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Abstract 

The Variable Displacement Engine (VDE) is a new generation of engines that are designed to 

decrease the fuel consumption at the cruise speed of a vehicle. The isolation of the VDE’s 

new vibration pattern is beyond the capabilities of conventional mounts and bushings. 

Consequently, in this thesis, novel active and semi-active solutions are proposed to develop 

various semi-active and active hydraulic bushing proof-of-concept systems that may solve 

the isolation problem in a VDE system. 

The dynamic stiffness response, which is the transfer function that relates the engine 

displacement to the transmitted force, is normally used as the key design criterion for engine 

mounts and bushings. In this thesis, a linear mathematical model of a conventional hydraulic 

bushing is purposed. The validity of the mathematical model is confirmed by an experimental 

analysis, and the various parameters in the dynamic stiffness equation are evaluated.  

The experimental results indicate that the dynamic stiffness frequency response of the 

conventional hydraulic bushing has both soft and stiff regions. The soft region is limited to 

low frequencies. For the VDE isolation, the goal is to provide a soft bushing for a wider 

range of frequencies than a conventional bushing can accommodate. Addition of a short 

inertia track, similar to a decoupler used in conventional hydraulic engine mounts, may be 

used to extend the soft region of a conventional hydraulic bushing, and the experimental 

results validate it.  

Since the short inertia track provides no additional damping, a supplementary 

Magnetorheological (MR) valve is also devised.  The MR valve has the advantage to 

minimize the amount of MR fluid used, which significantly reduces the cost of the overall 
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system. The novel valve allows the damping coefficient of the bushing assembly to be 

controlled by varying the electrical current input to a solenoid coil. A mathematical model is 

derived for the MR bushing, and is validated experimentally. 

In addition, an active bushing to solve the VDE isolation problem is purposed in this thesis. 

In this bushing, a magnetic actuator, composed of a permanent magnet and a solenoid coil, is 

included in the active bushing. This active chamber affects the dynamic stiffness response of 

the bushing by altering the bushing’s internal pressure. The nonlinear equation of motion of 

the permanent magnet is linearized and is incorporated into the new mathematical model of 

the system. The new purposed model for the active bushing is in good agreement with the 

experimental results. This active chamber is also proved capable of producing complex 

dynamic stiffness frequency response.  

The conclusion is that the proposals in this thesis can contribute to the isolation of the 

vibration pattern, imposed by the application of a VDE system.  
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Nomenclature 

a X / Y= ��   acceleration with respect to base excitation amplitude [1/s]  

iA    inertia track cross-sectional area [m2]  

pA    effective pumping area [m2] 

rB    rubber linear damping [N-s/m] 

c    linear damping coefficient [N-s/m] 

1 21 1C C C= +  lumped compliance [N/mm5] 

1C , 2C   lower and upper chamber compliance, respectively [mm5/N] 

cMR    constant of magnitude 2-3 depending on the controllability 

dh   inertia track hydraulic diameter 

Di    inner diameter of the MR valve coil 

Do   outer diameter of the MR valve coil 

e   eccentricity of unbalance mass [m] 

πω 2nnf =   natural frequency [Hz] 

fo   harmonic force excitation amplitude per unit mass [N/kg] 
F(t)   engine dynamic loading [N] 
FT   transmitted force [N] 

FT   transmitted force per unit mass [N/kg] 

g    height of the MR valve fluid channel 

fH    field intensity [At/m] 

I    MR valve input current [A] 

i 1= −    imaginary unit  
k   linear stiffness coefficient [N/m] 

Kr   rubber linear stiffness [N/m]  

l    total length of the of the MR valve fluid path in the flux (inertia track) 

L   inertia track fluid inductance [Pa-s2/m3] 

MR   magnetorheological 

MRF   magnetorheological fluid 

m   mass of engine [kg] 
mo   engine unbalance mass [kg] 

1P , 2P    upper and lower chamber pressures [Psi] 

Q    inertia track flowrate 

Qin    flow from pumping chamber to the MR valve 

Qout   flow from MR valve to the compliance chamber 

nr = ω ω    excitation frequency ratio 

R   base excitation RMS absolute acceleration 



 

  xv 

Rf   hydraulic resistance to flow [Pa-s/m3] 

Vin    input voltage [V] 

x    engine (mass) displacement [m] 
X    displacement amplitude [m] 
Xst   static displacement amplitude due to step loading [m] 
y    chassis or base displacement [m] 
Y    base harmonic displacement excitation amplitude [m] 
z x y= −   mass-base relative displacement [m] 

Z   relative displacement amplitude [m] 
*z    perturbation solution non-dimensional displacement  

2c kmζ =   linear damping ratio 

µp∆     viscous fluid pressure drop 

τp∆     pressure drop due to MRF yielding 

η    base excitation RMS relative displacement 

= ( X -Y ) / Yλ   relative displacement transmissibility  

γ    harmonic force excitation RMS displacement [(m-kg/N)2] 

φ    harmonic force excitation RMS force transmissibility  

µf   MRF viscosity [Pa-s] 

MRµ     magnetic permeability of the MRF [H/m] 

ω   frequency of oscillation [rad/s] 

ωdr   forcing input frequency of oscillation [rad/s] 

n k mω =   natural frequency [rad/s] 

ρf   MRF density 

yτ     MRF yield stress as a function of the field intensity 

FFT=Φ   harmonic force excitation force transmissibility 

ofX=Λ   harmonic force excitation displacement with respect to input force [m-

kg/N] 
2

noT emF ωψ =  unbalance excitation non-dimensional force transmitted 

emXm o=Ω   unbalance excitation non-dimensional displacement 

χ    unbalance excitation RMS non-dimensional force transmitted 

Γ    unbalance excitation RMS non-dimensional displacement  

ϕ    magnetic flux [Wb] 
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Chapter 1: Introduction 
 

One of the characteristics that define the quality of a vehicle is the amount of 

noise-vibration-harshness (NVH) in the cabin.  An automobile’s engine, body, and 

chassis system are susceptible to undesirable vibrations, due to two sources of excitation: 

the inherent unbalance of the reciprocating engine, and the disturbances transmitted 

through the suspension system from the road. Muller, Weltin, Law, Roberts, and Siebler 

(1994) have agreed that decreasing the mass of vehicles increases the probability that the 

energy sources will be easily transferred through the structure as the vibration amplitudes 

increase. Therefore, the increase in fuel economy and decrease in price of the automobile 

comes at a price: more NVH and less comfort. 

The frequency of unbalanced engine disturbances is related to the engine speed, 

the number of cylinders, and the stroke number (Makhult, 1977; Geck and Patton, 1984). 

Typically, the frequency of these vibrations is in the range of 1-200 Hz (Oueini et al. 

1999). Usually, at idle or low speeds the engine conveys high amplitude vibrations, 

whereas at high speeds, low vibrations amplitude occurs. The amplitude of the engine 

vibrations, in most vehicles, is less than 0.3 mm at high frequencies (50-200 Hz) and 

more than 0.3 mm at low frequencies (1-50 Hz) (Jazzar and Golnaraghi 2001). At the 

same time, the transmitted forces from the engine to the chassis are proportional to the 

square of the engine vibration frequency that increases with speed. Generally, it is 

desirable to restrain the relative motion of the engine to satisfy the mechanical 

constraints, although the criterion is to minimize the force transmitted to and from the 
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engine itself (Singh, Kim, Ravindra, 1992). Minimizing the transferred force reduces the 

impact of the dynamics of the engine for a base (chassis or body) excitation, improving 

the ride, and minimizing the potentially damaging inertia forces on the engine.  Also, 

minimizing the transfer of unbalanced forces through the engine to the chassis reduces 

cabin noise, and thus, improves rider comfort. These two different situations pose a 

challenge for designers in selecting the mount parameters for the best isolation 

performance.  

Engine mounts are vibration isolators which are used to minimize the effect of 

such disturbances. In the automotive industry, the two main functions of an ideal engine 

mount are to isolate the vibration caused by the disturbance force in an engine, and to 

prevent engine bounce from the vehicle frame excitation (Esmailzadeh, 1978; Clough and 

Walter, 1968). Crede (1951) has reappraised and reproduced all the studies on vibration 

isolation and engine mount optimization. Taking advantage of what he learned, he has 

devised viable techniques to protect machinery from shock and vibration. Vibration 

reduction entails the use of mounts which are as soft as possible. On the other hand, the 

displacement constraints on engine deflection, due to physical limitations, prevent the 

mount stiffness from being too soft. Thus, engine mount design presents a demanding 

optimization problem because of the conflicting criteria involved. Today, a handbook by 

Beranek and Ver (1992) is one of the most consulted references for engine vibration. The 

principal functions of an engine mount can be summarized as, 

• Support the weight of the engine.  

• Prevent fatigue failure of the engine and gearbox support points which can occur 

if they are rigidly attached to the chassis or body structure.  

• Isolate the unbalanced engine disturbance force from the structure of the vehicle.  
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• Reduce the amplitude of the engine vibrations that are transmitted to the body 

structure.  

• Reduce the noise amplification that occurs if engine vibrations are transferred 

directly to the body structure.  

• Reduce human discomfort and fatigue by partially isolating the engine vibrations 

from the body by means of an elastic medium.  

• Accommodate engine block misalignment and reduce the residual stresses 

imposed on the engine block and mounting brackets due to chassis or body frame 

distortion.  

• Prevent road-wheel-shocks that impart excessive movement to the engine.  

• Prevent large engine-to-body relative movement due to torque reaction force, 

particularly in low gear, which can cause excessive misalignment and strain on such 

components as exhaust pipes and silencer system.  

• Restrict the engine movement in the fore and aft direction of the vehicle due to the 

inertia of the engine in opposition to the accelerating and braking forces.  

Because of the two dynamic disturbances of internal combustion engines, that is, 

the firing pulse due to the combustion of the fuel in the cylinder, and the inertia force and 

torque caused by the rotating and reciprocating parts, the firing pulses cause disturbance 

torques that act on the engine block. The disturbance inertia force has two components: 

the first component is parallel, and the second is perpendicular to the crankshaft axis. The 

second engine disturbance the inertia torque, is also parallel to the crankshaft axis (Yu et 

al. 2001). For multi-cylinder engines, the components of an unbalanced engine 

disturbance depend on the number and arrangement of the cylinders in the engine. For a 

four-cylinder, four-stroke engine, the frequency of fundamental disturbances is at the 

second order of the engine speed (Yu, Naganathan, and Dukkipati, 2001).The frequency 

range is 20-200 Hz for an engine speed range of 600 to 6000 rpm.  
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1.1 Hydraulic Engine Mounts and Bushings 

In the 1980s, hydraulic engine mounts were devised to attain better frequency and 

amplitude response characteristics compared to those of conventional elastomeric and 

rubber-metal engine mounts. Typically, a hydraulic bushing consists of a cast rubber 

press fitted inside an aluminum bracket. The rubber has three chambers, two on the top 

and one on the bottom. The chambers are filled with a mixture of water and ethylene 

glycol. The two top chambers are regarded as compliance chambers, since they are 

flexible for the volume changes. These two compliance chambers are connected with a 

relatively wide track which does not contribute to the dynamic performance of the 

compliance chambers. Therefore, for modeling purposes, the two top chambers are 

considered a lumped compliance chamber. The chamber on the bottom exhibits a small 

amount of compliance, since it supports most of the static engine load and as a result, it is 

manufactured thick. This chamber is connected to the compliance chambers by a long 

narrow track, called the inertia track. Since engine vibrations cause the lower chamber to 

pump the fluid to the compliance chambers, that chamber is called a pumping chamber. 

Hydraulic bushings are very similar in performance and functionality to hydraulic 

mounts. The common feature of all hydraulic mounts is that they cause high damping at 

high amplitudes, and low damping at low amplitudes. Hydraulic mounts and bushings 

can meet two conflicting design criteria, by exhibiting nonlinear dynamic properties 

which vary with both the deflection amplitude and the excitation frequency (Flower, 

1985). First, the resonance control in the rigid body vibration region of the engine 

mounting system ranges from 5 to 30 Hz. Such control is achieved through high damping 

and stiffness for high deflection amplitudes. Secondly, the vibration isolation 
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characteristics are exhibited beyond this frequency region with low damping and 

stiffness, when the deflection amplitude is low (typically, below 0.2 mm). The precise 

mechanisms producing such spectrally varying and amplitude-sensitive behavior do not 

exist in nonlinear fluid damping devices.  

Cavanaugh (1996), Bernuchon (1984), and Corcoran and Ticks (1984) have 

written most of the original papers in this field. In addition, they have introduced the 

principal nonlinear characteristics of hydraulic engine mounts. Also, Clark (1985) has 

identified the basic principles for optimizing the dynamic performance of mounts. 

Various types of hydraulic mounts and bushings have been developed for vehicle mount 

systems by Golnaraghi, Nakhaie, and Geisberger (2002). All the hydraulic mounts 

reported in the literature are conceptually identical. Their differences are mainly in their 

detailed structural designs.  

Singh et al. (1992) have confirmed experimentally that a simple model of a 

hydraulic mount can be used to model the system at low frequencies, since the 

contribution of the higher modes of vibration are negligible. Singh et al. (1992) have also 

pointed out that the compliance of the mount is dominated by the rubber, and the effects 

of fluid compressibility are insignificant.  In addition, Kim and Singh (1993) have studied 

the nonlinearity in the various components of a hydraulic mount without a decoupler, 

behaving similarly to a hydraulic bushing.  From this study, it is found that the inertia 

track produces quadratic fluid damping and that the nonlinearity of the rubber compliance 

can be neglected. 

Colgate, Chang, Chiou, Liu, and Keer (1995) have examined the dynamic stiffness 

response of a hydraulic engine mount to composite sine inputs, roughly simulating 
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simultaneous engine and chassis vibrations. However, this is not an accurate model, since 

the engine input is force, not displacement, indicating the benefits of a base excitation 

experiment.  

Using experimental methods pioneered in the early 1990s by Kim and Singh 

(1993); Geisberger, Khajepour, and Golnaraghi (2002) have developed an excellent 

experimental apparatus to extract the dynamic response of all engine mount subsystems.  

From this investigation, Geisberger et al. (2002) have created an extensive model, 

including several accurate nonlinearities such as decoupler flow resistance to yield 

accurate results over a wide range of frequency and amplitudes.    

Also, Golnaraghi and Jazar (2001, 2002) have devised a simple model of a 

hydraulic mount with only a decoupler, and demonstrated the validity of the model 

experimentally for both low and high frequencies, as well as a nonlinear study of 

decoupler dynamics using perturbation methods. 

1.2 Mount Parameter Optimization 

It is well known that conventional vehicle engine isolation is achieved by passive 

elements. For a passive system, the system parameters are invariable after they are 

selected. Therefore, the isolator parameters must be carefully selected during the design 

period. However, this choice involves a number of compromises, arising from the desire 

that a isolator must be soft to minimize the acceleration levels and simultaneously it must 

be stiff enough to control the changes of the engine vibration amplitude. 

For a long time, efforts have been made to have the passive isolation system work 

in an optimal manner by optimizing the parameters of the isolator system. However, 
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because of the intrinsic limitation of a passive isolation system, the improvement is 

effective only in a certain frequency range. Also, the optimal results are dependent on the 

cost function of the system. Until now, there has been no uniformly accepted cost 

function for isolation systems, even for a simple linear one degree of freedom (1 DoF) 

vibration suspension system. 

Pintado and Benitez (1990) have optimized a four-wheel independent suspension 

model in the time domain by minimizing the acceleration of the suspension system at a 

design point, when the system parameters such as mass, damping and stiffness are 

bounded. Baumal et al. (1998) applied Genetic Algorithms to optimize a 2 DoF quarter-

car model, based on ride quality. Tamboli and Joshi (1999) have optimized a passive 

suspension system when it is subjected to random vibrations. Sun (2002) has optimized 

the walking-beam suspension system by minimizing the probability of the peak value of 

the tire load exceeding a given value, when the system is subjected to rough pavement 

road surfaces. To optimize the damping ratio and stiffness in a linear vibration isolator, 

the root mean square (RMS) of the absolute acceleration and displacement are used in the 

frequency domain (Chalasani, 1986). Jazar et al. (2003) have attained an optimal curve 

representing the minimum of the RMS acceleration of the sprung mass with respect to the 

RMS relative displacement. The resultant curve is used to select the optimal damping 

coefficient and stiffness, when the suspension system endures a road excitation in the 

range of zero to 20 Hz.  

Different methods, applicable in the optimization of this system have been 

proposed by Kamper et al (1971). The optimization techniques are concentrated in the 

frequency domain (Royston, and Singh 1996; Narimani, Golnaraghi, and Jazar 2003, 
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2004). The complexities of describing the phenomena and neglecting the response of the 

system in the time domain are the two shortcomings of these approaches. 

The art of optimization can be taken to any level.  Modern computing power 

permits optimization on an unimaginable computational scale.  Lin, Luo, and Zhang 

(1990) have developed an optimization strategy for an n DoF system.  The method, 

presented by Lin et al. (1990), uses a relatively complex cost function and produces good 

response results, but at the cost of being computationally intensive and highly 

sophisticated.   

In addition to the standard linear analysis of isolators, it is very common to 

conduct nonlinear studies.  This area of research is of great interest because of the 

potential to discover bizarre stability behaviour such as bifurcations in the case of cubic 

systems, as shown by Oueini, Chin, and Nayfeh, (1999).  Golnaraghi and Jazar (2002) 

have found that the nonlinearity in engine mount decouplers can cause high frequency 

instabilities.  Narimani, Golnaraghi, and Jazar (2004) have also analytically investigated 

the frequency response of the piecewise linear isolator and showed the occurrence of 

frequency islands; these phenomena have been confirmed with numerical simulations.  

However, a vigorous stability study is not the main focus of this nonlinear research.  

Instead, the potential to use nonlinearity to manipulate steady state vibration is examined, 

with the intent to optimize a simple passive isolator.  Nayfeh, Emaci, and Vakakis (1997) 

have used various orders of damping and stiffness nonlinearity in a 3 DoF vibration 

isolator.  Nayfeh et al. (1997) essentially have transferred the vibration energy to a 

bounded nonlinear mode of vibration, known as nonlinear normal modes (NNMs).  More 

recently, Vakakis, McFarland, Bergman, Manevitch, and Gendelman (2003) have 
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implemented NNMs in a technique called energy pumping, using cubic nonlinearity.  

Vakakis et al. (2003) have claimed that over 80% of the input energy can be absorbed by 

the NNMs. 

1.3 Active Mounts and Bushings 

The idea of designing a passive linear isolator which can minimize the force 

transmitted and simultaneously minimize the relative displacement is unrealistic.  

Isolation from force cannot be achieved without the cost of deflection (Andrews, 

2002).The need for active or semi-active systems comes from the increasing demands to 

minimize the transfer of the engine vibration energy to cabin noise, as well as the 

continuing decrease in the mass of the vehicle leading to more engine vibrations and less 

rigidity. Due to this and the hydraulic bushing application limitations, the development of 

cost effective semi-active or active isolation solutions is the next frontier in engine 

isolation problems.  Moreover, the introduction of Variable Displacement Engines1 

(VDE) has intensified the pursuit for a controllable isolator. 

Producing a reliable active mount is difficult since it requires an actuator, adequate 

sealing, moving parts, and possibly large amounts of energy for the actuator, not to 

mention other design issues.  In an active isolating system, generating a proper control 

signal to change the characteristics of the isolator effectively is essential; basically the 

damping and stiffness of an active isolator must be adjusted for the optimum values 

(Inman, 2001). Active suspensions, which are currently the subject of intense studies, are 

                                                 
1 DaimlerChrysler's Multi-Displacement System (MDS) Mercedes-Benz's Active Cylinder Control (ACC), General Motors' 

Active Fuel Management (AFM), and Honda's Variable Cylinder Management (VCM) 
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intended to overcome the problem of maintaining an optimal suspension performance for 

a wide range of speeds and road conditions (Hall and Tang, 1990). 

In the absence of proper passive and semi-active isolators, active controllers have 

been adopted for numerous industrial applications, including helicopter rotor isolation 

(Smollen, Marshall, and Gabel, 1962; Crede and Cavanaugh, 1985), aerospace (Smith 

and Lum, 1968; Leatherwood and Dixon 1968), military fighters (Calcaterra and 

Schubert; Schubert and Ruzicka, 1969), isolation in aircraft (Swanson and Miller, 1993), 

automobiles (McDonald, Elliott, and Stokes, 1991), wafer production  (Anderson and 

Houghton, 2001), Naval systems (Winberg, Johansson, and Lago, 2000), and aircraft 

cabin noise reduction (Stothers, 2002). 

There are various controlling techniques to achieve optimal parameter values in 

active isolators (Serrand and Elliot, 2000; Stein 1995). In the past decade, researchers 

have investigated nonlinear vibration absorbers with internal resonance and energy 

transfer approaches. Golnaraghi (1991) has introduced the concept of using a nonlinear 

absorber based on the internal resonance phenomenon, and Tuer et al. (1994) has 

extended the theory to active systems.  

Some of the related work in active isolator design is reported in marine isolation.  

