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Abstract

In digital watermarking, a watermark is embedded into a covertext in such a way that

the resulting watermarked signal is robust to certain distortion caused by either standard

data processing in a friendly environment or malicious attacks in an unfriendly environ-

ment. The watermarked signal can then be used for different purposes ranging from copy-

right protection, data authentication, fingerprinting, to information hiding. In this thesis,

digital watermarking will be investigated from both an information theoretic viewpoint

and a numerical computation viewpoint.

From the information theoretic viewpoint, we first study a new digital watermarking

scenario, in which watermarks and covertexts are generated from a joint memoryless wa-

termark and covertext source. The configuration of this scenario is different from that

treated in existing digital watermarking works, where watermarks are assumed indepen-

dent of covertexts. In the case of public watermarking where the covertext is not accessible

to the watermark decoder, a necessary and sufficient condition is determined under which

the watermark can be fully recovered with high probability at the end of watermark de-

coding after the watermarked signal is disturbed by a fixed memoryless attack channel.

Moreover, by using similar techniques, a combined source coding and Gel’fand-Pinsker

channel coding theorem is established, and an open problem proposed recently by Cox et

al is solved. Interestingly, from the sufficient and necessary condition we can show that,

in light of the correlation between the watermark and covertext, watermarks still can be

fully recovered with high probability even if the entropy of the watermark source is strictly

above the standard public watermarking capacity.

We then extend the above watermarking scenario to a case of joint compression and

watermarking, where the watermark and covertext are correlated, and the watermarked

signal has to be further compressed. Given an additional constraint of the compression

rate of the watermarked signals, a necessary and sufficient condition is determined again

under which the watermark can be fully recovered with high probability at the end of public
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watermark decoding after the watermarked signal is disturbed by a fixed memoryless attack

channel.

The above two joint compression and watermarking models are further investigated

under a less stringent environment where the reproduced watermark at the end of decoding

is allowed to be within certain distortion of the original watermark. Sufficient conditions

are determined in both cases, under which the original watermark can be reproduced with

distortion less than a given distortion level after the watermarked signal is disturbed by

a fixed memoryless attack channel and the covertext is not available to the watermark

decoder.

Watermarking capacities and joint compression and watermarking rate regions are often

characterized and/or presented as optimization problems in information theoretic research.

However, it does not mean that they can be calculated easily. In this thesis we first de-

rive closed forms of watermarking capacities of private Laplacian watermarking systems

with the magnitude-error distortion measure under a fixed additive Laplacian attack and a

fixed arbitrary additive attack, respectively. Then, based on the idea of the Blahut-Arimoto

algorithm for computing channel capacities and rate distortion functions, two iterative al-

gorithms are proposed for calculating private watermarking capacities and compression

and watermarking rate regions of joint compression and private watermarking systems

with finite alphabets. Finally, iterative algorithms are developed for calculating public

watermarking capacities and compression and watermarking rate regions of joint compres-

sion and public watermarking systems with finite alphabets based on the Blahut-Arimoto

algorithm and the Shannon’s strategy.
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Chapter 1

Introduction

1.1 Digital Watermarking

The development of the Internet has made it much easier to access digital data than ever as

audio, videos and other works become available in digital form. With Internet connection,

one can easily download and distribute perfect copies of pictures, music, and videos; with

suitable softwares, one can also alter these copyright-protected digital media. All these

activities can be carried out by would-be pirates without paying appropriate compensation

to the actual copyright owners, resulting in a huge economic risk to content owners. Thus,

there is a strong need for techniques to protect the copyright of content owners. Cryp-

tography and digital watermarking are two complementary techniques proposed so far to

protect digital content.

Cryptography is the processing of information into an encrypted form for the purpose of

secure transmission. Before delivery, the digital content is encrypted by the owner by using

a secret key. A corresponding decryption key is provided only to a legitimate receiver. The

encrypted content is then transmitted via Internet or other public channels, and it will be

meaningless to pirate without the decryption key. At the receiver end, however, once the

encrypted content is decrypted, it has no protection anymore.
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On the other hand, digital watermarking is a technique that can protect the digital

content even after it is decrypted. In digital watermarking, a watermark is embedded into

a covertext (the digital contents to be protected), resulting in a watermarked signal called

stegotext which has no visible difference from the covertext. In a successful watermarking

system, watermarks should be embedded in such a way that the watermarked signals are

robust to certain distortion caused by either standard data processing in a friendly envi-

ronment or malicious attacks in an unfriendly environment. In other words, watermarks

still can be recovered from the attacked watermarked signal (called forgery) generated

by an attacker if the attack is not too much. A watermarking system is called private if

the covertext is available to both the watermark encoder and decoder, and public if the

covertext is available only to the watermark encoder.

The application of digital watermarking is very broad, including copyright protection,

information hiding, fingerprinting, etc. For more detailed introduction and applications of

digital watermarking, please refer to [10] and [25].

1.2 Research Problems and Motivations

From an information theoretic viewpoint, a major research problem on digital watermark-

ing is to determine best tradeoffs among the distortion between the covertext and stego-

text, the distortion between the stegotext and forgery, the watermark embedding rate, the

compression rate and the robustness of the stegotext. Along this direction, some informa-

tion theoretic results, such as watermarking capacities and watermarking error exponents

and joint compression and watermarking rate regions, have been determined. Please refer

to [5, 7, 19, 25, 26, 27, 32, 33] and references therein for more information theoretic results,

and [25] is an excellent summary of the state of art.

The research problems to be investigated in this thesis are:

• From the viewpoint of information theory, for public digital watermarking systems
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with correlated watermarks and covertexts, what’s the best tradeoff among distortion

level, compression rate, robustness of stegotexts and admissibility of joint watermark

and covertext sources? Or under what conditions can watermarks be conveyed suc-

cessfully to watermark decoder with high probability?

• From the viewpoint of computation, how can watermarking capacities and compres-

sion and watermarking rate regions of joint compression and watermarking systems

be calculated efficiently?

The motivations for the above research problems are two-fold. First, in existing information-

theoretic works on digital watermarking systems, the watermark to be embedded is often

assumed explicitly or implicitly independent of the covertext. In some cases, for instance,

a self watermarking system in which watermarks are extracted from covertexts by fea-

ture extraction techniques, however, the watermark to be embedded is correlated with the

covertext. Without utilizing this correlation, a simple scheme for embedding such a water-

mark is to first compress the watermark and then embed the compressed watermark into

the covertext as usual. If the entropy of the watermark is less than the standard public

watermarking capacity, then the watermark can be recovered with high probability after

watermark decoding in the case of public watermarking. Now the question is: in light of the

correlation between the watermark and covertext, can one do better in the case of public

watermarking? In other words, can the watermark still be recovered with high probability

if its entropy is strictly above the standard public watermarking capacity? Furthermore,

in many applications, watermarked signals are stored and/or transmitted in compressed

formats, and/or the reproduced watermark at the end of decoding is allowed to be within

certain distortion of the original watermarks, so, in these scenarios under what conditions

can watermarks be conveyed to watermark decoder with high probability of success?

Second, although watermarking capacities and compression and watermarking rate re-

gions of joint compression and watermarking systems can be characterized as optimization

problems, the characterization does not mean that they can be calculated easily. Indeed,
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solving these optimization problem is often very difficult, and closed forms of watermark-

ing capacities and joint compression and watermarking rate regions are known only to

very few cases. Therefore, it is important and necessary to develop efficient algorithms for

numerically computing watermarking capacities and joint compression and watermarking

rate regions.

1.3 Thesis Organization and Contributions

This thesis will study digital watermarking systems from an information theoretic view-

point and from a computational viewpoint, respectively. From the viewpoint of informa-

tion theory, we investigate a digital watermarking scenario with correlated watermarks

and covertexts in Chapter 2, Chapter 3 and Chapter 4; from the viewpoint of numeri-

cal computation we obtain closed-forms of private watermarking capacities for Laplacian

watermarking systems in Chapter 5 and propose iterative algorithms for numerically cal-

culating watermarking capacities and joint compression and watermarking rate regions for

private watermarking and public watermarking in Chapter 6 and Chapter 7, respectively.

The organization and contributions of this thesis are summarized as follows.

In Chapter 2, from the information theoretic viewpoint we study a new digital wa-

termarking scenario with correlated watermarks and covertexts. In the case of public

watermarking where the covertext is not accessible to the watermark decoder, a necessary

and sufficient condition is determined under which the watermark can be fully recovered

with high probability at the end of watermark decoding after the watermarked signal is

disturbed by a fixed memoryless attack channel. Moreover, by using similar techniques, a

combined source coding and Gel’fand-Pinsker channel coding theorem is established, and

an open problem proposed recently by Cox et al is solved. Interestingly, from the sufficient

and necessary condition we can show that, in light of the correlation between the water-

mark and covertext, watermarks still can be fully recovered with high probability even if

the entropy of the watermark source is strictly above the standard public watermarking
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capacity.

In Chapter 3, the watermarking scenario of Chapter 2 is extended to a case of joint

compression and public watermarking, where the watermark and covertext are correlated,

and the watermarked signal has to be further compressed. For a given distortion level

between the covertext and the watermarked signal and a given compression rate of the wa-

termarked signal, a necessary and sufficient condition is determined again under which the

watermark can be fully recovered with high probability at the end of watermark decoding

after the watermarked signal is disturbed by a fixed memoryless attack channel and the

covertexts is not available to the watermark decoder.

The above two joint compression and watermarking models are further investigated in

Chapter 4 under a less stringent environment where the reproduced watermark at the end

of decoding is allowed to be within certain distortion of the original watermark. Sufficient

conditions are determined for the case without compression of watermarked signals and for

the case with compression of watermarked signals, respectively, under which watermarks

can be reproduced within a given distortion level with respect to the original watermarks

at the end of public watermark decoding after the watermarked signals are disturbed by a

fixed memoryless attack channel.

From the viewpoint of computation, Chapter 5 derives closed-forms for watermarking

capacities of private Laplacian watermarking systems with the magnitude-error distortion

measure under a fixed additive Laplacian attack and a fixed arbitrary additive attack,

respectively.

Based on the idea of the Blahut-Arimoto algorithm for computing channel capacities

and rate distortion functions, two iterative algorithms are proposed in Chapter 6 which can

be combined to calculate private watermarking capacities and joint compression and private

watermarking rate regions. Similarly, based on both the Blahut-Arimoto algorithm and

Shannon’s strategy, in Chapter 7 iterative algorithms are proposed for calculating public

watermarking capacities and joint compression and public watermarking rate regions.
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The last chapter, Chapter 8, is the conclusion of the thesis, and contains some future

works.

1.4 Notations

Throughout the thesis, the following notations are adopted. We use capital letter to denote

random variable, lowercase letter for its realization, and script letter for its alphabet. For

example, S is a random variable over its alphabet S and s ∈ S is a realization. We use pS(s)

to denote the probability distribution of a discrete random variable S taking values over

its alphabet S, that is, pS(s)
def
= Pr{S = s}; the same notation pS(s) also is used to denote

the probability density function of a continuous random variable S. If no ambiguity, the

subscript in pS(s) is omitted and write pS(s) as p(s). Similarly, Sn = (S1, S2, ..., Sn) denotes

a random vector taking values over Sn, and sn = (s1, s2, ..., sn) is a realization. Also, we

always assume the attack is fixed and given by a conditional probability distribution p(y|x)

with input alphabet X and output alphabet Y . Notations frequently used in this thesis

are summarized as follows.
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List of notations

M Watermark alphabet

M, Mn Watermarks

M̂ Reproduction watermark alphabet

M̂, M̂n Decoded watermarks

S Covertext alphabet

Sn Covertexts

X Stegotext alphabet

Xn Stegotexts

Y Forgery alphabet

Y n Forgeries

p(y|x) An attack channel with input alphabet X and output alphabet Y

fn(M, Sn), fn(Mn, Sn) Watermark encoder

gn(Sn, Y n) Private watermark decoder

gn(Y n) Public watermark decoder

p(s) The pmf of a covertext source S

p(m, s) The joint pmf of a joint watermark and covertext source (M, S)

d, d1 Distortion measures

D, D1 Distortion levels

E The expectation operator

C(D) The watermarking capacity

H(X) The entropy of X

I(X; Y ) The mutual information between X and Y

Rc The compression rate of stegotexts

Rw The watermarking rate
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Chapter 2

On Information Embedding When

Watermarks and Covertexts Are

Correlated

In this chapter, the standard model of digital watermarking is introduced first from an

information theoretic viewpoint. Then, the main problem on watermarking models with

correlated watermarks and covertexts is formulated and the results of this chapter are

stated. Next, by employing a similar approach, a combined source-channel coding theorem

on Gel’fand-Pinsker channel is obtained, and an open problem proposed by Cox et al is

solved. Finally, the proofs of the main results are provided.

2.1 Basic Communication Model of Digital Water-

marking

From an information theoretic viewpoint, a digital watermarking system can be modeled as

a communication system with side information at the watermark transmitter, as depicted

in Figure 2.1. In this model, a watermark M is assumed to be a random variable uniformly
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M

nS

nf
nX nY M̂

ng( | )p y x

encoder attack decoder

Figure 2.1: Basic communication model of digital watermarking

taking values overM = {1, 2, ..., |M|}, and a covertext Sn is a sequence of independent and

identical drawings of a random variable S with probability distribution p(s) taking values

over a finite alphabet S. If the covertext Sn is available to the watermarking decoder, then

the watermarking model is called private; otherwise, if the covertext Sn is not available

to the watermarking decoder, then the watermarking model is called public.

Let X be a finite alphabet, and define a distortion measure d : S ×X → [0,∞) and let

dmax = maxs∈S,x∈X d(s, x). Without loss of generality, assume that

max
s∈S

min
x∈X

d(s, x) = 0.

Let {dn : n = 1, 2, ...} be a single-letter fidelity criterion generated by d, where

dn : Sn ×X n → [0,∞)

is a mapping defined by

dn(sn, xn) =
1

n

n∑
i=1

d(si, xi)

for any sn ∈ Sn and xn ∈ X n. Without ambiguity, the subscript n in dn is omitted

throughout the thesis.

Let p(y|x) be a conditional probability distribution with input alphabet X and output

alphabet Y and p(yn|xn) =
∏n

i=1 p(yi|xi) denote a fixed memoryless attack channel with

input xn and output yn.
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Definition 2.1 A watermarking encoder of length n with distortion level D with re-

spect to the distortion measure d is a mapping fn fromM×Sn to X n such that Ed(Sn, Xn) ≤

D, where the watermarked signal xn = fn(m, sn) is called stegotext. Moreover, R =

1
n

log |M| is called its watermarking rate.

Definition 2.2 A mapping gn : Sn × Yn → M, m̂ = gn(sn, yn) is called a private

watermarking decoder of length n; A mapping gn : Yn → M, m̂ = gn(yn) is called a

public watermarking decoder of length n. Here, the forgery yn is generated by the

attacker according to the attack channel p(yn|xn) with input covertext xn.

Given a watermarking encoder and watermarking decoder pair (fn, gn), the error prob-

ability of watermarking is defined by

pe(fn, gn) = Pr{M̂ 6= M}.

Definition 2.3 A rate R ≥ 0 is called privately (publicly) achievable with respect

to distortion level D if for arbitrary ε > 0, there exists, for any sufficiently large n, a

watermarking encoder fn with rate R− ε and distortion level D + ε and a private (public)

watermarking decoder gn such that pe(fn, gn) < ε. The supremum of all privately (pub-

licly) achievable rates R with respect to distortion level D is called the private (public)

watermarking capacity of the watermarking system, and denoted by Cprivate(D) and

Cpublic(D) respectively.

From an information theoretic viewpoint, a major research problem is to determine the

best tradeoffs among the distortion D between covertexts and stegotexts, the watermark-

ing embedding rate R, and the robustness of the stegotext. Along this direction, some

information theoretic results have been determined (see [25,26] and references therein).

In existing information theoretic works on digital watermarking, the watermark to be

embedded is often assumed independent of the covertext. In some cases, however, the

watermark to be embedded is correlated with the covertext. For instance, there exist

11



self-watermarking systems in which watermarks are extracted from covertexts by feature

extraction techniques; another application is to embed fingerprints into passport’s picture

for the sake of security. Obviously, without utilizing this correlation, a simple scheme

for embedding such a watermark is to first compress the watermark and then embed the

compressed watermark into the covertext as usual (i.e., treating the compressed watermark

as being independent of the covertext even though it is not). If the entropy of the watermark

is less than the standard watermarking capacity, then the watermark can be recovered

with high probability after watermark decoding. Now the question is: in light of the

correlation between the watermark and covertext, can one do better? In other words, can

the watermark still be recovered with high probability even if its entropy is strictly above

the standard watermarking capacity?

In this chapter, we shall answer the above question by determining a necessary and

sufficient condition under which the watermark can be recovered with high probability

at the end of watermark decoding in the case of public watermarking. It turns out that

the answer is actually affirmative. When the watermark and covertext are correlated, the

watermark can indeed be recovered with high probability even when its entropy is strictly

above the standard public watermarking capacity.

2.2 Problem Formulation and Result Statement

2.2.1 Problem Formulation

The model studied in this chapter is designated in Figure 2.2. Suppose {(Mi, Si)}∞i=1 be a

sequence of independent and identical drawings of a pair (M, S) of random variables with

joint probability distribution p(m, s) taking values over the finite alphabet M× S, that

is, for any n and mn × sn ∈Mn × Sn,

p(mn, sn) =
n∏

i=1

p(mi, si).

12



compression embedding decoder

watermark encoder

nM

nS

nX nY ˆ nM( | )p y x

Figure 2.2: Model of watermarking system with correlated watermarks and covertexts

Here, mn and sn are called a watermark and a covertext respectively. As before, let p(y|x)

be a conditional probability distribution with input alphabet X and output alphabet Y

and p(yn|xn) =
∏n

i=1 p(yi|xi) denote a fixed memoryless attack channel with input xn and

output yn. It is assumed that the attack channel is known to both watermark encoder and

watermark decoder.

Definition 2.4 A watermarking encoder of length n with distortion level D with re-

spect to the distortion measure d is a mapping fn fromMn×Sn to X n such that Ed(Sn, Xn) ≤

D, where the watermarked signal xn = fn(mn, sn).

Definition 2.5 A mapping gn : Yn → Mn is called a public watermarking decoder

of length n with m̂n = gn(yn).

Given a watermarking encoder and public watermarking decoder pair (fn, gn), the error

probability of watermarking averaged over all watermarks and covertexts is defined by

pe(fn, gn) = Pr{M̂n 6= Mn}.

Definition 2.6 The joint probability distribution p(m, s) of a correlated watermark and

covertext source (M, S) is called publicly admissible with respect to distortion level D

if for any ε > 0, there exists, for any sufficiently large n, a watermarking encoder fn

with length n and distortion level D + ε and a public watermarking decoder gn such that

pe(fn, gn) < ε.

13



An interesting problem arises naturally: under what condition is a joint probability

p(m, s) of a correlated watermark and covertext source (M, S) publicly admissible? It’s

well known [27] that the public watermarking capacity is given by

Cpublic(D)
4
= max

p(u,x|s):Ed(S,X)≤D

[I(U ; Y )− I(U ; S)] (2.1)

where the maximum is taken over all auxiliary random variables U and X jointly distributed

with S and satisfying Ed(S, X) ≤ D. Obviously, if H(M) < Cpublic(D), then the watermark

M can be recovered with high probability after watermark decoding in the case that the

decoder cannot access the covertext Sn; this can be achieved by simply compressing M

using H(M) number of bits and then embedding the compressed M into S using standard

public watermarking schemes. In other words, H(M) < Cpublic(D) is a sufficient condition

for p(m, s) to be publicly admissible. However, it may not be necessary. Is H(M |S) <

Cpublic(D) a sufficient and necessary condition, where H(M |S) is the conditional entropy of

M given S? Note that even though Sn is available to the watermark encoder, Sn can not

be fully utilized to encode Mn since Sn is not available to the watermark decoder in the

public watermarking system. One of our main problems in this chapter is to determine a

sufficient and necessary condition for a joint probability distribution p(m, s) to be publicly

admissible.

It should be pointed out that in the case of private watermarking, one can ask a similar

question when watermarks and covertexts are correlated. However, since the covertext

Sn is accessible to both the watermark encoder and decoder in this case, the solution

to the corresponding question is straightforward; compressing M conditionally on S and

then embedding the compressed watermark into S by using standard private watermarking

schemes will provide one with an optimal solution.

2.2.2 Statement of Main Result

As before, let p(m, s) be the joint probability distribution of a fixed correlated watermark

and covertext source (M, S) taking values over M× S. Let D ≥ 0 be a distortion level

14



with respect to the distortion measure d, and p(y|x) be the fixed attack channel known to

watermark encoder and watermark decoder. Define

Rcorrelated
public (D)

4
= sup

p(u,x|m,s):Ed(S,X)≤D

[I(U ; Y )− I(U ; M, S) + I(M ; U, Y )] (2.2)

where the supremum is taken over all auxiliary random variables (U,X) taking values

over U × X , jointly distributed with (M, S) with the joint probability distribution of

(M, S, U, X, Y ) given by p(m, s, u, x, y) = p(m, s)p(u, x|m, s)p(y|x), and satisfying Ed(S, X) ≤

D, and all mutual information quantities are determined by p(m, s, u, x, y). It can be shown

later that |U| can be limited by |U| ≤ |M||S||X |+1 and so the sup in (2.2) can be replaced

by max.

The following theorem is the main result, which describes the sufficient and necessary

condition for public admissibility of a joint probability p(m, s).

Theorem 2.1 Let p(m, s) be the fixed joint probability distribution of a watermark and

covertext source pair (M, S). For any D ≥ 0, if Rcorrelated
public (D) > 0, then the following hold:

(a) p(m, s) is publicly admissible with respect to D if

H(M) < Rcorrelated
public (D).

(b) Conversely, p(m, s) is not publicly admissible with respect to D if

H(M) > Rcorrelated
public (D).

Comments:

i) The idea of the proof of Theorem 2.1 is based on the combination of Slepian-Wolf ran-

dom binning technique [31] for source coding and Gel’fand-Pinsker’s random binning

technique [16] for channel coding. To be specific, in the decoding part of Gel’fand-

Pinsker’s random binning technique, in addition to correctly decoding the transmit-

ted message, an auxiliary vector Un correlated with the covertext Sn is obtained.
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This auxiliary vector Un can then be used as side information for the decoder of the

Slepian-Wolf random binning coding scheme. Since the watermark is correlated with

Un through the covertext Sn, some gain in encoding the watermark could be obtained

by exploiting this correlation. Details will be described in the following sections.

ii) Since Rcorrelated
public (D) > Cpublic(D) in general when M and S are highly correlated, The-

orem 2.1 implies that the well-known Shannon separation theorem may not be ex-

tended to the current case. Indeed, an example will be given in the next section to

show that a watermark with entropy H(M) > Cpublic(D) is still able to be transmitted

reliably to the watermark receiver.

iii) It can be shown that (U,M) is a better auxiliary random variable than U . So, as Frans

Willems pointed out to me, a question whether U = (X, M) is the optimal choice

for the auxiliary random variable remains open. If this would be the case then also a

result from semantic coding (Willems and Kalker [41]) could be used to demonstrate

admissibility, and this would then lead to the condition

H(M) + I(S; X|M) < I(X; Y ).

What happens when H(M) = Rcorrelated
public (D)? In the next section we will show that as a

function of D, Rcorrelated
public (D) is concave and strictly increasing over [0, Dmax), where Dmax

is the minimum D such that Rcorrelated
public (D) = Rcorrelated

public (dmax). In view of this, we have the

following stronger result:

Corollary 2.1 For any D ∈ [0, Dmax), if Rcorrelated
public (D) > 0, then p(m, s) is publicly ad-

missible with respect to D if and only if

H(M) ≤ Rcorrelated
public (D). (2.3)
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2.3 Evaluation and Examples

In this section we shall first investigate some properties of Rcorrelated
public (D), and then present

an example of public watermarking system with correlated watermarks and covertexts

to demonstrate that transmitting a watermark reliably to the watermark receiver is still

possible even when the entropy H(M) of the watermark is strictly above the standard

public watermarking capacity Cpublic(D).

Property 2.1 Let p(m, s) be a fixed joint probability distribution of (M, S). Then

Rcorrelated
public (D) = max

p(u,x|m,s):Ed(S,X)≤D

[I(U ; Y )− I(U ; M, S) + I(M ; U, Y )]

where the maximum is taken over all auxiliary random variables (U,X) taking values over

U × X with |U| ≤ |M||S||X | + 1, jointly distributed with (M, S) with the joint probabil-

ity distribution of (M, S, U, X, Y ) given by p(m, s, u, x, y) = p(m, s)p(u, x|m, s)p(y|x), and

satisfying Ed(S, X) ≤ D.

Proof: The proof is standard by using the Caratheodory’s theorem, which can be stated

as follows: Each point in the convex hull of a set A in Rn is in the convex combination of

n + 1 or fewer points of A. Here, we follows the approach of [26].

First, we label elements (m, s, x) of M × S × X by i = 1, ..., t
4
= |M||S||X |. Let

P(M × S × X ) be the set of all probability distributions over M × S × X . Define a

functional

F : P(M×S ×X ) −→ Rt

Q −→ (F1(Q), F2(Q), ..., Ft(Q))

where Q is a generic probability distribution over M×S ×X , and for i = 1, 2, ..., t− 1

Fi(Q) = Q(m, s, x), if i = (m, s, x),

and

Ft(Q) = HQ(Y )−HQ(M, S)− IQ(M ; Y ) + HQ(M),
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where all information quantities are determined by Q(m, s, x)p(y|x).

Next, let (U,X) be any random variables taking values over U ×X , jointly distributed

with (M, S) with the joint probability distribution p(m, s, u, x, y) = p(m, s)p(u, x|m, s)p(y|x)

and satisfying Ed(S, X) ≤ D. Then, for each u ∈ U , p(m, s, x|u) derived from p(m, s, u, x, y)

is an element of P(M×S ×X ), and the set

{F (p(m, s, x|u))|u ∈ U} ⊆ Rt.

By the Caratheodory’s theorem, there exist t+1 elements ui ∈ U and t+1 numbers αi ≥ 0

with
∑

i αi = 1 such that∑
u

p(u)F (p(m, s, x|u)) =
t+1∑
i=1

αiF (p(m, s, x|ui)),

that is, ∑
u

p(u)p(m, s, x|u) =
t+1∑
i=1

αip(m, s, x|ui),∀(m, s, x)

H(Y |U)−H(M, S|U)− I(M ; Y |U) + H(M) =
t+1∑
i=1

αi[H(Y |ui)−H(M, S|ui)− I(M ; Y |ui) + H(M)].

Now define a new random variable U0 ∈ {u1, u2, ..., ut+1} with the joint probability

p(m, s, ui, x, y) = αip(m, s, x|ui)p(y|x).

It is easy to check that for this new random variable Ed(S, X) ≤ D and I(U ; Y ) −

I(U ; M, S) + I(M ; U, Y ) = I(U0; Y ) − I(U0; M, S) + I(M ; U0, Y ). This finished the proof

of Property 2.1. �

Property 2.2 Rcorrelated
public (D) as a function of D is concave and continuous in [0,∞).

Proof: First, for any random variables (M, S, U, X, Y ), we can write

I(U ; Y )− I(U ; M, S) + I(M ; U, Y ) = H(Y )−H(Y |U)−H(M, S) + H(M, S|U)

+H(M) + H(U, Y )−H(M, U, Y )

= H(Y )−H(M, S) + H(M, S|U) + H(M)−H(M, Y |U).
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Now for any D1, D2 ≥ 0, let (M, S, Ui, Xi, Yi), i = 1, 2 be random variables achieving

Rcorrelated
public (Di). For any λ1, λ2 ≥ 0 with λ1 + λ2 = 1, let T ∈ {1, 2} be a random variable

independent of all other random variables with λi = Pr{T = i}. Define new random

variables

U = (UT , T ), X = XT , Y = YT .

