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Abstract

Families of operators that are triangularizable must necessarily satisfy a number of

spectral mapping properties. These necessary conditions are often sufficient as well.

This thesis investigates such properties in finite dimensional and infinite dimensional

Banach spaces. In addition, we investigate whether approximate spectral mapping

conditions (being “close” in some sense) is similarly a sufficient condition.
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Chapter 1

Introduction

Every complex matrix in finite dimensions is similar to a matrix in upper triangular

form. This leads to the question of whether two (or more) such matrices can be

simultaneously placed in upper triangular form. An even simpler question is whether

any two matrices have a common invariant subspace.

For algebras of complex matrices, the question often has an easy answer: Burn-

side’s Theorem says that every proper subalgebra of finite dimensional operators has

an invariant subspace. For semigroups, the situation is frequently more complex.

An area that has proved fertile for reducibility results on semigroups is that of

partial spectral mapping conditions. Since the spectrum of a matrix in upper tri-

angular form appears on its diagonal, simultaneous upper triangularization leads to

several spectral mapping properties. These necessary conditions are often sufficient

as well.

The question becomes: how many spectral mapping properties must be assumed

before a semigroup becomes triangularizable? Do such results extend to infinite

dimensions? Do we need to assume that the spectrum maps exactly, or is it enough

that it’s “close”?

This thesis will attempt to answer some of these questions.

In Chapter 2, we introduce the notion of simultaneous triangularization and touch

on several important classical results, including Burnside’s Theorem for algebras and

Levitzki’s Theorem for semigroups.

In Chapter 3, we investigate several necessary conditions for triangularizability
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to see if they are, in fact, sufficient conditions. We deal mostly with semigroups

and partial spectral mapping conditions. For algebras, it is an easy consequence

of Burnside’s Theorem that, if AB − BA is nilpotent for every pair {A,B} in the

algebra, the algebra is triangularizable. Chapter 3 culminates by extending this result

to semigroups.

In Chapter 4, we discuss the concept of triangularizability in infinite dimensions.

We extend many of our results from finite dimensions to compact operators on a

Banach space and, in some cases, to bounded operators. In particular, we show

that, if AB − BA is quasinilpotent for a semigroup of compact operators, we have

triangularizability.

In Chapter 5, we consider some recent work in the area of triangularizability. We

show that positive results can be achieved even when AB − BA is “small”, but not

necessarily nilpotent.

The majority of the results in this thesis come from Simultaneous Triangulariza-

tion by Heydar Radjavi and Peter Rosenthal [7]. The material in Chapter 5 comes

from a paper by Janez Bernik and Heydar Radjavi [1]. Material from other sources

is cited where it appears.
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Chapter 2

Definitions and Notation

In this thesis, we will be operating in the context of operators on a linear space over

the complex numbers. In particular, all linear spans should be assumed to be over C.

Many of the results in this thesis extend, with a little caution, to algebraically closed

finite fields with certain nonzero characteristics. However, that is beyond the scope

of this work.

2.1 Triangularizability in finite dimensions

2.1.1 Definition

In this chapter, as well as Chapter 3 and most of Chapter 5, we will be working in

the context of linear operators on finite dimensional normed linear spaces. For such a

space V , we denote the entire algebra of such operators by B(V) (an algebra is a family

of operators that is closed under addition, multiplication, and scalar multiplication).

Note that if dim(V) = n then B(V) may be identified with Mn(C). We will use

both notations throughout this paper, depending on the situation.

We let I be the identity in B(V). For simplicity, for a scalar λ and an operator A

we use notation A− λ as a short form of A− λI. For an operator A in Mn(C) we let

Aij be the entry in the ith row and jth column of A.

We denote the range of A by ran(A) or AV and its kernel by ker(A).
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We use‘⊂’ to denote a proper subset. If a subset is not necessarily proper, we use

‘⊆’.

2.1.2 Definition

A semigroup is a family of operators that is closed under multiplication, but does

not require the presence of a unit or inverses. A group, of course, is closed under

multiplication and inverses and contains a unit.

2.1.3 Definition

For a semigroup S, we say a subset J of S is an ideal of S if for every S in S and A

in J , AS and SA are in J . We will often talk about the rank k ideal of S. This is

the ideal of S consisting of all elements of rank at most k.

2.1.4 Definition

We say that a subspace M of V is invariant for a family of operators F in B(V) if,

for any A in F and x in M, Ax is in M. We say that M is nontrivial if it is neither

{0} nor V . If such a nontrivial M exists for F we say that F is reducible. Otherwise,

we say that F is irreducible.

2.1.5 Definition

For a subspace M we define its perpendicular space M⊥ to be the set of y in V such

that for any x in M, 〈x, y〉 = 0 where 〈·, ·〉 is the standard inner product on V .

For an operator A in B(V) we let its adjoint be the operator A∗ such that

〈Ax, y〉 = 〈x,A∗y〉

for all x and y in V . We say that an operator A is self-adjoint if A = A∗ and that a

family F is self-adjoint if F = F∗ where

F∗ = {A∗ : A ∈ F}.
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If M is invariant for a family F , then for A in F , x in M and y in M⊥,

〈x,A∗y〉 = 〈Ax, y〉 = 0

so M⊥ is invariant for F∗. The other direction also holds so F is irreducible if and

only if F∗ is.

2.1.6 Definition

We say that a family of operators F in B(V) is triangularizable if there is a basis

for V relative to which every member of F is an upper triangular matrix. This is

equivalent to the existence of a chain of invariant subspaces for F

{0} = M0 ⊂M1 ⊂ · · · ⊂ Mn = V ,

where dim(Mj) = j for each j. In fact, we can choose Mj = span{e1, . . . , ej} where

{e1, . . . , en} is a basis relative to which F is upper triangular. We call such a chain a

triangularizing chain for F .

Note that every collection of operators on a one dimensional space is triangular-

izable, however such a collection can never be reducible.

2.2 Triangularization and Irreducibility

Our first result, the Triangularization Lemma, is incredibly useful. It allows us to

prove certain semigroups are triangularizable by showing reducibility, along with a

set of inheritable properties. First we need to introduce quotient spaces.

2.2.1 Definition

For subspaces N ⊂M of V the quotient space M/N is

M/N = {[x] : x ∈M},

where [x] = x + N = {x + z : z ∈ N}. For x and y in M and λ in C, we define

[x] + [y] = [x+ y] and λ[x] = [λx].
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For an operator A in B(V) with invariant subspaces N ⊂ M, we define the

quotient operator Ã on M/N by Ã[x] = [Ax]. Since M is invariant for A, Ax is in

M. Also, since N is invariant for A, if [x] = [y] then [Ax] = [Ay] so Ã is well-defined.

In particular, the restriction of A to an invariant subspace M, denoted by A|M,

is the quotient operator for M and N = {0}.

If F is a family of operators in B(V) with invariant subspaces N ⊂ M then the

quotient of F with respect to M and N is the family of quotients Ã with respect to

M/N where A is in F .

2.2.2 Definition

If P is a property of operators, we say it is inherited by quotients if, for every family

of operators F in B(V) that satisfies P , if N ⊂M are invariant subspaces for F then

the quotient of F with respect to M/N also satisfies P .

We can now state and prove the Triangularization Lemma.

2.2.3 Lemma (Triangularization Lemma)

Let P be a set of properties, each of which is inherited by quotients. If every family of

operators in B(V) with dim(V) > 1 that satisfies P is reducible, then every collection

of transformations satisfying P is triangularizable.

Proof. Let F be a family of operators in B(V) that satisfies P . Take a maximal

chain of invariant subspaces for F ,

{0} = M0 ⊂M1 ⊂ · · · ⊂ Mn = V .

Denote this chain by C and assume that C is not a triangularizing chain. Then there

must be a k such that Mk/Mk−1 has dimension at least 2. Then F|Mk/Mk−1
has

property P and is reducible by the hypothesis. Therefore it has an invariant subspace

L.

Define M = {x ∈Mk : [x] ∈ L}. Since L is a proper subspace of Mk/Mk−1, M
is properly between Mk−1 and Mk. Since M is an invariant subspace of a quotient

by invariant subspaces of F , it’s an invariant subspace of F . This contradicts the

maximality of C so C must be a triangularizing chain.
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A simple and useful result of the above lemma is the following theorem.

2.2.4 Theorem

Every commutative family of operators in B(V) is triangularizable.