Here, the vibration that propagates from propulsion and auxiliary machinery can cause 

significant problems associated with passenger and crew comfort. Moreover, there is the 

generation of acoustic noise from the hull, creating a severe detection hazard in a naval 

vessel and for civil vessels such as those used by fishery research organizations (Daley, 

1998; Darbyshire and Kerry, 1997; Johnson and Swinbanks, 1996). At early stages, the 

isolation depended on the electromagnetic levitation of the machinery propeller; however, 
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the original concept required large numbers of actuators, and therefore, represented an 

expensive solution. Later, the local mount controller was based on a modal LQG solution 

that had a feedforward and high-gain feedback component (Daley, Hatonen, and Owens, 

2006). Recently, BAE Systems have been developing an active isolation technology 

known as the smart spring mounting system (Daley, Johnson, Pearson, and Dixon, 2004). 

This is a hybrid active/passive solution that is a more practical and lower cost 

development of fully active technology.  

There are several active control engine mounts reported in the literature. Kosuke 

and Tatsuhida (2006) have placed an actuator in the lower section of the hydraulic 

bushing (Kosuke, 2006). Their actuator controls the engine mount characteristics by 

means of the fluid in the pumping (main) chamber. Hillis et al. (2005) have used a 

magnetic actuator, similar to a voice coil actuators, to design an active engine mount 

(Hillis, Harrison, and Stoten, 2005). The passive section of the mount is designed to have 

characteristics similar to a standard passive hydraulic mount. The actuator controls the 

diaphragm and changes the pressure in the main fluid chamber. A similar actuator has 

been earlier designed by Yoshiharu et al. (1999) and Nakaji, Satoh, Kimura, Hamabe, 

Akatsu, and Kawazoe (1999) to control the active engine mount characteristics by 

controlling the main chamber fluid pressure. Hartono et al. (1994) have utilized 

piezoelectric actuators in their active engine mount. This active mount is placed between 

the jet engine and the fuselage of an airplane.  

1.4 Semi-Active Mounts and Bushings 

Similar to design of active isolators, the design of semi-active isolators requires an 

actuator and moving parts resulting in the poor traits of an active mount with limited 
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incremental performance. Semi-active isolators offer a significant improvement in 

performance over passive isolators (Schubert, 1969; Shoureshi, 1986; Karnopp, 1974; 

Duclos, 1987; Ushijima, 1988). These systems benefit from the advantages of active 

systems with the reliability of passive systems. If the control system fails, the semi-active 

isolator can still work in the passive mode. In addition, the power consumption of these 

systems is very low; that is, they can change their characteristics to make different levels 

of resisting forces according to a low power-commanding signal. These characteristics 

render the semi-active devices attractive in applications where reliability is the main 

issue.  

Although there are many different semi-active mount designs, a new 

manufacturing trend is to use Electrorheological (ER) and Magnetorehological (MR) 

fluids. These smart fluids, ER and MR fluids, have similar properties. Their resistance to 

flow and their energy dissipation characteristics can be modulated through an applied 

electric field or electro-magnetic field. 

ER fluids are comprised of a mixture of semi-conducting particles in a dielectric 

carrier liquid, and were first discovered by Winslow (1949). ER fluids are activated by a 

high electric field in the range of 8 /kV mm (Peel et al., 1996). The application of the 

electric field to the fluids enhances the shear stress development. However, the relatively 

low shear force and high working voltage prevent the use of ER fluids in many industrial 

applications. 

 MR fluids are composed of magnetically polarizable particles suspended in a low 

viscous fluid media. When the external magnetic field is changed, the viscosity of an MR 

fluid reversibly changes in microseconds. This effect was first observed by Rabinnow 
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(1948). Without a magnetic field, an MR fluid has the properties of a Newtonian fluid; 

however, with a magnetic field, the particles align themselves with respect to the field, 

and form chains or columns. As a result, the viscosity of the fluid varies. The yield stress 

of the MR fluid depends on the type of magnetic particles in the fluid, the viscous fluid, 

the particle volume density, and the strength of the magnetic field. The yield strength of 

MR fluid is 50~100 kPa (Dyke et al., 1996). 

Although MR devices are displayed in different forms, they can be classified into 

three working modes: flow mode, shear mode, and squeeze mode (Jolly et al., 1999). For 

the flow mode, the fluid is forced to flow through a fixed pole magnetic field. Examples 

of flow mode devices are servo-valves, dampers, and shock absorbers. For the shear 

mode, the fluid is moving magnetic field. Shear mode devices include dampers, clutches, 

brakes, and chucking devices. In the squeeze mode, the MR fluid is subjected to a tensile 

and compressive load by oscillating a plate. Since the fluid tends to be squeezed out of 

the electrode, there is also a shear force that is generated, in addition to the imposed 

tension or compression. The squeeze mode has been appropriate in low motion, high 

force applications (Jolly and Carlson, 1996). A comparison of the three working modes in 

Figure  1-1, indicate that the shear mode can produce a wider range of variable damping 

forces with a large relative motion. Moreover, in the shear mode damper, the zero–field 

damper force is smaller than that in other modes. The provision of a small damping force 

is a key characteristic for a damper working in the vehicle suspension system because 

when a vehicle runs on a road with a low roughness, a low damping force results in a 

better ride comfort.  
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Figure  1-1: MR fluid working mode 

The yield stress of MR fluids is dependent on the magnetic interaction of the 

particles in the MR fluid. Until now, most static shear stress models of MR fluids have 

been based on the magnetic dipole interactions between two adjacent particles within a 

particle chain. These inter-particle interactions are then averaged over an entire sample to 

yield a model of the bulk magnetorheological effect (Harpavat, 1974; Spasojevic et al., 

1974). 

Jolly et al. (1996) have proposed a quasi-static, one-dimensional model with the 

same assumptions as Harpavat (1974). Jolly’s model suggests that the MR material stress 

is quadratically related to particle magnetization. Borcea (2001) has created a model that 

takes into account the fully coupled magneto-elastic interactions. The distribution of the 

magnetization in the material is calculated by the minimum energy principle of magneto-

elasticity. By simplifying the dipole interactions in the same direction as the external 

field, Shiga et al. (1995) have analyzed the modulus change of the material. Also, Shiga’s 

model takes into account only the magnetic interaction between the two nearby dipoles, 

indicating that the increasing shear modulus is quadratically dependent on the magnetic 

field intensity. Ginder (2000) and Davis (1999) have employed the finite element analysis 

method to determine the values of the modulus with a varied magnetic field. In summary, 

for the available dipole interaction models only the static yield stress is considered, but 
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they provide an elementary physical model that represents the relationship between the 

magnetic strength and shear stress. 

The applicability of MR fluid in vibration isolation was first demonstrated by Peel 

et al. The industry adopted the application in the 1980s. As a follow up, Jolly et al. 

(1999) and Davis (1999) have designed and introduced a mathematical and mechanical 

model using MR fluids. MR semi-active systems represent low cost, low energy 

consumption, and potentially, a very effective isolation solution with no moving parts. 

Over the next 20 years, vibration isolators based on MR fluids should thrive.  

Recently, there have been several applications of electrorheological (ER) fluids to 

mounts and isolators and, but not nearly as many, some similar applications of MR fluids. 

Williams, Rigby, Sproston, and Stanway (1993) have built a simple model of an 

automotive engine mount.  They were able to mathematically simulate the steady state 

behavior, and experimentally generate promising results with their scaled model.  This 

design utilizes the squeeze flow mode properties of the engine mount.  A full scale 

prototype of a flow mode ER engine mount have been proposed by Hong, Choi, Jung, 

Ham, and Kim (2001), demonstrating that the fluid can reduce the transmissibility of 

acceleration and displacement using skyhook controllers. In essence, a MR hydraulic 

bushing is a vibration isolator which is controlled by a microchip.  The microchip, in 

conjunction with sensors to quantify the vibrations and provide feedback, controls an 

input electric current to the hydraulic bushing.  This current creates a magnetic field in 

the inertia track connected to the chambers of the bushing filled with MR fluid.  As the 

hydraulic bushing begins to vibrate, it pumps MR fluid through the inertia track from one 

chamber to the other and vice versa.  Thus, the magnetic field, induced by the microchip 
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controller can be used to control the flow of fluid, (by increasing the yield stress of the 

fluid via the magnetic field), through the inertia track, changing the characteristics of the 

hydraulic bushing. 

There exists very little prior work on MR engine isolators.  Of the very few 

documented experiments, Choi, Lee, Song, and Park (2002), and Choi, Song, Lee, Lim, 

and Kim (2003) have designed and manufactured a mixed mode MR engine mount and 

conducted base excitation experiments to complete a hardware-in-the-loop full car model 

to demonstrate the effectiveness of their design. Also, with a skyhook controller, 

Shtarkmen (1993) has patented a similar design. 

However, to date, there exists little evidence that there has been a great deal of 

research conducted on the application of MR fluid engine mounts, operating in the flow 

mode or valve mode.  One patent does exist, for implementing MR fluid in an engine 

mount with a decoupler (Baudendistel et al., 2002). Also, MR damper designs exist 

which utilize the flow mode characteristics and many of them are patented by Carlson, 

Chrzan, and James (1994).  It has been shown by Kuzhir, Bossis, and Bashtovoi (2003), 

as well as Kuzhir, Bossis, Bashtovoi, and Volkova (2003), that MR fluids perform best in 

a pressure driven flow where the orientation of the magnetic field is perpendicular to the 

direction of the flow.  A more efficient design has been presented by Gorodkin, 

Lukianovich, and Kordonski (1998) and patented by Kordonski et al. (1995).  

A theoretical study of the effectiveness of an MR bushing has been conducted by 

Ahn, Ahmadian, and Morishita (1999), and Ahmadian and Ahn (1999); however, the 

bushing presented by Ahn et al. (1999) has a slightly different model than the mount 

referred to in this particular study.  Moreover, Ahn et al. (1999) and Ahmadian and Ahn 
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(1999) have only considered increasing the damping, not the fact that the MR fluid can be 

useful in allowing the damping in an otherwise ordinary mount to be very small, and 

increasing it significantly via MR effects around the resonance.  

1.5 Variable Displacement Engine Isolation 

The real need for a new isolator spawns from the need to minimize fuel 

consumption, leading to the implementation of VDEs, also known as cylinder 

deactivation. A VDE system supports different load conditions, thus, it is too difficult to 

maintain the NVH performance of the vehicle with the current isolator design. There are 

various mechanisms to influence the force produced by an isolator; in particular a 

hydraulic engine bushing and mount.  For every mechanism, there are several proposed 

designs for active and semi-active mounts.  With the exception of the design proposed by 

Matsuoka et al. (2004) for the 2005 Honda Odyssey, none of the previous designs appear 

to be in production for the automotive market. 

Improvement in the fuel economy has led automotive manufacturers to design 

engines which automatically switch between modes of operation.  Each mode is 

characterized by the number of cylinders firing, depending on the requirements of the 

driver.  For example, for accelerating, all six cylinders in a V6 engine should be firing to 

provide the maximum amount of power; however, once the target cruising speed is 

reached and the load on the engine decreases, the Engine Management Unit (EMU) can 

remove any three cylinders from the firing sequence (Hardie et al., 2002).  More than 25 

years ago, Jackson and Jones (1976) have discovered that this technique requires 25% 

less gas in a V16 cylinder engine by using deactivation of the cylinders. Also, the authors 

have reported torsional vibrations during the switching to the VDE mode, requiring a 
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special torsional analysis.  High energy savings are achievable largely due to the fact that 

a steady state speed requires only a minimal amount of power (less than 30 HP) with 

respect to the maximum power of modern vehicles which can exceed 300 HP (Ashely, 

2004). 

The change in the number of firing cylinders presents a vibration loading beyond 

the isolating capabilities of a conventional hydraulic bushing.  Although the mechanical 

unbalanced vibrations, occurring at the frequency of rotation of the crankshaft, remain the 

same (first order vibrations), the other orders are halved (with half of the cylinders 

deactivated).  For example, the frequency of the combustion force, produced by a four-

stroke engine with P cylinders, is  

1 min 1

60 2
n crankshaft

cycle
f N P

s rev

  
=   

  
, 

where crankshaftN  is the RPM of the crankshaft (or engine), fn is the nth order of vibration, n 

is the multiple of the crankshaft rotational frequency which is P/2 in this case, and the 

cylinder fires once every two rotations of the crankshaft.  Consequently, for a six cylinder 

engine, a third order torsional vibration is induced by the combustion and firing of the 

engine (Rao, 2004).  When the engine switches to three cylinders, the torque produced by 

the firing occurs in an order of 1.5, in agreement with the studies by Matsuoka, Mikasa, 

Nemoto, and Gehm (2004).   

As mentioned by Matsuoka et al. (2004), since the net amount of the crankshaft 

torque produced must be constant between the two modes, the three cylinder combustion 

pressure must double. There are half as many cylinders, and therefore, the forces which 

induce the torsional vibration double in magnitude.  The realization is that the appropriate 

isolator should be half as stiff in the operating frequency range of the three cylinder mode 
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of the engine.  This is approximately 1000-2200 RPM ( 1.5 25 55f Hz= − ).  In addition, the 

isolator must maintain its performance in the six cylinder mode as well as the current 

products do. The realization is that the appropriate isolator should be half as stiff in the 

operating frequency range of the three cylinder mode of the engine: approximately 

between 1000-2200 RPM ( 1.5 25 55f Hz= − ).  In addition, in the six cylinder mode the 

isolator must maintain the performance levels comparable to (or better than) those of 

existing conventional products. 

1.6 Thesis Overview 

The need for a semi-active or an active isolator for automobile applications is 

established in Chapter 1. Besides the high demand for versatile isolators to improve ride 

quality, the introduction of the VDE engine is the principal motivation for this research 

activity. The objective is to design and manufacture a semi-active and an active engine 

bushing to solve the VDE isolation problem.  

Passive mount parameter optimization is the subject of Chapter 2. The passive 

components such as the stiffness and damping of the rubber bulk of a conventional 

hydraulic bushing are optimized in both the time and frequency domains. Although 

designing a passive bushing is not an objectives of this research, the RMS optimization of 

these parameters is essential due to the fact that the static load of the engine should be 

supported the passive components, even in semi-active and active bushings. The base and 

forced excitations are studied separately. The RMS of the absolute acceleration and 

relative displacement are adopted for the base excitation optimization, whereas the RMS 

of force transmissibility and absolute displacement are used for the forced excitation 

optimization.  
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In Chapter 3, a simplified linear model, corresponding to a hydraulic bushing, is 

proposed. The various components of a conventional hydraulic bushing are represented 

by a lumped equivalent module. A mathematical demonstration of the lumped model is 

then derived. An experiment is performed to validate the proposed mathematical model. 

Various parameters of the conventional hydraulic bushing are identified by a curve fitting 

process. The dual dynamic performance of the hydraulic bushing is discussed in detail, in 

both time and frequency domains. The essential features of a conventional hydraulic 

bushing and the effect of the key components of the hydraulic bushing on the dynamic 

response are detailed. 

Chapter 4 deals with the inertia track effect on the dynamic stiffness response of 

conventional hydraulic bushings. It is shown numerically that the soft region of the 

dynamic stiffness response in a conventional hydraulic bushing can be extended to high 

frequencies by a suitable selection of the inertia track size (reducing the length and 

increasing the cross-sectional area). In addition, although this is experimentally 

confirmed, not enough damping is produced by the short inertia track. 

To overcome the damping problem an MR chamber is designed and tested, as 

described in Chapter 5. The chamber’s MR valve is energized by a solenoid coil. This 

valve can be classified as a flow mode MR device. The design of the valve allows the 

iron particles inside the MR fluid to align perpendicular to the flow motion and produce 

the maximum shear stress. Not only does the MR chamber effectively controls the 

damping level, but also is economical in its consumption of MR fluid.  

The design of an active compliance chamber is discussed in Chapters 6 to 8. it is 

comprised of a permanent magnet attached to a compliant diaphragm. A solenoid coil is 
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adopted to attract and repel the permanent magnet to produce mechanical pulses. The 

lumped and mathematical model of the active chamber is projected in Chapter 6. It is 

found that the magnetic force produced between the solenoid coil and permanent magnet, 

is a nonlinear function of the distance and the applied electrical current. A linearization 

technique is implemented to simplify the analysis. The experimental results validate the 

linearity of the active chamber in the desired frequency region.  

The novel active chamber is connected to the conventional hydraulic bushing. 

Different inputs are applied to activate the permanent magnet. More complex signals 

produce sophisticated responses. The effect of the active chamber on the pumping 

chamber pressure response and the bushing dynamic response are studied in Chapter 7 

and Chapter 8 respectively.  

Chapter 9 pertains to the difficulties encountered during the research, as well as 

some remedies. Lastly, the conclusion and recommendations for future work are found in 

Chapter 10.  

1.7 Contributions Made in this Thesis 

This thesis has contributed to advancement of knowledge in many areas. The key 

contributions herein have resulted in the following Journal and Conference submissions: 
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2. Arzanpour, S. and  Golnaraghi, M.F., 2006, “A Novel Semi-Active Bushing 
Design for Variable Displacement Engines”, Submitted to Journal of Intelligent 
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3. Arzanpour, S. and  Golnaraghi, M.F., 2006, “Development of a Bushing with an 
Active Compliance Chamber for Variable Displacement Engines”, Submitted to 
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Variable Displacement Engines”, Submitted to Journal of Sound and Vibration 
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Chapter 2: Passive Mount’s Parameter Optimization 
 

In this chapter a linear 1 DoF engine mount is examined to obtain the optimum 

mount parameters in a passive configuration. As explained before, an engine mount is a 

device that is used to isolate the vehicle body from the engine vibrations, forced 

excitation, and the effects of road-induced disturbances on the engine, base excitation, are 

minimized. In this study, it is assumed that the system is linear. This allows a simplified 

analysis of the frequency and time response characteristics in both excitation cases (base 

and force). 

The optimal damping and stiffness values for the isolator are obtained by 

minimizing certain cost functions in the frequency and the time domains. The cost 

function is based on RMS of the absolute acceleration and relative displacement in the 

frequency domain, and on the transmitted acceleration and absolute displacement in time 

domain. The time and frequency responses of the isolator are optimized by varying the 

stiffness and damping ratios for both the base and forced excitation cases. After the 

optimal values are obtained, the results are verified numerically. It is interesting that, 

although the mathematical model is linear, the time and frequency optimal values are not 

the same. As a result, this exercise shows that no passive-mount is adequate to deal with 

all the application specifications and isolation criteria. Here, a novel approach is 

suggested to select the mount parameters for various passive or active configurations.  
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2.1 BACKGROUND 

2.1.1 Linear Passive Engine Mount Model 

To study the passive 1 DoF engine bushing, a simple model is constructed. It is 

composed of a linear spring and damper, as illustrated in Figure  2-1. In the literature, this 

model is known as the Kelvin (Voigt) model of rubber. The equation of motion of this 

model is  

o dr drmx c( x y ) k( x y ) m e cos( t )ω ω+ − + − =�� � �  (2.1) 

which can be rearranged to the following form: 

2

o dr drmx cx kx m e cos( t ) cy kyω ω+ + = + +�� � � , (2.2) 

where m is the effective mass of the engine, c is the damping coefficient, k is the 

stiffness, and mo is the mass of the engine unbalance of eccentricity e and rotational 

frequency ωdr.  The absolute displacement of the engine and base are represented by x 

and y, respectively, and the relative displacement is denoted xr. The force transferred 

through the mount is  

2

T o dr drF ( t ) mx m e cos( t ) c( y x ) k( y x )ω ω= − = − + −�� � � . (2.3) 

The design objectives can now be restated in terms of the above system parameters, the 

challenge is to find the optimal linear stiffness (k) and damping (c) which constrain the 

displacement of the mass m, measured by the coordinate xr or x, yet minimize the 

transferred force FT(t) criteria due to either a base excitation measured by the coordinate 

y, or an input force F(t) generated by the engine.  With this linear model, the principle of 

superposition permits the study of the two disturbances; base excitation and unbalanced 

forcing, independently. 
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Figure  2-1: Schematic of a linear 1 DoF isolator representing an engine mount 

2.1.2 Base Excitation 

Machines or their parts are sometimes excited trough their elastic mounts. For the 

base excitation disturbance, (2.2) can be nondimensionalized and rearranged to yield 

2
2r n r n rx x x yξω ω+ + = −�� � �� , (2.4) 

where the parameters are 

2

c

km
ξ =      2n n

k
f

m
ω π= =      xr(t)=x(t)-y(t).         (2.5) 

Note that in the absence of force on the mass, the transferred force becomes 

( )TF t mx c( y x ) k( y x )= = − + −�� � � . (2.6) 

Thus, FT(t) is directly proportional to the absolute acceleration of the mass. From(2.4), 

the transfer function of the system, relating the absolute acceleration and relative 

displacement to the input, are (where r=ω /ωn) 

2 2

2 2 2

1 2

1 2

( r )X
a

Y ( r ) ( r )

ω ξ

ξ

+
= =

− +

��

. (2.7) 

and 

    k c 

x 

y 

m 

Φ(τ)=µοεωdr
2
cos(ωdrt) 

xr 
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2

2 2 21 2

X Y r

Y ( r ) ( r )
λ

ξ

−
= =

− +
. (2.8) 

The absolute acceleration and the relative displacement curves are illustrated in Figure 

 2-2. 

