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Abstract

Multiple biomolecular sequence alignment is among the most important and chal-
lenging tasks in computational biology. Current approaches are characterized by
great complexity in computational time. The complexity has limited the use of the
approaches in many practical applications.

In this research. new approaches based on a genetic algorithm have been devel-
oped for multiple biomolecular sequence alignment. Their major strengths are verv
high efficiency and good alignment quality. Experiments using real data sets have
shown that the average computing time of these approaches is one to three orders
of magnitude lower than that of 2 most widely used program while the qualities are
‘very similar.

The key component of these approaches is an enhanced genetic algorithm. Genetic
algorithms are a set of stochastic algorithms for efficient and robust search. The
basic idea of this approach is the conversion of multiple sequence alignment into a
search problem. The conversion enables us to apply a genetic algorithm for efficient
identification of matches between multiple sequences.

Three methods. two of them based on dynamic programming, have been developed
to handle mismatches. The combination of the genetic algorithm and these methods
may produce high quality alignments in an efficient manner.

In this thesis, the theoretical fundamentals of the approaches are discussed. the

iv



procedures of the enhanced genetic algorithm as well as the three methods are pre-
sented and analyzed. and the experimental results are described and compared with
the results obtained by using a most widely used multiple molecular sequence align-

ment program.
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Chapter 1

Introduction

1.1 The Problem of Multiple Sequence Alignment

A biomolecule, such as DNA (deoxyribonucleic acid), RN A (ribonucleic acid) or pro-
tein. is made up of a long chain of subunits - deoxyribonucleotides, ribonucleotides.
or amino acids, respectively (Figure 1.1 and Figure 1.2). The analvsis of molecular
sequences is essential in discovering molecular structures, characteristic motifs. fea-
ture patterns and understanding the biochemical functions which are associated with
them. With the development of rapid DNA sequencing technologyv. large volumes
of molecular data are at our disposal. Developing efficient computational analysis
techniques is in high demand for us to extract more valuable information from the

data.
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Figure 1.1: Phenylalanine tRNA of yeast. On the left, the nucleotides of {4.0.G.C}
are arranged to show the base-pairing that forms internal helical regions in the tRN A
molecule. It is also known as the secondary structure of the tRNA. On the right. the

folded molecule of the tRNA is illustrated (Albert, el at., 1983).
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Figure 1.2: At the bottom. the chemical composition of an amino acid molecule. On
the right. the chain connection of amino acids which forms a specific type of secondary
structure of protein - a-helix. On the left, the oxygen-carrying protein - myoglobin

which is 153 amino acid long, with one region of a-helix (Albert, el at., 1983).



Multiple molecular sequence alignment is a most valuable step in molecular se-
quence analysis. It involves determining the similarity or dissimilarity among se-
quences. In the output of sequence alignment. one-to-one correspondences between/
among subunits of the input sequences are identified. It is an important approach
towards pattern matching and recognition in biological data (Lander. et. al.. 1991).
Two of the most general purposes of multiple molecular sequences alignment are:
finding highly conserved subregions or embedded patterns of a set of biological se-
quences: and inferring the evolutionary history of a set of taxa from their associated
biological sequences (Gusfield. 1993). Therefore. many tasks such as protein motifs
matching, structural and functional subdomain recognition. and DNA gene region
Aidentiﬁcation, are heavily dependent on the output of this step.

Multiple molecular sequence alignment is characterized by great computational
complexity. In a practical application, the number of possible alignments is huge and
therefore an exhaustive (or directed) enumeration is almost impossible. As estimated
by Laquer (1981) and Griggs et. al. (1989) respectively, the total number of possible
alignments is 107" for two sequences of 1000 subunits and 10'733 for three sequences
of 1000 subunits. The efficient alignment algorithms required should be able to handle
possible insertions, deletions, substitutions, as well as matches.

The traditional approaches to the multiple sequence alignment problem are chal-
lenged by high computational costs. The dynamic programming method developed

by Sankoff (1972) has been accepted as an effective method for two-sequence align-



ment. [t guarantees to generate the optimal alignment in aligning two sequences.
For two sequences of lengths m; and m,, a straightforward implementation of this
method needs O(m;m,) time and O(m;m,) space when single insertions/deletions are
considered: or O(m;m3 + mim.) when multiple insertions/deletions are considered
(Waterman. 1984). An improved algorithm of dynamic programming by Hirschberg
(1975) can produce an optimal alignment in O(m,) space (Myers and Miller, 1988).
where m, is the shorter sequence length. However, when the dvnamic programming
method is used for simultaneous multiple sequence alignment, the time complexity is
theoretically O(m"). where n is the number of sequences and m is the length of the
sequences.

To align multiple sequences with reasonable computer resources. a number of
methods have been developed. Some representatives will be reviewed in the next
chapter. Many of the methods use heuristics to find good alignments which are not
necessarily optimal. According to a comprehensive survey conducted by Chan et
al. (1992). the existing heuristic methods for multiple sequence alignment may be
categorized into five different approaches: (i) the subsequence approaches: (ii) the tree
approaches; (iii) the consensus sequence approaches; (iv) the clustering approaches:
and (v) the template approaches.

Of the more recent methods, a large group combines heuristic techniques with
pairwise dynamic programming alignment process. These methods include those: (i)

aligning every pair of sequences, (ii) aligning each sequence with a pre-selected “basic”



sequence, (iii) aligning sequences in an arbitrary order, or (iv) aligning sequences
following the branching order in a phylogenetic tree (e.g. Gotoh, 1990: Vingron
and Argos, 1991; Rovtberg, 1992: Vihinen et al., 1992; Feng and Doolittle. 1987:
Thompson, et al., 1994: Chan. 1990; Wang et al. 1996). Some of the methods involve
creating a sequence graph (or tree) with each edge representing a pairwise alignment
(Gusfield, 1993; Miller. 1993). Others involve grouping sequences according to their
structural similarity or species origins and then conducting intra- and inter-cluster
alignments (Miller. 1993). Results of these methods may have deviations from the
optimal and most of the methods are still very costly. While aligning n sequences.
they usually require at least (n — 1) pairwise alignment processes. The costs are still
high especially for long sequences and have prevented the methods from wider use.

More efficient methods are highly needed.



1.2 An Overview of the Research

In this research, new approaches have been developed for efficient simultaneous multi-
ple sequence alignment !. These approaches are much faster than most of the previous
approaches and thev are able to achieve good solutions.

The core part of these approaches is a genetic algorithm. Genetic algorithms are
a set of stochastic algorithms for efficient and robust search. Unlike the majority of
the conventional search algorithms. a genetic algorithm starts with a population of
points in the search space instead of a single one. In each step of search, it generates
a new, and usually better generation of points. Searching towards the better points
may improve efficiency, and searching with a population may decrease the chances of
falling into local extrema (Goldberg, 1989a: Michalewicz, 1992). Genetic algorithms
are suitable for problems with large, complex, and poorly understood search spaces
(De Jong, 1988).

In this research, the task of molecular sequence alignment is decomposed into two
steps. In the first step, some matches between sequence subunits are identified and
organized into match blocks. In the second step, subsequences between the match
blocks are processed, and matches and mismatches (i.e. insertions, deletions. and
substitutions) between match blocks are handled. The matches identified in the first

step are represented in a structure called pre-alignment®.

'A simultaneous multiple sequence alignment is one in which all the sequences are processed at

the same time, instead of in a pairwise manner.

|



The identification of match blocks is converted into a search problem. A pre-
alignment space’® is defined which contains all the possible pre-alignments. An en-
hanced genetic algorithm. which has different characteristics from standard ones. is
designed to search the space for an optimal or a near-optimal pre-alignment. The
algorithm starts with a population of pre-alignments. In each step of search. it pro-
duces a new, usually a better, generation of pre-alignments. The pre-alignment with
the highest fitness value is selected from the population after the process terminates.

In the second step, an alignment is produced from the best pre-alignment selected.
This step involves handling insertions. deletions. and substitutions as well as matches
between the match blocks identified in the pre-alignment. Different methods are used
to handle the mismatches in order to produce a high quality, compact alignment. The
methods include a simple shift-up method. a pairwise dynamic programming method
and a sequence synthesis method.

The major strength of the approach is its high efficiency and good alignment
quality. Theoretical analysis has shown that it has lower time complexity than current
techniques based on pairwise dynamic programming. Experiments using real data sets
have shown that the actual computing time of this approach is one to three orders

lower than that of a most widely used approach while the qualities are very similar.

*The definitions of pre-alignment and pre-alignment space are given in Section 4.2.



1.3 Thesis Synopsis

This thesis is organized into eight chapters. The next chapter (Chapter 2) is the
literature review. The sequence alignment techniques reviewed include dvnamic pro-
gramming for optimal two sequence alignment, pair-wise dvnamic programming-based
heuristic approaches for multiple sequence alignment. and many others. Then generic
algorithms are briefly described and their applications. especially those in biomolec-
ular sequence analysis, are examined.

In Chapter 3, the technology of genetic algorithms is described in a detailed and
formal manner. The issues include the fundamentals of genetic algorithms. the search
procedure. the law of the growth of “good” strings. algorithm complexity analysis.

and population size selection.

In Chapters 4. 5. 6. and 7. the core part of this research is presented. Chapter 4
presents the fundamental idea underlying the design of an enhanced genetic algorithm
for multiple sequence alignment. The algorithm for multiple sequence alignment is
given as a procedure. The selection of important algorithm parameters is discussed.
The survival ability of different string elements is studied. Then the time and space
complexities of the algorithm are analvzed.

Chapter 5 presents the initial experimental results, in which the pre-alignments
are obtained by applying the genetic algorithm to real data sets. The results are then

compared with those obtained by CLUSTALW, a most widely used multiple sequence



alignment program (Thompson et al, 1994).

In Chapter 6. a simple shift-up method is combined with the genetic algorithm for
processing the subsequences between match blocks. The alignments by this approach
are presented and compared with those by CLUSTALW. This chapter also gives a
description of the svstem implementations.

Chapter 7 describes two approaches integrating the genetic algorithm and dy-
namic programming. In one approach, dynamic programming is used for pairwise
alignment and in the other, for sequence synthesis. The approaches combine the
strengths of the two techniques. They are aimed at achieving even better alignments
efficiently. Following the examination of the complexity of the combined approaches
is the presentation and analysis of the experimental results. The quality improvement
obtained by the two approaches is then discussed.

In Chapter 8. the major strength of these approaches is summarized. This last

chapter ends with a proposal of some future research topics.
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Chapter 2

Background and Literature

Review

In this chapter. the theoretical background of dynamic programming and the existing
heuristic techniques for mulitiple molecular sequence alignment are reviewed. The
development and applications of genetic algorithms as well as the applications of

genetic algorithms in biosciences are examined.
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2.1 Dynamic Programming

Dynamic programming methods are bottom-up optimization approaches by avoiding
redundant calculation. Sankoff (1972) and Sankoff and Sellers (1973) developed dy-
namic programming methods for minimum distance alignment of two sequences with
single deletions/insertions. These algorithms were extended to handle multiple inser-
tions/deletions by Waterman et al. (1976). A more practical method for two sequence
optimal alignment with linear space complexity was later developed by Hirschberg
(1975). and Myers and Millers (1988). Gaps in alignments were often assigned a
penalty which is a linear function of the number of inserted or deleted subunits (}Va-
terman. 1984). These methods have been very successful for two-sequence alignment.
“Also. they have provided a base for building heuristic methods for multiple sequence

alignment.

2.1.1 The distance

In applying dynamic programming algorithms to the comparison of molecular se-
quences. distance measurement is an important issue. Levenshtein (1966) developed
an early definition of the minimum distance between two sequences as the minimum
number of insertions, deletions and substitutions required to change one into another.

As noted earlier, a sequence is a chain of subunits. In sequence analvsis the

subunits are represented by characters depending on the different tvpes of sequences.



Assume the sequences are represented as:

a = @,8203...Qm,
(2.1)

b= blbgb;;...bn

where the a's and b’s are characters of the sequences. and. m and n are the lengths
of the sequences.

The minimum distance. D(a.b), can thus be defined as the smallest possible
weighted sum of insertions, deletions and substitutions which transform sequence a
into sequence b.

The following definition of distance is commonly used in dynamic programming:

e D(a.b) is the minimum distance between sequences a and b, which is defined

in terms of d(a, b).

e d(a.b) is the weighted cost value for the following operations on characters a

and b.
~ d(a;. b;) represents the cost of substituting b; for a,, where a; €a. b, € b
and a; # b,.

— d(a;. o) represents the cost of deleting a; from a, where o is the null char-

acter.
— d(®. b;) represents the cost of inserting b; into sequence a
— d(a;, b5) = 0 if and only if a; = b;.

13



2.1.2 Optimal two sequences alignment

Sellers (1974a, 1974b) presented several algorithms as theorems for sequence pattern
recognition. The first theorem resulted in an algorithm for finding the best alignment
between two sequences which had the smallest distance (or cost). Sellers’ Best Align-
ment Theorem is based on the algorithms developed by Sankoff (1972) and Needleman
and Wunsch (1970) but using a metric distance and the function in Equation (2.2)

(Tvler, 1991).

The algorithms of dynamic programming for two-sequence alignment developed
by Sellers (1974a. 1974b) and later modified by Waterman (1984) can be expressed
as:

The Algorithm of Best Alignment
Considering single deletions/insertions. the defined initial distance function d is:
0 if a; = bj
d(ai, bj) = (22)
1 ifa; #0b,

and let
Dyg =0.

Do = i, d(o, by,
and

Dip = Yiod(ak, @).

14



D(-1,j-1) D(-1.)

d(a.Q)
d(a.b)

d(,b) v
D(ij-1) » D(i,))

Figure 2.1: Scheme for computing the forward distance matrix.

(

D;i_y; +d(a;, 0)

D;; = min J Di_yjoy +d(as, b;) (2.3)

Dij-1 +d(o.b;)

where the subscripts of D indicate sequence lengths counted from the beginnings and

the subscripts of a and b are positions of characters.

The scheme for computing the forward distance matrix is shown in F igure 2.1.

The computational complexity of the algorithm is O(nm).

Algorithm W-S-B (Waterman, 1984) is an extension of the above basic method



which has taken into account multiple deletions/insertions.

The Algorithm of W-S-B:

Let z; be the weight chosen for a multiple-deletion/insertion interval of k charac-

ters long, £ > 1.

Define the states to be:

D,y =r,.
Do.; =TI,
Dy = 0:

and

DLJ = D(alag...ai, blbng)

~Then

r

D;_y ;-\ + d(a;. b;)

Di; =min§ mings, {D;,_i + zx} (2.4)

{ minkzl{Di_kv_,- + Ik}

The computational complexity of the algorithm for multiple deletions/insertions
is O(nm? + n?m) (Waterman. 1984).

Gotoh (1982) developed an improved version of dynamic programming which can
handle multiple-deletions/insertions in O(nm) time. In practice, the space require-
ment of O(nm) often limited the applicability of the above methods. Various kinds

of strategies were reported which might reduce the space consumption of dynamic

16



programming by constant factors (Tavlor. 1984; Watanable et al.. 1983: Altschul and

Erichson, 1986: Gotoh. 1986. 1987).

2.1.3 Optimal alignment with linear space

As early as 1975. Hirschberg (1975) demonstrated in his paper how to produce an
optimal conversion or alignment in O(m,) space. when m, is the shorter sequence
length. This method had not been widely noticed until Myers and Miller developed
an algorithm based on it (Myers and Miller, 1988).

Myers and Miller (1988) applied Hirschberg’s technique to a concave gap penalty
algorithm that subsumes Gotoh’s algorithm (1982) as a special case. In their algo-
rithm. gap cost is defined as: gap(k) = g + hk for the cost of a k-svmbol indel (i.e..
insertion or deletion). Informally, opening up a gap costs g and each svmbol in the
gap costs h.
The algorithm

Let a; denote the i-symbol prefix a;a,...a; of a and let b, denote b,b6,...b, of b.

Define:

C(i.j) = minimum cost of a conversion of a; to b;,
D(7,j) = minimum cost of a conversion of a; to b; that deletes a,, (¢ > 0).

I(i,j) = minimum cost of a conversion of a; to b; that inserts b;. (j > 0).

The value of C(i,j) satisfies the recurrence relations:
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( min{D(i. ), I(:.j).C(i = 1.j = 1) + w(a;.b;)} ifi>0and ;>0
gap(J) ifi=0and j >0
C(e.j) = q
gap(i) ifi:>0and j =0
0 if i=0and j=0
(2.3)

where w(a;, b;) is the cost of replacing a; by b;.

The boundary conditions of D are carefully defined:

e For j > 0. an optimal conversion of ag to b; is to insert all j svmbols. so
C(0.J) = gap(J).
e For j > 0. define D(0, ) = C(0.j) +g.

D(i. j) is then obtained:

o min{D(i -~ 1.j).C(i—1.j—1)+g}+h ifi>0andj>0
D(:.j) =

C0.5) +g ifi=0and j >0
(2.6)

e For I. similarly:
I(:.0) = C(i,0) + g. ¢ > 0. and ignore I(0, j) for j < 0.

Then,
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min{f(i.j ~1).C(i.j—1)+g}+h ifi>0and >0
I(i.j) = (2.
C(i.0)+g ifi=0and >0

1o
=1
-~

It can be observed from Equations (2.5), (2.6) and (2.7) that the values in the ith
rows of C' and D depend only on the values in rows i and i — 1 of C. D and [. while
values in the ith row of I depend only on values in rows i of C and I. With two
vectors it suffices: if CC and DD contain the (i — 1)st rows of C and D. then the ith
rows may be computed by overwriting values in the (i — 1)st rows in a left-to-right

sweep with the aid of three scalars, e.c and s:

C(i. k) if k< j

Cli—1.k) ifk>j

D(i. k) if k< j
DD(k) = [ (2.9)
| D(i-1.k) ifk>)
e = I(i.j—1) (2.10)
c = Cli.j—-1) (2.11)
s = Cli=1,j-1) (2.12)

where 7 and j are the row and column numbers of the elements in C and D which

are being processed.

N

[
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When a and b are of lengths m; and m,, C and D are of the size m: x m..
Equations (2.3), (2.6) and (2.7) indicate that C, D and I are computed in a left-to-
right sweep: the m, elements in the first row. then the m, elements in the second row,
.... CC and DD store the latest .V elements. some of which may be in the current

row and the others may be in the previous row, processed in C and D respectively.

The algorithms described in the two sections are still so far the most popular
methods for two molecular sequence alignment. Although the situation for alignment
of more than two sequences is quite different., most of the heuristic approaches for

multiple sequence comparison use the above methods in a pairwise manner.



2.2 Heuristic Approaches for Multiple Sequence

Alignment

To align multiple sequences with reasonable computer resources. a number of methods
have been developed. Many of the methods are heuristic ones which attempt to find
good alignments that are not necessarily optimal. Some representatives are reviewed

in this section.

2.2.1 Regional approaches

(a) A subsequence-based approach:

The subsequence-based approach developed by Johnson and Doolittle (1986) com-
pares three or more protein sequences by progressively aligning a group of selected
segments (subsequences). In this process. only a small subset of all the possible seg-
ments from each sequence is compared. and minimum information is retained for the
trace-back of the alignment. Starting at the amino terminal of the sequences. a local
window is established to limit the number of elements in the segment comparison.
The results of the comparison are used to align one subunit of each sequence. The
window is then moved forward so that more subsequent segments are compared and
the subunits following are aligned. This process continues until the carboxy terminal

is reached. The time complexity of this approach is proportional to O[n(m—1¥")11"""}]



(Johnson and Doolittle. 1986), where IV is the window size. n the number of sequences
and m the sequence length. This method is not practical for aligning a large number
of sequences and is not guaranteed to be globally optimal (Johnson and Doolittle.
1986: Waterman. 1984).

(b) A repeated finding approach:

Martinez (1983) suggested a repeated finding approach for multiple sequence align-
ment. In this approach. if a region occurs in all n sequences of length m then locating
the region in the n sequences can be done in a computational time of O(mn). The
alignment of two sequences using this method presents a list of regions which can be
extended for the alignment of multiple sequences. The implemented program called

| MALIGN can also find near optimal alignments and provide a means for randomizing
the given sequences for testing the statistical significance of an alignment (Martinez.
1983). The implementation of an optimization algorithm in this program allows it to
find all the alignments which lie within a specified distance of the optimal alignment.
The limitations of this method include: (1) it is unable to account for the unaligned
portions between successive regions: and, (2) there is no allowance for reduced com-

monality.



2.2.2 Tree based approaches

In this type of approach. a tree is used to represent the taxonomical or phvletic
relation among the sequences (Sankoff. 1975; Sankoff and Cedergren, 1983: Waterman
and Perlwitz. 1984; Feng and Doolittle, 1987: Gusfield. 1993).

(a) A binary tree based approach:

If the sequences are related by a binary tree, the heuristic method by Waterman
and Perlwitz (1984) is able to align n sequences of length m in computational time
of O(nm?) and memory storage of O(m? + mn). This method begins with the con-
struction of an average sequence out of two original sequences that are related by a
node of the tree. A weight based on the number of the original sequences is assigned

-to the constructed sequence. The sequence construction process continues until the
root of the tree is reached. An overall alignment is then obtained by aligning each of
the original sequences with this final weighted average sequence.

(b) Phyletic tree based approaches:

More efficient alignment of multiple sequences can be achieved when a phvletic tree
relating the sequences is available. In this type of approach, phvletic trees are used to
represent hypothesised ancestral relation among the sequences and the construction
of such a tree presupposes alignment of the sequences. Hogeweg and Hesper (1984)
suggested that the alignment of sets of sequences and the construction of phyletic

trees could not be treated separately. Their points were: (1) the concept of “good



alignment” seemed meaningless without reference to ancestry: (2) the criteria for
sequence alignment and tree construction were closely related. with both being based
in some ways on maximal matching. They proposed an integrated method that might
generate both an alignment of a set of sequences and a phyletic tree. In their method.
an iterated process is used: a putative tree is used to align the sequences and the
alignment obtained is used to adjust the tree.

(c) The progressive alignment method:

The progressive alignment method by Feng and Doolittle (1987) essentially first
finds 2 minimum spanning tree, or in other words, first does a single-link cluster-
ing. based on edit distances. The algorithms to build the minimum spanning trees
are called “myopic algorithms™ because each successive decision about which link to
include in the tree is made without considering the implication of that choice on
possible future choices (Feng and Doolittle, 1987: Gusfield. 1993). Once a hyvpotheti-
cal phylogenetic tree has been established. multiple sequence alignment processed by
progressively aligning groups of sequences according to the branching order in the
tree.

Some widely used multiple sequence alignment programs are developed based
on the progressive method, for instance CLUSTALW (Thompson et al.. 1994) and
CLUSTAL4 (Higgins and Sharp, 1989).

(d) A center star method:

This method was developed by Gusfield (1993) and proved as an efficient multiple
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sequence alignment method with a guaranteed error bound. In this method. for a
given set of k sequences X. the center star is defined to be a star tree of k nodes.
The center node X, is the center sequence with minimized value of 3 e D(Xe X)),
where D is a distance. Each of the £ — 1 nodes is for a distinct sequence in X — X..
Then. a multiple alignment of the string set X is derived from and consistent with
the center star.

This method is effective when applying to multiple sequence alignment and the

deviation from the optimal is less than a factor of two (Gusfield, 1993).

2.2.3 Methods of consensus

_The methods of consensus have been studied in social sciences for a long time. It was

first implemented for the purpose of multiple sequence alignment by Waterman et
al (1984). And later. it was developed for practical use in this field. This approach
simulates the process of “bv hand” alignment of a group of related sequences. It uses
a controlled iterative alignment procedure that weights the key features of a protein
family and thus forces the alignment of conserved subunits. The procedure basically
determines the consensus sequences that incorporate the characteristic features of
the related sequences (Patthy, 1987). Patthy’s consensus sequence method mainly
includes four steps:

(1) Sequences are compared pairwise and the closely related sequences are grouped

[AV]
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on the basis of similarity scores.

(2) In each group. alignments of sequences are surveved to identifv the subunits
conserved in most of the pairwise alignments and to determine the location of the
gaps. From these data. a tentative consensus sequence is deduced for each group.
The real sequences of the group are then aligned with the conserved regions. From
the resulted multiple alignment, a corrected group-consensus sequence is determined.

(3) By aligning the consensus sequences of the various groups. a unified consensus
sequence which characterizes the majority of sequences is produced.

(4) The sequences are aligned with the unified consensus sequence and the resul-

tant multiple alignment is used to deduce a corrected consensus sequence.

2.2.4 The random graph-based hierarchical sequence syn-
thesis approach

The random graph-based hierarchical sequence synthesis approach by Chan (Chan.
1990: Chan and Wong. 1991) has successfully used the random graph approach (You.
1983: Wong and You. 1983; Wong et al, 1990) for aligning multiple molecular se-
quences. The algorithm of Hierarchical Sequence Synthesis Procedure synthesizes a
set of attributed graphs which represent the ensemble of sequences and adopts the
dynamic programming method for multisequences alignment.

According to Chan, the random graph synthesis approach returns the grand svn-



thesis of an ensemble of patterns that were finite-length sequences. It applies a
hierarchical clustering of the sequences in such a way that each sequence forms a
group of its own at the lowest level and the groups are then successively fused into
larger ones and finally into a single one at the highest level through a sorting strat-
egy that determines how the hierarchy of groups is constructed. At each level of the
hierarchy. the synthesis of a group of sequences is obtained by identifving the one-
to-one correspondence among the subunits of the sequence such that the probability
of the subunits occurring at the corresponding site of the sequences can be inferred.
The one-to-one correspondences form the alignment of the sequences as well as the
primary structure of the synthesis. while the probability of the syvmbols’ occurrence
at the corresponding sites of the sequences form the context of the svnthesis. This
procedure has been applied to the problems of constructing phyvlogenetic tree, and of

analyzing structure and function of molecular sequences.

