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Abstract

A study is presented for laminar natural convection from horizontal cylinders
with annular fins, which are referred to as annular-fin heat sinks in the following
context. To simplify the analysis, the surfaces of the heat sinks are assumed to
be isothermal. The heat sinks used for experimental studies in this work were
made from aluminum, with a large ratio of fin thickness to fin diameter, thereby
providing surfaces which were very close to isothermal. Previous studies on these
types of heat sinks have not included the effects of fin thickness and end surfaces
in the derived correlations.

A comprehensive model is presented for predicting natural convection heat
transfer from these annular-fin heat sinks. It overcomes the shortcomings of the
previous correlations. The model makes the distinction between the external and
internal surfaces of the heat sink. allowing the heat transfer mechanisms that
dominate on each of these surfaces to be more easily applied.

An approximate heat transfer solution for fully developed flow between the an-
nular fins is obtained. The fully developed flow solution and an existing boundary
layer solution for laminar natural convection are employed to construct the model.
The model accounts for heat transfer from all surfaces of the heat sink, including
the end surfaces and the rim of the fins. The Nusselt number of the heat sink
is given as a function of the modified Rayleigh number or Elenbaas number. To
account for the radiative heat loss, a radiation model for annular-fin heat sinks is
also given.

Measurements for natural convection heat transfer from five heat sinks were
performed and are used to validate the model. Radiative heat losses for these heat
sinks were obtained from radiation measurements performed in a vacuum chamber.

The model is compared with the present experimental data, previous correla-
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tions and experimental data, including the two limiting cases, i.e. disk channels
and circular cylinders, plus a set of apple core data. Good agreement is observed
in all comparisons. It confirms that the isothermal simplification is justified.

The model provides engineers with a useful tool for designing heat sinks.
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Nomenclature

surface area, m?

surface area of circumscribed cylinder, = #D?/2 + n DL. m?
surface area of channel control surface, = 7 Db. m?
surface area of one channel, = n(D? — d?)/2 + rdb. m?
inner surface area, = (Ny — 1)Acr, m?

component surface area in Eq. (4.21), m?

outer surface area, = 7 D?/2 + N;xDt, m?

total surface area of heat sink, = Ay + Aoyr. m?
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constant in Eq. (2.7)

constants in Eq. (2.4) and Eq. (2.8)

constants in Eq. (2.8)
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coeflicient in Eq. (2.15)

heat capacity of test body in Eq. (2.17)

fin outer diameter. m

diameter of support cylinder, m

mean diameter in Eq. (2.5), m

view factor in Eq. (4.57)

Prandtl number function

exchange factors in Eq. (3.1)

body gravity function

gravitational acceleration, m/s?

height of parallel plates, m

convection heat transfer coefficient, W/m2 K
modified Bessel function in Eq. (4.63)

thermal conductivity, W/m K

length of heat sink, = tN;+(N;—1)b, m

arbitrary characteristic length, m

parameter in Eq. (4.63)

parameter in Eq. (2.16)

total number of fins

diffusive limit Nusselt number as Ra — 0

Nusselt number with v/A as characteristic length,
= QconvVA/AAT k

Nusselt number for heat sink based on Ags and
with b as characteristic length, = Qconyb/AxsAT k
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Nusselt number with d as characteristic length in Eq. (2.10).
= QConvd/AHSAT k

Nusselt number with e as characteristic length in Eq. (2.11).
= Qconve/AasAT k

Nusselt number with £ as characteristic length,

= QconvL/AAT K

Nusselt number with s as characteristic

length for parallel plates, = Qconys JAAT k

Churchill-Usagi blending equation parameter

dimensionless normal in Eq. (4.9)

dimensionless pressure component in Eq. (4.2) - Eq. (4.4)
local perimeter of axisymmetric surface at certain value of 6, m
heat flow rate by convection, W

heat sink radiation loss in Eq. (3.1), W

heat flow rate by radiation, W

total heat transfer in Eq. (2.20), W

wire heat loss in Eq. (2.20), W

wire radiation loss in Eq. (3.1), W

Rayleigh number with /A as characteristic length.

= gBATVA Jva

modified Rayleigh number, or Elenbaas number. = g8AT b*/vaD
Rayleigh numbers defined in Eq. (2.10)

Rayleigh number with D as characteristic length.

= gBATD?/va

Rayleigh number with £ as characteristic length.

= gBATL3/va

modified Rayleigh number for parallel plates, = g3AT s* JvaH
total length of surface streamline in Eq. (2.22). m

spacing of parallel plates, m

average ambient temperature in Eq. (2.18). K

surface temperature of test body in Eq. (2.17), K

surface temperature of heat sink, K

temperature measured by thermovision system in Eq. (2.11). X
temperature of vacuum chamber wall, X

temperature of ambient air, K

fin thickness, m

temperature difference, = Ts — T, K

dimensionless velocities in Eq. (4.1) - Eq. (4.5)

reference velocity in Eq. (4.5), m/s

dimensionless coordinates in Eq. (4.1) - Eq. (4.5)
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thermal diffusivity of air, m?/s

volumetric coefficient of thermal expansion, 1/ K
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time, s
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Stefan-Boltzmann constant, 5.67 x 10~8 W/m2K*

Subscripts

cc
Accs
ARin
AEND
ccs
CL
CLF
FD
HS

Arn

AIN-FD

Arnv-T

IN

Aout
ouT
T

vVa

Superscripts

p.q
i

T

circumscribed cylinder

channel control surface area

fin rim surface area

end surface area

channel control surface, based on Ac

one channel

channel flow, based on A¢r,

fully developed regime

heat sink

inner surface area between adjacent fins, including support
cylinder surfaces and lateral fin surfaces

inner surface area with fully-developed flow

inner surface area with thin boundary layer flow

inner surface; based on Agg

outer surface area, including fin rims and two end surfaces
outer surface; based on Agg

thin boundary layer regime

based on V4, as the characteristic length

parameters in Eq. (2.4)
parameters in Eq. (2.22)
thin boundary layer regime



Chapter 1

Introduction

Heat dissipation is an important consideration in the design of many kinds of
engineering equipment and instruments. such as air conditioners. refrigerators.
electrical and electronics assemblies etc.. The use of heat sinks is a common, low
cost means of increasing the effective surface area to enhance heat dissipation by
convective air cooling. Heat sinks can be used in applications with either forced or
natural convection, but natural convection has a distinct reliability advantage since
there is no need to use an external source of power to move the cooling fluid. In the
event of a fan failure, natural convection can be considered as the fail safe mode of
operation. In some cases, fail safe operation can be crucial for the equipment. e.g.
aviation electrical and electronics devices, and some communication equipment
etc. In computers and other electronic systems, natural convection cooling can
also enhance the reliability of the system when compared with forced convection
cooling. Therefore natural convection cooling is appealing to many researchers.
Horizontal cﬂinders with annular fins, a typical cooling structure as shown in
Fig. 1.1, will be investigated in the present study and referred to as annular-fin
heat sinks in the following context. It is one type of widely used heat sinks in

engineering pra-:tice.



(b) (Kayansayan and Karabacak, 1992)

Figure 1.1: Heat Sinks with Annular Fins.



1.1 Problem Definition

A schematic of the annular-fin heat sink used in this study is shown in Fig. 1.2.
in a horizontal orientation, where the gravity force is parallel to the annular fins.
The heat sink consists of N ¢ identical fins with a centrally located circular support
cylinder. Each fin section has a fin thickness, £, an outer diameter. D and an inner
diameter. d. Adjacent fin sections are separated by a distance. b and the overall

length of the heat sink is L.

5 ot

———L

Figure 1.2: Geometric Parameters of Heat Sink.

In this study the surface of the heat sink is assumed to be isothermal and
the spacing b is used as the characteristic length (Elenbaas. 1942: Edwards and
Chaddock, 1963; Jones and Nwizu, 1969; Tsubouchi and Masuda, 1970). The

Nusselt number is defined as

__Q b
Nw = 7%

and the modified Rayleigh number or Elenbaas number is (Elenbaas, 1942: Ed-
wards and Chaddock, 1963; Jones and Nwizu, 1969; Tsubouchi and Masuda, 1970)
gBATbH b

av D

(1.1)

Ra; = (1.2)

3



where AT is the temperature difference between the heat sink surface and the
ambient air.

Often it is required to design a heat sink given a fixed set of design conditions.
such as overall size, shape etc.. In these instances. engineers need to find optimum
dimensional values, e.g. spacing b, fin thickness ¢ and diameter ratio D/d etc..
To be able to achieve this efficiently, an accurate and easy-to-use model is very
important for the designers. Numerical software, as general computation tools, can
be used for this purpose, but they are much more expensive and time consuming.

The objective of this study is to develop a comprehensive model that will
account for the effects of all geometric parameters, such as spacing b. diameter
ratio d/D, fin thickness ¢ and fin number Ny, thereby providing engineers with a
useful design tool.

1.2 Overview of the Thesis

This thesis is arranged in the following manner.

In Chapter 2, previous studies on this problem. relevant experimental methods
and boundary layer solutions are briefly reviewed.

In Chapter 3, the experimental method used in the present study is described:
then the experimental results for five heat sinks are reported.

In Chapter 4, the models for laminar natural convection are developed for
annular-fin heat sinks.

In Chapter 5, the present model is compared with previous correlations, present
experimental data and some previous experimental data.

In Chapter 6, a summary and conclusions are presented.



Chapter 2

Literature Review

In this chapter, a brief review of ten pertinent correlations is presented and a sum-
mary table of the correlations is given in the following section. Then comparisons
between the previous correlations are made in Subsection 2.1.2. A brief review of
relevant experimental methods and boundary layer solutions is given in Section

2.2 and Section 2.3.

2.1 Previous Work on Heat Sinks
2.1.1 Previous models and correlations
Elenbaas Model

Elenbaas (1942) reported both analytical and experimental results of natural
convection from vertical parallel plates. He used the steady state heat balance
method in which resistors are embedded in the plates and the measured voltage and
current values are then used to determine the convective heat transfer. He was the
first worker to adopt Ra,(s/H) as the correlating parameter and his experimental

results were correlated by

_ 3/4
Nu, = %Ra: [1 — exp (Rz?)] (2.1)

5



where Ra; = Ra,(s/H), s is the spacing between the plates and H is the height
of the plates.

As Ra; — 0, the above equation predicts heat transfer for the fully-developed

channel flow where

|
Nu, = = Ra (2.2)

On the other hand, as Ra; —» oo the equation collapses to the one predicting

laminar natural convection heat transfer from a single vertical plate:

Nu, = 0.6(Ra;)'/* (2.3)

Although Eq. (2.1) was obtained for parallel plates, after being modified it has

been extensively used for calculating heat losses from finned surfaces.

Edwards and Chaddock Correlations

Edwards and Chaddock (1963) used an experimental method similar to that of
Elenbaas to measure heat transfer from cylindrical disk extended surfaces. Based
on the form of the Elenbaas equation and using fitting techniques. they developed
correlations for 3 different diameter ratios (D/d =1.94. 2.97. 5.17) and 3 materials
namely copper, aluminum and stainless steel. In their experiments the fin thickness
was fixed at 0.5 mm. The temperature of the support cylinder was taken as the

temperature of the heat sink. They reported the following correlation:

Nuy = Cy(Ra})? [1 — exp (;Cz)]q (2.4)
ap

where 5 < Raj < 10* and the parameters are as given in Table 2.1 through Table
2.3.



Table 2.1: Parameters for Copper Fins.

D/d Ci C. p q

9.17 | 0.1065 106 0.5510 0.2953
2.97 |1 0.1255 155 0.5292 0.2599
1.94 | 0.1250 137 0.5506 0.2943

Table 2.2: Parameters for Aluminum Fins.

D/d Cy C, P q

5.17 | 0.0845 101 0.6137 0.3346
297 | 0.1165 57 0.5295 0.2199
1.94 | 0.1463 296 0.4903 0.2070

Table 2.3: Parameters for Stainless Steel Fins.

D/d C, C. P q

5.17 | 0.0510 65 0.4611 0.1827
2.97 [ 0.1002 120 0.4784 0.2207
1.94 |1 0.1347 466 0.4758 0.2174

Knudsen and Pan Correlation

Knudsen and Pan (1963) reported their experimental results for natural con-
vection heat transfer from tubes with circular fins. They used the mean diameter.

d. = (D + d)/2, as the characteristic length. They gave the following correlation:

b 1/3
Nu, = 0.201 [Ra, (3)] (2.5)

where 10** < Ra, < 10%%, and

Nu, = h:e
Ra, = 9BATd
¢ av



This correlation is a straight line in log-log plot. It does not represent the region
of fully developed flow. A least square analysis was used to obtain the parameters.

The average deviation of their experimental data from the correlation is +7.5%.

Jones and Nwizu Correlation

Jones and Nwizu (1969) measured heat transfer from horizontal tubes with cir-
cular fins for four diameter ratios (D/d = 1.33, 1.50, 1.67 and 1.83) which were not
covered by the Edwards-Chaddock experiments. In their experimental apparatus.
a guard section at each end of the finned tube was introduced to minimize end
losses. The guard sections were heated separately and maintained at the same
temperature level as the test section. Thus the heat transfer is eliminated at the
end surfaces as shown in Fig. 2.1. Their correlation is similar to that of Elenbaas.
It gives 10% smaller values when compared with that of Edwards and Chaddock.

A plain horizontal cylinder was tested with the same apparatus. and the data
lying 5% below the correlation of McAdams (1954) were found. So the authors
concluded that their data were slightly conservative. Their correlation for diameter

ratios of D/d = 1.33 to 1.83 was given as

—155)1%*
Nuy = 0.116(Ra; )%5® [1 — exp ( 7 )J (2.6)

b
where 1 < Ra; < 3x10%. Theratio of fin thickness to fin height. i.e. t/(D/2—d/2),

ranged from 0.16 to 0.4. It is relatively larger than those of the other studies

reviewed here.

Tsubouchi and Masuda Correlations

Tsubouchi and Masuda (1970) measured heat transfer from horizontal cylin-
ders with circular fins for 30 cases with values of D/d ranging from 1.14 to 3.73.
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Figure 2.1: Test Section of the Heat Sink.

The guard sections were introduced at two ends of the cylinder. Two sets of corre-
lations were presented: one for the fin rim surface and the other for the lateral fin
surfaces with supporting cylinder surface respectively. referring to Fig. 2.2. The
air properties are evaluated at the wall temperature. The correlations given below

are for the fin rim surface (2 < Ra; < 10%).

Nuy = C (Ra;)? (2.7)

Table 2.4: Parameters for Fin Rim Surfaces.

D/d [3.73 300 245 1.82 136 114
C |09 08 066 066 062 059
P |029 029 0.29 029 029 0.27
t(mm) | 2 2 2 15 1 1

They developed correlations for the lateral fin surfaces with the supporting
cylinder for the range of 3 < Ra; < 10%.

For the diameter ratio range of 1 < D/d < 1.67, they proposed the following

correlation:

i\ &
Nuy = CoRaZ {1 —exp [- (R—;) J} (2.8)
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Figure 2.2: Surfaces of a Heat Sink.

where
¢ = d/D
Co = —0.15+0.3¢ +0.32(¢'®
C1 = —180+480¢C — 1.4¢"®

C, = 0.04+0.9¢
Cs = L1.3(1-¢)+0.0017¢*2

= Licc

p = 2 203

Ras = Ra;(D/d)

For the large values of the diameter ratios 1.67 < D/d < oo, they gave the

following correlation:

- 3/4 3/4
Nu, = f;; {2 — exp [— (R%Ib) ] — exp [—ﬁ (}—%) ]} (2.9)




where
¢ = d/D

B = 0.17¢C + e 4%

[23.7 - 1.1(1 + 15242)1/2] 4/3
Cl =
1+p

Kayansayan and Karabacak Correlation

Kayansayan and Karabacak (1992) measured natural convection heat transfer
from horizontal cylinders with vertically attached circular fins for 16 cases. They
gave a correlation for high Rayleigh numbers, which predicts smaller values of
Nusselt number near the Ra., defined below than those of previous correlations.
The diameter of supporting cylinder was chosen as characteristic length. The
correlation is

Nug = 0.081Ra333 (2.10)

The correlation is valid for the following ranges of the parameters:
i) 1.5 < D/d < 6.0 and
i) 0.25 < b/d < 1.0 and
ii) Raq > Ra.,
where

Ra. = 6.11 x 107(d/D)?

Hahne and Zhu Correlation

Hahne and Zhu (1994) used a heat balance method and a thermovision system
AGA, model 782 to measure the dissipated heat and the surface temperature.

The two end surfaces were coated with black paint in order to obtain a uniform

11



emissivity close to 1. They did not separate the convection heat loss from the
radiation loss. Therefore the correlation given in the paper predicts the total heat
loss, including radiation, for D/d = 4.38, 5.63 and 6.88. The effective diameter.

d. = d+ (D — d)/2, was chosen as the characteristic length. The correlation is as

follows: 0.308
hd. b\~
Nu, = : =0.376 (Ra,a) (2.11)
where
b Qur
AHS(Ttv - Toc)
and

_ gﬁ(Ttv_ oo)(PePr

v2

Ra,

where Qv is the heating rate, T}, is the heat sink temperature measured by
thermovision system, T, is the ambient temperature. Ags is the total surface

area of the heat sink. The applicable region of the correlation is

5 x 10* < Ra. (b/d) <5 x 10°

Bar-Cohen and Rohsenow Correlation for Plate Channel

Bar-Cohen and Rohsenow (1984) obtained a correlation for vertical channel
of isothermal plates. They employed the Churchill and Usagi (1972) blending

equation and gave the following correlation for the plate channel:

~1/n

Nu, = [(Ra;/24)™" + (0.59Ra;'/*) ™" (2.12)

where Raj/24 is the solution for fully developed regime, and 0.59Ra;/* is the
solution for isothermal vertical plate. The parameter n is approximately equal to
2. The correlation shows good agreement with the data of Elenbaas (1942) for a

vertical channel.
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Raithby and Hollands Correlation for Square Fins

Raithby and Hollands (1985) correlated the experimental data of Elenbaas
(1942) for square plates and gave the following equation for square fin arrays

without the central support cylinder:

-1/2.7

Ra.o'sg -2.7
Nu, = ( : ) + (0.62Raz/4)=27 (2.13)

This equation should account for the edge effect of the square plate channel.

Karagiozis Model for Rectangular Fin Arrays

Karagiozis (1991) developed a model for rectangular fin arrays. It contained
three regimes: low Rayleigh number regime, intermediate Rayleigh number regime
and high Rayleigh number regime. For the low Rayleigh number regime. the heat
transfer rate was taken to be the same as that from the circumscribed cuboid of the
fin arrays. It was calculated using the method of Hassani-Hollands (1989). In the
intermediate Rayleigh number regime. the fully developed heat transfer between
the parallel plates was added to the Nusselt number of the low Rayleigh number
regime. The fully developed heat transfer was calculated by the correlation for
parallel plates (Elenbaas, 1942):

Nu, = —Ra, (2.14)

where Ra; = Ra,(s/H), s is the spacing between the plates and H is the height
of the plates. In the high Rayleigh number regime, the vertical plate correlation
was used which is

Nu, = Cin(Ra)"* (2.15)

where C},, was determined by a fitting technique based on the experimental results.
In order to use the blending method, the correlation for high Rayleigh number

13



regime was modified as

_ C my 1/4
Nu, = Cim {Ra, [1 + (Ra;) }} (2.16)

where C and m,; were determined by a trial and error procedure.

Finally the Nusselt number for intermediate Rayleigh number regime and the
modified Nusselt number for high Rayleigh number regime were blended using the
Churchill and Usagi equation to give the correlation for the full range of Rayleigh

number.

A summary of the previous studies on annular-fin heat sinks reviewed above is

given in Table 2.5.
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Table 2.5: Summary of Previous Studies on Annular-Fin Heat Sinks.

Authors L t d D D/d Ra; end | mate-
(nm) | (mm) | (mm) | (mm) guard | rial
Edwards- 152 0.5 19.1 | 37.1 [1.94 5 — 104 No Cu!
Chaddock 56.7 | 2.97 Al2
(1963) 98.7 | 5.17 Ss3
Knudsen- 305 - 35 60.3 | 1.73 | 10** - 10°° | No Cu
Pan 73.0 | 2.10 forRa.
(1963) 85.7 | 2.45
Jones- 320 2.54 38 50.8 {1.33| 1 -3 x 10° Yes Al
Nwizu 57.2 | 1.50
(1969) 63.5 | 1.67
69.9 | 1.83
Tsubouchi- 195 1 22 25 1.14 2 —10% Yes Al
Masuda 1 30 1.36
(1970) 1.5 40 1.82
2 54 2.46
2 66 3.00
2 82 3.73
Kayansayan- | 600 2 200 300 1.5 | Rag > Ra., | insu- Cu
Karabacak 150 2.0 lating
(1992) 100 3.0 layer
50 6.0
Hahne- 45 1 16 70 4.38 5 x 10*— No Cu
Zhu 90 5.63 5 x 10°
(1994) 110 | 6.88 | for Ra.(b/d)

1 copper; 2 aluminum; 3 stainless steel.