Proof. Let F be a commutative family of operators in B(V).

Since commutativity is a property inherited by quotients, we need only show F is

reducible by the Triangularization Lemma (2.2.3).

If every element of F is a scalar then every subspace is invariant for F so it’s

triangularizable.

Otherwise, take a nonscalar A in F . Let λ be an eigenvalue for A and let M be

the corresponding eigenspace. Since A isn’t scalar, M is nontrivial. For any B in F
and x in M,

ABx = BAx = B(λx) = λBx.

Thus Bx is in M and M is an invariant subspace for F . Therefore F is reducible

and triangularizability follows.

2

The following well-known result is an easy corollary.

2.2.5 Corollary (Schur’s Theorem)

Every operator A in B(V) is triangularizable

Proof. The family {A} is commutative so it’s triangularizable by Theorem 2.2.4.

2

When determining which families are triangularizable it helps to know which fam-

ilies are definitely not. Burnside’s Theorem shows that, when we consider algebras,

the question has a easy answer. To prove this, we’ll use the following definition and

result.
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2.2.6 Definition

A family of operators F in B(V) is transitive if for every x 6= 0 and every y in V ,

there is an F in F such that Fx = y.

2.2.7 Lemma

Let A be an algebra of operators in B(V) with dim(V) ≥ 2. Then A is irreducible if

and only if A is transitive.

Proof. Assume A is irreducible and take x 6= 0 from V . Now, Ax is an invariant

subspace for A and A is irreducible, so Ax is either {0} or V . But if Ax = {0} then

span{x} is a nontrivial invariant subspace. Therefore, Ax = V and there is an A in

A such that Ax = y so A is transitive.

Assume A is transitive and let M 6= {0} be an invariant subspace of A. Take

x 6= 0 in M. Then, for every y in B(V), there is an A in A such that Ax = y. Since

x is in M, so is y so M = V . Therefore A is irreducible.

2

2.2.8 Theorem (Burnside’s Theorem)

If dim(V) is at least 2 then the only irreducible algebra of operators in B(V) is B(V).

In other words, every proper subalgebra of B(V) is reducible.

Proof. The operators
0

1
. . .
. . . . . .

1 0

 and


0 1

. . . . . .
. . . 1

0


are easily seen to have no common nontrivial invariant subspaces. Thus, B(V) is

irreducible.

Let A be an irreducible algebra of operators in B(V). We know that the rank one

operators span B(V) so we want to show that A contains them all.
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First, we’ll show that A contains a nonzero singular element K. Take any element

A in A. Let λ be an eigenvalue of A. Then A−λ is singular and A2−λA = A(A−λ)

is also singular and is in A. So, either A contains a nonzero singular element or every

A in A is invertible with A2 − λA = 0. But, A invertible and A2 − λA = 0 implies

A = λI. Then A consists of scalars so A is triangularizable. However, A is irreducible

and so it must contain a nonzero singular element, K.

We next show that A contains a rank one idempotent. We’ll do this by induction

on the dimension of V . If dim(V) = 2 then K must have rank one since it’s nonzero

and singular. Triangularize K and let {e1, e2} be the corresponding basis. Since it’s

rank one, we can assume it has the form

K =

(
α β

0 0

)
.

If α 6= 0 then α−1K is in A and is our desired idempotent. Otherwise, α = 0, β 6= 0

so β−1K = E12 is in A. Since A is transitive, there is an A in A such that Ae1 = e2.

Then, KAe1 = Ke2 = e1 so σ(KA) contains 1, KA has rank one, and KA is in A.

This takes us to the case with α 6= 0. Therefore, if dim(V) = 2, A has a rank one

idempotent.

Let dim(V) = n and assume all irreducible algebras of operators on spaces of

dimension at most n − 1 have a rank one idempotent. We have that KA is also

an algebra and that M = KV is invariant for KA. In fact, ran(KA) is contained

within ran(K) for every A in A. Let B = KA|KV . We claim B is irreducible. By

Lemma 2.2.7, we can check for transitivity instead. Take any x 6= 0 and y in M. We

have y = Ky0 for some y0 in V . Since A is transitive, there is an A in A such that

Ax = y0. Then KAx = Ky0 = y so B is a transitive and irreducible subalgebra of

B(KV).

Now, K is singular so KV has dimension less than V . By induction, B contains a

rank one idempotent, E. By construction, E = KA|KV for some A in A and ran(KA)

is contained in ran(K) so

F = KA =

(
E X

0 0

)
is in A. Since E = E2,

F 2 =

(
E EX

0 0

)
and F 4 =

(
E EX

0 0

)
.
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Also, EX has rank at most one. Therefore F 2 is our rank one idempotent in A and

the result follows by induction.

Take P to be our rank one idempotent in A and put it in Jordan normal form so

P = E11 with regards to the corresponding basis {e1, . . . , en}.

By transitivity, Ae1 = V . For any A in A, AP =
(
Ae1 0

)
so every rank one

operator with its last n− 1 columns zero is in A.

Now, PA =

(
e∗1A

0

)
. Assume M = {(e∗1A)∗ : A ∈ A} 6= V . A is an algebra

so M is a subspace and there there is a x 6= 0 in V such that x is in M⊥. Then

PAx = 0 so Ax 6= e1 for any A in A. But that contradicts that A is irreducible and

thus transitive. Therefore M = V and A contains every matrix with its last n − 1

rows zero.

But an arbitrary rank one operator in B(V) is simply xy∗ with x and y in V . And

x∗y =
(
x 0

)( y∗

0

)
,

so A contains all rank one operators. Therefore A = B(V).

2

The algebra A generated by a semigroup S is simply the linear span of elements of

S. Using this fact and Burnside’s Theorem (2.2.8), we derive a number of sufficient

conditions for reducibility of algebras and semigroups of operators in B(V). Our

first result deals only with algebras, but will eventually be extended to semigroups

(Theorem 3.4.15).

2.2.9 Lemma

If A is an algebra of operators in B(V) then A is triangularizable if and only if

AB −BA is nilpotent for every A and B in A.

Proof. If A is triangularizable, then the diagonals of its operators commute so

AB −BA is nilpotent. This is seen in more detail in the Spectral Mapping Theorem

(2.4.4).

For the converse, note that nilpotent commutators are inherited by quotients so

we need only show reducibility by the Triangularization Lemma (2.2.3). Note that
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the operators

A =

(
1 0

0 0

)
and B =

(
0 1

1 0

)
have nonnilpotent commutators as

AB −BA =

(
0 1

−1 0

)
and (AB −BA)2 =

(
−1 0

0 −1

)
,

so on spaces of dimension at least 2, not every pair of operators has nilpotent com-

mutators (on spaces of dimension three or more simply add a direct summand of zero

to extend A and B). Therefore A 6= B(V) so by Burnside’s Theorem (2.2.8), A is

reducible and is therefore triangularizable.

2

2.2.10 Lemma

Let S be a semigroup of operators in B(V) and let φ be a linear functional on B(V).

If φ is nonzero, but φ|S = 0 then S is reducible.

Proof. Let A be the algebra generated by S. A consists of linear combinations of

members of S so φ|A = 0.

Assume S is irreducible. ThenA is irreducible and, by Burnside’s Theorem (2.2.8),

A = B(V). Then φ = 0 which is a contradiction so S is reducible.

2

2.2.11 Theorem (Levitzki’s Theorem)

Every semigroup of nilpotent operators in B(V) is triangularizable.

Proof. Let S be such a semigroup. Since nilpotence is a property inherited by

quotients, it sufficies by the Triangularization Lemma (2.2.3) to show S is reducible.

For any element A in S, tr(A) = 0 since the only eigenvalues of a nilpotent

operator are zero. Therefore tr is a nonzero functional on B(V) that is zero on S so

S is reducible by Lemma 2.2.10.

2
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2.2.12 Lemma

If a semigroup of operators S in B(V) has a nonzero reducible ideal then S is reducible.

In other words, a nonzero ideal of an irreducible semigroup of operators in B(V) is

irreducible.

Proof. Let S be a semigroup of operators in B(V). Let J 6= 0 be an ideal of S and

assume J is reducible. Let M be a nontrivial invariant subspace for J .

Let M1 = span{JM : J ∈ J } and M2 = ∩{ker(J) : J ∈ J }. For S in S, J in

J and x in M, SJ is in J and SJx is in M1 so M1 is invariant for S. If x is in

M2 then JS is in J so J(Sx) = (JS)x = 0 and M2 is invariant for S. We need only

show one of them is nontrivial.

