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Abstract

Thermally enhanced greases made of dispersions of small conductive particles sus-

pended in fluidic polymers can offer significant advantages when used as a thermal

interface material (TIM) in microelectronics cooling applications. A fundamental

problem which remains to be addressed is how to predict the effective thermal conduc-

tivity of these materials, an important parameter in establishing the bulk resistance

to heat flow through the TIM.

The following study presents the application of two simple theorems for estab-

lishing bounds on the effective thermal conductivity of such inhomogeneous media.

These theorems are applied to the development of models which are the geometric

means of the upper and lower bounds for effective thermal conductivity of base fluids

into which are suspended particles of various geometries.

Numerical work indicates that the models show generally good agreement for the

various geometric dispersions, in particular for particles with low to moderate aspect

ratios. The numerical results approach the lower bound as the conductivity ratio

is increased. An important observation is that orienting the particles in the direc-

tion of heat flow leads to substantial enhancment in the thermal conductivity of the

base fluid. Clustering leads to a small enhancement in effective thermal conductivity

beyond that which is predicted for systems composed of regular arrays of particles.

Although significant enhancement is possible if the clusters are large, in reality, clus-

tering to the extent that solid agglomerates span large distances is unlikely since such

clusters would settle out of the fluid.

In addition, experimental work available in the literature indicates that the agree-

ment between the selected experimental data and the geometric mean of the upper

and lower bounds for a sphere in a unit cell are in excellent agreement, even for

particles which are irregular in shape.
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And if the old man climbed out of the cart and stretched himself (things were

gathering pace now) and looked where the pump had been that the soldiers had blown

up so that nothing should be left standing, and complained, saying, “What are we

going to do about water?”, he, Michael K, would produce a teaspoon from his pocket,

a teaspoon and a long roll of string. He would clear the rubble from the mouth of the

shaft, he would bend the handle of the teaspoon in a loop and tie the string to it, he

would lower it down the shaft deep into the earth, and when he brought it up, there

would be water in the bowl of the spoon; and in that way, he would say, one can live.

– J. M. Coetzee, Life and Times of Michael K
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Chapter 1

Introduction

When two real conforming solid surfaces are brought into contact, a finite temperature

drop exists at the interface between the contacting solids. This temperature drop can

be appreciable and is attributed to what is known as thermal contact resistance, Rc.

The existence of thermal contact resistance is due principally to surface roughness

effects1. A real mechanical joint in air, for example, consists of numerous discrete

microcontacts distributed over the apparent contact area with air gaps appearing

wherever there is absence of solid-to-solid contact (Figure 1.1).

Thermal contact resistance between interfaces comprises a significant portion of

the total thermal resistance in microelectronics applications. As a result, much work

has been done to identify ways of minimizing Rc. This is typically achieved by

introducing interstitial materials which can displace the air entrained in the gaps

formed between the contacting surfaces with a highly conductive substance: examples

include thin metallic foils, powders, wire screens, epoxies, and coatings. Greases

which completely fill these gaps can significantly reduce the contact resistance despite

1Some researchers have also noted the effect of extra phonon scattering produced by an acoustic

mismatch between two contacting materials of different conductivities. This effect is more prominent

at low temperatures, however [1], [2].
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Figure 1.1: Temperature drop due to finite thermal contact resistance

the relatively lower thermal conductivity of a fluid with respect to that of a solid

(kf/ks ∼ 10−3) [3].

Thermally enhanced greases made of dispersions of small conductive particles

suspended in fluidic polymers are the latest thermal interface materials (TIMs) being

investigated for use in microelectronics cooling applications. The base fluid is typically

ethylene glycol or a silicone oil; typical materials used for the conductive dispersed

phase include aluminum, copper, and silver as well as their oxides which inevitably

form (except in the case of silver) in most practical applications.

The total thermal resistance between interfaces with thermally enhanced greases

has two components: (1) the contact resistance between the solid and the TIM at both

interfaces, Rc1 and Rc2, and (2) the bulk resistance of the material, which displaces

the two surfaces, Rb (Figure 1.2). The total thermal resistance is given by [4]

R = Rc1 +Rc2 +
BLT

ke
(1.1)

where BLT is the bond-line thickness and ke is the effective thermal conductivity of

the inhomogeneous mixture. Equation (1.1) applies specifically to one-dimensional

heat flow through samples of constant cross-section since the area terms have been

cancelled. Each parameter in Equation (1.1) requires further modeling. The present

work is a study of the effective conductivity, ke, which is in general a function of (a)

the thermal conductivities of the two phases, (b) the volume concentrations of the

two phases, and (c) the microstructure of the inhomogeneous media.
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Figure 1.2: Thermally enhanced grease

1.1 Problem Statement

Consider a temperature gradient imposed across a slab of thickness L into which are

dispersed many small particles of a material with different thermal properties. The

particles are fully wetted by the surrounding medium. The imposed temperature

gradient causes heat to flow from one side to the other. If the material in the slab

is stationary and the heat flow is assumed one-dimensional, the effective thermal

conductivity is obtained from Fourier’s law and is given by

q =
Q

A
= ke

∆T

L
⇒ ke =

q

∆T/L
(1.2)

where ∆T/L is the negative effective temperature gradient across the slab. Using

these effective quantities, the mixture of the continuous phase and particles is repre-

sented as an effective homogeneous medium.

If, as in the above problem, the temperature gradient is specified, the effective

thermal conductivity depends only on the heat flux. The heat flux can be measured

experimentally and is in general a function of the thermal conductivities of the con-

stituents of the inhomogeneous medium as well as of the microstructure. The purpose

of the present work is to develop analytical and numerical models for the effective

thermal conductivity of various geometric dispersions. Effects such as particle vol-

ume fraction, alignment, distribution, and clustering of the particles in the continuous

phase as well as thin coatings on the effective thermal conductivity are studied.
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1.2 Overview

Existing models for the effective thermal conductivity of inhomogeneous media are

reviewed in Chapter 2. The steady heat conduction problem is posed generally and

shown to be governed by a set of equations which are formally identical to those gov-

erning a wide range of problems in physics and engineering. A vast body of literature

from multiple disciplines is thus available for review. Rather than assessing the use-

fulness of a model based on the agreement between its predictions and experimental

data, the development of some of the models is emphasized so that their limitations

can be fully appreciated. The models and general approaches to this problem have

been ordered roughly chronologically.

The set of partial differential equations with boundary conditions governing the

thermal problem is presented in Chapter 3. A simple cubic lattice structure is as-

sumed and a characteristic cell is identified. Although well-posed, there is no simple

analytical solution available for the general case of the coupled heat conduction equa-

tions for particles of arbitrary geometry subject to the given boundary conditions.

Numerical work is required to determine the temperature fields in the particle and

the surrounding medium.

It is possible, however, to obtain upper and lower bounds on the effective conduc-

tivity of the cell. These bounds, which are in many instances quite useful since they

give a narrow range of possible values of effective thermal conductivity, are developed

and described in Chapter 4 for various geometric dispersions.

Numerical solutions of the effective thermal conductivity of the specific cases stud-

ied in the previous chapter are performed using the finite element analysis technique

in Chapter 5. Effects such as alignment and distribution of the highly conductive

phase in the medium and thin coatings (of either highly conductive or highly resistive

material) are discussed. In addition, the effect of clustering which has been cited as

a possible source of disagreement between experimental data and theory is discussed.
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Experimental data of the effective thermal conductivity for inhomogeneous me-

dia were selected from the literature. The data are required to establish that the

assumptions made in the present work are valid for the class of materials which are

of interest in microelectronics cooling applications.

The final chapter summarizes the important findings of the present study and

includes recommendations for future work.
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Chapter 2

Literature Review

Many theoretical models for effective thermal conductivity of heterogeneous media

have been developed. Given the large number of distinct equations presented in the

literature, it is not possible to analyze or even identify all in any single investiga-

tion. Fortunately, it is possible to individuate distinct approaches used by various

researchers and, when possible, describe representative models which proceed from

these grounds.

The formal equations governing steady heat conduction for constant thermal con-

ductivity posed generally can be written as

q = −k ∇T ∇ · q = 0 ∇×∇T = 0 (2.1)

where q is the heat flux, k is the thermal conductivity, and ∇T is the temperature

gradient. Equation (2.1) is mathematically identical to the basic equations governing

a wide range of problems in physics and engineering including elasticity, dielectrics,

magnetism, species diffusion, and flow in porous media [5], [6]. As a result, identical

approaches have been used to treat all of these problems. These approaches include:

(1) mathematical analysis of various arrays of regular particles, (2) effective medium

theory, (3) percolation theory, (4) statistical methods in which bounds are established
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based on information regarding the microstructure of the heterogeneous media, and

(5) numerical solutions of the steady state heat conduction equation for heterogeneous

media of specified microstructure.

Many of the models which have been developed to predict effective thermal con-

ductivity have been adapted from models developed to predict effective dielectric

strength and elastic constant. In fact, very few models developed to predict effective

thermal conductivity from thermal transport principles were identified in the liter-

ature. Care must be taken in adapting models originally developed to model other

properties, for although the problems are governed by formally identical equations,

there are instances where the analogies are inappropriate. Consider, for example,

effective viscosity of filled systems and effective elastic constant of air-filled metallic

foams. Whereas the viscosity of a solid filler and elastic constant of air are ill-defined

quantities, the thermal conductivities of both phases in heterogeneous media are al-

ways finite.

The distribution of two phases in the material, in particular the geometry and

orientation of the dispersed phase, has a significant influence on effective thermal

conductivity of heterogeneous media. Many of the theoretical models are valid only

for specific types of dispersions and distributions. In addition, there are models such

as effective medium theory which do not make the distinction between the dispersed

phase and the continuous phase, but rather allow for the formation of an internal

network in the structure.

Given only information regarding the volume fractions and thermal conductivities

of the two phases, it is possible to establish upper and lower bounds on effective

thermal conductivity. The upper bound is given when the two phases are arranged

parallel to the direction of heat flow and is most appropropriate for heterogeneous

media in which both phases are well-connected throughout:

ke = ksφs + kfφf (2.2)
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where ke is effective thermal conductivity, ks and kf are thermal conductivities of the

solid and fluid (more specifically, liquid) phases, and where φs and φf = 1 − φs are

volume fractions of the solid and fluid phases in the heterogeneous media. The lower

bound treats the components as layers perpendicular to the direction of heat flow.

This results in an insulating effect that is dominated by the phase with the lower

conductivity, thus providing a lower bound on ke given by series conduction through

both phases:
1

ke
=
φs

ks
+
φf

kf
(2.3)

The bounds provided by Equations (2.2) and (2.3) can be multiple orders of mag-

nitude apart which can be problematic when trying to use the average to obtain an

accurate estimate of effective thermal conductivity. In addition, Equation (2.2) de-

scribes a system in which the dispersed phase consists of long fibers with their axes

oriented in the direction of heat flow and extending from one end of the medium to

the other. Equation (2.3) is appropriate for systems in which the dispersed phase

has settled. Neither model, therefore, reasonably describes a uniform and isotropic

suspension of spheres in a continuous liquid phase. As a result, more sophisticated

approaches which assume certain characteristics of the microstructure are necessary

to model effective thermal conductivity of particulate-filled heterogeneous media.

2.1 Mathematical Analysis of Regular Arrays of

Particles

Maxwell [7] derived an equation for effective electrical resistivity of a homogeneous

material into which is dispersed many small spherical particles. He selected a charac-

teristic cell and introduced an effective (equivalent homogeneous) medium surround-

ing this cell (Figure 2.1). Eucken [8] adapted this analysis to the problem of effective

thermal conductivity of a heterogeneous medium. By imposing a uniform temperature
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Figure 2.1: Cell geometry subject to Maxwell’s analysis

gradient in the effective medium, the solution of the coupled azimuthally-independent

steady heat conduction equations in the sphere, the continuous phase, and the effec-

tive medium subject to appropriate boundary conditions (Appendix A) gives the

following relationship for effective thermal conductivity:

ke = kf
2kf + ks − 2φs(kf − ks)

2kf + ks + φs(kf − ks)
(2.4)

By introducing the effective medium, Maxwell assumed that the particles are non-

interacting. This assumption is valid for φs ≤ 0.30 which will be shown quantitatively

in the following paragraphs.

Lord Rayleigh [9] improved the Maxwell equation by using the principle of multi-

ple pole expansion to take into account the contribution of induced octopole moments

on the field of the neighbourhood of the central particle. The effective thermal con-

ductivity according to Rayleigh is given by 1

ke = kf
A− 2φs − 0.525Bφ

10/3
s

A+ φs − 0.525Bφ
10/3
s

(2.5)

where

A =
2 + ks

1 − ks
and B =

3 − 3ks

4 + 3ks
(2.6)

1Equation (2.5) includes a numerical correction made by I. Runge [10]
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Like the Maxwell equation, Equation (2.5) is inaccurate when the spheres are close

to touching and ks � kf .

By considering higher order terms in the series expression for the potential in

the surrounding medium, Meredith and Tobias [11] later improved on the Rayleigh

equation. The relationship derived by Meredith and Tobias is given by

ke = kf
A− 2φs + 0.409Cφ

7/3
s − 2.133Bφ

10/3
s

A+ φs + 0.409Cφ
7/3
s − 0.906Bφ

10/3
s

(2.7)

where

A =
2 + ks

1 − ks
, B =

3 − 3ks

4 + 3ks
, and C =

6 + 3ks

4 + 3ks
(2.8)

Experimental results confirm that Equation (2.7) does indeed give better agreement

for cubic arrays of spheres than Equations (2.4) and (2.5), in particular when the

spheres are close to touching and ks � kf .

In a critical work, McPhedran and McKenzie [12], [13] further extended the

method devised by Rayleigh to calculate the conductivity of spheres arranged in sim-

ple cubic, body-centered cubic, and face-centered cubic lattices. Their extended the-

ory is capable of including effects of multipoles of arbitrarily high order (i.e. infinitely

many neighbouring particles) and yields excellent agreement with experimental mea-

surements even when the spheres are close to touching and ks � kf . In addition, their

model for the simple cubic lattice recovers the equations of Maxwell, Rayleigh, and

Meredith and Tobias when the number of terms in the multipole expansion is equal

to 1, 2, and 3, respectively (Figure 2.2). Because the form of the solution requires

the evaluation of an infinite series, the authors solved for the parameters numerically

and only presented the model for 4 terms in the multipole expansion (M = 4). This

was shown to be sufficiently close to the solution for M → ∞ for moderate volume

fractions and conductivities. Because the equation for effective thermal conductivity

with M = 4 is still quite cumbersome, the interested reader is directed to their work

[12].
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Figure 2.2: Effective conductivity models for various multipole expansions (M) in a

simple cubic lattice structure (ks/kf → ∞)

McPhedran and McKenzie also pointed out that no other existing theory gives

the expected divergence at the critical volume fraction for a simple cubic lattice

(φs = π/6) when the spheres are perfectly conducting (ks/kf → ∞). In addition, an

asymptotic solution derived by Batchelor and O’Brien [14] was in fact asymptotically

approached by their solution. In a separate work, McKenzie and McPhedran [13]

derived similar relationships and obtained the expected singuarities for the effective

conductivity of spheres in body-centered and face-centered cubic arrays.

Inaccuracy in the assumption of non-interacting particles can be assessed by com-

parison of the predictions of Maxwell with those of McPhedran and McKenzie. For

φs = 0.30, the predictions of Maxwell, Rayleigh, Meredith and Tobias, and McPhe-

dran and McKenzie are all within 3% of each other, with the theory of Maxwell

giving the lowest predictions. The simpler equation of Maxwell is thus appropriate

for suspensions of spherical particles for which φs ≤ 0.30.
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2.1.1 Extensions of the Maxwell Equation

Discrepancies occurring between measurements and the multiple pole theory of McPhe-

dran and McKenzie have typically been attributed to either a distribution of particle

shapes and orientations or to a variation with size of the dispersed phase. Given

the difficulty of working with the multiple pole theory, numerous researchers have

investigated the possible contributions of these effects within the framework of the

approximation of Maxwell. The Maxwell formulation has since been modified to in-

clude effects such as irregular particle geometry, boundary resistance at the interface

between the particle and the continuous phase, and thin coatings on the particle in

hope of obtaining better agreement with experimental data.

Hamilton and Crosser [15] extended the Maxwell theory to include effects due to

irregular particle geometries. They showed that the effective thermal conductivity

can be written as

ke = kf
ks + (n − 1)kf − (n− 1)φs(kf − ks)

ks + (n− 1)kf + φs(kf − ks)
(2.9)

where n depends upon both the shape of the dispersed particles and the ratio of

conductivities of the two phases. They then experimentally determined n to be of

the form

n =
3

ψ
(2.10)

where ψ ≡ Asphere/As is the sphericity of the particle. Equation (2.9) recovers the

Maxwell equation for spherical inclusions (n = 3).

Alternatively, Verma et al. [16] suggested the use of a modified volume fraction

which accounts for the sphericity in the Maxwell equation to treat dispersions of

irregular geometries,

φ
′

s = exp [−ψ(1 − φs)] (2.11)

where ψ is the sphericity. By replacing φs with φ
′
s in Equation (2.4), it is seen that

the proposed modified volume fraction does not recover the Maxwell equation for
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spherical inclusions (ψ = 1) nor does it recover the conductivity of the continuous

phase if φs = 0. Nevertheless, Verma et al. showed the modified volume fraction

to give slightly better agreement for larger volume fractions. The form of Equation

(2.11) was given justification on the basis of a random dispersion of particles in the

formulation of effective thermal conductivity given by Cheng and Vachon [17].

Benveniste [18] considered the effective thermal conductivity of a particulate com-

posite with thermal contact resistance at the interface. Using the same formulation

as Maxwell but with a modified boundary condition accounting for finite contact

conductance at the interface, the effective conductivity is given as

ke = kf
kf (1 − φs) + β [2kf + ks − 2φs(kf − ks)]

kf (2 + φs) + β [2kf + ks + φs(kf − ks)]
(2.12)

where β = hr/ks and h is the contact conductance at the interface between the

spherical particle of radius r and the continuous phase. In the limit of ideal thermal

contact (β → ∞), Equation (2.12) recovers the Maxwell equation.

In a study on syntactic foam insulation produced by hollow glass microspheres

embedded in a plastic resin, Felske [19] extended Maxwell’s model to treat composite

spheres. The composite spheres were taken to have a homogeneous core surrounded

by a homogeneous shell of a different material. Contact resistance at the interface

between the continuous medium and the shell was accounted. The development is

fully analytic and general so that it recovers both the Maxwell equation in the limit

of ideal thermal contact and the Benveniste equation in the limit of the coating and

particle having the same thermal conductivities.

2.2 Effective Medium Theory (EMT)

Effective medium theory (EMT) treats the contributions of each phase equally. Con-

sider the microstructure depicted in Figure 2.3. There is no distinction to be drawn

between the continuous and discontinuous phases in this case. To apply the theory of
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Figure 2.3: Random dispersion of two phases in which neither phase is continuous

Maxwell, the continuous and discontinuous phases must first be identified since Equa-

tion (2.4) is not symmetric. Systems in which there is the formation of an internal

network in the structure are more accurately represented with EMT.

Like the equation of Maxwell, EMT is derived from the solution of the Laplace

equation applied to a single sphere surrounded by a continuous medium, and sub-

jected to a steady-state temperature gradient in the direction of the z-axis. Maxwell

assumed that the local distortions to the temperature distributions around the dis-

persed spheres did not affect their neighbours. The essence of EMT, however, lies in

the assumption that for a completely random distribution of components, the effect

of local distortions to the temperature distribution caused by individual inclusions

could be averaged such that over a sufficiently large volume (or ensemble) the tem-

perature distribution within the material could be approximated by a material having

a uniform temperature distribution and thermal conductivity ke [20]. This requires

that 2

φs
ks − ke

ks + 2ke

+ φf
kf − ke

kf + 2ke

= 0 (2.13)

2Equation (2.13) can easily be extended to composites of any number of phases. In general, for

n phases
n∑

i=1

φi
ki − ke

ki + 2ke
= 0
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Rearranging Equation (2.13),

ke =
1

4

(
γ +

√
γ2 + 8kskf

)
(2.14)

where

γ = (3φs − 1) ks + (3φf − 1) kf (2.15)

Note that Equations (2.14) and (2.15) are symmetric.

The solution of Equation (2.14) has an interesting behaviour in the limit as kf

approaches 0. In this limit, we have

ke =





0 φs < 1/3

ks

(
3φs − 1

2

)
φs ≥ 1/3

(2.16)

Note that φs = 1/3 is the critical volume fraction below which ke = 0. This critical

volume fraction coincides with the so-called percolation threshold φc and physically

corresponds to the volume fraction above which the conductive phase will likely form

a well-connected path from one boundary to the other. This is a phenomena that has

not been observed experimentally except in systems in which there is no continuous

phase [21]. This will be discussed in more detail in Section 2.3.

