equations

Torque Driver ~T = ~T (t)

Force Driver ~T = ~0

Joint ~T = ~T (n̂1 . . . n̂n)

Rotational SDA ~T = (k(θini − θ)− d( d
dt

θ) + ~T (t)) · û
Translational SDA ~T = ~0

Rigid Body ~T = − ~~J · ~α− ~ω × ~~J · ~ω −
∑

~rr × ~Fr −
∑

~rt × ~Ft

This concept can be illustrated by the slider-crank example presented in Section 2.1.

When we look at the basic dynamic equations of the system (equations (2.5) and (2.6))

we see that the torque element ~T12(t) is present in the first of the two equations. When

looking at the final system equations, presented in equations (2.36) to (2.43), we see that

the only change to this torque driver is its projection onto the motion space of the joint

h8. Its final value, taking the form T12(t), is only present once in equation (2.42). This

shows that this term was not expanded in Step III of the equation formulation procedure

and had minimal effect on the final system’s equations complexity.

Force Drivers:

Let us now consider the force drivers. It will be seen later in our discussion that torques

resulting from forces exerted on the various bodies of the system will be considered in the

torque terminal equation of the body element. This means that the force driver element’s

torque terminal equation is null and the presence of this edge in the basic rotational

dynamic equation (the basic dynamic equation generated by the rotational tree) will add

nothing to the final version of these dynamic equations.

Joint Elements:

Joint elements can also be found in the basic dynamic equations. These fall under two

categories, branch joints and chord joints. First, let us consider that the joint element is a
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branch. In this case, the joint element is the basis for the f-cutset that generated the basic

dynamic equation in which it is found. This f-cutset was also projected onto the branch

joint’s motion space to generate the basic dynamic equations. Since every joint element is

by itself passive and frictionless, the reaction space spanned by the joint will be orthogonal

to its motion space. In essence, this means that a joint cannot generate torque or forces

along its motion space. Since the f-cutsets are projected onto the branch joint’s motion

space, this joint will not add any torque elements to the dynamic equations.

However, if the joint is a chord, its torque terminal equation consists of a simple torque

vector and does not contain any secondary variables. Because of this, it will not require

any substitution in Step III of the equation formulation procedure.

This does not entail that the joints have little or no effect on the final dynamic equations.

The joints will have a major effect on the number of dynamic equations generated and will

affect the complexity of the equations used in the substitutions of the equation formulation

procedure’s Step III. All of these factors will be discussed in further sections. For now,

what is important to keep in mind is that the presence of a joint element in a given basic

rotational dynamic equation will either add nothing to the basic equation, or will add a

simple torque vector. This indicates that it is advantageous to have joints in the basic

dynamic equations.

The effect of joint elements in the basic dynamic equations can partly be seen in the

slider-crank example presented in Section 2.1. In equation (2.3) one finds the branch joint
~T8 and the chord joint ~T9. In this case both joint torques do not appear in the final

dynamic equations described in equations (2.36) to (2.43). The reason ~T9 is not found in

these equations, though it is a chord, is that it has the same axis of rotation as the joint
~h8 and when the dot products were executed, ~T9 was eliminated with ~T8. Had this joint

had a different axis of rotation, ~T9 would be found in the final equations and would not

have any serious impact on the complexity of the first dynamic equation in which it would

be found.

Spring-Damper-Actuators:

The next element type that can be found in the basic dynamic equations is the spring-

damper element. The Absolute Chord Heuristic assures that these elements will always
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be placed in the cotree. Similarly to the force driver, the translational spring-damper in

a rotational tree provides no torque and hence will not add anything to the rotational

dynamic equations (the dynamic equations generated by the rotational tree).

In the case of a rotational spring-damper element, the situation is a bit different. Since

rotational SDA elements must be in the cotree, its torque terminal equation will contain

the secondary variables ~θ and d/dt ~θ. In Step III of the equation formulation procedures,

these variables will be substituted by functions containing only primary variables. Since

no arm forces are present in this terminal equation, only the two last parts of Step III’s

substitution process will be needed. Because of this, rotational SDAs in the basic dynamic

equation will affect the final equation’s complexity more than the presence of drivers and

joints. However it is important to note that SDA elements are almost always placed in

parallel with a revolute joint. If this revolute joint is a branch, the substitutions made in

section three of the equation formulation procedure will simply replace ~θ and d/dt ~θ with

the rotational variables of the revolute joint, thus keeping the SDA’s torque element simple

and compact.

Rigid Body Elements:

The final element type that one can find in a basic rotational dynamic equation is the

body element. Due to the exceptional complexity of flexible bodies, their effect on dy-

namic equations will be analysed specifically in Section 4.1.5 and only rigid bodies will be

considered in this section. The rigid body’s terminal equation contains many secondary

variables, whether the body is in the tree or not. In order to systematically analyse this

terminal equation, we will divide it into three sections and analyse them one at a time.

The first section will relate to the torque generated by the body itself (− ~~J · ~α− ~ω× ~~J · ~ω),

the second section will consider the torque due to the arms (−
∑

~rr × ~Fr) and the final

section will consider the torques due to joints that originate from the body in question and

allow translation (−
∑

~rt × ~Ft).

The first section of the body’s terminal equation will contain no secondary variables if

the body is in the tree. However, even if there are no secondary variables to replace, this

section can add a certain amount of complexity to the dynamic equations due to the cross

products and dot products involved with the three rotations allowed by a body element.

If the body is in the cotree, the terminal equation’s first section contains two secondary
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variables: ~ω and ~α. These secondary variables are substituted using the last part of Step III

in the equation formulation procedure. The functions used in the substitutions is affected

by which joints are placed in the trees and how many joints connect a given body to the

ground (both heuristics in the Variable-Based Tree Selection presented in Chapter 3) but

will always add a considerable amount of complexity to the dynamic equations. In general

chord body torques will add slightly more complexity to the rotational dynamic equations

than branch body torques due to the two secondary variables ~ω and ~α in the chord body

torques.

The second section of the body’s torque terminal equation is extremely important to

the creation of dynamic equations and affects the model’s complexity drastically. This

section is dependent on how many arms are attached to a given body. In general, two arms

are connected to every body (in order to connect two joints at given points on the body

for example). However, this number can be lower or substantially higher. Whether or not

the body is in the tree, for each arm element attached to the body there is one secondary

variable, the arm force (~Fr), in the body’s torque terminal equation. These are always

secondary variables since they are associated with the arm elements that must always

be found in the tree. To substitute the arm forces by functions of primary variables, all

three parts of Step III in the equation formulation procedure must be used. As mentioned

earlier, the use of all three parts will result in the use of a very large and complex function of

primary variables to be used in the substitution. Once again, the actual size and complexity

added when performing Step III of the equation formulation procedure will depend on how

many joints and which types of joints relate the body to the ground. However, no matter

how simple or complex this series of joints may be, the functions used to substitute the

arm forces found in the basic dynamic equations will be extremely complex and will add

much more complexity to the final dynamic equation than any other variable found in the

basic dynamic equation mentioned thus far.

To illustrate the complexity brought forth by the arm forces, it is possible to once

again take a look at the slider-crank example presented in Section 2.1. Looking at this

model’s first basic dynamic equation (equation (2.3)), one can see that it contains a body

torque T1, two joint torques T8 and T9, and the torque driver T12. In the system’s final

dynamic equations (equations (2.36) to (2.43)), the two joint torques were eliminated by



Formulation-Based Tree Selection 70

dot products, the torque driver’s torque remains unchanged, and the first section of the

body’s torque terminal equation was simplified to Izz1β̈1, which is seen by the presence

of Izz1 in equation (2.36). The rest of this dynamic equation was completely generated

by the two arm forces, ~F4 and ~F5, in the body m1’s torque terminal equation. It is also

interesting to note that the body m1 was related to the ground by a single revolute joint,

which is one of the simplest possible configurations. Yet, even in this very simple form,

the arm forces add major complexity to the model and are virtually the only source of

complexity in the slider-crank model.

Finally, the third section of the body’s terminal equation, representing the torque pro-

duced by joints allowing translation (e.g. prismatic and cylindrical joints) that originate

from the given body, can add significant complexity to the model. However, this section

is rarely needed since not all models have joints allowing translation that do not originate

from the ground. However, if a model contains such joints and these are found in the

tree, ~Ft become a secondary variable and the added complexity is the same as with an

arm element. If the joint is a chord, the variables ~rt becomes a secondary variable. The

substitution of this secondary variable is relatively simple and will only require the last

two parts of Step III in the equation formulation procedure.

The Body Torque Heuristic

The analysis presented above clearly shows that the body elements are the components

that add the most complexity to rotational dynamic equations. Hence, all of this analysis

comes down to one general and simple heuristic, called the Body Torque Heuristic, that

can be stated: the total number of body torque instances found in all the basic dynamic

equations obtained from this tree must be minimal. Furthermore, branch body torques are

slightly less important in this minimisation than chord body torques.

It might seem surprising that the heuristic presented above does not explicitly address

the issue of which joints should be placed in the tree, especially considering that the

Variable-Based Tree Selection of Chapter 3 was entirely based on this premise. However,

a more thorough analysis of this heuristic reveals that this concept is implied by the need

to define a tree.

In order to demonstrate this, let us examine a model of a spatial slider-crank depicted
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in Figure 4.2. The graph of this model can be seen in Figures 4.3 and 4.4, where two

different rotational trees (R-Tree A and R-Tree B), shown in bold, are selected in each

figure. The spatial slider-crank is formed by a revolute joint, depicted by the edge h9, that

connects a crank, depicted by the body m1 and its two arms r5 and r6, to the ground. The

location where the revolute joint connects to the ground is depicted by the edge r4. The

crank is then connected to a connecting rod, represented by the edges m2 and its two arms

r7 and r8, by a spherical joint corresponding to the edge b10. Finally, a sliding block (m3)

is connected to the connecting rod via a universal joint (u11) and connected to the ground

by a prismatic joint (s12).

Figure 4.2: Spatial slider-crank mechanism.

The basic dynamic equations generated by R-Tree A are presented in equations (4.1)

to (4.3). These equations were obtained with h9 and u11’s f-cutset equations depicted in

Figure 4.3. The basic dynamic equations for R-Tree B are presented in equations (4.4) to

(4.7), which were obtained by the tree’s corresponding f-cutset equations for edges h9 and

b10, depicted in Figure 4.4. The terms ~Ti in these equations refers to the torque vector of

the ith edge. The term û9 represents the unit vector of the revolute joint h9’s rotational

motion space. The term û111 and û211 represent the two unit vectors of the universal joint
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Figure 4.3: Rotational tree R-Tree A for the spatial slider-crank.

u11’s rotational motion space, while û110, û210, and û310 represent the three unit vectors

of the spherical joint b10’s rotational motion space.

From these equations, one can see that the mechanism modelled using R-Tree A contains

three instances of body torques in its basic rotational dynamic equations. ~T1 is present

in equation (4.1) and ~T2 is present in both equations (4.2) and (4.3). In contrast, the

model generated by R-Tree B contains five instances of body torques consisting of ~T1 and
~T2 in equation (4.4) and ~T2 appearing once in each of the three equations (4.5) to (4.7).

According to the Body Torque Heuristic, the first tree is the better choice.

(~T1 + ~T9 − ~T10) · û9 = 0 (4.1)

(~T2 + ~T10 + ~T11) · û111 = 0 (4.2)

(~T2 + ~T10 + ~T11) · û211 = 0 (4.3)

(~T1 + ~T2 + ~T9 + ~T11) · û9 = 0 (4.4)

(~T2 + ~T10 + ~T11) · û110 = 0 (4.5)
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Figure 4.4: Rotational tree R-Tree B for the spatial slider-crank.

(~T2 + ~T10 + ~T11) · û210 = 0 (4.6)

(~T2 + ~T10 + ~T11) · û310 = 0 (4.7)

The optimal nature of the rotational tree R-Tree A is confirmed in Appendix A.6, where

the spatial slider-crank is modelled using various tree combinations. In this analysis, the

systems modelled using the rotational tree R-Tree A produce much simpler sets of equations

that are solved much faster than systems modelled using R-Tree B.

It is now possible to look at what caused more body torques to appear in the second

model. Equation (4.1) represents the basic dynamic equation generated by the revolute

joint h9 in R-Tree A and contains one body torque: ~T1. The basic dynamic equation

generated by the same revolute joint using R-Tree B, equation (4.4), contains ~T1 but also

contains the body torque ~T2. This torque is present because in R-Tree B the body element

m2 is connected to the ground by two joints allowing rotation. Because of this the f-cutset

of the joint h9 contains m2. This illustrates that in certain situations, the Body Torque

Heuristic insures that each body is connected to the ground with the fewest number of
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across variables, which is the second heuristic of the Variable-Based Tree Selection Method

and was presented in Section 3.1.3.

From this example we also can see that the f-cutset equations of an edge will include

the edges of every body whose branch path to the ground node passes through the given

edge. The term branch path in this statement refers to the series of branch edges relating

a given node to another node. This observation will become important in Section 4.2.3

when the basic tree selection algorithm, used to enforce the Body Torque Heuristic, will

be chosen.

In the R-Tree A, the universal joint u11 is placed in the tree and generates two basic

dynamic equations (equations (4.2) and (4.3)), each containing one body torque. In R-

Tree B, the spherical joint b10, is placed in the tree. This joint generates three basic

dynamic equations (equations (4.5) and (4.7)), each containing one body torque. This

illustrates that when a joint generates more dynamic equations, it inadvertently adds

more body torques to the system equations. In most circumstances, the use of the Body

Torque Heuristic results in the system being modelled with the fewest number of rotational

dynamic equations possible. The full tree selection results for this benchmark problem can

be found in Appendix A.6.

The demonstration above shows that the Body Torque Heuristic enforces both the

Minimal Variable and Minimal Variable Chain Heuristics used in the Variable-Based Tree

Selection of Chapter 3. However, the Body Torque Heuristic does not give preference of

one of these two heuristics over the other. Through the minimization of the body torques

in the rotational basic dynamic equation, a low number of modelling variables is used and

each body is related to the ground in a simple way; however, the importance of each of

these factors is dictated by the model to be solved.

A possible criticism of the Body Torque Heuristic is that it takes a too general approach

by simply minimizing all the body torques without distinguishing which of these torques

are the most complex. This is a valid argument since, as mentioned in the analysis of

the body torques, the complexity of the body torques is dependent on the complexity of

the substitutions made in Step III of the equation formulation procedure. Looking at the

three parts of Step III’s substitutions, presented in Section 2.3, we can see that the first two

steps are completely dependent on the translational tree and will be addressed in Section



Formulation-Based Tree Selection 75

4.1.3. In contrast, Step III is dependent on the rotational tree and is based on the use of

branch transformation equations to substitute the chord across variables with branch across

variables. This means that the complexity of these substitutions will be highly dependent

on how many branch joints relate each body to the ground. This is already taken under

consideration indirectly by the Body Torque Heuristic, as demonstrated with the spatial

slider-crank example above. This means that the Body Torque Heuristic already simplifies

each body torque in the basic rotational dynamic equations as much as possible and the

heuristic used to select the translational tree will have to take care of the rest.

It is also important to note that the heuristics for tree selection should be kept general

and fairly broad. There are many factors that affect the complexity of the final symbolic

equations of a model and some of these factors, such as geometry and equation simplifica-

tion and code optimization, are difficult or impossible to predict within the pre-processing

environment in which the algorithm is to be developed, as well as the time limits upon

which this project is based. Consequently, if the tree selection algorithm uses heuristics

that take into account minute changes in equation complexity due to topology without

taking into account geometry and equation code optimization, the added information will

be useless and will most likely slow down the tree selection process. This is why using the

the Body Torque Heuristic is deemed sufficiently precise. With more heuristics, one could

determine which body torque is most complex, but it would be difficult to predict if this

complex torque would or would not be drastically simplified during equation simplification

or the generation of optimized code to express the system’s equations.

4.1.3 Translational Dynamic Equations

Generation of the Translational Dynamic Equations

In order to generate the dynamic equations of the translational tree, one must initially apply

Step I of the equation formulation procedure that generates the translational basic dynamic

equations. These equations will contain various force vectors. As with the rotational tree,

one can predict the final complexity of the dynamic equations created with the translational

tree by examining each of the possible element types whose force vector can be found in

the basic dynamic equations of the translational tree. By determining which of these
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element types will require the most substitutions in Step III of the equation formulation

procedure, it is possible to determine which element types should be minimized within

these translational basic dynamic equations.

Table 4.2 lists the force vector terminal equations of each joint element that can be

found in the basic dynamic equation of the translational tree. In this table, the vector
~F (t) represents the user-defined force found in the force driver and the translational SDA.

The term ~F in the joint’s terminal equation represents the joints force vector and n̂1 . . . n̂n

represents the translational reaction space of the joint. In the translational SDA’s terminal

equation, k is the spring stiffness, L is the unstretched length of the spring, |~r| and |~v · û|
represents the amplitude of the rate of change of the spring’s length respectively, d is

the damping constant and û is the translation vector along which the translation takes

place. Finally, in the rigid body’s terminal equation, m represents the body’s mass and ~a

represents the body’s translational acceleration.

Table 4.2: Force Terminal Equations Found in Basic Dynamic Equations

Element Type Force Terminal Equations

Torque Driver ~F = ~0

Force Driver ~F = ~F (t)

Joint ~F = ~F (n̂1 . . . n̂n)

Rotational SDA ~F = ~0

Translational SDA ~F = (k(L− |~r|)− d|~v · û|+ ~F (t)) · û
Rigid Body ~F = −m~a

Drivers and Joints:

The analysis of each of these force terminal equations is similar to the analysis of each

of these element’s torque equations presented in Section 4.1.2. First, the force driver

element, which is always a chord (as indicated by the Absolute Chord Heuristic presented

in Section 4.1.1), will contain no secondary variables and will simply remain in the final

dynamic equation as a force vector.
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Similarly, the joint element, if in the cotree, will also contain no secondary variables

and will simply end up as a force vector in the dynamic equations. If this joint is in the tree

however, it will add no variable to the dynamic equation at all, since its force vector will

be eliminated by dot products when the dynamic equation is projected onto the motion

space of the vector.

Similarly, the torque driver and the rotational spring-damper-actuator have no force

vector terminal equation and hence will not contribute to the complexity of the dynamic

equations of the translational tree.

Spring-Damper-Actuator:

The translational spring-damper-actuator, which is also always found in the cotree (again

due to the Absolute Chord Heuristic), will contain two secondary variables that consist of

~r, ~v and û. The substitution of these secondary variables will add extra complication to

the terminal equation. These substitutions will be executed by the two last parts of Step

III of the equation formulation procedure. As with the torque SDA in rotation, one can

note that the translational spring-damper is occasionally placed in parallel with a prismatic

joint that stands a high chance of being placed in the tree. This would greatly simplify

the substitution process, since the secondary variables can directly be substituted with the

primary variables of the prismatic joint.

The rotational spring-damper-actuator, as with the torque driver, has a null vector

for a force terminal equation and hence will not add any complexity to the final system

equations.

Rigid Body:

Finally, the rigid body element, if placed in the tree, contains no secondary variables and

its force terminal equation will simply remain unvaried in the final dynamic equation. Al-

ternatively, if the rigid body is placed in the cotree, it will contain one secondary variable

in the form of ~a. This secondary variable will have to be substituted by using the two

last parts of the equation formulation procedure’s Step III. The resulting function used

to replace the secondary variable ~a can quickly get very complex, depending on the joints

selected in each tree. Also, functions used to substitute accelerations are generally much

more complex than those used for position and velocity. A good demonstration of this can
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be found by simply looking at the terminal equations of translational position, velocity,

and acceleration of arm elements presented in Table B.2. These terminal equations are

extensively used in the second part of the equation formulation procedure’s Step III. This

shows that even though at first glance the force terminal equations of translational SDAs

may seem more complex than those of rigid body elements, the SDAs only contain sec-

ondary variables that are of a much less complex nature than the acceleration secondary

variables needed for the rigid body element. This justifies the assumption that chord rigid

bodies are the elements bringing the most complexity to dynamic equations generated from

the translational tree.

Relation Between the Two Trees

Before formulating a final heuristic governing the selection of the translational tree, it is

important to remember that on several occasions in the study of the dynamic equations

created by the rotational tree, presented in Section 4.1.2, certain substitution complexities

were highly dependent on properties of the translational tree. This means that there is a

direct link between the rotational and translational trees that simply cannot be ignored

when trying to select a system’s trees.

Let us first take a look at how the translational tree’s dynamic equations are related

to the rotational tree. When looking at the steps one must go through in order to formu-

late the dynamic equations generated by the translational tree, one can notice two specific

procedures that will require the rotational tree. First, during the last part of the equation

formulation procedure’s Step III, substitutions are made using the rotational branch trans-

formation equations. As mentioned in Section 4.1.2, these equations are highly dependent

on the joints found in the rotational tree, which are already taken into consideration within

the Body Torque Heuristic. The next and final step where the translational dynamic equa-

tions are dependent on the rotational tree will be in Step IV, where the dot products are

evaluated. Once again, these dot products are dependent on the joints found in the rota-

tional tree and are also highly dependent on the geometry of the system, which will not

be taken under consideration in this report. For these reasons and others mentioned pre-

viously in this report, the dot products will not be considered when establishing heuristics

for generating dynamic equations. From these observations, one can gather that the effect
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of the rotational tree on the translational dynamic equations is already optimized by the

Body Torque Heuristic and, as such, poses no particular problem.

When looking at the effect the translational tree has on the dynamic equations gen-

erated by the rotational tree, the situation is quite different. Section 4.1.2 determined

that the secondary variables ~Fr and ~Ft, referring to the forces associated with arms and

joints allowing translation found in the rigid body’s torque terminal equation, are the vari-

ables that affect the complexity of the final rotational dynamic equations the most. The

substitution process for these variables spans all three parts of the equation formulation

procedure’s Step III. The first of these three parts, which will affect the final dynamic equa-

tion the most, is based on using the translational chord transformation equations to express

these forces as chord forces. Incidentally, Step I in generating the dynamic equations of

the translational tree is based on the use of f-cutset equations of the translational tree.

Since a chord transformation equation is simply a rearranged form of an f-cutset equation,

we can see that the substitution for ~Fr or ~Ft will have the same order of complexity as

one complete dynamic equation created by the translational tree. This also implies that

the functions used to substitute ~Fr or ~Ft will be just as dependent on the translational

tree’s configuration as the dynamic equations generated by this same tree. Hence, when

trying to find the optimal translational tree, one must not only try to simplify the dynamic

equations created by this tree, but one must also minimize the functions that will be used

to substitute the ~Fr and ~Ft variables present in the basic dynamic equations generated by

the rotational tree.

The fact that the selection of the translational tree will also have to take into account

properties obtained by the rotational tree, implies that the rotational tree should be selected

before the translational tree. Another important observation is that, in general, the dynamic

equations generated by the rotational tree contain much more ~Fr and ~Ft variables than

the translational tree generates dynamic equations. This means that not only will the

rotational tree’s properties be necessary to the selection of the translational tree, but these

properties will have more impact on the selection of a translational tree than the dynamic

equations of the translational tree itself.
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Body Force Heuristic

In Section 4.1.2, it was determined that to minimize the complexity of the dynamic equa-

tions generated by the rotational tree, one had to minimize the number of chord rigid

body torques in the basic rotational dynamic equations. This train of thought can also be

applied to the dynamic equations generated by the translational tree by minimizing the

number of chord body forces in the basic translational dynamic equations. However, as

discussed earlier, the translational tree also has a very big effect on the complexity of the

dynamic equations generated by the rotational tree due to the forces ~Fr and ~Ft found in

the rotational basic dynamic equations.

Let us examine the process required for the substitutions of the forces ~Fr and ~Ft and

find a method to minimize the complexity added to the final equations by this process. As

mentioned earlier, the first part of Step III’s substitution process is to use the translational

chord transformation equations to express these forces as chord forces. Since this process

and the process used to obtain the translational dynamic equations are both based on

elements in the f-cutsets, the chord forces that can be found in both these equations

are the same and were presented in Table 4.2. Furthermore, the substitutions needed to

eliminate the secondary variables from the force terminal equations in this table are the

same for both the translational dynamic equations and the equations used to substitute
~Fr and ~Ft. Because of this, the minimization of the substitutions replacing the forces ~Fr

and ~Ft can also be achieved by minimizing the number of chord body forces found in their

translational chord transformation equations.

Finally, one can summarise the selection of a translational tree in one simple heuristic,

called the Body Force Heuristic. It can be stated as follows: one must minimize the number

of chord rigid body force instances needed to formulate every rotational and translational

dynamic equation of the system .

When applying this heuristic to the tree selection process, the dependence of the trans-

lational tree relative to the rotational tree becomes apparent. Because of this, the selection

of the translational tree will not always minimize the number of translational modelling

variables, which was one of the primary heuristics used in the Variable-Based Tree Selection

presented in Chapter 3.
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In order to better understand the Body Force Heuristic, let us look at the selection of

a translational tree for the spatial slider-crank presented in Figure 4.2. In Section 4.1.2

the rotational tree R-Tree A, depicted in Figure 4.3, was shown to be an advantageous

rotational tree choice for this mechanism. This analysis will assume that this rotational

tree was chosen to model the spatial slider-crank.