2.1.3 Force Excitation 

The force excitation is a general name for the vibration caused by an external 

force in a mass, isolated from a base. Given a forced disturbance in the form of engine 

unbalance, (2.2) is nondimensionalized to the following form: 

2
2 n n ox x x f ( t )ξω ω+ + =�� � , (2.9) 

where the disturbance force is 

2o
o dr dr

m eF( t )
f ( t ) cos( t )

m m
ω ω= = . (2.10) 

The transferred force is 

2
2T

n n

F ( t )
FT( t ) x x

m
ξω ω= = +� . (2.11) 

If the magnitude of the force is assumed to be constant, the following transfer functions 

can be written, relating the transferred force FT and the displacement of the mass X to the 

input magnitude, respectively, as 

2

2 2 2

1 2

1 2
T

o

FT F ( r )

f F ( r ) ( r )

ξ

ξ

+
Φ = = =

− +
 (2.12) 

2 2 2 2

1

1 2o n

X

f ( r ) ( r )ω ξ
Λ = =

− +
, (2.13) 

where r=ωdr/ωn. Eq (2.12) is a linearly scaled version of the motion transmissibility 

illustrated in Figure  2-2.  Eq (2.13) is depicted in Figure  2-3. 
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Figure  2-2: The frequency response functions of the base excitation linear passive isolator. 

Furthermore, if the amplitude is assumed to vary with the frequency as follows: 

2

o drF m eω= , (2.14) 

The transfer functions Ψ and Ω, similar to (2.7) and(2.8), represent the force and the 

displacement transmissibility, respectively, as 

2
2

2 2 2 2

1 2

1 2
T

o n

F ( r )
r

( r ) ( r )m e

ξ
ψ

ξω

+
= =

− +
 (2.15) 

and 

2

2 2 21 2o

Xm r

m e ( r ) ( r )ξ
Ω = =

− +
. (2.16) 
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Figure  2-3: Amplitude with respect to static displacement under a harmonic force 

2.2 FREQUENCY OPTIMIZATION 

The optimum stiffness and damping ratio values of the mount are obtained by using a 

simple cost function in the frequency domain.  In this case, the cost function is defined by 

using the RMS to average the acceleration and displacement over the frequency range of 

0-20 Hz. The definition of the RMS of function h(ω) from ω=0-20 Hz is as follows: 

40
2

0

1

40
RMS( h( )) h( ) d

π

ω ω ω
π

= ∫ . (2.17) 

Hence,  

Base excitation 

R RMS( a )= , absolute acceleration RMS 

RMS( )η λ= , relative displacement RMS 

Harmonic Forced 

excitation 

RMS( )φ = Φ , force transmissibility RMS 

RMS( )γ = Λ , absolute displacement RMS 

Unbalanced 

excitation 

RMS( )χ ψ= , force transmitted RMS 

RMS( )Γ = Ω , absolute displacement RMS 

2.2.1 Base Excitation Optimization 

According to the base excitation defined criteria, the following procedure is used 

to optimize the design parameters in the linear engine mount problem.  The RMS 

acceleration R is defined as a function of η  by using ξ  and nω  as parameters.  It can be 
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seen from Figure  2-4 that function ( )R η  has a minimum for the constant values of nω  

and a maximum for the constant values ofξ . The line of minima in the R-η  plane forms 

an optimum curve for the linear isolator.  Then if the limit value of the RMS of either the 

acceleration or displacement is known, the optimum values of the damping ratio and 

natural frequency are easily found by examining Figure  2-4.   

 

Figure  2-4: Contour curves for the function R=R(η) 

2.2.2 Forced Excitation Optimization 

2.2.2.1 Constant Amplitude Harmonic Force 

As previously shown for the base excitation optimization, the RMS of force 

transmissibility (φ) and displacement (γ) are both functions of ξ and nω ; thus, for a unique 

pair of ξ and nω , a related value of φ and γ can be found to illustrate the preceding results 

in the φ − γ plane in Figure  2-5.  Here, the line of minima represents the optimal damping 
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ratio which yields the minimum force transmissibility for a given stiffness or natural 

frequency.   

 

Figure  2-5: The RMS force transmissibility versus the RMS absolute displacement  

2.2.2.2 Unbalanced Force (|F(t)|=m0E
2

dr
ω ) 

Similar to Figure  2-4, representing the R η−  plane discussed in Section 2-2-1, the 

results of the unbalanced force case are summarized in the χ − Γ  plane, Figure  2-6, where 

a line of minima represents the optimal damping which yields the minimum RMS force 

transmitted given a certain natural frequency. 

2.3 TIME OPTIMIZATION 

For time optimization, the main interest is the transient response of the system.  

Similar to the frequency optimization, the cost functions are the acceleration (force) 

transmitted, and relative or absolute displacement. The variation of these two functions 

with the natural frequency (the frequency ratio for the sinusoidal inputs) and damping 

ratio for the different inputs defines the optimum curve in each case.  Since the solution 
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of the equation of motion depends on the input, a different analysis may be required. To 

show the optimum curves a unit step, a unit pulse, and sinusoidal inputs are employed. 

 

Figure  2-6: The RMS force transmitted versus the RMS absolute displacement 

2.3.1 Base Excitation 

A simple spring-mass-damper model is used for the base excitation problem, as 

shown in Figure  2-1. The forcing term can be eliminated from (2.2) such that,  

0mx c( x y ) k( x y )+ − + − =�� � � . (2.18) 

This is the equation of motion in the absolute coordinates. By rearranging (2.18) and 

expressing it in terms of the relative displacement, (2.4) is derived.  These equations are 

solved for the different inputs. The optimization process for each input is described in the 

following sections. 

2.3.1.1 Unit Step Input 

By solving (2.4) for xr, the response of the system to unit step is, 

21

nt

rel d dx ( t ) ( sin( t ) cos( t ))e
ξωξ

ω ω
ξ

−= − −
−

. (2.19) 
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Since the second derivative of y is zero, the second derivative of (2.19) yields to the 

absolute acceleration, 

3
2 2

2

3 4
1 4

1

nt

d da( t ) (( )cos( t ) sin( t )) e
ξωξ ξ

ξ ω ω ω
ξ

−− +
= − +

−
. (2.20) 

The peak of relative displacement xp occurs at 

1 2

1
2

2 1

1n

cos ( )
t

ξ

ω ξ

− −
=

−
. (2.21) 

The relative displacement peak can be found by substituting (2.21) in (2.19),  

1 2

2

2 1

1
p

cos ( )
x exp( )

ξ ξ

ξ

− −
= −

−
. (2.22) 

The peak of the absolute acceleration ap occurs at a different time and it is calculated by 

1 2

2
2

2 2 1

1n

cos ( )
t

ξ π

ω ξ

− − −
=

−
. (2.23) 

By substituting (2.23) in (2.20) the absolute acceleration peak is represented by, 

1 2
2

2

2 2 1

1
p n

cos ( )
a exp( )

ξ π
ω ξ

ξ

− − −
= −

−
. (2.24) 

The curves of the peak absolute acceleration versus the peak relative displacement are 

drawn in Figure  2-7 for the various damping ratios and natural frequencies. As (2.24) 

predicts, the dependency of the peak acceleration on natural frequency is boundary 

limited, and therefore, the lower stiffness results in lower ap values.  Figure  2-7 

demonstrates the minimum peak value of the absolute acceleration occurring at 0 36.ξ = , 

illustrated by a thick vertical line. 
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Figure  2-7: Peak value of mass acceleration versus peak value of relative displacement 

2.3.1.2 Pulse Input 

The superposition of the two step inputs, with equal and opposite amplitudes 

happening at different starting times, is used to create a pulse response. The duration of 

the pulse, which is the delay between the two pulses, has a significant effect on the 

transient response of the system. In reality, if the pulse duration is selected to be long, the 

system has enough time to settle before the next pulse starts. However, a short duration 

causes the transient responses to affect each other.  Here, the pulse duration is set at 50 

msec (that is, the negative step input starts 50 msec after the positive step). The relative 

displacement and absolute acceleration equations for this system, when the time is less 

than 50 msec, are the same as (2.19) and (2.20). However, a new set of equations should 

be derived so that the initial conditions are considered at the instant the negative step 

input is initiated. The equation of relative motion and absolute acceleration are derived as 



 

34 

0 0
0

2

2

1

ntn n
rel d d

n

v x
x ( sin( t ) x cos( t ))e

ξωξω ξω
ω ω

ω ξ

−+ −
= +

−
, (2.25) 

and 

2 2 3

0 0 0

2

2 2 2

0 0 0

2

2 1 2

1

2 1 2

1

n

n n n n

d

tn n n n

d

(( v ) x v )
a( t ) ( sin( t )

(( v x ) v )
cos( t ))e

ξω

ω ξω ξ ω ξ ξ ξ ω
ω

ξ

ω ξ ω ξ ω ξ ξ ξ ω
ω

ξ

−

− − + + −
= +

−

− − − − +

−

, (2.26) 

where x0 and v0 are the displacement and velocity of the mass at the time the negative 

step begins. For such a system, the peak of relative displacement occurs at  

1 0

2

0 0
1

2

2

2

1

n

n n

n

v
tan

x v
t

ξω

ω ξ ξ ω
τ

ω ξ

− −

+ −
= +

−
, (2.27) 

whereas the peak of absolute acceleration occurs when t τ=  or 

2 3 2
1 0 0 0 0

2 3 2 4

0 0 0 0
2

2

1 8 2 4 2

3 2 4 6 8

1

n n n

n n n n

n

( x v v x )
tan

x v x v
t

ξ ξ ω ξω ξ ξω

ω ξ ω ξ ξ ξ ω ξ ω
τ

ω ξ

− − − + − −

− − + + + −
= +

−
. (2.28) 

Figure  2-8 shows the curves of the peak of absolute acceleration with respect to the peak 

of the relative displacement for different damping ratios and natural frequencies. The 

simulation results demonstrate the existence of an optimal damping ratio for each natural 

frequency. The line of minimum is highlighted by a bold line in the graph. 

2.3.1.3 Sinusoidal Input 

The transient response of the system can also be studied under the sinusoidal base 

excitation. This kind of input well represents bumpy roads. The sine input is given in 

(2.29) where Y and bω  denote the amplitude and the frequency of excitation respectively. 

by( t ) Y sin tω= . (2.29) 
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Figure  2-8: Peak value of mass acceleration versus peak value of the relative displacement when the 

pulse duration is 50 msec 

To find the relative displacement and absolute acceleration, (2.29) should be substituted 

in (2.4). The particular solution of the equations of motion for such input is 

2

22 2 2 22

b
rel b

n b n b

Y
x sin( t )

( ) ( )

ω
ω θ

ω ω ξω ω
= −

− +
, (2.30) 

and 

1 2
2 2

2

1 22 2 2 2

2

2

/

n b
n b b

n b n b

( )
a Y cos( t )

( ) ( )

ω ξω
ω ω ω θ θ

ω ω ξω ω

 +
= − − − 

− + 
, (2.31) 

where 1 2 2tan (2 / )n b n bθ ξω ω ω ω−= − . The ratio of the maximum response amplitude versus 

the amplitude of excitation is given by (2.8). The force transmitted to the mass from the 

base can also be calculated by 

F( t ) mx= − �� . (2.32) 
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By substituting (2.30) in (2.32), the force transmitted ratio is, 

1 2
2

2

2 2 2

1 2

1 2

/

T

n

F ( r )
r

Y ( r ) ( r )

ξ

ω ξ

 +
=  

− + 
. (2.33)   

As shown in Figure  2-9, the peak values of force, transmitted to the mass, have no 

minimax with respect to the peak of the relative displacement for the different damping 

ratios and natural frequencies. However, the relative displacement has a maximum with 

respect to the peak of the transmitted force. The maximum peak values are represented by 

the bold line.  

0 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
e
la

ti
v
e
 D

is
p
la

c
e
m

e
n
t 

ra
ti
o
 X

-Y
/Y

Forcetransmissibility F/kY

ξ =0.3

ξ =0.4

ξ =0.5

ξ =0.7

r =1
r =1.5

r =2

 

Figure  2-9: Peak value of the relative displacement versus peak value of the mass acceleration. 

2.3.2 Forced Excitations 

The same spring-mass-damper model can be used for the force excitation case, and (2.9) 

is used to formulate the optimization criteria.  
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2.3.2.1 Unbalanced Force 

The forcing in this case is written as 

2

o dr drF m e sin( t )ω ω= . (2.34) 

By substituting (2.34) in (2.9), the particular solution for the normalized differential 

equation is 

p drx ( t ) X sin( t )ω θ= − , (2.35) 

where 

2

2 2 21 2

om e r
X

m ( r ) ( r )ξ
=

− +
 (2.36) 

and 

1 22 1tan r / rθ ξ−= − . (2.37) 

The ratios of the maximum force and displacement amplitude, with respect to the 

frequency ratio, are given by (2.15) and (2.16), respectively. In fact, (2.15) and (2.16) are 

the same as (2.8) and (2.33) which states that the unbalanced force excitation case has the 

same optimization results as the base excitation case with the sinusoidal input. Therefore, 

to avoid duplication, the results are not given here. 

2.3.2.2 Step Force 

In this case, the displacement equation of the system is derived by solving the 

differential equation (2.9) for the step input force. The solution is 

2

2 2 2

1 1
1

1

nt

n

n n

x( t ) sin( t )e
ξωω ξ θ

ω ω ξ

−= − − +
−

. (2.38) 

The acceleration of the system is calculated by differentiating (2.38) twice. Hence,   

2

2

1
1

1

nt

na( t ) sin( t )e
ξωω ξ θ

ξ

−= − − −
−

. (2.39) 



 

38 

It can be concluded from (2.38) and (2.39) that the displacement and acceleration have a 

linear relationship, reflected in Figure  2-10. Therefore, no minimax point can be 

identified for this case. 
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Figure  2-10: Peak value of mass acceleration versus peak value of displacement. 

2.3.2.3 Pulse Force 

To find the optimum curves for the pulse input, the same procedure as that of the 

pulse input in the base excitation case is followed. Similar to the base excitation 

optimization, the pulse duration is set at 50 msec again. The equations of the system, 

when the time is less than 50 msec are the same as  (2.38) and (2.39). The new sets of 

equations should be derived and the initial conditions from the positive step should be 

considered as well. For the negative input, the displacement equation is derived as 

2 2 2

0 0n

n

n

x v
x( t ) sin( t )

ω
ω θ

ω

+
= + , (2.40) 
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where 

1

0 0ntan ( x / v )θ ω−= . (2.41) 

The acceleration equation is also obtained by taking the second derivative of the 

displacement equation in (2.40). Therefore, 

2 2 2

0 0n n na( t ) x v sin( t )ω ω ω θ= − + + . (2.42) 

Figure  2-11 illustrates the trade off between the peak amplitudes of the acceleration and 

the displacement. From the graphs for each damping ratio, there is a natural frequency 

which creates the maximum peak of the acceleration. In general, this frequency is 

approximately 7 to 10 Hz. The line of maxima is represented by the bold line. 
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Figure  2-11: Peak value of the mass acceleration versus the peak value of the relative displacement. 
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2.4 Summary 

In this chapter, the time and frequency optimization of a passive mount is 

discussed for base excitation and force excitation. The peak of the absolute acceleration 

and the peak value of displacement are chosen as the optimization parameters. The base 

excitation and force excitation are studied separately. Although, a comparison of the 

optimization results for the time and frequency cases may not be appropriate, it does 

indicate that the optimal mount parameters for these approaches are not an exact match. 

Hence, it is concluded that no passive mount is adequate to deal with all application 

specifications and isolation criteria. Although, the design of a passive isolator based on 

the RMS method might not be satisfactory for all cases, typically its application 

compared to the time optimization results, is recommended. Furthermore, this 

recommendation is supported by realizing that the RMS method can also be considered as 

an averaging method.  

For the engine mounts and bushings which are usually designed for general isolating 

applications, a time optimization is not recommended because of inconsistency in the 

suggested optimum parameters. To design passive parameters in engine mounts, as 

indicated in Section  2.2, the RMS method can be utilized successfully. This method can 

be combined with the appropriate weighting factors for the worst cases or the usual ones. 

To overcome the shortcomings of the RMS method, a good control strategy can be 

developed according to the time response optimization results.  
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Chapter 3:Conventional Hydraulic Bushings 
 

In the previous chapter, the optimization of the stiffness and damping parameters 

for a passive elastomer (rubber) isolator is discussed. Finding optimum parameters is vital 

for designing an engine mount and bushing, since all sorts of engine isolators (rubber or 

hydraulic) have passive elastomeric components to support static loads. In this chapter, 

the structure, components, and dynamic characteristics of a conventional hydraulic 

bushing are investigated.  

3.1 Mathematical Modeling 

A hydraulic bushing is a more developed version of the old rubber elastomer 

engine isolator. Hydraulic bushings and mounts are widely used in the automobile 

industry to isolate the engine and the chassis vibrations. The simplicity, low cost and dual 

frequency response of such bushings justify their industrial popularity. Moreover, the 

utilization of hydraulic bushings in low cost vehicles enhances the ride comfort.  

The components of a common hydraulic bushing are described in section 1.3. it is 

also explained that the rubber stiffness and damping are selected passively to support the 

engine static load. When a hydraulic bushing system is subjected to a disturbance (from 

the engine or base), the extra mechanical load causes the fluid pressure inside the 

pumping chamber to rise. Consequently, the increased pressure in the pumping chamber 

results in the expansion of this chamber. In addition to this, some of the fluid in the 

pumping chamber is pumped to the compliance chambers. Since the fluid moves through 
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the inertia track, there is some loss of energy due to the friction, and, as a result, the 

mechanical energy dissipates gradually.  

A simple lumped model of a hydraulic bushing, similar to the Cooper Standard 

bushing model 90576090 in Figure  3-1, is illustrated in Figure  3-2. Here, m is the engine 

unbalance mass, e is the equivalent eccentricity of the unbalance, drω  is the engine or 

driving frequency, Ap is the effective pumping area of the bushing, Ai is the inertia track 

cross-sectional area, C1 is the pumping chamber compliance, C2 is the secondary 

compliance chamber, and Kr and Br are the rubber stiffness and damping, respectively.  

 

 

Figure  3-1: Photograph of the hydraulic Cooper Standard bushing P/N 90575028 
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Figure  3-2: Lumped model of a hydraulic bushing  

In the proposed lumped model, the damping and stiffness of the rubber entails a 

physical spring and damper. The internal hydraulic parts of the bushing are modeled as 

two cylinders with two accumulators, connected to the upper and lower cylinders, 

representing the pumping and second chamber compliances. The cylinders are connected 

to each other by a pipe that acts as an inertia track. The bushing continuity conditions are 

written as  

1 1 p iC P A X Q= −� � , (3.1) 

2 2 iC P Q=� , (3.2) 

and 

1 2 i i i iP P I Q R Q− = +� ,  (3.3) 

where 

P1 

P2 

Qi 
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= , and iii xAQ �= . 

It should be mentioned here that for simplicity, the flow through the inertia track 

is assumed to be laminar. It is also assumed that the bushing stiffness and damping are 

linear. One way of solving the three coupled linear differential equations is to convert 

them to the Laplace domain and solve the resulting three algebraic equations, 

respectively, as follows: 

2

1

p

i i

A SX ( s )
Q( s )

C ( I S R S C )
=

+ +
,  (3.4) 

2

2 2

1 2

1 2

1p i i

i i

A X ( s )( I C S R C S )
P( s )

C C ( I S R S C )

+ +
=

+ +
, (3.5) 

and  

2 2

1 2

p

i i

A X( s )
P ( s )

C C ( I S R S C )
=

+ +
. (3.6) 

The net force transmitted to the base is  

1T r r pF K X B X A P= + +� . (3.7) 

substituting (3.5) in(3.7) , 

2 2
2

2
1 1 2

1

1 1

p i i
T r r

i i

A I s R s / C
F ( s ) ( K B s )X( s )

C I s R s / C / C

+ +
= + +

+ + +
, (3.8) 

Thus, the dynamic stiffness equation becomes 

2 2

2

2

1 1 2

1

1 1

p i iT
dyn r r

i i

A I s R s / CF ( s )
K K B s

X ( s ) C I s R s / C / C

+ +
= = + +

+ + +
. (3.9) 
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In a typical hydraulic bushing, the rubber damping is too small, and affects the 

high frequency response of the hydraulic bushing. Therefore, since only the frequency 

region between 1-200 Hz is studied in this thesis, it is advantageous to ignore the rubber 

damping in the dynamic stiffness equations. Eq (3.9) conveys that the hydraulic bushing 

consists of two springs. One of the springs, the rubber passive stiffness rK , has a constant 

stiffness. The other spring, the hydraulic term, is a frequency dependent spring. In the 

hydraulic part of the equation and at low frequencies ( 0s → ), the stiffness is 

approximately 2

2pA / C , and at high frequencies ( s → ∞ ), the stiffness approaches 2

1pA / C . 

Since C1<<C2, the low frequency response of the hydraulic term in (3.9) results in a soft 

spring, whereas the high frequency regions exhibit a stiffer spring. According to (3.9), the 

switch between the soft and stiff regions occurs at  

1 2 21r / I Cω �  (3.10) 

and 

2 2 11r / I Cω � . (3.11) 

In other words, the hydraulic bushing is a soft spring to 1rω , passes a transient 

response at frequencies between 1rω - 2rω , and finally, at 2rω , is a hard bushing. 