Then by the construction of (M, S, Ui, Xi, Yi) it is easy to check that Ed(S, X) ≤ λ1D1 +

λ2D2. In view of the definition of Rcorrelated
public (D), we then have

Rcorrelated
public (λ1D1 + λ2D2) ≥ I(U ; Y )− I(U ; M, S) + I(M ; U, Y )

= H(Y )−H(M, S) + H(M, S|U) + H(M)−H(M, Y |U)

≥ λ1 (H(Y1)−H(M, S) + H(M, S|U1) + H(M)−H(M, Y1|U1))

+λ2 (H(Y2)−H(M, S) + H(M, S|U2) + H(M)−H(M, Y2|U2))

= λ1R
correlated
public (D1) + λ2R

correlated
public (D2)

where the last inequality follows from the concavity of entropy, that is, H(Y ) ≥ λ1H(Y1)+

λ2H(Y2). This proves that Rcorrelated
public (D) is concave, which in turn implies the continuity

of Rcorrelated
public (D) in (0,∞). What remains is to show that Rcorrelated

public (D) is continuous at

D = 0.

In view of its definition, Rcorrelated
public (D) is clearly non-decreasing in D. Therefore one

has

Rcorrelated
public (0) ≤ lim

n→∞
Rcorrelated

public (Dn) (2.4)

for Dn ↓ 0. In view of Property 1, let (M, S, Un, Xn, Yn), n = 1, 2, · · · , denote a random vec-

tor achieving Rcorrelated
public (Dn) and satisfying Ed(S, Xn) ≤ Dn with Un taking values in an al-

phabet, say, U = {1, 2, · · · , |M||S||X |+1}. Consider a subsequence {(M, S, Uni
, Xni

, Yni
)}

which converges in distribution to, say, {(M, S, U, X, Y )}. Since Dni
→ 0, we have
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Ed(S, X) = limni→∞Ed(S, Xni
) = 0. From the definition of Rcorrelated

public (D), it then fol-

lows that

Rcorrelated
public (0) ≥ I(U ; Y )− I(U ; M, S) + I(M ; U, Y )

= lim
ni→∞

[I(Uni
; Yni

)− I(Uni
; M, S) + I(M ; Uni

, Yni
)]

= lim
ni→∞

Rcorrelated
public (Dni

)

= lim
n→∞

Rcorrelated
public (Dn). (2.5)

Combination of (2.4) and (2.5) yields the continuity of Rcorrelated
public (D) at D = 0.

�

Property 2.3 Define

Dmax = min
{
D|Rcorrelated

public (D) = Rcorrelated
public (dmax)

}
.

Then Rcorrelated
public (D) as a function of D is strictly increasing in [0, Dmax).

Proof: Since Rcorrelated
public (D) is non-decreasing in D, the concavity of Rcorrelated

public (D) guaran-

tees that it is strictly increasing in [0, Dmax).

�

The following example shows the existence of a public watermarking system with corre-

lated watermarks and covertexts for which transmitting watermarks Mn to the watermark

receiver is successful with high probability, although the entropy H(M) is strictly greater

than the standard public watermarking capacity Cpublic(D).

Example: Assume all alphabets are binary, that is, M = S = X = Y = {0, 1}, and

the covertext source S is a Bernoulli source with parameter 1/2. The distortion measure d

is the Hamming distance, and the attack channel p(y|x) is a binary symmetric channel with

error parameter p = 0.01. Let D = 0.01. If watermarks and covertexts are independent,

Moulin and O’Sullivan [26] computed its public watermarking capacity Cpublic(D) = 0.029
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nats/channel use, and showed that the optimal random variables U ∈ {0, 1, 2}, X achiev-

ing the public watermarking capacity is determined by the joint probability distribution

p(s, u, x) = p(s)pU,X|S(u, x|s), where pU,X|S(u, x|s) is given by

pU,X|S(u = 1, x = 0|s = 0) = 0.82;

pU,X|S(u = 2, x = 0|s = 0) = 0.17;

pU,X|S(u = 0, x = 1|s = 0) = 0.01;

pU,X|S(u = 2, x = 0|s = 1) = 0.01;

pU,X|S(u = 0, x = 1|s = 1) = 0.17;

pU,X|S(u = 1, x = 1|s = 1) = 0.82;

and all other conditional probabilities are zero.

Now we assume that the watermarking source M is binary and correlated with the

covertext source S with a joint probability pM,S(m, s) given by

pM |S(0|0) = 0.996

pM |S(1|1) = 0.998.

Let U,X be the random variables as above, which are conditionally independent of M

given S. Then it is not hard to see that M → S → (U,X) → Y forms a Markov chain in

the indicated order, and

I(M ; U, Y )−H(M) + I(U ; Y )− I(U ; M, S) = I(M ; U, Y )−H(M) + I(U ; Y )− I(U ; S)

= I(M ; U, Y )−H(M) + Cpublic(0.01)

= 0.008 > 0,

which in turns implies H(M) < Rcorrelated
public (D). By Theorem 2.1, p(m, s) is publicly admis-

sible with respect to D = 0.01. On the other hand, H(M) = 0.693 > Cpublic(D) = 0.029.

Thus, we can conclude that the watermark M can be transmitted reliably to the watermark

decoder even though the entropy H(M) is strictly above the standard public watermarking

capacity.
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2.4 Application to the Gel’fand and Pinsker’s Chan-

nel

In this section we shall apply our techniques to the combined source and channel coding

problem when the channel is Gel’fand and Pinsker’s channel and the source to be transmit-

ted is correlated with the channel state information available only to the channel encoder,

and establish a combined source coding and Gel’fand and Pinsker channel coding theorem.

An example is calculated to demonstrate the gain of information rate obtained by the

correlation of the channel state source and the information message source.

It should be mentioned that the model considered in this section is different from that

of [24], in which the message is independent of the state information of the Gel’fand and

Pinsker’s channel and the Gel’fand and Pinsker’s channel and the Wyner-Ziv channel are

separated. As a result, the separation theorem holds for the model in [24] while it does

not hold for the model in this section.

To begin with, we review the Gel’fand-Pinsker’s channel and the Gel’fand and Pinsker’s

coding theorem. In their famous paper [16], Gel’fand and Pinsker studied a communication

system with channel state information non-causally available only to the transmitter, and

determined its channel capacity by giving a coding theorem. To be specific, let K =

{(p(y|x, s), p(s)) : y ∈ Y , x ∈ X , s ∈ S} be a stationary and memoryless channel with

input alphabet X , output alphabet Y and the set of channel states S, and let the channel

state source S and the message source M be independent. If the state information sn is

only available to the transmitter, then the channel capacity is equal to [16]

CG−P = max
(U,X)

[I(U ; Y )− I(U ; S)],

where the maximum is taken over all random vectors (U,X) ∈ U × X such that the

joint probability of (U, S, X, Y ) is given by p(u, s, x, y) = p(s)p(u, x|s)p(y|x, s). Moreover,

|U| ≤ |S|+ |X |.

Note that the independence between the channel state source S and the message source
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M is assumed in the Gel’fand-Pinsker’s coding theorem. Now we assume the channel state

source S and the information message source M are correlated with a joint probability

distribution p(m, s) and the state information Sn is uncausally available only to the trans-

mitter, and define

RG−P = max
(U,X)

[I(U ; Y )− I(U ; M, S) + I(M ; U, Y )]

where the maximum is taken over all random variables (U,X) ∈ U ×X such that the joint

probability of (M, S, U, X, Y ) is given by

p(m, s, u, x, y) = p(m, s)p(u, x|m, s)p(y|x, s),

and |U| ≤ |S||M|+ |X |.

If the public admissibility of p(m, s) is defined in a similar manner, then we have the

following combined source coding and Gel’fand and Pinsker channel coding theorem.

Theorem 2.2 If RG−P > 0, then the following hold:

(a) p(m, s) is publicly admissible if

H(M) < RG−P .

(b) Conversely, p(m, s) is not publicly admissible if

H(M) > RG−P .

The proof is similar to that of Theorem 2.1, so omitted here. Note that this theorem is

weaker than Corollary 2.1, since we don’t know what will happen for p(m, s) if H(M) =

RG−P .

It is not hard to see that in general, RG−P > CG−P when M and S are highly correlated.

In the following example, we will further show the existence of a correlated message source

and channel state information source, for which the message source can be transmitted
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to the receiver reliably, even though H(M) is strictly greater than the standard Gel’fand-

Pinsker’s channel capacity CG−P .

Example [16] (revisited): The channel input alphabet and the output alphabet are

X = Y = {0, 1}, and the channel state alphabet S = {0, 1, 2}. Given three parameters

0 ≤ λ, p, q ≤ 1/2, the channel K is described in the following:

1. pS(0) = pS(1) = λ, pS(2) = 1− 2λ;

2. pY |XS(y = 0|x = 0, s = 0) = pY |XS(y = 0|x = 1, s = 0) = 1− q,

pY |XS(y = 0|x = 0, s = 1) = pY |XS(y = 0|x = 1, s = 1) = q,

pY |XS(y = 0|x = 0, s = 2) = 1− p, pY |XS(y = 1|x = 0, s = 2) = p.

Gel’fand and Pinsker got the capacity of K as

CG−P = 1− 2λ + 2λh(α0)− h(ρ(α0)),

where

h(x) = −x log2(x)− (1− x) log2(1− x), (2.6)

ρ(α) = 2λ[α(1− q) + (1− α)q] + (1− 2λ)(1− p),

and 0 ≤ α0 ≤ 1 is the unique solution of the equation

log2

1− α

α
= (1− 2q) log2

1− ρ(α)

ρ(α)
. (2.7)

Now suppose the information message source M is binary and correlated with the

channel state information source S by a joint probability distribution p(m, s) given by

pM |S(0|0) = α

pM |S(0|1) = β

pM |S(0|2) = γ.
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region A

curve 1

curve 2

Figure 2.3: The region of (α, β)

Let U,X be the binary random variables achieving the channel capacity CG−P , as de-

scribed in [16], which are conditionally independent of M given S. Then M → (S, U, X) →

Y also forms a Markov chain. If (α, β, γ) satisfies H(M)− CG−P > 0,

I(M ; U, Y )−H(M) + CG−P > 0,
(2.8)

then, H(M) < RG−P , and by Theorem 2.2 the message source M can be transmitted

reliably to the receiver, even though H(M) is strictly greater than the Gel’fand-Pinsker’s

channel capacity CG−P . Now we give some numerical solutions. Let q = 0.2, p = 0.1, λ =

0.2; in this case, CG−P = 0.2075. Let γ = 0.9. Figure 2.3 shows that any point (α, β) in the

region A of Figure 2.3 satisfies (2.8), where the curve 1 represents f1(α, β) = H(M)−CG−P

and the curve 2 represents f2(α, β) = I(M ; U, Y ) − H(M) + CG−P . For example, when

α = β = 0.98, we have H(M) = 0.2484 and I(M ; U, Y ) + CG−P − H(M) = 0.028 > 0;

thus, H(M) < RG−P , which means that M can be transmitted reliably to the receiver,

while H(M) > CG−P = 0.2075.
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2.5 Solution to the Cox’s Open Problem

In [11] Cox et al proposed an open problem on how to efficiently hide watermarks into

correlated covertexts, which can be stated formally as follows. Let M,S,X ,Y be finite

alphabets, p(m) a fixed probability distribution, and

P =

{
p(i)(m, s)|

∑
s

p(i)(m, s) = p(m), i = 1, 2, ..., t

}

a finite set of joint probability distributions with the fixed marginal probability p(m). Let

(M, S(i)) denote an identically and independently distributed (iid) watermark and covertext

source pair generated according to the probability distribution p(i)(m, s) ∈ P , with M

serving as a watermark to be transmitted and S(i) serving as a covertext available only to

the watermark transmitter, and let D be the fixed distortion level between covertexts and

stegotexts. Assume that the fixed attack channel p(y|x) with input alphabet X and output

alphabet Y is memoryless, stationary and known to both the watermark transmitter and

the watermark receiver. Let e(p(i)(m, s)) be the least number of bits of information needed

to be embedded into S(i) in order for the watermark M to be recovered with high probability

after watermark decoding in the case of public watermarking if S(i) is chosen as a covertext.

The open problem proposed by Cox et al in [11] can be reformulated as how to choose the

optimal joint probability distribution p(i0)(m, s) in P achieving minp(i)(m,s)∈P e(p(i)(m, s)).

With the help of Theorem 2.1 and Corollary 2.1, we are ready to solve this problem; our

solution is given below in Theorem 2.3. Note that in this section, public admissibility

means public admissibility with respect to D, and to emphasize on the dependence of

Rcorrelated
public on p(m, s) we write Rcorrelated

public (p(m, s)) rather than Rcorrelated
public (D).

Theorem 2.3 Let P1 be the set of all publicly admissible joint probability distributions

p(i)(m, s) ∈ P, that is,

P1 = {p(i)(m, s) ∈ P : H(M) ≤ Rcorrelated
public (p(i)(m, s))}.
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For each p(i)(m, s) ∈ P1, let A(p(i)(m, s)) denote the set of all auxiliary random variables

(U,X) jointly distributed with M , S(i), and Y with the joint probability distribution given

by p(m, s, u, x, y) = p(i)(m, s)p(u, x|m, s)p(y|x) and satisfying

Ed(S(i), X) ≤ D, H(M) ≤ I(U ; Y )− I(U ; M, S(i)) + I(M ; U, Y )

where p(u, x|m, s) is the conditional probability distribution of (U,X) given (M, S(i)). Then,

for each p(i)(m, s) ∈ P1

e(p(i)(m, s)) = min
(U,X)∈A(p(i)(m,s))

(H(M)− I(M ; U, Y ))

and the optimal joint probability p(i0)(m, s) is given by the probability distribution achieving

max
p(i)(m,s)∈P1

max
(U,X)∈A(p(i)(m,s))

I(M ; U, Y ).

Proof : In view of the definition of P1, it is easy to see that for each p(i)(m, s) ∈ P1,

the set A(p(i)(m, s)) is not empty. So,

min
(U,X)∈A(p(i)(m,s))

[H(M)− I(M ; U, Y )]

is meaningful.

From the proof of Theorem 2.1 and Corollary 2.1, we know that H(M) − I(M ; U, Y )

is the least number of bits of information needed to be embedded into S(i) for a fixed pair

(U,X) ∈ A(p(i)(m, s)). Therefore

min
(U,X)∈A(p(i)(m,s))

(H(M)− I(M ; U, Y )) (2.9)

is the least number of bits of information needed to be embedded for a p(i)(m, s) ∈ P1.

Finally, minimizing (2.9) over P1 yields the theorem since H(M) is fixed. This com-

pletes the proof of Theorem 2.3.

In the following, an algorithm is developed to find the optimal publicly admissible joint

probability described in the above theorem.

Algorithm:
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Figure 2.4: Algorithm for optimal solution to Cox’s problem

Step 1 For i and p(i)(m, s) ∈ P , compute

Gi
4
= max

(U,X):Ed(S,X)≤D

[I(U ; Y )− I(U ; M, S) + I(M ; U, Y )];

Step 2 If H(M) ≤ Gi, compute

Li
4
= max

(U,X)∈A(p(i)(m,s))
I(M ; U, Y );

Step 3 If H(M) > Gi, let Li = −1;

Step 4 Let i = i + 1, and repeat Step 1-3;

Step 5 Let i0 = arg maxi Li, then p(i0)(m, s) is the optimal solution.
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The algorithm is designated in Figure 2.4. It shall be noted that Gi and Li for each i

can be calculated by employing numerical algorithms similar to Blahut-Arimoto algorithms

[2, 1] and Willems’s algorithm [42].

2.6 Proof of Direct Part

2.6.1 Preliminaries on Typicality

Typicality is an important tool in proving coding theorems, and has been studied exten-

sively in the literature [3, 12, 9]. This section will review the definition of typicality and

some basic properties needed in the following proofs.

Definition 2.7 Let X be a random variable drawn from a finite alphabet X with probability

distribution p(x). A sequence xn ∈ X n is said to be ε-typical with respect to p(x) if for all

a ∈ X , ∣∣∣∣N(a|xn)

n
− p(a)

∣∣∣∣ ≤ ε,

and N(a|xn) = 0 whenever p(a) = 0, where N(a|xn) is the number of occurrences of the

symbol a ∈ X in the sequence xn.

Definition 2.8 Let (X, Y ) be a random vector drawn from a finite alphabet X × Y with

joint probability distribution p(x, y). A pair of sequences (xn, yn) ∈ X n × Yn is said to be

jointly ε-typical with respect to p(x, y) if for all (a, b) ∈ X × Y,∣∣∣∣N(a, b|xn, yn)

n
− p(a, b)

∣∣∣∣ ≤ ε,

and N(a, b|xn, yn) = 0 whenever p(a, b) = 0, where N(a, b|xn, yn) is the number of occur-

rences of the pair (a, b) ∈ X × Y in the pair of sequences (xn, yn).

Conditional typicality can be defined in a similar manner. Obviously, if (xn, yn) is

jointly ε-typical with respect to p(x, y), then xn and yn are also typical with respect to
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the marginal probability mass functions p(x) and p(y) respectively. The set of all ε-typical

sequences xn ∈ X n with respect to p(x) is denoted by A
(n)
ε (X), and the set of all jointly

ε-typical sequences (xn, yn) ∈ X n × Yn with respect to p(x, y) is denoted by A
(n)
ε (X,Y ).

Lemma 2.1 Let Xi, i = 1, 2, . . . , n, be drawn independently and identically according to

p(x). Then for any given ε > 0

Pr{Xn ∈ A(n)
ε (X)} ≥ 1− ε,

for sufficiently large n.

Lemma 2.2 Let Yi, i = 1, 2, . . . , n, be drawn independently and identically according to

the marginal probability distribution p(y) of p(x, y). For xn ∈ A
(n)
ε (X) with respect to the

marginal probability distribution p(x) of p(x, y), denote A
(n)
ε (xn, Y ) = {yn ∈ Yn|(xn, yn) ∈

A
(n)
ε (X,Y )}, the set of all yn typical jointly with xn with respect to p(x, y). Then the

following hold:

(a) For sufficiently small ε, sufficiently large n, and any xn ∈ A
(n)
ε (X)

2−n(I(X;Y )+αε) ≤ Pr{Y n ∈ A(n)
αε (xn, Y )} ≤ 2−n(I(X;Y )−αε);

where α is a constant depending only on the joint probability distribution p(x, y) and the

sizes of X and Y.

(b) For any ε > 0 and sufficiently large n,

Pr{Y n ∈ A(n)
ε (xn, Y )|xn ∈ A(n)

ε (X)} ≥ 1− ε.

Lemma 2.3 (Markov Lemma): Suppose X → Y → Z and (Xn, Y n) is generated

identically and independently according to p(x, y). Then for sufficiently small ε > 0 and

sufficiently large n.

Pr{Xn ∈ A(n)
αε (zn, X)|Y n ∈ A(n)

ε (zn, Y )} ≥ 1− ε

where α > 0 is a constant depending only on the sizes of X , Y, and Z.
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2.6.2 Watermarking Coding Scheme

We now prove the direct part of the main theorem. Specifically, we will show that if

H(M) < Rcorrelated
public (D),

then p(m, s) is publicly admissible with respect to D.

Let (M, S, U, X, Y ) be the random vector with the joint probability distribution p(m, s, u, x, y) =

p(m, s)p(u, x|m, s)p(y|x) achieving the maximum in Rcorrelated
public (D), that is, Ed(S, X) ≤ D,

and

Rcorrelated
public (D) = I(U ; Y )− I(U ; M, S) + I(M ; U, Y ).

Denote γ
4
= I(U ; Y )−I(U ; M, S)+I(M ; U, Y )−H(M) > 0. Let ε > 0 be an arbitrarily small

but fixed number. We will show the existence of watermarking encoder and decoder pairs

(fn, gn) for all sufficiently large n such that Ed(Sn, fn(Mn, Sn)) < D+ε and pe(fn, gn) < ε.

Note that both the watermark transmitter and the receiver know the attack channel p(y|x).

Random Codes Generation: Two random codebooks C and W will be generated

as follows.

• First, generate identically and independently exp(n[H(M) + γ/8]) vectors mn ∈Mn

according to the probability p(m), and then uniformly distribute all these vectors into

t
4
= exp(n[H(M) − I(M ; U, Y ) + γ/4]) bins, each bin C(i), i = 1, 2, ..., t containing

exp(n[I(M ; U, Y )− γ/8]) vectors. Denote this random codebook by C = {C(i)}t
i=1.

• Second, for each index i = 1, ..., t, generate a bin of vectors W (i) = {un(i, j) ∈ Un|j =

1, 2, ..., exp(n[I(U ; M, S) + γ/4])}, each vector un(i, j) is generated identically and

independently according to the probability p(u) derived from the joint probability

p(m, s, u, x, y). Denote this random codebook by W = {W (i)}t
i=1.

• The two codebooks C and W are then distributed to the watermarking decoder.
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Watermarking encoding: Fix codebooks C, W . Given a watermark mn and a cover-

text sn

• if (mn, sn) is not jointly ε-typical, then an encoding error is declared;

• if (mn, sn) is jointly ε-typical, but no C(i) contains mn, i = 1, 2, ...t, then an encoding

error is declared;

• if (mn, sn) is jointly ε-typical and C(i) is the first bin in C containing mn, but no

vector un ∈ W (i) such that (mn, sn, un) is jointly ε-typical, then an encoding error is

declared;

• if (mn, sn) is jointly ε-typical, C(i) is the first bin in C containing mn, and un(i, j) ∈

W (i) is the first vector in W (i) such that (mn, sn, un(i, j)) is jointly ε-typical, then

the encoder randomly generates a stegotext xn according to p(xn|mn, sn, un(i, j));

and finally

• if an encoding error is declared, then define a fixed xn
0 as the stegotext.

Watermarking decoding: Fix codebooks C, W . Let yn be a forgery received by the

watermarking decoder when mn ∈ C(i) is transmitted using sn and un(i, j) ∈ W (i).

• The decoder finds a vector in the codebook W , say un(i0, j0) ∈ W (i0), such that

(un(i0, j0), y
n) is jointly ε-typical with respect to p(u, y).

• If no or more than one un(i0, j0) are found in W such that (un(i0, j0), y
n) is jointly

ε-typical, then a decoding error is declared.

• The decoder finds a vector m̂n ∈ C(i0) such that (m̂n, un(i0, j0), y
n) is jointly ε-typical

with respect to p(m, u, y).

• If no or more than one such m̂n are found in the bin C(i0), then a decoding error is

also declared.
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• The decoder decodes m̂n to be the watermark.

Note that in view of Lemmas 2.2 and 2.3, joint ε-typicality in both watermarking

encoding and decoding should be understood with ε being replaced by ε multiplied by a

proper constant whenever necessary.

2.6.3 Analysis on Averaged Error Probability

We shall bound the error probability EC,W pe(C, W ) averaged over all random codebooks,

watermarks and covertexts. Obviously, from the encoding scheme described above there

are the following encoding error events:

• E0: (mn, sn) is not jointly ε-typical;

• E1: (mn, sn) ∈ Ē0, but mn 6∈ C, where Ē0 denotes the complement of E0;

• E2: (mn, sn) 6∈ E0 ∪ E1, but no un ∈ W (i) such that (mn, sn, un) is ε-typical, where

i = i(mn) is the smallest i such that C(i) contains mn; and

• E3: (mn, sn) 6∈ E0∪E1∪E2, un(i, j) is the first vector in W (i) such that (mn, sn, un(i, j))

is ε-typical—such j will be denoted by j = j(mn, sn)—but (mn, sn, un(i, j), Xn) is not

ε-typical, where i = i(mn), and Xn is generated according to p(xn|mn, sn, un(i, j)).

Suppose now that encoding (mn, sn) is successful via C, W and the stegotext xn is

generated accordingly from (mn, sn, un(i, j)). Let yn be a forgery generated by the attacker.

Then, there are the following decoding error events:

• E: (mn, un(i, j), yn) is not jointly ε-typical;

• E ′: more than one un ∈ W such that (un, yn) is ε-jointly typical; and

• E ′′: more that one m̂n ∈ C(i) such that (m̂n, un(i, j), yn) is jointly ε-typical.

In the following, we will develop upper bounds for probabilities of these error events.
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• By Lemma 2.1 there exists a large number n0 such that for all n > n0,

Pr{E0} ≤ ε. (2.10)

• If mn is ε-typical and ε is sufficiently small, then p(mn) > 2−n[H(M)+γ/16] for suffi-

ciently large n. So, there exists a large number n1 such that for all n > n1,

Pr{E1} ≤ Pr{E1|Ē0}

≤ (1− 2−n[H(M)+γ/16])2n[H(M)−I(M ;U,Y )+γ/4]2n[I(M ;U,Y )−γ/8]

≤ 2−2nγ/16 ≤ ε. (2.11)

• Given (mn, sn) 6∈ E0 ∪ E1, let i = i(mn) be the smallest i such that C(i) contains

mn. By the generation of W (i),

Pr{(mn, sn, un) is jointly ε-typical|(mn, sn)} > 2−n[I(U ;M,S)+γ/8]

for large n. Thus, there exists a large number n2 such that for all n > n2 and

(mn, sn) 6∈ E0 ∪ E1

Pr{E2|(mn, sn)} = Pr{no un ∈ W (i) such that (mn, sn, un) is jointly ε-typical}

≤ (1− 2−n[I(U ;M,S)+γ/8])2n[I(U ;M,S)+γ/4]

≤ 2−2nγ/8 ≤ ε

which implies

Pr{E2} ≤ ε. (2.12)

• Since Xn is generated according to p(xn|mn, sn, un(i, j)), where un(i, j) is the first

vector in W (i) such that (mn, sn, un(i, j)) is jointly typical, it follows from Lemma

2.2-(b) that there exists a large number n3 such that for all n > n3

Pr{E3} ≤ Pr{E3|Ē2, Ē1, Ē0} ≤ ε. (2.13)
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Assume now that embedding mn into sn is successful via C, W and un(i, j), resulting

in a stegotext xn, and yn is a forgery generated by the attacker with the attack channel

input xn. We shall upper bound the error probability of watermark decoding Pr{M̂n 6=

Mn|mn, sn, un(i, j)}.