The first step needed to enforce the Body Force Heuristic is to determine how many

times each arm force is present in the rotational basic dynamic equations. These basic

dynamic equations were formulated in Section 4.1.2 in the equations (4.1) to (4.3). The

equations (4.8) to (4.10) present these same basic dynamic equations with the terminal

equations substitutions completed and the arm forces depicted in bold.

(−~~J1 · ~α1 − ~ω1 ×
~~J1 · ~ω1 − l5ı̂1 × ~F5 − l6ı̂1 × ~F6 + ~T9 − ~T10) · k̂9 = 0 (4.8)

(−~~J2 · ~α2 − ~ω2 ×
~~J2 · ~ω2 − l7ı̂2 × ~F7 − l8ı̂2 × ~F8 + ~T10 + ~T11) · ı̂11 = 0 (4.9)

(−~~J2 · ~α2 − ~ω2 ×
~~J2 · ~ω2 − l7ı̂2 × ~F7 − l8ı̂2 × ~F8 + ~T10 + ~T11) · ̂11 = 0 (4.10)

where
~~Ji represents the inertia dyadic of the body represented by the edge mi and ~ωi, ~αi

represent the rotational velocity vector and rotational acceleration vector of the ith edge.

The terms li represent the length of the arm element ri, while the term ~Fi represents the

force vector associated to the ith edge. The terms ı̂i represents the unit vector along the

the ith edge’s end node’s local X axis. The term ~Ti represents the torque of the ith edge.

The term k̂9 represents the revolute joint h9’s rotational motion space unit vector about

its end node’s local Z axis. Finally, the terms ı̂11 and ̂11 represents the universal joint

u11’s rotational motion space unit vectors which are about its end node’s local X and Z

axes respectively.

From these equations we can see that the arm forces ~F5 and ~F6 are each present once,

while the arm forces ~F7 and ~F8 are each present twice in the basic dynamic equations

generated by the rotational tree. This is because the body torque ~T1 appeared once in the

equations (4.1) to (4.3), while the body torque ~T2 appeared twice in these same equations.

Let us consider the possible translational tree presented in Figure 4.5 called T-Tree A.

In order to evaluate the Body Force Heuristic, one must first determine how many chord

body forces are substituted into the dynamic equations generated by the rotational tree.
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Table 4.3 gives each of the chord transformation equations that will be used to substitute

the arm forces. This table also gives the number of chord body forces in each of these

equations that are then multiplied by the number of times the given arm forces are found

in the dynamic equations generated by the rotational tree. Adding all of these values

together provides the total quantity of body forces in all the rotational dynamic equations,

which in this case is eleven.

Figure 4.5: T-Tree A for the spatial slider-crank.

Now that we know the number of chord body forces used to formulate the rotational

dynamic equations, we must also look at the number of these forces present in the transla-

tional dynamic equations. In the case of the T-Tree A, none of the edges in this translational

tree allow a variation in translation in time. This means that this particular translational

tree will not generate any translational dynamic equations. This leads to the conclusion

that a total of eleven chord body forces will be used to generate all the equations of the

system when using the rotational tree R-Tree A in Figure 4.3 and the translational tree

T-Tree A in Figure 4.5.

Let us now consider the possibility of modelling the spatial slider-crank using the same

rotational tree (R-Tree A), while using the translational tree called T-Tree B depicted in



Formulation-Based Tree Selection 83

Table 4.3: Number of Chord Body Forces Used in the Formation of the Rotational Dynamic

Equations with T-Tree A

Arm Forces Substitution # of Body Forces # Times in Basic Rot. Dyn. Eq. Total

~F5 = ~F1 + ~F2 + ~F3 + ~F12 3 1 3
~F6 = −~F2 − ~F3 − ~F12 2 1 2
~F7 = ~F2 + ~F3 + ~F12 2 2 4
~F8 = −~F3 + ~F12 1 2 2

Total Number of Body Forces in all the Rotational Dynamic Equations 11

Figure 4.6. In this case, Table 4.4, similarly to Table 4.6 for tree T-Tree A, shows the arm

force substitutions for the T-Tree B and uses this information to determine that a total

of three chord body forces will be used to generate the rotational dynamic equation when

these trees are used to model the system.

Figure 4.6: T-Tree B for the spatial slider-crank.
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Table 4.4: Number of Chord Body Forces Used in the Formation of the Rotational Dynamic

Equations with T-Tree B

Arm Forces Substitution # of Body Forces # Times in Basic Rot. Dyn. Eq. Total

~F5 = ~F1 − ~F10 1 1 1
~F6 = ~F10 0 1 0
~F7 = −~F10 0 2 0
~F8 = ~F2 + ~F10 1 2 2

Total Number of Body Forces in all the Rotational Dynamic Equations 3

Unlike the T-Tree A, the T-Tree B does generate a translational dynamic equation for

the joint edge s12 in the tree. The basic dynamic equation used to generate this equation

is presented by equation (4.11). This basic equation contains two chord body forces that

combine with the three such forces used in the formulation of the rotational dynamic

equations to give a total of five chord body forces used to generate all of the system’s

dynamic equations.

(~F2 + ~F3 − ~F10 + ~F12) · û12 = 0· (4.11)

This predicts that, in this case, T-Tree B should produce a model whose simulations

are more efficient than the ones obtained with T-Tree A. At first glance, these results

may seem puzzling and unintuitive since T-Tree B will require more dynamic equations

to model the system. However, the Body Force Heuristic predicts that all the dynamic

equations generated by the translational tree T-Tree B will have a much lower complexity

than those generated using T-Tree A. The lowered complexity of each equation will be

such that even the addition of an extra dynamic equation with T-Tree B will still result

in a lower total complexity of the dynamic equations.

The validity of these assumptions are demonstrated in Appendix A.6, where the spatial

slider-crank is modelled with both of these two tree combinations, as well as a few others.

The results presented in this Appendix clearly show that a lowered solution time is obtained
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when using the rotational tree R-Tree A in Figure 4.3 and the translational tree T-Tree B

in Figure 4.5.

This spatial slider-crank demonstration also shows the strong influence the rotational

tree has on the selection of the translational tree, since the chord body forces used in the

formulation of the rotational dynamic equations had a greater impact than the chord body

forces that were used in the formulation of the translational dynamic equation.

4.1.4 Kinematic Equations

Kinematic equations are nonlinear algebraic equations. These equations are generally less

complex than the dynamic equations that are in the form of differential equations. In this

report the trees are selected to optimize the simulation times of mechanical models used for

forward dynamics, a method that requires the solution of both the dynamic and kinematic

equations. Because of this, the relative simplicity of the kinematic equations makes them

less important in the tree selection process than the dynamic equations. Furthermore, the

complexity of these equations is much more difficult to predict since their relative simplicity

makes them much more dependent on the evaluation of dot products within the basic

equations. These dot products are affected by both the joints found in the rotational tree

and in the geometry of the model. The joints found in the rotational tree are intelligently

selected by the Body Torque Heuristic presented in Section 4.1.2. However, given the

pre-processing environment in which the trees must be selected, it is almost impossible to

predict the effect of geometry in the model.

A mechanical system has n − DOF kinematic equations, where n is the number of

modelling variables and DOF is the number of degrees of freedom. Certain methods

exist to predict the degrees of freedom of a system, such as the well-known Gruebler’s

equation. However, it is important to note that this method, as well as all other known

DOF prediction methods, do not always adequately take into account geometry and often

give false results for even the simplest mechanisms. Also, the DOF estimation method

only helps in predicting the number of kinematic equations and does nothing to help in

determining their complexity.

Since the kinematic equations are based on chords with active or passive constraints
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whose f-circuit equations are projected onto their reaction space, one could simply count

the number of kinematic equations generated in this fashion by the equation formulation

procedure. This could help determine the total number of kinematic equations and even

estimate their complexity. However, some of these equations could be redundant and would

not be present in the final system model, thus modifying the DOF count of the system. This

is very common, especially for planar systems. These simplifications are almost impossible

to predict in the pre-processing environment in which this tree selection algorithm will be

developed.

Because of all of these factors, the kinematic equations will only be treated in a simple

fashion in this tree selection algorithm. Since each kinematic equation obviously adds

complexity to the model, one clear heuristic, which shall be called the Kinematic Equation

Heuristic, can be established for kinematic equations. This heuristic can be stated as

follows: the number of kinematic equations in a mechanism should be minimized.

It is also important to predict the general complexity added to the system by these

kinematic equations. This topic is very complex and dependent on many factors men-

tioned previously. For these reasons, the addition of extra heuristics concerning kinematic

equations shall be discussed mostly in Section 4.2.4, where the tree selection method will

be established, and can be considered in this decision.

Simply stating the Kinematic Equation Heuristics is insufficient however, since it is just

as important to determine what priority this heuristic should be given in the tree selection

process. Despite the fact that the kinematic equations are generally less complex than the

dynamic equations, their impact cannot be neglected. As mentioned above, the number of

kinematic equations (m) is equal to the number of dynamic equations minus the DOF of

the system (n− f). Since the addition of dynamic and kinematic equations to the system

model are so interlinked, the major heuristics enforcing dynamic equations simplification,

namely the Body Torque and Body Force Heuristics (the heuristics regulating the number

of dynamic equation of the system), must work in parallel with the heuristic concerning

kinematic equations. The interaction between these heuristics is crucial to tree selection.
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4.1.5 Flexible Bodies

Due to the problems facing the Variable-Based Tree Selection of Chapter 3, this algorithm

was not expanded to take into account the effects of flexible bodies on coordinate and tree

selection. This section will look into this issue and establish a heuristic to better account

for the presence of flexible bodies in a mechanical system’s model.

The method used to model flexible beams in graph theory are presented by Shi et al.

[27]. The analysis of the effect of flexible bodies in the graph has been separated from

the general analysis of the model in previous sections of Chapter 2 as well as this chapter

since the terminal equations of this component are of a much more complex nature than

the other elements previously mentioned. Due to the exceptional complexity of the flexible

body relative to other element types, it is not necessary to analyse its terminal equations

in great detail as their effect on the system equations are very pronounced, and as such,

fairly easy to predict.

There are two important observations one can make on the modeling of flexible bodies.

The first observation is that the flexible body element ends at the beginning of the flexible

beam it models. This is represented in Figure 4.7, where the flexible body element is

depicted by fm1 and the flexible arm is depicted by the edge fr2.

Figure 4.7: Graph edges of the flexible body.

Secondly, Flexible beams are modeled by using a set of elastic coordinates to discretize
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a Rayleigh-Ritz discretization of the flexible beam. The polynomial shape function used,

as well as the number of elastic coordinates is chosen by the user. This indicates that the

functions describing the position, velocity, and accelerations in both rotation and trans-

lation will become a complex function of elastic coordinates. These functions will be so

complex that they are usually what adds the most complexity to the system’s symbolic

equations.

The position, velocity, and acceleration between a flexible beam’s base and end nodes

are modeled by the flexible arm edges. Within the graph-theoretical approach to mod-

eling mechanical systems used in this report, these flexible edges must be placed in the

tree (if one tries to place the flexible arm elements in the cotree, DynaFlexPro will not

be able to model the system). Consequently, when modeling systems containing flexible

bodies, it is inevitable for the symbolic equations of these systems to contain the complex

functions describing the deformations between the flexible body’s base and tip reference

frames. Therefore, to model systems producing efficient simulations, one must minimize

the occurrences of these complex functions in the system’s equations.

The addition of flexible arm across variables to the system’s symbolic equations occurs

at four specific points during the equation formulation procedure. The first such occurrence

can be found in Step II of the equation formulation procedure where the f-circuit equations

are used to form the kinematic equations. The second and third use of the arm across

variables occurs in the equation formulation procedure’s Step III. In the two last parts

of this step, the translational and rotational branch transformation equations are used to

substitute the chord across variables in the dynamic and kinematic equations. Finally, the

flexible arm across variables can be added to the system when the dot products found in

the kinematic and dynamic equations are executed in Step IV.

Let us start by analysing Step III of the equation formulation procedure. This step

will have an very big effect on the number of times the deformations between the flexible

body’s base and tip reference frames will be found in the final system equations. This is

because this Step of the equation formulation procedure is repeated so often in the equation

formulation procedure. These steps are based on the branch transformation equations of

each tree. In order to minimize the presence of flexible arm across variables in these

equations, the flexible arms must be leaf edges of the tree, meaning that they must be at
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the end of a tree section. Leaf edges can also be defined as edges containing one node, called

a leaf node, that only has the leaf edge as an adjacent branch. The across variables of the

leaf edges of the tree will only be found in the branch transformation equation of chords

connected to the leaf edge’s leaf node. In the case of mechanical systems, flexible bodies,

SDAs and force/torque drivers are the only chords that can be attached to a flexible arm’s

leaf node and whose force and torque terminal equations can include across variables to

be substituted in Step III of the equation formulation procedure. By selecting the flexible

arm’s end node as the leaf node, the flexible body’s edge, which is generally a chord due

to its six degrees of freedom, will not be one of the chords attached to the leaf node.

These observations can be expressed in a heuristic called the Flexible Body Heuristic,

which states that: The flexible arms should always be a leaf edge with its end node as the

leaf node. By following this heuristic for both tree types, no arm across variables will be

used in Step III’s substitution process unless SDAs or force/torque are connected to the

flexible arm’s end node, which one can avoid by orientating the flexible body so that these

edges connect to the base reference frame of the flexible body.

Now let us look at the two other places where arm across variables can be added to

the system’s equations. In Step II of the equation formulation procedure, the kinematic

equations are formed using the f-circuits. The minimization of the arm across variables in

these equations is less critical than their presence in Step III, since the arm across variables

found in the basic kinematic equation will only be found once in the final kinematic equa-

tions. In the case of Step III, the arm across variables found in the branch transformation

equations could be substituted multiple times in the system’s equations. This means that

the Flexible Body Heuristic takes precedence to any observation that can be made for the

kinematic equations. This being said, a tree selected with the Flexible Body Heuristic will

add arm across variables only to the kinematic equations generated by chords attached

to the arm’s end node. Since the Flexible Body Heuristic forces each edge connected to

the arm’s end node to be chords, the only way one can influence the arm across variables

added in Step II is to intelligently define the flexible body’s orientation when creating the

mechanism’s graph. This is done by placing the flexible arm’s end nodes where the fewest

number of joints, force/torque and SDAs connect to the flexible beam.

The last step influencing the number of across variables in the final system equations
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happens when the dot products are evaluated in Step IV of the equation formulation

procedure. As mentioned numerous times in this report, predicting the complexity added

by these dot products is very difficult. However, it is possible to state that the complexity

these dot products will bring is influenced by the primary variables found in the rotational

tree. When the Flexible Body Heuristic is applied, it assures that each body is related to

the ground with the fewest number of arm across variables possible. In most cases, this

will result in none of the bodies containing arm across variables to relate its position to the

ground (in this case, the complex equations describing the flexibility of the flexible bodies

will be enforced only by the kinematic equations). Because of this, if the ground frame is

used as the basis for all the dot products, the number of arm across variables added by the

evaluation of these dot products should be minimized by the Flexible Body Heuristic.

An example of the validity of the Flexible Body Heuristic can be seen in Appendix

A.5, where a spatial slider-crank containing a flexible beam is modelled using various tree

combinations. It can be noted that a number of other benchmark problems were used

to establish the validity of the Flexible Body Heuristic. However, these supplementary

benchmarks were not added to the Appendices in order to keep this report sufficiently

concise.

4.1.6 Tree Similarity

From Section 3.1.1 through Section 4.1.5, heuristics were established for tree selection.

These heuristics are mostly based on equations formulation analysis and topology. How-

ever, the final equation complexity of the system will also be affected by geometry, equation

simplification, and equation code optimization, which are extremely difficult, if not impos-

sible to predict using these methods. Because of this, there can still exist multiple tree sets

producing different model simulation efficiency that can satisfy the heuristics developed

thus far. In order to try and predict geometry, equation simplification, and equation code

optimization, a different approach is taken to develop further heuristics.

At this point in time, we will once again look directly at simulation results of various

benchmark problems allowing multiple tree combinations were modelled and tested for

simulation efficiency. Some of these benchmarks included: a 4-Bar Mechanism, a 3-RRR
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planar parallel manipulator, and a Peaucellier-Lipkin mechanism. These benchmark prob-

lems are presented in Appendix A.1, A.7, and A.9 respectively. The result of this study

showed that the more similar the translational and rotational trees are to each other, the

more efficient the model’s simulations were. These results are reminiscent of those used

to develop the Tree Similarity Heuristic of the Variable-Based Tree Selection Method in

Section 3.1.5. This is why the Tree Similarity Heuristic developed in that section shall

also be used in the Formulation-Based Tree Selection Method.

When looking at the optimal trees of each of these three mechanisms, one can see that

they always obey the heuristics established in the preceding sections, thus establishing that

the Tree Similarity Heuristic does not take precedence over these heuristics. It can also be

interesting to note that in some cases, such as with the 3-RRR planar parallel manipulator,

the added efficiency provided by the Tree Similarity Heuristic can be quite substantial.

In Section 3.1.5, the Tree Similarity Heuristic was developed only on the basis of bench-

mark observations. However, at this time, we have the added option of analysing the

equation formulation procedure in Section 2.3 to better explain the underlying reasons for

these benchmark observations. To do this, the system’s symbolic equations for each of the

aforementioned benchmark mechanisms for each of the possible tree combinations were

formulated by hand, using the four steps used in graph theory described in Section 2.3.

From these, it was possible to note that when the mechanical system’s trees differed, most

of the system’s equations were functions of a larger variety of variables. This does not mean

that the number of modelling variables present in the equations is necessarily bigger. It

simply indicates that each equation will be dependent on a wider range of variables. This

wider range of variables will hinder the ability of the equation simplification and equation

code optimization algorithms to transform these equations into a more compact form.

Appendix E presents the symbolic equation formulation of the four-bar mechanism, first

described in Section 3.1.5. From this model, the dependency of its equations on a wide

range of modelling variable when modelled with differing trees as well as the increased

coupling of its equations is clearly shown.

One of the Variable-Based Tree Selection shortcomings presented in Section 3.4 high-

lighted the difficulties of applying the Tree Similarity Heuristic. The application of this
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heuristic is complicated by the fact that each tree must be selected separately. In the

Variable-Based Tree Selection, this heuristic only ensured that the translational tree re-

sembled the rotational tree and not vice versa. In order to avoid this limitation, a new Tree

Similarity implementation method shall be used in the Formulation-Based Tree Selection.

As discussed is Section 4.1.3, the translational tree is highly affected by the rotational

tree’s properties. This makes it necessary for the rotational tree to be selected first in the

Formulation-Based Tree Selection. In this case, once the rotational tree is selected; the

translational tree can be selected while enforcing the Tree Similarity Heuristic. However,

the Formulation-Based Tree Selection will go one step further by reselecting the rotational

tree once both trees have already been selected. This second rotational tree selection will

enforce the Tree Similarity Heuristic. If the same rotational tree is reselected, the tree

selection is good. However, if this process results in the selection of a different rotational

tree, the translational tree should be reselected as well. This tree re-selection process

should continue until the trees selected are the same as the trees selected in the previous

cycle. In order to avoid that too many loops are executed, thus greatly slowing down

the algorithm, or to avoid the possibility off non-convergence, this loop is limited to four

passes.

From experience it was found that this tree re-selection process generally finds the most

similar trees on the first try. However, for some specific benchmarks, such as the 3-RRR

planar parallel mechanism and the Peaucellier-Lipkin mechanism, the tree selection process

must sometimes go through two complete tree selection cycles in order to converge to a

solution. Particularly in the 3-RRR planar parallel mechanism, this extra step in the tree

selection process can provide a substantial improvement in equation efficiency.

4.1.7 Procedure Summary

At this point all the heuristics necessary to find a set of trees have been described in the

previous sections. This section will summarize these heuristics and will describe the order

in which they must be applied.

A diagram of the procedure used to automate the selection of a mechanism’s trees

is presented in Figure 4.8. In this diagram, the sections representing each tree selection
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contain a series of heuristics that are placed in order of importance. The most important

heuristics are placed at the top and the heuristics that should have less influence in the tree

selection are placed in the bottom. The method with which these heuristics are enforced

during these tree selections will be established and demonstrated in Section 4.2.

Each tree selection process incorporates similar heuristics with a similar importance

hierarchy. In each tree selection process, the Flexible Body Heuristic is of major impor-

tance. This heuristic states that the flexible arms should always be a leaf edges with its

end nodes being the leaf node.

The next most important heuristics are the Absolute Branch and Chord Heuristics.

These heuristics state that edges whose across variables are explicitly known functions

must be placed in the tree and edges whose through variables are explicitly known functions

must be placed in the cotree.

This heuristic is followed in importance by the Body Torque Heuristic for the rotational

tree and the Body Force Heuristic for the translational tree. The Body Torque Heuristic

states that the total number of body torque instances found in all the basic dynamic

equations obtained from the rotational tree must be minimal, with a slight preference

being made on minimizing chord body torques over branch body torques. The Body Force

Heuristic states that one must minimize the number of chord rigid body force instances

needed to formulate every rotational and translational dynamic equation of the system.

Of similar importance to the Body Torque and Body Force Heuristics is the Kinematic

Equation Heuristic that states that the number of kinematic equations in a mechanism

should be minimized. As described in Section 4.1.4, in most circumstances, this heuristic

will be of less importance than the Body Torque and Body Force Heuristics. However

there exists an unavoidable relation between these heuristics for which reason they must

be enforced simultaneously.

The last heuristic that must be considered during the tree section process is the Tree

Similarity Heuristic that states that the translational and rotational trees should be as

similar to each other as possible.

As mentioned in Section 4.1.3, the rotational tree is the first tree to be selected. Once

this tree has been selected, the number of occurrences of each arm force in the basic

rotational dynamic equation is calculated. The translational tree is then selected where
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Figure 4.8: Procedure summary.
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the Body Force Heuristic is enforced using the number of arm forces calculated previously.

The selection of this translational tree also applies to the Tree Similarity Heuristic so that

it selects the tree that resembles the rotational tree the most.

As mentioned in Section 4.1.6, it is necessary to assure that the rotational tree also

takes the form that is as close to the translational tree as possible. In order to do this, the

rotational tree is selected again using the same method as when it was first selected with

the addition of the Tree Similarity Heuristic. If the new rotational tree is the same as the

one selected previously, the present rotational and translational trees are used to model

the system.

If the rotational tree selected using the Tree Similarity Heuristic is different than the

rotational tree that was previously selected, the tree selection process enters in a loop where

the translational and rotational trees are both selected using the Tree Similarity Heuristic

until the results converge to a final solution.
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4.2 Algorithm

This section will present the algorithm used to automate the selection trees for mechanical

systems based on the series of heuristics presented in Section 4.1 and summarized in Section

4.1.7. This section will start by presenting and justifying the basic algorithm structure used

to implement these heuristics. Once the basic algorithm structure is known, each of the

following subsections will augment the basic algorithm with the structures necessary to

enforce one or more heuristics, eventually providing a full picture of the algorithm and its

inner workings.

4.2.1 Algorithm Structure

As described in Section 2.2, the typical method to find a graph’s tree is to use a minimal

spanning tree algorithm. However, the edge weight assignments necessary to enforce cer-

tain heuristics presented in Section 4.1 are not as straightforward as most tree selection

circumstances. By looking at the importance and implementation difficulties associated

with each heuristic presented in Section 4.1, one can establish a few important criteria to

take under consideration when choosing a tree selection algorithm.

First of all, the Absolute Branch and Chord Heuristics, as well as the Tree Similarity

Heuristic, were already implemented in the Variable-Based Tree Selection Algorithm and

presented no particular challenge. Furthermore, the Flexible Body Heuristic can also easily

be implemented in a minimal spanning tree algorithm. This will be shown in Section 4.2.2.

Enforcing the Kinematic Equation Heuristic requires the estimation of the number of

kinematic equations required to model the system. As discussed in Section 4.1.4, this can

be done by determining the system’s DOF and subtract this number from the number of

dynamic equations of the system. Since the DOF calculation does not require a tree in this

case, the only criterion necessary is to be able to predict the number of dynamic equations

of the system. As will be discussed further in Section 4.2.4, this can be accomplished

reasonably easily in most minimal spanning tree algorithms.

When trying to implement the Body Torque and Body Force Heuristics, things quickly

become much more complex. These heuristics are based on properties of f-cutset equations.

Since these equations are only completely known when the tree is fully selected, their
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properties will have to be estimated during the tree selection process. Since the estimated

properties of the system’s f-cutset equation will change each time a new edge is added

to the tree, the edge weights used to describe these properties will have to be assigned

dynamically during the tree selection.

In Section 4.1.2, it was observed that when a body’s center of mass node is added

to the tree, the f-cutset equations in which this body’s edge’s terminal equations will be

found depends on the branch path relating this node to the ground. As will be discussed

further in Section 4.2.3, this observation will be a key part of being able to predict an f-

cutset’s properties. In order for this observation to always be valid during the tree selection

process, the ground node must be the first node placed in the tree, since the addition of all

future body center of mass nodes will need to refer to it. This shall constitute the first

algorithm selection criterion. Furthermore, the edges added to the tree at each step of the

tree selection process should be adjacent to one of the already existing tree edges. This will

ensure that each new branch added to the tree will have a branch path relating it to the

ground node. This will constitute the second algorithm selection criterion.