Since M is invariant for J , M1 is contained in M. Therefore M1 6= V and

thus, if it’s a trivial invariant subspace, M1 = {0}. In this case, JM = {0}, so M2

contains M and is not {0}. However, J 6= 0 so M2 6= V . Therefore M2 is nontrivial.

Therefore S has a nontrivial invariant subspace, so S is reducible.

2

2.2.13 Lemma

Let S be a semigroup of operators in B(V) and E an idempotent of rank at least 2,

not necessarily in S. If the collection S0 = ESE|EV is reducible then so is S.

Proof. Let M be a nontrivial invariant subspace for S0. Take x 6= 0 in M. Since

M ⊂ EV , Ex = x. Let f be a nonzero linear functional on EV with f(M) = 0

(which exists as M is a proper subspace of EV). Define a functional φ on B(V) by

φ(T ) = f(ETEx) for all T in B(V).

Now, for S in S,

φ(S) = f(ESEx) = 0,

since ESEx is in M. However, f is nontrivial on EV so there is a y in V such that

f(Ey) 6= 0. As Ex = x 6= 0, there is a T in B(V) such that TEx = y. Then

φ(T ) = f(ETEx) = f(Ey) 6= 0,

so φ is nontrivial. Therefore S is reducible by Lemma 2.2.10.

2
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2.2.14 Lemma

Let S be an irreducible semigroup of operators in B(V) and let

m = min{rank(S) : 0 6= S ∈ S}.

Then there exists an element of the form S0⊕ 0 in S, with respect to a suitable basis,

where S0 is invertible and has rank m.

Proof. Let A be in S with rank m. If m = dim(V) then A is invertible and we’re

done. Otherwise, if AS = {0} then ker(A) is an invariant subspace for S and A is

neither 0 nor invertible so ker(A) is a nontrivial subspace. But S is irreducible so this

can’t happen and hence AS 6= {0}.

Take B 6= 0 in AS. Then B has rank m. If SB = {0} then ran(B) is a nontrivial

invariant subspace for S which can’t happen. Therefore J = SAS 6= {0} and is a

nonzero ideal of S. Therefore J is irreducible by Lemma 2.2.12.

By Theorem 2.2.11, J must have non-nilpotent elements. Take such an element,

B. By the minimality of m, Bk has rank m for all k in N. Therefore, putting B in

Jordan form gives us the desired operator.

2

The last result of this section is a boundedness result that follows from Levitzki’s

Theorem (2.2.11).

2.2.15 Lemma

An irreducible semigroup S of operators in B(V) is bounded if and only if the spectral

radius is bounded on S (We denote the spectral radius by ρ as defined in Defini-

tion 2.4.2).

Proof. Since ρ(A) ≤ ‖A‖, boundedness clearly implies bounded spectral radius. For

the converse, assume that S is not bounded. Since ρ is continuous, we can assume

S is closed. We can also assume S = γS where γ ∈ [0, 1] as this does not affect the

boundedness of the spectral radius.

Let {Sn} be a sequence in S with lim
n−→∞

‖Sn‖ = ∞. Then {Sn/ ‖Sn‖} is a bounded
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sequence, so we can restrict it to a subsequence converging to some S in S. Then

ρ(S) = lim
n−→∞

ρ(Sn)

‖Sn‖
= 0.

Also, for any T in S, ρ(SnT ) is bounded so

ρ(ST ) = lim
n−→∞

ρ(SnT )

‖Sn‖
= 0.

Thus the ideal J generated by S consists of nilpotents. By Levitzki’s Theorem

(2.2.11), J is reducible. By Lemma 2.2.12, S is reducible. This is a contradiction, so

S must be bounded.

2

2.3 Reduction to Groups

These results help to reduce questions about semigroups to questions about unitary

groups.

2.3.1 Theorem

Every bounded group G of operators in B(V) is simultaneously similar to a group of

unitary operators.

Proof. We can assume G = G, so G is compact. Let µ be the Haar measure on G (The

existence of the Haar measure and its properties is discussed in many texts, including

[9, p. 128]). That is, µ is a positive regular Borel measure on G with µ(G) = 1 and∫
G
f(GG0)dµ(G) =

∫
G
f(G)dµ(G)

for all G0 in G and measurable f .

Let (·, ·) be the standard inner product on V and define a new inner product by

〈x, y〉 =

∫
G
(Gx,Gy)dµ(G)

for all x and y in V . Then linearity, sesquilinearity, and conjugate symmetry follow

from the same properties of the inner product and the linearity of the integral. If

14



x 6= 0 then (Gx,Gx) > 0, so it’s a positive function on the entire set G of nonzero

measure. Thus 〈x, x〉 > 0.

Take any G0 in G. Then

〈G0x,G0y〉 =

∫
G
(GG0x,GG0y)dµ(G) =

∫
G
(Gx,Gy)dµ(G) = 〈x, y〉 ,

so G0 is unitary with respect to the new inner product. Therefore G is similar to a

unitary group.

2

The following lemma will be of use in proving the final result of this section.

2.3.2 Lemma

Let U be a unitary operator in B(V). Then {Un : n ∈ N} has subsequences coverging

to I and U−1 respectively.

Proof. Since U is unitary, we have that

‖U‖ = sup
x∈V1

〈Ux, Ux〉 = sup
x∈V1

〈x, U∗Ux〉 = sup
x∈V1

‖x‖ = 1,

where V1 is the unit ball of V . Also, for a unitary operator U and any operator T in

B(V) we have that

‖UT‖ = sup
x∈V1

〈UTx, UTx〉 = sup
x∈V1

〈Tx, U∗UTx〉 = sup
x∈V1

‖Tx‖ = ‖T‖ .

Thus the sequence (un)
∞
n=1 defined by un = Un is contained within the unit ball of

B(V). Since the unit ball of B(V) is compact, the sequence must have a convergent

subsequence (um)∞m=1 where um = Unm and if m1 < m2 then nm1 < nm2 .

Since this subsequence is convergent it must be Cauchy. Fix ε > 0. Then there is

an M > 0 such that if i, j ≥M then ‖ui − uj‖ < ε. In particular, ‖uM+1 − uM‖ < ε.

We also have that

‖uM+1 − uM‖ = ‖UnM+1 − UnM‖

=
∥∥UnM (UnM+1−nM − I)

∥∥
=
∥∥UnM+1−nM − I

∥∥
< ε,
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where the last equality follows as U is unitary.

Thus I is in the closure of {U,U2, . . . , Un, . . . } since for any ε > 0 we can find

an element of the set within ε of I. And using these elements we find for ε values of

1, 1
2
, 1

3
, . . . we can build a subsequence converging to the identity.

Finding a subsequence convergent to U−1 follows immediately by multiplying every

term in the sequence by U−1 (If the first term was U (and is now I) we drop it) and

using the fact that ‖UT‖ = ‖T‖.

2

2.3.3 Lemma

Let S be a semigroup of operators in B(V) satisfying S = R+S, where R+ is the set

of positive real numbers. Let m be the minimal rank of nonzero members of S.

(i) If E is an idempotent in S of rank m, then the restriction of ESE\{0} to EV
is a group G

(ii) Up to a simultaneous similarity, each such group G is contained in R+U where

U is the group of unitaries in B(V).

(iii) If S is irreducible, then it contains idempotents of rank m, and, for each such

idempotent, the corresponding group G is irreducible.

Proof. (i) Since ESE = R+ESE we can assume that E = I, ESE = S, and that

m = dim(V).

By the minimality of m, every element in S is either 0 or invertible. Let S be a

nonzero element in S. First, we want to show that S is a scalar multiple of a unitary.

We know R+S = S, so we’ll assume ρ(S) = 1.

We can express S as

S =

(
B 0

0 C

)
,

where σ(B) is on the unit circle and ρ(C) < 1. Further, we can assume B is in Jordan

form so B = U +N where U is unitary, N is nilpotent, and NU = UN . Since

ρ(C) = lim
n−→∞

‖Cn‖
1
n
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and ρ(C) < 1, we know that lim
n−→∞

‖Cn‖ = 0.