2.2.1 Bruggeman Equation

Bruggeman [22] introduced another popular effective medium theory that is now

widely known as the differential scheme or the Bruggeman equation. Bruggeman

proceeds from the premise that the fields of neighbouring particles can be taken

into account by adding the dispersed particles incrementally, taking the surrounding

medium to be the existing composite at each stage.

Consider again an effective medium surrounding an ensemble in which a spherical

particle is surrounded by the continuous medium in the same proportion as in the
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Figure 2.4: Cell geometry subject to Bruggeman’s analysis – A differential volume of

material with ke is carved out and replaced with material of k1

mixture as a whole. If the volume fraction of the composite is increased from φs

to φs + dφs by carving out of the ensemble a spherical cavity with conductivity ke

and inserting a large spherical particle with conductivity ks (Figure 2.4), the medium

surrounding these new inclusions can be treated as the same effective medium (i.e

ke(φs)) without introducing much error.

The Bruggeman equation for the effective conductivity of the inhomogeneous

medium is given by (
ks − ke

ks − kf

)(
kf

ke

)1/3

= 1 − φs (2.17)

Equation (2.17) is an implicit relationship and may be solved numerically for given

values of ks, kf , and φs. Its predictions for ke are always greater than those of the

Maxwell equation.

The Bruggeman equation is most appropriate for composites containing spherical

particles with a very wide size distribution. Ideally, the size distribution should be

wide enough that any two spheres of comparable size are far from each other. Like the

Maxwell equation, the Bruggeman equation may also be extended to include effects
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such as boundary resistance, thin coatings, and irregular particle geometries.

2.3 Percolation Theory

Consider a large square lattice in which each site is either occupied with a probability

p or empty with a probability 1− p similar to the structure shown in Figure 2.3. An

occupied site is assigned a conductivity ks and an unoccupied site a conductivity kf .

The fundamental premise of percolation theory is contained in the idea of a sharp

increase in the effective conductivity of the disordered media at a critical volume

fraction known as the percolation threshold φc at which long-range connectivity of

the system appears.

When ks 6= 0, kf = 0, and φs < φc, no macroscopic conducting pathway exists and

the composite remains in the insulating phase. When φs ≥ φc, however, the system

becomes conducting as a cluster of bonds of conductivity ks almost certainly forms a

connected bridge between the two boundaries of the disordered media across which

the potential is applied. In the vicinity of the transition volume fraction φc, one has

[23]

ke ∼





0 φs ≤ φc

ks(φs − φc)
t φs > φc

(2.18)

where the symbol ∼ means is asymptotically proportional to as φs → φc. The critical

exponent t has a universal value of t = 2.0 in 3-D and t = 1.3 in 2-D problems.

Equation (2.18) may be compared with Equation (2.16) derived from effective

medium theory which predicts φc = 1/3, applicable to spheres. The existence of a

critical percolation threshold for electrical conductivity has since been demonstrated

for a wide variety of fillers, all at concentrations below the maximum packing fraction

[24]. The percolation threshold in an actual granular aggregate is in general a function

of the lattice structure of the phases, and ranges from φc ≈ 0.2 for a face-centered
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cubic arrangement to φc ≈ 0.7 for a honeycomb arrangement and can be calculated

exactly for certain simple lattices.

The original problem was posed by Broadbent and Hammersley [25] who obtained

a simplified lattice percolation model for fluid flow in a porous medium. They were

able to show rigorously that their model possessed a threshold. It has since been

applied to many other related problems including thermal conduction in disordered

media [26], continuing work on fluid flow in porous media [27], the spreading of forest

fires [28] and disease in a population [29], and many others.

The critical point can be approached in different ways. For example, when ks → ∞

and kf 6= 0, the effective conductivity diverges as φc is approached from below and is

written as

ke ∼





kf (φc − φs)
−t φs < φc

∞ φs ≥ φc

(2.19)

and when both ks and kf 6= 0 and kf/ks → 0, one has

ke ∼ k1−t
s kt

f φs = φc (2.20)

Devpura et al. [26] applied percolation theory to the problem of determining

the effective thermal conductivity of fluidic composite thermal interface materials.

They simulated random resistor networks and solved a system of linear equations

numerically using the transfer matrix approach [30]. In their model, they assumed

all particles to be cubic and later applied a correction factor for the case of spherical

particles. Because the system randomly assigns the values of the resistors (according

to ks, kf , φs), several simulations were performed for each given set of conditions

and the average was presented. The singular behaviour of the effective thermal con-

ductivity of the disordered media near the percolation threshold was observed and

this threshold was found to be a function of the sample thickness and particle size

distribution. Devpura et al. defined the percolation threshold as the volume fraction
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at which

dke

dφs

≈ ks (2.21)

Their results agreed well with certain selected experimental data, particularly for

φs ≤ φc.

Because of the complexity of implementing percolation theory and the eventual

necessity of numerical work, the method has not been very popular. In addition, it

has been suggested that in most cases, the presence of a network of filler particles

does not change the basic mechanism of thermal transport in composite systems

[21]. According to Torquato [31], a thermal transport network develops only at the

maximum packing fraction.

2.4 Statistical Analysis and Bounding Techniques

Most fluidic composites are complex systems consisting of many small particles dis-

persed randomly in a continuous phase. In most cases, the details of the microstruc-

ture are not completely known. This naturally leads one to attempt to establish a

range of possible values the effective properties can take given such limited sample in-

formation. As Sen and Torquato [32] point out, bounds on the effective properties are

useful since (a) they can be used to test the merits of a theory or a computer exper-

iment, (b) they become progressively narrower as more details of the microstructure

become known, and (c) one of the bounds is generally a good model for the effective

properties for a wide range of volume fractions.

Early attempts to develop more accurate models began with statistically summing

the perturbations around each dispersed particle to calculate the effective thermal

conductivity of the heterogeneous media. In general, the effective thermal conduc-

tivity of a particle suspension can be expressed as a series expansion of the localized
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average thermal conductivity determined by considering the localized heat transfer.

This expansion is given as follows [31]:

ke

kf
= 1 +

∞∑

n=1

An

(
ks − kf

kf

)n

(2.22)

where An describes the local field. The first three values of An for spherical particles

in a macroscopically isotropic media are given by

A1 = φs

A2 =
φsφf

3

A3 =
φsφf

3
(φf + 2φs)





(2.23)

Using only these first three terms of the expansion, Equation (2.22) is only valid up

to ks/kf ≤ 2. Additional coefficients are needed to treat systems in which the rela-

tive conductivity of the dispersed solid phase greatly exceeds that of the continuous

fluid phase. This cannot be readily accomplished, however, since more details of the

microstructure are needed.

Another series expansion approach that accounts for a wider range of ks/kf is

given as [33]

ke

kf
= 1 +

∞∑

n=1

Bnφ
n
s (2.24)

Values of Bn have been evaluated for various geometric dispersions. Unfortunately,

Equation (2.24) is inappropriate at high volume fractions.

The more recent statistical investigations of effective transport properties have

focused on establishing upper and lower bounds. The most simple such bounds can

be established from the particle volume fraction and thermal conductivities of the

constituents alone. In this case, the upper and lower bounds are given when the

materials are arranged in parallel or series with respect to heat flow, Equations (2.2)

and (2.3). More restrictive upper and lower bounds can be derived if it is further

assumed that the heterogeneous medium is macroscopically isotropic. Hashin and
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Shtrikman [34] showed through variational principles that in this case, the upper and

lower bounds are given as follows:

ke ≤ ks
2ks + kf − 2φf (ks − kf )

2ks + kf + φf (ks − kf )
(2.25)

ke ≥ kf
2kf + ks − 2φs(kf − ks)

2kf + ks + φs(kf − ks)
(2.26)

Equations (2.25) and (2.26) are mathematically equivalent to the equation of Maxwell

evaluated for (a) the solid being the discontinuous phase (lower bound) and (b) the

solid being the continuous phase (upper bound) for a specified solid volume fraction,

φs. Carson et al. [35] suggested using these solutions together with Equation (2.14)

to define internal and external porosity regions.

The most well-known technique of bounding the effective properties of inhomo-

geneous media is the use of variational principles, namely the energy minimization

principles. Minimum potential energy of the system gives an upper bound on ke,

〈∇T 〉 · k̃e · 〈∇T 〉 ≤ 〈E · kE〉 (2.27)

where ∇ × E = 0 and 〈E〉 = 〈∇T 〉. Any E satisfying these conditions gives an

upper bound on the tensor of the effective conductivity, k̃e. Minimum complementary

energy of the system gives a lower bound on k̃e,

〈q〉 · k̃e

−1
· 〈q〉 ≥ 〈J · k−1J〉 (2.28)

where ∇ · J = 0 and 〈J〉 = 〈q〉, the angular brackets denoting an ensemble average3.

It is helpful to think of E and J as trial vectors for the temperature gradient and heat

flux, respectively; any E and J satisfying the above conditions give the upper and

lower bounds on k̃e when applied to Equations (2.27) and (2.28), respectively. For

3An ensemble is a collection of a large number of systems which are identical in their macroscopic

details but are different in their microscopic details [36]. Within a given ensemble, we are interested

only in the average values of the flux and temperature gradient.
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example, by taking the temperature gradient and heat flux vectors to be constants,

Equations (2.2) and (2.3) are recovered.

Application of Equations (2.27) and (2.28) requires certain idealizations to be

made. Many theoretical bounds have been derived for various dispersed phases [36].

The main problem with this approach is that, in order to be successful at constrain-

ing the effective thermal conductivity to a narrow range of possible values, more

information about the microstructure is needed than is usually available.

2.5 Numerical Solutions

Schneider and Romilly [37] studied the effective thermal conductivity of long cylindri-

cal fibers in a matrix. A finite element method was used to solve the two-dimensional

Laplace equation in Cartesian co-ordinates with governing boundary conditions. A

correlation of the numerical results was presented which provided agreement with a

maximum error of correlation of 2.8%.

Yovanovich et al. [38] studied the effective thermal conductivity of a two-dimensional

array of equally spaced square fibers. Using the finite difference technique, they found

that the numerical results were in close agreement with the average of upper and lower

bounds determined for a characteristic cell. The upper and lower bounds were de-

termined using a procedure described by Elrod [39] in which the upper bound is

determined when isotherms are arbitrarily specified and the lower bound is deter-

mined when parallel adiabats are specified. This method is described in more detail

in Chapter 4.

Carson et al. [40] performed two-dimensional finite element simulations of ran-

domly distributed cylinders oriented with their axes perpendicular to the direction

of heat flow. They found that in addition to the component thermal conductivity

ratio and volume fractions, the identification of continuous and dispersed phases and
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the degree of contact between inclusions were both influential variables, whereas the

individual size and shape of the inclusions had only minor effects on determining the

effective thermal conductivity of the heterogeneous media, if any at all. They also

concluded that “it is unrealistic to expect a model that is a function of the component

thermal conductivities and volume fractions alone to provide accurate predictions for

all porous materials.”

Kumar and Murthy [50] developed a numerical technique using an unstructured

finite-volume method for establishing the effective thermal conductivity of three di-

mensional suspensions of either randomly or regularly placed spheres and cylindrical

rods. They used temperature-jump periodic conditions for the characteristic cell. In

particular, they studied the effects of varying the surface area, aspect ratio, volume

fraction, orientation and distribution of the discontinuous phase for various relative

conductivity ratios. Kumar and Murthy concluded that the effects of randomly ar-

ranged spherical particles and clustering do not show a significant enhancement in

the effective thermal conductivity of an inhomogeneous medium with respect to the

enhancement of an ordered array of particles. Preferentially orienting particles in

the direction of heat transfer and using high aspect ratio particles, however, provides

significant enhancement in effective thermal conductivity and is a promising way of

developing high thermal conductivity nanofluids.

2.6 Other Models

Lewis and Nielsen [42] modified the Halpin-Tsai equations for the effective relative

shear modulus of a composite to bring it into closer agreement with the experimental

data by taking into account the maximum packing fraction of the filler particles. The

modified equations for two-phase systems are

ke

kf

=
1 +ABφs

1 −Bψφs

(2.29)
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where

B =
κ− 1

κ+A
and ψ = 1 + φs

(
1 − φm

φ2
m

)
(2.30)

where φm is the maximum packing fraction of the randomly packed heterogeneous

media, φm = 0.637 for spheres, and κ = ks/kf is the relative conductivity ratio of

the two phases. The coefficient A depends upon the geometry and orientation of the

dispersed phase. Nielsen [43] provides values of A and φm for a wide range of common

geometric dispersions.

If the Maxwell equation is re-written in the following equivalent form,

ke

kf
=

1 + 2φsβ

1 − φsβ
(2.31)

where

β =
κ− 1

κ+ 2
(2.32)

it has a form similar to the Lewis-Nielsen equation, Equation (2.29). The major

modification to be noted is the addition of a term which accounts for the maximum

packing fraction. This produces a more significant enhancement in the effective ther-

mal conductivity at higher volume fractions where the Maxwell equation tends to

underpredict experimental data [21]. For volume fractions less than about 0.30, the

predictions of the Maxwell equation and the Lewis-Nielsen equation for spheres are

in good agreement. For larger volume fractions, however, the predictions between the

two begin to diverge (Figure 2.5). This again provides quantitative justification for

neglecting particle-particle interactions for φs ≤ 0.30. In the limit of κ → ∞, Equa-

tion (2.29) gives the expected divergence as φs → φm. It can thus be appreciated that

for φs > 0.50, not shown in Figure 2.5, the predictions of the Lewis-Nielsen equation

will be significantly higher than those of the Maxwell equation.

In an experimental study of the effective conductivity of quartz sand packs sur-

rounded by air, Woodside and Messmer [44] proposed an empirical relationship which
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Figure 2.5: Comparison between the Maxwell and Lewis-Nielsen equations for φs =

0.30 and φs = 0.50

they called the modified geometric mean given as follows:

ke = ks
φskf

φf (2.33)

Although Equation (2.33) has shown good agreement with selected experimental data

for irregularly shaped particles, Parrot and Stuckes [45] have indicated that it is

physically unsound and tends to overestimate ke. Note that Equation (2.33) can be

written as a weighted arithmetic mean of the logarithms of the conductivies of the

two phases:

log(ke) = φs log(ks) + φf log(kf ) (2.34)

Agari and Uno [46] proposed an empirical relationship for predicting the effective

thermal conductivity of generalized dispersions (including spheres, irregular particles,

and fibers) based on logarithmic averaging of the thermal conductivities of the two

phases, in a similar manner to Equation (2.34):

log(ke) = φC2 log(ks) + (1 − φ) log(C1kf ) (2.35)
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where C1 and C2 are experimentally determined constants of order unity. In this

expression, C1 is attributed to the effect of the dispersed phase on the crystallinity

of the continuous phase and C2 is related to the ability of the dispersed phase to

form a network (i.e. percolate). Although Equation (2.35) gives good agreement

with experimental data in many instances, experimental work is presently required

to establish accurate values of C1 and C2 for a given heterogeneous medium.

Cheng and Vachon [17] obtained a theoretical solution to Tsao’s probabilistic

model by assuming a parabolic distribution of the discontinuous phase in the contin-

uous phase. By selecting a characteristic ensemble of the inhomogeneous medium,

and rearranging infinitesimally thin slices of the ensemble in direction parallel to heat

flow, they derived the following model for the effective thermal conductivity of the

medium:

ke

kf

= (1 −B) +

ln

(√
1 +B(κ− 1) +B/2

√
C(κ− 1)√

1 +B(κ− 1) −B/2
√
C(κ− 1)

)

√
C(κ− 1)[1 +B(κ− 1)]

(2.36)

where

B =

√
3φs

2
and C =

4

B
(2.37)

and κ = ks/kf as before. Note that Equation (2.36) diverges in the limit of κ→ 1.

2.7 The Limiting Enhancement

Many of the theoretical models for effective thermal conductivity exhibit some limiting

enhancement as the relative conductivity of the particle becomes infinite with respect

to the conductivity of the continuous phase. In addition, this limiting enhancement is

typically reached once κ ≈ 100 for moderate volume fractions as can be seen in Figure

2.5, for example. This means that physically, once ks/kf ≈ 100, the temperature

field inside the particle is practically uniform so that any further enhancement in the
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Figure 2.6: Limiting enhancement in effective conductivity

relative conductivity produces very little change in the temperature field inside the

particle.

Taking the limit as ks/kf → ∞ in the Maxwell equation yields the following:

ke

kf
=

1 + 2φs

1 − φs
(2.38)

This enhancement in the conductivity of the matrix is reached within 3% once κ =

ks/kf ' 100 for φs ≈ 0.30 (Figure 2.6). Since the relative conductivity of the dispersed

phase in fluidic thermal interface materials is typically ks/kf ∼ 1000, the assumption

of an isothermal particle is thus justified for φs ≤ 0.30.

This limiting enhancement is also observed in other theoretical models. For ex-

ample, taking the limit as ks/kf → ∞ in the Bruggeman equation gives

ke

kf
=

(
1

1 − φs

)3

(2.39)

which, unlike Equation (2.17), is explicit. In addition, the limiting enhancement

predicted by the Lewis-Nielsen equation gives

ke

kf

=
1 +Aφs

1 − ψφs

(2.40)
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where ψ is given by Equation (2.30) as before.

To enhance the conductivities of fluidic polymers, efforts should thus be directed

towards investigating effects associated with various geometries, distribution, orien-

tation, and boundary resistance at the interface between the solid and fluid phases.

2.8 Closing Remarks

The literature review reveals that there are many distinct equations used in the lit-

erature to predict effective thermal conductivity of two-phase heterogeneous media.

Many equations are valid in the limiting cases of (a) dilute suspensions or (b) suspen-

sions for which the relative conductivity of the dispersed phase is small with respect

to the thermal conductivity of the continuous phase, but neither of these conditions

are met in typical fluidic thermal interface materials used in microelectronics cooling

applications. It remains to develop simple analytical equations with the potential

of being extended to various geometries and including effects associated with dis-

tribution, orientation, and boundary resistance without treating the system with a

modified volume fraction or assuming a dilute suspension.
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Chapter 3

Problem Formulation

We consider the case for which the TIM is composed of a simple cubic lattice of iden-

tical solid particles of arbitrary geometry embedded in a continuous homogeneous

fluid. Both the solid and the fluid phases are isotropic and have constant thermal

conductivities ks and kf , respectively. Because the TIM is composed of many such

particles, the effective conductivity of the system is relatively insensitive to the sys-

tem boundary conditions so that a characteristic cell can be identified as the control

volume subject to analysis without introducing much error (Figure 3.1). The bound-

ary conditions of the cell are determined from symmetry. The four faces of the cell

parallel to the direction of heat flow are adiabatic. The other two faces are isothermal

with the upper surface being the hotter. Heat thus enters the control volume through

the top boundary and exits through the bottom boundary.

Steady conduction through the cell according to Fourier’s law is given by

Q = keA
∆T

L
≡ ∆T

R
(3.1)

where ke is the effective thermal conductivity of the cell and therefore of the het-

erogeneous medium as well, A is the cross-sectional area, L is the distance between

isothermal boundaries, ∆T = TH −TL is the temperature drop across the cell, and R
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Figure 3.1: Characteristic (unit) cell

is the total thermal resistance of the cell. Upon rearranging Equation (3.1),

R =
L

keA
(3.2)

If a unit cell is selected, the substitutions L = 1 m and A = L2 = 1 m2 can be made

in Equation (3.2), yielding

ke =
1

R
(3.3)

and if the substitution ∆T = 1 K is made in Equation (3.1),

ke

[
W

mK

]
= Q

[
W · 1m
1K · 1m2

]
(3.4)

The total thermal resistance, R, of the cell is given by the solution of the coupled

3-D Laplace equations for the solid and fluid phases which, for constant thermal

conductivity, is written as

∇2Ti =
∂2Ti

∂x2
+
∂2Ti

∂y2
+
∂2Ti

∂z2
= 0 i = s, f (3.5)

The boundary conditions on the four adiabatic boundaries are given by
(
∂Tf

∂x

)∣∣∣∣
x=± 1

2

= 0 (3.6)

(
∂Tf

∂y

)∣∣∣∣
y=± 1

2

= 0 (3.7)
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The boundary conditions on the two isothermal boundaries are given by

Tf

(
x, y,

1

2

)
= 1 (3.8)

Tf

(
x, y,−1

2

)
= 0 (3.9)

Perfect thermal contact between the particle and the surrounding medium is assumed.