3.2 Experimental Verification 

An experimental test bed is developed to verify the mathematical modeling and to 

study the effect of each parameter variation on the hydraulic bushing’s dynamic stiffness 

response. A magnetic shaker was used to validate the mathematical model on the existing 

Cooper Standard bushing.  To change the bushing parameters such as the inertia track 
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size and resistance, the rubber component of the bushing is removed from its cast bracket 

and a new aluminum bracket is designed and fabricated to enable full control of the 

parameter variations. A schematic view of the bushing and its new bracket is in Figure 

 3-3 and Figure  3-4. In this setup, the original inertia track of the bushing is blocked from 

the inside. Pumping chamber C1 is connected to the compliance chamber C2 by a long 

narrow hose that behaves as an external inertia track of the bushing. In addition, a manual 

flow control valve is placed on the external inertia track to render its resistance 

controllable. A manifold is fabricated to distribute the fluid flow from the pumping 

chamber to the compliance chamber, Furthermore, to create an additional compliance 

chamber to study the effects of changing the compliance, the canal between chambers C2 

and C3 is blocked from the inside. Since, in practice, chambers C2 and C3 are considered 

as a lumped compliance, this change does not alter the mathematical model and the 

general form of the solution.  

 

Figure  3-3: Bushing preparation for the experiment 
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Figure  3-4: Bushing assembly and the schematic view of the chambers connections 

Then, the new bracket is then installed on the shaker. A rod passing through the 

bushing’s center hole is used to connect the bushing to a load cell for measuring the force 

transmitted from the shaker to the fixed frame. Here, the shaker acts as the engine and the 

fixed frame represents the chassis frame. The force transmitted through the mount is 

measured by a Sensotec Model 41, 1000 lb precision pancake load cell. The displacement 

of the bushing, with respect to the fixed frame, is measured by a string potentiometer 

SpaceAge Control, Model 173. A pressure transducer, model PX4000C6, 

OMEGADYNE, is adopted to trace the pressure variation inside the chambers. To carry 

out the experiment, a sweep sine input is applied to the bushing through the magnetic 

shaker. An LDS V722 shaker is used to generate the vibrations, which is controlled by 

the acceleration feedback via the Dactron SpectraBook and Dactron Shaker Control 

software.  The shaker is capable of delivering 951 m/s2 of acceleration from 5 to 4000 

Hz. Dytran accelerometers, Model 3145AG LIVM, are also used as a feedback signal 

Pumping Chamber 

Compliance Chamber 3 

 Compliance Chamber 2 

Inertia Track bypass 

Additional Ports for Pressure Measurement 
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generator to the shaker controller. Figure  3-5 and Figure  3-6 relay the details of the 

experimental setup. 

 

Figure  3-5: Experimental test bed with the data acquisition unit  
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Figure  3-6: Dynamic stiffness fixture and bushing mounted on the LDS V722 shaker 

The experimental dynamic stiffness response of the bushing is plotted in Figure 

 3-7 and Figure  3-8. The shape of the dynamic stiffness experimental results suggests that 

the hydraulic bushing is a second order system which confirms the mathematical model 

in (3.9). The dynamic stiffness response begins as a soft isolator at frequencies below 6 

Hz, the transient response takes place at frequencies between 6-10 Hz, and finally the 

bushing is regarded as a hard isolator for the frequencies above 10 Hz.  

Investigating the phase response of the hydraulic bushing is another way to 

validate (3.9).  The dynamic stiffness equation is composed of two quadratic functions in 

the numerator and denominator, respectively, each corresponding to a 180° phase shift. 

The only difference is that the quadratic function in the numerator causes a positive 180° 
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phase shift whereas the one in the denominator corresponds to a negative 180° phase 

shift. Since the notch frequency of the numerator is less than the one in the denominator, 

it is expected that the positive phase shift happens first. However, if the second notch is 

close enough to the first one, the 180° phase shift is never completed. Thus, the positive 

and negative phase shifts cancel out and a phase bump is created. The amplitude of the 

phase shift at the bump depends on the damping factor of the quadratic functions. The 

phase shift response in Figure  3-8 confirms these statements. 
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Figure  3-7: Dynamic stiffness response of the hydraulic bushing 
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Figure  3-8: Phase change of the hydraulic bushing 

3.3 System Identification 

For the mathematical model of the bushing, a curve is fitted to the experimental 

data to find the coefficients of the dynamic stiffness equation. For this purpose, the 

lsqcurvefit function in Matlab® is used. This Matlab function solves nonlinear curve-

fitting (data-fitting) problems by the least-squares method; given input data, and the 

measured output, the function finds the coefficients that best fit the equation. Obviously, 

an estimation of the initial value of the coefficients is essential for a better system 

identification. The length of the external inertia track and the viscosity of the liquid inside 

the bushing (water) determine a reasonable initial value of the inertia track size. The 

dependency of the locations of the notch frequencies on the compliances of the chambers 

is then used to estimate the initial values of the compliances in the dynamic stiffness 

equation. Figure  3-9 illustrates the experimental curve and the fitted one.  

                                                 
® Matlab is the registered trademark of MathWorks Inc.  
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Figure  3-9: Curve fitting the experimental data to identify the bushing parameters  

It should be noted that the second peak in the dynamic stiffness curve (at 

approximately 13 and 13.5 Hz) is the structural vibration response. The peak occurs 

because the frame which holds the bushing case is not rigid enough and begins to vibrate 

in the frequency region in Figure  3-9. Since this disturbing response is constant, the 

response’s transfer function is derived by a similar curve fitting method, and added to the 

dynamic stiffness equation. This facilitates a comparison between the experimental and 

the simulation results. The values of the different coefficients in the dynamic stiffness in 

(3.9) are tabulated in Table  3-1.  

Table  3-1: Nominal hydraulic bushing parameter values 

Symbol Value Unit 

Ap 15.27 mm2 

Br 0.1398 N-s/mm 
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Kr 195.14 N/mm 

C1 3.8933 N/mm5 

C2 291.31 N/mm5 

I2 1.2497e-004 N-s2/mm5 

R2 0.0022 N-s/mm5 

 

It is evident that the principal characteristic of the hydraulic bushing is its 

dynamic stiffness curve which starts with a small value at low frequencies and gradually 

increases as the frequencies increase. According to (3.7), the transmitted force has a 

relation with the stiffness and damping of the rubber bushing, as well as the pressure in 

the pumping chamber. The stiffness and damping of the bushing are supposedly constants 

and are designed passively. The only frequency dependent part of the equation is the 

pressure in the pumping chamber which from (3.1) is a function of the compliance and 

the amount of the fluid accumulated in the chamber. Although the rubber compliance is 

not a linear parameter, for very small deflections (0.1 mm), it is assumed to be constant. 

As a result the dependency of the accumulated fluid in the pumping chamber on the 

frequency makes the pressure in that chamber a function of the frequency. Therefore, to 

further investigate on the dependency of the pressure on the excitation frequency, the 

volumetric flow (the amount of fluid in the chamber) in the pumping chamber is 

simulated. 

For the lumped model in Figure  3-2 , the amount of fluid accumulating in the 

pumping chamber is equal to the difference between the pumping rate and the fluid 

volume moving to the compliance chamber. Since the compliance of the compliance 
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chamber is higher than that of the pumping chamber, the fluid tends to travel into the 

compliance chambers. Although this is a fact in static situations, it is not always correct 

for frequency dependent problems. In fact, for the fluid to accumulate in the compliance 

chambers, it should move through the inertia track. Depending on the size of the inertia 

track and the compliance of the compliance chambers, it takes some time for the fluid to 

move through the inertia track and accumulate in the compliance chambers. Thus, the 

migration of the fluid to the compliance chambers can only occur for the excitations that 

are happening slow enough (low frequencies) to give the fluid time to travel along the 

inertia track, That is, for the excitations to happen faster than the time constant (high 

frequencies), the compliance chambers became ineffective, and as a result, all the 

pressurized fluid accumulates in the pumping chamber. 

The application of these statements to the dynamic stiffness response, it indicates 

why the dual frequency response characteristic occurs. In reality, the high flexibility of 

the compliance chambers causes the fluid to accumulate in them at low frequencies. 

Consequently, the pressure in the pumping chamber drops, reducing the force transmitted 

to the frame. Contrarily, at high frequencies, the compliance chambers are ineffective. 

Therefore, as the excitation frequency increases, the pressure inside the pumping chamber 

increases and the bushing becomes stiffer. 

If the values in Table  3-1 are substituted into (3.10), 1r
ω  is 0.8 Hz. This frequency 

defines the excitation frequency at which the compliance chambers have the maximum 

effect regarding the amount of the fluid in the pumping chamber, causing the pressure 

drop in that chamber. Figure  3-10 plots the fluid accumulated in both the pumping and 

compliance chambers at 1 Hz. Here, the net pumped fluid is represented by Q.  The 
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volume of the fluid accumulated in the pumping and compliance chambers is Q1 and Q2, 

respectively. Since it takes time for the compliance chamber to fill with fluid, at the 

beginning, most of the pumped fluid is pressurized in the pumping chamber. However, as 

time goes on, the connection between the compliance chamber and pumping chamber is 

established and only a small amount of the fluid accumulates in the pumping chamber. 

From the simulations, it is observed that, at this frequency, the phase of the pumped fluid 

is very close to the phase of the accumulated fluid in the compliance chamber. Since the 

pumping chamber pressure is reduced, it is expected that, at this frequency, the bushing 

exhibits its lowest dynamic stiffness. The experimental results in Figure  3-7 confirm this. 
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Figure  3-10: Time response of the volumetric flow in the linear model of the hydraulic bushing at 1 

Hz 

As the frequency increases, the bushing behaviour gradually changes. Figure  3-11 

represents the fluid volume in the different chambers at 4 Hz. At this frequency, the 

compliance chambers are still effective. However, there is not enough time for all the 
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fluid to move through the inertia track, more fluid accumulates in the pumping chamber. 

This increase results an increase in the pressure inside the pumping chamber, and 

consequently, an increase in the dynamic stiffness response. It is noteworthy that the 

excitation phase is progressively shifted toward the pumping chamber’s accumulated 

fluid. 
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Figure  3-11: Time response of the volumetric flow in the linear model of the hydraulic bushing at 4 

Hz 

At 8 Hz, the fluid accumulated in the pumping chamber increases dramatically. 

This frequency corresponds to 2r
ω . Consequently, the pressure inside the pumping 

chamber indicates a jump. Figure  3-12 denotes the simulation results. The phase of the 

pumped fluid and that of the accumulated fluid in the pumping chamber are closer at this 

frequency. It is remarkable that the amplitudes of the fluid accumulated in the compliance 

and pumping chambers, are higher than the amplitude of the pumped fluid. This is due to 

the phase difference between the accumulated fluid in the pumping and compliance 
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chambers. In other words, when the pumping chamber begins to expand, the compliance 

chambers begin to retract. This causes more fluid to accumulate in the pumping chamber 

than the amount pumped to it. The same thing occurs during the compliance chamber 

expansion, causing the amount of the accumulated fluid in that chamber to increase even 

more than the pumped fluid. 
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Figure  3-12: Time response of the volumetric flow in the linear model of the hydraulic bushing at 8 

Hz 

Figure  3-13 reflects the simulation results at 15 Hz. At high frequencies, as 

predicted, the compliance chambers become ineffective. All of the pumped fluid is 

accumulates in the pumping chamber. Thus, the pressure inside the pumping chamber is 

changed only linearly by the excitation frequency. 
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Figure  3-13: Time response of the volumetric flow in the linear model of the hydraulic bushing at 15 

Hz 
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Figure  3-14: Frequency response of the volumetric flow in the linear model of the hydraulic bushing  

Figure  3-14 portrays the frequency response of the volumetric flow in the 

pumping and compliance chambers. At low frequencies, most of the pumped fluid is 
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moving to the compliance chambers. Gradually, due to the frequency increase and the 

phase difference, both the pumping and compliance chambers contribute to the amount of 

accumulated fluid of the other chamber; That is, each chamber is an additional fluid 

source for the other. 8 Hz is the resonance frequency of the combination of the 

compliances and the inertia track. Beyond this frequency, due to the high excitation speed 

(high frequency), the inertia track loses its effectiveness. Thus, all the pumped fluid 

accumulates in the pumping chamber. The pressure frequency responses of both the 

pumping and compliance chambers are displayed in Figure  3-15.  The dependency of the 

pressure on the volumetric flow can be observed by comparing Figure  3-14 to Figure 

 3-15. 
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Figure  3-15: Frequency response of the pressure in the linear model of the hydraulic bushing 
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3.4 Summary 

The structure and components of conventional hydraulic bushings are now 

identified to facilitate the development of a new, simple mathematical model. This model 

is proposed based on the behavior of the hydraulic bushing components (for instance; the 

compliance chamber expansion and inertia track energy dissipation) and structural 

relations. After Experimental validation of the linear model, various coefficient of the 

model are evaluated by curve fitting.  
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Chapter 4: Inertia Track Effect 

As explained in the previous chapter, the inertia track is one of the parameters 

which define the soft and stiff frequency region of the hydraulic bushing according to the 

mathematical model developed in this thesis. In this chapter the effect of the inertia track 

on the dynamic stiffness response is discussed, paving the way to find a solution to the 

VDE isolation problem. From the various parameters, the inertia track is selected. 

Compared to the rubber compliance, effective pumping area and other effective factors in 

the dynamic stiffness equation, the inertia track is the easiest parameter to control, and is 

also based on the purposed mathematical model, the most effective one.  

4.1 Inertia Track Resistance Effect 

The energy dissipative parts (resistors) in mechanical vibrating systems behave as 

dampers in the simulations. In hydraulic bushings, the energy dissipation occurs in the 

inertia track. According to (3.9), inertia track resistant R appears as the coefficient of “s”. 

According to the quadratic function frequency responses, the effect of the inertia track 

resistance on the peak location is negligible. However, similar to the quadratic function 

frequency responses, the inertia track resistance determines the amplitude of the peaks at 

the resonances.  
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Figure  4-1: Effect of the inertia track resistance on the volumetric flow frequency response  

The effect of the resistance on the dynamic stiffness can be stated differently. It is 

noted that the resistance of the inertia track is not high enough to block the track or 

obstruct the fluid passing through it at low frequencies and in the presence of an inertia 

track resistance, the fluid has enough time and energy to travel between the two 

chambers. Moreover, the volume of the fluid traveling between the pumping and the 

compliance chamber is not high enough for the inertia track to exhibit a major effect. 

Nevertheless, at the resonance frequency of 8 Hz, the volume of the fluid moveing 

through the inertia track increases considerably. As a result, the resistance demonstrates 

its effect. One interpretation of the effect of increasing the resistance in the inertia track is 

the increased pressure inside the pumping chamber. However, this interpretation is 

incorrect, since much of the flow to the pumping chamber at the resonance frequencies 

(which is the frequency that the resistance is most effective) is from the compliance 
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chambers. As a result, the high resistance reduces the amount of fluid traveling from the 

compliance chamber to the pumping chamber. Thus, as it is observed in Figure  4-2, the 

pressure drops in the pumping chamber at 8 Hz, by increasing the inertia track resistance. 
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Figure  4-2: Effect of the inertia track resistance on the pressure frequency response 

The dynamic stiffness simulation results for the different inertia track resistances, 

at R2 = 0.0022 and 0.0025, are denoted in Figure  4-3 and Figure  4-4.  Also, the structural 

vibration response is included in this simulation. As it is expected, the higher resistance 

results in lower peaks in the dynamic stiffness curve. Therefore, controlling the resistance 

of the inertia track does helps to change the damping and avoid the high amplitude peaks 

at the resonance frequencies. 
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Figure  4-3: Dynamic stiffness frequency response amplitude for different inertia track resistances 

(simulation) 
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Figure  4-4: Dynamic stiffness frequency response phase for different inertia track resistances 

(simulation) 
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To investigate the effect of the resistance on the bushing response, an experiment 

is also performed. For changing the resistance of the inertia track, a butterfly valve is 

placed on the external inertia track. In the first experiment, the valve is fully open. 

Therefore, the inertia track demonstrates minimum resistance, and a high peak is 

expected in the response at the notch frequency. In the next experiment, the valve is half 

open. This matches the simulation results, when R=0.0025. As a result, a lower peak is 

observed at the notch frequencies of the bushing. The results of the experiment are 

exhibited in Figure  4-5 and Figure  4-6 .  
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Figure  4-5: Dynamic stiffness frequency response amplitude for different inertia track resistances 

(experiment) 
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Figure  4-6: Dynamic stiffness frequency response phase for different inertia track resistances 

(experiment) 

4.2 Inertia Track Size Effect 

To study the effect of the inertia track size on the dynamic stiffness response, 

(3.10) and (3.11) are the two relations that should be investigated. From these equations, 

it is evident that the notch frequencies are proportional to 21/ I . Thus, the inertia track 

can shift the notch frequencies to the left or right. In addition, the damping ratio of the 

system is proportional to 2I . As a result, any change of the inertia track size is reflected on 

the actual damping of the isolator. 

Figure  4-7 illustrates the flow volume in the pumping and compliance chambers 

for two different cases. The solid curve is based on the values of Table  3-1, and the 

dashed curves belong to the same bushing with a larger inertia track. It can be seen from 

the simulations that the larger inertia track causes the peak of the flow volume to shift to 
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the left. This occurs because, in a long inertia track, it takes more time for the fluid to 

reach the compliance chamber than for a short inertia track. As a result, the response time 

increases. In other words, and the track can be effective only at slower excitations (lower 

frequencies). Moreover, the longer inertia track exhibits a higher resistance to the fluid 

which passes through it. Thus, as expected, the lower resonance peaks in the volumetric 

curves belong to the longer inertia track. 
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Figure  4-7: Effect of the inertia track size on the volumetric flow frequency response 

The relation between the fluid volume accumulated in the chambers and their 

pressures is discussed in details in the previous chapter. Based on this knowledge, it can 

be concluded that any shift in the resonance frequencies of the transferred fluid volume in 

the chambers is reflected by the pressure curves, and consequently, the dynamic stiffness 

response of the bushing. Figure  4-8  plots the pressure curves in the pumping and 

compliance chambers. The dash lines denote the long inertia track simulation results, and 



 

68 

the solid curves represent the short inertia track case. As expected, the peak frequency in 

the long inertia track case moves to the left, in agreement with the volumetric flow 

curves. 

0

2

4

6

8

10

12

P
re

s
s
u
re

(N
/m

m
2
)

0 2 4 6 8 10 12 14 16 18
-180

-90

0

90

180

P
h
a
s
e
 (

d
e
g
)

0 2 4 6 8 10 12 14 16 18
-180

-90

0

90

180

P
h
a
s
e
 (

d
e
g
)

P1(short track)

P2(short track)

P1(long track)

P2(long track)

 

Figure  4-8: Effect of the inertia track size on the pressure frequency response 

Figure  4-9 and Figure  4-10 exhibit the simulation results of the effect of the 

inertia size on the dynamic stiffness response. The first simulation is conducted with the 

values obtained from the curve fitting and system identification (solid curves). According 

to Table  3-1, the inertia track size of the bushing is 1.2497e-4 N-s2/mm5. The notch 

frequencies of the dynamic stiffness simulation of the whole system (not the hydraulic 

part alone) are 6 and 8 Hz. Increasing the inertia track size to 2.7828e-4 N-s2/mm5 should 

shift the notch frequencies to the left. Based on the mathematical model, the notch 

frequencies of the new system should now occur at 2 and 6 Hz.  
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Figure  4-9: Dynamic stiffness frequency response amplitude for the different inertia track sizes 

(simulation) 
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Figure  4-10: Dynamic stiffness frequency response phase for the different inertia track sizes 

(simulation) 
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To perform the experiment and investigate the effect of the inertia track on the 

dynamic stiffness response, the original external inertia track is replaced by a longer one. 

The sweep sine excitation is used in the experiments, and the results are signified in 

Figure  4-11 and Figure  4-12.  

The experimental results show that the notch frequencies of the longer inertia 

track are moved to lower frequencies. Although the first notch frequency location can not 

be identified in this experiment (The shaker can not work for frequencies below 5 Hz), 

the trend of the curve suggests that it moved to the left. The second notch frequency 

location obviously shifts from 8 Hz to 6 Hz.  