2.1.2 Comparison of previous correlations

In Fig. 2.3, the correlations of Edwards-Chaddock, Knudsen-Pan, Jones-Nwizu,
Tsubouchi-Masuda and Kayansayan-Karabacak are plotted together. For the pur-
pose of comparison, a diameter ratio of 1.94 is chosen, which is valid for most of

the correlations except for the Hahne-Zhu correlation.
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Figure 2.3: Comparison of Previous Correlations.
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The Edwards-Chaddock, Jones-Nwizu and Tsubouchi-Masuda correlations have
a form similar to that of Elenbaas. They show the same trend, but there are larger
differences at high Raj.

Knudsen and Pan proposed a simple form of correlation, which is a straight line
in a log-log plot, it gives large deviations from the Tsubouchi-Masuda correlation.
the Jones-Nwizu correlation and the Edwards-Chaddock correlation around Ra;
= 100.

The Kayansayan-Karabacak correlation is valid for high Ra;, e.g. 1.5 x 10* —
2.5x 107 for D/d = 2. It has a simple form and shows large deviations in its low
Ray region, e.g. Ra; = 1.5 x 10* from all the other correlations.

In most previous experiments (Edwards and Chaddock. 1963: Knudsen and
Pan, 1963; Jones and Nwizu, 1969; Tsubouchi and Masuda, 1970: Kayansayan
and Karabacak, 1992), for each case. the Rap is more or less fixed because the
temperature difference AT varied within a narrow range (a factor of 20 at most).
and the pressure was at atmospheric. The wide range of Ra; was achieved by
variation of b/D (note: Ra; = Rapb*/D*). Therefore each of their correlations
represents a series of heat sinks with different values of b/D. The other geometric
parameters (£/D, d/D and L/D) of these heat sinks were fixed.

On the other hand, Karagiozis (1991) performed the experiment in a different
manner, where all geometric parameters were fixed for each case and the wide range
of Ra; was achieved through a variation of the ambient air pressure. Therefore
each of his correlations represents a group of heat sinks which are similar to each
other. In other words, each correlation represents the heat sinks whose geometric
parameters (¢/D, b/D, d/D or L/D) are identical.

From the above review it can also be seen that

i) The differences between the correlations for annular-fin heat sinks can be as

high as 40%.
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ii) The effect of fin thickness variation is not included in the previous correla-
tions.

i) End surfaces are not considered separately. Therefore the previous corre-
lations would not be applicable to those cases where end surfaces have significant
contribution to the total heat transfer, e.g. the annular-fin heat sinks used in
electronic systems which usually have only a few fins as shown in Fig. 1.1 (a).

Accordingly, there is a need to do some experiments to clarify the discrep-
ancy and to develop a more comprehensive model to account for the effects of fin

thickness and end surfaces as well as the other parameter effects.

2.2 Relevant Experimental Methods

All the experiments mentioned in Section 2.1 were done using a steady state heat
balance method. This method involves introducing electric power into the physical
model body (heat sink). measuring the supplied power when the heat transfer
becomes steady state, and subtracting the radiation loss which was calculated
according to the measured heat sink temperature and the ambijent temperature.
This method is based on a first law energy balance.

As mentioned in the above section, in the experiment of Karagiozis (1991) the
modified Rayleigh number Ra; varied with the pressure. In this case, one can
obtain a wide range of Rayleigh numbers (a factor of 10°) with only one physical
model body (Hollands, 1988). One of the advantages of this approach is that by
varying the ambient pressure, one can match the Rayleigh number of the physical
model to that of the real engineering problem, especially when the real dimensional
scale is much larger or much smaller than the physical model scale.

In previous studies, Hassani and Hollands (1989), Clemes et al. (1994) and

Karagiozis et al. (1994), a transient approach was used instead of a steady state
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method. In this approach, the heat capacity of the test body needed to be measured
accurately first. It was carried out in a vacuum chamber, a constant DC power
was introduced into the test body and then the temperatures of the test body and
the ambient as well as the supplied power were recorded at preset time intervals,
until the steady state had been reached. In this process, the energy balance of the
test body is

dT, VI eho,.., ..
& ¢ oWt (217)

where V' and I are the voltage and current supplied to the heater embedded in
the test body, T} is the temperature of the test body and T, is the temperature
of the chamber wall, € is the effective emissivity of the model. A and C* are the
test body surface area and heat capacity respectively, and 7 is time. The quantity
of dTy/dr in Eq. (2.17) was estimated by employing the Langrange’s formula for
four point differentiation, and then plotted versus (T} — Ty). Through performing
a linear regression analysis, a straight line was obtained whose slope and intercept
were taken as €40 /C~ and VI/C". After inserting the values of V and I. C~ and
€ were obtained.

In the natural convection heat transfer experiment, a correlation was obtained

first:

Ty(7) — Ta = ezp[P(7)] (2.18)

where T, is the average ambient temperature, T;(7) is the test body temperature,

and P(7) is a third order polynomial found by curve fitting. Then dTy(7)/dr was

found by
dTy(r) _ dP(1)
= dr ezp[P(7)] (2.19)
Finaily Qcony Was obtained by
Qconv = QT — Qr — Qw (2.20)
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with
.dTy(T)
dr

where Q7 is the total heat transfer from the body, Qr and Qw are the radiation

Qr=-C (2.21)

heat loss and conduction heat loss through the wires, respectively. Qcon, is the
convection heat flow rate.

This transient approach can save a lot of waiting time, i.e. the time allowing
the heat transfer of a test body to reach steady state. Good agreement between
the results of this approach and the steady state heat transfer measurements was
observed by the authors. But some deviations of Nu for this transient approach
from that of the steady state approach were also reported. In the comparisons of
results for the two approaches, the maximum differences in Nusselt number are
4.6% at Rap = 9300 (Clemes. 1990) and 2.0% at Ra; = 600 (Karagiozis. 1991).

These deviations may include the experimental errors.

2.3 Relevant Boundary Layer Solutions

Acrivos (1960) obtained the boundary layer solutions for laminar natural convec-
tion heat transfer from two dimensional surfaces and axisymmetric surfaces as
Pr — co. Stewart (1971) generalized the solutions to fairly arbitrary three dimen-
sional surfaces. But their solutions are applicable only to large Prandtl numbers.

Raithby and Hollands (1975, 1976, 1978) suggested the conduction-layer ap-
proximate method based on the concept proposed by Langmuir (1912), assuming
that the body is surrounded by a stationary fluid layer of variable thickness. The
solutions obtained by them have the same forms as that of Acrivos (1960) and
Stewart (1971), but are applicable to arbitrary Prandtl numbers. Therefore their
solutions generalized the previous ones to include lower Pr (e.g. Pr = 0.71 for

air). Raithby and Hollands (1975, 1976, 1985) also suggested the approaches to
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make correction for the curvature effect of boundary layers.
The thin boundary layer solutions for two-dimensional surfaces and axisym-
metric surfaces are (Raithby and Hollands, 1975)

1 S ) 3/4
s/ <r*=g,/g)1/=‘dz]

%/05 ridz

where ¢ = 0 for two-dimensional surfaces. i = 1 for axisymmetric surfaces. z is the

Nus = C’]Raé“ [

(2.22)

distance measured along a surface streamline from its leading edge, S is the total
length of the surface streamline and taken as the characteristic length. g is gravity
acceleration and g, is its component in the z direction.

With reference to Fig. 2.4. the solutions for vertical planar surfaces are (Raithby
and Hollands. 1978)

w
£1/4/ 53/4dx
Nu; = C Ral* o (2.23)

Sdx

daX

S(X)

Figure 2.4: Vertical Planar Surface.

The value of C is based on the correlation of Churchill and Usagi (1972):

— 0.671
Ci= a/9
[1 + (0.492/ Pr)o/1€]

(2.24)
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The above solutions show very good agreement with previous measurements.
but they are not easy to be applied to practical problems with complex geome-
try. Therefore Hassani and Hollands (1989) proposed an improved Raithby and
Hollands method, making several approximations and simplifications to the thin
boundary layer analysis of Raithby and Hollands, and employing certain correla-
tions for the mean conduction thickness and the exponents of the Churchill-Usagi
blending equation. Good agreement was reported between experimental results

and the predictions by this method.

Yovanovich (1987b,c) and Lee et al. (1991) used a characteristic length based
on the surface area, v/A, to recast the existing boundary layer solutions for laminar
natural convection. They obtained a new expression of the boundary layer solu-
tions for isothermal, three dimensional bodies. (The details are given in Chapter
4.) Their approach has the following advantages:

i) Because of the introduction of the characteristic length /A. the method
gets rid of the difficulty of choosing a proper characteristic length for a body or a

subsurface, especially for irregular and complex ones.

i) The body-gravity function of each subsurface can be calculated separately
and then combined with the body-gravity functions of the other sub-surfaces. This

makes the method more feasible.

iii) The body-gravity function was found to be a weak function of geometry
and orientation of the surfaces or bodies. Therefore the calculations of the body-
gravity function mentioned above should not introduce much deviation in the final

results.

iv) The method still keeps the approximate analytical nature of the boundary

layer solutions.
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2.4 Summary

The previous models and correlations of Elenbaas (1942), Edwards and Chaddock
(1963) , Knudsen and Pan (1963), Jones and Nwizu (1969), Tsubouchi and Masuda
(1970), Kayansayan and Karabacak (1992), Hahne and Zhu (1994). Bar-Cohen
and Rohsenow (1984), Raithby and Hollands (1985), and Karagiozis (1991) are
reviewed. The correlations for annular-fin heat sinks are compared with each other:
up to 40% discrepancies are observed at high Ra;. In addition, the correlations
and models are not well suited to the heat sinks with only a few fins, because they
do not take into account the effect of end surface cooling on the total heat transfer.
These types of heat sinks are frequently used in electronic systems.

The relevant experimental methods and boundary layer solutions are also briefly
reviewed.

In the next chapter. the experimental method and the results will be presented.
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Chapter 3

Experiments and Data Reduction

The experimental method used in the present study is described in the follow-
ing four sections. The data reduction procedure is given in Section 3.5 and the

experimental results are presented in Section 3.6.

3.1 Experimental Method

When convection heat transfer takes place, radiation and conduction heat transfer
usually also exist. To obtain the rate of heat transfer by convection. it is necessary
to deduct the radiation and conduction portion of heat transfer from the total rate
of heat transfer.

In some previous experiments (Edwards and Chaddock, 1963: Knudsen and
Pan, 1963; Jones and Nwizu, 1969; Tsubouchi and Masuda, 1970). the radiation
loss from heat sinks was estimated and then subtracted from the total heat transfer
rate. In this case, the accuracy of the heat sink surface emissivity is important in
the accurate estimation of radiation loss. Because the radiation loss is proportional
to the emissivity.

In the present experiments the radiation loss was measured and correlated.
Then the correlation was used to calculate the radiation loss in the convection

measurements. In this approach, the radiation loss through the power leads and
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the thermocouple wires was also accounted for by the correlation. Because the
measured radiation loss includes the radiation loss from the wire surfaces. However.
in the convection measurements there was an additional heat loss, i.e. the heat loss
due to convection on the power leads and the thermocouple wire surfaces. To cover
this additional heat loss, a calculation procedure, which was used to calculate this
additional heat loss, has been developed and is presented in Appendix B.

To achieve accurate experimental results, a steady state heat balance method

was used in the present study.

3.2 Physical Models
3.2.1 Heat sinks

Five heat sinks used in the present experiments are shown in Fig. A.l1 through
Fig. A.5in Appendix A. The geometric parameters of the heat sinks are given in
Table 3.1, where Ary stands for the inner surface area, i.e. the total surface area
between adjacent fins, including the surfaces of supporting cylinder: Aoy for the
outer surface area including fin rim surfaces and the two end surfaces of the heat
sink; Ays for the total surface area of the heat sink; and Acc for the surface area

of the circumscribed cylinder.

Table 3.1: Geometric Parameters for Test Heat Sinks. (length unit: mm)

Heat
Sink b ¢ Ny L d D D/d Any Aour Apgs Acc
225 10 3 75 22 36,5 1.66 5775 5533 11308 10693
7.5 9 5 75 22 365 1.66 7403 7253 14656 10693
4 9 6 74 22 365 1.66 8044 8285 16329 10578
7
7

2 9 75 22 36.5 1.66 8824 9317 18141 10693
1 10 76 22 36.5 1.66 8409 10120 18529 10807

BOOQWR®
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The heat sinks were machined from aluminum alloy 2024 cylindrical bar stock.
Thus the fins were an integral part of the support cylinder with no joints or contact
resistance. The fin diameter D was fixed at 36.5 mm and the support cylinder
diameter d at 22 mm. To see the effect of fin thickness on the total heat transfer
of the heat sink, the fin thickness was made quite large, around 10 mm. And. to
find the effect of the end surfaces on the total heat transfer, only a few fins were
made for each heat sink. Thus the end surface heat transfer was significant in the
total heat transfer, similar to that of the heat sinks used in electronic systems. In
order to obtain data in different ranges of Ray, values of b for the five heat sinks

were made as 22.5 mm, 7.5 mm, 4 mm, 2 mm and 1 mm.

The heat sinks were manufactured with the same procedure in the Engineering
Machine Shop at the University of Waterloo. The tolerances for the small spacings
(b =1 mm and b = 2 mm) were less than 1%, and the tolerances for the other

dimensions were well below 1% and the finish of the heat sink surfaces was 0.4

pm.

3.2.2 Heaters

A FIREROD cartridge heater was embedded in the center of the heat sink to
provide a source for internal heat generation. The heater fit the mounting hole
inside the heat sink well and the gap between the heater and the heat sink was filled
with aluminum putty to discharge the air from the gap. The electrical resistance
of the heater was 50 ohms and the applied voltage was varied from 2 to 25 volts.
Because the power leads of the heater was relatively thick (each lead consisted of
7 wires and each wire had a diameter of 0.23 mm; material was Nickel 200), the

heat loss through the power leads was taken into consideration in the experiments.
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3.2.3 Thermocouples

T-type (copper-constantan) thermocouple wire of 36 gauge (a diameter of 0.127
mm) coated with Teflon were used in this study. All the thermocouples were
made from the same high precision roll of wire using the identical technique. In
the calibration, a maximum difference of 0.13 K was found compared with the
Platinum resistance thermometer or PRT (Azonix Corporation Model No A12001)
whose accuracy is better than 0.01 K.

Several thermocouples were embedded Just under the heat sink surface at se-
lected locations. As shown in F ig. 3.1, a groove of 1 mm width and 1 mm depth
was cut out along the fin rim. The thermocouple along with a length of ther-
mocouple wire was placed inside the groove and then the groove was filled with
aluminum putty to provide support and additional electrical insulation. In this
way the heat transfer through the thermocouple wire will not interfere with the
temperature field at the location of the thermocouple. The heat loss through the
thermocouple wire was also taken into consideration in the present experiments.
Temperatures were measured at typical locations for each heat sink. For example.
for heat sink A shown in Fig. 3.1, thermocouples were embedded at the highest
point and the lowest point of fins and support cylinders. Because of the symmetry.
only one location was measured for the support cylinders and the end fins. The
average temperature of the heat sink was calculated according to the measured

temperatures and the local surface areas represented by the temperatures.
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Figure 3.1: Thermocouple Installation.
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3.3 Measurement of Radiative Heat Transfer

3.3.1 Description of experiment

VACUUM CHAMBER

Asink \

—= 0.008

Achamber

HEAT
SINK

o]
[FA]

Figure 3.2: Measurement of Radiative Heat Transfer.

As shown in Fig. 3.2, the heat sink was placed in a vacuum chamber. which
was made of steel, with the inner diameter of 445 mm and the height of 760 mm.
A steady DC voltage was introduced to the heater embedded in the heat sink.
The pressure of the chamber was kept at 10~® torr. so that natural convection
and gaseous conduction heat transfer was minimized. The applied heat was then
dissipated only by radiation to the surroundings. There was heat conduction along
the power leads and thermocouple wires, but in fact, this heat loss conducted
through power leads and thermocouple wires was also dissipated by radiation from
the wire surfaces (Appendix B). Therefore the measured radiation loss consisted of
two parts: the major portion was the radiation loss from the heat sink surface, and

the minor portion was the radiation loss from the power leads and the thermocouple
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wire surfaces. The radiation equation for the heat sink js derived as follows. In
order to combine the heat sink radiation and the wire radiation into one formula.
the wire radiation part is converted to be based on the total surface area of the

heat sink A and the wire base temperature Ts.
Qr = V-1
= Qusr+ Qwr
= FiAo(Ts — Ty) + Qwr

- 4 __ m4 QWR 4 __ m4
= F1Ao(Ts Tw)-i-\Aa(T;_T:)Aa(TS T3)

= F1A0(Ts — Ta) + FoAa(TE - TY)
= (Fi+F2)Ac(TE -T2
= FAo(Td-T2) (3.1)

where Qg stands for the total radiation loss. Qpsg for the heat sink radiation loss
and Qwr for the heat loss by radiation from the wire surface. V. and [ are the
voltage and current of the heaters, F1 is the exchange factor of the heat sink. F,is
the equivalent exchange factor for the wire radiation loss. F is the exchange factor
accounting for both the heat sink radiation and wire surface radiation losses. A is
the total surface area of the heat sink, T is the temperature of the heat sink. and
T, is the temperature of the chamber wall.

Therefore Eq. (3.1) is actually for the total radiation heat transfer which
accounts for both the heat sink radiation loss as well as the power leads and
thermocouple wire radiation loss. By means of a fitting technique, the correlation of
Qr versus (T —T2) was obtained, which afterward was used to decouple radiation

loss from the natural convection heat transfer of interest.
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Figure 3.3: Radiative Heat Loss for Heat Sink A.

Figure 3.3 shows the correlation curve for heat sink A as an example.

One of the advantages of this approach is that it reduces the errors of experi-
mental data. In some other experimental methods, the emissivity of the heat sink
is determined first using the same results as described above. Then the emissivity
is used to calculate the radiation loss in convection measurement. In the process
because the emissivity is taken as a constant, it will bring in more deviations than

the approach used in this study.

3.3.2 Experimental set-up

The apparatus used in the experiment is as follows:
- vacuum chamber,
- thermocouple board,

- Sciemetric Instruments model 321 data logger,
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- Personal Computer,

- DC power supply,

- shunt resistor,

- mechanical vacuum pump,

- diffusion pump.

The test heat sink was suspended in the vacuum chamber. The thermocouple
wires were connected to the thermocouple board and the embedded heater was
connected to an electrical connector. The thermocouple board and the electrical
connector were linked through the base plate of the vacuum chamber to a Scie-
metric Instruments data logger and DC power supply, respectively. A standard
resistor with a value of 0.1 ohm was added in series to the heater-power supply
circuit. It was used to measure the electrical current passing through the heater.

Having this current and the voltage across the heater, the input power can be

readily calculated.

3.3.3 Experimental procedure

After suspending the test heat sink inside the vacuum chamber and connecting the
thermocouple wires and power leads to the thermocouple board and the electrical
connector, the vacuum chamber was sealed; then the vacuum pump was started.
When the pressure inside the vacuum chamber dropped below 107¢ torr. the power
supply was turned on and set at a constant voltage. At each temperature level.
the voltage was maintained at a fixed value for 24 hours allowing the heat sink
temperature to reach steady state. Then the values of the heat sink temperature,
the voltage and current of the heater were recorded. The maximum temperature
difference between the thermocouples on the surface of the heat sink was less than
0.2 K with AT = 50 K , or less than 0.4% of the temperature excess of the heat
sink. As a result the heat sink was assumed to be isothermal. The voltage and

32



current were measured using a Hewlett Packard multimeter 3466A.

Because the data were taken at the same time each day, the room temperature
fluctuations were very small. In fact, the temperature variation each day (24 hours)
is about 3 degrees. Assume the temperature variation followed a curve of sinr (r

is time), the largest temperature variation rate with respect to time is about

dTs 3K

- - -4
= 5oy = 104 x 107 K/s

The heat capacity of the heat sink, e.g. heat sink A.is 117.8 J/K. and hence the
heat absorbed by the heat sink due to dT's/dr caused by the ambient temperature
variation will be

dTs

C"—= =0.012 (W)
dr

This portion of the heat was not included in the radiation correlation mentioned
above, and is taken as one of the uncertainties in the radiation measurements. But
it is only a small portion of the radiation rate. For example. the radiation rate of

heat sink A is 0.6 (W) for AT = 50 K, so the heat absorbed by the heat sink only

accounted for 2% of the radiation rate.