2.2.5 The dot matrix method

The dot matrix method (Maizel and Lenk. 1981; and Novotny. 1982) was an important
method of multiple sequence alignment in the early days, which was described as “just
look at it”. It was a widely used visual method that generally utilizes computers. In
this method, a matrix M = (m;;) is formed where mi; = 0 if the ith element of

sequence a is unequal to the jth element of sequence b and m;; = 1 otherwise. Runs

o
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of exact matches show up as diagonals of 1s. The dot matrix method is useful in
locating regions of high match between two DNA sequences. It is natural to ask
for the probability distribution of the longest match between two sequences. This

distribution allows the analyst to locate the significant matches.



2.3 Genetic Algorithms and Applications

In the following, some of the most significant or the most recent research achievements
in the theory and applications of genetic algorithms are reviewed. The technical

details of genetic algorithms are discussed in Chapter 3.

2.3.1 Genetic algorithms

Genetic algorithms originated from the studies of cellular automata, conducted by
John Holland and his colleagues at the University of Michigan. Holland's book.
published in 1975, is generally acknowledged as the beginning of genetic algorithm
research.
Since the pioneering work of Holland, research has been conducted to develop
genetic algorithms in both theory and applications. Important work includes that by
Bethke (1981), Booker (1985, 1987), Grefenstette and Fitzpatrick (1983). Grefenstette
(1986), Holland (1987) and Goldberg (1987). In recent vears. Grefenstette and Baker
(1989) addressed genetic search behavior from the viewpoint of implicit parallelism.
Goldberg (1989b) observed that choosing a suitable population size was a kev decision
faced by all users of genetic algorithms and he proposed an approach for calculating
suitable population sizes. Buckles and his colleagues (1990) examined schema survival
rates in genetic algorithms and proposed a crossover rule that took advantage of the

knowledge of survival rates.



2.3.2 Applications of genetic algorithms

Genetic algorithms have been applied to machine learning, image analysis, neural
networks. control. intelligent systems, and many other fields. Some of the applications
are reviewed in this section and the applications in bioscience will be reviewed in

greater details in the following section.

Intelligent systems and machine learning

Holland (1986) applied genetic algorithms to build rule-based intelligent systems.
According to Hollland. the major tasks for machine learning algorithms are appor-
tionment of credit and rule discovery. The latter depends on the discovery of good
“building blocks™ for generating plausible rules. Genetic algorithms. using fitnesses.
may offer effective ways of discovering good building blocks.

Genetic algorithms were applied to a symbolic learning task which was supervised
concept learning from examples (Spears and De Jong, 1990). In the learning task. a
genetic algorithm concept learner was developed that could learn a concept from a set
of positive and negative examples. The learner was then run in a batch-incremental
concept learner. Concepts were represented as subsets of points in an n-dimensional
feature space which was defined apriori and for which all the legal values of the fea-
tures were known. While the concept learning program was presented with both
a description of the feature space and a set of correctly classified examples of the

concepts, it was expected to generate a reasonably accurate description of the (un-
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known) concepts. By using an incremental model to evaluate the performance of the
concept learning algorithms. better performance was achieved on the target concepts
of varyving complexity.

De Jong (1988) suggested that genetic algorithms could be used as an effective
learning approach. According to him. genetic algorithms might provide a set of
efficient domain-independent search heuristics which were a significant improvement
over traditional “weak methods” without the need for incorporating highly domain-

specific knowledge.

Control systems and robotics

Genetic algorithms have been applied to optimize complex control svstems. A major
task in optimizing a complex system is to tune various parameters of control algo-
rithms for efficiency. Grefenstette (1986) used genetic algorithms to tune control
parameters for optimizing a wide variety of complex systems.

Schultz and his colleagues (Schultz et al, 1993) used a genetic algorithm based
machine learning technique to evaluate autonomous-vehicle software controllers. In
this technique, a set of simulated fault scenarios was applied to a controller. and a
genetic algorithm searched for significant combinations of faults.

Davidor (1990) developed a genetic algorithm based approach for robotic con-
trol. In robotic control, the intrinsic characteristics of trajectory generation are often

too complex for many conventional optimization algorithms. The genetic algorithm
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developed by Davidor was capable of specifyving near optimum trajectories.

Neural networks

Genetic algorithms have been used to reinforce learning with multilayer neural net-
works. The research by Whitley and his colleagues (Whitley et al. 1991) indicated
that a genetic hill-climber, with a strong reliance on mutation rather than hyperplane
sampling, might produce good performance for neural network weight optimization.
Janson and Frenzel (1993) applied genetic algorithms in training product unit neural
networks. Product unit neural networks are useful tools because thev can handle
higher order combinations of inputs. Zhang (1994a) used genetic algorithms in train-
ing image processing neural networks to avoid local extrema and to speed up training

processes.

Other applications

Ankenbrandt and his colleagues (1990) developed a model of genetic algorithms with
semantic nets in which the relationships between concepts was depicted as semantic
nets. This model was used to identifv the oceanic features in remote sensing imagery.

In 1991, Salay and Wong (Salay 1991: Salay and Wong, 1991) applied genetic
algorithm techniques to an NP-complete combinatoric optimization problem known
as the largest common subgraph problem (LCS) for unattributed graphs. In this

approach. the LCS problem was first recast into a form suitable for a genetic algorithm
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method. Then several genetic algorithms were developed that incorporated different
degrees of heuristic information about LCS. The algorithms were tested using a large
test suite of randomly generated problems with known solutions. The performance

was then compared and the optimal genetic algorithms among them were identified.
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2.4 Genetic Algorithms in Biosciences

In the fields of computational biology, genetic algorithms have been used as effective
tools for protein and RNA structure studies. including modeling the evolution of
the zinc finger sequence motif of protein (Dandekar and Argos. 1992). simulating
protein folding (Unger and Moult. 1993a) and predicting RN A secondary structures
(Gultyaev. Batenburg and Pleij. 1995: Batenburg, Gultvaev and Pleij, 1995). In
molecular sequence analysis. a genetic algorithm was developed for two sequence
alignment (Zhang, 1994b). which was the initial stage of the research reported in this
thesis. This work was the first time a genetic algorithm was successfully applied to

molecular sequence alignment.

2.4.1 A genetic algorithm for RNA secondary structure
simulation

A conventional approach for predicting RNA secondarv structures is the minimai-
energy approach (Jaeger et al.. 1989: Jacobson and Zuker. 1993). The problems with
this approach are that the user is given a number of alternative solutions without
a guideline on how to choose the best. and that some essential features of RNA
folding are not taken into account. Another commonly used approach is the stepwise
simulation of RNA folding (Abrahams et al., 1990; Gultvaev, 1991). In this approach.

the RNA double helical stems are used as the primary unit of folding. A weakness of
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this approach is that it considers the folding process as an irreversible pathway where
new stems are added step by step until the final structure is reached. Once a stem
is formed there is no way back. However. some of the stems should be formed only
temporarily.

A genetic algorithm was developed which might overcome the shortcomings of
the conventional approaches (Batenburg et al., 1995). The genetic algorithm serves
not only as a method for finding a particular solution, but also a convenient tool
for investigating the possible models of folding pathways. The genetic algorithm

developed by Batenburg et al. consisted of the following basic steps:

1. Compute all the possible stems which were determined by base pairing in the

RN A structure.

[A]

Generate a population of several possible solutions randomly. Each solution
was a “mask” of the numbers “0” or “1”7. A “0” indicated that the stem was

not included in the solution and a *17 indicated the stem was chosen.

3. Compute the “fitness” of each solution. The fitness was calculated by summing
the lengths of all stems in the solution. resulting in a number which represented

the total number of pairs.

4. Perform reproduction by randomly choosing strings to form a new generation
of the same size out of the previous generation. The random selection heavily

favored the fittest solutions.



5. Perform mutation by randomly changing string elements. i.e., some 1s into Os

and vice versa.

6. Perform crossover by randomly organizing the solutions into pairs. randomly
choosing crossover positions. and then the bit-configurations between two crossover

positions were interchanged between the pairs.

- Repeat all the steps from 3 through 7 for a number of iterations. The program

stopped after the maximum fitness did not change for a certain number of

iterations.

To obtain better results. improvements were made to the above basic genetic

algorithm:

e Fitness criterion modification:
A new criterion is used that is the sum of stem stacking energies. Such an

improvement may steer the search to a better direction of the prediction.

e Incompatibility modification:
Instead of choosing a random stem out of each set of incompatibles. the “best”
one was chosen. The best one was defined as the stem which attributed most to
the fitness. In the runs which used stem-length as fitness, this was the longest
stem. In the runs with stacking-energy, this was the stem with the highest

energy value.
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e The growth modification:
In this modification the genetic algorithm was initially restricted to a small part
of the RN A sequence. After each iteration the size of this part was increased.
This resulted in the creation of intermediate stems which would compete with
the alterative stems later as soon as they emerged in due course of the simulated

“growth”™ process.

Results demonstrated the possibility to simulate RNA folding process by a genetic
algorithm and the flexibility of the algorithm allowed for introduction of different

models of folding kinetics.

2.4.2 A genetic algorithm for protein folding simulation

Computing the functional conformation of a protein molecule from the amino acid
sequence is very difficult. The major problems are (1) the contributions to the free
energy that stabilize the folded conformation are poorly understood (Dill. 1990): and
(2) the space of possible conformations is too large and complex to search (Levinthal.
1968).

Unger and Moult (1993a) designed a genetic algorithm to effectively address the
second problem and to find the functional protein conformations. This application
of genetic algorithms was regarded as an extension of the widelv used Monte Carlo

(MC) methods (Metropolis, et al., 1953).
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The simplified model:

A simple model was used for protein folding simulation which still captured the
essence of the important components of protein folding (Unger and Moult. 1993b). In
this model. the linear sequence was composed of “amino-acids” of only two tvpes: hy-
drophobic and hydrophilic. This sequence was “folded” on a two-dimensional square
lattice on which at each point the chain could turn 90 degrees left or right. or continue
ahead. The energy function was simple: —1 for each direct contact of non-bonded
hydrophobic-hydrophobic amino acids.

The low energy conformations were compact with a hvdrophobic core:
the hydrophobic-hydrophobic iterations were rewarded and the hydrophobic residues

tend to be on the inside of a low energy structure, while the hvdrophilic residues were
forced to the surface. Each residue could participate in only two contacts at most.
but three contacts for each terminal residue.

The genetic algorithm for protein folding simulation

1. The process started with .V extended linear sequence structures which contained
amino acids of the two types (hydrophbic and hydrophilic). In each generation.

each structure was subject to a number of mutation steps.

[SV]

Each mutation step was the same as a single MC step and was subject to similar

acceptance criteria as in an MC process.

3. At the end of this MC stage the crossover operation was performed.
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The probability for a structure to be selected for crossover. p(S;). was propor-

tional to its energy value E;:

s E; 'y 1
p(S:) = =% E (2.13)
Z]:l J
The lower energy conformations had a better chance of being selected. For
a pair of selected structures. a random point was chosen along the sequence.

The V-terminal portion of the first structure was connected to the C-terminal

portion of the second structure.

. Once a valid structure S was created. its energy E was evaluated and com-
pared with the averaged energy E,; = (E, + E,)/2 of its “parents”. The struc-
ture was accepted if Ex < E|;. or if the energy would be increased based on the
decision:

— Eij]

E
Rnd < exp [—kc—
k

where Rnd was a random number between 0 and 1, and ¢; was linearly decreased
during the simulation to achieve convergence (i.e., ¢g = aci_;, and a was a

constant smaller than but close to 1).

5. This crossover operation was repeated until .V — 1 newly accepted hvbrid struc-

tures had been constructed to constitute the population of the next generation.
The lowest energy conformation in each generation was directly replicated to
the next generation.
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The genetic algorithm was not significantly more costly per step than the regular
Monte Carlo method: most of the genetic algorithm steps were mutations which were
the same as the regular MC steps. and a crossover was not much more expensive.

The problem of protein folding, at least on a lattice, is a member of the class of NP-
complete problems. and therefore there exists no general search algorithm that can
guarantee to find the global free energy minimum for reai proteins (Unger and Moult.
1993a). The real folding process may thus end up in a functional conformation that is
not the global minimum of free energy. The genetic algorithms mayv be to mimic the
folding pathway rather than conducting a hopeless brute force search for the global

minimum.
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2.5 Summary

Dynamic programming can generate the optimal solution when aligning two se-
quences. A linear space dvnamic programming method reduces space complexity.
The heuristic approaches for multiple sequence alignment include the regional
approaches. the tree-based approaches. the consensus approaches. the random graph
based approach. and others.
Genetic algorithms were initially developed in 1970’s. Genetic algorithms have
been used in machine learning, control systems. robotics, neural networks. and so on.
In bioscience, genetic algorithms have been used for RNA secondaryv structure

simulation. protein folding simulation. as well as other studies.
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Chapter 3.

An Overview of Genetic

Algorithms

A genetic algorithm is the core part of the multiple sequence alignment approaches
developed in this research. In this chapter. the fundamentals of genetic algorithms. the
important concepts, the operators, and the computational complexity are discussed.
Attention is also given to an important issue in genetic algorithms, i.e. population

size selection.



3.1 Fundamentals of Genetic Algorithms

Genetic algorithms are a class of stochastic algorithms for efficient and robust search.
These algorithms are developed in a way to imitate biological evolutionary process
and genetic operations on chromosomes. They are designed to satisfv the four basic
evolutionary conditions: (1) the ability for an individual to reproduce itself: (2) the
existence of a self-reproducing population: (3) the existence of variety among the
individuals: and (4) the survival ability associated with this variety.

In a search process. a genetic algorithm starts with a population of points (states)
in the problem space. In each step of search. good points survive while poor points
are eliminated. A new generation of points is generated out of good points. The new

“generation is usually better than the old one in terms of search objectives. The search
process continues until a termination condition is satisfied.

Compared with the enumerative and random search methods. such as width-first
search and blind search. genetic algorithms are more efficient. Generating “better”
points avoids searching the points which are “worse” than the current ones. C ompared
with the calculus-based methods. such as hill climbing, genetic algorithms are more
robust. Searching simultaneously with a population of points. instead of a single one,
minimizes the chances of falling into local extrema.

The major references included in this chapter are: Goldberg (1989a. 1989b), Rawl-

ins (1991) and Bucldes and Petry (1992).
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3.2 Components and Operators of a Genetic Al-

gorithm

The major components of a genetic algorithm include a string representation of solu-
tion points in the problem space. an objective (or fitness) function and three operators:
reproduction, crossover. and mutation.

The objective function can be represented as
f: Q9 —R (3.1)

where (2 is the problem space and R is a set of real numbers. The function is used to

evaluate the fitness of the points in Q. In practical use. it is of the form

(W]
(B
~—

fle)=r 3.
where w € Q and r € R.
For applying a genetic algorithm, each point (state) = in the problem space is
represented as a string A:

4 = aqias..q :3.3)
where a; (1 < ¢ < () are string elements and [ is the length of strings. The elements
are taken from a domain D which is a collection of symbols, i.e. a; € D. A one-to-one
encoding function g is needed to convert the points into strings and its inverse is

needed to convert the strings back to points:

A =g(Ww) (3.4)
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and

v =g"'(4). (3.3)

Each search step is composed of three genetic operations:
(a) Reproduction.
(b) Crossover, and
(c) Mutation.
The order of applying crossover and mutation may vary with different applications.
The three operators are discussed below. The term population here refers to the set

of strings on which the three operations are performed.

Reproduction

Given a population of strings (which represent points), the operation of repro-
duction duplicates the strings of high fitness values. The reproduction is conducted
according to the rule that for a string, the higher its fitness value, the higher the
probability that it may be duplicated. After an operation of reproduction. the strings
of high fitness values may be duplicated one or many times. whereas the strings of
low fitness values may have a smaller chance to be duplicated. For string A;. the

number of times to duplicate it is calculated as

round(Q - pr;) (3.6)

where @ is the population size which is defined as the total number of strings in the
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population and pr; is the probability for string 4; to be duplicated:

flg7'(4y) (3.7)
T2 flamH(4y)

where f is an objective (or fitness) function. Z?:l f{g7*(4;)) is the total fitness of

pri =

the population. and g is a string encoding function defined in (3.4) and (3.3). The
duplicated strings are placed in a mating pool for creating a new generation of strings

by a crossover operation.

Crossover
The operation of crossover is conducted on the strings in the mating pool. A
crossover operation creates two new individual strings out of two strings in the pool.

Two major steps are included in this operation:

1. String pairs are selected at random from the mating pool. A crossover rate p°

is used to determine the number of pairs to mate.

[\

For each string pair to be mated. a number k is randomly selected within the
range between 1 and [ —1. Each string is cut into two substrings (head and tail)
at the location between the kth and k + 1th elements. Then two new strings

are created by exchanging the two strings’ heads (or tails).

The new offsprings created from the above operation inherit certain information
from each of their parents, although they are usually different from their parent strings
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and different from each other.

Mutation

A mutation operation is the alternation of the value of a string element. In a
mutation process. a string is randomly selected from the mating pool and a mutation
position is selected between position 1 and position [. The element value at the
mutation position is changed. The frequency of the mutation operation is controlled
by a mutation probability p™. For an application, usually a very small value of p™.
for example, 0.1%. of the total number of string elements in the generation. is used.
In each step of search. the number of string elements which should be alternated
is determined by multiplying the predefined p™ and the number of elements in the
population. A mutation position can be selected randomly or based on a selection
condition. Mutation is especially needed when a small modification on a string may

greatly improve the fitness of the strings generated.

The process of creating a new generation is one in which the three operators are
applied sequentially. As mentioned before. in different applications. the order mav be
different.

When a certain termination criterion is satisfied, a genetic algorithm stops produc-
ing new generations. A termination condition may be: (1) a predefined “maximum”

number of generations has been reached: (2) the population has converged to a single
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string; or, (3) the population has certain characteristics. for example, the maximum

fitness value remains unchanged for a certain number of generations.
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3.3 The Law of String Growth

In this section, the growth of good strings is examined in detail. The discussion
enables us to understand what kind of strings may survive and what kind may die
in the creation of new generations of strings. This knowledge is useful in designing a
genetic algorithm.

An important concept in genetic algorithms is schema (plural, schemata). A
schema is a similarity template describing a subset of strings with similar elements at
certain string positions. Schemata are represented by the symbols in D plus symbol

* which represents don’t care:

Du {+}. :3.8)

" The strings described by a schema are called its instances. In a schema. the positions
where the elements are symbols in D are called fized positions.

For example. if D is the set of binary digits, i.e.
D = {0,1} 13.9)

schemata on D are represented by using 0, 1. and *. “1 1 1 1 «” is a schema on D
which describes all the strings in which elements at the first four positions are 1's and
the element at the fifth position may be 0 or 1. In other words, strings “11111" and
“11110” are instances of the schema. Positions 1, 2, 3 and 4 are fixed positions in the
above schema but position 5 is not.

Schemata have two important properties: order and defining length. The order of
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a schema H, denoted by o(H). is the number of fixed positions. The defining length
of schema H. denoted by d(H), is the distance between the first and the last fixed
position. For example, the order of the above sample schema is 4. and the defining
length is 3. The part between the first and the last fixed position is called the defining
segment.

As discussed in the previous section. a search step of a genetic algorithm consists
of the three operations of reproduction. crossover and mutation. Let us consider the

individual and then the combined effects of these operations on instances of a schema.

Reproduction

It is assumed that at a given step 7 (number of generations) there are m instances
.of a particular schema H contained within the population. \We write m = m(H. ).
From Equations (3.6) and (3.7), we have the reproductive schema growth equation

for schema H:

_ f(H)
S fle7(4,))

where f(H) is the average fitness of the instances of H. If we write the average fitness

mH.r+1)=m(H.7)-Q (3.10)

of the population as

i fle7i ()

f = 3.
f ) (3.11)
we may rewrite Equation (3.10) as
m(H,7+1)=m(H,7) - f—(f{i)- (3.12)



Equation (3.12) indicates that when reproduction is considered alone. the growth
rate of the instances of a particular schema is proportional to the ratio of the average
fitness of the schema to the average fitness of the entire population. Schemata with
fitness values above the population average will contribute an increasing number
of instances in the new generation. while schemata with fitness values below the
population average will contribute a decreasing number of instances. f(H)/f mayv be
used to form the reproduction probability for H, which is denoted as Ply-

1 if f(H)/f>1
Py = (3.13)

f(H)/f otherwise

When f(H) = kf ( k > 0). i.e.. schema H has k times the average fitness. an
‘instance of H will have k times the likelihood of being selected as a parent for the
subsequent mating.

Assuming in the process of search, a particular schema H remains above the
average fitness an amount cf where ¢ is a positive constant. Equation (3.12) can be

rewritten as

m(H,T—:-l)=m(H,7‘)(f_+ch—)=(l+c)-m(H,r). (3.14)

From Equation (3.14), we obtain the growth equation in terms of m(H. 0). and the

number of instances at 7 = 0:

m(H,7) =m(H,0)-(1+c)". (3.13)
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Equation (3.15) indicates that reproduction allows schemata with fitness values above
the population average to increase exponentially. It can be shown that schemata with

fitness values below the population average decrease exponentially.

Crossover

In a crossover operation. a random number is selected for cutting the strings.
When a crossover operation is performed on a schema, the schema is said to have
been destroyed if the cutting occurs within the defining section, otherwise the schema
is said to survive. The probability for a particular schema H to be destroved is

proportional to the ratio of its defining length to the schema length

¢ _ O(H) .
= . 31
Dy TS (3.16)
Thus the survival probability is
o(H) -
S — 3.1%

If crossover is conducted by random choice, say with probability p¢ at a particular
mating, the survival probability may be given as

S(H) | _ O(H)

Py = _p'(l—l)‘ —(l—l)' (3.18)
Thus when the effect of crossover is considered alone, we have
m(H, v +1) = m(H,7) - ply > m(H,7) - [1 - (?(Hl))]' (3.19)

[]]
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Mutation

Mutation is the alteration of a single element on a string with probability p™. In
order for a schema to survive, all of its positions must themselves survive. Therefore.
since a single position survives with probability (1 —p™). and since each of the muta-
tions is statistically independent. a particular schema survives when each of the o( )
fixed positions within the schema survives. Multiplying the survival probability by
itself o(H) times, we have the probability of surviving mutation. (1 — p™)°¥). For
small values of p™ (p™ « 1), the schema survival probability may be approximated

by (1 — p™o(H)).

The combined effects
The combined effect of reproduction and crossover can be expressed in the follow-

ing equation. assuming that reproduction and crossover are independent.

m(H.T+l) = m(H.T)'{L{I).[l_pC J(H)]}

f -1
> m(H.7)- {@ [1- (-;—(—_fil)}} (3.20)

The expected number of instances of a particular schema in the next generation

under reproduction. crossover. and mutation can be given by

m(H7t+1) = m(H,r)~{£—(;I-—)- [1—p°-6(—H)} -1 -—p'"o(H)]}

-1
> m(Hw)-{ﬁ}Q- [1—p°-‘f(_—Hl)—pm-o(H)]} (3:21)

where p™ is the mutation probability-.



Equation (3.21) indicates that the strings with high fitness values. short defining
lengths and low orders have good probabilities to grow. This knowledge is useful in

designing a genetic algorithm.



3.4 Complexity of Genetic Algorithms

Binary genetic algorithms:

In a binary genetic algorithm, a string element may take the value 0 or 1. Let r
denote the number of generations and P, represent the proportion of string elements
set to the value 1 at time 7 = i. for a particular element position j: and P, represent
P at 7 = 0. Let f; represent the fitness of all strings with element value 1 at a
particular position j; and fq represent the fitness of all strings with element value 0
at position j. Let r represent the fitness ratio. i.e. r = f;/fy and assume that r is
constant over time.

From Equation (3.7). we obtain:

fl . PT Y
P._, = (3.22)
AP -P]fo
or
r- P—.‘.O
g = ‘ 3.23
B L+ (r—1)Prio ( )
Using the induction of Rawlins (1991). we then have:
re- Po
f".-PQ-f-(].—Po) ( )

Nonbinary genetic algorithms:
In a non-binary algorithm, the number of possible element values is more than two.
Let the fitness ratio r denote the fitness of those strings with elements set to a specified
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element value at a particular element position over the fitness of the remaining strings.

Let P, , represent the proportion of elements set to value a. at time = = i and
a particular element position j. Let P, represent P at = = 0. and f, represent
the average fitness of all the strings with element value a at a particular position
J- Subscript notation is used to indicate the fitness of the strings with other legal
elements at position j.

Then, similarly from Equation (3.7) we have:

fa'PT.a

3.235
foPatfo-Patf Pt (3.25)

P.'—-l.a =

Note that the sum of P over all possible element values in (a.b....) at position j

must be equal to one. That is:

1= Pr.a. -+ P.‘,b + Pr.c + ... (336)

And therefore:

l1-P.o=P,-+ Pr,c + .. (3.27)

Given that the fitness function is non-negative. and P is defined in the interval
[0. 1]. there exists an f whose value is in the interval (fmin. fmaz]- such that Equation
(3.28) holds. fmin and fme: are the minimum and maximum values of f, f.. ....

respectively.

f[Pr,b + Pro + ] = ber,b + chf,c .. (3.28)
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Let r represent the fitness ratio in the non-binary case. i.e.. r = f,/f. Assume
that r is constant over time. Combining Equation (3.25) and Equation (3.28) we

have:

fa. . Pr.a .
P._. . 3.2
T R Pra=f [Pra v Prot ] (3.:29)
Further we have:
fa i Pr.a.
P..ip,= : ‘ 3.0
e P+ f (1= Pl (330)
And then:
r-P. |
Frata = N 3.31
; 1+(r—1)'PT.a ( )

The recurrence solution above can then be solved by a linear differential equation
approach (Ankenbrandt. 1991). A result similar to Equation (3.24) is then obtained

as:

r7 - PO.a

Fra = riPys+ (1= Pya)

The time to convergence for binary and non-binary genetic algorithms
Let 7. be the value of 7 when the system reaches convergence. At 7 = 7, some

element position j was the last one to converge. So if 7. is solved for the slowest

[V]]
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individual element. we obtain the convergence time 7. for the entire svstem. For

simplicity. the element value a is dropped from P. Equation (3.32) then becomes:

rv - Po
P. = . 3.33
’ r‘-PQ-i-(l—Po) ( )

Let Pr be the value of P at convergence. We then have

rie . Po

3.34)
B+ (1 Fy) (334

P =

and then

. _P1-R)
Po(l = Py)

7. can be obtained as:

P[(l Po)'l

lo
- — M_ (3.36)

c logr

Probabilistic worst case analysis

Let m represent the length of the strings. and Q represent the size of the popula-
tion. Assume no mutation is conducted and at least one string in the population has
the element in consideration set to the value a, if the population is to converge 10 a.
The minimum value for Py is 1/Q. which represents the worst case.