To begin with, one has

Pr{M̂n 6= Mn|mn, sn, un(i, j)} ≤ Pr{E ∪ E ′ ∪ E ′′|mn, sn, un(i, j)}

≤ Pr{E|mn, sn, un(i, j)}+ Pr{E ′ ∩ Ē|mn, sn, un(i, j)}

+ Pr{E ′′ ∩ Ē|mn, sn, un(i, j)}. (2.14)

• By the Markov Lemma, (mn, sn, un(i, j), xn, yn) is jointly typical with high probabil-

ity for large n, so is (mn, un(i, j), yn). Thus, there exists a large number n4 such that

for all n > n4

Pr{E|mn, sn, un(i, j)} ≤ ε. (2.15)

• In light of the definition of E ′, one has

Pr{E ′ ∩ Ē|mn, sn, un(i, j)}

≤ Pr{(un, yn) is jointly ε-typical for some un 6= un(i, j), yn ∈ A(n)
ε (Y )|mn, sn, un(i, j)}

=
∑

yn∈A
(n)
ε (Y )

p(yn|mn, sn, un(i, j))θ(mn, sn, un(i, j), yn), (2.16)

where

θ(mn, sn, un(i, j), yn)

∆
= Pr{(un, yn) is jointly ε-typical for some un 6= un(i, j)|mn, sn, un(i, j), yn}

≤
∑

un∈W (i′),i′=1,2,...t,i′ 6=i

Pr{(un, yn) is jointly ε-typical|mn, sn, un(i, j), yn} (2.17)

+ Pr{(un, yn) is jointly ε-typical, un ∈ W (i) but un 6= un(i, j)|mn, sn, un(i, j), yn}.
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By the generation of W , if un ∈ W (i′) and i′ 6= i, then un is independent of

mn, sn, un(i, j), yn and hence for sufficiently large n

Pr{(un, yn) is jointly ε-typical|mn, sn, un(i, j), yn} < 2−n[I(U ;Y )−γ/4]. (2.18)

Therefore, there exists a large number n5 such that for all n > n5, the summation in

the right side of (2.17) is less or equal to

2n[H(M)−I(M ;U,Y )+γ/4]2−n[I(U ;Y )−γ/4]2n[I(U ;M,S)+γ/4]

= 2−n[I(U ;Y )−I(U ;M,S)+I(M ;U,Y )−H(M)−3γ/4]

= 2−nγ/4 ≤ ε

2
, (2.19)

where the equalities of (2.19) are due to the random codebooks generation and the

definition of γ. To upper bound the second term in the right side of (2.17), one has

Pr{(un, yn) is jointly ε-typical, un ∈ W (i) but un 6= un(i, j)|mn, sn, un(i, j), yn}

=

|W (i)|∑
l=1

Pr{(un, yn) is typical, un ∈ W (i) but un 6= un(i, j), j = l|mn, sn, un(i, j), yn}

≤
|W (i)|∑
l=1

|W (i)|∑
k=1,k 6=l

Pr{(un
(k), y

n) is jointly typical , j = l|mn, sn, un(i, j), yn}

=

|W (i)|∑
l=1

|W (i)|∑
k=l+1

Pr{(un
(k), y

n) is jointly typical , j = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{(un
(k), y

n) is jointly typical , j = l|mn, sn, un(i, j), yn}

]
(2)

≤
|W (i)|∑
l=1

2−n[I(U ;Y )−γ/4]

|W (i)|∑
k=l+1

Pr{j = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{(un
(k), y

n) is typical , j = l|mn, sn, un(i, j), yn}

]
, (2.20)
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where (2) is from (2.18). Continuing upper bounding (2.20) yields

Pr{(un, yn) is jointly ε-typical, un ∈ W (i) but un 6= un(i, j)|mn, sn, un(i, j), yn}
(3)

≤
|W (i)|∑
l=1

[
2−n[I(U ;Y )−γ/4](|W (i)| − l) Pr{j = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{(un
(k), y

n) is typical , (un
(r), m

n, sn) is not typical ,

r = 1, 2, ..., l − 1, r 6= k, (un
(l), m

n, sn) is typical |mn, sn, un(i, j), yn}
]

≤
|W (i)|∑
l=1

2−n[I(U ;Y )−γ/4]
[
2n[I(U ;M,S)+γ/4] Pr{j = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{(un
(r), m

n, sn) is not typical , r < l, (un
(l), m

n, sn) is typical |mn, sn, un(i, j), yn}
Pr{(un

(k), m
n, sn) is not typical |mn, sn}

]
(4)

≤
|W (i)|∑
l=1

2−n[I(U ;Y )−γ/4]
[
2n[I(U ;M,S)+γ/4] Pr{j = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{j = l|mn, sn, un(i, j), yn}
1− 2−n[I(U ;M,S)−γ/4]

]

≤ 2−n[I(U ;Y )−γ/4]2n[I(U ;M,S)+γ/4]

[
1 +

1

1− 2−n[I(U ;M,S)−γ/4]

]
(5)

≤ 2−nγ/2

[
1 +

1

1− 2−n[I(U ;M,S)−γ/4]

]
≤ ε/2.

In the above derivation, (3) is due to the definition of j, (4) follows from the fact

that, there exists n6 such that for all n > n6,

Pr{(un, mn, sn) is jointly typical|mn, sn} < 2−n[I(U ;M,S)−γ/4],

and finally, (5) is attributable to the fact that γ < I(U ; Y )− I(U ; M, S). Putting all

inequalities above together, we get that for all n > max{n5, n6},

Pr{E ′ ∩ Ē|mn, sn, un(i, j)} < ε. (2.21)
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• Employing a similar approach, we now upper bound the probability Pr{E ′′∩Ē|mn, sn, un(i, j)}.

To this end, first define r = r(mn) to be the index of mn in the bin C(i). Note that

all vectors before the rth vector in C(i) are not equal to mn. Then one has

Pr{E ′′ ∩ Ē|mn, sn, un(i, j)} ≤ Pr{(m̂n, un(i, j), yn) is jointly ε-typical, m̂n ∈ C(i),

but m̂n 6= mn, (un(i, j), yn) ∈ A(n)
ε (U, Y )|mn, sn, un(i, j)}

=
∑

yn:(un(i,j),yn)∈A
(n)
ε (U,Y )

p(yn|mn, sn, un(i, j))η(mn, sn, un(i, j), yn),

where

η(mn, sn, un(i, j), yn)
∆
= Pr{(m̂n, un(i, j), yn) is jointly ε-typical, m̂n ∈ C(i),

but m̂n 6= mn|mn, sn, un(i, j), yn}.

=

|C(i)|∑
l=1

Pr{(m̂n, un(i, j), yn) is typical , m̂n ∈ C(i) but m̂n 6= mn, r = l|mn, sn, un(i, j), yn}

≤
|C(i)|∑
l=1

|C(i)|∑
k=1,k 6=l

Pr{(m̂n
(k), u

n(i, j), yn) is typical , r = l|mn, sn, un(i, j), yn}

=

|C(i)|∑
l=1

 |C(i)|∑
k=l+1

Pr{(m̂n
(k), u

n(i, j), yn) is typical , r = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{(m̂n
(k), u

n(i, j), yn) is typical , r = l|mn, sn, un(i, j), yn}

]

≤
|C(i)|∑
l=1

[
2−n[I(M ;U,Y )−γ/16]|C(i)|Pr{r = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{(m̂n
(k), u

n(i, j), yn) is typical , m̂n
(a) 6= mn, a = 1, 2, ..., l − 1, a 6= k,

m̂n
(l) = mn|mn, sn, un(i, j), yn}

]
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≤
|C(i)|∑
l=1

2−n[I(M ;U,Y )−γ/16]
[
2n[I(M ;U,Y )−γ/8] Pr{r = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{m̂n
(a) 6= mn, a < l, m̂n

(l) = mn|mn, sn, un(i, j), yn}
Pr{m̂n

(k) 6= mn|mn}

]

≤
|C(i)|∑
l=1

2−n[I(M ;U,Y )−γ/16]
[
2n[I(M ;U,Y )−γ/8] Pr{r = l|mn, sn, un(i, j), yn}

+
l−1∑
k=1

Pr{r = l|mn, sn, un(i, j), yn}
1− 2−n[H(M)−γ/4]

]

≤ 2−n[I(M ;U,Y )−γ/16]2n[I(M ;U,Y )−γ/8]

[
1 +

1

1− 2−n[H(M)−γ/4]

]
≤ 2−nγ/16

[
1 +

1

1− 2−n[H(M)−γ/4]

]
≤ ε

for all large n. Thus, there exists n7 such that for all numbers n > n7,

Pr{E ′′ ∩ Ē|mn, sn, un(i, j)} < ε. (2.22)

Finally, combining (2.10)-(2.13), (2.14),(2.15),(2.21) and (2.22) together, we get

EC,W pe(C, W ) ≤ 7ε, (2.23)

for all n > n′ = maxi=0,1,...,7{ni}

2.6.4 Analysis of Distortion Constraint

Let xn
0 be the fixed stegotext if an encoding error is declared. By the watermark encoding

scheme we have

EC,WEMn,Sn [d(Sn, Xn)] = E[d(Sn, Xn)]

= Pr{∪3
i=0Ei}E[d(Sn, Xn)| ∪3

i=0 Ei] + Pr{∩i
i=0Ēi}E[d(Sn, Xn)| ∩3

i=0 Ēi]

≤ Pr{∪3
i=0Ei}dmax + Pr{∩i

i=0Ēi}E[d(Sn, Xn)| ∩3
i=0 Ēi]

≤ 4εdmax + ε + D (2.24)
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where the last inequality follows from the fact that there exists a large number n8 such

that for n > n8, d(sn, xn) ≤ D + ε for all jointly ε-typical sequences (mn, sn, un, xn) with

respect to p(m, s, u, x) with Ed(S, X) ≤ D, and from the analysis of error probabilities of

encoding in the last subsection.

2.6.5 Existence of Watermarking Encoders and Decoders

By the Markov inequality and (2.23), one has

Pr{pe(C, W ) ≥
√

7ε} ≤
√

7ε.

Let

Γ = {(C, W ) : pe(C, W ) ≤
√

7ε}. (2.25)

Then Pr{Γ} ≥ 1−
√

7ε.

So, from (2.24) one has ∑
(C,W )∈Γ

Pr(C, W )ESn,Mn (d(Sn, Xn)|C, W )

≤ EC,W [ESn,Mn (d(Sn, Xn)|C, W )]

≤ 4εdmax + ε + D.

Thus, ∑
(C,W )∈Γ

Pr(C, W )

Pr{Γ}
ESn,Mn (d(Sn, Xn)|C, W )

=
1

Pr{Γ}
∑

(C,W )∈Γ

Pr(C, W )ESn,Mn (d(Sn, Xn)|C, W )

≤ 4εdmax + ε + D

1−
√

7ε
= D + ε′ (2.26)

where ε′ = (4dmax+1)ε+D
√

7ε

1−
√

7ε
goes to 0 as ε → 0.

Combining (2.25) and (2.26) yields the existence of watermarking encoder and water-

marking decoder for each n > maxi=0,1,..8{ni} such that the error probability is ≤
√

7ε and
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the averaged distortion is ≤ D + ε′. Since ε > 0 is arbitrary, it follows that the probability

distribution p(m, s) is publicly admissible with respect to D. This completes the the proof

of the direct part of Theorem 2.1.

2.6.6 Proof of Corollary 2.1

Assume Rcorrelated
public (D) > 0 for D ∈ [0, Dmax). From Theorem 2.1, it suffices to show that

p(m, s) is publicly admissible with respect to D if H(M) = Rcorrelated
public (D). Indeed, for

any sufficiently small ε > 0, one has Rcorrelated
public (D + ε) > Rcorrelated

public (D) = H(M) since

Rcorrelated
public (D) is strictly increasing in [0, Dmax) by Property 2.3. Thus, by Theorem 2.1,

p(m, s) is publicly admissible with respect to D + ε for any sufficiently small ε > 0. This,

together with the definition of public admissibility, implies that p(m, s) is also publicly

admissible with respect to D.

�

2.7 Proof of the Converse Part

To prove the converse part of Theorem 2.1, it suffices to show that H(M) ≤ Rcorrelated
public (D)

if p(m, s) is admissible with respect to D. Suppose p(m, s) is admissible with respect to

D. Then for any ε > 0, there exists, for any sufficiently large n, a watermarking encoder

and public decoder pair (fn, gn) with length n such that

Ed(Sn, fn(Mn, Sn)) ≤ D + ε,

pe(fn, gn) = Pr{gn(Y n) 6= Mn} < ε,

where Y n is generated by the attack channel with input Xn = fn(Mn, Sn). In the following

we will show that H(M) ≤ Rcorrelated
public (D).

We first upper bound I(Mn; Y n) − I(Mn; Sn). Using an approach similar to [40], we
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have

I(Mn; Y n)− I(Mn; Sn) =
n∑

i=1

[I(Mn; Yi|Y i−1
1 )− I(Mn; Si|Sn

i+1)]

=
n∑

i=1

[H(Yi|Y i−1
1 )−H(Yi|Mn, Y i−1

1 )−H(Si|Sn
i+1) + H(Si|Mn, Sn

i+1)]

=
n∑

i=1

[H(Yi|Y i−1
1 )−H(Yi|Mn, Y i−1

1 , Sn
i+1)− I(Yi; S

n
i+1|Mn, Y i−1

1 )

−H(Si|Sn
i+1) + H(Si|Mn, Sn

i+1)]

=
n∑

i=1

[H(Yi|Y i−1
1 )−H(Yi|Mn, Y i−1

1 , Sn
i+1)−H(Si|Sn

i+1) + H(Si|Mn, Sn
i+1)]

−
n∑

i=1

I(Yi; S
n
i+1|Mn, Y i−1

1 )

(a)
=

n∑
i=1

[H(Yi|Y i−1
1 )−H(Yi|Mn, Y i−1

1 , Sn
i+1)−H(Si|Sn

i+1) + H(Si|Mn, Sn
i+1)]

−
n∑

i=1

I(Y i−1
1 ; Si|Mn, Sn

i+1)

(b)
=

n∑
i=1

[H(Yi|Y i−1
1 )−H(Yi|Mn, Y i−1

1 , Sn
i+1)−H(Si) + H(Si|Mn, Y i−1

1 , Sn
i+1)]

(c)

≤
n∑

i=1

[H(Yi)−H(Yi|Mn, Y i−1
1 , Sn

i+1)−H(Si) + H(Si|Mn, Y i−1
1 , Sn

i+1)]

=
n∑

i=1

[I(Vi; Yi)− I(Vi; Si)],

where Vi = (Mn, Y i−1
1 , Sn

i+1). In the above, the first three equalities follow from the defi-

nition and the chain rule of mutual information, (b) is attributable to the memorylessness

of the source S, (c) is due to the fact that conditions cannot increase entropy, and finally
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(a) is derived from the following fact

n∑
i=1

I(Yi; S
n
i+1|Mn, Y i−1

1 ) =
n∑

i=1

n∑
j=i+1

I(Yi; Sj|Mn, Y i−1
1 , Sn

j+1)

=
n∑

j=1

j−1∑
i=1

I(Yi; Sj|Mn, Y i−1
1 , Sn

j+1)

=
n∑

j=1

I(Y j−1
1 ; Sj|Mn, Sn

j+1)

=
n∑

i=1

I(Y i−1
1 ; Si|Mn, Sn

i+1).

Now let T ∈ {1, 2, ..., n} be a time-sharing random variable, uniformly distributed

and independent of all other random variables. Define S = Si, M = Mi, X = Xi,

Y = Yi, and V = Vi when T = i, and let U = (V, T ). It is easy to see that the joint

distribution of M and S is exactly given by p(m, s), and (M, S, U) → X → Y forms a

Markov chain with the transition probability from X to Y given by p(y|x). Furthermore,

since d(sn, xn) = 1
n

∑n
i=1 d(si, xi), it follows that

Ed(S, X) =
1

n

n∑
i=1

Ed(Si, Xi)

= Ed(Sn, Xn) ≤ D + ε.

Since I(T ; S) = 0, it follows that

I(Mn; Y n)− I(Mn; Sn) ≤ n[I(V ; Y |T )− I(V ; S|T )]

≤ n[I(V, T ; Y )− I(V, T ; S)]

= n[I(U ; Y )− I(U ; S)]. (2.27)
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Therefore, we have

nH(M |S) = H(Mn|Sn)

= I(Mn; Y n|Sn) + H(Mn|Y n, Sn)

= I(Mn; Y n|Sn) + H(Mn|Y n)− I(Mn; Sn|Y n)

= I(Mn; Sn, Y n)− I(Mn; Sn) + H(Mn|Y n)− I(Mn; Sn|Y n)

= I(Mn; Y n)− I(Mn; Sn) + H(Mn|Y n)
(d)

≤ n[I(U ; Y )− I(U ; S)] + H(Mn|Y n)
(e)

≤ n[I(U ; Y )− I(U ; S)] + 1 + npe(fn, gn) log |M| (2.28)

where (d) follows from inequality (2.27) and (e) is due to the Fano inequality,

H(Mn|Y n) ≤ 1 + npe(fn, gn) log |M|.

On the other hand, one has

nI(M ; U, Y ) = nI(M ; V, T, Y )

(f)
= nI(M ; V, Y |T )

=
n∑

i=1

I(Mi; Vi, Yi)

=
n∑

i=1

H(Mi)−
n∑

i=1

H(Mi|Vi, Yi)

(g)
=

n∑
i=1

H(Mi)−
n∑

i=1

H(Mi|Vi, Si)

=
n∑

i=1

I(Mi; Vi, Si)

= nI(M ; V, S|T )

(h)
= nI(M ; V, T, S)

= nI(M ; U, S)

= n[I(M ; S) + I(M ; U |S)] (2.29)
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where (f) and (h) follow from the independence of M and T , and (g) is attributable to the

fact that Mi is uniquely determined by Vi for each i by the construction of Vi. Thus,

H(M) = H(M |S) + I(M ; S)
(i)

≤ I(U ; Y )− I(U ; S) + I(M ; U, Y )− I(M ; U |S) +
1

n
+ pe(fn, gn) log |M|

= I(U ; Y )− I(U ; M, S) + I(M ; U, Y ) +
1

n
+ pe(fn, gn) log |M|,

≤ I(U ; Y )− I(U ; M, S) + I(M ; U, Y ) +
1

n
+ ε log |M|

≤ Rcorrelated
public (D + ε) +

1

n
+ ε log |M|

where (i) follows from inequalities (2.28) and (2.29). Since Rcorrelated
public (D) as a function of

D is continuous, letting n →∞ and then ε → 0 yields

H(M) ≤ Rcorrelated
public (D).

This completes the proof of the converse part.

2.8 Summary

A new digital watermarking scenario has been studied, where the watermark source and

the covertext source are correlated. A necessary and sufficient condition has been derived

under which the watermark source can be recovered with high probability at the end of a

public watermarking decoder after the watermarked signal is disturbed by a fixed memory-

less attack channel. It has been demonstrated that there exists some public watermarking

system with a correlated watermark and covertext for which reliably transmitting the wa-

termark to the watermark receiver is still possible even when the entropy of the watermark

source is strictly greater than the standard public watermarking capacity. Moreover, by

using similar techniques, a combined source coding and Gel’fand-Pinsker channel coding

theorem has also been established, and an open problem proposed recently by Cox et al

has been solved.
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Chapter 3

Joint Compression and Information

Embedding When Watermarks and

Covertexts Are Correlated

The problem of joint compression and watermarking is addressed for public watermarking

systems with correlated watermark and covertext sources. Sufficient and necessary condi-

tions are determined under which watermarks can be recovered with high probability at

the end of public watermark decoding after the compression rate-constrained watermarked

signal is disturbed by a fixed memoryless attack channel.

3.1 Introduction

In real applications, watermarked signals are likely to be stored and/or transmitted in

compressed format. Obviously, the simplest way of watermarking is to embed watermarks

first via a standard watermarking encoder and then compress the watermarked signals via

a standard compression encoder with a given compression rate to get compressed water-

marked signals. But, the drawback of this approach employing separated watermarking
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Figure 3.1: Model of joint compression and watermarking system

and compression is obvious, since the compression in such a way could remove certain

watermarks from the watermarked signals, and degrade or damage the robustness of wa-

termarked signals. Therefore, instead of treating watermarking and compression separately,

it is interesting and beneficial to look at the joint design of watermarking and compression

system, as introduced in the following. All notations in Chapter 2 are adopted here.

The communication model of joint compression and watermarking system is designated

in Figure 3.1. Here, as before, a watermark M is assumed to be a random variable uniformly

taking values over M = {1, 2, ..., |M|}, and a covertext Sn is a sequence of independent

and identical drawings of a random variable S with probability distribution pS(s) taking

values over a finite alphabet S, that is, p(sn) =
∏n

i=1 pS(si).

Definition 3.1 A joint compression and watermarking encoder of length n with

distortion level D with respect to a distortion measure d and watermarking rate Rw and

compression rate Rc is a mapping fn from M×Sn to X n, xn = fn(m, sn) such that

Ed(Sn, Xn) ≤ D,

Rw =
1

n
log |M|

H(Xn)

n
≤ Rc.
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Note, since H(Xn)
n

≤ Rc, the stegotext Xn can be entropy-encoded with rate at most

Rc.

Definition 3.2 A mapping gn : Yn →M, m̂ = gn(yn) is called a public watermarking

decoder of length n. Here, the forgery yn is generated by the attacker according to the

attack channel p(yn|xn) with input stegotext xn.

Given a joint compression and watermarking encoder fn and a public watermarking

decoder gn, the error probability of watermarking averaged over all watermarks and cover-

texts is defined by

pe(fn, gn) = Pr{M̂ 6= M}.

Definition 3.3 A pair (Rw, Rc) is called publicly achievable with respect to distortion

level D if for any ε > 0, there exists, for any n sufficiently large, an n-length joint compres-

sion and watermarking encoder fn with distortion level D+ε and watermarking rate Rw−ε

and compression rate Rc, and a public watermarking decoder gn such that pe(fn, gn) < ε.

Definitions for private case can be given in the same manner.

In this scenario of joint compression and watermarking, the main problem studied in

information theory is to describe tradeoffs between watermarking rate, compression rate,

distortion between covertexts and watermarked signals and robustness of watermarked sig-

nals. Karakos and Papamarcou [19,18] determined best tradeoffs for joint compression and

private watermarking systems with finite alphabets and with Gaussian covertext sources,

respectively. Maor and Merhav [20,21] gave best tradeoffs for joint compression and public

watermarking systems with finite alphabets and no attack or under a fixed attack channel,

respectively. The best tradeoffs for the private case were extended to the case of abstract

alphabets in [45].

In all these mentioned works on joint compression and digital watermarking, the water-

mark to be embedded is assumed independent of the covertext. This chapter, as Chapter
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Figure 3.2: Model of joint compression and watermarking system with correlated water-

marks and covertexts

2, assuming that watermarks and covertexts (Mn, Sn) are generated identically and inde-

pendently according to a joint probability distribution p(m, s), investigates the framework

in Chapter 2 but with an additional constraint for compression rate of watermarked sig-

nals. To be specific, let D be a given distortion level between the covertext Sn and the

watermarked signal Xn with respect to the distortion measure d, Rc a given compression

rate for watermarked signal Xn, we determine a necessary and sufficient condition for the

case of public watermarking, under which the watermark Mn can be fully recovered with

high probability at the end of watermark decoding after the compression rate-constrained

watermarked signal is disturbed by a fixed memoryless attack channel p(y|x).

3.2 Problem Formulation and Result Statement

3.2.1 Problem Formulation

The joint compression and public watermarking model studied in this chapter is desig-

nated in Figure 3.2, in which watermark Mn ∈ Mn and covertext Sn ∈ Sn are generated
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independently and identically according to a joint probability distribution p(m, s), that is,

p(mn, sn) =
n∏

i=1

p(mi, si).

for any n and mn × sn ∈ Mn × Sn. Let p(yn|xn) =
∏n

i=1 p(yi|xi) be a fixed memory-

less attack channel with input xn and output yn, known to both watermark encoder and

watermark decoder.

Definition 3.4 A joint compression and watermarking encoder of length n with

distortion level D with respect to the distortion measure d and compression rate Rc is a

mapping fn from Mn × Sn to X n, xn = fn(mn, sn) such that

Ed(Sn, Xn) ≤ D,

H(Xn)

n
≤ Rc.

A public watermarking decoder is defined in Definition 3.2.

Given a joint compression and watermarking encoder fn and a public watermarking

decoder pair gn, the error probability of watermarking averaged over all watermarks and

covertexts is defined by

pe(fn, gn) = Pr{M̂n 6= Mn}.

Definition 3.5 The joint probability distribution p(m, s) of a correlated watermark and

covertext source (M, S) is called publicly admissible with respect to distortion level D

and compression rate Rc if for any ε > 0, there exists for any n sufficiently large, an

n-length joint compression and watermarking encoder fn with distortion level D + ε and

compression rate Rc and a public watermarking decoder gn such that pe(fn, gn) < ε.

The aim of this chapter is to determine sufficient and necessary conditions for a joint

probability distribution p(m, s) under which p(m, s) is publicly admissible with respect to

a distortion level D and a compression rate Rc.
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3.2.2 Main Result and Discussion

Let p(m, s), D, Rc ≥ 0 be given as before. Define

Rcorrelated
w (D, Rc)

def
= sup

p(u,x|m,s):Ed(S,X)≤D

min {Rc − I(M, S; U,X) + I(M ; U, Y ),

I(U ; Y )− I(U ; M, S) + I(M ; U, Y )} (3.1)

where the sup is taken over all random variables U,X taking values from finite alphabets

U , X respectively, jointly distributed with M, S, Y with the joint probability distribution

p(m, s, u, x, y) = p(m, s)p(u, x|m, s)p(y|x).

The following theorem is the main result of this chapter, which describes the sufficient

and necessary conditions for public admissibility of a joint probability p(m, s).

Theorem 3.1 Let p(m, s) be the joint probability distribution of a joint watermark and

covertext source (M, S). For any D ≥ 0, Rc ≥ 0, if Rcorrelated
w (D, Rc) > 0, then, p(m, s) is

publicly admissible with respect to D and Rc if

H(M) < Rcorrelated
w (D, Rc); (3.2)

p(m, s) is not publicly admissible with respect to D and Rc if

H(M) > Rcorrelated
w (D, Rc). (3.3)

Moreover, for any fixed Rc > 0, if Rcorrelated
w (D, Rc) > 0 for D ∈ [0, Dmax(Rc)), then p(m, s)

is publicly admissible with respect to D and Rc if and only if

H(M) ≤ Rcorrelated
w (D, Rc), (3.4)

where Dmax(Rc) is the least distortion that achieves the maximum of Rcorrelated
w (D, Rc) over

D.

Discussion and Comments:
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• The model studied in this chapter can be regarded as a combination of the model

in Chapter 2 and the models of [19, 18, 20, 21], in which watermarks are assumed

independent of covertexts.

• If the watermark source and the covertext source are independent, that is, p(m, s) =

p(m)p(s), then Rcorrelated
w (D, Rc) is equal to the joint compression and public water-

marking capacity Cw(D, Rc), as given in [21] by

Cw(D, Rc) = max
p(u,x|s):Ed(S,X)≤D

min{Rc − I(S; U,X), I(U ; Y )− I(U ; S)}. (3.5)

Thus, Theorem 3.1 is degraded to the joint compression and public watermarking

coding theorem in [21].

• If no compression rate for stegotext is constrained in the model of this chapter, then

Theorem 3.1 is equivalent to Theorem 2.1 and Corollary 2.1.

3.3 Properties of Rcorrelated
w (D, Rc)

In this section we shall study Rcorrelated
w (D, Rc) by determining some properties, which will

be used in the following proofs.

Property 3.1 Let p(m, s) be a fixed joint probability distribution of (M, S). Then, the

supremum in Rcorrelated
w (D, Rc) can be replaced by maximum since the cardinality of U can

be upper bounded by |M||S||X |+ 2, that is,

Rcorrelated
w (D, Rc) = max

p(u,x|m,s):Ed(S,X)≤D

min {Rc − I(M, S; U,X) + I(M ; U, Y ),

I(U ; Y )− I(U ; M, S) + I(M ; U, Y )} (3.6)

where the maximum is taken over all auxiliary random variables (U,X) taking values over

U ×X with |U| ≤ |M||S||X |+ 2, jointly distributed with (M, S, Y ) with the joint probabil-

ity distribution of (M, S, U, X, Y ) given by p(m, s, u, x, y) = p(m, s)p(u, x|m, s)p(y|x), and

satisfying Ed(S, X) ≤ D.
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The proof is very similar to that of Property 2.1, and omitted here.

Property 3.2 (1) Rcorrelated
w (D, Rc) is concave with respect to (D, Rc);

(2) For any Rc > 0, Rcorrelated
w (D, Rc) as a function of D is increasing and continuous in

[0,∞), and strictly increasing in [0, Dmax(Rc)).

Proof: Since (2) easily follows from (1), we only need to prove the claim in (1).

First, for any random variables (M, S, U, X, Y ), we can write

I(U ; Y )− I(U ; M, S) + I(M ; U, Y ) = H(Y )−H(M, S) + H(M, S|U) + H(M)−H(M, Y |U)

I(M, S; U,X)− I(M ; U, Y ) = I(M, S; U) + I(M, S; X|U)− I(M ; U)− I(M ; Y |U).

Now, let λ1 ≥ 0, λ2 ≥ 0 with λ1 + λ2 = 1, and (D1, R
(1)
c ), (D2, R

(2)
c ) be any two points.

Let (M, S, Ui, Xi, Yi), i = 1, 2 be the random variables achieving Rcorrelated
w (Di, R

(i)
c ), T ∈

{1, 2} be a random variable independent of all other random variables with λi = Pr{T = i}.