The heat sink temperature rise (Ts — T,,) ranged from 20 K to 90 K, and the
data were taken at six temperature levels. With these data, a correlation of Qr

versus (T's — T,;) was obtained using a fitting technique, as shown in Fig. 3.3.

The uncertainty analysis in Appendix C shows that the uncertainty of Qg
predicted by this correlation is +2.8%.
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3.4 Measurement of Natural Convection Heat
Transfer

3.4.1 Description of experiment

Ts
Teo

A sink
—0.009
Tw= Teo A enclosure

Figure 3.4: Measurement of Natural Convection Heat Transfer.

In this experiment, as shown in Fig. 3.4, the heat sink was supported by
synthetic fiber lines in a large enclosure with small openings to the atmosphere.
The enclosure was made of laminated wood coated by white paint. and with the
length of 460 mm, the width of 305 mm and the height of 600 mm. A steady DC
power was supplied to the heater inside the heat sink. In this case. the applied
heat was carried away by convection and radiation from the heat sink surface, the
power leads surface and the thermocouple wire surface. The energy balance can

be expressed as

I-V =Qcomy+Qr+ AQwirr (3.2)

where I and V are the current and voltage of the heater; Qcon, is the rate of

convection heat transfer from the heat sink; Qg is the radiation loss calculated
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using the correlation obtained in the radiation loss measurement which accounts for
radiation loss from all surfaces of the heat sink, the power leads and thermocouple:
AQwr is the additional wire heat loss due to the natural convection on the power
leads and the thermocouple wire surfaces.

Because of the natural convection on the wire surfaces, the wire heat loss from
the power leads and the thermocouple wires was enhanced when compared to
the wire heat loss in the radiation measurement. The increment, AQw;g, can
be estimated using the procedure developed in Appendix B. The convection heat

transfer rate therefore was obtained by

Qconv =1-V — Qr— AQwir (3.3)

Although the radiation measurement and the convection measurement were
carried out in two different enclosures, whose surface emissivities may be different
from each other. the correlation obtained in the radiation measurement still can
be applied to the convection measurement to calculate the radiation loss Qg. The
reason is given as follows.

For a small object situated in the center of a large enclosure. if the surface of
the enclosure is isothermal and A1/A; = 0, where A, is the surface area of the
object and A, is the surface area of the enclosure, then the following equation will
be valid unless the emissivity of the enclosure is very small (Incropera and DeWitt
1990):

Qri-2 = §410(T} - T}) (3.4)

where Qr;_, is the radiation heat flow rate from the object to the enclosure, €,
is the effective emissivity of the object, T} and T} are temperatures of the object
surface and the enclosure surface respectively. Equation (3.4) shows that in this

case the radiation heat transfer rate from the ob Jject to the enclosure is independent
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of the emissivity and the area of the enclosure surface; it is determined only by the
emissivity, surface area and geometry of the object itself, and the two temperatures.

In the present experiments, both radiation and convection measurements met
the conditions stated above, therefore the correlation obtained in the radiation
measurement can be used in the convection measurement to decouple the natural
convection heat transfer from the radiation loss, regardless of the difference between
the two emissivities of the enclosure surfaces. In the present experiments A;/A; =

0.01, in this case the error resulted from Eq. (3.4) is less than 1%.

3.4.2 Experimental set-up

The experimental equipment used for convection measurement consists of
- natural convection enclosure
- Personal Computer
- Fluke Helios I Computer Front End data logger
- DC power supply (0 ~ 100 volt)
- shunt resistor

Three thermocouples were used to measure the ambient temperature. The
extension wire from all the thermocouples were connected to the Fluke Helios I
Computer Front End data logger, which is an acquisition and control subsystem
and can be used with any kind of Personal Computer. The data logger is a medium
speed (scanning 50 channels per second), accurate measurement control system.
It is suitable for the present experiment because the temperatures were measured
at steady state and hence the medium scanning speed was sufficient. The shunt
resistor connected in series with the heater was used to measure the current passing
through the heater. Both the voltage and current of the heater were measured and

recorded by the data logger.
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3.4.3 Experimental procedure

After the heat sink had been installed in the natural convection enclosure. a mea-
surement program was started from the Personal Computer which automatically
conducted the following procedure. At each preset power level, the power supplied
to the heater was fixed, until the steady state criteria were met and then the data
logger measured the voltage and current of the heater and the temperatures of all
thermocouples. Sixty sets of readings were taken and averaged to reduce the ran-
dom errors due to analogue-digital conversion. Since the maximum temperature
difference between the heat sink thermocouples was less than 0.25 K. including
thermocouple measuring errors, with (Ts — T ) = 50 K the heat sink was also
considered as isothermal.

The steady state criteria in the convection measurement were:

1) the minimum “waiting time” was 2 x 10* seconds. and

ii) the maximum absolute difference between a temperature reading and the
next one in time steps was less than 0.05 K, and

iii) the maximum percentage difference was less than 0.05% (in Celsius scale).

The uncertainty analysis in Appendix C shows that the uncertainty of the rate

for natural convection heat transfer, Qcony, 1s £0.5%.

3.5 Data Reduction

The natural convection heat transfer rate is given by Eq. (3.3):

Qconv =1V — Qr— AQwir

where
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Qconv — rate of convection heat transfer, W
I — current of heater, Ampere

|4 — voltage of heater, Volt
@r — rate of radiation loss, W
AQwrr — additional wire heat loss, W

The radiation loss, Qg, is calculated using the correlations obtained in the ra-
diation experiments. The additional wire heat loss, AQw g, is found by following
the procedure in Appendix B.

The Rayleigh number was obtained using Eq. (1.2):

. gBATH b
Ray = —/—F———
av D
where
g — gravitational acceleration, m/s?
B —  volumetric coefficient of thermal expansion, 1/K
a — thermal diffusivity. m?/s
v — kinematic viscosity, m2/s
AT — temperature difference, = Ts -T.. K
b — spacing between adjacent fins, m
D — fin outer diameter, m

where [ is evaluated at T, and all the other physical properties were evaluated at
the film temperature, i.e. Ty = (Ts + T )/2 (Raithby and Hollands, 1985).

The uncertainty analysis in Appendix C for the experiment shows that for the
typical temperature difference AT = 50 K, the uncertainty of Ra; is 3.3% for
Raj = 2.6 x 10%, and 5.1% for Ra; =~ 1.5.

The Nusselt number is calculated using Eq. (1.1):

_ QConv b
Nus = 2 AT R (3-5)
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where

Qconv — rate of convection heat transfer, W
Axs  — surface area of heat sink, m?

AT — temperature difference, = Ts — T, K
b — spacing between adjacent fins, m

k — thermal conductivity, W/m K

Qconv is given by Eq. (3.3) and k is evaluated at the film temperature Ty =
(Ts + Tx)/2.

The uncertainty analysis in Appendix C shows that the uncertainty of Nu is
+1.3% for Nup =~ 6.9 and +1.6% for Nuy = 0.36.

3.6 Verification of Experimental Method

Heat sink D, which has the spacing of 2 mm, was used to establish a confidence level
in the experimental method. According to the narrow-channel criterion (Bejan

1993). which can be expressed approximately for the heat sink as follows.
Ray(b/D) < 1 (3.6)

the channels between two adjacent fins of heat sink D are narrow and the buoyancy-
induced flow between them is fully-developed flow.

The measurement result of heat flow rate Qcony for heat sink D is just 9.5%
higher than that of its circumscribed cylinder whose heat flow rate is calculated us-
ing an established method (Jafarpur, 1992). According to the fully developed flow
analysis, the channel flow between fins of heat sink D accounts for about 10% of
the heat transfer of the circumscribed cylinder. It confirms that the measurement
result for heat sink D is correct. Thus it is believed that the overall experimental

method is reliable.
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3.7 Experimental Results

The results of the experiments are plotted in Fig. 3.5, and given in Table 3.2
through Table 3.6. The five heat sinks were measured at the same conditions.
Le. at atmospheric pressure, the temperature difference between the heat sink and
the ambient air ranging from 20 K to 80 K, and the ambient temperature being
about 293 K. It can be seen from Fig. 3.10 that the results for the five heat sinks
lie in different ranges of Raj, because they have different values of b/D (note:
Ra; = Rapb*/D*).

In the range of Ra; > 4 x 10° the thin boundary layer heat transfer is dominant.
so the experimental results of heat sink A lie along a straight line of slope 1/4.
For Raj; = 10° ~ 103, the introduction of channeling effects results in an increase
in the slope of the data for heat sinks B. C and D. For Ra; < 107!, the thin
boundary layer heat transfer from the outer surface (the fin rim surfaces and the
end surfaces) becomes dominant. and the slope of the experimental data for heat

sink E returns to 1/4 again.
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Figure 3.5: Present Experimental Results.
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Table 3.2: Experimental Results — Heat Sink A.

Ray(6/D) Nu, Ras(b/D) Naup
4874.6 427 254978  6.30
8420.9 4.89 268194 6.33
11590.9 522 28566.0 6.41
14034.0 547 302418 6.56
16282.5 569 316108 6.63
18530.4 5.88 324962 6.65
20794.5 597 33657.3  6.72
22607.5 6.18 34835.2  6.82
240524 6.25 359128 6.87

Table 3.3: Experimental Results — Heat Sink B.

Ras(b/D) Nus

158.9 1.60
210.5 1.73
251.9 1.82
287.2 1.88
322.6 1.94
355.0 1.99
385.5 2.03
408.6 2.05

Table 3.4: Experimental Results — Heat Sink C.

Rab(b/D) Nub

8.03 0.634
13.19 0.718
17.18 0.785
20.56 0.838
24.05 0.874
27.09 0.899
28.95 0.912
31.12 0.938
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Table 3.5: Experimental Results — Heat Sink D.

Rab(b/D) Nub
0.949 0.296
1.204 0.313
1.390 0.325
1.590 0.338
1.779 0.352
1.967 0.357

Table 3.6: Experimental Results — Heat Sink E.

3.8 Summary

Ras(b/D) Nug
0.057 _ 0.140
0.075  0.150
0.089  0.157
0.103  0.162
0.114  0.166
0.125  0.169
0.135  0.173
0.141  0.175

In this chapter the experimental method used in this study. the test heat sinks.

the experimental set-up and the experimental procedure are described.

The radiation losses were measured using the steady state heat balance method

in a vacuum chamber. The correlations of the radiation losses were used to decouple

the convection heat transfer from the radiative heat flow rate.

The experimental results for the five heat sinks are also presented.
In the next chapter, models for the heat sinks will be developed.



Chapter 4

Models for Annular-Fin Heat
Sinks

A dimensional analysis for annular-fin heat sinks is given in the following section.
The external natural convection solution used in this study is briefly reviewed in
Section 4.2. In Section 4.3, the model development, model simplification and model
prediction trends are presented. In Section 4.4, a radiative heat transfer model for
the heat sinks is developed. Finally, the non-isothermal fins are considered in

Section 4.5.

4.1 Dimensional Analysis

Assume steady state natural convection within a Newtonian fluid of constant prop-
erties, except density which causes the buoyancy force (the Boussinesq approxima-
tion, Incropera and Dewitt, 1990). Also assume that the fluid is incompressible.
Drop the terms which have only minor influence in the process. With reference
to Fig. 4.1, the simplified equations of motion for steady state natural convection
problems are as follows (Raithby and Hollands, 1985) with the gravity force acting

in the negative z direction:
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Figure 4.1: Coordinates of Heat Sink.

o

Continuity equation:

=0 (4.1)

.Ous Ou" ou” dP; + 7.(1 + Pr) {D*u~ 4 u- + &Pus (4.2)
Yoz " dy* Y oz dz~ Ra. 0z=2  9y=2  0z=2 -

vt _Ovt .Ovt  9P; (14 Pr) (3%*v O*v O%0-
Y e Ty TV e T oy TV R (az-z T oyt T ge) (43)
Ows Odwr _Ow" 0Py [, (1+Pr) (0w 8w Ow" .
i e 0y~ o oz~ 9 T Pr Rac (81:'2 + dy=2 t o +H{1+Pr)é

(4.4)

Energy equation:

.06" .00 .06 [(1+ Pr) (0%~ 8% 5%~
* oz tv oy tw dz= ~ \ Rag Pr (62:'2 + Oy~? + 8z=2 (4.5)
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where Rac = gBATL3/va, and the dimensionless terms are defined with respect
to an arbitrary characteristic length £ as

" =z/L, y " =y/L, z"=z/L,

Yo = /g B AT L/(1 + vo/ o)

U =ufvg, v =vfvg, w =w/vo
_T-T, P — Py
CTs—Tw % povd/2

where po, vy, ag are the values evaluated at (Ts + T)/2. Py is the pressure

0-

component associated with dynamics of flow.
The boundary conditions are:
At the surface of the heat sink,

v=vT=w"=0 =1 (4.6)

Specifically,
i) at the two end surfaces:
z°=0.and 2" = L/L, and 0 < y*T + 22 < D/L; and

ii) at the internal lateral surfaces (left side):
- =t/L+ib+t)/L, (:=0,1,--- Ny — 2). and d/L < Vy?+2z-2< D/L. and

iii) at the internal lateral surfaces (right side):
- =1(b+1t)/L, (1 =1,2,--- Ny — 1), and d/L < /5% + 2°2 < D/L; and

iv) at the rim of the fins:
ib+t)/L < z= < t/L+i(b+t)/L, (i = 0,1,--- Ny—1),and /572 F 272 = D/L; and
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v) at the support cylinder surfaces:
t/L+i(b+t)/L < z* < (i+1)(b+2)/L, (i =0,1,--- N¢—2).,and Vy=2+ 272 = d/L.

where the fin number Ny is a function of b, ¢ and L or
Ny = f(b/L, t/L, L/L)
At a large distance from the heat sink,
v=vT=w=6"=0 (4.7)

If the enclosure surrounding the heat sink is large enough. it has no influence

on the natural convection of the heat sink.

From the simplified equations of motion and the boundary conditions. the

temperature field has the following dependence:
9" =0%(z", y°, z°, Rac, Pr. b/L. D/L, d/L. t/L. L/L) (4.8)

Because the total heat flow rate is

Q = //AHS—L—dA
_ Ts— oo//,,,,s (ae-) (4.9)

where n* = n/L. And hence the average Nusselt number is

QL
Arsk (Ts — Tw)

B AHS//A,,S( an) (4.10)
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Thus the average Nusselt number Nu, has the following functional form:
Nuc = f(Rac, Pr, b/L, D/LC, d/L, t/L. L/L) (4.11)

Therefore the Nusselt number is a function of seven variables.

Case 1:
If the values of Pr. b/L, D/L, d/L, t/L, L/L are fixed, then
Nuc = fi(Rac) (4.12)
Taking D as the characteristic length. we have the functional relationship:
Nup = fi(Rap) (4.13)
Multiplying both sides of the relation by b/ D gives
Nuy, = fi(Rap) b/D

Because b/D is constant, letting f,() = b/D fi(), the above functional relation
becomes

Nuy = fo(Rap)

or, alternatively, with b/D held constant,
Nu, = f3(Rapb*/D*)
= fu(Ra) (4.14)

The functional relation Eq. (4.14) means that for a group of geometrically
similar heat sinks, i.e. heat sinks with identical values of b/D, d/D, t/D and
L/D, if Pr is a constant, their measured results can be correlated by a single

Nu, — Ray curve. The essence of this functional form is the relationship between
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Nup and Rap, i.e. Eq. (4.13). For different geometric parameter values, e.g.
different values of b/ D, there will be different curves corresponding to the different
parameter values. This was confirmed by the experimental results of Karagiozis
(1991), although the rectangular fin arrays were used in his experiments instead
of annular-fin heat sinks. In the experiments, Ray varied with air pressure. while

all the geometric parameters were fixed in each case.

Case 2:

If the values of Rac, Pr, D/L, d/L, t/L, L/L are fixed, Eq. (4.11) becomes
Nug = F(b/L) (4.15)
Taking D as the characteristic length, we have another functional relationship:
Nup = F(b/D) (4.16)

Multiplying both sides of the relation by b/ D yields

b b

or

Nuy = F,(b/D)

From the above functional relation, the following functional relation can also
be established:
Nuy = Fyo(b*/D*)

or, alternatively, with Rap held constant,
Nuwy, = F3(Rapb*/D*)
= F3(Ray) (4.17)
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The functional relation Eq. (4.17) means that for a group of heat sinks whose
values of d/D, t/D, L/D are identical, but the values of b/D are different. and
if the values of Rap are fixed, the measured results can be correlated by a single
Nuy — Ray curve. The essence of this functional form is the relationship between
Nup and b/D, i.e. Eq. (4.16).

In this case, for different values of Rap, there should be different curves corre-
sponding to the values of Rap. But as shown by the present experimental results
in Fig. 3.5 and the previous experiments (Elenbaas, 1942; Edwards and Chaddock.
1963; Jones and Nwizu, 1969: Tsubouchi and Masuda. 1970), when the variation
of Rap is limited (e.g. Rap = 0.15 x 10° ~ 2.5 x 10° in the present experiment).
it is possible to use a single Nuy — Raj curve to represent the different curves cor-
responding to different values of Rap with only small deviations. For the present
experiments with the temperature difference (Ts — T ) ranging from 20 K to 80
K. or Rap ranging from 9.1 x 10% to 2.5 x 10°. the deviations are within 3.7%.

In most previous experiments. both Rap and b/D were varied. but the vari-
ation of Rap is limited to a narrow range, say a factor of 20. the wide range of
Raj was achieved through variation of b/D. Therefore, in the following chapter.
the comparisons with these previous correlations should be made in such a way
that Rap is fixed at an average value and Ray varies with b/D. In addition. the
values of d/D, t/D. L/D and the end surface condition should also be taken into

consideration.

4.2 External Natural Convection Solutions

As mentioned in Chapter 2, Yovanovich (1987b,c) and Lee et al. (1991) used a
characteristic length based on the surface area, VA, to recast the existing bound-

ary layer solutions for laminar natural convection (Acrivos, 1960; Stewart, 1971;
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Raithby and Hollands, 1975, 1978) and obtained a new expression of the solutions
for isothermal, three dimensional bodies. When combined with the diffusive limit.

it gives the total heat transfer in the following form:

Nuyz = Nujz + F(Pr)G z Ra'/x (4.18)

The first term of the equation, N “?/Z* is the diffusive limit of the body, which
accounts for the correction for the curvature effect of the boundary layers. The
second term of the equation, F(Pr) Gz Ra\l//-}, is the boundary layer solution

for the total surface, where F(Pr) is the approximate “universal’ Prandt] number
function (Churchill and Churchill, 1975) defined as

0.670

F(Pr) =
) 1+ (0.5/Pr)e)**

(4.19)

The body-gravity function for two-dimensional or axisymmetric surfaces. Gz is

[ P(6)sing\* 1
Gz = [Z/L(T) dAJ (4.20)

where A is the total area of the surface considered; P(6) is the local perimeter of

obtained from

the axisymmetric body; and 8 is the angle between the outward normal 7 and the
gravity vector. §.

For two dimensional surfaces as shown in Fig. 4.2, P(6) is replaced by the
width of the surface, B.
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Figure 4.2: Half of Horizontal Circular Cylindrical Surface.

The overall body-gravity function for N component surfaces connected in par-

allel with respect to the flow stream can be obtained by (Lee et al.. 1991):

N
Gyz= Gyz, (A:/A)® (4.21)

=1

where A; refers to the component surface areas and A is the total surface area for
the N component surfaces, which is given by
N
A= Z A;
=1
The overall body-gravity function for component surfaces connected in series

with respect to the flow stream can be obtained from (Lee et al., 1991):

3/4

N
Gz = [ > G"\//%i (A;/A)T/8 (4.22)

i=1
Because of the introduction of the characteristic length /A, the body gravity
function G /; is easy to obtain when dealing with relatively complex geometries.
The entire surface of a body can be divided into component surfaces whose body
gravity functions Gz, are easy to calculate. After the body-gravity-functions of

the component surfaces are obtained, they are combined to form the total Gz of
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the body in an appropriate way using Eq. (4.21) or Eq. (4.22) or both of them.
Because the body gravity function is insensitive to the changes in geometry and
orientation of bodies (Lee et al., 1991), the above procedure should not introduce
much deviation in the total body gravity function.