It should be noted that in addition to the shift in the notch frequencies, a lower 

peak amplitude can be identified in the dynamic stiffness response of the bushing with 

the longer inertia track. The peak of the long inertia track occurs at 300 N/mm whereas 

the short inertia track peak value is 330 N/mm. 
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Figure  4-11: Dynamic stiffness frequency response amplitude for different inertia track sizes 

(experiment) 
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The phase frequency response can also be used to validate the inertia track size 

effect on the hydraulic bushing response. The bump in the phase response, due to the 

phase cancellation of the numerator and denominator in (3.9), moves to the left in Figure 

 4-11. It means that the notch frequency location moves to the left. The increase in the 

damping coefficient can also be interpreted from the bump amplitude. It can be easily 

proved that for the quadratic function phase cancellation in the numerator and 

denominator below 90°, the higher damping corresponds to the lower bumps in the phase 

response. 
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Figure  4-12: Dynamic stiffness frequency response phase for different inertia track sizes 

(experiment) 

In practice, changing the inertia track size is achieved by different methods. The 

easiest solution might be to use different inertia tracks in the bushing and control them by 

on/off solenoid valves.  
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4.3 VDE Isolation Problem Solution 

As stated in Chapter 1, an ideal isolator for the VDE isolation problem should be 

half as stiff in the operating frequency range of the cylinder deactivation mode. Yet in the 

normal mode the ideal isolator must have a performance similar to that of conventional 

hydraulic bushings. The challenge is to devise a system which can produce a curve 

similar to that in Figure  4-13; that is, the notch frequencies are shifted to the right in the 

engine deactivation mode (solid line) whereas the same dynamic performance of the 

conventional hydraulic bushings (dash line) is preserved. Such a system requires 

switching between the existing rubber part and a softer material or some sort of 

adjustment in the effective pumping area of the pumping chamber. Also, it might be 

possible to achieve such a curve by switching or activating a more compliant material 

with the existing pumping chamber compliance in the cylinder deactivation mode. All of 

these solutions are not applicable since they cost more, require design changes and may 

not even be feasible.  

Regarding the mathematical model and experimental dynamic stiffness results, it 

is evident that the hydraulic bushing curves show a soft region at low frequencies, which 

gradually turns into a hard region at higher frequencies. Since the low and high dynamic 

stiffness values are functions of C1 and C2, the difference between the soft and hard 

bushings level of amplitude can be adjusted by an appropriate selection of the 

compliances of those chambers. Consequently, shifting the notch frequencies to the right 

for the cylinder deactivation mode is a solution to the VDE isolation problem. The 

preliminary simulation and the experimental data suggest that shifting the notch 
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frequencies to the right is achieved by a smaller inertia track size. In fact, by reducing the 

size of the inertia track, the compliance chamber’s active frequency range increases.  

 

Figure  4-13: Ideal VDE isolator dynamic performance 

The schematic view in Figure  4-14 and Figure  4-15  illustrates the experimental 

test bed which is specifically built to prove the concept of the solution proposed in this 

thesis for the VDE isolation problem. To achieve the short inertia track requirement, an 

external compliance chamber is designed. Similar to the internal compliance chambers of 

the hydraulic bushing, this new compliance chamber has a rubber diaphragm on the side. 

As a result, the pressurized water can change the volume of this external compliance 

chamber. To minimize the size of the inertia track, the chamber is designed narrow 

(I=7.2158e-006 N-s2/mm5 which is 17 times smaller than the actual inertia track). This 

compliance chamber is then attached to the bushing. A long hose is used to connect the 

internal compliance chambers of the hydraulic bushing to the pumping chamber. The 

only problem with this experimental setup is that the short inertia track needs to be 
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blocked to obtain the dynamic stiffness curve for the stiff bushing (the normal bushing 

dynamic performance). The short inertia track inside the bushing aluminum block 

prevents the use of a valve for this purpose. As a result, an aluminum cap is fabricated to 

disable the rubber diaphragm, rendering the short inertia track inactive. The location of 

the cap on the manifold is shown in Figure  4-16.  

 

Figure  4-14: Short inertia track proof of the concept schematic view 

The dynamic stiffness curves of the VDE are plotted in Figure  4-17. The dashed 

line curve is the dynamic stiffness curve of the actual bushing (the rubber diaphragm is 

blocked). In this case, the notch frequencies occur at 5 to 8 Hz. The solid line in Figure 

 4-17 represents the dynamic stiffness of the soft bushing (the rubber diaphragm is active). 

In fact, the notch frequencies of this new setup are moved from 5 and 8 Hz to 37 to 43 

Hz. Thus, the hydraulic bushing remains soft for a wider frequency range.  
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Figure  4-15: Experimental setup for the VDE isolation proof of concept 

 

Figure  4-16: Blocking the short inertia track 

In practice, this method can be easily implemented, by two simple steps, on the 

existing hydraulic bushing. The first step is to block the short track that connects the two 

Bushing Case  Pressure Transducer  

Manifold  External Inertia Track 
to the Bushing Compliances  

External Compliance  

Blocker for Closing  
the Short Inertia Track 
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compliance chambers on top. As a result, the internal inertia track is connected to only 

one of the chambers and the other chamber is disabled. Now, to satisfy the short inertia 

track requirement, a shortcut from the pumping chamber to the disabled compliance 

chamber is provided. The opening and closing of this short track is easily controlled by a 

solenoid valve. it can be activated or deactivated by receiving a signal from the engine, 

when it switches to the VDE mode.  The long inertia track inside the bushing, which is 

always open, generates the normal dynamic performance of the hydraulic bushing.  
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Figure  4-17: Dynamic stiffness results of the DOD isolation experiments 

4.4 Summary 

In this chapter, the effect of the inertia track resistance on the dynamic stiffness is 

first predicted by the mathematical model, developed in the previous chapter and verified 

experimentally. Then, the effect of the inertia track size on the dynamic stiffness is 

studied. It is proved, numerically and experimentally, that the frequency response of the 
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hydraulic bushings can be altered by controlling the inertia track coefficients. The 

experimental results prove that the VDE isolation problem requirements are achieved by 

adding a short inertia track to the existing hydraulic bushing system, and the internal 

inertia track is still kept open for the normal engine operations. The frequency range of 

the soft bushing can be adjusted by designing a proper inertia track size. Indeed, it can be 

activated or deactivated by a solenoid valve.  
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Chapter 5: Semi-Active MR Bushing 
 

In the previous chapter, the effect of the inertia track on the hydraulic bushing 

dynamic stiffness response was discussed. The damping coefficient is controlled by 

placing a butterfly valve on the external inertia track, and the notch frequencies are 

located by changing the size of the inertia track. The experimental results indicate a 

significant shift in the notch frequencies to the left by introducing a short inertia track. It 

is concluded that the VDE isolation requirements can be achieved with some minor 

changes in the design of the existing hydraulic bushing.  

The only problem with utilizing the short inertia track is its low damping force. In 

reality, there are frequencies at which high damping is essential (such as the engine’s 

natural frequency). The low damping characteristic of the short inertia track can be well 

observed by looking at the phase response in Figure  4-17. In fact, the amplitude of the 

phase response at the notch frequencies exhibits a higher peak. In reality, the short inertia 

track alone can not apply much resistance to the fluid flow. As a result, an additional 

system is needed to obtain the damping requirements. In this chapter, the design of an 

MR valve is explained. This valve is eventually used as an attachment to the external 

compliance chamber, designed in the previous chapter, to eliminate the inefficient low 

damping. 
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5.1 MR Fluid Behavior and Modeling (Background) 

MR fluids are micronized size solid particles suspended in a fluid. Applying a 

magnetic field aligns the particles in the field direction and enhances of the shear stress. 

This property can be well utilized in isolators to control the damping. 

Most of the devices that use MR fluid have either fixed magnetic poles or 

moveable magnetic poles (there is a third mode called squeeze-film). The fixed magnetic 

pole devices are classified under the pressure driven flow mode, whereas the movable 

magnet cases are categorized as a shear mode. The servo valves, dampers, and shock 

absorbers are examples of the flow mode class, and the shear mode includes clutches, 

brakes, and locking devices. 

 

Figure  5-1: pressure driven flow mode (a), direct-shear mode (b) (photo from the Lord Corporation)  

In this thesis, only the flow mode is used. The pressure drop in the flow mode is the sum 

of viscous component Pη∆ and field dependent component Pτ∆ , and is expressed by  

3

12 yc LQL
P P P

g w g
η τ

τη
∆ = ∆ + ∆ = + , (5.1) 

where L,g, and w are the length, gap ,and width of  the flow channel, Q is the volumetric 

flow rate, η is the fluid viscosity with no applied field, and τy is the yield stress developed 
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in response to an applied field. Parameter c has a value ranging from 2 for /P Pτ η∆ ∆ <1 

and 3 for /P Pτ η∆ ∆ >100. 

The MR fluid used is formulation developed by General Motors Corporation, and 

referred to as 13MAG098.  The approximate magnetic properties of this fluid are 

summarized in Figure  5-2 and Table  5-1. 
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Figure  5-2: Magnetic properties of GM Corp. formulated MR Fluid 13MAG098. 

Table  5-1: Properties of GM Corp. formulated MRF 13MAG098. 

Fluid 

Parameter 

Value 

Percent Solids  

(by volume) 

30 % 

f
µ  0.173 Pa s⋅  

f
ρ  32910 kg m  
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5.2 MR Chamber 

There are various methods for applying resistance to the fluid motion. At first 

glance, adopting a proportional valve seems to work. However, due to the small size of 

the inertia track, placing a proportional valve largely affects the frequency shift which is 

produced initially by the short track. In other words, the level of the opening of the 

proportional valve drastically changes the size of the short inertia track.  

The required damping for this semi-active hydraulic bushing is achieved by 

incorporating the MR fluid in the hydraulic bushing. Then, an MR valve can be adopted 

to control the semi-active bushing damping. The good thing about the MR valve is that, it 

changes the damping of the system with a minimum violation of the dynamic response of 

the original system. An MR valve creates damping by changing the shear stress of the 

MR fluid. This process is accomplished by aligning the suspended iron particles in the 

fluid. As a result, in the inertia track size, none of the key factors that participate such as 

viscosity and the dimensions of the track are altered. For the MR valves, the best 

performance is obtained when the iron particles alignment take place in a direction 

perpendicular to the flow direction. This is the ultimate goal of designing such valves.   

Although MR fluid is a suitable material to create variable damping, economic 

concerns have restricted its usage, especially in the automotive industry where a semi-

active engine mount/bushing should not exceed $20 (one liter of MR fluid is 

approximately $1,000 US). To overcome this, an innovative MR compliance chamber is 

purposed. The idea is to minimize the amount of MR fluid required in the conventional 

bushing. To do so, the MR valve, which is the only component that needs the MR fluid, is 
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separated from the rest of the hydraulic operating components by a rubber diaphragm. A 

schematic view of the MR compliance chamber is shown in Figure  5-3.  

The MR compliance chamber is shown in Figure  5-4. In this design the MR valve 

system is separated from the rest of the hydraulic bushing. This chamber operates due to 

the fact that the interconnections among the different components in the hydraulic 

bushing take place because of the fluid pressure. Now, if the pressure is transmitted by 

other means than the use of a fluid as an agent, different parts can be separated and then 

filled with different fluid. This works in this application, because the MR valve is the 

only component in the entire system that depends on MR fluid for operation. To transfer 

the pressure to the MR valve, a flexible diaphragm is used. It behaves as a separator, and 

forces the MR fluid to travel through the MR valve back and fourth.   

 

Figure  5-3: MR compliance chamber schematic view 

In practice, the pressurized water from the pumping chamber accumulates in the 

pressurized water chamber (a small inertia track connects the pumping chamber to this 

chamber). This pressure excites the separating diaphragm which then acts as a pump. The 
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excitations are then transmitted to the MR fluid which is kept inside the MR chamber and 

separated from the pressurized water chamber by the diaphragm. As a result, the MR 

fluid moves back and fourth in the MR track. The other rubber diaphragm at the end of 

the MR chamber, forces the MR fluid to flow through the MR valve, due to the 

diaphragm’s volumetric extensions and contractions, similar to that of a common 

compliance chamber’s behavior.  

 

Figure  5-4: MR chamber different components 

To produce the required controllable magnetic field, a solenoid coil is used. Here, 

the magnetic field density can be adjusted by varying the applied current. Two soft iron 

manufactured shoes are connected to the core of the solenoid coil to close the magnetic 

field and concentrate the intensity of the magnetic field on the MR track. To direct the 

magnetic field perpendicular to the MR fluid flow direction, the gap between the arms is 

designed as a circle to enclose the MR track. An iron core is placed inside the MR track 
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to direct the field perpendicular to the flow direction. The solenoid coil and a schematic 

view of the MR valve are apparent in Figure  5-5.  

In addition, a FEMLAB simulation is performed to verify the direction of the 

magnetic filed to the MR flow direction. The simulation results are depicted in Figure 

 5-6. In this model the MR flow is normal to the figure plane. The magnetic flow 

streamlines enter the iron core and leave it radial which is ideal for maximizing the 

damping force. 

Solenoid coilSoft iron shoes

 

Figure  5-5: Adjustable magnet device (left) and the schematic view of the field direction in the MR 

inertia track (right) 
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Figure  5-6: FEMLAB simulation of the MR track magnetic field  

Similar to the schematic view of the hydraulic bushing in the Chapter 3, a 

schematic model of the MR semi-active hydraulic bushing is produced as shown in 

Figure  5-8.  This model is used to offer a better understanding of the physical system to 

derive the required equations. Most of the components in this model are the same as the 
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one described in Section 3.1. More components are added to represent the MR compliance 

chamber. In Figure  5-7, the separating diaphragm is modeled by compliance C2. The 

pressure in the pressurized water chamber and in the MR chamber before and after the 

MR valve are denoted by P2, P3 and P4 respectively. AMR corresponds to the MR track 

cross-section area. Similar to the separating diaphragm, the rubber diaphragm covering 

the MR chamber is modeled by compliance C3. 

 

Figure  5-7: Schematic view of the semi-active bushing 

Based on the schematic model in Figure  5-8, the governing equations of the new system 

are 

1 1 p iC P A X Q= −� � , (5.2) 

2 2 3 i
C ( P P ) Q− =� � , (5.3) 

1 2 i i i i
P P I Q R Q− = +�  , (5.4) 

3 4 i
C P Q=� , (5.5) 

and 
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3 4 MR i MR i
P P I Q R Q− = +�  . (5.6) 

 Some of these differential equations are similar to those of the conventional 

hydraulic bushing. That is because the main features of the hydraulic bushing system, 

such as the pumping chamber and short inertia track are the same as those in the semi-

active and hydraulic systems. Equations (5.2) to (5.6) are solved by using the Laplace 

transform. The final results are summarized as 

2

2 3
1 2

1 1 2 3

1 1

1 1 1

p
A Is Rs / C / C

P
C Is Rs / C / C / C

+ + +
=

+ + + +
, (5.7) 

2

2 3
2 2

1 1 2 3

1 1

1 1 1

p MR MR
A I s R s / C / C

P
C Is Rs / C / C / C

+ + +
=

+ + + +
, (5.8) 

2

3
3 2

1 1 2 3

1

1 1 1

p MR MR
A I s R s / C

P
C Is Rs / C / C / C

+ +
=

+ + + +
, (5.9) 

and 

4 2

1 3 1 2 3

1

1 1 1

p
A

P
C C Is Rs / C / C / C

=
+ + + +

. (5.10) 

where  

i MRI I I= +
 

and 

i MRR R R= +  

In the experimental test setup illustrated in Figure  5-8, the rubber bushing is 

inside the aluminum case, and the internal inertia track is blocked by silicon. The 

compliance chamber in the previous chapter is used here again to connects the pumping 

chamber to the MR chamber via the short inertia track. The compliant diaphragm of the 

compliance chamber acts as a separating flexible diaphragm. The pressurized water from 
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the pumping chamber activates the separating diaphragm, causing the MR fluid to move 

through the MR track. Various sensors are involved in this test setup to measure different 

important variables. A Sensotec Model 41, 1000 lb precision pancake load cell is used to 

measure the transmitted force by the hydraulic bushing. For the displacement, a 

SpaceAge Control, string potentiometer, Model 173, is employed. Three OMEGADYNE 

pressure transducers model PX4000C6 are utilized to monitor the pressure at key 

locations in the semi-active bushing assembly.  

 

Figure  5-8: Semi-Active bushing test bed 

 In the experiments, a flexible thin rubber is selected for the separating diaphragm 

and for the rubber diaphragm in the MR chamber, a low compliant material is chosen. 

Therefore, the compliance of the separating diaphragm can be neglected; that is, the 

separating diaphragm is not applying much resistance to the expansions and contractions. 

Practically this means that P2 and P3 should be identical. Moreover, the length of the MR 
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track is longer than the short inertia track, since the MR should be made thinner and 

longer to increase the resistance. As a result, P1 and P2 should have similar pressure 

transmissibility curves, as illustrated in Figure  5-9. The experimental results show that 

the first notch occurs at 44 Hz: this is the natural frequency of the numerator in (5.7) and 

(5.8) which, approximately, is  

1 31n / ICω =  

 As it was discussed in Section  3.1, after this frequency the bushing passes through 

a transient phase from a soft to a stiff isolator. According to the experimental results, this 

transition is completed at 47 Hz. This frequency is the natural frequency of the 

denominator in (5.7) and (5.8) which, approximately, is 

1 11n / ICω =  

 From (5.7) and (5.8), the low and high pressure regions are approximated by 

Ap/C3 and Ap/C1 , respectively.  

 Similar to the second order transfer functions, the frequency response phase shift 

is 180°. Contrarily, if the second order transfer function is in the denominator, a -180° 

phase shift is expected. In (5.7) and (5.8), the second order terms exist in both the 

numerator and denominator. Therefore, since the two notch frequencies are close, the 

180° and -180° phase shift can not be completed. Consequently, a phase bump is 

expected. In fact, the phase rises to 180° but is canceled by the negative phase shift 

produced by the second order transfer function in the denominator. The phase shift of the 

pressure transmissibility is depicted in Figure  5-9, and proves the validity of the pressure 

equations in (5.7) and (5.8).  
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Figure  5-9: Pressure response of the pumping and the pressurized water chambers 

 The pressure response curve inside the MR compliance chamber P4 is different 

than that of P1 and P2, because, (5.10) is not similar to (5.7) to (5.9). According to (5.10), 

the pressure should drop at the denominator notch frequency. In addition, the phase 

response should exhibit only a -180° shift.  The MR chamber frequency response is 

presented in Figure  5-10. Despite what anticipated by (5.10), the pressure phase response 

demonstrates a -150° phase shift. Moreover, although the pressure amplitude drops at the 

beginning, it starts increasing again at 49 Hz which contradicts the anticipated response. 

 These contradictions can be explained by investigating the vibration of the MR 

compliance chamber. To measure that, an accelerometer is attached to compliance 

chamber. The phase difference between the MR chamber and the bushing case 

acceleration is shown in Figure  5-11. This experiment demonstrates an unexpected 

resonance in the MR compliance chamber. In fact, this vibration exists because the MR 
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chamber is long, and as a result, acts like a cantilever beam. In deriving the semi-active 

bushing equations, it is assumed that the MR compliance chamber remains stationary 

with respect to the aluminum block. The experimental results reveal that this assumption 

is violated. According to the experimental results the natural frequency of the MR 

chamber is between 40-45 Hz. This frequency region is the same as that of the notch 

frequency in (5.10) . As a result, the MR chamber pressure response does not fully agree 

with that of the mathematical model. 
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Figure  5-10:  MR chamber pressure response 
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Figure  5-11: Vibration analysis of the MR chamber attachment 

5.3 Damping Effect on Dynamic Stiffness response 

 The pressure transfer functions for the different chambers of a semi-active 

bushing are given in the previous section. The transmitted force can still be calculated by 

(3.7). The only difference is the pressure transfer function in the passive and the semi-

active bushings. Therefore, the dynamic stiffness equation can then be found by 

substituting (5.7) into (3.7)  

2 2

2 3

2

1 1 2 3

1 1

1 1 1

p

dyn r r

A Is Rs / C / C
K K B s

C Is Rs / C / C / C

+ + +
= + +

+ + + +
. (5.11) 

 For (5.11) and (3.9), the transfer functions are similar. Therefore, the 

experimental dynamic stiffness curves of the semi-active system should exhibit the same 

pattern; that is, a soft and a stiff region.  
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 The dynamic stiffness response of the semi-active bushing is first obtained for the 

inactive MR valve (no current state). The experimental results are depicted in Figure 

 5-12. As expected, the dynamic stiffness curve is similar to the one shown in Figure  4-17 

for the small inertia track. The semi-active bushing is then tested for several current 

inputs. At I=0.5 amp, the MR track is saturated. The experimental results show the peak 

of the dynamic stiffness response decreases from 450 to 360 N/mm as a result of the 

damping produced by the MR valve. A lower peak can also be observed from the phase 

response, where the phase bump is also reduced from 70° to 53°.  
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Figure  5-12: Effect of the MR valve on the dynamic stiffness response of the semi-active bushing 

In addition, a curve fitting process is performed to quantify the damping produced 

by the MR valve. For the MR valve no current case, R=0.0041 N-s/mm5 demonstrates the 

best fit whereas the best fit occurs for the MR valve full current case at, R=0.0061 N-
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s/mm5. It is interesting that the inertia track size is 0.0003 N-s2/mm5
 for the semi-active 

bushing. The experimental results prove that the damping and stiffness of the hydraulic 

bushing can be controlled by the short inertia track and the MR valve units. This semi-

active isolation solution is also economical since it requires no change in the hydraulic 

bushing design. Moreover the amount of MR fluid needed for this bushing is reduced 

significantly. More research is needed to improve the quality and placement of the 

component of this semi-active bushing. 

