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Abstract 

Weight function and stress intensity fmor  solutions for semi-eutical surface cracks 

in flat plates and welded joints are developed, which account for the eEect of two- 

dimensio na1 stress dis tributions and 10 ad s hedding. 

Two niethods are proposed to develop weight functions for the calculation of stress 

intensity factors for two-dimensional cracks under two-dimensional stress distributions: a 

general point load weight function and a Fourier series approach. In order to accommodate 

the effects of fixed boundary conditions into the weight functions, a cornpliance analysis 

mthod to obtain stress intensity factor solutions for fixed displacement boundary 

conditions f?om the available solutions for the same geomtry with traction boundary 

conditions is developed for surface cracks. These methods are used to develop stress 

intensity factors and weight function solutions for embedded el.@ tical cracks, surface cracks 

in 5 t  plates, T-plate, pipe-plate and tubular weld joints. 

The solutions developed are suitable for fatigue He prediction or hcture 

assessrnent of these structures. The present approach is more efficient (in tenns of 

computing and cost) than three-dimensional finite elemnt analyses, yet more accurate and 

widely applicable than avaüable empirical solutions. 
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Chapter 1 

Introduction 

In practice, surface cracks are arnong the rnost c o m n  fhws in engineering 

structures such as plates and welded joints. The calcdation of the stress intensity factor for 

such cracks is of major importance in fatigue and fracture assessment. Example welded 

joint geomtries, including tubular, pipe-plate and plate-plate joints, and fiat plates are 

s h o w  in Fig. 1.1. The objective of the present research is to develop stress intensity factor 

and weight fiction solutions for senii-eiliptical surface cracks in such geometries. 

Stress intensity factors for semi-elliptical surface cracks in plates and welded joints 

depend on the geomtry, including the geometry of the specimen and geometry of the 

crack, the Loading and boundary conditions. Because of the complexity of the problem 

ngorous closed fonn solutions for s e s s  intensity factors are not possible even for the 

shplest geometries. Numerical methods, such as the finite element rnethod, the finite 

elemnt altemating method, the boundary element method, etc., are often used (Newman 

and R a . ,  1979; Nishioka and Atluri, 1983; Aliabadi and Rooke, 1991). Altematively, 

experhentd methods hvolving the rneasuremnt of fatigue crack propagation rates and the 



calculation of stress intensity factors by cornparison with crack growth rate information 

kom simple specimens can be used (Burns et al., 1987). 

Among the rnethods of calculating stress intensity factors, the finite element method 

is generaily accepted as the most accurate. Aithough the finite element method cm be 

applied to any complex geomtm and loading condition, it is lirrrited to a specific geomtry, 

Ioading and boundary condition, is tirne consuming a d ,  therefore, expensive. 

Available finite element results for surface cracks in plates and welded joint 

geonietries are quite Iirriited. The most extensive analyses conducted on surface cracks so 

far are for fht plates (Newman and Raju, 1981; Shiratori et al., 1987; Wang and Lambert, 

1995% 1997a). Sorne analyses have been conducted on T-plate joints (Smith, 1984; Bell, 

1985; Dijkstra et al., 1989; Fu et al., 1993) and one for the pipe-plate mode1 (Lambert and 

Bell, 1993). It is very di&ult to find comprehensive analyses for tubukir joints mode1 

(Ritchie et al., 1987; Rhee, 1989). AU of these results correspond to specifk geometries 

and loading conditions. 

Based on finite element resuits, empmcal equations for stress intensity factors for 

surface cracks in fiat plates and T-plate joints were derived for some specific loading cases, 

Le., tension or bending (Newman and Raju, 1981; Fu et aL, 1993; Bowness and Lee, 1995). 

Because of limitations on avaiiable finite element results for pipe-plate or tub* joints, it is 

c o m n  practice to use the empirical equations developed for T-plates for these more 

complex joints. However, because of the difference in boundary conditions b e m n  T- 

plate joints and pipe-plate or tubular joints, the resuiting stress intensity factors are over- 

predicted This effect is referred to as load shedding (Aaghaakouchak et al., 1989). The 

load shedding effixt has to be considered whenever T-plate joint models are used to 

calculate stress intensity factors for pipe-plate or tub& joints. Another issue is that the 



stress disnibutions on the uncracked plane in pipe-phte joints or tubular joints are two- 

dimensional (they vary through the thickness and dong the weki toe); this effect on stress 

intensity factors cannot be addressed correctly using the results for T-plate joints, w h e ~  

only one-dimensional (through the thickness) stress distributions are generaiIy considered 

(Haswell et al., 199 1). 

Since empirical equations can be used to determine stress intensity factors only for 

limited loading cases, they cannot be used to calculate stress intensity factors for complex 

stress distributions that were not considered in the development of the empirical equations. 

The weight function method (Bueckner, 1970; Rice, 1972) enables the analysis of crack 

problerns in a Loading-independent way. The weight function depends only on the geometry 

and boundag conditions, and is independent of the applied load The stress Uitensity factor 

for various different appiied loads for a given gwrnetry and boundary condition can be 

solved by Litegrating the product of the crack surface pressure and the weight function. 

There are several rnethods to detemine the weight functions for a given geornetry 

and boundary condition (Aliabadi and Rooke, 1991). The most c o m n l y  used method is 

to extract them fkom existing stress intensity factor solutions in combination with actual or 

appropriate crack face displacement relations (Rice, 1972; Petroski and Achenbach, 1978). 

A rriethod to detemine weight functions for surface cracks by extracting hem fbm 

appropriate reference stress intensity factor solutions a10 ne has been develo ped in ment 

years (Shen and Glinka, 1991a, 1991b; Wang and Lambert, 199Sb). However, the nsuuing 

weight functions are oniy applicable for one-diniensional stress variations. Som methods 

have k n  proposed to determine weight functions for two-dimnsional stress distributions 

(Oore and Burns, 1980a; Rice, 1989; Vauishtok and Varfolomeyev, 1990; Vainshtok, 

1991). Oore and Burns (1980a) proposed a method to d e t e d e  approximate weight 

functions for two-dimnsional stress distributions for embedded irregular cracks in an 



infinite body. To date, this is the ody approach that is king used in engineering 

applications. However, since diis approximate weight function is only applicable to 

embedded cracks, it must be corrected empiricalIy for application to surface cracks. 

Available weight function solutions for surface cracks in 5 t  plates and welded joints 

are more di"cuit to k d  than stress intensity factor solutions. Weight functions at the 

deepest and surface points of a surface crack in a 5 t  plate for one-dimensional stress 

distributions have been developed recently by Shen and Glinka (19914 1991 b) and Wang 

and Lambert (1995a, 1997). The weight function solution for one-dunensional stress 

distributions at the deepest point of a surface crack in £iat plates with an angular corner is 

availabk, and has been used for the solution of T-plate welded joint probkrns (Niu and 

Glinka, 1990). No weight functions are available for pipe-plate or t u b a  joints. 

To calculate the stress intensity factors for complex geonietrks (T-plate, pipe-plate 

and tubular joints), it is corrimon practice to use weight functions developed for relatively 

simple geometries (Oat plates) in conjunction with stress distributions fkom correspondhg 

uncracked T-phte, pipe-plate or tubular joint geomeûies. Aithough reasonable results were 

obtained for T-plate welded joints (Forbes et al, 1991), the resulting stress intensity factors 

were not acceptable for pipe-plate or tubular joints because of the load shedding effect and 

the lack of consideration for the stress variation dong the weM toe (Hasweii et al., 1991; 

Forbes et al., 1992). It is, thercfore, neccssary to develop weight functions which can 

account for the effect of two-dimensional stress distributions and the load shedding effect 

for s&e cracks in these stnichires. 



1.1 Objective 

The a i .  of the present research is to develop stress intensity factor and weight 

function solutions for embedded and semi-eniptical surface cracks in fiat plates and weided 

joints which can account for the e&ct of two-dimensional stress distributions. and the 

effect of load shedding. These stress intensity factor and weight function solutions may 

then be used for the fatigue life prediction and fiacture assessmnt of these structures. This 

approach will be more efficient (in ternis of computing tirne and cost) than three- 

dimensional finite eiernent analyses, yet more accurate and widely applicable than available 

empirical solutions. 

This thesis is divided into eight chapters. In chapter 2, an o v e ~ e w  of stress 

intensity factors and weight functions is presented Chapter 3 presents the theory and 

development of weight function methods which can accommodate two-dimensional stress 

distributions and load shedàing effixts. The following chapters presents the application of 

these methods to calculate stress intensity factors for embedded eLliptical cracks in infinite 

body (chapter 4), surface cracks in 5 t  plates (chapter 3, surface cracks in T-plate joints 

(chapter 6), and surface cracks in pipe-plate and tub* joints (chapter 7). Conclusions are 

made in chapter 8 dong with sorrie recommendations. 



Figure 1.1 Welded joint and flat plate geometries 

TUBULAR JOINT PIPE-PLATE J O N  

PLATE-PLATE JOINT FLAT PLATE 



Chapter 2 

Background and Literature 

Review 

2.1 Stress lntensity Factors 

A cracked body can be loaded in any one or combination of three displacement 

modes. Most crack problems of engineering interest involve pnfiariy Mode I (opening 

mode). In the present research, only Mode 1 will be considered, Stress intensity factors for 

cracks in a aven specimen depend on the geomtry of the specimen, including the global 

specimen geometry and the crack geomtry, the loading and boundary conditions. For one- 

dirriensional edge cracks or central cracks, the stress intensity factor, K. is represented as 



where the factor F is needed to account for geornetry, stress dWi"bution, and boundary 

conditions, aa is the noniinal stress and a is the cmck length. For semi-elkptical surface 

cracks, as shown in Figure 2.1, K is represented as 

where Q is the shape factor for the ellipse, approximated by (Newman and Raju, 1979) 

Note that the stress intensity factor changes dong the crack fiont; usudy the values 

at the deepest and surface points are the most important values. 

For s o m  simple geomtry and loading conditions, exact closed form solutions fkom 

elasticity theory are available for K. However, for many cases of practical interest, it is 

necessary to perform numerical analyses. Among ali nunerical mthods available, the finite 

element mthod has emerged as one of the most powemil tools for the solution of one- 

dimensional (edge or through cracks) or two-bnsional (surface or embeddeû cracks) 

crack problerns in hcture mhanics. Special techniques have been developed to treat the 

crack tip singuiarity and to extract stress intensity factors (Barsotun, 1977; Shih, et al., 

1986; Banks-Sills, 1991). Throughout the present research, the fkite element rnethod will 

be used to provide stress intensity factor data fiom which the weight functions are derived, 

and to verify stress intensity factor and weight function solutions. 



2.2 Weight Functions 

The weight function rnethod was oripuiauy proposed for one-dimensional crack 

problem (edge or through cracks). Bueckner (1970) first demonstrateci that for a cracked 

body as shown in Figure 2.2(a), loaded by a stress &Id S, the stress intensity factor for this 

problem is the sanie as that for the same cracked body loaded by a crack surface pressure, 

a(x), as shown in Figure 2.20). The stress distribution, &), is the stress distribution 

acting on the prospective crack plane in the uncracked geometry. Therefore, the calculation 

of stress intensity fmor for a given crack geometry under any applied load is equivalent to 

the caiculation of smss intensity factor for the samt crack geomtry with the correspondhg 

crack pressure, &), acting on the crack suffice. The stress intensity factor for a cracked 

body with loading on the crack surface can be calculated by integrating the product of the 

weight function, m(x,a), and the stress distribution, d x ) ,  on the crack plane: 

The weight function, m(x, a), depends only on the geometry and boundary conditions for 

the cracked body. Once the weight function has been detemhed, the stress intensity factor 

for this geometry can be obtained fkom Eq(2.4) for any stress distribution, d x ) .  

Mathematically, the weight function, m(x, a), is the genemlized Green's function for the 

present stress intensiîy factor problem It is the stress intensity factor at the crack tip for a 

pair of unit point loads acting on the surface at x as sho wn in Figure 2.3(a). 



For a two-dimensional crack (suTface or embedded crack), the stress intensity 

k t o r s  Vary dong the crack fiont, as shown in Fig. 2.1. The counterpart to equation (2.4) 

for two-dirriensional cracks is 

where weight function m(x,y;P') is the stress intensity factor at point P' on the crack fiont 

for a pair of unit point loads acting on the crack surface at (x, y) as shown in Figure 2.3(c), 

&,y) is a two-dimensional stress distribution as shown in Figure 2.4, and the integration 

becornes an area integration over the crack surface. S. If the stress distribution acting on 

the two-dimensional crack surface is only a function of x, then equation (2.5) can be 

simplifiecl: 

where M(x,P'J is the smss intensity factor at point P' for a unit line load at x as shown in 

Figure 2.3(b). M(x. P') is the weight fiinction for a two-dimensional crack subject to a 

one-dimensional stress distribution. 

Generating the weight function through point-wise stress intensity factor 

calculations is irripmtical. The determination of the weight function for a one-dimensional 

crack, m(x, a), cm be s~~ by using the relation denved by Rice(1972): 



where H is the generalized elastic rnodulus, which equals E for plane stress or EI(I - vL) for 

plane saaùi. Kr and ur are the stress intensity factor and corresponding crack face 

displacernent for one reference stress distribution The relationship between the weight 

fimction and the displacement M d  for two-dimnsional cracks was also found by Rice 

(1 972): 

where W',. is the local variation of the crack area in the vicinty of point P'. 

Onginally, the relationships developed by Rice, (1972), Eq. (2.4), (2.7) for one- 

dimensional cracks and (2.5). (2.8) for two-dimensional cracks, were deveioped for a 

cracked body loaded by surface tractions. They cannot be used directly for a cracked body 

subject to niixed boundary conditions (involving both prescribed tractions and 

displacements). Generalisation of the weight func tion theory to mixed boundary conditions 

involving both prescribed surface tractions and displacements was later made by a number 

of researchers (for example, Bowie and Freese, 1981). For a one-dimensional crack* as 

summarised by Wu and Carlsson (1991), the stress intensity factor for any cracked body 

loaded by surface tractions, a(x) on the crack face and prescribed displacemnts w on 

boundary r (as shown in Figure 2.5), can be calculated fiom 



where Kr and u, are the reference stress intensity factor and corresponding crack face 

displacement as before, and (& are the stresses at prescribed displacement b o u n w  for 

the reference case. 

For the special case where the prescribed displacements, ui, on boundas, r are zero 

(zero displacemnt boundary), then the second terni in Eq. (2.9) becoms zero, and Eq. 

(2.9) becornes 

which is a combination of Eq.(2.4) and (2.7). 

In other words, for a one dimensional crack with zero displacemnt bou- 

conditions, stress intensity factors can be calcuiated using standard weight functions (Eq. 

(2.4)). The weight function cm be calculated fkom a reference stress intensity factor 

solution, Kr, and displacement, ur, using Eq(2.7). But these reference solutions must be 

obtained for a crack problem with the same zero displacenient boundary conditions. 

SimiIarly, for a two-dllnensional crack with zero displacement boundary conditions. the 

stress intensity factors can be calculated using weight functions (Eqs. (2.5) and (2.6)); and 

these weight functions can be obtained nom Eq. (2.8). 



weight 

For one-dimensional cracks, equation (2.7) provides an e fkknt  way to d e t e d e  

functions fiom a reference stress intensiîy h t o r  solution and the comsponding 

displacement field For a given problcm, an appropriate referenœ stress intensity factor Kr 

can often be found either in the literature or by numericd calculation. However, the 

coresponding anaiytical expression for the crack opening displacement function uJxB a) is 

more diff?cuit to O btain, since it is a field function which varies along the crack length and is 

seldom published together with stress intensity factor solutions. To overcome this 

difficulty, several authon (Petroski and Achenbach, 1978; Shen and Glinka, 1991b) have 

proposed approximate expressions for the disphcement, uix,  a), or the weight function, 

m(x, a), which can be evaluated when combined with only reférence stress intensity factors. 

For two-dimensional crack problems, it is much more difncult to apply the 

relationship between the weight function and a set of reference stress intensity factor 

solutions with a corresponding disphcement field as shown in equation (2.8). The coqlete 

solution for the fÏrst order variation in uJxB y) corresponding to arbitmy variations in Fp 

along the crack fiont has to be known, but is more difficult to obtain than au$& for one- 

dimensional crack problems (Rice, 1989). Further work is required in this area. 

The key property of the weight function mthod by Bueckner (1970) and Rice 

(1 9'72) desCnbed here is that iiU information required to determine the weight function for a 

given geornetry and boundq condition is stored compktely in one set of solutions for 

stress intensity factor, Kr , and displacemnt fieId, u, , for any one reference loading case. 

The resulting weight fimction can be used to predict the stress intensity factors for other 

loading cases with the same accuracy as the reference stress intensity factor solutions. 

Reference stress intensity factor solutions therefore play an important role in determinhg 

weight functions. 



22.2 m o n  of weight Fundi= for Surface c- 

Methods to determine weight functions, M(x; P'), for two-dùnensional surface 

cracks under one-dirriensional stress distributions are well developed. The resulting weight 

functions are obviously only applicable to oneàimensional stress distributions. A few 

mthods have been proposed to determine the weight fimction, m(x, y; P'), for two- 

dimcnsional stress distributions, but no technique has achieved general acceptance or been 

fully developed. If the reference stress intensity factors are the solutions fkom traction type 

boundary conditions only, the resulting weight functiow are restricted to traction type 

boundary conditions as welL 

One-D imensional Sn-ess D istnbutions 

If the stress distribution is one-dimensional, the weight function M(x; P' ) describeci 

in Eq.(2.6) can be used. Shen and Glinka (1991a) found that the weight fimction at the 

deepest point (that is, P' corresponds to point A in Figure 2.1) of a semi-elliptical surface 

crack could be approximated based on the general expression: 

2 1 3 

M (x,  a; A) = 
X - X 

4- [ l + M , , ( 1 - - ) 2 + ~ 2 A ( 1 - - ) + ~ 3 A ( 1 - 5 ) T ]  a a a (2.11) 

The three parameters, M M  , Mu and Ma, depend only on the geornetry of the semi- 

elliptical surface crack (alt and alc). They cm be obtained nom three reference stress 

intensity factor solutions at the deepest point or two solutions plus an additional condition. 

For the surface point, B, of a semi-elliptical surface crack, the weight hct ion can 

be approximated using the following expression (Shen and Glinka, 1991a): 



Again, the three parameters, Ml*, M2B and MJB, depend only on the geometry of the crack 

They can be obtained kom three reference stress intensity factor solutions or two solutions 

plus an additional condition. 

As explallied by Shen and Glinka (1991a). the third condition for the weight 

function at the deepest point, M(x, a; A), is that the second &rivative of the weight function 

be zero at x = O, which leads to 

The thmi condition (Shen and Glinka, 1991) for weight function at the surface point fi (x. 

a;B) is that the weight function equals zero at x = a, which gives 

In addition, the author (Wang and Lambert, 1995b) developed local weight 

functions for every point along the crack fkont. By analyzhg the closed fonriwl weight 

function for an embedded circular crack in an infinite three-dimensional body for any point, 

P', in the range O < $ < f l, along the crack front in a serni-elliptical surface crack as 

s h o w  in Fig. 2.1, the following forrns were proposed to approximate the weight function 

M(x, a;P'): 



Jsin@+l x x 
M(x,a;P ) = [1+ M,,(l- - + M d - -  )'] (2.15a) 

&(a sin 9 - x )  asinfp asin# 

for asin@ 5 x 5 a 

4 -  X - 1 x 
M(x,a;P ) = [1+ M3P(--  1)2 + ~ ~ ~ ( - - 1 ) ~ ]  (2.15b) 

Jn(x - a sin qî) asmfp asin@ 

This functional form depends not only on x and a, but &O on the position of the local point, 

P' , in temis of @. This piecewise function is employed due to the singular nature of the 

weight function. Bo th parts of the weight function, M(x' a;P') - (2.15a) and (2.1 Sb), rnust 

be used to perform the integration to calculate the stnss intensity factor. In order to 

determine the four parameters, Ml, , M2, , M,, and MdP in Eq.(2.15), two reference stress 

intensity factor solutions and two additional conditions are necessary. 

