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Abstract

Most fluid flows of practical interest involve and are affected by turbulence. One of
the most promising computational methods for the prediction of turbulent flows is the
so-called large eddy simulation (LES) methodology. Experience over the past decades
have shown the capability of LES to provide accurate predictions for several types of
flow at a reasonable computational cost. It has also become clear, however, that the
LES methodology fails when applied to boundary layer flows at high Reynolds numbers.
Since many engineering applications fall in exactly that category, this failure is often
considered the most severe bottleneck of LES.

The present thesis is an attempt to move towards a solution of this problem. In-
spired by the idealized picture of a turbulent boundary layer, a statistical model is used
for the approximately universal turbulence in the inner boundary layer, whereas the
more flow dependent outer boundary layer is solved by LES. Ideally, this results in a
computational method that provides accurate predictions of rather general turbulent
flows, while maintaining a tractable computational cost. In practice, the results are a
vast improvement compared to LES without any inner layer modeling, but a transition
layer appears where the state of the turbulence changes from being modeled statistically
to resolved by LES. This so-called ‘artificial buffer layer’ results in the skin friction being
consistently underpredicted by 10-15%.

The physics and dynamics of this artificial buffer layer are investigated and char-
acterized, and it is argued that there exist several similarities with true buffer layer
turbulence. Additional forcing of the momentum equations is used as a means to trig-
ger resolved turbulence motions more quickly, and it is demonstrated that the results
are better: the artificial buffer layer is smaller, the skin friction is accurately predicted,
and the dynamics in the inner layer have more correct length scales. The results with
the additional forcing are very sensitive to the forcing amplitude, and a simple control
algorithm for this parameter is proposed and tested with favourable results.
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Nomenclature

Roman Symbols

a matrix coefficient for the Poisson equation
A forcing amplitude

B log-law additive constant, 5.2

J V-1

k wavenumber, 27/

L integral length scale

N; number of cells in direction ¢

P pressure

Re Reynolds number

Sij rate-of-strain tensor

U; velocity (resolved velocity from chapter 3)
Ur friction velocity, \/v9u/0y|w

Yint location of LES/RANS interface

Yt location of maximum forcing

Greek Symbols

ol normalized mean velocity gradient, y*out/dy™
1) channel half width

A filter width or grid size
AUT size of the velocity shift

€ dissipation of kinetic energy
€ error

Nie Kolmogorov length scale

K von Karman constant, 0.41
A wavelength

7 smoothing factor

v viscosity

pij(lz,1;) two-point correlation

Tij residual stress tensor

10} generic function

w; vorticity



Subscripts

1,7,k tensor indices
I,J K grid indices in the z, y, and z directions
w quantity at a solid wall

Other Symbols

B average

fluctuation around the average

(-) plane-average over the wall parallel directions
test filter or Fourier transform

filter or discrete approximation

o quantity normalized by the viscous scales v and u,
~ ‘similar to’, or ‘scales with’

Abbreviations

AR cell aspect ratio

CFL Courant-Friedrichs-Lewy number

DES detached eddy simulation

DNS direct numerical simulation

FFT fast Fourier transform

LES large eddy simulation

MPI message passing interface

RANS Reynolds averaged Navier-Stokes
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Chapter 1

Introduction

Most fluid flows of practical interest involve and are affected by turbulence. This in-
cludes the flow of air over the wing of an airplane, the cooling of the engine in an
automobile, or the process of mixing different fluids together, to name just a few. From
an engineering point of view, the effect of turbulence is different in these cases. It in-
creases, respectively, the drag of the airplane, the rate of heat transfer for the cooling
system, and the rate of mixing in the final example. The engineer, then, wants to re-
duce the effect or presence of turbulence in some situations, while increasing it in others.
The underlying point, however, is that knowledge of the properties of the turbulence is
necessary for successful engineering in all of the situations mentioned.

Such engineering knowledge of turbulence generally comes from three different areas:
turbulence theory, physical experiments, and numerical simulations. These tools have
fruitfully interacted over many decades, and it is safe to say that all three are needed
for proper engineering design of systems involving turbulence. Each tool has its own
advantages. The use of theory is both the cheapest and most reliable when applicable,
and, more importantly, it offers insights into the important physics of a flow. Physical
experiments allow for the evaluation of complex systems, such as flows involving acous-
tic resonance or chemical reactions. Finally, numerical simulations typically provide
very detailed information, since the full flow field can be accessed for analysis. There
are, of course, disadvantages with each as well. For example, most theory on turbulence
is only strictly applicable to very idealized situations, while both experiments and nu-
merical simulations are approximations to the flow being considered. One such area of
approximation is related to the boundary conditions. To study the flow around an air-
plane, for example, both wind tunnel experiments and numerical simulations introduce
approximate free-stream boundary conditions: solid walls at a finite distance and some
mathematical approximation, respectively.

The main advances in the field of turbulence were arguably accomplished through
theoretical and experimental studies in the first half of the 20th century. Examples that
come to mind! include the concept of the boundary layer by Prandtl; the linear stability
theories by, among others, Rayleigh, Orr, Sommerfeld, and Taylor; the beginnings of a

! Goldstein (1969) provides an interesting recollection of the advances in fluid mechanics during this
time.
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theory for turbulence by Taylor and Kolmogorov; and the logarithmic law for the mean
velocity profile in a turbulent boundary layer by Prandtl, von Karman, and Millikan.

With the emergence of computers it became possible to compute solutions for tur-
bulent flows numerically. This technique emerged in the 1960s, and has been growing
rapidly ever since. Different solution strategies use different levels of approximations,
leading to vastly different uses of computational resources. One strategy is to solve for
only the statistics of the flow. With this approach, the computational requirements
are relatively small, and hence very complex flows can be computed. This approach
has been used in industrial applications for around two decades, and accounts for the
vast majority of the use of simulations in industry today (c.f. Larsson, 2001; Hanjalic,
2005). A second strategy is to compute the evolution, rather than merely the statistics,
of the flow, which provides information about the dynamics of the turbulence. Due to
the much higher computational requirements, this strategy has found very limited use
in industry, but has been essential in fundamental studies of turbulence (c.f. Moin &
Mahesh, 1998).

With the exponential increase in computer power over the last decades, we are
soon entering an era when the second strategy for turbulence simulations is becoming
feasible in engineering applications. There are several advantages to making use of this
approach. In theory, the turbulence modeling introduces much less empiricism, and
it makes possible the study of inherently unsteady phenomena such as fluid-structure
interaction, the generation of sound, and the control of turbulence. In a very general
sense, the objective of this thesis is to take yet another (small) step towards such
simulations.

1.1 Turbulence and Modeling Approaches

The difficulties involved in computational modeling of turbulence, and the differences
between different modeling strategies, are most easily appreciated when considering an
idealized form of turbulence (isotropic and homogeneous) in spectral space. Leaving
details aside, the energy spectrum function FE and the viscous dissipation spectrum
function ¢ describe the contribution from eddies of size (wavelength) A to the kinetic
energy and the rate of dissipation thereof, respectively.

Model spectra for both spectrum functions are shown in figure 1.1. The multi-scale
character of turbulence implies that different dynamics or quantities scale with different
parameters. The large and energetic eddies scale with the velocity w’ (which is of the
same order as the square root of the kinetic energy) and the integral length scale L
(which is similar to a characteristic dimension of the flow). Since most of the energy
is contained in these large scales, plots of E at different Reynolds numbers Re collapse
(approximately) when normalized by v’ and L and plotted versus A\/L. The small and
dissipative eddies scale with the dissipation rate ¢ and the Kolmogorov length scale
ne = (v3/e)Y/*, where v is the viscosity. Most of the dissipation of kinetic energy occurs
at the small scales, and hence ¢ at different Re collapse when normalized by these
quantities and plotted versus /7.

To bring out the effect of increasing Reynolds number, the spectrum functions in
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Figure 1.1: Model spectra of homogeneous and isotropic turbulence. The spectra are
normalized, premultiplied, and plotted versus the normalized large scale wavelength.
The vertical lines and the arrows show the 99th percentiles of the energy and dissipation,
respectively. Thus, 99% of each quantity is contained in the region marked by each
arrow. —: Energy spectrum function F/(u2L); ——: Dissipation spectrum function
£/(emk) at two Reynolds numbers (higher to the left).

figure 1.1 are both plotted versus the large scale wavelength A\/L. This implies that
only the energy spectra collapse (or remain essentially invariant for different Re), while
the dissipation spectra are ‘translated’ to smaller wavelengths as the Reynolds num-
ber increases. Note that the spectra are plotted in their premultiplied forms: leaving
details aside, the areas under the graphs equal the kinetic energy and the dissipation
rate, respectively?. Included in the figure are the 99th percentile wavelengths for each
quantity.

Kolmogorov’s hypothesis (c.f. Pope, 2000) states that only the energetic scales are
strongly affected by the initial and boundary conditions (i.e., dependent on the partic-
ular flow), whereas the scales with negligible energy are assumed to be approximately
universal (i.e., similar in every flow). From figure 1.1, the scales with \/L < 0.002
have negligible energy. Thus, according to Kolmogorov’s hypothesis, those scales are
approximately universal.

For the higher Reynolds number in the figure, the dissipation is negligible for A\/L 2>
0.0004. Thus, the flow dependent scales are inviscid and independent of Re, and the
dissipative scales are universal. The scales in the inertial subrange (0.0004 < A/L <
0.002) are, accordingly, both inviscid and universal.

For the lower Reynolds number, however, the situation is different. The energetic
and dissipative subranges partly overlap, and there is no longer an inertial subrange
separating them. Therefore, the flow dependent scales are not inviscid, and, hence,
their dynamics are dependent on Re. Similarly, the dissipative scales are not universal.

2Spectra and their premultiplied forms are discussed briefly in section 5.4.
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With this (very) brief introductory view of turbulence, the differences between the
most common modeling strategies become more clear. The most straightforward is
direct numerical simulation (DNS), in which all scales of motion are resolved. With no
explicit modeling involved, only errors due to the numerical scheme and the imposed
initial and boundary conditions are present. Since these errors can be controlled to
some degree, a properly performed DNS represents the turbulence very accurately. The
computational cost, however, is heavily dependent on the Reynolds number, since the
ratio between the energetic and dissipative length scales increases with Re (as can be
seen in figure 1.1). The ratio of these length scales can be shown to be L/n; ~ Re®/*
(c.f. Tennekes & Lumley, 1972), and hence the number of grid points in three dimensions
is ~ Re%*. If the numerical time step is assumed to be proportional to the cell size,
then the total computational cost is ~ Re®. Note that different numerical methods may
yield different constants of proportionality in this relation, but the main point is that
the cost increases rapidly with Re. Also, at high Re most of the computational effort is
devoted to the motions in the inertial and dissipative subranges, i.e. the approximately
universal scales.

Due to this high and Reynolds number dependent computational cost, the only
turbulent flows computed by DNS to date have been canonical (‘building block’) flows
at low Re. For example, the very recent DNS of a fully developed plane channel flow by
Hoyas & Jimenez (2005) was performed at Rep ~ 40000 (based on the bulk velocity Uy,
and the channel half width §). This simulation used approximately 10'° grid points, and
required 2048 processors for 4 months. To put this Reynolds number in perspective, the
theory by Wosnik et al. (2000) suggests that Re;, 2 70000 is required for a fully developed
plane channel flow to begin being representative of truly high Reynolds numbers.

A second turbulence modeling strategy is based on the Reynolds averaged Navier-
Stokes (RANS) equations. Here, the evolution equations are averaged, and the effects
of all scales of turbulence motions must be modeled. The cost becomes independent
of Re (for the idealized turbulence of figure 1.1 — for certain flows and RANS models
the cost could be weakly dependent on Re), and much smaller than for DNS. Since the
effects of the flow dependent scales are modeled, however, it is impossible to construct
universally applicable RANS models. This has not prevented RANS from becoming the
by far most common modeling approach used in industry to date, since experience has
shown certain models to give accurate results on certain flows, especially so when they
have been ‘tuned’ for the flow in question.

The third modeling strategy, and the topic of this thesis, is large eddy simulation
(LES). The underlying concept of LES is a direct application of figure 1.1: the energetic,
flow dependent scales are computed directly (without modeling), while the universal
scales are modeled. This implies that LES, in theory, can provide accurate results
using a universal model. Also, and as importantly, the computational cost becomes
independent of the Reynolds number, since the directly computed (or resolved) scales
are inviscid and, therefore, independent of Re. Studies over the last few decades have
largely shown LES to live up to these promises for free shear flows, such as jets, mixing
layers, and wakes. For boundary layer flows, however, the results have been much less
encouraging.
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Figure 1.2: Regions in turbulent channel flow at high Reynolds number, broadly follow-
ing Wosnik et al. (2000).

1.2 Boundary Layer Turbulence and LES

A sketch of a boundary layer is shown in figure 1.2, where § is the boundary layer
thickness or the channel half width. In the near wall region, the relevant length and
velocity scales for the turbulence are the distance from the wall y and the friction
velocity u,, respectively (u, will be defined in section 2.2). With the viscous length
scale v/u, one can form y* = yu, /v, which is essentially a local Reynolds number (c.f.
Pope, 2000). The effects of viscosity are small for y™ > 30, which defines the essentially
inviscid ‘outer layer’. The effects of the outer flow are small for y/6 < 0.1 (c.f. Wosnik
et al., 2000), which defines the ‘inner layer’3.

If the inner and outer layers overlap (as they do in figure 1.2), then the flow de-
pendent region (y/d 2 0.1) is inviscid and the motions in the inner layer are essentially
universal (following a similar line of reasoning as for the idealized turbulence in the
previous section). Also, the size of the energetic eddies scales with the wall distance y,
while the dissipative eddies scale with the Kolmogorov scale 7. The Kolmogorov scale
grows very slowly with the wall distance (as ~ y1/4, c.f. Pope, 2000), and, thus, the
ratio of these length scales depends strongly on y (as ~ y3/ 4). If the model spectrum of
figure 1.1 is assumed to be representative of the near wall motions (which it is not), and
the length scale separation is ~ y3/4, then the dissipative and energetic scales of motion
will approach each other in size as the wall is approached. Near the wall, then, there is
no longer a separation in length scales — in a sense, the energetic, dynamically important
scales are no longer ‘large’, and the interpretation of LES is no longer unambiguous.

The perhaps most common approach in LES of boundary layers is to require the
direct resolution of all energetic scales. This is called ‘wall resolved LES’ in this thesis.

3Note that the limits of the inner and outer layers used here are approximate and somewhat arbitrary
— other values have appeared in the literature.
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Due to the lack of separation between the energetic and dissipative length scales, this
implies that some viscous scales must be resolved as well, and hence the computational
cost is no longer independent of Re. To estimate the cost, the approach by Chapman
(1979) is followed here for the case of fully developed plane channel flow.

In the inner boundary layer the solution scales with the viscous length scale v/u,
which means that the necessary grid resolution in viscous units A™ is constant, where
A is the cell size. For a computational domain size that is constant in outer units (i.e.,
scaled by §), this leads to ~ §/A = 6T /AT ~ §* cells in the directions parallel to the
wall. In the direction normal to the wall, a constant number of cells is needed up to
some value of 4T in the overlap layer. Thus, the required number of cells in the inner
boundary layer is

2

Ninner ~ 677 ~ Rel™ | (1.1)

where the empirical relation (5.2) by Dean (1978) has been used. Including the temporal
dimension leads to a computational cost that scales as ~ Rez'g, again by simply assuming
that the time step scales with the cell size, and thus that the number of time steps
required is ~ Ni/rir. This implies that LES that resolves the inner boundary layer is
almost as expensive as DNS, and hence some authors use the term ‘quasi-DNS’ for wall
resolved LES.

In the inviscid outer boundary layer the solution scales with the outer length scale
4, and hence the number of cells required is independent of the Reynolds number. Note
that this result is unique to channel flows — in a spatially developing boundary layer,
Chapman (1979) found that Ngyter depends weakly on Re. The main point, however, is
that the computational cost of LES is essentially independent of Re for the outer layer.

The observation that the computational cost of the outer boundary layer is essen-
tially independent of Re suggests a second approach in LES of boundary layers: to only
compute directly the motions in the outer layer, while resorting to modeling in the inner.
Conceptually, this approach nicely follows the general ideas of LES. The inviscid, large
scale motions are resolved, whereas the viscous, small scale motions are modeled. In
the literature, this is often referred to as LES with 'near wall modeling’ or ‘approximate
near wall treatment’.

As a side note, the term ‘large eddy simulation’ in a sense suggests that the near
wall region, with its small scales of motion, should be modeled. Simulations of type
quasi-DNS, which resolve not only the large scales but also the dynamically important
small scales near the wall, should perhaps be referred to as ‘dynamically important eddy
simulations’ instead. In this thesis, however, the more common terms are used.

Assuming that the dynamics in the inner layer are more or less universal and that
only the outer layer is strongly flow dependent, LES with approximate near wall treat-
ment retains the favourable characteristics of LES applied to free shear flows. Since
the flow dependent motions are resolved directly, the method is theoretically capable of
providing accurate results with simple, universal models (for the small scale and near
wall turbulence).



1 Introduction 7

1.3 Motivation and Objectives

This promise of high accuracy at a constant (albeit high) cost has prompted an increas-
ing amount of research over the past decade into LES with approximate near wall treat-
ment. For example, Piomelli (1999) stated in a relatively recent review that ‘Perhaps
the most urgent challenge that needs to be met, in order to apply LES to technologically
relevant flows, is the modeling of the wall layer’. Similarly, Jimenez & Moser (2000)
stated that ‘This problem of wall-boundary conditions. .. continues therefore to be the
main roadblock to the practical application of LES’.

A review of the literature on approximate near wall treatments in LES will be
presented in chapter 6, and will show that there are several outstanding issues. One
example is the appearance of an ‘artificial buffer layer’ around the modeling interface
in hybrid LES/RANS (one particular type of approximate near wall treatment). This
has been seen in many studies using different numerical methods, turbulence models,
etc, and hence this artificial buffer layer is a robust artefact of the near wall modeling.
One effect of this is a consistent underprediction of the skin friction by 10-15% (Nikitin
et al., 2000; Piomelli et al., 2003) in attached boundary layers. To see the engineering
importance of such errors, consider the fact that the drag of a modern airplane or ship
is largely due to the skin friction (Kim, 2003), and hence errors in its prediction have
direct impacts on subsequent design and development decisions. Consider also the fact
that flow separation induced by an adverse pressure gradient (which, for example, occurs
around a wing at high angle of attack, or in the flow around modern automobiles) is
highly dependent on the skin friction of the upstream boundary layer, and hence such
errors will affect the location and strength of separated flow zones directly.

The main objective of this thesis is to contribute to the understanding and to improve
on the modeling of the inner boundary layer in LES of boundary layer flows. More
specifically, the present work has resulted in the following contributions:

1. An in-depth study into the physics and dynamics of the artificial buffer layer in
hybrid LES/RANS, which has contributed to an increased understanding of these
phenomena.

2. A thorough evaluation, on a fundamental level, of the effects of forcing in reducing
the size and impact of the artificial buffer layer in LES/RANS, which will guide
future developments of generally applicable forcing models.

3. The development of a simple yet effective algorithm for determination of the most
important parameter in forcing models (the amplitude) based on control theory.

Furthermore, while not directly related to approximate near wall treatments in LES,
the present work has also resulted in a contribution towards the efficient solution of the
evolution equations in LES through:

4. The development of a conditional semicoarsening multigrid algorithm for the pres-
sure Poisson equation that is highly parallel, applicable in complex geometries, and
that has a sound theoretical basis.
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Figure 1.3: Geometry for fully developed plane channel flow.

1.4 Fully Developed Plane Channel Flow

The test case chosen for the work in this thesis is the fully developed plane channel flow,
i.e. the flow between two infinitely large plates. A sketch of the flow geometry is shown
in figure 1.3, where x, y, and z are the coordinates in the streamwise, wall normal,
and spanwise directions, respectively. The velocity components in these directions are,
respectively, u, v, and w. The channel half width is J, and the flow is driven by a
pressure gradient in the streamwise direction.

The plane channel flow is chosen for several reasons. First, it is the perhaps sim-
plest and most idealized boundary layer flow imaginable. The flow is statistically ho-
mogeneous in the streamwise, spanwise, and temporal directions. This decreases the
computational cost and, equally importantly, allows for some important analytical rela-
tions that aid in the interpretation of the results. Second, the flow is perhaps the most
thoroughly studied canonical flow out there, and there is a wealth of knowledge in the
literature. Third, despite the geometrical simplicity, channel flow is a very sensitive test
case for LES.

The suitability of channel flow both as a test case for LES and as a canonical flow for
studies of boundary layer dynamics is evidenced by the rich literature on it. The earliest
attempts at LES of wall bounded flows by Deardorff (1970) and Schumann (1975) used
channel flow as a test case, as did the first wall resolved LES by Moin & Kim (1982). As
computers evolved, several DNS of channel flows have appeared, at ever increasing Re.
The number of numerical studies of channel flow is (almost) equaled by the number of
experimental ones, with ever increasing detail in the measurements obtained. A review
is presented in chapter 5.
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1.5 Outline

In the view of the author, a thesis serves mainly two purposes: it should present the
work done in a self-contained and complete fashion, and it should highlight the contri-
butions to the scientific body of knowledge. Since these two purposes are not necessarily
compatible, a somewhat ‘asymmetric’ treatment is given here. The novel parts of the
work are dealt with in an in-depth and rigorous manner, while other areas are treated
more briefly. For example, the numerical code is rather standard within the field of
LES, but one component (the multigrid solver for the Poisson equation) is novel — the
amount of space devoted to these topics reflect their novelty (or lack thereof) rather
than their relative importance for the present study (or, for that matter, the time spent
developing them).

Chapter 2 will present the mathematical foundations for LES, including the turbu-
lence model used here. The major (and conventional) part of the numerical method will
be presented in chapter 3, along with a validation test case. The multigrid solver for
the Poisson equation for pressure will be presented separately in chapter 4, along with
some validation and performance tests.

The remaining chapters present results from numerical simulations. In chapter 5
results from wall resolved LES are presented. The purpose of these is partly to validate
the numerical method, but primarily to develop a reference database for later use.
The main contributions of this thesis are presented in chapter 6, in which the hybrid
LES/RANS methodology is developed and applied to high Reynolds number channel
flows. The results illustrate some outstanding problems with the method, and the use
of additional forcing as a means to remove these problems is investigated. Finally, in
chapter 7 the findings will be summarized, along with recommendations for future work.

A thorough literature survey is an essential component of any thesis. Due to the rel-
atively broad spectrum of this thesis, surveys of the relevant literature will be presented
within each chapter.



Chapter 2

Mathematical Formulation

This thesis deals exclusively with the incompressible flow of Newtonian fluids, and in
Cartesian geometries. Within these restrictions, the Navier-Stokes equations governing
the conservation of mass and momentum can be expressed in Cartesian tensor notation

as (c.f. Pope, 2000)

Ou; _
87]' =0 (2.1)
and )
Ou;  Ouju;  Op 1/8 U; (2.2)

ot 8.73]' N _8:137;

where p is the pressure divided by the constant density. These equations, and their
solutions, are formally defined in an infinite dimensional (function) space. For numerical
simulations, the equations are represented discretely in a finite dimensional phase space.
If solved directly, i.e. in a DNS, the full range of length scales from the integral scale L
down to the Kolmogorov scale 7, must be resolved. This implies that the dimension of
the discrete system, or equivalently the number of degrees of freedom?, is a function of
the ratio L/ng, and hence the computational cost is both large and increases drastically
with the Reynolds number as discussed in the previous chapter.

2 bl
8:Uj

2.1 Large Eddy Simulation

The main concept of LES is to reduce the computational complexity (i.e., the number of
degrees of freedom, or the dimension of the system) by resolving only the flow dependent,
large scales. This is typically accomplished by applying a low-pass filter to the Navier-
Stokes equations that removes the smaller, supposedly universal, scales. One common
class of filters is defined by the use of convolutions as

g(xv Y, %z, t) = /GZ(;E - .CU/, Y= y/7 Z = Z,>t - t/) gb(.fUl, ylv zlv t,) d$/dy,d2,dt, ) (23)

!The degrees of freedom here could, for example, be the values of the four variables u; and p at every
computational grid point and time step. In this case, the number of degrees of freedom is 4Ny, . N,
where N,,. is the total number of grid points and Ny is the total number of time steps. As a rough
estimate, the computational cost can be assumed to be proportional to the number of degrees of freedom.

10
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where G x(7,y, 2,t) is a filter kernel with filter width A. Note that the filtering operation
defined by (2.3) commutes with differentiation since G'x is only a function of  — 2’ etc
(c.f. Geurts, 2004). This is achieved for the channel flows studied here by only filtering
in the wall parallel directions, and hence the filter kernel is of the form

Gx(w,y,2,t) = 5D(y)5p(t)G&xz(:r,z) , (2.4)

where ép refers to the Dirac delta function (c.f. Debnath & Mikusinski, 1999).

Before continuing with the development of the LES equations, one should reflect on
this reduction of the number of degrees of freedom through filtering. Such reductions are
commonplace in physics: it is, for example, similar to the application of the continuum
hypothesis? when deriving the Navier-Stokes equations in the first place (c.f. Tennekes
& Lumley, 1972). The second observation is that the most severe reduction in the
number of degrees of freedom can be achieved by averaging (instead of filtering). In this
sense, the RANS and LES equations are derived in exactly the same fashion, the only
difference being the precise choice of filtering operation (or kernel). For example, the
kernel corresponding to averaging over the three statistically homogeneous directions is

G(z,y,z,t) =

(2.5)

where L, and L, are the streamwise and spanwise domain sizes, and T is the total time
of the simulation. For now, the derivation will continue using ‘LES terminology’.
Application of the filter (2.3) to the Navier-Stokes equations (2.1) and (2.2) yields

= 2.
5 = (2.6)

and, when re-arranging in traditional fashion,

8222 8&[1@ 85 82% aTij
= — — 2.7
o " ox; | 0w V02 Om; 27)
where
Tij = mj - ﬂlﬂ] (28)

is the residual (subgrid) stress tensor. This residual stress term arises due to the lack of
commutation between multiplication and filtering, and can not be expressed in terms
of the filtered (or resolved) velocity field w; — and, hence, it must be modeled. Note
also that the derivation made no use of the exact form of the filter kernel G 5, only the
property that it commutes with differentiation. The residual stress tensor 7;;, however,
depends on the filter chosen.