Let convergence be defined with a tolerance of . where the population is said to
have converged to a for this element position when P =1-—+. An estimate for ~

can be 1/@Q. So that,

(-7(1-1/Q)
Te = logl i o=t (3.37)
logr
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and further.

= losl@ =1 (3.38)

Equation (3.38) estimates the number of generations for a population to converge
in the worst case.

In a generation. the processing time is proportional to the number of strings. i.e..
the population size Q: ¢t x Q. From Equation (3.38), we can obtain 7, x log Q. We

can then state the worst case complexity of the entire genetic algorithm as

O(Q log Q). (3.39)



3.5 Selection of Suitable Population Sizes

Choosing suitable population sizes for a genetic algorithm is a fundamental issue for
the algorithm designer (Goldberg, 1989b). A genetic algorithm generally performs
poorly with a very small population because the population provides an insufficient
sample size for most hyperplanes and thus, the risk of falling into a local maximum
becomes rather high. Since a large population is more likelv to have representatives
from a large number of hyperplanes, the genetic algorithm can perform a more in-
formed search. Further. a large population discourages premature convergence to
sub-optimal solutions. However. if it is too large. the computation might be very
costly since it requires more evaluations per generation. It will result in long process-

-ing time for significant quality improvement (Goldberg, 1989b).

Expected number of schemata and the basic schema function

In selecting suitable population sizes. one first needs to understand the relation-
ship between the expected number of schemata contained in a population and the
population size. In counting the expected number of unique schemata in a popula-
tion, consider the probability of having a particular schema of order i (the number of
fixed position) i in a population of size Q when bit positions are equally likelv. The

probability of a single match may be calculated as:

. Iy?
p(single matches of an order i schema) = (3) . (3.40)
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The chance of having no matches of a single order ¢ schema in a population of size

Q. or simply the product of the Q failure probabilities. may be calculated as:

)‘]Q. (3.41)

| -

p(no matches of an order i schema) = [1 —

The probability of one or more successes may then be calculated as:

19
)‘J : (3.42)

| —

p(at least one success) =1 — [1 —(

Over i fixed positions there are 2 such schemata and over a string of length (
[

there are sets of fixed positions. Thus. the ezpected number of schemata in a
)

population of size Q over the strings of length [ may be calculated as the following

sum:

L [
S5@Q.H)=3% 2{1-[1~(5)1° (3.43)

=0 i

N =

This function is the schema function. For population size Q = 1. the schema
function always has a value of 2. because a single string is itself a representative of
2! different schemata.

Applying the binomial theorem, Equation (3.43) becomes

L[
SQU=3-% 201 — (%)‘]Q. (3.44)

=4
! ?
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Applying the binomial theorem again to Equation (3.44) and expanding the term
[1 - (3)"]° produce
S A Q 1
S@n=3-3| [2%: (=17(3). (3.45)
1=0 i =0 J =
Reversing the order of summation and again applying the binomial theorem. one
may place the schema function in a Q-form (as opposed to the previous /-form):
Q Q 1 {
S@Q=3-% (—1) [1 + (5)1-‘] . (3.46)
=0l ‘
J
For small Q values. the schema function may be well approximated by the first

two terms of this series:
S(Q.1)y=3' -3+ Q2 = Q2. (3.47)

This corresponds to the well-known bound on the number of schemata contained
in a population of a given size and length (Goldberg, 198%a: Holland. 1975).

Equation (3.46) and (3.47) indicate that the number of schemata contained in a
population of strings is a function of the population size. The larger the population
size. the more the schemata which may be contained, and the larger the probability
that good strings may be contained. Therefore, for a search task. a large population
may increase the probability of finding a near-optimal solution. However. there is a

tradeoff factor to be considered here, that is, the computing time.

Computing time on serial and parallel machines
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As Equation (3.39) indicates. the computing time required for a population to
converge is dependent on two factors: The number of generations to convergence and
the computing time per generation.

As we have obtained from Equation (3.38), the number of generation is propor-

tional to log @. i.e.

Or, for a given task.

= =n"logQ (3.49)

where ' > 0 is a constant.
According to Goldberg (1989a). the computing time per generation can be esti-
-mated as

t =n"Q'? (3.30)

where J is the degree of parallelism and ” > 0 is a constant. 3 = 0 for a serial
machine and 3 = 1 for an ideal parallel machine. Therefore. the total computing

time for a serial machine is

At = tr.
= n"'Qn'logQ
= 7QlogQ. (3.31)

where n = n'n".
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The total computing time for an ideal parallel machine is

At = tr,

n'n' logQ

= nlogQ. (3.32)

Equation (3.51) suggests that on a serial machine \¢ is proportional to Q log Q.
Increasing @ will greatly increase the total computing time. Therefore. for a se-
rial implementation of a genetic algorithm we may have to choose relativelv small
population sizes.

Equation (3.52) suggests that on a highly parallel machine ¢ is proportional to
log Q. Increasing @ does not have a considerable impact to the total computing time
compared with that of a serial machine. and therefore we can select relatively large

population sizes for a parallel implementation of a genetic algorithm.
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3.6 Summary

The major components of a genetic algorithm include a string representation of solu-
tion points in the problem space, an objective (or fitness) function and three operators:
reproduction. crossover. and mutation.

A genetic algorithm searches with a population of solution points. In a search step.
reproduction. mutation, and crossover are performed on the strings in the population.
The operations enable good strings to be duplicated and combined into better ones.

The time complexity of a genetic algorithm is a function of the population size.
Studies have indicated that for a serial implementation of a genetic algorithm. the
population size could be relatively small. while for a parallel implementation of a

-genetic algorithm. the population size should be relativelv large.



Chapter 4

The Genetic Algorithm for

Multiple Sequence Alignment

In this chapter, the genetic algorithm designed for multiple molecular sequence align-
ment is described. First. the basic idea of using a genetic algorithm for multiple
sequence alignment is discussed. Then, the definitions and the representations used
in expressing the algorithm are presented. The algorithm is formulated as a pro-
cedure. The survival probability of different kinds of string elements is examined.

Finally, the complexity of the algorithm is analyzed.
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4.1 Using a Genetic Algorithm for Sequence Anal-
ysis

The task of multiple sequence alignment is to look for the optimal or the near-optimal
alignments. In our approaches, multiple sequence alignment is divided into two steps:
identification of matches and identification of mismatches as well as the missing
matches. The matches identified in the first step are represented in a pre-alignment.

All the possible pre-alignments can be considered to form a pre-alignment space
Q) which contains a set of points {«}, representing the possible pre-alignments. Each
point is associated with a fitness value which measures the goodness of the corre-
sponding pre-alignment. The task of identification of matches can thus be viewed as
searching for an optimal or near-optimal point in the space.

In practical situations, the sequences to be aligned, such as DNA and protein
sequences. are usually very long. There may be numerous possible pre-alignments.
The existing search methods, including hill climbing, may be too inefficient to deal
with such problems. By converting sequence alignment problem into a search problem.
a genetic algorithm can be used to generate near-optimal pre-alignments. Being
able to move in a “good” direction, a genetic algorithm is more efficient than many
conventional search methods. In addition, a genetic algorithm-based method may
minimize the chances of falling into local extrema.

The key issues in designing a genetic algorithm for multiple sequence alignment
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include the development of a suitable representation scheme of pre-alignments and a
search procedure which allows good pre-alignments to survive and to grow during the

search process.
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4.2 Basic Definitions and Representations

For the problem of multiple sequence alignment, a straightforward implementation
of a conventional genetic algorithm. which includes binary string elements, equal
length genetic chromosomes (strings), and standard operations, may not be sufficient
for achieving high efficiency and good quality. The genetic algorithm designed in this
research is enhanced in the representation of problem states and the search procedure.
To describe the genetic algorithm. necessary definitions are given in this section.

To avoid possible confusion, some terms are clarified: A biomolecular sequence
consists of subunits. The subunits are represented by characters in domain A. A
string in a genetic algorithm consists of elements which are represented by symbols

“in domain D. The problem of multiple sequence alignment can be formallyv stated in
the following.

It is assumed that there are n sequences to be aligned. They are

X' = rir.zl
p 2 9 2
X? = 3.1,
" n —_— n...n n
X" = zIizj..z] .

where zf € A is a subunit, superscript & indicates that the subunit belongs to the kth

sequence, subscript i indicates that it is the ith subunit in the sequence. 1 < i < my,

my is the length of the kth sequence, 1 < k£ < n, and n is the number of sequences.
To take into account deletions, insertions and substitutions, we introduce o to

represent “blank” elements. Thus we have A’ = AU {¢}, and we use zf for o. ie.,
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Iul.l Iul." Iul.m
[ |
" qu_y_ I:&:_: I~2.m
NTEC# H#X = | ; | (4.1)
l l }
Izn.l ruln.2 Izn.m
where (a) z§, € A,
(b) *|” indicates a match, deletion, insertion. or substitution:
(c) 0 < up; < my;
(d) uki # uk,. if ¢ # j:
(€) uki < ugj, if i < j and ux; # 0 and ug,; # 0;
(f) there is not an i such that =& = ¢. Vk;
(g) all the ¥ of the kth input sequence are in the kth row
of X'#X2#. &Y
(h) all the subunits in the kth row of X'# X2 2 X™ are from the
kth input sequence;
(i) 1<k<n 1<ij<m;and
(J) m Z ma‘x(mlr ma, ..., mn)-
The alignment in (4.1) may also be denoted as a set:
NI 24 ... 4" = {(zy,, 20, -2 )}, (4.2)
where (r}“.l,rﬁh, - ',I:‘ln.‘) corresponds to the ith column of the alignment in (4.1),

which may include matches, insertions, deletions, or substitutions between the n sub-

k k k
z T Tuy

units, ry, . Iy, .,

.. correspond to the kth row of the alignment. and conditions

(a) through (j) of (4.1) are satisfied by the set.



Definition 2: A pre-alignment of the n sequences, denoted as X!#' X2’ &/ ("

Is
1 1 1
Iul.l ru1.2 Iuil_ml
I |
2, . .. I
Vlag/ Y24/ aryn nat ¥2.2 u2.mi1 g
g = T (43
I | I
I::"-l Z,“g o Ign.ml

where (a) ¥ € A’;

Ugs

(b) “|I” indicates a match;

(c) 0 < ug; < mygs

(d) uks # ug,. if ¢ # J;

(e) Uk, < Uk j. if i < ] and Uk ; ?-/' 0. Uk ; # 0;

(f) all the subunits in the kth row of X'#' X2/  4'\" are from the kth
input sequence:

(g)1<k<n 1< j<m;and

(h) m, is the length of X!.

A pre-alignment is a preliminary state for generating an alignment. In a pre-
alignment. match relationships have been identified which are usuallv considered as
the most important relationships in alignments. On the basis of a pre-alignment. by
discovering insertions, deletions, substitutions, as well as some matches, an alignment
can be constructed. A pre-alignment has m; columns, each of which corresponds to
a position on .\'!. A column may be n matched subunits from the n sequences.
A column may be entirely ¢’s which may later be filled with deletions. insertions.
substitutions or matches.

The difference between a pre-alignment and an alignment can be clarified by using
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the following example:

(a) Three sequences to be aligned:
GIA;C3GITICy

1
2. GiAZAlTIC?
3 GIA3C3TIGICE

(b) Two pre-alignments constructed from the above three sequences:

Gi 4} ¢ ¢ ¢ C! o ¢ ¢ ¢ Ti Ci
o 1 T A
Gi A3 6 ¢ ¢ C? 6 & & ¢ T} C?
R N A I O O
G} A3 ¢ ¢ ¢ C} 6 ¢ ¢ ¢ T3 Ci

(c) A good pre-alignment generated from the two pre-alignments by a crossover op-

eration
Gi 4 ¢ o T¢ Ch
| R I
Gi 43 ¢ ¢ T? C?
| A AN
G} A3 ¢ ¢ T} C3

(d) An alignment generated from the pre-alignment in (c) by discovering a substitu-

tion and two insertions

Gl 43 C3 Gy T} ¢ Ci
S A R D
Gi 43 43 o T? ¢ C?
I T
Gt 44 &3 o T G¥ C?

g

Definition 3: A pre-alignment space, denoted as (?, is an m;-dimensional space
where m, is the length of sequence X'. Each position on X! defines a dimension in
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the space. A pre-alignment corresponds to a point in Q. The pre-alignment in (4.3)

corresponds to point

—— ~~ —~
Uy Uiz -0 Upm,
Ua Usro - U9
v o= ..vl. - <,y (4.4)
Up1 Upa --- Un,m,
S’ A — g

3

The dimension of €2 can also be equal to the length of any other sequence. Without
losing generality, we use m;. The ith column of (4.4) is used as the ith coordinate of

w. The pre-alignment in (c) of the above example corresponds to the following point

in Q:
1 2 0 0 5 6
1 2 0 0 4 35
1 2 0 0 4 6

To generate pre-alignments from multiple sequences, we first need to find match

tuples.

Definition 4: An integer tuple T = (v ;. vay, ..., U'n;) iS a match tuple if

where 1 <i < m,.
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Definition 5: A match tuple series is a list of transposed match tuples

~ ~~ VY

i1 Ur2 Uig

U9 Uaag -+ U -
S= " 2 > (1.5)

Unl Un2 --- Ung

~— e ~—

where 1 < g <my.and ve; < v if i < j, Vk.
3
A match tuple series can be transformed into the pre-alignment space Q as a point

(i.e. a pre-alignment).

Definition 6: The transformation of a match tuple series S into a point = € Q is

— ~— — —~~ ~— —~~
Uty U2 Ulg Uyp Ura -+ Urm,
U2 Va2 Ua, Ua Uz - U2,
S= " T 5 Tt 2 ™ o=y (1.6)
Un.l VUn2 " Ulng Un1 Up2 - Upmy

~— ~— S~ ~— - —

where

Uk.j lf 3](2 = UU)
U =

0 otherwise

and1<:<m;.1<j<gq.and1<k<n.

To use a genetic algorithm for sequence alignment, the points are encoded into
genetic strings. In encoding a point into a genetic string, match tuples are grouped

into match blocks.



Definition 7: A match block consists of the maximum number of successive match

tuples
~~ ~~ ~~ ~
Vtr Virsr -0 Urs—1 Uis
Uo Uopo see Uo o [25] -
2.r 2.r+1 2.5-1 2,5 (_1_‘ )
Unr VUnrsr - Un,s—l Un,s
N’ - p— g

such that

Vkr+ 1 = Vkrer, Ckrel T 1 = Uk rea, ..o, Vks—t + 1= Uk.s

for k=1.2,...,n,and 1 < r,s < m,.

Definition 8: The length of a match block B, denoted as L(B). is the number of

match tuples in the match block.

To be uniform, isolated single match tuples are also represented as match blocks.
A match block is indecomposable in the search process. Thus the order and defining
length of a schema should be calculated in terms of match blocks. For a point com-
posed of a fixed number of tuples (columns), the more tuples of successive values. the
less the number of match blocks. It thus would be of lower order and shorter defining
length. Usually, such a point can be encoded as a short genetic string. Recall the
discussion in the section of “The Law of String Growth” (Section 3.3), a lower order
and a shorter defining length may increase the probability for a string to survive.
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Therefore, the representation method defined in this research favours short genetic

string and it facilitates the evolution process of the designed genetic algorithm

Definition 9: A genetic string is an encoded version of

A =g(w) =aia:..q

where a; is an encoded version of the ith match block in « and 1 <Il<m
C

A genetic string represents a pre-alignment. In the rest of this thesis. we may use
“genetic string” and “pre-alignment” interchangeably when confusion is not likelv.

In a genetic string, the columns of entire ¢'s are the intervals between match

“blocks.

Definition 10: In a genetic string, the interval between two successive match blocks

B; and B;.,. denoted as I;, is the n subsequences between the two blocks.

Definition 11: Let B; and B;., be two successive match blocks in a genetic string:

~~ ~~ ~~ ~~ ~~ ~
Uir Ulr-1 - Uis Ute Ui+ Ut
Var Uar+2 -0 Uy Vg Uagsr2 - Uo
Bl — r r Bl+l = -+ w
Unr Vnr+t " Upng Unt Ung+1 Un.w
p—g p— g "

g N

where r < s, s < t and t < w and let /; be the interval between the two blocks.

The interval length of the jth (1 < j < n) subsequence in I;, denoted as Li(L). is
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defined as
Lj([i) = Uje — Vjs- (4.8)

In a mutation operation the following lengths are required in selecting mutation

positions.

Definition 12: Let B; and B;.; be two successive match blocks.

The average left interval length of B, is

ALIL(B.o) = (Y. Ly(L))/n

n

= [Z(ijt —v;4)l/n. (4.9)

)=

‘The average right interval length of B; is
ARIL(B;) = ALIL(By..). (4.10)

The maximum left interval length of B;., is

MLIL(B;.,) = mja-x{Lj([i)}

= rnax{vj.z - Uj.s}- (4.11)
]
The maximum right interval length of B; is

MRIL(B;) = MLIL(Bi,1). (4.12)
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When applying crossover to two strings. we must check if the strings are matable.

Definition 13: Two strings are matable at given cutting positions if each of the

two new strings formed satisfies conditions (d) and (e) in (4.3).
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4.3 Algorithm Parameters

Determining appropriate population sizes and mutation positions are important issues
in application of genetic algorithms. In the following, the two issues are discussed.
Apart from that, this section also presents the conditions for terminating the search

process and the fitness function.

Population size

Population size largely affects a genetic algorithm in both the ultimate perfor-
mance and the computational costs. As Goldberg (1989b) demonstrated (included
in Section 3.3). relatively small population sizes are appropriate for serial implemen-

_tations of genetic algorithms and relatively large sizes are appropriate for parallel
implementations.

Since our genetic algorithm is coded as a serial program. we use relatively small
population sizes. In an alignment task. the population size is determined when choos-
ing a number of match tuple series to form the first generation. Of the genetic strings
generated, there exists a small group of strings with high fitness values (higher than
1/10 of the maximum value) while the rest had lower values. As described by Equa-
tion (3.7), the strings of very low fitness values have small probabilities to survive.
Therefore, we use only the highly fitted strings to form the first generation. Discard-

ing the strings of low fitness values will have no significant effects on the population’s



f
Max—
1/10—
T —>
(mn)/100 String #

Figure 4.1: The relationship between sequence fitness value and string number.

representativeness and the genetic algorithm performance. It was observed in many
experiments conducted in this research that the number of highly fitted strings is pro-
portional to the product of (m,n). where m, is the average sequence length and n the
‘number of sequences. The number is usually smaller than 1/100 of the product. Fig-
ure 4.1 illustrates the observation via a simplified sketch of the relationship between
the fitness and the string number. in which the strings are ordered in a descending
order by their fitness values and each string is numbered according to its position in
the order.

Therefore for an alignment task. the population size Q is determined as

Q = mqn/100. (4.13)

The first generation thus formed includes the strings with fitness values greater

than, equal to or slightly lower than 1/10 of the maximum fitness value.
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Mutation rate

The mutation operation plays a very significant role in the genetic algorithm
which increases the variability of the population. It is unlike the common belief that
mutation 1s not so important because the mutation rate is small.

A mutation rate p™ is used to determine the number of strings to be mutated. In
the genetic algorithm. the mutation rate is chosen to be 0.1 %. The rounded product
of the rate and the total number of match blocks determines the number of strings
to mutate. We change one element value in each of the strings randomly selected. If

the product is less than 1, then one string is selected.

Selection of a mutation position
In the genetic algorithm. for a string selected for mutation. assuming the string
has more than one element, the operation removes the element (match block) B.

which has the largest D value in the string, where

D = [(MLIL(B) — ALIL(B)) + (MRIL(B) — ARIL(B))]/[L(B)]. (4.14)

L(B) is defined in Definition 8 and MLIL, ALIL, MRIL and ARIL are defined in
(4.9), (4.10), (4.11) and (4.12) of Definition 12, respectively-

In most cases, an element with a large D value is a “harmful” one which prevents
the string from mating with others to generate strings of high fitness values. The

string element “gn” in Figure 4.2 illustrates such an element.
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fankt qavllvagyqfdfglrpsiaytiskakdvegigdvdlmy

fankt qnfeavaqyqfdfglrpslgyviskgkdiegigdedlvay

fankatqfeavaqyqfsfglrpslgylskgidieggsqn-==———-———mmmmm oo edlrny

Figure 4.2: A ~harmful” element, which is marked by “@@”.

Crossover rate

The crossover rate controls the frequency with which the crossover operation is
applied. In a newly generated population, round(p® x Q) strings undergo crossover.
The higher the crossover rate. the more quickly new strings are introduced into the
population. If the crossover rate is too high. high-performance strings may be dis-
-carded faster than reproduction can produce improvement. If the crossover rate is
too low, the search may stagnate due to the lower exploration rate. In the designed

algorithm. the crossover rate is chosen as 20 %.

Termination condition
The termination condition used in this research is to stop the search process if
the population has been converged to a string or there is no change to the maximum

number of matches for ten successive generations.

Fitness values

The fitness value of a string is equal to the number of match tuples in the corre-
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sponding pre-alignment.
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4.4 The Genetic Algorithm for Multiple Sequence

Pre-Alignment

The algorithm for generating alignments is composed of two steps: the first one
for pre-alignment generation and the second one for alignment construction. The
genetic algorithm is used in the first step which is the most important and difficult.
The second step is relatively straightforward. which involves identifving insertions.
deletions, substitutions, and missing matches between match blocks (i.e.. intervals).

The procedure for the first step is included in this chapter and the procedure for
the second step is described in the following two chapters. Before describing the first

procedure. the step for match blocks creation is discussed.

4.4.1 DMatching

Finding match blocks is a very important first step in the algorithm. Conceptually.
match tuples are first identified and then match blocks are formed by grouping them.
In implementing the algorithm, the match blocks are directly created to improve
efficiency. The following is the procedure for building a match block when a match

tuple is found:
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procedure MATCH (Input: X! X2 .. X": Output: B;.B».....B;.....)

If ((vi4.v2,. ... va;) is @ match tuple)
Form a new match block which includes (v, vay, ... tny);
J =1
While ((v1; + j. va; + J..... tn, + ) is a match tuple)
Add (vy; + j.va; + j. ...ty + J) to the match block:
J=J3+1L
EndWtile
EndIf.

end procedure
The match tuples included in the match block will not participate in the subse-

quent searching for other match blocks.

4.4.2 Pre-alignment construction

The genetic algorithm for pre-alignment construction is given as the following pro-
cedure. The sequences to be aligned are X''. X ... and X" which have lengths

my.ms,.... and m, respectively. The output is pre-alignment \'!#/\2&/ &' \'"



procedure PRE-ALIGN (Input: X', X2 ... X" OQutput: X!# X2 &'\
begin

1. Find match blocks from X*'. X2 --- and X™ using procedure MATCH.

2. Create genetic strings from the match blocks (K - number of match blocks. .J
~ number of genetic strings):

J=0
For i = 1 through A" do
For j = 1 through J do
If (4, satisfies conditions (d) and (e) in (4.3) after inserting
B, into it)
Insert B; into A;:
Quit the inner loop;

EndIf
EndFor
If (B; is not inserted)
J=J+ 1
Create A, to contain B;;
EndIf
EndFor.

3. Form the first generation of string population
G® = {4, As, ... Ag}

where 4; (i = 1,2...,Q) are the genetic strings of the highest fitness values and
Q is the population size.

4. Apply reproduction to G where T denotes generation number (7 = 0.1....;.
p p g

For : = 1 through @ do
Calculate the fitness value for 4; € G7;
Determine the number of duplicates for 4; using Equation (3.7):
If (the number is greater than or equal to 1)

Duplicate A; and place the duplicate(s) into matepool M™:
EndIf
EndFor.

The matepool is M7 = {A}, A5..... 44} where 4] (1 < i < Q) is duplicated
from a string in G”.
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5. Apply mutation to M™:

Calculate the number of element(s) to be mutated:

Randomly select strings for mutation:

In each selected string, determine the mutation position using
(4.9)-(4.12) and (4.14):

Remove the element at the position.

6. Apply crossover to M~ to generate G7!:

While (There are strings in ™ to mate) do
Randomly select A; and A} from W™:
Randomly select cutting positions on A} and 4';
If (4] and A4} are matable at the positions)
Perform crossover on 4; and A to create two new strings:
Replace 4] and A with the new strings;

EndIf
EndWhile
Gl= 1.

7. If the termination condition is not satisfied.
Go to step 4:
EndIf.

8. Select the best string from the population.

9. If there exist intervals longer than m,/20 in the best string
Call PRE-ALIGN to allign such subsequences in the intervals:
EndIf.