The boundary conditions at the interface are thus given by

Ts (x, y, z) = Tf (x, y, z) (3.10)

ks

(
∂Ts

∂n

)
= kf

(
∂Tf

∂n

)
(3.11)

where n is the local normal to the interface. In addition, the temperature at the

centre of the particle must remain finite, so

Ts (0, 0, 0) 6= ∞ (3.12)

The total heat flow into or out of the cell can be obtained by applying Fourier’s

law across either of the isothermal boundaries,

Q =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

kf

(
∂Tf

∂z

)∣∣∣∣
z=+ 1

2
or− 1

2

dxdy (3.13)

Equation (3.13) also gives the effective conductivity of the unit cell and for constant

thermal conductivity, at the upper boundary,

ke

kf
=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

(
∂Tf

∂z

)∣∣∣∣
z= 1

2

dxdy (3.14)

The above problem is well-posed but no simple analytical solution is available in

general. Numerical work is required to determine the temperature fields in the particle

and the surrounding medium.

It is possible, however, to obtain upper and lower bounds on the total heat transfer

that can take place through the cell, and hence on the effective conductivity of the cell.

These bounds, which are in many instances quite useful at constraining the solution

of Equations (3.5) to (3.14) to a narrow range of possible values, are described in the

next section.
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Chapter 4

Model Development

The model development proceeds from the application of a theorem which is used

to establish upper and lower bounds on the total heat transfer that can take place

in heterogeneous media. Consider a temperature gradient imposed across a slab

into which are dispersed many small particles of a material with different thermal

properties. Elrod [39] presented two theorems for establishing bounds on the total

heat transfer under such circumstances:

Theorem 1. If the thermal conductivity of the particles is increased or decreased

with respect to the surrounding material, the heat flow from one surface to the other

will also increase or decrease, respectively.

Theorem 2. The actual heat flow through the inhomogeneous media will be no

less than that calculated when adiabats are arbitrarily specified and no more when

isotherms are specified (Figure 4.1).

The second theorem can be deduced from the first by noting that nearly isothermal

surfaces can be created within a conductive medium by adding thin layers of highly

conductive material. If these layers have infinitesimal thickness and infinite conduc-

tivity, the specified surface is isothermal. According to Theorem 1, such changes can

only tend to increase the total heat flow rate. In contrast, adiabatic surfaces can be
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(a) (b)

Figure 4.1: (a) Lower (parallel adiabats) and (b) upper (perpendicular isotherms)

bounds

speficied by adding infinitesimally thin layers of perfect insualtion. This decreases

the total heat flow through the medium.

Theorem 2 has been applied to establish bounds on the effective thermal conduc-

tivity of various geometric dispersions including a sphere, a cylinder oriented with its

axis parallel to heat flow, a cylinder oriented with its axis perpendicular to heat flow,

a rectangular prism, and an ellipsoid. Effects such as thin coatings of materials with

different thermal properties and rectangular packing are taken into consideration.

4.1 Sphere in a Unit Cube

As an example of the application of Theorem 2, the TIM is assumed to be composed

of a cubic array of uniform spheres in a surrounding medium. The details involved

in the development of these bounds are presented for this case.
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4.1.1 Lower Bound – Parallel Adiabats

When the adiabats are arranged in parallel as shown in Figure 4.1 (a), two regions

within the cell can be identified: (1) the volume of material outside of a right circular

cylinder enclosing the particle and (2) the volume of material inside this right circular

cylinder. These two resistances are connected in parallel and are related to the total

resistance of the cell as follows:

1

R
=

1

R1
+

1

R2
= ke (4.1)

where R1 = [kf (1 − πε2)]
−1

is the resistance of the medium inside region 1, surround-

ing a right circular cylinder enclosing the particle and R2 is the resistance of the

material inside the cylinder. The volume enclosed by the region inside the cylinder

is symmetric so that only one quarter must be considered (Figure 4.2). A differential

ring has two resistances in series and has a total resistance

dR2 = dR2s + dR2f

or
1

dR2
=

1

dR2s + dR2f
(4.2)

where dR2s and dR2f are the differential resistances of the solid and fluid phases in

the ring. The differential resistance of the particle can be written from Fourier’s law

and the equation of a circle as

dR2s =
z

ksdA
=

√
ε2 − x2

ksπxdx
(4.3)

where ε is the radius of the particle and x is the radius of the ring. Likewise, the

resistance of the part of the ring that is composed of the surrounding medium can be

written as

dR2f =
0.5 − z

kfdA
=

0.5 −
√
ε2 − x2

kfπxdx
(4.4)

Upon combining Equations (4.2) to (4.4) and integrating,

1

R2
= kfπ

∫ ε

0

xdx

0.5 −K
√
ε2 − x2

= kfπIlb (4.5)
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Figure 4.2: R2, Thermal resistance of material inside right circular cylinder enclosing

particle

where

K ≡ 1 − 1

κ
, κ ≡ ks

kf

, and Ilb ≡
∫ ε

0

xdx

0.5 −K
√
ε2 − x2

(4.6)

The closed form relation for the integral Ilb is given by

Ilb =
1

2K2
ln

(
1

1 − 2Kε

)
− ε

K
(4.7)

The lower bound on the effective conductivity (non-dimensionalized with the con-

ductivity of the surrounding medium) of the cell is thus given by
(
ke

kf

)

lb

= 1 − πε2 + πIlb (4.8)

4.1.2 Upper Bound – Perpendicular Isotherms

When the isotherms are arranged in series as shown in Figure 4.1 (b), two different

regions in the unit cell can be identified: (1) the volume of material above and below

a rectangular prism enclosing the particle and (2) the volume of material inside this

rectangular prism. These two resistances are connected in series and are related to

the total resistance of the cell as follows:

R = 2R1 +R2 =
1

ke
(4.9)
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where R1 = (0.5 − ε)/kf is now the resistance of the medium above and below the

rectangular prism enclosing the particle. Again, we consider one quarter (half of the

upper half) of the resistance of the region shaded as R2 (Figure 4.3). A differential

ring now has two resistances in parallel and has a total resistance

1

dR2

=
1

dR2s

+
1

dR2f

(4.10)

The differential resistance of the particle can be written as

dR2s =
dz

ks

(
πx2

2

) =
2dz

ksπ(ε2 − z2)
(4.11)

and that of the part of the ring composed of the surrounding medium can be written

as

dR2f =
dz

kf

(
0.5 − πx2

2

) =
2dz

kf (1 − π(ε2 − z2))
(4.12)

Upon combining Equations (4.10) to (4.12) and integrating,

R2 =
2

kf

∫ ε

0

dz

1 + π(κ− 1)(ε2 − z2)
=

2Iub

kf
(4.13)

where

Iub ≡
∫ ε

0

dz

1 + π(κ− 1)(ε2 − z2)
(4.14)

again has an analytical solution which is given by

Iub =

tanh−1

[
ε

√
π(κ− 1)

π(κ− 1)ε2 + 1

]

√
π(κ− 1)[1 + π(κ− 1)ε2]

(4.15)

and κ = ks/kf as before.

The upper bound on the effective conductivity (non-dimensionalized with the

conductivity of the surrounding medium) of the cell is thus given by
(
ke

kf

)

ub

= [1 − 2ε+ 2Iub]
−1 (4.16)
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Figure 4.3: R2, Thermal resistance of material inside rectangular prism enclosing

particle

4.2 Other Geometries

Applying the same procedure described in Section 4.1, upper and lower bounds have

been derived for (1) a cylinder oriented with its axis parallel to heat flow, (2) a

cylinder oriented with its axis perpendicular to heat flow, (3) a rectangular prism,

and (4) an ellipsoid in a unit cell (Figure 4.4).

4.2.1 Cylinder With Axis Parallel to Heat Flow

A finite circular cylinder oriented with its axis parallel to the direction of heat flow in

a unit cell has the following lower and upper bounds on effective thermal conductivity:
(
ke

kf

)

lb

= 1 − πε2 +
πε2

1 − 2Kh

(
ke

kf

)

ub

=

(
1 − 2h+

2h

1 + (κ− 1)πε2

)−1

(4.17)

where ε is the radius of the cylinder, 0 ≤ ε ≤ 0.5, and 2h is its height, 0 ≤ 2h ≤ 1;

and where κ and K are defined in Equation (4.6).

4.2.2 Cylinder With Axis Perpendicular to Heat Flow

A finite circular cylinder oriented with its axis oriented perpendicular to the direction

of heat flow in a unit cell has the following lower and upper bounds on effective thermal
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(a) (b)

(c) (d)

Figure 4.4: Upper and lower bounds presented for (a) cylinder with axis parallel to

heat flow, (b) cylinder with axis perpendicular to heat flow, (c) rectangular prism,

and (d) ellipsoid in a unit cell (1/8th cell shown). Heat flow is along the z−axis.

conductivity:

(
ke

kf

)

lb

= 1 − 4εh− 2hIlb

(
ke

kf

)

ub

= (1 − 2ε+ Iub)
−1

(4.18)

where

Ilb =
π

2K
+

tan−1

(
f(Kε)

0.5 −Kε

)

Kf(Kε)
(4.19)
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and

Iub =
π

2h (κ − 1)
−

tan−1

[
f (4hε(κ − 1))

0.5 + 2hε(κ − 1))

]

h (κ− 1) f(4hε(κ − 1))
(4.20)

in which f(x) =
√

0.52 − x2 and where ε is the radius of the cylinder, 0 ≤ ε ≤ 0.5,

and 2h is its height, 0 ≤ 2h ≤ 1; κ and K are defined in Equation (4.6).

4.2.3 Rectangular Prism

A rectangular prism in a unit cell has the following lower and upper bounds on

effective thermal conductivity:
(
ke

kf

)

lb

= 1 − 4ab+
4ab

1 − 2Kc

(
ke

kf

)

ub

=

(
1 − 2c +

2c

1 + 4(κ − 1)ab

)−1

(4.21)

where 2a, 2b, and 2c are the dimensions of the prism in the x−, y−, and z−axes,

respectively. The direction of heat flow is along the z−axis. The dimensions 2a and

2b are interchangeable as expected. The terms κ and K are defined in Equation (4.6).

4.2.4 Ellipsoid

An ellipsoid in a unit cell has the following lower and upper bounds on effective

thermal conductivity:
(
ke

kf

)

lb

= 1 − πab

(
1 +

1

Kc

)
+ 2Ilb

(
ke

kf

)

ub

= (1 − 2c+ 2Iub)
−1

(4.22)

where

Ilb =

∫ b

0

tan−1

(√
0.52 − α2β2

0.5 − αβ

)
dy

α
√

0.52 − α2β2
(4.23)
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in which

α ≡ Kc

a
and β ≡ a

√

1 − y2

b2
(4.24)

and

Iub =

c tanh−1

[√
πab(κ− 1)

πab(κ− 1) + 1

]

√
πab(κ− 1)[1 + πab(κ− 1)]

(4.25)

and where 2a, 2b, and 2c are the dimensions of the prism in the x−, y−, and z−axes,

respectively. The direction of heat flow is along the z−axis. The dimensions 2a and

2b are interchangeable as expected. The terms κ and K are defined in Equation (4.6).

The integral of Equation (4.23) must be evaluated numerically.

4.3 Thin Coatings

Upper and lower bounds have also been derived for the various geometries where the

thermal properties of the surrounding shell are not necessarily equivalent to those of

the particle itself. Forcing this thickness, τ , equal to 0, the relative conductivity of

the coating, κc, equal to 1, and the dimensions of the rectangular cell, A, B, and C,

equal to 0.5 recovers the previous relationships. A sphere in a unit cell with a coating

of a material with thermal properties not necessarily equal to those of the sphere has

the following lower and upper bounds on effective thermal conductivity:

(
ke

kf

)

lb

= 1 − π(ε+ τ )2

4AB
+

πC

2AB
(Ilb,1 + Ilb,2)

(
ke

kf

)

ub

=

[
1 − (ε+ τ )

C
+

4AB

C
(Iub,1 + Iub,2)

]−1

(4.26)
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where

Ilb,1 =

∫ ε

0

xdx

C −Kc

√
(ε+ τ )2 − x2 −

(
1

κc
− 1

κ

)√
ε2 − x2

Ilb,2 =

∫ ε+τ

ε

xdx

C −Kc

√
(ε+ τ )2 − x2

(4.27)

and

Iub,1 =

∫ ε

0

dz

4AB + (κc − 1)π[(ε+ τ )2 − z2] + (κ− κc)π(ε2 − z2)

Iub,2 =

∫ ε+τ

ε

dz

4AB + (κc − 1)π[(ε+ τ )2 − z2]

(4.28)

where ε is the radius of the pure sphere and τ is the thickness of the coating; and κ

and K are defined in Equation (4.6) and

κc ≡ kc/kf and Kc ≡ 1 − 1/κc (4.29)

in which kc is the thermal conductivity of the coating.

The upper and lower bounds have been derived for various other geometries with

thin coatings. These results are presented in Appendix B.
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Chapter 5

Numerical Solution Using the

Finite Element Method

The numerical solution of the Laplace equation subject to appropriate boundary

conditions was performed using the finite element method (FEM). The entire solu-

tion methodology was developed using the commercially available software FEMLAB

(COMSOL Inc., USA) which can be run either as a programmable toolbox for the

development of finite element solutions on MATLAB (The Mathworks Inc., USA)

or as a simple graphical user interface-based integrated environment for solution of

partial differential equations (PDEs) using the finite element method. The latter of

these was adequate given the level of complexity of the problem formulation in the

present work.

Details concerning the implementation of the finite element method to solve PDEs

are available in standard textbooks, e.g. [47]. The goal of the present work was to

employ a generalized technique that is widely available and can be implemented rela-

tively easily to validate the proposed analytical models. Consequently, in this section,

only the details of the procedure required to formulate the problem, the types of el-

ements used, and mesh refinement and error control are discussed. The formulation
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of the problem, specifically the statement of the problem in the generalized PDE

form (see Chapter 3) and subsequent recasting in the weak form, are crucial steps in

achieving a successful numerical solution.

5.1 Non-Dimensionalization and Weak Form of the

Laplace Equation

The Laplace equation and boundary conditions governing the heat conduction prob-

lem can be non-dimensionalized by scaling the temperature as follows,

Θ ≡ T − TL

TH − TL
(5.1)

where Θ is the non-dimensional temperature scale, T is the local temperature, and

TH and TL are the temperatures of the top and bottom faces of the cell, respectively.

The non-dimensional Laplace equation is thus given by

∇2Θj = 0 j = s, f (5.2)

which is again valid inside the solid particle and inside the continuous fluidic phase.

Equation (5.2) represents a general PDE formulation of the type

∇ ·Γ = F (5.3)

where Γ = ∇Θj and F = 0. Equation (5.3) is an example of a strong form of the

PDE formulation. To implement a finite element solution, Equation (5.3) must be

written in its weak form1 which for the present problem is an expression of the non-

dimensional Laplace equation as an equality of integrals. Multiplying both sides of

1So-called because a solution of the temperature field satisfying the weak formulation is also a

solution of Equation (5.2) only if the solution is sufficiently smooth.
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Equation (5.3) by an arbitrary test function2 v and integrating over the volume, V ,

of the domain, we get ∫

V

v∇ · ΓdV =

∫

V

vFdV = 0 (5.4)

The divergence theorem can be applied to the above result to give

∫

V

v∇ · ΓdV =

∫

A

vΓ · n̂dA−
∫

V

Γ · ∇vdV = 0 (5.5)

Now, we use the generalized Neumann boundary condition which is written as

−Γ · n̂ = G (5.6)

Combining Equations (5.5) and (5.6) gives

∫

A

vGdA+

∫

V

Γ · ∇vdV = 0 (5.7)

Together with the Dirichlet boundary condition, stated as

R = 0 (5.8)

where R represents a vector of Dirichlet boundary conditions, this is the weak form

of the Laplace equation.

5.2 Numerical Solution Procedure

This section describes the procedure used to approximate the solution of Equation

(5.7) subject to Equation (5.8). The computational domain was first discretized into

tetrahedrons, and Langrangian elements of second order (quadratic) were used. This

implies that there exist ten nodes on each tetrahedral element – four at the vertices

and one at the midpoint of each edge. For each of these nodes, there is a degree

2When discretizing a geometry into finite elements, the temperature field becomes piecewise

smooth. As a result, it is not clear what it means to take its second derivative in Equation (5.2). A

solution is to test the equation for the temperature field against suitable functions, v, of that class.
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of freedom, Ui, and a basis function, φi. The degree of freedom is the value of the

non-dimensional temperature at a node point, the set of which is called the finite

element space. The basis functions are piecewise continuous functions (in this case,

quadratic polynomials) on the intervals between adjacent nodes such that φi = 1 at

node i and φi = 0 at all other nodes. The temperature for an element is thus given

in terms of the basis functions and degrees of freedom as

T =
∑

i

Uiφi (5.9)

The weak form of the Laplace equation was discretized by assuming the test function

v to be the shape function φi in each element.

The boundaries of the geometry are partitioned into triangular boundary ele-

ments. Since the boundary of the dispersed particle is in general curved (a sphere,

for example) the meshed surface is only an approximation to the original curved

boundary. The mesh was generated to ensure that the domain error was small at the

curved boundary thus yielding smaller elements near this boundary. The solution of

the final assembled matrix was achieved using the conjugate gradient method. The

conjugate gradient method is an iterative method and is applied to sparse systems

which are too large to be handled efficiently by direct methods such as Gaussian

elimination. The effective thermal conductivity was obtained from the average of the

integrated normal heat flux over the top face and bottom faces of the cell. This pro-

cess of obtaining a solution from which effective thermal conductivity is determined

was repeated with a finer mesh until a global convergence criterion was attained,

namely until ∣∣∣∣∣∣∣∣∣

(
ke

kf

)

i+1

−
(
ke

kf

)

i(
ke

kf

)

i+1

∣∣∣∣∣∣∣∣∣
≤ 0.005 (5.10)

where i is iteration i and i+ 1 is iteration i+ 1 to ensure two-decimal place accuracy

was typically achieved.
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5.3 Validation of Finite Element Method of

FEMLAB

A numerical solution for the total heat flow in a finite isotropic cylindrical tube with

temperature-specified boundary conditions (Figure 5.1) was performed in FEMLAB.

This is a problem for which there is an analytical solution. The exercise was necessary

to establish confidence in the finite element technique of FEMLAB prior to studying

the problem of effective thermal conductivity of inhomogeneous materials.

For steady conduction, the total thermal resistance of finite isotropic cylindrical

tubes is given by

Rtot =
T s − T z=t

Q
= Rs +R1d (5.11)

where T s is the mean source temperature, T z=t is the mean temperature of the surface

at z = t, and Q is the total heat flow; and where Rs and R1d are the spreading and

one-dimensional (or material) resistances, respectively.

The dimensionless spreading resistance for isotropic finite disks with negligible

thermal resistance at the lower interface, z = t (i.e. Bi = hb/k → ∞) is given by the

following solution [48]:

4kaRs =
8

πε

∞∑

n=1

J1(δnε) sin(δnε)

δ3
nJ

2
0 (δn)

tanh(δnτ ) (5.12)

where ε = a/b, τ = t/b. J0 and J1 are Bessel functions of the first kind of order zero

and one, respectively, with dimensionless eigenvalues δn.

The one-dimensional resistance of the region inside the finite disk is given by

R1d =
T z=0 − T z=t

Q
=

t

kAt

(5.13)

In the present problem, the temperature of the source and sink were taken as

T1 = 1 and T2 = 0, respectively. The total heat flow rate is therefore given by

Q =
1

Rtot
(5.14)
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Figure 5.1: A finite isotropic cylindrical tube with isothermal source of area As and

sink of area At

In addition, the height and radius of the tube were t = 0.5 m and b = 1 m with a

source of radius a = 0.2 m, and the material was specified as k = 1 W/mK. The

one-dimensional resistance is thus

R1d =
t

kAt
=

1

2π
(5.15)

The spreading resistance must be programmed and solved numerically. The series

in Equation (5.12) was implemented in Maple (Waterloo Maple Inc., Canada). The

series converges quickly so that three-decimal place accuracy is achieved with only 300

terms. The total heat flow rate calculated from the analytical solution isQ = 0.961W .

A two-dimensional axially symmetric computational domain was identified for the

present problem and studied using the finite element technique of FEMLAB. A very

fine mesh was used at the boundaries, in particular in the vicinity of (r → a, z = 0) to

resolve the very high flux. The computational domain was discretized into a triangular
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mesh3 and approximately 100K Langrangian elements of second order were used. The

total heat flows integrated over the source and over the lower surface of the tube were

Q1 = 0.956 W and Q2 = 0.960 W , respectively. As a note, although Q1 = Q2 in

theory, it is more appropriate to use the total heat flow rate integrated over the lower

surface in the present problem. This is because there is likely some computational

truncation error in multiplying very high values of heat flux by very finely resolved

areas in the vicinity of the boundary of the source.