Because of the special features required by the two algorithm selection criteria required

to enforce the present tree selection heuristics, a new algorithm shall be developed especially

for the selection of trees for a graph of mechanical systems. This new algorithm shall

use Prim’s Algorithm as its basis. The pseudo-code of Prim’s algorithm is presented in

Appendix D. Out of the three major minimal spanning tree algorithms discussed in Section

2.2, Prim’s algorithm is the only one capable of satisfying both algorithm selection criteria

presented above. Furthermore, this minimal spanning tree algorithm is also very simple

and its structure provides a flexible framework in which it is easy to add modifications.

The pseudo-code of the modified Prim’s algorithm is presented in Figure 4.9. In this

pseudo-code, the modifications made to Prim’s algorithm are shown in italics and will be

explained in future sections of this report. The section of the algorithm presented in this

figure will be referred to as the Base Algorithm, while the complete tree selection algorithm

including the functions called by this Base Algorithm, will be called the Formulation-Based

Tree Selection Algorithm.
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Base Algorithm

• Execute the Initiation Function (Figure 4.12)

• Create a list of all the edges in the graph and their incident nodes

• Place the ground node of the graph in the tree

• Repeat the following steps until all the nodes are found in the tree:

– Find all the potential edges (edges that connect to one node in the present

tree and one node not in the present tree)

– Assign weights to each of the potential edges using the Weighting Func-

tion (Figure 4.10)

– From these potential edges, find the edge with the lowest weight

– Add this edge and its new node to the tree

– Update the properties of the branches with the Update Function (Figure

4.15)

Figure 4.9: The Base Algorithm.
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4.2.2 Implementation of Static Weights

Since the weights of certain edges must be assigned dynamically, the edge weighting process

will be done within the tree selection algorithm rather than prior to its execution. Each

time the Base Algorithm finds a series of potential edges (edges that connect to one node

in the present tree and one node not in the present tree), it subsequently assigns weights

to these edges. This weighting process is done by calling the Weighting Function, whose

pseudo-code is described in Figure 4.10. In this pseudo-code, the term Edge.Weight refers

to the weight associated with the given edge. This notation will be used throughout this

algorithm’s pseudo-code to represent certain properties associated to certain edges.

The Weighting Function will first give a large weight (100000) to edges connected to a

flexible arm’s end node. This will implement the Flexible Body Heuristic by guaranteeing

that none of these edges are placed in the tree, thus assuring that the flexible arm’s edge

will be a leaf edge and its end node a leaf node.

Similar to the Variable-Based Tree Selection Algorithm, the Absolute Branch and Chord

Heuristics will be implemented by assigning a very low weight (−2) to arm elements or

motion drivers, and a high weight (90000) to force/torque drivers and SDAs. The weight

of 90000 was chosen so that it is high, yet lower than the weight assigned to enforce the

Flexible Body Heuristic, which is a heuristic of higher priority. Since the weight of zero

and −1 will be given in future weighting processes, −2 was chosen as the lowest possible

weight.

If the potential edges provided to the Weighting Function are not assigned a weight by

the previously-described weighting process, they will be sent to the Dynamic Weighting

Function, whose pseudo-code is presented in Figure 4.13. The exact content of this algo-

rithm will be described further in Section 4.2.3. For now, all we need to know is that all

of the edge weights assigned in the Weighting Function will have constant weights, while

the weights assigned in the Dynamic Weighting Function will be dynamically assigned.

The last part of the Weighting Function implements the Tree Similarity Heuristic. This

is done by multiplying the edge weights obtained thus far by ten and then determining if

the given edges are found in the opposite tree than the one being selected. A unit weight

is then added to the weight of the edges not found in the opposite tree. Once again, this
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Weighting Function

• If the Edge is connected to a flexible arm’s end node:

– Edge.Weight = 100000

• Else if the Edge is an arm element or a motion driver:

– Edge.Weight = −2

• Else if the Edge is forced in the tree by the user:

– Edge.Weight = −1

• Else if the Edge is a force/torque driver or an SDA:

– Edge.Weight = 90000

• Else:

– Find the weight using the Dynamic Weighting Function (Figure 4.13)

• Edge.Weight = Edge.Weight× 10

• If the Edge is not in the opposite tree:

– Edge.Weight = Edge.Weight + 1

Figure 4.10: The Weighting Function.
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is the same technique as the one used to implement the Tree Similarity Heuristic in the

Variable-Based Tree Selection Algorithm.

It is also possible to note that the Weighting Function pseudo-code, presented in Figure

4.9, also calls other functions and has some other properties that are not discussed in this

section. These parts of the Weighting Function are used for the implementation of other

heuristics that will be presented in subsequent sections of this report.

4.2.3 Implementation of the Body Torque and Force Heuristics

Both the Body Torque and Body Force Heuristics rely on the presence of body edges in

the f-cutset equations that are used to form the basic dynamic equations of the system.

Since this value cannot be determined until a valid tree is selected, this value will have

to be predicted during the tree selection process. Two important observations are used to

elaborate a method of predicting the presence of body elements in cutset equations.

The first such observation, called the branch path observation, was originally described

in Section 4.1.2, and states that a branch’s f-cutset equations will include the body edges of

every center of mass body node whose branch path to the ground node passes through the

given branch.

One can make a second important observation if the tree selection takes the shape of

the Formulation-Based Tree Selection Algorithm described thus far in Figures 4.9 and 4.10.

Within this context, it is possible to determine that the addition of any joint, body edge,

driver or SDA to the tree results in the inevitable addition of a new center of mass body

node to the tree. Furthermore, the branch path between this new center of mass body node

and the ground will include this joint, body edge, driver or SDA. This observation shall be

called the added body edge observation.

This observation can be explained by the fact that each joint, body edge, driver or

SDA is either connected directly to a CMBN (center of mass body node) or to an arm that

connects to a CMBN. In the first case, the addition of the CMBN to the tree is obvious. In

the second case, after adding the given joint, body edge, driver or SDA to the tree, the next

edge to be added by the Formulation-Based Tree Selection Algorithm will automatically be

the arm to which the given edge is connected into the tree. This is because the arms have
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the lowest weight of any edge. Furthermore, the Formulation Tree Selection Algorithm,

like Prim’s Algorithm, effectively “grows” the tree one branch at a time starting from the

ground node. Since trees contain no closed-loops, the joint, body edge, driver or SDA that

introduces the CMBN to the tree must be part of its branch path to the ground node.

Combining these two observations, it is possible to establish the Minimal Body Rule,

which states that each time a new joint, body edge, driver or SDA is added to the tree,

each basic dynamic equation this edge generates can be said to contain at least one body

edge. Furthermore, one body edge can be added to the estimation of the minimum possible

number of body edges of each dynamic equation generated by the branches in the branch

path relating this new edge to the ground node.

Using this concept, one can temporarily add a potential edge to the tree and calculate

the number of body edges that must, as a minimum, be found in the final system’s basic

dynamic equations, given the edges that are already known to be in the tree. This number

of body edges shall be called the minimum body edge number in this report. It can be

used to place the potential edge, whose resulting tree has the lowest minimum body edge

number, in the tree. This will enable the implementation of the Body Torque and Body

Force Heuristics within the Formulation-Based Tree Selection Algorithm.

To clarify this process, we can look at the properties of the serial mechanism depicted

in Figure 4.11. In this mechanism the body m1 is connected to the ground with the

universal joint u10 and the bodies m1 and m2 are connected together by the revolute joint

h11. The bodies m2 and m3 are connected together by the revolute joint h12. The edges

r4-r9 represent the location where each joint is connected to the bodies, relative to each

body’s center of mass. Finally, the tree selection for this mechanism is in progress and the

branches established thus far in the tree selection process are depicted in bold. For each

branch joint, the f-cutset that is known at this point in time in the tree selection, referred

to as the known cutset, is depicted in dotted lines. These known cutsets “cut” the chords

that must be present, as a minimum, in the given branch’s f-cutset equation, no matter

which edges are selected as branches later in the tree selection process.

In order to find the minimum body edge number associated with a given edge, it is

necessary to keep track of certain edge characteristics. These characteristics are listed

below:
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Figure 4.11: Serial mechanism whose rotational tree is in the process of being selected.

NumDynEQs: This characteristic will provide the number of dynamic equations gener-

ated by the edge in each tree type. Consequently, it also represents the number of

across variables the edge has in the given tree type. Since this characteristic stays

constant during the tree selection, its value can be assigned prior to the execution of

the tree selection algorithm. In the example presented in Figure 4.11, the universal

joint u10 has a rotational NumDynEQs value of two, the revolute joints will have a

rotational NumDynEQs value of one. All three of these joints will have a transla-

tional NumDynEQs value of zero and the arm elements will have a rotational and

translational NumDynEQs value of zero.

NumEQs: This characteristic will provide the number of times the f-cutset equations of

a given edge will be used within the elaboration of the dynamic equations of the

system. In the rotational domain, this shall result in the NumEQs of an edge being

equal to its NumDynEQs value, since each edge’s f-cutset will only be used in the

elaboration of the rotational dynamic equations. However, as discussed in Section

4.1.3, the f-cutset equations generated by the translational tree will be crucial to the

formulation of both the translational and rotational dynamic equations, resulting

in the value of NumEQs being sometimes higher than the number of translational
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equations generated by the given edge. This concept shall be further clarified later

in this section. In the example depicted in Figure 4.11, the NumEQs value of the

edges u10 and h11 are depicted in bold under the edge names.

CutsetWeight: This characteristic will keep track of the fewest number of body elements

that must be found in the given edge’s own f-cutset equation. This value will be

different for rotation and translation and will constantly be modified during the tree

selection process in order to take advantage of the added information provided by

each additional branch to the tree.

Its value will be proportional, but not directly proportional, to the number of bodies

in the f-cutset equation. When selecting the rotational tree, each chord body element

found in the edge’s f-cutset equation will add a weight of 10 to this characteristic,

while branch bodies will add a weight of 9. For the translational tree, each chord

body will add a weight of ten to this characteristic, while branch bodies won’t add

any weight. The weight differences between chord and branch bodies is due to the

different treatment given to them in the Body Torque and Body Force Heuristics.

Let us look at the example depicted in Figure 4.11 where the tree being selected is

the rotational tree. In this case, the edge u10 will have a CutsetWeight (indicated in

italics under the edge’s name) of 20 since its known cutset indicates that its f-cutset

must at least cut through the chord body edges m1 and m2. On the other hand,

the edge h11, must only, as a minimum, have the chord body edge m2 in its cutset,

giving it a CutsetWeight of 10. Finally, if the edge m3 was chosen as a branch in

the future, its CutsetWeight would be valued at 9 since in these circumstances the

only body edge its cutset would cut is the edge m3 itself, which would be a branch

edge.

NumInRotEQs: This characteristic will keep track of the number of times the forces of

each arm and each joint allowing translation will be present in the dynamic equations

generated by the rotational tree. This characteristic will vary during the rotational

tree selection process and will have no translational tree equivalent.

For example, if we consider the partially selected rotational tree depicted in Figure

4.11, the arms r4 and r5 will have a NumInRotEQs of two each. This is because
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the body m1 (the body to whom these arms are attached) must only, as a minimum,

be present in the edge u10’s cutset (it is only ”cut” by u10’s cutset ). Since this

cutset will be used to generate two rotation dynamic equations (since u10 has a

NumEQs of two), m1’s two arms will each be present twice, one in each of the two

dynamic equations. Similarly, the arm edges r6 and r7 will have a NumInRotEQs

of three since the body m2 will appear in a minimum of three dynamic equations

(two generated by u10’s cutset and one generated by h11’s cutset).

Now that these edge characteristics have been defined, the pseudo-code enabling the

implementation of the Body Torque and Body Force Heuristics, namely the Initiation,

Dynamic Weighting and Update Functions, can be presented. However, it is important

to note that each of the edge characteristics presented above, with the exception of the

NumInRotEQs, have different values for the rotational and translational domain. Because

of this, though the pseudo-codes will be presented in their entirety (all of the code necessary

for both rotation and translation), the selection of the rotational tree and translational

tree will be discussed separately in the explanation that follows. This should help avoid

confusion and simplify the understanding of the tree selection process.

Before being able to use the edge characteristics within the tree selection, initial values

must be given to these characteristics for each edge in the graph. These initial values

are assigned by the Initiation Function, whose pseudo-code is presented in Figure 4.12.

This function is the first thing to be executed within the Formulation-Based Tree Selection

Algorithm, since it is called in the first line of the Base Algorithm, presented in Figure 4.9.

Selection of the Rotational Tree

Looking at the Initiation Function from the point of view of selecting the rotational tree,

we see that the NumDynEQs characteristic of each edge is assigned a value equivalent to

the number of dynamic equations that this edge will produce if it is placed in the rotational

tree. These values are found in Appendix C. The NumEQs characteristic is then assigned

the same value. This is because, as mentioned earlier, in the case of the rotational tree, the

f-cutsets, which are used to provide a torque equilibrium equation, are only used during

the formulation of basic rotational dynamic equations. This also coincides with the Body
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Initiation Function

• For each Edge in the graph:

– Edge.NumDynEQs = Value found in Table C.1

– Edge.NumEQs = Edge.NumDynEQs

– If the translational tree is being selected and the Edge is not an arm:

∗ Edge.NumEQs = Edge.NumEQs + Edge.NumInRotEQs

∗ Find the arm edges whose end node is one of the nodes to which this

edge is connected (they shall be named: CArms):

· Edge.NumEQs = Edge.NumEQs +
∑

CArm.NumInRotEQs

– Edge.CutsetWeight = 0

– Edge.NumInRotEQs = 0

– Edge.Weight = 0

• DOF = 6(nb− 1)−
∑

nji (See Section 4.2.4 for more detail)

• Execute the Kinematic Complexity Function (Figure 4.17)

Figure 4.12: The Initiation Function.
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Torque Heuristic that is only concerned with the body elements present in the f-cutset

equations used to formulate the rotational basic dynamic equations.

The next stage of the Initiation Function sets the value of the CutsetWeight, Num-

InRotEQs and Weight characteristics to zero. The two final parts of the Initiation Func-

tion estimates the degrees of freedom, assigns them to the variable DOF , and executes

the Kinematic Complexity Factor. These features will only be used when enforcing the

Kinematic Equations Heuristic and will hence only be fully discussed in Section 4.2.4.

Once the Initiation Function is completed, the Base Algorithm (Figure 4.9) goes on

to establish a series of potential edges that could be added to the present tree. Each of

these potential edges are then sent to the Weighting Function (Figure 4.10), which first

enforces the Flexible Body Heuristic as well as the Absolute Chord and Branch Heuristics.

If the potential edge’s weight is not assigned by these initial considerations, it is sent to the

Dynamic Weighting Function, whose pseudo-code is presented in Figure 4.13. This function

assigns a weight to the potential edges by enforcing the Body Torque and Kinematic

Equation Heuristics.

The Dynamic Weighting Function will enforce the Body Torque Heuristic by using

the Minimal Body Rule. This shall be accomplished by first temporarily placing the

provided potential edge in the tree and updating the CutsetWeight characteristic of each

branch to keep track of the changes brought forth by this new branch. Then, the sum of

the multiplications of each branch’s NumEQs value (the number of rotational dynamic

equation generated by the edges) with its CutsetWeight value (proportional to the minimal

body edges number of the edge’s own f-circuit equation) will provide a weight proportional

to the minimal body edges number of the present tree. This value shall be assigned to the

potential edge’s weight characteristic.

Before looking at the details of how the Dynamic Weighting Function implements this

process, let us look at an example by applying it to the serial manipulator depicted in

Figure 4.11. At the stage of the tree selection process depicted in this figure, the two

potential edges of this mechanism will be the edges m3 and h12. Let us first calculate the

edge m3’s weight by temporarily placing it in the tree. Since the branch path to the ground

of m3’s body node only consists of the edge m3 itself, the CutsetWeight of all the present

branches are not affected by the addition of the edge m3 to the tree (the known cutsets
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Dynamic Weighting Function

• Edge.Weight = Edge.NumEQ× 10

• If Edge is a body edge:

– If the rotational tree is being selected:

∗ Edge.CutsetWeight = Edge.NumEQ× 9

– Else:

∗ Edge.CutsetWeight = Edge.NumEQ× 10

• Find branch path relating the edge to the ground node

• For every branch in the graph:

– If the Branch is part of the branch path to the ground node:

∗ Edge.Weight = Edge.Weight + (Branch.NumEQ×
(Branch.CutsetWeight + 10))

– Else:

∗ Edge.Weight = Edge.Weight + (Branch.NumEQ×
Branch.CutsetWeight)

• If DOF >(TotNumDynEQs + Edge.NumDynEQs)

– Edge.Weight = Edge.Weight + (TotNumDynEQs+

Edge.NumDynEQs−DOF )×
KinEQComplexity

Figure 4.13: The Dynamic Weighting Function.
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of all the other edges will not include m3). At this point in time we know that m3 has a

NumEQs of 3 and it is given a CutsetWeight of 9 since its known cutset ”cuts” itself (a

branch body edge). The calculation of m3’s weight is then shown in equation (4.12), where

each edge’s NumEQs characteristic value is depicted in bold and the edge’s CutsetBodies

characteristic value is depicted in italics, and where the edge to which these values belong

to is identified underneath these values. The arm edges are not included in this calculation

since these edges add nothing to this weight calculation because their NumEQs’s value is

always zero.

Edge m3’s Weight: 2× 20︸ ︷︷ ︸ + 1× 10︸ ︷︷ ︸ + 3× 9︸ ︷︷ ︸ = 77

u10 h11 m3

(4.12)

If we want to know the weight of the potential edge h12, we place this edge in the tree

and remove the edge m3. The addition of h12 will inevitably add m3’s body node to the

tree, since the arms r8 and r9 must be found in the tree (due to the Absolute Branch

Heuristic). m3’s body node will have a branch path to the ground passing through all the

present branches. This will increase the CutsetWeight of each branch (including the new

branch h12) by 10, since their known cutset now ”cuts” the chord body edge m3. This is

depicted in Figure 4.14. The calculation of h12’s weight is then shown in equation (4.13)

which uses the same conventions as the equation (4.12).

Edge h12’s Weight: 2× 30︸ ︷︷ ︸ + 1× 20︸ ︷︷ ︸ + 1× 10︸ ︷︷ ︸ = 90

u10 h11 h12

(4.13)

These results show that the addition of m3 to the tree will result in fewer body edge

torques in the system’s resulting dynamic equations, thus satisfying the Body Torque

Heuristic. This can be easily confirmed by deriving the rotational dynamic equations for

the final tree containing the edge m3 and the final tree containing the edge h12.

Now that the method used to enforce the Body Torque Heuristic has been properly

demonstrated, let us look at how this process is implemented in the Dynamic Weighting

Function. First, the Added Body Edge Observation, presented earlier in this section,

demonstrates that if the potential edge is added to the tree, the body edge of the potential

edge’s distal body must be found in this potential edge’s f-cutset equation. This is the
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Figure 4.14: Serial mechanism whose rotational tree includes h12.

only body edge whose presence in this potential edge’s f-cutset equation is inevitable.

Because of this, the weight this potential edge adds to its own total weight will be equal

to this potential edge’s NumEQs characteristic multiplied by nine if the potential edge is

a body edge, and multiplied by ten if the potential edge is of any other edge type. This is

implemented in the Dynamic Weighting Function’s pseudo-code’s first six lines.

Now that the weight that the potential edge adds to itself has been taken into account,

the weight associated to all the other branches must be added to the potential edge’s

weight. While doing this, it is important to keep track of the changes to each branch’s

CutsetWeight characteristic brought forth by the addition of the potential edge and its

distal body’s arms to the tree. The nature of these changes are described in the branch

path observation, which stipulates that the body edge associated to the new body added

to the tree by the potential edge will be found in the f-cutset equations of every branch

relating this body to the ground. This means that the CutsetWeight characteristic of each

of the branches in this potential edge’s branch path to the ground must be increased by a

value of ten. Note that branch body edges will only be found in its own branch path to the

ground node, and as such we do not need to worry about multiplications by nine instead
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of ten when modifying the branch path’s CutsetWeight characteristic.

However, it is important to note that the changes made to each branch’s CutsetWeight

characteristic in the Dynamic Weighting Function are not made in a permanent fashion.

This is done on purpose in order to ensure that the changes that must be made to these

branch elements do not affect the weight calculation of other potential edges. However,

once the potential edge with the lowest weight is found and placed in the tree, the changes

to the branch’s CutsetWeight characteristic, brought forth by the permanent addition

of this new branch to the tree must be made permanent. This shall be carried out by

the Update Function, which is called at the final pseudo-code line of the Base Algorithm

(Figure 4.9), and whose own pseudo-code is presented in Figure 4.15.

However, before turning our attention to the Update Function, it is important to take

note that the two final pseudo-code lines of the Dynamic Weighting Function will implement

the Kinematic Equation Heuristic, and as such will only be presented in the next subsection.

The Kinematic Equation Heuristic must be implemented in parallel with the Body Torque

and Body Force Heuristics, as described in Sections 4.1.2 and 4.1.3.

Returning to the Update Function’s pseudo-code, the first nine lines of this pseudo-

code are clearly dedicated to updating the branch’s CutsetWeight values as previously

described. The Update Function is performed on all new tree edges and not only on edges

whose weights were established by the Dynamic Weighting Function. Because of this,

one can note that the CutsetWeight value given to arm elements does not realistically

predict the actual number of bodies in the f-cutsets of these elements. However, since the

NumEQs value for arms is always zero, we can conclude that this erroneous CutsetWeight

value for arms will have no impact on the tree selection and therefore no special exception

is established to correct this inaccuracy.

If the new branch is an arm or an edge that allows translation, the two next lines of

the pseudo-code, following the CutsetWeight updates, set the NumInRotEQs value of

the newly-added branch. This characteristic is found by determining how many dynamic

equations contain the body edge of the body to which this new branch is attached. The

branch path observation states that this body edge will be found in the dynamic equations

of all the branches relating this new branch to the ground. Hence, the value of the new

branch’s NumInRotEQs characteristic is found by simply summing the NumEQs value
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Update Function

• Edge.CutsetWeight = 10

• If Edge is a body edge:

– If the rotational tree is being selected:

∗ Edge.CutsetWeight = 9

– Else:

∗ Edge.CutsetWeight = 10

• Find branch path relating the Edge to the ground node

• For every branch in this path:

– Branch.CutsetWeight = Branch.CutsetWeight + 10

– If the rotational tree is being selected and the edge is an arm or an edge

that allows translation:

∗ Edge.NumInRotEQs = Edge.NumInRotEQs + Branch.NumEQs

• TotNumDynEQs = TotNumDynEQs + Edge.NumDynEQs

Figure 4.15: The Update Function.
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of all the branch edges relating this new branch to the ground.

The final pseudo-code line found in the Update Function updates the TotNumDynEQs

by adding to its value the number of dynamic equations added by the new branch. The

TotNumDynEQs variable is a characteristic associated to the graph itself and keeps track

of the fewest number of dynamic equations that must be used to model the system given

the knowledge obtained by the edges already in the tree and in the opposite tree. Clearly,

this graph characteristic will be used to implement the Kinematic Equation Heuristic and

so its use shall only be discussed further in Section 4.2.4.

Selection of the Translational Tree

Now that we have gone through all the steps necessary to establish the rotational tree, we

shall look more closely at the selection of the translational tree.

There are only three fundamental differences between the selection of the rotational

and translational trees. The first is the fact that the process required to assign the Num-

InRotEQs characteristic of the branches is not present during the selection of the trans-

lational tree. However, this distinction is rather obvious since the nature and use of the

NumInRotEQs allows no translational equivalent to exist.

The second variation is that, if the translational tree is being selected and the potential

edge presented to the Dynamic Weighting Function is a body edge, the weight that this

edge adds to its own total weight will be zero rather than nine. This is due to the fact that,

unlike the Body Torque Heuristic, the Body Force Heuristic only minimizes the presence

of chord body edges in the dynamic equations. This will also affect the Update Function,

which will assign a CutsetWeight value of zero to body edges in the translational tree.

Finally, the third variation in the selection of the translational tree lies in assigning the

value of the NumEQs edge characteristic that is found in the pseudo-code of the Initiation

Function presented in Figure 4.12. Unlike the rotational tree’s f-cutset equations, the

translational tree’s f-cutset equations are going to be used in the formulation of both the

rotational and translational dynamic equations. This fact is also expressed in the Body

Force Heuristic that takes into account the chord body forces present in the formulation

of all the dynamic equations.
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During the rotational tree selection, the NumInRotEQs characteristic recorded the

number of times each arm force and each force associated to edges allowing translation were

present in the rotational basic dynamic equation. These forces will be substituted by their

edge’s translational f-cutset equations during the rotational dynamic equation formulation.

In the case of the edges allowing translation, their NumInRotEQs can simply be added

to the number of dynamic equations they generate in translation (their NumDynEQs

characteristic) to establish the total number of times the translational f-cutset equations

of these edges will be used in the dynamic equation formulation process (their NumEQs

characteristic). This is implemented in the fifth pseudo-code line of the Initiation Function

(Figure 4.12).