Based on the definitions of Nu, and Rag. i.e. Eq. (1.1) and Eq. (1.2), in
Chapter 1:

__Q b
Nuw = 2 AF%
and
._9BATH b
Rab— av D

the heat transfer, Eq. (4.18), can be transformed as follows:
Applying the second term of Eq. (4.18) to the surface of interest gives a thin

boundary layer solution for the surface:
Nulo = F(Pr)G Ral% (4.23)

From the term of the RHS of Eq. (4.23), we have

2 ()]

F(Pr)G zRalX = F(Pr)G [Ra;? va

. D1/4 \/Z 3/4
= F(Pr)Gﬁ(Rab)l/"\(b )

Multiplying both sides of Eq. (4.23) by (b/v/A) yields

.)1/40”“(\/347)""‘ b
° b VA

Nu; = F(Pr)G 5 (Ra

D 1/4
= F(Pr)G 4 (ﬁ) (Ra;)'/* (4.24)

This equation will be used to calculate the boundary layer heat transfer for the

heat sink in the following section.
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4.3 Model Development

As shown in Fig. 4.3. a heat sink surface consists of four types of component
surfaces, i.e. lateral fin surfaces, support cylinder surfaces, fin rim surfaces and
end surfaces. The combination of all lateral fin surfaces and support cylinder
surfaces is referred to as the inner surface, while fin rim surfaces and the end
surfaces are considered as the outer surface.

3 1

SUPPORTING
LATERAL FIN SURFACE CYUINDER SURFACE

2
FIN RIM SURFACE

4
END SURFACE

Figure 4.3: Components of Heat Sink Surface.

When the heat sink Rayleigh number Ray is large, the boundary layers which
develop along the vertical surfaces of adjacent fins do not interact. Although there
is interference between the boundary layers of the vertical fin surface and the
support cylinder surface, the effect is relatively small. This is the thin boundary
layer regime. On the other hand, when Ray is small, the buoyancy-induced flow
becomes fully-developed between adjacent fins. This is the fully developed flow
regime. Between the thin boundary layer regime and the fully developed flow
regime, there is the transition regime.

Therefore the inner surface may experience three modes of heat transfer, i.e.

thin boundary layer convection at high Ray, fully-developed flow at low Ra; and
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the transitional region. At the same time, over the outer surface of the heat sink.
there is only one mode of heat transfer for the entire range of Raj, i.e. external
natural convection. By distinguishing between the inner and outer surfaces, the
heat transfer mechanisms which dominate in each region of the heat sink surface
can be more easily applied. An overall rate of heat transfer can be determined by
combining the heat transfer from both the inner and outer surfaces.

Based on the consideration above. the model will have the following form:

Nuy = Nup + Nupour + Nupin (4.25)

where
Nuy, — Nusselt number of the heat sink
Nuj — contribution by the diffusive limit
Nup oyr — contribution by the convection of the outer surface
Nuy 1y — contribution by the convection of the inner surface

for the inner surfaces.

N’ub'[N = .f(Nub.A[N_T' NuvaI.\’-F‘D) (4.26)

where
Nup 4,y_r — Nusselt number of the inner surface in thin boundary layer regime
Nup 4;y_pp, — Nusselt number of the inner surface in fully developed regime

In the following subsections each of the above terms will be derived.

4.3.1 Model for Inner Surface

There are two limiting solutions for the inner surface: the solution for thin bound-

ary layer flow, which is valid at high Ra;, and the solution for fully developed flow,
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which is valid at low Ra;. Blending the two limiting solutions provides the model

for the inner surface over the entire range of Ra;.

Thin Boundary Layer Flow Regime.

For Ra; > 10°, the boundary layers of two adjacent fins do not interact. and
hence the average heat transfer over the inner surface will be close to that of the
external convection with the same surface area. In this circumstance, the above

external natural convection solutions can be directly applied to the inner surface.

- ks

Figure 4.4: Circular Cylindrical Surface.

The surface component 1 in Fig. 4.3 is a cylindrical surface. If the diameter
of the cylindrical surface is d and its length is b as shown in Fig. 4.4, the body
gravity function for the cylindrical surface, Eq. (4.20), can be simplified as

b 1/8
Gz =0.891 (2) (4.27)
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Figure 4.5: Vertical Planar Surface.

The surface component 3 in Fig. 4.3 is a vertical planar surface. For this kind
of surfaces as shown in Fig. 4.5, Eq. (4.20) becomes

1 w
Cyz= /0 S(z)¥4dz (4.28)

Thus the body gravity functions of the 2 types of component surfaces of the
inner surface can be calculated by Eq. (4.27) and Eq. (4.28) respectively. In order
to take into account the effect of the plume rising from the support cylinder upon
the lateral fin surface heat transfer, the rate of heat transfer from the area affected
by the plume will be reduced by half. To make the calculation easier. the area P
in Fig. 4.6 is used to represent the area affected by plume. As shown in Fig. 4.6
(b), the area 1 is a portion of the plume affected area. and is outside the area P.
But it is approximately represented by the area 2 which is inside the area P. It
is assumed that the average temperature difference between the fin surface of area
P and the plume is (T's — Tw,)/2. Therefore the heat transfer from the area P is
reduced by half compared with that from the same area without the plume effect.
The body gravity functions of the inner surface components are combined using

Eq. (4.21) to give the body gravity function for the inner surface, Gyan
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Figure 4.6: Area Affected by Cylinder Plume.

The Nusselt number for the inner surface in the thin boundary layer regime
can be obtained using Eq. (4.24):

Nusary_r = F(Pr)G sz, (D/VAn)"* Ra;'"* (4.29)

Fully Developed Flow Regime.

Two adjacent fins of the heat sink form a “channel”. In the fully developed
regime (approximately Ra; < 1, Bejan 1993) the heat transferred from the channel
surface comsists of two parts: i) the heat carried away by the channel flow, and ii)
the heat conducted radially outward from the channel.

Heat transfer due to channel flow: As shown in Fig. 4.7, the channel air

flow near the edge BC is assumed fully developed and in the direction straight up.
Because it has passed a distance close to the fin diameter D except for a small
portion near the lateral edge, based on the criterion of the fully developed regime
Ra; < 1 (Bejan 1993), the flow can be considered fully developed. The velocity
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distribution in this region is (Bejan 1993)

2 2
B2 ()]

where z is the coordinate parallel to the axis of the heat sink and with the origin

at the center of the spacing.

—
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Figure 4.7: Narrow Channel Flow between Adjacent Fins.

The vertical flow rate per unit width in the direction of AB is

b/2 AT B
m' = pvdz = &-—— (4.31)
-b/2 12v

Because the projected length of arc BC in the direction of gravity is AB. the

mass flow rate for the “channel” is approximately
m=m'W (4.32)

where

W =2AB =+vD?—- ¢
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Thus the heat flow rate carried away by the channel flow is

Q = me,(Ts—T)

9B (AT)? B
12v

W (4.33)

Then the Nusselt number for one channel flow based on the channel surface

area, Acr. can be obtained:

Nuycr = A—TQkil_CL
_ PIB(AT)H bW
12v ATk Act
- %Rab%
= iRa; ———D‘/Dz——dz (4.34)

Heat transfer due to outward conduction: When Raj is very small. e.g.

as the spacing b becomes small, the channel flow will be restricted. and the rate of
heat carried away by the channel flow will be minimal. Under these circumstances
heat will be transferred out of the channel primarily by conduction as shown in Fig.
4.8. This portion of the heat transfer will be modeled as convective heat transfer
from an isothermal, cylindrical surface with diameter D and width 5. This surface
is referred to as the channel control surface and its body gravity function G /Zccs

can be found using Eq. (4.27).

b 1/8
G froes = 0891 | 5 (4.35)
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Figure 4.8: External Heat Transfer of Narrow Channel.

The heat transfer at this surface can also be calculated using Eq. (4.24):
Ntpaccs = F(Pr) Gz, (D/VAccs)* Ra;''* (4.36)

This heat transfer is assumed from the channel surface. so it is converted to

the channel surface area:
Nupccs = Nup a.-sAccs/Act (4.37)

The heat transfer from the inner surface in the fully developed regime can be
found by

Nupa;n_rp = Nupcorr + Nupccs (4.38)

Combining Two Limits.

The composite solution technique suggested by Churchill and Usagi (1972) is
used to combine the two limits of the inner surface heat transfer to give the model

for inner surface for a wide range of Ra;:
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7 (4.39)

Nupapy = [(Nub'AtN-r)_n + (Nub-Anv—Po )"

Based on comparisons with the present experimental data, previous correlations
and experimental data, n = 1 was chosen for heat sink applications. The model
may give better predictions if different values of n for different diameter ratio
d/D are used. But for the purpose of simplicity, » = 1 was chosen for heat sink

applications. In practice, diameter ratio of heat sinks does not change very much.

Channel Model.

For channel heat transfer (D/d >> 1 and without the outer surface heat trans-
fer), the above model for inner surface can be applied with a small change. Because
the channel heat transfer does not include heat transfer from the control surface.

such as the Elenbaas correlation, Eq. (4.38) will be replaced by

Nub.A[.v_FD = Nub.CLF (4'40)

In this case, the blending parameter n in Eq. (4.39) was chosen to be 1.7 based

on the comparisons with Tsubouchi-Masuda (1970) channel correlation.

4.3.2 Thin Boundary Layer Model for Outer Surface

The body gravity function of the fin rim, G\/Zpser €0 be calculated using Eq.
(4.27):

t 1/8
G Ansse = 0891 (1) (4.41)

and the body gravity function of the end surface, Gz enp can be found using Eq.
(4.28) as
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G /e, = 1.021 (4.42)

With the assumption that the boundary layer flows over the fin rim and the
end surfaces are independent of one another, the overall body gravity function for
the outer surfaces, G\/Zour’ can be obtained using Eq. (4.21) for parallel surface
components. The thin boundary layer heat transfer from the outer surface then
can be calculated using Eq. (4.24):

Nus.aour = F(Pr)G g, (D/VAour)"* Raj'/* (4.43)

4.3.3 Effective Diffusive Limit

In a previous study by Wang (1993), it was shown that based on the circumscribed
cylinder surface area. the diffusive limit of the heat sink is close to that of the
circumscribed cylinder. Therefore, the diffusive limit of the circumscribed cylinder
is taken to represent the heat sink, and it can be calculated using (Smythe 1956.
1962; Yovanovich 1987a) (for 0 < L/D < 8)

0 3.1915 + 2.7726(L/ D)7
Nu\/ZCC =
1+ 2(L/D)

(4.44)

Based on the characteristic length b and the heat sink surface area, the diffusive

limit is recast as

Acc b
Nud = Nul VAce (4.45)

cc AHS
4.3.4 Full Model for Heat Sink

The full model for the heat sink can be obtained by combining the three component
solutions, namely the heat transfer from the inner surface, the thin boundary layer
heat transfer from the outer surface and the diffusive limit.
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Based on the total surface area of the heat sink, the contribution of the inner
surface to the Nusselt number for the heat sink is

Arn
Ans

while the contribution of the outer surface to the Nusselt number for the heat sink

Nupin = Nug 4, (4.46)

is

Aour

Nub'ou-p = NuvaOUTT (447)
HS
Finally, the total heat transfer from the heat sink is obtained as
Nuy = Nup + Nuyour + Nup sn (4.48)

The first term of Eq. (4.48) Nu? is for correction of curvature effect of the
boundary layers. For a given heat sink (all the dimensions are fixed). as Ra; — 0
Nup will be dominant. The contribution of the outer surface Nu, oyt mainly
depends on the ratio of the outer surface area to the total surface area. If the
ratio is large. the relative contribution of the outer surface will be large. The
contribution of the inner surface Nu ;x depends on two factors. One is its surface
area ratio to the total surface area, similar to that of the outer surface. The other
is the mode of heat transfer over the inner surface. If it is a thin boundary layer
heat transfer regime, the rate of heat transfer will be large. If it is a fully developed
flow regime, the rate of heat transfer from the inner surface will be small. If the
channel flow is restricted because of Ra; — 0, the rate of heat transfer from the

inner surface will be very small.

4.3.5 Simplification of Model

In order to make the calculation of Nu, in Eq. (4.48), easier, the individual com-

ponents of the Nusselt number have been simplified using the following correlation
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equations.

When 0.1 < L/D < 8, the diffusive limit, N ug, can be approximated by

Nup = [3.36 + 0.087(L/D)] VAcc b/Ans (4.49)

When 0.1 < ¢ N;/D < 8. the Nusselt number for the outer surface, Nug oyr.
can be calculated by

Nupour = [0.499 — 0.0261n(¢ Ny/D)] Ra;** Aoyr/Ans (4.50)

The Nusselt number for the inner surface. Nuy 1n, 1s

AIn

-— 4.51
Ans (4.51)

Nupin = Nup 4,
with

—n —n]~ln
Nub.AlN = [(Nub.Al.\'—T) + (Nub.Al_\'_FD) ] (4.52)

where n = 1 for heat sink applications.
For heat sinks in atmosphere. when 2.9 x 104 < Rap < 2.3 x 10°. a typical
range for electronic heat sinks, and when 0.1 < d/D < 0.8. the thin boundary

layer Nusselt number for the inner surface, Nus 4 ~v-7- Can be calculated by

Nuyapy_, = [0.573 — 0.184(d/ D) + 0.0388(d/D)?| Ra;"/* (4.53)

and the fully developed regime Nusselt number for the inner surface, Nup 4,y_,,-

is approximated by
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N av_pp=[0.0323 — 0.0517(d/ D) + 0.11(d/D)?] Ra;"/*
+ [0.0516 + 0.0154(d/ D) — 0.0433(d/ D)?
+ 0.0792(d/ D)) Ra; (4.54)
For the channel model (D/d >> 1 and without the outer surface heat transfer),
Nusary_pp = [0.0516 +0.0154(d/ D) — 0.0433(d/ D)?
+ 0.0792(d/D)?| Ra; (4.55)

and the parameter n in Eq. (4.52) is taken as 1.7.

Although the model was simplified for heat sinks within the above parameter
ranges, it is also used outside the parameter ranges in the following chapter. In
Appendix E, comparisons between the full and simplified models are presented for
four cases. It is shown that in the practical range of Ra;. the simplified model
agrees with the full model very well. In Appendix F, a summary of the present
models is given. which includes both the full model and the simplified model.

4.3.6 Trends of Model Predictions

The model predictions for the heat sinks used in this study are shown in Fig. 4.9
for a wide range of Ra; between 10~2 and 10%. They are the five curves between the
upper and lower limit curves for the heat sinks. The upper limit curve is the dashed
line which represents a solid horizontal circular cylinder (specifically, L = 75 mm,
D = 36.5 mm, d/D = 0.999, t = 20 mm, b = 35 mm and N; = 2). The lower
limit curve is the thicker solid line which represents a heat sink with the same d/D
as the test heat sinks but with very small fin thickness and very large fin number
(specifically, L = 75 mm, D = 36.5 mm, d/D =0.6,t=02mm,b=0.2mm
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and Ny = 188). In this case, the inner surface heat transfer is dominant in the
entire range of Rag, so the curve is similar to a channel heat transfer curve. All of
the curves in Fig. 4.9 are generated by the present model. For each curve in this
figure, geometric parameters are fixed, Raj varies with Rap.

If L/D, t/D and d/D of the heat sink and Pr are fixed, which is common
practice by most researchers, Nu; is a function of two parameters, i.e. Nu, =
f(Rag,b/D), as shown in Fig. 4.9 where for each value of Rag there are multiple
values of Nu, corresponding to different heat sinks or different b/D. Similar trends
of numerical results for parallel plate channel were reported previously by Martin
et al. (1991) and Li and Chung (1996). Therefore comparisons with previous
correlations (Edwards and Chaddock. 1963: Jones and Nwizu. 1969: Tsubouchi
and Masuda, 1970) should be made in such a way that at each Ra; value. the
present values of b/D and Rap are the same as those in the previous experiments

(note: Ra; = Rap b*/D*).
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Figure 4.9: Trends of Model Predictions.
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4.4 Radiation Model

In the natural convection regime. radiation can play an important role in the total
heat transfer. To account for this, a radiative heat transfer model for annular-fin
heat sinks is developed below.

As shown in Fig. 4.10, the heat sink is assumed to sit in a large enclosure, the

temperature of the enclosure surface is 7%, the heat sink surface temperature is 7).

Figure 4.10: Heat Sink in Large Enclosure.

The inner surface of the heat sink, A;, and the channel control surface. A,.
which is imaginary and represented by the dashed line in Fig. 4.10, form a small
two surface enclosure. The surface A, is assumed isothermal, diffuse, gray and with
uniform radiosity and irradiation. The surface A, can be considered as a black

surface of temperature T,. Thus the following equation is obtained (Incropera and

DeWitt, 1990):
o(T¢ - T})
Qiz = 1—¢ N 1 N 1—¢
€A, A1F12 €2A2

where Q,; is the radiative heat flow rate from surface A, to surface A,, F}, is the

(4.56)

view factor from surface A, to surface A, ¢, and e, are the emissivities of surface
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A; and surface A,, respectively. Because A; Fi; = A,F5; and €2 = 1, the equation

becomes
o(T} - T3)
le - 1 — €1 4 1
€14, Az Fay
where F3; is the view factor from surface A to surface A;. F,, in turn can be

(4.57)

found by
Fpu=1-Fp (4.58)

where F,; is the view factor from surface A to itself, which can be found in the

literature (Siegel and Howell, 1992):

B 1 2 _ [2VREZ-1 B

Pz =1 - g+ ptan {T}"ﬁ
VART+ B . _, [4(R® - 1)+ (B*/R*)(R? -~ 2)

B B? +4(RZ—1)

(4.59)

C (B2 T \/4R2+B'~"_1
st R? 2 B

where R = D/d, B = 2b/d.
For a heat sink with Ny fins. the radiative heat transfer from the inner surface
Arn will be
Qran = (Nf —1) Q12 (4.60)

The radiative heat transfer from the outer surface, Agyr. is given by
QR,OUT =0€ .40[]1'(:1.'14 -_ T;) (461)
Finally, the total radiative dissipation from the heat sink is obtained:

Qr = QrIN + QrouUT (4.62)

This radiation model shows good agreement with the radiation measurements

for the heat sinks used in this study.
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4.5 Non-isothermal Fin Surfaces

Heat sinks used in practical applications are not truly isothermal; however, in many
cases the temperature variation on the heat sink surface is small. To account of
this temperature variation, an average temperature of the heat sink surface may
need to be found before using the model for the heat sinks. It can be done through
a fin efficiency analysis. Then the average temperature may be taken as the heat
sink temperature in the model. Hahne and Zhu (1994) made comparisons between
two sets of results for the heat sinks, one was obtained using the total surface area
and the average temperature, the other was calculated with subsurface areas and
their local temperatures. They found that the difference between the two sets of
data was less than 1%. This supports the approach proposed above. In the cases
with small surface temperature variation. finding the average surface temperature
may not be necessary and the isothermal assumption will provide accurate results.

Several fin efficiency formulas for the annular fin can be found in the literature.
one of them. which accounts for fin rim cooling, was given as follows (Yovanovich.

1995).
- [t
he

rz

Figure 4.11: Parameters of Fin.

71



With reference to Fig. 4.11, if b, = h, the fin efficiency can be found by

(4.63)

N 27\ /2hrikt [@Kl(mrl) - [1(7717‘1)J

T T Ak | BKo(mm) + Io(mry)
where Iy(mr,), Ko(mr,), I;(mr,) and K,(mr,) are modified Bessel functions. r,
and r, are the inner and outer radii of the fin, Ay;, is the surface area of the fin in

Fig. 4.11, 2n(r2 — r2) + 2mr,t, h is convective heat transfer coefficient. and

_ mrily(mry) + Bi.lg(mr,;)

= mryKy(mrs) = Bi. Ko(mrs) (4.64)
with
he
Bi, = —=2 (4.65)
k
and
= /2 4.66
K™ (4.66)
The average temperature of the fin can be approximated by
Tauer = Toc + (Tb - Toc)"? (467)

If the heat transfer coefficient A. in Eq. (4.63), is unknown. it can be estimated
using the present model with 7} as the heat sink temperature. The approximate
average temperature can be found following the above procedure. This average
temperature can be used in the model to find a better value of A. then a bet-
ter average temperature can be calculated with this better A. By this iterative

procedure, the estimation of the average temperature can be improved.

4.6 Summary

A dimensional analysis is made for the annular-fin heat sinks. It is shown that

the Nusselt number Nu. is a function of seven parameters namely Rac, Pr, b/L.
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D/L,d/L,t/L and L/L. In most previous experiments, the Nusselt number Nu,
was a function of two parameters, i.e. Rap and b/D. Therefore, when compared
with the previous experimental results, the model should have the same values of
b/D and Rap used in these experiments.

An approximate solution for fully developed flow between fins is derived. Based
on the new expression of external natural convection solution, the fully developed
flow solution and making the distinction between the external and internal sur-
faces, a general model for laminar natural convection heat transfer from isothermal.
vertical disks with horizontal support cylinder is developed. In order to make the
model easier to use, a simplified model is also presented.