10. Produce X''#'\?#' .. #'\" from the best string.

end procedure
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4.5 Survival Probability of Match Blocks

The first step of procedure PRE-ALIGN creates a large number of match blocks.
They are elements of pre-alignments (genetic strings). Of the match blocks, some are
building blocks of near optimal pre-alignments while some are spurious blocks which
may lead to poor pre-alignments. In this section, the probability for a match block
to survive is discussed for an understanding of what kind of match blocks mayv most
probably be included in the output of the procedure.

Generally, a pre-alignment 4 can be expressed as
.'l = BlBg"'B(

~where B; (1 < : <) is the ith match block. and { is the length of 4. There is an
interval between every two adjacent match blocks. Let f(.4) denote the fitness value

of pre-alignment . which is defined as

f(4) =3 L(B)

=1

(see Section 4.3).

Lemma 4.5.1: The probability for match block Bi to be contained in A;. a genetic

string in the first generation, can be

1 1 if f("li)/fmax > 0.1
bg, =

(f(A4:)/ fmax) X 10 otherwise
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where fn,. is the maximum fitness value of all the genetic strings created.

Lemma 4.5.2: The probability for B; to survive in a reproduction can be

2 ! if Q- [f(4:)/ T8, f(4,)] =1
P, =
Q- [f(4)/ ZJQ=1 f(4,)] otherwise

where @ is the population size and A; is the string containing Bx.

Ui

Lemma 4.5.3: Let Bi be the kth match block in a genetic string (1 < k < {). The
probability for By to survive in a mutation is
1 if D(Bx) < Thr

3 _
Pg, =
1 — p™ otherwise

where p™ is the mutation rate, D is defined in (4.13), and Thr is a threshold used to

select string elements to mutate.

Lemma 4.5.4: The probability for B, to survive in a crossover is

4
ka =1.
3d
A match block is a decomposable element in a genetic string and therefore it is

not destroved by a crossover operation.
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Theorem: The probability for By to survive the whole process of search is
Ps, = Pg, " (Pp, " PB, " PB)™

where 7 is the number of generations when the search converges.

Proof: Since survivals in reproduction. mutation and crossover are independent
events. the probability for By to survive in a generation is thus p:;k -p;‘Bk . P43&7 and in
- ; ; 2 3 4\

Tc generations is (pp, - Pp, " Pp, )"

Let Bi be the Ath match block in A,. and I,_, and I; be the intervals before and
after the block. It can be observed that pgk and pgak are proportional to f(4;) and
‘p:,’gk favors blocks with a small D. L(By) contributes to f(4;). D(B) is a function of
L(By). Li(Ix—y) and L;(I¢) (j = 1.2.---n). The discussion in the section of ~Basic
Definitions and Representations” (Section 4.2) suggests that D(B;) x 1/L(By) and
D(By) x Lj{I_y) + Lj({x).

In most alignment tasks. match blocks of large lengths and small D values may
form good pre-alignments. In the algorithm. they have higher probability to survive.
Spurious match block may have small lengths, and may have large L,(/x-;) and

L;(I¢). Theyv have lower probability to survive.
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4.6 Algorithm Complexity

In this section, the complexity of the genetic algorithm for sequence alignment is
analyzed in terms of computing time and memory space. The algorithm is compared
with a pairwise dynamic programming method which is the basis of many existing
approaches for multiple sequence alignment.

The time complexity of the genetic algorithm can be estimated using the model
developed by Ankenbrandt (1991). As discussed in the section on “Complexity of
Genetic Algorithms™ (Section 3.4), the time required for a genetic algorithm to con-
verge is O(Q log Q) where Q is the population size. That is. there exist constants c,
and (o such that the time required is ¢; - (Q log Q) for all Q > Qq. It will be seen in
Chapter 5 that Equation (3.39) fits well with the experimental results.

For a particular task, the total time required is affected by the fitness ratio. As

discussed on Section 3.4. the time would be proportional to

——Q logQ (4.13)
log r
r is the fitness ratio which is defined as
f A
fl’

where f' is the average fitness of the strings which have particular symbols at certain
positions and f” is the average fitness value of all the other strings in the population.

When using the genetic algorithm for sequence alignment, strings in a population
have different fitness values. It is assumed that the fitness values are in the range
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[ fmin- fmax] and Amay is the string with the value fga.. Let f’ be the fitness value of
Amac which is fnae and f” be the average fitness value of all the other strings. By
using Equations (3.39) and (4.16). we can estimate the time for a search process to
converge to Ama.. Since fnay is always larger than f”. we have

’

)

r= > 1. (1.17)

n

-

Let r take a very conservative value. say 1.1. By substituting the r value and Q=

m,n/100. Equation (4.15) becomes

(mqn/100) log(man/100)

1.18
logl.1 ( )

The designed genetic algorithm includes recursive procedure calls. As described
‘in Section 4.4.2 that procedure PRE-ALIGN is recursivelyv called when the length of
an interval is longer than m,/20 (Step 9 of the procedure).

In general cases. when the intervals have an average length m,/k. (1 < k < 20).
the times of calling PRE-ALIGN for the intervals are less than or equal to k. Thus

the computing time for a genetic algorithm should be less than or equal to

{{man/100) log(men/100) + & - [(mg/k)n/100] log[(m,/k)n/100]}/ log 1.1

Q

25 - (m,n/100) - {log(m,n/100) + log[(m,/k)n/100]}
= 25-(men/100) - logm2n?/(k - 100?)]
= (man/4) -2 - loglman/(k'/? - 100)]
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= (n/2)-mg- log[man/(look”g)] (4.19)

Lemma 4.6.1: The time complexity of the genetic algorithm plus the & times recur-

sive calls of the procedure is smaller than or equal to

(n/2) - mg - log{m,n/(100k'/?)] (4.20)

L]

When using a dynamic programming method to align two sequences cf length
m; and m,. the computing time is O(m;m,). When the two sequences have similar
lengths, we use m,, the average length. to approximate them. We can thus estimate
the time as O(m?). In aligning n sequences, a pairwise dvnamic programming method
involves at least (n — 1) times of two-sequence alignment. Assuming the n sequences

are of similar lengths, the computing time can be estimated as

Lemma 4.6.2: The time complexity for a pairwise dynamic programming is

O[mi(n - 1)]. (4.21)

Theorem: The genetic algorithm has smaller time complexity than a pairwise dy-

namic programming method.
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Proof: For n > 2. and 1 < & < 20, and n/(100k"/2) < m, we have

(n/2) - m, - logiman/(100£'/?)]

m2(n —1)
_ (n/2) - log[mgn/(100k"/?)]
- ma(n - 1)
sy - log(m]
< 2{n—1} )
Mg
_ 2p - log(ma)
Mg
< 1 (4.22)

(]

In the proof. we use the fact that

“— - log(m,) < m, holds for n > 2.

(n

1)

Equation (4.22) also suggests that the longer the sequences. the greater the dif-

“ference: and the larger the number of sequences, the greater the difference.

The major data structure of the genetic algorithm is a two dimensional array used to
store both & (population) and .M (matepool). The array is of size [ Q where [, is
the maximum length of the strings and Q is the population size. When Q = m,n/100,

the total memory space required for the array is [maxmqn/100.
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4.7 Summary

By decomposing the task of multiple sequence alignment into steps of identifving
matches and handling mismatches. and by converting the first step into a search
problem. a genetic algorithm can be designed for simultaneous multiple sequence
alignment.

The designed genetic algorithm is an enhanced one with additional functionality
aimed at high efficiency and better alingment quality. This algorithm is characterized
by the numeric and index gene representation, variable genetic string lengths. more
informed genetic operations. a genetic repairing strategy and a fine-tuning mechanism.

The algorithm enables good match blocks to have higher survival probability and

-to serve as the building blocks of a near optimal pre-alignment. Compared with a
pairwise dynamic programming-based approach, the algorithm has a smaller time

complexity. It is also more efficient in terms of space complexity.



Chapter 5

Experiments with the Genetic

Algorithm

In this chapter. the performance of the genetic algorithm is examined in detail by
presenting and analyzing the initial experimental results which are pre-alignments
produced by the genetic algorithm. The processing time and the identified martches
in a protein data set, an mRNA data set. and 11 other DNA or RNA data sets are
analyzed and compared with those obtained by using CLUSTALW, a most widely
used program for multiple molecular sequence alingment (Thompson et al.. 1994).
The machine used for this research is an IBM RISC 6000 workstation with a
processor rated at 32.2 MIPS and 11.7 MFLOPS. The main memory is 32 megabytes.
The operating system is AIX (an IBM version of UNIX). The genetic algorithm is

implemented as a C program.
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5.1 Results of Pre-aligning a Protein Sequence

Set

The protein data set has eight sequences of bacterial porin (Jeanteur et al. 1991).
The lengths of the sequences range from 329 to 347 subunits. This data set is dis-
cussed because the alignment results can be presented in detail. Alignments of longer
sequences (up to about 12.000 subunits long each) will be discussed later.

The genetic algorithm was used to pre-align from two to eight of the protein
sequences. The processing time and the number of matches in the results are listed
in Table 5.1. CLUSTALW was applied to the same data for comparison. The time
and the number of matches of its results are also listed. In this table. as well as in the
following discussion. we use “G' to indicate the genetic algorithm. “C” to indicate
CLUSTALW. and a "t” to indicate “for/in pre-alignment only”.

The “processing time” listed on the tables is elapsed time measured when the
program. i.e. the genetic algorithm or CLUSTALW, was the only one executed on
the computer. For the genetic algorithm. this includes the time required for finding
match blocks and generating pre-alignments. For CLUSTALW, this includes the time
for pairwise alignment, multiple alignment and quality evaluation.

The “number of matches” for the genetic algorithm is the number of tuples of

(T T oo 20, ) € NI X2 g
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# of seqn. | Average length | Methods | Processing time | # of matches
2 335 G' 0s375ms’ 1947
C 8s324ms 211
3 333 G' 0s490ms’ 1687
C 14s257ms 189
4 336 Gt 0s734ms’ 1631
C 21s860ms 187
5 338 Gt 0s872ms’ 1287
C 29s881ms 135
6 341 G’ 1s044ms’ 1231
C 39s012ms 151
7 341 GT 15299ms’ 1107
C 16s125ms 145
8 341 Gt 1s352ms’ 110°
C 33s663ms 143

Table 5.1: Processing time and numbers of matches of the pre-/alignments of the

protein data set by the two programs.
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such that

And. the “number of matches” for CLUSTALW is the number of tuples of

1 2 - n Sl 24, 2o
(.rul.x' Iu'l.x’ : J:un.x) € ‘X Tf"\ i T’”.\
such that
1 2 _ —_ n
Iul.l - I“E v  Fun,

Table 5.2 lists ratios of the measurements of the genetic algorithm over those of

CLUSTALW from Table 5.1. The following facts can be observed from the results of
_the two programs.

The computing time required by the genetic algorithm is about two orders of
magnitude lower than the time required by CLUSTALW. As the number of sequences
increases, the processing time required by both programs increases. However. the dif-
ference in processing time between the two programs also increases. This is indicated
by the decrease in the ratios of the processing time.

The number of matches identified by the genetic algorithm is no less than 76% of
the number by CLUSTALW. On average, the genetic algorithm spent less than 1%
of the time required by CLUSTALW to identify 84% of the matches by CLUSTALW.

When using the genetic algorithm to process all the eight sequences. 49 genetic
strings were created and 24 of them were chosen to form the first generation. The
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# of seqn. | Processing time” | # of matches”

2 1.36 x1072 0.92

3 3.44 x1072 0.89

1 3.35 x1072 0.87

5 2.92 x 1072 0.83

6 2.68 x10~2 0.82

7 2.82 x1072 0.76

8 2.52 x10~2 0.77
Average 3.16 x102 0.84

Table 5.2: G/C ratios of the measurements in Table 5.1. The columns marked with

an “x  contain the ratios.
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search process stopped at the 46th generation. Figure 5.1 illustrates the maximum
number of matches in the generations. which may help understand the search towards
the final result. The maximum number of matches in a generation is the number of

matches in the string which is the most fitted.

140
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190 1o fros
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100 L Ao
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80 .

|
I"O soean / !
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Maximum # of matches

60
0 10 20 30 40 50

Generation

Figure 5.1: Maximum numbers of matches in generations.

The match blocks identified in the pre-alignment are shown in Figure 6.2 of the
next chapter (marked by letter “M”). It can be noticed that there are no long match
blocks in the pre-alignment generated by the genetic algorithm on this data set. The
longest match block is only seven subunits long. In aligning such kind of sequences.
the genetic algorithm has to deal with a large number of short match blocks (shorter
than or equal to three subunits). This is a relatively time-consuming task for the
genetic algorithm, since short match blocks usually lead to a large number of long
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strings. Searching with long genetic strings requires more time. Still. the genetic
algorithm is still much more efficient and achieves reasonably good results. As will
be seen in the following two sections. when sequences have long match blocks. the

genetic algorithm is much more superior to CLUSTALW in terms of efficiency.



5.2 Results of Pre-aligning an mRNA Sequence

Set

The mRNA data set has ten sequences. each of which has a length of about 12.000
subunits. In this section. the results of pre-aligning the ten mRNA sequences of
different lengths by the two programs are presented and compared in terms of the
processing time and the number of matches. The ratios of the measurements are also
presented. Finally, the time required by the genetic algorithm to process different
numbers of sequences with lengths up to 12.000 subunits is illustrated in a figure
representation.

Table 5.3 lists the processing time and the numbers of matches of the results
obtained by applying the two programs to the ten sequences. Table 3.1 gives the
ratios of the measurements. The results were obtained by processing subsequences
of different lengths. For example, length “1000” indicates the first 1.000 subunits of
the ten sequences. CLUSTALW was not able to align sequences longer than 9.000
subunits when applied to this data set.

The genetic algorithm produced better pre-alignments in dealing with this group
of data than the protein data set. The average processing time required by the genetic
algorithm to produce the pre-alignments is two to three orders of magnitude lower
than the time required by CLUSTALW, while the number of matches identified are

on average 95% of those identified by CLUSTALW. As the length of the ten sequences
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Length | Methods | Processing time | # of matches
1000 Gt 5s310ms’ 7627
| C 9m24s352ms 797
2000 GT 14s018ms’ 14277
C 37m350s329ms 1508
3000 Gf 21s898ms' 21947
C 1hr25m46s520ms 2322
1000 Gt | 28s094ms’ 29917
. C 2hr41m30s783ms 3143
5000 Gf 39s746ms’ 37387
! C 1hr17m53s542ms 3877
6000 Gf 44s319ms’ 44907
C 6hr25m16s070ms 4732 ‘
7000 Gf 50s956ms’ 53067
C 8hr41m23s699ms 3387

Table 5.3: Processing time and numbers of matches of the pre-/alignments of the

mRNA data set by the two programs.
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Length | Methods Processing time | # of matches
8000 Gf 58s753ms' 60267
C 11hr04m535s431ms 6383
9000 Gt 1m06s051ms' 69097
C 14hr03m13s902ms 7266
10000 Gt 1m11s150ms’ TT1LY
C NA NA
11000 Gt 1m18s152ms’ 83657
C NA NA
12000 Gt 1m225395ms' 92537
C NA NA

Table 3.3: (Continued) Processing time and numbers of matches of the pre-

/alignments of the mRNA data set by the two programs.
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Lenght | Processing time* | # of matches”
1000 9.41 x1073 0.96 |
2000 6.17 x10~3 0.95
3000 1.26 x1073 0.94
4000 2.90 x1073 0.95
5000 2.57 x1073 0.96
6000 1.92 x103 0.95
7000 1.63 x1073 0.95
8000 1.47 x10~3 0.94
9000 1.31 x10-3 0.95

Average 3.52x1073 0.95

Table 5.4: G'/C ratios of the measurements in Table 5.3. The columns marked with

an “x contain the ratios.
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Figure 5.2: Processing time vs. sequence length. The curves from the bottom to top

are for two, three, .... and ten sequence alignments. respectively.
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bottom to top are for n = 2. 3 and 10. respectively.
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increases, the processing time required by the genetic algorithm increases. However.
the difference in processing time between the two programs, too, increases. This
is also indicated by the decrease of the ratio in processing time: when the length
increases from 1,000 to 9.000. the ratios in processing time monotonously decreased
from 9.4x1073 to 1.3x1073.

The genetic algorithm has been used to pre-align two. three. .... and ten of the
mRNA sequences. For a given number of sequences, the algorithm was applied to
subsequences of different lengths. Figure 5.2 illustrates the relationship between the
computing time and the sequence length. Each curve is for a given number of se-
quences. Figure 5.3 approximates the complexity model of Qlog@. It shows three
curves of mn log(mn) for sequence number n = 2. 3 and 10, respectively. By compar-
ing the two sets of curves in Figure 5.2 and 5.3. it can be observed that the complexity

model fits well with the experimental results.

5.3 Results of Pre-aligning Other Sequence Sets

In addition to the protein and the mRNA data sets, the genetic algorithm has been
applied to many other data sets, and achieved satisfactory results.

In the following, the results of using the genetic algorithm to pre-align 11 data
sets are presented and compared with the alignments by CLUSTALW. The sequence

data sets are from the European Bioinformatics Institute. IDs of the sequences are
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listed in Appendix II. Of the 11 sequence sets. four are DNA and seven are RNA.
The minimum average length is 212 and the maximum is 4582.

Table 5.5 lists the processing time and the numbers of matches. Table 5.6 gives
the measurement ratios. For the 11 data sets, the processing time of the genetic
algorithm is about two orders of magnitude lower than that of CLUSTALW on average
and the matches identified in the pre-alignments is 88% of the matches identified bv

CLUSTALW.
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Data # of Average | Methods Processing | # of
set | sequences | length time | matches
St 10 211 Gt 0s223ms’ | 184f

C 27s113ms 197 ;
S2 5 1780 Gt 6s219ms’ | 14497 !
C 13m08s776ms 1611 |
S3 4 2433 Gf 1s002ms’ | 23037
C 18m28s150ms | 2305
S4 8 1437 G’ 19s389ms’ | 5767 !
| C 15m38s368ms | 901
S5 8 1680 G’ 115180ms’ | 1251° :
C 21m05s898ms 1439 ;
S6 4 4582 Gt 0s792ms’ | 42257 i
C 1hr4m58s781ms 4409 %
S7 5 1093 GT 1s274mst | 7647 l
) 5m12s348ms 905 :

Table 5.5: Processing time and numbers of matches of the pre-/alignments of other
DNA and RNA data sets by the two programs. Of the data sets. S1, S2, S4. and S5

are DNA while the rest are RN A.
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Data # of Average | Methods Processing # of |
set | sequences | length time | matches
S8 8 1071 Gt 3s851msf | 9717

C 8m35s650ms 999
S9 6 1456 G? 8s765ms' | 3497 :
C 11m21s416ms 1118
S10 7 1448 Gt 6s432ms’ | 10917 f
C 13m22s264ms 1193
S11 5 1092 Gt is384ms’ | 7531 |
C 5m3s838ms | 835 |

‘Table 3.5: (Continued) Processing time and numbers of matches of the pre-
/alignments of other DNA or RNA data sets by the two programs. Of the data

sets. S1. S2. S4, and S5 are DN A while the rest are RNA.

An important character of the genetic algorithm can be observed by examining
this group of experimental results. The processing time for the genetic algorithm to
produce the pre-alignments is not simply proportional to the number and the length
of the sequences aligned. Instead, it depends heavily upon the size of match blocks
and the number of match blocks in a given unit length of sequences. Higher efficiency
is closely related with the existence of longer match blocks and thus smaller number
of match blocks. The processing time proportionally increases with the increase of
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Data # of Average | Processing # of
set | sequences length time” matches™
S1 10 211 8.23x 1073 0.93
S2 5 | 1780 | 7.88x1073 0.90
S3 4 2433 | 9.04x10™ 1.00
S4 8 1437 | 1.96x1072 0.64
S5 8 1680 | 8.83x1073 0.87
S6 | 4 1382 | 2.03x107* 0.96
S7 5 1093 | 1.36x1072 0.8+4
S8 | 8 | 1071 | 7.47x1073 0.97
S9 6 1456 | 1.28x1072 0.76
S10 7 1448 | 8.02x1073 0.91
S11 5 1092 | 1.44x1072 0.88 1

Average 9.26x 1073 0.88 !

Table 5.6: G'/C ratios of the measurements in Table 5.5. The columns marked with

an “x” contain the ratios.
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the sequence length and the number of sequences only in the situations that the sizes
and the number of match blocks in a given length of the sequences are similar (as in
the cases of the protein and the mRNA data sets).

Compare the results of S4 and S5. Both data sets have eight sequences each.
and 54 has an average length of 1437 and S5 has 1680. The processing time for the
genetic algorithm to pre-align S4 is about 19 seconds and the time for S3 is about
11 seconds. Differing from CLUSTALW. the genetic algorithm spent longer time on
the shorter sequence data set. Compare the results of S9 and S10. Both data sets
have sequences of approximately the same lengths. S9 has six sequences and S10 has
seven. The processing time for the genetic algorithm to align S9 is about nine seconds
~and the time for S10 is about six seconds. Again. differing from CLUSTALW". the
genetic algorithm spent longer time on the data set of a smaller number of sequences.
Similar phenomenon is also observed in comparing the results of ST and S8.

Examine the data set pairs again. The ratios of the number of matches over the
sequence length may shed some light on the relationship between the string length
and the efficiency. For instance. S4 has a ratio of 40.1% and S5 has 74.5%. Thus it
is more likely that there exist more longer match blocks in the alignment of set S5
than S4 and therefore the genetic algorithm could spend less time to align S3. Similar
situations can also be found in the alignments of S7 and S8, as well as those of S9

and S10.
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5.4 Summary

The initial experimental results indicate that the genetic algorithm is able to pro-
duce very good pre-alignments which are bases for generating final multiple sequence
alignments. The numbers of the identified matches are comparable to those achieved
by a most widely used program - CLUSTALW: Overall. the genetic algorithm is able
to generate pre-alignments which identify 84% to 95% of the matches identified by
CLUSTALW while the processing time is two to three orders of magnitude lower
than that of CLUSTALW. The major strength of the genetic algorithm is its high
efficiency in computing time. This strength is especially significant when aligning the
long sequences.

More detailed discovery regarding the performance of the genetic algorithm in-

cludes:

e Within initial generations, the maximum numbers of matches increase with the

number of generations.

e The processing time of the genetic algorithm proportionally increases with the
sequence length and the number of sequences in the circumstances that the
sizes and the number of match blocks in a given unit length of the sequences

are similar.

o The existence of long match blocks largely reduce processing time.



Chapter 6

Constructing Multiple Sequence

Alignments

A multiple sequence alignment can be constructed by handling subsequences be-
tween match blocks in a pre-alignment. This chapter describes a simple shift-up
method (Zhang and Wong, 1997a) which is designed to construct alignments from
pre-alignments. The alignments obtained by combining the genetic algorithm with the

shift-up method are presented and compared with those produced by CLUSTALW.
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6.1 The Shift-up Method

A pre-alignment is a series of match blocks with an interval between every two adja-
cent blocks. An interval represents subsequences missing from the pre-alignment. In
constructing an alignment from a pre-alignment, we align the missing subsequences in
each interval and use the alignment to fill the interval. As previously mentioned. we
may use different methods to align the subsequences which mayv contain mismatches
as well as matches. In this chapter, we use the simple shift-up method to process
the intervals. Later. two other methods. including a pairwise dynamic programming
method and a sequence synthesis method. will be presented in Chapter 7.

The shift-up method:

-For everv two adjacent match blocks:

Find the missing subunits from the input sequences which should be
in the interval;
Find sequence X' which has the maximum number of such subunits (1 < i < n):
Fill row i of the interval with the subunits of X*;
For j =1 through n and j # ¢
Place the s missing subunits =, .z} ....7}
row j in the interval;
For Kk = sdown to 1
Move z , up to the column of z} , in the free space. such that
F(I{l)_k'Ii';,l) is the maximum for all the subunits
of X* corresponding to the free space;
EndFor
EndFor

at the lower end of

The following are the evaluation functions F used in this procedure for protein,

DNA and RNA. The matrix in (6.1) is the function for evaluating the scores between
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amino acids, in which A = {c s. t. p. a, ¢, n. d. e, qg. h.r. k. m. i L v. . y.
w}. An “%” in the matrix represents a negative integer and “—17 is used for an =
in this research for gap penalty. The scores. except those for o. are from the SG
(Structure-Genetic) Matrix (Feng at. el.. 1985). According to Feng, this scoring
system has taken into account the structural similarity of amino acids. as well as the
likelihood of interchanges. The function for evaluating the scores between DNA or
RN A nucleotides is given in (6.2), in which A = {a g. c, ¢ } for DNA and A = {a g.

c. u } for RNA. The scores, except the diagonal ones, are from Chan (1990).

# ¢ s t p a g n d e q h r k m il v f y w
( Q * 4 = x x x - *~ - - » - ”~ - - - - - - »* -
c 6 4 2 2 2 3 2 1 0 1 2 2 0 2 2 2 92 3 3 3
K 6 3 4 5 35 5 3 3 3 3 3 3 1 2 2 2 3 3 2
t 6 4 5 2 4 2 3 3 2 3 4 3 3 2 3 1 2 1
P 6 5 3 2 2 3 3 3 3 2 2 23 3 2 2 2
a 6 5 3 4 4 3 2 2 3 2 2 2 3 2 2 2
g 6 3 4 4 2 1 3 2 1 2 2 ¢ 1 2 3
n 6 5 3 3 4 2 4 1 21 2 1 3 9
d 6 5 4 3 2 3 0 I 1 3 1 2 9
e 6 4 2 2 4+ 1 1 L 4 0 1 1 .10
q 6 4+ 3 4 2 1 2 2 1 2 1 !
h 6 4 3 1 1 3 1 2 3 1
r 6 53 2 2 2 2 1 1 2
k 6 2 2 2 3 0 1 1
m 6 4 35 4 2 2 3
i 6§ 5 3 4 3 2
{ 6 3 4 3 4
v 6 4 3 3
f 6 3 3
\ Yy 6 3
w 5]
o a g c tlu)
(-3 0 0 0 o 0
-3 6 1 1 1 - .
g 6 1 1 6.2)
c 6 1
t(u) 6
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6.2 System Implementation

The approach combining the genetic algorithm and the shift-up method has been
implemented as a system. which consists of two major modules. one for the genetic
algorithm and the other for the shift-up method.