The numerical solution for the total heat flow in a finite isotropic cylindrical tube

with temperature-specified boundary conditions is in very good agreement with the

available analytical solution: Q = 0.960 W in comparison with Q = 0.961 W , respec-

tively. The reliability of the finite element technique of FEMLAB is thus sufficient

for a numerical study of the effective conductivity of inhomogeneous media.

5.4 Numerical Results and Discussion

Numerical simulations were performed for various cases in which the geometry, volume

fraction, and relative conductivity ratio κ of the dispersed phase were varied. First,

the numerical results of effective thermal conductivity of a sphere in a unit cube are

compared with the predictions of the model. Second, the aspect ratio and orientation

of the particles are studied. As a result, a generalized condition can be identified for

which effective thermal conductivities of various geometries are approximately equal

for specified volume fraction, φ, and relative conductivity, κ. Third, the effects of a

thin oxide and ordered liquid layering around the particle are studied. Finally, the

effect of clustering (or agglomeration) of particles in the domain is investigated for a

suspension of spheres. A large number of numerical data were produced as a result

and are included in Appendix C.

3Ideally, the computational domain would be resolved in oblate spheroidal co-ordinates.

48



Figure 5.2: Computational domain for a sphere in a unit cell. Heat flow is along the

z−axis.

5.4.1 Sphere in a Unit Cell

Consider first the case of a simple cubic lattice of identical solid spheres embedded in

a homogeneous fluid. The conductivity of the sphere is specified by giving its ratio,

κ, to that of the conductivity of the fluid. Likewise, the sphere radius is specified

by its ratio, ε, to that of the lattice spacing. The volume fraction of the spherical

inclusions is thus

φ =
Vs

Vcell
=

4

3
πε3 (5.16)

The above problem was studied numerically for volume fractions of 0.10, 0.20,

0.30, 0.40, and 0.45 and relative conductivities of 10, 100, and 1000. Symmetry in

the Laplace equation, geometry, and boundary conditions reduces the computational

domain to 1/16th of the unit cell (Figure 5.2). Approximately 50000 tetrahedral

elements were used in each simulation and numerical results were established to within

two-decimal place accuracy from further refinement of the mesh.

The numerical work confirms that the upper and lower bounds for a sphere in a

unit cell presented in Chapter 4 are indeed valid (Figures 5.3 to 5.5). The geometric

mean of the upper and lower bounds gives good agreement with the numerical re-

sults. The RMS error and maximum % difference between the two are expressed as
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Figure 5.3: Numerical results versus upper and lower bounds for sphere, κ = 10

percentages and are shown in each of the figures. These are defined as follows:

RMS ≡
√∑n

i=1 x
2
i

n
(5.17)

where

xi ≡
∣∣∣∣
(ke/kf )model − (ke/kf )numerical

(ke/kf )model

∣∣∣∣ (5.18)

and n is the number of points, in this case, 5. The maximum % difference, (xi)max,

occurs at φ = 0.45 for all three simulations. The RMS values for κ = 10, 100, and 1000

are 7.1%, 27.1%, and 34.5%, respectively. The maximum % difference for κ = 10,

100, and 1000 are 9.1%, 37.5%, and 49.4%, respectively. Both the RMS and the

maximum % difference are largest when κ = 1000. This behaviour is expected since

the % difference, as defined by xi, asymptotically tends to zero as the conductivity

ratio tends to unity when the volume fraction tends to zero (i.e. xi → 0 when κ→ 1

and when φ→ 0).
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Figure 5.4: Numerical results versus upper and lower bounds for sphere, κ = 100
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Figure 5.5: Numerical results versus upper and lower bounds for sphere, κ = 1000
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Figure 5.6: (a) Flux lines and (b) isotherms for 1/16th cell, φ = 0.30 and κ = 100

The model developed consistently overpredicts the numerical results for the three

cases studied. This suggests that the 3-D temperature field inside the cell more closely

resembles that for a system in which adiabats are assumed parallel to the direction

of heat flow. Isotherms and lines of flux from the numerical results for κ = 100 and

φ = 0.30 are included in Figure 5.6. It is clear from this figure that the adiabats are

neither parallel to the direction of heat flow nor are the isotherms perpendicular to

it; and, in fact, if they were, both bounds would be mathematically equivalent and

an analytical solution would be available.

The previous numerical results exhibit the limiting enhancement discussed in

Chapter 2 (Figure 5.7). As the relative particle conductivity is increased from κ = 10

to κ = 100, there is significant improvement in effective thermal conducitivity, par-

ticularly at high volume fractions. The same is not true, however, as the relative

particle conductivity is increased from κ = 100 to κ = 1000. In this instance, the

enhancements in thermal conductivity are nearly identical. The particle is essentially

isothermal if κ > 100, so any changes produced in the temperature field within the

cell as a result of increasing κ beyond ∼ 100 are relatively small when the volume

fraction is less than about 0.4. A limiting enhancement in effective thermal conduc-
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Figure 5.7: Numerical results for sphere in unit cell for κ = 10, κ = 100, and κ = 1000

tivity has been reached. In taking the limits as κ→ ∞ of the upper and lower bounds

for effective thermal conductivity of a sphere in a unit cube (Chapter 4),

lim
κ→∞

(
ke

kf

)

ub

= (1 − 2ε)−1 (5.19)

lim
κ→∞

(
ke

kf

)

lb

= 1 − πε2 + π

[
1

2
ln

(
1

1 − 2ε

)
− ε

]
(5.20)

The limiting enhancement is given by the geometric mean of Equations (5.19) and

(5.20). For φ = 0.30, the relative particle conductivity must be increased by an

order of magnitude (from κ = 100 to 1000) for a further enhancement of just 10% in

effective thermal conductivity of the medium. Also, effective thermal conductivity for

κ = 100 is within approximately 12% of its maximum possible enhancement (κ→ ∞)

(Figure 5.8). The present model, derived from the upper and lower bounds, thus also

exhibits the limiting enhancement in effective thermal conductivity observed from

the numerical results. In addition, for the case of perfectly conducting spheres, the

model gives the correct divergence of effective thermal conductivity as the spheres

touch (i.e. as κ→ ∞ and φ→ π/6, ke/kf → ∞).
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Figure 5.8: Limiting enhancement for κ→ ∞

The numerical results in Figure 5.5 (κ = 1000) are compared with the predictions

of Maxwell [7], McPhedran and McKenzie (M = 4) [12], and Lewis and Nielsen [42],

as well as with the predictions of the lower bound (Figure 5.9). The agreement be-

tween the numerical data and the model of McPhedran and McKenzie is excellent for

φ ≤ 0.45 and also with the Maxwell equation for φ ≤ 0.30. Both the predictions of

McPhedran and McKenzie and Maxwell consistently underpredict the results; how-

ever, this is expected since neither model accounts for the interactions of an infinite

number of neighbouring particles which is the case studied. In addition, it is noted

that the equation developed by Maxwell and the one developed by McPhedran and

McKenzie fall below the lower bound at φ ≈ 0.44 and φ ≈ 0.50, respectively. These

models are therefore inadequate for volume fractions exceeding these values when

κ = 1000. In contrast , the Lewis-Nielsen equation consistently overpredicts the nu-

merical results and never falls below the lower bound. It predicts effective thermal

conductivities intermediate to the lower bound and the geometric mean of the bounds

and essentially recovers the lower bound at the critical volume fraction, φ ≈ 0.524.
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Figure 5.9: Numerical results with predictions of Maxwell [7], McPhedran and

McKenzie [12], and Lewis and Nielsen [42]

5.4.2 Is Volume Fraction a Representative Non-dimensional

Parameter for Various Geometries?

It is unrealistic to expect a model for effective thermal conductivity which is a function

of relative conductivity, κ, and volume fraction, φ, alone to give accurate predictions

for all composite media. The ability to identify the continuous and discontinuous

phases has already been noted as another important factor, for example (Chapter 2).

In addition, the shape and orientation of the discontinuous phase is important.

Figure 5.10 shows numerical results of the enhancement in effective thermal con-

ductivity for various solid geometric dispersions for a range of aspect ratios with

κ = 1000. The need for more detailed information about the microstructure beyond

the relative volume concentrations of the two phases is apparent. The effects of as-

pect ratio and orientation of the particles are investigated. In particular, numerical

results for a rectangular prism, a parallel cylinder, a perpendicular cylinder, and an
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Figure 5.10: Numerical results of effective thermal conductivity for geometric disper-

sions, κ = 1000

ellipsoid in a unit cube are considered. Three cases can be identified: these are (1)

tall and slender cylinders (high aspect ratio), (2) square cylinders (moderate aspect

ratio), and (3) short and latitudinous cylinders (low aspect ratio). It is expected that

enhancement in effective thermal conductivity is largest for case (1), where the highly

conductive cylindrical particle is well-connected throughout the medium, and smallest

for case (3), where the poor connectivity of the highly conductive phase throughout

the medium causes an insulating effect dominated by the low conductivity fluid. In

addition, numerical simulations were performed for κ = 1000, 100, and 10, but due to

the large number of similar graphs resulting from considering all three conductivity

ratios, only the results for κ = 1000 are presented in the body of the section. Such

additional numerical data would not convey any new information to the reader be-

yond that the agreement between the model and the numerical results improves as κ

is reduced. Before the numerical results are presented, definitions of the aspect ratio

and identification of characteristic cells for the various geometries are described.
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5.4.3 Aspect Ratio

The aspect ratio and volume fraction must be defined for each geometric dispersion.

These are summarized at the end of this section in Table 5.1. A convenient definition

of the aspect ratio is as follows:

α ≡ Lz

Lxy
(5.21)

where Lz is a characteristic length along the z−axis, in the direction of heat flow,

and Lxy =
√
LxLy is a characteristic length scale in the plane perpendicular to heat

transfer, the square root of the length scales along the x− and y−axes.

Parallel and perpendicular cylinders. A cylinder in a unit cell has in general

two characteristic dimensions: these are the ratio, 2ε, of its diameter to the lattice

spacing in that direction and the ratio, 2h, of its height to the lattice spacing in

this direction. From Equation (5.21), the aspect ratio, which gives a measure of the

relative magnitudes of these dimensions, is written as follows:

α ≡ h

ε
(5.22)

The volume fraction of the cylindrical inclusions in terms of its aspect ratio is thus

φ = 2πε2h = 2παε3 (5.23)

Rectangular prisms and ellipsoids. A rectangular prism or an ellipsoid in a

unit cell has in general three characteristic dimensions: these are the ratios, 2a and

2b, of its width to the lattice spacing in the lateral directions (along the x− and

y−axes) and the ratio, 2c, of its height to the lattice spacing in this direction (along

the z−axis). In this instance, a characteristic length in the direction perpendicular

to heat flow is not immediately obvious since there are two length scales (2a, 2b).

From the definition above, however, the geometric mean of these two dimensions as

a characteristic length scale in the plane perpendicular to heat flow may arbitrarily

be selected so that the aspect ratio can be defined as follows:

α ≡ c√
ab

(5.24)
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Table 5.1: Aspect ratios and volume fractions of various geometric dispersions in a

unit cell

Geometry Aspect Ratio φ

Cylinder h/ε 2πε2h = 2παε3

Rectangular Prism c/
√
ab 8abc = 8c3/α2

Ellipsoid c/
√
ab 4πabc/3 = 4πc3/3α2

The volume fractions of the inclusions in terms of aspect ratio for rectangular prisms

and ellipsoids are thus given by

φ = 8abc =
8c3

α2
(rectangular prisms)

φ =
4

3
πabc =

4

3

πc3

α2
(ellipsoids)

(5.25)

5.4.4 Characteristic Cells

Characteristic cells for the various geometries are illustrated in Figure 5.11. Symme-

try permits only 1/16th (upright circular cylinder, and prolate/oblate spheroids and

prismoids) or 1/8th (latitudinous circular cylinder, and general spheroids and rect-

angular prismoids) of the unit cell to be considered. The problem is still, however,

always three dimensional. The top boundary of the cell implemented in FEMLAB is

isothermal with TH = 1 and the lower boundary (mid-plane of the unit cell) isother-

mal with TL = 0.5. The side walls are adiabatic.

When symmetry reduces the computational domain to 1/16th of the unit cell,

approximately 20000 Langrangian elements of second order were used. This mesh

was found to give convergence of ke within two-decimal place accuracy (≤ 0.05%) of

results from a coarser mesh for the various geometries studied (except in instances

where one of the characteristic dimensions of the particle approached the boundaries
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(a) (b)

(c) (d)

Figure 5.11: Characteristic cells for (a) cylinder with axis parallel to heat flow, (b)

cylinder with axis perpendicular to heat flow, (c) rectangular prism, and (d) ellipsoid

in a unit cell. Heat flow is along the z−axis.
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of the cell in which case the mesh was further refined in the vicinity of this point).

When the computational domain is 1/16th of the unit cell, relative effective thermal

conductivity is given as ke/kf = 8Q. When symmetry reduces the computational

domain to 1/8th of the unit cell, ke/kf = 4Q, and approximately 40000 Langrangian

elements of second order were used. The total heat flow rate, Q, was solved by

integrating the heat flux over the upper or lower boundary.

5.4.5 Results

Case 1: α = 4.5. The effective thermal conductivities of a tall and slender parallel

circular cylinder, a rectangular prism, and an ellipsoid, each inside a unit cell, oriented

with their longitudinal axes in the direction of heat flow, were solved numerically for

volume fractions from 0.005 to 0.028 (with κ = 1000). The numerical results for

the various geometries are compared with one another in Figure 5.12. The relative

enhancment in thermal conductivity, ke/kf , is insensitive to the geometry of the

particle. The numerical results show that for a given volume fraction, the parallel

cylinder gives slightly higher enhancement in thermal conductivity than the ellipsoid

and rectangular prism, which gives the lowest enhancement.

Comparisons between the numerical results and the predictions of the models for

the various geometries are shown in Figures 5.13 to 5.15. In addition, comparison

between the results and predictions of the model for a rectangular prism in a unit cell

for κ = 10 is included in Figure 5.16. This serves to illustrate that the same behaviour

is observed as was noted in the dispersion of spheres: that the deviations between the

predictions and the numerical results increase with relative conductivity and volume

fraction. In addition, the numerical results are closer to the average of the upper

and lower bounds for low κ and approach the parallel adiabats model as κ increases.

The close agreement between the numerical results and the parallel adiabats model

is evident when κ = 1000. This can be given physical justification by noting that, for

60



φ

k e/
k f

0 0.005 0.01 0.015 0.02 0.025 0.03
1

1.2

1.4

1.6

1.8

2
Parallel Cylinder
Rectangular Prism
Ellipsoid

Figure 5.12: Numerical results for parallel cylinder, rectangular prism, and ellipsoid

in unit cell, α = 4.5 and κ = 1000

tall and slender dispersions oriented in the direction of heat flow, a highly conductive

particle is very effective at confining the total heat flow to a narrow region in the

vicinity of the particle. The upper bound greatly overpredicts the results when the

conductivity is sufficiently increased. In addition, the upper bound is much more

sensitive to the conductivity ratio than is the lower bound.

The models do not give the correct predictions in the sense that the relative

enhancement of the ellipsoid is predicted to be larger relative to the parallel and

cylinder and rectangular prism of the same aspect ratio, whereas the opposite is

observed of the numerical results. The various models, however, are successful in the

sense that their predictions for the parallel cylinder, rectangular prism, and ellipsoid

are similar to one another; this is in agreement with the numerical results and confirms

that the aspect ratio is an important non-dimensional parameter in this problem.
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Figure 5.13: Numerical results versus upper and lower bounds for cylinder with axis

parallel to heat flow, α = h/ε = 4.5 and κ = 1000
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Figure 5.14: Numerical results versus upper and lower bounds for rectangular prism,

α = c/
√
ab = 4.5 and κ = 1000
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Figure 5.15: Numerical results versus upper and lower bounds for ellipsoid, α =

c/
√
ab = 4.5 and κ = 1000
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Figure 5.16: Numerical results versus upper and lower bounds for rectangular prism,

α = h/ε = 4.5 and κ = 10
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Figure 5.17: Numerical results for parallel square circular cylinder, perpendicular

square circular cylinder, cube, and sphere in unit cell, α = 1 and κ = 1000

Case 2: α = 1. The effective thermal conductivities of a parallel square circular

cylinder, a perpendicular square circular cylinder, a cube, and a sphere, each inside

a unit cell, were solved numerically for volume fractions from 0.10 to 0.60 (with

κ = 1000). The numerical results for the various geometries are compared with one

another in Figure 5.17. The relative enhancment in thermal conductivity, ke/kf , is

insensitive to the geometry of the particle up to φ ≈ 0.30. At larger volume fractions,

the effects of the geometry beyond the aspect ratio become important; however, the

results for the various geometries are still in good relative agreement, with a variance

of less than 35% even at φ = 0.60 when the particles are close to touching. The

numerical results show again that for a given volume fraction, the parallel cylinder

gives slightly higher enhancement in thermal conductivity than rectangular prism,

the sphere, and the perpendicular cylinder, which gives the lowest enhancement.

Comparisons between the numerical results and the predictions of the models

for the various geometries are shown in Figures 5.18 to 5.20. The upper and lower
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Figure 5.18: Numerical results versus upper and lower bounds for cylinder with axis

parallel to heat flow, α = h/ε = 1 and κ = 1000

bounds are much more effective at constraining the range of possible values for α = 1

than they are for α = 4.5. The agreement with the model (the geometric mean) is

excellent, in particular for the parallel square circular cylinder and cube.

Better agreement between the models and results of the parallel cylinder and the

cube may be partially related to the lack of curvature these geometries possess in the

planes perpendicular to the direction of heat flow. Recall that, in the perpendicular

isotherms model formulation, the differential resistance between two planes is the

parallel combination of the resistances of the relatively non-conductive fluid and of the

highly conductive solid. If the solid is highly conductive, this amounts to essentially

neglecting the resistance imposed by the fluid, even if only a small volume within the

volume enclosed by two planes perpendicular to the direction of heat flow is highly

conductive. This also gives physical grounds for expecting the upper bound to greatly

overpredict the numerical results when the aspect ratio of the particle is large.
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Figure 5.19: Numerical results versus upper and lower bounds for cylinder with axis

perpendicular to heat flow, α = h/ε = 1 and κ = 1000
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Figure 5.20: Numerical results versus upper and lower bounds for rectangular prism,

α = c/
√
ab = 1 and κ = 1000
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Figure 5.21: Numerical results for parallel cylinder, rectangular prism, and ellipsoid

in unit cell, α = 4.5 and κ = 1000

Case 3: α = 0.22. The effective thermal conductivities of a short and lati-

tudinous cylinder, a rectangular prism, and an ellipsoid, each inside a unit cell and

oriented with their longitudinal axes perpendicular to the direction of heat flow, was

solved numerically for volume fractions from 0.025 to 0.125 (with κ = 1000). The

numerical results for the various geometries are compared with one another in Figure

5.21. The relative enhancment in thermal conductivity, ke/kf , is relatively insensitive

to the geometry of the particle. The numerical results show that for a given volume

fraction, the parallel cylinder gives slightly higher enhancement in thermal conduc-

tivity than the rectangular prism and ellipsoid, which gives the lowest enhancement.
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Figure 5.22: Numerical results versus upper and lower bounds for cylinder with axis

parallel to heat flow, α = h/ε = 0.22 and κ = 1000
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Figure 5.23: Numerical results versus upper and lower bounds for rectangular prism,

α = c/
√
ab = 0.22 and κ = 1000
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Figure 5.24: Numerical results versus upper and lower bounds for ellipsoid prism with

axis, α = c/
√
ab = 0.22 and κ = 1000

5.4.6 Closing Remarks

The volume fraction is a suitable non-dimensional parameter if all particles can be

accurately characterized with the same length scales. More generally, if a relationship

is sought between enhancement in thermal conductivity and volume fraction, a defined

particle aspect ratio must at least be common for the heterogeneous media for which

this relationship is thought to apply. A highly conductive particle is very effective

at confining the total heat flow to a narrow region in the vicinity of the particle.

As a result, the predictions of the parallel adiabats model are approached as the

conductivity ratio of the particle is increased, in particular when the particle is tall and

slender (high aspect ratio). The results of assuming parallel adiabats or perpendicular

isotherms are similar when the particle has a low aspect ratio (Appendix D). The

predictions of the model give the best agreement with numerical results for systems

with low aspect ratios, conductivity ratios, and volume fractions.

The aspect ratio is clearly an important parameter beyond the volume fraction and
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Figure 5.25: Effect of aspect ratio of upright circular cylinder in unit cell - model

predictions, κ = 1000

relative conductivity of the particle, though the specific geometry of the dispersion is

not, especially at low volume fractions. This behaviour is well-reflected by the model

(Equation (4.17) in Chapter 4). The geometric mean of the upper and lower bounds

on effective thermal conductivity for a parallel cylinder in a unit cell are shown, for

example, for three conditions with κ = 1000: these are α = 0.1, α = 1, and α = 10

(Figure 5.25). Note the significant enhancement at very low volume fractions for

particles which are very tall and slender.