The accuracy of the above approach of determinhg weight hinctions for deepest 

point and surface point has been verifïed for surface cracks in £iat plates (Wang and 

Lambert, 1995a, 1997a), thin pipes (Wang and Lambert, 199%) and thick pipes (Zheng and 

Glinka, 1995; Kiciak et al., 1995) using finite element results. The accuracy of the weight 

functions for every point dong the crack &ont has been verified for surface cracks in flat 

plates (Wang and Lambert, 1995b). It was found that the accuracy of the predicted stress 

intensity factors using the weight functions derived was of the same order as the reference 

stress intensity factor solutions. The drawback of this approach is that two-dimensional 

stress distributions cannot be considered explicitly. 



TM-Dimensional Stress Distributions 

For a two-dimensional stress distribution acting on the crack surface, the 

approximate weight function, m(x,y; P' ), proposed by Oore and Burns (1 98Oa) can be used. 

They CO d e r e d  available analydcal solutions for embedded three-dimnsional, p h  

cracks and proposed a point load weight function for any embedded crack in an infinite 

three-dirriensional body (Eigure 2.6): 

where x', y' are the coordinates of point P', r is the contour corresponding to the crack 

fkont, and r is the distance between point (x, y) and any point on contour r. This weight 

function is only applicable for embedded cracks. For surface cracks, Oore and Burns 

(1980b) proposed a rnagnification factor technique: 

where Km is the stress intensity factor for a sudace crack; K, is the stress intensity fdctor 

for an quivalent embedded crack subjected to the quivalent symmetric stress fita and Mx 

is a free s d a c e  rnagnification factor. Originally, Oore and Burns (1980b) a s s d  that Mx 

depended on the geometry but not on loading conditions, and M, could be obtained fYom 

finite e lemnt  resdts for surface cracks by Newman and Raju (1981). It was later found 

that M, depended on loading conditions as well, and more sophisticated modincation 

techniques were required to obtain the smss intensity factors for surface cracks (Gmeter et 



al., 198 1; Forbes et al., 1991). Nevertheless, this approach has b e n  successfidy used in 

many applications for the calculation of stress htensity factors (Desjardins, 1988). 

However, a few drawbadrs to this approach remain. F i t ,  the resulting weight 

function is only an approximate weight function for embedded cracks in an infinite body. 

For Iow aspect ratio embadded elliptical cracks ( d c  = 0. l), the clifference between the 

stress intensity factors predicted by the Oore-Burns weight function and theoretical results 

was as high as 25% (Desjardins. 1988) for a linear stress distribution. Second, the weight 

function can only be used directly to calculate stress intensity factors for embedded cracks. 

Correction techniques are required to correct the solution for surface cracks (Grueter et al.. 

1981; Forbes, 1991). Third, a complex line integration dong the crack fiont contour must 

be conducted to obtain the weight function m(x,y; P'), and special numerical techniques 

must be employed (Desjardins, 1988). 

More research effort is required to develop more accurate and efficient weight 

fbnctions for two-dimensionai stress distributions. 

The Effect of Fked Boundary Conditions 

The mthods of determinhg weight functions discussed in this section were widely 

used to determine the weight functions for surface cracks in £kit plates without any 

prescribed displacement boundary conditions, since the reference stress uitensity factors 

used were calculated fkorn ody prescribed tractions boundary conditions. If the reference 

stress intensity factors used were calculated fkom a cracked body with zero displacenient 

dong a certain boundary, then the derived weight f ict ion would have accommodated the 

effect of the comsponding zero displacemnt boundary conditions. 



2 3  Stress Intensity Factors and Weight Functions for Surface Cracks 

Below is a brkf review of stress intensity factors and weight functions solutions for 

surface cracks in flat plates, T-plate, pipe-plate and tubular joints. 

23.1 FIat Plates 

Stress Intensity Factors 

The most accepted stress intensity factor solutions for senii-elliptic surface cracks in 

finite thickness plates were obtained by Raju and Newman (1979) and Shiratori et al. 

(1987) using the nnite element method. Newman and Raju obtained results for remote 

tension and bending loading ody. Shiratori et al. obtained results for constant, linear, 

parabolic or cubic stress distniutions on the crack face. This data is available for aspect 

ratios, alc, of 0.2, 0.4, 0.6 and 1.0, and relative crack depths, alt, of 0.2, 0.4, 0.6 and 0.8. 

Recently, stress intensiîy factors for low aspect ratio ( d c  = 0.1 or 0.05) and high aspect 

ratio (a/c = 1.5 or 2.0) semi-elliptical surface cracks in a finite thickness plate with relative 

crack depths a/t of 0.2, 0.4, 0.6 or 0.8 subjected to constant, linear, quadratic or cubic 

stress distributions were determineci by the author (Wang and Lambert, 1995a, 1997a). 

Interpolation of this finite elernent data in terms of aspect ratio, ale and relative 

depth, alt is requked to get general solutions for a specific region of a/c and ult. Newman 

and Raju (1981), and Wang and Lambert (1995b, 1997a) presented stress intensity factor 

equations for bending Wear stress distribution on the crack plane in the Wang and Lambert 

formula) and tension based on curve fitting to the finite elemnt data. The Newman and 

Raju formula is 



where a is the crack depth, and a, and 4 denote tension and bending stress components of 

the nominal stress distniution, respectively. 

For most calcuhtions for surface cracks in Qat plates, the Ioading distribution is one- 

dimensionai, Le., it does not Vary in the plate width direction. However, more cornplex 

stress distributions, such as when residual stresses are present, may occur where stress 

distributions change in the plate width direction. Figures 2.7(a) and @) shows a typical 

distribution for residual stresses due to a butt weid in a flat plate (Shiratori et al., 1987). 

Wu (1984) and Shiratori et al. (1987) conducted finite element cdculations for surface 

cracks in Dat plates under two-dimcnsional stress distributions, but insufncknt data Û 

avaüable to generate empirical equations for stress intensity factors for two-diniensional 

stress distributions. More finite ekment results are required to obtain systematic solutions 

for stress intensity factors of surface cracks in f i t  plates under two-dimensional stress 

distributions. 

NO finite element solution exists for surface cracks in flat plates with built-in end 

(zen, dûplacement) boundary conditions. Smss intensity factors for surface cracks in 5 t  

plates with built-in ends can be calcuiated using plates with built-in ends subject to crack 

face pressure as shown in Figure 2.7(c). The available stress intensity factor solutions for 

surface cra~ks in flat plates with 6ree ends are not appropriate. Further work is required on 

the analysis of the effects of the zero displacemnt boundary conditions on stress intensity 

factors. 



Weight Fwictions 

Based on availabie finite element resuits fiom Shiratori et al. (1987). Shen and 

Glinka (1991a) derived one-dimnsional weight fwictions for the deepest and surface points 

of seni-eii9>tical surface cracks in finite thickness plates using the niethod outlined in 

section 2.2.2. The weight functions denved by Shen and Glinka (1991a) are only vaüd for 

0.2 < nlc 5 1. The author refied this analysis by perfomiing finite elemnt calculations to 

obtain reference stress intensity factor solutions for both low aspect ratio and high aspect 

ratio semi-elliptical cracks, and derived weight functions for the deepest and surface points 

(Wang and Lambert, 1995a, 1997a) to cover a wide range of aspect ratios, ale, fkom O to 

2.0. None of these weight functions consider a stress distribution which varies in the width 

direction of the plate. 

By applying the magnification factor technique or Grueter's correction, the 0- 

integrai weight function can be used to calculate stress intensity factors for surface cracks in 

flat plates (Desjardins, 1988; Forbes, 1991). Differences between stress intensity factors 

kom finite element calcuiations and predictions using the magnification factor technique 

were found to be less than 5% only for the case of shanow cracks with alt < 0.3 and 0.2 < 
alc < 1. Greuter's correction technique gave better predïctions (within 5% of the finite 

element results for alt 5 0.7,0.2 g a/c < l), but can only be used to compute smss intensity 

factors at the deepest point and cannot handle stresses that vary in the width direction. 

General weight functions need to be developed wnich can address two-dimensional stress 

distributions and cover a wide region of alc and a/t. 

The available weight hctions were developed based on the reference stress 

intensiîy factors for surface cracks in tlat plates with f ke  ends. Therefore, these weight 



functions are only suitable for the calculaiion of stress intensity factors of surface cracks in 

5 t  piates with traction boundary conditions. 

2 3 3  T-phte Joints 

The T-plate mode1 represents a simple w e W  joint and is often used as a mode1 for 

more complex welded joint behavior. A schemaîic of the weld toe geometry, uncracked 

stress field, and crack location is given in Fig. 2.8(a). In the calculation of stress intensity 

factors, the mode1 is either loaded by far-field tension or bending. On the prospective crack 

plane, the actual stress distribution has a stress concentration which depends on the weld 

toe geomtry. 

Stress Intensiîy Factors 

Three-drmtnsionai finite elemnt analyses were used to calculate the stress intensity 

factors for surface cracks in T-plate joints by several authors (Smith, 1984; Bell, 1985; 

Dijkstra et al., 1989; and Fu et al., 1993). The resulting stress intensity factors for this 

geometxy are generally summarkd by a format proposed by Maddox (1975): 

Y, and Y, are given by 



and 

where subscripts m and b denote tension and bending stress; fi and a are the nominal 

tension and bending stresses; ML and M,, denote the weld toe correction factors; and Mm 

and Mb denote the crack shape (depth and aspect ratio) comction fiutors. The Mm and Mb 

factors are usually based on the work of Newman and Raju for fht plates, Eq(2.16). 

Parametnc equations are available for ML and M,, in terms of the relative crack depth, dt, 

and aspect ratio, a/c (Fu et al., 1993; Bowness and Lee, 1997). 

It must be noted that all  the avaüabk solutions are for T-plate joints with îree ends; 

no solutions are available for T-plate joints with built-in ends. The T-plate models with 

built-in ends would likely provide a better mode1 for more complex pipe-plate and tubular 

joints, since they incorporate some load shedding effects. 

Weight Funciions 

The only weight hinction developed specifically for welded joints was denved by 

Niu and Glinka (1990). The actual geometry considered was a tlat plate with an angular 

corner as show in Figure 2 - 8 0 .  Considering an approlemate stress intensity factor 

solution at the dbepest point of a surface crack, Niu and Glinka (1987,1990) extracted one- 

dimensional weight functions for the deepest point of surfas cracks in plates with an 

angular corner. They verified this weight function using h i t e  elernent data kom Smith 



(1984). The weight function for 5 t  plates with an angular corner was then used as the 

weight function for surface cracks in T-plate joints (Niu and Glinka, 1987, 1990). 

It is c o m n  practice to calculate stress intensity factors for surface cracks in T- 

plate joints using weight fùnctions derived for fiat phtes in conjuction with stress 

distriiutions fkom corresponding uncracked T-plate joints (Forbes et al., 199 1). It is 

argued that by using the stress distribution, &), caicuiated for the uncracked T-joints and 

the weight function for flat plates. the effect of the weldment geometry on the stress 

intensity factor would be accounted for satisfactorily. For surface cracks in a weided 

geometry incorporating a 4 5 O  weld angle and a toe radius ratio, @t = 1/38, as s h o w  in 

Figure 2.8(a), Forbes et al. (1991) compared the predicted stress intensity factors at the 

deepest point using the weight function for plates with an angular corner by Niu and Glinka 

(1990), the weight function for &t plates by Shen and Gluika (1991a), the weight function 

for embedded elliptical cracks by Oore-Burns (1980a) with an irriproved surface correction 

scheme for fiat plates, and three-dimensional finite elernent predictions by Smith (1 984) and 

Bell (1985). For a wide range of relative crack depths (O s aft I 0.8) and crack aspect 

ratios (0.2 I a/c a 1.0). under fa .  field tension and bending, the results fiom the three 

weight functions were in fairly good agreerrient with each other and with finite elernent 

results. Therefore, the weight function for a 5 t  plate pro* acceptable results at the 

deepest point for the T-joint geomtry considered. They made no c o m n t  regarding the 

surface point since more detaüed finite element calcuiations are required for such a 

cornparison. In the absence of specific weight functions for T-plate joints, such an 

approximation provides a quick and acceptable estimate of stress intensity factors. 

In the presence of two-dimensional stress distributions. more general weight 

functions for two-dirriensional stress disaibutions must be developed for surface cracks in 

T-plate joints. For T-plate welded joints with a finite width, it was found that the 



uncracked stress disîribution changes along the width direction even in the absence of 

d u d  stresses (Lecsek, 1993). It is, therefore, oecessary to investigate the efFxt of the 

stress variation dong the width on the stress intensity factors. Aiso. availabk weight 

fwictions are based on smss intensity factors for surf' cracks in T-plate joints wirhout 

any end constraints. If the ends of the T-plate joint are fixed, these weight functiow cannot 

be used directiy. 

2.33 Pipe-Rate and Tub* Joints 

The pipe-plate specirnen 1.1) has been considered as a slriplined mode1 for a 

tubular joint (Lambert et al., 1987). It has several important features in c o m n  with fun 

tubular joints whüe remaining relatively simple to analyze. These features include a non- 

unifonn, yet syrrnietrical, stress distribution along the weld toe and the potential for load 

redistribution once sipnincant crack growth has occurred. 

Stress Intemity Factors 

There is a Iimited set of finite elemnt solutions for stress intensity factors for 

surface ctacks in pipe-pIate joints (Lambert and Bell, 1993) or tubular joints (Ritchie et al., 

1987; Rhee, 1989). S o m  full scale experKnental data also exists for pipe-plate (Lambert 

and Bell, 1993) or t-ubular joints (Dover et al., 1978; Forbes, 1991). These results cover 

only very specifk geornetries and, therefore, carmot be used to obtain general solutions. 

Instead, it is c o m n  practice to use enipirical equatiow developed for T-plate joints, 

Eq.(2.19), to calculate the stress intensity factors for surface cracks in pipe-plate or tubular 

joints (Cheaitani et al., 1995). 



Because of the difference between the bouadary conditions for T-plate joints a d  

pipe-phte or tubular joints, several authors (Aaghaakouchak et al., 1989; Hasweii et al., 

1991; Forbes e t  al, 1992) have found that the use of such enpirical equations results in a 

consemative estimation of stress intensity factor for deep cracks, ah > 0.5, and hence an 

underestimation of fktigue life and îkacture strength. This effkct has been referred to as load 

shedding, which redistributes the bad as the crack develops and thus reduces the crack 

driving force. This is not addressed in the empirical equations developed fkom T-plate 

joints. 

Based on fidl scale experirnental results by Dover (1978), Aaghaakouchak et al. 

(1989) proposed a relationship to account for the load shedding effect. They treat the 

mmbrane component of stress, 0,. as king d e c t e d  by the crack whiie the bending 

component, 6, is allowed to decrease using the relationship: 

where 4 and abo are the bending stresses in the cracked and uncracked body, respectively; 

and a/t is the non-dirriensional crack depth. This modification gives better agreement 

between stress intensity factors from the combined equation approach and those fkom 3-D 

finite elemnt calculations or experiments. However, since this empiricai relationship was 

proposed based on lirriited experimental results, it gives unconservative estimations of stress 

intensity factors for some cases (Maddox, 1997). 

There is another issue which has not been accounted for in this analysis: the two- 

b n s i o n a l  stress distributions on the uncracked plane. Shce the norrrinal stresses cn, and 

, used in Eq. (2.19) represent only the stresses at the hot spot location, they cannot 



describe the two-dimnsional changes of stress dismibutions shown in Figure 2.9 (through 

the thickness) and 2.10 (dong the weld toe)(HasweU et al., 1991; Hellier et al., 1990). 

Weight Functions 

No weight functiow are available for pipe-plate or tubular joints. Several authoa 

have used the Oore-Burns weight function developed for embedded elliptical cracks (Dover 

et al., 1986; Burdekin et al., 1986; Forbes et al,, 1992) to calculate stress intensity factors 

for surface cracks in tubular joints. Since none of these weight functions consider the load 

shedding effect, the resulting stress intensity factors are conservative (Haswell et al.. 1991; 

Forbes et al., 1992). 



Figure 2.1 Notation for serrii-eiiiptical surface crack 



Figure 2.2 Superposition rnethod (Bueckner, 1970) 



figure 2.3 Physical meaning of weight functions, (a) for 1 D crack; (b) for 2D crack under 

one-dimensional stress; (c) for 2D crack under two-dimensional stress 



Figure 2.4 Two-diniensional stress distriiution 
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Figure 2.5 Weight fwiction for niixed boundary conditions (Wu and Carisson, 199 1) 



Figure 2.6 Oore-Burns (1980a) weight fiinction 



Figure 2.7 Surface cracks in fiat plate: (a) and (b) under rcsidual stress fie@ (c) with £ i x d  

boundary conditions 

Surface Crack 

Welds 



Figure 2.8 (a) T-plate joint; @) plate with an an- corner 

a) T-Plate Joint (Dijksm et al. 1989) 



Figure 2.9 Stress distribution in thickness direction (Haswell et al., 199 1) 



Figure 2.10 Stress distribution around the weld toe 

:3 I 

a). Nomial stress aiong the Qack me for axiaily loading (HeUier et al., 1990) 

O Chora : rZ dam 
x 3race : FZ cata 

Chora : 'JCL eauamans 
- 3ract : UCL muacrans 

b). N0mxi.i stress dong the crack c). Noxmai stress aiong the crack toe 
for out-of -plane bending for in-plane bending (Heilier et aL, 1990) 



Chapter 3 

Theory and Development 

The objective of the present research Û to develop weight functions for the 

calculation of stress intensity factors for surface cracks in flat plates and weIded joints, 

including T-plate, pipe-plate and tubular joints. The resulting weight functions will consider 

two-dirriensional stress disiributions and include the load shedding effect for pipe-plate and 

tubular joints. In this chapter, a general rnethodology to accommodate the effixts of two- 

dimensional stress distribution and prescnbcd zero displacement boundary conditions on 

weight functions is discussed. 

S ince there are no generai mthods to d e t e d e  two-dimensional weight functio ns 

for surface cracks. approaches have been developed to address two-dimensional stress 

distributions. In the present research, two methods are proposed to treat two-dimensional 

stress distributions: the Fourier series approach and the general point load weight function 

approach. These two approaches are presented in section 3.1. 

In order to accommodate the effects of prescribed zero displacernent boundary 

conditions into weight functions, reference stress intensity factor solutions for the same 



p r c s c r i i  zero displacement boundary conditions must be used to derive weight functions. 

In section 3.2, a rritthod to obtain stress intensiîy factor solutions for prescribed zero 

displacemnt boundary conditions based on available stress intensity factors for traction 

type boundary condition is discussed. 

3.1 Effect of Two-dimensional Stress Distributions 

For two-bnsional cracks, stress intensity factors for any two-dimensional stress 

field, a(x, y), can be calculatexi using the two-bnsional weight function m(x, y; P') in Eq. 

(2.5): 

In order to obtain the point load weight function, m(xy; P'). for surface cracks in 

any complex geometry, a general form must to be recognized and used to determine the 

weight functions fiom reference stress intensity factor solutions. 