2The continuum hypothesis is essentially a filtering over a small volume. This filtering reduces the
complexity by removing information about individual molecules and only accounting for their effect on
average (through a molecular viscosity).
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2.1.1 Energy Transfer

While equations (2.7) clearly show that the residual stress 7;; influences the momentum
equations, it also affects the transfer of energy between the resolved and unresolved
scales. Multiplying (2.7) by u;, and defining the kinetic energy of the resolved scales as

§> = u;u;/2, yields (after minor manipulations) the equation for the kinetic energy of
the resolved field

(2.9)

0?  0¢*u, 0 < ¢ > u; Ou; Ou;
-+ — VUV
j

i SR -y SR S g, gt
ot oz, 0z, \ P T Vg T TV ar an; T g,

The first term on the right hand side is in divergence form, and thus it conserves g2
on a global level?. The second term on the right hand side is the viscous dissipation
of resolved scale energy. This term is typically very small in LES since the low-pass
filtering removes the motions in the dissipative range (see figure 1.1 and the discussion
in the previous chapter). The last term contains interactions between the residual stress
and the resolved velocity field, and thus describes the transfer of energy between the
two. In contrast to the viscous dissipation, the term can be both negative (transfer of
energy from the resolved scales, or ‘forward scatter’) and positive (transfer of energy
to the resolved scales, or ‘backscatter’) On average it is negative (c.f. Sagaut, 2002),
but experience shows that backscatter can occur locally in space and time. Despite the
fact that it does not always decrease the resolved scale energy, the term is commonly
referred to as the ‘subgrid scale dissipation’ eg445. Using the fact that 7;; is a symmetric
tensor, it can be written as

ou; ~ ~ 1 (Ou; Ouj
Esgs = _Tij%j = _TijSij , Sz‘j 5 <ax] + oz, s (210)
where §ij is the resolved rate-of-strain tensor. To conclude, it is now clear that the
residual stress tensor 7;; affects the transfers of both momentum and resolved scale ki-

netic energy. Models for 7;; should ideally predict both effects accurately, but experience
shows that this rarely is the case.

2.1.2 Closure Model

While there are many possibilities for the modeling of 7;;, the historically most common
is to assume a constitutive relation of form

Tk 7
Tij = 3 0 = ~2WesSij (2.11)
where vy 18 the eddy viscosity. The resolved rate-of-strain tensor gij has zero trace,
and hence only the deviatoric (or anisotropic) part of the residual stress tensor can be
modeled. The isotropic part (744/3)d;; is absorbed into a modified pressure in (2.7).

3To see this, integrate over the whole domain and make use of the divergence theorem. The only
contribution will then come from the boundaries. For periodic boundaries (in the wall parallel directions
for the channel flow) the contributions cancel out, while at the solid boundaries u; = 0. The net effect
is then neither creation nor destruction of G2, but merely transport within the domain.
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The constitutive relation (2.11) assumes proportionality between 7;; and §Z-j, i.e.
that their principal axes are aligned. This implies a perfect correlation between the
stress and the strain, whereas a priori studies of DNS data show the true correlation
to be rather low (see for example the review by Meneveau & Katz, 2000). Similarly,
the constitutive relation implies €5 = 2V1eS§ij§ij > 0, and hence the possibility of
backscatter is excluded (for v > 0).

The perhaps most common model for the eddy viscosity vjes in (2.11) is the Smagorin-
sky model (c.f. Geurts, 2004)

VIes = 082‘5‘ ; ’5’ =1/ 2§Z]§U . (212)

For isotropic turbulence, the value of the model coefficient C' (which is actually the
square of the original one) can be determined to be C' &~ 0.029 by requiring the energy
transfer e to equal the viscous dissipation € (Pope, 2000). This value has been found
to be too large (i.e., it produces too much dissipation from the resolved scales) in other
flows, such as in the presence of mean shear, near solid boundaries, or in transitional
flows (Piomelli, 1999). To see why this is the case, recall that the residual stress term
7;; is the difference between two low-pass filtered quantities. It is then easy to show that
the term contains mainly small scale information. The model for 7;; given by (2.11)
and (2.12), on the other hand, depends on the filtered rate-of-strain tensor §ZJ In
a plane channel flow, for example, §ij contains both the mean shear 0u/dy and the
fluctuating rates-of-strain — and, hence, the modeled 7;; contains more than just small
scale information. One ad hoc modification is to reduce C' in such situations. The
simulations in chapter 6, for example, use C = 0.132 = 0.0169 in the core of the
channel, which was found to give more accurate resulting flow fields.

One of the most promising developments of the last decade within the field of LES
is the concept of estimating C' directly from the resolved velocity field in the so-called
‘dynamic procedure’ by Germano et al. (1991). Recall that filtering the Navier-Stokes
equations once at filter width A yields an evolution equation for u; with the /r\esidual

stress tensor 7;;. Similarly, filtering a second time at accumulated filter width A yields
an equation for u; with the residual stress tensor

— o~ o~

T’ij = uiuj — 'ﬁzﬁ] . (213)
The relation between the two stress tensors (commonly called the ‘Germano identity’)

can be written as (Germano et al., 1991)

['ij = "LZZ"LZ] — "LZZ"LZ] = Tij — ?ij . (214)
The key point in the dynamic procedure is the recognition that L;; is expressed entirely
using the resolved field u;, and hence it can be computed directly in LES (by application
of a filter). If it is assumed that the residual stress can be modeled by the same
underlying model at both filtering levels with the same value of the model coefficient
C, then the Germano identity (2.14) can be used to compute C. This assumption,
in essence, assumes that there is some form of similarity across different length scales
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(c.f. Meneveau & Katz, 2000), which is true if both filter widths are within the inertial
subrange. In principle, the procedure is applicable to many models for 7;;. Applying

it here for the Smagorinsky model yields (where the first line is a simple restatement
of (2.11) and (2.12))

i — %5 — —20A?|S|S;; | (2.15)
A2 A~
Ty~ 155, = ~2CA |55, (2.16)

Substituting this into the Germano identity (2.14) yields (for the deviatoric part)

C
:’;"fam = 2OA2|S|SZJ oA |5|sm . (2.17)

d _
Li; = Lij
In the channel flows considered here, C'is taken as constant in the wall parallel directions,
ie. C = C(y,t). With filtering only in the wall parallel directions, and since the filter
width A is constant in those directions as well, CA? can be taken outside of the test

filtering which yields

A2~ A~

Since the tensors are symmetric with zero trace, (2.18) consists of five independent
equations which can not all be satisfied simultaneously. Instead, C' can be determined
by minimizing the mean square error (Lilly, 1992)

(€%) = (L — OMyy)?) = (LELT) — 20(L5My;) + C* (M M) (2.19)

where (-) is the average over the wall parallel directions. This is a parabola in C', and
hence the minimum can be found by setting 9(e2)/0C = 0, which yields

_ (L5 M) (2.20)
(Mi;Miz) - '
The filter = is taken as a top-hat filter with width A = 2A in the present thesis.

The dynamic procedure combined with the Smagorinsky model has been applied to
many flows, and shown accurate results in most cases. Since the dynamic calculation of
C does not affect the linear constitutive relation, which erroneously assumes perfect cor-
relation between 7;; and gij, one might wonder why it works as well as it does. Jimenez
& Moser (2000) argued that the dynamic procedure finds the value of C' that ensures
an accurate prediction of e45. The modeled stresses, however, were found to be only
about 20% of their true values by Baggett et al. (1997). Both these studies concluded
that LES with a dynamic Smagorinsky model will give accurate results whenever the
modeled stresses are negligible compared to the resolved ones. Baggett et al. (1997)
argued that this is the case for basic shear flows if the filter width A is one order of
magnitude smaller than the integral length scale L.
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It is possible to accurately model both the dissipation and the stresses simultaneously
if a more complex constitutive relation is used. One example of this is the mixed scale-
similarity model by Bardina et al. (1980), which has been shown to produce better
results in several studies (c.f. Meneveau & Katz, 2000).

Such models are not considered in this thesis, for two reasons. First, the wall
resolved (quasi-DNS) simulations in chapter 5 use fine grids since their purpose is to
provide accurate data for comparisons. With these fine grids, the modeled stresses are
rather small, and hence the dynamic Smagorinsky model is expected to perform well.
Second, the main focus of the simulations in chapter 6 is the approximate near wall
treatment, and hence additional complexities are kept at a minimum — in fact, not even
the dynamic procedure will be used there.

2.1.3 Evolution Equations for LES and RANS

Throughout this thesis, the constitutive relation (2.11) is used to parametrize the resid-

ual stress tensor 7;;. The filtered evolution equations can then be written as
8uj
=— =0 2.21
- (2.21)

and

8’u,i 8uiuj N 8}7 i V(‘)zul- i 821&5@'

ot x; Ox; 83:? ox;
where the ~ denoting a filtered component has been dropped and the isotropic part of
the residual stress (744/3)d;; has been absorbed into the pressure.

The derivation of the evolution equations for RANS exactly follow that for LES,
except for a replacement of the filter operation ~ by an averaging operation -. The exact
definition of this average is not needed for the derivations, but suffice it to say that it
does not have to be a temporal average (which is a rather common misconception).

Since (2.22) applies for both LES and RANS, the eddy viscosity has been written
in the more generic form v;. For the remainder of the thesis, quantities are filtered
unless otherwise noted (i.e., the ~ will be dropped from here on). Resolved quantities
are decomposed as ¢ = ¢ + ¢, where ¢ is the average and ¢’ is the fluctuation around
this average.

(2.22)

2.2 Shear Stress Balance in Plane Channel Flow

The fully developed plane channel flow is in many ways an ideal test case for simulations.
It has three homogeneous directions, i.e. directions along which statistics do not change,
and there are no issues regarding inflow conditions which can be problematic in LES.
There are also (uncommon in the field of turbulence) some analytical results for this flow
that are useful for interpretations. One of the most useful is the shear stress balance
that will be derived here.
The only assumption necessary is that of statistical homogeneity in x, z, and ¢t. This
implies that
o 0 0

%_5_520 (2.23)



2 Mathematical Formulation 16

for all quantities except the streamwise mean pressure gradient. This mean pressure
gradient is necessary to drive the flow, and hence the pressure can be decomposed
(without approximation) as

op  dP  OPper

=P t — = =0. 2.24
p(a:,y,z, ) ($)+pper($,y,z, ) ) 833 d.ﬁE ) 8$ ( )
The continuity equation for the mean flow becomes

aﬂj ov

it 2.25

Oz; Oy (2.25)

when using (2.23). Integrating this from the lower wall, and making use of the boundary
condition v = 0, yields v = 0 everywhere.
Averaging the streamwise momentum equation (2.7) using the conditions developed

so far yields
o  dP %m0y
_ — 2 _0. 2.26
Oy dz * V@yz Oy (2.26)
Integrating this from the lower wall to y, and making use of the boundary conditions
u = v = 0, yields

ou ou
— — —v—| =T+ T2 =0. 2.27
da:y+yay V(?y 7’12+7‘12|w ( )

o —
w
The average wall shear stress is v0u/0y|., = u2, which defines the friction velocity
ur. The average residual stress tensor (2.8) is zero at the wall due to the boundary
conditions, and hence consistent models for 7;; should satisfy this as well. One then
gets

—— dP ou

ol - 2__:0_ 2.28

u'v d:zy+l/8y Uy — T12 ( )
With § denoting the channel half width, setting y = 26 and making use of the boundary
conditions yields

dP  u?

which is simply a balance between the driving force (the pressure gradient) and the
retarding force (the wall friction). Substituting this into (2.28) yields
— Ju Yy
—U 4 v— — T3 = u? (1 — —) , 2.30

trg, TT2= U 5 (2.30)
which shows the necessary balance between the different shear stresses in fully developed
channel flow. Note that this is an exact result (it only depends on the assumption of
statistically homogeneous flow), and that it is valid for all turbulence models for 7;; that
satisfy the proper boundary condition for the stress tensor.

With the eddy viscosity hypothesis (2.11) the shear stress balance becomes

- ou ou Ov Y
T il a7 ) =42 (1=2) . 2.31
uv+yay+yt<8y+8:v> uT( 5) (2:31)
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If the fluctuations of v; and the strain rate are assumed to be uncorrelated, then

WY+ (v +T) g—z ~ 2 (1 - %) (2.32)

or when re-arranged
ou (1l —y/d) - (—wv)
oy v+ T ’
This relation shows an important fact about channel flows: that the mean velocity
gradient is determined by the resolved shear stress and the eddy viscosity. The shear
stress balances (2.30) and (2.33) will be used to interpret the LES results in chapters 5
and 6.

(2.33)



Chapter 3

Numerical Method I:
Discretization

The numerical method used in this study is rather standard in the context of LES. It
is described here not for the purpose of any contribution towards improved LES, but
rather for the purpose of completeness. Note that the * denoting a resolved component
has been dropped for clarity.

The present numerical method is similar to the method developed by Zang et al.
(1994) in that a colocated grid arrangement is used. Such a grid arrangement can result
in ‘pressure checkerboarding’ unless special care is taken — here the approach by Zang
et al. (1994) is followed to ensure strong coupling between the pressure and velocity
fields. The spatially discretized system is integrated in time using a fractional step
method to ensure that the continuity constraint is satisfied. The time integration is
mixed implicit/explicit and similar to the one developed by Spalart et al. (1991).

3.1 Spatial Discretization

The grid and variable arrangement is shown in figure 3.1. Integrating the continuity
equation (2.21) over a computational cell D and using the divergence theorem yields
(c.f. Ferziger & Peric, 1997)

Ou;
/ al‘j dV = /anjdA ~ Z anjAf =0 s (3.1)

fzyz

where 0D is the surface of the cell, A¢ is the area of the cell face, and f,,. indicates
that the sum is to be taken over faces with normals in all three coordinate directions.
An uppercase U; is used for the convecting velocity, i.e. the velocity that satisfies the
continuity equation (3.1). As shown in figure 3.1, this velocity is stored at the cell faces.
The approximation in the final step above is second order accurate if U; is considered
the velocity at the midpoint of the face.

18
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J+1 ° ° °
J+1/2 TUQ
Uy, u2,u3 | U;
J ° ° — °
D, Vg
J—1/2
J—1 ° ° °
Y

I-11-1/2 [ I+1/21+1
X

Figure 3.1: Grid and variable arrangement. The pressure, eddy viscosity, and the
velocity components that satisfy the momentum equations are stored at the cell centers
(filled circles). The convecting velocities (uppercase U) are stored at the cell faces. The
I and J refer to the cell and face indices: for example, (I 4+ 1/2,.J) is the face between
cells (I,J) and (I +1,J).

The momentum equation (2.22) similarly yields

ou; ou; ou;  Ou,;
LV = [ { —wuing — pni + ve—n, LS )t dA 2
/ Y v a/D{ U — pn +V8xjn]+yt (8333' + 8xi>n]} (3.2)

which can be approximated as

aui
—— ~ C(Ujnj,u;) + Pi(p) + Dimp(u;i) + Dexp(us) , (3.3)

VC@t

where V. is the cell volume and

C(anj, UZ) = Z —anji/éiAf + Z —anjﬂz-Af , (3.4)
fccz fy
Pp) = Y i (3.5)
fzyz
Dimp(us) = > (v + %) @n Ay (3.6)
P B 8.73j J ’
Y
o o
Dexp(u;) = Z (v +1t) 8$'njAf + Z I/ta—%njAf . (3.7)

frz J TYyz
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Here the diffusion terms have been split into parts that will be treated implicitly and
explicitly, respectively. All the quantities above except U; are defined and stored at the
cell centers, and hence their values at the cell faces must be approximated. The quanti-
ties denoted by ~ are discretized using second order accurate approximations (i.e., linear
interpolation or central difference), while the momentum velocity u; is approximated
using a higher order approximation in the wall parallel directions.

Using the notation in figure 3.1, these approximations can be written in the following
forms (in two dimensions for clarity) at the face (I 4+ 1/2,J) (and similarly for other
faces) using the generic function ¢:

8_75 _ Putg) — P (3.8)
Tl 12,0 LI+ ~ D)
~ ¢
brs1/2,0) = ba,n + Iz (Z(r4172) — (1)) (3.9)
(I+1/2,0)
({9_7?) _ $(I+1/2,J+1) - ¢~5(I+1/2,J—1) (3.10)
dy (I+1/2.7) YJ+1) — Y-1)
Sr11/2,0) = €1 (D0 + Sr1.n) + 2 (da—1.0) + Ss2,0)
+ 3 (P—2.0) + Puss.) (3.11)

Note that brackets and capital letters have been used to indicate grid indices (as op-
posed to tensor indices), and that the grid coordinates only depend on a single in-
dex due to the Cartesian grid geometry. The first three expressions use second or-
der accurate approximations, whereas the last is the fourth order accurate dispersion
relation preserving scheme by Tam & Webb (1993). The coefficients (ci,c2,¢3) =
(0.63637324, —0.16289319,0.02651995) of this scheme were chosen not only for a high
order of accuracy (as is commonly done), but also for a minimal dispersion error. Note
that all discrete approximations are centered, which ensures that the numerical diffusion
is minimized (c.f. Geurts, 2004).

3.2 Temporal Discretization

The semi-discrete momentum equation (3.3) is integrated in time using the method by
Spalart et al. (1991), where the wall normal diffusion is treated in a Crank-Nicolson like
fashion and the remaining terms are treated explicitly by a three stage Runge-Kutta
scheme. This yields, for substep (or stage) m,
um — um_l 1
VCZTZL/Z - amDimp(uzm_ ) + ﬁmDimp(uzm) + (am + ﬁm)Pz(pm)

+ 9 { CUP g, 0™ + Do) } (3.12)

+ o { CUP 205, 0" 2) + Do (w3}, m=1,2,3.

i
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Note that the pressure is more of a mathematical than physical variable in the in-
compressible Navier-Stokes equations (see for example Ferziger & Peric, 1997, for a
discussion on the role of pressure), and hence it is treated here using a formally first
order accurate approximation. The index m denotes the substep, where m = 0 and
m = 3 refer to the solutions at times n and n + 1, respectively. The coefficients were
determined by Spalart et al. (1991) as

'™ 96 2740 576
37 5 1
ﬁl_ﬁ ﬁz—ﬁ ﬁ?,—g
_8 _5 _3
71—15 ’72—12 ’73—4
Y =T -5
P1 = ,02——60 p3 = 0

which makes the scheme (nonlinearly) third order accurate for the explicit terms and
second order accurate for the implicit ones.

3.2.1 Stability

The implicit treatment of the wall normal diffusion and the pressure makes the temporal
integration unconditionally stable for those terms, i.e. it is stable for arbitrarily large
time steps At. The explicit treatment of the remaining terms, however, imposes stability
constraints on the time step. While a full stability analysis of (3.12), including the non-
uniformity of the grid, is possible, a simpler analysis in one dimension based on the
concept of a modified wavenumber (c.f. Moin, 2001) is presented here. While simplified,
this analysis conveys the essential components of the issue of numerical stability. It will
be presented here in a somewhat brief form, with details of the algebra suppressed for
brevity.

Consider the spatially discrete momentum equation (3.3) on a uniform grid in one
dimension (say x) and its exact counterpart. Neglecting the implicitly treated terms
Dimp(u) and P(p), and linearizing by assuming U and v to be constant, yields the exact
equation

ou ou d%u
—=_y= ot 3.13
ot oz TVt (3.13)
and the semi-discrete b D
1 D - (u
Ju _ Chn (U7 u) + exp,hn( ) (3.14)

o Ve Ve ol
where 1ot = v + 14. The interpolation formula (3.11) yields
v =y () —da-y)

U
=~ 7 e =) (ugpn) —ugn) + (2 = e3) (ugrve) — ugr-2)

+cs3 (U(1+3) - U(I—3))} . (3.15)

OID(U, u) i UAf

lin
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The second term in Deyp,(u) vanishes by the continuity equation for constant vy, and
hence in a similar way

1D
Dexp,lin(u) Vot

Ve A2

(’LL([_H) = 2u(py + U([_l)) . (3.16)

Now taking u = exp(ykx), where 3 = /—1 and k is a wavenumber (i.e., taking u as a
Fourier mode), yields for the exact equation

% = —gkUu — norkPu (3.17)
and for the semi-discrete one
8’&(]) 9
ot = _]kc,modUU(]) — Vtotkd’mOdU(I) , (318)

where the modified wavenumbers are

(c1 — o) sin(kAx) + (co — c3) sin(2kAx) + c3 sin(3kAx)

=92 1
kc,mod Az ) (3 9)
1 — cos(kAx)
k2 =2—. 2
d,mod Ax2 (3 O)

The key observation here is that the discrete and the exact forms are similar, ex-
cept that the modified wavenumbers are used in the discrete form. These modified
wavenumbers are functions of the relative grid resolution KAz and of the particular nu-
merical approximation used. The maximum values represent the largest possible ‘am-
plification’ due to spatial differentiation (actually, the spectral radii of the discretization
matrices), and are max{kcmoa} ~ 1.73/Ax for the Tam & Webb (1993) scheme and
max{k3 .4} = 4/Az%

The7stability of Runge-Kutta schemes is commonly studied on the model equation

% =Yu , (3.21)
where 1) is a complex amplification factor. The three-stage scheme used here is stable
for [Im(¢At)| < /3 for purely imaginary 1 and for —2.5 < Re(yAt) < 0 for purely
real ¢ (c.f. Moin, 2001). Comparing these limits to each term in (3.18) then yields the
stability constraints

UAt
|IH1 (_]kc,modUAt” < \/g = max {k'gmod} UAt =~ 173A—Qj < 3 (322)
and
2 2 I/tOtAt
—2.5 < Re (—viothd moaAt) <0 = max {k 104} Vot At = 4 Az =25 (3.23)

Note that the convective spectral radius multiplied by the time step traditionally is
termed the Courant-Friedrichs-Lewy number, i.e. CFL = max {k¢mod } UAL.
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3.2.2 Fractional Step Treatment

The lack of a temporal derivative in the continuity equation implies that this equation
can be seen as a constraint (rather than an evolution equation), which complicates the
temporal integration. Put another way, despite the fact that there are 4 equations and
4 unknowns (u; and p), closer inspection shows that there really only are 2 independent
evolution variables. If two velocity components are known, the third can be obtained
from the continuity equation, while the pressure can be obtained from a Poisson equation
(that will be derived later). To deal with this problem, a fractional step method is used
to advance the solution to the next time level in a predictor/corrector fashion. This
treatment causes the formal order of accuracy to drop to second order in time (Le &
Moin, 1991).
To simplify notation, first define the right hand side of (3.12) as

RHS (3.12) = By, Dimp (i) + (am + ) P (p™) + R; . (3.24)

A predicted velocity field u} that does not satisfy continuity is first computed by solving

-1
- ﬂm 1mp( ) + (am + ﬂm) 7,( e 1) + Rz . (325)

* m
At

The effect of the pressure gradient is removed by

Ve

= (et B P (3.26)

Note that these two predictor steps often are combined in fractional step methods. They

are separated here simply for convenience, since the issue of boundary conditions for u}

is simplified in this way. The velocity field is finally corrected as

Ve

ut — U,

Vel R T

where the pressure p” must be determined such that the final velocity field satisfies
the continuity equation. Such an equation can be derived (Zang et al., 1994) by first
writing (3.27) in the equivalent finite difference form for the convecting velocity at a
face (since a coupling between the pressure and the convecting velocity is sought)

(am + Bm) Pi(p™) , (3.27)

Uum — Ui 817
Applying the divergence operator div(¢;) = > ¢ ¢n;As yields
Urni A — UiniAy _ O™
> ~ —(cum + Bim) Z 2o nZAf (3.29)

fa:yz fa:yz

Requiring the final velocity field to satisfy continuity, i.e. applying (3.1), yields the
Poisson equation for the pressure

U'n 'Af
- ZA s 3.30
Z SN Af = Z (Qm + B ) At (3.30)
zyz

fa:yz
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The algorithm is then to compute @;, interpolate U inj from 1; using the appropriate
interpolation schemes as described above, compute the source term of the Poisson equa-
tion and solve for the pressure, and then finally correct the velocity fields using (3.27)
for u]" and (3.28) for U/". The eddy viscosity is computed at the end of each time step,
and held constant for all three substeps.

The main computational cost of this algorithm is in solving the Poisson equa-
tion (3.30). The predictor step (3.25) treats only the wall normal diffusion term implic-
itly, which generates a tridiagonal system that can be solved very quickly by a direct
solver such as the Thomas algorithm for tridiagonal matrices (Ferziger & Peric, 1997).
The Poisson equation, however, is elliptic in character, and hence it is more computa-
tionally expensive to solve. In the present code two solvers are used for this equation:
a direct solver based on fast Fourier transforms (FFT) which is very efficient for plane
channel flows, and a multigrid solver based on conditional semicoarsening that is less ef-
ficient (compared to the FFT) but applicable to arbitrary geometries. The latter solver
has also been parallelized.

3.3 Boundary and Initial Conditions

The plane channel flows considered in this thesis make use of only two boundary con-
ditions. In the wall parallel directions, the unknowns are assumed to be periodic as

¢(x) =d(x + Ly) , Vz, (3.31)

for some imposed periodicity length (i.e., domain size) L, (and similarly in the z-
direction).