The upper and lower bounds will, in general, converge as the volume fraction is

increased to its maximum if the upper and lower surfaces of the particle are flat and

the aspect ratio is greater than or equal to one (for example, a square circular cylinder

in a unit cell). Under these circumstances, when the maximum volume fraction is

reached, the adiabats are indeed parallel and the isotherms perpendicular, so that

the bounds are equivalent and represent the analytical solution.
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5.4.7 Clustering

In the literature, the frequent deviations between experimental data and the Maxwell

equation at volume fractions less than φ = 0.30 (as low as φ = 0.01 in suspensions

of nano-particles) have been attributed in some part to the formation of aggregates

or clusters of particles. Keblinski et al. [49], for example, suggest that a cluster

of particles behaves like a single large particle and, on these grounds, propose the

use of a modified (enhanced) volume fraction. Kumar and Murthy [50] studied this

problem numerically and found that clustering has no effect on effective thermal

conductivity unless the formation of high-conductivity liquid bridges between the

particles is postulated.

The effect of clustering is quantified by solving numerically the effective thermal

conductivity of a sphere in a unit cell with the sphere placed at various points within

the cell. The points are specified along a line joining the center of the cell to one of the

lower vertices of the unit cell. Specifically, effective thermal conductivity of a sphere

in a unit cube with ε = 0.29 (φ = 0.10) and κ = 1000 was established (Figure 5.26).

Clustering of the particles produces in the most extreme circumstances (i.e. when the

spheres are touching and when κ = 1000) an enhancement of just 4%, calculated by

linearly extrapolating effective thermal conductivity to χ = 0.29 using the numerical

values at χ = 0.30 and χ = 0.31 in Figure 5.26.

Using the idea discussed by Keblinski et al., we can define an effective volume

fraction when the spheres are close to touching as

φe ≡
Vs + Vv

Vs + Vf
=

7

6
πε3 + χ3 (5.26)

where Vv is one-eighth of the total volume excluded from the sphere in a cube with

side length 2χ. Equation (5.26) is valid when χ ≈ ε (Figure 5.26); for χ � ε, the

assumption that the cluster of particles can be treated as a single larger particle of

conductivity ks is questionable since the resistance of the liquid between particles is
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Figure 5.26: Effect of clustering, φ = 0.10 and κ = 1000

then significant. In addition, it is noted that Equation (5.26) gives a larger enhance-

ment in the volume fraction when the particles are close together but not touching

than when the spheres are in fact touching. This behaviour is not in agreement with

the numerical data of Figure 5.26, which suggests that the enhancement becomes

more significant as the particles are brought closer together. When χ = ε, φe ≈ 0.583

which is 11% larger than the simple cubic packing fraction.

The comparison with the extrapolated value for ke/kf at φ = 0.10 and χ = 0.29

is within 1% of the predictions using the modified volume fraction. This supports the

hypothesis of Keblinski et al., but the additional enhancement in effective thermal

conductivity that can be attributed to clustering is still very small and cannot explain

the anomolous enhancements observed in nanofluids [51]. Although further enhance-

ment is possible if the clusters are larger, in reality, clustering to the extent that solid

agglomerates span large distances is unlikely since such clusters would settle out of

the fluid. If there is settling, clustering can also have a negative effect on the desired

enhancement of the thermal conductivity of the base fluid and the series conduction

model would be approached.
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5.4.8 Thin Coatings

Two cases in which the particle is surrounded by a thin, homogeneous, and uniform

layer of a thermally different material are considered. The first is an investigation of

the effect of an oxide layer and the second is one of the effect of ordered liquid layers.

Case 1: Oxides. The diameter of metallic particles used in microelectronics

cooling applications is traditionally on the order of microns4. The oxides that form

are typically on the order of nanometers and have much lower thermal conductivities.

For example, aluminum oxide particles typically have bulk thermal conductivities

of ∼ 50 W/mK [57] whereas the thermal conductivity of pure aluminum is 237

W/mK [53]. There is often significant uncertainty in the thermal conductivity of the

particle. This is one possible reason for the discrepancy between experimental results

and model predictions. In such circumstances, it is reasonable to enquire whether the

oxide layer is responsible for a significant reduction in the “particle” conductivity.

As a lower limit, the conductivity of the coating is equal to the conductivity of

the liquid, κc = 1, and as an upper limit, the conductivity of the coating is equal

to the conductivity of the particle, κc = κ. When κc = 1, Equation (4.26) recovers

Equations (4.8) and (4.16) for a particle of relative radius ε; and, when κc = κ, the

same equations are recovered, but for a particle of relative radius ε+τ . These are thus

bounds on the conductivity of the composite particle in the numerical simulations.

Two relative oxide thicknesses were considered, τ = 0.02 and τ = 0.05, for a

particle with ε = 0.30 and κ = 1000. For a particle 100 µm in diameter, this corre-

sponds to oxide thicknesses of 7 and 17 µm, respectively. These represent particles

with oxide layers much thicker than are ever practically observed; however, given the

computational intractability of numerically discretizing domains much smaller than

4Settling of these micron-sized particles has been a major hurdle to developing suspensions for

practical applications. As a result, recent work has turned to nanofluids which are suspensions of

particles with diameters on the order of nanometers in typical coolants and polymeric fluids.
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Figure 5.27: Enhancement in thermal conductivity as a function of relative oxide

thickness; ε = 0.30, τ = 0.02, and κ = 1000

this, these problems were investigated. The results are shown in Figures 5.27 and

5.28. The numerical results are in good agreement with the predictions of the model;

in particular, the results are closer to the lower bound, as expected. In addition,

effective thermal conductivity of the medium is within 1% of the enhancement in

thermal conductivity of the base fluid for particles of the pure phase for κ = 10 and

κ = 40 for τ = 0.02 and τ = 0.05, respectively. This suggests that the presence of

the oxide is not responsible for a lower particle conductivity unless the thickness of

the coating becomes comparable to the diameter of the particle.

Case 2: Ordered liquid layering. Liquid molecules form ordered layers on the

surface of a solid. The thicknesses of these layers are typically on the order of nanome-

ters. Yu and Choi [54] have suggested that this ordered liquid layering is responsible

for an enhancement in thermal conductivity of the base fluid beyond the predictions

of conventional theories such as the Maxwell equation. The authors suggest that this

phenomenon prevails at small scales – in applications with nano-particles, for example
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Figure 5.28: Enhancement in thermal conductivity as a function of relative oxide

thickness; ε = 0.30, τ = 0.05, and κ = 1000

– and renovate the Maxwell equation to account for a thin coating of a thermally dif-

ferent, uniform, homogeneous, and isotropic material surrounding the particle. The

model suggested by Yu and Choi is essentially the Maxwell equation queried at φ
′

where φ
′
is some enhanced volume fraction, and the Maxwell equation has already

been established for φ ≤ 0.30 (Chapter 2).

Comparisons between the predictions from the model proposed by Yu and Choi

and those of the present model are included in Figure 5.29. The authors investigated

a range of thicknesses and conductivities of ordered liquid layers. The results are

presented specifically for one set of parameters: these are κ = 397, κc = 10, and τ =

2ε/3 for φ ≤ 0.05. The predictions of the present model compare well with those of

the renovated Maxwell equation. If the plot were extended to larger volume fractions,

however, we would find once again that the Maxwell equation makes predictions of

ke/kf less than the lower bound; but since typical nanofluids have φ ≤ 0.05, this is

not problematic.
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Figure 5.29: Predictions of present model and renovated Maxwell equation (Yu and

Choi, [54]); κ = 397, κc = 10, τ = 2ε/3
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Chapter 6

Model Validation

There is a vast body of literature describing experimental works and results for ef-

fective thermal conductivity of composite systems. Experimental data of effective

thermal conductivity for the class of materials which are of interest in microelec-

tronics cooling applications were selected from the literature. In particular, these

materials are suspensions of particles in a continuous phase, typically a polymeric

fluid. The experimental data are compared with the model developed for a sphere in

a unit cell.

A typical experimental procedure consists of first preparing the samples. By spec-

ifying the mass fraction and the density ratio of the two phases, the volume fraction

is determined. For example, 3 g of aluminum oxide powder may be combined with 1

g of ethylene glycol (a typical base fluid), to give a volume fraction of approximately

φ = 0.53. This involves the assumption that the density of the particle is equal to

that of the bulk material, aluminum in this case. The two phases are typically stirred

together with a stirring rod and then tested. In some instances, the composite system

is hardened prior to the test. In addition, the samples are sometimes prepared a day

prior to the tests.

Wong and Bollampaly [55] recently studied the enhancement in the conductivity
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Figure 6.1: Experimental data from Wong and Bollampaly [55] for spherical silica

particles in an epoxy resin, κ = 7.7
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Figure 6.2: Experimental data from Wong and Bollampaly [55] for almost spherical

alumina particles in epoxy resin, κ = 184.6
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Figure 6.3: Experimental data from Wong and Bollampaly [55] for irregular SCAN

particles in epoxy resin, κ = 1128.2

of an epoxy resin by separately dispersing into it three different types of particles up

to volume fractions of φ = 0.50 (Figures 6.1 to 6.3). The particles used were spherical

silica (κ = 7.7), alumina (κ = 184.6), and silica-coated alumina nitride (κ = 1128.2).

The samples were cured and solidified using a hardener. The agreement with the

model for each case is very good - maximum % difference and RMS of 7.6%, 11% for

spherical silica particles; 37.8%, 79.8% for alumina particles, and; 9.8% and 13.1% for

irregular silica-coated alumina nitride, respectively. In particular, the model shows

relatively good agreement for the alumina and silica-coated alumina nitride samples

despite the irregular particle geometry.

Sundstrom and Chen [56] studied the effective conductivity of glass dispersions

in commercial polystyrene (κ = 7.3) for three different particle size ranges (62-88

µm, 125-149 µm, and 177-210 µm) up to φ = 0.40. The samples were melted under

pressure in a mold and then solidified by cooling. The experimental results (Figure

6.4) show excellent agreement with the model giving an RMS error of 2.1% and

maximum difference less than 4%.
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Figure 6.4: Experimental data from Sundstrom and Chen [56] for spherical glass

particles in polystyrene, κ = 7.3

Tavman [57] studied a dispersion of aluminum oxide particles in commerical high

density polyethylene (κ = 56.9). The polyethylene was in powder form and samples

were prepared by the mold compression process. The average particle size was 10

to 20 µm. The model shows excellent agreement up to φ = 0.10 beyond which the

model begins to underpredict the experimental results (Figure 6.5). The maximum

% difference is still 18%, half of the maximum % error obtained from the Maxwell

equation.

Lin et al. [58] studied the effective conductivity of cupric oxide (κ = 1067.9) and

aluminum powders (κ = 41.7) in an epoxy resin. The average particle size of the

cupric oxide powder was 3 µm and that of the aluminum powder, 7 µm. A transient

method was used to determine the thermal diffusivity of cured spherical samples.

The model shows excellent agreement for the composite of the cupric oxide powder

(Figure 6.6). The RMS error is reasonable for the aluminum oxide powder composite

(15.2%) but it appears that any further loading of the sample will generate experi-
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Figure 6.5: Experimental data from Tavman [57] for aluminum oxide particles in

HDPE, κ = 56.9
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Figure 6.6: Experimental data from Lin et al. [58] for cupric oxide in epoxy resin,

κ = 1067.9
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Figure 6.7: Experimental data from Lin et al. [58] for aluminum powders in epoxy

resin, κ = 41.7

mental results higher than the upper bound (Figure 6.7). The model falls roughly

30% below the experimental measurement at φ = 28% for this sample.

Woodside and Messmer [44] obtained experimental data for quartz sand packs

surrounded by air (κ = 325.8) for particle volume fractions of 0.41, 0.64, 0.69, and

0.81. The particle conductivity was assumed constant and equal for each sample

(ks = 8.4W/mK). The measurements were made using the transient hot wire method

and agreed well with similar data the authors found in the literature. Recently, Carson

et al. [59] showed that the data of Woodside and Messmer lie close to the lower bound

of the series conduction model (Figure 6.8). The proposed model of a sphere in a unit

cube is not able to capture the behaviour of these samples. A possible explanation of

the unusual agreement of the experimental results with the series model is the settling

of the quartz sand. Note the relatively large volume fractions for which the data were

obtained, alone an indicator of the potential failure of the present model.

Carson et al. [40] studied suspensions of expanded polystyrene (EPS) beads dis-
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Figure 6.8: Experimental data from Woodside and Messmer [44] for quartz sand in

air, κ = 325.8

persed in a guar gel phase (κ = 19) for volume fractions from 0.40 to 1.00. A transient

method based on the analytical solution for the temperature at the center of a sphere

being cooled with convection boundary conditions was used. Experimental data were

found to lie on the upper bound of the parallel conduction model (Figure 6.9). The

gel was approximately 30 times more dense than the EPS beads. The parallel bound

is applicable for systems in which the two phases are well-connected along the axis of

heat transfer. This suggests that the EPS beads formed continuous chain structures

percolating from the center of the spherical sample to its outer boundary. Since there

is no data for volume fractions less than 40%, it is not possible to determine the

percolation threshold of this system; however, it is likely that further testing at lower

volume fractions would show a significant decrease in effective thermal conductivity

with respect to the predictions of the parallel conduction model. Note again the high

volume fractions of the dispersed phase achieved by the composite. In such sample,

the sphere in a cube model presented in this paper cannot be applied because it is
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Figure 6.9: Experimental data from Carson et al. [40] for EPS beads in gel, κ = 19

only valid up to φ ≈ 52.4%.

Although the predictions of the model for a sphere in a unit cell were greater than

the numerical results presented in the previous chapter, the experimental results are

in good agreement with the model. This suggests that there are certain mechanisms

present in the real TIM which act to increase effective thermal conductivity beyond

the enhancement for a uniform sphere in a simple cubic lattice arrangement. Possible

mechanisms include clustering, particle size distribution, random distributions of par-

ticles, and ordered liquid layers. Clustering was shown to enhance effective thermal

conductivity, but such systems are unstable. In addition, ordered liquid layering was

shown in the previous chapter to have a negligible role in enhancing effective ther-

mal conductivity beyond the predictions of the model. Random distributions were

recently investigated by Carson et al. [40] and shown to have negligible effect. It

is possible that polydisperse systems possess effective thermal conductivities greater

than those of systems for which the dispersed phase is uniform, though the size effect

has been shown to be negligible (see Sundstrom and Chen [56], for example).
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The two simple theorems described by Elrod [39] from which upper and lower bounds

for effective thermal conductivity of a sphere, parallel and perpendicular cylinder,

rectangular prismoid, and ellipsoid are developed in the present study are extremely

powerful. Although these problems have no simple analytical solution, the developed

model, which comprises the geometric mean of the upper and lower bounds, are in

many instances quite useful at constraining effective thermal conductivity of a regular

array of particles suspended in a continuous medium to a narrow range of possible

values. The numerical solution of effective thermal conductivity of characteristic cells

for various geometries and aspect ratios indicates the following:

1. The model shows good agreement for particles with low to moderate aspect

ratios. As the aspect ratio is increased, the upper bound greatly overpredicts

the numerical results and the lower bound is a more appropriate approximation

for predicting effective thermal conductivity;

2. The numerical results approach the lower bound as the conductivity ratio is in-
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creased. Physically, this is because a highly conductive particle is more effective

at streamlining the heat flow through its cross-section, thus confining the total

heat flow through a narrow cross-section in the vicinity of the particle;

3. Orienting the particles in the direction of heat flow leads to substantial enhanc-

ment in thermal conductivity;

4. A limiting enhancement in thermal conductivity, which occurs as the conduc-

tivity ratio becomes infinite, is practically achieved (within 2%) even at high

volume fractions (φ = 0.30). There is thus very little advantage to further

increasing thermal conductivity of the particle. The best method for enhanc-

ing thermal conductivity is through the use of particles with high aspect ratios

oriented in the direction of heat flow;

5. The enhancement in thermal conductivity for dispersions of particles with simi-

lar aspect ratios are similar, and that the specific geometry of the particle is only

significant at volume fractions comparable to the maximum packing fraction;

6. A cluster of particles can be accurately treated as a single larger particle whose

volume is equal to the sum of the volumes of the clustered particles and the voids

within the agglomeration. This leads to an enhancement in effective thermal

conductivity beyond that which is predicted for systems composed of regular

arrays of particles. Although significant enhancement is possible if the clusters

are large, in reality, clustering to the extent that solid agglomerates span large

distances is unlikely since such clusters would settle out of the fluid. If there is

settling, clustering can also have a negative effect on the desired enhancement

of the thermal conductivity of the base fluid [49], and;

7. Ordered liquid layering has very little effect in producing additional enhance-

ment in the thermal conductivity of the base fluid.
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In addition, experimental work available in the literature indicates that the agree-

ment between the selected experimental data and the geometric mean of the upper

and lower bounds for a sphere in a unit cell are in excellent agreement, even for

particles which are irregular in shape. This suggests that the effective thermal con-

ductivity of a TIM is not precisely modeled as a sphere in a unit cell since numerical

work indicated that the effective thermal conductivity was closer to the lower bound.

Possible mechanisms for this behaviour are size distribution effects, clustering, and

random distributions of particles in the medium; although the effects of each one

of these on its own have been to shown to produce negligible enhancements beyond

those predicted from traditional theories. The developed model is not applicable to

systems in which the discontinuous phase is either well-connected throughout or has

settled.

7.2 Recommendations

Based on the scope of work addressed in the present study, the following recommen-

dations are made:

1. This work considered the case of a uniform dispersion of particles (spheres,

for example) in the continuous phase. In real thermal interface materials, the

dispersed particles have a size distribution. It is recommended that the effect

of polydisperse particles be investigated.

2. Some thermal interface materials under investigation consist of dispersions of

particles with various geometries (platelets and spheres, for example). Models

which capture this behaviour are still required.

3. Typical thermal interface materials used in microelectronics cooling applications

consist of a fluidic phase into which are dispersed solid particles. In the present
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study, effects associated with the wettability of the solid particle by the fluid

were neglected. An understanding of the effect of incomplete wetting would be

of use in understanding not only effective thermal conductivity, but also the

contact resistances at the interfaces between the thermal interface material and

the adjoining solids.

4. It would be very beneficial if a non-dimensional parameter were identified such

that effective thermal conductivity could be plotted in one-dimension (i.e. ke as

a function of one variable describing the particle geometry, orientation, thermal

conductivity, etc.). In the present work, it was suggested that the aspect ratio,

conductivity ratio, and the ratio of the volume fraction to the maximum packing

fraction likely contain important features of such a non-dimensional parameter.

5. Any model for effective thermal conductivity should in theory work well in both

the insulating regime as well as in the conducting regime (e.g. fluids into which

are dispersed more conductive particles for thermally conductive materials, and

fluids into which are dispersed less conductive particles for insulating materials).

The present models could be investigated in the insulating regime1.

6. In order to bring closure to the study of the thermal resistance of heterogeneous

mixtures and fully utilize the present study, more work is required to understand

and develop models for the bond-line thickness and contact resistances described

in the Introduction.

1One problem with this is foreseen, and arises in the lack of the so-called critical condition

for hollow glass microspheres. The conductivity of the liquid is intermediate to that of the glass

and that of the vacuum inside the hollow glass sphere. There thus exists a critical value which

the wall thickness must not exceed to produce an insulating effect in the effective medium. The

limiting reduction in the thermal conductivity of the base fluid is achieved in taking the limit as

the conductivity ratio of the “particle” approaches 0 for a specified thermal conductivity of the

“coating.” In the present formulation of the problem, however, a vacuum creates a short in the

resistance network so that no critical condition is observed.
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Appendix A

Mathematical Formulation of the

Maxwell Equation

Maxwell considered the situation where n small spheres of radius r2 and conductiv-

ity k2 were embedded within a single larger sphere of radius r1 and conductivity k1

such that the temperature fields of neighbouring particles are independent of one an-

other. The temperature distribution in each component is defined by the azimuthally

independent steady-state diffusion equation,

∇2Ti =
1

r2

∂

∂r

(
r2∂Ti

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ti

∂θ

)
= 0 (A.1)

where i = 0 in the effective medium, i = 1 in the continuous fluid phase, and i = 2

in the solid particle.