However, in the case of the f-cutset equation of arm elements needed for the rotational

dynamic equation formulation, things are not as simple. Since, according to the Absolute

Branch Heuristic, the arm elements must be in the tree, these edges are assigned constant

weights during the Weighting Function and are not sent to the Dynamic Weighting Func-

tion. The Dynamic Weighting Function is the only place where the number of body forces

used to generate the dynamic equations of the system is calculated. Since the arms are

not sent to this function, the information about the arm’s translational f-cutset equation

needed in the system’s equation formulation must be acquired in another, more indirect,

fashion.

In order to find such a solution, let us look at the general form that the arm f-cutsets

take. Figure 4.16 represents a section of a graph at a certain time in the tree selection

process. The edges already selected in the tree are shown in bold and the limit of this

graph section is depicted by the edge r7 which fades out in this figure but in reality could

connect to a graph of any shape (it can be noted that the body edges of the rest of the

graph are not depicted either). In this figure, the properties of the f-cutsets of each branch

arm element that can be determined with certainty at this stage of the tree selection are

depicted by doted lines crossing each branch arm element. These f-cutsets are not fully

defined since the tree is not yet fully selected; however, the final f-cutsets will have to

at least take the form shown and will have to at least cut through the body elements it

already cuts through in this figure, no matter what edges are selected in the tree in the

future.
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Figure 4.16: General form of the arm cutsets.

Looking at the body edges cut by each of the arm f-cutset in Figure 4.16, it is possible

to establish that the arm cutsets of the arm edge immediately preceding and immediately

succeeding a branch joint, driver or SDA will include the exact same body elements as

the branch joint, driver or SDA’s f-cutset includes. In the figure, this can be seen by

the f-cutsets of arm r4 and arm r5 both at least cut through the body edge m2 (in other

words, their f-cutsets must at least contain the chord body edge m2, no matter what new

branches are added to the tree), which is the exact same body the f-cutset for the joint

h9 must at least cut through. In the case where an arm is connected to multiple joints,

the arm element’s f-cutset will include the chords cut by the f-cutset of all of the joints

the arm is connected to. These observations lead to the conclusion that the number of

times each arm’s translational f-cutset appears in the rotational dynamic equations (Its

NumInRotEQs characteristic) can be transferred to the NumEQs characteristic of the

joint, driver or SDA to which this arm is connected. This concept can be seen in the sixth

and seventh line of the Initiation Function (Figure 4.12), where each edge that is not an

arm is assigned the NumInRotEQs value of the arm element’s whose end node is one of

the two nodes to which the given edge connects. The arm end nodes are not considered in

order to avoid body edges to be assigned its arm’s NumInRotEQs value since if the body
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edge is a branch, this body’s arm edges f-cutset do not include this body edge.

Now that the number of chord body forces found in the rotational dynamic equation

formulation added by the arms in the rotational tree are considered within the properties

other edges, the translational tree selection process can continue in the same fashion as

the selection of the rotational tree.

4.2.4 Implementation of the Kinematic Equation Heuristic

Section 4.1.2 defines the Kinematic Equation Heuristic as trying to minimize the number of

kinematic equations used to model the system. This same section also suggests that min-

imizing the complexity of these equations would also be advisable, yet proposes no easily

applicable technique to implement this. Trying to estimate the number and complexity of

a system’s kinematic equations within the context of the Formulation-Based Tree Selection

Algorithm presented thus far proves to be difficult.

Section 4.1.2, describing the Kinematic Equation Heuristic, provides a description of

two possible methods of predicting the number of kinematic equations of the system. The

first of these methods relies on the use of a technique capable of predicting a system’s degree

of freedom. Once this degree of freedom is known, the number of kinematic equations in

the system can be determined by simply subtracting the number of DOF from the number

of dynamic equations in the system (m = n−DOF ). There exist many different techniques

of estimating the DOF of a system and many of these techniques are relatively simple and

could easily be included in the tree selection process. This is clearly seen by the presence

of the DOF global variable in the Initiation Function’s last step. The use of this variable,

as well as the techniques used to find it, shall be presented later in this section. Similarly,

the number of dynamic equations needed to model the system at each step of the tree

selection process is also easily calculated. Its calculation is already included in the tree

selection algorithm via the last line of the pseudo-code for the Update Function presented

in Figure 4.15. However, this method does carry a few disadvantages. First, though most

methods of estimating the degree of freedom of a mechanism can give relatively good

estimates for most systems, there exists no method capable of accurately determining the

degree of freedom of all possible mechanical systems [32]. Furthermore, this method of
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calculating the number of kinematic equations does not necessarily provide a good basis

for estimating the complexity of these equations since the f-circuits creating these equations

are not revealed with this method.

The calculation of the number of dynamic equations and DOF are already present in the

pseudo-codes presented thus far. As this would suggest, the method chosen for determining

the number of kinematic equations was to estimate the system’s DOF and subtract it from

the number of dynamic equations. This is because, despite its shortcomings, this method’s

simplicity as well as its easy implementation and relative accuracy make it a good choice

for the algorithm.

Section 4.1.2’s second suggested method of finding the number of dynamic equations of

a system involves counting the number of independent vectors in the basis of the reaction

space of each of the system’s chords who have active or passive constraints. Even though

this technique would have the potential to also provide a good basis for predicting the

kinematic equation’s complexity, its implementation within the algorithm established thus

far proves too complex and hence will not be used. This is because the present tree

selection algorithm finds a graph’s tree by adding branches to a tree one at a time until a

tree is selected. Determining the presence of chord elements is merely a consequence of this

process. Since the chord elements are not actively selected from the graph, it is difficult to

predict their properties while the tree is being selected.

If we turn our attention back to the DOF technique, it is clear that the first step in

implementing this technique is to find a method of calculating the degrees of freedom of

the mechanism. To do this, Gruebler’s equation, which is simple and widely used, shall be

implemented to find the system’s DOF. The Gruebler’s equation that is tailored for spatial

systems is:

DOF = 6(nb− 1)−
∑

nji (4.14)

where nb represents the number of bodies found in the system (including the ground) and

nji represents the number of independent reactions (the number of vectors in the base of

the joint’s constraint space) of the ith joint in the system.

Since no tree needs to be selected in order to execute Gruebler’s equation, the calcula-
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tion of the system’s predicted DOF will be performed in the beginning of the tree selection

process and, as mentioned earlier, is found in the Initiation Function presented in Figure

4.12, which is in turn called in the first pseudo-code line in the Base Algorithm of Figure

4.9. If, for some reason, Gruebler’s equation provides results that are obviously inaccu-

rate, such as negative values, the DOF variable is simply set to zero. It is important to

note that, unlike some edge characteristics, the global DOF variable represents the same

variable in both rotation and translation.

Now that the DOF of the system is predicted, this information can be used to predict

the number of kinematic equations that must be present at each step of the tree selection

process. As mentioned a few times in Section 4.1, the implementation of the Kinematic

Equation Heuristic must be done in conjunction with the Body Torque and Body Force

Heuristics. This is why it is implemented at the two last lines of the Dynamic Weighting

Function of Figure 4.13.

It gets executed at a time in the tree selection process where a series of potential

edges has been found. These potential edges have been assigned weights that implement

the Flexible Body Heuristic, the Absolute Branch/Chord Heuristics as well as the Body

Force or Torque Heuristic. It is at this point that the Formulation-Based Tree Selection

Algorithm will assign weights in order to enforce the Kinematic Equation Heuristic.

The number of dynamic equations that must, as a minimum, be generated by the tree

containing the given potential edge, which we shall call the minimum dynamic equation

number, can easily be found. This is done by adding the number of dynamic equations

that will be generated by the given potential edge if placed in the tree with the number of

dynamic equations that is required by the rest of the tree as well as the opposite tree (the

tree, translational or rotational, not presently being selected by the algorithm). This value

is found at the end of the Update Function (Figure 4.15) and is assigned to the global

variable called TotNumDynEQs. As with the DOF variable, this global variable can be

modified in both a rotation and translation context and does not contain separate values

for both.

The Kinematic Equation Heuristic shall be enforced by first determining how many

kinematic equations will be required to model the system if the provided potential edge

is added to the present tree. This value will then be multiplied by a factor representing
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the complexity of these kinematic equations, called KinEQComplexity, and the resulting

value will be added to the weight of the edge. Again, the KinEQComplexity variable will

have different values for both rotation and translation. This process is clearly defined by

the Kinematic Heuristic Function’s pseudo-code for both rotation and translation.

Determining the KinEQComplexity for the rotational tree is quite difficult. The equa-

tion complexity is highly dependent on the properties of each chord’s f-circuit equation.

However, it can be very difficult to determine the f-circuit equations before the tree is fully

selected. Furthermore, even if these f-circuit equations were known, it would be extremely

difficult to predict the complexity of these equations since they are highly affected by the

evaluation of dot products, which require extensive knowledge of the system’s geometry.

For these reasons, a trial and error approach was adopted in order to find an appropriate

weighting factor. Through this process it was established that a KinEQComplexity factor

of approximately three provides the best results. This is shown in the Kinematic Complexity

Function, whose pseudo-code is presented in Figure 4.17, which is executed at the end of

the Initiation Function. This would indicate that each kinematic equation generated by

the rotational tree adds roughly one third of the complexity of a body torque found in the

dynamic equation.

The KinEQComplexity variable for translation is of greater importance than the one

for rotation. This is because the weight used to implement the Body Force Heuristic

assigns a weight of ten for every chord body force used to formulate the system’s equations;

however, the complexity added by one of these chord body forces is generally fairly low

compared to the complexity added by a kinematic equation. This results in the fact that

the weight due to the Kinematic Equation Heuristic that will be assigned to these edges

will need to play a much bigger role in each edge’s final weight than was the case for the

rotational tree.

Thankfully, more knowledge of the system is available when trying to determine the

KinEQComplexity for the translational tree, since the rotational tree is already selected.

The kinematic equations complexity is dependent on the dot products that, in turn, are

dependent on the across variables found within the rotational tree. Since the exact f-

circuits associated to each translational kinematic equation is not known, one single general

KinEQComplexity factor will have to be established to represent the complexity of the
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Kinematic Complexity Function

• If selecting the rotational tree:

– KinEQComplexity = 3

• Else:

– Find the f-circuit equation edges (CirEdges) of each rotational chord

– For each chord

∗ Rotations =
∑

CirEdge.NumDynEQs[Rotation]

– KinEQComplexity = max(Rotations)× 10

Figure 4.17: The Kinematic Complexity Function.

translational kinematic equations of the system.

The dot products found in the kinematic equations are dependent on many factors such

as geometry and the amount of rotation between the reference frames used to model the

system. Since most of the system’s geometry is unknown in the pre-processing environment

in which the tree selection is implemented, this factor shall not be used. Furthermore, each

edge’s terminal equation has the possibility to be expressed relative to different coordinate

frames, which is also generally unknown in the pre-processing environment.

However, there is one important source of kinematic equation complexity that can be

estimated. When edges that are chords in the rotational tree are found in the f-circuits that

are used to generate the translational kinematic equation, the orientation of these edges,

needed to determine the dot product, are found by the rotational branch transformation

equations. These equations will be established by multiplying the rotation matrices of

every edge in the rotational f-circuit of this chord. The resulting rotation matrix for this

rotational chord generally contains a series of complex rotations that add much complexity

to the system’s kinematic equations when the dot products are performed.
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In order to get a general approximation of the complexity added to the kinematic

equations by the rotational chord edges, the number of rotations performed in every f-circuit

of the rotational tree is found by adding the NumDynEQs characteristic in rotation of each

edge in these rotational f-circuits. Once the number of rotations found in every rotational

f-circuit is determined, the number of rotations found in the chord having the maximum

amount of rotation is multiplied by ten and used as the system’s KinEQComplexity

variable in translation. The multiplication by ten is used to elevate the value of the

KinEQComplexity in order to better compete with the edge weight of ten given for every

chord body in the system’s dynamic equations. Unlike for the body torques, the complexity

added to the system equations by a single body force is generally less than the complexity

added by one kinematic equation.

Using this method of estimating the KinEQComplexity for translation will ensure

that more complex models will have higher NumDynEQs values allowing the Kinematic

Equation Heuristic to compete with the higher weight assigned by the Body Force Heuristic

due to the mechanism’s complexity. The Pseudo-code for this process is presented in the

Kinematic Complexity Function of Figure 4.17.

Admittedly, this measure of the KinEQComplexity for translation only has a limited

connection to the real translational kinematic equations complexity. Other methods of

estimating the complexity of the kinematic equations have been attempted. These were

based on the number of edges in the graph, the number of bodies in the system, the degrees

of freedom of the system, etc. However, no other method was capable of estimating the

complexity of the kinematic equation of all the benchmarks tested as well as the method

based on the rotational f-circuit rotations presented above.

Let us look at the example of the spatial slider-crank already discussed in Section 4.1.2,

whose rotational graph is shown in Figure 4.3. In this figure the tree is depicted in bold.

From this graph, we see that the f-cutset equation of the edge m1, consisting of edges

r5, h9 and r4 will only contain one rotation provided by the edge h9. After looking at

every chord’s f-circuit equation we find that edge b10’s f-circuit equation contains the most

rotations. It contains three rotations (two from edge h9 and one from edge u11). Because

of this, this graph’s KinEQComplexity translational characteristic will have a value of

thirty. This means that it is estimated that the kinematic equations generated for this
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model should be approximately as complex as the complexity added by the presence of

three chord body forces used to generate the system’s dynamic equations.

4.2.5 Coordinate Type Selection

At this point in the elaboration of the Formulation-Based Tree Selection Algorithm, all

the heuristics proposed in Section 4.1 have been implemented within the algorithm. This

algorithm is capable of selecting trees, and hence coordinates, which provide models which

produce low simulation times. Furthermore, if a user wants to know the value of other

variables of the system not found in the automatically selected coordinates, he can obtain

them by back-substitution as discussed in Section 2.3. However, no matter how accurate

the tree selection algorithm is, there are still situations where the user would need a certain

level of control over the coordinate selection. For example, the user could want to model a

certain mechanism using a specific set of coordinates, or requires that certain variables be

included in the coordinate set. The reason for these requirements could be, for example,

the use of certain modelling variables to model the mechanical system for research purposes

or for teaching purposes.

The first, and most important, user control feature to add to the tree selection algo-

rithm, is to allow the user to indicate a series of edges whose across variables are required

to be in the system’s modelling coordinates. This can be implemented in a very simple

fashion. When permanent weights are assigned to potential edges in the Weighting Func-

tion, a weight of −1 can be given to edges that the user requires in the tree. This can

be seen in the Weighting Function’s pseudo-code in Figure 4.10. The low weight of these

edges will force them into the tree. The weight of −1 was chosen in order to be lower

than any weight that can be assigned by the Dynamic Weighting Function, whose lowest

weight is zero. It is also set higher than the −2 weight assigned to edges by the Abso-

lute Branch Heuristic since this heuristic is necessary to avoid the limitation of McPhee’s

graph-theoretical equation formulation method [19] used in this report. This ensures that

a valid tree is always selected. Once the edge is selected in the tree, the Update Function

assures that this new branch’s properties are taken under consideration when selecting the

next edge to be placed in the tree.
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This weighting system also ensures that the user does not force the selection of an invalid

tree. Since the Formulation-Based Tree Selection Algorithm itself assures the selection of

a valid tree, even if the user selects a series of edges having a closed-loop, the tree selection

algorithm will automatically not select one of these edges in the tree despite their extremely

low weights. If required, a warning can be given to the user when such a situation occurs

with an explanation to the user on how to avoid this problem.

Furthermore, if the edges selected by the user do not form a complete tree by themselves,

the most appropriate series of edges will be added to the tree by the Formulation-Based

Tree Selection Algorithm. This will form a valid tree containing the modelling coordinates

requested by the user as well as a set of extra coordinates that are necessary to form a

valid tree. Once again, the users can be notified of the presence of these extra variables as

well as the reason of their presence.

Another way the tree selection algorithm could be tailored to the user’s preferences is to

allow the user to model his system using the coordinate type of his choice. The present tree

selection algorithm already selects Branch Coordinates by default since it is only limited

by the selection of a valid tree from the graph.

To model Absolute Coordinates, the model does not even need to be sent to the tree

selection algorithm since this coordinate type is acquired by simply selecting all the arms

and body edges as the only edges in each tree. In the case of the Joint Coordinates, one

simply needs to add a very big weight to all the body edges during the tree selection

process. This will force the joints to be selected in the tree first and the use of the tree

selection heuristics of Section 4.1 will select a set of Joint Coordinates. A combination of

the two previous techniques can also be used to assure that the coordinates found by the

tree selection algorithm are in the form of Absolute Angular Coordinates.
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4.3 Example

Section 3.4 stated that using the minimal number of modelling variables in a mechanical

system’s coordinate set does not always produce the symbolic models having the most

efficient simulation times. In most of the benchmarks where more than the minimal possible

number of modelling variables resulted in faster simulation times, there were few extra

variables and they were found in the translational tree. However, the 3-DOF spatial parallel

manipulator, found in Appendix A.12, presented the most perplexing case of coordinate

selection. This is because its most efficient model contained a number of modelling variables

that far exceeded the minimal possible number. Furthermore, a large number of these extra

variables were rotational variables, something not encountered in any other benchmark

problem.

Because of the major difficulty associated with selecting the optimal coordinates of this

system, it was chosen as the example problem for the Formulation-Based Tree Selection

Algorithm. Since this tree selection algorithm’s implementation can get very complex to

demonstrate, this will be the only example developed in this section. The Formulation-

Based Tree Selection Algorithm’s tree selection results for other benchmark problems can

be found in Appendix A.

The 3-DOF spatial parallel manipulator is presented in Figure 4.18, a detailed view of

one of its legs is presented in Figure 4.19(a) and its graph is presented in Figure 4.19(b).

This manipulator consists of a platform connected to the ground by three similar legs and

has a tool placed on top of the platform. The legs are each connected to the ground by

prismatic joints (s25, s28, and s31), which originate from the global reference frame.

The first prismatic joint is oriented toward the global X axis while the two others are

oriented 120 degrees and 240 degrees away from the global X axis respectively. The leg’s

shank body (m1, m3, and m5) are connected to the leg’s thigh body (m2, m4, and m6) by

a spherical joint (b26, b29, and b32). The thigh bodies are then connected to the platform

by revolute joints (h27, h30, and h33) that are connected to the platform at 0, 120, and 240

degrees relative to the platform’s local X axis. The orientation of the revolute joint axes

of rotation are 90, 210, and 330 degrees relative to the platform’s local X axis respectively.

Finally, the geometry, inertia properties, and initial conditions of the mechanism are taken
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from Simoni [28] and are given in Appendix A.12.

Figure 4.18: 3-DOF spatial parallel manipulator.

The first tree to be selected, as explained in Section 4.1.6, will be the rotational tree.

The initial step of this tree selection will be to assign the value of the NumEQs char-

acteristic of each edge in the graph. The value of this characteristic will be equal to the

number of rotational across variables of each edge, which can be found in Appendix C. The

mechanism’s graph in Figure 4.20(a) depicts the NumEQs characteristic in the rotational

domain of every edge.

It is also possible to determine the DOF in rotation of the mechanism using Gruebler’s

equation described in equation (4.14). In the present case, there are seven bodies, each

of the three prismatic joints have five constraints, each of the three spherical joints have

three constraints, and the three revolute joints each have five rotational constraints. When

these values are entered in equation (4.14), it is predicted that the system has three DOF,

which is the correct value for this system.

The next step in the tree selection process is to place the ground node in the tree

and determine the potential tree edges. These are the edges that contain one node in the

present tree and one node outside the present tree. The potential edges found at this time
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(a) Spatial parallel manipulator’s legs (b) Linear Graph

Figure 4.19: 3-DOF spatial parallel manipulator details and its graph.
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(a) NumEQs characteristic values (b) After five branches have been selected

(c) After 15 branches have been selected (d) Rotational Tree NumInRotEQs

Figure 4.20: 3-DOF spatial parallel manipulator’s rotational tree at various stages of the

tree selection.
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in the tree selection process are all the edges connected to the ground node (r8, r9, s28,

and m1 to m7). Since we know that arms are always given the lowest possible weight, it is

obvious that the two arms r8 and r9 will be the first two edges placed in the tree.

Once these two arms are found in the tree, the potential edges become all three prismatic

joints and all the body edges. In order to find the weight of these edges, the Dynamic

Weighting Function, presented previously in Figure 4.13, is executed for each edge. In this

case the prismatic joints will have a weight of zero since they have a zero value for their

NumEQs characteristic (shown in figure 4.20(a)) as well as all the other edges in the tree

thus far (the two arms r8 and r9). Furthermore, no kinematic equation would be added

to the system by the addition of one of the prismatic joints in the rotational tree. At this

point in the tree selection process, the body edges would have a weight of 27 due to the

presence of their own body torques, worth a weight of nine, in each of the three dynamic

equations they would generate. As with the prismatic joints, the other edges already in the

tree would not add to the body edge’s weight and the three dynamic equations that the

body edges would add to the system would not require the addition of kinematic equations

since there are three “unused” DOF.

Since each of the three prismatic joints have the lowest weight, one is selected at random,

and placed in the tree. In this case, let us suppose that the prismatic joint s25 was placed

in the tree. Then, the next two edges to be added to the tree will automatically be the

two arms of the prismatic joint’s distal body, in this case r10 and r11. The reason for this

is that, since they both have the lowest possible weight, they are selected before any of the

other potential edges against which they compete.

The tree selected at the present point in time is depicted in Figure 4.20(b), where

the branches are depicted in bold, the nodes found in the tree are depicted in black, the

potential edges are depicted as dashed edges, the bold numbers are the potential edges

weights and the italic numbers are the branches’ CutsetBodies characteristic values (these

are not shown for arms since arms always have a NumEQs value of zero and, as such,

their CutsetBodies value are irrelevant).

Since the present branches do not generate any dynamic equations (all their NumEQs

value are zero) they will not affect the weights of the present potential edges. Because of

this, the two remaining prismatic joints still have a weight of zero and the body edges still
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have a weight of 27. The spherical joint b26, which is a potential edge at this point in the

tree selection, will have a weight of 30. This weight is due to the three body torques of the

body m2, worth a weight of ten, that would have to be present in each of the three dynamic

equations generated by this joint if this joint was added to the tree. Also, similarly to the

body edges, the three dynamic equations required to model the system if this spherical

joint was placed in the tree would not generate any kinematic equations at the present

time because there would not be any more dynamic equations needed than the three DOF

of the system.

Since the two prismatic joints still have the lowest weight, one of these two will randomly

be selected and placed in the tree. This will be followed by this prismatic joint’s distal

body’s arm elements being the two next edges to be placed in the tree. This same process

will ensure that the last prismatic joint as well as its distal body’s arms are the next three

edges placed in the tree.

At this point, the potential edges are the three spherical joints b26, b29, and b32, as well

as the body edges m2, m4, m6, and m7. Since the present tree still does not generate any

dynamic equations, the weights of the spherical joints are again set at 30 and the weight

of the body edges are also still set at 27. One of the body edges will then be selected at

random and placed in the tree since they all have the lowest weight of the potential edges.

Let us suppose that this will be the edge m7 (if one of the three other body edges would be

selected instead, the final results would be the same). As before, the next edges in the tree

will be the edges r22 to r24 since they are arms, and arms have the lowest possible weight.

The present tree is depicted in Figure 4.20(c). This figure uses the same conventions as

used previously in 4.20(b).

Now, the weighting of the potential edges are not as simple, since some of the branches

will affect these weights and all three DOF have now been accounted for by the tree

dynamic equations of m7. Let us start by looking at the weight of the potential edge m2.

The calculations made by the Dynamic Weighting Function to find the weight of this edge

are summarized in equation (4.15). In this equation each edge’s NumEQs characteristic

value is depicted in bold and the edge’s CutsetBodies characteristic value is depicted in

italics where the edge to which these values belong is identified underneath these values.

The term kin refers to the fact that the numbers placed above this term are due to the
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Kinematic Equation Heuristic, with the first term being the number of kinematic equations

and the second term being the KinEQComplexity that is valued at 3 in the rotational

domain. The value of the CutsetBodies characteristic that is shown in this equation is the

one obtained after the Dynamic Weighting Function makes the appropriate modification

to chain branch edges relating the potential edge to the ground.

Edge m2’s Weight: ( 3× 9︸ ︷︷ ︸ + 3× 9︸ ︷︷ ︸ ) + 3× 3︸ ︷︷ ︸ = 63

m2 m7 kin
(4.15)

Edge b26’s Weight: ( 3× 10︸ ︷︷ ︸ + 3× 9︸ ︷︷ ︸ ) + 3× 3︸ ︷︷ ︸ = 66

b26 m7 kin
(4.16)

Edge h27’s Weight: ( 1× 10︸ ︷︷ ︸ + 3× 19︸ ︷︷ ︸ ) + 1× 3︸ ︷︷ ︸ = 70

h27 m7 kin
(4.17)

Looking at this equation we see that the edge m2 adds a value of 27 to its own weight

due to the presence of its own body torque, having a weight of nine, in all three of its

dynamic equations. Since the weight associated to each potential edge represents the total

weight of the graph’s tree, if the given potential edge was added to the tree, the branch m7

also affects m2’s weight. This edge provides an extra weight of 27 due to the presence of its

torque, also having a weight of nine, in its three dynamic equations. The other branches

also participate in finding m2’s weight; however they are not shown here since they all

have a NumEQs value of zero. Finally, three kinematic equations would be used to model

the system if m2 was added to the tree, since the six dynamic equations it would require

are superior to the three suspected rotational DOF. These three kinematic equations each

add a weight of three, which gives a total weight of 63 to edge m2. By applying the same

logic that was presented for the edge m2 to all the other body edges found in the potential

edges, they can also be shown to each have a weight of 63.