Properties of Weig ht Functions for Tm-Dimenrional Cracks 

By analyzhg the properties of weight functions for two dimensional crack problems, 

Rice (1989) pointed out that s and p (Fig. 3.1) were key paramters in the weight function 

expression, m(x, y; P'), where s is the shortest distance between the load point and the 

boundary of the crack fiont, and p is the distance between the load and the point P' as 



shown in Fig. 3.1. These two pararrieters can be used to d e s m i  avaiiable analytical weight 

functions* 

For the half-plane crack in an infinite body as shown in Figure 3.2(a) 

For the penny shape crack as shown in Figure 3.20) 

where a is the radius of the circular crack. 

Rice (1989) has also show that the weight function for an arbitrary plaaar crack 

embedded in an infinite body (Fig. 3.1) c m  be genedy -en as 

It is apparent fkom Eq. (3.3) that the singuiarity tem in a i l  the weight functions is of the 

order ds/d, and the weight function tends to infinity when p approaches zero. When s 

equals zero and p is not zero, the weight function value is zero, and the stress intensity 

factor is also zero. 



The fwiction w(x. y; P') describes the geometry effect for the shape of the 

embedded crack. For a haIf-plane crack 

and for a p enny shaped crack 

It was aho found (Rice, 1989) that the function ~ ( x ,  y; P') has a weil-dehed limit, when 

point (x, y) approaches the crack boundary, Le., s approaches O. For both cases of haIf 

plane or penny shaped crack, 

For a given two-diniensional crack, if the function w(x. y; P') can be d e t e d e d ,  

then the general weight function m(x, y; P') can be obtained fkom Eq. (3.3). Note that 

approach represented by Eq. (3.3), denved by Rice (1989). is very similar to the O-integral 

proposed by Oore and Burns (1980). Both can give the comct weight function for the 

half-plane or penny-shaped cracks. 

In the present thesis, this general approach was used to develop weight functions for 

embedded eiIiptical cracks in an infinite body, as presented in Chapter 4. However, the 

d e t e d a t i o n  of m(x$y;P') for surface cracks requires more effort. In order to avoid these 

ditFculties, a Fourier senes approach was developed. 



3.1.2 Fourier Series Approach 

As discussed previously, the direct detemination of m(x, y; P') for a surface crack is 

rather diffiriuit. A Fourier series approach is proposed to avoid this n;ffic.ullty. Any stress 

£Xd, o(x, y), in the region S: O < x s a, and -c a y a c, can always be presented using a 

Fourier series to represent the variation in the y-direction. 

For example, the residual stress distribution shown in Figure 2.7(b) was given by 

Shhtori et al (1987): 

where ou is the yield smss  of the materd This stress distribution can be represented using 

the foilowing simple two-tem Fourier series with a maximum difference of one percent: 

Figure 3.3 shows the cornparison between these two stress distributions. For the 

two-dimensional stress distributions encountered in pipe-plates and tubular joints show in 

Fi- 2.10, sinpie Fourier series with two (or at rnost the)  terms can be used to 

represent the variation dong the weld toe. 

In generai, the Fourier series expansion in the y-direction for any stress distribution 

a(x, y) can be expresseci as: 



where the Fourier constants. which are functions of x, can be calculated fiom (Spiegel 

1992) 

1 '  
0. (x )  = - 1 O(X, y) sin ~2& 

C, C 

After substituting for the stress field using the Fourier expansion, Eq. (2.5) c m  be wntten as 

By integrating with respect to y fbst, we cm dehe the following series of weight functiow: 

where superscripts c and s represent "cos" and "sin", n represents the nth term in the 

Fourier series, and f,, is the region of integration for y for a given x value. The newly 



defined weight functions, M'&;P'), and ilfn(x;P') are the stress intensity factors at point P' 

for a line load varying as cos(nlry/c) or sin(n~/c)  at x. Fig. 3.4 shows the line load 

comsponding to weight function M'l(x;P9). After introducing the series of weight 

functions, Eq. (3.10) becornes 

instead of the determination of weight function m(x,y;P'), the problem has been 

reduced to the determination of weight functions M'.(x;P') and M'.(x:pS). It can be seen 

hmedbtely that P') is actualiy the one dimensional weight fimction M(x; P') 

discussed previously, which is avaüable for surface cracks in flat plates (Wang and Lambert, 

1995a, 1995b, 199'7). Since for most engineering applications the stress variation in the y- 

direction can be represented accurately using a Fourier series with a maximum n = 1 ,  only 

W I ( X ;  P') and M'I (x; P')  are requircd for most applications. In fatigue and hcture 

analyses. the stress intensity factors at the decpest and surface points are generally the most 

important values. Therefore, in the following discussion, only f i ( x ;  P') and M'I (x; P' )  at 

points P' = A and P' = B will be developed. 

Now, the stress intensity factor for any two-dimensional stress field, which can be 

presented by: 

w m o(x, y) = a, (x) + a, (x) cos(-) + b, (x )  sin(-) 
C C 

cm be calculated as foiiows: 



at the deepest point 

and at the surface point 

The weight functions, hf&; P') and MI (x; P'), can be obtained using reference stress 

intensity factor solutions in the same nianner as for M(x; P'). 

Weight function MI (x; P' ). 

In a siniilar way to the development of the functional expression for M(x; P'), the 

following f o m  are proposecl for the weight function (x; PD). At the deepest point, A, 

1 3 1 X X - M; (x, a; A) = 
,/;2rrO 

[ l + ~ ~ , ( l - ~ ) ~ + M ~ , ( l - - ) + M ~ ( l - - ) ~ ]  a a a (3.16) 

where HIA, M'*A and M'.M are geometry dependent paramters which can be decided fiom 

two reference stress intensity factor solutions plus a third condition. At the surface point, 

B,  



where M'IB, W2it and M ~ B  can sirrnlar1y be de-cided f?om two reference stress intensity 

factor solutions plus a third condition. 

Fett et al. (1987) showed that the curvature of the crack surface at the crack rnouth 

is zero. Consequently, IÏom Eq. (2.8), the third condition for the weight function at the 

deepest point, MI (x, a:A), is that the second derivative of the weight function be zero at x 

= 0, which leads to 

The third condition (Shen and Glinka, 1991) for weight fûnction at the surface point fi (x, 

a;B) is that the weight function equals zero at x = a, since the stress intensity factor at the 

surface point is zero for a point load acting at the deepest point (on the crack fiont). This 

gives 

Weight function a (x; P'). 

The weight function MI (x; P') represents the stress intensity factors at point P' 

caused by a iine load varyhg with sin(lrylc) on the crack surface. From symmetry 

considerations, it can be seen that Mi (x; P') is zen, at the deepest point, A, Le., 



The proposed weight fûnction for surface point B is, sinrilar to M(x; PD): 

where A h ,  M2B and M h  are panuileters dependent on geomtry which can be decided 

fiom two reference solutions and a third condition. The third condition for M'I (x, a; BI is 

that the weight function equals zero at x = a (Shen and Glinka, 199 l), which gives 

So, if two reference stress intensity factors are available, the series of weight 

functions can be determined, and may be used to calculate stress intensity factors under 

two-dirriensional stress distributions. 

This approach was applied to develop weight functiow for surface cracks in Oat 

plates under two-dimensional stress distributions. Details of the development will be 

presented in Chapter 5. 

3.2 Effect of Boundary Conditions 

AU available stress intensity factor solutions for cracks in £lat plates and T-plates are 

for a cracked body under traction type loads. Thuefore, the cracked geomtry is statically 

determinate and the applied stresses are hown a priori. However, for a cracked body with 



fixed displacerrient boundary conditions, the problem becoms statically indeteminate, and 

the appüed stresses are not known o priori. The stresses applied to the cracked geometry 

change due to the change in stifness of the cracked section. 

AIthough f i te  eltmnt analyses can be applied to calculate stress intensity factors 

for any cracked geomtry with fked boundary conditions, there is a sinipler approach The 

stress intensity factors for fixed displacemnt boundary conditions can be calcuiated fkom 

available stress intensity factor solutions for appiied stress loads. By using a coqLiance 

analysis, the applied stresses on the k e d  boundary can be solved for a given crack 

geometry (Okamura et al., 1975; Marchand et al., 1986). Once the applied stresses are 

obtained, the fixed displacemnt boundary conditions can be replaced by applied stress 

boundary conditions, and the correspondhg stress intensity factors can be solved h m  the 

avaiIab1e soIutions for applibd stress loads. 

The application of this method to calculate the stress intensity factors for single edge 

cracked specimen with fixed displacement boundary conditions was developed by Marchand 

et al. (1986), and is summafised in thû section. These stress intensity factor solutions were 

used by the author to denve weight functions, which include the effects of fixeci 

displacement boundary conditions. 

3.2.1 S m  Intensity Factors for Fhed Disphment Boundary Conditions 

Superposition Method 

Consider an edge cracked £lat plate restrained ikom rnoving at the ends with crack 

depth a, thickness t and width W. A constant distributed load is applied to the crack face as 

shown in Figure 3.5. This problern can be represented by the superposition of problems 1 



and II, as show in Figure 3.6. The unlaiown tension and moment, iV' and M', can be 

obtalned fiom compatibility conditions at the ends. 

The displacemnts for problem 1, & and 01, can be caiculated Born a further 

superposition of problems EA and 1-B, shown in Figure 3.7. Since the calculation of the 

displacemnts for problem 1-B is a classical problem with a standard solution, the key issue 

here is the calcdation of the displacements for problems 1-A and II, which c m  be obtained 

fkom the solution of the general probiem shown in Figure 3.8. 

The relative displacement 6 and rotation 8 for the probiem shown in Figure 3.8 can 

be O btained fkom the sunimation of 'trackeci'' and "uncracked" cornponents: 

The cornpliance of the "uncracked" bearn has a standard solution given by 

The cornpliance for the "cracked" barn is obtained by considering the complernentary 

energy of the specirnen, U, in terms of N and M: 



If we introduce a crack extension da, we have 

On the other hand, from the relation between stress intensity factor and strain energy release 

rate under plane stress conditions 

Here KI is the stress intensity factor solution for the problem shown in Figure 3.8, which is a 

cracked geometry loaded remtely by surface tractions. For the present problem, this 

solution is avahb1e (Tata et al., 1973). Wnting the stress intensity factor solution in ma& 

form fonowing the notation used by Marchand et al. (1986): 

the energy change, Eq. (3.27), becornes 



Comparing Eqs. (3.26) and (3.29) gives 

Integrating with respect to a gives 

From Eq. (3.23) we have 



which gives the to ta1 reiative displacemnts. 

Stress Intensity Factors 

Now, going back to the original probkm, the displacement solution for problem 1 is 

and for problem II 

Applying the zero displacernent boundary conditions gives 

For a given geornetry ait and Llt, Eq. (3.37) can be solved to obtain N' and M' . Stress 

intensity factors can then be evaluated as a combination of solutions for pro blems 1 and II: 



This mthod was developed by Okamura et al. (1975) for edge cracks in beams and 

provides an efficient way to calculate K for fixed boundary conditions. It has been extended 

by the author to surface cracks in fiat plates, and is discussed in Chapter 5. 

3-2-2 Weight Functions for Cracks with Fixed Boundary Conditions 

Weight functions for a cracked geomtry can be derived fkom reference stress 

intensity solutions. If the reference stress intensity factors used in the derivation of these 

weight furictions incorporate nxed boundary conditions, the corresponding weight function 

wilI include the effects of the fixed boundary conditions. 

Usually, two reference stress intensity factor solutions are required to derive weight 

functions; one for a uniform load and one for a linearly varying load acting on the crack 

face. Section 3.2.1 presented a rnethod to calculate the stress intensity factor for uniform 

loads. Similarly, stress intensity factors for the case of a lineariy distributed load applied to 

the crack face may be solved using the same superposition and cornpliance analysis 

technique. Based on these two stress intensity factor solutions, weight functions for the 

given geometry can be obtained in the standard way, as discussed in Chapter 2. 

This rnethod will be used to develop weight functions for semi-elliptical surface 

cracks under fixed disphcemnt boundary conditions. The developrnent for surface cracks 

in 8at plates wiil be presented in Chapter 5, and for surface cracks in T-plate joints wili be 

presented in Chapter 6. 



Figure 3.1 General two-dirriensional crack 



Figure 3.2 Weight fimctions for (a) halfphe  crack; (b) circulat crack 

(a) 
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Figure 3.3 Cornparison between residual stress field Eq(3.7) and Fourier approximation Eq. 

RESIDUAL STRESS FIELD 



Figure 3.4 Weight Fmction MC& P'). 



Figure 3.5 Edge crack in fht plate with £ixed boundary conditions 



Figure 3.6 Superposition representation 



Figure 3.7 Superposition of problem 1 



figure 3.8 General arrangement for the calculation of the end displacements 



Chapter 4 

Embedded Elliptical Cracks 

A problem hquently encountered in applied bcture and fatigue analysis is the 

estimation of stress intensity factors for elliptical cracks embedded in a thick plate and 

subjected to a complex stress distribution (Fig. 4.1). This geometry is the shplest since 

there are no fke surface effwts on the crack, and therefore is a useful starting point for 

more cornplex surface cracks to be discussed later. 

When the uncracked stress distribution in the area to be occupied by the eIlipticai 

crack is simple, such as unifonn uniaxial tension or a one-dimensional linearly varying stress 

field &), then the available explicit solutions of Green and Sneddon (1950). or Kassir and 

Shih (1967) can be used to deterrrrine the stress intensity factors dong the crack fkont. 

When the stress distribution is two-dimensional, o(x, y), which is the case in many 

engineering applications, more involved calculations must be made. By applying the 

potential fûnction mcthod, exact stress intensity factor solutions for polynoniial stress 

distributions up to the order of three were provided by Shah and Kobayashi (197 1) and for 

polynomial stress distri%utions of any order of n were provided by Vijaykumar and Atluri 

(1981) and Nishioka and Atluri (1983). For a generai stress distribution represented by a 



polynorniai with N ternis, the calcuiation of stress inteIlSity fmtor involves the detemination 

of the solution of N linear equations with N unknowns, and the parameters of the linear 

equations require tedious evaiuations of eniptic integrais (Nishioka and Atiuri, 1983). In 

addition, there are stress distributions which cannot be easily reprcsented by polynoniials or 

need a large number of t e m .  

Another mthod  of deterniining stress intensity factors due to complex stress 

distributions is the weight function rnethod. For two-dlriensional cracks in an infinite body, 

exact close-form weight function solutions are availabie only for very limited cases: the 

circular crack and the half plane crack (Bueckner, 1 987). 

In this Chapter, an approximate weight function for embedded eilipticai cracks is 

proposed based on the properties of weight functions discussed in Section 3.1.1. The 

function makes it possible to calculate stress intensity factors for embedded eilÏptical cracks 

under arbitrary 2-D stress distributions by integrating the product of the weight function 

and the stress distribution on the crack plane. 

4.1 Stress IntenSty Fadors for Ernbedded Eiiipticai Cracks 

From the thrcc-dimnsional theory of elasticity, stress intensity factors for an 

embedded ellipticd crack in an infinite body under polynomiai Ioading can be obtained using 

the potential function method (Vijayakumar and Atluri, 1981). For an embedded elliptical 

crack in an infinite body as shown in Figure 4.1, if the pressure distribution c m  be 

represented using the following polynomiai 



where A"%,, are coefficients and the pammters i and j specify the symmtries of the load 

with respect to the ellipse, then the corresponding stress intensity factor dong the crack 

fiont c m  be d e n  as 

1 l M k  

K ( P )  = 8&)ln(a2 sin2 8 + c2 cos2 O ) ~ ~ ' ~ C C ~ C ( - ~ ) ~ " ~ + '  
ac P O ~ = O L = O C = O  

(4.2) 
1 COS 9 2,,,j sin 0 2hj - 

~ ( 2 k + i + j + l ) - ( - )  (-1 d'j' 
OC a c k-1.1 

where the coe&ients d'')kJ depend only on the coefkients ~ " " m f i  as used in Eq. (4.1). 

The relation betweem the parameters AfiJJmA and the parameters d'J?J can be sunmiarized in 

matrix form as 

where N is the total number of coefficients or d'j'tl (they have the same number of 

non-zero members). In addition to the solution of N linear equations with N unknowns, 

generally the determination of the components of [BI requires "tedious evaluation of 

eiiiptical integrals of different kinds and different orders which involves exorbitant, if not 

unpleasant, algebraic work" (Nishoika and Atluri, 1983). Only for certain very s m l e  

loading cases is the application of Eq(4.2) straight forward. 



For the sirriplest case where an elliptical crack is subjected to a constant applied 

pressure p(x, y)  = -PO, the ody  non-zero component of is O. O = -PO. As a result, 

the only no-zero component of eJ)t~ is 

where E(k) is the complete elliptical integral of the second kind and 

The stress intensity factor can then be derived fiom Eq.(2) as 

which was ais0 derived by Irwin (1962) based on the solution by Green and Snedden 

(1950). 

For the case where a linear varying pressure was applied on the elliptical crack 

surface, p(x, y)  = -poylc , the only non-zero component of A"%, is A"~'o. O = -PO. The only 

resulting no-zero component of P r r  is 



where K(k) is the complete elliptical integral of the first kind and K = ch.  The stress 

intensity factor is 

dR sin 6)k2 
K(P')  = (c)1np,(a2 sin2 9 + c2 cos2 

(l+ k 2 ) ~ ( k ) -  k12 K ( k )  a 

which was &O derived by Kassir and Sih (1966). For complex stress distriiutions, where a 

high order p o i y n o d  must be used, the solutions represented by Eq.(4.2) can be very 

dinicult to obtain and the weight function method should be cowidered. 

4.2 Pmposed Weight Fwidion 

From Chapter 2, stress intensity factors for any stress field, d x ,  y), can be 

calculated using a ~WG-dimnsional weight function m(x, y; P') by Eq. (2.5): 

In Chapter 3, section, 3.1.1, the following general form for the weight function for 

an arbitrary planar crack embedded in an infinie body @g. 3.1) was presented 

where s is the shortest distance between the load point and the boundary of the crack fkont, 

and p is the distance between the load and the point P' as shown in Fig. 3.1. 



It was postulated that the generai weight function for embedded elliptical cracks 

would depend on georrietric pararrieters, p to I# which are controild by the shape of the 

ellipse as shown in Figure 4.2 They are the distances between the point C, where the h e  

representing the shortest distance fiom load point (x, y) to the crack fiont intersects the 

major axis of the ellipse, and those four points on the crack fiont where the line comecting 

point C to the point is nomial to the tangent of the crack fkont at that point. In addition, the 

proposed solution must be consistent with avaiiable analytical weight function solutions for 

lirniting cases for elliptical cracks: circular and ha-plane cracks. 

Several possible functional forms were considered. They following produced the 

most accurate stress intensity factor results as presented in the next section: 

In ternis of Eq. (3.3). the function H(x, y; P') for embedded eEptical crack is 

The k t  of w(x. y; P') when s approaches zero is 1, which is the s a m  as that for circular 

and half plane cracks. 

No te that when a = c, the case of a penny shape crack, pi to pi a l l  equal a and Eq. 

(4.9) tends to Eq. (3.2). When a and c go to inûnity, which is the case of a halfplane crack, 



pi to P alu go to hhity and Eq. (4.9) tends to Eq (3.1). Thus the proposed equation is 

consistent with aii known relevant analytical weight functions. 

4 3  Validation of the Weight Fundion 

In order to calculate stress intensity factors using Eq. (2.5), numncal integration 

must be conducted. A computer program was developed to perfom the integration based 

on the standard Gauss-Legendre quadrature technique. Instead of using rectangular or 

biangular elenients over the domain of integration (which are not efficient in handling the 

curved boundaries), c w e d  elernents were used. 

The analytical weight function for an embedded penny shaped crack repnsented by 

Eq. (3.2) was used to ve@ the integration algorithm For constant load, the maximum 

difference between the andytical solution and the calculation bas& on the present 

integration routine was less than 0.8% along the whok crack fiont. For one-dimnsionai 

linearly varying load, the maximum clifference was less than 1.1%. These results indicate 

that the integration routine is sufnciently accurate for the integration of weight functions. 