Figure 6.1 illustrates the processing flow in the system.
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Figure 6.1: System processing flow.
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6.3 Three More Quality Evaluation Parameters

In order to evaluate alignment quality in a more accurate and comprehensive way,
three more quality measurements are conducted for the purpose of comparison. theyv
are two types of score measurements. ScoreG and ScoreC, and an entropy measure-
ment.

“ScoreG” and “ScoreC” are score measurements of alignments. The two programs.
i.e., the genetic algorithm plus the shift-up procedure and CLUSTALW. use different
scoring systems in aligning sequences. For a “fair” comparison, the alignments are
also evaluated by using the scoring system of the other. (The time for the “mutual”
evaluation is not included in the processing time).

“ScoreG™ is calculated using the following formula:

m n

ScoreG =) 3 F(z) .zh (6.3)

i=1 ,.k e
where m is the length of the alignment. 1 < j < n,1<k<n.j<k n>2. and
F is a function for evaluating the score between any two characters. The evaluartion
function F for protein. DNA and RN A are defined in the matrices of (6.1) and (6.2)
respectively.

“ScoreC” is calculated by using the evaluation method of CLUSTALW. The eval-
uation function for calculating values of “ScoreC” is represented by the matrix in
Appendix I. Gap penalties of this scoring system is not included in the matrix. De-
tails of the gap definition and the gap penalty can be found in an article by Thompson
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et. al. (1994). When using CLUSTALW. we chose 10 as gap penalty.
“Entropy” is a measurement of diversity. It is calculated using the following

formula:

m N
Entropy = — )" 3" p;, logp; (6.4)

=1 ;=1

where m is the length of the alignment. .V is the total number of characters in domain
A. and p;; is the probability of the jth character in the ith column of the alignment.
Entropy is calculated out of p; ; # 0. A lower entropy value indicates less diversity

and higher compactness in the alignment which are desirable alignment qualities.



6.4 Experimental Results

6.4.1 Results of aligning the protein sequence set

In the following discussion, we use “G” to refer to the program implementing the
genetic algorithm plus the shift-up procedure and “C” to indicate CLUSTALW.

Table 6.1 lists the time and the quality measurements of the results obtained
by applying the two programs to the protein data set and Table 6.2 lists the ratios
of the measurements in Table 6.1. Note that in this and the next chapters. the
“processing time” for a genetic algorithm based approach includes the time required
by the genetic algorithm to produce the pre-alignments and the time by a mismatch
handling method to construct the alignment. The following facts can be observed
from the results.

The processing time required by the “G” program is about two orders of magnitude
lower than the time required by CLUSTALW. As the number of sequences increases.
the processing time required by both programs increases. However. the difference in
processing time between the two programs also increases: when the sequence number
increases from two to eight. the ratio of the processing time decreases from 3.7x1072
to 2.6x1072.

The number of matches identified by the “G” program is no less than 96% of those
by CLUSTALW. On average, the number of matches identified by the “G™ program is

99% of that by CLUSTALW. The numbers increase by 15% from the pre-alignments.
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# of Average | Methods | Processing # of | ScoreG | ScoreC ! Entropy :
sequences | length time | matches !
2 335 G 0s312ms 208 1505 1184 { 49.97
C 8s524ms 211 1687 1312 ]' 39.74
3 333 G 0s499ms 191 5048 1149 53.32 g
C 14s257ms 189 3224 1320 | 49.19 l
1 336 G Os764ms | 187 | 10279 | 8785 ! 66.91 |
C 21s860ms 187 10654 9207 ! 50.98 E
5 338 G 0s876ms 153 15539 | 11817 107.44 ‘
C 29s881ms 1355 16936 | 14176 ; 91.30
6 341 G 1s120ms 148 23425 | 16980 ! 123.33
C 39s012ms 151 25081 | 21625 I 109.72
7 341 G 1s344ms 139 32625 23148 f 134.31
C 165125ms 145 34836 | 28014 i 121.93
3 341 G 1s390ms | 130 | 43708 | 31346 | 13707
C 33s663ms 143 46457 | 37414 ]l 125.35

Table 6.1: Processing time and quality measurements of the alignments of the protein

data set by the two programs.
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(The pre-alignments identified 84% of what is identified by CLUSTALW on average.
as shown in Table 3.2.)

The scores of the alignments by the “G” program are only slightly lower. On
average, the ratio in ScoreG is 94% and in ScoreC is 87%. Since ScoreG and ScoreC
are implemented in the two programs respectively, there may be some biases when the
alignments generated by one program are evaluated by the original scoring system.
Thus the actual performance difference between the two programs should be better

evaluated by the average of the two ratio averages, which is about 91% in this case.

# of Processing # of ScoreG* | ScoreC* | Entropy~

sequences time* matches™

2 3.66 x10~2 0.99 0.89 0.90 1.26 |

3 3.50 x1072 1.01 0.97 0.96 1.13

4 3.49 x1072 1.00 0.97 0.95 1.31 |

5 2.93 x10~2 0.99 0.92 0.83 1.18

6 2.87 x1072 0.938 0.93 0.79 1.13

7 2.91 x1072 0.96 0.94 0.83 1.22

8 2.59 x 1072 0.97 0.94 0.84 1.10
Average | 3.14 x107? 0.99 0.94 0.87 1.19

Table 6.2: G/C ratios of the measurements in Table 6.1. The columns marked with

an “x" contain the ratios.



Figure 6.2 and Figure 6.3 illustrate the eight protein sequences aligned byv the two
programs respectively. The alignments are subdivided into successive segments. with
each containing 60 subunits of the first sequence. An “M” indicates a match identified
in a match block of the pre-alignment, and an “+” indicates a match identified by
the shift-up method. It can be observed that both programs have correctly identified
most of the matched subunits and discovered the overall relationships between the
sequences. In constructing this alignment, the shift-up approach contributes 20% of
the total number of the matches identified. The alignment generated by the -G~
program is only slightly less compact than that by CLUSTALW. The former is 399
columns long and the latter is 395 columns long.

This fact can also be measured by their entropy values. The values of the two
alignments generated by the “G” program and CLUSTALW are 137.77 and 125.35
respectively. On average. the alignments by the “G” program have entropy values

19% higher than those by CLUSTALW as shown in Table 6.2.

6.4.2 Results of aligning the mRNA sequence set

Table 6.3 lists the processing time and the quality measurements of the alignments
of the ten mRNA sequences. Table 6.4 gives the ratios of the measurements. The

alignments are again obtained by aligning subsequences of different lengths.
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s MMM MM« MM MM - MM = = = MMMMM MMM -
aeiynkdgnkvdlygkavglhytskgngensyggngdm:yarlgfkgetqinsdltgygq
aeiynkdgnkldvygkvkamhyms-dn-—as—-kdgdqsyirfgtkgetqindqltgygr
aevynknankldvygkikamhyts---dyds—-kdgdqtyvrfgikgetqinedltgygr

aevynkngnkldvygkv-imhyis—---- dddtkdgdqtyvrfgtkgetqindqltgygr
aevynkdgnkldlygkvdglhyfs----dn-kdvdgdqtymrlgtkgetqvtdqltgygq
aeiynkdgnkldlzgkvdglhyfsddkg--s---dgdqtymxigfkgetqvndqltgygq

aeiynkdsnkldlygkvnakhyfs----sn-daddgdttyarlgfkge:qindqltgfgq
aeiynkdsnkldlygkvnakhyts----sn—daddgdttyarlgfkgetqindqltgfgq

™ MM = - MMM MM = MMM MM e MM MM MMMM
Heynfqgnnsegadaqtgnktrlatag--lkyadvgsfdyg-----rnygvvyydalgytdmlpefg
veaefagnkaesdtaq-~gktrlafag--lxykdlgsfdyg----- ralg-alydveawtdnfpefg
vesefsgnktesdssq---ktrlatagvklk--nygstdyg----- ralg-alydveawtdmfpefg
veaefagnxaesdssq---ktrlafaglklx--dfgsldyg----- ralg-alydveavtdmfpetg
veyqiqgnsae---nennsvtrvafag--lqudvgstdyg ----- raygvv-ydvetsvtdvlpetfg

weyqiqgnqteg--—sndswtrvafag--lktadagstdyg-----znyg—vtydvrsvtdvlpetg
veyefkgnrae-sqgsskdkyrlafag--lkf---g-—dygsidygrnyg-vaydigavtdvlpefg

veyefkgnrae—sqgsskdkytlafag--lki---g—-dygsidygrnyg-vaydigavtdvlpefg

M « e« « = MMMMM MMM MMM MM MMM MMMM « =
gdtaysddff-vgrvggvatyrnsnffglvdglnfavqylgkn--erdtarrs—=--——~-—-— ngdgvggsis
gdssaqtdnfmtirasglatyrntdffgvidglnltlqyqgknen-----—- rdv-—----- kkqngdgfgtslt
gdssaqtdntmtkrasglatyrntdffglvdgldl:lqugkn--egre ----- Voo moae kkqngdgvgtsls
gdssaqtdnfmtkrasglatyrntd!tgaidgldmthngkn ----- e---=-m—o n-rdakkqngdgfgtsls
gdt-ygsdnfmqqrgngyatyrntdffglvdgldfalqugkngnpsgegftsgvtnngrdaqungdgvggsi:
gst-ygadnfnqqrgngyatyratdffglvdgldfalqyqgkngsvsgentagrslln------ qngdgyggslt
gdtvtqtdvfmtgrttgfatyrnndffglvdglnfaaqugkn-drs--dt-dnyt-eg ------ ngdgfgfsat
gdtwtqtdvtntqratgvatyrnndttglvdglnfaaqugkn-d:s--df-dnyt-eg ------ agdgfgisat
. MM = . OOMMMMM MMMM -

yeyeg-tgiv-gaygaadttlnq-ea-qpl---gngkk-aeqvatglkydanniylaanygetrnatp
ydfggsdfaisgaytnsdrtneq—nlqsrgtgkra---ea--watglkydanniylatfysetrkmtp
'ydfggsdfavsaaytssdrtndq-nlla:gqgska-—-ea--wa:glkydanniylatmyse:-rkmt
ydfggsdfavsgaytnsdrtnaq-nllargngka---ea—-vatglkydandiylaamyset-rnmt
ydyeg--fgiggaissskrtdaqnta~----- ayigngdraetytggliydanniylaaqytq---tyn
yaigegfsvggaitt-skrtadqnn--tanarlygngdratvytgglkydanniylaaqysqtnatrf
yeyegfgigatya--ksdrtdtqvnagkvlpevtasgknaevvaaglkydanniyla::ys---e:qn
yeyegtgiga:ya--ksdrtdtqvuagkvlpevfasgknaevvaaglkydanniylattys---etqn

MMM = MOMMM MMMMMM s MM o . MM
itnkr:n--cs-gtanktqdvllvaqufdtglrpsiaytkskakd---veg--igdvdlvnyfevga
it~eg--mmeomm gfanktqnfeavaqufdtglrpslgyvlskgkdi-egigdedlvnyi—---dvga
pis~g--=—=-- gtankaqnfeavaqutdtglrpslgyvlskgkdi-egvgsedlvnyi----dvgl
pis~g---=---- gfankaqnfevvaqufdfglrpslgyvqskgkd-legigdedlvnyi----dvga
atrvg----- slgvankaqnfeavaqutsfglrpslaquskgk~-nlgrg--yddedilkyvdvga
3tsngsnpstsygfankaqntevvaqufsfglrpsvaquskgkdisngygasygdqdivkyvdvga
at----- vfadhfvankaqnteavaqufdfglrpsvaquskgkd----lg~vvgdqdlvkyvdvga
[L~=o==- vfadhvankaqn!eavaqutdtglrpsvaquskgkd----lg-vvgdqdlvkyvdvga
MM MMMMM = = MM M o« MMM
tyy-fninmstyvdyiinqidsdnklgvgsddt---vavgivyqf--—=-==eeeemaaa-
tyy-foknmsafvdykinqld-sd-nk-lninnddivavgmtyqf--—-=~~=-vm=meex
tyy-fnknmdafvdykingl-ksd-nk-lgindddivalgmtyqf---—===--ceemeun
tyy-fnknmsa:vdykinqid-dd-nk-lgvndddivalgmtyqfnytqinaasvglrhkt
tyyyinknmstyvdykinllddnqftrdagintdnivalglvyqf--—=-====cee--a-
tyy-frknmstyvdykinlldkndftrdagintddivalglvyqf-——--~=-=====wu=
tyy-fnknmstfvkykinlldkndftkalgvstddivavglvyqf-—---=--mcoeee-u
tyy-foknmstfvkykinlldkndftkalgvstddivavglvyqf-—-—-==~-m=mmeue

Figure 6.2: Alignment of the eight protein sequences by the “G” program.
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gstyga-dnfngqrgagyatyrntdffglvdgldfalqyqgkngsvsge-—--—- atngrsilnqngdgyggslt
gdtwtqtdvintgreigfatyrnndffglvdglnfaaqyqgkndrsdfdn—-—--- yteg----—- ngdgfgfsat
gdtvtqrdvimtqratgvatyrnndffglvdginfaaqyqgkndrsdfdn~—-=-- yteg------ ngdgfgtfsat
- - aw L L] - EENEEER SSES - - =
yeyeg--fgivgaygaadrtlnqe------ agplgngkkaeqwatgliydanniylaanygetrnatp
ydfggsdfaisgaytnsdrtneqn------ lgsrgtgkraeavatglaydanniylatfysetrkmtp
. ydfggsdfavsaaytssdrtadqn--~--- llargggskaeavatglzydanniylataysetrkatp
ydfggsdfavsgaytnsdrtnaqn--=~-~ llargqgqkaeavatgliydandiylaamysetramtp
ydy--egfgiggaissskrtdagn----- taayigngdraetytgglcydarniylaagytqtynatr
yaig-egfsvggaittskrtadqnnt--anarlygngdratvytgglkydanniylaaqysqtn—atr
yey--egtgigatyaksdrtdtqvnagkvlpevfasgknaevvaaglkydanniylattysetqnmtv
yey--egtgigatyaksdztdtqvnagkvlpevfasgknaevvaaglkydanniylatcyse:qnmtv

- = SEEEES SERSESR = =% = - - ==
itnkfent----sgfanktqdvllvaqyqfdfglrpsiaytiskakd----- vegigdvdlvnyfevga
ig-==-omooeeme ggfanktqnfeavaqyqfdfglrpslgyvlsikgkd----- iegigdedlvnyidvga
ig===-omoe—- ggtankaqnfeavaqyqfdfglrpslgyvlsikgkd---=~ iegvgsedlvnyidvgl
ig==--oooeme ggfankaqnfevvaqyqidfglrpslgyvqsigkd-~-—-- legigdedlvnyidvga
VES—====—==- lgvankaqnteavaqutsfglrpslaquskgk----nlg:gyddedilkyvdvga
tgtsngsnpstsygfankaqnfevvaqufsfglrpsvaquskgkdisngygasygdqdivkyvdvga
fadhfvan-~------~ kaqnfeavaqyqfdfglrpsvaylqskgkd----lgv-ugdqdlvkyvdvga
fadhvan~---~-==--- xaqufeavaqyqfdfglrpsvaylaskgkd----lgv-ugdqdlvkyvdvga
" SEEgssS - ® == L te® = sE®
t-yyfnknmstyvdyiinqidsd---nklgvgsddtvavgivyqf-———-====-—-cemuu
t-yyfnknmsafvdykingldsd---nklninnddivavgmtyqf-—-=--=~~-==~==ee
t-yyfoknmdafvdykinqlksd---nklgindddivalgmtyqf------=~====cu-u
t-yyfnknmsafvdykinqiddd--—nklgvndddivalgmtyqtnytqinaasvglrhkt
tyyyfnknmstyvdykinllddnqftrdagintdnivalglvyqf~---==-==e=eemux
t-yyfoknmstyvdykinlldkndftrdagintddivalglvyqf--==—====mmecaee
t-yyfaknmstfvkykinlldkndftkalgvstddivavglvyqf-—~--=——=-—memex
t-yyfnknmstfvkykinlldicndftkalgvstddivavglvyqf-----—-===m=e—mv

Figure 6.3: Alignment of the protein sequences by CLUSTALIY.
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Length | Methods Processing # of ScoreG | ScoreC | Entropy !
i
time | matches :
1000 G 5s092ms | 797 | 257766 | 284173 | 4189 ,
C 9m24s352ms | 797 | 257813 | 288591 | 43.82 |
2000 G 14s461ms | 1504 | 301230 | 345930 | 238.16 |
C 37m50s329ms | 1508 | 501539 | 556687 | 231.86 1

3000 G 24s276ms | 2319 | 758391 | 807544 | 280.54
C 1hr25md46s520ms | 2322 | 750854 | 828861 | 271.94
1000 G 31s552ms | 3130 | 1012239 | 1086277 | 387.00
C | 2hr41m30s783ms | 3143 | 1015712 | 1116731 | 350.66
5000 G 43s679ms | 3922 | 1286592 | 1372633 | 53441 ;
C | 4hrl7m33s542ms | 3877 | 1263871 | 1390669 | 464.08 |
6000 G 48s344ms | 4700 | 1512500 | 1600349 | 604.86 |
C | 6hr25m16s070ms | 4732 | 1522469 | 1659179 | 508.13 |
7000 G 55s757ms | 5544 | 1776488 | 1896154 | 678.81
C | 8hr41m?23s699ms | 3587 | 1784108 | 1956777 | 569.71 f

Table 6.3: Processing time and quality measurements of the alignments of the mRN A

data set by the two programs.
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Length | Methods Processing | # of ScoreG | ScoreC | Entropy ;
|

time | matches !

8000 G 1m04s230ms | 6328 | 2030002 | 2164507 | 773.66 ;
C | 11hr04m35s43lms | 6383 | 2040507 | 2237351 | 649.06 |

9000 G Im10s844ms | 7205 | 2285279 | 2421534 | 348.33 ‘
C 14hr03m13s902ms 7266 2300673 | 2512553 680.06 .

10000 G Im17s227ms | 8038 | 2547223 | 271517 889.98 :
C NA NA NA NA NA ‘

11000 G 1m23s472ms 8906 2806860 | 2990517 972.01 ;
C NA NA NA NA NA

12000 G lm28s797ms | 9627 | 3028626 | 3217619 | 1104.01
| C NA NA NA NA NA

Table 6.3: (Continued) Processing time and quality measurements of the alignments

of the mRNA data set by the two programs.

For this data set. the “G” program produces alignments of very similar quality
as CLUSTALW in terms of the number of matches and the scores. The results are
even better than the alignments of the protein data set when using the results of
CLUSTALW as a reference. The “G” program requires much less processing time
than CLUSTALW. For instance in aligning the 10 sequences of length 9.000, while

CLUSTALW spent more than 14 hours to produce the results of 61 more (or 0.85%
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Lenght | Processing # of ScoreG~ | ScoreC~ } Entropy”
time* matches™

1000 | 9.02 x1073 1.00 1.00 0.98 1.02
2000 | 6.37 x1073 1.00 1.00 0.98 1.03
3000 | 4.72 x10°3 1.00 1.00 0.97 1.03
4000 | 3.26 x1073 1.00 1.00 0.97 1.10
5000 | 2.82 x10°3 1.01 1.02 0.99 1.15
6000 | 2.09 x103 0.99 0.99 0.96 1.19
7000 | 1.78 x1073 0.99 1.00 0.97 1.19
8000 | 1.61 x1073 0.99 0.99 0.97 1.19
9000 | 1.40 x10-3 0.99 0.99 0.96 1.25

Average | 3.67x1073 1.00 1.00 0.97 1.13

Table 6.4: G/C ratios of the measurements in Table 6.3. The columns marked with

an “x7 contain the ratios.
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more) matches, the “G” program spent onlyv one minute and 11 seconds. In analyzing
this set of results, the following observations are made:

The average processing time required by the *“G” program to align the 10 se-
quences of different lengths is two to three orders of magnitude lower than the time
by CLUSTALW. As the length of the 10 sequences increases, the processing time
required by the “G” program increases. The difference in processing time between
the two programs also increases. This is also indicated by the decrease of the ra-
tios in processing time: \When the length increases from 1.000 to 9.000. the ratio in
processing time decreases from 9.0x1073 to 1.4x1073,

The average ratios of the number of matches is 1.00. A considerable number of
matches are identified by the shift-up method. For instance. when aligning the 10
sequences of length 10.000. the total number of matches identified by the “G” program
is 8.038. of which the shift-up method contributed 327 matches accounting for 4% of
the total (7711 matches are identified in the pre-alignment as shown in Table 5.3.).

The averages of the ratios in ScoreG and ScoreC are 1.0l and 0.98 respectively.
and the average of these two is 1.00. Overall. on this data set, the “G” program is
able to generate alignments of similar quality in terms of the number of matches and
the score within about 1/1000 of the time required bv CLUSTALW.

The average of the ratios in entropy values is 1.13. The higher entropy values of
the alignments by the “G” program may partially due to the fact that they are less

compact. For example, the alignment of the subsequences of length 9,000 by the “G~
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program contains 9453 columns while the alignment by CLUSTALW contains 9320.

6.4.3 Results of aligning the 11 other sequence sets

Table 6.5 lists the processing time and the quality measurements for the alignments
of the 11 other DNA and RN A data sets (four DNA and seven RN A data sets). Table
6.6 gives the ratios of the measurements. For the 11 data sets. the “G” program also
has very good performance compared with CLUSTALW.

Its processing time is approximately two orders of magnitude lower. The average
of the ratios in the numbers of matches is 0.98. The average of the ratios in ScoreG
and ScoreC is 0.98 and 1.00 respectively, and the average of the two is approximatelyv
10.99.

As with the protein data set and the mRNA data set. the “G” program produces
less compact alignments than CLUSTALW. The entropy values of the alignments by
the “G” program are higher. and their average is higher than that of CLUSTALW bv

4%,
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Data | # of | Aver. | Methods Processing # of ScoreG | ScoreC | Entropy
set | sequ. | length time | matches
Si 10 211 G 0s215ms 198 56491 71847 2.27
C 27s113ms 197 56491 | 69010 2.27
S2 3 1780 G 6s194ms 1533 101507 | 120763 99.72
C 13m8s776ms 1611 103018 | 113785 13.28
S3 4 2433 G 0s983ms 2303 85615 | 104867 68.37
C 18m28s150ms | 2305 85701 | 104149 64.86 ,
S4 8 1437 G 17s943ms 304 196746 | 191830 300.11j
C 15m38s568ms 901 | 210317 | 226516 | 204.88
S5 8 1680 G 10s685ms 1420 ! 269432 | 291406 31.12
C 21m3s898ms 1439 269092 | 303390 46.02
S6 4 14582 G Os784ms 4332 159532 | 180620 138.47
C | 1hr4m38s781ms | 4409 160860 | 182475 149.91
ST 5 1093 G 4s394ms 894 60153 | 73316 79.26
C 5m12s948ms 905 60719 ; 73280 33.90

Table 6.5: Processing time and quality measurements of the alignments of other DN A

and RNA data sets by the two programs. Of the data sets. S1.S2, S4. and S5 are

DNA while the rest are RNA.
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Data | # of | Aver. | Methods | Processing # of | ScoreG | ScoreC | Entropy
set | sequ. | length time | matches

S8 8 1071 G 3s782ms 999 176665 | 227983 15.65

C 8m35s650ms 999 176665 | 216339 | 15.65

S9 6 1456 G 8s533ms 1046 116221 | 139681 E 213.62

C 11m21s416ms 1118 120534 | 142237 : 86.97

S10 7 1448 G 6s265ms 1179 170532 | 211327 ; 119.26

C 13m22s264ms 1193 172756 | 206195 i 85.07

S11 ) 1092 G 4s281ms 840 57682 | 68951 i 139.56

C 5m3s838ms 853 60100 | 71361 E 90.83

Table 6.5: (Continued) Processing time and quality measurements of the alignments

of other DNA and RNA data sets by the two programs. Of the data sets. S1. S2. S4.

and S5 are DN A while the rest are RN A.

The fact that the genetic algorithm'’s performance is affected by the existence of

long match blocks can be observed again in this group of results.
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Data # of | Aver. | Processing f # of ScoreG~ | ScoreC™ | Entropy” g
set sequ. | length time” | matches~ | ’
S1 10 | 211 | 7.92x1073 ' 1.00 | 1.00 1.04 1.00
S2 5 1780 | 7.85x10~3 0.96 0.99 I 1.04 1.30 I
S3 1 2433 | 8.87x1074 1.00 1.00 1.01 105 |
S4 8 1437 | 1.91x1072 | 0.89 0.94 085 | 1.46 ;
S5 8 1680 | 8.44x1073 0.99 1.00 0.96 1.76 §
S6 1 4582 | 201x10~* | 098 0.99 0.99 0.92 '
S7 5 1093 | 1.40x1072 ; 0.99 0.99 ¢ 1.03 1.47
S8 8 1071 !7.33x10‘3 1.00 1.00 i 105 | 1.00
S9 6 1456 | 1.26x1072 | 0.94 0.96 0.98 ! 251 ’
S10 7| 1448 | 8.03x107% | 0.99 0.99 1.02 1.40 ‘
Si1 5 1092 | 1.41x1072 0.98 0.96 097 | 154 ‘

Average 9.13x1073 | 0.98 0.98 1.00 1.34

Table 6.6: G/C ratios of the measurements in Table 6.5. The columns marked with

an “x” contain the ratios.
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6.5 Summary

Alignments can be constructed from pre-alignments by processing subsequences in
intervals. The program combining the genetic algorithm and the shift-up method
may produce multiple sequence alignments of very good quality efficiently. The total
processing time is about 1/1000 of that required by CLUSTALW. The shift-up method
is very effective for processing the subsequences. It has the strength of sirnplicity and

high efficiency. It can produce the shortest alignment from a given pre-alignment.
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Chapter 7

Combined Approaches of Genetic
Algorithm and Dynamic

Programming

For better processing intervals between match blocks, two different methods based
on dynamic programming have been combined with the genetic algorithm. In one
method, dynamic programming is used for pairwise alignment; and in the other. it is
used for sequence synthesis.