If we look at the weight assigned to the potential spherical edge b26, shown in equation

(4.16), we can see that it adds 30 to its own weight. This is due to the unavoidable presence

of the body m2 in all three of potential edge b26’s three dynamic equations. In this case,

the edge m2 is considered to have a weight of ten because if the edge b26 is added to the

tree, the arms r12 and r13 will inevitably be added afterward, automatically making m2 a
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chord in this case. Similar to the weight assigned to the potential edge m2, the branch m7

adds a weight of 27 to the potential edge b26’s weight and the three kinematic equations

generated by the addition of this potential edge to the tree each add a weight of three for

a grand total of 66. All other spherical joints will have the same weight.

Now we can look at the formulation of edge h27’s weight whose summary can be seen

in equation (4.17). In this case, the edge h27 will add a weight of ten to its own weight

due to the unavoidable presence of m2’s torque, worth a weight of ten, in h27’s dynamic

equation. Additionally, since the branch path relating the potential edge h27 to the ground

includes the branch m7, m2’s torque will also be unavoidably found in all three of the m7’s

dynamic equations, in addition to this branch’s own torque, which is worth a weight of

nine. This is why m7’s CutsetBodies value is now worth 19 and why this branch will add

a weight of 57 to the potential edge h27’s weight. The addition of h27 to the tree would

also require the formulation of one kinematic equation, which adds an additional weight of

three to this potential edge’s weight. This results in a weight of 70 being assigned to this,

and all other, revolute joints in the potential edges.

This show’s that the edges m2, m4, and m6 all have the lowest potential edge weight.

One of these will then be randomly picked and added to the tree. For the sake of this

example let us suppose that the edge m2 is the potential edge selected to be added to the

tree at this time. As with all the other joints added to the tree, the arms r12 and r13 will

be the two next edges to be added in the tree. At this point the edges m4, m6, b29, b32,

h30, and h33 will form the set of potential edges.

Continuing this tree selection process, the algorithm continues to add edges in the tree

until the valid rotational tree presented in Figure 4.20(d) is found.

At this point in time, it is possible to find the complexity factor called KinEQ-

Complexity that shall be used to predict the relative complexity of the translational

kinematic equations relative to the translational dynamic equations. According to Sec-

tion 4.2.4, this factor is estimated using the number of possible rotations found in the most

complex (the one with the most rotations) f-circuit of the rotational tree. In this case,

all three revolute joint’s f-circuit contains six rotations, three from the m7 edge and three

from one of the body edges. This results in the KinEQComplexity variable to be equal



Formulation-Based Tree Selection 132

to 60.

Before starting the selection of the translational tree one must find the number of times

the force of each arm and each joint allowing translation is found in the basic rotational

dynamic equation. This value is calculated and assigned to their NumInRotEQs char-

acteristic via the Update Function of Figure 4.15. The basic concept is that the number

of these appearances is going to be equal to the sum of the number of dynamic equations

generated by the branches found in the branch path between the given arm or translational

joint and the ground node. The result of this calculation is depicted in Figure 4.20(d) by

the bold numbers found next to the arm edges. For example, the forces of the arms r12

and r13 are found in each of the three dynamic equations generated by the body edge m2.

This is why these arms have a NumInRotEQs characteristic of three.

At this point in time the selection of the translational tree starts by assigning the

NumEQs characteristic of every edge, except the arm edges for which this characteristic

is always zero. This is done by simply adding the number of translational across variables,

found in Appendix C, with the NumInRotEQs of each arm to which the given edge is

connected. The only exception to this are branch body edges, whose own torque is never

found in its own arm’s f-cutset equations. This is represented in Figure 4.21(a) where the

NumEQs of arms, which must be zero, are not shown in order to improve the clarity of

the figure.

This graph is then submitted to the Formulation-Based Tree Selection Algorithm that

selects the translational tree using the same steps as the ones used to select the rotational

tree. When selecting the translational tree, the Tree Similarity Heuristic can be enforced.

Once this process is completed the translational tree obtained by the Formulation-Based

Tree Selection Algorithm is shown in Figure 4.21(b).

Once the two trees have been selected, it is necessary to verify if the rotational tree also

adequately enforces the Tree Similarity Heuristic. In order to verify this, the rotational

tree is selected once again. In this case, the resulting new rotational tree is the same

rotational tree as before. Since the loop ensuring the Tree Similarity Heuristic has already

converged to a solution, the final trees of the mechanism are set to the rotational tree of

figure 4.20(d) and the translational tree of figure 4.21(b).
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(a) NumEQs characteristic values (b) translational Tree

Figure 4.21: 3-DOF spatial parallel manipulator’s NumEQs in translation and final trans-

lational tree.

These trees will model the system using the coordinate set ζ2, η2, ξ2, ζ4, η4, ξ4,ζ6, η6, ξ6,

ζ7, η7, ξ7, S25, S28, and S31, which represent the rotations of the body edges m2, m4, m6,

and m7, as well as the displacements of the prismatic joints s25, s28, and s31, respectfully.

This will generate a model with 15 dynamic equations and 12 kinematic equations.

Using ModelBuilder, this 3-DOF spatial parallel manipulator was modelled and the

Formulation-Based Tree Selection Algorithm was executed finding the trees described pre-

viously in an average of 63 milliseconds. Once the system’s equation were developed within

DynaFlexPro, the forces depicted in Table 4.5 were placed on the prismatic joints. The

system equations obtained formed a set of DAEs that were changed to a set of ODEs by

twice differentiating the kinematic equations of the system. This set of ODEs was sim-

plified and code optimization routines where performed within Maple. The system was

then solved for a one second simulation using a Runge-Kutta Fehlberg method within the

Maple 10 software. The solution times of these ODEs are based on a ten trial average and

are presented in Table 4.6. A Pentium 4 of 1.80 GHz with 768 MB of RAM was used to

perform these simulations.

The same system was also modelled using the exact procedure described above but using
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Table 4.5: Forces at the 3-DOF Spatial Parallel Manipulator’s Prismatic Joints

Prismatic Joints s25 s28 s31

Forces (N) 65 + 5.0 cos(2πt) 65 + 5.0 sin(2πt) 65 + 3.0 sin(4πt)

different tree sets. The solution time as well as the equation complexity factors obtained

from the optimized code of the equations for each tree set are presented in Table 4.6, where

the tree set selected by the Formulation-Based Tree Selection Algorithm is shown in bold

and the tree set selected by the Variable-Based Tree Selection Algorithm is shown in italics.

In the description of the various trees, the arm elements were not presented; however they

are always found in both trees. The notation Same Tree for the translational tree indicates

that the translational tree is composed of the same edges as the rotational tree. The term

Comp. denotes the equation complexity that is described in Section 2.4. The notation “–”

for the solution time and complexity of a mechanism model indicates that DynaFlexPro

could not generate the equations of the system within 30 minutes when the system was

modelled using the given set of trees. As discussed in the example presented in Section

3.3.2, the solution times presented in this table are slower than real-time due to the use

of Maple as a numerical solver. However, this increased solution time does not affect the

relative time difference between the simulations of models using various coordinate sets.

The results presented in Table 4.6 are very revealing. They confirm the link between

the model’s equation complexity and solution time. From these results, it is clear that the

coordinate set selected by the Formulation-Based Tree Selection Algorithm provides the

most efficient simulation of all those taken into consideration.

As mentioned in previous chapters, many researchers [12, 16, 19, 31] have suggested

that the model having the fewest number of equations would produce the most efficient

simulations. The fewest number of modelling variables that can be used, given the limi-

tation of having to select valid trees, are the coordinates ζ7, η7, ξ7, θ27, θ30, θ33, and S25.

Comparing this model to the Coordinates selected using the Formulation-Based Tree Se-

lection Algorithm, we see that the latter are approximately 62% more efficient than the
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Table 4.6: Efficiency of Various Tree Sets of the 3-DOF Spatial Parallel Manipulator

Rotational Translational Sol. Comp. # #

Tree Tree Time Dyn. Kin.

(s) EQs EQs

s25, s28, s31, b26, b29, b32, m7 s25, b26, b29, b32, h27, h30, h33 3.98 48178 13 10

s25, s28, s31, b26, b29, b32, m7 s25, s28, s31, b26, b29, b32, h27 2.55 30013 15 12

s25, s28, s31, b26, b29, b32, m7 Same Tree 2.54 31213 18 15

s25, s28, s31, b26, b29, b32, m7 s25, b29, b32, h27, h30, h33, m7 4.32 51346 16 13

b26, b29, b32, h27, h30, h33, m7 s25, s28, s31, b26, b29, b32, m7 – – 21 18

s25, s28, s31, b26, b29, b32, h27 s25, s28, s31, b26, b29, b32, m7 3.73 41233 16 13

s25 , s28 , s31 , h27 , h30 , h33 ,m7 s25 , b26 , b29 , b32 , h27 , h30 , h33 6.14 66060 7 4

s25, s28, s31, h27, h30, h33, m7 s25, s28, s31, b26, b29, b32, h27 4.11 43203 9 6

s25, s28, s31, h27, h30, h33, m7 s25, s28, s31, b26, b29, b32, m7 4.11 43356 12 9

s25, s28, s31, h27, h30, h33, m7 Same Tree 6.02 68210 12 9

s25, s28, s31, h27, m2, m4, m6 s25, s28, s31, m2, m4, m6, m7 4.35 50181 22 19

s25, s28, s31, m2, m4, m6, m7 s25, s28, s31, b26, b29, b32, m7 2.34 26595 15 12
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coordinates using the fewest number of equations.

The effects of the properties of the rotational tree on the selection of the translational

tree is also quite apparent in this example. Had the translational tree only been selected

according to the chord body forces present in its own dynamic equations, the translational

tree could have selected only one of the prismatic joints in the tree rather than all three.

As shown by the results in Table 4.6, this would have led to a tree selection that produces

slower simulation time.

This example also shows the use of the slightly lower weight of branch body torques

relative to chord body torques. Had these weights been the same, the spherical joints and

body edges would have had the same weights throughout the rotational tree selection of

this specific system. Because of this, the Tree Similarity Heuristic would have made sure

the spherical joints were placed in the rotational tree rather than most of the body edges

since these spherical joints are found in the translational tree. This would have resulted in

a slightly less efficient coordinate set to be selected by the algorithm (this tree set is found

in Table 4.6’s third row and its simulation time is 9% slower than the optimal solution).

Finally, another interesting observation that one can make while looking at the results

found in the Table 4.6, is that the coordinates found by the Formulation-Based Tree Selec-

tion Algorithm have very unintuitive characteristics. It uses 15 dynamic equations and 12

kinematic equations to model a 3-DOF system. These coordinates are not the standard co-

ordinate sets in common use, such as Absolute Coordinates, Joint Coordinates or Absolute

Angular Coordinates. It would have been extremely difficult, even for someone experienced

in selecting appropriate modelling coordinate for mechanical systems, to choose to model

the present systems with these coordinates.

This clearly shows the complexity of selecting an optimal coordinate set. This complex-

ity is shown to be thoroughly taken into account by the Formulation-Based Tree Selection

Algorithm that selects the most efficient set of coordinates for an extremely complex me-

chanical system. Furthermore, this example demonstrates the advantages of using an

automated coordinate algorithm to select appropriate coordinates for a system.

Finally, further proof of this algorithm’s validity is found in the benchmark problems

depicted in the Appendix A. A brief summery of these results are presented in Table

4.7,where the column designated by Optimal Tree Set indicates whether or not the tree
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set providing the best simulation times of all the trees tested in the context of this report

was found for the given mechanism using the Formulation-Based Tree Selection Algorithm.

The column designated by % Longer Sim. Time indicates, in percentage, how much longer

the simulation time of the model using the tree set found by the Formulation-Based Tree

Selection Algorithm is compared to the simulation time of the optimal tree set. When

comparing these results to those obtained for the Variable-Based Tree Selection Algorithm

(Table 3.3), one can note the added efficiency of the tree sets selected by the Formulation-

Based Tree Selection Algorithm, especially for complex spatial mechanisms such as the

Stewart-Gough Platform and the 3-DOF Spatial Parallel Manipulator.

Table 4.7: Results of the Formulation-Based Tree Selection for Various Mechanisms

Mechanism Appendix Optimal % Longer

Tree Set Sim. Time

Planar 4-Bar Mechanism A.1 yes –

Planar 5-Bar Mechanism A.2 yes –

Three Bodies Attached with Two Revolute Joints A.3 no 145

Planar Slider-Crank A.4 no 48

Planar Flexible Slider-Crank A.5 no 38

Spatial Slider-Crank A.6 yes –

Planar 3-RRR Parallel Manipulator A.7 yes –

Planar 3-RPR Parallel Manipulator A.8 no 44

Peaucellier-Lipkin Straight-Line Mechanism A.9 yes –

Spatial Serial Manipulator A.10 no 18

Stewart-Gough Platform A.11 no 28

3-DOF Spatial Parallel Manipulator A.12 yes –
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4.4 Algorithm Shortcomings

The tree selection algorithm described in this chapter provides very good results in most

circumstances. This can be clearly seen in the results obtained for the benchmark problems

presented in Appendix A. Most importantly, it always finds a valid tree. However, it must

be said that this algorithm is not perfect and in some circumstances does not select the

optimal trees of the system. These cases are few in number and the trees selected by the

algorithm are always valid trees that produce models that have simulation times that are

generally fairly close to the fastest simulation times found with the tree sets tested in this

report. The major reasons for the present algorithm’s deficiencies are presented in this

section.

Kinematic Equation Complexity Approximations

In both Section 4.1, where the Tree Selection Heuristics were established, as well as Section

4.2, where the tree selection algorithm was established, one shortcoming is clearly apparent

in many occasions. This shortcoming is the lack of information concerning kinematic

equations of the system. In the present tree selection process, the number of these equations

is predicted using a DOF calculation. These methods are known to be inaccurate in

certain situations. Most importantly, the prediction of the kinematic equation’s complexity

relative to the dynamic equations as well as the relative complexity between the kinematic

equations themselves is not very precise. In the present algorithm, this complexity is

based more on trial and error than on a direct observation of the composition as well as

the formulation process of these equations. The reasons for these problems are mentioned

repeatedly in both Section 4.1.4 and Section 4.2.4 and present a major challenge for the

future improvement of the present algorithm.

In general, the methods used in the present tree selection algorithm seem to be able

to predict the complexity of kinematic equations to an acceptable accuracy and it also

seems to use this information effectively during the tree selection. However, it should be

noted that the tree selection for planar mechanisms are most vulnerable to the problem

associated with the imperfect prediction of kinematic equation complexity.

The bodies of planar mechanisms all rotate about one axis. Body rotation is a major
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factor in a system’s symbolic equation complexity. In addition, the model will contain much

more symmetry and its translation will be limited to two dimensions. This will result in

the use of a much simpler set of equations to model the system. This set of equations

will be much easier to simplify and optimize. This added simplicity affects the dynamic

and kinematic equations differently. However, the complexity of the kinematic equations

relative to the dynamic equations (estimated by the KinEQComplexity variable in the

tree selection algorithm) was mostly estimated using trial and error and was intended for a

spatial system. This relative complexity is often erroneous for more simple models such as

planar systems. This proves especially crucial in the case of the translational tree, where

the complexities of the dynamic and kinematic equations generated by this tree are of a

much more similar nature. This means that their estimated relative complexity has much

more impact on the tree selection process. Furthermore, the added symmetry in planar

mechanical systems makes the DOF calculation of these mechanisms more difficult.

This problem in the tree selection algorithm is demonstrated in the benchmark problems

presented in Appendix A.4 and A.8. Appendix A.4 shows the results of the slider-crank

for various tree selections. In this case, the Formulation-Based Tree Selection Algorithm

selects the prismatic joint in the translational tree when this should be avoided. This

results in approximately a 72% increase in solution time relative to the known optimal

tree.

Appendix A.8 depicts a planar 3-RPR mechanism. When using the Formulation-Based

Tree Selection Algorithm for this mechanism, the three prismatic joints are not included in

the modelling coordinates. Keeping the same coordinates and adding the three prismatic

joints decreases the model’s solution time by approximately 27%.

However, spatial mechanisms are not immune to this problem. For example, if we look

at the spatial serial manipulator presented in Appendix A.10, we see that the body edge

of the last body in the chain should be placed in the translational tree thus improving the

solution time by 15%. This was not done by the Formulation-Based Tree Selection Algo-

rithm. Upon closer inspection, it is possible to notice that, had the KinEQComplexity

variable been evaluated one unit lower, the optimal translational tree would have been

found in this case.

Another problem also arises due to the method used to estimate the number of kine-



Formulation-Based Tree Selection 140

matic equations for the system at every stage of the tree’s completion. Since the rotational

tree is always selected first, all the dynamic equations that are considered as not adding

any kinematic equations will have the tendency of being found mostly in the rotational

tree. For example, if a system had five degrees of freedom, the first five dynamic equa-

tions generated by the rotational tree would not have any weight added by the Kinematic

Equation Heuristic. In this case, all five of these DOFs could be “used” in the rotational

tree and all the dynamic equations generated by the translational tree would have an extra

weight added to them to compensate for the Kinematic Equation Heuristic.

This shows that it would be preferable to predict the number of DOF in rotation and

translation separately. However, when attempts were made to modify Gruebler’s equation

for this purpose, the total number of DOF calculated was even more inaccurate than

when the equation was used in its global form. For example, the rotational DOF of the

spatial parallel manipulator is estimated at six using separate Grubler DOF calculations

for rotation and translation. In reality, the mechanism only has a total of three DOF

encompassing both rotation and translation. Because of this, the general form of Gruebler’s

equation was kept.

There are a few different methods one could consider to improve these problems. The

first such method would be to devise a better method of estimating the number and

complexity of the kinematic equations by either adding tree selection heuristics or devising

a new tree selection algorithm all together.

When looking at the DOF estimation problem, another possible solution could be to

simply implement another more accurate DOF calculation method in the tree selection

algorithm. The other problem of finding a better approximation of the relative complexity

between dynamic and kinematic equations could be partially solved by first asking the

user if the model he provided is planar or not. Then one could apply a different, more ap-

propriate, complexity approximations method in each case. This method could be further

improved by creating an automated method of determining if a given mechanism is planar

or not. However, this would require the extraction of extensive geometry information to

the pre-processing environment.
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Kinematic Equation Complexity Approximations

Another problem that the Formulation-Based Tree Selection Algorithm faced during its

conception was the difficulty in predicting the results of simplification and code optimiza-

tion procedures performed on the equations used to model the system. These procedures

simplify the system’s equations and reformulate the equations so that repeated variables

and equation sections only need to be calculated once. The limited information avail-

able in the pre-processing environment in which the tree selection algorithm is elaborated

makes it extremely difficult to predict the effect that these procedures will have on the

system’s equations. In fact, out of all the heuristics developed for tree selection, only

the Tree Similarity Heuristic, which lowers the coupling between the equations, was elabo-

rated specifically to take advantage of the effect of the simplification and code optimization

procedures.

Unfortunately, the equation simplification and optimisation process have much greater

effects on the final system model than can be predicted by simply using the Tree Similarity

Heuristic. These effects seem to show themselves more in systems with many degrees of

freedom. For example, Appendix A.3 depicts the modelling of three bodies connected

together by two revolute joints and floating freely relative to the ground. In this case,

the model using the trees selected by the Formulation-Based Tree Selection Algorithm is

approximately 145% less efficient than the optimal tree set.

This clearly indicate that further efforts need to be made in order to better predict the

effect of simplification and code optimization on the system model. For example, perhaps

one could try taking into account the number of times each body’s torque and forces are

repeated in the formulation of the system equations. Certain factors could be used to take

into account the code optimization effect on systems that use the same torques and forces

multiple times in their equation formulation.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

A large percentage of the studies of optimal coordinate set selection have been done using

a graph-theoretical approach. This approach gives insight on the mechanism’s topology,

which proves to be important when trying to determine efficient coordinate sets. When this

graph-theoretical approach is used to select a model’s coordinate set, valid trees from the

system’s graph must be selected. Furthermore, there is one coordinate selection criterion

that is often used in the literature. It states that the coordinate set using the fewest possible

number of modelling variables will produce the models having most efficient simulations.

This criterion is based on the assumption that the more modelling variables are used to

model the system, the greater the number of equations are necessary to model the system.

Since all of these equations must be solved simultaneously to model the system, it is

assumed that a lower number of equations will increase the model’s simulation efficiency.

Though, as will be discussed later, this assumption was later shown to not always be valid

for every mechanical system.

A graph-theoretical approach was also used in this report to select coordinate sets. In

addition to being a helpful tool for coordinate selection, graph theory can also be used

to automatically formulate a system’s symbolic equations. This technique was also used

in this research to facilitate the analysis of various benchmark problems, and to compare

the effect of multiple coordinate sets to model these benchmark problems. Many methods
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of formulating a mechanical system’s symbolic equations using graph theory have been

developed. McPhee’s method [19] was used in this report due to its capability of modelling a

large number of coordinate sets such as Absolute Coordinates, Joint Coordinates, Absolute

Angular Coordinates, Indirect Coordinates, as well as any combination of these coordinate

sets.

The first tree selection algorithm developed in this report, called the Variable-Based

Tree Selection, was based on modelling systems with coordinate sets containing a minimal

number of variables. This was done by assigning weights to each graph edge and finding

the minimal spanning trees, a technique that was first proposed as a coordinate selection

method by Kim and Vanderploeg [12]. This method was augmented by the addition of

extra tree selection heuristics that made it possible to properly select between multiple

trees that would model mechanical systems with the same number of modelling variables.

These heuristics included the necessity of using certain edge types as the tree edges or as

cotree edges, the minimization of the number of modelling variables relating every edge to

the ground, the minimization of the number of joints relating every edge to the ground, as

well as selecting the rotational and translational trees so that they are as similar as possible

to each other. However, when some of the benchmark problems were tested using various

coordinate sets to validate the Variable-Based Tree Selection, it was discovered that using

the minimal set of modelling coordinates does not always produce the most efficient results.

Since this is the main heuristic used to select trees in the Variable-Based Tree Selection,

its performance is not always optimal. When trying to modify this tree selection method

to properly account for the new coordinate selection observations, it became clear that

simple benchmark observations and model topology were insufficient to establish better

tree selection heuristics.

A second tree selection algorithm, called Formulation-Based Tree Selection, was devel-

oped. This method’s heuristics were mostly developed by carefully analysing McPhee’s [19]

symbolic equation formulation procedure. This provided great insight on how the mechan-

ical system’s symbolic equations were created and structured and provided explanation as

to why certain systems could be simulated more efficiently when modelled using a higher

than minimal set of modelling coordinates. Some of these heuristics included minimizing

the number of body torques and chord body forces found in the system’s cutsets equations
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and, whenever possible, minimizing the number of kinematic equation used to model the

system. The Formulation-Based Tree Selection also reused and improved some heuristics

originally developed for the Variable-Based Tree Selection. These heuristics include the

necessity of using certain edge types as the tree edges or as cotree edges and the neces-

sity of selecting the translational and rotational trees to be as similar as possible. The

Formulation-Based Tree Selection also included heuristics especially developed to take into

account the effect of flexible bodies on the system’s symbolic equations by placing the

flexible arm edges as leaf edges in the mechanism’s trees.

A Formulation-Based Tree Selection Algorithm was then developed to implement the

heuristics described above. This algorithm was also based on graph theory and modified

Prim’s minimal spanning tree selection algorithm [24] so that it could assign edge weights

dynamically during the tree selection process. This algorithm was tested with all of the

benchmark problems. By comparing the trees obtained by the algorithm to other trees or to

known optimal trees published in the literature, the algorithm’s efficiency and robustness

was shown. However, the algorithm was not without its shortcomings. For example,

the number and complexity of the kinematic equations used to model a system proved

to be quite difficult to predict within the Formulation-Based Tree Selection Algorithm.

Furthermore, the equation simplification and code optimization algorithms, which can be

applied to a system’s symbolic equation after their formulation, are also difficult to predict.

These problems result in the Formulation-Based Tree Selection Algorithm’s selection of less

than optimal trees for certain mechanisms, most notably for planar systems and systems

with a high number of degrees of freedom.