To validate the proposed weight function, Eq. (4.9). six different Ioading cases were 

applied to the surface of the elliptical crack. Applying Eq. (2.5), stress intensity factors 

along the crack front of an embedded eIliptical crack of aspect ratio ulc = 0.2, 0.4, 0.6 and 

0.8 were calculatecl for the following stress fields: 

uniform stress field 



one-dimensional Iuiear stress field depending on coordinate x 

one-dimensional linear stress field depending on coordinate y 

Two-dirnensio nd non-luiear stress field 

one-dimensional quadratic stress field depending on coordinate x 

and one-dimensional quadiatic stress field depending on coordinate y 

The resulting stress intensity factors were nonnalized as follows, 



where F is the boundary correction factor, E is the c o q k t e  eIliptkal integral of the second 

kind and is given by the following empirical equation (Newman and Raju, 198 1). 

The boundary correction factors fiom the weight function calculations were compareci with 

exact solutions (Shah and Kobayashi, 1967). As shown in Figures 4.3-4.10, the clifference 

between the predictions and the exact solution were generally within 5% for aspect ratios, 

alc, of 0.8 or 0.6 and within 10% for aspect ratios, a/c, of 0.4 or 0.2. Therefore, the 

proposed weight function was validated for embedded eIliptical cracks. For low aspect 

ratio cracks, a/c = 0.2, the present weight function gave better accuracy (within 10%) than 

the O-integral (1 8%) (Desjardins, 1988). 

The proposed weight function can also serve as the foundation for the further 

development of weight functions for two-dimensional surface cracks, corner cracks and 

other part-through cracks in enginee~g structures. However, no funher developrnent is 

contained in the present thesis. The Fourier series approach presented in Chapter 3 was 

applied to develop weight functions for surface cracks under two-dimensional stress 

distributions. 



Figure 4.1 Notation for an elliptical crack m an solid, (a), (b) 



Figure 4.2 Weight function for embedded eniptical crack 



Figure 4.3 Cornparison of the weight function based stress intensiîy fkctor and exact solution for 

a k  = 0.8 (Usorm and k a r  stress distn'butions). 

alc = 0.8 

Uniform 

Lincar depcnding on x 

Lincar depcnding on y 

AnalyticaI Solution 



Figure 4.4 Cornparison of the weight function based stress intensity -or and exact solution 

for O/C = 0.8 (2D non-linear and parabok stress distriiutions). 

Quadratic depending on x 

Quadratic depending on y 

O Two-dimensional non-linear 

AnalyticaI Solution 



Figure 4.5 Cornparison of the weight W o n  based stress intensicy factor and exaa solution 

for alc = 0.6 (Unaonn and linear stress distn'butions). 
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Figure 4.6 Cornparison of the weight function based stress intensity factor and exaa solution 

for a/c = 0.6 (2D non-linear and parabolic stress disa'butions). 

0.80 $ Quadratic dcpcnding on r 

1 .O0 

Qoadratic depending on y 

O Two-dim ensional non-Iinear 

AnaIytical Solution 

- - - - - - - 
- alc = 0.6 



Figure 4.7 Corriparison of the weight function based stress intensity factor and exact solution 

for d c  = 0.4 (ünifonn and hear stress distributions). 

alc = 0.4 

Uniiorm 

O Linear depending on x 

Linear depending on y 



Figure 4.8 Cornparison of the weight M o n  based stress inte* factor and exact solution 

for a/c = 0.4 (2D non-linear and parabolic stress distriiutions). 

a/c = 0.4 

Quadratic dcpcnding an x 

Quadratic dcpcnding on y 

O Two-dimensional non-linear 

Analytical Solntion 



for d c  = 0.2 (Unifoxm and linear SIESS distributions). 

alc = 0.2 

Unifonn 

O Linear depending o n  x 

Lipear depending o n  y 

Figure 4.9 Cornparison of the weight function based stress intensity factor and exact solution 

m/n: 

Analytical So lu t ion  
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Figure 4.10 Cornparison of the weight function based stress intemiîy faaor and exact solution 

for a k  = 0.2 (2D non-iinear and parabok stress distributions). 

alc = 0.2 

Quadratic depending on x 

Quadratic depending on y 

O Two-dimesional non-lincar 

AnalyticaI Solution 



Chapter 5 

Surface Cracks in Flat 

Plates 

In this chapter, stress intensity factors and weight functions for surface cracks in fiat 

plates under two-di.riensional stress distributions (section 5.1) or with k e d  boundary 

conditions (section 5.2) are presented. 

5.1 Two-Dimensional Stress Distributions 

For semi-elliptical surface cracks, stress intensity factors for any two-dimensional 

stress field, a(x, y), c m  be calculatd using a two-dimensional weight function m(x, y; P') 

by Eq. (2.5) 



As discussed in Section 3.1, the direct detedation of m(x, y; P') for a surface crack is 

rather difticulî. A Fourier series approach was proposed to avoid thû difficuity. For any 

stress field, a(x, y), in the region S: O s x < a, and -c I y < c, can be presented using a 

Fourier series to represent the variation in the y-direction by Eq. (3.9): 

The stress intensity factor can then be calculated by 

Most two-dimensional stress fields encountered in practice can be represented by a 

Fourier series of order one: 

w w 
Q(X, y) = a. ( x )  + a, (x)  COS(-) + bl ( x )  sin(-) 

C C 

The stress intensity factor at the deepest and surface points can be calculated as foilows: 

at the deepest point 

O O a 

K ( A )  = a, (x)M(x;  A)& + 1 a, (x)M;  (r, A)& +I b, ( x )  M; (x; A)& (3.14) 



and at the surf' point 

k6(x ;  Pt) is actually the one dimensional weight function M(x; P') discussed 

previously, which is available for surface cracks in flat plates (Wang and Lambert, 1995a, 

1995b, 1997). Only A&(x; P') and MI (x; P' ) remain to be detemitied. 

The weight hinctions, P') and MI (x; P.). can be obtained using reference 

stress intensity factor solutions in the same m e r  as for M(x; P'), as discussed in Section 

3-12. In this section, weight functions M i ( x ;  P') and MCI (x; Pt) are developed for surface 

cracks in fiat plates. 

5.1.1 Stress Intensity Factor Solutions 

In order to detemine and validate weight functions M i ( x ;  PD) and Mi (x; P'). three 

k n s i o n a l  finite element calculations were conducteci. The resulting stress intensity 

factors for two basic loading cases were used as reference solutions to denve the weight 

functions. These weight functions were then validateci using solutions for other Loading 

cases and a set of finite element data by Shiratori (1986). 

Three dimensional finite elenients were uscd to mode1 the syninietric quarter of a piate 

containhg a semi-egtk surfas crack. Figure 5.1 shows die geomtry and the CO-ordinate 

system used. The finite elenient adyses were niade using AB AQUS version 5.4 (H.KS ., 1994) 

wah 2û-noded isoparametric three-dimensional soiici elements and reduced integration. In order 



to mDde1 the square mot singulanty at the crack tip, rhreedbmnsional prisn ekmnts with four 

nnd-sdc nodes at the quarter points (a degenerate cube with one Eice coIlapsed) weit used and 

the separate crack tip nodal points were constmhed to have the sam displacement (Barsoum, 

1977). 

nK stress m t e m  factor. K. was calciilatPrl h m  the J-integral which was calciilateri 

using the domah integral mthod (Moran and Shh, 1987). The analyses w a  rriade with a 

linear elastic rnaterial mode1 with a Youngs modulus, E, of 2W GPa and Poisson's ratio, v of 

0.3. The relationship for plane strain between J and K was used to cakuiate K 

exœpt at the s m  point of the crack where the rekionship for plane stress was used 

The loads were appiied directly to the nack siirface. Eight typa of loading were applied to each 

crack geomûy, with the foflowing twoairriensional stress disa'butions 

and 



where is the nonmial stress, a is the crack &pth and c is the half length. 

A rresh generator was developed to generate ail required input f k s  for the analysk. An 

eIiiptic;ù nansfomation was used to form the crack tip niesh Therefore, the lines of eiements 

around the crack tip were eIliptic or hyperbolic, so that intersecting lines were orthogonal as 

required for the evduation of the stress mtensity &ors (Banks-Si%, 1991). A typiad mode1 

for the present analysis used about 15,000 degrees-of-Mom A typical m h  is plotted in Fig. 

The s a e ~ s  intensiîy factor resuits have b e n  nomialised as foIIows, 

where F is the boundary correction fkctor, and Q is the shape fàctor of an eIlipse &en by the 

square of the complete elliptk integral of second kind. The fonowing empincal equation for Q 

was used, for O I a/c 5 1.0: 



Nott that tbe i l R  singularity vanishes at the inLasection of îhm free surfkm (Sih and 

Lee, 1989) such as the siirfdce pomt of the crack That is, the i l B  singulanty occurs only near 

crack front points embedded entirely in the materiaL However, as shown by Sih and Lee (1989), 

for enginenmg niaterials wah a Poisson ratio, v = 0.3, the dominant singulanty near the sdàœ 
4.4523 point of a surfàœ crack was r , which m practicai tams does not represent a ciraniatic 

departme h m  the fi' shgukrity. A h ,  in the present calciilatinn, the domain integral mthod 

was used to evaluate stress inte- fhctors. 'Iherefore the stress htensity factor calculated for 

the srirface point was in fact an average vahe over the element size. The stress intensity factor 

for the surface point of the sirrfaa crack should be considered a reasonable physiEal 

approximation of the state of a f f a e s  at the sud&. 

In previous work (Wang and Lambert, 1995), the nnite elemnt mode1 was e x t e h l y  

verified with exact solutions @y calculating the sttess intensty factors for ernbedded circuiar and 

eniptical cracks in an infinite body under tension), and with a p p m h t e  solutions (by calculating 

the stress Uitensity factors for serrii-eniptical swhce cracks with non-llliear loads applied to the 

crack surfixe). Based on t h ,  the accuracy of the present finae ekrnent calculation is expected 

to be within a few (5%) percent of the actual solutions. 

Stress intensity factors for semi-eniptical siilface cracks (dc  = 0.1,0.2,0.4,0.6 or 1 .O) in 

a finite thickness plate wah relative crack depths, ait, of 0.2, 0.4, 0.6 or 0.8 subpcted to two- 

dLnensiona1 stress disnibutions as expressed in Eqs. (5.3) and (5.4) were detenriined The 

results are summarised in Tables S.l(a)-5.l(e) and Tables 5.2(a)-5.2(e). 



5.13 M v a t i o n  of Weight Fimctioos 

Deferninafion of Weight FUILCfiOns MI (x; A) and MI (x; B) 

As descxibed in section 3.1.2, weight functions M'I (x; A) and fi (x; B) cm be derived 

in the forrn of Eqs.(3.16) and (3.17). 

1 1 3 
X - M: (x, a; A) = 

X X - 
[1+MU(1--)2+M;A(1--)+M;A(1--)2] (3.16) 

a CI a 

The panuneters were detemineci fkom two reference stress intensity factors and the 

conditions represented by Eqs. (3.1 8) and (3.1 9). 

The weightfwiction at the àèepestpoint A 8 1  (x; A) 

In order to detexmine M'I (x; A) using Eq.(3.16), two r e k n œ  solutions were used to 

evalmte , MU and  fi^: constant or linearly deaeas8ig stress through thiclmess while 

varyhg as cos(xylc) dong the width, correspondhg to m = O or m = 1 in Eq. (5.3). When 



expanded into a F o e  series in the y-direction, the non-zero Foiirier constants for these two 

stress kIds are a ( x )  = cm, and ai (x) = &a(l - da), respectiveiy. 

Rgference stress intensrity factors. For the deepest point of a surface crack, the 

nmricaI so1utions for alc = O. 1, 0.2, 0.4 0.6 or 1.0 presented previously (Tabie 5.1) were 

approwriated by empirical formulas Mted with an accuracy of 3% or better. The range of 

applicability for these equations is 0.1 s d c  5 1.0 and O < dt 1 0.8. The resuils as 

approached zero were interpohted h m  finite elemnt datâ 

The results for a stress distniution constant through the thickness while v-g as 

cos(ny/c) in the width dn.ection 

are 



The results for a stress distribution linearly decRasmg through the thickness while 

varying as cos(.rcy/c) in the width direction 

are 

where 



Weight fwtction. By substituthg Eqs. (5.8), (5.10). and the correspondhg Fourier 

constants into Eq. (3.14) plus the condition repfesented by Eq. (3.18), three equations with three 

unlaiowns were established. The parameters in the weight fùnction expressions were solved for 

and are 

The weight function for the deepest point of a seMi-eiiipaC surface crack cm then be determineci 

directly h m  Eq. (3.1 6). 



The wightfwction for the slqface point fi (x; B) 

The two rehnce stms intensity b o r  solutions used to detemine weight fundon 

M i ( x ;  B), in the fonn of Eq. (3.17). were constant or Iineariy decreashg stress fields through 

the thicbness while varying as cos(lrylc) in the width direction; these are the s a m  stress fields 

used for the detemmiation of M'i (x; A). 

Refereence Stress I.ensity Factors. For the surfas point of the srnEice crack, the finite 

ekmnt resuits presented previoudy (T'able 5.1) for m f h  cracks (a/c = 0.1, 0.2, 0.4, 0.6 or 

1.0) were approlemated as fonows, with an accuracy of 3% or betîer. The range of applicab- 

for these equations is 0.1 s d c  5 1.0 and O 5 d t  < 0.8. 

The resuits for a stress distriiution constant through the thickness while varying as 

cos(@c) in the width direction 

are 



The rwults for a stress distribution k l y  decreasing through the thichess whiie 

varyir~g as cos(lFylc) in the width direction 

are 



where 

Weight Function. By substihiting Eqs. (5.15), (5.17). and the conesponding Fourier 

constants into Eq. (3.15), and applying the condition represented by Eq. (3.19). three equations 

with ttiree unknowns were established. The weight W o n  pararrieters for the s e  point 

were solved for and are 



The weight f d o n  for the surfact point cm then be detemMed directly h m  Eq. (3.17). 

DetennUiation of WeigM Functhns % (x; A) and Mbl (x; B) 

As discussed pxwious@, weight function M; (x; A) is always zero. The determination 

of M'I (x; B) is based on the f o m  of Eq(3.21) and the condition represented by Eq.(3.22): 

The wightfiurction for the W a c e  point M'I (x; B) 

The two refèrem stress intensity factor solutions used to d e t e d e  weight fhction M; 

(x; B) for the sirrface point of a semi-eutic m k  in the form of Eq. (3.21) were stress fields 

whkh were constant or Iinearly d d g  through the thidmess w h k  varying as sin(irylc) in the 

width direction, corresponding to m = O or rn = 1 in Eq. (5.4). When expandeci into a Fourier 

series in the y-direction, the non-zen, Fourier constants for these two stress kids are b&) = ah 

and b~(x) = a(l - da), respective@ 



Roference S ~ t r e  Isensity FCIC~OTS. For the surfàce point of a sirrface crack, the finae 

eknient resdts presentd previousiy (Table 5.2) for surfàœ cracks (a = 0.1, 0.2, 0.4, 0.6 or 

1.0) were approximted as follows, with an acamcy of 2% or better. The range of applicabilky 

for these equations is 0.1 s a/c I 1.0 and O a ait 5 0.8. 

The resuhs for a stress disaiution constant through the thickness w h k  varying as 

sin(m/c) in the width direction 

are 



The resulrs for a stress disaibution ünearly decreasuig through the thickness while 

varying as sin(iry/c) in the width direction 

are 



Weighr Function. By substituting Eqs. (5.22), (5.24) and the correspondhg Fourier 

constants into Eq. (14)- and applying the condition represented by Eq. (3.22)- thnx equations 

with t h t e  unknowns were established. The weight function pammters were solved for and are 

M;B = - O+ MI*+ M d  (5.27) 

The weight function for the surface point cm then be detemiined detctly fkom Eq. (3.21). 



CompmZon &th present FEM data The weight funcaons for the deepest and surfàce 

points derived were valLiated using finite ekmnt rcsults for four two-diniensional non-lincar 

stress fiem. Using Eqs. (3.14) and (3.15). stress mtensity mors were calculated for the 

foII0wing mess &kh: 

and 

ïh comsponding non-rnr, Fourier constants for the above four stress distributions are a&) = 

a ( 1  - ~ / a ) ~ ,  ai(x) = a ( 1  - ~ i a ) ~ ,  b~(x> = 4 1  - da)' and bi(x) = aa(1 - ~ / a ) ~ ,  respectively. 'Ihe 

stress intensiry factors for the deepest and sirrtzce points calculateci fkom weight funcdons and 

h m  the present finae eknient CaICulaîions for the above stress di smion  are show in Fgs. 

5.3 to 5.8. For the d c  range fkom 0.1 to 1 and O a ait I 0.8. the ciifkences behveen the 



boundary correction fktors calculated h m  the weight M o n  and the finae ekrnents results 

were less than 4% for the sinEace point and 6% for the deepest point Note that for these cases, 

the boundary correction fictors span at least two orders of niagnmide. Consequently, the 

'percentage di&rençeT was obtamed by dividing the absolute ddkençe by the 

absolute value in each case. 

CompCUXTon with Shirafon"~ ReSUIts. In the paper by Shiraton (1986), mess intenSry 

ktors  for serrri-eriiptral sirrface cracks with a/c = df  = 0.2 and a/c = dr =0.6 under the 

following residual stress field B u t i o n  were calculated using three-di.riensional finite elenient 

mthods: 

As dkcussed in Section 3.1.2, this stress distribution can be expanded accurately using the 

foIIowing Fourier series with non-zero Fourier constants, ao = (1/4)a and nl = (72/n3 GO: 

Figure 3.3 shows the cornparison between these two stress distributions. By applying 

Eq(3.14) and (3.15), stress intensity factors at the deqest point and surface point were 

calculated using the present weight functions. A cornparison bctween the h i te  element 

results fiom Shiraton and h m  the present weight functions are given in Table 5.3. 

Excellent agreement was achieved with a maximum ciifference of 3.946. 



5.2 Fixed Ends Boundary Conditions 

Aithough the stress intensity m o r s  for surface cracks in flat plates have been 

analysed extensively over the k t  two decades (Newman and R a . ,  1978; Shiratori, 1982; 

Wang and Lambert, 1995a, 1995b, 1997). most of the work has focused on cracked plates 

under traction type loads. No solutions are avaiiable for surface cracks in f i t  plates with 

nxed end boundary conditions. 

In this section, weight functions M(x, A) and M(x, B) for surface cracks in flat plates 

with h e d  ends are deriveci. Stress intensity factors for any one-dimemional stress 

distribution can then be calculated using Eq. (2.6): 

Here P' is any general point dong the crack fkont, but will be restricted to the deepest or 

surface points (A or B) in the following. 

Stress intensity factor solutions for surface cracks in 5 t  plates with zero 

displacement at the ends under crack face pressure as shown in Figure 5.9 are calculated 

based on the superposition method and compliance analyses as described in section 3.2. 

These stress intensity factor solutions were then used as reference stress intensity factors to 

derive weight functions for surface cracks in flat plates with h e d  boundary conditions. The 

weight functions were validated using finite elemnt data 



Stress intensity factor solutions for surf' cracks in £kit piates are available for 

traction loads. These solutions can be used to produce stress intensity factor solutions for 

k e d  end boundary conditions if superposition and cornpliance analyses as described in 

section 3.2 are applied. Since the rnethods d e s c r i i  there were for edge cracks in £iat 

plates (Marchand, et al., 1986), it is necessary to generalise them to surface cracks. 