At the solid walls, the dynamic boundary conditions are u|,, = w|, = 0, while the
kinematic boundary condition is v|,, = 0. Inserting the dynamic conditions into the
continuity equation yields dv/dy|,, = 0 as well.

No boundary condition is needed at the wall for the pressure equation, since (3.28)
already defines the pressure gradient at the wall. With zero transpiration velocity, (3.28)
yields
ﬁini

opr | _ Ui
(am + Bm) At

n; =
8:137;
w

(3.32)

w

Inserting this into the Poisson equation (3.30) for a cell adjacent to the solid wall yields

8pm U jnjAf

fz P, n;As = Z G T AL (3.33)

where finner denotes inner faces, i.e. that the sum is not to be taken over the boundary

faces. After solving for p™ at the cell centers, the pressure at the wall can be extrapolated
using (3.32).

Fully developed channel flow is, by definition, statistically independent of the initial

condition. Thus, the only purpose of the initial condition (i.e., u; at t = 0) is to generate

fully developed turbulence as quickly as possible. In the present study, the initial
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conditions are either a laminar flow with random noise added or an instantaneous field
from a different simulation, interpolated onto the grid. Some discussion of the initial
condition and the subsequent transition to turbulence will be given in section 5.2.1.

3.4 FFT Solver for the Poisson Equation

The discrete Poisson equation (3.30) with the central difference approximation (3.8) can
be written in the form (in three dimensions)

I I— J
L1 KOPLLK) + Q1 g 0 PULLE) (1 0 PU—1,0,K) T Q0 ) PLI+1LK)

+ a((][:LK)p(LJ—l,K) + agj],K)p(I,LKH) + ag:LK)p(LJ,K—l) = qr,K) (3.34)

where the {a( 1., K)} are the matrix coefficients. These matrix coefficients are completely
determined by the geometry of the grid: they are constant for all time steps, and they
are uniform in the streamwise and spanwise directions since the grids are uniform in
those directions (due to the statistical homogeneity). With this uniformity in the wall
parallel directions, the matrix coefficients can be written in the abbreviated forms

ay = a1,JK) >

I _ I I—
acyy = a(;,_J,K) =(1,5K) >
K _— K K—
Ay = a(lfi,K) = Y1,0K) (3.35)
J+ _ J
Ay = L)
J— J—

U = UK
and the discrete Poisson equation (3.34) can then be written as
a()P(1,J,K) T G{J) (p(1+17J,K) +p(1—17J,K)) + a‘(]jSP(LJH,K)
- a((]J_)p(LJ—LK) + a{f]) (P10 1) + P g k—1)) = A1) - (3.36)

The uniformity of the coefficients can be exploited for efficient solution of (3.36).
First, the pressure and the source term are expanded in two dimensional discrete Fourier
series as

1 . I—1)n K—-1m
PULJK) = NN Zp(m],m)exp {]27r<( N ) +( N ) >} , (3.37)

where again j = +/—1 and similarly for q(; j k). Inserting this into (3.36) yields

o 3 o (7 55 |

{b(n,J,m)ﬁ(n,J,m) + at(]j;ﬁ(n,(]—s—l,m) + a{])ﬁ(n,]—l,m) - d(n,J,m)}] =0, VI,JK, (338)
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where

2mn 2mm

_ T K

bn,am) = a(g) + a2 cos <Vx> + a2 cos ( N > (3.39)
has been defined for simplified notation. Orthogonality of the individual Fourier modes
implies that (c.f. Moin, 2001)

b(n,J,m)ﬁ(n,J,m) + a{jgﬁ(n,J—l—l,m) + a((]L]_)ﬁ(n,J—l,m) = (jn,J,m , Vn,J,m . (340)

The key observation here is that the transformed Poisson equation (3.40) is a decoupled
system of N, N, tridiagonal systems, each of which can be solved quickly by the Thomas
algorithm. After solution of (3.40), the pressure field is obtained by an inverse Fourier
transform.

One should note that _ ; §o,70) = 0 must be satisfied for a solution to exist (this
is satisfied automatically in the present method), and that the non-uniqueness of the
solution is reflected in (3.40) by b(o n,,0) = O after the forward sweep of the Thomas
algorithm — this implies that p(o n, 0) can be set to an arbitrary value.

3.5 Validation

It is important to validate a numerical method on simple benchmark test cases. The
code has been developed continuously during the course of the work, and various test
cases have been computed after major developments. Shown here is a flow with an
analytical solution that illustrates the different orders of accuracy for the convective
and viscous terms.

The decaying vortices described by

2
u = — cos(kx) sin(ky) exp <—%> ,
e

2
v = sin(kx) cos(ky) exp (—%) ) (3.41)

2
p= —i (cos(2kx) 4 cos(2ky)) exp <—%>
is an exact solution to the two dimensional Navier-Stokes equations on a periodic domain
with dimensions 27 /k (Zang et al., 1994). The Reynolds number is defined here as
Re = umax2m/(kv), where upmax = 1 is the maximum initial velocity.

Two cases are considered here: one viscously dominant with Re = 10 and one
convectively dominant with Re = 1000, both with & = 1. Grids with N, = N, €
{12,16,24, 32, 48,64, 96,128} (a Bulirsch sequence) cells in each direction are used, and
the time step is reduced proportionately to keep the CFL number constant. The equa-
tions are integrated to times 7' ~ 0.077 and 1.54 (at which the velocity fields have
decayed by about 10% and 25%), respectively, and the error is quantified by the Lo
norm of the difference between the numerical and analytical solutions and shown in
figure 3.2.
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(a) Viscous case, Re = 10. (b) Convective case, Re = 1000.

Figure 3.2: Difference between the numerical and analytical solutions for decaying vor-
tices. O: error defined as € = ||u — Uapalytical||; —: second order slope; ——: third order
slope; —-—: fourth order slope.

The code is clearly second order accurate for the viscous case, which simply reflects
the fact that the viscous term is treated by a low order approximation. The high Re
case results in an order of accuracy between three and four (about 3.5 from a curve
fit). While the convective interpolation scheme is formally of fourth order accuracy, the
remaining components of the code (such as the approximation of surface integrals by
the midpoint value times the area) are of second order accuracy, and thus the fourth
order accuracy is not reached in practice.

The rationale for using a higher order approximation for one term only can of course
be questioned. In LES, however, the resolved motions are essentially inviscid, and thus
the convective term is dominant for most of these motions. It would be interesting
to study the influence of errors from each term individually, but that has not been
considered in this work.



Chapter 4

Numerical Method 11:
Multigrid Solver

The test cases presented in this thesis are all plane channel flows, for which the Poisson
equation can be solved very quickly using fast Fourier transforms as discussed in sec-
tion 3.4. The code, however, was designed for use on more complex flows as well, and
hence an alternative solver for the Poisson equation was developed as well. This multi-
grid solver uses a novel conditional semicoarsening algorithm to construct the coarse
grids, and is presented here in some detail. It has previously been published as Larsson
et al. (2005a) and Larsson et al. (2005¢).

4.1 Introduction and Review of Multigrid Algorithms

Multigrid techniques are commonly used to accelerate the convergence when solving
discrete elliptical problems iteratively. To get a sense for the underlying concept of
multigrid algorithms, consider the discrete Poisson equation (3.34), and the following
conceptual iterative algorithm to obtain the solution p from the initial guess p°:

1. Apply a smoother to the equation. This smoother need not reduce the error
€? = p — p® in magnitude, but must yield an error that is smooth.

2. Since the error is now smooth, it can represented on (or restricted to) a coarser
grid.

3. Solve for the error € on the coarse grid. Due to the lower number of cells on this
grid, the solution can be obtained more quickly.

4. Having found the error ¢ on the coarse grid, interpolate (or prolongate) it back
onto the original fine grid and update the pressure as p! = p? + €.

5. Smooth the pressure field again to eliminate any high-frequency error that may
have resulted from the coarse grid correction process.

This conceptual algorithm involves only two grids, the fine and the coarse. The solution
on the coarse grid (step 3), however, is most efficiently obtained by recursive application

28
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of the full algorithm outlined here, and hence a sequence of ever coarser grids is used in
multigrid algorithms.

The conceptual algorithm shows the essential idea behind multigrid: that a smooth
error can be approximated on a coarser grid, on which the solution can be obtained much
more quickly (c.f. Trottenberg et al., 2001). It also implies that multigrid algorithms
fail whenever the error is not smooth enough, since in that case the high-frequency
components of the error will be aliased on the coarse grid, leading to poor convergence
or even divergence of the algorithm. Note that the smoothness of the error is intimately
related to the particular coarse grid used. If, for example, the coarse grid is only coarser
in one direction, then the error need only be smooth in that direction. In fact, the
high-frequency components of the error are typically defined as those that can not be
represented on the related coarse grid (Trottenberg et al., 2001).

For discrete problems that are isotropic!, even simple smoothers (e.g., pointwise
Gauss-Seidel) efficiently yield a smooth error in all directions, and hence a grid that
is coarser in all directions (full coarsening) can be used. In three dimensions, this
yields a coarse grid with 8 times fewer grid points if standard 2:1 coarsening is used?.
For anisotropic problems, however, the situation becomes more complex. Pointwise
smoothers then typically only yield a smooth error in some direction(s). A grid that
is coarser in all directions can then not represent the error adequately, and hence the
whole underlying concept of multigrid fails. Anisotropic problems arise either due to
anisotropy of the underlying physics, or perhaps more commonly due to the use of
stretched grids, which makes the discrete problem anisotropic. The latter is the case for
the Poisson equation considered here. Note that the coefficient anisotropy in this case
is directly related to the cell aspect ratio AR = max{Az, Ay, Az}/ min{Az, Ay, Az}.

There are various approaches to ensure good multigrid convergence on anisotropic
problems. All these approaches increase the computational cost compared to the optimal
algorithm for isotropic problems, which simply is a reflection of the fact that anisotropic
problems are more difficult to solve. The most common approaches can be grouped
according to which component(s) of the conceptual multigrid algorithm they modify
(from the isotropic case):

1. Adaptation of the smoother, while maintaining full coarsening. The increased
cost is, naturally, associated with the more elaborate smoother necessary. Typi-
cally, block-implicit smoothers (e.g., plane-smoothers) are used, which update a
collection of points simultaneously.

2. Adaptation of the coarse grid, while maintaining a pointwise smoother. This is
generally called semicoarsening, since the coarse grid can only be coarser in some

direction(s). The increased cost is associated with the denser coarse grids.

3. Combinations of the two previous approaches.

!The discrete Poisson equation (3.34) is isotropic if aff LK) = a(J I{]’ K) = agf,, x> and anisotropic if
at least one of the matrix coefficients is different from the others.
29:1 coarsening simply implies that each cell on the coarse grid is related to two cells on the fine

grid, in each coordinate direction.
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To ensure a smooth error in all directions using a plane-smoother, the planes must
be swept in all directions (i.e., in the xy—, xz—, and yz-planes) sequentially. Such alter-
nating plane-smoothers in combination with full coarsening were used by, for example,
McBryan et al. (1991) and Emvin (1997). The latter study is particularly relevant here,
since it focused on a problem very similar to the current one: the solution of the Poisson
equation on stretched, structured grids in three dimensional Cartesian geometries. On
uniform and isotropic grids, Emvin (1997) found the alternating plane-smoother to be
about 3 times less efficient® than a pointwise Gauss-Seidel smoother (which is close to
optimal for that case). On stretched grids, however, the alternating plane-smoother es-
sentially maintained its convergence rate, whereas the pointwise Gauss-Seidel smoother
failed. The results by Emvin (1997) will be used for comparisons here, due to the
similarity of the problems studied.

Schaffer (1998) used a plane-smoother in two (the z and y) directions, and coarsening
only in the third (z) direction. The plane-smoother, in turn, was a two dimensional
multigrid algorithm with a line-smoother in the x direction coupled with coarsening
only in the y direction. The resulting algorithm was rather robust in terms of yielding
fast convergence for different anisotropies. Brown et al. (2000) studied the parallel
performance of Schaffer (1998)’s algorithm using domain decomposition. When the
domain was decomposed in all three directions, the parallel efficiency was very low due
to the fact that both the plane- and the line-smoothers crossed domain boundaries.
Decomposition only in the y and z directions (where only the plane-smoother crossed
domain boundaries) improved the situation somewhat. Only when the domain was
decomposed in the z direction only, i.e. such that neither smoother crossed any domain
boundaries, was the parallel efficiency reasonably high. This shows one of the drawbacks
associated with the use of block-implicit smoothers, since they are, by nature, less
amenable to parallelization.

This leads to the final approach to make multigrid perform well for anisotropic
problems: to maintain the pointwise smoother, and to adapt the construction of the
coarse grid. The key component of such semicoarsening methods is, naturally, the coarse
grid construction. Loosely speaking, if the grid is coarsened by ‘too much’, the lack of
error smoothness will prevent good convergence. Conversely, if the grid is coarsened by
‘too little’, the coarse grids will be unnecessarily dense, and the computational cost will
be large.

Horton & Vandewalle (1993) developed a highly parallel algorithm by combining
a pointwise smoother with adaptive semicoarsening. They considered uniform but
anisotropic grids (i.e., Az and Ay constant but not equal), and hence the coarse grids
automatically had a structured topology due to the uniformity. The adaptive part of
the semicoarsening consisted of comparing the matrix coefficients to a predefined limit
value, which was taken from a priori Fourier analysis.

Elias et al. (1997) considered the coarse grid construction within the context of
unstructured grids, and hence allowed the coarse grids to have an unstructured topology.
They argued that each matrix coefficient can be interpreted as the inverse of a physical

3Convergence efficiency is defined here in terms of the time required to reduce the residual by one
order of magnitude.
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time scale that determines the rate of propagation of information during the smoothing
step. They further argued that the error becomes smooth in directions associated with
the smallest time scale (largest coefficient) for each cell, and hence that the size of the
coefficients can be used to construct the coarse grid. They then constructed the coarse
grid based on a comparison between the matrix coefficients and a predefined limit value.

4.1.1 Objectives

The present work is aimed at developing a highly parallel multigrid algorithm for
the Poisson equation on arbitrarily stretched Cartesian structured grids. As shown
by Brown et al. (2000), while plane-smoothers can efficiently smooth the error in all
directions, they are not inherently parallel. For this reason, a pointwise smoother is
used here.

The semicoarsening strategy used here is similar to the ones by Horton & Vandewalle
(1993) and Elias et al. (1997) in that it is based on the size of the matrix coefficients.
Here, however, a stronger mathematical coupling between the matrix coefficients and
the error smoothness is sought. Within the necessary approximations, this strong cou-
pling implies that the smoothness of the error can be controlled, and hence that the
convergence of the algorithm can be ensured.

Further differences between the present work and the work by Elias et al. (1997) and
Horton & Vandewalle (1993) include the requirement of structured coarse grids and the
fact that arbitrarily stretched grids are considered, respectively.

4.2 Multigrid Algorithm

To achieve a highly parallel algorithm, the red-black point Gauss-Seidel (RBPGS)
smoother (Trottenberg et al., 2001) is used in the present work. The implementa-
tion pays careful attention to the parallel efficiency by minimizing the communication
overhead. Each smoothing sweep consists of the following steps, where red points are
those where the sum of the indices I 4+ J + K is odd, and black points are those where
the sum is even:

1. Smooth the red grid points adjacent to the processor boundaries.
2. Initiate communication of those points.

3. Smooth the red grid points away from the processor boundaries (i.e., in the interior
of each processor’s domain).

4. Finalize communication of the red grid points.
5. Repeat for the black grid points.

All communication is handled by the message passing interface (MPI) and is of the
‘non-blocking’ kind (see for example the MPI manual, 2003).

The performance of a smoother is best quantified in terms of the smoothing factor p
(Trottenberg et al., 2001). This is essentially defined as the worst reduction of the high
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frequency components of the error, where the high frequency components are those that
can not be represented on the coarse grid. With full coarsening, the RBPGS smoother
is very effective (i.e., yields low p) for isotropic problems. As discussed above, however,
the smoothing behaviour deteriorates severely on anisotropic problems.

4.2.1 Conditional Semicoarsening

The goal of the conditional semicoarsening can be stated as to, given a fine grid, con-
struct a coarse grid that:

1. is such that the error on the fine grid is sufficiently smooth for all cells and direc-
tions that are coarsened, i.e. that the smoothing factor

Wi, g k) < Mim > VI, LK (4.1)
where )y, is some maximum allowable value;
2. has as few cells as possible;
3. has a structured topology.

In order to proceed, a relation between the matrix coefficients and the smoothing factor
is needed. Such a relation was found by Yavneh (1995) using Fourier analysis on infinite
rectangular grids, i.e. grids where the cell sizes are constant but not equal in the different
directions. Here Yavneh (1995)’s main result is first presented in its original form for
infinite rectangular grids, and then the necessary adaptations for use in the present
conditional semicoarsening algorithm will be given.

If D, is the set of directions that are coarsened®, then Yavneh (1995) derived

p=max { (1—a™")* 9 (@™, &, 4D.) , (&)} . (4.2)
where
amit = Jnin {a”} , (4.3)

[1+amin/ {2(1 — a™im)}] Y4 if #D, = 1

0 (@™ €, #D.) = { i i 4D, >1 (4.4)

and (&) is a lower bound that is only dominant when a large number of smoothing
sweeps are performed. Furthermore, £ is the total number of smoothing sweeps, #D.. is
the number of elements in D,., and @ is the matrix coefficient in direction D, normalized
such that >, al = 1.

In order to use formula (4.2) in the present application, some approximations are nec-
essary. First, if Yavneh’s analysis is viewed as a local Fourier analysis, then the results
can be applied to each cell individually in non-uniform grids. The matrix coefficients
for opposing cell faces (e.g., af;t LK) and a{ I_ J. K)) are then not exactly equal, but will be

4For example, if only the z- and z-directions are coarsened, then D, = {I, K}
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approximately so on smoothly stretched grids. The normalized matrix coefficients can
then be defined as
D
a a
W8y = e O porur, @)
20 raxk) Mg T4 LK)

with the (arbitrarily chosen) definition

D+ D—
arary TN IK
a([},ﬂc)E\/ ( )2 W) D=1k . (4.6)

Second, if the lower bound ((&) is neglected, Yavneh'’s formula (4.2) becomes

pr (1—amm)?g (@™ ¢, #D,) . (4.7)

This involves ¥, which depends on #D.. Since the purpose of the conditional semi-
coarsening is to determine D, 9 is unknown. However, as shall be shown here, the
approximation 1 ~ 1 is appropriate for the present use.

If #D, > 1, then 9 = 1, and the approximation is exact. If #D. = 1, then g™ =
aPe by (4.3). For high values of a”¢, (4.7) then yields very low predicted smoothing
factors regardless of whether ¥ is included or not, and thus the error introduced by using
¥ ~ 1 does not alter the condition on the smoothing factor (4.1). For low values of a”e,
on the other hand, ﬁ(aDc, ¢, 1) = 1 anyway, and thus the approximation is valid for this
case as well. For the values of )i, and € used later in this chapter, for example, ¥ < 1.01
for those values of a”¢ that generate smoothing factors close to fijim. Therefore, the
approximation ¢ & 1 is valid in the present context of conditional semicoarsening.

Neglecting ) in (4.7) then yields (for individual cells due to the local view of the
Fourier analysis)

2 2
~ > mi — =D
(1,05 = (1 - a?}lf}x)) = max { (1 - a(I,JJ{)) } ; (4.8)
where definition (4.3) has been used.

Using relations (4.1) and (4.8), the first two goals of the conditional semicoarsening
will be satisfied with the following algorithm:

Algorithm 1: conditional semicoarsening set-up
for all cells (I, J, K) do
set D, ={I,J,K} (initialize to full coarsening)
compute a7 ; gy, D € {I,J, K}, by (4.6) and (4.5)
for directions D =1, J, K do
if (1— CVL(DI’J7K))2 > pim then
remove D from D, for cell (I, J, K)
end if
end do

end do
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R 1

(a) Fine grid, 256 cells, (b) Coarse grid after direct (c) Coarse grid after requir-
ARmax = 10. application of algorithm 1, ing a structured topology,
84 cells, ARmax = 4.5. 144 cells, ARmax = 4.5.

Figure 4.1: Example of the conditional semicoarsening, and the effect of requiring a
structured topology.

This algorithm will generate D, for every cell such that, if the grid is coarsened ac-
cordingly, the first two goals are met. Figure 4.1(a) shows a sample fine grid, and
figure 4.1(b) shows the resulting coarse grid after direct application of the algorithm
above. The cells on the coarse grid are less anisotropic, and the number of cells de-
creases by a factor of 3. The grid, however, has an unstructured topology, which the
current solver can not handle.

At this stage one can compare the present method with the method by Elias et al.
(1997). Their ‘agglomeration’” method to create the coarse grids is essentially based
on physical arguments, while the present method is entirely mathematical. Despite
this, both methods create rather similar grids (not shown here) given similar coefficient
anisotropies. While not surprising, this shows the interplay between mathematics and
physics — or, rather, how the mathematics reflect the underlying physics.

4.2.2 Structured Topology

The requirement of having a structured coarse grid further limits the coarsening. From
figure 4.1, it is clear that the structure of the grid is maintained if whole planes of
cells (as opposed to individual cells) are considered. For the sample grid of the figure,
this implies that the cells adjacent to the dashed grid lines should be left uncoarsened
despite satisfying the condition on the smoothing factor.

Before giving the explicit algorithm, first define PlD as the plane of cells where the
value of index D is [. Also, for the moment, the number of cells in each direction Np
is assumed to be even. In the current work, only 2:1 coarsening is considered, and the
coarsening is restricted to merging only cells in the planes Pllz ; and PP 1=24, ..Np.
The algorithm for constructing coarse grids that are structured is then:
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Algorithm 2: construction of a structured coarse grid
for directions D =1, J, K do
for [ =2,4,....Np do
if D € D, for all cells in P£ ; and PZD then
coarsen these cells in direction D
else
leave these cells uncoarsened in D
end if
end do
end do

The resulting structured coarse grid is shown in figure 4.1(c). The maximum cell
aspect ratio is the same as for the unstructured coarse grid, since the same condition on
(1,7,k) is enforced. Due to the extra limitations on the coarsening, the coarsening ratio
is 1.8 (as opposed to 3 for the unstructured grid). Hence, there is a trade-off between
using a computationally cheap structured solver with unnecessarily dense coarse grids,
or a more expensive unstructured solver with more ‘optimal’ coarse grids. Only the
former option is considered here.

4.2.3 An Odd Number of Cells

Whenever the number of cells in some direction is odd, there are essentially two options
available: either to merge three cells into one somewhere, or to leave one plane of cells
uncoarsened. In the present work the latter approach is chosen. To avoid leaving more
planes than necessary uncoarsened, the following algorithm is used to decide which
plane to leave due to an odd number of cells:

Algorithm 3: dealing with odd Np
for directions D =1, J, K do
if Np is odd then
for [ =1,3,5,..., Np do
_ =D
M= me{ (1= 50 )
end do
leave plane PP with m = arg max {M;} uncoarsened

end if
end do

The complete semicoarsening algorithm starts by dealing with the case of an odd number
of cells. From then on, the other algorithms are applied with those planes ignored, i.e.
as if Np was even.

Figure 4.2 shows a sample sequence of coarse grids generated by the conditional
semicoarsening algorithm. Note the planes left uncoarsened for different reasons, and
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aaaaaa a a a a a a a a ao
(a) Finest grid level, 167 cells, (b) Coarse grid level 1, 132
ARmax = 10. CGHS7 ARmax =4.5.
o 0
(c) Coarse grid level 2, 9% cells, (d) Coarse grid level 3, 57
ARmnax = 2.2. cells, ARmax = 2.2.

Figure 4.2: Sequence of grids created by pym = 0.85. Labels above the grids indicate
planes being left uncoarsened in the z-direction by each algorithm (a due to coefficient
anisotropy, o due to an odd number of cells).

how the coarse grids become more and more isotropic. The grid (and, hence, the
coefficient) anisotropy is measured by the maximum cell aspect ratio AR ax.

The only parameter of the algorithm is the value of ujjy,. The optimum value of this
parameter will be determined by numerical experiments on a three dimensional unit
cube in section 4.3.1. Note that pjy, = 1 corresponds to full coarsening.

The number of cells in the coarse grids is, of course, dependent on ;. This is
illustrated in figure 4.3, where the number of cells N on each grid level is shown for
some values of . When the parameter is less than 1, the coarsening ratio for the first
coarse grids in the sequence is quite low as condition (4.1) severely limits the coarsening
process. At some point in the process, the grids are close enough to being isotropic
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Grid level

Figure 4.3: Number of cells at each grid level for a unit cube with 963 cells and ARy =
100 on the finest grid. O: pim = 0.72; O pyim = 0.78; O gy = 0.87; A pugym = 0.96;
+: pim = 1.00; ——: slope for (2 : 1)3 coarsening ratio.

that the coarsening proceeds almost without limitation, and hence the coarsening ratio
approaches the standard (2 : 1)3.

The work involved in finding D, everywhere is proportional to the number of cells
N, and the cost of constructing the coarse grid is similar to that using full coarsening.
When used for the pressure equation in fractional step type algorithms, the matrix
coefficients do not change during the simulation. Due to this, the coarse grids can be
constructed before the simulation, and hence the cost of the set-up phase is completely
negligible.