When sequence lengths are short, a dvnamic programming method can achieve
good alignments with reasonable computing resources. With the strength of handling
mismatches, as well as matches, in a systematic way, it might be a complement to

the genetic algorithm. Integrating the strengths of the two methods, a combined
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approach may achieve both high efficiency and improved alignment quality.
In this chapter, the two combined approaches of the genetic algorithm and the
dynamic programming methods are described in detail. The experimental results are

presented and the improvements are analvzed.
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7.1 The Pairwise Dynamic Programming Method

This section presents a pairwise dvnamic programming method which is based on
the two-sequence alignment dynamic programming. It belongs to the methods which
align sequence pairs in an arbitrary order. The method is used along with the genetic
algorithm to produce multiple sequence alignments (Zhang and Wong, 1997b).

For each pair of successive match blocks, the pairwise dvnamic programming
method is applied to the n subsequences in the interval. To align n’ (2 < n’ < n)
subquences, the method first produces an alignment of the first n’ — 1 subsequences,
then uses the two-sequence dynamic programming method to align the (r’ —1)th and
the n'th subsequences. and finally produces an alignment of the n’ sequences by com-

“bining the two alignments. After aligning the n sequences, the alignment is inserted
between the two blocks.

The two-sequence dynamic programming aligns two sequences to maximize the
score which is defined later. The central data structure of the method is a two dimen-
sional matrix V/. (As mentioned before, the data structure of a dynamic programming
for two sequences can be one dimensional arrays. For easy implementation. we use a

1.1

two dimensional array.) For sequences X! = zlz)...z}

my

2

and X? = rjz3..x%,, M is

of the size m; x ms. The element values stored in M are defined as the following:
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“'[0.0 =0.
."[0._]' = Zi:l F(o’y l'%).
Mig = Lo F(x}. 0),

¢
~1[i-l.j + PQ(.'L'!1 O)

Mij=maxq M, + F(z},z2) (7.1)

-‘[i.]—l + F(é’ I_:;)

where M ; is the element at the ith row and jth column and function F (r},.t;-’) is the
score between z! and xf (0 <t £my,0 < j < my). The score systems for protein.
DNA and RNA are defined in Equations (6.1) and (6.2).

After creating the )/ matrix. an alignment can be formed by tracing back from

M, .m.- The next matrix element to be traced from Mi; (1<i<m. 1< )< m)

is
Moy, if [M;_,,; + F(z!, 0)] is the maximum.
¢ Micyjo Moo+ F(r},xf)] is the maximum. ey
{ M if [M;,—1 + F(o,z})] is the maximum.

The result of the tracing is a string of index pairs. A pair indicates that the two

indexed subunits should be aligned. The index pair recorded into the string when
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tracing from V;; is determined by the next element:

)
(:.0) if M, is the next.

J (z.j) if M;_, ;_, is the next.

(0.j) if M ;- is the next.

Pair (i. o) indicates that the ith subunit of sequence X!, i.e. z!l. is an insertion.

(2.7)

indicates that the ith subunit of sequence X', i.e. z}, should be aligned to the jth

subunit of sequence X?, i.e. z2, and, (0. ) indicates that the jth subunit of sequence

X? is an insertion,

The procedure PAIRALIGN was designed for generating an alignment from a

pre-alignment, in which L is the number of match blocks in the pre-alignment. To

simplify the procedure, two empty blocks. the Oth and (L - 1)th blocks. are added to

the head and end of the pre-alignment.

procedure PAIRALIGN (Input: X'#' Y24 #' X" Output: \'# Y22 #\")

begin

For: = 1 through L +1 do
Take the n subsequences .X'!. X2 .. X7
between the (i — 1)th and the ith match blocks:
For j = 2 through n do
Align the (j — 1)th and the jth sequences to have X7~!#\7;
If 7>2
Combine X #.X7# - #XJ~! with X714 X!
to produce X!#.\X2#.. #XJ;
EndIf
EndFor
Place the alignment between the (i — 1)th and ith match blocks:
EndFor.

end procedure



The method for combining two alignments is illustrated in the following.

Let

Np#ENGH# - # X = (2,70, B N
and

-\’f—l#-\-g = {(#‘;jlkrz]‘;k)}lrc’;"l
We have
(@ By o2 ) € XU X241
if and only if
(Tyy ) Tagyr ot ) e XGEXT# - #XTN (T.Z_ll_kvri;_k) SA GRS AEH

—_ 14
and u;_;; = Uj k-
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7.2 The Sequence Synthesis Method

The sequence synthesis method is also based on the two-sequence dynamic program-
ming and the random graph technique (Wong et. al.. 1990; Chan, 1990). Similar
to the pairwise dynamic programming method, for each pair of successive martch
blocks, it is applied to the n subsequences in the interval, and then. the alignments
of the n subquences are inserted between the two blocks. Differing from the pairwise
approach, in aligning 2 < n’ < n subquences, the alignment of the first n’ — 1 subse-
quences is treated as a synthesized sequence and is aligned with the n’th subsequence.
An additional combination step is not required. Another major difference is that this
approach is based on minimization of entropy (Zhang and Wong, 1998).

Before introducing this approach, the calculation of entropy and the concepts of
sequence synthesis are described as the following which is in accordance with You
and Chan’s work (You, 1983; Wong and You. 1985; Chan. 1990):

Let A" = {0} U A be a character set with a null character 6 and let r* = €1€3...Cm

be the synthesis representation of the alignment X! X 2. .. #.X", where m is the
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length of the alignment and

Qo Poi

ay. i

ay.DyNi

is for a column of the alignment. ¢; satisfies:

a; € A, for 0 < j < N where V is the number of characters in A:

pji is the probability of the occurrences of character a; at ¢;;

Z}\;Opji =10.for1 <:< m:

The “column” entropy of ¢; is:

N

H(c:) =~ pjilogp; (v.4)
1=0

The entropy of the whole alignment is:

H(r') =-3%2 ¥, pjilogp;i

=i Hc) (v.

-~
(1]
g

e Let ¢; be for a column in an alignment on A" and c; be for a column in another

145



alignment on A". The svnthesis of ¢; and c; is defined as:

Qo,q1Doi + q2Doj

ay: Q1P + q2pyj

Ck

ay.q1PNi + @2PNj

where i = fi/(fi + f2), @2 = f2/(fi + f2), and, fi and f, are the numbers of

sequences in the two alignments from which ¢; and c¢; are taken.

The sequence synthesis method aligns sequences to minimize the the entropy value.
In aligning the synthesis of the first (n’ — 1) sequences with the n’th sequence. we
express the column entropy as H(c;, 1:3") where ¢; is for the ith column of the svnthesis
of the first (n’ — 1) sequences and r;-" is the jth subunits of the n’th sequence. To
calculate H(ci,z;?'). we first add x;" to ¢; and then use Equation (7.4).

The central data structure of the method is also a two dimensional matrix .
For svnthesis r° = ¢,c,...cy, and X% = J:’I"r{,"....r',}:n,, M is of the size m x m,.. The

element values stored in )M are defined as the following:

.‘r[o‘o = 0,
;L[g'j = Z{,=1 H(‘Pa Izl)v

;‘{i'o = ZZ:Q H(Ck, é)y
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)
Mi_1j+ Hlc;, 0)

M, = minJ M _ja+ H(C‘irl'?,) (1-6)

| Mijoi+ H(o.2))

where 1/; ; is the element at the ith row and Jtheolumn (1 <i<m. 1<) < my).
After creating the \/ matrix. an alignment can be formed by tracing back from

Mm.m_, - The next matrix element to be traced from M, (1€i<m, 1<) < my)

is

( Moy, if [Mi_y; + H(c;, 0)] is the minimum.

=1
=1
~

¢ Mo, i (Moo, + H(c;, z7')] is the minimum. e

Moo i [M, .y + H(6.27)] is the minimum.

The result of the tracing is a string of index pairs. A pair indicates that the
indexed column and subunits should be aligned. The index pair recorded into the
string when tracing from \/;; is determined by the next element:

( (i.0) if M;_y, is the next.

J (2.J) if M,_y_, is the next. i7.8)

{ (@,7) if M;,_, is the next.

Pair (i. o) indicates that the ith column of the synthesized sequence corresponds to
a deletion in the n'th sequence, (i, j) indicates that the ith column of the svnthesized
sequence should be aligned to the jth subunit of the n’th sequence, and (. J) indicates

that the jth subunit of the n’ sequence is an insertion,
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7.3 Complexity Analysis of the Combined Ap-

proaches

In this section. the complexity of the combined methods is analvzed in terms of
computing time. The complexity is also compared with a “pure” pairwise dynamic
programming method.

The computing time required by the combined method to align a set of sequences
has two components: the time required by the genetic algorithm and the time required
by a dynamic programming procedure.

As discussed in Section 4.3, when population size is determined as Q@ = mgyn/100
where m, is the average length of the sequence set and n is the number of sequences.

we have the complexity of the genetic algorithm:
gma log[men/(100k'/?)] (7.9)

where k& is the number of intervals for recursive application of the genetic algorithm.

In aligning two sequences of average length mg,,. the computing time for a dv-

2
avg

namic programming method is estimated as O(m ). When using a dyvnamic pro-
gramming method to align n sequences of average length Mgy, both the pairwise and
synthesis methods involve (n—1) times of two-sequence alignment and the computing
time is

O[mZ,,(n - 1)]. (7.10)



Recall the description in the chapter of “The Genetic Algorithm for Multiple Se-
quence Alignment”, that any interval would be re-processed by the genetic algorithm
if its average length is longer than m,/20. We thus assume the average length of the
intervals, denoted as m;. is not longer than mq/20. The number of intervals to be
re-processed is less than m,/m,. By substituting Mayg = m, into (7.10) and mulri-
plving the expression by m,/m,, we have the computing time required by a dvnamic

programming method to align all the intervals:
(ma/ms)mi(n — 1) = mgmy(n — 1). (7.11)
Therefore the total time required by the combined approaches is of the order of:

gma log{mqn/(100k'?)] + mem,(n — 1). (7.12)

When a pure pairwise dynamic programming method is applied to the same data
set (the whole sequences), the computing time can be estimated as Olmi(n ~1).

The combined approaches have smaller time complexity than a pure dyvnamic
programming: For 2 < n < m,, n < 100k'2, 1 < k& < 20. m, < m,/20 and m, > 10.
we have

3mg log[m,n/(100kY2)] + memg(n — 1)

m2(n — 1)
5 log[man/(100k'2)] + my(n — 1)
B ma(n — 1)
(n — 1) log[men/(100k3)] + m,(n — 1)
<
ma(n - 1)
log[mgn/(100k2)] + m;

Mg
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< L (7.13)

Equation (7.13) indicates that the ratio may be smaller for longer sequences.
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7.4 Experimental Results

The two combined methods of the genetic algorithm and the dvnamic programming
have been applied to the molecular sequence sets. In this section. the results of
aligning the sequences are presented, analyzed, and also compared with the results

obtained using CLUSTALW.

7.4.1 Results of aligning the data sets

Listed in Table 7.1 are the processing time and the four quality measurements of
the alignments of the eight protein sequences (bacterial porin). In this table. as well
as in the following discussion, we use "G+D" to denote the combined method of
" the pairwise dynamic programming and the genetic algorithm. “G+S” the combined
method of the sequence synthesis and the genetic algorithm. and “C* CLUSTALW.

Table 7.2 lists the ratios of the measurements in Table 7.1. The following facts can
be observed for the protein data set. The time required by the combined approaches is
approximately one order of magnitude lower than the time required by CLUSTALW.
The “G+D” approach is slightly faster than the “G+S" approach. In most cases.
the combined approaches have larger numbers of matches. The exception is the
alignments of two sequences for which the dynamic programming-based CLUSTALW
may produce the optimal result.

“G+D” and “G+S” have achieved even better alignment quality: The average
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# of Average | Methods | Processing # of ScoreG | ScoreC : Entropyg

sequences | length time | matches E !
2 335 G+D 1s496ms | 208 | 1514 | 1130 | 49.97
G+S | 1s476ms| 209 1506 | 1167 | 49.67

C 8s524ms | 211 1687 | 1312 | 39.74

3 333 G+D 1s962ms | 193 | 5073 | 4169 | 55.45

G+S 2s757ms | 192 5056 | 4186 | 55.25

C 14s257ms | 189 | 5224 | 4320 | 49.19 |

1 336 G+D 2s773ms | 189 | 10381 | 8868 | 66.46 |

G+S 3s728ms | 188 | 10355 | 8989 ! 66.15 |

C 21s860ms | 187 | 10654 | 9207 | 30.99

5 338 | G+D | 3s524ms| 150 | 16605 | 13396 | 100.61 |
G+S 5s782ms | 160 | 16339 | 13197 ! 98.94
C 29s881ms | 155 | 16936 | 14176 ; 91.30
6 341 G+D 3s963ms | 152 | 24715 | 19185 | 116.7
G+S 7s244ms | 153 | 24258 | 18517 | 113.76

C 39s012ms | 151 | 25081 | 21625 | 109.72
7 341 | G+D 1s591ms | 145 | 34703 | 26406 | 128.93
G+S 9s679ms | 145 | 33949 | 25143 | 124.20

C 46s125ms | 145 | 34836 | 28014 | 121.93

8 341 G+D 4s965ms | 145 | 46455 | 35642 | 132.31 .

G+S | 11s279ms | 145 | 45432 | 34128 | 127.57 |

C 53s663ms | 143 | 46457 | 37414 | 125.35

Table 7.1: Processing time and quality measurements for the alignments of the protein

data set by the three programs.



ratio of the number of matches is 1.01 for both of the combined methods. The
average ratio of ScoreG is 0.97 for “G+D" and 0.96 for “G+S” and the average ratio
of ScoreC is 0.93 for “G+D” and 0.92 for “G+S”. The entropy values are higher than
those of CLUSTALW which is 1.42 of “G+D” and 1.39 of “G+S"

Figure 7.1 and Figure 7.2 illustrate the eight protein sequences aligned by the two
combined methods respectively. Again. the alignments are subdivided into successive
segments. with each containing 60 subunits of the first sequence. It can be observed
that both methods have correctly identified most of the matched subunits and dis-
covered the overall relationships among the sequences. There are 403 columns in the
result of “G+D” and 401 columns in that of "G+S”. while there are 395 columns in
that of CLUSTALW. Less compactness generated by the two combined methods is

the partial reason of higher entropy values.
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# of Ratio | Processing # of ScoreG* | ScoreC™ | Entropy™ §
sequences type time* matches™ ; :
2 G+D/C | 1.76 x10"! 0.99 0.90 0.86 1.26 ,
G+S/C | 1.73x107! 0.99 0.89 0.89 1.25
3 G+D/C | 1.38x10~! 1.02 0.97 0.97 1.20
G+S/C | 1.93x107! 1.02 0.97 0.97 1.20 }
4 G+D/C | 1.27x10~! 1.01 0.97 0.96 1.45 l
G+S/C | 1.71x 10"} 1.01 0.97 0.98 1.44 :
5 G+D/C | 1.18x107! 1.03 0.98 0.95 1.51 t
G+S/C | 1.94x107} 1.03 0.97 0.93 1.43 |
6 G+D/C | 1.02x107! 1.01 0.99 0.89 1.51
G+S/C | 1.86x107! 1.01 0.97 0.86 L47T
7 G+D/C | 9.95x107? 1.00 1.00 0.94 1.51 I
G+S/C | 2.10x107! 1.00 0.98 0.90 1.45
8 G+D/C | 9.25x10~2 1.01 1.00 0.95 1.51
G+S/C | 2.10x107! 1.01 0.98 0.91 1.45 ,
Average | G+D/C | 1.22x107! 1.01 0.97 0.93 1.42 {
G+S/C | 1.91x107! 1.01 0.96 0.92 | 1.39

Table 7.2: “G+D"/“C” and *G+S"/“C” ratios of the measurements in Table 7.1.

The columns marked with an “x” contain the ratios.
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es MMM MM = MM MM = MM s & « MMMMM MMM =
aeiynkdgnkvdlygkavglhyfskgngensyggngdmtyarigfigetqinsdltgygq
aeiynkdgnkldvygkvkamhyms----dna-skdgdqsyirfgtkgetqindqlegygr
aevynknankldvygkikamhyfs----dyd-skdgdqtyvrigikgetqinedltgygr
aevynkngnkldvygkvk-nhyis----ddd-tidgdqtyvrigtkgetqindqltgygr
aevynkdgnkldlygkvdglhyfs----dnk-dvdgdqtymrlgfkgetqvtdqltgygq
aeiynizdgnkldlfgkvdglhyfs-~-~ddk-gsdgdqtymrigfkgetqvndqltgygq
aeiynkdsnkldlygkwnakhyfs----snd-addgdttyarlgfkgetqindqltgfegq
aeiynkdsnkldlygkvnakhyfs-~---snd-addgdttyarigfigetqindqltgfgq

MM MM . - MMM MM « MMM M. MM MM MMM
veynfggnnsegadaqtgnktrlafag--lxyadvgsfdyg----- raygvvyydalgytdmlpefg
Jeaefagnkae-s-dtaqqktrlafag--lkykdlgsfdyg----- rnlgal-ydveauvtdmfpefg
vesefsgnkte-s-dss-gktrlafagvklk--nygsfdyg----- rnlgal-ydveawtdmfpefg
veaefagnkae-s-dss-qktrlafaglklx--dfgsldyg--~-- ralgal-ydveawtdmfpefg
veyqiqgnsae-n-enn-svtrvafag--lkfqdvgsfdyg----- Taygvv-ydvtsvtdvlpefg
veyqiggnqte-g-snd-swtrvafag--lixfadagsfdyg----- raygvt-ydvrsutdvlpefg

veyefkgnrae-sqgsskdkyrlafag--lk---fg--dygsidygrnygva-ydigavtdvlpefg
veyefxgnrae-sqgsskdkyrlafag--1lk---fg--dygsidygzaygva-ydigavtdvlipestg

M = s & =« MMMMM MMM MMM MM MMM MMM =

gdt-aysddffvgrvggvatyrnsnffglsdglnfavqylgkne-r----d---t--a-rr-s----ngdgvggsis
gdssaqtdnfotkrasglatyrntdffgvidglnltlqyqgknenr d v-kk-q agdgfgtslt
gdssaqtdnfmtkrasglatyrntdffglvdgldltlqyqgknegr~---~e~~—--- v-kk-q----ngdgvgtsls
gdssaqtdnfmtkrasglatyrntdffgaidgldmtlqyqgknenr d a-kk-q: ngdgfgeslit

gdt-ygsdnfnqqrgngyatyrntdffglvdgldfalqyqging-npsg-egftsgvtangrdalrqngdgrggsit
gst-ygadnimqqrgngyatyrntdffglvdgldfalqyqgkng-svsg-e---n--t~ngrsllnqngdgyggsls

gdevtqrdvintgretgfatyrnndffglvdglnfaaqyqgknd-r-sdfd-~-n--y-te-g----ngdgfgfsat
gdtutqtdvintqratgvatyrandf fglvdglnfaaqyqgknd-r-sdfd---n--y-te-g----ngdgfgfsat
. . MM = . - oMM MMM - s

yey-eg-fgivgaygaadrting-eaq-p---~-lgngkkaeqvatglkydanniylaanygetrnatp
ydfggsdfaisgaytnsdrtneq-nlq~s----rgtgkraeavatglkydanniylatfysetrin--
ydfggsdfavsaaytssdrtndg-nll-a----rgqgskaeavatglkydanniylatanysetricn--
" ydfggsdfavsgaytnsdrtnag-nll-a----rgqgqkaeavatglkydandiylaamysetrnm--
ydy-eg-fgiggaissskrtdaq-nta-a---yigngdraetytgglkydanniylaaqytqtyna~~
yaigeg-fsvggaittskrtadqnntana-r-lygngdratvytgglkydanniylaaqysqt-natr
yey-eg-fgigatyaksdrtdtqunagkvlpevfasgknaevvaaglxydanniylattysetqnm-~
]ey-eg-fg1gat;aksdrtdtqvnagk:lpevfasgknaevvaaglxydann;]la:tysetqnn--

MMM = MMMMMM MMMMMM ¢ MM = . = MM
i-tnk-f-tnts-gfanktqdvllvaqyqfdfglrpsiaytkskakdv--e-~-gigdvdlvnyfevga
--t-p-i--tgg-f-anktqnfeavaqyqfdfglrpslgyviskgkdi~-e---gigdedlvnyidvga
--t-p-i--sgg-f-ankaqnfeavaqyqfdfglrpslgyvliskgkdi--e---gvgsedlvnyidvgl

--t-p-i--sgg-f-ankaqnfevvaqyqfdfglrpslgyvqskgkdl--e---gigdedlvnyidvga
--t-r-v--gsl-gvankaqnfeavaqyqfsfglrpslaylqskgknl--g-r-gyddedilkyvdvga
tgrsngsnpstsygfankaqnfevvaqyqfsfglrpsvaylqskgkdisngygasygdqdivkyvdvga
--t-v-f--adh-fvankaqnfeavaqyqfdfglrpsvaylqskgkdl--g---vugdqdlvkyvdvga
--t-v-f--adh-v-ankaqnfeavaqyqfdfglrpsvaylqskgkdl--g---vugdqdlvkyvdvga
MMM MMM .« = MM « MM o« MMM
tyy-fakamstyvdyiinqid-sd-nk-lgvgsddtvavgivyqf--=~--=~eocou-oo
tyy-faknmsafvdykinqld-sd-nk-lninnddivavgmtyqf---~----mme-mao—
tyy-fnknmdafvdykinqlk-sd-nk~lgindddivalgmtyqf--=~-=~=cc----o--
tyy-fnknmsafvdykinqid-dd-nk-lgvndddivalgmtyqfnytqinaasvglrhk?
tyyyfnknmstyvdykinllddnqftrdagintdnivalglvyqf--=~===ccccoe-o
tyy-foimmstyvdykinlldkndftrdagintddivalglvyqf--=~=----a-emuax
tyy-fnknmstfvkykinlldkndftkalgvstddivavglvyqf--=-===c-ceco--o
tyy-fnknmstfvkykinlldkndftkalgvstddivavglvyqf--~-=-=scocoaa-x

Figure 7.1: Alignment of the eight protein sequences by the combined method of
“*G+D”. An *M” indicates a match tuple found by the genetic algorithm and an ~*"
indicates a match tuple found by the pairwise dynamic programming.
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os MMM MM s MM MM = MM = s = MMM MMM -
aeiynkdgnkvdlygkavglhyfskgngensyggngdmtyazlgfkgetqinsdltgygq
aeiynkdgnkldvygkvkamhyms-d--—n-askdgdqsyirfgfkgetqindqltgygr
aevyninankldvygkikamhy?s-d----ydszdgdqtyvrgikgetqinedltgygr

aevynkngnkldvygkvk-mhyisdd~~--- dtkdgdqtyvrigtkgetqindqlegygr
aevynkdgnkldlygkvdglhyfs-d---nkd-vdgdqrymrigfkgetqvtdqltgygq
aeiynkdgnkldlfgkvdglhyfsddkgs--~~- dgdqtymrigfkgetqvndqlegygq

aeiynkdsnkldlygkvnakhyts----sn—daddgdttya:lgfkgecqindqltgfgq
aeiynkdsnkldlygkvnakhyfs----sn-daddgdttyarlgfigetqindqlegfgq

™ MM . - MMMM MM - MMM MM s MM MM MMM
veynfqgnnsegadaqtgnktrlafag--lkyadvgsfdyg----- Tnygvvyydalgytdmlpefg
weaefagnkae-sd-taqqktrlafag--liykdlgsfdyg~=---- ralg-alydveawtdmfpefg

7esefsgnkte-sd-ss-qktrlafagviklic--nygstdyg----- rnlg-alydveawtdofpefyg
veaefagnkae-sd-ss-qktrlafaglkli--dfgsldyg----- rnlg-alydveawtdmfpefg
veyqiqgnsae-nenns--wtrvafag--likfqdvgsfdyg----- raygvv-ydvtsutdvipefg
veyqiqgnqtegs-nds--wtrvafag--lixfadagsfdyg~-~-- rayg-vtydvrswtdvlipefg

veyefkgnrae-sqgsskdkyrlafag--lkt---g—-dygsidygrnyg-vaydigavtdvlpefg
weyetkgnrae-sqgsskdkyrlaiag--lkf---g--dygsidygrnyg-vaydigawtdvlpetg

by e« = = MMMMM MMM MMM MM MMM MMMM = -
gdt-aysddffvgrvggvatyrasnffglvdginfavqylgkn----- e--rd--t--ar---rsngdgvggsis
gdssaqtdnfmtikrasglatyrntdffgvidglnltlqyqgkn-—--- e--c—o=—— a-rdvkikqngdgfgersle
gdssaqtdnfmtkrasglatyrntdffglvdgldltlqyqgkn-—--- e~~omem—ee grevkkqngdgvgtsls
gdssaqtdnfmtkrasglatyrntdffgaidgldmtlqyqgin-~--- e---—om—e n-rdakkqngdgfgetsls

gdt-ygsdntmqqrgngyatyrntdrfglvdgldfalqugkngnpsgegftsgvtnngrdaqungdgvggsit
g-stygadnfmqqrgngyatyrntdffglvdgldfalqyqgkngsvsge-—~-—- nt-ngrsllnqngdgyggsls

gdtvtqudvimtgrrtgfatyrnndffglvdglnfaaqyqgkn-drs~-df-dnyt-eg----—- ngdgtfgfsat
gdtvtqrdvimtqratgvatyrnndffglvdglnfaaqyqgkn-drs--df-dnyt-eg-——--- ngdgfgfsat
- = ™M = = = MMMMMMM MMMM = = -
y--eyegfgivgaygaad:tlnq--eaq-pl----gngkkaeqvatglkydanniylaanygetrnat-p
ydfggsdfaisgaytnsdrineq-n-lqsr----- gtgkraeavatglkydanniylatfysetrkmt-p
ydfggsdfavsaaytssdrtndq-n-llar----- gagssaeavatgliydanniylatmysetrimt-p