Define new random variables

U = (UT , T ), X = XT , Y = YT .
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Then, it is easy to check that for the constructed random vector (M, S, U, X, Y ), Ed(S, X) ≤

λ1D1 + λ2D2. Moreover, one has

λ1R
(1)
c + λ2R

(2)
c − I(M, S; U,X) + I(M ; U, Y )

= λ1R
(1)
c + λ2R

(2)
c − I(M, S; U)− I(M, S; X|U) + I(M ; U) + I(M ; Y |U)

= λ1R
(1)
c + λ2R

(2)
c − I(M, S; UT , T )− I(M, S; X|UT , T ) + I(M ; UT , T ) + I(M ; Y |UT , T )

= λ1R
(1)
c + λ2R

(2)
c − I(M, S; T )− I(M, S; UT |T )− I(M, S; X|UT , T )

+I(M ; T ) + I(M ; UT |T ) + I(M ; Y |UT , T )

= λ1R
(1)
c + λ2R

(2)
c − I(M, S; UT |T )− I(M, S; X|UT , T ) + I(M ; UT |T ) + I(M ; Y |UT , T )

= λ1

(
R(1)

c − I(M, S; U1)− I(M, S; X1|U1) + I(M ; U1) + I(M ; Y1|U1)
)

+λ2

(
R(2)

c − I(M, S; U2)− I(M, S; X2|U2) + I(M ; U2) + I(M ; Y2|U2)
)

= λ1

(
R(1)

c − I(M, S; U1, X1) + I(M ; U1, Y1)
)

+ λ2

(
R(2)

c − I(M, S; U2, X2) + I(M ; U2, Y2)
)

≥ λ1R
correlated
w (D1, R

(1)
c ) + λ2R

correlated
w (D2, R

(2)
c ),

and similarly,

I(U ; Y )− I(U ; M, S) + I(M ; U, Y ) ≥ λ1R
correlated
w (D1, R

(1)
c ) + λ2R

correlated
w (D2, R

(2)
c ).

So, by the definition of Rcorrelated
w (D, Rc), one has

Rcorrelated
w (λ1D1 + λ2D2, λ1R

(1)
c + λ2R

(2)
c )

≥ min{λ1R
(1)
c + λ2R

(2)
c − I(M, S; U,X) + I(M ; U, Y ), I(U ; Y )− I(U ; M, S) + I(M ; U, Y )}

≥ λ1R
correlated
w (D1, R

(1)
c ) + λ2R

correlated
w (D2, R

(2)
c ).

The concavity of Rcorrelated
w (D, Rc) with respect to D, Rc is proved. �

3.4 Proof of the Direct Part

Suppose Rcorrelated
w (D, Rc) > 0 for D ≥ 0, Rc > 0. By employing random coding argument

we first shall show p(m, s) is publicly admissible with respect to D and Rc if H(M) <
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Rcorrelated
w (D, Rc), then show that p(m, s) is publicly admissible with respect to Rc > 0, D ∈

[0, Dmax(Rc)) if H(M) = Rcorrelated
w (D, Rc), by exploiting properties of Rcorrelated

w (D, Rc).

Now, assume that (U,X) be random variables over finite alphabets U × X achieving

the Rcorrelated
w (D, Rc), jointly distributed with M, S, Y with the probability distribution

p(m, s, x, u, y) of (M, S, U, X, Y ) given by p(m, s, x, u, y) = p(m, s)p(x, u|m, s)p(y|x). Thus,

Ed(S, X) ≤ D and

Rcorrelated
w (D, Rc) = min{Rc − I(M, S; U,X) + I(M ; U, Y ), I(U ; Y )− I(U ; M, S) + I(M ; U, Y )}.

Define γ
4
= min{Rc−I(M, S; U,X)+I(M ; U, Y ), I(U ; Y )−I(U ; M, S)+I(M ; U, Y )}−

H(M). We want to show that, for any ε > 0w there exist joint compression and water-

marking encoder and public watermarking decoder (fn, gn) for all sufficiently large n such

that Ed(Sn, fn(Mn, Sn)) < D + ε, H(fn(Mn, Sn))/n ≤ Rc and pe(fn, gn) < ε.

3.4.1 Random Joint Compression and Watermarking Coding

Random Codes Generation: Three random codebooks C,W and G will be generated

as follows.

• First, generate identically distributed and independently exp(n[H(M)−I(M ; U, Y )+

γ/8]) vectors mn ∈ Mn according to the probability p(m), and uniformly distribute

all these vectors into t
4
= exp(n[H(M) − I(M ; U, Y ) + γ/4]) bins, each bin C(i),

i = 1, ..., t, containing exp(n[I(M ; U, Y )−γ/8]) vectors. Denote the random codebook

by C = {C(i)}t
i=1.

• Second, for each index i = 1, ..., t generate a bin of vectors W (i) = {un(i, j) : j =

1, 2, ..., exp(n[I(U ; M, S) + γ/4])}, each un(i, j) ∈ Un is generated identically and

independently according to the probability p(u) derived from the joint probability

p(m, s, x, u, y). Denote the random codebook by W = {W (i)}t
i=1.

• Third, for each vector un(i, j) ∈ W (i), i = 1, ..., t, j = 1, 2, ..., exp(n[I(U ; M, S) +

γ/4]) generate a bin of vectors G(i, j) = {xn(i, j, l) : l = 1, 2, ..., exp(n[I(M, S; X|U)+
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γ/4])}, each xn(i, j, l) ∈ X n is generated identically and independently according to

the probability p(xn|un(i, j)). Denote the random codebook by G = {G(i, j), i =

1, ..., t, j = 1, 2, ..., exp(n[I(U ; M, S) + γ/4])}.

• Finally, the two codebooks C and W are distributed to the watermarking decoder,

and the codebook G is sent to the lossless decompressor of stegotexts.

Watermarking encoding: Fix codebooks C, W, G. Given a watermark mn and a

covertext sn.

• If (mn, sn) is not jointly ε-typical, then an encoding error is declared;

• If (mn, sn) is jointly ε-typical, but no C(i) contains mn, i = 1, 2, ...t, then an encoding

error is declared;

• If (mn, sn) is jointly ε-typical and C(i) is the first bin in C containing mn, but no

vector un ∈ W (i) such that (mn, sn, un) is jointly ε-typical, then an encoding error is

declared;

• If (mn, sn) is jointly ε-typical, C(i) is the first bin in C containing mn, and un(i, j) is

the first vector in W (i) such that (mn, sn, un(i, j)) is jointly ε-typical, but no vector xn

in the bin G(i, j) such that (mn, sn, un(i, j), xn) is jointly ε-typical, then an encoding

error is declared;

• If (mn, sn) is jointly ε-typical, C(i) is the first bin in C containing mn, and un(i, j) is

the first vector in W (i) such that (mn, sn, un(i, j)) is jointly ε-typical, then choose the

first vector xn(i, j, l) as the stegotext in the bin G(i, j) such that (mn, sn, un(i, j), xn(i, j, l))

is jointly ε-typical;

• If an encoding error is declared, then define a fixed xn
0 as the stegotext.

Watermarking decoding: Fix codebooks C, W . The decoding scheme is exactly the

same as that of Chapter 2. To be specific, let yn be a forgery received by the watermarking

decoder when mn ∈ C(i) is transmitted using sn, un(i, j) ∈ W (i) and xn(i, j, l) ∈ G(i, j).
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• The decoder finds the first vector, say un(i0, j0), in the codebook W such that

(un(i0, j0), y
n) is jointly ε-typical with respect to p(u, y);

• If no or more than one un are found in W such that (un, yn) is jointly ε-typical, then

a decoding error is declared;

• If only one un(i0, j0) is found in W such that (un(i0, j0), y
n) is jointly ε-typical, then

the decoder finds the unique vector m̂n ∈ C(i0) such that (m̂n, un(i0, j0), y
n) is jointly

ε-typical with respect to p(m, u, y), and decodes m̂n to be the watermark;

• If only one un(i0, j0) is found in W such that (un(i0, j0), y
n) is jointly ε-typical, but

no or more than one m̂n are found in the bin C(i0) such that (m̂n, un(i0, j0), y
n) is

jointly ε-typical, then a decoding error is also declared.

3.4.2 Averaged Error Probability

From the random watermarking encoding and decoding scheme, there are the following

encoding error events:

• E0: (mn, sn) is not jointly ε-typical;

• E1: (mn, sn) ∈ Ē0, but mn 6∈ C, where Ē0 denotes the complement of E0;

• E2: (mn, sn) 6∈ E0 ∪ E1, but no un ∈ W (i) such that (mn, sn, un) is ε-typical, where

i = i(mn) is the smallest i such that C(i) contains mn; and

• E3: (mn, sn) 6∈ E0∪E1∪E2, un(i, j) is the first vector in W (i) such that (mn, sn, un(i, j))

is ε-typical, but no xn ∈ G(i, j) is found such that (mn, sn, un(i, j), xn) is ε-typical.

Suppose that encoding (mn, sn) is successful via C, W, G with the stegotext xn. Let

yn be a forgery generated by the attacker. Then, there are the following decoding error

events:
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• E: (mn, un(i, j), yn) is not jointly ε-typical;

• E ′: more than one un ∈ W such that (un, yn) is ε-jointly typical; and

• E ′′: more that one m̂n ∈ C(i) such that (m̂n, un(i, j), yn) is jointly ε-typical.

Based on the random coding argument in this section and the analysis of error proba-

bilities in Subsection 2.6.3 of Chapter 2, we can obtain for sufficiently large n

EC,W,Gpe(C, W, G) ≤ 8ε (3.7)

if we could show that

Pr{E3} ≤ ε (3.8)

To reach this, we note that xn ∈ G(i, j) is generated identically and independently

according to p(xn|un(i, j)), so for large n the probability

Pr{(mn, sn, un(i, j), xn) is jointly ε-typical} > 2−n[I(X;M,S|U)+γ/8].

Thus, there exists a large number n1 such that for all n > n1

Pr{E3} = Pr{no xn ∈ G(i, j) such that (mn, sn, un(i, j), xn) is jointly ε-typical}

≤ (1− 2−n[I(X;M,S|U)+γ/8])2n[I(X;M,S|U)+γ/4]

≤ 2−2nγ/8 ≤ ε. (3.9)

3.4.3 Distortion Constraint and Compression Rate Constraint

Let xn
0 be the fixed stegotext if an encoding error is declared. By the watermark encoding

scheme we have

EC,W,GEMn,Sn [d(Sn, Xn)] = E[d(Sn, Xn)]

= Pr{∪3
i=0Ei}E[d(Sn, Xn)| ∪3

i=0 Ei] + Pr{∩i
i=0Ēi}E[d(Sn, Xn)| ∩3

i=0 Ēi]

≤ Pr{∪3
i=0Ei}dmax + Pr{∩i

i=0Ēi}E[d(Sn, Xn)| ∩3
i=0 Ēi]

≤ 4εdmax + ε + D (3.10)
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where the last inequality follows from the fact that for large n, d(sn, xn) ≤ D + ε since

(mn, sn, un(i, j), xn(i, j, l)) is jointly ε-typical with respect to p(m, s, u, x) with Ed(S, X) ≤

D

Finally, by the construction of the codebook G,

H(Xn)

n
≤ 1

n
log |G|

≤ [H(M)− I(M ; U, Y ) + γ/4] + [I(M, S; X|U) + γ/4] + [I(M, S; U) + γ/4]

≤ Rc − γ/4

≤ Rc (3.11)

since

H(M)− I(M ; U, Y ) + I(M, S; X|U) + I(M, S; U)

= H(M)− I(M ; U, Y ) + I(M, S; X,U)

≤ Rc − γ

by the definition of γ.

3.4.4 Existence of Watermarking Encoders and Decoders

By Markov inequality and (3.7), one has

Pr{pe(C, W, G) ≥
√

8ε} ≤ EC,W,Gpe(C, W, G)√
8ε

=
√

8ε.

Let

Γ = {(C, W, G) : pe(C, W, G) ≤
√

8ε}, (3.12)

then Pr{Γ} ≥ 1−
√

8ε.
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So, from (3.10) one has∑
(C,W,G)∈Γ

Pr(C, W,G)ESn,Mn (d(Sn, Xn)|C, W,G)

≤ EC,W,G[ESn,Mn (d(Sn, Xn)|C, W, G)]

≤ 4εdmax + ε + D.

Thus, ∑
(C,W,G)∈Γ

Pr(C, W,G)

Pr{Γ}
ESn,Mn (d(Sn, Xn)|C, W, G)

=
1

Pr{Γ}
∑

(C,W,G)∈Γ

Pr(C, W,G)ESn,Mn (d(Sn, Xn)|C, W,G)

≤ 4εdmax + ε + D

1−
√

8ε
= D + ε′ (3.13)

for some small number ε′ > 0 and ε′ → 0 as ε → 0.

Combination of (3.11),(3.12) and (3.13) guarantees the existence of joint compression

and watermarking encoder and public watermarking decoder for all large n such that the

error probability is less than
√

8ε, the averaged distortion Ed(Sn, Xn) is less than D + ε′

and H(Xn)/n ≤ Rc, that is, the probability p(m, s) is publicly admissible with respect to

D and compression rate Rc if Rcorrelated
w (D, Rc) > H(M).

To finish the proof of the direct part, in the following we shall prove that the probability

p(m, s) is publicly admissible with respect to D ∈ [0, Dmax(Rc)) and compression rate Rc

if H(M) = Rcorrelated
w (D, Rc). Indeed, for any small ε > 0, one has

Rcorrelated
w (D + ε, Rc) > Rcorrelated

w (D, Rc) = H(M)

since Rcorrelated
w (D, Rc) is strictly increasing in [0, Dmax(Rc)) by Property 3.2. Thus, p(m, s)

is publicly admissible with respect to D+ε and compression rate Rc by the proof of the first

step. Because ε > 0 can be arbitrarily small, p(m, s) is publicly admissible with respect to

D and compression rate Rc. The proof of the direct part is finished.
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3.5 Proof of the Converse Part

In this section we shall prove the converse part, that is, for any arbitrary but fixed number

ε > 0, if there exists for any sufficiently large n, a joint compression and watermarking

encoder and public decoder pair (fn, gn) with length n such that

Ed(Sn, fn(Mn, Sn)) ≤ D + ε,

1

n
H(fn(Mn, Sn)) ≤ Rc,

pe = Pr{gn(Y n) 6= Mn} < ε,

where Y n is generated by the attack channel with input Xn = fn(Mn, Sn), then H(M) ≤

Rcorrelated
w (D, Rc).

The proof is very long and will be finished in four steps.

Step one. Since Xn = fn(Mn, Sn) is a function of (Mn, Sn), H(Xn|Sn, Mn) = 0.

Thus

H(Mn|Sn) = H(Mn|Sn)−H(Xn|Mn, Sn)

= H(Mn, Xn|Sn)

= H(Mn, Xn)− I(Sn; Mn, Xn)

= H(Mn|Xn) + H(Xn)− I(Sn; Mn, Xn).

Following from the basic properties of mutual information, the Markov chain (Mn, Sn) →

Xn → Y n and from the fact that the covertext source {Si}∞i=1 is memoryless, it is not hard
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to get

I(Sn; Mn, Xn) = I(Sn; Mn, Xn, Y n)− I(Sn; Y n|Mn, Xn)

= I(Sn; Mn, Xn, Y n)

=
n∑

i=1

I(Si; M
n, Xn, Y n|Sn

i+1)

=
n∑

i=1

[
I(Si; M

n, Xn, Y n, Sn
i+1)− I(Si; S

n
i+1)
]

=
n∑

i=1

I(Si; M
n, Sn

i+1, Y
i−1
1 , Xi, X

i−1
1 , Xn

i+1, Y
n
i ).

Let Vi = (Mn, Sn
i+1, Y

i−1
1 ). Obviously,

n∑
i=1

I(Si; Vi, Xi, X
i−1
1 , Xn

i+1, Y
n
i ) ≥

n∑
i=1

I(Si; Vi, Xi); (3.14)

and

n∑
i=1

I(Mi; Vi, Yi) =
n∑

i=1

I(Mi; Vi, Xi, Si). (3.15)

So, combination of (3.14) and (3.15) yields

n∑
i=1

I(Si; Vi, Xi, X
i−1
1 , Xn

i+1, Y
n
i ) ≥

n∑
i=1

I(Si; Vi, Xi)−
n∑

i=1

I(Mi; Vi, Yi) +
n∑

i=1

I(Mi; Vi, Xi, Si)

=
n∑

i=1

I(Si; Vi, Xi)−
n∑

i=1

I(Mi; Vi, Yi)

+
n∑

i=1

I(Mi; Si) +
n∑

i=1

I(Mi; Vi, Xi|Si)

=
n∑

i=1

I(Mi; Si) +
n∑

i=1

I(Mi, Si; Vi, Xi)−
n∑

i=1

I(Mi; Vi, Yi).
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Therefore,

H(Mn|Sn) = H(Mn|Xn) + H(Xn)−
n∑

i=1

I(Si; M
n, Sn

i+1, Y
i−1
1 , Xi, X

i−1
1 , Xn

i+1, Y
n
i )

= H(Mn|Xn) + H(Xn)−
n∑

i=1

I(Si; Vi, Xi, X
i−1
1 , Xn

i+1, Y
n
i )

≤ H(Mn|Xn) + H(Xn)−
n∑

i=1

I(Mi; Si)

−
n∑

i=1

I(Mi, Si; Vi, Xi) +
n∑

i=1

I(Mi; Vi, Yi). (3.16)

Step two. By using the same approach as that in Section 2.7 of Chapter 2, we have

I(Mn; Y n)− I(Mn; Sn) ≤
n∑

i=1

[I(Vi; Yi)− I(Vi; Si)]. (3.17)

Step three. Let T ∈ {1, 2, ..., n} be a time-sharing random variable, uniformly dis-

tributed and independent of all other random variables. Define S = Si, M = Mi, X = Xi,

Y = Yi, V = Vi when T = i, and U = (V, T ). Define the joint probability distribution of

(M, S, U, X, Y ) as

p(m, s, u, x, y) =
1

n

n∑
i=1

Pr{(Mi, Si, Xi, Ui, Yi) = (m, s, x, u, y)}.

By the additivity of d(sn, xn) = 1
n

∑n
i=1 d(si, xi) and the definition of (M, S, U, X, Y ), it is

obvious that Ed(S, X) ≤ D+ε since Ed(Sn, Xn) ≤ D+ε. Moreover, from the construction

of (M, S, U, X, Y ), (M, S, U) → X → Y forms a Markov chain.

By Fano’s inequality, one has

1

n
H(Mn|Xn) ≤ 1

n
H(Mn|Y n)

≤ 1

n
+ pe log |M|.
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In light of I(M, S; T ) = 0, I(M ; T ) = 0, and (3.16), one can obtain

H(M |S) =
1

n
H(Mn|Sn)

≤ 1

n
H(Mn|Xn) +

1

n
H(Xn)− 1

n

n∑
i=1

I(Mi; Si)

− 1

n

n∑
i=1

I(Mi, Si; Vi, Xi) +
1

n

n∑
i=1

I(Mi; Vi, Yi)

≤ 1

n
+ pe log |M|+ Rc

−I(M, S; V, X|T )− I(M ; S|T ) + I(M ; V, Y |T )

=
1

n
+ pe log |M|+ Rc

−I(M, S; V, T, X) + I(M, S; T )− I(M ; S) + I(M ; V, T, Y )− I(M ; T )

=
1

n
+ pe log |M|+ Rc

−I(M, S; U,X)− I(M ; S) + I(M ; U, Y )

≤ Rc − I(M, S; U,X)− I(M ; S) + I(M ; U, Y ) +
1

n
+ ε log |M|.

So,

H(M)− I(M ; U, Y ) = H(M |S) + I(M ; S)− I(M ; U, Y )

≤ Rc − I(M, S; U,X) +
1

n
+ ε log |M|. (3.18)

On the other hand, from (3.17) and the construction of U , we can show

1

n
I(Mn; Y n)− 1

n
I(Mn; Sn) ≤ I(U ; Y )− I(U ; S),
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which, combined with (2.29), yields

H(M)− I(M ; U, Y ) = H(M |S) + I(M ; S)− I(M ; U, Y )

=
1

n
H(Mn|Sn) + I(M ; S)− I(M ; U, Y )

=
1

n
I(Mn; Y n)− 1

n
I(Mn; Sn) +

1

n
H(Mn|Y n) + I(M ; S)− I(M ; U, Y )

≤ I(U ; Y )− I(U ; S) + I(M ; S)− I(M ; U, Y ) +
1

n
+ pe log |M|

= I(U ; Y )− I(U ; S)− I(M ; U |S) +
1

n
+ pe log |M|

= I(U ; Y )− I(U ; M, S) +
1

n
+ pe log |M|

≤ I(U ; Y )− I(U ; M, S) +
1

n
+ ε log |M| (3.19)

Step four. From (3.18) and (3.19), we have

H(M) ≤ min {Rc − I(M, S; U,X) + I(M ; U, Y ), I(U ; Y )− I(U ; M, S) + I(M ; U, Y )}

+
1

n
+ ε log |M|.

Thus,

H(M) ≤ Rcorrelated
w (D + ε, Rc) +

1

n
+ ε log |M.

Since ε log |M| can be arbitrarily small, 1/n → 0 and Rcorrelated
w (D, Rc) is continuous with

respect to D ≥ 0, one has

H(M) ≤ Rcorrelated
w (D, Rc).

The proof of the converse part is completed.

3.6 Summary

In this chapter, we investigate a joint compression and public watermarking scenario with

correlated watermarks and covertexts, which can be regarded as a generalization of existing
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joint compression and watermarking models. For given distortion level between covertexts

and stegotexts and compression rate for stegotexts, sufficient and necessary conditions

are determined under which reliably transmitting watermarks via correlated covertexts is

successful with high probability even after the compressed stegotexts are disturbed by a

fixed attacker.
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Chapter 4

Information Embedding with Fidelity

Criterion for Watermarks

In this chapter, the models of digital watermarking of Chapter 2 and Chapter 3 will be

investigated continuously respectively, but with a relaxed and more reasonable assumption

on recovery of watermarks from a viewpoint of real applications. More specifically, in this

chapter it is assumed that the decoded watermark has tolerant distortion with respect

to the transmitted watermark instead of fully recovering the transmitted watermark as

in Chapter 2 and Chapter 3. With this assumption in mind, sufficient conditions are

determined for the case without compression of stegotexts and the case with compression of

stegotexts, under which transmitting watermarks to public watermark receivers is reliable

in the presence of a fixed attack channel.

4.1 Problem Formulation and Main Results

All notations in previous chapters are kept here. Specifically, (Mn, Sn) are watermarks and

covertexts generated identically and independently by a random vector (M, S) ∈ M× S

with a joint probability distribution p(m, s). Let p(y|x) be a fixed attack channel with
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input alphabet X and output alphabet Y known to watermark transmitter and water-

mark decoder, and d the distortion measure between S and X . Furthermore, let M̂ be

a reproduction alphabet of decoded watermarks, and define a distortion measure d1 :

M ×M̂ → [0,∞) with d′max = maxs∈S,ŝ∈Ŝ d1(s, ŝ). Without loss of generality, assume that

maxs∈S minŝ∈Ŝ d1(s, ŝ) = 0.

The definitions of watermarking encoder and joint compression and watermarking en-

coder are the same as those in the previous chapters, however, they are re-stated here for

completeness.

Definition 4.1 A watermarking encoder of length n with distortion level D with re-

spect to the distortion measure d is a mapping fn from Mn×Sn to X n with xn = fn(mn, sn)

such that Ed(Sn, Xn) ≤ D.

A joint compression and watermarking encoder of length n with distortion level

D with respect to the distortion measure d and compression rate Rc is a mapping fn from

Mn × Sn to X n with xn = fn(mn, sn) such that Ed(Sn, Xn) ≤ D and H(Xn)/n ≤ Rc.

Definition 4.2 A mapping gn : Yn → M̂n with m̂n = gn(yn) is called a public water-

marking decoder with length n and distortion level D1 with respect to d1 if Ed1(M
n, M̂n) ≤

D1.

Definition 4.3 The joint probability distribution p(m, s) of a correlated watermark and

covertext source (M, S) is called publicly admissible with respect to distortion level

D, D1 (publicly admissible with respect to distortion level D, D1 and compres-

sion rate Rc) if for arbitrary ε > 0, there exists, for any sufficiently large n, a water-

marking encoder fn with length n and distortion level D + ε (a joint compression and

watermarking encoder fn with distortion level D+ ε and compression rate Rc) and a public

watermarking decoder gn with distortion level D1 + ε.

This chapter will address the problem on the best tradeoffs between the public admis-

sibility of p(m, s), distortion levels D, D1, and compression rate Rc. In other words, under
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what conditions is p(m, s) publicly admissible for given distortion level D, D1 and com-

pression rate Rc? Obviously, if D1 = 0, then the problem coincides with the previous ones

in Chapter 2 and Chapter 3. In the following, only sufficient conditions are determined for

the case without compressing stegotexts and the case with compressing stegotexts under

which p(m, s) is publicly admissible, and no necessary conditions are obtained here.

To state the main results of this chapter, some notations are defined as follows. Given

distortion levels D, D1 with respect to distortion measures d, d1, let F (D, D1) be the set

of all random vectors (V, U,X) ∈ V × U × X , V ,U be any finite alphabets, with the joint

probability distribution of (M, S, V, U, X, Y ) given by

p(m, s, v, u, x, y) = p(m, s)p(v, u, x|m, s)p(y|x)

such that

• Ed(S, X) ≤ D, and

• there exists a function g : V × U × Y → M̂ such that

Ed1(M, g(V, U, Y )) ≤ D1.

Now, define

Rfidelity(D, D1) = sup
(V,U,X)∈F (D,D1)

[I(U ; Y )− I(U ; M, S, V ) + I(V ; U, Y )

+H(M, S|V )−H(S|M)],

and

Rfidelity(D, D1, Rc) = sup
(V,U,X)∈F (D,D1)

min{Rc − I(M, S, V ; U,X) + I(V ; U, Y )

+H(M, S|V )−H(S|M), I(U ; Y )− I(U ; M, S, V )

+I(V ; U, Y ) + H(M, S|V )−H(S|M)}.

It is ready to state the main results of this chapter in the following, and Theorem 4.1

applies for the case without compression of stegotexts while Theorem 4.2 applies for the

case with compression of stegotexts.
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Theorem 4.1 Let p(m, s) be the fixed joint probability distribution of a joint watermark

and covertext source (M, S). For any D ≥ 0, D1 ≥ 0, if Rfidelity(D, D1) > 0, then, p(m, s)

is publicly admissible with respect to D, D1 if

H(M) < Rfidelity(D, D1).

Theorem 4.2 Let p(m, s) be the fixed joint probability distribution of a joint watermark

and covertext source (M, S). For any D ≥ 0, D1 ≥ 0, Rc ≥ 0, if Rfidelity(D, D1, Rc) > 0,

then, p(m, s) is publicly admissible with respect to D, D1 and Rc if

H(M) < Rfidelity(D, D1, Rc).

4.2 Proof of Theorem 4.1

In this section we shall prove Theorem 4.1. Now suppose that (V, U,X) ∈ F (D, D1)

satisfies

H(M) < I(U ; Y )− I(U ; M, S, V ) + I(V ; U, Y ) + H(M, S|V )−H(s|M),

or equivalently,

0 < I(U ; Y )− I(U ; M, S, V ) + I(V ; U, Y )− I(V ; M, S)

= I(U ; Y )− I(U ; V )− I(U ; M, S|V ) + I(V ; U) + I(V ; Y |U)− I(V ; M, S)

= I(U, V ; Y )− I(U, V ; M, S)

and g is a function from V × U × Y to M̂ such that Ed1(M, g(V, U, Y )) ≤ D1.

Denote γ
4
= I(U ; Y ) − I(U ; M, S) + I(V ; U, Y ) − I(V ; M, S) > 0. Let ε > 0 be an

arbitrarily small but fixed number. We will show the existence of watermarking en-

coder and public watermarking decoder pairs (fn, gn) for all sufficiently large n such that

Ed(Sn, fn(Mn, Sn)) < D + ε, and Ed1(M
n, gn(Y n)) < D1 + ε. To reach this, the following

random coding argument is adopted.
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4.2.1 Watermarking Coding Scheme

Random Codes Generation: Two random codebooks C and W will be generated as

follows.