4.2.4 Intergrid and Coarse Grid Operators

For problems with smoothly varying coefficients, standard tri-linear prolongation and
coarse grid operators defined by direct discretization on the coarse grids are commonly
used (Trottenberg et al., 2001). For problems with coefficient discontinuities, however,
operator-dependent prolongation and Galerkin coarse grid operators have been shown
to improve the convergence rate (de Zeeuw, 1990). In the present work, coefficient dis-
continuities occur whenever there is a large difference in cell size between adjacent cells.
For purposes of numerical accuracy, it is standard practice in DNS and LES to use grids
with smooth stretching, and hence the discontinuities are expected to be small on the
finest grid. Due to the fact that the semicoarsening algorithm typically coarsens small
cells and leaves larger ones, the difference in cell size between adjacent cells is normally
kept within a factor of 2. For these reasons, standard tri-linear prolongation and coarse
grid operators defined by direct discretization on the coarser grids are used in this work.
These choices also ensure that the coarse grid stencils consist of only 7 points, whereas
a Galerkin operator would consist of 27. The parallelization of the smoother is better
with a 7-point stencil, since the two-colour RBPGS smoother completely decouples the
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grid points. The restriction operator is residual summation, which makes physical sense
in the context of a finite volume method (Trottenberg et al., 2001). Only V-cycles are
considered in this work.

4.3 Numerical Experiments

Numerical experiments are performed first to determine suitable values of uj, and
the number of smoothing sweeps (£1,&2) (before and after the coarse grid correction,
respectively). After that, the performance of the algorithm on some model problems
will be evaluated.

Yavneh (1996) found that the smoothing behaviour of the RBPGS smoother on
anisotropic problems with full coarsening can be improved by the use of an over-
relaxation factor w. Therefore, w is included as a parameter in the numerical experi-
ments.

4.3.1 Choice of Parameters

To find suitable values of the parameters, the discretized Poisson equation (3.34) is
solved on a unit cube domain (i.e., z,y,z € [0,1]) for grids with various degrees of
stretching. The source term is set to zero and the initial field is randomized. The grid
coordinates are given by

o 1 {1 tanh{T'(2l/N, — 1)}
tanh(T")

5 } , 1=0,..,N;, (4.9)
where 2! is the coordinate of the [th grid line, I' is a stretching parameter, and the
remaining directions are stretched identically. All grids consist of N = 643 cells. Initial
tests showed that the performance is relatively insensitive to the number of smoothing
sweeps, but that £ = & + & = 4 or 5 gives good results for the different grids. In the
following, (£1,&2) = (2,3) is used exclusively.

An example of the convergence history is shown in figure 4.4, where ||r| is the Lo-
norm of the residual. On the stretched grid, the rate of convergence using full coarsening
(t1im = 1) is very poor — in fact, the over-relaxation parameter w needs to be increased
to ensure convergence for this case. With the conditional semicoarsening, the rate of
convergence is improved considerably.

To measure the performance, some definitions are needed. The convergence factor
¢ is defined as (Trottenberg et al., 2001)

w1 n=m)
o= <”r ”> : (4.10)

[l

where [|7™|| is the residual norm after iteration m. From the definition, ¢ is the average
reduction in residual norm between iterations (MG-cycles) m and n. The asymptotic
rate of convergence is reached after about 4 iterations (see figure 4.4), and hence m = 4 is
used throughout this paper, while n is taken as the number of iterations to convergence
(typically about 10).
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Figure 4.4: Convergence history of the residual norm ||r||. +: AR =1, w = 1.15;
0: ARpax = 10, w = 1.15, pjim = 0.71; O: ARpax = 10, w = 1.15, i, = 0.87; <
ARpax = 10, w = 1.5, i = 1.

1'8.7 0.‘75 0:8 0.55 0:9 0.55 1 8.7 0.‘75 0:8 0.55 0:9 0.55 1
Mim Mim
(a) CPU time per iteration. (b) Convergence factor ¢. O: w = 1.15;
+: w = 1.50.

Figure 4.5: Computational cost and convergence factor for grid with AR .x = 10.

The cost of each iteration depends on the number of cells in the coarse grids, and
hence on piy,. There are two possible measures of this cost: either work units (WU)
or direct timing of the code. Work units attempt to measure the cost of an iteration in
terms of smoothing sweeps on the finest grid, while often neglecting residual evaluations
and intergrid transfers. With the cheap smoother used here, these operations will be
of about the same complexity, and hence direct timing of the code is used here for
simplicity.

The CPU time per iteration ¢ is plotted as a function of pyy, in figure 4.5(a) for
a representative grid. The cost ¢t decreases with increasing pim, since higher values of
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Wim are less restrictive on the coarser grids. The algorithm then generates grids with
fewer cells, which decreases the cost per iteration. The convergence factor ¢, which is
plotted in figure 4.5(b), increases with p;, as expected. This is simply due to the fact
that the coarser grids have been coarsened in directions where the smoother can not
adequately smooth the error. Note that as w is increased, the convergence improves for
high py;m but becomes worse for low py;,,. The more aggressive coarsening with a higher
Uim generates grids that are, on average, more suitable for a higher over-relaxation
parameter in conformance with the results of Yavneh (1996). Since the convergence
factor is clearly a function of both pujy, and w, the optimal value of each parameter
depends on the value of the other.

To get a good measure of the convergence efficiency, the CPU time per iteration is

normalized as
t

= 4.11
—logyp (4.11)

which means that 7 is the time it takes to reduce the residual by one order of magnitude.
The normalized cost 7 for three grids with different maximum aspect ratios is shown
in figures 4.6(a) - 4.6(c). The optimum combination of pjy, and w is different for the
different grids, but some trends can be seen. First, higher values of py,, require higher
values of w, which is an effect of the coarse grids being closer to those generated by
full coarsening. For such grids, Yavneh (1996) suggested over-relaxation parameters of
1.75 and above. Second, the optimum value of u, increases with the maximum aspect
ratio of the grid. This is due to the fact that grids with higher stretching have larger
numbers of coarse grids, and hence higher computational costs. This increased cost
becomes more pronounced for lower values of p;,, which results in an optimum value
that is higher.

A single contour of 7 at a value 15% higher than the optimum is plotted for each
grid in figure 4.6(d). From this, py, = 0.92 and w = 1.45 are taken as compromise
values, yielding convergence within 15% of the optimum for each grid.

4.3.2 Cost Scaling

Optimal multigrid methods have computational costs that scale linearly with the num-
ber of unknowns N. To assess the cost scaling of the present method, the discretized
Poisson equation (3.34) is solved on grids similar to those used in the previous section,
with Np € {16,32,48,64,80,96}. Two different degrees of stretching are used: AR =1
(isotropic) and ARpax = 100. The compromise values of p, = 0.92 and w = 1.45
are used for the stretched grids, while the isotropic grids use the theoretically optimal
w = 1.15.

The normalized computational cost is shown in figure 4.7, where N = N %. The cost
for the uniform grid scales linearly with N, which is characteristic of optimal multigrid
algorithms. The cost for the stretched grid does not scale linearly, but rather like
T ~ N8 Using curve fits, the normalized CPU time on a single CPU is

.10~ _
7%{ 47-1075N (s), AR=1 (4.12)

1.8-1075N18  (5) , ARpax = 100
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Figure 4.6: Contours of 7 scaled by the lowest value for each grid.

Hence, the present conditional semicoarsening algorithm does not show optimal multi-
grid efficiency. For the grid sizes considered here, the cost on the highly stretched grid
is about 2 to 5 times that of the isotropic problem.

These results can be compared to the method by Emvin (1997), who used an al-
ternating plane-smoother with full coarsening. The computational cost scaled linearly
with N for both a uniform and a moderately stretched (ARpax = 10) grid. The cost,
however, was not independent of the problem anisotropy. The stretched grids consis-
tently required about 1.5 times more work than the uniform grids (using the alternating
plane-smoother for both cases), and about 4.5 times more work than the uniform grid
with a pointwise smoother (similar to the AR = 1 case here). Emvin (1997) unfortu-
nately did not present results for grids with higher degrees of stretching, but one must
assume that the cost would continue increasing further with increasing AR ax.
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Figure 4.7: Computational cost versus the number of grid points. ©0: AR = 1; +:
ARpax = 100; —: equation (4.12), AR = 1; ——: equation (4.12), ARyax = 100.

Thus, taking Emvin (1997)’s method as representative of algorithms that adapt
the smoother on anisotropic problems, the present conditional semicoarsening method
shows a worse (and non-optimal) cost scaling with N, but an actual cost level that is
comparable for the grid sizes considered here. As will be seen later, the true benefit of
the present conditional semicoarsening algorithm is its high parallel efficiency.

4.3.3 Parallel Efficiency

The code was parallelized using MPI and run on up to 8 CPUs on a cluster of AMD
Athlon XP machines. The communication was handled by an ethernet switch. With
T(N,p) denoting the normalized CPU time for N cells on p processors, the parallel
efficiency can be defined as

T(N,1)

n(N,p) = DTN (4.13)

The results are shown in figure 4.8. Figure 4.8(a) shows 7 versus the number of pro-
cessors p in traditional fashion. As expected, the efficiency improves with increasing
grid size, since the relative time spent on inter-processor communication then decreases.
The efficiency is slightly higher for the stretched grids, since there are more grid levels
with large numbers of cells compared to the uniform grids. The increase of 1 for the
323 stretched grids with p = 8 is probably an effect of cache performance. In this work,
no cache optimization has been performed, and any such increases in performance are
completely fortuitous.

A slightly different view is shown in figure 4.8(b), where the results have been
plotted versus the number of cells per processor N/p. Apart from some irregularities,
again likely due to cache performance, the results collapse rather well. The parallel
efficiency is above 0.9 for N/p = 4000, and stays above 0.7 even for N/p = 512 — a quite
high value for such a coarse grid.
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Figure 4.8: Parallel efficiency 7 for different grids. Open markers for AR = 1, filled
markers for AR,ax = 100.

For comparison, Brown et al. (2000) studied the parallel performance of Schaffer
(1998)’s method which combines a plane-smoother, a line-smoother, and semicoarsening,
all in fixed directions. They solved a Poisson equation on uniform but anisotropic grids
using a 7-point grid stencil, which is similar to the present case. However, Brown et al.
(2000) defined the parallel efficiency in a slightly different way, as 7(N,1)/(7 (pN,p)),
which makes a direct comparison difficult. Only if 7 ~ N, and thus 7 (pN,p) =
p7 (N,p), is the parallel efficiency defined by Brown et al. (2000) equivalent to (4.13).
This condition holds neither here nor in Brown et al. (2000). With these caveats,
a very rough comparison can still be made. For N/p =~ 8000, Brown et al. (2000)
reported parallel efficiencies of 0.7-0.8 when the domain decomposition was done such
that the plane- and line-smoothers never crossed domain boundaries; 0.5-0.6 when only
the line-smoother never crossed domain boundaries; and 0.2-0.3 for the general domain
decomposition. Compare this to the present results, where n ~ 0.93 for N/p ~ 8000
with no restrictions on the domain decomposition. This shows the inherent parallelism
of the present method, which is mainly due to the parallel properties of the pointwise
smoother.

To really test the parallel efficiency, computations on a larger number of CPUs
would be necessary. Brown et al. (2000), for example, go up to 8- 10% cells on up to
64 processors. That being said, the present results, especially figure 4.8(b), certainly
suggest that the present method might be efficient for very large parallel computations.

Note also that the parallel algorithm is equivalent to the sequential one, in that the
smoother exchanges information at the block boundaries during every smoothing sweep.
In other words, the solution is exactly the same after each iteration independent of the
number of processors used.
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(a) Close to the floor. (b) Slice through the center.

Figure 4.9: Time-averaged streamlines around the wall mounted cube. The flow is from
left to right.

Case Near wall treatment N AR hax
Channel A Schumann (1975) 49,152 8
Channel B hybrid LES/RANS 98,304 393
Channel C wall resolved LES 196,608 32

Wall mounted cube instantaneous log-law 436,696 35

Table 4.1: Complex grid cases. Details of the near wall treatments are given in chapters 5
(Channel C) and 6 (remaining cases).

4.3.4 Complex Grids

One benefit of the present algorithm is that it is trivially applicable to more complex
geometries (that use structured grids). To demonstrate this, the flow around a cube
mounted on one wall of a rectangular channel is solved by LES. This flow has been
studied experimentally and numerically by many authors (c.f. Rodi et al., 1997). The
grid consists of 17 blocks and is stretched in all directions. While only the multigrid
performance on the Poisson equation for the pressure is of interest here, some flow
results are shown in figure 4.9 to give an impression of the geometrical complexity.
Three different plane channel flows are also considered, all with different near wall
treatments which has quite dramatic effects on the grids. Details of all 4 cases are listed
in table 4.1, and the computational cost of solving the Poisson equation is shown in
figure 4.10. Two results are plotted for each case: one using the compromise values
of tim = 0.92 and w = 1.45, and one using the combination found to give the best
performance for each case. As can be seen, the compromise values yield convergence
that is about 30% worse compared to the optimum for each case. On the one hand,
this shows that some tuning of these parameters is necessary to obtain the fastest
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Figure 4.10: Computational cost versus the number of cells. Open markers use i, =
0.92, w = 1.45. Filled markers use the best combination for each case. O: channel A;
<&: channel B; 0: channel C; A: wall mounted cube; —: equation (4.12), AR = 1; ——:
equation (4.12), ARpyax = 100.

convergence possible. On the other hand, it also shows that the compromise values
yield reasonable results even for widely different cases. This is taken as a sign that the
algorithm is relatively, but not perfectly, robust as far as different grid anisotropies are
concerned.

Also plotted in the figure are the curve fits (4.12) to the results for the three di-
mensional unit cube. It is seen that the performance for the complex grid cases agrees
quite well with the unit cube results. Channels A and C have maximum cell aspect
ratios between 1 and 100 and are located between the two curve fits, while channel B,
as expected due to its higher grid stretching, has a higher computational cost.

4.4 Summary and Conclusions

A conditional semicoarsening multigrid algorithm that maintains a reasonably high
convergence rate even on highly stretched grids has been proposed and investigated.
The algorithm displays high parallel efficiencies, mainly due to the inherent parallelism
of the RBPGS smoother. The smoothing behaviour predicted by local Fourier analysis
is used to determine how to coarsen the grid, and while the grids are not optimal in
terms of how they reflect the local anisotropy, they do maintain a structured topology on
all grid levels. The fact that the conditional semicoarsening is based on a local Fourier
analysis results in a strong coupling between the anisotropy of the matrix coefficients
and the smoothness of the error. Several numerical experiments were performed to
determine suitable values for the parameters involved. The combination pyy, = 0.92
and w = 1.45 was found to yield convergence within a computational cost of about
30% of the optimum for all cases studied. The optimum combination was found to
be case-dependent, and some tuning on a case-by-case basis is required to find this
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combination. This being said, the fact that performance within 30% of the optimum
can be achieved by one combination for the many cases studied here suggests that the
algorithm is relatively robust with respect to grid anisotropies.

The computational cost does not scale linearly with the number of grid cells, but
rather like ~ N1 for grids with a maximum cell aspect ratio of 100. While the scaling
is not optimal, the actual cost level is competitive with other multigrid algorithms for
anisotropic problems, especially in parallel situations. Parallel efficiencies of above 90%
were found for grids with as few as 4096 cells per processor.

Only structured coarse grids were considered here, but the algorithm is in some ways
more naturally suited to allowing unstructured coarse grids. Since there would be less
limitations on the coarsening process for such grids, it is conceivable that this would
result in a more favourable cost scaling.



Chapter 5

Wall Resolved LES

While the main topic of this thesis is the modeling of the inner boundary layer in LES,
wall resolved computations are performed for a few reasons. First, these simulations
provide further validation of the numerical method, in that the results can be compared
to existing DNS results. Second, these results can later be used for comparisons when
assessing the approximate near wall treatments in chapter 6. Finally, they provide a
flow database from which physically accurate forcing fields (to be used in chapter 6)
can be extracted.

5.1 Introduction and Review of Plane Channel Flow

Plane channel flow is defined as the flow between two infinitely large plates separated
by a distance of 29, and is, of course, an idealization rather than a real flow. It could
correspond to a few flows that exist in nature, such as the flow between two concentric
cylinders for high D/§ (where D is the average diameter of the cylinders) or the flow in
rectangular ducts for high L,/ (where L, is the spanwise size of the duct, as shown in
figure 1.3). Dean (1978) surveyed a large collection of experiments on rectangular duct
flows, and concluded that the flow statistics become independent of L, for L./§ = 14.
Hence, the idealized channel flow considered here is an appropriate model of the flow in
such high aspect ratio ducts.

Plane channel flow can be characterized by (at least) three different Reynolds num-

bers:
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: (5.1)

where Uy is the average bulk velocity, U, is the average centerline velocity, and w, is
the friction velocity. Note that the length scale used here is the channel half width §,
whereas the duct height 26 is used in parts of the literature. The different Reynolds
numbers in (5.1) are dependent parameters, in that only (any) one of them can be
specified in an experiment or a computation, whereas the remaining two are determined
by the resulting flow. The survey by Dean (1978) found that the empirical relations

Re. =~ 1.2TRe)?® | Re, =~ 0.175Re)5™ (5.2)
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accurately described the experimental data. Transition to turbulence was found to occur
in the range 600 < Rep, < 1400.

At sufficiently high Reynolds number, plane channel flow can be divided into several
sublayers, all sketched in figure 1.2. This division is inspired partly by experimental
observations, but primarily by theoretical analysis of the average streamwise momentum
equation. The average streamwise momentum equation becomes inviscid for y™ > 30
(the outer layer), whereas the effect of the driving pressure gradient is small for y/6 < 0.1
(the inner layer). Matching the solutions to these outer and inner layer equations yields
the famous log-law (c.f. Tennekes & Lumley, 1972)

1
ut=—In(y")+ B, (5.3)
which is valid in the overlap layer 30 < y™ < 0.16". Dean (1978) suggested that
k=041, B=52 (5.4)

provided the best fit to the experimental data in his survey.

Wei & Willmarth (1989) performed experiments in the range 190 < Re, < 1900 to
investigate the effects of the Reynolds number very near the wall, and found that while
the mean velocity profiles essentially collapsed when normalized using inner variables

(i.e., ur and v), the Reynolds stresses did not. More specifically, the wall normal stress

component T displayed the least agreement between the different Reynolds numbers.

Such Reynolds number effects have been found by many experimental and computa-
tional studies, and is an active area of research. A theory that attempts to explain these
effects was developed recently by Wosnik et al. (2000), who argued that the equations
for single- and multi-point statistics! become inviscid at different distances from the
wall. The single-point equations become inviscid for y™ > 30, which is the definition
of the lower limit of the outer layer in figure 1.2. Wosnik et al. (2000), however, ar-
gued that the multi-point equations become inviscid farther out, for y™ > 300. As a
direct consequence, flow statistics are potentially dependent on the Reynolds number
for y* < 300, which is consistent with the findings of Wei & Willmarth (1989) and
others. Furthermore, a true inertial sublayer (in which data should collapse at different
Reynolds numbers) can, then, only be found for y* > 300. From figure 1.2, such an
inertial sublayer can only be expected if 0.167 > 300, i.e. for Re, > 3000.

Starting with the wall resolved LES by Moin & Kim (1982), there have been several
published DNS and wall resolved LES studies of plane channel flow. The rather lim-
ited increase in Reynolds number over the years shows the high computational cost of
resolving the inner layer. The DNS by Kim et al. (1987) was performed at Re, ~ 180,
Moser et al. (1999) performed DNS up to Re, =~ 590, del Alamo et al. (2004) went up
to Re, ~ 950, and the most recent DNS by Hoyas & Jimenez (2005) pushed the limit
to Re; =~ 2000. The rate of increase for LES has been faster, partly due to the formally

1Single-point statistics are formed using information at a single point, such as @, u’v’ etc. Multi-
point statistics use information at multiple points, such as the two-point correlation u/(x)u/(z + lz).
Since spectra are defined as the Fourier transform of two-point correlations, spectral information can
be thought of as multi-point statistics.
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slightly lower resolution requirements and partly due to the fact that the purpose of DNS
studies is to provide extremely accurate results for all quantities, whereas the purpose
of LES studies often only requires accurate prediction of some lower order statistics.
The landmark LES by Moin & Kim (1982) was performed at Re, ~ 640, which was
an impressive achievement at the time. Later Piomelli (1993) performed wall resolved
LES up to Re, =~ 2000. The resolution, however, was quite coarse, and hence one
might wonder whether the rather accurate results were partly fortuitous. Kravchenko
et al. (1996) made use of coarser grids in the core of the channel in a very interesting
numerical method, and as a consequence were able to reach Re, = 4000.

Some important strengths of computational studies were highlighted by these stud-
ies. While it is very difficult to measure accurately at small scales in experiments, there
is no such difficulty in numerical simulations. Hence, these studies allowed for the ex-
amination of the behaviour very near the wall, and for the direct calculation of the
dissipation e. It is also difficult to measure pressure fluctuations in experiments (except
for at the wall), and hence these computational studies were the first to directly compute
all the terms in the exact equation for the turbulence kinetic energy. A final strength is
the amount of data made available by a simulation. It is, for example, difficult to obtain
multi-point statistics from experiments. Such multi-point statistics are easily computed
in a numerical study, and have, among many other things, been used to develop low
dimensional models of near wall turbulence (e.g. Podvin, 2001) and so-called ‘optimal’
residual stress models for LES by Volker et al. (2002).

One of the most important contributions from DNS and LES studies has been the in-
creased understanding of the turbulence structure in the near wall region, as pointed out
by Moin & Mahesh (1998). The dominant features in this region are quasi-streamwise
vortices and high- and low-speed streaks (c.f. Robinson, 1991), which interact and re-
generate continuously. While the sizes of these structures vary, the most energetic ones
are of size A} &~ 100 and A" ~ 800 in the DNS by del Alamo & Jimenez (2003).

Due to the statistical homogeneity of channel flows, the most common numerical
approach is to use periodic boundary conditions in the wall parallel directions. This
assumed periodicity affects the solution unless the domain is large enough to contain
the largest structures. Jimenez & Moin (1991) found that the smallest domains that
sustained turbulence were of sizes L} ~ 250 — 350 and L] =& 100, where the streamwise
value displayed more sensitivity to the Reynolds number. These domain sizes correspond
to the approximate size of the near wall structures, especially in the spanwise direction,
and contain exactly one streak and a pair of quasi-streamwise vortices. For this reason,
Jimenez & Moin (1991) called it the ‘minimal flow unit’ of plane channel flow. While
this provides a definite lower limit for the necessary domain size to sustain turbulence,
accurate results demand much larger domains. For Re, 2 360, most studies have used
L,/0 =27 and L,/§ = (e.g. Moser et al., 1999; Gullbrand & Chow, 2003), but recent
work by del Alamo & Jimenez (2003) showed that even larger domains are needed to
capture the largest structures present?.

2The common use of multiples of 7 stems from the fact that most of the original DNS studies used
spectral codes.
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5.2 Methodology

The numerical method described in chapter 3 is used, and the Smagorinsky model
(equations (2.11) and (2.12)) with the dynamic procedure (equation (2.20) and the ones
leading up to it) is used to model the residual stress tensor. The filter width A is
taken as the cubic root of the cell volume. The quality of the statistics is measured
partly by their convergence in time, and partly by whether they satisfy the appropriate
symmetries across the channel. Averaging is performed over time and the wall parallel
directions.

The grids are uniform in the wall parallel directions, and stretched in the wall normal
direction. The grid coordinates in this direction are given by

tanh{T'(2l/N, — 1)}

!
—1
y==r+ tanh(T) ’

1=0,..,N, (5.5)

where 3! is the y-coordinate of the Ith grid line, and T is a stretching parameter.

Estimation of errors is always important, be it in experimental or numerical in-
vestigations. The errors here are of essentially three kinds: errors due to insufficient
resolution in space and time (either numerical errors or a lack of capturing the physi-
cally relevant structures), errors due to the finite domain size, and finally errors in the
turbulence modeling.

The domain sizes used here are rather conventional, and not as large as those used
by del Alamo & Jimenez (2003). The reason is the current focus on the approximate
near wall modeling, for which the largest scales should be less important. Since many
LES studies have reported accurate results with similar or even smaller domain sizes
(e.g. Piomelli, 1993; Kravchenko et al., 1996; Gullbrand & Chow, 2003), this error is
assumed to be small in the present calculations.

To assess the remaining errors, simulations on different grids and without the tur-
bulence model are performed. Two different grids that are finer than the base case are
considered: one that is refined in the wall parallel directions only, and one that is refined
in the wall normal direction only. Due to the high computational cost, a smaller domain
in the spanwise direction is used for the first of these cases. Removal of the turbulence
model is a (rather drastic) way to test its influence on the results. While it does not
bring out the errors due to the turbulence modeling, it at least provides some measure
of the importance of the modeling.

The differences in the results will be presented throughout this chapter. In summary,
the finer wall normal resolution does not change any flow statistics, while the finer wall
parallel resolution does change the results slightly. This change, however, is considered
small enough for the base grid to give reasonably accurate results, especially in the light
of the purpose of these simulations — had the purpose been a detailed investigation of
the near wall turbulence, for example, finer grids should certainly be used.

Choi & Moin (1994) showed that a time step of size AtT = Atu2 /v ~ 0.4 resulted in
negligible error in their DNS of the minimal flow unit using a numerical method similar
to the one used here. A similar test on the minimal flow unit, though not shown here,
results in the same conclusion for the present method. Since this is the time step used
here, no further tests are deemed necessary.
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Case (Noy Ny, N.) (L, L.)/6 Azt Ayt Ayl AzT  Re,
base (72,80, 64) (2w, 3) 44 0.8 33 24 506
base, without model 47 0.9 35 25 541
fine-zz (128, 80,64) (2m,2) 25 0.8 33 16 512
fine-zz, without model 27 0.9 35 17 543
fine-y (72,124,64) (2w, 3) 44 0.3 24 24 506
fine-y, without model 47 0.3 25 25 543

Table 5.1: Wall resolved LES cases

The important parameters for the different cases are summarized in table 5.1. The
Reynolds number based on the bulk velocity is Rep = 9000, which results in Re, ~ 500.
The mean pressure gradient is adjusted at each time step to maintain a constant Uj.