Both tree selection algorithms developed in this report provide good tree selection

results, especially the Formulation-Based Tree Selection Algorithm, which is capable of

selecting optimal or nearly optimal trees for most mechanical systems. It was also shown

that coordinate sets having a minimal number of modelling variables do not always pro-

vide the models with the most efficient simulations, which was a premise held by many

researchers working on optimal coordinate selection. Furthermore, when formulating this

report’s two tree selection techniques, many coordinate selection heuristics were devised

that provide a significant addition to the coordinate selection heuristics developed in the

literature thus far.
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5.2 Future Work

The literature exploring the topic of coordinate selection generally focuses on the compar-

ison of only a few specific coordinate sets to one another. Because of this, few general

coordinate selection criteria have been established. Though this work added significant

improvements in this field by proposing two coordinate selection algorithms, there still

exists a large number of possible enhancements to these algorithms as well as the field of

optimal coordinate selection in general. This section will propose possible topics for future

work in this field of research.

Heuristics Based on Other Symbolic Equation Formulation Procedures

The Formulation-Based Tree Selection Algorithm was developed based on the analysis

of McPhee’s [19] symbolic equation formulation procedure. This method provided much

insight on the structure of a mechanical system’s symbolic equations and demonstrated a

few methods that could be used to reduce the complexity of these equations. Given the

excellent results obtained when developing tree selection heuristics based on this method,

it seems logical to look into the heuristics that could be derived from other formulation

procedures. For example, Shi and McPhee [26] developed a formulation procedure based on

analytical mechanics (i.e. virtual work). It would be interesting to see the heuristics that

could be derived from this significantly different approach to symbolic equation formulation

and see how these new heuristics could be combined with the ones already developed in

this report.

Algorithm for Inverse Dynamics and Kinematics Problems

The tree selection algorithms developed in this report were based on lowering the simu-

lation time for forward dynamic simulations. Forward dynamic simulations were chosen

as the basis for this analysis since they are the most complex and time-consuming type

of analysis that can be performed on mechanical systems. This analysis requires simul-

taneously solving all of the model’s symbolic equations, which form a set of DAEs when

kinematic equations are needed.

The present tree selection algorithms could be modified, or new algorithms could be
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developed, to select trees that produce models that provide efficient simulations for other

types of analyses such as inverse dynamic simulation, kinematic simulations, and static

simulations. These models could require different approaches than those developed in this

report. For example, a major part of the tree selection methods in this report focuses

on reducing the complexity of dynamic equations and the reduction of the complexity of

kinematic equations is considered secondary; however, kinematic simulation only requires

the solution of the kinematic equations.

Geometry

During the elaboration of the Formulation-Based Tree Selection Algorithm, one of the ma-

jor problems was the limited model information that was extracted from the pre-processing

environment in which the tree selection algorithm was developed. For example, the sys-

tem’s geometry was not extracted from the model due to the limited usefulness of this

information in the pre-processing environment that lacked the ability of performing sym-

bolic manipulations. Because of this, the heuristics developed for tree selection were quite

limited. Substantial improvements of these heuristics could hence be made if the system’s

geometry was extracted and analyzed using symbolic manipulations.

For example, when using only topology, one can know that a series of bodies are con-

nected together by revolute joints; however, since the system’s geometry is unknown, it is

impossible to know if all the revolute joint’s axis of rotation are parallel or not. This is

very important since, if the axis are all parallel, one could determine if the mechanism is

planar, in which case its properties would be quite different than if the mechanism were

spatial in nature.

Automate the Addition of Extra Virtual Joints

The use of Indirect Coordinates to model a system has been shown to produce models

that result in very efficient simulations in certain situations. This type of coordinate sets

can model the motion of any frame in a system relative to any other frame in the system.

Because of this, certain extra virtual joints must be added to the system in order to measure

these motions. Both the algorithms presented in this report take full advantage of virtual

joints if they are present in a system model. These algorithms are capable of using the
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most appropriate virtual joints to find modelling coordinates. However, at the present

time, these virtual joints must be manually added to the system’s graph by the user.

For example, if we look at both examples presented in Section 3.3, a virtual planar

joint was added between two revolute joints in the spatial serial manipulator of Section

3.3.1 and virtual planar joints were added between the ground node and every one of the

system’s bodies in the 3-RRR planar parallel manipulator presented in Section 3.3.2. In

both of these cases, the added virtual joint substantially improved the models’ simulation

efficiency.

Fayet and Pfister [5], who first proposed this coordinate set, proposed a few rules as

to where certain of these virtual joints can be added to a system in order to increase the

model’s simulation efficiency. These rules are limited to prismatic joints, revolute joints,

and spherical joints. One could use these rules to automate the addition of virtual joints

in a system’s graph. This could even be taken one step further by using Fayet’s rules as a

basis to establish rules for other joint types such as universal joints and planar joints.

However, to properly enforce these rules, the mechanical system’s geometry needs to

be known. For example, Absolute Angular Coordinates generally produce models that

produce very efficient simulations of planar systems. In order to model a system with these

coordinates, virtual planar joints relating the ground node to every body must be added to

the system, as shown in Section 3.3.2. Unfortunately, if a model’s geometry is unknown, it

is impossible to know with certainty that the system is planar and automatically add the

needed virtual joints to the system.

Optimization Methods

As discussed in Section 2.4, fully formulating a system’s symbolic equation within the

DynaFlexPro Maple Package can sometimes take a large amount of time for systems using

certain trees. Since each mechanical system has a large number of possible trees and that

one of the tree selection criteria of this report is to develop quick and efficient algorithms, it

was decided not to use optimization methods on fully-formulated models to find a system’s

optimal trees. Instead, the tree selection algorithms were developed in a pre-processing

environment where the models did not need to be fully-formulated in order to estimate its

performance.
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Both of the algorithms presented in this report are capable of selecting relatively efficient

trees in most circumstances, but none are capable of selecting a system’s optimal trees for

every possible mechanical system. These algorithm deficiencies are due in large part to

the many factors affecting equation complexity that simply cannot be predicted within a

pre-processing environment, such as equation simplification and code optimization.

Future work on optimal tree selection could try to combine the speed of selecting a tree

within a pre-processing environment and the accuracy that could be obtained when using

an optimization method to find the optimal fully-formulated model. For example, a tree

selection algorithm developed in a pre-processing environment, similar to those developed

in this report, could be used to narrow down a system’s possible optimal trees to a small

number that could then be sent to an optimization algorithm that formulates each model

it evaluates. This process would surely be much slower than the algorithms presented in

this report; however the improvement in the results could be advantageous to those for

whom simulation efficiency is of extreme importance.

In-Depth Component Analysis and New Components

In this thesis, the addition of SDAs in the system’s trees has been shown to have a negative

effect on simulation time. However, none of the benchmarks tested included any SDAs.

In order to verify that the theoretical conclusions reached in this report are valid, further

benchmark problems containing SDAs should be tested in the future.

Furthermore, vehicles are often modelled using multibody dynamics software. When

modelling vehicles, special attention must be taken to properly model its tires. Tire Compo-

nents have recently been added to a symbolic equation formulation procedure of multibody

systems using graph theory [21]. Tire components have also been added to the DynaFlex-

Pro package.

The effect of tires on the symbolic equation complexity and solution times of vehicle

models was not treated in this report. Further research could be made in this field in order

to properly include this new modelling component in the present or future tree selection

algorithms.
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Different Basis for the Tree Selection Algorithms

Prim’s algorithm was used as a basis for both tree selection algorithms presented in this

report. Prim’s algorithm was used due to its simplicity, modifiability and performance,

as well as a few more specific characteristics discussed in Section 4.2.1. Many other tree

selection algorithms exist. In the future, other tree selection algorithms could be explored.

For example, certain tree selection algorithms are capable of predicting the effect that

adding a certain branch can have on the selection of future branches. In other words,

these algorithms are capable of looking many “layers” ahead. Also, other tree selection

algorithms can be faster than Prim’s algorithm.

Velocity and Acceleration Trees

The symbolic equation formulation procedure used in this report uses a system’s position

level trees to develop the position, velocity, and acceleration level equations of the system.

Distinct velocity level trees and acceleration level trees could also be used to formulate a

system’s symbolic equations. Researchers have shown the increased efficiency that can be

obtained by using velocity transformations when formulating a systems symbolic equations.

In the future, one could develop new heuristics or tree selection algorithms for the

velocity and acceleration level trees. Since DynaFlexPro already provides the possibility of

selecting separate velocity and acceleration level trees, this research could easily be done

using this software package.

Electrical and Hydraulic Tree Selection

One of the major advantages of using graph theory is that it is capable of modelling multi-

domain systems. For example, one could model a mechanical system with electrical and

hydraulic components using one graph-theoretical model of the system. The present tree

selection algorithms could be extended to include electrical and hydraulic components,

thus making it capable of selecting optimal coordinates in a multi-domain system.
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[29] J. Unda, J. Garćıa de Jalón, F. Losantos, and R. Enparantza. A comparative study

on some different formulations of the dynamic equations of constrained mechani-

cal systems. Journal of Mechanisms, Transmissions, and Automation in Design,

vol.109:pp.466–474, 1987.



References 153

[30] J. Wang and C. Gosselin. A new approach for the dynamic analysis of parallel ma-

nipulators. Multibody System Dynamics, vol.2(no.3):pp.317–334, 1998.

[31] J. Wittenburg. Dynamics of Systems of Rigid Bodies. B.G. Teubner, 1977.

[32] JS Zhao, K Zhou, and ZJ Feng. A theory of degrees of freedom for mechanisms.

Mechanism and Machine Theory, vol.39(no.6):pp.621–643, 2004.



Appendix A

Benchmark Mechanisms

A.1 Planar 4-Bar Mechanism

The planar 4-bar mechanism is depicted in Figure A.1(a) and its graph is depicted in Figure

A.1(b). This mechanism is composed of four bodies (m1, m2, and m3, and the ground)

connected by four revolute joints (h11 to h14) that all rotate about the global Z axis. Each

body’s center of mass is connected to the ground by the edges m1 to m3 and the arms r4

to r10 represent the location where each joint is connected, relative to each body’s center

of mass. A torque, depicted by td15, is placed on the revolute joint h11. The gravity is

given as 9.81 m/s2 and is directed in the global negative Y direction.

The geometry and inertial properties of the manipulator are shown in Table A.1, where

each body’s center of mass is found at the body’s centroid and the moments of inertia of

each body are expressed about this center of mass. The ground length is the length of

the arm r4. The mechanism starts at rest and its initial conditions are presented in Table

A.2, where β11, β12, and β14 represents the rotation of the revolute joints h11, h12, and

h14, respectively. and the time-varying torque applied to the revolute joint h11 is given in

equation (A.1). This mechanism has one degree of freedom (DOF).

T15 = 75 sin(2πt) Nm (A.1)

The 4-bar mechanism was simulated using various tree sets. For every different tree set
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(a) (b)

Figure A.1: The 4-bar mechanism and its graph.

Table A.1: Body Lengths and Inertia Properties of the 4-Bar Planar Mechanism

Length (m) Mass (kg) Moments of Inertia (kg ×m2)

Body 1 1.00 1.00 1.000

Body 2 2.00 1.00 1.000

Body 3 2.00 1.00 1.000

Ground 2.00 – –

Table A.2: Initial Conditions of the 4-Bar Planar Mechanism

Coordinate β11 β12 β14

Initial Value (rad) 0.0 1.31812 1.82348
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the kinematic equations were twice differentiated and simplification and code optimization

routines were performed on the resulting system equations in Maple. The resulting sets

of ODEs were solved for a 10 s simulation using a Runge-Kutta Fehlberg method with an

absolute error of 10−6 and a relative error of 10−5. The results, which are taken from an

average of twenty simulations, are shown in Table A.3. A Pentium 4 of 1.80 GHz with

768 MB of RAM was used to perform these simulations. In the description of the various

trees, the arm elements were not presented; however they are always found in both trees.

The notation Same Tree for the translational tree indicates that this tree is composed of

the same edges as the rotational tree. The equation complexity refers to the one described

in Section 2.4.

Table A.3: Efficiency of Various Tree Sets of the 4-Bar Planar Mechanism

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

h11, h12, h13 h11, h12, h14 0.73 726 3 2

h11, h12, h13 Same Tree 0.75 887 3 2

h11, h12, h14 h11, h12, h13 0.50 639 3 2

h11 , h12 , h14 Same Tree 0.48 531 3 2

h11, h13, h14 h11, h12, h14 0.69 635 3 2

h11 , h13 , h14 Same Tree 0.51 526 3 2

The tree sets selected by the Variable-Based Tree Selection Algorithm and the Formu-

lation-Based Tree Selection Algorithm are the same and are depicted in bold italics in

Table A.3. Two such tree sets are indicated since both algorithms will randomly select one

of the two tree sets indicated. The Variable-Based Tree Selection Algorithm found its tree

set in an average of 16 milliseconds while the Formulation-Based Tree Selection Algorithm

took an average of 17 milliseconds to find its tree set.
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A.2 Planar 5-Bar Mechanism

The planar 5-bar mechanism is depicted in Figure A.2(a) and its graph is depicted in Figure

A.2(b). In this graph, the edges h14 to h18 represent the five revolute joints of the system,

which all rotate about the global Z axis. The edges m1 to m4 represent the four bodies of

the system and link the ground node to the center of mass of each body. Finally, the arm

edges r5 to r13 represent the location where each joint is connected, relative to each body’s

center of mass. Two torque drivers, depicted by td19 and td20, are placed on the revolute

joints h14 and h18 respectively. The gravity is given as 9.81 m/s2 and is directed in the

global negative Y direction.

All the bodies of the 5-bar mechanism are 2 m long. They have a mass of 1 kg and a

moment of inertia of 1 kg×m2 about their center of mass at their centroid. The length of

the arm r5 is also 2 m. The mechanism starts at rest and its initial conditions are presented

in Table A.4, where β14, β15, β17, and β18 represents the rotation of the revolute joints h14,

h15, h17, and h18, respectively. The two time-varying torques are given in equations (A.2)

and (A.3). This mechanism has two DOF.

(a) (b)

Figure A.2: The 5-bar mechanism and its graph.

T19 = 30 sin(2πt) Nm (A.2)
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Table A.4: Initial Conditions of the 5-Bar Planar Mechanism

Coordinate β14 β15 β17 β18

Initial Value (rad) 1.57080 −1.57080 4.18879 2.61799

T20 = 20 sin(4πt) Nm (A.3)

The 5-bar mechanism was simulated using various tree sets. For every different tree set

the kinematic equations were twice differentiated and simplification and code optimization

routines were performed on the resulting system equations in Maple. The resulting sets

of ODEs were solved for a 10 s simulation using a Runge-Kutta Fehlberg method with an

absolute error of 10−6 and a relative error of 10−5. The results, which are taken from an

average of twenty simulations, are shown in Table A.5. A Pentium 4 of 1.80 GHz with

768 MB of RAM was used to perform these simulations. In the description of the various

trees, the arm elements were not presented; however they are always found in both trees.

The notation Same Tree for the translational tree indicates that this tree is composed of

the same edges as the rotational tree. The equation complexity refers to the one described

in Section 2.4.

The tree set selected by both the Variable-Based Tree Selection Algorithm and the

Formulation-Based Tree Selection Algorithm is depicted in bold italics in Table A.5. The

Variable-Based Tree Selection Algorithm found its tree set in an average of 16 milliseconds

while the Formulation-Based Tree Selection Algorithm took an average of 15 milliseconds

to find its tree set.

A.3 Three Bodies Attached with Two Revolute Joints

This mechanism consists of three bodies attached with two revolute joints as represented

in Figure A.3. The graph of this model is presented in Figure A.4, where m1, m2, and m3

relates each body’s center of mass to the ground, and h10 and h11 each represent a revolute
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Table A.5: Efficiency of Various Tree Sets of the 5-Bar Planar Mechanism

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

h14, h15, h16, h17 h15, h16, h17, h18 1.04 1598 4 2

h14, h15, h16, h17 Same Tree 0.97 1598 4 2

h14, h15, h16, h18 h14, h16, h17, h18 0.69 1094 4 2

h14, h15, h16, h18 Same Tree 0.58 921 4 2

h14 , h15 , h17 , h18 Same Tree 0.47 706 4 2

h14, h15, h17, h18 m2, h14, h17, h18 0.72 1106 6 4

joint. The location where each joint is connected, relative to each body’s center of mass,

is depicted by the edges r4 to r9.

All three of the mechanism’s bodies are 2 m long. They have a mass of 2 kg, Izz and Ixx

values of 1 kg×m2, and a Iyy value of 0.1 kg×m2, which are all expressed relative to their

center of mass at their centroid. The revolute joint designated by h10 rotates about m2’s

local x axis, while the revolute joint h11 rotates about m2’s local z axis. This mechanism

has eight DOF.

The mechanism starts at rest with β10 (the rotation of the revolute joint h10) equal to

π/3 rad and β11 (the rotation of the revolute joint h11) equal to π/4 rad. The body m2’s

local reference frame is initially positioned and oriented as the global reference frame. The

mechanism then falls under the effect of gravity that is in the global negative Z direction.

This mechanism was simulated using various tree sets. For every different tree set

the kinematic equations were twice differentiated and simplification and code optimization

routines were performed on the resulting system equations in Maple. The resulting sets

of ODEs were solved for a 5 s simulation using a Runge-Kutta Fehlberg method with an

absolute error of 10−6 and a relative error of 10−5. The results, which are taken from an

average of twenty simulations, are shown in Table A.6. A Pentium 4 of 1.80 GHz with

768 MB of RAM was used to perform these simulations. In the description of the various

trees, the arm elements were not presented; however they are always found in both trees.
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Figure A.3: Three bodies attached with two revolute joints.

Figure A.4: Graph of three bodies attached with two revolute joints.
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The notation Same Tree for the translational tree indicates that this tree is composed of

the same edges as the rotational tree. The equation complexity refers to the one described

in Section 2.4.

Table A.6: Efficiency of Various Tree Sets of the Three Bodies Attached with Two Revolute

Joints

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

m1, m2, m3 Same Tree 5.62 8371 18 10

m1, m2, m3 m2, h10, h11 7.07 10814 12 4

m1 , h10 , h11 Same Tree 4 .82 8975 8 0

m2 , h10 , h11 Same Tree 2 .88 4827 8 0

m1, m2, h11 Same Tree 4.08 6359 13 5

The tree sets selected by the Variable-Based Tree Selection Algorithm are depicted

in italics in Table A.6 and the tree set selected by the Formulation-Based Tree Selection

Algorithm is depicted in bold in this table. Two tree sets are indicated for the Variable-

Based Tree Selection Algorithm since it will randomly select one of the two tree sets

indicated. The Variable-Based Tree Selection Algorithm found its tree set in an average of

9 milliseconds while the Formulation-Based Tree Selection Algorithm took an average of

10 milliseconds to find its tree set.

A.4 Planar Slider-Crank

The planar slider-crank mechanism is depicted in Figure A.5 and its graph is depicted

in Figure A.6. In this graph, the edges m1 to m3 represent the three rigid bodies in the

mechanism. The edges r4 to r7 are used to define the locations, relative to the body’s

center of mass frame, where the joints are connected to each of the bodies. The edges

h8-h10 characterize the three revolute joints that rotate about the global Z axis, while the
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edge s11 represents the prismatic joint connecting the third body to the ground, which

translates along the global X axis. The gravity is given as 9.81 m/s2 and is directed in

the global negative X direction.

Figure A.5: The planar slider-crank.

Figure A.6: The planar slider-crank’s graph.

The geometry and inertial properties of the mechanism are shown in Table A.7, where

the moments of inertia of each body are expressed about this center of mass at the centroid

of each body. The numerical values for this system’s parameters are based on those from

the spatial slider-crank mechanism (Appendix A.6) from Haug [8] that were modified to

become a planar mechanism. This mechanism has one DOF.

The mechanism starts at rest with β8 (the rotation of the revolute joint h8) equal to

1.00 rad and β10 (rotation of the revolute joint h10) equal to −1.715380157 rad. It then
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falls under the effect of gravity.

Table A.7: Body Lengths and Inertia Properties of the Planar Slider-Crank

Length (m) Mass (kg) Moments of Inertia (kg ×m2)

Body 1 0.08 0.12 0.0001

Body 2 0.30 0.50 0.004

Body 3 – 2.00 0.0001

This mechanism was simulated using various tree sets. For every different tree set

the kinematic equations were twice differentiated and simplification and code optimization

routines were performed on the resulting system equations in Maple. The resulting sets

of ODEs were solved for a 10 s simulation using a Runge-Kutta Fehlberg method with an

absolute error of 10−6 and a relative error of 10−5. The results, which are taken from an

average of twenty simulations, are shown in Table A.8. A Pentium 4 of 1.80 GHz with

768 MB of RAM was used to perform these simulations. In the description of the various

trees, the arm elements were not presented; however they are always found in both trees.

The notation Same Tree for the translational tree indicates that this tree is composed of

the same edges as the rotational tree. The equation complexity refers to the one described

in Section 2.4.

The tree set selected by the Variable-Based Tree Selection Algorithm is depicted in

italics in Table A.8 and the tree set selected by the Formulation-Based Tree Selection Al-

gorithm is depicted in bold in this table. The Variable-Based Tree Selection Algorithm

found its tree set in an average of 15 milliseconds while the Formulation-Based Tree Selec-

tion Algorithm took an average of 16 milliseconds to find its tree set.

A.5 Planar Flexible Slider-Crank

The planar flexible slider-crank mechanism is depicted in Figure A.7 and its graph is

depicted in Figure A.8. In this graph, the graph edges m1 and m3 represent the two rigid
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Table A.8: Efficiency of Various Tree Sets of the Planar Slider-Crank

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

h8, h9, s11 h8, h9, h10 0.69 253 2 1

h8, h9, s11 Same Tree 1.19 475 3 2

h8, h9, h10 Same Tree 1.25 545 3 2

h8, h9, h10 h8, h10, s11 2.19 1016 4 3

h8 , h10 , s11 h8 , h9 , h10 0 .68 197 2 1

h8, h10, s11 Same Tree 1.00 353 3 2

bodies found in the mechanism, while the edge fm2 represents the mechanism’s flexible

body. The edges r4 and r5 are used to define the location where the joints are connected

on the body relative to the body m1’s center of mass frame. The edge fr6 represents

the length of the flexible body fm2. The edges h8 and h9 characterize the two revolute

joints that rotate about the global Z axis, while the edge s10 represents the prismatic joint

connecting the third body to the ground, which translates along the global X axis. The

edge md7 is a motion driver that provides a constant rotation about the global Z axis.

The gravity is given as 9.81 m/s2 and is directed in the global negative Z direction.

Figure A.7: The planar flexible slider-crank.
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Figure A.8: The planar flexible slider-crank’s graph.

This mechanism’s properties are taken from Jonker [10], where the flexible body has a

length of 0.3 m, a Young’s modulus of elasticity (E) equal to 2× 1011 N/m2, and a mass

density (ρ) of 7870 kg/m3. The body’s circular cross-sectional area has a diameter of 0.003

m. The body m1 has a length of 0.15 m and the body m3 has a mass that is half of the

flexible body’s mass. This mechanism has three DOF, one form the mechanism itself, and

two from the flexible body. The beam’s lateral deformations along the Y2 axis, which is

due to bending about the Z2 axis, is considered. This deformation is discretized with three

elastic coordinates that use Chebyshev polynomials in the Rayleigh-Ritz discretization.

The slider-crank starts at a horizontal position (S10 = 0.45 m) and the motion driver

md7 turns at a constant 150 rad/s about the global Z axis. The flexible beams starts with

no deflection and no deflection velocity.

This mechanism was simulated using various tree sets. For every different tree set

the kinematic equations were twice differentiated and Baumgarte stabilization [2] was ap-

plied to the resulting ODEs with the Baumgarte parameters α and β set to 10 and 10,

respectively. The resulting set of equations where then sent to simplification and code

optimization routines in Maple. The resulting sets of ODEs were solved for a 10 radi-

ans rotation of the crank (m1). This simulation was done using a Runge-Kutta Fehlberg

method with an absolute error of 10−6 and a relative error of 10−5. The results, which are

taken from an average of twenty simulations, are shown in Table A.9. A Pentium 4 of 1.80

GHz with 768 MB of RAM was used to perform these simulations. In the description of
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the various trees, the arm elements were not presented; however they are always found in

both trees. The notation Same Tree for the translational tree indicates that this tree is

composed of the same edges as the rotational tree. The equation complexity refers to the

one described in Section 2.4.

Table A.9: Efficiency of Various Tree Sets of the Planar Flexible Slider-Crank

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

h7 , h8 , s10 h7 , h8 , h9 3 .73 2182 4 1

h7, h8, s10 Same Tree 6.10 3290 5 2

h7, h8, h9 Same Tree 5.35 2764 5 2

h7, h8, h9 h7, h9, s10 8.42 4859 6 3

h7 , h9 , s10 h7 , h8 , h9 2 .59 1411 4 1

h7, h9, s10 Same Tree 3.57 2109 5 2

The tree set selected by the Variable-Based Tree Selection Algorithm are depicted in

italics in Table A.9 and the tree set selected by the Formulation-Based Tree Selection

Algorithm is depicted in bold in this table. Two tree sets are indicated for the Variable-

Based Tree Selection Algorithm since it will randomly select one of the two tree sets

indicated. The Variable-Based Tree Selection Algorithm found its tree set in an average of

16 milliseconds while the Formulation-Based Tree Selection Algorithm took an average of

15 milliseconds to find its tree set.