Taking the centre of the sphere as the origin, the general solution of Equation

(A.1) in each medium is written as

Ti =
∞∑

m=0

(
ai,m r

m + bi,m r
−(m+1)

)
Pm(cos θ) (A.2)

where Pm(cos θ) is the mth degree Legendre polynomial. Equation (A.2) can be greatly

simplified if we recognize the following: (1) in the effective medium far from the
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Figure A.1: Cell geometry subject to Maxwell’s analysis

particle, the temperature gradient and heat flux are constants, (2) P1(cos θ) = cos θ,

and (3) the boundary conditions connecting each medium impose the same form of

T0(r, θ) on Ti(r, θ). Making these observations in Equation (A.2) results in a more

simple general form,

Ti(r, θ) =
(
Ai +Bir

−2
)
cos θ (A.3)

A.1 Boundary Conditions

1. ∇T0 and q0 are constants far from the particle,

lim
(r→∞,θ)

T0(r, θ) = −q0
k
z = −q0

k
r cos θ

A0 = −q0
k

(A.4)

2. T is bounded at the center of the particle (r2 = 0),

T2(r2, θ) =
(
A2r2 +B2r

−2
2

)
cos θ

B2 = 0 (A.5)

3. Conduction across the interfaces (energy balance),

k2

(
∂T2

∂r

)∣∣∣∣
r=r2

= k1

(
∂T1

∂r

)∣∣∣∣
r=r2

(A.6)
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k1

(
∂T1

∂r

)∣∣∣∣
r=r1

= k0

(
∂T0

∂r

)∣∣∣∣
r=r1

(A.7)

4. Continuity of temperature at the interfaces,

T2(r2, θ) = T1(r2, θ) (A.8)

T1(r1, θ) = T0(r2, θ) (A.9)

A.2 Solution 1: Neglect Local Distortions in Po-

larization Field

One method of deriving the Maxwell equation from the above formulation involves

solving the temperature field in the surrounding fluid under two conditions: these

are (1) when a number of small spheres of conductivity k2 are embedded in the

surrounding fluid and (2) when the composite medium is assumed to be entirely

composed of material with conductivity ke. If it is assumed that the temperature

field in the fluid is identical in both cases, then the effective thermal conductivity of

the medium can be established by equating the respective polarization fields of cases

(1) and (2). Solving Equation (A.1) subject to the boundary conditions yields the

temperature field in the discontinuous solid phase,

Ts = −q0
k

(
3kf

ks + kf

)
r cos θ (A.10)

and the temperature field in the continuous fluid phase,

Tf = −q0
k

(r cos θ) +
q0
k
nr3

2

(
ks − kf

ks + 2kf

)(
cos θ

r2

)
(A.11)

We define the volume fraction as,

φ =
V2

V1
=
nr3

2

r3
1

(A.12)
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From Equation (A.11),

Tf = −q0
k

(r cos θ) +
q0
k
φr3

1

(
ks − kf

ks + 2kf

)(
cos θ

r2

)
(A.13)

However, if the larger sphere had been embedded with a material of thermal conduc-

tivity ke, Equation (A.13) would be written as

Tf = −q0
k

(r cos θ) +
q0
k
r3
1

(
ke − kf

ke + 2kf

)(
cos θ

r2

)
(A.14)

In order for Equations (A.13) and (A.14) to produce the same result,

φ

(
ks − kf

ks + 2kf

)
=

(
ke − kf

ke + 2kf

)
(A.15)

which, when rearranged, is identical to the Maxwell equation.

A.3 Solution 2: Volume-Averaged Fields

Hamilton [60] developed a method of determining effective thermal conductivity from

the volume averaged heat flux and temperature gradient in the cell. He defined

effective thermal conductivity as the ratio of the average heat flux in the cell to the

average temperature gradient in the cell,

ke =
q

∇T
(A.16)

where the overbar indicates a volume average over the cell volume, V = 4πr3
1/3:

f =
1

V

∫

V

f dV (A.17)

Due to symmetry, only the averaged z−components are non-zero. These are given by

q = q1 (1 − φ) + q2 φ (A.18)

in which

qi = ki ∇Ti (A.19)
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and

∇T = ∇T1 (1 − φ) + ∇T2 φ (A.20)

where φ = V2/V1 is the particle volume fraction. Consequently, the effective conduc-

tivity of the medium becomes

ke =
k1 ∇T1 (1 − φ) + k2 ∇T2 φ

∇T1 (1 − φ) + ∇T2 φ
(A.21)

The solution of the above equations gives the famous result of Maxwell. This

analysis has been used to develop similar models where effects such as boundary

resistance at the particle/matrix interface or thin coatings are considered [19].
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Appendix B

Various Geometric Dispersions

With Thin Coatings in a

Rectangular Lattice

Upper and lower bounds have also been derived for the various geometries when a

uniform shell of a material with different thermal properties surrounds the particle in

a rectangular cell. Forcing this thickness, τ , equal to 0, the relative conductivity of

the coating, κc, equal to 1, and the dimensions of the rectangular cell, A, B, and C,

equal to 0.5 recovers the previous relationships (various geometries in a unit cell).

Applying the same procedure described in Chapter 4, upper and lower bounds

have been derived for (1) a cylinder oriented with its axis parallel to heat flow, (2)

a cylinder oriented with its axis perpendicular to heat flow, (3) a rectangular prism,

and (4) an ellipsoid in a rectangular cell for particles with thin coatings of materials

with different thermal properties. Figure B.1 is an example of the geometries studied.
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Figure B.1: Rectangular prism with uniform coating inside unit cell – 1/8th unit cell

B.1 Cylinder With Axis Parallel to Heat Flow

A finite circular cylinder oriented with its axis parallel to the direction of heat flow

in a rectangular cell has the following lower and upper bounds on effective thermal

conductivity when a thin coating of a thermally different material is allowed for:

(
ke

kf

)

lb

= 1 − π(ε+ τ )2

4AB
+

C

4AB

[
πε2

C −Kh−Kcτ
+
π(ε+ τ )2 − πε2

C −Kc(h+ τ )

]

(
ke

kf

)

ub

=

{
1 − (h+ τ )

C
+
AB

C

[
κκcπε

2

κch+ κτ
+

4AB + (κc − 1)π(ε+ τ )2 − πε2

h + τ

]}−1

(B.1)

where ε is the relative radius of the cylinder, τ is the relative thickness of the coating,

0 ≤ ε + τ ≤ 0.5, and 2h is the relative height of the cylinder, 0 ≤ 2h + 2τ ≤ 1; and

where κ, κc, K, and Kc are defined in Equations (4.6) and (4.29) in Chapter 4 for

the particle material and the coating material.
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B.2 Cylinder With Axis Perpendicular to Heat

Flow

A finite circular cylinder oriented with its axis perpendicular to the direction of heat

flow in a rectangular cell has the following lower and upper bounds on effective ther-

mal conductivity when a thin coating of a thermally different material is allowed for:

(
ke

kf

)

lb

= 1 − (ε+ τ )(h+ τ )
C

AB
+

C

AB
h

(
Ilb,1 + Ilb,2 + Ilb,3 +

A− (ε+ τ )

C

)

(
ke

kf

)

ub

=

[
1 − (ε+ τ )

C
+
AB

C
(Iub,1 + Iub,2)

]−1

(B.2)

where

Ilb,1 =

∫ ε

0

dx

C −Kc

√
(ε+ τ )2 − x2 −

(
1

κc
− 1

κ

)√
ε2 − x2

Ilb,2 =

∫ ε+τ

ε

dx

C −Kc

√
(ε+ τ )2 − x2

Ilb,3 =

∫ ε+τ

0

dx

C −Kc

√
(ε+ τ )2 − x2

(B.3)

and

Iub,1 =

∫ ε

0

dz

AB + (κc − 1)(h+ τ )
√

(ε+ τ )2 − z2 + (κ− κc)h
√
ε2 − z2

Iub,2 =

∫ ε+τ

ε

dz

AB + (κc − 1)(h+ τ )
√

(ε+ τ )2 − z2

(B.4)

(B.5)

where ε is the relative radius of the cylinder, τ is the relative thickness of the coating,

0 ≤ ε + τ ≤ 0.5, and 2h is the relative height of the cylinder, 0 ≤ 2h + 2τ ≤ 1; and

where κ, κc, K, and Kc are defined in Equations (4.6) and (4.29) in Chapter 4 for

the particle material and the coating material.
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B.3 Rectangular Prism

A rectangular prism in a unit cell has the following lower and upper bounds on

effective thermal conductivity when a thin coating of a thermally different material

is allowed for:

(
ke

kf

)

lb

= 1 − (a+ τ )(b+ τ )

AB
+

1

AB

[
ab

C −Kc−Kcτ

+
(a+ τ )(b+ τ ) − ab

C −Kc(c+ τ )

]

(
ke

kf

)

ub

=

{
1 − (c+ τ )

C
+ 2

[
κκcab

κτ + κcc

+
AB + (κc − 1)(a+ τ )(b+ τ ) − ab

c+ τ

]}−1

(B.6)

where 2a, 2b, and 2c are the dimensions of the prism in the x−, y−, and z−axes, τ is

the relative thickness of the coating, and 0 ≤ a+ τ, b+ τ, c+ τ ≤ 0.5. The direction

of heat flow is along the z−axis. The dimensions 2a and 2b are interchangeable as

expected. The terms κ, κc, K, and Kc are defined in Equations (4.6) and (4.29) in

Chapter 4 for the particle material and the coating material.

B.4 Ellipsoid

An ellipsoid in a unit cell has the following lower and upper bounds on effective

thermal conductivity when a thin coating of a thermally different material is allowed

for:

(
ke

kf

)

lb

= 1 − π(a+ τ )(b+ τ )

4AB
+

C

2AB
(Ilb,1 + Ilb,2)

(
ke

kf

)

ub

=

[
1 − (c+ τ )

C
+ 2(Iub,1 + Iub,2)

]−1

(B.7)
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where

Ilb,1 =

∫ b+τ

0

∫ a
√

1− y2

b2

0

dxdy{
C −Kc(c+ τ )

√
1 − x2

(a+ τ )2
+

y2

(b+ τ )2

−
(

1

κc
− 1

κ

)
c

√
1 − x2

a2
+
y2

b2

}

Ilb,2 =

∫ b+τ

0

∫ (a+τ)

√
1− y2

(b+τ)2

a
√

1− y2

b2

dxdy

C −Kc(c+ τ )

√
1 − x2

(a+ τ )2
+

y2

(b+ τ )2

(B.8)

and

Iub,1 =

∫ c

0

dz{
2AB − (κ− κc + 1)π(a+ τ )(b+ τ )

[
1 − z2

(c+ τ )2

]

−κcπab

(
1 − z2

c2

)}

Iub,2 =

∫ c+τ

c

dz

2AB + (κb − 1)π(a+ τ )(b+ τ )

[
1 − z2

(c+ τ )2

]

(B.9)

and where 2a, 2b, and 2c are the dimensions of the ellipsoid in the x−, y−, and z−axes,

τ is the relative thickness of the coating, and 0 ≤ a+τ, b+τ, c+τ ≤ 0.5. The direction

of heat flow is along the z−axis. The dimensions 2a and 2b are interchangeable as

expected. The terms κ, κc, K, and Kc are defined in Equations (4.6) and (4.29) in

Chapter 4 for the particle material and the coating material.
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Appendix C

Numerical Results
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Table C.1: Rectangular prism in a unit cell (κ = 1000)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.1 0.008 1.01 1.24 1.12 1.03 8.09
0.1 0.2 0.1 0.016 1.02 1.25 1.13 1.05 7.04
0.1 0.1 0.2 0.016 1.03 1.64 1.30 1.11 14.58
0.1 0.2 0.2 0.032 1.05 1.65 1.32 1.17 11.62
0.1 0.3 0.1 0.024 1.03 1.25 1.13 1.07 5.95
0.1 0.1 0.3 0.024 1.06 2.41 1.60 1.26 21.10
0.1 0.3 0.2 0.048 1.08 1.66 1.34 1.22 8.72
0.1 0.2 0.3 0.048 1.12 2.45 1.66 1.39 15.89
0.1 0.3 0.3 0.072 1.18 2.47 1.71 1.52 11.03
0.1 0.4 0.1 0.032 1.04 1.25 1.14 1.08 4.97
0.1 0.1 0.4 0.032 1.16 4.56 2.30 1.58 31.26
0.1 0.4 0.2 0.064 1.11 1.66 1.36 1.27 6.45
0.1 0.2 0.4 0.064 1.32 4.76 2.51 1.89 24.53
0.1 0.4 0.3 0.096 1.24 2.48 1.75 1.62 7.50
0.1 0.3 0.4 0.096 1.48 4.84 2.67 2.19 18.08
0.1 0.4 0.4 0.128 1.64 4.88 2.83 2.45 13.40

0.2 0.2 0.1 0.032 1.04 1.25 1.14 1.08 5.50
0.2 0.2 0.2 0.064 1.11 1.66 1.36 1.25 7.79
0.2 0.3 0.1 0.048 1.06 1.25 1.15 1.10 4.01
0.2 0.3 0.2 0.096 1.16 1.66 1.39 1.33 4.34
0.2 0.2 0.3 0.096 1.24 2.48 1.75 1.58 9.72
0.2 0.3 0.3 0.144 1.36 2.48 1.84 1.76 4.36
0.2 0.4 0.1 0.064 1.08 1.25 1.16 1.13 2.77
0.2 0.4 0.2 0.128 1.21 1.66 1.42 1.39 1.98
0.2 0.2 0.4 0.128 1.64 4.88 2.83 2.36 16.62
0.2 0.4 0.3 0.192 1.48 2.49 1.92 1.90 1.10
0.2 0.3 0.4 0.192 1.96 4.92 3.10 2.80 9.73
0.2 0.4 0.4 0.256 2.27 4.94 3.35 3.17 5.27
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a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.3 0.1 0.072 1.09 1.25 1.17 1.14 2.21
0.3 0.3 0.2 0.144 1.24 1.66 1.44 1.43 0.59
0.3 0.3 0.3 0.216 1.54 2.49 1.96 1.98 −1.08
0.3 0.4 0.1 0.096 1.12 1.25 1.18 1.17 0.77
0.3 0.4 0.2 0.192 1.32 1.66 1.48 1.51 −1.69
0.3 0.4 0.3 0.288 1.72 2.49 2.07 2.15 −3.93
0.3 0.3 0.4 0.288 2.43 4.95 3.47 3.38 2.65
0.3 0.4 0.4 0.384 2.91 4.96 3.80 3.86 −1.68

0.4 0.4 0.1 0.128 1.16 1.25 1.20 1.21 −0.74
0.4 0.4 0.2 0.256 1.43 1.66 1.54 1.60 −3.60
0.4 0.4 0.3 0.384 1.96 2.49 2.21 2.34 −6.09
0.4 0.4 0.4 0.512 3.55 4.97 4.20 4.44 −5.69
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Table C.2: Rectangular prism in a unit cell (κ = 100)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.1 0.008 1.01 1.19 1.10 1.03 6.19
0.1 0.2 0.1 0.016 1.02 1.22 1.11 1.05 6.02
0.1 0.1 0.2 0.016 1.03 1.47 1.23 1.10 10.29
0.1 0.2 0.2 0.032 1.05 1.55 1.28 1.16 9.37
0.1 0.3 0.1 0.024 1.03 1.23 1.12 1.06 5.29
0.1 0.1 0.3 0.024 1.06 1.92 1.43 1.24 13.28
0.1 0.3 0.2 0.048 1.08 1.58 1.31 1.21 7.35
0.1 0.2 0.3 0.048 1.12 2.14 1.55 1.36 11.74
0.1 0.3 0.3 0.072 1.18 2.24 1.62 1.48 8.54
0.1 0.4 0.1 0.032 1.04 1.23 1.13 1.08 4.51
0.1 0.1 0.4 0.032 1.15 2.77 1.79 1.49 16.40
0.1 0.4 0.2 0.064 1.10 1.60 1.33 1.26 5.55
0.1 0.2 0.4 0.064 1.30 3.45 2.12 1.79 15.86
0.1 0.4 0.3 0.096 1.23 2.30 1.68 1.58 5.90
0.1 0.3 0.4 0.096 1.46 3.82 2.36 2.06 12.49
0.1 0.4 0.4 0.128 1.61 4.04 2.55 2.31 9.57

0.2 0.2 0.1 0.032 1.04 1.23 1.13 1.07 5.03
0.2 0.2 0.2 0.064 1.10 1.60 1.33 1.24 6.84
0.2 0.3 0.1 0.048 1.06 1.24 1.14 1.10 3.76
0.2 0.3 0.2 0.096 1.16 1.62 1.37 1.32 3.92
0.2 0.2 0.3 0.096 1.23 2.30 1.68 1.55 8.00
0.2 0.3 0.3 0.144 1.35 2.36 1.78 1.72 3.65
0.2 0.4 0.1 0.064 1.08 1.24 1.16 1.13 2.63
0.2 0.4 0.2 0.128 1.21 1.63 1.41 1.38 1.81
0.2 0.2 0.4 0.128 1.61 4.04 2.55 2.23 12.55
0.2 0.4 0.3 0.192 1.47 2.39 1.87 1.86 0.85
0.2 0.3 0.4 0.192 1.91 4.30 2.87 2.65 7.69
0.2 0.4 0.4 0.256 2.22 4.45 3.14 3.01 4.24
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a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.3 0.1 0.072 1.09 1.24 1.16 1.14 2.12
0.3 0.3 0.2 0.144 1.24 1.64 1.42 1.41 0.54
0.3 0.3 0.3 0.216 1.53 2.40 1.91 1.94 −1.09
0.3 0.4 0.1 0.096 1.12 1.24 1.18 1.17 0.76
0.3 0.4 0.2 0.192 1.31 1.64 1.47 1.49 −1.59
0.3 0.4 0.3 0.288 1.70 2.43 2.03 2.11 −3.69
0.3 0.3 0.4 0.288 2.37 4.51 3.27 3.20 2.09
0.3 0.4 0.4 0.384 2.83 4.62 3.61 3.67 −1.59

0.4 0.4 0.1 0.128 1.16 1.25 1.20 1.21 −0.70
0.4 0.4 0.2 0.256 1.42 1.65 1.53 1.58 −3.42
0.4 0.4 0.3 0.384 1.94 2.44 2.18 2.30 −5.74
0.4 0.4 0.4 0.512 3.44 4.71 4.02 4.23 −5.20
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Table C.3: Rectangular prism in a unit cell (κ = 10)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.1 0.008 1.01 1.06 1.03 1.02 1.14
0.1 0.2 0.1 0.016 1.02 1.09 1.05 1.03 1.79
0.1 0.1 0.2 0.016 1.02 1.12 1.07 1.06 0.88
0.1 0.2 0.2 0.032 1.05 1.20 1.12 1.10 1.61
0.1 0.3 0.1 0.024 1.03 1.12 1.07 1.05 1.96
0.1 0.1 0.3 0.024 1.05 1.19 1.12 1.11 0.08
0.1 0.3 0.2 0.048 1.07 1.26 1.16 1.14 1.59
0.1 0.2 0.3 0.048 1.09 1.34 1.21 1.20 0.69
0.1 0.3 0.3 0.072 1.14 1.45 1.29 1.28 0.53
0.1 0.4 0.1 0.032 1.04 1.13 1.08 1.06 1.90
0.1 0.1 0.4 0.032 1.10 1.27 1.18 1.19 −0.36
0.1 0.4 0.2 0.064 1.09 1.31 1.19 1.18 1.31
0.1 0.2 0.4 0.064 1.21 1.50 1.35 1.34 0.38
0.1 0.4 0.3 0.096 1.19 1.55 1.36 1.35 0.16
0.1 0.3 0.4 0.096 1.31 1.71 1.50 1.49 0.43
0.1 0.4 0.4 0.128 1.41 1.89 1.64 1.63 0.29

0.2 0.2 0.1 0.032 1.04 1.13 1.08 1.06 2.27
0.2 0.2 0.2 0.064 1.09 1.31 1.19 1.17 2.14
0.2 0.3 0.1 0.048 1.05 1.16 1.10 1.08 2.04
0.2 0.3 0.2 0.096 1.14 1.38 1.25 1.23 1.49
0.2 0.2 0.3 0.096 1.19 1.55 1.36 1.34 1.33
0.2 0.3 0.3 0.144 1.28 1.70 1.47 1.47 0.57
0.2 0.4 0.1 0.064 1.07 1.17 1.12 1.10 1.60
0.2 0.4 0.2 0.128 1.18 1.42 1.30 1.25 3.50
0.2 0.2 0.4 0.128 1.41 1.89 1.64 1.61 1.61
0.2 0.4 0.3 0.192 1.38 1.80 1.57 1.58 −0.24
0.2 0.3 0.4 0.192 1.62 2.21 1.89 1.86 1.35
0.2 0.4 0.4 0.256 1.82 2.46 2.12 2.10 0.83
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a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.3 0.1 0.072 1.08 1.18 1.13 1.11 1.38
0.3 0.3 0.2 0.144 1.20 1.44 1.32 1.31 0.22
0.3 0.3 0.3 0.216 1.42 1.85 1.62 1.64 −0.90
0.3 0.4 0.1 0.096 1.11 1.19 1.15 1.14 0.61
0.3 0.4 0.2 0.192 1.27 1.48 1.37 1.38 −0.92
0.3 0.4 0.3 0.288 1.56 1.95 1.75 1.78 −2.08
0.3 0.3 0.4 0.288 1.93 2.57 2.23 2.22 0.39
0.3 0.4 0.4 0.384 2.23 2.85 2.53 2.54 −0.74