5.2.1 Initial Condition and Transition

Fully developed channel flows are, by definition, independent of the initial conditions.
There is one caveat, though, in that the initial conditions must be such that the flow
transitions to turbulence. Linear stability theory (c.f. Drazin & Reid, 1981) predicts
that plane channel flow is unstable to infinitesimal disturbances® for Rep > 3848, and
hence any initial condition should eventually lead to transition and subsequent turbu-
lence due to the round-off errors in any computer. This process, however, can be very
slow in numerical simulations, since the unstable modes have to grow from the round-
off amplitude of 107!6 (with double precision), and the growth rate is very low. For
example, the most unstable mode with A\, /6 = 1 at Re, = 6667 grows by two orders
of magnitude in tU,/d ~ 800 (Drazin & Reid, 1981), a typical total time of the present
simulations.

In practice, this transition can be accelerated by explicitly introducing large fluc-
tuations in the initial laminar field. If these fluctuations are eigenmodes of the Orr-
Sommerfeld equation (c.f. Drazin & Reid, 1981), then the resulting transition will be
physically representative of natural transition. Since the transition phase is of no inter-
est here, random white noise with 10% intensity is added instead. While less physically
appealing, it leads to transition after only about tU,/d ~ 15.

While the transition is unphysical, it nonetheless shows some interesting phenomena.
Figure 5.1 shows the evolution of two quantities from the given initial condition for one
of the grids. The wall shear stress (figure 5.1(a), normalized as the friction Reynolds
number) is initially low, but increases rapidly at tU/0 =~ 10 when the flow undergoes
transition. This increase happens later for the case with a residual stress model, which
is simply due to the added dissipation of the model. Also, the whole transition process
happens more slowly when the model is used.

The wall normal velocity fluctuation near the center of the channel is shown in
figure 5.1(b). It decays initially, since all but a few modes (of the several hundred
thousand) of the initial disturbances are stable. Towards the end of the increase in

31n the literature this limit is commonly given as Re. > 5772. For laminar flow U. = 3U,/2, which
implies Rep > 3848.
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Figure 5.1: Time histories after initializing to a laminar profile with random white noise
added on grid fine-y. —: with model; ——: without model.
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Figure 5.2: Time history after initializing to a laminar profile with random white noise
added on grid fine-y with a model. Quantities are averaged over all grid cells without
proper volume weighting. —: C' from the dynamic procedure divided by the equivalent
value from the standard Smagorinsky model with van Driest damping (using C' = 0.132);
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the wall shear stress, however, the velocity fluctuation near the center of the channel
increases again to a fully turbulent state. The fact that this increase happens later in
the middle of the channel simply shows that the instability is located closer to the wall.

To see how the dynamic procedure responds to this evolution, the Smagorinsky
coefficient C' and the eddy viscosity vjes are shown in figure 5.2. These values have been
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Figure 5.3: Mean velocity. Open markers with model, filled markers without model.
O: base grid; O: fine-zz grid; +: DNS at Re, ~ 550 by del Alamo et al. (2004); ——:
ut =y and T = In(y")/0.41 + 5.2, respectively.

averaged over all cells, without any volume weighting, and thus these quantities have no
physical significance. After an initial (very brief) increase, both quantities decay as the
stable modes of the initial disturbance decay. During the transition phase, however, the
quantities increase in response to the presence of resolved turbulence. This shows that
the dynamic procedure is sensitive to the state of the flow, which is indeed the reason
for its success. The eddy viscosity reaches a fully developed state after about 70 time
units. This probably explains why the case with a model shows a slower development
of the wall shear stress in figure 5.1(a), since the flow has to continue adjusting to the
eddy viscosity up to tU,/d ~ 70.

5.3 Single-Point Statistics

The mean velocity is shown in figure 5.3 for some representative cases. The remaining
cases are essentially indistinguishable from the ones shown: the fine-y profile coincides
with the base one, while all the cases without a model coincide. Both the base and the
fine-xz cases agree well with the DNS by del Alamo et al. (2004), except for the fact
that the wake is too small for both. This absence of a wake was found by Cabot et al.
(1999) as well, using grids with similar resolutions as here. They concluded that it was
due to insufficient resolution in the core of the channel. More interestingly, 7™ is about
0.25 lower for the fine-zz grid (compared to the base grid) for y* > 15. This indicates
that the buffer layer is slightly underresolved.

Removing the model causes a rather large underprediction of the velocity gradient
in the buffer layer, and a lower velocity gradient up to y™ ~ 100. Clearly the grids are
too coarse to properly resolve the buffer layer turbulence. Gullbrand & Chow (2003)
obtained qualitatively similar results when removing the model. Interestingly, a wake
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(a) With model. (b) Without model.

Figure 5.4: Resolved normal stresses. Open markers with model, filled markers without
model. From top to bottom w/v/, w'w’, v'v" (offset for clarity). O: base grid; O: fine-xz
grid; +: DNS at Re; ~ 550 by del Alamo et al. (2004).

is recovered when the model is removed, although the reason for this is not clear. One
possibility is that the lower effective viscosity essentially translates into a slightly higher
effective resolution.

The resolved normal stresses are shown in figure 5.4, where, again, the results for the
fine-y grid (not shown) coincide with the base grid. The streamwise stress is overpre-
dicted in the buffer layer for the base grid, but is closer to the DNS result for the fine-zz
grid. Both the spanwise and wall normal components are slightly underpredicted in the
present results. This implies a too high level of anisotropy in the buffer layer, especially
for the base case. This is a very common result in LES, and is due to the grid resolution
in the wall parallel directions (c.f. Kravchenko et al., 1996).

The agreement with DNS in the buffer layer becomes worse when the model is
removed. The anisotropy is now too low, with underpredicted u/vw’ and overpredicted
vv" and w'w’. The fact that the peak uw/u’ occurs closer to the wall also suggests that
the near wall turbulence in the buffer layer (quasi-streamwise vortices and streaks) has
moved closer to the wall. Note that the resolved kinetic energy (i.e., half the sum of the
three normal stress components) actually decreases when the model is removed, despite
the dissipative character of the model. This seemingly contradictory result is due to a
simultaneous change in the production of resolved kinetic energy —u’v'0w/0y, which is
lower without a model due to the lower mean velocity gradient.

The eddy viscosity and the dynamically computed Smagorinsky coefficient C' are
shown in figure 5.5 for all three grids. The average eddy viscosity is lower than v for all
cases, which shows both that the grid resolution is relatively fine and that the Reynolds
number is rather low. The eddy viscosity is identical in the base and fine-y cases, but the
mean value of C differs between the two. This illustrates a key concept of the dynamic
procedure, in that it finds the value of C' that provides the appropriate dissipation. The
fact that the statistics of the two cases coincide indicates that the two flow fields are
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Figure 5.5: Average eddy viscosity and dynamic Smagorinsky coefficient. O: base grid;
O: fine-xz grid; <: fine-y grid.

similar (and that the fields are well resolved in the wall normal direction). The eddy
viscosity should, therefore, be similar in the two cases, which indeed is the case. The
difference in the wall normal grid size causes differences in the value of the filter width
A for the two grids, and hence the dynamic procedure finds different values of C.

The eddy viscosity is lower for the fine-zz grid, since the finer grid resolution in the
important directions requires a lower vjs. One also notes that the dynamic procedure
correctly reduces C in the very near wall region, since C' = 0 is needed at the wall to
satisfy the boundary condition for 7;;.

The structure of the near wall turbulence causes the vorticity to be a natural vari-
able to examine. The quasi-streamwise vortices in the buffer layer are slightly inclined
with respect to the wall (c.f. Robinson, 1991), but are close enough to the streamwise
direction that the streamwise vorticity w, = Odw/dy — dv/0z is a good measure of
their strength. Similarly, the high- and low-speed streaks near the wall are fairly elon-
gated and primarily associated with fluctuations of u. Thus, the wall normal vorticity
wy = 0u/0z — Ow/O0x ~ Ou/0z in this region, which implies that w, is a good measure
of the strength of the streaks.

The magnitudes of the streamwise and wall normal vorticity fluctuations are shown
in figure 5.6. The DNS by del Alamo et al. (2004) shows a peak wyms at y+ ~ 14,
which indicates that this is where the streaks are the strongest. This peak coincides
with the location of the peak u/u/ in figure 5.4. The present results show substantially
lower wy rms, although the peak value of uw'u/ agrees well with the DNS. This suggests
that the streaks are wider in the present LES, and the fact that the fine-xz grid shows
higher levels of wy yms supports this. Interestingly, the turbulence model has little effect
on the wall normal vorticity.

The effect of finer grid resolution is to increase w; rms Dy about 7% at y* & 12, both
with and without the model. From figures 5.4(a) and 5.4(b) the equivalent decreases of
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Figure 5.6: Magnitude of the vorticity fluctuations. Open markers with model, filled
markers without model. O: base grid; O: fine-xz grid; +: DNS at Re, =~ 550 by del
Alamo et al. (2004).

ufs is about 6% for both cases. Assuming
ut

s~ (56)
z

for some average streak spacing AT suggests that A\ decreases by 10-15% when the
grid is refined, and the fact that these changes occur both with and without the model
indicates that such a decrease of the streak spacing is one main effect of the finer grid
resolution.

The streamwise vorticity magnitude w; ;ms has a local maximum at yt ~ 18 and
a local minimum at y* & 5 in the DNS results. Kim et al. (1987) argue that these
locations correspond to the average center and edge of the quasi-streamwise vortices,
respectively. The present results accurately predict the location of the local minimum,
but erroneously predict the local maximum at y* ~ 10 — 12. This suggests that the
streamwise vortices in the present simulations both are located too close to the wall and
are too small in diameter. While the location of the local maximum does not agree with
the DNS, it does agree with the location of peak wy, s for all cases. This indicates that
the whole near wall turbulence cycle is too close to the wall in the present simulations.

Interestingly, whereas the turbulence model had little effect on the wall normal vor-
ticity, it is instead the grid resolution that appears to have little effect on the streamwise
vorticity. That being said, the fine-zz case with a model shows higher levels of wg rms
for y™ > 5 in comparison to the base case with a model.

Removal of the turbulence model increases the streamwise vorticity by about 40%
throughout the buffer layer, and causes an overprediction compared to the DNS for
yT < 12. This is consistent with simultaneous increases of vt . (by about 30%) and

rms
wit  (by about 25%). Since the streamwise vortices are a main component of the wall
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Figure 5.7: Resolved (—W+, upper curves) and modeled (712", lower curves) shear
stresses. Open markers with model, filled markers without model. ©O: base grid; O:
fine-xz grid; +: DNS at Re, ~ 550 by del Alamo et al. (2004).

normal velocity fluctuations, a large increase of w, likely leads to a higher resolved shear
stress.

Figure 5.7 shows the resolved and modeled shear stresses in the stress balance rela-
tion for channel flows (2.30). The resolved stress clearly dominates, in fact it is larger
than the modeled at all grid points. Although the viscous stress is not shown, it is the
dominant component for y* < 10. It is also larger than the average modeled stress
across the channel, due to the fact that the eddy viscosity is smaller than the molecular
one for these grids (see figure 5.5(a)). The modeled stress is about 10% of the resolved
stress at y™ ~ 10 — 15, and this ratio then decreases down to about 1% in the core of
the channel.

This low level indicates that the model has a very limited effect on the transfer of
momentum. The poor results without a model, however, show that the overall effect of
the model is rather large. Thus, the most likely conclusion is that the main effect of the
model is to provide the necessary dissipation of resolved kinetic energy. Equivalently,
the grids used here are fine enough to directly resolve the dominant stress-generating
structures, but not nearly fine enough to accurately predict the dissipation.

The effect of refining the grid is, as expected, simultaneous increases and decreases of
the resolved and modeled shear stresses, respectively. The case without a model overpre-
dicts the shear stress compared to the DNS, which is consistent with the overpredicted
streamwise vorticity discussed above. The re-arranged shear stress balance (2.33) then
shows how this overly large resolved shear stress translates into a too low mean velocity
gradient, as evidenced in figure 5.3.

Finally, it is clear that different quantities show different sensitivity to the grid res-
olution — the present grids give reasonably accurate mean velocity profiles and resolved
stresses, but underpredict the vorticity fluctuations rather drastically. Since the vortic-
ity involves velocity derivatives, which amplify the smaller scales, this underprediction
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is not unexpected even for wall resolved LES.

5.4 Multi-Point Statistics

While single-point statistics bring out many important features of the resolved flow
fields, they do not convey information about the length scales at which the processes
take place. Such information can be brought out by considering multi-point statistics
instead.

Two-point correlations can be defined in a very general sense, but are restricted
to points separated only in the wall parallel directions in this thesis. With [, and [,
denoting the separation distance in the streamwise and spanwise directions, respectively,
the two-point correlation between two resolved velocity components is (c.f. Tennekes &
Lumley, 1972)

rij(le, ) = wj(z, y, 2, )uj(x + 1oy, 2 +15,1) (5.7)

where r;; is a function only of the separation due to the statistical homogeneity. Note
that the resolved Reynolds stresses are W = 7143(0,0), and that the resolved kinetic
energy is r;(0,0)/2. Also, since the resolved shear stress is negative, r12(0,0) < 0. In
this thesis, referring to a ‘high’ value of r12(0,0) implies a large negative value.

The two-point correlation coefficient is defined as

T4 lwa lz
sl 1) = — 2ol 53)

ui,rmsuj,rms

For isotropic and homogeneous turbulence, the energy spectrum function E(k) is
defined as the three dimensional Fourier transform of half the trace of the two-point
correlation, with the directional information in the wavenumber vector averaged out
(c.f. Tennekes & Lumley, 1972). More simply put, E(k) is the kinetic energy between
wavenumbers k and k + dk, and the kinetic energy u/u//2 = I E(k)dk. The aver-
aging of directional information implies that k& then represents the magnitude of the
wavenumber, i.e. k > 0.

For the channel flows considered here, the Fourier transform is only well defined
in the wall parallel directions. One can then consider one dimensional spectra Ej(kj),
where the Fourier transform is taken in direction j. Due to the periodic boundary
conditions, this Fourier transform is actually a Fourier series with wavenumbers k](-n) =
2mn/Lj, but such technicalities are ignored here for simplicity.

For plotting purposes, the so-called premultiplied form kE(k) can be considered.
Note that

o / B(k)dk = / KE(k)d (Ink) = / KE()d (In ) (5.9)
0 —00 S

with A\ = 27/k. When kE(k) is plotted in a linear scale versus In )\, the area under

graph represents the kinetic energy contribution from different wavelength intervals.
The one dimensional energy spectra are plotted in their premultiplied forms in fig-

ure 5.8. Considering first the cases with a model, the overall peak in the spectra occurs
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Figure 5.8: Contours of the premultiplied one dimensional spectra kE (k). 15 contours
between 0 and the common maximum, with the axes the same columnwise. The left
column are the streamwise spectra, the right column are the spanwise. Top row: base
grid with model; second row: fine-zz grid with model; third row: base grid without
model; bottom row: fine-zz grid without model.
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at yT ~ 12 — 14 for wavelengths A} ~ 800 and A\ =~ 110 for the base grid, and at
only slightly smaller wavelengths (A ~ 100) for the fine-zz grid. This 10% decrease of
A corresponds well to the estimate based on the wall normal vorticity magnitude in
the previous section. The spectra look qualitatively similar for the two grids, which is
encouraging. Both cases, however, show signs of the domain sizes being insufficient in
both directions, which is consistent with the findings of del Alamo & Jimenez (2003).
The fact that most of the single-point statistics are still rather well predicted, despite
the limited domain sizes, shows that the most important dynamical phenomena are
contained within relatively smaller wavelengths.

It is interesting to note the behaviour in the small scale limit. In the spanwise
direction, there is considerable energy at the numerical cut-off in the buffer layer for
both grids. In the streamwise direction, however, the energy is very low at the numerical
cut-off for both grids. One might then conclude that the grid resolution is sufficiently fine
in the streamwise direction. On the other hand, the fact that the streamwise spectra are
different at small wavelengths shows that there are resolution effects at play. Whether it
is the finer spanwise resolution that generates smaller streamwise motions (which would
suggest that the streamwise resolution is sufficiently fine) or whether the streamwise
resolution affects the flow such that the energy decays too quickly as A, — 2Ax is
impossible to tell. Either way, around y* ~ 50 the dominant streamwise wavelength
is somewhat lower for the base grid compared to the fine-xz grid. Apart from that,
the dominant streamwise wavelength stays more or less constant across the channel, at
what corresponds to A\;/d ~ 1.6. Here one can note that del Alamo & Jimenez (2003)
found peaks at larger wavelengths of A, /0 =~ 3 in their DNS on a much larger domain
(Ly/0 = 8m, L,/§ = 4m). The fact that the smaller domains used here result in lower
wavelengths at the peaks is consistent with expectations.

The dominant spanwise wavelength grows to A7 ~ 700 towards the center of the
channel for the base grid. This corresponds to A,/0 ~ 1.4, which is close to half the
domain width. In contrast to the streamwise direction, the peak spanwise wavelength
agrees well with the DNS by del Alamo & Jimenez (2003).

Consider next the cases without a residual stress model, the removal of which results
in rather different spectra. The peaks occur slightly closer to the wall, at y ™ ~ 12. While
a minor difference, it is consistent with the peaks at slightly lower y T for the single-point
statistics. The peak spanwise wavelength in the buffer layer is AT ~ 90 for the base grid
and A\ ~ 80 for the fine-rz grid (again, the decrease is consistent with the estimate
based on the wall normal vorticity magnitude).

The peak streamwise wavelength at y™ & 12 is A} & 400 for both grids, considerably
shorter than for the cases with a model. The vertical and spanwise velocity fluctuations
have their peaks at even smaller wavelengths A} & 200 (not shown). The fact that the
v’ and w’ components are associated with smaller streamwise structures is consistent
with DNS findings by e.g. Jimenez et al. (2004), but the wavelengths are too small in
the present results. This shows that the present grids are too coarse for DNS, and that
the added dissipation from the residual stress model improves the structure of the buffer
layer turbulence by increasing the length scales. Furthermore, the base grid has a peak
in the streamwise spectrum at y* = 35 for A} ~ 150. This is likely due to a pile-up of
energy near the numerical cut-off. Interestingly, the fine-zz grid shows no signs of such
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a pile-up, which suggests that there is some critical resolution for which this occurs.
When the model is included, the added dissipation prevents such pile-up of energy.

Towards the center of the channel, the dominant wavelengths approach those for
the cases with a model. This is not unexpected, since the resolution here is much finer
relative to the integral scales. For both grids there is a spurious peak for rather large A}
around y* & 200 (base grid) and 100 (fine-zz grid). The reason for this is not known,
but one may note that the streamwise spectra develop large scale energy at those values
of yT, respectively. It is, then, possible that the spurious peaks in the spanwise spectra
are related to this formation of larger structures.

5.5 Turbulence Structure

Snapshots of the streamwise velocity fluctuation u’ in the buffer layer are shown in
figure 5.9 for three cases. The elongated structure of the streaks is clearly seen, as is the
rather random nature of their relative positions. The low speed streaks are longer (in
the streamwise direction) and narrower (in the spanwise) than the high speed streaks
for the cases with a model, which agrees with the review by Robinson (1991). There are
no qualitative differences between the results on the two grids (with a model), but there
appears to be somewhat more small scale structures on the finer grid, as one would
expect. Removing the model creates considerably more small scale activity due to the
lower dissipation.

For all cases there are structures of similar size as the grid resolution, but this is
particularly true for the case without a model. This implies that the turbulence creates
the smallest scales possible, and hence that these simulations are, by nature, poorly
resolved in this region. Only by refining the grid towards typical DNS resolutions
(AzT ~ 8, Az ~ 5 for spectral methods, which corresponds to finite-volume cell sizes
of about half of that), where the molecular viscosity is strong enough to dissipate the
energy, can this issue be removed.

Contours of the streamwise vorticity are shown in figure 5.10. There is a strong
vortex at 2T ~ 1390, y* ~ 12 (with negative vorticity). The solid lines in figure 5.9(a)
show the approximate location of this vortex. Notice the high speed streaks immediately
to the left (above in figure 5.9(a)) and right (below in the figure) of this vortex. The
streak at 2T ~ 1450 is lifted away from the wall by the vortex, whereas on the opposite
side a streak is formed by the motions towards the wall (at 2™ ~ 1350).

This shows the interplay between the streaks and the streamwise vortices, and how
numerical simulations aid in the elucidation of these mechanisms. A wall resolved LES
clearly retains these dynamics, albeit not with the accuracy of DNS. The fact that these
near wall motions, that clearly scale on viscous (and hence Reynolds number dependent)
length scales, must be captured by wall resolved LES illustrates the high computational
cost of such simulations. The objective of approximate near wall treatments is to model
these dynamics instead, thereby allowing for much coarser grids in the near wall region.
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(a) Base grid with model. The solid lines at = ~ 2360 and 2" =~ 1390 mark
the locations of the slice and the strong vortex in figure 5.10, respectively.
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Figure 5.9: Snapshots of the streamwise velocity fluctuation u’ at y* ~ 12. Contours
one standard deviation (i.e., s, taken from the base case) above and below zero,

where darker regions imply higher velocity.
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Figure 5.10: Snapshot of the streamwise vorticity w; at 7 ~ 2360 for base grid with
model. Contours spaced 0.1 units apart, with solid and dashed lines representing positive
and negative vorticity, respectively.

5.6 Summary

The wall resolved LES results in accurate statistics and qualitatively correct instanta-
neous flow structures. The effect of the residual stress model is primarily to provide
dissipation, since the modeled stresses are much smaller than the resolved ones through-
out the channel —in fact, they are even smaller than the viscous ones, at least on average.
Removal of the residual stress model changes primarily the flow in the region very near
the wall, say for y™ < 30, which then translates into an underpredicted mean velocity
profile throughout the channel. The fact that the mean velocity gradient is decreased
implies that the removal of the model increases the resolved stress more than it decreases
the modeled one. This is consistent with the fact that the modeled stresses are very
small, and that the main effect of the model is to provide the appropriate dissipation
of resolved kinetic energy.



Chapter 6

Hybrid LES/RANS

The simulations of the previous chapter illustrate the sensitivity of the results to the
resolution in the buffer layer when resolving the inner boundary layer in LES. Since the
necessary grid resolution scales on viscous length scales, the computational cost becomes
highly dependent on the Reynolds number — as discussed in chapter 1, the number of
grid cells necessary is ~ Re% ~ Rell)'75.

One way to remove this scaling of the computational cost is to model, rather than
resolve, the inner boundary layer. Resolution of the outer boundary layer requires a
fixed number of cells independent of the Reynolds number, and hence the computational
cost scaling when modeling the inner layer depends almost exclusively on the resolution
requirements of the modeling strategy there. The strategies covered here all have costs
either independent of Re or at most ~ log Re.

When only resolving the outer layer motions, the grid size is based on the outer
length scale 4. Since the scales in the inner layer decrease dramatically as the wall is
approached, the ratio of the grid size to the inner (viscous) length scale increases as well,
and hence the filtering operation in LES becomes increasingly like an ensemble average!.
Therefore, it is appropriate to view the near wall turbulence in a statistical sense. With
some exceptions (see section 6.1.4, or the reviews by Cabot & Moin (1999) and Piomelli
& Balaras (2002)), most approximate near wall treatments in LES proposed to date are
based on this statistical view of the turbulence in the inner boundary layer.

Parts of the work reported here have been published as Larsson et al. (2005b), will
appear as Larsson et al. (2006a), and have been submitted for publication as Larsson
et al. (2006b).

6.1 Introduction and Review of Approximate Near Wall
Modeling

There are many possible modeling strategies that follow the general concept outlined
above, i.e. that use a statistical model in the inner layer. The three most common such
approaches will be covered in the following sections, and a sketch of the grids used in

"More practically, one could similarly say that each grid cell contains many turbulence structures
near the wall.
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Figure 6.1: Sketch of grids for the most common approximate near wall treatments.
In wall stress models, the evolution equations are solved on the left grid. The wall
shear stress is either estimated from some algebraic relations or by solving the thin
boundary layer equations on an auxiliary grid (the middle grid). In both cases the
flow of information is indicated by the arrows. For hybrid LES/RANS, the evolution
equations are solved on the right grid, and the turbulence model switches to a RANS
model near the wall.

these approaches is shown in figure 6.1. Other near wall modeling strategies that do
not rely on this statistical view have also been proposed. One such method is reviewed
briefly in section 6.1.4.

6.1.1 'Wall Stress Models that use Algebraic Relations

One group of models uses algebraic equations to relate the wall shear stress to the
instantaneous velocity somewhere in the overlap layer, and hence there is no need to
solve the evolution equations below this point. These methods are analogous to the
‘wall functions’ commonly used in RANS, but some modifications are needed for their
application in LES. Since the first grid point is placed in the overlap layer, at a constant
value of y/d, the computational cost of these methods is independent of the Reynolds
number.

The log-law given by (5.3) is valid in the overlap layer 30 < y* < 0.15%1 for average
quantities. The simplest algebraic wall stress model is to assume that each grid cell
adjacent to the wall is coarse enough to effectively represent an ensemble average, and
hence to apply (5.3) directly to each cell in an instantaneous fashion. This procedure is
common in atmospheric flows (Piomelli & Balaras, 2002), and was used by Krajnovic
& Davidson (2003) to compute the flow around a bluff body.
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The pioneering LES by Schumann (1975) introduced a novel boundary treatment
that is more physically appealing. Instead of relying on the assumption that each grid
cell effectively represents an ensemble average of the turbulence, it relies on the weaker
assumption that the wall shear stress and the velocity in the cell adjacent to the wall

are in phase as
Ui Twgi

(ui)  (Tw,i)
where 7,; = v0u;/0yl, and (-) is some type of averaging operation. Taking this to
be an average over the wall parallel directions, both u; and (u;) are available from
the instantaneous velocity field. Solving the log-law (5.3) for (7, ;) then allows for the
calculation of the instantaneous wall shear stress by (6.1) (Grotzbach, 1987).