The trends of the model prediction are shown in Fig. 4.9. It is consistent with
the previous experiments and the numerical results.

To account for radiative heat transfer and non-isothermal fin surfaces. a radia-
tion model for the heat sink is developed in Section 4.4. and a fin efficiency formula
1s presented in Section 4.5.

Comparisons between the full model and the simplified model are presented in
Appendix E. A summary of the present models is given in Appendix F.

In the next chapter, the present model will be validated by comparisons with

present experimental data. previous correlations and experimental data.
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Chapter 5

Comparisons of Present Model
with Previous Correlations and
Experimental Data

In this chapter, the present simplified model is compared with three previous heat
sink correlations in Section 5.1. The comparison between the present experimental
data and the present model is given in Section 5.2. The comparison between the
previous apple core data and the model is presented in Section 5.3. In the last
two sections, the two limiting cases, i.e. D/d >> 1 and D/d — 1. are examined.
The model predictions are compared against experimental data obtained for long
and short horizontal circular cylinders and a vertical thin circular disk. In these

comparisons, the percent difference is given in the form:

Nuy — Nuy(reference)
Nup(reference)

x 100%

5.1 Previous Correlations

As mentioned in the last chapter, in the previous experiments (Edwards and Chad-
dock, 1963; Jones and Nwizu, 1969; Tsubouchi and Masuda, 1970), Rap was more
or less fixed and the wide range of Ra; was achieved by variation of b/D. There-

fore, in the following comparisons, the present model predictions are given in such
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a way that Rap is fixed at an average value and Ra; varies with b/D. In addi-
tion, the heat sink dimensions used by Edwards and Chaddock (1963) are adopted
for the present model. In their experiments, the length of the heat sinks. L. the
thickness of fins, ¢, and the diameter of the support cylinder, d. were fixed. They
made measurements for three cases of the diameter ratio (D/d = 1.94, 2.97 and
5.17). In the following three subsections, the present model is compared with the
three previous correlations for these diameter ratios. It is convenient to use the
present model as the common reference in the comparisons. The more detailed
comparisons between the present model and each of the correlations are tabulated

in Appendix D.

5.1.1 Diameter ratio D/d = 1.94

In Fig. 5.1, the present model is compared with the previous correlations for
D/d = 1.94. Good agreement can be seen between the model and the three
correlations. The maximum difference is -9.8% and the RMS difference is 5.4%
between the model and the Jones-Nwizu correlation. In comparison of the model
and the Tsubouchi-Masuda correlation, one finds the maximum and the RMS
differences are -11.3% and 6.4%, respectively.

In the experiments of Edwards and Chaddock, the end surfaces of the heat
sink were active, while for the heat sinks of Jones and Nwizu. Tsubouchi and
Masuda, the end surfaces were insulated. This may be one of the reasons for the

Edwards-Chaddock correlation giving higher predictions for this case.
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5.1.2 Diameter ratio D/d = 2.97

The comparisons for D/d = 2.97 are shown in Fig. 5.2. The agreement is also
good. The maximum difference between the model and the Tsubouchi-Masuda
correlation is 13.7% and the RMS difference is 8.7%. Although the Jones-Nwizu
correlation is applicable for the region of D/d = 1.33 ~ 1.83. it shows good
agreement at high Ra;, i.e. at the thin boundary layer regime. In the region of
low Rag, the correlation gives slightly higher Nu, predictions, because the value
of D/d is beyond its applicable range.

The Edwards-Chaddock correlation for copper fins also shows very good agree-
ment for this case in the range of Raj = 16 ~ 10%. Both the maximum difference

and the RMS difference are about 3% in this range of Ra;.
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5.1.3 Diameter ratio D/d = 5.17

Figure 5.3 shows comparisons between the model and the previous correlations for
D/d = 5.17. Good agreement can be seen between the model and the Edwards-
Chaddock correlation for aluminum fins. The maximum difference and the RMS
differences are —11.5% and 8.1%, respectively. The model also shows good agree-
ment with the Jones-Nwizu correlation at high Rag. The Jones-Nwizu correlation
again gives higher predictions at low Ray, e.g. the 38% higher value than the
present model at Ra; = 1. As D/d is large, the inner surface becomes a large
portion of the total heat sink surface. At low Rag, the large portion of the heat
sink surface will be involved with the fully developed flow, and hence result in
lower Nu, when compared with the case of small D/d. Because in fully developed
flow regime, the surface heat flux is much smaller than that in thin boundary layer
regime. The Jones-Nwizu correlation does not account for D/d > 1.83. so it gives
higher predictions at low Ra;.

The Edwards-Chaddock correlation gives lower predictions than the other cor-
relations at most values of Ra;. One of the reasons may be the effect of nonisother-
mal fins. Edwards and Chaddock took the temperature of the support cylinder
as the heat sink temperature. When D/d is large, this temperature may be much
larger than the average temperature of the heat sink; and it will lead to lower

predictions of the Nusselt number.
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5.2 Present Experimental Data

In Table 5.1 — 5.5, and Fig. 5.4 the present model is compared with the present
experimental data. Three previous correlations are also shown in Fig. 54 as a
comparison. Similar to the above comparison with the previous correlations, the
present model predictions are given in such a way that Rap is fixed at an average
value and Raj varies with b/D. In addition, the dimensions of the test heat sinks
are used in the present model. In the comparisons, the present model predictions

are taken as the common reference.

Although the five heat sinks used for the experimental study were tested under
similar conditions, or the Rap is nearly the same for the five heat sinks, the exper-
imental results (square symbols) lie in different ranges of Ra; because they have
different values of 4/D. In the order A,B,C,D and E, the experimental results of
the heat sinks lie in the range of Raj = 2x 10* to 10-!. The agreement between the
experimental data and the present model is very good, with a maximum difference
of 6.2% and an RMS difference of 4.3%. Figure 5.4 also shows that the previous
correlations cannot predict heat transfer from these heat sinks at low Ra;. Since
there are just a few fins on these heat sinks, the end surfaces play a significant role
in the total heat transfer, and the heat transfer from the fin rim surfaces is also
significant in these cases due to the large fin-thickness. These two factors were not
considered in the previous correlations, therefore they cannot account for the heat
transfer from the end surfaces and the much larger fin rim surfaces, and give much

lower predictions for the test heat sinks at low values of Ray.

An interesting result trend related to the surface area ratio is shown in Fig. 5.4.
In the range of Ra; = 10~! ~ 102, when the outer surface area is only a very small
portion of the total heat sink surface area, the results follow the curves close to the

Elenbaas correlation which has unit slope (e.g. the three previous correlations);
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when the outer surface is a large portion of the total heat sink surface (e.g. heat
sinks tested in the present experiment), the results will pull away the curve of
the Elenbaas correlation, assuming a slope smaller than 1 (between 1/4 and 1) in

log-log plots.

Table 5.1: Comparisons of Model and Data for Heat Sink A.

Exp. Data | Present Model
Ra; Nu, Nu, % Diff.
4.875 x103 4.268 4.280 -0.3
8.421 x103 4.886 4.941 -1.1
1.159 x10* 5.216 5.371 -2.9
1.403 x10* 9.470 5.647 -3.1
1.628 x10* 5.690 5.870 -3.1
1.853 x10* 5.881 6.072 -3.1
2.079 x10¢ 5.971 6.257 -4.6
2.261 x10* 6.175 6.395 -3.4
2.405 x10% 6.252 6.499 -3.8
2.550 x10* 6.303 6.598 -4.5
2.682 x10* 6.334 6.686 -9.3
2.857 x10% 6.412 6.796 -5.7
3.024 x10* 6.564 6.898 -4.8
3.161 x10* 6.627 6.978 -5.0
3.250 x10* 6.649 7.028 -5.4
3.366 x10* 6.723 7.093 -5.2
3.484 x104 6.818 7.157 -4.7
3.591 x10% 6.870 7.214 -4.8

RMS Diff = 4.2%

82



Table 5.2: Comparisons of Model and Data for Heat Sink B.

Exp. Data | Present Model
Ra; Nuy Nuy % Diff.
1.589 x 102 1.595 1.661 -4.0
2.105 x 102 1.729 1.807 -4.3
2.519 x10? 1.819 1.905 -4.5
2.872 x10° 1.884 1.979 -4.8
3.226 x 102 1.944 2.047 -5.0
3.550 x10? 1.987 2.104 -5.5
3.855 x 102 2.028 2.154 -9.8
4.086 x10° 2.054 2.190 -6.2

RMS Diff = 5.1%

Table 5.3: Comparisons of Model and Data for Heat Sink C.

Exp. Data | Present Model
Ra; Nu, Nuy % Diff.
8.025 x10° 0.634 0.602 5.4
1.319 x10?! 0.718 0.719 -0.2
1.718 x10?! 0.785 0.791 -0.8
2.056 x10* 0.838 0.844 -0.7
2.405 x 10! 0.874 0.892 -2.0
2.709 x10* 0.899 0.930 -3.3
2.895 x10! 0.912 0.952 -4.2
3.112 x10! 0.938 0.976 -3.9

RMS Diff = 3.0%
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Table 5.4: Comparisons of Model and Data for Heat Sink D.

Exp. Data | Present Model
Ra; Nuy, Nuy % Diff.
9.490 x10! 0.296 0.296 0.2
1.204 x10° 0.313 0.318 -1.5
1.390 x10° 0.325 0.332 -2.2
1.590 x10° 0.338 0.347 -2.5
1.779 x10° 0.352 0.359 -2.0
1.967 x10° 0.357 0.371 -3.8

RMS Diff = 2.3%

Table 5.5: Comparisons of Model and Data for Heat Sink E.

Exp. Data | Present Model
Ra; Nuy Nuy % Diff.
5.70 x10°2 0.140 0.143 -1.9
7.50 x107? 0.150 0.153 -2.1
8.90 x10~2 0.157 0.160 -2.0
1.03 x10°! 0.162 0.166 -2.6
1.14 x107! 0.166 0.171 -2.8
1.25 x10°! 0.169 0.175 -3.5
1.35 x10~! 0.173 0.179 -3.2
1.41 x107! 0.175 0.181 -3.1

RMS Diff = 2.7%
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5.3 Experimental Data for Apple Core

In this section the present model is compared against a set of experimental data of
Hassani and Hollands (1989) who measured natural convection heat transfer from
a horizontal, isothermal apple core made of an aluminum alloy.

In order to use the present model, a heat sink equivalent to the apple core was
adopted. As shown in Fig. 5.5, the equivalent heat sink has two fins: the diameter
D, dimensionless parameters d/D and b/D are equal to those of the apple core.
The inner surface area and the outer surface area are the same as those of the
apple core. The fin thickness ¢ was determined by equating the outer surface area
of the heat sink to the outer surface area of the apple core.

In this comparison the geometry of the heat sink was fixed, so the modified
Rayleigh number Ra; varied with Rap (note: Raj = Rap b*/D*). This was the
way Hassani and Hollands (1989) performed their experiments.

| l

D —> D

9 4

—~| |t

Figure 5.5: Apple Core and Equivalent Heat Sink.

Because the inner surfaces of the apple core and the equivalent heat sink have
the identical shape and area, the heat transfer from the both inner surfaces should
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be very close. Although tke geometries of the two outer surfaces are different, they
have the same surface area and hence the heat transfer rates from the two outer
surfaces should be close. Finally, the diffusive limits of the two geometries are also
close. Therefore the Nusselt number of the heat sink should be very close to that
of the apple core.

Results for the two geometries are shown in Table 5.6 and Fig. 5.6 with the
apple core data as the reference. The original data of the apple core have been
converted to the Nusselt number based on b, i.e. Nu; versus the modified Rayleigh
number Ra;. Good agreement can be seen with the maximum difference of 11.6%
and the RMS difference of 5.9%. The predictions of the Hassani-Hollands model for
the apple core are also shown in the figure as a comparison. Very good agreement
can be seen between the present model and the Hassani-Hollands model in the
range of Ra; = 10? ~ 3.6 x 10°. This case confirms that the present model can
be applied to this kind of problem, in which the geometry is fixed and Ra; varies

with Rap through pressure changes.
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Table 5.6: Results for Apple Core of Hassani and Hollands.
(D/d =186, D = 43.3 mm, b = 25 mm, n = 1.0)

Apple Core Data | Present Model
Ra; Nuy Nu % Diff.
1.485 x10° 1.365 1.259 -1.7
2.071 x10° 1.390 1.296 -6.8
2.876 x10° 1.404 1.338 -4.7
3.656 x10° 1.418 1.372 -3.3
5.121 x10° 1.458 1.427 -2.1
7.159 x10° 1.486 1.490 0.3
9.309 x10° 1.537 1.546 0.6
1.182 x10* 1.655 1.601 -3.3
1.271 x10* 1.593 1.619 1.6
1.337 x10! 1.545 1.632 5.6
1.634 x10* 1.698 1.685 -0.8
1.739 x10* 1.641 1.702 3.7
1.832 x10! 1.667 1.717 3.0
2.254 x10! 1.729 1.777 2.8
2.539 x10! 1.779 1.814 1.9
4.041 x10* 1.977 1.970 -04
5.541 x10! 2.047 2.087 1.9
6.744 x10! 2.090 2.164 3.6
7.608 x10! 2.107 2.214 5.1
9.058 x10! 2.166 2.287 5.6
1.219 x10° 2.231 2.419 8.5
1.781 x10? 2.383 2.600 9.1
2.362 x10? 2.496 2.745 10.0
3.149 x10? 2.600 2.900 11.6
- More -
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Table 5.6: (cont.) Results for Apple Core of Hassani and Hollands.
(D/d =1.86, D = 43.3 mm, b = 25 mm, n = 1.0)

Apple Core Data | Present Model
Ra,; Nu, Ny, % Diff.
4.513 x10? 2.831 3.109 9.8
5.909 x102 2.972 3.277 10.2
7.781 %102 3.099 3.458 11.6
1.160 x10° 3.381 3.741 10.6
1.563 x10° 3.618 3.970 9.7
2.128 x10° 3.838 4.224 10.1
3.083 x103 4.450 4.554 2.3
4.045 x103 4.667 4.815 3.2
5.342 x 103 4.870 5.101 4.7
8.035 x10° 5.220 5.556 6.4
1.025 x 104 5.513 5.850 6.1
1.318 x10* 5.792 6.173 6.6
1.933 x10* 6.342 6.703 5.7
2.410 x10* 6.689 7.033 5.1
3.029 x10* 7.022 7.394 5.3
4.821 x10* 7.902 8.193 3.7
5.776 x10* 8.206 8.530 4.0
6.952 x 10 8.499 8.891 4.6
1.184 x10° 9.811 10.027 2.2
1.400 x10° 10.186 10.417 2.3
1.663 x10° 10.555 10.834 2.6
3.257 x10° 13.107 12.648 -3.5
3.631 x10° 13.274 12.972 -2.3

RMS Diff = 5.9%
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5.4 Comparison of Channel Model with Previous
Correlations

When D/d >> 1, the effect of the support cylinder on the total heat transfer
becomes negligible. In this case the heat transfer from the inner surface should
be close to that of a channel. From this point of view, the present channel model
will be compared with three previous channel model correlations. One is the

Tsubouchi-Masuda (1970) correlation for a circular disk channel:

Nuy = G%Ra; {1-ezp [—(25.3/Ra;)3/‘]} (5.1)

The second is the Elenbaas (1942) correlation for a plate channel:

Nu, = 2—14-Ra; [1 — ezp(—35/Ra)]** (5.2)

And the third is the Raithby-Hollands (1985) correlation for square fins:

-1/2.7

=0.89\ —2.7
Nu, = [(R“° ) + (0.62Ra;Y/%)~27 (5.3)

18

In these comparisons, the modified Rayleigh number varied with 5/D or s /H,

in the same way in which the previous measurements were performed.

5.4.1 Tsubouchi-Masuda Disk Channel Correlation

Both the present channel model and the Tsubouchi-Masuda correlation represent
a pure channel heat transfer between two circular disks. In this comparison the
dimensions of the disk channel used in the experiments of Tsubouchi and Masuda
(1970) were adopted in the present model. And the predictions of the Tsubouchi-

Masuda correlation are taken as the reference.
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In Table 5.7 and Fig. 5.7, the present channel model, Eq. (4.52) with Eq. (4.53)
and Eq. (4.55), is compared with the Tsubouchi-Masuda correlation. Very good
agreement can be seen over the entire range of the Raj. The maximum difference

1s —5.9% at Ra; = 4, and the RMS difference is 3.5%.
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Table 5.7: Results for Tsubouchi-Masuda Disk Channel.
(D/d =82, n=1.7)

Tsubouchi-Masuda

Channel Model

Ray Nu, Nuy 4,y % Diff.
1.000 x10° 0.053 0.051 -3.3
1.585 x10° 0.084 0.081 -4.1
2.512 x10° 0.133 0.126 -5.1
3.981 x10° 0.207 0.195 -5.9
6.310 x10° 0.315 0.297 -5.8
1.000 x10* 0.459 0.440 -4.2
1.585 x10! 0.638 0.629 -1.4
2.512 x10! 0.845 0.857 1.5
3.981 x10! 1.075 1.112 3.4
6.310 x10! 1.325 1.379 4.1
1.000 x102 1.592 1.648 3.6
1.585 x 102 1.877 1.922 2.4
2.512 x10? 2.182 2.206 1.1
3.981 x102 2.511 2.508 -0.1
6.310 x10? 2.869 2.834 -1.2
1.000 %103 3.261 3.193 -2.1
1.585 x10° 3.693 3.591 -2.8
2.512 x10° 4.170 4.034 -3.3
3.981 x10° 4.701 4.530 -3.6
6.310 x10° 5.292 5.084 -3.9
1.000 x10* 5.951 5.706 -4.1

RMS Diff = 3.5%
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Figure 5.7: Comparison with Tsubouchi-Masuda Disk Channel.
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5.4.2 Elenbaas Plate Channel Correlation

The present channel model is compared with the Elenbaas correlation in Table
9.8 and Fig. 5.8. The Elenbaas correlation is the reference in the comparison.
The model is for a circular disk channel, while the Elenbaas correlation is for
a rectangular plate channel. Although the geometries are different, the results
are close to each other over a wide range of Rag. The disk channel dimensions
of Tsubouchi and Masuda mentioned above were adopted for the present model,
because the dimensions are within the range of the channel dimensions of Elenbaas.

The agreement is very good in the range of Ra; =16 ~ 10*, with the maximum
difference of -4.7%. But in the range of Ra; =1 ~ 10, large differences, up to 23%

at Ra; = 1, are observed.
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Table 5.8: Comparison with Elenbaas Correlation for Channel.

(D/d =82.n = 1.7)

Ra; Elenbaas Correlation | Channel Model
(or Ra3) Nu, Nup 4, % Diff.
1.000 x10° 0.042 0.051 23.1
1.585 x10° 0.066 0.081 22.1
2.512 x10° 0.105 0.126 20.4
3.981 x10° 0.166 0.195 17.6
6.310 x10° 0.262 0.297 13.2
1.000 x10! 0.407 0.440 8.1
1.585 x 10! 0.605 0.629 3.9
2.512 x10* 0.845 0.857 1.5
3.981 x10! 1.109 1.112 0.3
6.310 x10? 1.386 1.379 -0.5
1.000 x 102 1.669 1.648 -1.2
1.585 x 102 1.961 1.922 -2.0
2.512 x102 2.267 2.206 2.7
3.981 x102 2.592 2.508 -3.3
6.310 x10? 2.943 2.834 -3.7
1.000 x103 3.328 3.193 4.1
1.585 x103 3.752 3.591 -4.3
2.512 x10° 4.223 4.034 -4.5
3.981 x103 4.747 4.530 -4.6
6.310 x103 5.333 5.084 4.7
1.000 x10* 5.988 5.706 -4.7

RMS Diff = 10.1%
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5.4.3 Raithby-Hollands Square Fins Correlation

The present channel model is compared with the Raithby-Hollands correlation for
square fins in Table 5.9 and Fig. 5.9. The predictions of the Raithby-Hollands
correlation are taken as the reference. The dimensions of the Tsubouchi-Masuda
disk channel were adopted for the present channel model, because they are within
the range of the dimensions used in the experiments of Elenbaas. The data of
Elenbaas were the basis of the Raithby-Hollands correlation.