' ydfggsdfavsgaytnsdrtnag-n-llar----- gqgqkaeavatglicydandiylaamysetramt-p

yd--yegfgiggaissskrtdaq-nta—a----yigngdraetytgglkydanniylaaqytqcynacr-
y-aigegfsvggaittskrtadqnntanarl---ygngdratvytgglkydanniylaaqysqt-naCrf
y--eyegfgigatyaksdrtdtqvn-agkvlpevfasgknaevvaaglkydanniyla:tysetqnmtvf
y--eyegfgigatyaksdrtdtqvu-agkvlpevtasgknaevvaaglkydanniyla:tysetqnmtvf

MMM = MOMMM MMMMMM s MM . « MM
it-n-kftncs-gfanktqdvllvaqutdtglrpsiaytkskakd---veg--igdvdlvnyfevga
1T-=g-———-—- gfanktqnfeavaqyqfdfglrpslgyvlsigkdi---eg--igdedlvnyidvga
i-s-g------- gfankaqnfeavaqyqfdfglrpslgyvlskgkdi---eg-v-gsedlvayidvgl
i-g-g----m-- gfankaqnfevvaqyqfdfglrpslgyvqskgkd----1l-egigdedlvayidvga
e slgvankaqnfeavaqyqfsfglrpslaylqskgk---a-lgrgyddedilkyvdvga
grsngsnpstsygfankaqnfevvaqyqfsfglrpsvaylqskgkdisngygasygdqdivkyvdvga
---adhf------ vankaqnfeavaqyqfdfglrpsvaylqsigkd----1g-vvgdadlvkyvdvga
---adh------- vankaqnfeavaqyqfdfglrpsvaylqsikgkd----1g-vvgdadlvkyvdvga
MM MMM s = MM « MM « VMM
tyy-faknnstyvdyiinqid-sd-nk-lgvgsddtvavgivygfe----—=mcemcemuo
tyy-fnimmsafvdykinqld-sd-nk-lninnddivavgmtyqf-~-—-==c—-eeeeox
tyy-fnknmdafvdykinql-«sd-nk-lgindddivalgmtyqf-----c-eeeecaaa
cyy-fnknnsatvdykinqidd-d-nk-lgvndddivalgmtyqfnytqinaasvglrhkf
tyyyfnknmstyvdykinllddnqftrdagintdnivalglvygf~=—-==-eeccmeones
tyy-fnknmstyvdykinlldkndftrdagintddivalglvyqf-==---~=-—cmeeceux
tyy-foknmstfvkykinlldindftkalgvstddivavglvygf------ccmcmaaaa-
tyy-fnknmstfvkykinlldkndftkalgvstddivavglvyqf--—==-mmmeceeas

Figure 7.2: Alignment of the eight protein sequences by the combined method of
“G+S". An "M” indicates a match tuple found by the genetic algorithm and an ==~
indicates 2 match tuple by the synthesis method.
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7.4.2 Results of aligning the mRNA data set

As shown in Table 7.3, in aligning the mRNA data set of ten sequences the align-
ments by the combined methods have more matches, higher ScoreG and slightly lower
ScoreC. which imply better overall alignment quality. The processing time required
by the combined approaches are approximately two orders of magnitude lower than
that by CLUSTALW.

It is observed from Table 7.4.2 that the ratio differences between the time required
by the combined methods and CLUSTALW increases as the sequence length increases.
while the ratios of the four quality measurements remain almost unchanged. For the
"G+D" approach, the ratio of the processing time is 2.29x10~2 at length 1000 and
-2.09x107° at 9000. For the “G+S” approach, the ratio of the processing time is
5.20% 107 at length 1000 and 6.79x 103 at 9000.

Both of the combined approaches can identify more matches in their results than
CLUSTALVW. The ratios of the average number of matches are 1.04 and 1.02 respec-
tively. The results of “G+D” have the same ScoreG values (indicated by an average
ratio of 1.00 in Table 7.4). while the results of “G+S” have slightly higher ScoreG
values (indicated by an average ratio of 1.01 in Table 7.4). The results of both the
combined approaches have lower ScoreC values. The ratios of the average ScoreC
values are 0.93 and 0.98 respectively. CLUSTALW can handle mismatches better

and produce more compact alignments. This fact is indicated by the average ratios



Length | Methods Processing | # of ScoreG | ScoreC | Entropy -

time | matches

1000 | G+D 10s177ms | 833 | 257334 | 273267 | 107.09
| G+S 23s125ms | 805 | 258188 | 284212 | 46.14

C 9m24s352ms | 797 | 257813 | 288391 | 43.82

2000 | G+D 24s934ms | 1561 | 499024 | 520365 | 370.13
G+S 1m41s043ms | 1518 | 502639 | 544566 | 239.44

C 37m50s329ms | 1508 | 501539 | 556687 | 231.86

3000 | G+D 38s367ms | 2388 | 755222 | 769839 | 159.21
G+S 2m15s304ms | 2343 | 762089 | 805767 | 278.33

C 1hr25m46s520ms | 2322 | 759854 | 828861 | 271.94

4000 | G+D 50s608ms | 3222 | 1003359 | 1031086 | 677.51
G+S 2m22s581ms | 3165 | 1016043 | 1086503 | 393.71

C 2hr41m30s783ms | 3143 | 1015712 | 1116731 | 350.66

5000 | G+D 1m14s812ms | 4047 | 1276086 | 1305614 | 903.35
G+S 4m22s814ms | 3979 | 1293107 | 1375231 | 538.42

C 1hr17m53s542ms | 3877 | 1265871 | 1390669 | 464.08

6000 | G+D 1m18s22lms | 4819 | 1502280 | 1521794 | 1040.78
G+S 4m28s969ms | 4756 | 1524194 | 1605188 | 388.13

C 6hr25m16s070ms 1732 1522469 | 1659179 | 3508.13

Table 7.3: Processing time and quality measurements for the alignments of the mRN A

data set by the three programs.

138



Length | Methods Processing # of ScoreG | ScoreC Entrop_v':

time | matches
7000 | G+D 1m32s342ms | 5684 | 1761652 | 1805763 | 1164.11
G+S 4m40s999ms | 5605 | 1783838 | 1898197 | 648.12
C 8hr41m23s699ms | 5587 | 1784108 | 1956777 | 369.71 |
8000 | G+D 1m40s605ms | 6496 | 2014351 | 2062907 | 1315.56
G+S 6m16s697ms | 6410 | 2040591 | 2169808 | 773.85
C 11hr04m35s431ms | 6383 | 2040507 | 2237351 | 649.06
9000 | G+D 1m45s946ms | 7374 | 2271833 | 2317453 | 1421.85
G+S 5m39s437ms | 7295 | 2299458 | 2431209 | 836.54
C 14hr03m13s902ms | 7266 | 2300673 | 2512553 | 680.06 |
10000 | G+D 1m57s829ms | 8239 | 2530484 | 2598895 | 1516.16
G+S 5m59s612ms | 8142 | 2559454 | 2720041 | 894.24 !
C NA | NA NA NA NA !
11000 | G+D 2m09s509ms | 9125 | 2787907 | 2865356 | 1651.38 |
G+S 6m02s201ms | 9017 | 2819916 | 2098565 | 979.16 |
C NA | NA NA NA O LoNa
12000 | G+D 2m18s773ms | 9879 | 3008421 | 3082497 | 1822.23 |
G+S 6m42s825ms | 9763 | 3042945 | 3225112 | 1106.97
C NA| NA NA NA NA |

Table 7.3: (Continued) Processing time and quality measurements for the alignments

of the DNA data set by the three programs. “NA” - not available.
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Length Ratio | Processing # of ScoreG™ | ScoreC* | Entropy”
type time* matches*™
1000 | G+D/C | 2.29x1072 1.05 1.00 0.95 2.76
G+S/C | 5.20x1072 | 101 1.00 0.99 1.19 |
2000 | G+D/C | 1.10x1072| 1.04 1.00 0.94 2.66 |
G+S/C | 4.45x10~2 1.01 1.00 0.98 172 |
3000 | G+D/C | 7.49x10~3 1.04 1.00 0.94 2.66
G+S/C | 2.63x10~2 1.01 1.00 0.98 1.72
4000 | G+D/C | 5.22x10-3 | 1.03 0.99 0.92 298 |
G+S/C | 147x10-2| 1.01 1.00 0.97 173 |
5000 | G+D/C | 4.84x103 1.05 1.01 0.94 2.99 |
G+S/C | 1.69x1072 |  1.03 1.02 | 0.99 177 |
6000 | G+D/C | 3.38x10~3 1.04 1.00 0.93 2.99 |
G+S/C | 1.16x10"2 |  1.03 1.02 0.98 1.68 |
7000 | G+D/C | 2.95x1073 1.04 1.00 0.93 3.09
G+S/C | 8.98x103 1.02 1.01 0.98 1.80
8000 | G+D/C |2.52x107%| 1.03 1.00 0.93 3.07 |
G+S/C | 9.44x10-3 | 1.02 1.01 0.98 1.79 |
9000 | G+D/C | 2.09x10-3 1.03 1.00 0.93 3.05
G+S/C | 6.79x10~3 1.02 1.01 0.98 1.76 4
Average | G+D/C | 6.91x103 1.04 1.00 0.93 2.91
G+S/C | 2.12x1072 1.02 1.01 0.98 1.68

Table 7.4: G+D/C and G+S/C ratios of the measurements in Table 7.3. The columns

marked with an “x” contain the ratios.
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of the entropy values (2.91 and 1.68).
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7.4.3 Results of aligning the 11 other sequence sets

In addition to the protein and the mRNA data sets, the combined methods have also
been applied to the 11 other data sets. The experimental measurements and their
ratios are listed in Table 7.5 and 7.6 respectively. For this group of data sets the
alignments by the two combined approaches are slightly better on average in terms of
the number of matches. ScoreG and ScoreC. The processing time required by the two
combined approaches is approximately two orders of magnitude lower than that by
CLUSTALW. “G+D" is about one time faster than “G+S”. The average “G+D"/~C~
ratios are all 1.01 for the three quality measurements and the average “G+S",~C"
ratios are 1.01.1.01 and 1.03 respectively. The alignments by CLUSTALW have lower

-entropy values.



Data | # of | Aver. | Methods Processing # of §ScoreG ScoreC | Entropy
set | sequ. | length time | matches i
St | 10 | 211 | G+D Isl4lms | 198 | 36447 | 71571 3.34
G+S 1s780ms | 198 | 56491 | Tis4T| 227
C 27s113ms | 197 | 36491 | 69010 2.27
S$2 | 5 | 1780 | G+D 11s721ms | 1566 | 101719 | 120943 | 101.79
G+S 15s946ms | 1564 | 101757 | 121174  98.30
C 13m8s776ms | 1611 | 103018 | 115785 |  13.28
S3 | 4 | 2433 | G+D 25032ms | 2303 | 83615 | 104867 | 68.38
G+S 12s088ms | 2303 | 83615 | 104367 | 68.38
C 18m28s150ms | 2305 | 85701 | 104149 | 6136
St | 8 | 1437 | G+D 38s378ms | 909 | 205335 | 186646 | 105.13
G+S 3m48s348ms | 898 | 210355 | 204021 | 21346
C 15m38s568ms | 901 | 210317 | 226516 | 204.88
S5 | 8 | 1680 | G+D 21s858ms | 1427 | 269237 | 288583 | 9427
G+S 30s683ms | 1420 | 269432 | 291406 |  31.12
C 21m5s898ms | 1439 | 269092 | 303390 |  6.02
S6 | + | 4582 | G+D 8s674ms | 4426 | 161364 | 181712 | 117.40
G+S 1m25s887ms | 4420 | 161224 | 181928 | 114.09
C | lhr4m38s78lms | 4409 | 160860 | 182475 | 119.91

Table 7.5: Processing time and quality measurements for the alignments of the 11

data sets by the three programs. Of the data sets, S1, S2, S4 and S5 are DN A while

the rest are RNA.

163




Data | # of | Aver. | Methods Processing # of ScoreG | ScoreC | Entropy
set | sequ. | length time ; matches

ST 3 1093 G+D 85566 ms 905 60158 | 73732 ,i 97.95

G+S 11s994ms 898 60266 | 75769 18.25

C 5m12s948ms 905 60719 | 73280 E 53.90

S8 8 1071 G+D 6s775ms 1002 176490 | 225802 i 26.25

G+S 8s713ms 999 176665 | 227985 15.65

C 8m35s650ms 999 176665 | 216359 15.65

S9 6 1456 G+D 15s549ms 1066 115751 | 135494 | 258.26

G+S 29s195ms 1063 116632 | 140112 | 216.31

C 11m21s416ms 1118 120534 | 142237 86.97

S10 7 1448 G+D 13s165ms 1182 171236 | 208936 , 141.72

G+S 35s368ms | 1128 | 171741 | 212366 | 114.17

C 13m22s264ms 1193 172756 | 206195 35.06

Si1 5 1092 G+D 8s473ms 847 39497 | 70381 12411

G+S 25s828ms 846 59555 | 71333 115.12

C 5m3s838ms 855 60100 | 71361 90.33

Table 7.5: (Continued) Processing time and quality measurements for the alignments
of the 11 data sets by the three programs. Of the data sets, S1. S2. S4 and S5 are
DNA while the rest are RNA.
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Data | # of | Aver. Ratio l Processing #* of ScoreG~ ! ScoreC~ 5 Entropy~
set | sequ. | length type time™ matches” I x
S1 | 10 | 211 |G+D/C|4.21x10?| 1.01 1.00 | 1.04 | 147
G+S/C | 6.60x10~2 | 1.01 100 | 104 | 100
S2 | 5 | 1780 | G+D/C | 1.48x10~2| 0.97 0.99 | 105 | 233
G+S/C | 2.02x10-2| 0.97 0.99 1.05 227
S3 | 4 | 2433 | G+D/C | 9.06x10~* | 1.00 1.00 1.01 1.05
G+S/C | 1.83x1073 |  1.00 1.00 1.01 | 105
S+ | 8 | 1437 | G+D/C|4.09x1072| 1.02 0.98 0.83 | 1.98
G+S/C | 243x10-! | 1.01 100 | 100 | 119
S5 | 8 | 1680 | G+D/C|1.72x10~?| 1.00 101 | 096 | 205 |
G+S/C | 2.42x102 | 1.0 101 | 097 | 176
S6 1 4582 | G+D/C | 2.20x103 1.00 1.00 1.00 | o7
G+S/C | 2201072 |  1.00 1.00 | 100 | 076
ST | 5 | 1093 | G+D/C|274x10"2| 1.04 102 | 104 | 132 |
G+S/C | 3.83x10~2| 1.04 103 | 107 ! 135 |
s$ | 8 | 1071 | G+D/C|131x10-2| 1.06 105 | 110 | 168
G+S/C | 1.69x10~2 |  1.06 105 | L1l | 100

Table 7.6: G+D/C and G+S/C ratios of the measurements in Table 7.5. The columns

marked with an “%” contain the ratios.
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Data # of | Aver. Ratio | Processing # of ScoreG™ | ScoreC™ | Entropyv*™
set sequ. | length type time” matches™

S9 6 1456 | G+D/C | 2.28x10~2 0.97 0.98 0.97 2.97
G+S/C | 4.28x1072 0.97 0.99 1.00 2.49
S10 7 1448 | G+D/C | 1.64x1072 1.01 1.01 1.03 1.67
G+S/C | 4.40x10~2 1.01 1.01 1.05 1.34
S11 5 1092 | G+D/C | 2.79x10~? 1.05 1.04 1.04 1.37
G+S/C | 8.50x10~2 1.05 1.04 1.06 1.27
Average G+D/C | 2.04x10~2 1.01 1.01 1.01 1.74
G+S/C | 5.48x1072 1.01 1.01 1.03 1.42

Table 7.6: (Continued) G+D/C and G+S/C ratios of the measurements in Table 7.5.

The columns marked with an “x” contain the ratios.
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7.5 Improvement from the “G” Program

A. Local improvement by the two combined approaches

In this section, we will focus on the improvement achieved by the two combined
approaches. First, we examine and compare the results obtained by applving the two
approaches as well as the “G” program to an interval segment of the data set S4. This
comparison enables us to have an insight into the performance of the two approaches.
and to understand the local improvement achieved by them.

Figures 7.3, 7.4 and 7.5 illustrate the corresponding segments taken from the
alignments of S4 which are produced by “G+D”, *“G+S” and “G” respectivelv. The
last interval of these segments is taken for a close examination.

Table 7.7 lists the quality measurements of this interval aligned by the three

approaches.

Approach | # of mactches | ScoreG | ScoreC | Length : Entropy E
G 74 24551 | 22944 | 179 | 2482 |
G+D 107 25887 | 21320 201 37.81 j
G+S 102 25966 | 24958 179 18.19 ;

Table 7.7: Quality measurements of the last interval in F igures 7.3, 7.4 and 7.3.

Examine the alignments of this interval. “G+D" achieves the highest number of
matches: 33 more matches than the “G” program. However, the alignment is longer

and the entropy is higher. “G+S" achieved the highest values of ScoreC and ScoreG.
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Its alignment has the same length as the one by “G” which is 179 subunits long and
its entropy value is the lowest.

Of the interval alignment by “G+S”. the number of “~"s is three (3). which is
the same as that of the alignment by “G”. Of the alignment by “G+D”. the number
of “—"s is 162. This fact suggests that the alignment by “G+S” is similarly compact
as the alignment by “G”. but the alignment by “G+D” is not. The larger number of

“—"s make the alignment by “G+D” less compact and more diversified.

# of mactches | ScoreG | ScoreC Entropywx
[(G+D)-G]/G +0.4459 +0.0544 | —0.0708 | +0.5234
[(G+S)-G]/G +0.3784 +0.0576 | +0.0878 | —0.2671

Table 7.8: Ratios of the quality measurements in Table 7.7.

The data listed in Table 7.8 may provide a clearer picture about the improvement
made by the two combined approaches. In the table, a plus sign (+) indicates that
the value increases and a minus sign (—) indicates that the value decreases. The
alignment by “G+D" has the largest increase in the number of matches which is
about 44.6%. However, it also has the largest increase in the entropy value which is
about 52.3%. The alignment by “G+S" has the largest increases in the score values
and a decrease in the entropy value, which are 5.8% and 8.8% for ScoreG and ScoreC
respectively, and 26.7% for entropy.

It will be seen in the following discussion of global improvement that the qual-
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ity improvement in this interval is typical in the qualitv improvement achieved by

applyving the two combined approaches to all the test data sets.
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MMOMMMM sxss = e = MMMMMMMMMM « = MMMMMM = MMMMMMM MMMMMMMMMOOOMMMMMMMIQOOMN  MMNANY
gattcrtaaagrgta-atgata-a-a-aagrtcaatgga----acaggaccatgta-caa-atgtcagcacagtacaatgtacacatggaattaggecags
gattctaaagtgtaga‘ga-a-a-acaagttcaatgga—-—-aaaggaccatgta--aagatgtcagcacagtacaatg:acacatggaat:aagccag:
gattctaaagtgtaaa-gata—agac--gttcaatgga---—acaggaccatgta-caa-atgtcagtacagtacaacgtacacacggaattaggccag:
gattcraaagrgraat-gata-agaa--grtcaatgga----acaggaccatgrage-a-atgtcagcacagtacaatgtacacatggaattaggccags
aattcraaagrgraat-gataca-aa--gttcaatgga-—--tcaggaccatgtacc-a-atgtcagcacagtacaatgtacacatggaattaagecags
ga::czaaaatgtaat-ga-aaagaa--gttcaatgga----tcaggaccatgtaaa-a-a:gtcagcacagtacaatgtacaca:ggaat:aagccag:
gactcrtaaagigraat-ga-taagaa--grrcaatgga--agt--gaaacatgraaa-a-atgtcagcacagtacaatgracacatggaattaggccazs
gattctaaagtgtaaz-aa-taagac—-gttcaa:ggaaaag---g-accatgtaca-a-atgtcagcacagtacaatgtacaca:ggaat:aggc:ag:

= MMMM s o« MMMMM 0 MMMMMMMMM = MMMMMM = s 5w sesx MMMMMM sxm s & & sxs & = ez MMM
agratcaactcaactgctgtt---aaatggcagtctageagaaaaagaaataataattagatctgaaaatttcacaaacaatgccaaaaccat
agratcaactcaactgetgtt---aaatggeagtctageagaagaagaggragtaattagatctgtcaatttetcggacaatgetaaaatcat
agtatcaacccaactgetgrt---aaatggcagectageagaagaagaggtaataattagatctgaaaatctcacggacaatactaaaaccat
ggcatcaactcaactactgrt---aaatggcagtctageagaagaggaggtagtaattagatctcaaaat ttcacaaacaatgctaaaatcat
agratcaactc-a--getgrigtraaatggcagtcaageagaagaagaggragtaattagat ctgaaaatttcacaaacaatgetaaaaccat
agtgrcaactcaactgetgtt---aaatggcagtciggcagaagaagagatagtaatcagatctgaaaatttcacgaacaatgetaaaaccat
agtatcaacgcaactgcrgtt---aaatggeagtctageagaagaggaggtagraattagatctgaaaat ttcacaaataatgctaaaaccat
agtatcaacccaaccgotgtt---aaatggcagtctagcagaagaagaggtagtaattagatctgccaatttctcggacaatgetagaaccat

MMMM  MMMMMMMMMM € S22 BES 3 EEEEE ESAE EEEART CEBAE STAW 8 = s = sss s &« a=m =% s =
aatagtacagctgaa—:gattctgtagta-attaattgtacaagacc:aacaacaatacaag--aa-aaagtataca-tatgggg-c:aggaag-gg:
aa:agtacagctgaa-egaacctgtagaa-attaattgtacaagacccaacaacaatacaag--ac-aaggtataca-tataggt-ccagggag-ag:
aataatacagctgaa-tgaatctgtagaa—attaactgtacaagacccaacaataatacaag—-aa-aaggtatagg-catagga-ccagggag-ag:
aatagrtacagctgaa-cgagtctgtagaa-attaattgtacaagacccaacaacaatacaag--aagaa-gtataca-tatgggattc-gggag-agc
aatagtacagctgaa-cgaatctgtagta-attaattgtataagaccaaacaacaatacaag--aa-aaggta:ata-tatagga-ccagggag-ag:
aa:agtacagc:gaatc-aatctatag—agattaattgtacaagacccaacaacaatacaag-aaa-aagg-a:a—ac:atggga-c:agggag-ag:
aatagtacagctgaaag-aagctgtag-aaattaattgtacaagacccaacaacaatacaag--aa-gaggtataca-titagga-ctagggagaag-
.aatagtacagctgaacg—aatctgtag-aaattaat:gtacaagacccaacaactatac-agcaaa-aagg-aca-agtatagga-ccagggag-ag:

- - s = = - % SEESEEER & & = % & S¥ER EEx&S " &ss @ - 8 AEEBES - LA KX ] "M mE=Em
a-tt::atgc--a--acagg~agaaataacaggaga:atacgacaggcatat:gtgacattagtagaa-caaaa:ggaagaac-ac:::-a-a:gcaga:ag
a-acttatac--a--acaggaag-aacaataggagatataagacaagcacatigtaacattagta-aagcaaaatggaagaac-actit-a-aaacagstag
a-ttrratge--a--acaggagg-aataataggagacataagacaagcacattgraacattagta-gagtaaaatggaataac-actt-a~ggacagazag
a-ttgrataca-a--ac-ggaga-aataataggaaatataagacaagcacattgraacattagtg-gaacaaaatggaataac-act st -a-aaacasgsag
a-crrrrataca-ac-a--gaaaa-aataataggaaatataagaaaagcatattgeacccttaata-aaacaatatggaataat-actit-agaaa-azatag
a-ctctataca-ac-a--ggaca-aataataggagatataaaaaaagcatattgraacattagta-gagcaaaatggaatgat-actttaag-aa-2zstag
attc---tacacaaca---g--a-cataataggagatacaagacaagcacattgtaacattagta—cagcaaaatggaa-taacact::a-a-aacagg:ag
atttc-gtaca-aa-a--gga-agaataataggagatataagacaagcacattgraccattaata-aagcaaaatggaacgaa-acsttagg-aa-ag2sag

s ¢« ¢« s = s MMMMMMMMMMM
agca-a-aaaaaccaagagaacaattt
agct—a-aaaaatcacgagaacaattt
agct-a-aaaaattaagagaacaattt
agtt-a-agaaattaagagaacaattt
agtt-a-acaaattaagagaacaattt
agct-ata-aaattaagagaacaatt:
agttga-a-agattaagagaacaattt
agt:-aca-aaattaagagaacaattt