• Generate identically and independently exp(n[I(V ; M, S) + γ/8]) vectors vn ∈ Vn

according to the probability distribution p(v) of the random V derived from the

joint probability distribution p(m, s, v, u, x, y) of (M, S, V, U, X, Y ), then uniformly

distribute them into t
4
= exp(n[I(V ; M, S)−I(V ; U, Y )+γ/4]) bins C(i), i = 1, 2, ..., t,

each bin containing exp(n[I(V ; U, Y )−γ/8]) vectors vn. Denote the random codebook

by C = {C(i)}t
i=1.

• Generate identically and independently exp(n[I(V ; M, S)−I(V ; U, Y )+I(U ; M, S, V )+

γ/2]) vectors un ∈ Un according to the probability distribution p(u) of the random U

derived from the joint probability distribution p(m, s, v, u, x, y) of (M, S, V, U, X, Y ),

then uniformly distribute them into t bins W (i), i = 1, 2, ..., t, each bin contain-

ing exp(n[I(U ; M, S, V ) + γ/4]) vectors un. Denote the random codebook by W =

{W (i)}t
i=1.

• The two codebooks C and W are then distributed to the watermarking decoder.

Watermarking encoding: Fix codebooks C, W . Given a watermark mn and a cover-

text sn.

• If (mn, sn) is not jointly ε-typical, then an encoding error is declared;

• If (mn, sn) is jointly ε-typical, but no vn ∈
⋃t

i=1 C(i) such that (mn, sn, vn) is jointly

ε-typical, then an encoding error is declared;

• Assume (mn, sn) is jointly ε-typical, C(i) is the first bin of C containing a vector vn

such that (mn, sn, vn) is jointly ε-typical. Let vn(i, h) denote the first such a vector

in C(i). If no un ∈ W (i) such that (mn, sn, vn(i, h), un) is jointly ε-typical, then an

encoding error is declared;
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• If un(i, j) ∈ W (i) be the first vector such that (mn, sn, vn(i, h), un(i, j)) is jointly ε-

typical, then the encoder randomly generates a stegotext xn according to p(xn|mn, sn,

vn(i, h), un(i, j)).

• If an encoding error is declared, then define a fixed xn
0 as the stegotext.

Watermarking decoding: Fix codebooks C, W . Let yn be an output of the attack

channel with the input xn when mn is transmitted using sn, vn(i, h) ∈ C(i) and un(i, j) ∈

W (i).

• The decoder finds the first vector un in the codebook W , say un(i0, j0) ∈ W (i0), such

that (un(i0, j0), y
n) is jointly ε-typical with respect to p(u, y);

• If no or more than one un ∈ W are found such that (un, yn) is jointly ε-typical, then

a decoding error is declared;

• The decoder finds a vector vn(i0, h0) ∈ C(i0) such that (vn(i0, h0), u
n(i0, j0), y

n) is

jointly ε-typical with respect to p(v, u, y);

• If no or more than one vn are found in the bin C(i0) such that (vn, un(i0, j0), y
n) is

jointly ε-typical, then a decoding error is declared.

• The decoder decodes

m̂n = (g(v1(i0, h0), u1(i0, j0), y1), g(v2(i0, h0), u2(i0, j0), y2), ..., g(vn(i0, h0), un(i0, j0), yn)) ,

where vt(i, h), t = 1, 2..., n is the tth component of vn(i, j).

• If a decoding error is declared, then decode watermarks as a fixed vector m̂n
0 .

4.2.2 Distortion Constraint for Watermarking Encoders

Let C, W be fixed codebooks generated as above. In this subsection, we shall analyze

the distortion constraint for watermarking encoders averaged over watermarks Mn and
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covertexts Sn, that is, we shall prove the distortion constraint for watermarking encoders

is satisfied with high probability. To begin with, an event is defined by

B(C, W ) = {(mn, sn) : an encoding error is declared when embedding mn into sn via C, W}.

Then, one has

EMn,Sn [d(Sn, Xn)|C, W ] =
∑

(mn,sn)∈B(C,W )

p(mn, sn)d(sn, xn
0 )

+
∑

(mn,sn)∈B̄(C,W )

p(mn, sn)EXnd(sn, Xn)

≤ Pr{B(C, W )}dmax +
∑

(mn,sn)∈B̄(C,W )

p(mn, sn) Pr{A(mn, sn, vn(i, h), un(i, j))}dmax

+
∑

(mn,sn)∈B̄(C,W )

p(mn, sn)
∑

xn∈Ā(mn,sn,vn(i,h),un(i,j))

p(xn|mn, sn, vn(i, h), un(i, j))d(sn, xn)

(1)

≤
∑

(mn,sn)∈B̄(C,W )

p(mn, sn)
∑

xn∈Ā(mn,sn,vn(i,h),un(i,j))

p(xn|mn, sn, vn(i, h), un(i, j))d(sn, xn)

+ Pr{B(C, W )}dmax + εdmax

(2)

≤ Pr{B(C, W )}dmax + D + 2εdmax,

where (1) follows from the fact that

Pr{A(mn, sn, vn(i, h), un(i, j))} ≤ ε

for sufficiently large n by the generation of xn, here

A(mn, sn, vn(i, h), un(i, j))
def
= {xn : (mn, sn, vn(i, h), un(i, j), xn) is not ε-typical},

and (2) is due to

d(sn, xn) =
1

n

n∑
i=1

d(si, xi)

≤
∑

(s,x)∈S×X

[
p(s, x) +

ε

|S||X |

]
d(s, x)

≤ Ed(S, X) + εdmax

≤ D + εdmax.
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If we can show that Pr{B(C, W )} ≤ ε with high probability of C and W , that is,

Pr{Pr{B(C, W )} ≤ ε} ≥ 1− ε,

then one has

EMn,Sn [d(Sn, Xn)|C, W ] ≤ Pr{B(C, W )}dmax + D + 2εdmax

≤ D + 3εdmax

with high probability of C, W .

In the following, we will estimate the probability Pr{Pr{B(C, W )} ≤ ε}. Obviously, if

we can show that

EC,W Pr{B(C, W )} ≤ ε2, (4.1)

then, by the Markov inequality,

Pr{Pr{B(C, W )} ≤ ε} = 1− Pr{Pr{B(C, W )} ≥ ε}

≥ 1− EC,W Pr{B(C, W )}
ε

≥ 1− ε.

So, next we shall show the inequality (4.1). Let E0 be the set of all non ε-typical

sequences (mn, sn). For each (mn, sn) 6∈ E0, we define the following events:

• E1(m
n, sn): no vn 6∈ C such that (vn, mn, sn) is ε-typical;

• E2(m
n, sn): no un ∈ W (i) such that (mn, sn, vn(i, h), un) is ε-typical.

First, for n > n0 sufficiently large,

Pr{E0} ≤ ε2

3
. (4.2)

For sufficiently large n > n1, we have

Pr{E1(m
n, sn)|Ē0} ≤ (1− 2−n[I(V ;M,S)+γ/16])2n[I(V ;M,S)+γ/8]

(4.3)

≤ 2−2nγ/16

(4.4)
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double exponentially decreasing, since there exists n1 such that for all n > n1,

Pr{(V n, mn, sn) is jointly ε-typical } ≥ 2−n[I(V ;M,S)+γ/16].

Similarly, if mn, sn, vn(i, h) are jointly typical, then there exists n2 such that for suffi-

ciently large n > n2, one has

Pr{(mn, sn, vn(i, h), Un) is jointly ε-typical} > 2−n[I(U ;M,S)+γ/8].

Thus, for all n > n2

Pr{E2(m
n, sn)|Ē0 ∩ Ē1(m

n, sn)} ≤ (1− 2−n[I(U ;M,S,V )+γ/8])2n[I(U ;M,S,V )+γ/4]

(4.5)

≤ 2−2nγ/8

,

double exponentially decreasing.

Thus, for sufficiently large n > {n0, n1, n2}

EC,W Pr{B(C, W )} ≤ Pr{E0}+
∑

(mn,sn)∈Ē0

Pr{E1(m
n, sn) ∪ E2(m

n, sn)}

≤ ε2

3
+ |Mn||Sn|2−2nγ/16

+ |Mn||Sn|2−2nγ/8

≤ ε2

3
+

ε2

3
+

ε2

3

= ε2. (4.6)

Therefore, we have shown that for sufficiently large n

EMn,Sn [d(Sn, Xn)|C, W ] ≤ D + 3εdmax (4.7)

with high probability of C, W .

4.2.3 Distortion Constraint for Watermark Decoders

In this subsection we shall analyze the averaged distortion constraint between transmitted

watermarks and reproduced watermarks.
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First, assume that encoding mn into sn via C, W successfully generates a stegotext

xn with jointly typical (mn, sn, vn(i, h), un(i, j), xn). Let yn be a forgery generated by the

attacker, and define the following events:

• E: (vn(i, h), un(i, j), yn) is not jointly ε-typical;

• E ′: more than one un ∈ W such that (un, yn) is ε-jointly typical; and

• E ′′: more that one vn ∈ C(i) such that (vn, un(i, j), yn) is jointly ε-typical.

We shall upper bound the probability

Pr{E ∪ E ′ ∪ E ′′|mn, sn, vn(i, j), un(i, j)}

≤ Pr{E|mn, sn, vn(i, j), un(i, j)}+ Pr{E ′ ∩ Ē|mn, sn, vn(i, j), un(i, j)}

+ Pr{E ′′ ∩ Ē|mn, sn, vn(i, j), un(i, j)}. (4.8)

By the Markov Lemma, there exists a large number n3 such that for all n > n3,

Pr{E|mn, sn, vn(i, j), un(i, j)} < ε. (4.9)

For the second term in right side of (4.8), one has

Pr{E ′ ∩ Ē|mn, sn, vn(i, j), un(i, j)}

≤ Pr{(un, yn) is ε-typical for some un 6= un(i, j), yn ∈ A(n)
ε (Y )|mn, sn, vn(i, h), un(i, j)}

=
∑

yn∈A
(n)
ε (Y )

p(yn|mn, sn, vn(i, h), un(i, j))θ(mn, sn, vn(i, h), un(i, j), yn), (4.10)

where

θ(mn, sn, vn(i, h), un(i, j), yn)

= Pr{(un, yn) is jointly ε-typical for some un 6= un(i, j)|mn, sn, vn(i, h), un(i, j), yn}

≤
∑

un∈W (i′),i′=1,2,...t,i′ 6=i

Pr{(un, yn) is jointly ε-typical|mn, sn, vn(i, h), un(i, j), yn} (4.11)

+ Pr{(un, yn) is jointly ε-typical, un ∈ W (i) but un 6= un(i, j)|mn, sn, vn(i, h), un(i, j), yn}.
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By the generation of W , if un ∈ W (i′) and i′ 6= i, then un is independent of (mn, sn, vn(i, h),

un(i, j), yn) and the probability for large n Pr{(un, yn) is jointly ε-typical} < 2−n[I(U ;Y )−γ/4].

Therefore, there exists a large number n4 such that for all n > n4, the summation in the

right side of (4.11) is less or equal to

(2n[H(V ;M,S)−I(M ;U,Y )+γ/4] − 1)2−n[I(U ;Y )−γ/4]2n[I(U ;M,S,V )+γ/4]

≤ 2−n[I(U ;Y )−I(U ;M,S,V )+I(M ;U,Y )−H(V ;M,S)−3γ/4]

= 2−nγ/4 ≤ ε. (4.12)

As to the second term in the right side of (4.11), following the exact approach used in

Chapter 2 yields

Pr{(un, yn) is ε-typical, un ∈ W (i) but un 6= un(i, j)|mn, sn, vn(i, h), un(i, j), yn} ≤ ε.

Thus, one has for all n > n4,

Pr{E ′ ∩ Ē|mn, sn, vn(i, h), un(i, j)} < ε. (4.13)

We now upper bound the probability Pr{E ′′ ∩ Ē|mn, sn, vn(i, h), un(i, j)}. One has

Pr{E ′′ ∩ Ē|mn, sn, vn(i, h), un(i, j)}

≤ Pr{(vn, un(i, j), yn) is jointly ε-typical, vn ∈ C(i), but vn 6= vn(i, h),

(un(i, j), yn) ∈ A(n)
ε (U, Y )|mn, sn, vn(i, h), un(i, j)}

=
∑

yn:(un(i,j),yn)∈A
(n)
ε (U,Y )

p(yn|mn, sn, vn(i, h), un(i, j))η(mn, sn, vn(i, h), un(i, j), yn),
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here

η(mn, sn, vn(i, h), un(i, j), yn) = Pr{(vn, un(i, j), yn) is jointly ε-typical, vn ∈ C(i),

but vn 6= vn(i, h)|mn, sn, vn(i, h), un(i, j), yn}.

=

|C(i)|∑
l=1

Pr{(vn, un(i, j), yn) is typical , vn ∈ C(i) but vn 6= vn(i, h),

h = l|mn, sn, vn(i, h), un(i, j), yn}

≤
|C(i)|∑
l=1

|C(i)|∑
k=1,k 6=l

Pr{(vn(i, k), un(i, j), yn) is typical , h = l|mn, sn, vn(i, h), un(i, j), yn}

=

|C(i)|∑
l=1

 |C(i)|∑
k=l+1

Pr{(vn(i, k), un(i, j), yn) is typical , h = l|mn, sn, vn(i, h), un(i, j), yn}

+
l−1∑
k=1

Pr{(vn(i, k), un(i, j), yn) is typical , h = l|mn, sn, vn(i, h), un(i, j), yn}

]

≤
|C(i)|∑
l=1

[
2−n[I(V ;U,Y )−γ/16]|C(i)|Pr{h = l|mn, sn, vn(i, h), un(i, j), yn}

+
l−1∑
k=1

Pr{(vn(i, k), un(i, j), yn) is typical , (mn, sn, vn(i, a)) is not typical ,

a = 1, 2, ..., l − 1, a 6= k, (mn, sn, vn(i, l)) is typical |mn, sn, vn(i, h), un(i, j), yn}]

≤
|C(i)|∑
l=1

2−n[I(V ;U,Y )−γ/16]
[
2n[I(V ;U,Y )−γ/8] Pr{h = l|mn, sn, vn(i, h), un(i, j), yn}

+
l−1∑
k=1

Pr{vn(i, l) is the first typical with (mn, sn)|mn, sn, vn(i, h), un(i, j), yn}
Pr{(mn, sn, vn(i, k)) is not typical |mn, sn}

]

≤
|C(i)|∑
l=1

2−n[I(V ;U,Y )−γ/16]
[
2n[I(V ;U,Y )−γ/8] Pr{h = l|mn, sn, vn(i, h), un(i, j), yn}

+
l−1∑
k=1

Pr{h = l|mn, sn, vn(i, h), un(i, j), yn}
1− 2−n[I(V ;M,S)−γ/4]

]

≤ 2−n[I(V ;U,Y )−γ/16]2n[I(V ;U,Y )−γ/8]

[
1 +

1

1− 2−n[I(V ;M,S)−γ/4]

]
≤ 2−nγ/16

[
1 +

1

1− 2−n[I(V ;M,S)−γ/4]

]
≤ ε
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for all large n. Thus, there exists n5 such that for all numbers n > n5,

Pr{E ′′ ∩ Ē|mn, sn, vn(i, j), un(i, j)} < ε. (4.14)

Therefore, by the watermarking encoding and decoding scheme, for n > maxi=0..5{ni}

we have

EC,WEMn,Snd1(M
n, M̂n) = EMn,SnEC,W d1(M

n, M̂n)

≤ Pr{E0}d′max +
∑

(mn,sn)∈Ē0

p(mn, sn) Pr{E1(m
n, sn) ∪ E2(m

n, sn)}d′max

+
∑

(mn,sn)∈Ē0

p(mn, sn) Pr{A(mn, sn, vn(i, h), un(i, j))|Ē1(m
n, sn) ∩ Ē2(m

n, sn)}d′max

+
∑

(mn,sn)∈Ē0

p(mn, sn) Pr{E ∪ E ′ ∪ E ′′|mn, sn, vn(i, h), un(i, j)}d′max

+
∑

(mn,sn)∈Ē0

p(mn, sn)[d1(m
n, g(vn(i, h), un(i, j), yn))|Ē ∩ Ē ′ ∩ Ē ′′]

≤ D1 + ε + 8εd′max, (4.15)

where the last inequality follows from the above analysis on encoding and decoding error

probabilities and from the fact that (mn, vn(i, h), un(i, j), yn) are jointly ε-typical with

respect to p(m, v, u, y) and Ed1(M, g(V, U, Y )) ≤ D1.

4.2.4 Existence of Watermarking Encoders and Decoders

Define

Γ = {(C, W ) : EMn,Sn [d(Sn, Xn)|C, W ] ≤ D + 3εdmax}, (4.16)

then from (4.7), one has Pr{Γ} ≥ 1− ε.

So, from (4.15) one has ∑
(C,W )∈Γ

Pr(C, W )EMn,Sn [d1(M
n, M̂n)|C, W ]

≤ EC,WEMn,Sn [d1(M
n, M̂n)|C, W ]

≤ D1 + ε + 8εd′max.
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Thus, ∑
(C,W )∈Γ

Pr(C, W )

Pr{Γ}
EMn,Sn [d1(M

n, M̂n)|C, W ]

=
1

Pr{Γ}
∑

(C,W )∈Γ

Pr(C, W )EMn,Sn [d1(M
n, M̂n)|C, W ]

≤ D1 + ε + 8εd′max

1− ε
= D1 + ε′ (4.17)

for some small number ε′ > 0 and ε′ → 0 as ε → 0.

Combination of (4.16) and (4.17) yields the existence of watermarking encoder and

watermarking decoder for each sufficiently large n such that averaged distortion for water-

mark encoder is less than D + 3εdmax and the averaged distortion for watermarks is less

than D1 + ε′. Thus the probability p(m, s) is publicly admissible with respect to D and

D1.

The proof of Theorem 4.1 is completed.

�

4.3 Proof of Theorem 4.2

In this section we shall prove Theorem 4.2, that is, if there exists (V, U,X) ∈ F (D, D1)

such that H(M) < Rc − I(M, S, V ; U,X) + I(V ; U, Y ) + H(M, S|V )−H(S|M)

H(M) < I(U ; Y )− I(U ; M, S, V ) + I(V ; U, Y ) + H(M, S|V )−H(S|M),
(4.18)

then, there exist watermarking encoder and public watermarking decoder pairs (fn, gn) for

all sufficiently large n such that Ed(Sn, fn(Mn, Sn)) < D + ε, H(fn(Mn, Sn))/n ≤ Rc and

Ed1(M
n, gn(Y n)) < D1 + ε

Obviously, (4.18) is equivalent to

I(V ; M, S)− I(V ; U, Y ) < min{Rc − I(M, S, V ; U,X), I(U ; Y )− I(U ; M, S, V )}.
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Let ε > 0 be an arbitrarily small but fixed number, g be a function such that

Ed1(M, g(V, U, Y )) ≤ D1,

and denote γ
4
= min{Rc − I(M, S, V ; U,X), I(U ; Y ) − I(U ; M, S, V )} − I(V ; M, S) +

I(V ; U, Y ).

4.3.1 Watermarking Coding Scheme

Random Codes Generation: Random codebooks C, W and G will be generated as

follows.

• Generate identically and independently exp(n[I(V ; M, S) + γ/8]) vectors vn ∈ Vn

according to the probability distribution p(v) of the random V derived from the

joint probability distribution p(m, s, v, u, x, y) of (M, S, V, U, X, Y ), then uniformly

distribute them into t
4
= exp(n[I(V ; M, S)−I(V ; U, Y )+γ/4]) bins C(i), i = 1, 2, ..., t,

each bin containing exp(n[I(V ; U, Y )−γ/8]) vectors vn. Denote the random codebook

by C = {C(i)}t
i=1.

• Generate identically and independently exp(n[I(V ; M, S)−I(V ; U, Y )+I(U ; M, S, V )+

γ/2]) vectors un ∈ Un according to the probability distribution p(u) of the random U

derived from the joint probability distribution p(m, s, v, u, x, y) of (M, S, V, U, X, Y ),

then uniformly distribute them into t bins W (i), i = 1, 2, ..., t, each bin contain-

ing exp(n[I(U ; M, S, V ) + γ/4]) vectors un. Denote the random codebook by W =

{W (i)}t
i=1.

• For each vector un(i, j) ∈ W (i), i = 1, ..., t, j = 1, 2, ..., exp(n[I(U ; M, S, V ) + γ/4]),

generate a bin of vectors G(i, j) = {xn(i, j, l) : l = 1, 2, ..., exp(n[I(M, S, V ; X|U) +

γ/4])}, each xn(i, j, l) is generated identically and independently according to the

probability p(xn|un(i, j)). Denote the random codebook by G = {G(i, j), i = 1, ..., t, j =

1, 2, ..., exp(n[I(U ; M, S, V ) + γ/4])}.
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• The two codebooks C and W are then distributed to the watermarking decoder, and

the codebook G is sent to the lossless stegotext decompressor.

Watermarking encoding: Fix codebooks C, W and G. Given a watermark mn and

a covertext sn.

• If (mn, sn) is not jointly ε-typical, then an encoding error is declared;

• If (mn, sn) is jointly ε-typical, but no vn ∈ ∪t
i=1C(i) such that (mn, sn, vn) is jointly

ε-typical, then an encoding error is declared;

• If (mn, sn) is jointly ε-typical and C(i) is the first bin of C containing a vector vn such

that (mn, sn, vn) is jointly ε-typical and vn(i, h) ∈ C(i) is the first such a vector vn,

but no un ∈ W (i) such that (mn, sn, vn(i, h), un) is jointly ε-typical, then an encoding

error is declared;

• If (mn, sn) is jointly ε-typical and C(i) is the first bin of C containing a vector vn

such that (mn, sn, vn) is jointly ε-typical, vn(i, h) ∈ C(i) is the first such a vector,

and un(i, j) ∈ W (i) is the first vector such that (mn, sn, vn(i, h), un(i, j)) is jointly ε-

typical, but no vector xn(i, j, l) ∈ G(i, j) is found such that (mn, sn, vn(i, h), un(i, j),

xn(i, j, l)) is jointly ε-typical, then an encoding error is declared;

• If (mn, sn) is jointly ε-typical, C(i) is the first bin of C containing a vector vn

such that (mn, sn, vn) is jointly ε-typical, vn(i, h) ∈ C(i) is the first such a vec-

tor, and un(i, j) ∈ W (i) is the first vector such that (mn, sn, vn(i, h), un(i, j)) is

jointly ε-typical, then the encoder finds the first vector xn(i, j, l) ∈ G(i, j) such that

(mn, sn, vn(i, h), un(i, j), xn(i, j, l)) is jointly ε-typical, and xn(i, j, l) is the stegotext;

• If an encoding error is declared, then define a fixed xn
0 as the stegotext.

Watermarking decoding: Fix codebooks C, W, G. Let yn be a forgery received by

the watermarking decoder when mn is transmitted using sn, vn(i, h) ∈ C(i), un(i, j) ∈ W (i)

and xn(i, j, l) ∈ G(i, j).
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• The decoder finds the first vector un in the codebook W , say un(i0, j0) ∈ W (i0), such

that (un(i0, j0), y
n) is jointly ε-typical with respect to p(u, y);

• If no un ∈ W or more than one are found such that (un, yn) is jointly ε-typical, then

a decoding error is declared;

• The decoder finds the first vector vn(i0, h0) ∈ C(i0) such that (vn(i0, h0), u
n(i0, j0), y

n)

is jointly ε-typical with respect to p(v, u, y);

• If no vn or more than one are found in the bin C(i0) such that (vn, un(i0, j0), y
n) is

jointly ε-typical, then a decoding error is declared;

• The decoder decodes

m̂n = (g(v1(i0, h0), u1(i0, j0), y1), g(v2(i0, h0), u2(i0, j0), y2), ..., g(vn(i0, h0), un(i0, j0), yn)).

• If a decoding error is declared, then decode watermarks as a fixed m̂n
0

4.3.2 Distortion Constraint for Watermarking Encoders

Let C, W and G be fixed codebooks generated as above, we shall analyze the distortion

constraint for watermarking encoders averaged watermarks Mn and covertexts Sn. Define

B(C, W,G) = {(mn, sn) : an encoding error is declared when encoding mn via sn, C,W,G}.

Then, one has

EMn,Sn [d(Sn, Xn)|C, W, G] =
∑

(mn,sn)∈B(C,W,G)

p(mn, sn)d(sn, xn
0 )

+
∑

(mn,sn)∈B̄(C,W,G)

p(mn, sn)d(sn, xn)

≤ Pr{B(C, W, G)}dmax + D + εdmax,
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since (mn, sn) ∈ B̄(C, W,G) is jointly typical by the watermark encoding scheme, and

d(sn, xn) =
1

n

n∑
i=1

d(si, xi)

≤
∑

(s,x)∈S×X

[
p(s, x) +

ε

|S||X |

]
d(s, x)

≤ Ed(S, X) + εdmax

≤ D + εdmax,

for sufficiently large n.

If we can show that with high probability of C, W and G, Pr{B(C, W, G)} ≤ ε, that

is,

Pr{Pr{B(C, W, G)} ≤ ε} ≥ 1− ε,

then

EMn,Sn [d(Sn, Xn)|C, W,G] ≤ Pr{B(C, W,G)}dmax + D + εdmax

≤ D + 2εdmax

with high probability of C, W and G.

Therefore, we only need to estimate the probability Pr{Pr{B(C, W, G)} ≤ ε}. Obvi-

ously, if we can show that

EC,W,G Pr{B(C, W, G)} ≤ ε2, (4.19)

then, by the Markov inequality,

Pr{Pr{B(C, W,G)} ≤ ε} = 1− Pr{Pr{B(C, W,G)} ≥ ε}

≥ 1− EC,W,G Pr{B(C, W, G)}
ε

≥ 1− ε.

So, in the following we shall show the inequality (4.19). Let E0 be the set of all non

ε-typical sequences (mn, sn). For each (mn, sn) 6∈ E0, define the following events:
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• E1(m
n, sn): no vn 6∈ C such that (vn, mn, sn) is ε-typical;

• E2(m
n, sn): C(i) is the first bin in the random codebook C containing a vector vn

such that (vn, mn, sn) is ε-typical and vn(i, h) denotes the first such a vector, but no

un ∈ W (i) such that (mn, sn, vn(i, h), un) is ε-typical;

• E3(m
n, sn): vn(i, h) is the first vector in C(i) such that (vn(i, h), mn, sn) is ε-typical,

un(i, j) is the first vector in W (i) such that (mn, sn, vn(i, h), un(i, j)) is ε-typical, but

no xn ∈ G(i, j) is found such that (mn, sn, vn(i, h), un(i, j), xn) is ε-typical.

By employing the approach used in Subsection 4.2.2, we can show that there exists a

large number n1 such that for all n > n1,

Pr{E0} ≤ ε2

4
(4.20)

Pr{E1(m
n, sn)|Ē0} ≤ 2−2nγ/16

(4.21)

Pr{E2(m
n, sn)|Ē0, Ē1(m

n, sn)} ≤ 2−2nγ/8

. (4.22)

If mn, sn, vn(i, h), un(i, j) are jointly typical, then, there exists a large number n2 such

that for all n > n2,

Pr{(mn, sn, vn(i, h), un(i, j), xn) is jointly ε-typical} > 2−n[I(X;M,S,V |U)+γ/8].