5.4 Summary 

In the previous chapter, a short inertia track is utilized by attaching an external 

compliance chamber to the bushing case. Although the dynamic stiffness response of the 

bushing exhibits the required extension of the soft region to higher frequencies, due to the 

short inertia track size, the required damping is not met. An additional MR chamber is 

introduced for achieving the damping specifications. The innovative feature of this MR 

chamber is the low MR fluid requirement which makes the solution a cost effective 

approach. The pressure frequency response at each critical location of the assembly is 

measured. The responses are in agreement with the mathematical model of the assembly. 

Finally the dynamic stiffness response of the assembly is measured for the MR valve in 

no current and full current cases. It is concluded that the newly designed MR valve can 

produce the required damping by varying the eclectic current.  
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Chapter 6: Active Chamber Design 

The design of a semi-active bushing, based on the VDE isolation requirements, is 

completed. In the semi-active bushing, the soft isolation requirement for the cylinder 

deactivation mode is achieved by extending the low dynamic stiffness region of the 

existing Cooper Standard hydraulic bushing to high frequencies. This shift of the low 

dynamic stiffness region to high frequencies is accomplished by introducing the 

additional short inertia track. The lack of damping, due to the shortness of this track, is 

compensated by attaching an MR valve to the short inertia track unit.  

In this chapter, the design of an active compliance chamber is discussed. The goal 

of this design is to change the pressure response in the pumping chamber. Controlling the 

pumping chamber pressure is essential because from (3.1) and (3.9) it has a direct relation 

to the transmitted force and consequently to the dynamic stiffness. Unlike most of the 

other active counterparts, this design relies on the short inertia track approach developed 

in  Chapter 4. The main contribution of this new active chamber is to compensate for the 

lack of damping in the short inertia track at the notch frequencies and. to alter damping 

and stiffness at other frequencies of interest. The last feature ultimately makes the 

hydraulic bushing independent of the long internal inertia track. 

6.1 Active Chamber 

As stated above the goal of the new active chamber design is to control the 

pressure of the pumping chamber. The relation between the pumping chamber pressure 

and the hydraulic bushing displacement is given in (3.5). This equation is dynamic which 

means that the active device should be able to provide a frequency dependent pressure 
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pattern. Thus, the coefficients of the pressure response can be manipulated, and resulting 

the desired transfer functions.   

There are various methods of generating frequency dependent pressure patterns. 

However, the methods are not generally compatible to the engine environment. The size 

limitations, besides the power consumption considerations and small frequency ranges of 

the application, are the restrictive issues for the common active pressure devices. In this 

chapter, a novel magnetic actuator is designed and utilized to produce the required 

frequency dependent pressure inside a compliance chamber.  

The newly devised magnetic actuator is composed of a permanent magnet and a 

solenoid coil. The permanent magnet is bonded to a thin rubber diaphragm. The rubber 

diaphragm also seals the chamber which is filled with water. The electric current in the 

solenoid coil produces a magnetic field in the direction of the permanent magnet’s field. 

If the magnetic fields of both the solenoid coil and the permanent magnet have the same 

polarity, they repel each other. However, they are attracted if the polarity is reversed. The 

active compliance chamber assembly is illustrated in Figure  6-1. 

There are several advantages for using this type of actuator to control the pressure 

in the chamber. Although the mathematical modelling of these actuators usually involves 

nonlinear terms, practically, these actuators are simple to adapt and easy to control. In 

this case, the size of the actuator is small which makes it suitable for installation on an 

existing hydraulic bushing. Moreover, the actuator’s low power consumption is ideal for 

automobile applications and its electrical current feeding characteristic simplifies the 

controlling purposes.  
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Figure  6-1: Pumping chamber assembly 

The general shortcoming of the magnetic actuators is their limited displacement 

functionalities. This occurs, because the magnetic force is related to the inverse of the 

distance between the magnetic object and the magnetic field source. In most cases, the 

effective distance is limited to only a few centimetres. However, this problem does not 

affect the performance of this magnetic actuator because the amplitude of the vibrations 

produced by the engine are less than one centimetre, producing not a substantial volume 

change in the compliance chambers. This amplitude is even smaller for high frequencies 

(0.1-0.3 mm), where the magnetic actuator is effective. In fact the low displacement 

characteristic of the magnetic actuator does not affect the desired performance. A 

schematic view of the magnetic actuator is depicted in Figure  6-2.  
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Figure  6-2: Schematic view of the active pumping chamber 

Changing the current in the solenoid coil activates the permanent magnet. 

According to Shameli et al, (2006), the magnetic force on the permanent magnet is 

estimated by computing the following:  

( )F I xβ α= + , (6.1) 

where α and β are constants which are functions of the geometry and the magnetization of 

the permanent magnet, x is the distance of the permanent magnet from the solenoid coil, 

and I is the applied current. Here, it is assumed that the effect of the magnetic object on 

the inductance of the coil is negligible. The lumped model of the active compliance 

chamber is illustrated in Figure  6-3.  

The equation of motion for the permanent magnet is written as 

ap ap
Mx F Bx Kx A P= − − −�� � , (6.2) 

Where M is the equivalent mass of the permanent magnet and the diaphragm, and B and 

K are the damping and stiffness of the elastic diaphragm, respectively. The continuity 

equation for the active pump is 

0
AP AP AP

A x C P+ =��  (6.3) 
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and then 

2

1apMx F Bx Kx A x / C= − − −�� � . (6.4) 

By substituting (6.1) in (6.4), 

2

1apMx I Ix Bx Kx A x / Cα β= + − − −�� � . (6.5) 

 

 
Figure  6-3: Lumped model of the active compliance chamber 

The combination of (6.5) and (6.3) defines the frequency dependent pressure 

produced by the active chamber. The nonlinear terms in (6.5) make the analytical analysis 

of the dynamic performance of the actuator difficult. The linearization technique to solve 

(6.5) is described in the next section.   

6.2 Linearization 

The second term in (6.5), βIx, is a nonlinear term in the differential equation. This 

equation can be lineraized to enhance the numerical analysis. In this case, the small 
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displacement of the permanent magnet (in the order of 0.1-3 mm) makes linearization a 

realistic approach. In fact, (6.5) can be linearized about its equilibrium point. It is 

described in the following sections all the experiments are performed by sweep sine 

current input excitations. Therefore, the magnetic displacement also has the sine shape 

which is oscillating about the permanent magnet resting point .The permanent magnet 

displacement frequency is the same as that of the current signal  frequency. The 

equilibrium point is defined as 

0

0

0

0

0

I

x h

x

=

=

=�

 

Thus the state variable is 

1x y=  

1
2

dy
y

dt
=  

3I y=  

Then, 

2

2
2 1 3 3 1

ap

ap

Ady B K
y ( ) y y y y

dt M M C M M M

α β
= − − + + + .   (6.6) 

Consequently, the linearized equation of motion of the permanent magnet is written as 

2

ap apM x B x ( K A / C ) x ( h ) Iα β∆ + ∆ + + ∆ = +�� � . (6.7) 

6.3 Active Compliance Chamber Pressure Frequency Response  

There are several techniques to find the frequency response of a dynamic system. Here, a 

sweep sine input is used. The amplitude of the output frequency response, which is the 
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active compliance chamber’s pressure, is found by filtering the signal at the input 

excitation frequency. To find the analytical response of the system, let 

y r sin tω=  

Then, 

d
I A sin tω= . (6.8) 

For (6.8) the particular response of (6.7) is 

x X cos( t )ω θ∆ = − , (6.9) 

where 

2 2 2 2 2

ap

A( h )
X

(( K A ) ( M ) ) ( B )

α β

ω ω

+
=

+ − +
, (6.10) 

and 

2 2 2

ap ap

B

( K A / C ) ( M )

ω
θ

ω
=

+ −
. (6.11) 

At low frequencies, the permanent magnet displacement is approximated by 

2 2ld

ap ap

A( h )
X

( K A / C )

α β+
=

+
. (6.12) 

At higher frequencies it becomes 

2hd

A( h )
X

( M )

α β

ω

+
= . (6.13) 

The transition between the low and high frequency responses happens at  

2

ap ap

n

K A / C

M
ω

+
= . (6.14) 

The peak value of the permanent magnet displacements depends on the damping of the 

diaphragm B. By substituting (6.12) into (6.3) , 
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2 2

( )

( / )

ap

apdl

ap ap ap

A h A
P

K A C C

α β+
=

+
, (6.15) 

and 

2

( )

( )

ap

apdh

ap

A h A
P

M C

α β

ω

+
= . (6.16) 

Therefore, according to (6.15) at the frequencies below
n

ω , the pressure frequency 

response should be a straight line.  

To investigate the linearity of the active compliance chamber pressure response, an 

experiment is performed for the frequencies below 30 Hz. The displacement of a 

magnetic shaker LDS V722 is adopted as a reference signal to the solenoid coil. Dactron 

SpectraBook and Dactron Shaker Control software is used to command the sweep sine 

signal to the magnetic shaker. Also, a Dytran accelerometer, Model 3145AG LIVM, is 

also used as a feedback signal to the shaker controlling unit to maintain a constant 

sweeping amplitude. Additionally, the acceleration is amplified and then transferred to a 

computer by a data acquisition A/D card. The Simulink Matlab interface is utilized to 

calculate the shaker displacement from the shaker acceleration. The displacement output 

is amplified by a pulse width modulated amplifier (PWM) to produce currents, 

proportional to the shaker displacement. In all the experiments, the shaker controller unit 

maintained the displacement constant. The current signal, which is fed to the solenoid 

coil, for the different gains is depicted in Figure  6-4. It is noteworthy that the spikes at 8 

and 21 Hz are the responses from the shaker frame. These disturbances can be considered 

as systematic errors, fed to the active compliance chamber. 
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Figure  6-4: Current feeding to the solenoid coil proportional to the shaker displacement 

A PX4000C6, OMEAGADYNE pressure transducer is employed to measure the pressure 

inside the chamber. Figure  6-5 exhibits the experimental results of the displacement 

proportional current feeding to the solenoid coil. From the experimental results, it is 

evident that the pressure frequency response follows the feeding current signal linearly. 

This observation matches the linearized low pressure equation, 

lv
log P L cte= =  

where 

2 2

ap

ap ap ap

A( h ) A
L log

( K A / C ) C

α β+
=

+
 

It is concluded that increasing the current results in a larger displacement of the 

permanent magnet, and consequently a higher pressure inside the chamber. 
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Figure  6-5: Active compliance chamber pressure frequency response for a constant amplitude 

current sweep 

6.4 Other Preliminary Input Signals 

In addition, the pressure frequency response of the active compliance chamber to other 

common displacement related sources of the magnetic shaker (such as velocity and 

acceleration) is investigated. First, the current signal, proportional to the shaker velocity 

becomes the commanding input signal. With the same sensor setting which satisfies the 

constant displacement, the velocity of the shaker is 

v r sin( t )ω ω=  

Then  

v
I A sin tω ω= ,  (6.17) 

and 
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vlog I log A log ω= +  

Therefore, the current curve should be an inclined line with a log A offset. The 

current signal for this case and for different current gains is shown in Figure  6-6. This 

signal is produced by the integration of the amplified shaker acceleration signal.  
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Figure  6-6: Current feeding to the solenoid coil proportional to the shaker velocity 

The permanent magnet displacement response for this kind of current source is 

derived in the same way as that of the previous constant amplitude current case. Thus, 

2 2lv

AP AP

A ( h )
X

( K A / C )

ω α β+
=

+
, (6.18) 

and 

2hv

A( h )
X

M

α β

ω

+
= . (6.19) 

By using  (6.18), the low frequency pressure response is 
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2 2

AP

lv

AP AP AP

A ( h ) A
P

( K A / C ) C

ω α β+
=

+
, (6.20) 

Then 

lv
log P L log ω= +  

Like the input current curves, the pressure frequency responses should be inclined 

lines with offset L. In practice, the current signal, proportional to the shaker velocity, is 

obtained by integrating the shaker acceleration signal. It is then amplified and fed to the 

solenoid actuator. The pressure frequency response for the velocity proportional current 

is shown in Figure  6-7. Similar to the displacement proportional current case, the pressure 

frequency response follows the input current signal linearly.  
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Figure  6-7: Pressure frequency response for a velocity proportional current sweep input 
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Next, the acceleration signal from the accelerometer is directly adopted as the 

input to the solenoid coil. Based on the constant amplitude displacement signal, the 

acceleration signal is 

2
a r sin tω ω=  

Then 

2

a
I A sin tω ω= , (6.21) 

and 

2alog I log A log ω= +  

Therefore, the acceleration proportional current is an inclined line with a slope 

twice as that of the velocity current. Figure  6-8 illustrates the current feeding signal to the 

solenoid coil for the different current gains. 
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Figure  6-8: Current feeding to the solenoid coil proportional to the shaker acceleration 
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The linearized low frequency amplitudes of the permanent magnet and active 

chamber pressure are 

2

2 2la

AP AP

A ( h )
X

( K A / C )

ω α β+
=

+
, (6.22) 

and 

2

2 2

AP

lv

AP AP AP

A ( h ) A
P

( K A / C ) C

ω α β+
=

+
. (6.23) 

Then 

2
la

log P L log ω= +  

By comparing the velocity and acceleration proportional current feeding pressure 

responses, the acceleration should display a slope twice as large. The different response 

slopes of the two types of feeding are observed by comparing Figure  6-9 and Figure  6-7. 
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Figure  6-9: Pressure frequency response for an acceleration proportional current sweep input 
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6.5 Second Order Transfer Function Feedings 

As described in the previous section, different pressure frequency responses are 

generated by the various current feeding sources. However, this reflects only a superficial 

capability of this active chamber. To explore the more interesting features of this active 

chamber, it should be pointed out that the displacement has a 90˚ and 180˚ phase shift 

with the velocity and the acceleration, respectively. A current proportional to each of 

these three input sources inherits the same properties. These phase shift characteristics are 

used to generate complex pressure frequency responses.  To consider the phase shift 

characteristic of the different types of current inputs, the following transfer function is 

utilized to generate a complex pressure response 

1 2

1080

0 3 20 1080
T

. s s
=

+ +
. (6.24) 

Eqation (6.24) has a quadratic transfer function in the denominator. The 

displacement, velocity, and acceleration components appear as the coefficients of this 

quadratic. The same as a conventional second order system, the asymptotic frequency 

response of (6.24) is a straight line at frequencies below 9.5 Hz (this frequency is the 

natural frequency of T1) and an inclined line with a negative slope for higher frequencies. 

Figure  6-10 shows the pressure frequency response to a current source in (6.24). The 

response proves a close match to the transfer function.  
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Figure  6-10: applied transfer function pressure response 

Like the typical quadratic transfer function, the notch frequency of the response is 

a function of the square root of the ratio of the constant and s
2 coefficient for small 

damping ratios. Hence, increasing the constant shifts the notch frequency to higher values 

and a rise in the s2 coefficient has the opposite effect. The following transfer function is 

used to confirm the effect of shifting the notch frequency of the applied current to higher 

frequencies on the pressure response. 

2 2

4000

0 3 40 4000
T

. s s
=

+ +
 (6.25) 

In this transfer function, the notch frequency of (6.25) is increased to 18.4 Hz. The 

pressure response to this transfer function is depicted in Figure  6-11. Compared to Figure 

 6-10, the constant amplitude region is now extended to higher frequencies. This 
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experiment proves that the notch in the pressure frequency response of the active 

compliance chamber can be easily shifted to any specified frequency.  
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Figure  6-11: effect of the transfer function notch frequency variation on the pressure response 

Another experiment is performed to investigate the effect of varying the velocity 

gain, s coefficient, on the pressure frequency response. To do so, the following transfer 

function is used: 

3 2

4000

0.3 30 4000
T

s s
=

+ +
. (6.26) 

Here, the coefficient of s (velocity gain) is changed from 40 to 30. The s term 

coefficient in (6.26) defines the damping in the system. The damping coefficient in a 

typical quadratic transfer function affects the notch amplitude of the frequency response, 

as observed in Figure  6-12. 
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Figure  6-12: Effect of the transfer function resistance variation on the pressure response 

6.6 Complex transfer functions effect 

The pressure inside the active compliance chamber can also be controlled by 

means of a defined second order transfer function. In other words, the chamber pressure 

response is directly related to the applied current frequency pattern. Here, a current 

signal, similar to the pressure frequency response of the hydraulic bushing pumping 

chamber (quadratic functions in both the numerator and denominator), is used as an input 

transfer function, that is 

2

4 2

0 3 2 1100

0 3 3 1200

. s s
T

. s s

+ +
=

+ +
. (6.27) 

This transfer function has a quadratic function in both the numerator and 

denominator. According to the transfer function, the pressure frequency response is 

supposed to be a straight line at low frequencies. Since the notch frequency of the 
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numerator second order polynomial is smaller than that of the denominator one, the 

frequency response should gradually increase to that of the notch frequency of the 

numerator. The maximum amplitude, which depends on the coefficient of s in the 

denominator, happens at this notch frequency. Finally, at high frequencies, the pressure 

response continues as a constant. The pressure frequency response for (6.27) is portrayed 

in Figure  6-13. 
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Figure  6-13: Active chamber pressure response to transfer function similar to P1 

The pressure frequency response in Figure  6-13 is qualitatively identical to the 

pressure frequency response of the pumping chamber of the hydraulic bushings. In fact, 

the notches in the dynamic stiffness curve exist as a result of the pressure frequency 

response of the pumping chamber. The adoption of the active compliance chamber and 

control of the pressure signature results in shifting the dynamic stiffness notches to higher 

frequencies. Therefore, the soft region of the dynamic stiffness response includes a high 
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frequency region which is the main goal of the isolator design for VDE systems.  The 

notch frequency shifting of the pressure frequency response is illustrated in Figure  6-14 

for different current transfer functions. 
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Figure  6-14: Pressure response frequency shift 

The amplitude of the pressure response is controlled easily by varying the input 

current gain. Figure  6-15 displays the response for the same transfer function with 

different gains. In addition to the current gain, a proper selection of the elastomer 

diaphragm, in addition to the permanent magnet size and its magnetic property, can boost 

the response amplitude. The solenoid coil property and its size affect the forcing quality, 

and consequently, the pressure amplitude. Also, an optimum distance between the 

permanent magnet and the solenoid coil can also be found by a quantitative analysis and 

simulation of the magnetic force, the permanent magnet equation of motion, and 

considering the system nonlinearities.  
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Figure  6-15: current gain effect on the pressure response amplitude 

Finally, the peaks of the active chamber pressure frequency response are 

controlled by defining a proper velocity gain, s coefficient, in both the numerator and 

denominator. The following transfer functions are used to experimentally clarify that 

phenomenon,: 

2

5 2

0 3 4 5000

0 3 4 5200

. s s
T

. s s

+ +
=

+ +
 (6.28) 

and 

2

6 2

0 3 3 5000

0 3 3 5200

. s s
T

. s s

+ +
=

+ +
. (6.29) 

From (6.28) and (6.29), the velocity gains in T5 are higher than those in T6. As a 

result, higher peaks are expected in the pressure response with the current transfer 

function of (6.29) . The experimental results are summarized in Figure  6-16. 



 

116 

5 10 15 20 25 30
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

frequency(Hz)

P
re

s
s
u

re
(p

s
i)

 
Figure  6-16: Effect of velocity coefficient on the pressure response notch frequencies amplitudes 

6.7 Summary 

In this chapter, a magnetic actuator is designed to produce the frequency 

dependent pressure response. This actuator consists of a permanent magnet and a 

solenoid coil. The equation of motion for the permanent magnet is derived and linearized 

at the equilibrium point. Also, a magnetic shaker serves to produce the feeding signal to 

the solenoid coil. The displacement, velocity, and acceleration sweep sine excite the 

magnetic actuator. It is shown that the pressure frequency response follows the input 

signal linearly. The amplitude and phase differences of the various current input sources 

are then employed to create the required pressure frequency response by producing the 

desired transfer function in the applied current to the solenoid coil. Additionally, it is 

shown that the notch frequencies of the pressure response can be shifted by changing the 

notch frequencies in the current transfer function. Then, the effect of the current gain on 



 

117 

the amplitude of the pressure response is studied. The velocity term coefficient is applied 

to control the peak amplitude at the notch frequencies. The active compliance chamber 

proves to be a versatile device for controlling the pressure in the frequency domain. The 

effect of this magnetic chamber on the pumping chamber pressure is investigated in the 

next chapter. 
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Chapter 7: Pumping Chamber Pressure Control 

An active chamber is designed in  Chapter 6 to control the pressure in the pumping 

chamber of the hydraulic bushing. The magnetic actuator (a combination of a solenoid 

coil and a permanent magnet) is employed to derive the active chamber. An electrical 

current based on the displacement, velocity, and acceleration of the bushing is the source 

of power for the solenoid coil. The experimental results of the pressure frequency 

response of the active chamber are in an excellent match to those of the feeding signal.  

In this chapter the effect of the active chamber on the pumping chamber pressure 

response is scrutinized. The active chamber is connected to the hydraulic bushing. 

Similar to the procedure for the previous chapter, different current inputs are used, and 

the pressure frequency response of the pumping chamber is measured. 