Piomelli et al. (1989) suggested improvements to this boundary condition, but by
and large the original formulation by Schumann (1975) still constitutes a rather accurate
boundary condition for the flows it was designed for, i.e. attached boundary layers in
approximate equilibrium. Worse performance for separated and non-equilibrium flows
has been reported by Balaras et al. (1996) and Wang & Moin (2002).

Wu & Squires (1998) applied relation (6.1) in a slightly different way in their LES
of the boundary layer over a swept bump. Instead of computing the average wall shear
stress from the log-law, they instead took (7, ;) from an a priori RANS calculation.
This approach is then no longer predictive, but it does remove the assumption of the
log-law being valid on average.

, (6.1)

6.1.2 'Wall Stress Models that use Auxiliary Grids

A second group of models solves the LES evolution equations only in the outer boundary
layer, and then solves a simplified set of equations (typically the thin boundary layer
equations) using a RANS turbulence model on an auxiliary grid all the way down to the
wall. These auxiliary equations relate the instantaneous velocity in the overlap layer
from the LES (which is given as a boundary condition) to the wall shear stress, which is
then provided as a boundary condition back to the LES. While the approach is similar to
the algebraic wall stress models described above in that it establishes a relation between
an outer layer velocity and the wall shear stress, more physics are included due to the
more elaborate near wall treatment (Balaras et al., 1996; Wang & Moin, 2002).

This approach was originally proposed by Balaras et al. (1996), who applied it to
plane channel flow, rotating channel flow, and the flow in a square duct. The results
for the plane channel flow were similar to results obtained by the Schumann (1975)
boundary condition, but they found improved results for the more complex flows studied.
For these flows the mean velocity profile does not obey the standard log-law, and hence
the use of a near wall treatment that does not enforce such a log-law leads to improved
results. Wang & Moin (2002) applied a similar method to the flow over a hydrofoil,
and reported improved results compared to algebraic models, especially near the small
separation zone.

Due to the RANS treatment, the auxiliary grid can be arbitrarily coarse in the
wall parallel directions, but must resolve the wall normal direction properly. If the
first grid point (in the LES grid) is placed at a constant y/é (in the overlap layer),



6 Hybrid LES/RANS 67

then the auxiliary grid must extend up to the same y/J. The first cell in the auxiliary
grid must have a constant size in viscous units, typically Ay,jux’l ~ 1. With geometric
grid stretching, it is then straightforward to show that the number of cells in the wall
normal direction is ~ log Re, (Nikitin et al., 2000), and thus the computational cost is
not independent of the Reynolds number. The logarithmic scaling, however, is still an
enormous improvement compared to wall resolved LES. Note also that there is no need
to solve a Poisson equation (the most expensive part of LES algorithms) for the thin
boundary layer equations, and thus the cost increase is rather low.

While this approach has performed well for a reasonably wide range of flows, the use
of the thin boundary layer approximation prevents these methods from being universally
applicable. It is conceivable that future developments will solve this problem, and hence
this approach is a promising one deserving future attention.

6.1.3 Models that Adapt the Residual Stress Model

In a third group of models, the full evolution equations are solved all the way down
to wall, with adaptation of the turbulence model in the inner layer. This group of
models in some ways represent the most straightforward application of the sketched
boundary layer in figure 1.2, in that the model is changed as the wall is approached.
Following the fact that the near wall turbulence can be viewed in a statistical sense,
RANS models (usually based on the eddy viscosity hypothesis (2.11)) are commonly
used in this region. There are many specific models in this group, which typically go by
names such as ‘hybrid LES/RANS’ (Davidson & Dahlstrém, 2004; Temmerman et al.,
2005) or ‘detached eddy simulation (DES)’ (Nikitin et al., 2000). The computational
cost of this approach is higher than the ones discussed previously due to the need to
solve the full evolution equations (including the Poisson equation) all the way down to
the wall. With suitable grid stretching, however, the cost only increases logarithmically
with the Reynolds number (as discussed in the previous section). In theory, LES/RANS
could provide accurate results for a wide range of flows, the range of applicability being
determined by the specific turbulence models used. In practice, however, most studies
have shown that while the results are vastly improved compared to simulations with-
out any near wall modeling (on similarly coarse grids), the skin friction is consistently
underpredicted by around 10-15% in attached boundary layers (Nikitin et al., 2000;
Piomelli et al., 2003). The reason for this underprediction is that an artificial buffer
layer develops between the RANS and LES regions in the domain, where the turbulence
‘transitions’ from being mainly modeled to mainly resolved. This transition is accom-
panied by a shift in the mean velocity profile to a higher value, which results in a too
low skin friction. While a detailed discussion will be given later, the velocity shift can
be seen in figure 6.5(a) (the curve denoted by circles, around y* ~ 200).

Baggett (1998) performed LES on coarse grids with and without near wall RANS
modeling, and found unphysical streak-like structures in the near wall region. These
‘superstreaks’ had spanwise dimensions of two grid points, overly large streamwise di-
mensions, and were associated with highly anisotropic resolved motions (i.e., too high
w'v/ and too low v'v/ and w'w’). He further argued that these superstreaks cause a
de-correlation of the streamwise and wall normal velocity fluctuations, which results in
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a too low resolved shear stress and, consequently, a shift in the velocity profile. Hamba
(2003) obtained the velocity shift using both LES/RANS as discussed here and with
the modeling regions swapped (i.e., LES near the wall and RANS in the core of the
channel). Several studies (e.g. Piomelli et al., 2003; Davidson & Dahlstrom, 2004; Tem-
merman et al., 2005) have experimented with the location of the modeling interface, all
resulting in minimal change of the size of the velocity shift. Similarly, experiments with
different interface conditions (e.g. Davidson & Dahlstrom, 2004; Tucker & Davidson,
2004) and different turbulence models (e.g. Nikitin et al., 2000; Tucker & Davidson,
2004; Temmerman et al., 2005) have failed to remove the velocity shift. Furthermore,
grid refinements in section 6.2.1 will show that the solution reaches a grid independent
state that still has a velocity shift. The main conclusion of these studies, then, is that
the velocity shift is a rather robust feature of LES/RANS, with little dependence on
the details of the specific models, interface locations or conditions, or grid resolutions
used.

In light of this robustness, there have been recent attempts to remove the velocity
shift by additional forcing of the momentum equations. The role of this forcing can
be seen in different ways: as a way to provide better boundary conditions to the LES
region, as a way to account for the backscatter of energy from the unresolved motions,
or simply as a way to help trigger resolved motions with the correct physical structure.
Piomelli et al. (2003) viewed the forcing as a way to account for backscatter, and argued
that it, therefore, should have length and time scales on the order of the grid size and
time step, respectively. Hence, their forcing field was essentially white noise, and they
reported a lower velocity shift and (by visual inspection) that the superstreaks were
broken up. Batten et al. (2004) and Davidson & Billson (2006) proposed stochastic
models that generate forcing fields with predefined spectra and anisotropy, and reported
quicker transition to resolved turbulence (Batten et al., 2004) and a lower velocity shift
(Davidson & Billson, 2006), respectively. Davidson & Dahlstrom (2004) took the forcing
field from a DNS database in order to get a field with physical structures. While they
reported a lower velocity shift, their particular choice of forcing term acted as a source
of mean momentum, thereby destroying the conservation of momentum inherent in the
Navier-Stokes equations.

6.1.4 Wall Stress Models based on Control Theory

The approximate near wall treatments discussed up to this point all view the inner layer
in a statistical sense, and attempt to model the physics of this layer in different ways.
A radically different approach was taken by Nicoud et al. (2001), who instead posed the
problem in a completely mathematical fashion. In essence, they viewed it as a control
problem, with the resolved velocity field as the state variables and the instantaneous wall
shear stresses as the control variables. They then defined a cost function as the mean
square difference between the plane-averaged velocities (u) and (w) and a reference state
given by the log-law (5.3) (and w = 0). They then used control theory to determine the
wall shear stresses such that this cost function was minimized.

This method uses grids that are coarse in all directions, and thus there is a certain
similarity to the algebraic wall stress models discussed in section 6.1.1. The key dif-
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ference, however, is the lack of any physical reasoning in the method by Nicoud et al.
(2001) — it is a completely mathematical approach, that requires no knowledge about
the physical processes.

One benefit of the approach based on control theory is the fact that numerical
errors are accounted for implicitly, since the cost function measures the error in the
discrete velocity field. The biggest drawback is that the method is not predictive, in
that it drives the flow towards the specified reference solution. A second drawback
is the high computational cost of solving the control problem — Nicoud et al. (2001)
reported a 20 times higher cost compared to a ‘non-controlled” LES. Later, Templeton
et al. (2006) successfully reduced the cost of the approach to only 2-3 times higher than
a non-controlled LES.

These drawbacks aside, methods based on control theory appear promising, and
should be considered in future work.

6.1.5 Objectives

The hybrid LES/RANS approach is chosen in the present study, primarily due to the
theoretically large range of applicability. The main focus here is on the artificial buffer
layer that develops around the modeling interface, both in terms of insight into its
physics and dynamics, and in terms of finding ways to remove it.

There remains some open questions about the artificial buffer layer and the super-
streaks in LES/RANS. For example, while it is clear that a too low level of resolved
shear stress causes the velocity shift, the precise cause of the low shear stress is not as
clear. The relationship between the low shear stress and the superstreaks also needs
clarification. Piomelli et al. (2003), for example, suggested that the connection is weaker
than conjectured by Baggett (1998) (as discussed above). Another question is to what
extent the dynamics of the artificial buffer layer are similar to those of the ‘true’ buffer
layer (i.e., 5 <yt < 30, see figure 1.2). The first objective of the present study is to
gain more insight into the artificial buffer layer by attempting to answer these questions.

A second objective is to study the effects of forcing more closely. With one exception
(to the author’s knowledge, only Davidson & Dahlstrom, 2004), the studies discussed
above all examine the effects of forcing using stochastic models. This makes the inter-
pretation difficult, since the concept of forcing can not be evaluated separately from the
particular forcing model used. By using forcing fields with more of the correct physics,
and fewer modeling assumptions, the uncertainties in the interpretation are minimized
in the present study. Hence, the present use of forcing is not intended as a practically
useful model, but rather as a tool for basic insight that can guide future developments
of generally applicable forcing models.

6.2 Methodology

Adoption of the eddy viscosity hypothesis (2.11) means that the only distinction be-
tween the RANS- and LES-regions is in the model for vy. Many previous investigations
(e.g. Nikitin et al., 2000; Hamba, 2003; Davidson & Dahlstrém, 2004; Temmerman
et al., 2005) into the LES/RANS concept have found qualitatively similar results using
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a reasonably wide array of eddy viscosity turbulence models, indicating that details of
the models themselves are of secondary importance. For this reason, simple algebraic
models are used in this work.

In the outer layer, the Smagorinsky model given by (2.12) is used. To reduce the
complexity of the problem, the dynamic procedure is not used, and thus the Smagorinsky
coefficient C is fixed. Initial tests showed that a value of C' = 0.132 gives accurate results
in the outer layer.

In the inner layer, a simple mixing length model is used. Such a mixing length
model can be derived from the fact that the relevant velocity and length scales in the
(inviscid) overlap layer are u, and y, respectively (see for example Wilcox, 2000, who
presents an interesting discussion about the eddy viscosity hypothesis and the mixing
length). Here a slightly different, and less rigorous, approach is used.

For a pure RANS solution, the resolved shear stress —u/v’ = 0. The re-arranged
shear stress balance (2.33) then yields

- 2
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Differentiation of the log-law (5.3) yields 0u/0y = u,/ky. Inserting this into (6.2), i.e.
requiring the RANS model to return a logarithmic velocity profile for y™ > 30, yields
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The reason for choosing this particular derivation of the mixing length model can now
be seen, since it brings out the connection to the log-law — both the functional form of
Vrans, and that the adjustable constant k is the inverse logarithmic slope.

It is easy to see that this expression for vy, yields too high values in the viscous
region y* < 30. In the viscous sublayer (y* < 5), for example, the mean velocity
gradient should be 9u/dy ~ u2 /v from the definition of the wall shear stress. Inserting
this into relation (6.2) shows that vyans must vanish near the wall in order to yield
the correct mean velocity profile. This problem can be solved by including a damping
function for the eddy viscosity?. The most common such damping function is the one
by van Driest (c.f. Wilcox, 2000), which yields

Vrans = ﬁuTyD(y—i_) ’ D(y+) = {1 - exp(—y+/A+)}2 ) At =19. (64)

The final issue is the merging or interfacing of the LES and RANS eddy viscosities
(and, hence, of 7;; by the different models). Various proposals for this interfacing have
appeared in the literature, some which enforce continuity of vy (e.g. Nikitin et al., 2000;
Temmerman et al., 2005) and some which do not (e.g. Davidson & Peng, 2003). Since
the results are similar in these studies, and since the exact interface conditions appear to
have a marginal effect on the appearance of an artificial buffer layer, the eddy viscosities
are simply blended here as (a similar blending was used by, e.g., Baggett, 1998)

v = f(Y)es + (1 = f(¥)) Vrans (6.5)

2Tt is actually the mixing length sy that is damped, but this is a point of minor importance here.
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Figure 6.2: Blended eddy-viscosity for LES/RANS simulations. x: 7}, from the
Smagorinsky model; +: Tyaps from the mixing length model; O: blended 7y from (6.5);
—-—: location of the interface y;{lt ~ 120. The width parameter Ai—;t ~ 240.

using the (arbitrarily chosen) blending function

Fly) =+ {1 + tanh (4.595y — yim)} . (6.6)
2 Aint

With this blending, the eddy viscosity smoothly transitions from a (high) RANS value

near the wall to a (lower) LES value away from the wall. The midpoint of the transition,

termed the ‘interface’, is located at yint, and the total width of the transition is roughly

Aint'

A sample distribution of the eddy viscosity is shown in figure 6.2. The Smagorinsky
Ues 18 more or less constant throughout the channel, whereas v;,ns grows linearly outside
of where the van Driest damping function is active. At the wall, vy = 0 as required by
the boundary condition on 7;; (and as required for the correct, linear, velocity profile
in the viscous sublayer). The blending parameters used in the figure result in a smooth
transition of v¢. While this smoothness is not necessary on physical grounds, it does
result in a mean velocity profile that is continuously differentiable everywhere.

The numerical method used in chapter 5 is used here as well, and the grids use
the same stretching function (5.5). The domain sizes are rather conventional, typically
L,/0 =6 and L,/0 =~ 2, following the arguments in chapter 5.

6.2.1 Resolution Requirements

While the influence of the grid resolution on the results of wall resolved LES has been
studied rather extensively in the literature, less is known about the resolution require-
ments of hybrid LES/RANS. First of all, the wall normal resolution is similar in both
LES and RANS, and hence the grids used here have similar stretching and grid sizes as
those used for the wall resolved LES in chapter 5. In the wall parallel directions, the sit-
uation is different: in the RANS region there is, in theory, no lower limit on the required
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(a) Mean velocity. ——: T = (b) Resolved normal stresses. From top
In(y™")/0.41 + 5.2. to bottom: u/u/, w'w’, v'v’.

Figure 6.3: Influence of the streamwise grid resolution. 0: N, = 24; & N, = 32; O:
N, =48; x: N, =64; V: N, =96; A: N, = 128.

resolution, whereas the resolution (in outer units) in the LES region needs to be similar
to that used in the wall resolved LES (one should note that the resolution of the LES
region scales with § since this region is inviscid in LES/RANS). There are, however,
some complicating factors. First, the integral length scale grows approximately linearly
with y (c.f. Pope, 2000), and hence the least resolved part of the LES region will be
immediately above the modeling interface. This situation does not correspond directly
to anything in a wall resolved LES, and the grid requirements arrived at in chapter 5
need not necessarily apply here. Second, while the inner layer in a wall resolved LES
generates small scale motions that to some extent propagate outwards, the RANS treat-
ment of the inner layer in LES/RANS limits such small scale activity. More accurately,
while there may be small scales (that are triggered by the outer layer LES), their sizes
and dynamics need not be dictated by physics.

For these reasons the resolution requirements in the wall parallel directions are
investigated here. The Reynolds number based on the bulk velocity is Rep = 19800,
which yields Re; ~ 1000. The domain size is L, /6 = 6 and L,/d = 2, and the blending
parameters are set to yint/d = 0.15 and Ajy/0 = 0.30, which yields an interface at
it~ 150.

Streamwise Resolution

The influence of the streamwise resolution on the mean velocity profile and the resolved
normal stresses is shown in figure 6.3. The spanwise resolution is fixed at Az/é ~ 0.031
(N, = 64), which is similar to the finest grid used for the wall resolved LES in the
previous chapter. The number of cells in the streamwise direction is taken from the
Bulirsch sequence N, € {24,32,48,64,96,128}, which yields Axz/0 =~ 0.250 — 0.047,
where the finest resolution is, again, similar to the finest grid used in the previous
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at =

(a) Mean velocity. —— (b) Resolved normal stresses. From top
In(y*)/0.41 + 5.2. to bottom: w/w’, w'w’, v'v’.

Figure 6.4: Influence of the spanwise grid resolution. ©: N, = 16; : N, = 24; O:
N, =32; x: N, =48; V: N, = 64.

chapter (in outer units).

To within the statistical convergence error, the solutions become (statistically) grid
independent for N, > 48, corresponding to Az/é < 0.125, for both the first- and
second-order statistics.

Spanwise Resolution

The influence of the spanwise grid resolution is shown in figure 6.4, where N, = 48 is
used based on the previous finding. Again, the number of cells is taken from a Bulirsch
sequence N, € {16,24,32,48,64}, which yields Az/d ~ 0.125 — 0.031.

The results approach the grid independent solution in a different manner compared
to when the streamwise resolution was studied. The mean velocity profile now ap-
proaches the grid independent state from above (albeit hard to see in the figure), rather
than from below as in figure 6.3. Also, while varying Ax mainly caused changes in the
streamwise resolved normal stress u/v/, varying Az mainly affects the spanwise and wall
normal components. From this can be inferred that the spanwise resolution affects the
quasi-streamwise vortices, while the streamwise resolution primarily affects the streaks.
The only puzzling part of this is the fact that u/u/ increases with decreasing Az — one
would perhaps expect a larger Ax to generate longer, and therefore stronger, streaks
instead.

The mean velocity profile becomes grid independent for N, > 32 to within the
statistical convergence error, corresponding to Az/§ < 0.063. The resolved normal
stresses appear to be slightly more sensitive, and approach grid independence for N, >
48 (Az/§ < 0.042) instead.
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Temporal Resolution

The influence of the size of the time step is tested by successive refinement of At. Due
to the explicit treatment of the momentum equations, the time step must satisfy the
stability constraints. Lowering the time step further results in only minor differences
(not shown), with independent statistics for max{CFL} < 1.0.

6.3 Results Without Forcing

The simulations used to study the LES/RANS concept in more detail are performed at
a higher Reynolds number of Re, = Uyd/v = 43500, which yields a Reynolds number
based on the friction velocity Re; = 6T ~ 2000. This is done to ensure that the
modeling interface can be placed in the overlap layer, since effects of the core flow should
be minimized in order to simplify the interpretation. The blending parameters are set
t0 Yint/d = 0.06 and Ajyg/0 = 0.12, which yields an interface located at y;{lt ~ 120.

The domain size used here is approximately the same as that used above, L,/§ ~
6.333 and L,/6 ~ 2.253. The reason for choosing these rather odd values has to do with
the introduction of the forcing field in section 6.4, and a full explanation is postponed
until then.

The number of cells is (48,80,36) in the streamwise, wall normal, and spanwise
directions, respectively, which yields cell sizes of (Az, Ay, Az)/d ~ (0.13,5.9 - 10~% —
0.080,0.063). This is in rough agreement with the grid independent resolution found
above. In viscous units, the cell sizes are (Az™*, Ayt AzT) ~ (260,1.2 — 160, 130).
This is not exceptionally coarse by any means, but certainly too coarse for wall resolved
LES. Thus, this represents a good test case for approximate near wall modeling.

The mean velocity profile is shown in figure 6.5(a). For comparison, the profile
from a simulation on the same grid without any near wall modeling (i.e., with f =1
in (6.5)) using the dynamic procedure is shown as well. The skin friction is severely
underpredicted in the latter case (by about 40%), showing that some form of additional
near wall modeling is necessary for LES on coarse grids. The LES/RANS profile is
considerably better, but the velocity shifts to a higher value immediately outside of
the interface. This velocity shift causes about 10% underprediction of the skin friction
coefficient.

6.3.1 The Velocity Shift

To bring out the variations of the mean velocity gradient more clearly, one can consider
the quantity
out
+
=yt —. 6.7
V=Y g (6.7)
If the velocity profile follows the log-law wt = In(y")/k + B, then v = 1/k. This
quantity is plotted in figure 6.6(a).
Consider first the DNS result by del Alamo et al. (2004). There is a peak in v around
y* ~ 10 in the buffer layer, followed by a decrease up to y™ ~ 70. From there, v again
increases in the wake region. There is no truly logarithmic region (which would have ~
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(a) Mean velocity. O: LES without (b) Resolved normal stresses. From top
near wall RANS using the dynamic pro- to bottom: wu’, ww, v'v'; +: DNS at
cedure; ——: " = y* and " = Rer 2 950 by del Alamo et al. (2004).

In(y*)/0.41 + 5.2, respectively.

Figure 6.5: Mean velocity and resolved normal stresses. O: LES/RANS without forcing;
<&: LES/RANS with forcing; — —: locations of the interface (yint/0 = 0.06) and that of
maximum forcing (yg/d = 0.094), respectively.

= constant), and hence it is hard to distinguish where the buffer layer ends and where
the wake in the core of the channel begins. Here, the local minimum of ~ is loosely
considered to mark the beginning of the wake region.

The LES/RANS result has a different shape of the 7 profile, in that there is a second
peak outside of the interface around y* ~ 190. Outside of this peak + first decreases and
then increases again in the wake region. Qualitatively, there appears to be four distinct
regions in the solution: an accurate RANS region (y* < 50, labeled A in figure 6.6);
a region where the velocity gradient is too small (50 < y™ < 120, labeled B); a region
where the velocity gradient is too large (120 < y* < 400, labeled C); and a LES wake
region (y* 2> 400, labeled D). Here the boundary between regions C and D comes from
the same loose definition given above.

This behaviour of the velocity gradient is most easily understood by considering the
balance of the resolved and modeled shear stresses. When considering only the region
away from the wall (i.e., the inviscid part), the re-arranged shear stress balance (2.33)
yields

ou (- y/s) - (—wv)
oy Ut .

(6.8)

The regions identifying the velocity gradient behaviour discussed above are marked
in figure 6.6(b), which shows the resolved shear stress —u/v’ and the eddy viscosity 7.
Immediately outside of the interface, the resolved shear stress is heavily damped by
the presence of the RANS region, which together with a small 7y results in a too high
velocity gradient as a consequence of relation (6.8). The resolved shear stress reaches a
typical LES level at y™ ~ 400, which is consistent with the approximate beginning of



6 Hybrid LES/RANS 76

i
i
I
I
I
i
i
i
i
i
i
! A
i T T
+

y+
(a) v defined by (6.7). +: DNS at Re, =~ (b) Resolved shear stress —wo " (symbols
950 by del Alamo et al. (2004). as in main caption) and scaled eddy vis-
cosity 0.025 - ;" (x, from the case without
forcing). ——: 1 —y*/6T. Note that the

eddy viscosity for the case with forcing (not
shown) is similar to the one shown.

Figure 6.6: A closer look at the velocity shift. 0: LES/RANS without forcing; <:
LES/RANS with forcing; —-—: boundaries of zones A-D discussed in text.

the LES wake region.

The opposite is true immediately below the interface, in that 7, is large but —u/v’ is
non-negligible. This results in a lower velocity gradient, but the net effect here on the
velocity profile is smaller.

The resolved normal stresses are shown in figure 6.5(b). In the core of the channel
the levels of u/u’ and w'w’ are below the corresponding DNS results of del Alamo et al.
(2004), whereas the wall normal component v/v” has a similar level as in the DNS. This
is qualitatively correct, since only the largest scales are included in the LES/RANS.
The lower levels could also be due to the relatively small domain of the LES/RANS,
which limits the existence of the very large scales, or it could be due to the difference
in Reynolds number. The streamwise and spanwise components increase immediately
outside of the interface, and reach maximums at y/0 ~ 0.1 and 0.2, respectively. They
are both somewhat damped in the RANS region, but still reach about one third of their
corresponding DNS levels. Due to the kinematic boundary condition, the wall normal
component has its maximum farther out at y/é ~ 0.25. Note that the order in which
the normal components reach their maximums is the same as outside the true buffer
layer in the DNS.

Overall, figures 6.5 and 6.6 indicate that the velocity field reaches some form of
‘LES equilibrium’ for y* 2> 400 (y/6 = 0.2), where the solution bears the hallmarks
of an accurate LES field (correct du/dy, all resolved stress components close to their
respective DNS levels, etc). The region 50 < y™ < 400, on the other hand, constitutes a
form of artificial buffer layer, where the turbulence changes from being mainly modeled
to being mainly resolved. Again, there is a similarity between the true and artificial
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buffer layers in that they are associated with a change between different types of shear
stresses: to resolved from viscous and modeled, respectively.

At this point one can compare the present results to those of Temmerman et al.
(2005). They use different turbulence models and a different way of interfacing these
models, but their 7 profile is similar to the present one in figures 6.2 and 6.6(b). It is
then not surprising that both studies report maximum mean velocity gradients at the
same locations: outside of the peak in 7y, where the eddy viscosity first reaches the
lower value given by the LES model.