We want to show that N = 0 and C acts on a zero dimensional space as then

S = U . Take k ≥ 0 such that Nk 6= 0 and Nk+1 = 0. If k = 0 then N = 0. Otherwise,

for any n ≥ k,

(U +N)n = Un +

(
n

1

)
Un−1N + · · ·+

(
n

k

)
Un−kNk

and, since U is unitary, Lemma 2.3.2 gives us a sequence of powers of U converging

to I. In particular, take {nj} such that

lim
j−→∞

Unj−k = I.

For large enough n, the
(
n
k

)
is the dominant coefficient of the expansion of (U +N)n.

Therefore

lim
j−→∞

(U +N)nj(
nj

k

) = lim
j−→∞

(Unj−kNk) = Nk.

Then, as lim
n−→∞

‖Cn‖ = 0,

lim
j−→∞

Snj(
nj

k

) =

(
Nk 0

0 0

)
,

which is then an element of S as S is closed. Howevever, Nk 6= 0, but it has rank less

than m since it’s not invertible. This contradicts the minimality of m so k = 0 and

N = 0.

So B = U and therefore Bnj converges to I. Therefore

lim
j−→∞

Snj =

(
I 0

0 0

)
,

which will be in S. But, if C acts on a space of positive dimension, then this element

will have rank less than m and be nonzero. This would contradict the minimality of

m so C must act on a zero dimensional space. Therefore S is a multiple of a unitary,

U .

By Lemma 2.3.2, there is also a sequence of powers of U that converges to U−1.

Therefore S contains all the inverses of its nonzero elements so G = S\{0} is a group.

(ii) From proving (i), we know that G/ρ(G) is similar to a unitary matrix for every

G in G, but we need to show a simultaneous similarity. Let G0 = {G/ρ(G) : G ∈ G}.
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For every G in G, G is a multiple of a matrix similar to a unitary so the eigenvalues

of G have constant modulus. Therefore ρ(G)m = |det(G)| and

ρ(G1)ρ(G2) = |det(G1) det(G2)|1/n = |det(G1G2)|1/n = ρ(G1G2),

so G0 is a group.

As ρ is continuous, G0 is closed. If G0 is bounded then it’s simultaneously similar

to a unitary group by Lemma 2.3.1. Assume otherwise and take {Gn} in G0 with

lim
n−→∞

‖Gn‖ = ∞. Then the sequence {Gn/ ‖Gn‖} is a bounded sequence in a compact

space so it has a subsequence converging to some A in G0. Now ρ(A) = 0 since

ρ(Gn) = 1 for all n. But this means that A is nilpotent and thus has rank less than

m. However, ‖A‖ = 1 so A 6= 0 which contradicts the minimality of m. Therefore G0

must be bounded and is simultaneously similar to a unitary group.

(iii) By Lemma 2.2.14, there is an element A0⊕0 in S of rank m and A0 invertible.

Since S = R+S we can assume ρ(A0) = 1. From the proof of (i), we see that A0 is

similar to a unitary matrix. By Lemma 2.3.2, we have a sequence of powers of A0

converging to I. Therefore E = I ⊕ 0 is in S and is an idempotent of rank m. And

ESE is irreducible by Lemma 2.2.13.

2

2.4 The Spectrum in Finite Dimensions

The spectrum of an operator A will play a large role in many of our results.

2.4.1 Definition

The spectrum of an operator A in B(V) is the set

{λ ∈ C : A− λ is not invertible}.

We use σ(A) to denote the spectrum of A.

In finite dimensions, this is just the eigenvalues of A. To see this, note that if A

is in upper triangular form then its eigenvalues are the entries on its main diagonal.

Then A− λ has full rank (and is thus invertible) if and only if λ does not appear on

the diagonal of A.
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2.4.2 Definition

The spectral radius of an operator A in B(V) is

ρ(A) = {|λ| : λ ∈ σ(A)}.

2.4.3 Definition

A word in a family of operators, F , in B(V) is a finite expression F1F2 · · ·Fk with Fi

in F . The Fi’s need not be distinct.

A noncommutative polynomial in operators {A1, . . . , Ak} in B(V) is any linear

combination of words in the operators.

These definitions lead easily to the following result.

2.4.4 Theorem (Spectral Mapping Theorem)

If {A1, . . . , Ak} is a triangularizable collection of linear transformations, and if p is

any noncommutative polynomial in {A1, . . . , Ak}, then

σ(p(A1, . . . , Ak)) ⊆ p(σ(A1), . . . , σ(Ak)).

Proof. The Ai’s are simultaneously triangularizable, so we’ll assume they are in

upper triangular form. Then the eigenvalues of Ai appear on its main diagonal.

The diagonal entries of a product of upper triangular matrices are the product of

the diagonal entries of those matrices. Therefore

σ(Ai1Ai2 · · ·Aik) ⊆ σ(Ai1)σ(Ai2) · · ·σ(Aik)

for any word in the Ai’s.

Similarly, the diagonal entries of a linear combination of upper triangular matrices

are a linear combination of the diagonal entries of the matrices. Therefore the result

holds.

2
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The next result deals with convergent sequences of operators in B(V). Since V
is finite dimensional, all norms are equivalent and we don’t need to specify a norm

under which the sequence converges.

2.4.5 Lemma

If {An} is a sequence of operators in B(V) with A = lim
n−→∞

An then

σ(A) = lim
n−→∞

{σ(An)} = {λ : λ = lim
n−→∞

λn, λn ∈ σ(An)}.

Proof. Assume λn is in σ(An) and λ = lim
n−→∞

λn. Since λn is an eigenvalue of An,

An − λ has zero as an eigenvalue and det(An − λn) = 0. Since det is a continuous

function, det(A− λ) = 0, zero is an eigenvalue for A− λ, and λ is in σ(A).

For the converse, take λ is in σ(A) and assume it is not the limit of {λn} where

λn is in σ(An). In other words, there is a closed disc, D, around λ such that for

any N there is an n ≥ N such that σ(An) ∩ D = ∅. Since σ(A) is finite, we can

also assume σ(A) ∩ D = {λ}. Take a strictly increasing sequence of integers nj with

σ(Anj
) ∩D = ∅.

We can define polynomials fj(z) = det(Anj
− z) and f(z) = det(A− z). We want

to show that fj converges uniformly to f so fix ε > 0. Since det is a continuous

function, we can find a δ > 0 such that, if∥∥ANj
− A

∥∥ =
∥∥(ANj

− z)− (A− z)
∥∥ < δ,

then

‖fj(z)− f(z)‖ =
∥∥det(ANj

− z)− det(A− z)
∥∥ < ε.

Since {ANj
} converges to A, we can find a J such that if j > J then

∥∥ANj
− A

∥∥ < δ.

Since this J doesn’t depend on z, f is the uniform limit of fj.

As σ(A) ∩ D = {λ}, f(z) is bounded away from zero on the boundary of D, a

compact set. Since f is the uniform limit of fj, |fj(z)| ≥ ε > 0 for all j > J for some

J > 0. We can remove the smaller indices and assume this relation holds for all j.

Since σ(Anj
)∩D = ∅, fnj

(z) 6= 0 for every z in D. So 1/fj is analytic on D for all

j and we can apply the maximum modulus priciple to determine that the maximum

of |1/fj|. Thus the minimum of |fj|, occurs on the boundary of D. Therefore fj(z) ≥
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ε > 0 for all z in D. But this means that |f(λ)| = lim
j−→∞

|fj(λ)| ≥ ε > 0 which

contradicts f(λ) = 0 and the result holds.

2

2.5 Field and Ring Automorphisms

The following simple results and definitions will be of use in our discussion of the

Finiteness Lemma (3.2.2) and subsequent results.

2.5.1 Lemma

Assume that the 2n numbers {α1, . . . , αn, β1, . . . βn} are algebraically independent

over Q (i.e. there is no nontrivial polynomial p in 2n indeterminates over Q with

p(α1, . . . , βn) = 0). Then there exists a field automorphism φ of C such that φ(αi) = βi

and φ(βi) = αi for every i.

Proof. Let F be the extension field Q(α1, . . . , βn). We can define a map φ : F −→ F
by φ(f(α1, . . . , αn, β1, . . . βn)) = f(β1, . . . , βn, α1, . . . , αn) for every rational function

f . φ is well-defined since the 2n numbers are algebraically independent over Q and

φ is an automorphism. By Zorn’s Lemma, we can extend φ to be an automorphism

of C.