7.1 Active Hydraulic Bushing and the Mathematical Modeling 

As discussed in Section  3.1, the rubber stiffness and damping in addition to the 

pressure inside the pumping chamber, significantly affect the dynamic stiffness 

performance of a hydraulic bushing. The rubber stiffness and damping are embedded 

features of the conventional hydraulic bushing and are designed according to the static 

load and torque considerations of the engine. As a result, a device which can actively 

control the pressure in the pumping chamber can also alter the dynamic stiffness 

characteristic, effectively. It is shown in the previous chapter that the newly designed 

active chamber can successfully change the pressure at any specified frequency. 

 This chamber is connected to the hydraulic bushing, as shown in Figure  7-1. A 

schematic model of the active hydraulic bushing assembly is given in Figure  7-2. In this 
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schematic view, the active chamber is represented by a reciprocal pump with an effective 

cross-section area Ap2 which is different from the effective pumping area of the pumping 

chamber. The active pumping displacement is Y. Also, a compliance chamber is chosen 

to model the elastic characteristic of the active chamber diaphragm. It should be 

mentioned here that the internal inertia track of the hydraulic bushing is also blocked 

from the inside for this experiment. As a result, the only inertia track in the active 

hydraulic bushing assembly is the short inertia track, connecting the pumping chamber to 

the active chamber.  

 
Figure  7-1: Active hydraulic bushing assembly testbed 
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The continuity equation for the active hydraulic bushing is the same as (3.1) and (3.3) ; 

however,  (3.2) should be rearranged as 

2 2 2p iC P A Y Q+ =� � . (7.1) 

M

1/C
2

1/C
1BrKr

A i

Ap1

Ap2

X

Y

 
Figure  7-2: Active hydraulic bushing schematic view 

By solving (3.1), (3.3) and (7.1) , 

2

1 2 2 2

1 2 2

1 2 1 2

1
p i i p

i i i i

A X ( s )( I C s R C s ) A Y ( s )
P ( s )

C C ( I s R s C ) C C ( I s R s C )

+ +
= −

+ + + +
 , (7.2) 

1 2 2 1

2 2

1 2 1 2

p p

i i i i

A X ( s )C s A Y ( s )C s
Q( s )

C C ( I s R s C ) C C ( I s R s C )
= +

+ + + +
,   (7.3) 

and 

2

1 2 1 1

2 2 2

1 2 1 2

1
p p i i

i i i i

A X ( s ) A Y ( s )( I C s R C s )
P ( s )

C C ( I s R s C ) C C ( I s R s C )

+ +
= −

+ + + +
.  (7.4) 

In reality, the active pump acts on the dynamic stiffness curve by producing a 

pressure difference according to the applied phase. Observing (7.2) , the contribution of 

the active pump in the pumping chamber pressure is  

1 2

2

1 2 1 2

( ) 1

( ) 1/ 1/

p p

i i

A A Y s

C C X s I s R s C C+ + +
. (7.5) 
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In the following sections, the mathematical model of the active hydraulic bushing 

is validated.  

7.2 Pressure Frequency Response of the Pumping Chamber 

To practically examine the performance of the active chamber, it is attached to the 

hydraulic bushing as exhibited in Figure  7-1. Similar to the passive hydraulic bushing 

compliance chamber, the active chamber pressure transfer function in (7.4) (activation 

signal Y(s)= 0) has a quadratic function in the denominator. A typical asymptotic 

frequency response of such transfer functions consist of a straight line, which turns into 

an inclined line at the transfer function notch frequency. In reality, the actual curve 

produces a peak at the break point. The amplitude of the peak depends on the resistance 

(first order term coefficient) in the quadratic function. The pressure response of the active 

chamber, when the input signal is zero is depicted in Figure  7-3. According to the 

experimental results the notch frequency, occurs at 62 Hz. The peak at the notch 

frequency is relatively high, because the short inertia track can not apply much resistance 

to the flow motion.  

The phase response of the active chamber is also offered in Figure  7-3. Similar to 

the typical quadratic function in the denominator, the phase should be shifted from 0° to 

180°. This transition takes place at different frequency ranges, depending on the damping 

factor. However, at the system notch frequency, the phase should be 90°. This 

experimental result validates the pressure transfer function of the active chamber. Since 

the ultimate goal is to control the pressure inside the pumping chamber, the focus of the 

following experiment is on the pressure frequency response of the pumping chamber. 
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Figure  7-3: Active chamber pressure frequency response  

The pumping chamber’s pressure transfer function of the assembly in (7.2) has 

two terms. The first term consists of quadratic functions in both the numerator and 

denominator, whereas the second term has only a quadratic function in the denominator. 

Since all the coefficients in the first term of the pressure transfer function of the assembly 

belong to the original hydraulic bushing; the term is called the hydraulic pressure term. 

The effect of the active pulses on the bushing assembly is denoted by the permanent 

magnet displacement transfer function Y(s) in the second term of the pressure transfer 

function.  

The hydraulic term of (7.2) has a quadratic function in both the numerator and 

denominator. Thus, the pressure frequency response of the original hydraulic bushing 

(without the active component) should have two notch frequencies at the natural 

frequencies of the quadratic functions of the hydraulic term. The natural frequency of the 
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quadratic function of the numerator is less than the one in the denominator (C1<<C2). 

Consequently, the pressure frequency response asymptote should be a straight line at the 

beginning, an inclined line at the numerator notch frequency, and finally, a straight line at 

the denominator notch frequency. The high frequency pressure response is a straight line 

due to the fact that the positive and negative slopes at the numerator and denominator 

cancel each other out at the denominator (second) notch frequency. The pressure 

frequency response of the active hydraulic bushing assembly is plotted in Figure  7-4. 

This experimental analysis is performed for the no current case to the active component. 

As a result, the active term in (7.2) is zero.  
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Figure  7-4: Pumping chamber pressure frequency response 

According to the experimental results the notch frequencies occur at 37 Hz and 62 

Hz. The peak, associated with the frequency response at the notch frequencies, is the 

result of the resistive force produced by the inertia track. This resistive force appears as 
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the coefficient of the first order terms in the quadratic functions, R. It is noteworthy that 

the higher resistive force lowers the peak amplitude.  

Moreover quadratic functions have phase shifts with the hydraulic bushing 

displacement. For the quadratic function in the numerator, which happens earlier, the 

phase shift asymptote is 180˚. The start and completion of the actual phase shift curve 

depends on the damping coefficient of the quadratic function. However, the phase shift at 

the notch frequency is 90˚ for all the damping coefficients.  The same occurs for the 

quadratic term phase shift in the denominator with the negative values. The phase 

response of the pressure frequency response is also depicted in Figure  7-4. This response 

also matches the mathematical model in (7.2). Although some noises exist in the phase 

response at low frequencies, the phase shift of the pressure response to the bushing 

displacement is almost zero. The 90˚ phase shift takes place at 37 Hz, and the 180˚ 

completes approximately at 42 Hz. The phase shift which corresponds to the denominator 

quadratic function begins approximately at 50 Hz. The -90˚ phase shift occurs at 62 Hz. 

The phase shift returns to 0˚ the frequencies higher than 70 Hz. The wider frequency 

range for the denominator phase completion, which is due to the smaller amount of the 

damping, corresponds the high peak in the pressure frequency response. The 

experimental pressure response proves the validity of the hydraulic term in (7.2). 

Different preliminary feeding signals such as the position, velocity, and 

acceleration of the shaker are adopted to check the conformity of the response with the 

input current, and also to validate the mathematical model of this active component; that 

is, the active term in (7.2).  
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First, the effect of the displacement feeding on the pressure frequency response of 

the hydraulic bushing is investigated. According to (7.2), if the two terms of the pumping 

chamber pressure transfer function is combined, the position feeding has an impact on the 

constant coefficient of the quadratic function in the numerator of the hydraulic term of 

the pressure frequency response. The first notch frequency is the natural frequency of the 

numerator of the hydraulic term. Therefore, by increasing the constant, the first notch 

frequency of the resultant system should move to the right (higher frequencies). The 

experimental result of the position feeding pressure response is illustrated in Figure  7-5. 

As expected, the notch frequency is increased from 37 Hz to 45 Hz.  
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Figure  7-5: Position feeding effect on the pumping chamber pressure frequency response 

The shift in the first notch frequency location is more apparent by observing the 

phase response in Figure  7-5. Although the position feeding has no direct effect on the 

resistive force of the inertia track, the position feeding contributes to the damping 
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coefficient. This can be explained by realizing that increasing the compliance 

corresponds to higher natural frequency, then with the same amount of the resistance a 

lower damping ratio is resulted. This phenomenon is observed by comparing the 

frequency range of the completion of the ascending portion of the phase responses. For 

the original response, this range is approximately 20 Hz and 5 Hz for the position feeding 

response. Eq(7.2) predicts no significant change in the pressure response related to the 

numerator quadratic function. This confirms to the experimental results, illustrated in 

Figure  7-5. 

Unlike the position feeding, the velocity feeding affects the first order term in the 

quadratic function of the numerator of the hydraulic term. This occurs because the 

velocity signal is the first derivative of the position signal, and then the velocity signal 

Laplace transform appears with an “s” in the transfer function. In fact, the first order term 

in the quadratic transfer functions determines the damping coefficient. Therefore, the 

damping adjustments can be achieved by tuning this type of feeding. The pressure 

frequency response of the active bushing is depicted in Figure  7-6. 

In the frequency responses of the quadratic functions, the damping coefficient 

indicates a significant effect at the natural frequencies where the resonance occurs. Since 

the velocity feeding alters only the damping coefficient in the numerator of the hydraulic 

term, most of the effect is observed at the first notch frequency; That is, 37 Hz. To 

highlight the effect, the pressure response is depicted from 0 to 1 psi. According to the 

experimental results, the velocity feeding response has a lower peak, compared to the 

original response of the hydraulic bushing. It should be noted that, as predicted by(7.2), 
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the velocity feeding does not significantly contribute to the shifting of any of the notch 

frequencies.  
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Figure  7-6: Velocity feeding effect on the pumping chamber pressure frequency response 

The explanation of the effect of the velocity response on the active hydraulic 

bushing might be easier, if the phases of the velocity feeding and original responses are 

compared. According to the phase response of the velocity feeding, the phase shift starts 

earlier at 15 Hz. The early beginning of the phase shift reflects a typical effect of the 

higher damping coefficient. Like that of the original response, the 90° phase shift which 

corresponds to the first notch frequency happens at 37 Hz. this point can be identified by 

the intersection of the original and velocity feeding phase responses. Also, there is no 

significant change in the ascending portion of the phase response which is dominated by 

the quadratic function in the denominator of the hydraulic term. 
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The last test signal to validate the active term of the pressure transfer function is 

the acceleration feeding signal. It is the second derivative of the position signal. 

Therefore, in a quadratic transfer function, the acceleration feeding impacts on the second 

order coefficient. As a result, this type of input behaves in contrast to the position 

feeding; that is, increasing the acceleration feeding amplitude, decreases the natural 

frequency of quadratic function. The experimental results of the acceleration feeding are 

illustrated in Figure  7-7.  
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Figure  7-7: Acceleration feeding effect on the pumping chamber pressure frequency response 

In this experiment, a negative acceleration signal is used. Therefore, based on 

(7.2), the first notch frequency should move to the right (higher frequencies). According 

to the experimental results, the first notch frequency is increased from 37 Hz to 44 Hz. As 

expected from(7.2), the second notch frequency location, as well as its corresponding 

frequency pattern, remaines untouched. 
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Accordingly, the phase response of the acceleration feeding confirms the 

prediction of (7.2). For the phase response in Figure  7-7, the 90° phase shift is moved 

from 37 Hz to 44 Hz. For the same reason described earlier in Section 6.6, feeding 

experiment, the damping coefficient is affected by the acceleration feeding. Furthermore, 

this can also be identified in the phase response by comparing the frequency regions that 

the 180 ° phase shift completes in the original and acceleration feeding responses. 

7.3 Complex Transfer Function Feeding  

In the previous section, the validity of the mathematical model is confirmed by 

different experiments. Moreover, the significant capabilities of the active chamber are 

clarified. In fact, this versatile active chamber not only produces the required pressure 

differences, but also provides the phase shifts, based on the input signal type. As a result, 

different features of the original pressure response signature, such as the notch 

frequencies locations and the damping coefficients, are easily altered by adjusting the 

position, velocity, and acceleration signals to the solenoid coil. The frequency dependent 

feature of this active chamber can be used to create complex pressure frequency 

responses from the active hydraulic bushing assembly. As a beginning, the following 

transfer function is used to feed the electrical current to the solenoid coil: 

2

1 2 (3 1)ampTf K C Is Rs= − − . (7.6) 

where Kamp is the amplification constant used for the input current. Tf1 is composed of an 

acceleration signal which is three times of the inertia track size, the velocity and a 

negative position signal. This combination of signals and coefficients allows the first 

notch frequency to shift to the left (lower frequencies) according to the ultimate possible 

electrical current of the solenoid valve. The resultant quadratic function in the numerator 



 

130 

of the hydraulic term requires large second order coefficients and smaller first order 

coefficients and constants. Consequently, the natural frequency of the quadratic function 

in the numerator decreases. The experimental results are compared to the original 

response in Figure  7-8. 
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Figure  7-8: Pumping chamber pressure response subjected to Tf1 

To further clarify the effect of Tf1, the pressure response is displayed in the 0-1 psi 

region. As expected, the notch frequency is moved from 37 Hz to 33 Hz. This frequency 

shift can be identified more clearly by observing the phase response. The 90˚ phase shift 

in the Tf1 response occurs at 33 Hz. Another interesting feature of Tf1 which can be 

understood from the phase response, is the reduction in the damping coefficient. The 

phase shift transition from 0˚ to 180˚ transpires in a small frequency region of 5 Hz (from 

30 Hz to 35 Hz). 
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Also, the use of the active chamber affects the pressure frequency response in the 

frequencies, other than the region dominated by the two notch frequencies of the original 

response of the hydraulic bushing. This capability demonstrates its significant importance 

in cases, where complex pressure response patterns (finally affects the dynamic stiffness 

as well) are required. In the automobile application, this situation occurs at the resonance 

frequency of the engine (usually at 10-15 Hz), where high damping is required. 

Obviously, the passive hydraulic bushing can not deal with the VDE isolation problem 

and the engine resonance frequency at the same time. For example, the following transfer 

function is used to affect the pressure response in the 20-30 Hz region, 

2

2 2

0 6 12 8000

0 3 10 10000

. s s
Tf

. s s

+ +
=

+ +
. (7.7) 

This transfer function has two notch frequencies at 18 Hz and 29 Hz. The low 

frequency response of this function is 0.8, whereas the high frequency response is 2. The 

frequency response of Tf2 is depicted in Figure  7-9.  

Then, the electrical current is fed to the solenoid coil, based on the Tf2. The 

pressure response of the active bushing affected by this input is compared to the response 

of the hydraulic bushing in Figure  7-10. If the two graphs are compared, two new notch 

frequencies are added to the existing notch frequencies of the hydraulic bushing at 25 Hz 

and 31Hz. These are not exactly the same as the notch frequencies of Tf2. This is due to 

the hydraulic term of the pressure response of the assembly in (7.2), contributing to the 

location of the notch frequencies imposed by the active chamber.  
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Figure  7-9: bode plot of Tf2 
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Figure  7-10: Pumping chamber pressure response subjected to Tf2 
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The phase response of the Tf2 feeding agrees with the pressure frequency 

response. According to the experimental results, the first notch frequency of the original 

response is also affected by Tf2. To explain such a shift, it should be noted that the Tf2 

transfer function has a constant value for the frequencies below and above the frequency 

range, dominated by Tf2’s notch frequencies. This constant for the higher frequencies 

approaches 2. Thus, in the range of the frequencies of the original response, the active 

chamber functions as a position feeding signal.  

The active chamber can also be fed in a way to create even more complex 

pressure responses. In fact, the feeding signals, based on the transfer functions, dictate the 

pressure response signature. To show this capability, the following transfer function, in 

addition to Tf2, is adopted to shape the feeding signal: 

2

3 2

0 6 5 2000

0 3 5 3000

( . s s )
Tf

( . s s )

+ +
=

+ +
. (7.8) 

The notch frequencies of Tf3 take place at 9 Hz and 16 Hz. According to Tf3, the 

low and high frequency values of this transfer function should be 0.7 and 2, respectively. 

The Bode plot of Tf3 is denoted in Figure  7-11. 

The pressure response of the new set of feeding signals is exhibited in Figure 

 7-12. In the experimental results, the two new additional notches resulted from Tf3 are 

easily identified. Similar to those of Tf2, the new notch frequencies happen at 15 Hz and 

19 Hz. As explained earlier in this section, this shift is a result of the other transfer 

functions contributions to the resultant active bushing pressure response. In reality, the 

notches produced by Tf2 are also slightly affected by Tf3. The shift in the original response 

notch frequencies occurs for the same reason as that explained for Tf2. It should also be 
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noted that in addition to the notch frequency creation, the corresponding damping can be 

adjusted by varying the first order coefficient in the desired transfer function.  

10 20 30 40 50 60
0

45

90

135

180

frquency (Hz)

P
h
a
s
e
 (

d
e
g
)

0

2

4

6

8

10
M

a
g
n
itu

d
e
 (

a
b
s
)

 

Figure  7-11: bode plot of Tf3 

7.4 Conclusions 

The active chamber, which is designed in the previous chapter as an additional 

component to the existing hydraulic bushing, is tested in a practical situation. Also, the 

active hydraulic bushing assembly is modeled in this chapter. It is demonstrated that the 

pressure response of the assembly consists of the hydraulic term which inherits its 

dynamic behaviour from the existing hydraulic bushing. The other term of the pressure 

response is called the active term. The mathematical model is validated by elementary 

experiments. Different features of the original pressure response of the hydraulic bushing, 

such as the notch frequency location and damping coefficient are altered by the 

appropriate signal feeding to the active chamber. Moreover, the active chamber 
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successfully imposes the transfer functions of the input signal on the original pressure 

response of the hydraulic bushing. This capability is required, since the engine resonance 

requires more damping. The effect of this active chamber on the dynamic stiffness 

response is the subject of the next chapter. 

10 20 30 40 50 60 70
0

50

100

150

200

frequency(Hz)

P
h
a
s
e
 (

d
e
g
)

10 20 30 40 50 60 70
0

0.5

1

frequency(Hz)

P
re

s
s
u
re

 (
p
s
i)

Original response

Tf
3

 

Figure  7-12: Pumping chamber pressure response subjected to Tf2 
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Chapter 8: Active Hydraulic Bushing Dynamic Stiffness 

Response 

The development of an active chamber for tuning the pressure of the pumping 

chamber is explained in Chapter 6. As a follow up, this active chamber is connected to 

the hydraulic bushing and shapes the active hydraulic bushing assembly. The active 

hydraulic bushing is tested in Chapter 7, where the experimental results demonstrate that 

the active chamber can affect all the essential performances of the dynamic response in 

the hydraulic bushing. This includes the notch frequency locations and damping 

coefficient. In addition, the active chamber can produce the required pressure responses 

at other frequencies rather than the notch frequencies. 

In this chapter the active hydraulic bushing dynamic response is discussed. The 

literature background explains different experimental results are covered in Chapter 7. 

Thus, to avoid duplication, a brief discussion, based on the previous chapter, seems to be 

sufficient.  

8.1 Modelling and System Identification 

Before the experiments, it is essential to spend time and go over the mathematical 

model of the active hydraulic bushing. This model eventually helps us explaining the 

experimental results precisely. Here, the same schematic model in Figure  7-2 adopted and 

most of the required relations are developed in the previous chapters. The transmitted 

force from the isolator is given in (3.7). The Kr and Br coefficients do not change in the 

active hydraulic bushing. The only variable which needs to be plugged into this formula 
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is the pumping chamber pressure. The appropriate relation for the active hydraulic 

bushing pumping pressure is given in(7.2). Thus, the transmitted force is 

2

1 2 2 2

1 2 2

1 2 1 2

1p i i p

T r r p

i i i i

A X( s )( I C s R C s ) A Y( s )
F ( s ) ( K B s A ( ))X ( s )

C C ( I s R s C ) C C ( I s R s C )

+ +
= + + −

+ + + +
(8.1) 

and according to the dynamic stiffness detention, 

2 2
1 1 22

2 2

1 1 2 1 2 1 2

1 1

1 1 1 1

p p pi i
dyn r r

i i i i

A A A Y( s )( I s R s / C )
K K B s

C I s R s / C / C C C X( s ) I s R s / C / C

+ +
= + + −

+ + + + + +
(8.2) 

The experimental results of dynamic stiffness response are offered in Figure  8-1. 

It should be noted that this experiment is performed, when the input to the active chamber 

is set at zero. Similar to those of the conventional hydraulic bushing, the two notch 

frequencies are identified in the active bushing dynamic stiffness response. However, due 

to the short inertia track inside the active chamber, the notch frequencies are moved to 

higher frequencies. Moreover, the lack of damping is clear, where the peak in the second 

notch frequencies happens at about 800 N/mm (compared to 300 N/mm in conventional 

hydraulic bushings). 