In light of relation (6.8), one might wonder whether it is possible to adjust vy such
that the resulting mean velocity profile becomes correct. Mason & Thomson (1992)
attempted just that. They first ran a simulation with a model for v that resulted in a
velocity shift similar to the one found here. They then used relation (6.8) to compute
the ‘ideal’ eddy viscosity profile that would give the correct mean velocity gradient
everywhere, and used this ‘ideal’ eddy viscosity in a second simulation. The results,
however, were disappointing: the artificial buffer layer simply moved outwards, and the
size of the velocity shift remained essentially the same.

The reason for this is the direct effect on the dissipation of the resolved motions by
the eddy viscosity model (as discussed in chapters 2 and 5). An increased vy further
reduces the resolved shear stress —u/v’, which simply moves the artificial buffer layer
farther away from the wall. Even if it were possible to find an ‘ideal’ vy profile, it would
probably be hard to do so in an a priori manner.

It then seems likely that a successful solution to this problem must allow for the
simultaneous prediction of appropriate levels of both the dissipation and the modeled
shear stress. With these phenomena being distinctly different from each other, and un-
likely to be accurately predicted by any one model, one might conjecture that successful
approaches need at least two ‘degrees of freedom’ (in the sense of different model terms)
in the model. One possibility would be to move away from the eddy viscosity hypothe-
sis, either by using a non-linear constitutive relation (c.f. Wilcox, 2000) or a model with
‘scale-similarity’ type terms (Bardina et al., 1980). An second possibility is to increase
the resolved shear stress through additional forcing in the momentum equations.

6.4 Results With Forcing

The goal when using additional forcing is to increase the resolved shear stress in such a
way that the net effects of the artificial buffer layer are minimized. With the merging of
two different turbulence models, some form of transitional region will probably always
persist, so a reasonable goal is to aim for accurate results in the LES region some
distance away from the interface, and for accurate global quantities like the skin friction
coefficient. In the current results, this implies that the shift in the mean velocity profile
should be removed.

As discussed in the introduction to this chapter, the objective of the present work is
to investigate the effects of forcing on a fairly fundamental level. In order to introduce
as few modeling assumptions as possible, the forcing fields are taken from a reference
simulation, rather than being generated by some stochastic model as has been the case
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in several previous studies (Piomelli et al., 2003; Batten et al., 2004; Davidson & Billson,
2006). This ensures that the forcing fields have the correct length and time scales, phase
relationships, spectra, and so on.

6.4.1 Forcing Database

Ideally, the forcing field should be taken from a DNS using the same domain and
Reynolds number as the LES/RANS simulation, since this would create the most ac-
curate forcing field possible. Such a DNS would, however, be prohibitively expensive,
and hence the wall resolved LES of chapter 5 (using the base grid) is used instead. To
justify this, there are a few points that need to be considered.

First, for the LES/RANS, v has a peak at y* ~ 190 (figure 6.6(a)). Together
with relation (6.8), this suggests that the forcing should be added mainly around this
location. Second, the coarseness of the LES/RANS grid in the streamwise and spanwise
directions means that only the largest scales of the forcing field taken from the reference
simulation can be resolved. These large scales can be captured accurately with a wall
resolved LES, especially at the locations relatively far from the wall (y* ~ 190) that
are of interest. The forcing fields can then be taken from a wall resolved LES, rather
than a more expensive DNS.

The difference in Reynolds number between the forcing (from the wall resolved LES)
and the LES/RANS means that the fields are not perfectly compatible. Apart from the
Reynolds number dependence of most statistics, one also notes that the region y ™ ~ 190
is located in the overlap layer in the LES/RANS, whereas it is in the wake region in the
wall resolved LES. The forcing fields are, nevertheless, considered to be more accurate
than what could have been achieved by any stochastic model.

The turbulence intensities in the wall resolved LES are about 5-8% at y™ ~ 190,
which means that Taylor’s ‘frozen turbulence’ hypothesis is approximately valid in this
region (c.f. Pope, 2000). Using this to limit the size of the database, the velocity field
is stored at one streamwise location only, as ujdb(er, 2T, t") in viscous units. The true
forcing (per unit mass) in an Eulerian frame is s7imply the acceleration Ju;/0t, and hence
the database is differentiated in time. To avoid aliasing when adding the forcing to the
much coarser LES/RANS grid, the database is filtered in the temporal and spanwise
directions. This yields

+
aui,db

+ _
aiyf—Gt*Gz* e

(6.9)

where G; and G, are filter kernels. The filtering and temporal differentiation are done
using fast Fourier transforms (FFT), and the filters are of the spectral cut-off type.
Finally, the forcing field is scaled and windowed in the wall normal direction, and
Taylor’s hypothesis is used to get the streamwise variation via the convection velocity
UF.,. This yields

conv*

rt
ettt =AW (e - ) L o
conv
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where A is an amplitude parameter and W (y™) is a wall normal window defined by

(wt/yi )"
L+ (y*/yf )’

W(y") = (n,m) = (8,-5.5) . (6.11)

The parameter y; determines the location around which the forcing is centered. Some
previous studies (Piomelli et al., 2003; Davidson & Dahlstrém, 2004; Davidson & Billson,
2006) centered the forcing around the interface. Here, it is assumed that the maximum
increase of the resolved shear stress will occur at the location of maximum forcing.
This assumption, together with relation (6.8) and the fact that « peaks at y* ~ 190
(figure 6.6(a)), instead implies that yr/§ = 0.094 (y; ~ 190) is a more proper choice.

The resulting velocity fields are relatively insensitive to the width of the window (i.e.,
to the values of the parameters n and m in (6.11)), which is consistent with the findings
of Piomelli et al. (2003) who reported no significant differences between an exponential
window and one similar to (6.11). The results are, however, much more sensitive to the
value of the amplitude parameter A. Large sensitivity to the amplitude was also reported
by both Piomelli et al. (2003) and Davidson & Dahlstrom (2004). In the following, the
‘optimal” amplitude Agp; was determined by trial-and-error, and the results shown are
for that case. A discussion about the sensitivity is postponed until a later section, along
with a proposed method to compute the value of A,y using a simple control algorithm.
The forcing is finally added as a source term to the momentum equations (2.22) in the
dimensional form a; = a; u3 /v.

There are a few subtleties associated with the introduction of the forcing into the
LES/RANS. First, in order to preserve the spatial structure of the forcing field, the
convection velocity Ug . in (6.10) must remain constant in space and time?. Secondly,
the forcing field is not necessarily periodic on the LES/RANS domain, which may lead
to a redistribution of energy among the modes (Fourier components). This is a very
minor point in general, but since one purpose of the present study is to look at the
effects of individual modes of forcing, the redistribution could possibly lead to erroneous
conclusions. For this reason, simple steps are taken to ensure periodicity of the forcing
field in this thesis.

Ensuring Periodicity of the Forcing Field

The forcing field a;r is periodic in the spanwise direction and assumed to be periodic in
the temporal one on the domain of the database, i.e. on deb ~ 1519 and ch% =~ 6537.
The spanwise wavelength of the modes is )\jl = Lj a/1s where [ is the mode number
(integer). For a mode to be periodic on the LES / RANS domain size L, one must have

L.u, Lia, L.
;) = Vu = o l’db = 75+ (6.12)

3To see this, consider the two-point correlation of a; for two values of y, i.e. a;(y1,t)ai(ys,t)
@it (Y1,t — /Uconv(y1)) @i £ (y2,t — 2/Uconv(y2)) using simplified notation. If Uconv is a function of y,
then the two points (y1,¢) and (y2,t) will correspond to points in the database that could be very far
apart in time. This would lead to essentially zero correlation, even if y1 ~ y2.
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for some integer o;. Note that the value of 57 is part of the solution and hence unknown
at this stage. For this reason, a (constant) target value of 6£rget ~ 2023 is used* to
non-dimensionalize the LES/RANS coordinates when introducing the forcing, i.e. in
equations (6.10) and (6.11). Being used only for this purpose, the exact value of ;'

target
affects the results in a very minor way. Picking the spanwise domain size as

L Lt
—2 =3 2 ~ 2953 (6.13)
0 5target

yields oy = 3l by (6.12), and hence periodicity of all modes is ensured.
The wavelength in the streamwise direction implied by Taylor’s hypothesis is )\;cF 1=

+
UCOI’IV

T(R /1 for the [th mode, and hence there must exist some integer (3; such that

Lyur = G UC—EHVT;]; _ &54-

l § target

BAS, = (6.14)
for mode [ to be periodic on the LES/RANS domain. Picking® UJ,

oy~ 17.63, which
roughly corresponds to the mean velocity around yf+ , and

+ ot
Lo _ 1WaonTay 6 353 (6.15)
5 9 51:;rget
yields §; = 1/9 by (6.14), and hence only modes [ = 0, +9, +18, +-27... are periodic.

To avoid aliasing of energy when introducing the forcing on the coarse LES/RANS
grid, only modes that satisfy the Nyquist criterion A > 2A should be used. The grid
for the LES/RANS with forcing is the same as the one described for the case without
forcing, with 48 and 36 cells in the streamwise and spanwise directions, respectively.
Relations (6.13) and (6.15) then imply that only spanwise modes [ = 0,+1,...,+6 and
temporal modes [ = 0,9, ..., £207, 4216 will be used. This defines the spectral filter
kernels G, and Gy used to filter the database.

6.4.2 Single-Point Statistics

The mean velocity profile and its gradient (as measured by ) are shown in figures 6.5(a)
and 6.6(a), respectively. The forcing essentially removes the velocity shift, in that the
mean velocity profile closely follows the log-law for y™ > 300, but the artificial buffer
layer clearly still exists. Figure 6.6(a) shows how the forcing reduces « primarily in the
region where the forcing is added, with the largest reduction taking place around the
location of maximum forcing. This confirms the reasoning behind picking the value of y¢
based on the local maximum of v, rather than based on the location of the interface iyt
(as was done by some previous studies (Piomelli et al., 2003; Davidson & Dahlstrom,
2004; Davidson & Billson, 2006) — note, however, that these studies used turbulence
models that generate slightly different v; profiles, and hence the location of maximum

4The exact value is 5;‘;rget = Ur target0/V = (Ur target/Up ) Rep, With Ur target /Us = 0.0465.

5The exact value is Uz, = (Uconv/Us)(Us/tr target ), With Ucony/Us = 0.82.
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by (5.8). x: production due to forcing agu;Jr.

Figure 6.7: Correlation coefficient and turbulence production. 0: LES/RANS without
forcing; ©: LES/RANS with forcing; +: DNS at Re, ~ 950 by del Alamo et al. (2004);
—-—: locations of the interface (y;", ~ 120) and that of maximum forcing (yf+ ~ 190),
respectively.

~ might be closer to the interface in their results). The mean velocity gradient finally
reaches its LES equilibrium value around y™ = 300.

The resolved normal stresses are shown in figure 6.5(b), and the forcing is seen to
make the stresses less anisotropic. Since this anisotropy is related to the superstreaks
(Baggett, 1998), this implies that their strength has been reduced. The maximum
change of the streamwise and spanwise components occurs around the peak in forcing
at yr. The wall normal component behaves slightly differently due to the kinematic
boundary condition, with the maximum increase occurring farther out. Although the
normal stresses are inactive (in the sense of not affecting the mean flow) in fully devel-
oped channel flow, figure 6.5(b) still suggests that the forcing decreases the size of the
artificial buffer layer, in that v’v/ and w'w’ reach their respective peaks closer to the
interface.

The single-point correlation coefficient p12(0,0) given by (5.8) is shown in figure 6.7(a).
Before considering the effect of the forcing, one notes that the (negative) correlation co-
efficient is much larger than in the DNS results throughout the channel. In the LES
equilibrium region, this is likely due to the lack of small scale, approximately isotropic,
motions in the LES/RANS, which decreases the denominator of (5.8) while hardly af-
fecting the numerator. The interpretation is more difficult near the wall, where the
resolved shear stress is strongly affected, but at the very least the high correlation
suggests that the superstreaks have a structure capable of carrying substantial shear
stress. Also, the fact that p;2(0,0) has a peak in the middle of the artificial buffer layer
(i.e., where v has a peak) offers further indication that it is not the structure of the
superstreaks that causes the velocity shift.
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Consider also the effect of the forcing using relation (5.8). The (negative) correla-
tion coefficient increases by only 1% at y™ =~ y;” with the use of forcing (figure 6.7(a)).
At that location, u;y,s decreases by about 5% while vy, increases by about 10% (fig-
ure 6.5(b)). The 6% increase of —u'v’ (figure 6.6(b)) is, then, primarily due to the
increased magnitude of the wall normal velocity component.

These observations are interesting since they contradict Baggett (1998)’s suggestion
that a primary cause of the velocity shift is a too low correlation coefficient. The present
results instead show that the correlation first of all is rather high in the artificial buffer
layer, and secondly that it is the lack of resolved wall normal motions that is the cause
of the velocity shift, not a low correlation between v’ and v’.

There is also a similarity between the true and artificial buffer layers with respect
to the relation between v and —pi2(0,0). The correlation coefficient from the DNS
has a maximum at y* =~ 10 and a minimum at y* ~ 30. These locations roughly
coincide with the peak and leveling off of 7, respectively. The LES/RANS has two
maximum,/minimum combinations in the —p12(0,0) profile, which coincide with the
equivalent points in the true and artificial buffer layers, respectively. This indicates
that the superstreaks have some of the ‘correct’” dynamics.

The production of resolved kinetic energy is shown in figure 6.7(b) for the region
around the interface. It should first be noted that the total (i.e., resolved plus modeled)
production in a channel flow is accurate whenever the mean velocity gradient is accu-
rately predicted, which is simply due to the fact that the total shear stress is determined
by the shear stress balance (2.30). Figure 6.6(a) then shows that the total production
is slightly underpredicted for 50 < ™ < 120, and more substantially overpredicted for
120 <y < 400. Figure 6.7(b) instead shows the production of resolved kinetic energy
only, which is more relevant when investigating the transition to resolved turbulence
around the interface. The production due to the forcing a’u} is slightly less than half
of the resolved production at the forcing peak, and less than one third of the total
production (not shown). In contrast, the white noise forcing in Piomelli et al. (2003)
was found to result in a production about five times larger than the total production
at the forcing peak. This high level could be due to the lack of physical structure in
their forcing fields, or (perhaps more likely) due to the fact that their forcing was more
concentrated around small scales (that dissipate quickly with less effect on the resolved
shear stress — and hence a higher input of energy was needed to remove the velocity
shift).

The forcing also changes the resolved production indirectly, by decreasing it around
the forcing peak and increasing it in the RANS region. The decrease at y™ ~ 190 is due
to the lower mean velocity gradient, while the increase in the RANS region is due to a
higher resolved shear stress. The fact that the resolved production has a small peak in
the true buffer layer at y* ~ 18 again suggests that the superstreaks have some of the
correct dynamics.

Also notable is the fact that the resolved kinetic energy m/ 2 (not shown, but can
be inferred from figure 6.5(b)) actually decreases with the use of forcing over essentially
the whole channel. Since the production, including that due to the forcing, increases,
this shows that the dissipation of resolved kinetic energy must also increase with the
use of forcing. Below it will be shown that the forcing decreases the length scales of the
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Figure 6.8: Magnitude of the vorticity fluctuations. 0: LES/RANS without forcing;
¢: LES/RANS with forcing; —-—: locations of the interface (y;f. ~ 120) and that of
maximum forcing (yj ~ 190), respectively.

resolved motions throughout the artificial buffer layer, which is consistent with a higher
dissipation.

The magnitudes of the vorticity fluctuations are shown in figure 6.8. The levels are
much lower than for the wall resolved LES in chapter 5 (figure 5.6): between 75-90%
lower depending on the location. Both the streamwise and the wall normal vorticities
are lower by similar amounts. This shows that the quasi-streamwise vortices are heavily
damped in the RANS region, and that the streaks are overly wide (since u/u/ is high,
see the discussion in section 5.3).

The streamwise vorticity peaks outside the interface at y* ~ 250. The forcing

increases w; by up to 15%, and causes the peak to shift towards the interface.

T,rms
The wall normal vorticity profile is very similar to the u/u’ profile (figure 6.5(b)), which
simply reflects the dominance of streak-like motions in the RANS region and the artificial
buffer layer, with w/ ¢ ~ uf,s/AF. The forcing decreases w,f,,,s by 2-5%, primarily
around the location of maximum forcing. At the interface, w; ¢ decreases by 5% with
forcing, while ., decreases by 8%. From the estimate w, s ~ uh,s/AF one can then

infer that the forcing decreases the average streak spacing only marginally.

6.4.3 Multi-Point Statistics

To see the spectral content of the resolved turbulence, and how this changes with wall
distance, the premultiplied one dimensional spectra are shown in figure 6.9. For com-
parison, the spectra from the wall resolved LES of chapter 5 are shown as well (this
time in outer units).

The spectra for the LES/RANS are quite different compared to the wall resolved
LES. Consider first the case without forcing. Near the wall, for /6 < 0.05 (y* < 100),
there is a small peak in energy for streamwise length scales A\, /0 ~ 3 (i.e, half the
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Figure 6.9: Contours of the premultiplied one dimensional spectra kE (k). 20 contours
between 0 and each individual maximum, with the axes the same columnwise. The
left column are the streamwise spectra, the right column are the spanwise. Top row:
wall resolved LES at Re, ~ 500 (base grid of chapter 5); second row: LES/RANS
without forcing; bottom row: LES/RANS with forcing; —-—: locations of the interface
(yint /0 = 0.06) and that of maximum forcing (y¢/d = 0.094), respectively.
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(a) Streamwise separation, p11(lz,0). (b) Spanwise separation, p11(0,1.).

Figure 6.10: Contours of the two-point correlation of the streamwise velocity pi11(lz,12).
Three contours at (from left to right) 0.9, 0.6, 0.3 of the maximum at each y location.
—: LES/RANS without forcing; ——: LES/RANS with forcing; +: resolved LES at
Re, ~ 500 (base grid of chapter 5); —-—: locations of the interface (yint/0 = 0.06) and
that of maximum forcing (yg/0 = 0.094), respectively.

domain size). The spanwise spectrum at this height is, though hard to see in the figure,
rather flat, and hence the spanwise length scale is on the order of the grid spacing. These
motions are unphysical and constitute the superstreaks described by Baggett (1998).
The presence of these superstreaks, with scales determined by the numerics rather than
by physics, is potentially problematic in LES/RANS, since they are convected and
diffused into the LES region.

Outside of the interface there is a peak for spanwise length scales A, /J ~ 0.6 at y/6 ~
0.1 and streamwise length scales \;/d ~ 0.8 at y/J ~ 0.15. The streamwise wavelength
corresponds to about 6 cell sizes. Since the dispersion error of the convection scheme
is large for scales with fewer than three to four cells per wavelength, the streamwise
peak occurs near the numerical cut-off. It is interesting to note that it is the streamwise
direction which seems most affected by the resolution, rather than the spanwise as is
common in LES. In the LES equilibrium region (y/é 2 0.2) the dominant length scales
are similar to those in the wall resolved LES.

The forcing changes the spectra only for y/d < 0.25, and primarily in the streamwise
direction. The peaks here occur much closer to the interface compared to the case
without forcing, which suggests that the artificial buffer layer has decreased in size.
Note that the multiple peaks around y = y¢ correspond to the discrete modes in the
forcing field. There appears to be more small scale energy below the location of the
forcing peak, indicating that the superstreaks have decreased in size. To see this more
clearly, contours of the two-point correlation coefficient of the streamwise velocity are
shown in figure 6.10. The wall resolved LES shows that the length scale starts increasing
towards the wall in the upper part of the buffer layer, at y/6 ~ 0.05 (y* ~ 25). In
the LES/RANS, this increase occurs at the corresponding point in the artificial buffer
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layer instead, at y/d ~ 0.15 (y* a 300). The forcing moves this point closer to the
interface, and also decreases the length scale all the way to the wall. This is true for
both directions, but the difference is largest for the streamwise one — this is hardly
surprising, since the spanwise length scale is already on the order of the grid size.
Overall, the forcing certainly decreases the vertical size of the artificial buffer layer and
the length of the superstreaks, albeit not to the point of the latter being physically
correct.

Figures 6.9 and 6.10 together show that there is a length scale mismatch between
the LES and RANS regions. Since the near wall grid in LES/RANS is necessarily coarse
(otherwise a wall resolved LES could be performed), the motions in the RANS region
can never have the physically correct length scales. Therefore, some transition region
(i.e., artificial buffer layer) will likely always be present in these cases. The forcing
reduces the size of this transition, and the size of the mismatch in length scales. The
fact that the spectra are unchanged in the core of the channel is encouraging, since the
forcing should not affect the accurate LES region of the flow.

6.4.4 Turbulence Structure

Snapshots of the streamwise velocity in three planes parallel to the wall are shown
in figure 6.11, both with and without forcing. Near the wall the structures are very
elongated, with lengths of up to A ~ 6000. The low speed streaks are longer and
slightly narrower compared to the high speed streaks, which is in qualitative agreement
with true near wall turbulence. This suggests that the motions in the artificial buffer
layer have at least some of the correct physics, albeit at unphysical length scales. The
snapshots at y™ ~ 12 and y™ ~ 120 look similar, especially without forcing, which
indicates that the streaks are rather ‘tall’ structures, i.e. that they are well correlated
in the wall normal direction. At y* & 260 (y/d &~ 0.13), more small scale structures are
present, and the correlation to the two lower planes is much lower. This is also the wall
distance at which the streamwise spectra in figure 6.9 shows a transition to more small
scale energy.

The forcing appears to create smaller resolved scales, but without removing the
excessively long streaks near the wall. The similarity between the two lower planes
also appears to be lower, indicating that the forcing reduces the height of the near wall
structures somewhat.

Having seen that the turbulence in the RANS region and in the artificial buffer
layer share some qualitative features with the true buffer layer, one might hypothesize
that the near wall region corresponds to the turbulence at an effectively lower Reynolds
number. The eddy viscosity (figure 6.2) is v¢/v < 25 for y* < 120, and hence the
effective Reynolds number in this region is lower by a similar factor. This is in very
rough agreement with the fact that the streak length A\ ~ 6000 is about 10 times larger
than the typical lengths found for the wall resolved LES in chapter 5.
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Figure 6.11: Snapshots of the streamwise velocity fluctuation u’. Contours one standard
deviation (i.e., uyms, taken from the case without forcing) above and below zero, where
darker regions imply higher velocity. The left column are without forcing, the right with
forcing. Top row: y* ~ 230; second row: y =~ 120; bottom row: y* ~ 12.

6.4.5 Effective Forcing Length Scales

In order to develop a general model for the forcing, a basic requirement is to know
at which length scales the forcing should be applied. Some models proposed in the
literature are based on the assumption that the forcing represents backscatter (Piomelli
et al., 2003), and hence should have length scales on the order of the grid size. Such
small scales would also potentially be effective at breaking up the superstreaks. On the
other hand, one could also argue that the forcing should be applied to the largest scales
which carry most of the energy and Reynolds stresses. These larger scales might cause
a quicker formation of LES equilibrium motions.

In an effort to shed some light on which length scales should be included in a general
forcing model, different filter kernels G, and G; are used to produce forcing fields with
different length scale contents. In essence, since spectral cut-off filters are used, this
amounts to the selective removal of modes from the database. The effectiveness of
the forcing is measured by the size of the velocity shift, defined here as the difference
between the mean velocity and the corresponding value of the log-law at y™ = 500, i.e.

B In(500)
AU =T s - ( o+ 5.2) . (6.16)
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(a) Spanwise modes. (b) Streamwise modes.

Figure 6.12: Size of the velocity shift for forcing fields with different length scale con-
tents, as defined by the spectral cut-off wavelength A°. O: only modes with A < A¢; x:
only modes with A > A% ——: full forcing field (i.e., with all resolvable modes); —-—:
without forcing.

This position is outside of the artificial buffer layer while still not too far into the wake
region in the core of the channel.

Figure 6.12(a) shows the size of the velocity shift for cases where spanwise modes
have been removed from the forcing database. The amplitude parameter A is held
constant, which means that the overall energy of the forcing decreases as modes are re-
moved. One should note that AU is quite sensitive to the convergence of the statistics,
as evidenced by the wiggles in the figure. This error is estimated as +0.03.

The results clearly show that spanwise forcing modes with A, /0 < 0.2 are ineffective
at reducing the size of the velocity shift. This wavelength corresponds to about three
cell sizes, which suggests that the ineffectiveness of these modes is due to the inability
of the numerical scheme to accurately represent motions at these length scales. More
interesting is the fact that the larger length scales are relatively effective in the sense
discussed here. Forcing only at wavelengths A,/ 2 0.5 still reduces the velocity shift by
more than 50%. Even the first mode, with A\, = oo, has an effect on the solution: when
only this mode is included, the velocity shift is decreased by 17% (to AU =~ 0.73).

Streamwise modes are removed in exactly the same fashion, and the results are
shown in figure 6.12(b). Note that the ‘stepwise’ pattern of AUT()S) is an artefact
of the use of Taylor’s hypothesis in combination with the use of a short domain when
creating the forcing database, causing some modes to be less energetic than others. The
temporal differentiation also causes the largest modes to have little energy. With these
caveats, the results are similar to those for the spanwise direction. Modes with three or
fewer cells per wavelength (\,/d < 0.4) are ineffective at reducing AU, while modes
with A\, ~ § are rather effective.