Thus, for all n > n2

Pr{E3(m
n, sn)|vn, mn, sn, un(i, j)} (4.23)

= Pr{no xn ∈ G(i, j) such that (mn, sn, vn(i, h), un(i, j), xn) is jointly ε-typical}

≤ (1− 2−n[I(X;M,S,V |U)+γ/8])2n[I(X;M,S,V |U)+γ/4]

(4.24)

≤ 2−2nγ/8

double exponentially decreasing.
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Thus, for sufficiently large n > max{n1, n2},

EC,W Pr{B(C, W )} ≤ Pr{E0}+
∑

(mn,sn)∈Ē0

Pr{E1(m
n, sn) ∪ E2(m

n, sn) ∪ E3(m
n, sn)}

≤ ε2

4
+ |Mn||Sn|2−2nγ/16

+ |Mn||Sn|2−2nγ/8

+ |Mn||Sn|2−2nγ/8

≤ ε2

4
+

ε2

4
+

ε2

4
+

ε2

4

= ε2. (4.25)

Therefore, we have shown that with high probability of C, W and G,

EMn,Sn [d(Sn, Xn)|C, W, G] ≤ D + 2εdmax. (4.26)

4.3.3 Compression Rate Constraint for Watermarking Encoders

By the construction of the codebook G, it is obvious that

H(Xn)

n
≤ 1

n
log |G|

≤ (I(V ; M, S)− I(V ; U, Y ) + γ/4) + (I(M, S, V ; X|U) + γ/4)

+(I(M, S, V ; U) + γ/4)

= I(V ; M, S)− I(V ; U, Y ) + I(M, S, V ; U,X) + 3γ/4

≤ Rc − γ/4

≤ Rc (4.27)

since

I(V ; M, S)− I(V ; U, Y ) + I(M, S, V ; X, U) ≤ Rc − γ

by the definition of γ. Thus, the compression rate constraint is satisfied for all watermarking

encoders.
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4.3.4 Averaged Distortion Constraint for Watermarks

From the random coding scheme, we can see that the watermarking decoder is exactly the

same as the decoder in the case without compression of stegotexts introduced in Subsection

4.2.1. Therefore, by employing the same method of Subsection 4.2.3, we have

EC,W,GEMn,Snd1(M
n, M̂n) ≤ D1 + ε + 8εd′max. (4.28)

4.3.5 Existence of Watermarking Encoders and Decoders

Define

Γ = {(C, W, G) : EMn,Sn [d(Sn, Xn)|C, W, G] ≤ D + 2εdmax}, (4.29)

then from (4.26), one has Pr{Γ} ≥ 1− ε.

So, from (4.28) one has∑
(C,W,G)∈Γ

Pr(C, W,G)EMn,Sn [d1(M
n, M̂n)|C, W,G]

≤ EC,W,GEMn,Sn [d1(M
n, M̂n)|C, W, G]

≤ D1 + ε + 8εd′max.

Thus, ∑
(C,W,G)∈Γ

Pr(C, W, G)

Pr{Γ}
EMn,Sn [d1(M

n, M̂n)|C, W,G]

=
1

Pr{Γ}
∑

(C,W,G)∈Γ

Pr(C, W, G)EMn,Sn [d1(M
n, M̂n)|C, W, G]

≤ D1 + ε + 8εd′maxa

1− ε
= D1 + ε′ (4.30)

for some small number ε′ > 0 and ε′ → 0 as ε → 0.

Combination of (4.29) and (4.30) and (4.27) yields the existence of a joint compression

and watermarking encoder with distortion level D + 2εdmax and compression rate Rc, and
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a public watermarking decoder with distortion D1 + ε′ for each sufficiently large n. Thus

the probability p(m, s) is publicly admissible with respect to D and D1 and compression

rate Rc.

The proof of Theorem 4.2 is completed.

�

4.4 Summary

In this chapter the models of digital watermarking in Chapter 2 and in Chapter 3 but

with a relaxed constraint on recovery of watermarks are investigated respectively. Under

the assumption that the decoded watermark has tolerant distortion with respect to the

transmitted watermark, sufficient conditions are given for the case without compression of

stegotexts and the case with joint compression and watermarking, under which the trans-

mitting watermarks to public watermark receivers is reliable after stegotexts are disturbed

by a fixed attack channel.
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Chapter 5

Closed-Forms of Private

Watermarking Capacities for

Laplacian Sources

It is well known that watermarking capacities and compression and watermarking rate

regions of joint compression and watermarking systems can be expressed as optimization

problems in information-theoretic quantities [20,21,25,26,32,33]. However, this character-

ization does not mean that watermarking capacities and joint compression and watermark-

ing rate regions can be calculated easily. So far, closed-form formulas for watermarking

capacities are known only for watermarking systems with independent and identically dis-

tributed (iid) binary covertexts and Gaussian covertexts [26, 7], and closed-form formulas

for compression and watermarking rate regions of joint compression and watermarking sys-

tems are known only for private watermarking systems with independent and identically

distributed Gaussian covertexts [19]. In this chapter, private watermarking systems with

iid Laplacian covertexts are investigated and nice closed-forms of watermarking capacities

are determined. The motivation to study such watermarking systems is that, in most ap-

plications, source data such as transformed coefficients of image signals can be more or less
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Figure 5.1: Model of private Laplacian watermarking systems

modeled as Laplacian sources and many digital watermarking schemes are implemented in

frequency domain instead of space domain.

5.1 Setting of Watermarking Models and Main Re-

sults

The model of private Laplacian watermarking systems studied in this chapter is depicted

in Figure 5.1, where Sn ∈ Rn is an Laplacian covertext generated independently and iden-

tically by a memoryless source S with Laplacian density function p(s) = 1
2α

e−|s|/α, α > 0,

and watermark M is a random variable uniformly distributed over the set {1, 2, ..., enR}, R ≥

0. In this model, the magnitude-error distortion measure is employed, d(s, x) = |x − s|.

A watermarking encoder of length n with rate R and distortion D maps (M, Sn) to

Xn = (X1, X2, ..., Xn) ∈ Rn such that Ed(Sn, Xn) = 1/n
∑n

i=1 d(Si, Xi) ≤ D. An attacker

uses an additive iid noise vector V n = (V1, V2, ..., Vn) ∈ Rn generated by a real-valued

random variable V to disturb the stegotext Xn and generates a forgery Y n ∈ Rn, that

is, Y n = Xn + V n. Finally, a private watermarking decoder produces an estimate of a

watermark, M̂ , from Y n with the help of Sn.

A number R ≥ 0 is achievable with respect to a distortion level D if for any small

number ε > 0, there exist, for sufficiently large n, a watermarking encoder of length n with

rate R − ε and distortion D + ε and a private decoder such that Pr{M̂ 6= M} < ε. The
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private watermarking capacity C(D) of the private watermarking model is defined to

be the maximum of all achievable embedding rates R with respect to the distortion level

D.

It is well known from [5,7,26,32] that the private watermarking capacity of the model

in this chapter is given by

C(D) = max
Ed(S,X)≤D

I(X; Y |S) (5.1)

where Y = X+V , I(X; Y |S) is the conditional mutual information between X and Y given

S, and the maximization is taken over all random variables X such that Ed(S, X) ≤ D.

The aim of this chapter is to determine a closed-form of C(D).

Unless otherwise specified, in this chapter all logarithms are with respect to base e and

the upper and lower limits of all integrals are ∞ and −∞, respectively. Now we are ready

to give our main results.

Theorem 5.1 Let V be a Laplacian random variable with the density function g(x) =

1
2d

e−
|x|
d , d > 0. Then, the private watermarking capacity C(D) of the iid Laplacian wa-

termarking system with respect to the distortion level D and under an additive Laplacian

noise(ALN) V n is given by

C(D) = log

(
1 +

2d + D −
√

D2 + 4d2

√
D2 + 4d2 −D

)
. (5.2)

Theorem 5.2 Let V be a real-valued random variable with the density function g(x).

Then, the private watermarking capacity C(D) of the iid Laplacian watermarking system

with respect to the distortion level D and under an additive noise(AN) V n is given by

C(D) = G(0)
√

2π

[
log

∫
e
−λ0l(x)

π
√

2π dx− log(G(0)
√

2π)

]
+

λ0G(0)

π
∫

e
−λ0l(x)

π
√

2π dx

∫
l(x)e

−λ0l(x)

π
√

2π dx +

∫
g(x) log g(x)dx,
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where G(t) is the Fourier transform of g(x), l(x) =
∫

e−ixt

t2G(t)
dt and λ0 < 0 satisfies

πD

∫
e
−λ0l(x)

π
√

2π dx = −G(0)

∫
l(−x)e

−λ0l(x)

π
√

2π dx.

Particularly, if g(x) is even, then the watermarking capacity is

C(D) = −λ0D + G(0)
√

2π

[
log

∫
e
−λ0l(x)

π
√

2π dx− log(G(0)
√

2π)

]
+

∫
g(x) log g(x)dx.

Discussion:

• Under an additive Laplacian attack, the capacity given in Theorem 5.1 has a very

nice closed formula, which is independent of the parameter α of the Laplacian source,

and determined only by the distortion level D and the parameter d of the Laplacian

attack random variable.

• Actually, the watermarking capacity C(D) in (5.2) can be simplified to be C(D) =

log D+
√

D2+4d2

2d
. Thus, C(D) ' log D

d
if D � d, and C(D) ' 0 if D � d.

• For the Laplacian attack random variable V with parameter d, the variance is σ2 =

2d2. So, C(D) = log D+
√

D2+2σ2√
2σ

in terms of D and σ2.

• It is well known that the watermarking capacity of a Gaussian watermarking system

with the mean square distortion measure and under a fixed Gaussian attack with

variance σ2 is CG(D) = log
√

D+σ2

σ
. Therefore,

– if σ2 � D, the watermarking capacity of a Laplacian system under an additive

Laplacian attack with variance σ2 is almost equal to that of a Gaussian system

under an additive Gaussian attack with the variance σ2;

– If σ2 � D, the watermarking capacity of a Laplacian system under an additive

Laplacian attack with variance σ2 is larger than that of a Gaussian system

under an additive Gaussian attack with the variance σ2 and the difference is

log(2D)/2.
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• For D < 0.5, solving D+
√

D2+2σ2√
2σ

=
√

D+σ2

σ
yields σ2 = 1/2−D. So,

– if σ2 < 1/2−D, then the capacity of a Laplacian system under a Laplacian attack

with variance σ2 is bigger than that of a Gaussian system under a Gaussian

attack with variance σ2;

– if σ2 > 1/2 − D, then the capacity of a Laplacian system under a Laplacian

attack with variance σ2 is smaller than that of a Gaussian system under a

Gaussian attack with variance σ2.

• To determine a closed form of watermarking capacity with an arbitrary additive noise

attack, one only needs to solve an equation to get the parameter λ0.

5.2 Watermarking Capacities Under Additive Lapla-

cian Noise Attacks

Let V be a real random variable with density function g(x) and independent of all other

random variables. Then, from (5.1) and the model specified in Figure 5.1, the private

watermarking capacity under the additive attack V n is given by

C(D) = max
X:E|S−X|≤D

I(X; Y |S)

= max
X:E|S−X|≤D

[H(Y |S)−H(Y |X, S)]

= max
X:E|S−X|≤D

[H(X + V |S)−H(V )]

= max
T :E|T |≤D

H(T + V |S)−H(V )

= max
T :E|T |≤D

H(T + V )−H(V )

= max
T :E|T |=D

H(T + V )−H(V ). (5.3)

To obtain C(D), we first compute maxE|T |=D
H(T + V ) using the method of Lagrange

multipliers. Let f(·) be the density function of a real-valued random variable T , and define
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a functional for µ, λ < 0 and f(·),

∆(f(·), λ, µ) =

∫
x′

(∫
t′

f(t′)g(x′ − t′)dt′
)

log

(∫
t′

f(t′)g(x′ − t′)dt′
)

dx′

−λ

(∫
x′
|x′|f(x′)dx′ −D

)
− µ

(∫
x′

f(x′)dx′ − 1

)
.

Then

∂4
∂f(x)

=

∫
x′

g(x′ − x) log

∫
t′

f(t′)g(x′ − t′)dt′dx′ +

∫
x′

g(x′ − x)dx′ − λ|x| − µ

=

∫
x′

g(x′ − x) log h(x′)dx′ − λ|x| − µ + 1

where

h(x) =

∫
t′

f(t′)g(x− t′)dt′.

Let ∂∆
∂f(x)

= 0. Then for any x ∈ R∫
x′

g(x′ − x) log h(x′)dx′ = λ|x|+ µ− 1. (5.4)

Let G(t) and H(t) be Fourier transforms of g(x) and log h(x), respectively. Then, by

the Fourier Convolution Theorem and (5.4), we have∫
t

G(t)H(t)e−ixtdt =

∫
x′

g(x′ − x) log h(x′)dx′

= λ|x|+ µ− 1,∀x. (5.5)

By solving the integral equation (5.5), one has

G(t)H(t) =
1

2π

∫ ∞

−∞
(λ|x|+ µ− 1)eixtdx

= − λ

t2π
+ (µ− 1)Dirac(t), (5.6)

where Dirac(·) is the unit impulse function, that is,

Dirac(t) =

 limε→
1
ε
, −ε/2 ≤ t ≤ ε/2,

0 otherwise.
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Note (5.6) holds for any additive attack V .

In the following of this section, we assume V is a Laplacian random variable with

density function g(x) = 1
2d

e−
|x|
d , then the Fourier transform of g(x) is

G(t) =
1√
2π

∫ ∞

−∞
g(x)eixtdx

=
1√

2π(1 + t2d2)
.

Thus, from (5.6) we have

H(t) =
√

2π(1 + t2d2)

[
− λ

t2π
+ (µ− 1)Dirac(t)

]
,

and applying the inverse Fourier transform to H(t), it is not hard to obtain

log h(x) = π(2λxHeaviside(x) + µ− 1− 2d2λDirac(x)− λx),

where Heaviside(x) is the unit step function, that is,

Heaviside(x) =

 1, x ≥ 0,

0 x ≤ 0.

By the definition of h(x) and the Fourier Convolution Theorem, we get

h(x) =

∫ ∞

−∞
G(t)F (t)e−ixtdt

= eπ(2λxHeaviside(x)+µ−1−2d2λDirac(x)−λx), (5.7)

where F (t) is the Fourier Transform of f(x). Solving the integral equation (5.7),

G(t)F (t) =
1

2π

∫ ∞

−∞
h(x)eixtdx = − λ

t2 + π2λ2
eπ(µ−1),

so

F (t) = − λ

t2 + π2λ2

√
2π(1 + t2d2)eπ(µ−1).
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Using the inverse Fourier transform, we obtain

f(x) = −λeπ(µ−1)

∫ ∞

−∞

1 + t2d2

t2 + π2λ2
e−ixtdt

= −eπ(µ−1)[e−λπx(π2λ2d2 − 1)Heaviside(−x)

+eλπx(π2λ2d2 − 1)Heaviside(x) (5.8)

+2πλd2Dirac(x)].

Since the density function f(x) must satisfy the constraints
∫

x
f(x)dx = 1 and

∫
x
|x|f(x)dx =

D, that is,  − 2
πλ

eπ(µ−1) = 1

− 2(d2λ2π2−1)
π2λ2 eπ(µ−1) = D

one has  λ = D−
√

D2+4d2

2πd2 ,

µ = 1 + 1
π

log
√

D2+4d2−D
4d2 .

(5.9)

Now we get the optimal real-valued random variable T with the density function f(x)

in (5.8) with (λ, µ) of (5.9). For this optimal f(x), it is not hard to obtain the entropy of

T + V

H(T + V ) = 1− log

√
D2 + 4d2 −D

4d2
.

Therefore, by (5.3) and H(V ) = 1 + log(2d),

C(D) = 1− log

√
D2 + 4d2 −D

4d2
−H(V )

= − log

√
D2 + 4d2 −D

4d2
− log(2d)

= log

(
1 +

2d + D −
√

D2 + 4d2

√
D2 + 4d2 −D

)
.

The proof of Theorem 5.1 is completed.
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5.3 Watermarking Capacities Under Additive Noise

Attacks

In this section, we assume the additive noise V n is generated iid by a real-valued random

variable V with density function g(x). Then, from (5.6), we get

H(t) =
µ− 1

G(t)
Dirac(t)− λ

πt2G(t)
,

where G(t) is the Fourier transform of g(x).

Since H(t) is the Fourier transform of log h(x), then by the inverse Fourier transform,

log h(x) =
1√
2π

∫
H(t)e−ixtdt

=
µ− 1√

2π

∫
Dirac(t)

G(t)
e−ixtdt− λ

π
√

2π

∫
e−ixt

t2G(t)
dt

=
µ− 1√
2πG(0)

− λ√
2ππ

l(x),

where

l(x) =

∫
e−ixt

t2G(t)
dt. (5.10)

Let F (t) be the Fourier transform of f(x). Then

F (t) =
1

2πG(t)

∫
h(x)eixtdx

=
1

2πG(t)
e

µ−1√
2πG(0)

∫
e
− λ√

2ππ
l(x)+ixt

dx

by the Fourier Convolution Theorem. Applying the inverse Fourier transform to F (t) yields

f(x) =
e

µ−1√
2πG(0)

2π
√

2π

∫ ∫
1

G(t)
e
− λl(x1)

π
√

2π
+ix1t−ixt

dx1dt. (5.11)
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Since
∫

f(x)dx = 1 and
∫
|x|f(x)dx = D, that is,∫

f(x)dx =
e

µ−1√
2πG(0)

2π
√

2π

∫ ∫ (∫
e−ixtdx

)
1

G(t)
e
− λl(x1)

π
√

2π
+ix1t

dx1dt

=
e

µ−1√
2πG(0)

2π
√

2π

∫ ∫
2πDirac(t)

1

G(t)
e
− λl(x1)

π
√

2π
+ix1t

dx1dt

=
e

µ−1√
2πG(0)

√
2πG(0)

∫
e
− λ

π
√

2π
l(x)

dx = 1

and ∫
|x|f(x)dx =

e
µ−1√
2πG(0)

2π
√

2π

∫ ∫ (∫
|x|e−ixtdx

)
1

G(t)
e
− λl(x1)

π
√

2π
+ix1t

dx1dt

=
e

µ−1√
2πG(0)

2π
√

2π

∫ ∫ (
−2

t2

)
1

G(t)
e
− λl(x1)

π
√

2π
+ix1t

dx1dt

= −e
µ−1√
2πG(0)

√
2ππ

∫
l(−x)e

− λ
π
√

2π
l(x)

dx = D,

we obtain  λ = λ0

µ = 1 +
√

2πG(0)
[
log(G(0)

√
2π)− log

∫
e
− λ0l(x)

π
√

2π dx
]
,

(5.12)

where λ0 < 0 satisfies

πD

∫
e
− λ0l(x)

π
√

2π dx = −G(0)

∫
l(−x)e

− λ0l(x)

π
√

2π dx. (5.13)

For this optimal random variable T with the density function f(x) determined by (5.11),

(5.12) and (5.13), we can calculate the entropy

H(T + V ) = G(0)
√

2π

[
log

∫
e
− λ0l(x)

π
√

2π dx− log(G(0)
√

2π)

]
+

λ0G(0)

π
∫

e
− λ0l(x)

π
√

2π dx

∫
l(x)e

− λ0l(x)

π
√

2π dx. (5.14)

In particular, if g(x) is even, then G(t) is even, so l(x) is. Thus, by (5.13),∫
l(x)e

− λ0l(x)

π
√

2π dx =

∫
l(−x)e

− λ0l(x)

π
√

2π dx

= − Dπ

G(0)

∫
e
− λ0l(x)

π
√

2π dx,
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and the last term in (5.14) is simplified to be −λ0D. In view of (5.3), the proof of Theorem

5.2 is finished.

5.4 Summary

Calculation of watermarking capacities of private Laplacian watermarking systems with

the magnitude-error distortion measure under additive attacks is addressed in this chap-

ter. First, in the case of an additive Laplacian attack, a nice closed-form formula for

the capacities is derived, which involves only the distortion level and the parameter of

the Laplacian attack. Second, in the case of an arbitrary additive attack, a general, but

slightly more complicated formula for the capacities is given.
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Chapter 6

Algorithms for Computing Joint

Compression and Private

Watermarking Rate Regions

Compression and watermarking rate regions of joint compression and watermarking sys-

tems can be characterized as optimization problems in information theoretic quantities.

However, calculation of these optimizations problems is not straightforward. In this chap-

ter numerical algorithms are developed for computing compression and watermarking rate

regions of joint compression and private watermarking systems, and algorithms for comput-

ing joint compression and public watermarking rate regions are given in the next chapter.

6.1 Introduction

From an information-theoretic viewpoint, a major research problem on joint compression

and watermarking is to determine best tradeoffs among the distortion between covertexts

and stegotexts, the watermarking embedding rate, the compression rate and the robust-

ness of stegotexts. Karakos [19, 18] determined the best tradeoffs for joint compression
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and private watermarking systems with finite alphabets and with Gaussian covertexts,

respectively. Maor and Merhav [20, 21] obtained the best tradeoff for joint compression

and public watermarking systems with discrete alphabets. These results were extended to

the case of abstract alphabets in [45]. Mathematically, for a joint compression and wa-

termarking system the best tradeoff among distortion between covertexts and stegotexts,

watermarking rate, compression rate and robustness of stegotexts can be formulated as an

optimization problem. Unfortunately, the optimization problem is often difficult to solve.

As a result, numerical algorithms are needed for calculating the tradeoff efficiently.

On the other hand, in the context of communication systems, in order to numerically

compute channel capacities of memoryless channels and rate-distortion functions of mem-

oryless sources, an efficient iterative algorithm was invented by Blahut [2] and Arimoto [1]

independently, and its convergence was proved rigorously by Csiszar [13]. Since then,

extensive studies on its generalization to other scenarios have been conducted. For in-

stance, Chang and Davisson [4] generalized the Blahut-Arimoto algorithm to the case with

continuous alphabets; Dupuis and Yu and Willems [15, 42] modified the Blahut-Arimoto

algorithm to calculate capacities of Gel’fand-Pinsker channels and rate-distortion functions

of Wyner-Ziv sources. Other generalizations can be found in [22, 29, 30, 37] and reference

therein. However, due to the different setting up for joint compression and watermarking

systems, none of these existing generalized Blahut-Arimoto algorithms is applicable for

numerical calculation of joint compression and watermarking rate regions.

In this chapter, based on the Blahut-Arimoto algorithm we will present two iterative

algorithms that can be combined to efficiently and numerically determine the compression

and watermarking rate region of a joint compression and private watermarking system with

finite alphabets. Algorithm A is used for determining numerically the private watermarking

capacity, and Algorithm B is for computing the compression rate function with respect to

watermarking rate and distortion.
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6.2 Formulation of Joint Compression and Private Wa-

termarking Rate Regions

For a joint compression and private watermarking system designated in Figure 3.1, we can

define a privately achievable pair (Rw, Rc) with respect to D as in Definition 3.3. The set

of all privately achievable rate pairs (Rw, Rc) with respect to D is called a compression

and watermarking rate region with respect to D. To facilitate the description of the

region, we define a compression rate function with respect to watermarking rate Rw

and distortion D as

Rc(D, Rw)
def
= inf Rc,

where the inf is taken over all privately achievable pairs (Rw, Rc) with respect to D and

fixed Rw. Obviously, the compression rate function with respect to Rw and D determines

the best tradeoff among watermarking rate, compression rate, distortion and robustness

of the watermarking system. It is well known [19, 20, 45] that for a joint compression and

private watermarking system with a memoryless finite covertext source S and under a fixed

attack p(y|x),

Rc(D, Rw) = Rw + min
p(x|s):Ed(S,X)≤D

Rw≤I(X;Y |S)

I(S; X), (6.1)

where D ≥ 0, 0 ≤ Rw ≤ C(D), the private watermarking capacity, and

C(D)
def
= max

p(x|s):Ed(S,X)≤D

I(X; Y |S).

Now we analyze (6.1) in much more details. For a given D ≥ 0, if

R(D)
def
= min

p(x|s):Ed(S,X)≤D

I(S; X),

the rate-distortion function of the source S, is achieved by a conditional probability p∗(x|s),

then, for 0 ≤ Rw ≤ Ip∗(x|s)(X; Y |S),

Rc(D, Rw) = Rw + R(D),
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a linear function of Rw; in the range of Ip∗(x|s)(X; Y |S) ≤ Rw ≤ C(D), Rc(D, Rw) is a

curve of Rw. Since the rate-distortion function R(D) and p∗(x|s) can be easily calculated

by the Blahut-Arimoto algorithm, it is sufficient to develop algorithms for computing the

private watermarking capacity C(D) and Rc(D, Rw) for Ip∗(x|s)(X; Y |S) ≤ Rw ≤ C(D)

in order to describe the compression rate function with respect to the watermarking rate

Rw and distortion D, or equivalently, the joint compression and private watermarking rate

region.

6.3 Algorithm A for Computing Private Watermark-

ing Capacities

In this section, we present an algorithm (hereafter referred to as Algorithm A) for comput-

ing private watermarking capacities C(D). Algorithm A is similar to the Blahut-Arimoto

algorithm for computation of channel capacities with constrained inputs [2], but it has

more complicated constraints and objective function. Specifically, Algorithm A is to

compute max
p(x|s):Ed(S,X)≤D

I(X; Y |S), while the Blahut-Arimoto algorithm is to calcu-

late max
p(x):Ee(X)≤D

I(X; Y ) in which e(x) is a function of the channel input x. Before

describing Algorithm A and showing its convergence, some properties are given.

6.3.1 Properties of C(D)

Proposition 6.1 The private watermarking capacity C(D) = max
p(x|s):Ed(S,X)≤D

I(X; Y |S)

is nondecreasing, concave and continuous in D ≥ 0.

Proposition 6.2

C(D) = λD + max
p(x|s)

[I(X; Y |S)− λEd(S, X)] , (6.2)

for λ ≥ 0, where D =
∑

s,x p(s)p∗(x|s)d(s, x) and p∗(x|s) achieves the maximum in (6.2).
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Proposition 6.3 For λ ≥ 0 and two probability distributions p(x|s), Q(x|s, y) > 0, define

L(p(x|s), Q(x|s, y)) =
∑
s,x,y

p(s)p(x|s)p(y|x) log
Q(x|s, y)

p(x|s)

−λ
∑
s,x

p(s)p(x|s)d(s, x).

Then (a).

C(D) = λD + max
p(x|s)

max
Q(x|s,y)

L(p(x|s), Q(x|s, y)); (6.3)

(b). For fixed p(x|s), the optimal probability distributions Q∗(x|s, y) to maximize L(p(x|s),

Q(x|s, y)) is given by

Q∗(x|s, y) =
p(x|s)p(y|x)∑
x′ p(x′|s)p(y|x′)

; (6.4)

(c). For fixed Q(x|s, y), the optimal p∗(x|s) to maximize L(p(x|s), Q(x|s, y)) is given by

p∗(x|s) =
exp

(∑
y p(y|x) log Q(x|s, y)− λd(s, x)

)
∑

x′ exp
(∑

y p(y|x′) log Q(x′|s, y)− λd(s, x′)
) . (6.5)

Moreover,

L(p∗(x|s), Q(x|s, y)) =
∑

s

p(s) log
∑

x

exp

(∑
y

p(y|x) log Q(x|s, y)− λd(s, x)

)
. (6.6)

Proof: (a) For a given probability distribution p(x|s), let

Q∗(x|s, y) =
p(x|s)p(y|x)∑
x′ p(x′|s)p(y|x′)

.

Then, for any probability distribution Q(x|s, y) of X given s and y,

L(p(x|s), Q∗(x|s, y))− L(p(x|s), Q(x|s, y))

=
∑
s,x,y

p(s)p(x|s)p(y|x)

[
log

Q∗(x|s, y)

p(x|s)
− log

Q(x|s, y)

p(x|s)

]
=

∑
s,x,y

p(s)p(x|s)p(y|x) log
Q∗(x|s, y)

Q(x|s, y)

≥ 0
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by the log-sum inequality. So by Proposition 6.2,

C(D) = λD + max
p(x|s)

max
Q(x|s,y)

L(p(x|s), Q(x|s, y)).

(b) is obvious from (a).

(c) For fixed Q(x|s, y), one has

∂L(p(x|s), Q(x|s, y))

∂p(x|s)
=
∑

y

∂
(∑

s′,x′ p(s′)p(x′|s′)p(y|x′) log Q(x′|s′,y)
p(x′|s′)

)
∂p(x|s)

− λp(s)d(s, x)

=
∑

y

p(s)p(y|x) log
Q(x|s, y)

p(x|s)
−
∑

y

∑
s′,x′

p(s′)p(y|x′)∂p(x′|s′)
∂p(x|s)

− λp(s)d(s, x)

=
∑

y

p(s)p(y|x) log
Q(x|s, y)

p(x|s)
− p(s)− λp(s)d(s, x)

= p(s)
∑

y

p(y|x) log Q(x|s, y)− p(s) log p(x|s)− p(s)− λp(s)d(s, x).