Good agreement is seen in the comparison, with a maximum difference of -
9.1% and an RMS difference of 7%. The Raithby-Hollands correlation gives higher
predictions for most values of Ra;. One of the reasons may be that their correlation

accounts for the edge effect of the fins.
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Table 5.9: Comparison with Raithby-Hollands Correlation.
(D/d =82.n =1.7)

Ra; Raithby-Hollands | Present Model
(or Ra3) Nu, Nup 4, % Diff.
1.000 x10° 0.056 0.051 -71.7
1.585 x10° 0.084 0.081 -3.5
2.512 x10° 0.126 0.126 0.2
3.981 x10° 0.189 0.195 3.3
6.310 x10° 0.283 0.297 5.1
1.000 x10? 0.419 0.440 5.0
1.585 x10! 0.612 0.629 2.8
2.512 x10?! 0.867 0.857 -1.0
3.981 x10! 1.171 1.112 -5.0
6.310 x10! 1.495 1.379 -7.8
1.000 x10? 1.813 1.648 -9.1
1.585 x10? 2.119 1.922 -9.3
2.512 x10? 2.426 2.206 -9.1
3.981 x10? 2.748 2.508 -8.7
6.310 x102 3.096 2.834 -8.5
1.000 x10° 3.481 3.193 -8.3
1.585 x10° 3.909 3.591 -8.1
2.512 x103 4.388 4.034 -8.1
3.981 x10® 4.924 4.530 -8.0
6.310 x103 5.525 5.084 -8.0
1.000 x10% 6.200 5.706 -8.0

RMS Diff = 7.0%
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Figure 5.9: Comparison with Raithby-Hollands Correlation.
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5.4.4 Comparison with Three Previous Correlations

In Fig. 5.10, the present channel model is compared with the three channel cor-
relations, i.e. the Tsubouchi-Masuda correlation for a disk channel, the Elenbaas
correlation for a plate channel and the Raithby-Hollands correlation for square fins.
The three correlations show the same trend and are close to each other, because
they represent the same thing, i.e. channel heat transfer. Over most values of Ra;,

the predictions of the present model lie between those of the previous correlations.
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5.5 Comparison of Model with Circular Cylinder
Data

In this section, the present model will be compared with cases for the other limit:
D/d — 1. The predictions of the present model are converted, to be based on
the characteristic length D, in the form of Nup vs Rap. In these cases, b/D is
fixed, the modified Rayleigh number varies with Rap. This is the way the previous
experiments were performed. The experimental data are taken as the references

in the following comparisons.

5.5.1 Long Circular Cylinder Data of Clemes et al.

The comparison of the present model and the long horizontal circular cylinder
data of Clemes et al. (1994) is given in Table 5.10 and plotted in Fig. 5.11. The
dimensions of the circular cylinder of Clemes are D = 49.98 mm, L = 511.9 mm.
while the dimensions of the heat sink used in the present model are D = 49.98 mm.
L =511.9 mm, d = 49.9799 mm. t = 170 mm, b = 171.9 mm, Ny = 2. D/d =
1.000002.

The length L and the diameter D of the heat sink are identical to that of the
cylinder of Clemes, and the two geometries are nearly the same. The fin thickness
t was set approximately equal to the fin spacing b. Although the values of b and
t are arbitrarily selected, because D/d — 1, the effect of fins on the total heat
transfer is very small. If the fin thickness, the fin spacing and the fin number are
set to other values, the model predictions will not change much.

Excellent agreement is observed in the comparison. The maximum difference
between the model predictions and the circular cylinder data of Clemes is —2.6%
and the RMS difference is only 1.2%.
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Table 5.10: Results for Long Circular Cylinder of Clemes et al..
(L/D = 10.24, D/d = 1.000002)
(b=171.9 mm, ¢t = 170 mm, Ny =2,n=1.0)

Data of Clemes | Present Model
RaD NuD NuD % Diff.
3.460 x10! 1.71 1.72 0.6
4.290 x10?! 1.75 1.77 1.4
5.320 x10! 1.80 1.83 1.8
9.360 x10! 2.04 2.00 -1.9
1.155 x10? 2.12 2.07 -2.4
1.431 x 102 2.16 2.14 -0.8
2.150 x10? 2.30 2.30 -0.2
2.672 x102 2.44 2.38 -2.4
3.300 x10? 2.53 247 -2.3
4.580 x102 2.69 2.62 -2.6
5.700 x10? 2.76 2.73 -1.2
7.100 %102 2.86 2.84 -0.7
9.390 x102 3.00 2.99 -0.2
1.167 x10° 3.16 3.12 -1.3
1.453 x10° 3.25 3.25 0.1
1.900 x10° 3.43 3.43 -0.1
2.360 x103 3.60 3.58 -0.6
2.930 x10° 3.71 3.74 0.7
3.860 x103 4.01 3.95 -1.5
4.770 x103 4.15 4.13 -0.6
5.900 x103 4.33 4.31 -0.4
7.670 x103 4.57 4.55 -0.4
9.500 x103 4.80 4.76 -0.7
1.181 x10% 4.98 4.99 0.2
1.506 x10* 5.28 5.26 -0.4
1.868 x10% 5.52 5.51 -0.2
2.327 x10* 5.73 5.78 0.8
- More -
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Table 5.10: (cont.) Results for Long Circular Cylinder of Clemes et al..
(L/D =10.24, D/d = 1.000002)
(b=171.9 mm, t = 170 mm, Ny = 2, n = 1.0)

Data of Clemes | Present Model
RGD NuD Nup % Diff.
2.992 x10* 6.19 6.10 -14
3.700 x10*% 6.52 6.40 -1.9
4.600 x10* 6.72 6.71 -0.1
5.880 x10% 7.24 7.09 -2.0
7.270 x10* 7.54 7.44 -1.3
9.020 x10* 7.82 7.81 -0.1
1.161 x10° 8.39 8.27 -1.4
1.434 x10° 8.77 8.68 -1.0
1.780 x10° 9.15 9.12 -0.3
2.256 x10° 9.79 9.63 -1.6
2.807 x10° 10.18 10.13 -0.5
3.510 x10% 10.72 10.67 -0.5
4.500 x10° 11.28 11.31 0.3
5.570 x10° 11.86 11.89 0.3
6.920 x10° 12.36 12.51 1.2
8.850 x10° 13.27 13.26 -0.1
1.097 x108 13.92 13.95 0.2
1.368 x10° 14.52 14.70 1.2
1.781 x 108 16.05 15.65 -2.5
2.200 x10° 16.50 16.46 -0.2
2.727 x10° 17.38 17.33 -0.3
3.530 x10° 18.53 18.43 -0.5
4.350 x10° 19.68 19.38 -1.5
5.390 x10° 20.47 20.41 -0.3
6.910 x108 21.80 21.67 -0.6
8.540 x10° 23.15 22.81 -1.5
1.061 x107 24.19 24.04 -0.6

RMS Diff = 1.17%
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Figure 5.11: Comparison with Circular Cylinder Data of Clemes et al..
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5.5.2 Short Circular Cylinder Data of Hassani and
Hollands

The comparison between the present model and the short horizontal circular cylin-
der data of Hassani and Hollands (1989) is presented in Table 5.11 and F ig. 5.12.
The dimensions of the circular cylinder are D = 43 mm, L = 43 mm, while those
of the corresponding heat sink for the present model are D = 43 mm, L = 43 mm,
t =15 mm, b = 13 mm, Ny=2, d = 42.997 mm, D/d = 1.000023.

The length L and the fin diameter D of the heat sink are identical to that of
the cylinder of Hassani. Because D/d — 1, variations in the fin thickness. the fin
spacing and the fin number will not affect the model predictions much.

The agreement is also excellent, the maximum difference and the RMS differ-
ence are 4.4% and 2.4% respectively.
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Table 5.11: Results for Short Circular Cylinder of Hassani and Hollands.
(L/D =1, D/d = 1.00002)
(6=13 mm, t = 15 mm, Ny =2,n=1.0)

Data of Hassani | Present Model
Rap NuD NuD % Diff.
1.785 x10! 2.32 2.38 2.5
2.608 x10! 2.41 2.46 2.0
3.480 x10! 2.50 2.53 1.0
5.070 x10! 2.61 2.62 0.5
7.380 x10! 2.68 2.73 1.9
1.018 x102 2.82 2.83 0.4
1.471 x102 2.96 2.96 0.0
2.129 x102 3.08 3.11 0.9
2.591 x102 3.17 3.19 0.7
3.730 x102 3.32 3.36 1.3
5.380 x102 3.44 3.55 3.3
6.330 x102 3.59 3.64 1.5
9.070 x102 3.86 3.86 0.1
1.312 x103 4.10 4.11 0.4
1.758 x10° 4.20 4.33 3.1
2.501 x103 4.49 4.61 2.8
3.590 x103 4.76 4.93 3.6
4.610 x10° 4.99 5.17 3.6
6.520 x103 5.36 5.52 3.1
9.320 x103 5.68 5.92 4.2
1.159 x10¢ 5.97 6.18 3.5
~ More -
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Table 5.11: (cont.) Results for Short Circular Cylinder of Hassani and Hollands.
(L/D =1, D/d = 1.00002)
(b=13mm, t =15 mm. Ny =2, n = 1.0)

Data of Hassani | Present Model
RaD N‘u.p N‘U.D % Diff.
1.623 x104 6.40 6.60 3.2
2.298 x10* 6.78 7.08 4.4
2.889 x10* 7.19 7.41 3.1
4.020 x10* 7.72 7.93 2.7
5.660 x10* 8.20 8.51 3.8
7.580 x10* 8.81 9.05 2.7
1.041 x10° 9.46 9.67 2.2
1.445 x10° 10.05 10.37 3.2
1.937 x10° 10.77 11.05 2.6
2.596 x10° 11.53 11.77 2.1
3.520 x10° 12.23 12.58 2.9
5.100 x10° 13.33 13.66 2.4
6.690 x10° 14.21 14.51 2.1
8.860 x10° 15.04 15.45 2.7
1.272 x10% 16.45 16.77 1.9
1.619 x10° 17.51 17.71 1.2
2.082 x10° 18.52 18.76 1.3
3.037 x10°¢ 20.33 20.46 0.7
3.790 x108 21.50 21.54 0.2
4.780 %108 22.64 22.73 0.4

RMS Diff = 2.43%
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Figure 5.12: Comparison with Circular Cylinder Data of Hassani and Hollands.
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5.5.3 Vertical Circular Disk Data of Hassani and Hollands

In Table 5.12 and Fig. 5.13 the present model is compared with the vertical thin
circular disk data of Hassani and Hollands (1989). The dimensions of the disk
are D = 82 mm, L = 8.2 mm while the dimensions of the heat sink used for the
model are D = 82 mm, L =82 mm, t = 3 mm, b = 2.2 mm, d = 81.999 mm.
D/d =1.00002, Ny = 2.

The maximum and the RMS differences are 15.8% and 8.2% respectively. In
the range of Rap = 896 ~ 8.7 x 10%, the agreement is very good, but in the range
of low Rap, the model gives higher predictions. The predictions of the Hassani-
Hollands model for the circular disk were also plotted in the Fig. 5.13. Their
correlation values are about 8 ~ 10% higher than the experimental data at low
Ra;.
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Table 5.12: Results for Vertical Thin Circular Disk of Hassani and Hollands.
(L/D = 0.1, D/d = 1.00001)
(6=22mm,t=3mm, Ny =2,n=1.0)

Data of Hassani | Present Model
RaD N‘U.D NuD % Diff.
2.847 x10?! 3.11 3.60 15.8
4.240 x 10! 3.25 3.72 14.5
6.290 x10?! 3.34 3.85 15.4
8.640 x10?! 3.35 3.97 18.5
1.277 x102 3.61 4.12 14.3
1.899 x 102 3.82 4.30 12.6
2.259 x10? 3.89 4.38 12.6
3.320 x10° 4.10 4.58 11.6
4.880 x10° 4.27 4.79 12.2
6.130 x10°? 4.42 4.93 11.5
8.960 x10? 4.72 5.17 9.6
1.317 x10°3 4.98 5.45 9.4
1.720 x10° 5.18 5.66 9.2
2.503 x10° 5.50 5.97 8.6
3.660 x10°3 5.76 6.32 9.8
4.380 x103 6.02 6.50 7.9
6.300 x10° 6.42 6.88 7.2
9.140 x 103 6.78 7.32 7.9
1.068 x10% 7.08 7.51 6.1
1.498 x10* 7.55 7.96 5.4
2.119 x10* 7.97 8.45 6.1
-~ More -
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Table 5.12: (cont.) Results for Vertical Thin Circular Disk of Hassani and
Hollands.
(L/D = 0.1, D/d = 1.00001)
(6=22mm,t =3 mm, Ny =2,n = 1.0)

Data of Hassani | Present Model
RaD Nup N‘II.D % Diff.
2.644 x10* 8.37 8.80 5.1
3.670 x10* 8.95 9.34 4.3
5.140 x10* 9.47 9.94 5.0
6.440 x 104 10.02 10.38 3.6
8.870 x10% 10.71 11.04 3.1
1.234 x10° 11.34 11.78 3.9
1.635 x10° 12.17 12.46 2.4
2.185 x10° 13.00 13.22 1.7
2.951 x10° 13.78 14.06 2.0
4.050 x10° 14.73 15.02 2.0
5.290 x10° 15.73 15.90 1.1
7.000 x10° 16.67 16.87 1.2
1.066 x10% 18.56 18.49 -0.4
1.345 x10° 19.56 19.46 -0.5
1.710 x108 20.51 20.52 0.0
2.608 x10° 22.42 22.56 0.6
3.143 x10° 23.60 23.54 -0.3
3.810 x10° 24.74 24.60 -0.6
6.460 x10° 28.19 27.78 -1.5
7.460 x10° 29.31 28.73 -2.0
8.660 x10° 30.33 29.75 -1.9
RMS Diff = 8.2%
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Figure 5.13: Comparison with Circular Disk Data of Hassani and Hollands.



5.6 Summary

The present model is compared with three previous correlations (Edwards and
Chaddock, 1963; Jones and Nwizu, 1969; Tsubouchi and Masuda, 1970). Good
agreement is observed in these comparisons. The present model also gives very
good predictions for the present experimental data, while the previous correlations
fail to predict the present data at low Raj, because they do not account for the
effects of the end surfaces and the fin rim surfaces. For the previous data of an
apple core (Hassani and Hollands, 1989), a circular disk, a short circular cylinder
(Hassani and Hollands, 1989) and a long circular cylinder ( Clemes et al., 1994).
as well as correlations of channel flow (Elenbaas, 1942; Tsubouchi and Masuda.
1970, Raithby and Hollands, 1985), the present model shows good to excellent
agreement.

The comparisons show that the present model can be used for arbitrary dimen-
sions of the heat sinks; and it can be applied to the two cases described in the
dimensional analysis in Chapter 4. In one case, the geometry of the heat sink is
fixed, Raj varies with Rap, in the other case, Rap is fixed, Raj varies with b/D.
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Chapter 6

Summary and Conclusions

A study was carried out on natural convection heat transfer from isothermal, hor-
izontal cylinders with annular fins to establish a comprehensive model which ac-
counts for all geometric parameters and surface components. The heat sinks used
in this study were machined from aluminum alloy cylindrical bar stock. The fins
were an integral part of the support cylinder with no joints or contact resistance.

A literature review is given in Chapter 2. Several previous studies on annular-
fin heat sinks and rectangular fin arrays are examined. It was found that the
previous correlations do not include the effects of end surfaces and the fin thickness.
Relevant experimental methods and boundary layer solutions are briefly reviewed.

The experimental work of this study includes:

- Measurement of radiative heat transfer from each of the test heat sinks in a
vacuum chamber.

— Measurement of natural convection heat transfer from each of the test heat
sinks.

- A calculation procedure was developed to estimate wire heat losses in both
radiation and natural convection measurements. Subtraction of these wire heat

losses resulted in more accurate values of heat transfer from the heat sink.

-~ Data reduction.
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— Uncertainty analysis for the experimental results.

The experimental method was verified by comparison with the results of a
established method.

In Chapter 4, an existing solution for laminar natural convection is briefly
reviewed; and an approximate solution for fully developed flow between fins is
obtained. Based on the existing solution for laminar natural convection, the fully
developed flow solution, and making the distinction between the external and
internal surfaces of the heat sink, a general model for laminar natural convection
heat transfer from isothermal, horizontal cylinders with annular fins js developed.
In order to make the model easier to use, a simplified model is also presented which
is easy to use and gives very good predictions.

To account for the radiative heat transfer, a radiation model for the heat sinks
is presented which showed good agreement with the radiation measurements. A
fin efficiency formula for annular fins is also given in the chapter for application to
nonisothermal fin surfaces.

In Chapter5, the simplified present model is compared with previous correla-
tions, present experimental data, and previous experimental data. The compar-
isons with previous correlations for D/d=1.94 show good agreement between the
present model and the Jones-Nwizu correlation. The maximum difference is 9.8%
and the RMS difference is 5.4%. For the diameter ratio D/ d=2.97, good agreement
is observed between the Tsubouchi-Masuda correlation and the present model. The
maximum and the RMS differences are 13.7% and 8.7%, respectively. For the di-
ameter ratio D/d=5.17, good agreement is shown between the Edwards-Chaddock
correlation for aluminum fin and the present model. The maximum difference is
11.5% and the RMS difference is 8.1%.

The comparison of the present model with the present experimental data shows

very good agreement, with a maximum difference of 6.2% and an RMS difference
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of 4.3%. The previous correlations fail to predict the experimental data at low
Raj, because they do not take into consideration the effects of fin thickness and
end surfaces.

In the comparison with the apple core data of Hassani and Hollands (1989), the
present model shows good agreement, with a maximum difference of 11.6% and an
RMS difference of 5.9%.

In the limiting case of D/d >> 1. i.e. when the support cylinder diameter
shrinks, the inner surface of the heat sink is considered as a circular-disk channel.
the present channel model shows very good agreement with the Tsubouchi-Masuda.
Elenbaas and Raithby-Hollands correlations.

In the other limiting case. i.e. D/d — 1 the heat sink becomes a solid cylinder.
the present model shows excellent agreement with the long circular cylinder data of
Clemes et al. (1994) and the short circular cylinder data of Hassani and Hollands
(1989). In the comparison with the vertical thin circular disk data of Hassani
and Hollands (1989), the present model shows good agreement in the range of
Rap = 896 to 8.7 x 10°, but larger deviations are observed at low Rap.

The comparisons show that the present model can be used for arbitrary dimen-

sions of the heat sinks.
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Appendix A

Test Heat Sinks
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Figure A.1: Heat Sink A (unit: mm).
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Figure A.2: Heat Sink B (unit: mm).
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Figure A.3: Heat Sink C (unit: mm).
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Figure A.4: Hea

t Sink D (unit: mm).
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Figure A.5: Heat Sink E (unit: mm).
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Appendix B

Estimation of Additional Wire
Heat Loss

In the convection heat transfer measurement the wire heat loss for the same heat
sink is different from that in the radiation heat transfer measurement. The fol-
lowing sections give the estimation for the difference between the two wire heat

losses.

B.1 Heat Transfer Through a Pin Fin of Uniform
Cross Section

The heat transfer through a wire attached to the test heat sink is assumed the
same as that through a pin fin with uniform cross section as shown in Fig. B.1.

In this figure, ¢s is the heat flow rate through the base of pin fin: k is the
conductivity of the pin fin; A¢ is the cross section area of the pin fin; r; is the
radius of the pin fin; h is the overall heat transfer coefficient between the pin fin
surface and the ambient; P is the perimeter and L is the length of the pin fin.

In the present experiments, the wire attached to the test heat sink can be
considered as a pin fin with infinite length. In this case the effective length of the
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Figure B.1: Pin Fin with Uniform Cross Section.

fin, L., can be found by (Incropera and DeWitt, 1990)

kAc
Le=2.65 /=2 (B.1)

and the heat flow rate through the base section of the pin fin. ¢;, can be calculated
by (Incropera and DeWitt, 1990)

as = \JhPkAc AT (B.2)

where AT is the temperature difference between the base section and the ambient
or that between the heat sink surface and the ambient as used in the following

sections.

B.2 Average Surface Temperature for Effective

Length
From the definition of heat transfer coefficient and Eq. (B.2), we have
qs
h = ——
AAT
VvhPkAc AT (B.3)
AAT )
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where AT is the average surface temperature difference between the wire surface
and the ambient for the effective length; A is the surface area of the effective length

which can be expressed as

A = PIL.
B [kAc
= P265/=2
= 265,/2 ’;AC (B.4)

Inserting Eq. (B.4) into Eq. (B.3), the average surface temperature difference
of the effective length is obtained as

= AT
AT = — .
.65 (B-5)

Finally the average surface temperature of the wire surface for the effective

length can be found:

_ AT
T=Tx+2—ﬁg (B.6)
B.3 Effective Heat Transfer Coefficient for Ra-

diation
From the radiative heat transfer equation, we have the following approximation:
Qwr = ed A(T' — T%) (B.7)

where Qwpr is the heat transfer rate for wire radiation, T is the average surface
temperature of the wire, (T + AT/2.65), € is surface emissivity, o is Stefan-
Boltzmann constant. The radiation heat transfer coefficient for the wire, hg, can

be expressed as

hr = eo(T + To)(T" + T2) (B.8)
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Figure B.2: Heat Transfer Through Wire.