Within the limitations of the current forcing fields, one can only say that modes
with wavelengths in the range 3A < A < § are effective at reducing the size of the
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Figure 6.13: Mean velocity and shear stress for different amplitudes. ©: A = 0, i.e.
without forcing; ¢: A = Aqpy = 0.335; O: A = 0.668; —-—: locations of the interface
(yint /0 = 0.06) and that of maximum forcing (y¢/d = 0.094), respectively.

velocity shift. It remains a distinct possibility that the upper limit on the forcing length
scale should be much larger, but to test this would require forcing fields with more large
scale content. One should also note that the findings here say little about which forcing
length scales should be used from a physical point of view, and only which length scales
effectively decrease the velocity shift with the forcing amplitudes used here.

6.4.6 Amplitude Sensitivity

The results with forcing are quite sensitive to the value of the amplitude parameter A.
To illustrate this sensitivity, the mean velocity profiles using three different values of A
are shown in figure 6.13(a). A too high amplitude generates too much resolved shear
stress, resulting in an underpredicted mean velocity profile and gradient. A too low
amplitude, on the other hand, does not quite remove the velocity shift. This is seen
more clearly in figure 6.14, which shows the size of the velocity shift AU for different
amplitudes. Interestingly, the response is an approximately linear function for forcing
amplitudes around the optimal value Aqp = 0.335 (defined by AUT = 0). To quantify
the sensitivity, say that one needs an amplitude A such that |AUT(A4)| < 0.1AUt (A =
0) ~ 0.088. Figure 6.14 then implies that A must be within £8% of Aqp¢. This presents
a difficulty for the development of generally applicable forcing models, which should
give accurate results with the amplitude determined a priori.

Up to this point, this difficulty has been avoided by use of trial-and-error to find
Agps. In other words, A was adjusted until AU = 0, and all results discussed previously
in this chapter used that amplitude. Other studies, e.g. Piomelli et al. (2003), also used
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Figure 6.14: Size of the velocity shift as a function of the forcing amplitude.

trial-and-error in a similar fashion.

Some proposed model expressions (i.e., a priori relations) for A have appeared in
the literature. Davidson & Dahlstrom (2004) used an amplitude that was essentially a
ratio between the modeled kinetic energy (of their two-equation model) at the interface
and the energy of the forcing field, and reported a high degree of sensitivity to this
model expression. Batten et al. (2004) also used an amplitude that was proportional to
the modeled turbulence, in this case the modeled stress tensor directly.

These studies assume proportionality between A and the modeled kinetic energy.
This implicitly takes the view that the forcing in some sense represents the transfer of
energy from the modeled scales (i.e., backscatter), since two flows with similar resolved
velocity fields but different levels of modeled kinetic energy would result in different
amplitudes.

If the forcing is viewed not in the context of backscatter, but rather as a means
to trigger resolved motions, then one might instead expect A,p; to be dependent on
the resolved (rather than modeled) scales of motion. In this view, the proposed model
expressions by Davidson & Dahlstrom (2004) and Batten et al. (2004) would be flawed,
as follows from the simple hypothetical example given above.

Mason & Thomson (1992) used inertial range arguments to find an expression for
the amplitude that depended on the dissipation rate € and the characteristic length
scale of the unresolved motions. With the assumption of equilibrium for the unresolved
scales, and more importantly the existence of an inertial range, € ~ eg445. The rate of
energy transfer from the resolved scales e45s depends on the resolved scales with the
turbulence models used here, and, thus, as does Mason & Thomson (1992)’s amplitude.
One should note, however, that Mason & Thomson (1992) used an algebraic wall stress
model, for which the resolved motions are much different from the ones near the interface
in LES/RANS. As shown in section 6.4.3, the length (and time) scales in the interface
region of LES/RANS are unphysically large, whereas the algebraic wall model used by
Mason & Thomson (1992) generated much smaller scales in the near wall region. Based
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on this argument, Keating & Piomelli (2006) concluded that the amplitude expression
and the underlying physical arguments used by Mason & Thomson (1992) do not apply
within LES/RANS.

6.4.7 A Control Algorithm for the Amplitude

The sensitivity of the results to the forcing amplitude suggests that even physically
sound models for the amplitude would require tuning on a case-by-case basis, since
even small changes in the flow, grid, or turbulence models could change the relation
between the optimal amplitude A, and whatever quantities would be included in a
model.

In light of this, one might instead turn to a control algorithm for A, as was done by
Keating & Piomelli (2006). Before considering the details of the method used here, and
how it differs from the method by Keating & Piomelli (2006), some general thoughts
about this approach should be considered. Note that this control algorithm is very
different from the wall model by Nicoud et al. (2001) described in section 6.1.4. Here,
the inner layer is modeled statistically, and the control algorithm is only used to find
the appropriate value of A.

A control algorithm for the amplitude would have the form A = A(e) where € is
some error that needs to be specified. With a proper choice of the control function, this
error can be driven towards zero. As discussed earlier in this chapter, the main problem
with the LES/RANS concept is the shift in the velocity profile outside of the interface.
The most natural definition of the error should then be sensitive to this velocity shift.
The size of the velocity shift, however, requires prior knowledge of the proper mean
velocity profile (given by the log-law for channel flows), suggesting that such an error
definition would remove the predictive capability of the method.

Such a statement is too pessimistic. In all situations where one would consider
using LES/RANS, it is implicitly assumed (see the discussion in section 1.2) that the
RANS model accurately describes the mean flow for y/6 < 0.1 — after all, were this
not the case, the whole underlying concept of using a ‘universal’ RANS model near the
wall would fail. If the RANS equations are solved from the wall up to y/d ~ 0.1 in
an auxiliary solver, then the resulting velocity profile @ye(y) should, by the implicit
assumption underlying LES/RANS, constitute an accurate reference solution relative
to which the error can be defined. Note that the computational cost associated with
such an auxiliary RANS solver would be very small compared to the full LES/RANS
solver.

For the cases considered here, this idea can be implemented in a simpler fashion. The
rather non-rigorous derivation of the mixing length RANS model for v, in section 6.2
showed the link between the RANS model and the slope of the log-law 1/x. Also, close
inspection of figure 6.13(a) reveals that the mean velocity is accurate to within 0.1 units
for y™ < 70. One can then write the approximate reference solution (without the need
for auxiliary numerical solution) as

+

_ _ (2 Yy

Teet(y+) = T(yty) + ;Tln <yT> coyb <yt <0157, 305y, <70, (6.17)
ref



6 Hybrid LES/RANS 92

The average quantities required to compute the reference solution (both u(yyer) and
for u, = \/vou/dyl|, ) are unavailable during the simulation. Replacing these by the
corresponding plane-averages (-) yields the re-defined reference solution

() = () ) + 2210 (L) (6.18)

Yref

where u,, = \/v0(u)/0y|,. The difference between (6.17) and (6.18) can be shown
to be a factor ur,/u, — 1 multiplying the logarithmic term when u, is used to non-
dimensionalize the y-coordinate. For the present cases, this error is ~ 1074

The error in the control algorithm can now be defined as

B 1 Yh
() = s / () () — (urer) ()} dy
Yn

= | <u<y> — ulpyer) — I <yif) > dy.  (6.19)

u

This is, of course, only one of many possible definitions of the error. Keating & Piomelli
(2006) used a different error, one not involving the mean velocity. First, they used
the detached eddy simulation (DES) method (Spalart et al., 1997; Nikitin et al., 2000).
They then based their error on the observation that the shear stress changes from being
mainly modeled to mainly resolved in the artificial buffer layer (also shown earlier in
this chapter). They further argued that this change should occur between the interface
location (called yi,¢ here) and the location of maximum eddy viscosity y,, and thus
defined the error as

Yv

i = [ (~tt) = 5L )y (6:20)

Yint

where the quantities were averaged over the wall parallel directions (and a short back-
ward temporal average). While being physically appealing (in that it measures the
change of the shear stresses), and leading to good results in Keating & Piomelli (2006),
(6.20) appears to be rather specific to the turbulence model and interface condition in
DES. Note, for example, that the models and blending used in this thesis yield ¥y, < ¥int,
for which (6.20) does not make sense. Perhaps more importantly, the argument that the
change in shear stresses should occur between the interface location and the position of
maximum eddy viscosity appears (to the present author) rather ad hoc. Figure 6.13(b)
shows that the shear stress profiles are essentially linear around the interface. The def-
inition of €reating, together with the fact that the control algorithm forces €yeating — 0,
then implies that the error defined by (6.20) causes the modeled and resolved shear
stresses to intersect (i.e., be equal) at y ~ (yint + y»)/2. Hence, the integration limits
basically control this intersection point, and thus one would expect the results to be
rather dependent on the exact choice of these limits.
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The error (6.19) proposed here, on the other hand, is directly related to the most
severe deficiency in LES/RANS: the velocity shift. A thorough comparison between
these different error definitions is not attempted here, but would be of interest in future
work.

Control Strategy

The control strategy should provide the amplitude A as a function of the error e. The
most efficient control strategies utilize knowledge of the process itself, and some such
knowledge is available here, for example the relation given by figure 6.14. This relation,
however, is unique to the particular flow, grid, and models used, and hence a more
general control strategy is used. One basic and general such strategy is a proportional-
integral-derivative (PID) controller (c.f. Astrom & Wittenmark, 1990). Derivative in-
formation is by nature very noisy, especially so for the turbulence considered here, and
hence only a proportional-integral (PI) controller is used. Such a controller can be
written as

KUy
)

S —
Ar(t)

A(t) = Kpe(t) +

t
/e(s)ds , Kp,Ki >0, (6.21)
0

where the constants need to be positive for a positive error to generate a positive
amplitude. The temporal integral is most easily evaluated by noting that

dA; KU,
o= =) (6.22)

which can be discretized by an implicit Euler method as

e,

P=A7 AL
A" = Kpe" + A} .

KU,
5 (6.23)

Note that it is the integral part that removes the error in the long-time limit, since for
a stationary solution dAj/dt = (K;Uy/d)e = 0. The proportional part is less active in
the long-time limit, and mainly plays a part by speeding up the transient behaviour.
As a side note, Keating & Piomelli (2006) used an integral controller (i.e., (6.23) with
Kp =0).

It remains to determine suitable values for the parameters involved (the reference
location e and the integration limits y; and yy, in the error definition, and the control
parameters Kp and Kr), and, equally importantly, to determine the sensitivity of the
results to these parameters. After all, one major reason for considering a control algo-
rithm is the high sensitivity to A — if the results are as sensitive to any of the error or
control parameters, little has been gained.

Table 6.1 lists results from cases where each parameter is varied systematically. For
the first two sets of tests, the error parameters y;zf = yfr = 62 and yf{ = 360 are used.
The lower value is consistent with the range given above, and the upper limit is at the
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Parameter K; Kp yf; uyb ub A Al JA ems - 103 AUT

Kr 03 0 62 62 360 0.322  0.038 2.5 0.054
1 0.327  0.059 2.8 0.068

3 0.318  0.201 4.2 0.063

10 0.241  1.350 15 0.014

Kp 1 0 62 62 360 0.327  0.059 2.8 0.068
0.3 0.326  0.075 3.2 0.073

1 0.327  0.064 2.6 0.069

3 0.327  0.070 2.7 0.064

10 0.327  0.093 2.4 0.061

30 0.318  0.193 2.0 0.055

100 0.288  0.642 2.0 0.066

Y 1 1 36 250 600 0.335  0.096 5.6 -0.021
52 0.351  0.085 5.1 -0.017

62 0.368  0.112 6.1 -0.084

74 0.395  0.077 4.6 -0.168

y 1 1 52 130 600 0.336  0.089 4.0 0.029
180 0.343  0.088 4.7 -0.006

250 0.351  0.085 5.1 -0.017

390 0.326  0.117 6.3 0.003

y;’ 1 1 52 250 290 0.359  0.072 4.0 -0.076
390 0357  0.077 4.6 -0.054

600 0.351  0.085 5.1 -0.017

780 0.349  0.093 5.3 -0.017

Table 6.1: Amplitude control algorithm cases. The left column indicates which pa-
rameter is varied, while the remaining parameters are fixed. Note that some cases are
repeated for clarity.

end of the artificial buffer layer. Initial estimates for the control parameters can be
obtained by considering the adjustment time scale for ¢ when a fixed amplitude Ay
is used. For that case, the error adjusts to zero in about T.U,/d ~ 10 (figure 6.15(a)).
Requiring the initial amplitude A(0) = Kpe(0) ~ Agpe and the approximate growth
Ar(T,) = (K1Up/0)Tc€(0) ~ Agpt then yields

Aopt

Aot 0
Kp ~ op
()

~30, Ki~——"—=3. 6.24
A () (6:24)

Control Parameters

Varying the control parameters Kp and K over rather large ranges yields flow statis-
tics that are virtually indistinguishable. This is reflected in table 6.1 by the almost
unchanged velocity shift AU (recall that AU is sensitive to the convergence of the
statistics), but is also true for the higher order statistics. Note that AU is not exactly
zero, and that the average amplitudes are lower than Ap,¢. This is simply a reflection
of the fact that the definitions of € and AU ™ are different. Some sample time histories
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(a) Error ¢, offset by multiples of 0.04. (b) Amplitude A, offset by multiples of 0.6.

Figure 6.15: Time histories for the control algorithm with different parameters, offset for
clarity, where the dashed lines mark zero for each curve. y;gf = yfr = 62, y;lr = 360. From
bottom to top: A = Agpy = 0.335, ie. fixed; (Kp,Kr) = (0,0.3); (Kp,Ky) = (1,1);
(Kp, K1) = (0,3); (Kp, K1) = (30,1).

of the error and the amplitude are shown in figure 6.15. The error fluctuates around
zero for all cases, including when the amplitude is fixed. The fluctuations become more
pronounced for larger values of K, but slightly more suppressed for larger values of
Kp. The amplitude oscillations, on the other hand, increase when either parameter is
increased. As expected, the initial transient is longer for lower values of K. Since the
flow statistics are essentially identical regardless of the parameter values, the combina-
tion (Kp, K1) = (1,1) is chosen here. This yields a short initial transient and reasonable
fluctuation levels for € and A, as seen in table 6.1. Overall, the control algorithm is not
sensitive to the values of the control parameters.

Error Parameters

The sensitivity of the results to the error parameters is investigated in the last three sets
of cases in table 6.1. The influence of the error parameters is perhaps best understood
by considering the approximate (since u, ~ Ur,) average error

+
Yn
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Figure 6.16: Mean velocity profiles with a logarithmic slope subtracted, i.e. a(y™) as
defined by (6.26). ©: A =0, i.e. without forcing; ¢: A = Aqp = 0.335; O: A = 0.563;
—-—: locations of the interface (y;', &~ 120) and that of maximum forcing (ygIr ~ 190),
respectively.

where a(y*t) is the mean velocity profile with a logarithmic slope subtracted. This
quantity is shown in figure 6.16, and can be used to infer the sensitivity to the error
parameters. From relation (6.26), the average error is approximately the area between a
curve in the figure and a constant line at its value at y;gf, between the integration limits.
Since a(y™) is essentially constant for 250 < y < 800, one can infer that the results
are rather insensitive to the integration limits as long as they are chosen in this range.
This is confirmed in table 6.1, with only minor changes in AU™ (and the remaining
statistics, though not shown). Note that |[AU | stays within the range of acceptable
values given above for all values of yfr and y;lr tested.

A similar situation applies to y;;f, for which |[AUT| is larger than the value given

above only for y;gf ~ T4. Due to the curvature of a(y™) in this region, a(y* = 74) is
about 0.15 units lower than a(y™ = 36) and a(y*t = 52). As a direct consequence of
the error interpretation given above, this translates into a velocity shift that is lower by
about 0.15 units. Thus, the results are slightly more sensitive to y:gf (compared to the
other parameters). That being said, there is little reason for not choosing y:gf ~ 50, i.e.
immediately outside of the buffer layer.

Overall, the control algorithm for the forcing amplitude quickly finds the appropriate
value of A, and is rather robust with respect to the parameters involved. Despite varying
the parameter values over large ranges (e.g., 300% for yfr ), the resulting statistics as
measured by AU are within the arbitrary limit 0.088 units. Contrast this to the
sensitivity to A directly, where the amplitude must be within 8% of the optimal value
to produce similar accuracy.
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6.5 Summary and Conclusions

This chapter has focused on hybrid LES/RANS and on the artificial buffer layer that
develops around the interface between the two modeling regions. The solution behaviour
in the artificial buffer layer is studied, and it is argued (but not shown) that it will
be hard to eliminate the resulting velocity shift within the context of eddy viscosity
models: since the velocity shift depends directly on the balance between the resolved
and modeled shear stresses, and since these quantities are both affected by the eddy
viscosity (through the modeled dissipation and stress, respectively), it is unlikely that
any one model for v can be calibrated to provide both quantities accurately. While not
shown here, it is consistent with the fact that the velocity shift has appeared in a range
of studies using different turbulence models and interface conditions.

In the second part of the study, additional forcing of the momentum equations is
considered. This forcing introduces a second degree of freedom in the modeling by
increasing the resolved shear stress without affecting the modeled eddy viscosity. The
forcing field is taken from a wall resolved LES, and is hence more physically sound than
the stochastic forcing used in previous studies. The results with forcing are better in
essentially all aspects: the velocity shift is removed, the artificial buffer layer is smaller
in (vertical) size, and the strength and size of the near wall superstreaks are reduced.
In contrast to some previous studies, the forcing is centered around the location of
maximum scaled mean velocity gradient (as opposed to around the interface), with
the underlying assumption that the locations of peak forcing, maximum increase of
the resolved shear stress, and maximum decrease of the mean velocity gradient will all
coincide. The results show this hypothesis to be essentially correct.

The success of the forcing suggests that this might be a way forward towards gener-
ally applicable LES/RANS models for high Reynolds number flows. The main problem
with this concept appears, at least in the present study, to be the sensitivity of the
results to the forcing amplitude. An a priori model expression for the amplitude is a
necessity for predictive models, and the rather high sensitivity to this parameter sug-
gests that universal models might be hard to develop. This problem is solved here by
a proposed control algorithm for the amplitude. This is an inherently mathematical
procedure, and the only physics involved is in the definition of the reference velocity
profile and the error. The control algorithm quickly finds the appropriate amplitude,
and it is remarkably robust with respect to the values of the parameters involved. It
is argued that the approach is consistent with the use of LES/RANS in the first place,
and that no extra empiricism is introduced.

There are several similarities between the true and artificial buffer layers: the mean
velocity gradient scaled by the wall distance (i.e., 7) has peaks in the middle of both, the
resolved streamwise stress component has a peak in both, the spanwise stress component
increases rapidly through both, and the correlation coefficient between the streamwise
and wall normal velocity fluctuations has a peak in both. In addition, the streamwise
length scale of the u’ component also increases towards the wall in both the true and
artificial buffer layers. Since both buffer layers are associated with a change to resolved
shear stress (from viscous and modeled, respectively), it is perhaps not surprising that
there is a range of similarities between them. This, nevertheless, indicates that the
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artificial buffer layer dynamics might be better understood in the context of the true
buffer layer. Consider, for example, the fact that Jimenez et al. (2004) found evidence
of very long streaks in the buffer layer of their ‘autonomous’ near wall turbulence DNS.
These streaks had low wall normal velocity, but contributed to the shear stress due
to their organized structure (i.e., the high correlation between u’ and v’). This is
very similar to the superstreaks in LES/RANS, and suggests that there is a common
explanation for their existence.

The present results also contradict the suggestion by Baggett (1998) that the super-
streaks are inefficient at carrying resolved shear stress due to a low correlation between
u’ and v'. Here, the (negative) correlation coefficient is high in the artificial buffer layer,
in fact it even has a small peak there. Also, when adding the forcing, the correlation
coefficient changes only by a small amount while the wall normal velocity fluctuation
changes considerably more. This indicates that it is not the correlation, but rather the
low level of v’ that is the main reason for the low level of resolved shear stress. However,
more study is needed into the artificial buffer layer dynamics before this issue can be
settled.

On a side note, the importance of the wall normal component in generating a higher
resolved shear stress opens up the possibility of using a non-zero wall transpiration
velocity as a means to accomplish this.

Selective removal of forcing modes suggests that scales smaller than three to four cell
sizes are ineffective at the removal of the velocity shift, while even the largest scales are
rather effective. This suggests that general forcing models should provide these larger
scales in order to be effective, and not just scales around the filter width. It also lends
support to the idea that the concept of forcing should be viewed as a means to quickly
trigger large, energetic structures, rather than in the context of backscatter.



Chapter 7

Summary

This thesis presents progress towards the application of large eddy simulation (LES) to
flows of engineering interest. Due to the non-linear nature of the Navier-Stokes equa-
tions, predictions of turbulent flows are among the most difficult problems in engineering
despite a century of vigorous research. The LES methodology offers hope, since it, in
theory, solves for all flow dependent motions directly, while only modeling the more
universal ones. Since the flow dependent motions are inviscid in nature, the computa-
tional cost is high but independent of the Reynolds number. The main bottleneck of
LES is its application to attached boundary layers. In such flows, additional modeling
of the inner boundary layer is necessary to retain the favourable characteristics of the
method — resolution of all flow dependent motions at a cost independent of the Reynolds
number. In the present thesis, a statistical turbulence model is used near the wall, and
interfaced to the LES model at a height ;. above the wall. While the results are
much improved compared to cases using no additional near wall modeling, an artificial
buffer layer is formed around the modeling interface. The resolved motions are rather
unphysical below this interface, and adjust throughout the artificial buffer layer.

To increase the resolved shear stress in the artificial buffer layer, additional forcing
is introduced in the momentum equations. This has been attempted in previous studies
using stochastic models for the forcing, but is done here using forcing fields from a
reference LES. Thus, the forcing fields used here are more physically accurate than
those used in other studies. This ensures that the present study of forcing can focus on
the concept itself, rather than merely being an evaluation of any particular stochastic
model. One could argue that the present results, using physically accurate forcing fields,
constitute a form of ‘upper boundary’ for what may be achieved using the LES/RANS
with forcing concept. The results with forcing are better in essentially all aspects: the
velocity shift is removed, the artificial buffer layer is smaller in size, and the superstreaks
in the near wall region are weaker and shorter. In contrast to previous studies, the
forcing is introduced around the location of maximum mean velocity gradient here,
based on the necessary balance of the stresses in the streamwise momentum equation.
The results prove this reasoning to be correct.

The study reveals several similarities between the artificial and ‘true’ buffer layers:
the mean velocity gradient (scaled by the wall distance) has peaks in the middle of both;
the resolved streamwise stress component has peaks in both; the spanwise stress compo-
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nent increases rapidly through both; the correlation coefficient between the streamwise
and wall normal velocity components has peaks in both; and the streamwise length
scale increases towards the wall in both. Since both buffer layers are associated with
a change in shear stress, this is perhaps not surprising. It does, however, suggest that
recent findings on ‘true’ near wall turbulence might be applicable to the artificial buffer
layer as well.

The conjecture about the low resolved shear stress being caused by ‘de-correlated’
motions in the superstreaks by Baggett (1998) does not seem correct in the present
study. Instead, the most likely explanation for the low resolved shear stress in the
artificial buffer layer is the overly damped wall normal velocity fluctuations. Overall,
the study of the artificial buffer layer contributes to the understanding of it, and provides
a useful background for future attempts to reduce its impact in hybrid LES/RANS.

The results with forcing are very sensitive to the forcing amplitude, and it is argued
that it will be difficult to find accurate a priori models for the amplitude due to this
inherent sensitivity. As a way around this problem, a control algorithm that quickly
finds the appropriate amplitude is proposed and tested. An error that measures the
size of the velocity shift is specified, and it is argued that this error is consistent with
LES/RANS and that it does not increase the empiricism of the method. With this
error, the control algorithm generates accurate results for a wide range of parameter
values, which shows the robustness of the method.

In a separate contribution, a conditional semicoarsening multigrid method for the
efficient solution of the Poisson equation on structured grids is proposed and tested.
The method does not yield optimal multigrid cost scaling, but is highly parallel, sim-
ple to implement, and applicable to complex geometries. While implemented here for
structured grid topologies only, the method actually lends itself more naturally to un-
structured grids. It should also, with proper modifications, be applicable to problems
with strong discontinuities in the matrix coefficients.

The conditional semicoarsening method establishes a rather strong mathematical
connection between the behaviour of the smoother and the proper coarse grids. While
the underlying idea of coarsening the grid only in the directions of greatest coefficient
strength has been proposed before based on other arguments, the mathematical con-
nection derived here places the concept on firmer ground.

7.1 Future Directions

As per usual in research, every study raises at least as many questions as it may answer.
In the author’s view, some of the most promising questions or ideas for future work are:

e Application of existing near wall modeling techniques in LES, including the one
proposed here, to more complex flows. While the plane channel flow is one of
the most challenging flows for LES, the time to evaluate more complex flows has
come. For example, can the techniques handle impinging and separating flows
properly? Are the error and the control algorithm proposed here valid for more
complex flows, or do they need adjustment?
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e A thorough comparison of different near wall modeling concepts, and an assess-
ment of their strengths and weaknesses. For example, what are the inherent
differences between the wall stress models (with RANS equations on an auxiliary
grid) and the hybrid LES/RANS concept? Is the problem of the artificial buffer
layer specific to LES/RANS, or does it appear with wall stress models as well?

Similarly, for the conditional semicoarsening multigrid method proposed here, some
future questions are:

e Application of the conditional semicoarsening concept to unstructured grids. Is
the computational cost scaling closer to optimal for unstructured grids, where the
coarse grids are no longer unnecessarily dense?

e Application of the method to problems with coefficient discontinuities.

e The conditional semicoarsening presented here is mathematical in nature, but
yields similar coarse grids as the agglomeration method based on physical argu-
ments by Elias et al. (1997). The similarity suggests that there is a connection
between these different arguments, and it would be instructive to examine this
connection.

e The mathematical connection between the smoothing behaviour and the coarse
grid suggests that it might be possible to prove the convergence of the conditional
semicoarsening method for some class of problems.
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