2

2.5.2 Definition

Let φ be any field automorphism of C. The map Φ : Mn(C) −→Mn(C) defined by

(Φ(A))ij = φ(Aij)

for all i and j is a ring automorphism. We call it the automorphism of Mn(C) induced

by φ. Generally, we will use the notation Φ for all values of n and for the induced

isomorphism from a semigroup of operators S in Mn(C) to Φ(S).

21



2.5.3 Lemma

If φ is an automorphism of C and Φ is the induced automorphism, then σ(Φ(A)) =

φ(σ(A)).

Proof. Since

det(Φ(A)− φ(λ)) = φ(det(A− λ)),

λ is an eigenvalue of A (det(A− λ) = 0) if and only if φ(λ) is an eigenvalue of Φ(A).

2
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Chapter 3

Finite Dimensions

In this chapter, we discuss a number of sufficient conditions for triangularizability

in finite dimensions. Specifically, we look at permutability of the trace, sublinearity

and subadditivity of the spectrum, and the nilpotence of the semigroup under certain

polynomials.

3.1 Permutability of the Trace

We saw in Lemma 2.2.10 that a nonzero functional annihilating a semigroup was suf-

ficient for reducibility. In this chapter, we consider a generalization of this condition,

permutability. When permutability for an arbitrary functional proves insufficient, we

consider the permutability of the trace.

3.1.1 Definition

Let φ be a linear functional on B(V). We say that φ is permutable on a family F of

operators in B(V) if, for any A1, . . . , An in F and any permutation τ of {1, . . . , n},
we have

φ(A1A2 · · ·An) = φ(Aτ(1)Aτ(2) · · ·Aτ(n)).

We say that φ is multiplicative on F if φ(AB) = φ(A)φ(B) for all A and B in F .

Clearly, if φ is multiplicative on F then φ is permutable on F .
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3.1.2 Lemma

Let φ be a linear functional on B(V). If S is a semigroup of operators in B(V) then

φ is permutable on S if and only if

(i) φ(AB) = φ(BA), and

(ii) φ(ABC) = φ(BAC)

for all A,B and C in S.

Proof. Properties (i) and (ii) are clearly implied by permutability. For the other

direction, let φ be a linear functional satisfying (i) and (ii). We’ll prove that φ is

permutable on S by induction on the number of letters.

By using (i), we have that φ(ABC) = φ(CAB) = φ(BCA) and (ii) allows us to

rearrange the first two letters. Thus φ is permutable on three letters from S.

Assume that φ is permutable on fewer than n letters of S. We want to show that

φ(Aτ(1) · · ·Aτ(n)) = φ(A1 · · ·An) for all A1, . . . , An in S and any permutation τ .

S is a semigroup so products of Ai’s are still in S. We have

φ(Aτ(1) · · ·Aτ(n)) = φ((A∗ · · ·An)(A∗ · · ·A∗))

= φ((A∗ · · ·A∗)(A∗ · · ·An))

= φ((A∗ · · ·An−1)(A∗ · · ·A∗)(An))

= φ((A∗ · · ·A∗)(A∗ · · ·An−1)An),

where the first and third equality follow as τ is a permutation, the second follows

from (i), and the fourth comes from (ii).

Since An−1An is in S, showing that the last line is equal to φ(A1 · · ·An−1An)

reduces to the case on n− 1 elements and the result is proved.

2

3.1.3 Lemma

Let F be a family of operators in B(V) and let φ be a nonzero linear functional on

B(V). If φ is permutable on F then F is reducible.
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Proof.

Let S and A be, respectively, the semigroup and the algebra generated by F and

note that A = span(S). As φ is permutable on F and S consists of products of

members of F , φ is permutable on S. For any operators A,B and C in A we can

write

A =
∑n

i=1 αiAi, B =
∑m

j=1 βjBj, C =
∑l

k=1 γkCk,

with the Ai, Bj, and Ck in S and αi, βj, and γk in C. Then

φ(ABC) = φ((
n∑
i=1

αiAi)(
m∑
j=1

βjBj)(
l∑

k=1

γkCk))

=
n∑
i=1

m∑
j=1

l∑
k=1

αiβjγkφ(AiBjCk)

=
n∑
i=1

m∑
j=1

l∑
k=1

αiβjγkφ(BjAiCk)

= φ(BAC)

by using the linearity of φ and its permutability on S. Similarly, φ(AB) = φ(BA).

By Lemma 3.1.2, φ is permutable on A.

Assume F is irreducible. Then A = B(V) by Burnside’s Theorem (2.2.8). There-

fore we can take A and B in A such that AB − BA 6= 0. Let J 6= {0} be the

semigroup ideal of A generated by AB − BA. For any X and Y in A we have

that φ(X(AB − BA)Y ) = φ(XABY ) − φ(XBAY ) = 0 since φ is permutable on A.

Therefore φ|J = 0 and by Lemma 2.2.10, J is reducible. Then by Lemma 2.2.12, A
is reducible. This is a contradiction, so F is reducible.

2

In certain situations, this result gives us triangularizability.

3.1.4 Theorem (Kolchin’s Theorem)

If every member of a semigroup S of operators in B(V) is unipotent (i.e. every element

S of S has σ(S) = {1}) then S is triangularizable
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Proof. Let S be in S. Then we can triangularize S and, since it’s unipotent, its

diagonal consists entirely of 1’s. If n = dim(V) then tr(S) = n so the trace is constant

on S. Constancy is a special case of permutability so tr is a nonzero linear functional

which is permutable on S. By Lemma 3.1.3, S is reducible. The property of being

unipotent is inherited by quotients, so S is triangularizable by the Triangularization

Lemma (2.2.3).

2

In general, a permutable functional is doesn’t give triangularizability. For instance,

A =

{(
1 0

0 A

)
: A ∈Mn(C)

}

is not triangularizable since Mn(C) is irreducible. However, the functional φ on

Mn+1(C) where φ(A) = A11 is permutable (constant even) on A.

However, if the trace is permutable on a family of operators in B(V) then we

get triangularizability. Additionally, since tr(AB) = tr(BA) for all operators A and

B, Lemma 3.1.2 tells us that the trace is permutable on a family F if and only if

tr(ABC) = tr(BAC) for all A,B and C in F .

In order to prove this, we’ll use the following two technical results.

3.1.5 Lemma

Let {α1, . . . , αn} and {β1, . . . , βn} be in Cn.

(i) If
∑n

i=1 α
k
i =

∑n
i=1 β

k
i for k = 1, . . . , n, then there is a permutation τ on n

letters such that βi = ατ(i) for all i.

(ii) If
∑n

i=1 α
k
i = 0 for k = 1, . . . , n then αi = 0 for all i.

(iii) If
∑n

i=1 α
k
i = c with c fixed for k = 1, . . . , n + 1, then c is an integer and each

αi is either 0 or 1.

Proof. (i) For each k, define symmetric polynomials Tk by

Tk(x1, . . . , xn) =
n∑
i=1

xki ,
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and elementary symmetric polynomials Sk of degree k (i.e. Sk is the sum of all

products of k variables) so

Sk(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik .

The initial conditions then become Tk(α1, . . . , αn) = Tk(β1, . . . , βn) for k = 1, . . . , n.

We can algebraically verify that, for every k,

Tk − Tk−1S1 + Tk−2S2 − · · ·+ (−1)k−1T1Sk−1 + (−1)kkSk = 0.

We then claim that Sk(α1, . . . , αn) = Sk(β1, . . . , βn) and prove it by induction. Since

S1 = T1 the initial hypothesis proves the base case. Assume it holds for values less

than k. Then Sk can be expressed in terms of S1, . . . , Sk−1, T1, . . . , Tk by the above

equation. By induction, we know that equality holds on all of those elements so

equality holds for Sk.

It can easily be seen that

(x− α1)(x− α2) · · · (x− αn) = xn + S1(α1, . . . , αn)x
n−1 + · · ·+ Sn(α1, . . . , αn).

And similarly for the βi. But then these two polynomials agree on all their coefficients

so they’re equal and have the same roots. But their roots are exactly {α1, . . . , αn}
and {β1, . . . , βn}, respectively and the result holds.

(ii) This is a special case of (i) with βi = 0 for all i.

(iii) If c = 0 we’re done by (ii). Otherwise, we can permute the αi and assume

α1, . . . , αm are nonzero while the rest are zero. Since zeroes don’t affect the sum, we

can assume m = n. We want to show that c = n and that αi = 1 for all i.

Calculation gives

Tn+1 = TnS1 − Tn−1S2 + · · ·+ (−1)n−1T1Sn.