A.6 Spatial Slider-Crank

The spatial slider-crank mechanism is depicted in Figure A.9 and its graph is depicted

in Figure A.10. The spatial slider-crank is formed by a revolute joint, depicted by the

edge h9, that connects a crank, depicted by the body m1 and its two arms r5 and r6,

to the ground. This revolute joint rotates about the global X axis. The location where



Benchmark Mechanisms 167

the revolute joint connects to the ground is depicted by the edge r4. The crank is then

connected to a connecting rod, represented by the edges m2 and its two arms r7 and r8, by

a spherical joint corresponding to the edge b10. Finally, a sliding block (m3) is connected to

the connecting rod via a universal joint (u11) and connected to the ground by a prismatic

joint (s12) that translates about the global X axis. This universal joint’s angle α rotates

about the global X axis, while this joint’s β angle rotates about m2’s body-fixed z axis.

Finally, gravity is given as 9.81 m/s2 and is directed in the negative global Z direction.

Figure A.9: The spatial slider-crank.

The geometry and inertial properties of the manipulator are shown in Table A.10, where

each body’s center of mass is found at the body’s centroid and the moments of inertia of

each body are expressed about this center of mass. The numerical values for all system

parameters are taken from Haug [8]. The mechanism is simulated falling due to gravity and

its initial conditions are given in Table A.11, where θ9, α11, and β11 represents the rotation

of the revolute joints h9, and the two rotation of the universal joint u11, respectively. This

mechanism has one DOF.

This mechanism was simulated using various tree sets. For every different tree set

the kinematic equations were twice differentiated and simplification and code optimization
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Figure A.10: The spatial slider-crank’s graph.

Table A.10: Body Lengths and Inertia Properties of the Spatial Slider-Crank

Length Mass Ixx Iyy Izz

(m) (kg) (kg ×m2) (kg ×m2) (kg ×m2)

Body 1 0.08 0.12 0.00010 0.00001 0.00010

Body 2 0.30 0.50 0.00400 0.00400 0.00040

Body 3 – 2.00 0.00010 0.00010 0.00010

Table A.11: Initial Conditions of the Spatial Slider-Crank

Coordinate θ9 (rad) α11 (rad) β11 (rad) d
dt

θ9 (rad/s) d
dt

α11 (rad/s) d
dt

β11 (rad/s)

Initial Value 0.00000 0.46365 −0.84107 −6.00000 −1.92000 1.07331
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routines were performed on the resulting system equations in Maple. The resulting sets

of ODEs were solved for a 10 s simulation using a Runge-Kutta Fehlberg method with an

absolute error of 10−6 and a relative error of 10−5. The results, which are taken from an

average of twenty simulations, are shown in Table A.12. A Pentium 4 of 1.80 GHz with

768 MB of RAM was used to perform these simulations. In the description of the various

trees, the arm elements were not presented; however they are always found in both trees.

The notation Same Tree for the translational tree indicates that this tree is composed of

the same edges as the rotational tree. The equation complexity refers to the one described

in Section 2.4.

Table A.12: Efficiency of Various Tree Sets of the Spatial Slider-Crank

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

h9 , u11 , s12 h9 , b10 , u11 1 .87 926 3 2

h9, u11, s12 m2, h9, u11 3.33 2070 6 5

h9, u11, s12 Same Tree 1.53 710 4 3

h9, u11, s12 m2, h9, s12 2.88 1927 7 6

h9, b10, u11 Same Tree 17.81 7521 6 5

h9, b10, u11 h9, u11, s12 21.58 8592 7 6

h9, b10, s12 h9, b10, u11 7.89 3390 4 3

h9, b10, s12 h9, u11, s12 8.66 3846 5 4

The tree set selected by the Variable-Based Tree Selection Algorithm is depicted in

italics in Table A.12 and the tree set selected by the Formulation-Based Tree Selection

Algorithm is depicted in bold in this table. The Variable-Based Tree Selection Algorithm

found its tree set in an average of 16 milliseconds while the Formulation-Based Tree Selec-

tion Algorithm took an average of 15 milliseconds to find its tree set.

To verify if similar results could be obtained using other solvers, the system’s equa-

tions were exported into Matlab S-functions. This Matlab S-function was then solved
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in Matlab/Simulink using various ODE solvers and using the same parameters as those

used in Maple. The results of these simulations are presented in Table A.13. Here, the

term ODE45 refers to the simulations solved using Matlab’s ODE45, which is based on

a Runge-Kutta formula called the Dormand-Prince pair. The term ODE113 refers to

the simulations solved using Matlab’s ODE113, which is an Adams-Bashforth-Moulton

PECE (predictor-evaluate-corrector-evaluate) solver. Finally, the term ODE15s refers to

the simulations solved using Matlab’s ODE15s, which is a stiff solver based on numerical

differentiation formulas (NDFs).

Table A.13: Efficiency of Various Tree Sets of the Spatial Slider-Crank Using Other Solvers

Rotational Tree Translational Tree ODE45 (s) ODE113 (s) ODE15s (s)

h9 , u11 , s12 h9 , b10 , u11 0.43 0.47 0.62

h9, u11, s12 Same Tree 0.30 0.35 0.47

A.7 Planar 3-RRR Parallel Manipulator

The 3-RRR parallel manipulator is depicted in Figure A.11 and its graph is depicted in

Figure A.12. This mechanism is comprised of three legs, each having three revolute joints.

The joints connected to the ground (h25, h28, and h31) are generally referred to as the ankle

joints. The revolute joints connected to the platform (h27, h30, and h33) are called the hip

joints. Lastly, the revolute joints at the center of the legs (h26, h29, and h32) are called

knee joints. All of these revolute joints rotate about the global Z axis. Each body’s center

of mass is connected to the ground by the edges m1 to m7, and the location where each

joint is connected, relative to each body’s center of mass, is depicted by the edges r8 to

r24.

The geometry and inertial properties of the manipulator are shown in Table A.14 and

Table A.15, where the moments of inertia are about the center of gravity at the centroid

of each section and where the platform is an equilateral triangle. The platform length
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Figure A.11: The planar 3-RRR parallel manipulator.

Figure A.12: The planar 3-RRR parallel manipulator’s graph.
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corresponds to the length of its sides and the term Shank Bodies refers to the bodies

connected to the ground via a revolute joint while the term Thigh Bodies refer to the

bodies connected to the platform via a revolute joint. The initial conditions used to model

the system are presented in Table A.16, where β25, β28, and β31 represents the rotation

of the revolute joints h25, h28, and h31, respectively. The numerical values for all system

parameters are taken from Geike and McPhee [6]. This mechanism has three DOF.

Table A.14: Body Lengths and Inertia Properties of the 3-RRR Planar Parallel Manipu-

lator

Length (m) Mass (kg) Moments of Inertia (kg ×m2)

Shank Bodies 0.40 3.00 0.0400

Thigh Bodies 0.60 4.00 0.1200

Platform 0.40 8.00 0.0817

Table A.15: Position where the Legs are Connected to the Ground for the 3-RRR Planar

Parallel Manipulator

Position First Leg Second Leg Third Leg

xG (m) 0.000 1.000 0.500

yG (m) 0.000 0.000
√

3/2

For every different tree set, the mechanism was simulated while starting at rest and

falling for 3 s under the force of gravity, which is directed in the global negative Y direction.

For every different tree set the kinematic equations were twice differentiated and Baumgarte

stabilization [2] was applied to the resulting ODEs with the Baumgarte parameters α and β

set to 10 and 5, respectively. The resulting set of equations where then sent to simplification

and code optimization routines in Maple. The resulting sets of ODEs were solved using
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Table A.16: Initial Conditions of the Manipulator of the 3-RRR Planar Parallel Manipu-

lator

Coordinate β25 β28 β31

Initial Value (rad) 1.0472 4.1888 5.7596

a Runge-Kutta Fehlberg method with an absolute error of 10−6 and a relative error of

10−5. The results, which are taken from an average of twenty simulations, are shown in

Table A.17. A Pentium 4 of 1.80 GHz with 768 MB of RAM was used to perform these

simulations. In the description of the various trees, the arm elements were not presented;

however they are always found in both trees. The notation Same Tree for the translational

tree indicates that this tree is composed of the same edges as the rotational tree. The

equation complexity refers to the one described in Section 2.4.

Table A.17: Efficiency of Various Tree Sets of the 3-RRR Planar Parallel Manipulator

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

h25 − h29 , h31 , h32 Same Tree 1.74 2718 7 4

h25 − h29, h31, h32 h25 − h28, h30, h31, h33 8.47 11948 7 4

h25 − h28, h30, h31, h33 h25 − h29, h31, h32 5.88 7610 7 4

h25, h26, h28 − h32 h25 − h29, h31, h32 5.74 7798 7 4

The tree set selected by both the Variable-Based Tree Selection Algorithm and the

Formulation-Based Tree Selection Algorithm is depicted in bold italics in Table A.17. The

Variable-Based Tree Selection Algorithm found its tree set in an average of 16 milliseconds

while the Formulation-Based Tree Selection Algorithm took an average of 79 milliseconds

to find its tree set.
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In order to be able to model the planar 3-RRR parallel manipulator using Absolute

Angular Coordinates, virtual joints allowing rotations about only the global Z axis need

to be added between the ground and every body in the system. In this case, the needed

virtual joints can be simulated by adding planar joints between every body’s center of mass

and the ground node. The new system graph for one of the legs of the 3-RRR manipulator

containing these extra planar joints (in bold) is illustrated in Figure A.13. The virtual

planar joint added to the body mi will be called vpi+33.

Figure A.13: The planar 3-RRR parallel manipulator’s graph with added virtual planar

joints.

The planar 3-RRR manipulator was once again simulated using various tree sets under

the same conditions as the previous simulations. The results of this simulation are found

in Table A.18, where the abbreviation Compl. denotes the equation complexity.

The tree set selected by both the Variable-Based Tree Selection Algorithm and the

Formulation-Based Tree Selection Algorithm is depicted in bold italics in Table A.18. The

Variable-Based Tree Selection Algorithm found its tree set in an average of 16 milliseconds

while the Formulation-Based Tree Selection Algorithm took an average of 140 milliseconds

to find its tree set.
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Table A.18: Efficiency of Various Tree Sets of the 3-RRR Planar Parallel Manipulator with

Virtual Joints

Rotational Translational Sol. Comp. # #

Tree Tree Time Dyn. Kin.

(s) EQs EQs

vp34 − vp40 h25 − h29 , h31 , h32 1.26 1983 7 4

vp34 − vp40 h25, h26, h28, h29, h30, h31, vp40 1.55 2080 9 6

h25, h27, h28, h30, h31, h33, vp40 h25 − h28, h30, h31, h33 2.47 3672 7 4

h25, h27, h28, h30, h31, h33, vp40 Same Tree 2.90 4141 9 6

h25, h26, h28, h29, h31, h32, vp40 h25 − h29, h31, h32 1.55 2502 7 4

h25, h26, h28, h29, h31, h32, vp40 Same Tree 1.51 2272 9 6

A.8 Planar 3-RPR Parallel Manipulator

The 3-RRR parallel manipulator is depicted in Figure A.14 and its graph is depicted in

Figure A.15. This mechanism is comprised of three legs, each having two revolute joints

and one prismatic joint. The legs are connected to the ground by revolute joints (h26, h27,

and h28). The legs also connect to the platform with revolute joints (h32, h33, and h34).

All of these revolute joints rotate about the global Z axis. Lastly, the two leg sections are

connected together with prismatic joints (s29, s30, and s31) that translate along the length

of the legs. The bodies’ centers of mass are connected to the ground by the edges m1 to

m7 and the location where each joint is connected, relative to each body’s center of mass,

are depicted by the edges r8 to r25. The edges fd35 to fd37 represent force drivers placed

on the prismatic joints of the mechanism. The virtual planar joint vp38 is added to track

the planar movement of the platform. Finally, gravity is placed along the global Z axis,

which is parallel to the axis of rotation of the revolute joints.

The geometry and inertial properties of the manipulator are shown in Table A.19 and

Table A.20, where the moments of inertia are about the center of gravity at the centroid

of each section. The platform is shaped as an Isosceles triangle and it’s bottom length
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Figure A.14: The planar 3-RPR parallel manipulator.

Figure A.15: The planar 3-RPR parallel manipulator’s graph.
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(the other two lengths being the two lengths of equal value), which is also it’s height (as

depicted in Figure A.14), is provided in Table A.19. The term Shank Bodies refers to the

bodies connected to the ground via a revolute joint while the term Thigh Bodies refer to the

bodies connected to the platform via a revolute joint. The initial conditions used to model

the system are presented in Table A.21, where β38 represents the platform’s orientation

about the Z axis, and X38 and Y38 represents the platform’s position along the ground

reference frame’s X and Y axis. Table A.22 presents the forces acting on each prismatic

joint. This mechanism has three DOF.

Table A.19: Body Lengths and Inertia Properties of the 3-RPR Planar Parallel Manipulator

Length (m) Mass (kg) Moments of Inertia (kg ×m2)

Shank Bodies 1.00 3.00 0.2725

Thigh Bodies 1.50 1.50 0.2825

Platform 1.00 5.00 0.4167

Table A.20: Position where the Legs are Connected to the Ground for the 3-RPR Planar

Parallel Manipulator

Position First Leg Second Leg Third Leg

xG (m) -1.750 1.750 5.665

yG (m) 0.000 0.000 0.000

For every different tree set, the mechanism was simulated for 10 s while starting at rest.

For every different tree set the kinematic equations were twice differentiated and Baumgarte

stabilization [2] was applied to the resulting ODEs with the Baumgarte parameters α and β

set to 10 and 5, respectively. The resulting set of equations where then sent to simplification

and code optimization routines in Maple. The resulting sets of ODEs were solved using
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Table A.21: Initial Conditions of the Manipulator of the 3-RPR Planar Parallel Manipu-

lator

Coordinate β38 (rad) X38 (m) Y38 (m)

Initial Value 0.000 0.000 2.665

Table A.22: Forces Acting on the Prismatic Joints of the 3-RPR Planar Parallel Manipu-

lator

Force F35 F36 F37

Value (N) 15 10 12

a Runge-Kutta Fehlberg method with an absolute error of 10−6 and a relative error of

10−5. The results, which are taken from an average of twenty simulations, are shown in

Table A.23. A Pentium 4 of 1.80 GHz with 768 MB of RAM was used to perform these

simulations. In the description of the various trees, the arm elements were not presented;

however they are always found in both trees. The notation Same Tree for the translational

tree indicates that this tree is composed of the same edges as the rotational tree. The term

Comp. denotes the equation complexity that is described in Section 2.4.

The tree set selected by the Variable-Based Tree Selection Algorithm is depicted in

italics in Table A.23 and the tree set selected by the Formulation-Based Tree Selection

Algorithm is depicted in bold in this table. The Variable-Based Tree Selection Algorithm

found its tree set in an average of 16 milliseconds while the Formulation-Based Tree Selec-

tion Algorithm took an average of 62 milliseconds to find its tree set.
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Table A.23: Efficiency of Various Tree Sets of the 3-RPR Planar Parallel Manipulator

Rotational Translational Sol. Comp. # #

Tree Tree Time Dyn. Kin.

(s) EQs EQs

h26 − h28, s29 − s31, vp38 h26 − h28, h32 − h34, vp38 1.57 2538 6 3

h26 − h28 , s29 − s31 , vp38 h26 − h28 , s29 , h32 − h34 1.32 2147 5 2

h26 − h28, s29 − s31, vp38 h26 − h28, s29 − s31, h32 1.36 1939 7 4

h26 − h28, s29 − s31, vp38 Same Tree 1.14 1827 9 6

s29 − s31, h32 − h34, vp38 h26 − h28, s29, h32 − h34 1.09 2731 5 2

A.9 Peaucellier-Lipkin Straight-Line Mechanism

The Peaucellier-Lipkin straight-line mechanism is depicted in Figure A.16 and its graph is

depicted in Figure A.17. In this graph, the edges h23 to h32 represent the revolute joints

of the system, which all rotate about the global Z axis. The edges m1 to m7 represent the

bodies of the system and link the ground node to the center of mass of each body. The

edges r8 to r22 are the arm elements that define the location where each joint is connected,

relative to each body’s center of mass. A torque driver, depicted by td33 is placed on the

revolute joint h31. The gravity is directed in the global negative Z direction. Finally, a

planar virtual joint (vp34) is placed between the ground and the extremity of the body

(m6).

The geometry and inertial properties of the manipulator’s three body types, each having

a different length, (Depicted in Figure A.16) are shown in Table A.24, where each body’s

center of mass is found at the body’s centroid and the moments of inertia of each body

are expressed about this center of mass. The length of the arm r8 is the same length as

the length of the body type C. The mechanism starts at rest and its initial conditions are

presented in Table A.25, where β23, β24, and β31 represents the rotation of the revolute

joints h23, h24, and h31, respectively.. The time-varying torque applied to the revolute joint

h31 is given in equation (A.4). This mechanism has one DOF.
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Figure A.16: The Peaucellier-Lipkin straight-line mechanism.

Figure A.17: The Peaucellier-Lipkin straight-line mechanism’s graph.
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Table A.24: Body Lengths and Inertia Properties of the Peaucellier-Lipkin Straight-Line

Mechanism

Length (m) Mass (kg) Moments of Inertia (kg ×m2)

Body Type A 0.40 4.00 0.05333

Body Type B 0.20 2.00 0.00667

Body Type C 0.15 1.50 0.00281

Table A.25: Initial Conditions of the Peaucellier-Lipkin Straight-Line Mechanism

Coordinate β23 β24 β31

Initial Value (rad) 0.50536 −0.50536 0.00000

T33 = −0.1t sin(πt)− 0.1t sin(4πt) Nm (A.4)

The Peaucellier-Lipkin mechanism is simulated using various tree sets. For every differ-

ent tree set the kinematic equations were twice differentiated and simplification and code

optimization routines were performed on the resulting system equations in Maple. The

resulting sets of ODEs were solved for a 10 s simulation using a Runge-Kutta Fehlberg

method with an absolute error of 10−6 and a relative error of 10−5. The results, which are

taken from an average of twenty simulations, are shown in Table A.26. A Pentium 4 of 1.80

GHz with 768 MB of RAM was used to perform these simulations. In the description of

the various trees, the arm elements were not presented; however they are always found in

both trees. The notation Same Tree for the translational tree indicates that this tree is

composed of the same edges as the rotational tree. The term Comp. denotes the equation

complexity that is described in Section 2.4.

The tree set selected by both the Variable-Based Tree Selection Algorithm and the

Formulation-Based Tree Selection Algorithm is depicted in bold italics in Table A.26. The
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Table A.26: Efficiency of Various Tree Sets of the Peaucellier-Lipkin Straight-Line Mech-

anism

Rotational Translational Sol. Comp. # #

Tree Tree Time Dyn. Kin.

(s) EQs EQs

h23 − h26, h28, h31, h32 Same Tree 1.18 3308 7 6

h23 − h26 , h31 , h32 , vp38 h23 − h26 , h28 , h31 , h32 1.17 3228 7 6

h23 − h26, h31, h32, vp38 Same Tree 1.32 3715 9 8

h25 − h29, h31, h32 Same Tree 3.53 9692 7 6

Variable-Based Tree Selection Algorithm found its tree set in an average of 16 milliseconds

while the Formulation-Based Tree Selection Algorithm took an average of 78 milliseconds

to find its tree set.

A.10 Spatial Serial Manipulator

A spatial serial manipulator is shown in Figure A.18(a). This manipulator was originally

used by Fayet and Pfister [5] as an example of a system that is best modelled using Indirect

Coordinates. Its graph, developed by McPhee and Redmond [25] is displayed in Figure

A.18(b). The model consists of four bodies (m1 to m4), the first of which is connected to

the ground with a revolute joint h12 that rotates about the global Z axis. The bodies m1

and m2 are connected together by a revolute joint (h13) that rotates about the m1’s local

x axis. Similarly, the bodies m2 and m3 are connected together by a revolute joint (h14)

that rotates about m2’s local x axis, which is parallel to h13’s rotation axis. The bodies m3

and m4 are connected together with a spherical joint b15. The location where each joint is

connected, relative to each body’s center of mass, is depicted by the edges r5 to r11.

According to Fayet and Pfister’s rules for selecting Indirect Coordinates, described in

Section 1.2, measuring the rotation of body m3 relative to body m1 and measuring the
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rotation of body m4 relative to the ground is the most efficient method of modelling the

given system. This is why the bodies m1 and m3 are also connected together via a virtual

planar joint vp16 that rotates about m1’s local x axis.

(a) (b)

Figure A.18: The spatial serial manipulator and its graph.

The geometry and inertial properties of the manipulator bodies are taken from McPhee

and Redmond [25] and are shown in Table A.27, where each body’s center of mass is found

at the body’s centroid and the moments of inertia of each body are expressed about this

center of mass. The mechanism starts at rest, its initial conditions presented in Table A.28,

where β12-β14 represents the rotation of the revolute joints h12-h14, respectively. The terms

ζ15, η15, and ξ15 are the Euler 313 angles of rotation of the spherical joint b15. Gravity

is given the value of 9.81 m/s2 and it is directed along the global negative Z axis. This

mechanism has six DOF.

The spatial serial manipulator is simulated falling under the effect of gravity using var-

ious tree sets. For every different tree set the kinematic equations were twice differentiated

and simplification and code optimization routines were performed on the resulting system

equations in Maple. The resulting sets of ODEs were solved for a 4 s simulation using
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Table A.27: Body Lengths and Inertia Properties of the Spatial Serial Manipulator

Length (m) Mass (kg) Ixx(kg ×m2) Iyy(kg ×m2) Izz(kg ×m2)

Body 1 1 312.04 27.0435 27.0435 2.0803

Body 2 2 624.08 4.1605 210.1069 210.1069

Body 3 2 624.08 4.1605 210.1069 210.1069

Body 4 1 312.04 2.0803 27.0435 27.0435

Table A.28: Initial Conditions of the Spatial Serial Manipulator

Coordinate β12 β13 β14 ζ15 η15 ξ15

Initial Value (rad) 0 π/2 0 −π/2 π/2 π/2

a Runge-Kutta Fehlberg method with an absolute error of 10−6 and a relative error of

10−5. The results, which are taken from an average of twenty simulations, are shown in

Table A.29. A Pentium 4 of 1.80 GHz with 768 MB of RAM was used to perform these

simulations. In the description of the various trees, the arm elements were not presented;

however they are always found in both trees. The notation Same Tree for the translational

tree indicates that this tree is composed of the same edges as the rotational tree. The

equation complexity refers to the one described in Section 2.4.

The tree set selected by both the Variable-Based Tree Selection Algorithm and the

Formulation-Based Tree Selection Algorithm is depicted in bold italics in Table A.29. The

Variable-Based Tree Selection Algorithm found its tree set in an average of 10 milliseconds

while the Formulation-Based Tree Selection Algorithm took an average of 15 milliseconds

to find its tree set.
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Table A.29: Efficiency of Various Tree Sets of the Spatial Serial Manipulator

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

h12 − h14, m4 h12 − h14, b15 1.01 1835 6 0

h12 − h14, m4 Same Tree 1.00 1479 9 3

h12 , h13 , m4 , vp16 h12 − h14 , b15 0.92 1539 6 0

h12, h13, m4, vp16 h12 − h14, m4 0.78 1179 9 3

h12 − h14, b15 Same Tree 4.09 5737 6 0

A.11 Stewart-Gough Platform

The Stewart-Gough Platform (SGP), illustrated in Figure A.19 (taken with permission

from [30]), is a six degree of freedom (DOF) parallel manipulator consisting of six identical

legs connecting a hexahedral-shaped platform to the ground. An illustration of a part of

the graph model of the manipulator is shown in Figure A.20. In order for the illustration of

the graph not to become too cluttered, only one of the manipulator’s legs is shown. Each

lower leg section (m1) is attached to the ground with a universal joint (u10), as shown

in Figure A.21. The first universal joint angle α is about the global Z axis (ZG), and

measures the angle from YG to the leg’s local Y axis (YL1), about which the second joint

angle β is measured. Each leg’s bottom and top sections (m1 and m2) are connected with

a prismatic joint (s11) with a force actuator (fd13) directed along the axis ZL1. Finally,

each leg is connected to the platform with a spherical joint (b12).

The Stewart-Gough platform is then modelled using the parameters found in Liu et al.

[17]. The Cartesian coordinates of the points at which the legs attach to the ground and

platform are described in Table A.30 and Table A.31, respectively:

The ground reference frame (GXY Z) as well as the top (L2XY Z) and bottom (L1XY Z)

local reference frames on each leg are shown in Figure A.22. The platform’s local reference

frame is found at its centroid.

Table A.32 shows the center of mass of each body relative to its local reference frame,
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Figure A.19: The Stewart-Gough platform.

Table A.30: Points, Relative to the Ground Frame, Where Each of the Stewart-Gough

Platform’s Leg Attaches to the Ground

X (m) Y (m) Z (m)

Leg 1 0.517638090 1.931851653 0.0

Leg 2 1.414213562 -1.414213562 0.0

Leg 3 -1.931851653 -0.517638090 0.0

Leg 4 -0.517638090 1.931851653 0.0

Leg 5 1.931851653 -0.517638090 0.0

Leg 6 -1.414213562 -1.414213562 0.0
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Figure A.20: The graph for one of the Stewart-Gough platform’s legs.