Consider a surface cracked fiat phte with crack depth a, crack half Iength c, 

thickness t, length H, and width W. A constant load is appiied to the crack face as sho wn in 

Figure 5.9. Siniilar to the probkm discussed for edge cracks in section 3.2, this problem 

can be represented by the superposition of problerns 1 and II as shown in Figure 5.10. The 

unknowns are the tension, N', and morrient, M', which can be obtained from compatibility 

conditions at the ends. 

As for edge cracks, the displacemnts for problem 1, & and eI, can be calculated 

fiom the superposition of problerns 1-A and 1-B, as shown in Figure 5.11. Here the 

calculation of displacements for problem 143 is a classical problem with a standard solution, 

since no crack is involved. The key problem here is the calculation of displacements for 

probIerns 1-A and II, which can be represented generdy as shown in Figure 5.12. Note the 

problem here is dif5erent fkom the one discussed in section 3.2, Figure 3.8, since this is a 

surface crack instead of an edge crack. 

As an approximation, the bending moment and aual force dong the width direction 

are assumed to be uniform; N and M represent the total forces. Also, the displacemnts, 



6 and 0, are assurned to be constant dong the widîh direction. The justification for this 

siniplincation will be discussed later. 

As discussed in section 3.2 for edge cracks, relative dûplacement, 5, and rotation, 0, 

for the problem show in Figure 5.12 cm be taken as the surnmation of 44cracked" and 

"uncracked" components: 

The cornpliance of the "uncracked" plate gives 

An expression for the cracked ternis are obtained by considering the corriplementary energy, 

U, of the specimen in ternis of N and M: 

If we introduce a crack extension over a certain area, dA, since the uncracked displacenient 

will not change, we have 



There are several different possible cmck extension patterns for semi-elliptical cracks, as 

s h o w  in Figure 5.13 (Fett, 1992). Ifwe chose pattern 1, which keeps c constant, we have 

Substituting this relation into Eq. (5.37), we get 

On the other hand, fiom the relation between stress intensity factors and energy release 

rates, for crack extension dA, 

This integration is dong the entire crack fiont, &4 foilows the assumed extension pattem, 

and K is the stress intensity factor solution dong the crack fiont for surface cracks shown in 

Figure 5.12. 



If we d e h e  the fonowing averaged stress intensity factor: 

From the relationship between AA and & for the assumed crack extension pattern, Eq. 

(5.38), Eq. (5 .a) can be simpIified to 

For the present pmblem, the solution for K dong the crack fiont is available (Newman and 

Raju, 1981; Wang and Lambert, 1995b), and the averaged stress intensity factors n* can be 

calculated. If we write the averaged stress intensity factor solution for a combined load M 

and N, in matrix form: 

Then the energy change, Eq. (5.42), becoms 

Comparing Eqs. (5.39) and (5.44) gives 



If we introduce the aspect ratio of the surface crack, a/c = n, and integrate with respect to 

a, we obtain 

These are the additional displacements due to the existence of the surface crack, where CH 

to Cu are the corresponding cornpliances. From Eq. (5.34) 

These are the total relative displacernents for the problern shown in Figure 5.12. 



Note that the expressions for crack-introduced cornpliance were derived based on 

one possible crack extension type, which keeps the crack kngth constant, as show in 

Figure 5.13(a). These results shodd be independent of the crack extension type. If we use 

type II crack extension, as shown in Figrire 5.13(b), which keeps the aspect ratio, n, 

constant, a different nlationship between AA and Aa will be obtained, and also a different 

averaged K solution wili be introduced. The integrations in Eq(5.46) mut then be 

conducted for a constant aspect ratio. This alternative analysis was canied out and it was 

found that the resulting cornpliances and, consequently, displacemnts were the same. 

Stress Intem-ty Factors 

Going back to the problem shown in Figure 5.10, the displacement solution for 

problem 1 is 

and for problem II 

Applying the boundary condition gives 



For a given geometry represented by olc, a/t, Hlt and Wlt, Eq. (5.51) can be solved for Ar 

and M'. The stress intensity factors are obtained nom a combination of solutions for 

problems I and II: 

aK aK K = - ( M t  - N ' )  +-(-Mt) 
aN aM 

Note that the expression for K, Eq.(5.52), can be applied to any point dong the crack fiont 

as long as the comsponding aKDN and aKD/M at the same point are used. The resulting 

K is the regular stress intensity factor, not the average stress intensity factors K*. K* is 

only used in the calculation of cornpliance. 

The Effective Width Wa 

Note that, unlike edge cracks, the assumption that extension and rotation do not 

change dong the width direction is not always tme for surfdce cracks. For surface cracks, 

rotation and extension are locaiised around the area corresponding to the surface crack 

position, as illustrateci in Figure 5.14. Consequently, the reaction forces N' and M' s h o w  

in Figure 5.10 are also localised around the area corresponding to the surface crack 

position. 

Finite elernent cdculations for surface cracks in flat plates with fixed boundary 

conditions and constant crack surface traction loads as shown in Figure 5.9 were 

conducted. The reaction forces within the local area corresponding to the surface crack 

location were found Figure 5.15 shows the distribution of K dong the width direction for 

a geornetry with alc = 0.1, d t  = 0.8, H/t = 10 and Wl t = 60. Pro blem 1 in the superposition 

representation figure 5.10) was &O analysed. The additionai deformation due to the 



existence of the surface crack was also found to be restricted to the region comsponduig to 

the crack location. Figure 5-16 shows the d e f o r d  mesh for a/c = 0.2, dt = 0.8, Hlt = 10 

and Wlt = 60. 

Based on these calculations, an effective width, WM, was proposed for the analysis 

of surface cracked plates. It was assumed that W& would depend on sorne combination of 

crack half-length c, and plate thickness t. A similar assumption was used for the effective 

area cdculation in the plastic cohpse analysis of a surface cnicked plate in C.E.G.B.IR6 

(Miller, 1988). A number of expressions for Wd, based on discrete combination of c and t, 

were examined by cornparhg the analysis results with appropriate f i t e  element 

cdcuiations. The follo wing expression produced the best results : 

Validation of the Method 

The present cornpliance analysis method and superposition mode1 in conjunction 

with available stress intensity factor solutions for £ke end boundaries were applied to 

calculate the stress intensity factors for surface cracks in £iat plates with £ixed boundary 

conditions for constant and linear loading conditions: 

and 



The resulting stress intensity factors will depend on a/c, d t  and Hk. Since WM was 

used for ail plate widths, W. (W > WM for aii cases), the resdting stress intensity fa~tors 

were independent of W/t. 

Finite element calculations were conducted for ah= 0.1, 0.2 and 1.0, alt = 0.4, 0.6 

and 0.8, and Hlt = 10 and 20. Cornparisons of stress intensity factors at the deepest and 

surface points between predictions f3om the cornpliance analysis and M t e  element 

calculations are shown in Figuns 5.17 - 5.28. The clifferences for all these cases were 

within 10%. 

Note that load shedding depends on strongly on the a/t ratio. When a/t is less than 

0.4, load shedding in not significant. Load shedding also depends on aspect ratio, lower 

aspect ratio cracks experience more load shedding. 

By applying the rnethod described in Section 2.2, weight functions M (x; A) and M 

(x; B) for surface cracks in plates with fixed ends were derived based on the stress intensity 

factor solutions obtained fkom the cornpliance analysis. 

Detemination of Weight Funcfions M (x; A) and M (x; B) 

Weight fimfions M (x; A) and M (x; B) were derived in the form of Eqs. (2.1 1) and 

(2.12): 



The parameters were detemineci f?om two reference stress intensity factors and the 

conditions represented by Eqs. (2.13) and (2.14): 

Weighrjùnction at the hepest point M (x; A) 

In order to determine M(x; A) using Eq.(2. Il) ,  two rek~ence solutions were used to 

decide MIA, MU and M ~ A :  constant or a linearly decreasing stress through thickness. 

Rt$erence stress inteMo factors. For the deepest point of a surface crack, the results 

for a constant stnss distriution, Eq. (5.54), cm be represented as 

where YO was obtained h m  the cornpliance analysis presented in Section 5.2.1. 



The results for a stress distribution linearrly deæasing Wugh the thiciaiess in the width 

direction, Eq.(5.55), can be represented as 

where YO was &O obtained nom the cornphce d y s i s  presented in Section 5.2.1. The weight 

functions were &rived firom these mférenœ stress intensity fàctor solutions. 

Weightfwtcîion. By substituting Eqs. (5.56) and (5.57) into Eq. (2.6) plus the condition 

represented by Eq. (2.13), three equations with three unloiowns were established The 

paranieters in the weight function expressions were solved for and are 

M,, = 3  

The weight function for the deepest point of a semi-eIiiptic surface crack can then be deterrrrined 

directiy h m  Eq. (2.1 1). 



Weight function for the swfoce point M (x; B)  

The two r e k n œ  stress mtensity factor solutions used to dete- the weight function 

M(x; B), in the fom of Eq. (2.12), were stress fie& of constant or ijnea~ deæasing through the 

thickness; these are the sanie stress fields used for the detemrination of M(x; A). 

Reference Stress IntenRty Factors. For the sirrfaa point of the surface crack, the results 

for a sînxs distriiution constant through the thidmess, Eq.(5.54), can be represented as 

'Ihe res& for a stress disabution lieearly decreasing M u g h  the thichess, Eq. (5.55), 

cm be represented as: 

where FO and Fl in Eqs. (5.6 1) and (5.62) were O btained fiom the cornpliance anal* presented 

in Section 5.2.1. 

Weight Fwiction. By substitu~g Eqs. (5.61) and (5.62) into Eq. (2.6), and then 

applying the condition represented by Eq. (2.14), three equations with three unlaiowns were 

established The weight function pararrieters for the s u r f a a  point were detemened to be 



The weight function for the slrrface point can then be deterrrrined directly k m  Eq. (2.12). 

The weight functions for the deepest and surface points derived in Sections 5.2.2 

were vaüdated using finite element results for two non-linear stress fields. Using Eq. (2.6), 

stress intensity factors were calculated for the following stress fields: 

The stress intensity factors for the deepest and surfke points calculated k m  weight fundons 

and h m  the present finite element caIculations for the above mess disaiution are shown in 

Figures 5.29 to 5.32. The différence between the bomdaxy correction factors calcuiated h m  

the weight fhction and the nnite elemnt results were less than 10% for both the siirface and the 

deepest points. 



Table 5.la Boundary correction Eictors F for serrtï-eniptêal surface cracks under stress 

distriiutions of oa(l-x/a)mcos(dc), m = 0, 1-2, 3, F = K / m d [ d ~ ] ,  dc = O. 1. 

m 

O 

1 

position 

s ~ ~ f k ~ e  

d&pest 

s ~ ~ f h ~ e  

2 

3 

a/t+.2 

-0.3693 

1.0708 

-0.35 13 

deepest 

s ~ d à ~ e  

dwpeSt 

s ~ ~ f à œ  

deepest 

a/t=û.6 

-0.3594 

1.5787 

-0.3545 

a/t4.4 

-0.3682 

1.2778 

-0.353 1 

a/t=û. 8 

-0.3300 

1.8178 

-0.3555 

0.4387 

-0.3345 

0.2739 

-0.3 195 

0.2010 

0.5656 

-0.3369 

0.3653 

-0.3220 

0.2725 

0.7488 

-0.3410 

0.5008 

-0.3270 

0.3795 

0.8684 

-0.3503 

0.5853 

-0.3394 

0.4442 



Table 5.lb. Boundary correction mors F for semi-eniptical surfaœ cracks under stress 

distniutions of m(l-x/a)mcos(ir/c), m = 0, 1,2,3, F = K / ~ & z / Q ] ,  a/c = 0.2. 

m 

O 

1 

2 

3 

position 

sirrface 

*Pest 

s ~ ~ f i ~ e  

d m  

SLI&IC~ 

deepeSt 

~ ~ r f â œ  

&Pest 

a/t=O.2 

-0.46 10 

0,958 1 

-0.4299 

0,3626 

-0.4025 

0.21 84 

-0.3790 

0.1577 

a/t=O.4 

-0.4425 

1.0462 

-0.422 1 

0.4174 

-0.3988 

0.2573 

-0.3776 

O. 1879 

d t 4 . 6  

-0.4179 

1,1875. 

-0.41 1 1 

0.4944 

-0.3932 

0.3 148 

-0.3744 

0.2332 

a/t=û.8 

-0.3858 

1,3095 

-0.4001 

0.53 17 

-0.3903 

0.3366 

-0.3759 

0,247 1 



Table 5.1~. Boundary c o d o n  fàctors F for semi-eIiipticaI siirEice cracks d e r  stress 

distriiutions of aa(l-x/a)mcos(dc), rn = 0, 1,2,3, F = ~ / m d [ d Q ] ,  a/c = 0.4. 



Table 5.ld. Boundary comction factors F for semi-elliptical sinface cracks under stress 

distributions ofoa(1-x/a)"cos(x/c), m = 0, 1,2,3, F = ~ / c m / [ l m / ~ ] ,  a/c = 0.6. 



1 Surface -0.5028 

deepest 0.1704 

Table 5.le. Boundary correction factors F for semi-eIliptical surface cracks under stress 

distributions of m(1-x/a)"cos(dc), m = 0, 1.23, F = ~/ad[rnJP], dc = 1. 



m position dt4.2 dt4.4 a/t=O.6 a/t=018 
- 
O 

1 Surface 0.0346 0.0584 0.0980 O. 1723 

2 siirface 0.0289 0.047 1 0.0777 O. 1362 

3 !xufke 0.0249 0.0396 0.0645 O. 1 126 
L 

Table 5 . h  Boundary c o d o n  factors F for semicniptical surface cracks under s t m s  

distriiutions of ~a(l-x/a)msin(dc), m = 0,1,2,3, F = ~/cm/ [dQ] ,  a/c = 0.1. 



position 

Table 5.2b. Boundary correction oictors F for serni-eutical slrrface cracks under stress 

distributions of cm( 1 -x/a)*sin(r/c), m = O, 1,2,3, F = K / ~ I  J [ ~ Q ] ,  a/c = 0.2. 



Table 5 . 2 ~ .  Boundary correction factors F for serrri-eniptical sirrface cracks under stress 

distriilutions of m(~-x/a)~sin(n/c), m = 0, 1,2,3, F = ~/m&n,Q], a/c = 0.4. 

m 

O 

1 

2 

1 0.1239 ( O. 1305 1 0.1470 1 0.1732 

position 

~ ~ u f à ~ e  

slirface 

surfkce 

a/t=O.2 

0.225 1 

O. 1754 

O. 1449 

alt9.4 

0.2406 

O. 1862 

0.1530 

aft4.6 

0.2782 

0.2128 

0.1735 

d t 4 . 8  

0.333 1 

0.2533 

0.2054 



Table 5.26 Boundary conection fdctors F for semi-eriiptical surfàce cracks under stress 

disaiutions of ~ l - ~ / a ) ~ s i n ( ~ c ) ,  m = 0, 1,2,3, F = K / & [ ~ / Q ] ,  a/c = 0.6. 

m 

O 

1 

2 

3 
1 

position 

silrface 

sldàce 

surface 

surfàce 

dt4.2 

0.30 12 

0.2392 

0.2002 

O. 1730 

dt4.4 

0.3076 

0.2437 

0.2037 

0.1759 

dt4.6 

0.3256 

0.2560 

0.2128 

0.1830 

dt4.8 

0.3480 

0.2725 

0.2256 

0.1933 



Table 5 2 .  Boundary comction factors F for serni-eiiiptiml surfke cracks under stress 

disaributions of a(l-x/a)msin(dc), m = 0, 1.2,3, F = ~ /md [m ] ,  a/c = 1. 

m 

O 

1 

2 

3 

position 

silrface 

! d k e  

srrrface 

silrface 

a/t=U.2 

0.4239 

0.3549 

0.3079 

a 4 . 4  

0.4254 

0.3560 

0.3087 

ah4.6 

0.4083 

0.3392 

0.2927 

0.2729 

dta.8 

0.3883 

0.3208 

0.2756 

0.385 0.2736 0.2428 



Crack 

Geornetry 

&=O. 2, 

a/t=0.2 

d d . 6 ,  

dtd .6  

Position 

Surface 

Deepest 

Surface 

Present Approach 

F 

Table 5.3 Cornparison between the stress intensity h o r s  calculated h m  present weight 

fiuictions and finite ekment analyses h m  Shiratori (1987) under a residual stress field (Eq. 

(5.23). 



Figure S. 1Geoxnetry and CO-ordinates system used 



Figure 5.2 Typicd rnesh (part), d c  = 0.1, alt = 0.2 



Fig. 5.3 Cornparison of the weight function based stnss intensity factor and FEM data for stress 

distribution oo( l -x/a)*cos(r/c), (deepest point). 

FEM 

W E I G H T  F U N C T I O N  



Fig. 5.4 Cornparison of the weight function based stress mte- -or and FEM data for stress 

distribution oa( 1 -~,/a)~cos(x/c), (surface point). 

FEM 

W E I G H T  F U N C T I O N  



Fig. 5.5 Cornparison of the weight function based stress intensity Eactors and FEM data for stress 

distribution aa( l-~/a)~cos(~c), (deepest point). 

+ FEM 

W E I G H T  FUNCTION 



Fig. 5.6 Cornparison of the weight funaion based stress i n t e n e  factors aod FEM data for stress 

distribution aa(l-~/a)~cos(~~bc), (surface pomt). 

-0.10 4 

FEM 

W E I G H T  FUNCTION 



Fig. 5.7 Cornparison of the weight nincdon based stress intensity Wor and FEM data for stnxs 

dimibution m(1-x/a)2sin(d~), (slirface point). 

FEM 

W E I G H T  FUNCTION 



Fig. 5.8 Cornparison of the weight function basxi stress intensi~ factor and FEM data for stress 

distriiution aa(l-~/a)~sin(dc), (surotce point). 