Apply this result to the specific case of the αi’s, denote Sk(α1, . . . , αn) by sk, and

recall that Tk(α1, . . . , αn) = c. After dividing both sides by c and rearranging we

have

1− s1 + s2 + · · ·+ (−1)n−1sn−1 = (−1)n−1sn,

while the recursive equation in (i) gives

c(1− s1 + s2 + · · ·+ (−1)n−1sn−1) + (−1)nnsn = 0.
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Combining these equations gives

(−1)n−1csn + (−1)nnsn = 0,

so c = n. Then, by using (i) with βi = 1 for all i we get αi = 1 for all i as required.

2

3.1.6 Lemma

Let A and B be operators in B(V). If tr(Ak) = tr(Bk) for k = 1, . . . , n then A and

B have the same eigenvalues, counting multiplicity. In particular, if tr(Ak) = 0 for

k = 1, . . . , n then A is nilpotent.

Proof. We can triangularize A without affecting the trace. Let the diagonal of A be

diag(α1, . . . , αn). Then the diagonal of Ak is diag(αk1, . . . , α
k
n) and tr(Ak) =

∑n
i=1 α

k
i .

Similarly, tr(B) =
∑n

i=1 β
k
i where the diagonal of B is diag(β1, . . . , βn).

Using the fact that the eigenvalues of A are exactly its diagonal entries when it’s

in upper triangular form, the first part follows from Lemma 3.1.5 (i) while the second

part follows from Lemma 3.1.5 (ii).

2

We’re now ready to show that if the trace is permutable on S then S is triangu-

larizable.

3.1.7 Theorem

Let F be a family of operators in B(V). Then F is triangularizable if and only if trace

is permutable on F .

Proof. If F is triangularizable, then for any A,B and C in F

(ABC)ii = AiiBiiCii = BiiAiiCii = (BAC)ii.

Therefore tr(ABC) = tr(BAC) and trace is permutable on F by Lemma 3.1.2.

Assume trace is permutable on F . As we saw in Lemma 3.1.2, trace is permutable

on the semigroup S and the algebra A which are generated by F . So for any A,B
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and C in A
tr((AB −BA)C) = tr(ABC)− tr(BAC) = 0.

Since A is an algebra, (AB − BA)k is in A for any k ∈ N. If C = (AB − BA)k

we have tr((AB − BA)k+1) = 0 for any natural number k. Also tr(AB) = tr(BA)

for any A and B. Therefore AB − BA is nilpotent for all operators A and B in

A by Lemma 3.1.6. Then A is triangularizable by Lemma 2.2.9. Therefore F is

triangularizable.

2

3.1.8 Corollary (Kaplansky’s Theorem)

Let S be a semigroup of operators in B(V). If trace is constant on S then S is

triangularizable. Moreover, every diagonal entry in a triangularization of such a

semigroup is constantly zero or constantly one.

Proof. Since trace is constant on S it’s permutable on S. Therefore S is triangular-

izable by Theorem 3.1.7.

Triangularize S and consider any A in S. Trace is unchanged by similarity so

tr(Ak) =
∑n

i=1A
k
ii = c for all k ∈ N and some constant c. By Lemma 3.1.5, each Aii

is either zero or one.

Now, if A and B are in S then (AB)ii is one if and only if both Aii and Bii are

one. Since trace is constant on S, A, B and AB must have exactly the same number

of ones on their diagonal. Thus, for each i, either both of Aii and Bii are zero or both

are one.

2

3.1.9 Corollary

Let G be a group of operators in B(V) and let H denote its commutator subgroup

(the normal subgroup of G generated by all elements A−1B−1AB with A and B in G).

Then the following are equivalent:

(i) G is triangularizable.
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(ii) Trace is constant on each coset of G relative to H.

(iii) Trace is constant on H.

(iv) H consists of unipotent operators.

Proof. If G is triangularizable then trace is permutable on G by Theorem 3.1.7. For

any A,B, and G in G, tr(G(A−1B−1AB)) = tr(GI) = tr(G). Therefore for any H in

H we have tr(GH) = tr(G) so trace is constant on GH and (i) implies (ii).

As H is a coset of G relative to itself, (ii) implies (iii) trivially.

If the trace is constant on H, H is triangularizable by Kaplansky’s Theorem

(3.1.8). Further, it tells us that σ(H) ⊆ {0, 1} for every H in H. Since H is a group,

H is invertible and 0 cannot be in σ(H). Therefore σ(H) = {1} and (iii) implies (iv).

Finally, assume that H consists of unipotent operators. If H = {I} then G is

commutative and G is triangularizable by Theorem 2.2.4.

Consider H 6= {I}. The commutator subgroup of a quotient is the quotient

of the original commutator subgroup. Also, σ(H|M/N ) ⊆ σ(H) = {1} for H in

H with invariant subspaces N ⊂ M. Since a commutator subgroup consisting of

unipotents is inherited by quotients, it’s sufficient to show that G is reducible by the

Triangularization Lemma (2.2.3).

By Kolchin’s Theorem (3.1.4), H is triangularizable. Take a triangularizing chain

{0} = V0 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V for H. We claim

M = span{(H − I)V : H ∈ H}

is a nontrivial invariant subspace for G.

Since H 6= {I}, H − I 6= 0 for some H in H and M 6= {0}. Since, with respect

to the Vi’s, H consists of upper triangular unipotent operators, the last row of H − I
for every H in H is zero. Therefore (H − I)V ⊆ Vn−1 6= V . Hence M is nontrivial.

For any G in G and H in H, G(H − I) = (GHG−1 − I)G, so

G(H − I)V = (GHG−1 − I)GV = (GHG−1 − I)V

and H is normal so GHG−1 ∈ H. Therefore GM ⊆M.

As M is a nontrivial invariant subspace for G, G is reducible and thus triangular-

izable.

2
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3.1.10 Corollary

Let F be a self-adjoint family of operators in B(V). Then F is commutative if and

only if trace is permutable on F .

Proof. If F is commutative then trace is clearly permutable on F .

Assume that trace is permutable on F . By Theorem 3.1.7, F is triangularizable.

Let {0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn = V be a triangularizing chain for F . Take Vj to

be the orthogonal complement of Mj−1 relative to Mj for j = 1, . . . , n. Take a unit

vector ei from each Vi. Then the set {e1, . . . , en} is an orthonormal basis for V with

Mi spanned by {e1, . . . , ei}.

Let 1 ≤ i < j ≤ n. For any F in F , Fei ⊆ Mi ⊆ Mj−1. By definition,

〈Fei, ej〉 = 0 as ej ∈ Vj. Additionally, F is self-adjoint so F ∗ ∈ F . Therefore

〈Fej, ei〉 = 〈ej, F ∗ei〉 = 0. Therefore Fei ⊥ ej for i 6= j so F is diagonal with respect

to {e1, . . . , en}.

Therefore F is commutative as it’s diagonal with respect to the ei’s.

2

3.2 The Finiteness Lemma

Our goal in this section is to prove a result that will allow us to reduce questions

about certain semigroups of operators in B(V) to questions about finite groups. We

are interested in semigroups with a property P that is stable under a number of

conditions. For instance, if S has property P then we require that both S and CS
also have property P .

We’d also like to require that for any field automorphism φ and the induced

automorphism Φ, Φ(S) have property P . However, this would not allow us to consider

semigroups that satisfy polynomial equations with non-rational coefficients as such

polynomials are not stable under all field automorphisms of C. Therefore, we ask

that if S has property P then so does Φ−1(CΦ(S)).

The following preliminary result from group theory will be necessary to prove our

major result.
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3.2.1 Lemma

Let G be a compact unitary group in B(V). If G is a torsion group (a group in which

every element has finite order), then G is a finite group.

Proof.

First we’ll show that there is a k in N such that Gk = I for every G in G. Consider

an arbitrary G in G. It’s unitary so it can be diagonalized with its diagonal consisting

of its spectrum which is a subset of T. Since it’s a torsion group, its spectrum consists

of roots of unity. If every such λ was at most a kth root of unity then λk! = 1 for all

λ and Gk! = I for all G ∈ G.

Assume there is no k as above. Then for every m, there must be a Gm in G with

a λm in its spectrum with λm at least an mth root of unity. Then {λkm : m, k ∈ N}
is dense in T, the unit circle in C. Choose a λ in T which is not a root of unity.