Figure A.21: The axes of rotation of each universal joint.
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Table A.31: Points, Relative to the Platform’s Center of Mass Frame, Where Each of the

Stewart-Gough Platform’s Leg Attaches to the Platform

x (m) y (m) z (m)

Leg 1 0.707106781 0.707106781 0.0

Leg 2 0.258819045 -0.965925826 0.0

Leg 3 -0.965925826 0.258819045 0.0

Leg 4 -0.707106781 0.707106781 0.0

Leg 5 0.965925826 0.258819045 0.0

Leg 6 -0.258819045 -0.965925826 0.0

Figure A.22: Local reference frames on the legs of the SGP.
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where the term Shank Bodies refers to the bodies connected to the ground via a universal

joint while the term Thigh Bodies refer to the bodies connected to the platform via a

spherical joint. It also gives the values of the mass and moment of inertia of each body.

Table A.32: Body Lengths and Inertia Properties of the Stewart-Gough Platform

mass Center of mass in Moments of Inertia

(kg) local frame (m) (kg ×m2)

x y z Ixx Iyy Izz

Shank Bodies 2 0.0 0.0 0.4144 0.1145 0.1145 0.0

Thigh Bodies 1 0.0 0.0 -0.4144 0.0537 0.0537 0.0

Platform 10 0.0 0.0 0.0000 5.0000 5.0000 10.0

The manipulator is initially at rest with the platform in a horizontal and centered

position at a height of 3 m. The orientation of the platform is measured with Euler 123

angles. The forces in the actuators are given in Table A.33, and gravity is acting in the

global negative Z direction.

Table A.33: Forces Exerted by the Prismatic Actuators of the Stewart-Gough Platform

Leg 1 2 3 4 5 6

Force (N) 28 28 + 3 sin(4πt) 28 + 3 sin(4πt) 28 + 5 sin(2πt) 28 + 5 sin(2πt) 28

The Stewart-Gough Platform is simulated using various tree sets. For every different

tree set the kinematic equations were twice differentiated and Baumgarte stabilization [2]

was applied to the resulting ODEs with the Baumgarte parameters α and β set to 10 and

5, respectively. The resulting set of equations where then sent to simplification and code

optimization routines in Maple. The resulting sets of ODEs were solved for a 2 s simulation

using a Runge-Kutta Fehlberg method with an absolute error of 10−6 and a relative error



Benchmark Mechanisms 190

of 10−5. The results, which are taken from an average of twenty simulations, are shown in

Table A.34. A Pentium 4 of 1.80 GHz with 768 MB of RAM was used to perform these

simulations.

In the description of the various trees, the arm elements were not presented; however

they are always found in both trees. The notation u, b, s, and m2 represents placing

all the universal joints, spherical joints, prismatic joints, and top leg sections in the tree

respectively. The notations b(1) and s(1) represent placing just one of the six spherical

joints or prismatic joints in the tree respectively. The term m3 represents placing the

platform’s body element in the tree. The notation Same Tree for the translational tree

indicates that this tree is composed of the same edges as the rotational tree. The equation

complexity refers to the one described in Section 2.4.

Table A.34: Efficiency of Various Tree Sets of the Stewart-Gough Platform

Rotational Translational Solution Complexity # Dyn. # Kin.

Tree Tree Time (s) EQs EQs

u, s, m3 u, b, m3 6.72 59428 18 12

u, s, m3 u, m2, m3 2.86 24678 36 30

u, s ,m3 u, b, s(1 ) 7.16 55202 16 10

u, s, m3 u, b(1), s 3.24 25010 21 15

u, s, m3 Same Tree 2.52 21303 24 18

u, s, m3 s, m2, m3 7.93 64147 42 36

The tree set selected by the Variable-Based Tree Selection Algorithm is depicted in

italics in Table A.34 and the tree set selected by the Formulation-Based Tree Selection

Algorithm is depicted in bold in this table. The Variable-Based Tree Selection Algorithm

found its tree set in an average of 17 milliseconds while the Formulation-Based Tree Selec-

tion Algorithm took an average of 281 milliseconds to find its tree set.

To verify if similar results could be obtained using other solvers, the system’s equations

were exported into Matlab S-functions. This Matlab S-function was then solved in Mat-



Benchmark Mechanisms 191

lab/Simulink using various ODE solvers and using the same parameters as those used in

Maple. The results of these simulations are presented in Table A.13. Here, the term ODE45

refers to the simulations solved using Matlab’s ODE45, which is based on a Runge-Kutta

formula called the Dormand-Prince pair. The term ODE113 refers to the simulations

solved using Matlab’s ODE113, which is an Adams-Bashforth-Moulton PECE (predictor-

evaluate-corrector-evaluate) solver. Finally, the term ODE15s refers to the simulations

solved using Matlab’s ODE15s, which is a stiff solver based on numerical differentiation

formulas (NDFs). The term “–” refers to the fact that the solver did not converge to a

solution and hence was unable to find valid results with the given ODE solver.

Table A.35: Efficiency of Various Tree Sets of the Stewart-Gough Platform Using Other

Solvers

Rotational Tree Translational Tree ODE45 (s) ODE113 (s) ODE15s (s)

u, s, m3 u, m2, m3 0.15 0.15 0.35

u, s ,m3 u, b, s(1 ) 2.02 2.50 –

u, s, m3 u, b(1), s 0.15 0.14 0.30

u, s, m3 Same Tree 0.14 0.13 0.28

A.12 3-DOF Spatial Parallel Manipulator

The 3-DOF spatial parallel manipulator is presented in Figure A.23, and its graph is

presented in Figure A.24. It consists of a platform connected to the ground by three similar

legs and has a tool placed on top of the platform. This Manipulator was developed by

Simoni Michele for his diploma thesis at “L’Ecole d’ingénieurs et d’architectes de Fribourg”

under the supervision of Professor Lui Jean-Piree Schmitt [28]. The geometry and inertia

properties used in this report are based on Simoni Michele’s preliminary configuration of

his 3-DOF Spatial Parallel Manipulator.

The configuration of one of the mechanism’s three legs is depicted in figure A.25, where



Benchmark Mechanisms 192

the reference frames of each body is placed at its center of mass. This figure also gives

the dimensions of each of the leg’s bodies. These dimensions are the same for all three of

the mechanism’s legs. The legs are each connected to the ground by prismatic joints (s25,

s28, and s31), which originate from the global reference frame. The first prismatic joint is

oriented toward the global X axis while the two others are oriented 120◦ and 240◦ away

about the global Z axis, respectively. The shank bodies (m1, m3, and m5) are connected

to the thigh bodies (m2, m4, and m6) with spherical joints (b26, b29, and b32). The thigh

bodies are connected to the platform with two revolute joints. Since one of the two revolute

joints is redundant, it is neglected when modeling the system. Because of this, only one

revolute joint is considered for each leg in the system’s graph (h27, h30, and h33). The

revolute joints are connected to the platform at 0◦, 120◦, and 240◦ about the platform’s

local Z axis. The orientation of the revolute joints’ axes of rotation are 90◦, 210◦, and

330◦ away from the platform’s local X axis, with these rotations being expressed about

the platform’s local Z axis, respectively.

The inertia properties of the mechanism’s bodies are given in Table A.36,where the

moments of inertia of each body are expressed about this center of mass at the centroid

of each body. The manipulator’s initial conditions are presented in Table A.37, where S25,

S28, and S31 represent the translation of the prismatic joints s25, s28, and s31, respectively.

The terms X7, Y7, and Z7 represent the position of the platform relative to the ground

reference frame’s X, Y and Z axes. The terms ζ7, η7, and ξ7 are the Euler 123 angles of

rotation of the platform relative to the ground reference frame.

The forces depicted in Table A.38 are placed on the prismatic joints of the system.

The gravity is given as 9.81 m/s2 and is directed in the global negative Z direction. This

mechanism has three DOF.

The 3-DOF Spatial Parallel Manipulator is simulated using various tree sets. For

every different tree set the kinematic equations were twice differentiated and Baumgarte

stabilization [2] was applied to the resulting ODEs with the Baumgarte parameters α

and β set to 10 and 5, respectively. The resulting set of equations where then sent to

simplification and code optimization routines in Maple. The resulting sets of ODEs were

solved for a 1 s simulation using a Runge-Kutta Fehlberg method with an absolute error of

10−6 and a relative error of 10−5. The results, which are taken from an average of twenty
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Figure A.23: 3-DOF spatial parallel manipulator.

Figure A.24: 3-DOF spatial parallel manipulator’s graph.
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Figure A.25: The configuration of one of the mechanism’s leg.

Table A.36: Inertia Properties of the 3-DOF Spatial Parallel Manipulator

Mass Moments of Inertia (kg ×m2)

(kg) Ixx Iyy Izz Ixy Ixz Iyz

Shank Bodies 3.06876 0.003138 0.002853 0.003819 0 0.000237 0

Thigh Bodies 7.35236 0.053655 0.040571 0.015956 0 0 0

Platform 21.8122 0.220751 0.220763 0.170223 0 0 0

Table A.37: Initial Conditions of the 3-DOF Spatial Parallel Manipulator

Coordinates S25, S28, S31 (m) x7 (m) y7 (m) z7 (m) ζ7, η7, ξ7 (rad)

Initial Value 0.245 0 0 0.4226 0
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Table A.38: Forces at the 3-DOF Spatial Parallel Manipulator’s Prismatic Joints

Prismatic Joints s25 s28 s31

Forces (N) 65 + 5.0 cos(2πt) 65 + 5.0 sin(2πt) 65 + 3.0 sin(4πt)

simulations, are shown in Table A.39. A Pentium 4 of 1.80 GHz with 768 MB of RAM

was used to perform these simulations. In the description of the various trees, the arm

elements were not presented; however they are always found in both trees. The notation

Same Tree for the translational tree indicates that this tree is composed of the same edges

as the rotational tree. The term Comp. denotes the equation complexity that is described

in Section 2.4. The notation “–” for the simulation time and complexity of a mechanism

model indicates that DynaFlexPro could not generate the equations of the system within

30 minutes when the system was modelled using the given set of trees.

The tree set selected by the Variable-Based Tree Selection Algorithm is depicted in

italics in Table A.39 and the tree set selected by the Formulation-Based Tree Selection

Algorithm is depicted in bold in this table. The Variable-Based Tree Selection Algorithm

found its tree set in an average of 17 milliseconds while the Formulation-Based Tree Selec-

tion Algorithm took an average of 63 milliseconds to find its tree set.

To verify if similar results could be obtained using other solvers, the system’s equa-

tions were exported into Matlab S-functions. This Matlab S-function was then solved

in Matlab/Simulink using various ODE solvers and using the same parameters as those

used in Maple. The results of these simulations are presented in Table A.13. Here, the

term ODE45 refers to the simulations solved using Matlab’s ODE45, which is based on

a Runge-Kutta formula called the Dormand-Prince pair. The term ODE113 refers to

the simulations solved using Matlab’s ODE113, which is an Adams-Bashforth-Moulton

PECE (predictor-evaluate-corrector-evaluate) solver. Finally, the term ODE15s refers to

the simulations solved using Matlab’s ODE15s, which is a stiff solver based on numerical

differentiation formulas (NDFs).
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Table A.39: Efficiency of Various Tree Sets of the 3-DOF Spatial Parallel Manipulator

Rotational Translational Sol. Comp. # #

Tree Tree Time Dyn. Kin.

(s) EQs EQs

s25, s28, s31, b26, b29, b32, m7 s25, b26, b29, b32, h27, h30, h33 3.98 48178 13 10

s25, s28, s31, b26, b29, b32, m7 s25, s28, s31, b26, b29, b32, h27 2.55 30013 15 12

s25, s28, s31, b26, b29, b32, m7 Same Tree 2.54 31213 18 15

s25, s28, s31, b26, b29, b32, m7 s25, b29, b32, h27, h30, h33, m7 4.32 51346 16 13

b26, b29, b32, h27, h30, h33, m7 s25, s28, s31, b26, b29, b32, m7 – – 21 18

s25, s28, s31, b26, b29, b32, h27 s25, s28, s31, b26, b29, b32, m7 3.73 41233 16 13

s25 , s28 , s31 , h27 , h30 , h33 ,m7 s25 , b26 , b29 , b32 , h27 , h30 , h33 6.14 66060 7 4

s25, s28, s31, h27, h30, h33, m7 s25, s28, s31, b26, b29, b32, h27 4.11 43203 9 6

s25, s28, s31, h27, h30, h33, m7 s25, s28, s31, b26, b29, b32, m7 4.11 43356 12 9

s25, s28, s31, h27, h30, h33, m7 Same Tree 6.02 68210 12 9

s25, s28, s31, h27, m2, m4, m6 s25, s28, s31, m2, m4, m6, m7 4.35 50181 22 19

s25, s28, s31, m2, m4, m6, m7 s25, s28, s31, b26, b29, b32, m7 2.34 26595 15 12

Table A.40: Efficiency of Various Tree Sets of the 3-DOF Spatial Parallel Manipulator

Using Other Solvers

Rotational Translational ODE45 ODE113 ODE15s

Tree Tree (s) (s) (s)

s25, s28, s31, b26, b29, b32, m7 s25, s28, s31, b26, b29, b32, h27 0.53 0.31 0.89

s25, s28, s31, b26, b29, b32, m7 Same Tree 0.41 0.27 0.71



Appendix B

Terminal Equations

The terminal equations associated with four of the most commonly-used components are

presented in Tables B.1 - B.4. In these equations, the subscripts on unit vectors and

rotation matrices labeled i indicate that they can be expressed in any reference frame.

In the terminal equation for the body element, the term ~r represents the given edge’s

translational displacement vector with ı̂i, ̂i and k̂i representing unit vectors about the X, Y

and Z axes of an arbitrary coordinate system, respectively. The terms ~v and ~a represent the

given edge’s translational velocity vector and translational acceleration vector, respectively.

The term m represents the body’s mass and the term [R] represents a rotation matrix with

the three rotation values indicated by θ1(t), θ2(t), and θ3(t). The terms ~ω and ~α refer

to the rotational velocity vector and the rotational acceleration vector of the given edge,

respectively. In the body element’s torque,
~~J represents the inertia dyadic of the body.

The summation
∑

~rr × ~Fr, where ~rr and ~Fr refer to the displacement and force associated

with a rigid arm, takes into account the torques generated by each arm attached to the

body. In a similar fashion, the summation
∑

~rt× ~Ft refers to the torques generated by any

edge that allows translation and originates from the given body or one of its arms. The

terms ~ωm and ~αm denotes the rotational velocity and acceleration of the body to which

the component originates. Finally, the vectors û and n̂ represent a component’s joint axes

and reaction axes, respectively.
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Table B.1: Terminal Equations for a Rigid Body Element

Translation

~r = rx(t)̂ıi + ry(t)̂i + rz(t)k̂i

~v = d
dt

~r

~a = d
dt

~v
~F = −m~a

Rotation

[R] = [R( θ1(t), θ2(t), θ3(t) )]i

~ω = ωxı̂i + ωy ̂i + ωzk̂i

~α = d
dt

~ω

~T = − ~~J · ~α− ~ω × ~~J · ~ω −
∑

~rr × ~Fr −
∑

~rt × ~Ft

Table B.2: Terminal Equations for an Rigid Arm Element

Translation

~r = rxı̂i + ry ̂i + rzk̂i

~v = ~ωm × ~r

~a = ~αm × ~r + ~ωm × (~ωm × ~r)
~F = Fx(t)̂ıi + Fy(t)̂i + Fz(t)k̂i

Rotation

[R] = [R(θ1, θ2, θ3)]i

~ω = ~0

~α = ~0
~T = Tx(t)̂ıi + Ty(t)̂i + Tz(t)k̂i
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Table B.3: Terminal Equations for a Revolute Joint

Translation

~r = ~0

~v = ~0

~a = ~0
~F = Fx(t)̂ıi + Fy(t)̂i + Fz(t)k̂i

Rotation

[R] = [R( θ(t) , û)]i

~ω = ω(t)û

~α = d
dt

~ω
~T = T1(t)n̂1i + T2(t)n̂2i

Table B.4: Terminal Equations for a Prismatic Joint

Translation

~r = sûi

~v = ṡûi + ~ωm × ~r

~a = s̈ûi + ~̇ωm × ~r + 2(~ωm × ṡûi) + ~ωm × (~ωm × ~r)
~F = F1(t)n̂1i + F2(t)n̂2i

Rotation

[R] = [I]

~ω = ~0

~α = ~0
~T = Tx(t)̂ıi + Ty(t)̂i + Tz(t)k̂i



Appendix C

Number of Branch Coordinates
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Table C.1: Number of Branch Coordinates Associated to Each Edge Type

Edge Type Translation Rotation

Revolute Joint 0 1

Prismatic Joint 1 0

Universal Joint 0 2

Spherical Joint 0 3

Planar Joint 2 1

Cylindrical Joint 1 1

Weld Joint (0-DOF) 0 0

Free Joint (6-DOF) 3 3

XYZ Translational Joint 3 0

Force Driver 3 3

Moment Driver 3 3

Motion Driver 0 0

Rigid Body 3 3

Arm Element 0 0

Flexible Body 3 3

Flexible Arm 0 0

Translational SDA 3 3

Rotational SDA 3 3



Appendix D

Prim’s Algorithm and Dijkstra’s

Algorithm

Prim’s Algorithm

• Create a list of all the edges in the graph and their incident nodes

• Place the origin node(in this case the ground node) of the graph in the tree

• Repeat the following steps until all the nodes are found in the tree:

– Find all the potential edges (edges that connect to one node in the present

tree and one node not in the present tree)

– From these potential edges, find the edge with the lowest weight

– Add this edge and its new node to the tree

Figure D.1: Pseudo-code of Prim’s algorithm.
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Dijkstra’s Algorithm

• Create a list of all the edges in the graph and their incident nodes

• Create a table listing the SPW of each node and initiate it by giving a SPW of

zero to the ground node and infinity to all other nodes

• Place the origin node(in this case the ground node) of the graph in the tree

• Repeat the following steps until all the nodes are found in the tree:

– Find all the potential edges ( edges that connect to one node in the present

tree (T node) and one node not in the present tree (N node))

– For each of the potential edges, find the SPW of its N node:

N node SPW = Edge Weight + SPW of the edge’s T node

– From these potential edges, find the edge with the lowest N node SPW

– Enter this edge’s N node SPW to the SPW table

– Add this edge and its new node to the tree

Figure D.2: Pseudo-code of Dijkstra’s algorithm.



Appendix E

Tree Similarity Heuristic

Demonstration

In order to better illustrate the Tree Similarity Heuristic of Section 4.1.6, let us look

at the example of a planar four bar mechanism consisting of three bodies connected to

each other and the ground with revolute joints. The graph of this four bar mechanism is

presented in Figure E.1, where the angle of revolute joints h11, h12, and h13 are going to

be represented by β1, β2, and β3 respectively. Such a model will have two translational

trees and two rotational trees satisfying all the heuristics of the Formulation-Based Tree

Selection (except the Tree Similarity Heuristic). These two trees, called Tree A and Tree

B, which are similar in rotation and translation, are presented in bold within the four-bar

mechanism’s graph in Figure E.1.

The equation formulation process for the case in which both the translational and

rotational trees take the form of the Tree A is presented below.

First, step I of the equation formulation process provides the three basic dynamic

equations. The terminal equations of each of the torques presented in these basic equations

are then substituted in the equations and simplified knowing that the mechanism is planar,

giving the equations (E.1) to (E.3). In order to further clarify the substitution process that

will be executed during the equation formulation process, the secondary variables found in

the equations are depicted in bold.
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(a) Tree A (b) Tree B

Figure E.1: Two trees of the four-bar mechanism satisfying all rotational and translational

tree heuristics.

(−Izz1 · ~α1− l5ı̂1 × ~F5− l6ı̂1 × ~F6− Izz2 · ~α2− l7ı̂2 × ~F7− l8ı̂2 × ~F8− ~T13) · k̂11 = 0 (E.1)

(−Izz2 · ~α2 − l7ı̂2 × ~F7 − l8ı̂2 × ~F8 − ~T13) · k̂12 = 0 (E.2)

(−Izz3 · ~α3 − l9ı̂3 × ~F9 − l10ı̂3 × ~F10 + ~T13) · k̂14 = 0 (E.3)

where Izzi represents the moment of inertia about the line through the centroid, parallel to

the Z axis of the body represented by the edge mi, ~αi represents the rotational acceleration

vector of the ith edge. The term ~Ti represents the torque vector of the ith edge. The terms

li represent the length of the arm element ri, while the term ~Fi represents the force vector

associated to the ith edge. The terms ı̂i and k̂i represent the unit vector along the the ith

edge’s end node’s local X and Z axes, respectively.

The first part of Step III is then performed, giving the equations (E.4) to (E.9) that

shall be used to replace the arm forces in the basic dynamic equations.



Tree Similarity Heuristic Demonstration 206

~F5 = −m1~a1 −m2~a2 − ~F13 (E.4)

~F6 = m2~a2 + ~F13 (E.5)

~F7 = −m2~a2 − ~F13 (E.6)

~F8 = ~F13 (E.7)

~F9 = −~F13 (E.8)

~F10 = −m3~a3 + ~F13 (E.9)

where mi represent the mass of the body depicted by the edge mi and ~ai represents the

translational acceleration vector of the ith edge.

The second part of Step III provides the acceleration equations (E.10) to (E.12) that

will be substituted in the present basic dynamic equations. Though not depicted, the

velocity and position equations for the body edges m1, m2, and m3 are also obtained in

this substitution step by using the same methods applied to acceleration.

~a1 = −~α1 × l5ı̂1 + ~ω1 × (~ω1 × l5ı̂1)− l4ı̂G (E.10)

~a2 = −~α1 × (l5 − l6)̂ı1 + ~ω1 × (~ω1 × (l5 − l6)̂ı1)− ~α2 × l7ı̂2 +

~ω2 × (~ω2 × l7ı̂2)− l4ı̂G (E.11)

~a3 = −~α3 × l10ı̂3 + ~ω3 × (~ω3 × l10ı̂3) (E.12)

where ~ωi represent the rotational velocity vector of the ith edge and the subscript G refers

to the ground reference frame.

The third part of Step III provides the rotational velocity equations (E.13) to (E.15)

that will also be substituted in the present basic dynamic equations. As with the previous

step, the rotational velocities and rotational accelerations can be obtained using the same

procedure.
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~ω1 =
d

dt
β1(t)k̂11 (E.13)

~ω2 =
d

dt
β1(t)k̂11 +

d

dt
β2(t)k̂12 (E.14)

~ω3 =
d

dt
β3(t)k̂G (E.15)

Step IV will evaluate all the dot products in the kinematic and dynamic equations.

In order to keep this example as simple and short as possible, we will stop here, without

writing out the final system’s equations, and take a look at the results already obtained.

If one follows through the substitution process, it becomes clear that the first dynamic

equation will be a function of β1 and β2 as well as their derivatives. The second dynamic

equation will be a function of the same variables, and the third dynamic equation will

be a function of β1 and its derivatives. Finally, though the kinematic equations were not

included in the previous analysis, we can easily see that they will be a function of all three

modelling variables.

Now let us consider what would happen if the translational tree would take the form

of Tree B (presented in Figure E.1) while the rotational tree remained in the form of Tree

A. In this case, since the rotational tree remains unchanged, the three dynamic equations

obtained at Step I would remain the equations (E.1) to (E.3). The acceleration equations

obtained by the first part of Step III however would change to the following equations:

~F5 = −m1~a1 − ~F12 (E.16)

~F6 = ~F12 (E.17)

~F7 = −~F12 (E.18)

~F8 = −m2~a2 + ~F12 (E.19)

~F9 = m2~a2 − ~F12 (E.20)

~F10 = −m2~a2 −m3~a3 + ~F12 (E.21)

The second part of Step III would become:
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~a1 = −~α1 × l5ı̂1 + ~ω1 × (~ω1 × l5ı̂1)− l4ı̂G (E.22)

~a2 = −~α2 × l8ı̂2~ω2 × (~ω2 × l8ı̂2)− ~α3 × (l9 − l10)̂ı3 +

~ω3 × (~ω3 × (l9 − l10)̂ı3) (E.23)

~a3 = −~α3 × l10ı̂3 + ~ω3 × (~ω3 × l10ı̂3) (E.24)

Again, since the rotational tree remains the same, the equations used in the last part of

the substitution process of Step III also remain the same as those presented in equations

(E.13) to (E.15).

Now, if one follows through the substitution and dot products of this new tree combi-

nation, it can be seen that the first dynamic equation is now expressed relative to all three

of the modelling variables. The second and third dynamic equations are now expressed

relative to β2 and β3 as well as their derivatives. Finally, the kinematic equations are still

expressed relative to all three modelling variables.

It is clear that the first and third dynamic equations of the model that used different

trees are each expressed relative to a wider range of variables than these same equations

generated by the system modelled with similar trees. As mentioned in Section 4.1.6, the

added diversity of modelling variables present in the system modelled with two different

trees will result in the system’s equations to be more coupled, which allows for less simpli-

fications and code optimization to be performed on the system’s equations, thus reducing

the efficiency of the model’s simulations. The full tree selection results for this benchmark

problem can be found in Appendix A.1.