0.4 0.4 0.1 0.128 1.14 1.21 1.17 1.18 −0.37
0.4 0.4 0.2 0.256 1.36 1.52 1.44 1.47 −2.14
0.4 0.4 0.3 0.384 1.75 2.05 1.89 1.96 −3.34
0.4 0.4 0.4 0.512 2.65 3.14 2.88 2.95 −2.20
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Table C.4: Circular cylinder with axis oriented parallel to direction of heat flow, in a

unit cell (κ = 1000)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.006 1.01 1.24 1.12 1.02 8.37
0.1 0.2 0.013 1.02 1.63 1.29 1.09 15.44
0.1 0.3 0.019 1.05 2.39 1.58 1.22 22.65
0.1 0.4 0.025 1.13 4.45 2.24 1.49 33.35

0.2 0.1 0.025 1.03 1.25 1.13 1.06 6.36
0.2 0.2 0.050 1.08 1.66 1.34 1.21 10.00
0.2 0.3 0.075 1.19 2.47 1.71 1.48 13.44
0.2 0.4 0.101 1.50 4.85 2.70 2.11 21.57

0.3 0.1 0.057 1.07 1.25 1.16 1.11 3.65
0.3 0.2 0.113 1.19 1.66 1.41 1.35 3.75
0.3 0.3 0.170 1.42 2.49 1.88 1.81 3.71
0.3 0.4 0.226 2.13 4.93 3.24 2.95 8.99

0.4 0.1 0.101 1.13 1.25 1.19 1.18 0.85
0.4 0.2 0.201 1.33 1.66 1.49 1.51 −1.30
0.4 0.3 0.302 1.75 2.49 2.09 2.16 −3.15
0.4 0.4 0.402 3.00 4.96 3.86 3.89 −0.70
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Table C.5: Circular cylinder with axis oriented parallel to direction of heat flow, in a

unit cell (κ = 100)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.006 1.01 1.18 1.09 1.02 6.07
0.1 0.2 0.013 1.02 1.43 1.21 1.09 10.25
0.1 0.3 0.019 1.05 1.83 1.38 1.20 13.27
0.1 0.4 0.025 1.12 2.53 1.68 1.41 16.08

0.2 0.1 0.025 1.03 1.23 1.12 1.06 5.71
0.2 0.2 0.050 1.08 1.59 1.31 1.20 8.61
0.2 0.3 0.075 1.18 2.25 1.63 1.45 10.86
0.2 0.4 0.101 1.48 3.85 2.39 2.01 15.89

0.3 0.1 0.057 1.07 1.24 1.15 1.11 3.45
0.3 0.2 0.113 1.19 1.63 1.39 1.34 3.44
0.3 0.3 0.170 1.41 2.38 1.83 1.77 3.18
0.3 0.4 0.226 2.08 4.39 3.02 2.80 7.37

0.4 0.1 0.101 1.12 1.24 1.18 1.17 0.83
0.4 0.2 0.201 1.33 1.65 1.48 1.50 −1.23
0.4 0.3 0.302 1.74 2.43 2.05 2.11 −2.98
0.4 0.4 0.402 2.91 4.63 3.67 3.7 −0.71
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Table C.6: Circular cylinder with axis oriented parallel to direction of heat flow, in a

unit cell (κ = 10)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.006 1.01 1.05 1.03 1.02 0.94
0.1 0.2 0.013 1.02 1.10 1.06 1.05 0.66
0.1 0.3 0.019 1.04 1.15 1.09 1.09 −0.07
0.1 0.4 0.025 1.08 1.21 1.15 1.15 −0.47

0.2 0.1 0.025 1.03 1.12 1.07 1.05 2.29
0.2 0.2 0.050 1.07 1.27 1.17 1.14 2.36
0.2 0.3 0.075 1.15 1.47 1.30 1.28 1.68
0.2 0.4 0.101 1.32 1.74 1.52 1.49 1.75

0.3 0.1 0.057 1.06 1.17 1.11 1.09 2.01
0.3 0.2 0.113 1.16 1.40 1.28 1.26 1.49
0.3 0.3 0.170 1.33 1.76 1.53 1.52 0.69
0.3 0.4 0.226 1.73 2.35 2.01 1.98 1.7

0.4 0.1 0.101 1.11 1.20 1.15 1.14 0.66
0.4 0.2 0.201 1.28 1.49 1.38 1.39 −0.73
0.4 0.3 0.302 1.59 1.97 1.77 1.80 −1.74
0.4 0.4 0.402 2.29 2.90 2.58 2.59 −0.37
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Table C.7: Circular cylinder with axis perpendicular to direction of heat flow, in a

unit cell (κ = 1000)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.006 1.01 1.24 1.12 1.02 8.69
0.1 0.2 0.013 1.02 1.24 1.12 1.03 8.07
0.1 0.3 0.019 1.02 1.25 1.13 1.05 7.35
0.1 0.4 0.025 1.03 1.25 1.13 1.06 6.66

0.2 0.1 0.025 1.04 1.65 1.31 1.11 15.11
0.2 0.2 0.050 1.08 1.66 1.34 1.17 12.59
0.2 0.3 0.075 1.12 1.66 1.36 1.22 10.19
0.2 0.4 0.101 1.15 1.66 1.38 1.27 8.44

0.3 0.1 0.057 1.12 2.45 1.66 1.33 19.70
0.3 0.2 0.113 1.24 2.48 1.75 1.49 15.14
0.3 0.3 0.170 1.36 2.48 1.84 1.63 11.22
0.3 0.4 0.226 1.48 2.49 1.92 1.74 9.01

0.4 0.1 0.101 1.36 4.81 2.56 1.85 27.55
0.4 0.2 0.201 1.71 4.90 2.90 2.26 21.95
0.4 0.3 0.302 2.07 4.94 3.20 2.65 17.16
0.4 0.4 0.402 2.43 4.95 3.47 2.96 14.59
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Table C.8: Circular cylinder with axis perpendicular to direction of heat flow, in a

unit cell (κ = 100)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.006 1.01 1.17 1.09 1.02 6.23
0.1 0.2 0.013 1.01 1.20 1.11 1.03 6.61
0.1 0.3 0.019 1.02 1.22 1.12 1.04 6.32
0.1 0.4 0.025 1.03 1.22 1.12 1.06 5.88

0.2 0.1 0.025 1.04 1.51 1.25 1.11 11.74
0.2 0.2 0.050 1.08 1.58 1.30 1.16 10.79
0.2 0.3 0.075 1.11 1.60 1.34 1.22 9.03
0.2 0.4 0.101 1.15 1.62 1.36 1.26 7.62

0.3 0.1 0.057 1.12 2.15 1.55 1.31 15.19
0.3 0.2 0.113 1.23 2.30 1.68 1.47 12.86
0.3 0.3 0.170 1.35 2.36 1.78 1.61 9.84
0.3 0.4 0.226 1.47 2.39 1.87 1.72 8.07

0.4 0.1 0.101 1.34 3.73 2.24 1.79 20.10
0.4 0.2 0.201 1.69 4.23 2.67 2.19 18.03
0.4 0.3 0.302 2.03 4.45 3.01 2.57 14.68
0.4 0.4 0.402 2.38 4.57 3.30 2.87 12.81
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Table C.9: Circular cylinder with axis perpendicular to direction of heat flow, in a

unit cell (κ = 10)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.006 1.01 1.05 1.03 1.01 1.10
0.1 0.2 0.013 1.01 1.08 1.04 1.03 1.81
0.1 0.3 0.019 1.02 1.10 1.06 1.04 2.14
0.1 0.4 0.025 1.03 1.12 1.07 1.06 1.25

0.2 0.1 0.025 1.03 1.16 1.10 1.07 2.16
0.2 0.2 0.050 1.07 1.26 1.16 1.12 3.33
0.2 0.3 0.075 1.10 1.32 1.21 1.17 3.40
0.2 0.4 0.101 1.13 1.37 1.25 1.21 3.21

0.3 0.1 0.057 1.10 1.37 1.22 1.20 2.12
0.3 0.2 0.113 1.19 1.58 1.37 1.32 3.51
0.3 0.3 0.170 1.29 1.72 1.49 1.44 3.31
0.3 0.4 0.226 1.39 1.83 1.59 1.54 3.09

0.4 0.1 0.101 1.25 1.70 1.46 1.43 1.83
0.4 0.2 0.201 1.50 2.18 1.81 1.73 4.09
0.4 0.3 0.302 1.75 2.52 2.10 2.01 4.28
0.4 0.4 0.402 2.01 2.79 2.37 2.26 4.39
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Table C.10: Ellipsoid in a unit cell (κ = 1000)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.1 0.004 1.00 1.23 1.11 1.01 8.80
0.1 0.2 0.1 0.008 1.01 1.24 1.12 1.02 8.69
0.1 0.1 0.2 0.008 1.01 1.59 1.27 1.05 17.22
0.1 0.2 0.2 0.017 1.02 1.62 1.29 1.07 16.73
0.1 0.3 0.1 0.013 1.01 1.24 1.12 1.03 8.34
0.1 0.1 0.3 0.013 1.02 2.24 1.51 1.12 26.07
0.1 0.3 0.2 0.025 1.04 1.63 1.30 1.10 15.69
0.1 0.2 0.3 0.025 1.05 2.35 1.57 1.17 25.29
0.1 0.3 0.3 0.038 1.07 2.39 1.60 1.22 23.51
0.1 0.4 0.1 0.017 1.02 1.24 1.12 1.04 7.91
0.1 0.1 0.4 0.017 1.05 3.83 2.01 1.25 37.61
0.1 0.4 0.2 0.034 1.05 1.64 1.31 1.12 14.50
0.1 0.2 0.4 0.034 1.10 4.26 2.16 1.35 37.41
0.1 0.4 0.3 0.050 1.09 2.41 1.62 1.28 21.51
0.1 0.3 0.4 0.050 1.14 4.44 2.25 1.46 35.40
0.1 0.4 0.4 0.067 1.19 4.55 2.33 1.56 32.97

0.2 0.2 0.1 0.017 1.02 1.24 1.12 1.03 8.31
0.2 0.2 0.2 0.034 1.05 1.64 1.31 1.10 15.82
0.2 0.3 0.1 0.025 1.03 1.24 1.13 1.04 7.77
0.2 0.3 0.2 0.050 1.07 1.65 1.33 1.14 14.53
0.2 0.2 0.3 0.050 1.09 2.41 1.62 1.23 24.00
0.2 0.3 0.3 0.075 1.14 2.44 1.67 1.30 22.02
0.2 0.4 0.1 0.034 1.04 1.25 1.14 1.06 7.19
0.2 0.4 0.2 0.067 1.10 1.65 1.35 1.17 13.17
0.2 0.2 0.4 0.067 1.19 4.55 2.33 1.48 36.56
0.2 0.4 0.3 0.101 1.19 2.45 1.71 1.37 20.04
0.2 0.3 0.4 0.101 1.29 4.67 2.45 1.61 34.39
0.2 0.4 0.4 0.134 1.38 4.74 2.56 1.74 32.00
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a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.3 0.1 0.038 1.04 1.25 1.14 1.06 7.08
0.3 0.3 0.2 0.075 1.11 1.65 1.35 1.18 13.07
0.3 0.3 0.3 0.113 1.21 2.45 1.72 1.38 19.95
0.3 0.4 0.1 0.050 1.06 1.25 1.15 1.08 6.35
0.3 0.4 0.2 0.101 1.15 1.66 1.38 1.22 11.57
0.3 0.4 0.3 0.151 1.28 2.46 1.77 1.46 17.84
0.3 0.3 0.4 0.151 1.43 4.76 2.61 1.77 32.21
0.3 0.4 0.4 0.201 1.57 4.81 2.75 1.93 29.87

0.4 0.4 0.1 0.067 1.08 1.25 1.16 1.10 5.50
0.4 0.4 0.2 0.134 1.19 1.66 1.41 1.27 9.98
0.4 0.4 0.3 0.201 1.38 2.47 1.85 1.56 15.75
0.4 0.4 0.4 0.268 1.77 4.85 2.93 2.12 27.60
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Table C.11: Ellipsoid in a unit cell (κ = 100)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.1 0.004 1.00 1.14 1.07 1.01 5.57
0.1 0.2 0.1 0.008 1.01 1.18 1.09 1.02 6.47
0.1 0.1 0.2 0.008 1.01 1.33 1.16 1.05 9.97
0.1 0.2 0.2 0.017 1.02 1.43 1.21 1.07 11.67
0.1 0.3 0.1 0.013 1.01 1.19 1.10 1.03 6.63
0.1 0.1 0.3 0.013 1.02 1.60 1.28 1.11 13.28
0.1 0.3 0.2 0.025 1.04 1.48 1.24 1.09 11.75
0.1 0.2 0.3 0.025 1.05 1.83 1.39 1.16 16.04
0.1 0.3 0.3 0.038 1.07 1.95 1.44 1.21 16.16
0.1 0.4 0.1 0.017 1.02 1.20 1.11 1.04 6.52
0.1 0.1 0.4 0.017 1.05 2.01 1.45 1.22 15.79
0.1 0.4 0.2 0.034 1.05 1.51 1.26 1.12 11.26
0.1 0.2 0.4 0.034 1.09 2.52 1.66 1.32 20.45
0.1 0.4 0.3 0.050 1.09 2.03 1.49 1.26 15.37
0.1 0.3 0.4 0.050 1.14 2.86 1.81 1.42 21.28
0.1 0.4 0.4 0.067 1.19 3.10 1.92 1.52 20.74

0.2 0.2 0.1 0.017 1.02 1.20 1.11 1.03 6.90
0.2 0.2 0.2 0.034 1.05 1.51 1.26 1.10 12.56
0.2 0.3 0.1 0.025 1.03 1.22 1.12 1.04 6.72
0.2 0.3 0.2 0.050 1.07 1.55 1.29 1.13 12.09
0.2 0.2 0.3 0.050 1.09 2.03 1.49 1.23 17.85
0.2 0.3 0.3 0.075 1.14 2.14 1.56 1.29 17.32
0.2 0.4 0.1 0.034 1.04 1.22 1.13 1.06 6.35
0.2 0.4 0.2 0.067 1.10 1.57 1.31 1.16 11.21
0.2 0.2 0.4 0.067 1.19 3.10 1.92 1.45 24.53
0.2 0.4 0.3 0.101 1.19 2.20 1.62 1.36 16.12
0.2 0.3 0.4 0.101 1.28 3.44 2.10 1.58 24.82
0.2 0.4 0.4 0.134 1.37 3.67 2.24 1.71 23.93
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a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.3 0.1 0.038 1.04 1.22 1.13 1.06 6.32
0.3 0.3 0.2 0.075 1.11 1.58 1.32 1.17 11.28
0.3 0.3 0.3 0.113 1.21 2.22 1.64 1.37 16.45
0.3 0.4 0.1 0.050 1.06 1.23 1.14 1.08 5.76
0.3 0.4 0.2 0.101 1.14 1.60 1.35 1.21 10.16
0.3 0.4 0.3 0.151 1.28 2.27 1.70 1.45 15.04
0.3 0.3 0.4 0.151 1.42 3.75 2.31 1.74 24.78
0.3 0.4 0.4 0.201 1.56 3.95 2.48 1.89 23.72

0.4 0.4 0.1 0.067 1.08 1.23 1.15 1.10 5.04
0.4 0.4 0.2 0.134 1.19 1.61 1.38 1.26 8.88
0.4 0.4 0.3 0.201 1.37 2.32 1.78 1.54 13.53
0.4 0.4 0.4 0.268 1.74 4.13 2.68 2.08 22.56

121



Table C.12: Ellipsoid in a unit cell (κ = 10)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.1 0.1 0.1 0.004 1.00 1.03 1.01 1.01 0.84
0.1 0.2 0.1 0.008 1.01 1.06 1.03 1.02 1.52
0.1 0.1 0.2 0.008 1.01 1.07 1.04 1.03 0.77
0.1 0.2 0.2 0.017 1.02 1.12 1.07 1.05 1.75
0.1 0.3 0.1 0.013 1.01 1.07 1.04 1.02 1.92
0.1 0.1 0.3 0.013 1.02 1.10 1.06 1.06 0.12
0.1 0.3 0.2 0.025 1.03 1.16 1.09 1.07 2.29
0.1 0.2 0.3 0.025 1.04 1.19 1.11 1.10 1.12
0.1 0.3 0.3 0.038 1.06 1.26 1.16 1.14 1.63
0.1 0.4 0.1 0.017 1.02 1.09 1.05 1.03 2.15
0.1 0.1 0.4 0.017 1.04 1.14 1.09 1.09 −0.72
0.1 0.4 0.2 0.034 1.04 1.19 1.11 1.09 2.52
0.1 0.2 0.4 0.034 1.07 1.26 1.16 1.16 0.07
0.1 0.4 0.3 0.050 1.08 1.32 1.19 1.17 1.78
0.1 0.3 0.4 0.050 1.11 1.38 1.24 1.23 0.49
0.1 0.4 0.4 0.067 1.14 1.48 1.30 1.29 0.57

0.2 0.2 0.1 0.017 1.02 1.09 1.05 1.03 2.43
0.2 0.2 0.2 0.034 1.04 1.19 1.11 1.08 3.34
0.2 0.3 0.1 0.025 1.03 1.11 1.07 1.04 2.84
0.2 0.3 0.2 0.050 1.06 1.25 1.15 1.10 4.01
0.2 0.2 0.3 0.050 1.08 1.32 1.19 1.16 3.17
0.2 0.3 0.3 0.075 1.12 1.42 1.26 1.21 4.10
0.2 0.4 0.1 0.034 1.03 1.13 1.08 1.05 2.97
0.2 0.4 0.2 0.067 1.08 1.29 1.18 1.13 4.17
0.2 0.2 0.4 0.067 1.14 1.48 1.30 1.27 2.44
0.2 0.4 0.3 0.101 1.16 1.51 1.32 1.26 4.37
0.2 0.3 0.4 0.101 1.21 1.66 1.42 1.37 3.70
0.2 0.4 0.4 0.134 1.28 1.81 1.52 1.46 4.26
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a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.3 0.1 0.038 1.04 1.13 1.08 1.05 3.11
0.3 0.3 0.2 0.075 1.09 1.31 1.19 1.14 4.55
0.3 0.3 0.3 0.113 1.18 1.54 1.35 1.28 5.04
0.3 0.4 0.1 0.050 1.05 1.15 1.10 1.07 3.08
0.3 0.4 0.2 0.101 1.13 1.35 1.24 1.18 4.51
0.3 0.4 0.3 0.151 1.23 1.63 1.42 1.35 5.21
0.3 0.3 0.4 0.151 1.32 1.88 1.58 1.49 5.28
0.3 0.4 0.4 0.201 1.43 2.07 1.72 1.62 5.94

0.4 0.4 0.1 0.067 1.07 1.16 1.11 1.08 2.88
0.4 0.4 0.2 0.134 1.17 1.39 1.28 1.22 4.28
0.4 0.4 0.3 0.201 1.31 1.72 1.50 1.43 5.23
0.4 0.4 0.4 0.268 1.57 2.27 1.89 1.76 6.59

Table C.13: Rectangular prism in a unit cell, φ = 0.14 (κ = 1000)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.2 0.5 0.18 0.14 1.22 1.56 1.38 1.35 2.38
0.2 0.45 0.2 0.14 1.24 1.66 1.44 1.41 1.63
0.2 0.36 0.25 0.14 1.29 1.99 1.6 1.57 2.11
0.2 0.3 0.3 0.14 1.36 2.48 1.84 1.76 4.22
0.2 0.26 0.35 0.14 1.48 3.3 2.21 2.03 8.13
0.2 0.23 0.4 0.14 1.72 4.89 2.9 2.47 14.67
0.2 0.2 0.45 0.14 2.43 9.47 4.79 3.51 26.68
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Table C.14: Rectangular prism in a unit cell, φ = 0.14 (κ = 100)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.2 0.5 0.18 0.14 1.22 1.54 1.37 1.34 2.23
0.2 0.45 0.2 0.14 1.24 1.64 1.42 1.4 1.51
0.2 0.36 0.25 0.14 1.28 1.93 1.57 1.55 1.83
0.2 0.3 0.3 0.14 1.35 2.36 1.78 1.72 3.62
0.2 0.26 0.35 0.14 1.46 3.01 2.1 1.96 6.56
0.2 0.23 0.4 0.14 1.69 4.12 2.64 2.34 11.25
0.2 0.2 0.45 0.14 2.31 6.52 3.88 3.16 18.58