For instance, if AT = 485K, T, = 293K and € = 0.95, the following results
will be obtained. The insulation layer is glass fiber, its € could not be found by
the author. Therefore the high value of smooth glass emissivity (¢ = 0.9 — 0.95.
Incropera and Dewitt, 1990) is taken as the emissivity of the glass fiber. because
glass fiber has a rough surface which will enhance the emissivity. The following

calculation shows that this approximation does not introduce much deviation.

T = 293 +48.5/2.65
= 311 K

and thus
hr =5.9 W/m?K

The thermal resistance for the surface radiation of the effective length of the

pin fin can be expressed as
1

Br = hp2xry L,

(B.9)
With reference to Fig. B.2, the thermal resistance of the insulation layer is

Ry = In(ry/m1)

- 21rk;mLe (BIO)
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where krn,, is the conductivity of the insulation layer.

If the overall heat transfer coefficient from the metal wire surface to the ambient
is hToe; based on the metal wire surface area, the corresponding thermal resistance
will be

1

Rron = m (B.11)
From the relationship of
Rrot1 = Rineu + Rp (B.12)

the overall heat transfer coefficient A, is obtained:

1

hTotlz (B.13)
b in(ra/r)

rth kInau

Then the radiation loss from the wire, g, can be found using Eq. (B. 2):

qr = \/hron PkAc AT (B.14)

and the effective length of the wire, L.. can be found using Eq. (B.1):

kAc
hTotl P

For example, if ry = 0.3 mm. r, = 1 mm. k = 67.49 W/mK (Nickel 200)
and krn, = 0.035 W/mK for glass fiber (Bejan, 1993). the overall heat transfer
coefficient at the metal wire surface, hpg, will be

L. =2.65

(B.15)

hrots = 16.3 W/m?K (B.16)
the wire radiative loss will be
qr = 0.038 W (B.17)
and the effective length of the wire will be
L.=6.6cm (B.18)
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From this result, it can be seen that in the radiation test the heat loss conducted
along the wire is then also dissipated by radiation.
Discussion:
In the above procedure the T of Eq. (B.8) is the average temperature for the
metal wire surface, instead of that for the insulation layer surface, therefore the
hr from Eq. (B.8) is the first order approximation. Through the calculation for
temperature drops at the two thermal resistors, Rrns and Rp which are connected
in series. a better value of T for the insulation layer surface can be found. Then new
values of hr and Rg can be obtained, and the value of T can be further improved
by iteration. But in the present experiment the first order approximation of hp is
satisfactory. In fact, the first order approximation differs by less than 1% from the

value improved by the iteration.

B.4 Estimation of Convection Heat Transfer Co-
efficient

With the average surface temperature for the effective length obtained in section
B2, the Nusselt number of the wire can be estimated using one of available solutions
for isothermal, horizontal circular cylinders. In the following, Raithby and Hollands
(1985) formula for this problem will be adopted.
The outer diameter of the insulation layer is taken as the characteristic length.
and the Rayleigh number is
Ragy, = M (B.19)

va
where AT = AT/2.65, d; = 2r, and T is taken as the surface temperature.
The Nusselt number is

2f

Nua, = a7 2f/NuT)

(B.20)
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with

NuT =0.772 C; Ra}/* (B.21)
where C; = 0.515 and
0.13
From Eq.(B.20) the heat transfer coefficient for the wire surface can be found:
2f kg

hcony = 1]1(1 T 2f/NuT)I (B.23)

where ky is the conductivity of the air.
For the above example, if AT = 48.5 K and T,, = 293 K, then AT ~ 18 K.
Rag, = 16.8 and NuT = 0.8. The heat transfer coefficient. hcony, 1s

hcony = 18.1 W/m?K (B.24)

B.5 Effective Heat Transfer Coefficient for Both
Radiation and Convection

The heat transfer coefficient on the insulation layer surface for both radiation and
convection, hAg cony, is

hR.Conv = hR + hConv (B-25)
For the above instance,
hrcony = 24 W/m2K (B.26)

The thermal resistance corresponding to this coefficient is

1
hR.Conv 27”'2 Le

RRcony = (B.27)

If the effective heat transfer coefficient based on the metal wire surface is hgg,..
the total thermal resistance will be

1

hTot227rT1 Lc (B.28)

RTotz =
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From the relationship:

RTot2 = Rlnm + RR.Covw (B29)

the effective heat transfer coefficient Az can be found:

1
hro = o 1 (B.30)
TZhR.Covw + k[mln(TZ/rl)
For the above instance,
RTot2 = 43.8 W/m?K (B.31)

Then the radiation and convection loss from the wire. qR.Conv. can be found

qR.Conv = \/ hrota PkAc AT (B.32)

using Eq. (B.2):

For the instance,

qR.Conv = 0.06 W (B.33)

Discussion:

In the above procedure the AT used in Eq. (B.19) is the temperature difference
between the metal wire surface and the ambient, instead of that between the
insulation layer surface and the ambient, therefore the hg,,, from Eq (B.23) is
Just the first order approximation. Through the calculation for temperature drops
at the two thermal resistors, Rrq, and RRp conv Which are connected in series, a
better value of AT between the insulation layer surface and the ambient can be
found. Then new values of hcon, and RR cony can be obtained, and the value
of AT can be further improved by the iteration. But in the present experiment
the first order approximation of hceny is satisfactory. Actually, the first order
approximation differs by less than 2% from the value improved by the iteration.
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B.6 Additional Wire Heat Loss

The additional wire heat loss AQw g in convection heat transfer measurement is

obtained as

AQwIr = (qR.Conv — qr) Nw1r (B.34)

where Nwr is the number of wires attached to the test heat sink.

For the above instance with four wires,
AQwrir =0.092 W (B.35)

The power supplied to the heater embedded inside the heat sink is 5.04 W for
this instance, therefore the additional wire heat loss accounts for 1.8% of the total

heat dissipation.
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Appendix C

Uncertainty Analysis

C.1 Methodology

The overall uncertainty of the experimental results is estimated using the procedure
outlined by Moffat (1988) and Geremia (1988). In the method, the result R of
an experiment is assumed to be calculated from a set of measurements and it is
represented by

R=R(X,, X2, X3,---,Xn) (C.1)

For multiple-sample measurements, each measurement has its known bias limit
and the precision index of the mean of the sample, and the number of degrees of
freedom for each precision index is known.

In the following analysis, the uncertainty for each measurement is calculated
first and then the uncertainties of all measurements are combined to give the overall
uncertainty in the result R.

The effect of the uncertainty in each measurement X; on the calculated result

R would be
OR

0X:

where the partial derivative of R with respect to X; is the sensitivity coefficient

SRy, = ——8X; (C.2)

for the results R with respect to the measurement X;; and §X; is the uncertainty
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in measurement X;.

The uncertainty in an individual measurement X; can be estimated at the
confidence level of 95% with its bias limit By, and the precision index of the mean
of the sample Sx;:

6X: = {(Bx,) + (tesSx,)?} " (C.3)

Here tgs is the Student’s ¢ multiplier for 95% confidence and the degree of
freedom of the measurement. (The degree of freedom of a measurement equals the
number of observations minus one.) If the degree of freedom is larger than 30. the
value of ¢35 can be taken as 2.0.

When several independent variables are used in the function R, the individual
terms are combined by a root-sum-square method:

2) 1/2
éR = {g} (aa—;:iJX,-) } (C.4)
In particular, whenever the equation describing the result R has the following

form:

R=X} X2 X5-.- X (C.5)
then the overall relative uncertainty can be found directly:
SR AN AZAY sxw\?) "
- -1 =2 ‘e N
R—{(axl) +(bX2) + +(mXN)} (C.6)

If each individual measurement has the same confidence level of 95% as ex-
pressed in Eq. (C.3), the estimated uncertainty in the result R by Eq. (C.4) or
Eq. (C.6) will have the same confidence level of 95%.

C.2 Measurement of Radiation Loss
C.2.1 measurement uncertainty

i) total voltage, V' = 4.5 V (typical value for heat sink A)
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From the manual of the instrument, the bias (or accuracy) of the measured

voltage is

By =4.5 x 0.02% + 0.004 = 0.0049 (V')

In the experimental measurement, the precision index of the mean is Sy =

1/2

5V = {(Bv)? + (tesSv)?}

1/2

= {0.0049* + (2 x 0.001)*}
= 0.005
The relative uncertainty is

JVV = 0.005/4.5 = 0.0012

ii) voltage for the resistor in series with the heaters. V; = 15mV

By the same procedure, the relative uncertainty in V; is

W
v, = 0.00065

ili) current

From Eq. (C.6). the relative uncertainty of the current (I=V/R)is

i [(w), (5R)\
I | R,

{0.00065” + 0.000422}"/*

0.0008

where the value of §R; /R, is from the specifications of the resistor.
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iv) radiation loss, Qg = VI

Following the same procedure, the relative uncertainty of the loss is found:

5—Q£ = 0.00144

Qr
For AT = 50 K, the typical Qg is 0.6 W, Thus

§Qr = 0.00144 x 0.6 = 0.000864 (W) (C.7)

v) temperature difference (AT = Ts — T,,)
With 6Ts = 0.2 K, 6T, = 0.3 K and AT = 50K, the uncertainty of AT is
obtained by Eq. (C.4):

1/2

SAT = {(8Ts)* + (6T.)*}
= {027 +0.32}"
= 0.36 (K)

C.2.2 uncertainty in the value predicted by the correlation
for the radiative loss, Qg ¢

1) the uncertainty of the fitting (heat sink A)

The correlation of radiation loss was obtained as
Qr.c = 0.00107 + 0.0932X — 0.001X? (C8)
with
X =(Ts-T,) x107° (K*)

The fitting uncertainty with 95% confidence is £0.007 (W)
ii) the uncertainty in Qg ¢ resulting from 6T's and 47, in radiation measurement

(heat sink A)
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With Ts = 343 K,6Ts = 0.2 K, and T, = 293 K,éT, = 0.3 K. and from Eq.
(C.4), the uncertainty of X is found:

X = {(4T34Ts)* + (4T36T,)2}'"" x 100

0.044 (K*)

with X = 6.5 (K9).

Thus the uncertainty in Qg ¢ is obtained:

[6Qrclrst. = (0.0932 —0.001 x 2X)86X

= 0.0035 (W)

ili) the uncertainty in Qp ¢ resulting from the measurement of Qp, i.e. from

measurements of V and [
[6Qr.clvr = 6Qr = 0.000864 (W)
iv) the uncertainty due to the ambient temperature variation (see Subsection
3.3.3)
[6QR.Clambiens = 0.012 (W)

v) the uncertainty of the correlation prediction Qg ¢

The four uncertainties above are combined by the root-sum-square method.

Eq. (C.4):

5Qrc = {0.0077 +0.0035% +0.000864* + 0.0122}"/*

= 0.017 (W) (C.9)

and the relative uncertainty of the correlation is

0Qrc _ 0.017

= = 0.02
On 06 0.028
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C.3 Measurement of Natural Convection Heat
Transfer

C.3.1 uncertainty of Ra;}

From the definition of Ra;:

Ra" — gAT b Pr
b7 e T.D

the relative uncertainty of Ra; can be calculated by Eq. (C.6):

6Ray _ [(SAT\® (d6\*  (8Pr\* [ &\' (iT.\* (sD\*|"”
Ra _\\ AT 5 Pr v) "\T. ) T\D

(C.10)

In this part of the experiment, typical values related to temperature are T =
295K, AT = 50 K. 6Ts = 0.25 K and 6T, = 0.2K. The uncertainty of AT is
obtained by Eq. (C.4): §AT = 0.32 K and thus,

SAT

~7 = 0-32/50 = 0.0064

For heat sink A. b = 22.5mm, b = 0.05mm and therefore

&b
4= =4 x0.05/22.5 = 0.009

For heat sink E, b = 2mm, §b = 0.02mm and thus

b
4‘% =4 x 0.02/2 = 0.04

The other values are calculated as follows. (The uncertainties in physical prop-
erties are calculated from the round off errors in the tables except v which is
sensitive to changes in the pressure. The experimental pressure condition was the

same as that for the table values, i.e. 1at = 98 x 10° N/m?.) (Kuzman Raznjevic
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1976)

dPr
= = 0.005/0.71 = 0.007
D _ 0.05/36.5 = 0.0014
D
i‘% = 0.2/295 = 0.00068

Because v = u/p,

/2
5 ss\? . (6p\)
b _ { (_#) N (_P) }
v r p
From p = p/RT and the atmospheric pressure uncertainty dp/p = 1.5% for the

measurement period (Brundrett, 1998), the uncertainty of the air density is found:

s - () (o)
P Ty p
= {(0.25/318) + 0.15} "

= 0.015

From the table, du/u = 2.5 x 10~%. Thus
1/2
) su\®  (dp\?
by _ {(_#) . (_e) }
v P p
= {(25 x 107°) + 0.0152} "

= 0.015

and

2% =2 x0.015 = 0.03

Among them 6T /T and §D/D are negligible and finally the uncertainty of
Raj for heat sink A (high Ra;) is
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SR _ [(GATV (80" (5Pr\' (&Y’ 2
Rs; ~ Y\ a7 v) Y\Pr) T\*,
1/2

= {0.00642 + 0.009% + 0.007% + 0.032}

Il

0.033 or 3.3%

For heat sink E (low Ra;) it is

dRa;
Ra;

1/2

= {0.00642 +0.042 + 0.007% + 0.032}

0.051 or 5.1%

Therefore the uncertainty in the Rayleigh number is +3.3% for Ra; ~ 2.6 x 10%.
and +5.1% for Ra; =~ 1.5.

C.3.2 uncertainty of Nu,

From the definition of Nuy:

_ QCo-rwb
T kAT A

the relative uncertainty of Nu, can be calculated by Eq. (C.6):

” 1/2
SNus _ | (6Qcoms \* | (66\® | [6K\? [SAT\®> [64\°
N = {(—Qcm) *y) tlF) tlsE) + = (C.11)
In this part of the experiment, the typical power supplied to the heaters is

Q = 5W, the heat loss by radiation is Qr = 0.6 W (known from radiation loss
measurement), and the additional wire loss is AQw;g ~ 0.09 W (Appendix B), so

Nub

the heat flow rate due to the convection is

Qcone = Q—Qr— AQwir
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= 5-0.6—-0.09
= 4.31(W) (C.12)

By the same procedure as in the calculation for measurement of radiation loss. the
uncertainty of @ is

§Q = 0.0072 (W)

In the natural convection measurements, with Ts = 343 K, §Ts = 0.25 K.
To =293 K, and 6T, = 0.2 K, the uncertainty of radiation loss resulting from
0Ts and 6T, is calculated as follows.

5X = {(4T36Ts) + (4T3 6Te)?}"* x 107
= 0.045 (K?)

and

X=(Ts-Ti)x10™° = 6.5 (K*)

Thus the uncertainty of radiation loss resulting from §7Ts and 87, is

[6Qrclrsr. = (0.0932+ 2 x 0.001 X)5X
= 0.0036 (W)

which is combined with the uncertainty of the correlation, i.e. §Q r.c, Eq. (C.9),
by the root-sum-square method, Eq. (C.4), to give the uncertainty of Qg for

measurement of natural convection:
5Qra = {0.017% + 0.00367}"*

= 0.017 (W) (C.13)
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The relative uncertainty in the additional wire loss calculated using the proce-

dure in Appendix B should be within 10%, thus the uncertainty of AQwr is

JAQW[R = 0.1 x0.092

= 0.009 (W)
Thus the uncertainty of Qcony is obtained using Eq. (C.4):

Qcoms = {(6Q)* + (6Qr2)* + (§AQw1r)*}

1/2

= {0.00722 +0.017% + 0.0092}” 2

= 0.021 (W)

and hence

8Qcony

Qconv

The other values are as follows.
Sk

&

db

b

JA

A

Then the uncertainty of Nu of heat sink A (high Ra;) can be calculated:

JNub
Nub

= 0.021/4.31 = 0.0049

= 0.00005/0.0293 = 0.002

= 0.05/22.5 = 0.002

= 0.01

1/2

= {0.00492 + 0.002% + 0.002% + 0.00642 + 0.012}

. = 0.013 or 1.3% (C.14)

For heat sink E (low Raj) b = 1mmm and db/b = 0.01 the uncertainty is

JNu,,
Nub

Therefore the uncertainty in the Nusselt number is +1.3% for N up = 6.9, and
+1.6% for Nu, =~ 0.36.

= 0.016 or 1.6% (C.15)
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Appendix D

Tables of Comparisons with
Previous Correlations

The present simplified model with n = 1 is compared with the three previous corre-
lations in the following tables. In each of the comparisons the heat sink dimensions
adopted for the present model are the same as those used in the experiments for
the corresponding previous correlation (referring to Table 2.5). And Rap is fixed.

Ray varies with b/D. The percent difference is given in the form:

Nuy, — Nuy(reference)
Nuy(reference)

x 100%

and the present model is the reference in the comparisons.

D.1 Edwards-Chaddock Correlations

In Table D.1 through Table D.6, the present model is compared with the Edwards-
Chaddock correlations of both copper and aluminum fin for the diameter ratios
D/d =1.94, 2.97 and 5.17.
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D.2 Jones-Nwizu Correlations

In Table D.7 and Table D.8, the present model is compared with the Jones-Nwizu
correlation for the diameter ratios D/d = 1.67, and 1.94.

D.3 Tsubouchi-Masuda Correlations

In Table D.9 through Table D.11, the present model is compared with the Tsubouchi-
Masuda correlations for the diameter ratios D/d = 1.94. 2.97 and 5.17.
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Table D.1: Results for Edwards-Chaddock Heat Sink (1).
(copper fins, D/d = 1.94)

Edwards-Chaddock | Present Model
Ra; Nu Nu, % Diff.
1.000 x10° 0.125 0.106 18.3
1.585 x10° 0.161 0.137 17.2
2.512 x10° 0.208 0.181 14.6
3.981 x10° 0.267 0.240 11.4
6.310 x10° 0.345 0.319 8.1
1.000 x10! 0.444 0.420 5.7
1.585 x10! 0.572 0.547 4.6
2.512 x10! 0.737 0.700 5.2
3.981 x10! 0.941 0.879 7.1
6.310 x10! 1.182 1.082 9.3
1.000 x102 1.448 1.307 10.8
1.585 x102 1.731 1.553 11.4
2.512 x102 2.030 1.822 11.4
3.981 x102 2.348 2.116 11.0
6.310 x102 2.690 2.437 10.4
1.000 x10° 3.062 2.790 9.7
1.585 x10° 3.471 3.181 9.1
2.512 x10° 3.924 3.615 8.6
3.981 x10° 4.428 4.099 8.0
6.310 x10° 4.992 4.640 7.6
1.000 x10* 5.624 5.247 7.2

RMS Diff = 10.4%
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Table D.2: Results for Edwards-Chaddock Heat Sink (2).
(aluminum fins, D/d = 1.94)

Edwards-Chaddock | Present Model
Ra; Nug Nu, % Diff.
1.000 x10Q° 0.146 0.106 38.5
1.585 x10° 0.183 0.137 33.4
2.512 x10° 0.230 0.181 26.9
3.981 x10° 0.288 0.240 19.9
6.310 x10° 0.361 0.319 13.3
1.000 x10* 0.452 0.420 7.7
1.585 x10?! 0.567 0.547 3.6
2.512 x10! 0.711 0.700 1.5
3.981 x10! 0.891 0.879 1.3
6.310 x 10! 1.114 1.082 3.0
1.000 x102 1.384 1.307 5.9
1.585 x102 1.694 1.553 9.0
2.512 x102 2.037 1.822 11.8
3.981 x102 2.410 2.116 13.9
6.310 x102 2.817 2.437 15.6
1.000 x103 3.264 2.790 17.0
1.585 x103 3.759 3.181 18.2
2.512 x10° 4.313 3.615 19.3
3.981 x10° 4.936 4.099 20.4
6.310 <103 5.640 4.640 21.5
1.000 x104 6.437 9.247 22.7

RMS Diff = 18.3%
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Table D.3: Results for Edwards-Chaddock Heat Sink (3).
(copper fins, D/d = 2.97)