FEM 

W EIGHT FUNCTION 



Figure 5.9 Fied ends plate with surface crack 



Figure 5.10 Superposition representacion 



Figure 5.1 1 Superposition of probiem 1 



Figure 5.12 General pro blem for calcuIation of dispIacements 



Figure 5.1 3 Crack extension types 

(a) Pattern 1 Pattern II 



Figure 5.14 Localised durplacements 6 and 8 



Figure 5.15 Distribution of N' 

Wh = 20160, alc = 0.2, a/t = 0.8 



Figure 5.16 Defomipd msh 

ATION FACTOR = 1 . 2 8 6 8 ~ 0 5  CRIGINAL HE34 D I S F U C E D  .MESH 

LETED IN THIS STZP 1.00 ZTAL ACCUHULATED TIWE 2 . 0 0  

ZQOS VERSION: 5 .6 -1  GA'TEi 17-MAY-97 TI=: 18:35:33 
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Figure 5.17 Cornparison of the stress intemïty factors fiom cornpliance analysis and finite 

elernent data for constant stress  butio ion = cm, aie = 0.1, deepest point 

/ 
H/t = infinite 

a/c = 0.1, Deepest Point 

Finite Element  

CornpIiance A nalysis 
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Figure 5.18 Cornparison of the stress intensity factors fkom cornpliance andysis and finite 

elemnt data for constant stress dismiution o = cm, a/c = 0.1, surfkœ point 

a/c = 0.1, Surface Point 

Finite Element 

Compliance A nalysis  

/ 
H/t = infiniti 

H l t  = 20 
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Figure 5.19 Cornparison of the stress intensity factors fkom compliance analysis and finite 

ekment data for linear stress distribution a = dl-x/a), d c  = 0.1, deepest pomt 

2.00 I 

a/c = 0.1, Deepest  Point 

Finite Element 

Corn pliance Analysis H/t  = infinite 
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Figure 5.20 Cornparison of the smss intensity factors f?om compliance analysis and fkite 

element data for linear stress distribution = 41-da), a/c = 0.1, sinface pomt 

a/c = 0.1, Surface Point 

Finite Elernent 

Corn pliance Analysis 
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Figure 5.21 Cornparison of the stress intensiq factors £kom cornpliance analysis and finite 

ekrnent data for constant stress distribution o = a/c = 0.2, deepest pomt 

a/c = 0.2, Deepest Point 

+ Finite Element 

Corn pliance Analy sis 
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Figure 5.22 Cornparison of the stress intensity factors nom cornpliance anal@ and finite 

eiement data for constant stress distribution o = d c  = 0.2, surfàce pomt 

H/t  = infinite 

a/c = 0.2, Surface Point 

F in i teElement  

Corn pliance A nalysis 
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Figure 5 2 3  Cornparison of the stress intensity factors fkom cornpliance andysis and finite 

elcmnt &ta for linear s a s s  dismibution a = d l - d a ) ,  d c  = 0.2, deepest pht 

a/c = 0.2, Deepest Point 

Finite Element 

infinite 

= 20 

= 10 

0.20 4 Corn pliance AnaIysis 
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Figure 5.24 Cornparison of the stress intensity factors from compliance analysis and finite 

element data for linear stress distri'bution a = 41-da),  dc = 0.2, sirrface poht 

a/c = 0.2, Surface Point 

Finite Element 

Corn pliance A nalysis 



Figure 5.25 Cornparison of the stress intensity factors h m  cornpliance anal@ and finite 

dement data for constant stress distribution o = m, a/c = 1.0, dmpest poht 

a/c = 1.0, Deepest  Point 

Finite Element 

Corn pliance Analysis 
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Figure 5-26 Cornparison of the stress intensity factors fkom cornpliance amdysis and finite 

element data for constant stress disiribution = CRI, d c  = 1.0, surface point 

H/t  = infinite 

a/c = 1 . O ,  Surface Point 

Finite Element 

Corn pliance Analysis 



EQure 5.27 Cornparison of the stress intensity factors nom coqliance analysis and finite 

element data for linear stress distriiution = dl -da) ,  a/c = 1.0, deepest point 

a/c = 1.0, Deepest  Point 

Finite Element 

C om pliance A naly sis 

* 4 H/t = infinite 
0.20 * H / t = 2 0  
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Figure 5.28 Cornparison of the stress intensity factors h m  cornpliance analysis and finite 

element data for linear distribution = d l - d a ) ,  a/c = 1.0, surface point 

a/c = 1.0, Surface Po int  

Finite E l e m e n t  

CompIiance A aalysis 

H/t  = infinite 



Figure 5.29 Cornparison of the stress inîensity factors fÎom weight funetion and hite 

elernent data for parabolic stress distribution a = oa(l-x/a)2, uic = 0.1, point 

Finite Element 

W eight Function 



Figure 5.30 Cornparison of the s û ~ s s  intensity factors from weight function analysis and 

finite element data for parabolic stress distriiution o = oo(~-da)~, nlc = 0.1, srnface point 

a/c = 0.1, Surface Point 

FiaiieElement 

W eight Function 



Figure 5.3 1 Cornparison of the stress intensity factors from weight function and finite 

element data for cubic stress disaibution a = aa(l-i~la)~, a/c = 0.1, deepest pomt 



figure 5.32 Cornparison of the stress intensity factors frorn weight fiuiction and hite 

element data for cubic stress distribution = dl-~tb)~. d c  = 0.1, smfke pomt 

a/c = 0.1 ,  Surface Point 

Finite Elemen t 

W eigh t Func tion 



Chapter 6 

Surface Cracks in T-plate 

Joints 

In this chapter, stress intensity factors and weight functions for surface cracks in T- 

plate joints with h - e n d s  (section 6. l) or built-in ends (section 6.2) are presented. 

6.1 Surface Cracks in T-plate Joints with Free Ends 

As discussed in section 2.3.2, a T-plate weIded joint represents a sirriple practicd 

welded joint which may be used as a mode1 for more complex welded joint behavior. The 

calculation of stress intensity factors for surface cracks at the weld toe of these joints is very 

difîicult due to the complex geometry. Several authors (most recentiy, Fu et al., 1993; 

Bowness and Lee, 1995; 1996) have conducted detajled 3-D finite element calculations for 

simple loading conditions, Le., far field tension and bending. However, in instances where 

cracks are subjected to the~nafly induced stresses or residual stresses (which is ofien the 

case for weld toe cracks), more complex s a s s  distributions rnust be considered. 



To date, the only weight functions developed specifically for semi-eriiptical surface 

cracks in T-plate joints are those of Niu and Glinka (1990% b). Weight functions at the 

deepest point of a surface crack in T-plate joints with a weld angle of 45 degrees were 

developed based on approxirnate stress intensity factor solutions. These solutions are 

restricted to the deepest point of the surface crack no solutions are availabk for the surface 

points. In the absence of such data, most researchers (Lecsek et aL, 1995; Bremean et a l ,  

1996) use weight functions developed for 5 t  plates in conjunction with T-plate stress 

distributions to estimate required stress intensity factors. While it is expected that such 

estimates will irnprove as the welded angle is decreased, little data is available to quanw 

these errors. 

In the present section, weight functions at the deepest and surface points of a semi- 

elliptical surface crack in T-plate joints with weld angle between O and 4S0 are derived. 

Stress intensity factors for any one-dimensional stress field can be calculated ftom Eq.(2.6): 

Here P' is the generai point dong crack fiont, either A or B in Figure 6.1 in this case. 

Weight funaons M (x; A) and M (x; B) were derived in the f o m  of Eqs.(2.11) and 



The parameters were determineci f3om two reference stress intensity factors and the 

conditions represented by Eqs.(2.13) and (2.14): 

In order to determine and validate the weight funcéons, M(x; A) and M(x; B),  reference 

stress intensity factors were required niree dimensional finite element calculations were 

conducted to calculate stress intensity factors of surface cracks in T-plate joints. In ail 

cases, the weldrnent located at one side only, the attachrrient plate thickness plus the weld 

leg length was equal to the base plate thickness, and overall weld angles was 30° or 4s0 

(Figure 6.1). The resulting stress intensity factors for two basic loading cases were used as 

reference solutions to denve the weight functions. These weight functions were then 

validated using solutions for other loading cases. 

6.1.1 Stmss Intensity Factor Solutions 

Three dimnsional finite elenients were used to mode1 the synarr=tric haK of a T-plate 

joint containing a semi-eIliptic smfàœ crack. Figure 6.1 shows the geomtry and the CO-ordinate 

system used As for the fiat plate analyses (Qiapter 5), the finae elenient analyses were niade 



using ABAQUS version 5.4 (HKS, 19%) wiîh 2O-noded isopararrieîric three-diniensional solid 

elements and reduced integraiion In order to mode1 the square mot singulanty at the crack tip, 

three-dirriensional prism elemnts wiîh four rd-side nodes at the quartex points (a degenerate 

cube wbh one face coIlapsed) were used and the separate crack tip nodal points were constdned 

to have the sanie displacemnt (Barsoum, 1977). 

The stress intensity &or, K, was cakuIated h m  the J-integral which in tum was 

calculated usiiig the domain integral mthod (Moran and Shih, 1987). The plane strah 

relationship between J and K was used to CalctilatP, K. The analyses were mide with a 1- 

elastic niaterial mode1 with a Young's rnodulus, E, of 207 GPa and Poisson's ratio, v of 0.3. 

The loads were applied M y  to the crack srirface. Two types of loading, 

corresponding to n = O or 1 in the foIlowing equation, were applied to each crack geomtry: 

where GO is the nonanal stress, a is the crack depth and x is the distance h m  the wekl toe. In 

addition, for the puqose of verification of the finiie elemnt models and vslidation of the weight 

functions, four more types of load wexe applied for certain georneaies: stresses appiied to the 

crack face using n = 2 or 3 in Eq. (6. l), or far field tension or bending. 

Note that due to the lack of synanetry on the Qadc plant in the T-plate joint geometry, 

&-II and mde-IiI s h g d a r ~ ~  exist dong the crack front The J-integral estimation will 

include their effects- However, in the present T-plate geornetries, the mode-1 singularity 

dominates, and the J estimation is based on a mode-1 crack incremnt. Therefore, the stress 



intcnsity fàctor resub detenrgned h m  J w a e  regardeci as mxie-I stress intensity factor values 

(Fu et al., 1993). 

The m h  generator developed for surffce cracked plate was modified to generate all 

required input nles for the analysis. First, the m s h  for a s d k e  crack in a 8at plate was 

developed. Then the weki toe and attachmnt were added to the flat plate m h  A typical 

m d e i  for the present analysis is illustrated in Figure 6.2 and used about 3 0 . 0  degrees-of- 

fkzdom 

The stress intensity &or resuils have been nomialised as foRows, 

where F is the boundary correction factor, Q is the shape factor of an ellipse, @en by the square 

of the complete eniptic integral of second kind The empirical equation for Q, Eq. (2.3) was usêd 

Q = 1.0 + 1.464(0)'", for O < d c  I 1.0: 
C 

The present finite ekmnt  &l for siirface cracks in T-plate joints used a sim2a.r d e p  

of refinemnt to that used for surfas cracks in flat piam (Chapter 5). Stress intensity factors 

were calciiliitpn for several geomûies (afc = 0.2 or 1.0 and ah = 0.1, 0.2, 0.4 or 0.6 with a 45' 

weki angle) under far &Id tension and bending. The resultnig stress intensity factors were used 



to calculase weld toe mgniffcation b o n  for cornparisons wiîh published ES& h m  Bowness 

and Lee (1996). The dÏf&rences were generally withm 1046, which is comparabk to their stated 

accuracy (Bowness and Lee, 1995). Figures 6.36.7 show comparisons at the deepest point and 

at the surfâce point for tension and bending cases. Based on these results and previous 

experiem, the accuracy of the present finite elemnt cakuIations is ex* to be wahm 10 

percent of the actual so1utions. 

ReSUlfS for Smss I . n d y  Facfom 

Stress intensiry fanors for semi-eIüptical siirface cracks (dc = 0.05, O. 1, 0.2, 0.4, 0.6 or 

1.0) in a T-plate joint with a 30 or 45 degree weld angle with relative crack depths, di, of 0.1, 

0.2, 0.4, or 0.6, subjected to stress disaibutions corresponding to n = O or 1 as expressed in Eq. 

(6.1) were deterrriined to facilitate the generation of suitable weight fiuictions. The results are 

surnriarised in Tables 6.1 and 6.2. In addition, stress intensity factors for cracks with aspect 

ratios of d c  = 0.2 or 1.0 in a T-plate joint wiîh a 30 or 45 degree weld angle and relative crack 

depths, ah, of 0.1,0.2,0.4 or 0.6 subjected to stress distributions corresponding to n = 2 or 3 as 

expressed in Eq. (6.1) or sub&ted to far field tension or bending were ais0 deterrrEned to as& 

in the verifkation of the weight fiinctions derived h m  the above results. These results are 

summarised in Tables 6.3 to 6.5. 

Note that the stress intensiîy factors for a surface crack in a flat plate g ~ m t r y  

correspond to a T-plate joint with a O d e p  weld angle. Stress i n t e e  fdctors for smke  

cracks in £iat plates obtained by the author (Wang and Lambert, 1995) were used in the present 

work. 



6.13 Denvation of Weight F'undions 

Deienninuüon of M(x; A) and M(x; B). 

Weight functions M(x: A) and M(x; B) were derived in the fom of eqs.(2.11) and 

(2.12). The paramters were deterniined from reference stress intensity factors and the 

conditions represented by eqs.(2.13) and (2.14). 

The wightfwrction ut the deepestpoint: M(x; A) 

In order to detennine M(x; A) using Eq(2.1 l), two referenœ solutions were used to 

detemrine Mu , M ~ A  and M~A:  constant or iinearly decRasing mess dirough the thickness 

corresponding to n = O or n = 1 in Eq. (6.1). 

Refeence stress intem'ty factors. For the deepest point of a surface crack, the nurrieriral 

soiutions for T-plate joints with weld angles of 30 de- (R/6) and 45 degrees (d4) presented 

p~viousiy, together with die fiat piate results h m  Wang and Lambert (1995), were 

approxhated by ernpirical formulas Mted with an accuracy of 5% or better. The resuh for an 

dt ratio of O were obtained by smooth extraplatton. 'Ihe choice of equations for the 

extrapolation was based on engineering judgemnt, but reiied heavily on the f o m  used by 

Newman and Raju (198 1). The range of applicabiliîy for these equations is 0.05 alc 5 1 .O, O < 
u/t 5 0.6 and weld an* h m  O to 45 degrees. 

The results for a stress disûibution constant through the thichess 



where YO represents the boundas, correction factors for cracks in a £iat plate: 

and MAO accounts for the enect of the anachments with diarent weld angles: 



are 

The results for a stress distniution linearly deæasing through the thichess 

where YI represents the boundary comtion &ton for cracks in a flat plate: 



and MN accounts for the efkt of the attachrrient with différent weld angles: 



Weighî function. By substihiting e q s  (6.3) - (6.6) into Eq. (2.6) together with the 

condition repnxntexi by Eq. (2.13), tliree quaiions with three unknowns were established. The 

pararrieters in the weight fundon expressions were solved for and are 

The weight function for the deepest point of a semi-eIliptic siirface crack c m  then be determin& 

h m  Eq. (2.11). 

The weightfwiction for the W a c e  point: M(x; B )  

The two  fere en ce stress intensity factor solutions used to detemine the weight function 

MO; B) in the form of Eq. (2.12), corresponded to stress fields which were constant or linearly 



decre-g through the thickness. These sanie stress fields were used for the determination of 

MN; A). 

Refeefice Stress Intensity Factors. For the point of the surfàce aack, the finite 

ekrrient resutts presented previoudy for slirface cracks m T-plate joints with a weld angle of 30 

and 45 degrees togethex wiih the results for a fiai pplate fiam Wang and Lambert (1995) were 

approxhated as foilows, with an accuracy of 5% or better. The range of applicabïüîy for these 

equations is 0.05 5 aie < 1 -0, O 5 ah 1 0.6, and weld angles between O and 45 degrees. 

The results for a stress distn'bution constant through the thiclaiess 

are: 

where FO represents the boundary correction factors for cracks in a £kit piate 



and Mm accounts for the effect of an attachrrient with dBerent weld angles 

The results for a stress distn'bution linearly decreasing through the thickness 



are: 

where FI represents the boundaq corcection factors for cracks in a flat plate: 

and MBI aCCOuntS for the effect of an attachnient with difièrent weld angles 



Weight Function. By substituthg Eqs. (6.10)-(6.13) into Eq. (2.6), and applying the 

condition represented by Eq. (2. M), tbree equations with three unknowns were establisheù. The 

weight fûnction paramters for the surfkœ point were solved for and are 
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The weight W o n  for the surface point can then be detemmKd directly kom Eq. (2.12). 

First, the weight functions for the deepest and surface pomts derived above were 

validated using Mte e h n t  resuh for two non-linear stress fields. Using Eq. (2.6), stress 

intensity faaors were calcuiated for the fonowing stress fïekls: 

The stress Uitensity factors for the deepest and surface points cakulated firom weight functions 

and h m  the present finae ekrnent calculations for the above stress distn'bution are show in 

Figures 6.7-6.10. For both weld angles, 30° and 45O, the dïfkrence between the boundary 

correction factors calculated fkom the weight function and the finite elenients results were less 

than 4% for the surface point and 6% for the deepest point. 

The weight fünctions were then used to CaECuMe stress intensity factors under far field 

tension and bending cases. Two diniensional fhk elerrient analyses were perfomEd to calculate 

the stress disaiution on the prospective crack plane. The resulting stress distributions, a(..), for 

tension and bendhg were used to calculate the stress intensity &ors using Eq(2.6). The 

resulting stress intensity fartors were then nomiaüsed to obtain MI factors, Eq~(2.20) and 

(2.21). Figures 6.11-6.14 show the cornparison between the £bite element results and the 



weight hctions. Good agreerrient was achieved with a maximum difference of 10%. NO 

f i t e  elenient resuits are available for shallow cracks. However, the weight function results 

for Mk factor at the deepest point appear to approach the stress concentration factor for this 

geornetry as a/t approaches zero, as suggested by Maddox (1975). 

6.1.4 Discussion 

It is corrnnon practice to calculate stress intensity factors for surface cracks in T- 

plate joints by using weight functions denved for flat plates in conjunction with stress 

distributions fiom correspondhg uncracked T-plate joints W s e k  et aL, 1995; Brcman et 

aL, 1996 and Forbes et ai., 1991). It is argued that by using the stress distribution, dx) ,  

calculated for the uncracked T-joints and the weight function for flat plates, the effect of the 

weldment geomtry on the stress intensity factor is accounted for satisfactorily. 

From the present work, it was found that at the deepest point, the weight function 

for a £kt plate always over-estirnates the stress intensity factor at the deepest point in T- 

plate joints; these conservative results were also observed by Niu and Glinka (1987) and Fu 

et aï. (1993). For the case of a stress distniution linearly demeashg through the thickness, the 

maximum difference is 19% (45 degree weId angle), and occurs for low aspect ratio, 

shallow cracks (afc = 0.05 and a/t = 0.1). At the surface point, the k t  plate weight function 

provide either an over-estimation or an under-estimation depending on the aspect ratio 

of the crack. For cracks with aspect ratios Iess than 0.4, the flat plate weight function will 

under-estimate the stress intensity factors at the surface point; the maximum difFerence in 

the present case, for a stress distribution Linearly dmasing through the thickness, is as 

much as 40% (afc = 0.05, a/t = 0.1). For cracks with aspect ratios larger than 0.4, the flat 

plate weight function will over-estirnate the stress intensity factor at the surface point; the 



maximum difference in the present case is 18% (ulc = 1.0, dt = 0.1). Siniilar trends were 

also found for the case of constant loading applied to the crack face. 

In the present analpis, a sharp weld toe was used for all calculations. Since stress 

intensity factors for surface cracks under crack face unifom and linearly varying loads were 

used to derive weight functions, the sharp weid toe effcct was muiiniised. Niu and Glinka 

(1990) have pointed out that, for di&:rent local weId toe radü, the weight function tends to 

be the same as long as the nominal weld angle is the same. Therefore, the weight functions 

denved nom the present analysis can be used to calculate stress intensity factors for finite 

radius weld toe geometries, provided the appropriate stress distribution is us&. 

The effect of the local weld radius, p, on the stress distribution is resaicted to a 

shaLiow region near the weld toe (2% of t for a typical weld toe radü t/15 2 p 2 r/50, Niu 

and Glinka, 1987). For the deepest point, this has a significant effect on the stress intensity 

factor only for shallow cracks (a/t c 0.1). For deeper cracks (al? > 0. l), the results are not 

sensitive to the local weld toe radius and hence the particular stress distribution used, since 

the singukuity point of the weight function is at the deepest point of the crack and farther 

away korn the weld toe as the crack becomes deeper. For the surface point, the weld radius 

has a significant eEect on the stress intensity factor for all crack depths since the singuiarity 

point of the weight function is at the surface point, which is always at the weld toe. 

The weld georrietry in the present model is on one side of the attachment only 

However, under the sarne loading system, and for the same attachment thickness, the 

difference between the stress intensity factors for the s a m  crack geomtry in T-plate joints 

welded on one side or welded on both sides of the aitachment is expected to be insignificant 

(Niu and Glinka, 1990). The present weight funcrions can therefore also be applied to T- 

plate joints with welds on both sides of the attachrrient. 



The attachment thickness in the present mode1 was half of the base plate thickness. 

However, the ciifference in the weight hinctions for di&=rent attachmnt thichesses was 

expected to be insignincant (Niu and Glinka, 1990). Therefore, the present weight function 

can &O be applied to T-plate joints with a different a t t a c h n t  thickness. Since the stress 

distributions will be different for different attachment thickness, the stress intensity factors 

will still be different as expected. 