Figure 7.3: Alignment of the eight DNA sequences of S4 by the combined method of
G+D. An “M” indicates a match tuple found by the genetic algorithm and an ~="
indicates a match tuple found by the pairwise dynamic programming.
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gattctaaagtgtaatgataaaaagttcaatggaacaggaccatgtacaaatgtcageacagtacaatgtacacatggaattaggecage
gattctaaagtgragagaaaacaagttcaatggaaaaggaccatgtaaagatgtcagcacagtacaatgtacacatggaattaagecags
gattctaaagtgraaagataagacgttcaatggaacaggaccatgtacaaatgtcagtacagtacaatgtacacatggaattaggecags
gattctaaagtgtaatgataagaagttcaatggaacaggaccatgtagcaatgrcageacagtacaatgtacacatggaattaggecags
aattctaaagtgraatgatacaaagttcaatggatcaggaccatgtaccaatgtcagcacagtacaatgtacacatggaattaagecage
gattctaaaatgtaatgaaaagaagttcaatggatcaggaccatgtaaaaatgtcageacagtacaatgtacacatggaattaagecags
gattctaaagtgraatgataagaagttcaatggaagtgaaacatgtaaaaatgicagcacagtacaatgtacacatggaat taggeccags
gattctaaagtgtaataataagacgttcaatggaaaaggaccatgtacaaatgtcageacagtacaatgtacacatggaattaggecags

« MMMMM = = MMMMM MMMMMMMMM =« MMMMMM s ss3 ss ssss MMMMMM SE% &% & = szx s s sz VM
agtatcaactcaactgctgtt---aaatggcagtctagcagaaaaagaaataataattagatctgaaaatttcacaaacaatgccaaaacsat
agtatcaactcaactgctgtt---aaatggcagtctagcagaagaagaggtagtaattagatctgtcaatttcicggacaatgctaaaatcat
agtatcaacccaactgetgti---aaatggcagectageagaagaagaggtaataattagatctgaaaatctcacggacaatactaaaaccat
ggcatcaactcaactactgrt---aaatggcagtctagcagaagaggaggtagtaattagatctcaaaatttcacaaacaatgctaaaatcat
agtatcaactc-a--gctgttgttaaatggcagtcaagcagaagaagaggtagtaattagatctigaaaatttcacaaacaatgctaaaaceat
agtgtcaactcaactgctgtt---aaatggcagtctggcagaagaagagatagtaatcagatctgaaaatttcacgaacaatgctaaaaccat
agtatcaacgcaactgctgtt---aaatggcagtctagcagaagaggaggtagtaattagatctgaaaatttcacaaataatgctaaaaccat
agtatcaacccaaccgetgtt---aaatggeagtctageagaagaagaggtagtaattagatcigccaatttctcggacaatgctagaaccat

MMMM  MMMMMMMMMM - s =% SESEE REEF SEEEES WEEEE sEass & = & sssm s « s= sx &S

aatagtacagctgaatgattctgtagtaattaa:cgtacaagacccaacaacaatacaagaaaaagta:acatatggggccaggaagggc
aatagtacagctgaatgaatctgtagaaattaattgtacaagacccaacaacaa:acaagacaaggtatacatataggtccagggagagc
aataatacagctgaatgaatctgtagaaattaactgtacaagacccaacaa:aa:acaagaaaaggta:aggtataggaccagggagagt
aatagtacagctgaacgagtctgtagaaattaattgtacaagacccaacaacaatacaagaagaagtatacatatgggattcgggagagc
aatagtacagctgaacgaacctgtagtaattaatcgtataagaccaaacaacaatacaagaaaaggtacatatataggaccagggagagc
aatagtacagctgaatcaa:c:atagagattaat:gtacaagacccaacaacaacacaagaaaaagga:aactatgggaccagggagag:
aatagtacagctgaaagaagctgtagaaactaattgtacaagacccaacaacaatacaagaagaggtatacatttaggac:agggagaag
'aatagtacagc:gaatgaa:ctgtagaaattaattgtacaagacccaacaactatacagcaaaaaggataagtataggaccagggagagc

= & s = = ® EERSENE £ = = % & =28 SEEmS % Su&E = L3 .8 ESSESS - ESESEES =% =
artttatgcaacaggagaaataataggagatatacgacaggcatattgtgacattagtagaacaaaatggaagaacactttaatgeagas
aatttatacaacaggaagaacaataggagatataagacaagcacattgtaacattagtaaagcaaaatggaagaacact ttaaaacaggs
attttatgcaacaggaggaataataggagacataagacaagcacattgraacattagtagagtaaaatggaataacactttaggacagat
attgratacaaacggagaaataataggaaatataagacaagcacattgtaacattagtggaacaaaatggaataacactttaaaacaggt
attitatacaacagaaaaaataataggaaatataagaaaagcatattgcacccttaataaaacaatatggaataatactttagaaaagas
actctatacaacaggacaaataataggagatataaaaaaagcatatigraacattagtagagcaaaatggaatgatactttaagaaaggs
attttacacaacag-ac--ataataggagatacaagacaagcacattgtaacattagtacagcaaaatggaataacactttaaaacaggs
atttcgtacaaaaggaagaataataggagatataagacaagcacattgtaccattaataaagcaaaatggaacgaaactttaggaaagat

e « &« us MMMMMMMMMMM
agcaaaaaaactaagagaacaattt
agctaaaaaattacgagaacaacct
agctaaaaaattaagagaacaattt
agttaagaaattaagagaacaattt
agttaacaaattaagagaacaattt
agctataaaattaagagaacaattt
agttgaaagattaagagaacaattt
agttacaaaattaagagaacaattt

Figure 7.4: Alignment of the eight DNA sequences of S4 by the combined method
of G+S. An “M” indicates a match tuple found by the genetic algorithm and an =~
indicates a match tuple found by the synthesis method.
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gattctaaagtgtaatgataaaaagttcaa:ggaacaggaccatgtacaaatgtcagcacagtacaatgtacacatggaattaggccagt
ga:tctaaagtgtagagaaaacaagttcaatggaaaaggaccatgtaaaga:gtcagcacagtacaatgtacacacggaattaagccagt
gactctaaagtgtaaaga:aagacgttcaatggaacaggaccatgtacaaatgt:agtacagtacaatgtacacatggaattaggccagt
gattctaaagtgtaacga:aagaagttcaatggaacaggaccatgtagcaatgtcagcacagtacaatgtacacatggaattaggccagt
aat:ctaaagtgtaa:gatacaaagttcaatggatcaggaccatgtaccaatgtcagcacagtacaatgtacacacggaattaagccagt
gattctaaaatgtaatgaaaagaagttcaatggatcaggaccatgtaaaaatgtcagcacagtacaatgtacacatggaattaagccagt
gattctaaagtgtaatgataagaagttcaatggaagtgaaacatgtaaaaa:gtcagcacagtacaatgtacacatggaattaggccagt
gattctaaagtgtaataataagacgttcaatggaaaaggaccatgtacaaa:gtcagcacagtacaatgtacacatggaa:taggccagt

s MMMMM = = MMMMM MMMMMMMMHM = MMMMMM « s= s sasx MMMMMM sEx ¢x & &« exx & s sz VMY
agtatcaactcaactgctgt:---aaatggt:agtCtagcagaamgautaataattaga:ctgaaa.at:tcacaaacaatgccaaaaccat
agtatcaactcaactgc:gtt---aaatggcagtctagcagaagaagaggtagtaattagatctgtcaatt: tcggacaatgctaaaatcat
agtatcaacccaactgctg\:t---mtggcagcctagcagaagaagaggtaataattagatctgaa.aa.tctcacggacaatactaauc:a:
ggcatcaactcaactactgtt—--aaatggcagtccagcagaagaggaggtagtaattagatc:caaaat::cacaaacaa:gctaaaatca:
agtatcaactc-a--gc:gttgttaaa:ggcagtcaagcagaagaagaggtagtaattagacctgaaaatt:cacaaacaatgctaaaac:at
agtgtcaactcaactgctgtt-—-aaatggcagtctggcagaagaagagatagtaaccagatc:gaaaa:ttcacgaacaatgctaaaacca:
agtatcaacgcaactgctgtt---aaatggcagtc:agcagaagaggaggtagtaa:tagatctgaaaatttcacaaataatgctaaaaccat
agtatcaacccaaccgctgtt---aaatggcagtc:agcagaagaagaggtagtaattagatc:gccaat:tctcggacaatgctagaacca:

MMMM MMMMMMMMMM ¢ &= sss ESRSE SEEE SXUEEE SEEAE  SEEEW & & 8 ss% & =& ew s ss

aatagtacagctgaatgattctgtagtaattaattgtacaagacccaacaacaatacaagaaaaagtatacata:ggggccaggaagggc
aatagtacagctgaatgaatctgtagaaattaat:gtacaagacccaacaacaatacaagacaaggtatacatataggtccagggagagc
aataa:acagctgaatgaacctgtagaaattaactgtacaagacccaacaataatacaagaaaaggtataggta:aggaccagggagagt
aatagtacagctgaacgagtctgtagaaat:aattgtacaagacccaacaacaatacaagaagaagtatacatatggga:tcgggagagc
aatagtacagctgaacgaatctgtagtaactaattgtataagaccaaacaacaatacaagaaaaggtatatatataggaccagggagagc
aatagta:agctgaatcaatctatagagattaattgtacaagacccaacaacaatacaagaaaaaggataacta:gggaccagggagagt
aatagtacagc:gaaagaagctgtagaaazcaattgtacaagacccaacaacaa:acaagaagaggtatacatttaggactagggagaag
aatagtacagctgaatgaa:ctgtagaaattaat:gtacaagacccaacaactatacagcaaaaaggataagta:aggaccagggagagc

- = s - -8 = L 2 ] . = - - L3 - - L2 3 - -
atttta:gcaacaggagaaataataggagatatacgacaggcatattgtgacattagtagaacaaaatggaagaacact::aatgcagat
aatttatacaacaggaagaacaataggagatataagacaagcacatzgtaacattagtaaagcaaaatggaagaacactttaaaacaggt
at:ttatgcaacaggaggaataataggagacataagacaagcacat:gtaaca::agtagagtaaaatggaataacactttaggacagat
att5:atacaaacggagaaa:aataggaaata:aagacaagcacattgtaaca:tagtggaacaaaatggaa:aacact:taaaa:aggt
at:ttatacaacagaaaaaataa:aggaaatataagaaaagcatattgcaccc::aa:aaaacaatatggaataatac::tagaaaagat
ac:ctatacaacaggacaaataataggaga:a:aaaaaaagca:attgtaaca:tagtagagcaaaatggaa:gacactt:aagaaaggt
att:tacacaacagacataacaggagatacaagacaagcacattgtaacat:agtacagcaaaatggaataacactttaaaacaggtagt
att:cgtacaaaaggaagaataataggagatacaagacaagcaca:tgtaccattaa:aaagcaaaatggaacgaaactt:aggaaagat

¢+ = & o= MMMMMMMMMMM
agcaaaaaaactaagagaacaattt
agctaaaaaattacgagaacaattt
agctaaaaaattaagagaacaattt
agttaagaaattaagagaacaattt
agttaacaaattaagagaacaatte
agctataaaattaagagaacaattt
tg--a-aagattaagagaacaattt
agttacaaaattaagagaacaattt

Figure 7.5: Alignment of the eight DN A sequences of S4 by the “G” program. An
“M” indicates a match tuple found by the genetic algorithm and an “*" indicates a
match tuple found by the shift-up method.
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B. Global improvement by the two combined approaches

For a data set, the three approaches align the intervals in three different ways.
The alignments of the entire data set by the three approach are thus different in
the intervals. The quality of an entire alignment partially depends on the quality of
each interval alignment. Therefore. the global improvement achieved bv a combined
approach is characterized by its local improvement. A comparison between Tables
7.8 and 7.9 may verifv this point.

The data in Table 7.9 are calculated from Tables 6.1 and 7.1. Tables 6.3 and
7.3, and Tables 6.5 and 7.5 for the study of the global improvement. First. the
increases/decreases of the quality measurements are calculated. Then the ratios of
the increases/decreases to the measurements of the alignments of “G” are computed.
The data in the table are the average and the standard deviation for each data set.

The performance of the two combined approaches can be analyzed from the table:

e The major improvement made by the “G+D" approach is in the number of
matches. In most cases, “G+D” is able to achieve the highest number of
matches. The increase in the number of matches ranges from 2% to 3%. How-

ever, its alignments have poor entropy values.

e The major improvement made by the “G+S” approach is the better overall
quality. Compare with “G” program, the alignments by “G+S” have higher

number of matches, higher valies of ScoreG and ScoreC, and lower values of
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entropy. Compare the three approaches. in most cases. “G+S” has the highest

values of ScoreG and ScoreC. and the best entropy values.

Data set # of | ScoreG™ | ScoreC* | Entropy™ :
matches” i

Protein | [(G+D)-G]/G average +0.0248 | +0.0389 | +0.0721 f -0.0300 :
standard dev. |  0.0150 | 0.0273| 0.0593 |  0.0600 |

[(G+5)-G]/G average +0.0259 | +0.0251 | +0.0571 | —0.0473 |

standard dev. | 0.0179 | 0.0189 | 0.0398 | 0.0946 l

mRNA | [((G+D)-G]/G |  average +0.0292 | —0.0063 | —0.0453 | +0.7405 |
standard dev. |  0.0047 | 0.0128 | 0.0907 | 0.1100 |

((G+S)-G]/G |  average +0.0120 | +0.0046 | +0.0012 | -0.0013 |

standard dev. |  0.0015 | 0.0009| 0.0012| 0.0153 |

Other | [(G+D)-Gl/G | average +0.0192 | +0.0080 | ~0.0029 | +0.1337 |
standard dev. |  0.0208 | 0.0104| 0.0160 | 0.1342:

[(G+S)-Gl/G |  average +0.0117 | +0.0116 | +0.0111 | —0.0562 |

standard dev. | 0.0194| 00143] 00143 ] 0.1123 |

Table 7.9: [(G+D)-G]/G and [(G+S)-G]/G ratios of the measurements in Chapters

6 and 7. The columns marked with an “«” contain the average and the standard

deviation of the ratios.
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7.6 Summary

The two combined approaches have integrated the strengths from both the genetic
algorithm and the dynamic programming: The genetic algorithm enables the ap-
proaches to rapidly identify match blocks and the dynamic programming enables
them to cope with mismatches in a near-optimal manner. Combining the two ad-
vanced techniques, these approaches are able to deal with multiple. long and complex
sequence data efficiently. These strengths make the combined approaches a promising
tool to be applied to molecular sequence data in practical applications.

The following can be summarized from the experimental results:

e Compared with CLUSTALW. the two combined approaches achieved verv
comparable alignment quality: The number of matches of the two approaches
are higher. the score values are similar and the entropy values are higher. The
processing time was only 1/100 to 1/10 of that by CLUSTALW. For longer

sequences, the computation is out of the feasible bounds of CLUSTALW.

o Compared with the “G” program, the combined approaches can achieve
better alignment quality: *G+D” may produce alignments of the highest num-
ber of matches and “G+S” may produce better alignments than “G” in terms
of all the four quality measurements. The processing time required by the two

combined methods is no more than six times of that by the “G” program.

e Compare the two approaches. Overall, “G+S" may produce better align-

—
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ments than “G+D". It may achieve higher scores and lower entropy values in
most cases, while the time required by the former is two to three times of that

by the latter.

The weakness of the combined approaches is less compactness in comparison
with CLUSTALW. and longer processing time in comparison with the G

program.
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Chapter 8

Conclusion and Future Work

In this chapter. we conclude the thesis by summarizing the major strengths of the
genetic algorithm-based approaches, and then propose some future projects for our
ongoing research, in which a genetic algorithm may be a promising tool to address

challenging tasks in computational biology.



8.1 The Conclusion

In this research. we have exploited a new path to multiple sequence alignment. Along
this path, an alignment technique. with an enhanced genetic algorithm as its core
component, has been developed which has the remarkable strength of high efficiency
for simultaneous multiple sequence alignment. Such strength is especially significant
when aligning long sequences.

Differing from the traditional alignment techniques, this new technique converts
the multiple sequence alignment problem into a search problem so that a genetic al-
gorithm can be used as an efficient search tool to achieve good solutions. Differing

from the standard genetic algorithms, the genetic algorithm designed for pre-aligning

‘sequences has enhanced characteristics including numeric and index gene representa-

tion. variable gnetic string lengths. and additional functionality, which are aimed at
tackle the problem in a more efficient manner. The technique enables good martch
blocks to have higher survival probability and to serve as building blocks in favor of
a pre-alignment of an overall better quality. More information has been incorporated
into the search process including contextual information as well as block and interval
lengths. Compared with an approach mainly based on pairwise dyramic program-
ming. the technique has a much smaller time complexity. It is also efficient in terms
of space complexity.

To the author’s knowledge, this research was the first published one (Zhang, 1994:



Zhang and Wong, 1997a; Zhang and Wong, 1997b) in which genetic algorithms have
been successfully applied to the challenging problem of multiple molecular sequence
alignment and achieved high efficiency as well as good quality.

A major breakthrough of this technique is in the processing time. The experi-
mental results have indicated that the processing time required by the technique is
about two to three orders of magnitude lower than that by a widelv used conventional
method - CLUSTALW. Quite often, for the same sequences. while CLUSTALW may
require hours to align, a genetic algorithm-based approach may produce results of
similar quality within a few minutes (even seconds). Such high efficiency can hardlv
be achieved by the conventional methods.

Overall. the alignments generated by the genetic algorithm-based approaches have
comparable quality as those generated by CLUSTALW in the four quality measure-
ments with the average ratios in processing time range from 1.91 x 10~ t0 3.67 x 10~3.
The average ratios in the number of matches range from 0.98 to 1.04. the average
ratios in the ScoreG values range from 0.94 to 1.01. the average ratios in the ScoreC
values range from 0.87 to 1.03, and the average ratios in the entropy values range
from 1.13 to 2.91.

The alignments generated by the genetic algorithm-based approaches can correctly
identify the majority of the one-to-one correspondence between the sequences aligned.
although it is not guaranteed that the alignments are optimal. Such alignments are

acceptable for many applications, for example, gene bank retrieval, common pattern
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or subsequence search. sequence phylogenetic relation identification. and many others.
With the strength of high efficiency. genetic algorithms are very promising to become
useful tools for multiple sequence alignment in applications which do not strictly
require the optimal alignments.

Each of the three genetic algorithm based approaches has its own strength: The
“G” approach is the fastest one and can produce the most compact alignments: the
“G+D" approach is able to identify the highest number of matches: and the “G—S~
may produce alignments with the best overall quality. From the assessment of their
relative strengths. we would have a better guide line to choose the most suitable
approaches according to the requirements and the nature of applications.

The additional advantages of the genetic algorithm-based approaches of multi-
ple sequence alignment include simultaneousness. automated processing. easy imple-
mentation. and simple data structures. These approaches do not need any extra
interactions. for example. grouping sequences. selecting subsequences. or shuffling
alignments. No pre-processing such as creating a tree or calculating the distances is
required. Using the algorithm does not need any specific knowledge about species
origins, sequence structures. and so on. The implementation in this thesis involves
coding the three simple operations only, and requires a one dimensional arrav of
strings.

With the above strengths. the genetic algorithm-based technique can be devel-

oped into a practical approach for efficient multiple sequence alignment. In addition
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to computational biology, in many fields when information can be represented as se-
quences, such as speech recognition. language interpretation, and biomedical signal
analysis, the technique developed in this research can be adopted as an effective tool
for recognizing patterns. examining similarity. identifving common features. and so

on. This technique will have great potential and excellent capabilities in those fields.

181



8.2 Further Improvements and Applications

8.2.1 Improving the combined genetic algorithm-synthesis
approach

The combined genetic algorithm-synthesis approach may generate alignments with
more matches and comparable ScoreG and ScoreC values with those produced by
CLUSTALW. However, the alignments by the combined approach have higher entropy
values in the comparison with those of CLUSTALW. This implies that the alignments
have higher diversity and lower levels of compactness. This may be largely due to the
way and the order in which subsequences in intervals are svnthesized.

Cur_rently, to align n’ > 2 subsequences. (n'—1) subsequences are first aligned. and
then their synthesized subsequence is aligned with the n’th subsequence. The order
for aligning the subsequences is arbitrary. It has been noted that when subsequences
of similar patterns are aligned first. a synthesis method may produce good resuits.
but when dissimilar subsequences are aligned first. it may produce poor results. The
key to further quality improvement is the order for synthesizing the sequences.

It is expected that the alignment quality can be further improved by using a
hierarchical approach (Chan, 1990; Chan and Wong, 1991: Wong, et al. 1996). in
which instead of arbitrarily aligning subsequences, similarity between subsequences

is first examined and then used to group subsequences into a similarity hierarchy. A



synthesized sequence is generated for each group of relatively similar subsequences
and is aligned with the synthesized sequences of other groups. In this way the global
entropy values of the generated alignment will be further reduced. and thus lower
diversity and higher compactness can be achieved. The kev to this improvement is

to use an efficient method for measuring the similarity-
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8.2.2 Pattern matching in sequence databases

A direct extension of the thesis project is the use of the genetic algorithm for pattern
matching in sequence databases. With the development of rapid DNA sequencing
technology. more than 1.6 billion base pairs of nucleotides are sequenced per vear
(Friedland and Kedes, 1985: Lander. et. al.. 1991). The sequences are stored in var-
ious sequence databases. Such databases are likely to become the profound research
tools of biologists over the next decades (Lander, et. al., 1991).

An important application of the sequence databases is matching target patterns
against sequences in the databases (Lander, et. al.. 1991: Sibbald and Argos. 1990).
Since the current sequence databases are simply organized as sequential files and do
not have indices on sequence structures. pattern matching has to be done in the way
of sequential search (Kehoe, 1990: Seuchter and Skolnick. 1988: Urrows. 1992). This
is a very time-consuming task. It involves performing approximate pattern matching
on every sequence in the database, which may contain tens of thousands of sequences
and each sequence may be of several thousand subunits. The current approaches of
approximate matching (e.g. dvnamic programming) are obviously inefficient.

With the strength of high efficiency, the genetic algorithm developed in this re-
search can be modified for pattern matching in sequence databases. For each sequence
in a database, it may determines the similarity with the target very quickly. The se-

quence(s) matches the target best can then be selected.
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8.2.3 Modeling molecules

Construction of accurate three-dimensional models of organic/biological molecules is
an important task of computational biology (Perczel and Csizmadia. 1995: Cohen et
al. 1990). One of the simplest and most reliable ways is to use libraries of typical
molecular fragments and data banks. such as the Cambridge X-ray Crystallographic
Data Base which contains about 30.000 structures, and the Brookhaven Protein Data
Bank (Bernstein et al. 1977: Humblet and Dunbar, 1993). A molecule is constructed
by assembling pre-existing fragments, followed by successive adjustments of the cur-
rent structure which allows the user’s full control over building a reasonable starting
conformation with the desired stereochemistry.

The currently used approaches involve initially drawing chemical structures as a
two-dimensional sketch describing the atom types (element and hybridization} and
connectivity. along with some other methods of specifving stereochemistry. While in
principle these are simple and intuitive approaches, there is still a great challenge for
robustness to convert the initial information into reasonable low energy conforma-
tions. Most of these approaches often become trapped quickly into poor local minima
during the conversion of two dimensional sketches to three dimensional structures.

In view of this, genetic algorithms can provide a robust and efficient method
for modeling molecules. A conversion of a two-dimensional sketch into a three-

dimensional structure can be represented as a point in the solution space. Working
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with a population of solution points. a genetic algorithm may. in an efficient manner.
minimize the chances of having the solution being trapped into poor local energy

minima.
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8.2.4 DModeling drug-receptor interactions

Modeling molecular binding interactions is of great application significance in finding
better enzyme inhibitors or more selective drugs. The major interactions involved
in enzyme or drug-receptor binding are electrostatic (including hydrogen bonding).
dispersion. and hydrophobic. Hydrophobic interactions usually provide the major
driving force for binding (Cohen et al. 1990).

In the case of drug-receptor interactions. the conventional drug-receptor “dock-
ing” is typically conducted interactively using molecular surface displayvs to guide
the fitting, based on hydrophobic or electrostatic potential color coding. In deter-
mining drug-receptor docking, the user follows a path in a sort of interactive energy

-minimization. However. due to a huge degree of freedom. the conventional energy
minimization approaches are easily trapped into local minima and can give deceptive
results (Cohen et al. 1990).

A genetic algorithm would provide a better approach in modeling this kind of
interactions. By representing different enzyme or drug-receptor binding as solution
points. and associating each solution with an energy level. a genetic algorithm may
provide an efficient way to minimize the chances of being trapped into local minima

and produce a solution of the minimal or a near-minimal energy.
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Appendix I

An evaluation matrix of CLUSTALW

/ a c d e f q h i k 4
a 3
c -1 12
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Appendix I1

Sequence IDs of the 11 data sets

S1: (DNA)
HCV2L1A10
HCV2L3C1

S2: (DNA)
HS06674

S3: (RNA)
HS04816

S4: (DNA)
HI1U16764
HIIU1677

S5: (DNA)
HI1U16765
HIIU1677T

'S6: (RNA)
BTPHOSA

S7: (RNA)
PH33624

S8: (RNA)
PT10537
PT10543

S$9: (RN4)
PP39651

S10: (RNA)
FCO7667
FCO7674

S11: (RNA)
MNMHDRBA

HCV2L3A5
HCV?2L3C3

HS06675

HS04817

HI1U16766
HILU1677

HIIU16767
HIIU 1677

BTPHOSB

PH35625

PT10538
PT10544

PP359652

FC07668

MNMHDRBB

HCV2L3A7
HCV2L3D4

HS06676

HS04818

HI1U16768

HI1U16769

BTPHOSC

PH35626

PT10539

PP59653

FC07669

MNMHDRBC

HCV2L3A9
HCV2L3E6

HS06677

HS04824

HIIU16770

HIIU16771

BTPHOSD

PH33627

PT10540

PP39634

FCo07670

MNMHDRBD
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HCV2L3B1

HS06679

HI1U1677

HI1U16773

PH35628

PT10541

PP359653

FCOT67:

o

<

INMHDRBE

HCV2L3B2

HI1U16774

HI1U 16773

PT10542

PP359656

FCO07673
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