Edwards-Chaddock | Present Model
Rag Nuy Nuy % Diff.
1.000 x10° 0.125 0.090 40.0
1.585 x10° 0.160 0.119 34.2
2.512 x10° 0.204 0.161 27.0
3.981 x10° 0.261 0.218 19.6
6.310 x10° 0.333 0.295 12.7
1.000 x10* 0.424 0.396 7.1
1.585 x 10! 0.542 0.525 3.2
2.512 x10! 0.691 0.682 1.3
3.981 x10! 0.877 0.867 1.1
6.310 x10! 1.099 1.079 1.9
1.000 x10? 1.349 1.314 2.7
1.585 x102 1.620 1.573 3.0
2.512 x10? 1.911 1.854 3.0
3.981 x10? 2.222 2.160 2.9
6.310 x10? 2.561 2.494 2.7
1.000 x103 2.932 2.859 2.5
1.585 x 103 3.343 3.262 2.5
2.512 x10° 3.802 3.708 2.5
3.981 x10° 4.317 4.205 2.7
6.310 x10° 4.896 4.759 2.9
1.000 x10* 5.549 5.381 3.1

RMS Diff = 14.1%

154




Table D.4: Results for Edwards-Chaddock Heat Sink (4).
(aluminum fins, D/d = 2.97)

Edwards-Chaddock | Present Model

Ra; Nuy Nu, % Diff.
1.000 x10° 0.116 0.090 29.9
1.585 x10° 0.149 0.119 24.5
2.512 x10° 0.190 0.161 18.0
3.981 x10° 0.242 0.218 11.1
6.310 x10° 0.309 0.295 4.7
1.000 x10* 0.394 0.396 -0.6
1.585 x10?! 0.500 0.525 4.7
2.512 x10! 0.627 0.682 -8.1
3.981 x10! 0.772 0.867 -11.0
6.310 x10! 0.933 1.079 -13.5
1.000 x102 1.111 1.314 -15.5
1.585 x102 1.309 1.573 -16.8
2.512 x10? 1.531 1.854 -17.5
3.981 x102 1.781 2.160 -17.6
6.310 x102 2.066 2.494 -17.2
1.000 x103 2.391 2.859 -16.4
1.585 x103 2.763 3.262 -15.3
2.512 x103 3.192 3.708 -13.9
3.981 x10° 3.684 4.205 -12.4
6.310 x10° 4.251 4.759 -10.7
1.000 x10¢ 4.904 5.381 -8.9

RMS Diff = 15.2%
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Table D.5: Results for Edwards-Chaddock Heat Sink (9).
(copper fins, D/d = 5.17)

Edwards-Chaddock | Present Model

Ra; Nu, Nuy % Diff.
1.000 x10° 0.106 0.084 27.0
1.585 x10° 0.137 0.113 21.7
2.512 x10° 0.177 0.154 15.2
3.981 x10° 0.228 0.210 8.4
6.310 x10° 0.294 0.287 2.2
1.000 x10! 0.379 0.390 -2.8
1.585 x10* 0.488 0.520 -6.2
2.512 x10! 0.626 0.681 -8.0
3.981 x10! 0.794 0.872 -9.0
6.310 x10! 0.983 1.091 -9.9
1.000 x102 1.188 1.335 -11.1
1.585 x102 1.404 1.604 -12.4
2.512 x102 1.633 1.896 -13.9
3.981 x10? 1.877 2.213 -15.1
6.310 x102 2.142 2.557 -16.2
1.000 %103 2.431 2.932 -17.1
1.585 x103 2.750 3.345 -17.8
2.512 x103 3.105 3.800 -18.3
3.981 x103 3.501 4.306 -18.7
6.310 x103 3.945 4.870 -19.0
1.000 x104 4.442 9.501 -19.3

RMS Diff =15.1%
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Table D.6: Results for Edwards-Chaddock Heat Sink (6).
(aluminum fins, D/d = 5.17)

Edwards-Chaddock | Present Model

Ra; N‘ub Nub % Diff.
1.000 x10° 0.085 0.084 0.8
1.585 x10° 0.112 0.113 -0.6
2.512 x10° 0.149 0.154 -3.2
3.981 x10Q° 0.197 0.210 -6.2
6.310 x10° 0.262 0.287 -9.0
1.000 x10! 0.347 0.390 -10.9
1.585 x10! 0.460 0.520 -11.5
2.512 x10! 0.607 0.681 -10.8
3.981 x10¢ 0.788 0.872 -9.6
6.310 x10! 0.997 1.091 -8.6
1.000 x10? 1.226 1.335 -8.2
1.585 x 102 1.471 1.604 -8.3
2.512 x102 1.734 1.896 -8.5
3.981 %102 2.019 2.213 -8.8
6.310 x102 2.331 2.557 -8.8
1.000 x103 2.676 2.932 -8.7
1.585 x10° 3.062 3.345 -8.4
2.512 x10° 3.496 3.800 -8.0
3.981 x103 3.985 4.306 -7.5
6.310 x103 4.539 4.870 -6.8
1.000 x10* 5.166 5.501 -6.1

RMS Diff = 8.1%
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Table D.7: Results for Jones-Nwizu Heat Sink (1).

(D/d = 1.67)
Jones-Nwizu | Present Model

Ra; Nu, Nuy % Diff.
1.000 x10° 0.116 0.132 -12.3
1.585 x1Q° 0.148 0.165 -10.5
2.512 x10° 0.189 0.210 -9.9
3.981 x10° 0.241 0.269 -10.2
6.310 x10° 0.308 0.346 -10.9
1.000 x10* 0.393 0.444 -11.4
1.585 x10! 0.502 0.564 -11.1
2.512 x10! 0.640 0.709 -9.7
3.981 x10! 0.813 0.876 -7.2
6.310 x10! 1.019 1.065 -4.3
1.000 <102 1.252 1.274 -1.8
1.585 x 102 1.504 1.503 0.1
2.512 x10? 1.774 1.752 1.2
3.981 %102 2.064 2.024 2.0
6.310 %102 2.379 2.322 2.5
1.000 x10° 2.725 2.649 2.8
1.585 x10° 3.108 3.011 3.2
2.512 x10° 3.536 3.412 3.6
2.512 %103 3.536 3.412 3.6
2.512 x103 3.536 3.412 3.6
2.512 x103 3.536 3.412 3.6

RMS Diff = 7.6%
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Table D.8: Results for Jones-Nwizu Heat Sink (2).

(D/d = 1.94)
Jones-Nwizu | Present Model
Ra; Nu, Nu, % Diff.
1.000 x10° 0.116 0.118 -1.7
1.585 x10° 0.148 0.150 -1.0
2.512 x10° 0.189 0.192 -1.8
3.981 x1Q° 0.241 0.250 -3.5
6.310 x10° 0.308 0.326 -5.6
1.000 x10! 0.393 0.424 -7.3
1.585 x10! 0.502 0.546 -8.1
2.512 x10* 0.640 0.693 -7.7
3.981 x10! 0.813 0.865 -6.0
6.310 x10* 1.019 1.059 -3.7
1.000 x102 1.252 1.274 -1.8
1.585 x102 1.504 1.510 -0.4
2.512 x10? 1.774 1.767 0.4
3.981 x102 2.064 2.046 0.9
6.310 x10? 2.379 2.351 1.2
1.000 x103 2.725 2.685 1.5
1.585 x10° 3.108 3.054 1.8
2.512 x103 3.536 3.463 2.1
2.512 x10° 3.536 3.463 2.1
2.512 x103 3.536 3.463 2.1
2.512 x10°3 3.536 3.463 2.1

RMS Diff = 4.0%
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Table D.9: Results for Tsubouchi-Masuda Heat Sink (1).

(D/d = 1.94)
Tsubouchi-Masuda | Present Model

Ra; Nu Nu, % Diff.
1.000 x10° 0.101 0.123 -18.0
1.585 x10° 0.132 0.155 -15.2
2.512 x10° 0.174 0.199 -12.7
3.981 x10° 0.232 0.258 -10.3
6.310 x10° 0.310 0.336 -7.8
1.000 x10?! 0.412 0.436 -5.5
1.585 x 10! 0.539 0.560 -3.7
2.512 x10! 0.690 0.709 -2.7
3.981 x10! 0.861 0.884 -2.5
6.310 x10! 1.050 1.081 -2.9
1.000 x 10?2 1.254 1.301 -3.6
1.585 x102 1.474 1.542 -4.4
2.512 x10% | 1.711 1.805 -5.2
3.981 x102 1.968 2.091 -5.9
6.310 x102 2.248 2.405 -6.5
1.000 x10® 2.555 2.750 -7.1
1.585 x10° 2.893 3.132 -7.6
2.512 x10° 3.267 3.555 -8.1
3.981 x10°3 3.682 4.028 -8.6
6.310 x103 4.143 4.556 -9.1
1.000 x10% 4.657 5.147 -9.5

RMS Diff = 8.5%
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Table D.10: Results for Tsubouchi-Masuda Heat Sink (2).

(D/d =2.97)
Tsubouchi-Masuda | Present Model
Ra; Ny, Nu, % Diff.
1.000 x10° 0.099 0.107 -7.5
1.585 x1Q° 0.133 0.138 -3.4
2.512 x10° 0.180 0.180 0.4
3.981 x10° 0.246 0.237 3.8
6.310 x10° 0.334 0.314 6.7
1.000 x10! 0.451 0.413 9.0
1.585 x101! 0.596 0.540 10.4
2.512 x10! 0.768 0.693 10.7
3.981 x10! 0.964 0.875 10.2
6.310 x10! 1.180 1.081 9.1
1.000 x102 1.414 1.312 7.8
1.585 x102 1.666 1.565 6.5
2.512 x102 1.938 1.840 5.3
3.981 x102 2.232 2.140 4.3
6.310 x102 2.553 2.466 3.5
1.000 x103 2.905 2.824 2.9
1.585 %103 3.292 3.217 2.3
2.512 x103 3.720 3.653 1.8
3.981 %103 4.195 4.138 14
6.310 x10° 4.724 4.678 1.0
1.000 x10¢ 5.314 95.284 0.6
RMS Diff = 6.2%
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Table D.11: Results for Tsubouchi-Masuda Heat Sink (3).

(D/d = 5.17)
Tsubouchi-Masuda | Present Model
Ra; Nu, Nu, % Diff.
1.000 x10° 0.082 0.094 -12.5
1.585 x10° 0.116 0.124 -5.9
2.512 x10° 0.167 0.165 1.1
3.981 x10° 0.239 0.221 7.8
6.310 x10° 0.339 0.298 13.6
1.000 x10! 0.469 0.399 17.6
1.585 x 101! 0.632 0.528 19.6
2.512 x10! 0.822 0.687 19.7
3.981 x10! 1.036 0.875 18.4
6.310 x10! 1.271 1.090 16.5
1.000 x102 1.524 1.331 14.4
1.585 x 102 1.795 1.596 12.5
2.512 x102 2.088 1.884 10.9
3.981 x102 2.405 2.195 9.6
6.310 x10? 2.750 2.534 8.5
1.000 x 103 3.129 2.903 7.8
1.585 x10° 3.546 3.309 7.2
2.512 x10°% 4.008 3.756 6.7
3.981 x103 4.522 4.251 6.4
6.310 x103 5.095 4.803 6.1
1.000 x10% 5.735 5.420 5.8

RMS Diff = 12.0%
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Appendix E

Comparisons of Present
Simplified and Full Models

The simplified model is compared with the full model in the following tables and
figures. with n = 1 for both models. The four cases presented cover the practical
ranges of D/d and Ra;. In these comparisons, Rap is fixed. Ra; varies with b/D.
In the comparisons, the percent difference is given in the form:

Nuy — Nuy(reference)

Nuy(reference) x 100%

and the full model is the reference.

Excellent agreement can be seen in the comparisons. The comparisons show
that in the applicable ranges of D/d and Rag, the simplified model represents well
the full model.
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Table E.1: Comparison of Simplified Model and Full Model.

(D/d = 1.66)
Simplified Model | Full Model
Ra; Nu, Ny, % Diff.
3.162 x107! 0.225 0.223 0.9
1.000 x10° 0.312 0.313 -04
3.162 x10° 0.447 0.452 -1.0
1.000 x10? 0.664 0.670 -0.8
3.162 x10! 0.992 0.996 -0.3
1.000 x102 1.446 1.450 -0.3
3.162 x10? 2.037 2.048 -0.5
1.000 x10°3 2.806 2.825 -0.7
3.162 x10° 3.818 3.844 -0.7
1.000 x10* 5.168 5.193 -0.5
3.162 x10% 6.979 6.993 -0.2
1.000 x10° 9.412 9.401 0.1

RMS Diff = 0.6%
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Figure E.1: Comparison of Simplified Model and Full Model(D/d = 1.66).
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Table E.2: Comparison of Simplified Model and Full Model.

(D/d = 1.94)
Simplified Model | Full Model
Ra; Nu, Nu, % Diff.
1.000 x10° 0.106 0.115 -7.8
3.162 x10° 0.208 0.226 -7.9
1.000 x10?! 0.420 0.442 -4.9
3.162 x10! 0.787 0.804 -2.1
1.000 x10? 1.307 1.321 -1.1
3.162 x10? 1.966 1.989 -1.2
1.000 x10° 2.790 2.828 -1.3
3.162 x103 3.850 3.901 -1.3
1.000 x10% 5.247 5.304 -1.1
3.162 x10* 7.115 7.162 -0.7
1.000 x10° 9.625 9.640 -0.2
RMS Diff = 3.8%
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Figure E.2: Comparison of Simplified Model and Full Model(D/d = 1.94).
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Table E.3: Comparison of Simplified Model and Full Model.

(D/d = 2.97)
Simplified Model | Full Model
Ra; Ny, Nuy % Diff.
1.000 x10° 0.090 0.092 2.3
3.162 x10° 0.187 0.196 43
1.000 x10! 0.396 0.408 -2.7
3.162 x10?! 0.771 0.775 -0.5
1.000 x10? 1.314 1.305 0.7
3.162 x102 2.004 1.984 1.0
1.000 x103 2.859 2.835 0.9
3.162 x10°3 3.949 3.923 0.7
1.000 x10* 5.381 9.355 0.5
3.162 x10¢ 7.296 7.268 0.4
1.000 x10° 9.876 9.843 0.3
RMS Diff = 1.8%
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Table E.4: Comparison of Simplified Model and Full Model.

(D/d =5.17)
Simplified Model | Full Model
Ra; Nuy Nu % Diff.
1.000 x10° 0.084 0.078 7.3
3.162 x10° 0.180 0.177 1.3
1.000 x 10! 0.390 0.388 0.3
3.162 x10? 0.773 0.762 14
1.000 x102 1.335 1.303 2.5
3.162 x 102 2.051 1.993 2.9
1.000 x10° 2.932 2.848 2.9
3.162 x10°3 4.046 3.938 2.8
1.000 x10% 5.501 5.367 2.5
3.162 x10* 7.437 7.275 2.2
1.000 x10° 10.043 9.850 2.0
RMS Diff = 3.1%
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Appendix F

Summary of Present Models

The proposed full model is based on the development of the models for inner and

outer surfaces.

The model for the inner surface consists of two limiting solutions: the solution
for thin boundary layer flow and the solution for fully developed flow. Coupling
the two limiting solutions provides the model for the inner surface over the entire

range of Ra;.

The model for the outer surface is the thin boundary layer solution for the
surface.

Finally the two models for the inner and the outer surfaces are combined with

the diffusive limit of the heat sink to form the full model for the heat sink.

The model structure is shown in Fig. F.1.
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F. D. B. L.
solution solution
Rap =1 Rap >10°

Figure F.1: Model Composition.

F.1 Model for Inner Surface
F.1.1 Thin Boundary Layer Flow Solution

The thin boundary layer Nusselt number for the inner surface is calculated using
Eq. (4.24):

Nusay_r = F(Pr)G sz, (D/VArxn)/* Ra;M/* (F.1)

where the body gravity function of the inner surface is obtained using the following

procedure.
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Figure F.2: Heat Sink Surfaces.

As shown in Fig. F.2, the body gravity function for support cylinder surface
1. Gz - can be calculated using Eq. (4.27):

b\ /8
Gz, = 0.891 (2) (F.2)

where b and d are the length and the diameter of the support cylinder respectively.

The body gravity function of lateral fin surface 3 can be calculated using Eq.
(4.28) with reference to Fig. 4.5:

1 w
G z= W/o S(z)¥*dz (F.3)

In order to account for the effect of the plume rising from the support cylinder
upon the lateral fin surface, as shown in Fig. F.3, the heat transfer rate from area
P is reduced by half. Then the body gravity functions of all the inner surface
components are combined using Eq. (4.21) for parallel components to give the

body gravity function of the inner surface, G/
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N
Guaw = 2. Gz (Ai/An)"® (F.4)

i=1

Figure F.3: Area Affected by Cylinder Plume.

F.1.2 Fully Developed Flow Solution

Heat transfer due to channel flow:

Based on the channel surface area, Acr. the Nusselt number for this channel

flow is

1 D+D? — &2
Nub,CLF = —Ra;\

12 (F.5)

AcL

Heat transfer due to outward conduction:
The Nusselt number for this part of heat transfer is calculated using Eq. (4.24):

Nupaces = F(Pr) G\/chs (D/\/ZCCS)I/4 RG;I/Q (F.6)
where the body gravity function of the control surface, G/Zccsr Can be obtained
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using Eq. (4.35).

b 1/8
G /Accs = 0891 | 5 (F.7)

Then the Nusselt number is converted to the channel surface to be based on

the same surface area as Nuycpp:

Nupccs = Nup ac.sAces/Act (F.8)

Thus the heat transfer from the inner surface in the fully developed regime is

Nupary_ry = Nuperr + Nupces (F.9)

F.1.3 Combining Two Limiting Solutions

The two limiting solutions for the inner surface are blended as

1
1/n
[ (V/Ntopr o)™ + (1 Nt gy )™ |

Nub,Am =

(F.10)

By comparison with the present experimental data, previous correlations and
experimental data, n = 1 was chosen for heat sink applications and the model

becomes

1
I/Nub.Al.v-'r + I/Nub.Auv—FU

(F.11)

N‘u,b'A,N =
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F.1.4 Channel Model

For channel heat transfer (D/d >> 1 and without the outer surface heat transfer),
Eq. (F.9) will be replaced by

Nub-AlN-FD = N‘ub'CLp (F12)

In this case, n = 1.7 was chosen based on the comparisons with Tsubouchi-

Masuda (1970) channel correlation.

F.2 Thin Boundary Layer Model for Outer
Surface

The body gravity functions of the fin rim and the end surface can be found using
Eq. (4.41):

¢ 1/8
Gz = 0891 ( ) (F.13)

and Eq. (4.42):

G /Aen, = 1.021 (F.14)

and then combined using Eq. (4.21) for parallel components to give the body
gravity function of the outer surface, G /zour- The thin boundary layer heat
transfer from the outer surface then is calculated using Eq. (4.24):

Nup aoyr = F(PT)G sz (D/VAour)*'* Ra;** (F.15)

F.3 Effective Diffusive Limit

Based on the characteristic length b and the heat sink surface area, the diffusive
limit of the heat sink is
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Nud — 3:1915 +2.7726(L/ D)°" v/Agc b

F.
’ V1+2(L/D) Ags (F:16)

F.4 Full Model for Heat Sink

The Nusselt number for the inner surface Based on the total surface area of the

heat sink, can be written as:

A

Nuy iy = Nub.AnvAﬂ (F.17)
HS
and the Nusselt number for the outer surface is

A

Nusour = Nup apy,, 702 (F.18)
HS
Finally the total heat transfer from the heat sink is obtained as

Nuy = Nup + Nuyour + Nupsn (F.19)

F.5 Simplified Model

The above Nusselt numbers were simplified as follows. The diffusive limit is

Nup =[3.36 + 0.087(L/D)] VAcc b/ Ans (F.20)

The Nusselt number for the outer surface is

Nuyour = [0.499 — 0.026In(¢ N;/D)] Ra;* Aour/Ans (F.21)

The Nusselt number for the inner surface, N Up IN, IS

A
NubJN = N‘ub'A,NA_:II:‘ (F22)
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with

-n —n]~Un
Nup g,y = [(Nub-Anv—r) + (Nupary_rp) ] (F.23)

where n = 1 for heat sink applications.
The thin boundary layer Nusselt number for the inner surface can be calculated
by
Nuy s,y = [0.573 - 0.184(d/D) + 0.0388(d/D)?| Ra;'/* (F.24)

and the fully developed regime Nusselt number for the inner surface, is approxi-
mated by

Nug a,y_pp=[0.0323 — 0.0517(d/ D) + 0.11(d/D)?| Ra;'/*
+ [0.0516 + 0.0154(d/ D) — 0.0433(d/D)?
+ 0.0792(d/D)3] Ra; (F.25)

For the channel model (D/d >> 1 and without the outer surface heat transfer).

the fully developed regime Nusselt number for the inner surface is
Nusare_pp = [0.0516 +0.0154(d/D) — 0.0433(d/ D)?
+ 0.0792(d/D)*| Ra; (F.26)

and the parameter n in Eq. (F.23) is taken as 1.7.
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