6.2 Surface Cracks in T-plate Joints with Built-in Ends 

In section 6.1, stress intensity factors and weight function sohtions for surface 

cracks in T-plate joints with £kee ends were presented. As discussed in Chapters 2 and 3, T- 

plate joints with built-in ends are more realistic modeis for pipe-plate and tubular joints, 

since load redistribution (load shedding) effits can be accounted for in T-plate joints with 

built-in ends. In the present section, a mthod for calculating stress intensity factors for 

surface cracks in T-plate joints with built-in ends is proposed. The geornetry and boundary 

conditions considered are shown in Figure 6.15. The method was based on weight hinction 

solutions for surface cracks in flat-plates with kee ends and built-in ends, and weight 

functions for surface cracks in T-plate joints with fke ends. The method was verifîed using 

finite element data. 

6.2.1 Pro@ Stress Intensity Factor Soiutions 

Although extensive fînite element cdculations can be conducted to obtain stress 

intensity factor solutions for any geomtry, the analysis will be time consurning and very 

demanding because the geomtric combinations include different values for alc, alt and Hlt 

in the present problem @gure 6.15). In the present study, it is proposed that stress 

intensity factors for any stress dismibution o(x) can be calculated f?om stress intensity factor 



solutions for surface cracks in T-plate joints with fke ends for the s a m :  stress distribution 

and a correction factor a 

where the stress intensity factor for free ends in the T-plate joints can be calculated fkom the 

comsponding weight functions 

The correction factor, a, accounts for the effect of the built-in ends (ïoad shedding). It is 

assumed to be the same as the factor for surface cracks in 5 t  plates, which can be 

calculated fkom 

F.~P& 
l ~ ( ~ ) ~ b l f r - l i r n d .  ( X p W  

a ( P f )  = pwf fnrcn& mP'" (x;  P')& 

Note that a depends on dx )  anci wili be, therefore, different for rernote tension and 

bending. Weight functions for surface cracks in T-plate joints with fie ends, Mi., .&x; 

P'), in Eq. (6.20) were developed in section 6.1. Weight functions for surface cracks in flat 

plates with free ends, M""(x;P'), are &O available fiom previous work (Wang and 

Lambert, 1995a). Weight functions for surface cracks in &t plates with built-in ends, 
/lot P* Mb,,+,, , (x; Pl) , were developed in section 5.2. Therefore, di weight functions involved 

in the calculation of Eq. (6.19) are avaiiabIe. 



nie physical assumption made here is that the efféct of the built-in ends on stress 

intensity factors in T-plates is the same as for surface cracks in flat plates, as s h o w  in 

Figure 6.16. Note that the resulting stress intensity factors nom Eq. (6.19) will depend on 

alc, d t ,  the weldment angle, $, and H/t. This method was verified using finite elernent data. 

62.2 Verüicaüon of Pmposeù Stress htensty Fador Sdutioa 

In order to verify the proposed stress intensity factor soIutions, three-dimensional 

finite eIemnt cdculations were conducted to calculate stress intensity factors for suface 

cracks in T-plate joints with built-in ends, welded at one side only, with attachment 

thickness of half base plate thickness, and overail weld angles of 45 degrees. The resulting 

stress intensity factors were cornparrd with predictions fkorn the present method. 

The sanie modek used in the calculation for T-plate joints with free ends in section 

6.1 were used except that fixed boundary conditions were applied at the ends. Figure 6.15 

shows the geometry and boundary conditions. Bending loads were applied via a tension 

applied to the welded attachment. 

As before, the stress intensity factor results were normalised as follows, 



Resulfs for Sbess Intensity Factors 

Stms intensity fanors for cracks with aspect ratios, dc,  of 0.1, 0.2 or 1.0 and relative 

crack depths, all, of 0-40.6 or 0.8 in a T-plate joint with a 45 de- weld angle, and a Hlt ratio 

of 10, subjected to bending loads were detaniined to verify the proposed stms intensity fictor 

solutions. These results are sumrriarised in Tabies 6.6. 

The stress intensity factors for the deepest and surface points cdculated fiom the 

proposed stress intensity factor solutions, Eq. (6.21), and nom h i t e  element calculations 

are shown in Figures 6.17 - 6.22. Good agreemnt was a c k v e d  The Merences were 

within 10% for the deepest points, and within 15% for the surface points. It cm be 

concludeci that the proposed solution provides good solutions for surface cracks in T-plate 

joints with built-in ends. 

Note that if the weight functions for T-plates with fiee ends were us& (Le., ignoring 

the effects of the built-in ends), the dineremces between the predictions and fite element 

results can be as large as 100% (see Fi- 6.17 - 6.22). 

6.23 Discussion 

The Flat Plale Weight Function 

Note that the proposed stress intensity factor expression, Eq.(6.19), c m  be re- 

written as 



If we introduce a new correction factor m'): 

then the proposed equation is equivalent to 

If the factor B(P') equals 1, then Eq. (6.25) becornes 

This irriplies that the weight function for surface cracks in flat plates with built-in ends cm 

be used to calculate stress intensity factors for surface cracks in T-plate weiâ joints with 

built-in ends. However, /j(P') is not 1. Its' value was discussed in section 6.1.4, and is the 

difference between predictions for 5 t  plate and T-plate weight functions. At the deepest 

point, fi(!") is always smder  than 1, with a minimum value of 0.8 for rnost stress 

distributions. At the surface point, K P ' )  can either be s d e r  or Iarger than 1. For the 

case of low aspect ratio cracks, it can be as large as 1.4. 



From these comparisons, it is clear that we can use Eq. (6.26) for the calculation of 

stress intensity factors at the deepest point of a surface crack in T-plate joints with built-in 

ends. Note that equation (6.26) will generally oves-estimate the stress intensity factor by a 

few percent. Eq(6.26) is not rccornnended for the surface point, since it may under- 

estirnate the stress intensity factor solution by as much as 40%. 

The Load Shedcang Effect 

The finite element resuits for surface cracks in T-plate joints with built-in ends are 

cornpared with predictions £kom weight functions for T-plate joints with fkee ends in Figures 

6.17-6.22. Since these weight functions do not account for load redistribution (ïoad 

shedding), they always give an over-estimation of the stress intensity factors, as expected. 

However, the degree of reduction of stress intensity factors due to built-in ends 

depends on several parameters. For 10 w aspect ratio cracks (alc = 0.1, 0.2), the decrease in 

stress intensity factor is higher than for higher aspect ratio cracks (a/c = 1). This drop &O 

depends on alt, increasing when alt increases. The decrease also depends on the Hl t ratio; 

the s d e r  the H/t ratio, the larger the &op. In addition, the effect on the deepest and 

surface points is also Merent. Overail, the load shedding effect depends on alc, ait, Hlt 

and the position dong the crack £?ont. 

Available models for load shedding effects can oniy model cenain aspects of load 

shedhg for surface cracks. The simple moment release model proposed by 

Aaghaakouchak et al. (1989) discussed in Chapter 2 



can only mode1 the e k t  of dt on stress intensity factors. Figures 6.17 - 6.22 show 

predictions of this rnodel dong with the present results. Although reasonable predictions 

are given for the deepest point, their predictions severely under-estimate the results at the 

surface point. 

Forbes (1991) proposed using an edge crack rnodel with built-in ends to rnodel load 

shedding for tubular joints. In addition to the effwt of ait, Forbes' rriethod also accounts 

for the effect of Hit, but it cannot account for different load shedding for different aspect 

ratios, a/c. Only the present method is capable of accounting realisticdy for load shedding 

effkcts for surface cracks, which depend on di these p-ters. 



Table 6.1. Boundary c o d o n  fktors F for semiebtical slirf ice cracks (ak = 0.05, 0.1, 0.2, 

0.4,0.6, 1.0) in T-plate joints with id6 weld angle under stress distriibutions of oo(1-xfa)", n = 0, 

1, F = K / ~ [ ~ Q I .  

a/c 

0.05 

O. 1 

0.2 

n 

O 

1 

O 

1 

O 

1 

Position 

siirface 

deepest 

s d x e  

deepest 

surface 

deepest 

s u r h x  

deepest 

surfàce 

d e e p ~  

anface 

deepest 

a/t=0.1 

0.4û42 

1.0863 

0.3863 

0.4348 

0.5Oî6 

1.0559 

0.4589 

0.4207 

0.5701 

1.0281 

0.4934 

0.3982 

a/t=0.2 

0.4229 

1.2331 

0.5276 

0.4807 

0.4807 

1.1625 

0.4377 

0.4909 

a/t=0.4 

0.4340 

1.7579 

0.4222 

0.8619 

0.5320 

1.5427 

0.4876 

0.7407 

dt4.6 

0.6329 

2.6735 

0.5824 

1.4515 

0.7822 

2.1138 

0.6751 

1.1109 

1.0381 

1.6439 

0.8136 

0.7961 

0.5886 

1.0%3 

0.4982 

0.4432 

0.7592 

1.3355 

0.6167 

0.5996 



surface 

Table 6.1. (Continue) Boundary correction b o n  F for semi-ebiptical sirrface cracks (alc = 

0.05, 0.1, 0.2, 0.4, 0.6, 1.0) in T-plate joints with iJ6 weid angle under stress distri'butions of 

m(1-da)", n = O, 1, F = ~/cm/[mz/Q]. 



0.05 deepest 1.0667 1.2230 1.7429 2.6482 

1 surfàce 0.3860 0.4102 0.4421 0.6231 

1 1 deepest 1 0.4074 ( 0.4862 ( 0.7265 1 1.0846 1 

O. 1 

Table 6.2. Boundary correction factors F for serrii-erüptical sraEtce cracks (dc  = 0.05, 0.1, 0.2, 

0-4.0.6, 1.0) in T-plate joints with d 4  weld angle under stress distributions of m(1-du)", n = 0. 

1, F = ~/md[lm/e]. 

O surhce 

deepest 

0.5015 

1.0437 

0.5159 

1.1529 

0.5650 

1 1  

0.9360 
, 

2.1003 



O 1 surfàce 1 0.7939 1 03439 1 0.9871 

Table 6.2. (Continue) Boundary correction factors F for senii-elliptical surface cracks (ah = 

0.05, 0.1, 0.2, 0.4, 0.6, 1.0) in T-plate joints with d 6  weld an# under stress ciidiibutions of 

m(1-da)", PZ = O, 1, F = K/ad[rnJPI. 



position 1 a/t = 0.1 1 &=OS 1 d 4 . 4  1 ii/t=û.6 

- -  

surface 1 0.3991 1 0.3929 1 0.4637 1 0.5868 

Table 6.3. Boundary conedon factors F for semi-eiÜptral siirface cra~ks ( d c  = 0.2, 1.0) in T- 

plate joints with n/6 weld angk under stress dismbutions of oo(l-x/~~)~, n = 2, 3, F = 

K/m4 d Q 1 .  



Table 6.4. Boundary correction factors F for serni-enipticd surface cracks (dc  = 0.2. 1.0) in T- 

plate joints with d 4  weid an& under s m s  disniutions of m(l-~la)~ ,  n = 2, 3, F = 

~/d[d~l .  

dc 

0.2 

1 .O 

I 

n 

2 

3 

2 

3 

pogtion 

siirface 

deepest 

h 

deepest 

surfice 

deepest 

deepest 

a/t = 0.1 

0.4336 

0.2344 

0.3926 

0.1699 

0.6779 

0.1622 

0.5963 

0.1116 

a/t=û.2 

0,4314 

0.2654 

0.3861 

0.1943 

0.7011 

0.1661 

0.6141 

0.1 146 

4 M . 4  

0.5414 

0.3897 

0.4731 

0.2926 

0.7576 

0.1818 

0.6570 

0.1267 

a/t=0.6 

0.6956 

05225 

0.5990 

0.3991 

0.8360 

0.1928 

0.7202 

0.1367 



tension 

tension 

deepest 1.0558 0.9373 0.8967 0.8925 

Table 6.5. Weld toe rnapdbtion factors Mk for serrri-eniptid sinface cracks ( d e  = 0.2, 1.0) in 

T-plate joints with d 4  weld angle under far fieki tension and bending- 





Egm 6.1 Geonietry and CO-ordniate system 
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Figure 6.2 Typicd finite ekmnt m h  (part), a/c = 0.2, ah = 0.2,45 de- weld an& 



Figure 6.3 Cornparison of the weid toe mgnification factor h m  the present FE calculation 

and Bowness and Lee (1996), (Eir field tension, d 4  weld angle, deepest point). 



figure 6.4 Cornparison of the weki toe mgniscation &or h m  the present FE cakulation and 

Bowness and Lee (1996), (Eu field tension, d 4  weld angle? siirface pomt). 

Cornparison with Bowness 
and Lee ( 1  9 9 6 )  

alc = 0.2. Present FEM 

ale = 1.0. Present FEM 

alc = 0.2, B & L 

- - - alc = 1 .O, B & L 



Figure 6.5 Cornparison of the weki toe m w o n  fhctor h m  the present FE calculation and 

Bowness and Lee (19%), (Eu field bending, d 4  weld angle, deepest point). 

Corn parison w ith Bowness and 
Lee (1996) 

O a/c = 0.2. Preseot FEM 

alc = 1.0. Present FEM 

alc = 0.2, B Bi L 

- - -  a/c = 1.0, B & L 



Figure 6.6 Cornparison of the weld toe mgnification factor h m  the present FE calculation and 

Bowness and Lee (1996), (far field bending, d 4  weki angle, surface point). 

Corn parison w itb Bowness 
and Lee (1996) 

O a/c = 0.2. Pnsent FEM 

alc = 1.0. Present FEM 



figure 6.7 Cornparison of the weight M o n  based stress intens-iîy factor and FEM data for 

stress distribution m(~-xfa)~ (x/4 weld angle, deepest point). 

0.80 I 

Deepest Point,  Parabolic 

FEM 

W eight  Fnnct ion  



figure 6.8 Compatison of the weight W o n  based stress intensity factor and FEM &ta for 

stress distri'bution cm(l-x/a)2 (x/4 weki angle, slrrface point). 

FEM 

1.20 - 

W eight Function 

- - - - - 
rn 

alc = 1 .O 

alc = 0.2 

Surface Point, Parabolic 



figure 6.9 Cornparison of the weight function based saess intensity Eictor and FEM data for 

stress distri'bution m(1-da)' (d4 weld angle, deepest point). 

Deepest  Point, Cubic 

FEM 

W eight Functioo 



figure 6.10 Cornparison of the weight W o n  based stress intensity faaor and FEM data for 

stress distribution oa(l-da)3 (d4 weki angle, surfkm point). 



figure 6.11 Comparison of the weight fimction b a d  weld toe mgnÏfkation factor and FEM 

data (far fïehd tension, d 4  weki angle, deepest point). 



Figure 6.12 Cornparison of the weight function based weld toe mgnification factor and FEM 

data (fàr field tension, x/4 weki angle, smfàce point). 

Far Field Tension 

O alc = 0.2. FEM 

+ alc = 1.0, FEM 

a/c = 0.2, W .F. 

- - -  a/c = 1 .O, W .F. 



Figure 6.13 Cornparison of the weight function based weld toe m a ~ t i o n  factor and FEM 

Far Field B endiog 

O a/c = 0.2. FEM 

ale = 1.0. FEM 

alc = 0.2. W .F. 

- - -  alc = 1 .O, W .F. 



Figure 6.14 Cornparison of the weight function based weld toe rriagniocation &or and FEM 

&ta (far field bending, R/4 weId angle, surface point). 

- - - - - - Far Field B ending - 
d 

- O ale = 0.2. FEM - 
+ alc=l .O.FEM 

alc = 0.2, W .F. 

- - -  a/c = 1.0, W .F. 

- % - - - O 
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Figure 6.15 Geometry, boundary condition and load 



Figure 6.16. Proposed solution 
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Figure 6.17 Stress intensiey factors for sutfkce cracks in T-plate joints with bu&-in ends under 

ale = 0.1. Hlt = 10, Decpcst Point 

Fixcd Ends T-Plate, FEU 

Proposed Solution 

- - - T-PIatc W cight Function (Frcc End) 

- - Moment Rcleasc Made1 

O .oo 0.20 0.40 0.60 0.80 1 .oo 
alt 



Figure 6.18 Stress intensity factors for surfke cracks in T-plate joints with builî-in ends under 

bending, id4 weki angle, ( d c  = O. 1, H/t = 10. srnfact point). 

a/c = 0.1, H/t = I O ,  Surface Point 

Fixed Ends T-Plate. FEM 

Proposed Solution 

- - -  T-Plate W eight Fonction (Fret Ends) 

- - Moement Release Mode1 
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Figure 6.19 Stress inte* factors for surfAce cracks in T-plate pmts with built-m ends under 

alc = 0.2, Hlt = 10, Dccpest Point 

Fixed Ends T-Plate, FEM 

Proposed Solution 

- - -  T-Plate W eight Fonction (Free Ends) 

- - Moment RcIease Modcl 
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Figure 6.20 Stress intenshy factors for surfàce cracks in T-plate joints with b&-in ends under 

- - 

alc = 0.2. H l t  = 10. Surface Point 

Fixed Ends T-Plate. FEM 

Proposed Solution 

- - -  T-Plate Weight Functian (Free Ends) 

- - MomentRelcaseModcl 
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Figure 6.21 S m s  intensity b o a  for siirface cracks in T-plate joints with buiit-in ends under 

bending, x/4 wekï angle, (dc = 1.0, H/t = 10, deepest wht). 

1.60 

ale = 1.0, H/t = 10, Deepest point 

Fixed Ends T-plate, FEM 

Proposed Solution 

- - -  T-Plate W eight Fnnction (Fret Ends) 

- - Moment Rclease Mode1 



Figure 6.22 Stress intensiîy factors for sraface cracks in T-plate joints wiîh buïlî-in ends under 

a/c = 1.0. H/t = 10, Surface Point 

Fixed Ends T-Plate, FEM 

Proposed Solution 

- - -  T-Plate Weigbt Function (Fret Ends) 

- - MomentReleaseModcl 



Chapter 7 

Surface Cracks in Pipe- 

Plate and Tubular Joints 

In this chapter, methods to detemiine stress intensity factors for surface cracks in 

pipe-plate and tubular joints are discussed A new mode1 for the calculation of stress 

intensity factors for surface cracks in pipe-plate and tubular joints was developed. The 

resuits are compared with avaiIabIe numerical and experimental data. 

7.1 Surface Cracks in Pipe-plate Joints 

As discussed in section 2.3.3, the pipe-plate specirnen has been considered as a 

siniplified mode1 for a tubular joint (Lambert et al., 1987). Figure 7.1 shows the geometry 

of a pipe-plate joint. Two different types of loading are usuaily considered, bending and 

tension, as show in Figure 7.1. In this section, approximate stress intensity factor solutions 

for surface cracks in pipe-plate joints are proposed. The results are compared with 

avaitabIe finite element and experirnental data. 



7.1.1 Ropased Stress htasi ty  Fadm Soiution 

Lambert (1988) used stress intensity factor solutions developed for T-plate joints 

with fke ends, Eq.(2.17), to calculate the stress ùitensity factors for surface cracks in the 

pipe-plate specimen. Because of the Merences in boundary conditions and geometry 

between T-plate and pipe-plate joints, such empiricd equations resulted in conservative 

estimates for stress intensity &ton for deep cracks, a/t > 0.5, and hence underestimated 

fatigue me. This effect was attributed to load shedding. This is not addressed in stress 

intensity factor solutions T-plate joints with £tee ends. 

In the present research, it is proposed that the stress intensity factor solutions for 

surface cracks in T-plate joints with buiit-in ends developed in Chapter 6 be used to 

e s t h t e  the stress intensity factors for surface cracks in pipe-plate joints. 