Take a sequence of powers of λm’s converging to λ. Since G is compact, we can take

a subsequence of the corresponding powers of Gm’s that converges to a G in G. But

then λ is in σ(G) by Lemma 2.4.5 which contradicts that the spectrum of elements

of G consists of roots of unity. Therefore, there is a k such that Gk = I for all G in

G.

Now we need to show that this means G is finite. Let 0 < ε <
∣∣1− e2πi/k

∣∣ and

define a neighbourhood of I in G by

NI = {G ∈ G : ‖I −G‖ < ε}.

Let G be in NI . We can diagonalize G without affecting I. Then, ‖I −G‖ < ε means

that every element of σ(G) is within ε of 1. But any root of unity (except 1) that close

to 1 is at least a (k + 1)st root of unity which would contradict Gk = I. Therefore,

σ(G) = {1} so G = I. Therefore NI = {I}.

For each G0 in G we can define

NG0 = {G ∈ G : ‖G0 −G‖ < ε},

but if G ∈ NG0 then∥∥I −G−1
0 G

∥∥ =
∥∥G−1

O (G0 −G)
∥∥ ≤ ∥∥G−1

0

∥∥ ‖G0 −G‖ = ‖G0 −G‖ < ε,

so G−1
0 G is in N so G = G0 and NG0 = {G0}.
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Now, {NG}G∈G is a cover for G and G is compact so there is a finite subcover. But

each of those neighbourhoods consists of a single element so G is finite.

2

We can now proceed to prove the major result of this section.

3.2.2 Lemma (The Finiteness Lemma)

Let P be a property defined for semigroups of operators in B(V) such that, whenever

S has the property, so does the semigroup Φ−1(CΦ(S)) for every choice of ring au-

tomorphism Φ induced by a field automorphism of C. Let S be a maximal semigroup

in B(V) with property P. Denote the minimal nonzero rank in S by m. If E is an

idempotent of rank m in S, then ESE|EV is of the form CG, where G is a finite group

(similar to a unitary group in Mm(C)).

Proof. For any automorphism Φ, S is contained within Φ−1(CΦ(S)) so, by maxi-

mality, S = Φ−1(CΦ(S)). In particular, the identity field automorphism induces the

identity ring automorphism so S = CS by substituting the identity for Φ.

By Lemma 2.3.3, we can assume S0 = ESE|EV is contained in R+U where U is

the set of unitaries in Mm(C). So, every element in S0 is of the form rU where r is a

nonnegative number and U is a unitary. Since S = CS, we have that U is in S0. Let

G = {S ∈ S0 : det(S) = 1} so, since S0 is contained in R+U , G is a set of unitaries in

S0. If we can show that G is finite then we’re done.

First we’ll show that every element of G has finite order, in other words, that G is

a torsion group. Assume that G contains a member, A, with infinite order. If Ar = λI

for some λ and positive integer r, then Ar
2

= I since λr = det(Ar) = (det(A))r = 1

which would contradict A having infinite order.

Let α0 be an eigenvalue (so |α0| = 1) of A and define B = A/α0. Then 1 is in

σ(B) and no power of B can be a scalar either. Since B is unitary, we can assume

it’s diagonal. If every eigenvalue, αi, of B had a positive integer ri such that αrii = 1

then Blcm(r1,...,rm) = I which is impossible. Therefore, there must be some eigenvalue,

α, of B such that αr 6= 1 for all r.

Then {αr : r ∈ N} is dense in the unit circle, T. Let λ be a transcendental number

in T and choose a sequence {αr} converging to λ. Since S = S, G is closed and it’s a
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unitary group so it’s bounded. Therefore G is compact so we can take a subsequence

{Bri} which converges to B0.

We know 1 and λ are in σ(B0) by Lemma 2.4.5. Let µ be algebraically independent

of λ with |µ| < 1. Using Lemma 2.5.1, let φ be a field automorphism on C with

φ(λ) = µ and φ(µ) = λ. Let Φ be the ring automorphism induced by φ.

Since E is in S, so is EB0E. We know EB0E has rank m (as it’s a unitary on

EV) and we can assume it’s diagonal as its restriction is a unitary. Since λ and 1 are

in σ(EB0E), they appear on the diagonal of EB0E. Then Φ(EB0E) is also diagonal,

has 1 and µ on its diagonal and has rank m.

As Φ(EB0E)
ρ(Φ(EB0E))

is diagonal with entries of modulus at most one,

Fn =

(
Φ(EB0E)

ρ(Φ(EB0E))

)n
is bounded. We can thus take a convergent subsequence, Fni

, with limit F . Since

|µ| < 1 and ρ(Φ(EB0E)) ≥ 1, ( µ
ρ(Φ(EB0E))

)ni converges to zero. Therefore, F has rank

at most m − 1. Also, since at least one of the diagonal entries must have the same

modulus as ρ(Φ(EB0E)), F has rank at least 1.

Now, F is in CΦ(S) so Φ−1(F ) is in Ŝ = Φ−1(CΦ(S)) which contains S. By

maximality, we should have S = Ŝ. However, Φ−1(F ) has the same rank as F ,

specifically, no more than m − 1 and at least 1. But then Φ−1(F ) can’t be in S as

m was the minimal nonzero rank in S. This contradicts maximality so G must be a

torsion group.

By Lemma 3.2.1, G is finite and we’re done.

2

The Finiteness Lemma can then be used to address issues of reducibility. To do

so, we make use of the following technical lemma.

3.2.3 Lemma

Let P be a property satisfying the hypotheses of the Finiteness Lemma. Assume,

furthermore, that

(i) if S is a semigroup with property P, J is an ideal of S, and E a minimal

nonzero idempotent in S, then both J and ESE|EV have property P,
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(ii) every finite group with property P is reducible, and

(iii) every semigroup of operators of rank at most one with property P is reducible.

Then every semigroup S with property P is reducible.

Proof. We can assume without loss of generality that S is maximal with property

P as if a maximal example is reducible then all semigroups with property P are

reducible.

Assume that S is irreducible. Let m be the minimal nonzero rank in S. By

Lemma 2.3.3, there is an idempotent E of rank m in S.

If m ≥ 2, by the Finiteness Lemma, ESE|EV = CG where G is a finite group.

By (i), G has property P . By (ii), G is reducible so ESE|EV is reducible and S is

reducible by Lemma 2.2.13.

If m = 1 then the ideal J of rank at most one operators in S is nontrivial. By

(i), J has property P . By (iii), J is reducible, so S is reducible by Lemma 2.2.12.

Either way, we reach a contradiction, so S must be reducible.

2

In the following two sections, we will consider partial spectral mapping properties

and use the Finiteness Lemma to prove a number of reducibility results.

In particular, we will consider weakenings of the following property. If A and B

are operators in B(V) and we can order the eigenvalues of A as {α1, . . . , αn} and those

of B as {β1, . . . , βn} such that, for any polynomial p in two variables, the eigenvalues

of p(A,B) are precisely p(αi, βi) for 1 ≤ i ≤ n we say that the pair {A,B} has

property P . A family of operators has property P if every pair of operators in it has

the property.

Property P is clearly necessary for triangularizability and we’ll show that various

weakenings of it are sufficient as well. Specifically, instead of requiring an ordering of

the eigenvalues, we’ll only require that

σ(p(A,B)) ⊆ {p(α, β) : α ∈ σ(A), β ∈ σ(B)}

We’ll weaken the property further in each section.
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3.3 Subadditive and Sublinear Spectra

In this section, we investigate two partial spectral mapping properties, sublinear and

subadditive spectra, to see if they are sufficient conditions for triangularizability (like

property P , they are clearly necessary).

3.3.1 Definition

The spectrum is said to be sublinear on two operators, A and B, if for every λ in C

σ(A+ λB) ⊆ σ(A) + λσ(B).

It is said to be subadditive if the inclusion holds for at least λ = 1.

Sublinearity and subadditivity of the spectrum on a family of operators F in B(V)

means that the inclusion holds for every pair of operators A and B in F .

Note that subadditivity is a weakened version of property P based on a single

polynomial, p(x, y) = x + y, and sublinearity is a weakening by restriction to linear

polynomials.

We will show that sublinearity of the spectrum is inherited by quotients, satis-

fies the properties of the Finiteness Lemma, and is sufficient for triangularizability.

Subadditivity will also be sufficient in certain circumstances.

First we want to show that if the sublinearity condition holds for enough values

of λ then it holds for all values of λ.