Assume p(s) > 0 for all s. By the Karush-Kuhn-Tucker(KKT) conditions and
∑

x p(x|s) =

1 for all s, if p∗(x|s) > 0, then it is not hard to get

p∗(x|s) =
exp(

∑
y p(y|x) log Q(x|s, y)− λd(s, x))∑

x′ exp(
∑

y p(y|x′) log Q(x′|s, y)− λd(s, x′))
,

which is optimal to maximize L(p(x|s), Q(x|s, y)) for fixed Q(x|s, y).

For the fixed Q(x|s, y) and p∗(x|s) in (6.5), it is easy to obtain

L(p∗(x|s), Q(x|s, y)) =
∑

s

p(s)

[∑
x,y

p∗(x|s)p(y|x) log
Q(x|s, y)

p∗(x|s)
− λ

∑
x

p∗(x|s)d(s, x)

]

=
∑

s

p(s)

[∑
x,y

p∗(x|s)p(y|x) log Q(x|s, y)−
∑

x

p∗(x|s) log p∗(x|s)− λ
∑

x

p∗(x|s)d(s, x)

]

=
∑

s

p(s)

{∑
x,y

p∗(x|s)p(y|x) log Q(x|s, y)−
∑

x

p∗(x|s)

[∑
y

p(y|x) log Q(x|s, y)− λd(s, x)

]

+ log
∑
x′

exp

(∑
y

p(y|x′) log Q(x′|s, y)− λd(s, x′)

)
− λ

∑
x

p∗(x|s)d(s, x)

}

=
∑

s

p(s) log
∑

x

exp

(∑
y

p(y|x) log Q(x|s, y)− λd(s, x)

)
.
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Corollary 6.1 Probability distributions p(x|s) and Q(x|s, y) achieve the private water-

marking capacity C(D) in (6.3) if and only if they satisfy

Q(x|s, y) =
p(x|s)p(y|x)∑
x′ p(x′|s)p(y|x′)

, (6.7)

p(x|s) =
exp(

∑
y p(y|x) log Q(x|s, y)− λd(s, x))∑

x′ exp(
∑

y p(y|x′) log Q(x′|s, y)− λd(s, x′))
. (6.8)

6.3.2 Algorithm A

Fix a small number ε > 0.

Step 1. Choose Q(1)(x|s, y) > 0 arbitrarily for any (s, y);

Step 2. Define

a(n)(s, x) = exp

[∑
y

p(y|x) log Q(n−1)(x|s, y)− λd(s, x)

]
.

Compute

p(n)(x|s) =
a(n)(s, x)∑
x′ a

(n)(s, x′)
, (6.9)

and

Q(n)(x|s, y) =
p(n)(x|s)p(y|x)∑
x′ p

(n)(x′|s)p(y|x′)
; (6.10)

Step 3. If

∑
s

p(s)

(
log max

x
a(n)(s, x)− log

∑
x

p(n)(x|s)a(n)(s, x)

)
< ε

then stop the iteration and get the optimal probability distributions p(n)(x|s) and Q(n)(x|s, y)

achieving the private watermarking capacity C(D); otherwise, go to Step 2 and continue

the iteration.

The termination condition is similar to that of [2], so the proof is omitted here.

Remarks: After the author completed the thesis-writing, Frans Willems told him that

Algorithm A developed here would be identical to that developed by Blahut for computing
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channel capacity with input expense constraint if Shannon’s strategies were used. To see

this, let T (·), mapping from S into X , be any strategy. Then

I(X; Y |S) = I(T ; S) + I(X; Y |S)

= I(T ; S) + I(T ; Y |S)

= I(T ; Y, S)

since T is independent of S. Moreover, the cost e(t) of a strategy t is

e(t) =
∑

s

p(s)d(s, x = t(s)),

the transition probailities

p(y, s|t) = p(s)p(y|x = t(s)),

and all joint probabilities can be realized in this way. Now, it is obvious that Algorithm A

is identical to Blahut’s algorithm for computing the channel capacity with input expense

constraint.

6.3.3 Convergence of Algorithm A

Let p(x|s) and Q(x|s, y) be probability distributions achieving the private watermarking

capacity C(D), and p(n)(x|s) and Q(n)(x|s, y) be defined in (6.9) and (6.10). For p(x|s)

and p(n)(x|s), define

p(y|s) =
∑

x

p(x|s)p(y|x),

p(n)(y|s) =
∑

x

p(n−1)(x|s)p(y|x).

Then it is easy to obtain

∑
x′

exp

(∑
y′

p(y′|x′) log Q(x′|s, y′)− λd(s, x′)

)
=

p(y|x) exp
(∑

y′ p(y′|x) log Q(x|s, y′)− λd(s, x)
)

p(y|s)Q(x|s, y)
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and ∑
x′

exp

(∑
y′

p(y′|x′) log Q(n−1)(x′|s, y′)− λd(s, x′)

)

=
p(y|x) exp

(∑
y′ p(y′|x) log Q(n−1)(x|s, y′)− λd(s, x)

)
p(n)(y|s)Q(n)(x|s, y)

.

Therefore, we can obtain

L(p(x|s), Q(x|s, y))− L(p(n)(x|s), Q(n−1)(x|s, y))

=
∑

s

p(s) log
∑
x′

exp

(∑
y′

p(y′|x′) log Q(x′|s, y′)− λd(s, x′)

)

−
∑

s

p(s) log
∑
x′

exp

(∑
y′

p(y′|x′) log Q(n−1)(x′|s, y′)− λd(s, x′)

)

=
∑
s,x,y

p(s)p(x|s)p(y|x) log
Q(x|s, y)

Q(n−1)(x|s, y)
+
∑
s,x,y

p(s)p(x|s)p(y|x) log
p(n)(y|s)
p(y|s)

+
∑
s,x,y

p(s)p(x|s)p(y|x) log
Q(n)(x|s, y)

Q(x|s, y)

=
∑
s,y

p(s, y)
[
D(Q(x|s, y)||Q(n−1)(x|s, y))−D(Q(x|s, y)||Q(n)(x|s, y))

]
−
∑

s

p(s)D(p(y|s)||p(n)(y|s)),

where D(p(x)||q(x)) is the divergence between p(x) and q(x). Since p(x|s), Q(x|s, y) achieve

the private watermarking capacity, one has

0 ≤
∑
s,y

p(s, y)[D(Q(x|s, y)||Q(n−1)(x|s, y))−D(Q(x|s, y)||Q(n)(x|s, y))]

−
∑

s

p(s)D(p(y|s)||p(n)(y|s)),

which implies that ∑
s,y

p(s, y)[D(Q(x|s, y)||Q(n−1)(x|s, y))−D(Q(x|s, y)||Q(n)(x|s, y))]

≥
∑

s

p(s)D(p(y|s)||p(n)(y|s))

≥ 0.
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Thus, for any N > 1,

0 ≤
N∑

n=2

[L(p(x|s), Q(x|s, y))− L(p(n)(x|s), Q(n−1)(x|s, y))]

≤
N∑

n=2

∑
s,y

p(s, y)[D(Q(x|s, y)||Q(n−1)(x|s, y))−D(Q(x|s, y)||Q(n)(x|s, y))]

=
∑
s,y

p(s, y)[D(Q(x|s, y)||Q(1)(x|s, y))−D(Q(x|s, y)||Q(N)(x|s, y))]

≤
∑
s,y

p(s, y)D(Q(x|s, y)||Q(1)(x|s, y)) < ∞,

which yields

L(p(n)(x|s), Q(n−1)(x|s, y)) → L(p(x|s), Q(x|s, y))

as n →∞.

The proof that pn(x|s) → p(x|s) and Qn(x|s, y) → Q(x|s, y) is similar to that in

algorithm B and omitted here.

6.4 Algorithm B for Computing Compression Rate

Functions

In this section, an iterative algorithm, Algorithm B, will be developed to calculate the

compression rate function with respect to watermarking rate Rw and distortion D given

in (6.1), for Ip∗(x|s)(X; Y |S) ≤ Rw ≤ C(D) and D ≥ 0. As in the Section 6.3, properties

of the compression rate functions will be introduced, and followed by the description of

Algorithm B and the proof of its convergence.

6.4.1 Properties of Compression Rate Functions

Proposition 6.4 Rc(D, Rw) is non-increasing in D ≥ 0 and non-decreasing in Rw ≥ 0.

Proposition 6.5 Rc(D, Rw) is convex in (D, Rw).

112



Proof: Let (D1, R
(1)
w ) and (D2, R

(2)
w ) be two points, and p1(x|s) and p2(x|s) the probability

distributions achieving Rc(Di, R
(i)
w ) for i = 1, 2.

Let λ ∈ [0, 1], and define

p∗(x|s) = λp1(x|s) + (1− λ)p2(x|s).

Then ∑
s,x

p(s)p∗(x|s)d(s, x) ≤ λD1 + (1− λ)D2,

and

Ip∗(X; Y |S) =
∑
s,x,y

p(s)p∗(x|s)p(y|x) log
p(y|x)

p∗(y|s)

=
∑
s,x,y

p(s) [λp1(x|s) + (1− λ)p2(x|s)] p(y|x) log
p(y|x)

p∗(y|s)

= λ
∑
s,x,y

p(s)p1(x|s)p(y|x) log
p(y|x)

p∗(y|s)
+ (1− λ)

∑
s,x,y

p(s)p2(x|s)p(y|x) log
p(y|x)

p∗(y|s)
(1)

≥ λ
∑
s,x,y

p(s)p1(x|s)p(y|x) log
p(y|x)

p1(y|s)
+ (1− λ)

∑
s,x,y

p(s)p2(x|s)p(y|x) log
p(y|x)

p2(y|s)

= λIp1(X; Y |S) + (1− λ)Ip2(X; Y |S)

≥ λR(1)
w + (1− λ)R(2)

w ,

where (1) holds since∑
s,x,y

p(s)pi(x|s)p(y|x) log
p(y|x)

p∗(y|s)
≥
∑
s,x,y

p(s)pi(x|s)p(y|x) log
p(y|x)

pi(y|s)

by the log-sum inequality, and

p∗(y|s) =
∑

x

p∗(x|s)p(y|x),

pi(y|s) =
∑

x

pi(x|s)p(y|x).
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So

Rc(λD1 + (1− λ)D2, λR(1)
w + (1− λ)R(2)

w ) ≤ λR(1)
w + (1− λ)R(2)

w + Ip∗(S; X)

= λR(1)
w + (1− λ)R(2)

w +
∑
s,x

p(s)[λp1(x|s) + (1− λ)p2(x|s)] log
p∗(s|x)

p(s)

= λR(1)
w + λ

∑
s,x

p(s)p1(x|s) log
p∗(s|x)

p(s)
+ (1− λ)R(2)

w + (1− λ)
∑
s,x

p(s)p2(x|s) log
p∗(s|x)

p(s)

(2)

≤ λ

(
R(1)

w +
∑
s,x

p(s)p1(x|s) log
p1(s|x)

p(s)

)
+ (1− λ)

(
R(2)

w +
∑
s,x

p(s)p2(x|s) log
p2(s|x)

p(s)

)
= λRc(D1, R

(1)
w ) + (1− λ)Rc(D2, R

(2)
w ),

where

p∗(s|x) =
p(s)p∗(x|s)∑
s1

p(s1)p∗(x|s)
,

pi(s|x) =
p(s)pi(x|s)∑
s1

p(s1)pi(x|s)
,

and (2) holds since ∑
s,x

p(s)pi(x|s) log
p∗(s|x)

p(s)
−
∑
s,x

p(s)pi(x|s) log
pi(s|x)

p(s)

=
∑
s,x

p(s)pi(x|s) log
p∗(s|x)

pi(s|x)

=
∑
s,x

pi(x)pi(s|x) log
p∗(s|x)

pi(s|x)
≤ 0

by the log-sum inequality. Thus, Rc(D, Rw) is convex in (D, Rw). �

Proposition 6.6 For λ ≤ 0 and γ ≥ 0, one has

Rc(D, Rw) = λD + (1 + γ)Rw + min
p(x|s)

[I(S; X)− λEd(S, X)− γI(X; Y |S)],

where

D = Ep∗d(S, X), Rw = Ip∗(X; Y |S)

and p∗(x|s) achieves the above minimum.
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Proposition 6.7 Fix λ ≤ 0, γ ≥ 0. For probability distributions p(x|s), Q(x), Q(x|s, y),

define

J(p(x|s), Q(x), Q(x|s, y))
def
= (1 + γ)

∑
s,x

p(s)p(x|s) log p(x|s)

−
∑
s,x

p(s)p(x|s) (log Q(x) + λd(s, x))− γ
∑
s,x,y

p(s)p(x|s)p(y|x) log Q(x|s, y).

Then (a).

Rc(D, Rw) = λD + (1 + γ)Rw + min
p(x|s)

min
{Q(x),Q(x|s,y)}

J(p(x|s), Q(x), Q(x|s, y)),

where D = Ep∗(x|s)d(S, X), Rw = Ip∗(x|s)(X; Y |S) and p∗(x|s) achieves the above minimum.

(b). For fixed p(x|s), the optimal Q∗(x) and Q∗(x|s, y) are given by

Q∗(x) =
∑

s

p(s)p(x|s),

Q∗(x|s, y) =
p(x|s)p(y|x)∑
x′ p(x′|s)p(y|x′)

.

(c). For fixed Q(x) and Q(x|s, y), the optimal p∗(x|s) is given by

p∗(x|s) =
b(s, x)∑
x′ b(s, x

′)
,

where

b(s, x) = exp

[
1

1 + γ

(
log Q(x) + λd(s, x) + γ

∑
y

p(y|x) log Q(x|s, y)

)]
.

Moreover, the minimum of J(p(x|s), Q(x), Q(x|s, y)) for fixed Q(x) and Q(x|s, y) is equal

to

J(p∗(x|s), Q(x), Q(x|s, y)) = −(1 + γ)
∑

s

p(s) log
∑
x′

b(s, x′).

Proof: (a) and (b). For a fixed probability p(x|s), let

Q∗(x) =
∑

s

p(s)p(x|s),
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Q∗(x|s, y) =
p(x|s)p(y|x)∑
x′ p(x′|s)p(y|x′)

,

then it is easy to get

J(p(x|s), Q(x), Q(x|s, y))− J(p(x|s), Q∗(x), Q∗(x|s, y))

=
∑
s,x

p(s)p(x|s) log
Q∗(x)

Q(x)
− γ

∑
s,x,y

p(s)p(x|s)p(y|x) log
Q(x|s, y)

Q∗(x|s, y)

=
∑

x

Q∗(x) log
Q∗(x)

Q(x)
− γ

∑
s,x,y

p(s, y)Q∗(x|s, y) log
Q(x|s, y)

Q∗(x|s, y)

≥ 0

by the log-sum inequality. So, for fixed p(x|s), minQ(x),Q(x|s,y) J(p(x|s), Q(x), Q(x|s, y)) is

achieved by Q∗(x) and Q∗(x|s, y). Moreover, it is easy to check that the minimum value

is I(S; X)− λEd(S, X)− γI(X; Y |S). Thus, (a) and (b) are proved.

(c). One has

∂J

∂p(x|s)
= p(s)(1 + γ) log p(x|s) + (1 + γ)p(s)− p(s)(λd(s, x) + log Q(x))

−γp(s)
∑

y

p(y|x) log Q(x|s, y).

Suppose p(s) > 0 for all s. By the KKT conditions and
∑

x p(x|s) = 1, if p∗(x|s) > 0 then

one has

p∗(x|s) =
exp

[
1

1+γ

(
log Q(x) + λd(s, x) + γ

∑
y p(y|x) log Q(x|s, y)

)]
∑

x′ exp
[

1
1+γ

(
log Q(x′) + λd(s, x′) + γ

∑
y p(y|x′) log Q(x′|s, y)

)] .
For this optimal p∗(x|s), it is easy to get the minimum of J for fixed Q(x) and Q(x|s, y).

�

6.4.2 Algorithm B

Fix a small number ε > 0.

Step 1. Choose Q(1)(x) > 0, Q(1)(x|s, y) > 0 arbitrarily for any s, y;
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Step 2. Let

b(n)(s, x) = exp

[
1

1 + γ
log Q(n−1)(x) +

λ

1 + γ
d(s, x)

+
γ

1 + γ

∑
y

p(y|x) log Q(n−1)(x|s, y)

]
.

Compute

p(n)(x|s) =
b(n)(s, x)∑
x′ b

(n)(s, x′)
, (6.11)

Q(n)(x) =
∑

s

p(s)p(n)(x|s), (6.12)

Q(n)(x|s, y) =
p(n)(x|s)p(y|x)∑
x′ p

(n)(x′|s)p(y|x′)
. (6.13)

Step 3. If

max
x

log Q(n)(x)−
∑

x

Q(n+1)(x) log Q(n)(x) < ε,

stop the iteration and get the optimal probability distributions p(n)(x|s), Q(n)(x), Q(n)(x|s, y)

achieving the compression rate function Rc(D, Rw); otherwise, go to Step 2.
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6.4.3 Convergence of Algorithm B

For p(n)(x|s), Q(n−1)(x), Q(n−1)(x|s, y) defined in (6.11), (6.12) and (6.13), it is easy to have

J(p(n)(x|s), Q(n−1)(x), Q(n−1)(x|s, y)) = (1 + γ)
∑
s,x

p(s)p(n)(x|s) log p(n)(x|s)

−
∑
s,x

p(s)p(n)(x|s)(log Q(n−1)(x) + λd(s, x))− γ
∑
s,x,y

p(s)p(n)(x|s)p(y|x) log Q(n−1)(x|s, y)

= (1 + γ)
∑
s,x

p(s)p(n)(x|s) log
b(n)(s, x)∑
x′ b

(n)(s, x′)
−
∑
s,x

p(s)p(n)(x|s)(log Q(n−1)(x)

+λd(s, x))− γ
∑
s,x,y

p(s)p(n)(x|s)p(y|x) log Q(n−1)(x|s, y)

= −(1 + γ)
∑

s

p(s) log
∑
x′

exp[
1

1 + γ
log Q(n−1)(x′) +

λ

1 + γ
d(s, x′)

+
γ

1 + γ

∑
y

p(y|x′) log Q(n−1)(x′|s, y))]

= −(1 + γ)
∑

s

p(s) log
∑
x′

b(n)(s, x′).

Assume (p(x|s), Q(x), p(x|s, y)) achieve the compression rate function R(D, Rw) and

define

p(n)(s|x) =
p(s)p(n)(x|s)

Q(n)(x)
, p(s|x) =

p(s)p(x|s)
Q(x)

,

then, one has ∑
x′

b(n)(s, x′) =
p(s)b(n)(s, x)

Q(n)(x)p(n)(s|x)
,

and ∑
x′

b(s, x′) =
p(s)b(s, x)

Q(x)p(s|x)
.
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So,

0 ≤ J(p(n)(x|s), Q(n−1)(x), Q(n−1)(x|s, y))− J(p(x|s), Q(x), Q(x|s, y))

= (1 + γ)
∑
s,x

p(s)p(x|s) log
p(s)b(s, x)

Q(x)p(s|x)
− (1 + γ)

∑
s,x

p(s)p(x|s) log
p(s)b(n)(s, x)

Q(n)(x)p(n)(s|x)

=
∑
s,x

p(s)p(x|s) log
Q(n)(x)

Q(n−1)(x)
− γ

∑
s,x

p(s)p(x|s) log
Q(x)

Q(n)(x)

−(1 + γ)
∑
s,x

p(s)p(x|s) log
p(s|x)

p(n)(s|x)
+ γ

∑
s,x,y

p(s)p(x|s)p(y|x) log
Q(x|s, y)

Q(n−1)(x|s,y)

=
∑
s,x

p(s)p(x|s) log
Q(n)(x)

Q(n−1)(x)
−
∑
s,x

p(s)p(x|s) log
p(s|x)

p(n)(s|x)

−γ
∑
s,x,y

p(s)p(x|s)p(y|x) log

Q(x)p(s|x)
Q(x|s,y)

Q(n)(x)p(n)(s|x)

Q(n−1)(x|s,y)

=
∑
s,x

p(s)p(x|s) log
Q(n)(x)

Q(n−1)(x)
−
∑
s,x

p(s)p(x|s) log
p(s|x)

p(n)(s|x)

−γ
∑
s,x,y

p(s)p(x|s)p(y|x) log
p(y)

p(n−1)(y)

=
∑

x

Q(x) log
Q(n)(x)

Q(n−1)(x)
−
∑

x

Q(x)
∑

s

p(s|x) log
p(s|x)

p(n)(s|x)
− γ

∑
y

p(y) log
p(y)

p(n−1)(y)

= D(Q(x)||Q(n−1)(x))−D(Q(x)||Q(n)(x))

−
∑

x

Q(x)D(p(s|x)||p(n)(s|x))− γD(p(y)||p(n−1)(y)),

where

p(n−1)(y) =
∑
s,x

p(s)p(n−1)(x|s)p(y|x),

Q(x)p(s|x)

Q(x|s, y)
=

p(s, x)p(s)p(y|x)

Q(x|s, y)p(s)p(y|x)

=
p(s, x, y)p(s)

p(x, s|y)p(y|x)
=

p(y)p(s)

p(y|x)
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and

Q(n)(x)p(n)(s|x)

Q(n−1)(x|s, y)
=

p(s)p(n−1)(x|s)p(s)p(y|x)

Q(n−1)(x|s, y)p(s)p(y|x)

=
p(n−1)(y)p(s)

p(y|x)
.

Therefore we have

(i)

0 ≤ J(p(n)(x|s), Q(n−1)(x), Q(n−1)(x|s, y))− J(p(x|s), Q(x), Q(x|s, y))

≤ D(Q(x)||Q(n−1)(x))−D(Q(x)||Q(n)(x));

(ii) ∑
x

Q(x)D(p(s|x)||p(n)(s|x)) ≤ D(Q(x)||Q(n−1)(x))−D(Q(x)||Q(n)(x));

(iii)

D(p(y)||p(n−1)(y)) ≤ D(Q(x)||Q(n−1)(x))−D(Q(x)||Q(n)(x)).

In light of (i)-(iii), for any N > 1, we have

(a)

N∑
n=2

[J(p(n)(x|s), Q(n−1)(x), Q(n−1)(x|s, y))− J(p(x|s), Q(x), Q(x|s, y))]

≤
N∑

n=2

[D(Q(x)||Q(n−1)(x))−D(Q(x)||Q(n)(x))]

= D(Q(x)||Q(1)(x))−D(Q(x)||Q(N)(x))

≤ D(Q(x)||Q(1)(x)) < ∞,

(b)
N∑

n=2

∑
x

Q(x)D(p(s|x)||p(n)(s|x)) ≤ D(Q(x)||Q(1)(x)) < ∞,

(c)
N∑

n=2

D(p(y)||p(n−1)(y)) ≤ D(Q(x)||Q(1)(x)) < ∞,
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which imply that, as n →∞,

J(p(n)(x|s), Q(n−1)(x), Q(n−1)(x|s, y)) →

J(p(x|s), Q(x), Q(x|s, y)),

and

D(p(s|x)||p(n)(s|x)) → 0,

D(p(y)||p(n−1)(y)) → 0,

and the last two limitations guarantee that p(n)(s|x) → p(s|x) and p(n)(y) → p(y) as

n →∞.

It is obvious that {Q(n)(x), Q(n)(x|s, y)} are bounded sequences. By the Bolzano-

Weierstrass Theorem, there exists a subsequence {Q(ni)(x), Q(ni)(x|s, y)} convergent to,

say {Q∗∗(x), Q∗∗(x|s, y)}. Suppose p(ni+1)(x|s) determined by (Q(ni)(x), Q(ni)(x|s, y)) in

(6.11) approaches p∗∗(x|s), then as n →∞,

J(p(ni+1)(x|s), Q(ni)(x), Q(ni)(x|s, y)) → J(p∗∗(x|s), Q∗∗(x), Q∗∗(x|s, y)).

Since {J(p(ni+1)(x|s), Q(ni)(x), Q(ni)(x|s, y))} is a subsequence of {J(p(n+1)(x|s), Q(n)(x),

Q(n)(x|s, y))}, we have

J(p∗∗(x|s), Q∗∗(x), Q∗∗(x|s, y)) = J(p(x|s), Q(x), Q(x|s, y)),

which means (p∗∗(x|s), Q∗∗(x), Q∗∗(x|s, y)) achieve the minimum. Thus we have

Q∗∗(x) =
∑

s

p(s)p∗∗(x|s),

Q∗∗(x|s, y) =
p∗∗(x|s)p(y|x)∑
x′ p

∗∗(x′|s)p(y|x′)
,

p∗∗(x|s) =
b∗∗(s, x)∑
x′ b

∗∗(s, x′)
,

where

b∗∗(s, x) = exp

[
1

1 + γ
(log Q∗∗(x) + λd(s, x) + γ

∑
y

p(y|x) log Q∗∗(x|s, y))

]
.
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From (i), D(Q∗∗(x)||Q(n−1)(x))−D(Q∗∗(x)||Q(n)(x)) ≥ 0, that is, {D(Q∗∗(x)||Q(n)(x))}

is monotonic, so, {D(Q∗∗(x)||Q(n)(x))} has a limit. Since {D(Q∗∗(x)||Q(ni)(x))} is its

subsequence convergent to 0, so {D(Q∗∗(x)||Q(n)(x))} is convergent to 0. Thus, Q(n)(x) →

Q∗∗(x). Since p(n)(s|x) → p∗∗(s|x) and p(n)(y) → p∗∗(y) as n →∞, and

Q(n)(x)p(n)(s|x)

Q(n−1)(x|s, y)
=

p(n−1)(y)p(s)

p(y|x)
,

one has Q(n)(x|s, y) → Q∗∗(x|s, y), and p(n)(x|s) → p∗∗(x|s). The proof of convergence is

finished.

6.5 Summary

In this chapter we develop two efficient iterative algorithms for calculating watermarking

capacities and compression and watermarking rate regions of joint compression and private

watermarking systems. Furthermore, the two algorithms are shown to be convergent.
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Chapter 7

Algorithms for Computing Joint

Compression and Public

Watermarking Rate Regions

In this chapter we will develop algorithms for computing public watermarking capacities

and compression and watermarking rate regions of joint compression and public water-

marking systems with finite alphabets and under fixed attack channels.

7.1 Formulation of Joint Compression and Public Wa-

termarking Rate Regions

For a joint compression and public watermarking system with a memoryless covertext

source S with the probability distribution p(s), depicted in Figure 3.1, a compression

rate function with respect to watermarking rate Rw and distortion level D is defined

as Rc(D, Rw)
def
= inf Rc, where the inf is taken over all publicly achievable (Rw, Rc) with

respect to D and the fixed Rw. It is shown in [21] that, for any D ≥ 0 and 0 ≤ Rw ≤ C(D),

where C(D)
def
= max

p(u,x|s):Ed(S,X)≤D
[I(U ; Y )−I(U ; S)] is the public watermarking capacity,
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one has

Rc(D, Rw) = Rw + min I(S; U,X), (7.1)

where the minimum is taken over all random variables (U,X) taking values over a finite

alphabet U×X with |U| ≤ |S||X |+1, jointly distributed with S, Y with the joint probability

distribution p(s, u, x, y) = p(s)p(u|s)p(x|s, u)p(y|x) such that Ed(S, X) ≤ D and

Rw ≤ I(U ; Y )− I(U ; S).

Define

R(0)
c (D) = min

p(u|s),p(x|s,u):Ed(S,X)≤D

I(S; U,X).

If R
(0)
c (D) is achieved at p∗(u|s), p∗(x|s, u), and let

R(0)
w (D) = Ip∗(u|s),p∗(x|s,u)(U ; Y )− Ip∗(u|s)(U ; S).