For a surface crack in a pipe-plate joint 7.1), a T-plate mode1 with built-in 

ends and the sarne crack geometry (alc, a/t and $), under the s a m  crack face stress 

dis~bution, &), is used to calculate stress intensity factors, Figure 7.2. The stress 

distribution, d x ) ,  is the stress distribution on the prospective crack plane for the uncracked 

pipe-plate joint. 

Note that the parameter, H, the span for the T-plate joint with built-in ends, requires 

more attention. An appropriate H must be chosen to account for the effects of the plate 

boundary and the pipe (brace) geometry. Because of differences in the geometries between 

T-plate and pipe-plate joints, several different choices for H parameters were exarnined. 

Since the radius of the bmce plays a major role on the constraint of the crack in the pipe- 

plate geometry (Figure 7.2), the foilowing expnssion for H was used: 



where Rpip is the radius of the pipe, as show in Figure 7.1, and h is a constant. Note that 

wbiie it rnay reasonably be expected that H will depend on plate thickness, only one pipe- 

plate geometry was considered herein, and therefore no information was available to 

indicate this effect. 

Stress intensity factors for surface cracks in pipe-plate joint cm now be calculated 

for different values for Ic using the procedures in Chapter 6, Eqs. 6.19-6.21: 

T-ph& The stress intensity factor for a T-plate joint with h ends, Kfiee,(P1) , c m  be calcuiated 

from the comsponding weight functions 

(x;  Pt )& 

The correction factor, MP'), to account for the effect of the built-in ends, is based on the 

factor for surface cracks in £kit plates: 



7.13 Cornparisons with Experimental and Finite Element Data 

Experimental and Finite E h e n t  Results 

Experimental stress intensity factors were determineci on the basis of measured 

crack growth rates in pipe-plate joints (Lambert, 1988). The geometry of the pipe-plate is 

shown in Figure 7.3. The pipe had a 417mm diameter, with 32 mm wall thickness, and was 

welded to the centre of a 26 mm thick £iat plate using a 4 5 O  flat fillet weld. The plate was 

1.5m long by lm wide, and was clamped dong the edges. A cyclic in-plane-bending load 

was applied. Periodical crack measurements were made using a pulsed D.C. po tential drop 

technique (Yee and Lambert, 1995). The crack growth rates &/LN were obtained fkom 

these results. The correspondhg stress intensity factors were determineci nom Paris' 

equatio n: 

where C and rn are material constants (C = 2.4 x 10-l2 and m = 3). The resulting saess 

intensity factors were normalised as foiiows: 

where arrs is the hot spot stress in the pipe-plate joint, obtained by linearly extrapolating the 

top surface stresses to the weld toe. The resulting experimental stress intensity factor 

solutions were plotted in Figure 7.4. 



Lambert and Bell (1993) also conducted three-dimensional finite elernent 

calculations for this pipe-plate specimen. T k y  analysed six different crack geometries 

observeci during the experirnents. The resulting stress intensity factors are presented in 

Table 7.1, and plotted in Figure 7.4. They ako presented the stress distribution on the 

perspective cracked plane obtained fkom a detailed 2D finite andysis of the uncracked 

geoemtry. 

Cornparisons with Proposed Solution 

Stress intensity factors were calculated using the procedure described in section 

7.1.1 for these crack geornetries for different values of A. Comparisons of the resdts for 

the present method, experimntal and finite element calculations at the deepest point are 

shown in Figure 7.4. The proposed method gave the best predictions for A = ln. The 

difference between this solution and finite element calculations was about 10%. There was 

also good agreement with the experimental data. 

The predictions from the monient release mode1 (Aaghaakouchak et al., 1989) are 

also plotted in Figure 7.4. It under-estimates the stress intensity factors. This is not 

surprishg since the momnt release mode1 was developed based on results for tubular 

joints, which usually experience more load shedding than the pipe-plate joint (Forbes, 

1991). 

7.2 Surface Cracks in Tubular Joints 

Figure 7.5 shows the geomem for a tubular joint used in the Canadian Offshore 

Research Program (Forbes et al., 1992). Three different types of Ioading were considered: 



in-plane bending, out-of-plane benduig, and tension, as shown in Figure 7.5. In this section, 

a solution for stress intensity factors for surface cracks in tubular joints is proposed. The 

results are compareci with experimental data from Forbes (1991), and to approxùnate load 

shedding solutions proposed by Aaghaakouchak et al. (1989). 

In the present research, it is proposed that stress intensity factor solutions for 

surface cracks in T-plate joints with built-in ends can be usad to calculate stress intensity 

factors for s h c e  cracks in tub& joints. 

For a surface crack in a tubular joint figure 7.3, a T-plate mode1 with built-in ends 

and the sarne crack geometry (alc, ait and $), under the same crack face stress distribution, 

&), is used to calculate stress intensity factors in tubular joints, as shown in Figure 7.6. 

The stress distribution. d x ) ,  is the stress distribution on the prospective crack plane for the 

uncracked tu bular joint. 

In this case, a sirnilar expression for the quivalent span for the T-plate joint with 

built-in ends, H, as was used for the pipe-plate analysis, is used: 

w h e ~  Rbrace is the radius of the brace, as shown in Figure 7.5, and is a constant. The 

value of k wiU depend on the overall geometry of the tub& joints, but wiU be less than 1 

to reflect the incnased stifhiess of the joint due to the brace cwature. Since only one 



geornetry was used, no information was availabk to investigate the effixts of other 

parameters such as thichess, length, etc. 

Based on those assumptions, s a s s  intensity factors for surface cracks in tubular 

joints can now be cdculated using Eqs. 6.19 - 6.21. 

7.2.2 Cornparisons wiui Experimentai Data 

Experimental Data 

Stress intensity factor solutions for surface cracks in a tubular joint were obtained 

fkom e x p e h n t a l  observations by Forbes (199 1). The geometry of the tubular is shown in 
m 

Figure 7.7. Cyclic anal or in-plane benduig loads were applïed to the brace, and surface 

crack propagation was observed. The brace had a 457mm diameter, with a 19 mm w d  

thickness. The brace was welded to the centre of a chord having a 1067 mm diameter and 

19 mm wall thickness using a 4S0, Oat, fun penetration fillet-like weld. Experimental stress 

intensity factors for surface cracks in this geomtry were obtained fiom the rneasured crack 

growth rates. The resulting stress intensity factors were nomialised according to Eq. (7.3, 

and are plotted in Figures 7.8 and 7.9. From the crack shape developmnt obsenrations, a 

rnatrix of crack geormries for the two specirnens is presented in Table 7.2 (Forbes, 1991). 

The stress distribution on the prospective crack plane was obtained by Forbes (199 1) using 

two-dimensional finite elernent analysis. 



Cornparisons with Proposed Solution 

Stress intensity factors were calculated using the procedure described in section 

7.2.1 for the cracks geomeîries presented in Table 7.2. Cornparisons of the results between 

the proposed solution and experirriental data at the deepest point are shown in Figure 7.8 

and 7.9. The present mthod gave the best predictions for both axial and in-plane bending 

cases when h was ln. The results fiom the moment release model (Aaghaakouchak et al., 

1989) and fkom Forbes (1991) rnodel are also plotted in Figures 7.8 and 7.9. The moment 

release m d e l  gave good predictions for axial loads but under-estimated the in-plane 

bending case. Forbes' mode1 gave fairly good predictions for both axial and in-plane 

bending loads. Forbes' model involved expximntal masurement of the actual load 

shedding in the specimens, and therefore is not as generally applicable as the present 

method- 

Compared with pipe-plate joints, the k value for tubuiar joint was found to be 

srrialler, l/3 versus ln. The reason for this is assurned to be that the chord of the tubular 

joint provides more constraint than the fiat base plate of pipe-plate joint. This is consistent 

with the observation by Forbes (1991) that t u b a  joints generaliy expenence more load 

shedding than pipe-plate joints. 

7.3 Discussion 

A T-plate welded joint rnodel with built-in ends was used to model surface cracks in 

pipe-plate and tubular joints. Load shedding effects were included because of the built-in 

ends. T h  model accounts for different load shedding effects resulting fkom different ratios 

of afc, ait, Hlt at dinerent positions dong the crack fkont. This is a more sophisticated 



mode1 than those proposed by Aaghakouchak et al. (1989) and Forbes (1991). but much 

sirnpler to implement than a three-dimensional finite eiement analysis. 

S o m  uncertainties remain in the present mdeL One of these is the value for h in 

the expression for the paramter H. Values were chosen for h for one pipe-plate and one 

tub& joint geometry only, it will certainly depend on other geomnic paranieters of the 

joints, including T, t, R-. and L. More extensive finite eiernent/experimentai analyses are 

required to examine the range of h values, and to relate these to joint geornetry. 

A second issue is the curvature of the fatigue surface crack as it grows through the 

thickness. In the present model semi-elliptical cracks are modelled as planar and n o d  to 

the base plate (for pipe-plate joints) or to the chord waii (for tubular joints). Only mode 1 

stress intensity factors were considered. In reality, because the geometry is not symtr i c  

about the crack plane, mode II stress intensity factors exist, and the crack kont wiil curve in 

such a way as to maximise the mode 1 stress intensity factor component (Figure 7.10(a)). 

Du and Hancock (1989) conducted finite element analyses for stress intensity factors for 

curved and plana surface cracks in tubular joints using both line-spring and the -  

dimensional finite elernent analysis. They concluded that the stress intensity factors for 

c w e d  surface cracks were similar to those for straight cracks normal to the chord wall, as 

long as the same a/t ratio was used. Bowness and Lee (1995) also conducted detailed 

three-dimensional finite elemnt analyses for curved and planar surface cracks in tubular 

joints. They agreed that planer surface cracks couid be used if the resulting stress intensity 

factors were treated as Kaet&, which include the e&t of the mode II stress intensity 

factor components: 



Therefore, using mode 1 stress intensity factors and the assumption of a planar crack face in 

the present model appears justifid 

Note that the T-plate rnodel used in the present analysis had an equal base plate 

length on either side of the crack, as shown in Figure 7.10 (b). It may be more effective to 

use a T-plate model with bdt-in ends of dEkrent lengths, a and b, as Uustrated in Figure 

7.10 (c). The existence of the brace will provide more constra.int than the f i t  plate (for 

pipe-plate joint) or chord (for tub& joint), and therefore a will be smaiIer than 6. Further 

finite element caiculations are required to determine appropriate values for a and b, and 

whether this approach will offer signincant iniprovernents over the present mthod where o 

= b. 

The another eEect which was not included in the present model is the effect of a 

two-dimensional stress distribution. Ody variations in the stress distribution through the 

thickness were consideïed in the present modeL As discussed in section 2.3, the stress 

distribution on the uncracked plane is two-dimensional, &, y), and changes along the weld 

toe. Typical stress dûtributions along the weid toe for pipe-plate and tub& joints are 

plotted in Figure 7.11. T-plate joints with built-in ends subject to two-dlliiensional stress 

distributions, o(x, y), as shown in Figure 7.12(a), can be used to model this effect. The 

Fourier series approach presented in Chapter 5 can be used to estimate the stress intensity 

factors required for the model in Figure 7.12(a). However, fiom the estimation by 

Desjardins et al. (199 l), the difference between the predictions fiom the models shown in 

Figures 7.12 (a) and (b) were within a few percent for the present surface cracks geomeaKs 

and the typical stress distributions shown in Figure 7.11. Therefore, in the present analysis, 

the simple one-dimensional smss distribution rnodel shown in Figure 7.12@) was us& 



Table 7.1 Y factor for cracks in the pipe-plate weid joint (Lambert and Bell, 1993) 

Y 

0.813 . 

0.896 

0.75 1 

0.786 

0.613 

O. 645 

al t 

0.25 

0.5 

0.6 

alc 

0.1969 

O. 1225 

O. 103 

0.090 

O. 121 

O. 105 



Table 7.2 Crack Shape in the Pipe-plate Weld Joint (Forbes, 1991) 

a/c 

Axial Load In Plane Bending 

alt alc alt 

0.2 

0.4 

I 

- 



Figure 7.1 Pipe-plate joint 
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Pipe-Plate Geometry 

Axial Load 

Plate 

In Plane Bending 



Figure 7.2 T-plate with built-in ends mode1 for pipe-plate joints 



Figure 7.3 The pipe-plate specimen (Lambert, 1988) 
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Figure 7.4 Results for stress intensity factors for surface cracks in pipe-plate joints 

Pipe-Plate Joint, IPB 

Experiments (Lambert, 1988) 

FEM (Lambert and Bell, 1993) 

T-Plate with Free Ends 

T-Plate with Built-In Ends, 

T-PIate with Built-in Ends, 

T-Plate w ith Built-In Ends, 

Moment Release Modei 



Figure 7.5 Geornetry of tubular joint 



Figure 7.6 T-plate with bdt-in ends mode1 for tubular joints 



Figure 7.7 The tub* specimen (Forbes, 1991) 
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Figure 7.8 Results for stress intensity factors for surface cracks in tubular joints (axial loads) 

- - - Experiments, Forbes (1 99 1 )  

3 .O0 

O T-Plate with Free Ends 

- - - - 
- 

T-Plate with Built-In Ends,  h = 1 

Tubular Joint, Axia l  Load 

T-Plate with Built-In Ends ,  = 112 

T-PIate with Built-in Ends, h = 113 

Moment Release M o d e l  

Forbes (1 99 1) M o d e l  



Figure 7.9 Resuits for stress intensity factors for surface cracks in tubular joints (in plane 

bending loads) 

3.50 4 

Tubular Joint, IPB 

- - -  Experiments ,  Forbes ( 1  99 1) 
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Figure 7.10 Curvature of the surface crack 
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Figure 7.1 1 Typical two-*nsional stress distribution for pipe-plate and tub& joints 



Figure 7.12 T-plate with built-in ends model, (a) two dimensional stress disaibution, @) one 

dimensional stress distri'bution 

buil t-in 

buil t-in 



Chapter 8 

Conclusions and 

Recommendations 

In the present research, weight function and stress intensity factor solutions for 

semi-elliptical surface cracks in fïat plates and welded joints were developed. These 

solutions can account for the effect of two-dimensional smss distributions, and load 

shedding. They can be used for fatigue Me pndiction and k t u r e  assessrnent of these 

structuns. This present approach will be more efficient (in ternis of computing time and 

cost) than three-dimensional finite elernent analyses, yet more accurate and widely 

applicable than available empiricai solutions. 



Theory and Devebpment 

Two methods were proposed by the author to denve weight functions for the 

calculation of stress intensity factors for two-dimensional cracks under tw O-dimensional 

stress distriiutions: the general point load weight function approach and the Fourier series 

approach. Both mthods can calculate stress intensity factors efficiently for surface cracks 

under two-dimensional stress distributions. 

In order to accommodate the effects of fked boundary conditions into weight 

functions, a method to obtain stress intensity factor solutions for situations with fixed 

disphcement boundary conditions was developed for surface cracks based on a cornpliance 

analysis. This rnethod can provide stress intensity factor solutions for components with 

built-in ends f?om available solutions for the sarne geometry with £ke end boundary 

conditions. This dramaticaily reduced the efforts required for the analysis of stress intensity 

factors for problerns with built-in ends. 

Embedded Elu'ptical Cracks 

The proposed general weight function approach for two-dimensional cracks was 

appiied to develop approxirnate weight functions for embedded elliptical cracks. These 

weight functions were validateci with anaiyticai solutions for different two-dimensional 

stress distributions. Good accuracy was achieved for a wide range of crack aspect ratios. 



A Fouriex series approach was appiied to deveiop weight fiiiactions for serni-eEptical 

surhce cracks in £iat plates under two-di.riensional s a e ~ s  distributions. The weight fiirzctiom 

were derived h m  r e h n c e  stress intensity factors obtained h m  three dirriensional finite 

elemnt analyses* Validation of these weight functiow was also conducted. The approximate 

closed fom weight functions derived are suitabk for the calnilation of stress mtensity factors for 

serriieniptical sirrface cracks in fht phies wiîh aspect ratios in the range 0.1 < d c  $ 1 and 

relative depths O 5 alt 5 0.8 under two dimensional stress distributions. 

A cornpliance analysis method was appiied to calculate stress intensity factors for 

semi-elliptical surface cracks in flat plates with built-in ends. The resulting stress intensity 

factors were used as reference stress intensity factors to derive weight functions for semi- 

elliptical surface cracks in f i t  plates with built-in ends. The stress intensity factor and 

weight func tion solutions were verified with tbree-diniensional f i t e  element cakulations. 

The weight functions deriveci are suitable for the calculation of stress intensity factors for serni- 

elliptical surface cracks in 5t plates with aspect ratios in the range 0.1 5 nlc a 1 and relative 

depths O I alt 5 0.8. 

Setni-eüipticaf Cracks in T-plute Joinîs 

Weight functions at the deepest and surface points of a semi-eiIipticd surface crack 

in T-plate joints with weld angle between O and 4S0 were derived. These weight funcfions 

were derived fkom reference stress intensity factor solutions, which were obtained nom 

three-dimensional finite element calculations, and verSeci using stress intensity factors for 

different non-Iinear stress fields and for far field tension and bending cases. The ciifferences 

between the weight function prediction and the finite element data were within 10%. The 



closed form weight functions derived here make them suitable for fatigue crack growth 

analysis and hcture assessrnent for T-plate joints. The weight function can be used to 

calculate stress intensity factors for any stress neld &). They are suitable for semi-eQtical 

surface cracks with aspect ratios 0.05 I d c  5 1, relative crack depths O a alt 0.6 and weM 

angles O s @ 5 4S0. 

A mthod for cdculzMg stress intensity factors for surface cracks in T-plate joints 

with bdt-in ends was proposed. The method was based on the weight function solutions 

for surface cracks in flat-plates with fk ends and built-in ends, and the weight hinctions for 

surface cracks in T-plate joints with fite ends. The rnethod was verined using finite elexnent 

dam The method can be used to calculate stress intensity factors for any stress field, and 

are suitable for semi-eliipticai surface cracks with aspect ratios 0.05 g a/c I 1, relative crack 

depths O I u/r s 0.6 and weld angles O I tp s 45. 

Semi-ellipücal Cracks in Pipe-phte and Tuàuhr Joints 

A rnethod to determine smss intensity factors for surface cracks in pipe-plate and 

tubular joints was presented. A T-plate welded joint with built-in ends was used to model 

pipe-plate and tubular joints. For a surface crack in a pipe-plate or tubular joint, a T-plate 

model with the same crack geometries of afc, ait, @, with built-in ends, under the same 

crack face stress distribution, d x )  was used to calculate the stress intensity factors in pipe- 

plate or tubular joints. Different values in the H expression were found to give the best 

results for the given pipe-plate and tub- joints. These different values were required to 

model the appropriate degree of load sheddïng in these joints resdting fiom differences in 

joint stifkess. The results were compared with available nunierical and experimental data 



8.2 Recommendations 

The general point load weight hc t i on  approach for two-dimnsional cracks was 

only appiieù to embedded elliptical cracks in the present research This proposed weight 

function for embedded elliptical cracks can also serve as the foundation for M e r  

development of weight functions for two-dimensional surface cracks, corner cracks and 

O ther part- through cracks in engineering stnictures. 

The proposed stress intensity factor solutions for surface cracks in pipe-plate and 

tubuiar joints were based on limited nurnericai and experimental stress intensity factor 

solutions. The h values were found for one pipe-plate and one tubular joint geornetry. 

Since no solutions are available at the surface point, the proposed solution was not ver= 

at the surface point. Further three-dimensional finite eIement/experirnental analyses are 

requireâ to examine the range of the h vahes, to relate the h. values to the joint geornetries. 

and to m e r  v e w  the proposed solutions at the sudace points. 
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