To find the coefficient in the dynamic stiffness (8.2), the same curve fitting 

process as those in Chapter 3 is applied here, as shown in Figure  8-1. The simulation is a 

perfect match to the experimental data. The different coefficients in the dynamic stiffness 

equation are tabulated in Table  8-1. Except the inertia track size and resistance, the other 

coefficients are the same as those in Table 3-1. For the active hydraulic bushing, the 

small inertia track size and resistance are the consequence of the short inertia track 

designed in the active chamber. 
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Figure  8-1: Dynamic stiffness response of the active hydraulic bushing and the fitted curve 

Table  8-1: Nominal hydraulic bushing parameter values 

Symbol Value Unit 

Ap 14.7 mm2 

Br 0.1398 N-s/mm 

Kr 195.14 N/mm 

C1 2.3709 N/mm5 

C2 300.99 N/mm5 

I2 2.66e-006 N-s2/mm5 

R2 1.5e-004 N-s/mm5 

8.2 The Elementary Inputs   

In Chapter 7, the pressure response of the pumping chamber is examined by 

varying the current input to the solenoid coil according to the displacement, velocity and 
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acceleration of the bushing. For a preliminary investigation, the same inputs are adopted 

in this section. For each current input source, a simulation is performed, according to the 

coefficients found by curve fitting. The simulation results are then compared to the 

original response to discuss the improvements.  

First, the displacement input effect is investigated. Therefore in(8.2),  

Y(s)/X(s) =Kposition  . (8.3) 

By substituting (8.3) into (8.2),  

2 2

1 2 2 1

2

1 1 2

1 1

1 1

p i i p position p

dyn r r

i i

A ( I s R s ( / C ( A K / A ))
K K B s

C I s R s / C / C

+ + −
= + +

+ + +
. (8.4) 

As a result, this kind of current input signal alters the constant in the denominator 

of the dynamic stiffness equation. In the conventional hydraulic bushing the numerator 

constant is related to the stiffness of the compliance chambers which defines the location 

of the first notch frequency of the hydraulic bushing. This implies that, by applying a 

current signal proportional to the bushing displacement, the material property of the 

compliance chamber is altered. This interpretation makes sense, since, by applying a 

current proportional to the displacement, the active chamber contributes to the dynamic 

volumetric capacity of the chamber which is determined by the compliance of the 

compliance chambers in the conventional hydraulic bushing. Hence, the magnetic pulses 

in the direction of the bushing displacement indicate a softer compliant material, whereas 

the opposite results in a stiffer one. 

The simulation results of the original response and the response related to the 

position feeding are compared in Figure  8-2. Both the magnitude and phase simulation 

results show that the first notch frequency is shifted to higher frequencies. However, as it 
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is expected, the location of the second notch frequency (the natural frequency of the 

denominator) remaines untouched.  
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Figure  8-2: Dynamic stiffness response of the current proportional to the bushing position feeding 

(simulation) 

The experimental results of the current signal, proportional to the bushing 

displacement, are shown in Figure  8-3. A positive electrical current signal is used for this 

experiment. According to the experimental results, the first notch frequency is moved 

from 51 Hz to 55 Hz. Similar to the simulation results, the second notch frequency at 63 

Hz is untouched. The damping at the first notch frequency is slightly less than that of 

original response due to the increase of the first notch frequency. 
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Figure  8-3: Dynamic stiffness response of the current proportional to the bushing position feeding 

(experiment) 

 
In the second experiment, an electrical current proportional to the bushing 

velocity is fed to the solenoid coil. The transfer function of this type of current is 

Y(s)/X(s) =s.Kvelocity . (8.5) 

Thus, the dynamic stiffness equation is 

2 2

1 2 1 2 2

2

1 1 2

1

1 1

p i i p velocity p

dyn r r

i i

A ( I s ( R A K / A C )s / C )
K K B s

C I s R s / C / C

+ − +
= + +

+ + +
. (8.6) 

From (8.6), the principal contribution of this type of current signal is to the 

damping at the first notch frequency. This signal behaves like the MR valve in Chapter 5. 

In other words, the velocity feeding is equivalent to altering the roughness of the existing 

short inertia track of the active chamber.  

The simulation results of (8.6) is given in Figure  8-4. The dynamic stiffness 

simulation reveals a smaller peak at the first notch frequency. As expected, none of the 
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notch frequencies is relocated. Also, the phase responses agree with the theory. The phase 

shift begins at the earlier frequencies, demonstrating an increase in the damping ratio. It 

is interesting that the phase responses of the original and the one with the current 

proportional to the velocity are intersecting at the first notch frequency, whereas the 

second notch frequency phase responses are almost parallel. This results in an obvious 

change in the damping at the first notch frequency. 
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Figure  8-4: Dynamic stiffness response of the current proportional to the bushing velocity feeding 

(simulation) 

Simulink Matlab software is used for producing a current signal proportional to 

the velocity. The experimental results are reflected in Figure  8-5. The peak of the 

dynamic stiffness response at 51 Hz is reduced from 100 N/mm (base is at 200 N/mm) to 

almost 10 N/mm. The notch frequency locations are the same for both cases. The phase 

response also agrees with the mathematical model. 
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Figure  8-5: Dynamic stiffness response of the Current proportional to the bushing velocity feeding 

(experiment) 

 
The last elementary current signal which is examined here is the one proportional 

to the bushing acceleration. The electrical current transfer function for this case is 

Y(s)/X(s) =s
2
.Kacceleration .  (8.7) 

By substituting (8.7) into (8.2), the dynamic stiffness transfer function is, 

2 2

1 2 1 2 2

2

1 1 2

1

1 1

p i p acceleration pi

dyn r r

i i

A (( I A K / A C )s Rs / C )
K K B s

C I s R s / C / C

− + +
= + +

+ + +
.  (8.8) 

The active chamber for this case affects the inertia track size, indicating that the 

inertia track size can dynamically be changed. In reality, the active chamber produces 

such an effect by creating a momentum in the fluid migrating from or to it. If the created 

momentum is in the direction of the one produced by the pumping chamber, a virtually 

shorter inertia track results. However, the momentum opposite to the direction of the 

pumping chamber acts in reverse. In general, the size of the inertia track contributes to 
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the location of the notch frequencies directly, and on the damping coefficient indirectly. 

The effect of the inertia track size on relocating the notch frequencies is similar to the 

effect of compliance. In other words, increasing the inertia track size decreases the 

natural frequency. 

The simulation results of the current input proportional to the acceleration are 

provided in Figure  8-6, where a negative acceleration signal is employed. According to 

the simulation, the first notch frequency is moved to the right. As expected, the location 

of the second notch frequency is not changed.  
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Figure  8-6: Dynamic stiffness response of the current proportional to the bushing acceleration 

feeding (simulation) 

Figure  8-7 portrays the experimental results for this type of input. In this 

experiment, the location of the first notch frequency is changed from 51 Hz to 54 Hz. 

Although the damping changes at this notch frequency might not be visible, the phase 

response clarifies the change. In fact, the phase response of the original response has a 
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smaller slope compared to the other phase response which means that the damping is 

decreased.  
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Figure  8-7: dynamic stiffness response of the current proportional to the bushing acceleration 

feeding (experiment) 

8.3 Complex Transfer Function Feeding  

Now that the effect of the elementary input signal on the dynamic stiffness 

response is observed, more complex transfer functions are used to demonstrate significant 

capabilities of the active hydraulic bushing system. The transfer functions here are the 

same as the ones in Section  7.3, where 

2

1 2 (3 1)ampTf K C Is Rs= − −  

The first transfer function is Tf1 in (7.6). So far, all the signals shift the first notch 

frequency to the right. As explained Section  7.3, Tf1 moves the pumping chamber 

pressure to the left. It is expected that Tf1 performs similarly to the dynamic stiffness 
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response. Three elementary signals are the components of Tf1. Based on the coefficients 

of the different components and the preliminary studies in the previous section, the 

resultant transfer function should have a longer inertia track, more resistive force to the 

fluid motion, and less dynamic capacity. As a result, the final isolator is equivalent to the 

one with a smaller first notch frequency and higher damping.   

The simulation results of the Tf1 feeding are exhibited in Figure  8-8. According to 

the dynamic stiffness curves, the first notch frequency is moved to the left. As expected, 

the location of the second notch frequency remains untouched. From the phase response, 

it is concluded that the damping of the system is reduced. This occurs because the slope 

of the ascending part of the phase bump in the Tf1 feeding case is smaller than that of the 

original response. 

The experimental results of the Tf1 feeding are also given in Figure  8-9, where the 

experimental results agree with the proposed mathematical model and simulations. In 

fact, the first notch frequency in the Tf1 feeding is moved from 51 Hz to 49 Hz. Although 

this is not clear in the dynamic stiffness response, however it is evident in the phase 

response.  

Similar to the pressure response of the pumping chamber, the feeding inputs can 

be set to affect the dynamic stiffness response in the frequencies other than the ones 

located in the two notch frequency regions. This feature gives the isolator the capability 

to handle more complex vibration disturbances.  
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Figure  8-8: Dynamic Stiffness response subjected to Tf1 (simulation) 
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Figure  8-9: Dynamic Stiffness response subjected to Tf1 (experimental) 
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To examine such a capability, the same Tf2 in (7.7) is used. The Bode plot of Tf2 is 

given in Figure  7-9. This transfer function has two notch frequencies at 18 Hz and 29 Hz. 

The dynamic stiffness simulation results are depicted in Figure  8-10. A new peak appears 

in the dynamic stiffness response of the system fed by Tf2. This peak corresponds to a 

bump in the phase response. Obviously this peak is does not occur at the same frequency 

region as that of Tf2. Back to the dynamic stiffness equation (8.2), It can be said that the 

different components of the equation together and form the final response. That is why 

the new peaks location are not exactly the same as the actual notch frequencies location 

of Tf2. It is also noteworthy that the first notch frequency of the original response moves 

due to the Tf2 interaction. In fact, amplifying the input signal magnifies the share of the 

Tf2 in the dynamic stiffness transfer function and constrains the peaks close to the Tf2 

notch frequencies. 

The experimental results in Figure  8-11 agrees with the simulation results. The 

notch frequencies of the new peaks are happening at 27 and 31 Hz. The reason that the 

second notch frequency of Tf2 is almost preserved in the final dynamic stiffness response, 

is that, mathematically this peak belongs to the denominator of Tf2, and as a result, 

remains unchanged in the resultant dynamic stiffness equation. The experimental results 

of the Tf2 feeding signal indicates that by tuning the input transfer function parameters, 

the newly created peaks can be moved to any specified frequencies. The damping 

coefficients of the active hydraulic bushing at those frequencies can also be set by tuning 

the term s multiplier in the input signal transfer function. Moreover, even more complex 

dynamic stiffness responses are achievable by defining the appropriate transfer function 

for the input signal. To show this capability, the Tf3  in (7.8) is combined with Tf2.  



 

149 

10 20 30 40 50 60 70
0

50

100

150

Frequency (Hz)

P
h
a
s
e
 (

d
e
g
)

10 20 30 40 50 60 70
0

100

200

300

Frequency (Hz)

D
y
n
a
m

ic
 S

tif
fn

e
s
s
 [
N

/m
m

]

Original response

Tf
2

 

Figure  8-10: Dynamic Stiffness response subjected to Tf1 (simulation) 
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Figure  8-11: Dynamic Stiffness response subjected to Tf2 (experimental) 
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The experimental results of this input signal are apparent in Figure  8-12. In the 

dynamic stiffness, two new notch frequencies appear at 16 and 19 Hz, demonstrating that 

the notch frequencies affect of the Tf3 in the dynamic stiffness response. The new peaks 

do not occur at the notch frequencies of Tf3 for the same reason as that explained for the 

Tf2 case.  
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Figure  8-12: Dynamic Stiffness response subjected to Tf3 and Tf3 (experimental) 

8.4 Summary 

The dynamic performance of the active hydraulic bushing is discussed in this 

chapter. The mathematical model completely matches to the experimental results as that 

of the Chapter 7. The elementary input signals (proportional to the displacement, 

velocity, and acceleration) are investigated first. The mathematical model for each case is 

derived and some predictions are made based on the resultant dynamic stiffness equation. 

Then, the predictions are validated by the experimental results. It is proved that the 
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elementary input signals not only relocate the first notch frequency, but also satisfy the 

required damping at that frequency. More complex signals, derived from the combination 

of the elementary inputs, are fed to the active hydraulic bushing in the form of transfer 

functions. It is concluded that the active system can successfully produce a complex 

transfer function in any required frequency. Thus by the utilization of this active isolator, 

more complicated vibration patterns can be isolated from or to the engine. 



 

152 

Chapter 9: Design and Fabrication Difficulties 

In addition to the design and assembling problems, the nature of the work imposes some 

other difficulties in preparing the prototype. The air entrapments and the MR-rubber 

compatibility are among these problems. 

9.1 Air Entrapment 

Any air bubble inside the bushing introduces another degree of freedom to the 

system by acting as additional compliance to the bushing dynamic stiffness response. It is 

because air is a compressible material. In addition, modeling such a compliance is so 

difficult, since the problem becomes highly nonlinear and function of various parameters 

such as the air bubble size, location and temperate.   

To avoid such a problem the unassembled bushing components are submerged in 

a basin and then rubber component is press fitted inside the aluminum block. However, in 

practice even after repeating the process several times the air bubbles are still present, as 

shown in Figure  9-1. The reason for the air bubble existence in the system is the very 

narrow MR valve. Actually, the water (or MR fluid) can not provide enough buoyancy 

for the air entrapped in that valve to leave it.   

The other method which is attempted later is to put the bushing the bushing 

assembly on the shaker. Although this additional remedy works, it was decided to put 

another hole on the bottom of the bushing and remove the air bubbles by applying a fluid 

force to make the bubbles leave the MR valve and other places they are entrapped in. 

 



 

153 

 
Figure  9-1: Air bubble problem of the prototyped semi-active bushing 

9.2 MR- Rubber Compatibility 

The other design problem is the rubber and MR fluid compatibility. In practice, the 

natural rubber swells in the presence of the MR fluid. This phenomenon is observed in 

the preliminary experiments. Figure  9-2 denotes the defected (right) bushing and a new 

bushing (left). 

 

Figure  9-2: A healthy hydraulic bushing (left) and a defected bushing with the MR fluid (right) 
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Since the MR compatibility problem is not solved till the end of this investigation, 

the best way to deal with the problem is to include different coatings and study the weight 

increase in each case. In the experiment, the mass of four roughly similar pieces of rubber 

is measured after they were coated with a special barrier.  The coated rubber specimens 

are submerged in the MR fluid for approximately two weeks, the mass is re-measured to 

identify which coatings prevent the absorption of the MR fluid.  These results illustrate 

that a silicon coating is superior by only 15% increase of the mass, compared to the 

control specimen (marked CTRL) which is increased by 30%.  Figure  9-3 shows the test 

specimen and the result of the experiment.  

 

 
Figure  9-3: Test results of the different coatings for MR compatibility 

As the experiment suggests the best choice for the coating is silicon. The other 

good thing about the silicon coating is that it is very flexible and doses not crack when it 

is subjected to deflection. Figure  9-4 displays bushing after it is coated.  
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Figure  9-4: The coated Hydraulic bushing with silicon 
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Chapter 10: Conclusions and Future Work 

The purpose of the investigation described in this thesis is to design an isolator for 

the VDE system.  Semi-active or active engine bushings are required to meet the new 

performance requirements associated with cylinder deactivation engines.  When the 

Engine Control Unit (ECU) changes the number of cylinders firing, the magnitude of the 

forcing changes. This new situation requires different bushing properties for better 

isolation.  Also, the transient vibrations resulting from the torsional loading during the 

process of activation and deactivation cylinders need to be better controlled with this 

isolator. Actually, the VDE systems require a soft isolator for the cylinder deactivation 

mode. However for normal engine operation, the performance of the existing hydraulic 

bushings is sufficient. As a result, the goal of this research activity is to design a 

switchable engine bushing to deal with the normal and cylinder deactivation modes of the 

engine at the same engine bushing isolator.  

In addition, the structure of a conventional hydraulic bushing is discussed in 

details in this thesis. The rubber property of the hydraulic bushing is a passive parameter. 

Here, the optimization methods facilitate the selection of the suitable property for the 

passive components. These optimization techniques need some cost functions, defined by 

the ideal performance required. Chapter 1 of the thesis deals with the optimization 

process to find the damping and stiffness of the ideal passive isolator. The force and 

displacement transmissibility are the cost functions and the RMS technique is applied in 

both the frequency and time domains. Base excitation, unbalanced forces, and harmonic 

forces are the cases studied in the optimization process in the frequency domain. For the 



 

157 

base excitation, the simulation results reveal the existence of an optimum damping ratio 

which minimizes the RMS of the acceleration. Similar to the base excitation, it is found 

that the harmonic and rotating unbalanced forcing each have an optimum damping ratio 

which minimizes the RMS of transmitted force. For the time optimization, the step, pulse, 

and harmonic inputs are used. Although the optimum values of damping are found for 

some cases to minimize the force and acceleration transmissibility, the results can not be 

generalized. It is recommended, though, that the RMS optimized parameters in the 

frequency domain are more reliable since they represent the average of the cost function 

response.  

In addition to the passive rubber block, hydraulic components are the other 

important aspects of conventional hydraulic bushings. A mathematical model of the 

entire hydraulic bushing is given in Chapter 3. The dynamic stiffness equation, which is a 

key factor in designing the isolator, is derived. The hydraulic bushing dynamic stiffness 

transfer function is validated by performing experiments. The experimental results of the 

dynamic stiffness response reveal a soft region at low frequencies and a hard region at 

high frequencies. A conventional hydraulic bushing turns from a soft isolator to a hard 

one at its notch frequencies. It is evident from the mathematical model that a short inertia 

track extends the soft region to higher frequencies while a long one limits that frequency 

region. 

Based on the knowledge provided by conventional hydraulic bushing 

investigations, a short inertia track is employed to extend the frequency region of the soft 

isolation. The mathematical model for such an isolator is derived in Chapter 4. An 

experimental test bed is constructed. An external compliance chamber is manufactured to 
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prove the short inertia track concept. As expected, the dynamic stiffness response of the 

hydraulic bushing with the short inertia track remains soft for the higher frequencies.  

The problem associated with the short inertia track is the low resistance applied to 

the fluid motion. An MR valve is designed in Chapter 5 to satisfy this critical 

requirement. The advantage of using MR fluid to create the damping is its minimum 

interaction with the physical characteristics of the isolator. The design of this MR valve 

allows an ideal alignment of the iron particles. As a result, even a small electrical current 

is sufficient to produce the required damping.  

The design of an alternative active bushing is also described in this thesis. In 

designing the active isolator the focus is on tuning the pumping chamber pressure 

response. Different aspects related to the fabrication and modeling of this active chamber 

is discussed in Chapter 6. The actuator of this active chamber is composed of a 

permanent magnet bonded to a flexible diaphragm and a solenoid coil. The equation of 

motion for the permanent magnet is derived and linearized. The dynamic performance of 

the active chamber is tested by applying elementary (proportional to the position, velocity 

and acceleration of the bushing) and complex (transfer functions) current inputs. The 

experimental analysis confirms that the pressure inside the chamber linearly follows the 

current input signal. 

 Chapter 7 deals with the pumping chamber pressure control. First, the active 

hydraulic bushing is mathematically modeled. The validity of the mathematical model is 

confirmed by testing the active hydraulic bushing for different elementary current inputs. 

Then, more complex current inputs are used to examine other capabilities of the active 

isolator.  
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The dynamic stiffness response of the active hydraulic bushing is a determined in 

Chapter 8. The mathematical model, derived in Chapter 7, is used again to find the 

dynamic stiffness transfer function. It is shown that the active isolator is successful at 

controlling the damping at the peaks of the dynamic stiffness response, and the shifting of 

the notch frequencies. The active hydraulic bushing is also able to create any dynamic 

stiffness response at specified frequencies by applying the appropriate transfer function to 

the input current. This feature renders the active bushing suitable for more general 

vibration applications than the engine isolator.  

Some of the difficulties and concerns that caused delay in the project at some 

stages are listed in Chapter 9. The air bubbles entrapment and MR-rubber compatibility 

caused the majority of the problems.  

The next phase of this project is commercialization of the semi-active and active 

hydraulic bushings. The semi-active and the active bushing parameters should be fine 

tuned through numerical and experimental studies. The design, fabrication, and 

performance of the final prototype should be improved to closely meet the required 

specifications. The active chamber and the MR valve should be miniaturized and placed 

inside the bushing assembly.  

In the future a microprocessor and/or engine computer based control system 

should be designed and fabricated for the final practical application. Low-cost and 

practical sensors must be selected to provide feedback to the control system. A sensor 

minimization study should be conducted to ensure if available information such as engine 

throttle may provide enough information to eliminate the need for sensors altogether.  
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The prototypes should be tested for all standard tests (including quality assurance) 

required approving a commercial bushing. The dynamic test should be performed on an 

MTS 831 high frequency elastomer dynamic characterization test machine from 0 to 

400Hz, 0 to 2mm displacement peak to peak with the preload from 700-2000N. Single 

axis durability testing should be performed on an MTS 810 elastomer durability test 

machine at 3Hz, rated preload, +/-3g, and for 1 million cycles.  Triple axis simulation 

(RPC) testing should also be developed on an MTS 3-channel durability test system, 

based on road load data acquisition (RLDA) files from the target vehicle platform.  

Bushing target will be three parts tested to three lives, or six parts tested to one life.  One 

life is typically approximately 100-130 hours of real-time testing (based on RLDA files 

that have been edited to remove non-damaging content). 
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