Then, it is obvious from (7.1) that

Rc(D, Rw) = Rw + R(0)
w (D) (7.2)

for 0 ≤ Rw ≤ R
(0)
w (D), that is, Rc(D, Rw) is a linear function of Rw; for R

(0)
w (D) ≤ Rw ≤

C(D), Rc(D, Rw) is a curve of Rw given in (7.1). Thus, to determine the joint compression

and watermarking rate region of the public watermarking system, or equivalently, the

compression rate function Rc(D, Rw) with respect to public watermarking rate Rw and

distortion level D, we must calculate R
(0)
c (D), the public watermarking capacity C(D) and

min
p(u|s),p(x|u,s):Ed(S,X)≤D,Rw≤I(U ;Y )−I(U ;S)

I(S; U,X).

Actually, R
(0)
c (D) can be computed by employing the standard Blahut-Arimoto algo-

rithm for rate-distortion functions. To see this, we define a new alphabet X ′ = U ×X and

a new distortion measure d′ between S and X ′ by letting d′(s, (u, x)) = d(s, x). Then, it is

obvious from the definition of R
(0)
c (D) that R

(0)
c (D) is the standard rate-distortion function

of the source S with reproduction alphabet X ′ and the distortion measure d′.
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7.2 Computing Public Watermarking Capacities

For a public watermarking system under a fixed attack channel p(y|x), the watermarking

capacity is given in [26,33] by

C(D) = max
p(u,x|s):Ed(S,X)≤D

[I(U ; Y )− I(U ; S)],

where |U| ≤ |S||X | + 1, and p(s, u, x, y) = p(s)p(u, x|s)p(y|x). Since I(U ; Y ) − I(U ; S)

is neither convex nor concave with respect to p(u, x|s), so existing algorithms for convex

optimization is not applicable for computing C(D). However, it is shown in [26] that

I(U ; Y ) − I(U ; S) is convex with respect to p(x|u, s) for fixed p(u|s), and concave with

respect to p(u|s) for fixed p(x|u, s). We shall exploit this property to develop algorithms

for computing C(D).

Using Lagrange multiplier, we know that for λ ≥ 0

C(D) = λD + max
p(u|s),p(x|u,s)

[I(U ; Y )− I(U ; S)− λEd(S, X)] (7.3)

where D =
∑

s,u,x p(s)p∗(u|s)p∗(x|u, s)d(s, x) and p∗(u|s), p∗(x|u, s) achieve the above max-

imum.

Property 7.1 For probability distributions p(u|s), p(x|u, s), Q(u|y), define

L(p(u|s), p(x|u, s), Q(u|y)) =
∑

s,u,x,y

p(s)p(u|s)p(x|u, s)p(y|x) log
Q(u|y)

p(u|s)

−λ
∑
s,u,x

p(s)p(u|s)p(x|u, s)d(s, x).

Then

C(D) = λD + max
p(u|s),p(x|u,s)

max
Q(u|y)

L(p(u|s), p(x|u, s), Q(u|y)). (7.4)

Proof: For fixed p(u|s), p(x|u, s), define

Q∗(u|y) =

∑
s,x p(s)p(u|s)p(x|u, s)p(y|x)∑

s,u,x p(s)p(u|s)p(x|u, s)p(y|x)
.
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Then

L(p(u|s), p(x|u, s), Q(u|y))− L(p(u|s), p(x|u, s), Q∗(u|y))

=
∑

s,u,x,y

p(s)p(s, u, x, y) log
Q(u|y)

Q∗(u|y)

≤ 0

by the log-sum inequality. Moreover, it is easy to verify that L(p(u|s), p(x|u, s), Q∗(u|y)) =

I(U ; Y )− I(U ; S)− λEd(S, X). So, the proof is completed.

�

Property 7.2 (a) For fixed p(u|s), p(x|u, s), the optimal probability distribution Q∗(u|y)

achieving the maximum of L(p(u|s), p(x|u, s), Q(u|y)) is given by

Q∗(u|y) =

∑
s,x p(s)p(u|s)p(x|u, s)p(y|x)∑

s,u,x p(s)p(u|s)p(x|u, s)p(y|x)
;

(b) For fixed Q(u|y), p(x|u, s), the optimal probability distribution p∗(u|s) achieving the

maximum of L(p(u|s), p(x|u, s), Q(u|y)) is given by

p∗(u|s) =
exp

(∑
x,y p(x|u, s)p(y|x) log Q(u|y)− λ

∑
x p(x|u, s)d(s, x)

)
∑

u′ exp
(∑

x,y p(x|u′, s)p(y|x) log Q(u′|y)− λ
∑

x p(x|u′, s)d(s, x)
) .

(c) For fixed p(u|s), Q(u|y), the optimal probability distribution p∗(x|u, s) achieving the

maximum of L(p(u|s), p(x|u, s), Q(u|y)) is given by

p∗(x|u, s) =

 1, x = arg maxx

∑
y p(y|x)

[
log Q(u|y)

p(u|s) − λd(s, x)
]
,

0, otherwise.
(7.5)

Note here p∗(x|u, s) is a function from U × S to X and not necessarily unique.

Proof: (a) is obvious from Property 7.1.

(b) It is not hard to get

∂L(p(u|s), p(x|u, s), Q(u|y))

∂p(u|s)
=

∑
x,y

p(s)p(x|u, s)p(y|x) log
Q(u|y)

p(u|s)

−p(s)− λ
∑

x

p(s)p(x|u, s)d(s, x).
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By the KKT conditions and
∑

u p(u|s) = 1 for any s, if p∗(u|s) > 0 one has

p∗(u|s) =
exp

(∑
x,y p(x|u, s)p(y|x) log Q(u|y)− λ

∑
x p(x|u, s)d(s, x)

)
∑

u′ exp
(∑

x,y p(x|u′, s)p(y|x) log Q(u′|y)− λ
∑

x p(x|u′, s)d(s, x)
) ,

the optimal probability distribution achieving the maximum of L(p(u|s), p(x|u, s), Q(u|y)).

(c) For fixed p(u|s), Q(u|y), one has

L(p(u|s), p(x|u, s), Q(u|y)) =
∑
s,u,x

p(s)p(u|s)p(x|u, s)
∑

y

p(y|x)

[
log

Q(u|y)

p(u|s)
− λd(s, x)

]
≤

∑
s,u

p(s)p(u|s) max
x

∑
y

p(y|x)

[
log

Q(u|y)

p(u|s)
− λd(s, x)

]
=

∑
s,u

p(s)p(u|s)p∗(x|u, s)
∑

y

p(y|x)

[
log

Q(u|y)

p(u|s)
− λd(s, x)

]
,

where

p∗(x|u, s) =

 1, x = arg maxx

∑
y p(y|x)

[
log Q(u|y)

p(u|s) − λd(s, x)
]
,

0, otherwise

�

Based on Property 7.2, the following algorithm for computing C(D) is proposed.

Algorithm A

Fix any ε > 0.

Step one: Initially choose probability distributions p(x|u, s) > 0 for all (u, s).

Step two: Choose probabilities p(1)(u|s) > 0.

Step three: Computing

Q(n)(u|y) =

∑
s,x p(s)p(n)(u|s)p(x|u, s)p(y|x)∑

s,u,x p(s)p(n)(u|s)p(x|u, s)p(y|x)
;

p(n+1)(u|s) =
exp

(∑
x,y p(x|u, s)p(y|x) log Q(n)(u|y)− λ

∑
x p(x|u, s)d(s, x)

)
∑

u′ exp
(∑

x,y p(x|u′, s)p(y|x) log Q(n)(u′|y)− λ
∑

x p(x|u′, s)d(s, x)
) .
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Step four: If∑
s

p(s) max
u

∑
x,y

[
p(x|u, s)p(y|x) log

Q(n)(u|y)

p(n)(u|s)
− λp(x|u, s)d(s, x)

]
−L(p(n)(u|s), p(x|u, s), Q(n)(u|y)) ≤ ε,

then fix p(n)(u|s), Q(n)(u|y), go to Step five; otherwise, go to Step three.

Step five: Compute all functions p∗(x|u, s) such that

p∗(x|u, s) =

 1, x = arg maxx

∑
y p(y|x)

[
log Q(n)(u|y)

p(n)(u|s) − λd(s, x)
]
,

0, otherwise.

Step six: For each p∗(x|u, s), compute

Q∗(u|y) =

∑
s,x p(s)p(n)(u|s)p∗(x|u, s)p(y|x)∑

s,u,x p(s)p(n)(u|s)p∗(x|u, s)p(y|x)
.

If for all p∗(x|u, s),∑
s

p(s) max
u

max
x

∑
y

[
p(y|x) log

Q∗(u|y)

p(n)(u|s)
− λd(s, x)

]
−L(p(n)(u|s), p∗(x|u, s), Q∗(u|y)) ≤ ε, (7.6)

then we get the optimal p(n)(u|s), p∗(x|u, s), Q∗(u|y). Here p∗(x|u, s) can be any one

obtained in Step five. Otherwise, if (7.6) is not satisfied for some p∗(x|u, s), then go

to Step three to update Q(n)(u|y) and p(n)(u|s).

Remark: Algorithm A is similar to that in [6] used to compute channel capacities

with channel side information, so proof of termination conditions and convergence are

omitted here. The difference is that S is the channel side information in [6] while S is a

covertext source in Algorithm A here and not involved into the attack channel. Although

Algorithm A is very straightforward from the Blahut-Arimoto algorithm, the drawback is

obvious in Step Five, where all |X ||U||S| functions from U × S to X must be checked for

finding all possible optimal p∗(x|u, s), which slows down the convergence of the algorithm
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significantly. Therefore, to speed up the convergence of the algorithm, we propose another

algorithm based on Shannon’s strategy, which is also used in [15].

Before describing the algorithm, the following theorem is given.

Theorem 7.1 Let T be the set of all functions from S to X . Define a new distortion

measure d′ between S and T by d′(s, t)
def
= d(s, t(s)), s ∈ S, t ∈ T where d is the distortion

measure between S and X . Then the public watermarking capacity C(D) is equal to

C(D) = max
p(t|s):Ed′(S,T )≤D

[I(T ; Y )− I(T ; S)] (7.7)

where T is a random variable taking values from T , and the joint probability of p(s, t, y) is

given by p(s, t, y) = p(s)p(t|s)p(y|t(s)).

Proof: On the one hand, let (S, T ) be random variables with joint probability p(s)p∗(t|s)

achieving the maximum in the right side of (7.7) and Ed′(S, T ) ≤ D. Define a new random

variable X by letting p(x|s, t) = 1 if x = t(s), and p(x|s, t) = 0 otherwise. Then ,

Ed(S, X) ≤ D, and (S, T ) → X → Y forms a Markov chain. Thus

C(D) ≥ Ip∗(T ; Y )− Ip∗(T ; S) = max
p(t|s):Ed′(S,T )≤D

[I(T ; Y )− I(T ; S)]

by the definition of C(D).

On the other hand, Let p∗(u|s), p∗(x|u, s) achieve the public capacity C(D). For the

fixed p∗(u|s), by employing the same approach to Property 7.2-(a) and (c), p∗(x|u, s) must

satisfy

p∗(x|u, s) =

 1, x = arg maxx

∑
y p(y|x) log

∑
s,x p(s)p(u|s)p∗(x|u, s)p(y|x)∑

s,u,x p(s)p(u|s)p∗(x|u, s)p(y|x)

p(u|s) ,

0, otherwise,

(7.8)

in other words, (7.8) defines |U| functions from S to X , and each is denoted by u. Now

define a random variable T by letting

p(t|s) =

 p∗(u|s), t = u;

0, otherwise.
(7.9)
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Then we can verify that Ed′(S, T ) ≤ D and

C(D) = Ip∗(u|s),p∗(x|u,s)(U ; Y )− Ip∗(u|s)(U ; S)

= I(T ; Y )− I(T ; S)

≤ max
p(t|s):Ed′(S,T )≤D

[I(T ; Y )− I(T ; S)].

The proof is finished.

�

Now based on (7.7), it is easy to get

C(D) = λD + max
p(t|s)

max
Q(t|y)

[∑
p(s)p(t|s)p(y|t(s)) log

Q(t|y)

p(t|s)
− λEd′(S, T )

]
. (7.10)

So, by applying the idea of the Blahut-Arimoto algorithm we have Algorithm A′ stated as

follows without proof.

Algorithm A′

Fix any ε > 0.

Step one: Choose probability distributions p(1)(t|s) > 0.

Step two: Computing

Q(n)(t|y) =

∑
s p(s)p(n)(t|s)p(y|t(s))∑

s,t′ p(s)p(n)(t′|s)p(y|t′(s))
;

p(n+1)(t|s) =
exp

(∑
y p(y|t(s)) log Q(n)(t|y)− λd′(s, t)

)
∑

t′ exp
(∑

y p(y|t′(s)) log Q(n)(t′|y)− λd′(s, t′)
) .

Step four: If ∑
s

p(s)

{
log max

t

[
exp

(∑
y

p(y|t(s)) log Q(n)(t|y)− λd′(s, t)

)]

− log
∑

t

p(n+1)(t|s)

[
exp

(∑
y

p(y|t(s)) log Q(n)(t|y)− λd′(s, t)

)]}
≤ ε,

then stop iteration and get the optimal distributions p(n+1)(t|s), Q(n)(t|y) achieving

the watermarking capacity; otherwise, go to Step two.
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Remarks

• Compared with Algorithm A, Algorithm A′ is faster. However, the cost is expan-

sion of the output alphabet of convert channels from |X ||U| to |X ||S|. In general,

|X ||U| << |X ||S|.

• Algorithm A′ can be regarded as a generalization of the algorithm in [15], where no

any constraint on p(t|s) is applied.

7.3 Computing Compression Rate Functions

From the discussion in Section 7.1, we only need to calculate

Rc(D, Rw) = Rw + min I(S; U,X),

for R
(0)
w ≤ Rw ≤ C(D), where the minimum is taken over all p(u|s), p(x|u, s) such that

Ed(S, X) ≤ D and Rw ≤ I(U ; Y )− I(U ; S).

Using the standard Lagrange multiplier, one has

Property 7.3 Let λ ≤ 0, µ ≤ 0. Then

Rc(D, Rw) = λD − (µ− 1)Rw + min
p(u|s),p(x|u,s)

[I(S; U,X)− λEd(S, X) + µ(I(U ; Y )− I(U ; S))],

where

D =
∑
u,s,x

p(s)p∗(u|s)p∗(x|u, s)d(s, x),

Rw = Ip∗(u|s),p∗(x|u,s)(U ; Y )− Ip∗(u|s)(U ; S),

and p∗(u|s), p∗(x|u, s) are optimal probability distributions achieving the above minimum.

Property 7.4 Let λ ≤ 0, µ ≤ 0. For any probability distributions p(u|s), p(x|u, s),
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Q(u, x), Q(u|y), define

L(p(u|s), p(x|u, s), Q(u, x), Q(u|y))
def
=
∑
s,u,x

p(s)p(u|s)p(x|u, s) log
p(u|s)p(x|u, s)

Q(u, x)

−λ
∑
s,u,x

p(s)p(u|s)p(x|u, s)d(s, x) + µ
∑

s,u,x,y

p(s)p(u|s)p(x|u, s)p(y|x) log
Q(u|y)

p(u|s)
.

Then

Rc(D, Rw) = λD − (µ− 1)Rw +

min
{p(u|s),p(x|u,s)}

min
{Q(u,x),Q(u|y)}

L(p(u|s), p(x|u, s), Q(u, x), Q(u|y)). (7.11)

Proof: For fixed p(u|s), p(x|u, s), define

Q∗(u, x) =
∑

s

p(s)p(u|s)p(x|u, s) (7.12)

Q∗(u|y) =

∑
s,x p(s)p(u|s)p(x|u, s)p(y|x)∑

s,u,x p(s)p(u|s)p(x|u, s)p(y|x)
. (7.13)

By the definition of mutual information and the log-sum inequality, it is not hard to verify

that

L(p(u|s), p(x|u, s), Q∗(u, x), Q∗(u|y)) = I(S; U,X)− λEd(S, X) + µ(I(U ; Y )− I(U ; S)),

and

L(p(u|s), p(x|u, s), Q(u, x), Q(u|y))− L(p(u|s), p(x|u, s), Q∗(u, x), Q∗(u|y)) ≥ 0.

Thus, the property is proved.

�

The following property can be obtained in the similar way to Property 7.2.

Property 7.5 (a) For fixed p(u|s), p(x|u, s), the optimal probability distributions Q∗(u, x),

Q∗(u|y) achieving the minimum of L(p(u|s), p(x|u, s), Q(u, x), Q(u|y)) are given by

(7.12) and (7.13) respectively.
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(b) For fixed p(x|u, s) and Q(u, x), Q(u|y), the optimal probability distributions p∗(u|s)

achieving the minimum of L(p(u|s), p(x|u, s), Q(u, x), Q(u|y)) are given by

p∗(u|s) =
a(u, s)∑
u′ a(u′, s)

where

a(u, s) = exp
{

1
µ−1

[
1− µ +

∑
x p(x|u, s) log p(x|u,s)

Q(u,x)
+ µ

∑
x,y p(x|u, s)p(y|x) log Q(u|y)

−λ
∑

x p(x|u, s)d(s, x)]} .

(c) For fixed p(u|s) and Q(u, x), Q(u|y), the optimal probability distributions p∗(x|u, s)

achieving the minimum of L(p(u|s), p(x|u, s), Q(u, x), Q(u|y)) are given by

p∗(x|u, s) =

 1, x = arg minx

(
log p(u|s)

Q(u,x)
− λd(s, x) + µ

∑
y p(y|x) log Q(u|y)

p(u|s)

)
,

0, otherwise.

Proof: (a) and (b) are omitted.

(c). It is easy to have

∂L(p(u|s), p(x|u, s), Q(u, x), Q(u|y))

∂p(x|u, s)
= p(s)p(u|s) log

p(u|s)p(x|u, s)

Q(u, x)

+p(s)p(u|s)− λp(s)p(u|s)d(s, x) + µ
∑

y

p(s)p(u|s)p(y|x) log
Q(u|y)

p(u|s)
.

For fixed p(u|s) and Q(u, x), Q(u|y), obviously L(p(u|s), p(x|u, s), Q(u, x), Q(u|y)) is

convex in p(x|u, s). So by the KKT conditions, p∗(x|u, s) is optimal if and only if

∂L(p(u|s), p(x|u, s), Q(u, x), Q(u|y))
∂p(x|u, s)

= p(s)p(u|s)cu,s, if p∗(x|u, s) > 0,

∂L(p(u|s), p(x|u, s), Q(u, x), Q(u|y))
∂p(x|u, s)

≥ p(s)p(u|s)cu,s, if p∗(x|u, s) = 0,

for cu,s, only depending on u, s. Then, we can get the optimal probability distributions

p∗(x|u, s) by

p∗(x|u, s) =
exp

[
λd(s, x) + log Q(u,x)

p(u|s) + µ
∑

y p(y|x) log p(u|s)
Q(u|y)

]
∑

x′ exp
[
λd(s, x′) + log Q(u,x′)

p(u|s) + µ
∑

y p(y|x′) log p(u|s)
Q(u|y)

] (7.14)
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if p∗(x|u, s) > 0, and L(p(u|s), p∗(x|u, s), Q(u, x), Q(u|y)) is equal to∑
u,s

p(s)p(u|s)

(
− log

∑
x′

exp

[
λd(s, x′) + log

Q(u, x′)

p(u|s)
+ µ

∑
y

p(y|x′) log
p(u|s)
Q(u|y)

])
.

So, for any p(x|u, s),

L(p(u|s), p(x|u, s), Q(u, x), Q(u|y))

≥
∑
u,s

p(s)p(u|s)

(
− log

∑
x′

exp

[
λd(s, x′) + log

Q(u, x′)

p(u|s)
+ µ

∑
y

p(y|x′) log
p(u|s)
Q(u|y)

])

≥
∑
u,s

p(s)p(u|s)

[
−λd(s, x0) + log

p(u|s)
Q(u, x0)

+ µ
∑

y

p(y|x0) log
Q(u|y)

p(u|s)

]

if x0 achieves minx

(
log p(u|s)

Q(u,x)
− λd(s, x) + µ

∑
y p(y|x) log Q(u|y)

p(u|s)

)
, and the equalities hold

if p∗(x|u, s) = 1 if x = x0, and 0 otherwise. The proof is finishes. �

Algorithm B

Fix any ε > 0.

Step one: Initially choose probability p(x|u, s) > 0.

Step two: Choose probabilities p(1)(u|s) > 0.

Step three: Computing

Q(n)(u, x) =
∑

s

p(s)p(n)(u|s)p(x|u, s)

Q(n)(u|y) =

∑
s,x p(s)p(n)(u|s)p(x|u, s)p(y|x)∑

s,u,x p(s)p(n)(u|s)p(x|u, s)p(y|x)

p(n+1)(u|s) =
a(n)(u, s)∑
u′ a

(n)(u′, s)

where

a(n)(u, s) = exp

{
1

µ− 1

[
1− µ +

∑
x

p(x|u, s) log
p(x|u, s)

Q(n)(u, x)

+µ
∑
x,y

p(x|u, s)p(y|x) log Q(n)(u|y)− λ
∑

x

p(x|u, s)d(s, x)

]}
.
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Step four: If

L(p(n)(u|s), p(x|u, s), Q(n)(u, x), Q(n)(u|y))−
∑

s

p(s) min
u

∑
x

p(x|u, s)[
log

p(n)(u|s)p(x|u, s)

Q(n)(u, x)
− λd(s, x) + µ

∑
y

p(y|x) log
Q(n)(u|y)

p(n)(u|s)

]
≤ ε,

then fix p(n)(u|s), Q(n)(u, x), Q(n)(u|y), go to Step five; otherwise, go to Step three.

Step five: Compute all functions p∗(x|u, s) such that

p∗(x|u, s) =

 1, x = arg minx

(
log p(n)(u|s)

Q(n)(u,x)
− λd(s, x) + µ

∑
y p(y|x) log Q(n)(u|y)

p(n)(u|s)

)
,

0, otherwise.

Step six: For each p∗(x|u, s), compute

Q∗(u, x) =
∑

s

p(s)p(n)(u|s)p∗(x|u, s)

Q∗(u|y) =

∑
s,x p(s)p(n)(u|s)p∗(x|u, s)p(y|x)∑

s,u,x p(s)p(n)(u|s)p∗(x|u, s)p(y|x)

If for all p∗(x|u, s),

L(p(n)(u|s), p∗(x|u, s), Q∗(u, x), Q∗(u|y))−
∑

s

p(s)

min
u

min
x

[
log

p(n)(u|s)p∗(x|u, s)

Q∗(u, x)
− λd(s, x) + µ

∑
y

p(y|x) log
Q∗(u|y)

p∗(u|s)

]
≤ ε, (7.15)

then we get the optimal p(n)(u|s), p∗(x|u, s), Q∗(u, x), Q∗(u|y). Otherwise, if (7.15) is

not satisfied for some p∗(x|u, s), then go to Step three to update Q(n)(u, x), Q(n)(u|y)

and p(n)(u|s).

Remark: The Shannon’s strategy cannot be applied in this case. To see this, similar to

Theorem 7.1, we can write minp(u|s),p(x|u,s)[I(S; U,X)− λEd(S, X) + µ(I(U ; Y )− I(U ; S))]

as minp(t|s)[I(S; T, T (S)) − λEd′(S, T ) + µ(I(T ; Y ) − I(T ; S))]. However, besides p(t|s),
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we have to know the structure of functions t to compute
∑

t p(t)H(t(S)) in order to get

I(S; T, T (S)) = I(S; T ) +
∑

t p(t)H(t(S)).

The convergence of Algorithm B can be proved rigorously either by employing the

same approach as that used in proving the convergence of the Algorithm B in Chapter 6,

or by using directly results of [9,14,46], which state that a two step alternating algorithm

converges to the global minimum if the optimization function is convex. Obviously, it is

not hard to show that for fixed p(x|u, s), L(p(u|s), p(x|u, s), Q(u, x), Q(u|y)) is convex over

(p(u|s), Q(u, x), Q(u|y)). So the convergence of Algorithm B is obtained.

7.4 Summary

In this chapter by employing the idea of the Blahut-Arimoto algorithm and the Shannon

strategy we developed algorithms for computing public watermarking capacities and com-

pression rate functions, in other words, the algorithms proposed in this chapter can be

combined to numerically calculate compression and watermarking rate regions for joint

compression and public watermarking systems with finite memoryless covertext sources

and fixed attack channels.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

In digital watermarking, a watermark is embedded into a covertext resulting in a water-

marked signal, which can be used for different purposes ranging from copyright protection,

data authentication, fingerprinting, to information hiding. In all these cases, the water-

mark should be embedded in such a way that the watermarked signal is robust to certain

distortion caused by either standard data processing in a friendly environment or malicious

attacks in an unfriendly environment. In this thesis, we investigate digital watermarking

from an information theoretic viewpoint and a numerical computation viewpoint respec-

tively.

From the information theoretic viewpoint we study a new digital watermarking sce-

nario, where a watermark correlated with a covertext is to be transmitted by embedding

the watermark into the covertext. Assume that the watermark and the covertext are gen-

erated from a joint finite memoryless watermark and covertext source. In the case of public

watermarking where the covertext is not accessible to the watermark decoder, a necessary

and sufficient condition is determined under which the watermark can be fully recovered

with high probability at the end of watermark decoding after the watermarked signal is
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disturbed by a fixed memoryless attack channel. Interestingly, from the sufficient and nec-

essary condition we show that watermarks still can be fully recovered with high probability

even if the entropy of the watermark source is strictly above the standard public water-

marking capacity. Therefore, in this sense the famous Shannon’s separation theorem does

not hold anymore.

The above research problem is generalized to joint compression and public watermark-

ing scenario, where watermarks and covertexts are correlated, and the watermarked signals

are been compressed further for sake of efficient transmission and/or storage. For a given

distortion level between the covertext and the watermarked signal and a given compression

rate of the watermarked signal, a necessary and sufficient condition is determined under

which the watermark can be fully recovered with high probability at the end of watermark

decoding after the watermarked signal is disturbed by a fixed memoryless attack channel

and the covertexts is not available to the watermark decoder.

In some applications, it is reasonable that the reproduced watermark at the end of

decoding is allowed to be within certain distortion of the original watermark. For the

above joint compression and watermarking models with this less requirement, sufficient

conditions are determined respectively, under which watermarks can be reproduced within

a given distortion of the original watermarks at the end of watermark decoding after the

watermarked signals are disturbed by a fixed memoryless attack channel and the covertexts

are not available to the watermark decoder.

From the viewpoint of numerical computation, the well-known characterization of wa-

termarking capacities and joint compression and watermarking rate regions as optimiza-

tion problems does not mean that they can be calculated easily. Therefore, we first derive

closed forms for watermarking capacities of private Laplacian watermarking systems with

the magnitude-error distortion measure under a fixed additive Laplacian attack and under

a fixed arbitrary additive attack, respectively. We then focus on algorithms development

for numerically computing watermarking capacities and joint compression and watermark-
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ing rate regions. Based on the idea of the Blahut-Arimoto algorithm for computing channel

capacities and rate distortion functions, two iterative algorithms are proposed for calculat-

ing private watermarking capacities and joint compression and private watermarking rate

regions. Similarly, based on both the Blahut-Arimoto algorithm and Shannon’s strategy,

iterative algorithms are proposed for calculating public watermarking capacities and joint

compression and public watermarking rate regions.

8.2 Directions for Future Research

As a technique to protect copyright for digital content, digital watermarking has been

recently one of the most active research fields in signal processing and information theory.

From the viewpoint of information theory, there are still lots of open problems. Among

them, the following questions will be studied in our future works:

• In Chapter 4, only sufficient conditions are determined for the case without compres-

sion of stegotexts and the case with compression of stegotexts respectively, under

which watermarks can be reproduced within a given distortion level at the end of

public decoder. But, we don’t know whether the conditions are necessary or not. So,

it is valuable to find sufficient and necessary conditions similar to that obtained in

Chapter 2 and Chapter 3.

• How to study the problem in Chapter 4 in continuous case? In particular, it may be

possible to derive a sufficient and necessary condition for Gaussian case.

• We will study reversible watermarking systems with correlated watermarks and cover-

texts similar to the watermarking systems investigated in [38,39,41].

• Investigate multi-user watermarking systems, such as multiple-access watermarking

systems and broadcast watermarking systems.
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