Table C.15: Rectangular prism in a unit cell, φ = 0.14 (constant)(κ = 10)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.2 0.5 0.18 0.14 1.19 1.39 1.29 1.27 1.29
0.2 0.45 0.2 0.14 1.2 1.44 1.32 1.31 0.66
0.2 0.36 0.25 0.14 1.24 1.56 1.39 1.39 0.37
0.2 0.3 0.3 0.14 1.28 1.70 1.47 1.47 0.57
0.2 0.26 0.35 0.14 1.35 1.83 1.57 1.56 0.96
0.2 0.23 0.4 0.14 1.46 1.98 1.7 1.67 1.62
0.2 0.2 0.45 0.14 1.68 2.13 1.89 1.84 2.69
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Table C.16: Circular cylinder with axis parallel to direction of heat flow, in a unit

cell, φ = 0.10 (κ = 1000)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.45 0.08 0.10 1.12 1.19 1.15 1.15 0.19
0.35 0.13 0.10 1.13 1.35 1.24 1.21 1.95
0.30 0.18 0.10 1.16 1.55 1.34 1.29 3.94
0.26 0.23 0.10 1.18 1.84 1.47 1.38 6.18
0.25 0.25 0.10 1.20 2.00 1.55 1.44 7.35
0.24 0.28 0.10 1.23 2.24 1.66 1.51 8.94
0.22 0.33 0.10 1.29 2.88 1.93 1.68 12.71
0.21 0.38 0.10 1.41 4.02 2.38 1.95 18.33
0.19 0.43 0.10 1.70 6.66 3.36 2.44 27.45
0.18 0.48 0.10 3.28 19.27 7.95 4.44 44.21

Table C.17: Circular cylinder with axis parallel to direction of heat flow, in a unit

cell, φ = 0.10 (κ = 100)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.45 0.08 0.10 1.12 1.18 1.15 1.15 0.20
0.35 0.13 0.10 1.13 1.33 1.23 1.21 1.86
0.30 0.18 0.10 1.15 1.53 1.33 1.28 3.64
0.26 0.23 0.10 1.18 1.78 1.45 1.37 5.49
0.25 0.25 0.10 1.20 1.92 1.52 1.42 6.41
0.24 0.28 0.10 1.22 2.12 1.61 1.48 7.62
0.22 0.33 0.10 1.28 2.61 1.83 1.64 10.29
0.21 0.38 0.10 1.40 3.37 2.17 1.87 13.95
0.19 0.43 0.10 1.65 4.74 2.80 2.27 19.07
0.18 0.48 0.10 2.89 7.86 4.77 3.61 24.32
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Table C.18: Circular cylinder with axis parallel to direction of heat flow, in a unit

cell, φ = 0.10 (κ = 10)

ε h φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.45 0.08 0.10 1.10 1.15 1.13 1.13 0.23
0.35 0.13 0.10 1.12 1.25 1.18 1.17 1.19
0.30 0.18 0.10 1.13 1.34 1.23 1.21 1.72
0.26 0.23 0.10 1.15 1.44 1.29 1.26 1.85
0.25 0.25 0.10 1.16 1.48 1.31 1.29 1.82
0.24 0.28 0.10 1.18 1.52 1.34 1.32 1.76
0.22 0.33 0.10 1.22 1.61 1.40 1.38 1.62
0.21 0.38 0.10 1.28 1.70 1.48 1.45 1.64
0.19 0.43 0.10 1.39 1.78 1.58 1.54 2.02
0.18 0.48 0.10 1.65 1.87 1.75 1.71 2.49

Table C.19: Ellipsoid in a unit cell, φ = 0.04 (κ = 1000)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.20 0.45 0.10 0.038 1.04 1.25 1.14 1.06 6.90
0.20 0.30 0.15 0.038 1.05 1.42 1.22 1.08 11.20
0.20 0.23 0.20 0.038 1.05 1.64 1.32 1.11 15.51
0.20 0.20 0.23 0.038 1.06 1.78 1.37 1.13 17.71
0.20 0.18 0.25 0.038 1.06 1.95 1.44 1.15 19.97
0.20 0.15 0.30 0.038 1.07 2.39 1.60 1.20 24.81
0.20 0.13 0.35 0.038 1.09 3.08 1.83 1.27 30.41
0.20 0.11 0.40 0.038 1.11 4.31 2.19 1.37 37.47
0.20 0.10 0.45 0.038 1.15 7.18 2.88 1.51 47.37
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Table C.20: Ellipsoid in a unit cell, φ = 0.04 (κ = 100)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.20 0.45 0.10 0.038 1.04 1.22 1.13 1.06 6.14
0.20 0.30 0.15 0.038 1.05 1.36 1.20 1.08 9.52
0.20 0.23 0.20 0.038 1.05 1.52 1.27 1.11 12.51
0.20 0.20 0.23 0.038 1.06 1.62 1.31 1.13 13.86
0.20 0.18 0.25 0.038 1.06 1.72 1.35 1.15 15.14
0.20 0.15 0.30 0.038 1.07 1.95 1.45 1.19 17.45
0.20 0.13 0.35 0.038 1.08 2.24 1.56 1.25 19.53
0.20 0.11 0.40 0.038 1.10 2.62 1.70 1.34 21.34
0.20 0.10 0.45 0.038 1.15 3.12 1.89 1.46 22.90

Table C.21: Ellipsoid in a unit cell, φ = 0.04 (κ = 10)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.20 0.45 0.10 0.038 1.04 1.13 1.08 1.05 2.98
0.20 0.30 0.15 0.038 1.04 1.17 1.11 1.07 3.60
0.20 0.23 0.20 0.038 1.05 1.21 1.12 1.08 3.58
0.20 0.20 0.23 0.038 1.05 1.22 1.13 1.09 3.38
0.20 0.18 0.25 0.038 1.05 1.24 1.14 1.10 3.09
0.20 0.15 0.30 0.038 1.06 1.26 1.15 1.13 2.31
0.20 0.13 0.35 0.038 1.07 1.28 1.17 1.15 1.38
0.20 0.11 0.40 0.038 1.08 1.29 1.18 1.18 0.42
0.20 0.10 0.45 0.038 1.10 1.31 1.20 1.21 −0.5xx
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Table C.22: Rectangular prism in a unit cell with conserved volume fraction, φ = 0.08

(κ = 1000)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.15 0.15 0.45 0.081 1.80 9.10 4.05 2.66 34.27
0.18 0.18 0.33 0.081 1.24 2.91 1.90 1.63 14.17
0.20 0.20 0.25 0.081 1.16 2.01 1.53 1.40 8.63
0.23 0.23 0.20 0.081 1.13 1.66 1.37 1.29 5.93
0.25 0.25 0.16 0.081 1.12 1.48 1.29 1.23 4.24
0.28 0.28 0.13 0.081 1.11 1.36 1.23 1.19 3.03
0.30 0.30 0.11 0.081 1.10 1.29 1.19 1.17 2.12
0.33 0.33 0.10 0.081 1.10 1.24 1.17 1.15 1.42
0.35 0.35 0.08 0.081 1.10 1.20 1.15 1.14 0.86
0.38 0.38 0.07 0.081 1.09 1.17 1.13 1.13 0.42
0.40 0.40 0.06 0.081 1.09 1.14 1.12 1.12 0.08
0.43 0.43 0.06 0.081 1.09 1.13 1.11 1.11 −0.17
0.45 0.45 0.05 0.081 1.09 1.11 1.10 1.10 −0.30
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Table C.23: Rectangular prism in a unit cell with conserved volume fraction, φ = 0.08

(κ = 100)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.15 0.15 0.45 0.081 1.74 5.24 3.02 2.39 20.73
0.18 0.18 0.33 0.081 1.23 2.57 1.78 1.58 11.02
0.20 0.20 0.25 0.081 1.16 1.91 1.49 1.38 7.35
0.23 0.23 0.20 0.081 1.13 1.62 1.35 1.28 5.31
0.25 0.25 0.16 0.081 1.12 1.45 1.27 1.22 3.91
0.28 0.28 0.13 0.081 1.11 1.35 1.22 1.19 2.86
0.30 0.30 0.11 0.081 1.10 1.28 1.19 1.16 2.04
0.33 0.33 0.10 0.081 1.10 1.23 1.16 1.15 1.38
0.35 0.35 0.08 0.081 1.10 1.19 1.14 1.13 0.84
0.38 0.38 0.07 0.081 1.09 1.16 1.13 1.12 0.42
0.40 0.40 0.06 0.081 1.09 1.14 1.12 1.12 0.09
0.43 0.43 0.06 0.081 1.09 1.12 1.11 1.11 −0.15
0.45 0.45 0.05 0.081 1.09 1.11 1.10 1.10 −0.29
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Table C.24: Rectangular prism in a unit cell with conserved volume fraction, φ = 0.08

(κ = 10)

a b c φ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.15 0.15 0.45 0.081 1.38 1.67 1.52 1.50 1.56
0.18 0.18 0.33 0.081 1.18 1.53 1.34 1.33 1.18
0.20 0.20 0.25 0.081 1.13 1.43 1.27 1.25 1.69
0.23 0.23 0.20 0.081 1.11 1.35 1.23 1.20 1.90
0.25 0.25 0.16 0.081 1.10 1.29 1.19 1.17 1.84
0.28 0.28 0.13 0.081 1.10 1.24 1.17 1.15 1.61
0.30 0.30 0.11 0.081 1.09 1.21 1.15 1.13 1.31
0.33 0.33 0.10 0.081 1.09 1.18 1.13 1.12 0.99
0.35 0.35 0.08 0.081 1.09 1.16 1.12 1.11 0.67
0.38 0.38 0.07 0.081 1.08 1.14 1.11 1.11 0.39
0.40 0.40 0.06 0.081 1.08 1.12 1.10 1.10 0.15
0.43 0.43 0.06 0.081 1.08 1.11 1.09 1.09 0.22
0.45 0.45 0.05 0.081 1.08 1.10 1.09 1.09 −0.17
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Table C.25: Cube in a unit cell with conserved volume fraction, φ = 0.30

κ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

2 1.23 1.26 1.24 1.25 −0.15
4 1.45 1.62 1.54 1.55 −0.76
6 1.57 1.86 1.71 1.73 −1.27
8 1.63 2.03 1.82 1.85 −1.66
10 1.68 2.16 1.90 1.94 −1.96
20 1.78 2.49 2.11 2.17 −2.74
40 1.84 2.73 2.24 2.31 −3.26
60 1.86 2.82 2.29 2.37 −3.46
80 1.87 2.87 2.32 2.40 −3.57
100 1.88 2.90 2.33 2.42 −3.63
200 1.89 2.96 2.37 2.46 −3.77
400 1.90 2.99 2.38 2.48 −3.83
600 1.90 3.00 2.39 2.48 −3.86
800 1.90 3.01 2.39 2.49 −3.87
1000 1.90 3.01 2.40 2.49 −3.88
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Table C.26: Rectangular prism (a = 0.4, b = 0.4, c = 0.063) in a unit cell with

conserved volume fraction, φ = 0.08

κ

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

2 1.052 1.043 1.048 1.047 0.06
4 1.091 1.067 1.079 1.077 0.14
6 1.107 1.075 1.091 1.089 0.15
8 1.115 1.080 1.097 1.096 0.15
10 1.121 1.082 1.101 1.100 0.15
20 1.132 1.087 1.110 1.108 0.13
40 1.139 1.090 1.114 1.113 0.11
60 1.141 1.091 1.116 1.114 0.10
80 1.142 1.091 1.116 1.115 0.09
100 1.142 1.092 1.117 1.116 0.09
200 1.144 1.092 1.118 1.117 0.08
400 1.144 1.092 1.118 1.117 0.08
600 1.144 1.093 1.118 1.117 0.08
800 1.145 1.093 1.118 1.117 0.08
1000 1.145 1.093 1.118 1.117 0.08
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Table C.27: Sphere with boundary resistance in a unit cell, φ = 0.18, 1 ≤ κc ≤ 1000

(κ = 1000)

ε t κ κb

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.02 1000 1 1.21 2.45 1.73 1.38 19.95
0.3 0.02 1000 10 1.27 2.49 1.78 1.47 17.62
0.3 0.02 1000 50 1.28 2.57 1.81 1.47 18.64
0.3 0.02 1000 100 1.28 2.62 1.83 1.48 19.29
0.3 0.02 1000 500 1.28 2.7 1.86 1.48 20.51
0.3 0.02 1000 1000 1.28 2.72 1.87 1.48 20.84

0.3 0.05 1000 1 1.21 2.45 1.73 1.38 19.95
0.3 0.05 1000 10 1.38 2.65 1.91 1.62 15.39
0.3 0.05 1000 50 1.40 2.94 2.03 1.65 18.67
0.3 0.05 1000 100 1.40 3.05 2.07 1.65 20.06
0.3 0.05 1000 500 1.41 3.22 2.13 1.66 22.11
0.3 0.05 1000 1000 1.41 3.26 2.14 1.66 22.57
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Table C.28: Sphere with boundary resistance in a unit cell, φ = 0.18, 1 ≤ κc ≤ 1000

(κ = 100)

ε t κ κb

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.05 100 1 1.21 2.22 1.64 1.37 16.45
0.3 0.05 100 10 1.38 2.42 1.83 1.60 12.42
0.3 0.05 100 50 1.39 2.74 1.96 1.63 16.67
0.3 0.05 100 100 1.40 2.89 2.01 1.64 18.60
0.3 0.05 100 500 1.40 3.16 2.10 1.65 21.61
0.3 0.05 100 1000 1.40 3.23 2.13 1.65 22.26

0.3 0.02 100 1 1.21 2.22 1.64 1.37 16.45
0.3 0.02 100 10 1.27 2.27 1.69 1.45 14.39
0.3 0.02 100 50 1.27 2.38 1.74 1.46 16.08
0.3 0.02 100 100 1.27 2.45 1.77 1.46 17.19
0.3 0.02 100 500 1.27 2.62 1.82 1.47 19.55
0.3 0.02 100 1000 1.27 2.67 1.84 1.47 20.25
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Table C.29: Sphere with boundary resistance in a unit cell, φ = 0.18, 1 ≤ κc ≤ 1000

(κ = 10)

ε t κ κb

(
ke

km

)

lb

(
ke

km

)

ub

(
ke

km

)

geo

(
ke

km

)

num

% diff.

0.3 0.05 10 1 1.18 1.54 1.35 1.28 5.04
0.3 0.05 10 10 1.32 1.83 1.56 1.47 5.65
0.3 0.05 10 50 1.34 2.42 1.8 1.56 13.16
0.3 0.05 10 100 1.34 2.7 1.9 1.6 16.04
0.3 0.05 10 500 1.34 3.14 2.05 1.64 19.9
0.3 0.05 10 1000 1.34 3.22 2.08 1.65 20.61

0.3 0.02 10 1 1.18 1.54 1.35 1.28 5.04
0.3 0.02 10 10 1.23 1.64 1.42 1.34 5.27
0.3 0.02 10 50 1.23 1.94 1.54 1.39 10.23
0.3 0.02 10 100 1.23 2.13 1.62 1.41 12.99
0.3 0.02 10 500 1.23 2.54 1.77 1.46 17.73
0.3 0.02 10 1000 1.23 2.64 1.8 1.47 18.76
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Appendix D

Bounds on Long Rectangular

Prisms in a Cubic Lattice

Consider an inhomogeneous medium which consists of infinitely long rectangular

prisms in a cubic lattice arrangement. A characteristic cell in two dimensions can

be identified as follows (Figure D.1):

The upper and lower bounds on the effective conductivity of the inhomogeneous

medium are given by examining the total thermal resistance of the cell first in the

instance in which isotherms are taken perpendicular to the direction of heat flow

(Figure D.2 (a)) and then in the instance in which adiabats are taken parallel to the

direction of heat flow (Figure D.2 (b)), respectively, and are given as

(
ke

kf

)

ub

=

[
1 − 2c +

c

0.5 + (κ− 1)b

]−1

(D.1)

(
ke

kf

)

lb

= 1 − 2b +
b

0.5 −Kc
(D.2)

where K =
κ− 1

κ
, κ = ks/kf , and ks, kf , and ke are the thermal conductivities of

the solid phase, the fluid phase, and the effective medium, respectively; and where b
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Figure D.1: Characteristic cell

is the length of the dispersed prism in the direction perpendicular to heat flow, and

c is the length of the prism in the direction parallel to heat flow.

The total heat flow per unit depth through the medium for a particle with aribtrary

volume per unit depth is a maximum when c = 0.5; conversely, it is a minimum when

b = 0.5. These cases correspond to parallel and series paths of heat flow, respectively.

It thus seems reasonable to expect that the parallel adiabats model is approached for

tall and slender particles and that the perpendicular isotherms model is approached

for short and latitudinous particles; this statement, however, will be investigated more

closely in the following paragraphs.

The upper and lower bounds are shown schematically in Figures D.2 (a) and

(b), respectively. The thermal resistance for one-dimensional steady conduction in

rectangular co-ordinates is given as

R =
L

kA
(D.3)

where L is the length of the heat flow path, k is the thermal conductivity of the
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(a) (b)

Figure D.2: Resistor networks for (a) upper and (b) lower bounds on ke

material in this path, and A is the cross-sectional area perpendicular to heat flow

(i.e. A = b · depth).

We define the aspect ratio as follows:

α ≡ c

b
(D.4)

High α corresponds to tall and slender particles, needle-like in the direction of heat

flow; low α correpsonds to short and latitudinous particles, plate-like in the direction

perpendicular to heat flow.

For tall and slender particles (α� 1) of high relative conductivity (κ = ks/kf �

1), we expect R1L + R2 ' R1L. The parallel adiabats model is physically more

appropriate for such geometries and conductivity ratios. This is because the highly

conductive particle is very effective at confining the total heat to a narrow region in

the vicinity of the particle. The total heat flow per unit depth (Q/d) crossing a plane

at y = c, for example, is essentially that entering the upper surface of the particle,

i.e.
Q

d
=

2

d

∫ 0.5

0

q(x, c) dx ' 2

d

∫ b

0

q(x, c) dx.

This approximation is even more valid for the total heat flow crossing a plane at

y = 0.
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The following scale analysis reveals that the parallel adiabats and perpendicular

isotherms are mutually compatible models for establishing the effective conductivity

of systems consisting of short and latitudinous particles (α � 1):

R1L

R1U
=
AU

AL
' 1

R2L

R2U
= 1

R3L

R3U
=

0.5

c
� 1

(D.5)

but R3L > R1L +R2 which implies that RL ' R1L +R2 and R3U � R2 which implies

that RU ' R1U +R2. Since
R1L

R1U
' 1 and

R2L

R2U
= 1, RL ' RU and either configuration

of resistors (parallel adiabats or perpendicular isotherms) is expected to give good

agreement with the exact value of the effective conductivity for short and latitudinous

particles.

D.1 Numerical Results

The comparison between the numerical solution of the effective conductivities with

the upper and lower bounds, Equations (D.1) and (D.2), for three cases are shown

in Table D.1. For a tall and slender particle (α = 9.8), the numerical solution of

the effective conductivity is clearly nearer to the value calculated using the parallel

adiabats model (as expected). For a thin and latitudinous particle (α ' 0.10), the

numerical solution is somewhat nearer to the value calculated using the perpendicular

isotherms model, but in this extreme, the models are mutually compatible: for low

α, the solution assuming parallel adiabats approaches that assuming perpendicular

isotherms, both of which approach the analytical solution. For a particle with a

moderate aspect ratio (α = 1), the numerical solution is approximately the average

of the solutions given by the bounds. Figure D.3 shows isothermal contours for the

three cases studied.

139



Table D.1: Comparison with numerical results

b c α

(
ke

kf

)

lb

(
ke

kf

)

ub

(
ke

kf

)

num

∫ b

0

q(x, c) dx

∫ 0.5

0

q(x, c) dx

0.05 0.49 9.80 5.67 33.66 7.65 0.633

0.49 0.05 0.10 1.109 1.111 1.110 0.987

0.30 0.30 1.00 1.90 2.49 2.22 0.743
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(a) (b)

(c)

Figure D.3: (a) High, (b) low, and (c) moderate values of the aspect ratio, α. The

parallel adiabats model is a good approximation to systems in which the particles

have large α and are oriented in the direction of heat flow, (a); the assumptions of

parallel adiabats or of perpendicular isotherms are suitable for particles with low α,

(b); the average of the two models gives good agreement for particles with moderate

aspect ratios (α ' 1), (c).
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