3.3.2 Lemma

Let A and B be operators in B(V). If

σ(A+ λB) ⊆ σ(A) + λσ(B)

for each λ in an infinite set Λ then the spectrum is sublinear on A and B. In fact,

we need only have |Λ| > n2n/(n− 1)!.

Proof. Let n = dim(V). For each λ in Λ define the eigenvalue set of A+ λB to be

Fλ = {(α, β, k) : α+ λβ ∈ σ(A+ λB), α ∈ σ(A), β ∈ σ(B)},
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where k is the multiplicity of α+ λβ as an eigenvalue. Now, α and β come from the

finite sets σ(A) and σ(B) respectively and k can be at most the dimension of the

space, n. Therefore there are a finite number of possible values for Fλ, but an infinite

number of λ’s. Therefore there is an infinite subset Λ′ of Λ so that every λ in Λ′ has

the same eigenvalue set. Without loss of generality, we take Λ = Λ′ and we call the

single remaining eigenvalue set F .

We want to show that F is the eigenvalue set for every λ in C. Consider the

function

f(λ, x) = det(A− λB − x).

Now f is a polynomial in x and λ. Therefore, f is analytic.

The eigenvalues of multiplicity one of A + λB are those values of x which are

solutions to f(λ, x) = 0, but not df
dx

(λ, x) = 0. The eigenvalues of multiplicity two of

A+λB are those which are roots of f(λ, x) = 0 and df
dx

(λ, x) = 0, but not d2f
dx2 (λ, x) = 0.

This holds greater multiplicities in a similar manner.

Take (α, β, k) in F . Then

g(λ) = f(λ, α+ λβ) = det(A− λB − (α+ λβ))

is a polynomial of degree at most n in λ. Since each λ in Λ is a root of g, it has

infinitely many roots and is therefore the zero polynomial. Therefore every λ in C is

a root for g. This means that α+ λβ is an eigenvalue of multiplicity at least one for

A+ λB for all λ in C.

Now, if k > 1, consider

h(λ) =
df

dx
(λ, α+ λβ).

Taking a derivative by x won’t increase the degree of λ so h is still a polynomial in λ

of degree at most n. Since α + λβ has multiplicity k as an eigenvalue of A+ λB for

λ in Λ, every such λ is a root of h. h then has infinitely many roots so it’s the zero

polynomial and α+ λβ is a root for all λ in C.

Repeating this argument we can see that α + λβ is an eigenvalue of multiplicity

at least k for A+ λB for all λ in C. As this is true for an arbitrary element of F and

F consists of n eigenvalues (counting multiplicity), F is the eigenvalue set for every

λ in C.

Note the only time we use the size of Λ is when we claim that g(λ), h(λ), and

any further derivatives of f are actually zero polynomials. Each such polynomial has
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at most degree n so we need only have n + 1 roots in order to conclude it’s the zero

polynomial. The number of roots is determined by how many values of λ share the

same eigenvalue set.

First, how many possible eigenvalue sets are there? A has at most n eigenvalues

and B has at most n eigenvalues. Therefore there are at most n2 pairs {α, β}. Then

there are at most
(
n2

n

)
possible ways of selecting n (not necessarily distinct) eigenvalues

and this selection determines the k in the eigenvalue set.

In order to have n + 1 λ guaranteed to share the same eigenvalue set, we must

have more than n times the number of possible eigenvalue sets. Calculation gives

n

(
n2

n

)
=

nn2!

n!(n2 − n)!

=
n2(n2 − 1) · · · (n2 − n+ 1)

(n− 1)!
n2(n2 − 1) · · · (n2 − n+ 1)

≤ (n2)n

(n− 1)!
=

n2n

(n− 1)!
.

Thus having more than n2n/(n−1)! elements in Λ is sufficient to guarantee sublinearity

of spectrum.

2

3.3.3 Theorem

Let A and B be operators with a common invariant subspace M and let A0 = A|M
and B0 = B|M. If the spectrum is sublinear on A and B then it is sublinear on A0

and B0. If the spectrum is subadditive on A and B and they both have rank at most

one then the spectrum is subadditive on A0 and B0.

Proof. Assume the spectrum is sublinear on A and B. By the sublinearity of the

spectrum, every eigenvalue of A + λB is of the form α + λβ for α in σ(A) and β

in σ(B). Since M is a common invariant subspace for A and B, each eigenvalue of

Cλ = A0 +λB0 is also of this form. We want to show that for every eigenvalue of Cλ,

α is in σ(A0) and β is in σ(B0).

Thanks to Lemma 3.3.2, it suffices to show the sublinearity condition on an infinite

set. We define eigenvalue sets

Eλ = {(α, β) : α+ λβ ∈ σ(Cλ), α ∈ σ(A), β ∈ σ(B)}.
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Note that we don’t have to worry about the multiplicity here. We want to show that

Eλ ⊆ σ(A0)× σ(B0) for infinitely many λ.

As Eλ is a subset of the finite set σ(A)×σ(B) there are only finitely many distinct

Eλ. Since C is infinite there must be an infinite subset Λ of C that shares the same

Eλ. We’ll denote this shared set E .

Let m = dim(M). Then for a fixed (α, β) in E define

p(λ) = det((A0 − α) + λ(B0 − β)) = det(Cλ − (α+ λβ)),

which is a polynomial of degree at most m in λ. Since α + λβ is in σ(Cλ) for every

λ in Λ, all such λ are roots of p. Therefore p has infinitely many roots and is the

zero polynomial. In particular, the coefficients of λ0 and λm are zero. We claim these

coefficients are det(A0 − α) and det(B0 − β), respectively.

To see this, consider Cλ − (α + λβ) under a basis that makes A0 − α upper

triangular. We now calculate the determinant of Cλ − (α + λβ) using a cofactor

expansion. Expand along the first column and, since A0 − α is upper triangular and

every entry of λ(B0−β) contains λ, everything except for the (1, 1) entry will produce

only nonconstant terms which we can ignore when looking for the constant coefficient.

The portion of the (1, 1) term contributed by λ(B0 − β) also contains λ and won’t

contribute to the constant coefficient. We’re left with the (1, 1) entry of A0−α times

the cofactor of Cλ−(α+λβ) with the first row and column removed. By repeating this

argument, we get that the constant coefficient of p(λ) is the product of the diagonal

entries of A0 − α or, in other words, det(A0 − α). Similarly, the coefficient of λm is

det(B0 − β).

Therefore det(A0 − α) = 0 and det(B0 − β) = 0 so (α, β) is in σ(A0) × σ(B0).

Therefore E is in σ(A0) × σ(B0) so the sublinearity condition holds for an infinite

number of λ on A0 and B0. Therefore the spectrum is sublinear on A0 and B0 by

Lemma 3.3.2.

Now, assume the spectrum is subadditive on A and B and that A and B have

rank one. If A0 = 0 then σ(A0) = {0} and σ(A0 +B0) = σ(B0) = σ(A0) + σ(B0) and

similarly for B0 = 0. Also, if m ≤ 1 then A0 and B0 are at most one by one matrices

and the result is obvious.
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Assume m ≥ 2 and A0, B0 6= 0. Since A has rank one,

A =

(
A0 A1

0 0

)
,

so σ(A) = σ(A0) as σ(A0) contains zero as A0 is rank one on a space of dimension at

least 2. Similarly, σ(B0) = σ(B). Therefore

σ(A0 +B0) ⊆ σ(A+B) ⊆ σ(A) + σ(B) = σ(A0) + σ(B0),

so the result is proved.

2

3.3.4 Corollary

Sublinearity of spectrum is inherited by quotients. Subadditivity is inherited by quo-

tients if the operators have rank at most one.

Proof. Let A and B be operators in B(V) with sublinear spectrum. Let N and

M be invariant subspaces for A and B with N properly contained within M. By

Theorem 3.3.3, A|M and B|M have sublinear spectrum so we can assume M = V
and decompose A and B with respect to N and N⊥ as

A =

(
A1 A2

0 A3

)
B =

(
B1 B2

0 B3

)
.

Since

σ(A∗ + λB∗) = σ(A+ λB) ⊆ σ(A) + λσ(B) = σ(A∗) + λσ(B∗),

A∗ and B∗ have sublinear spectrum. Then A∗3 = (A∗)|N⊥ and B∗
3 = (B∗)|N⊥ so,

by Theorem 3.3.3, A∗3 and B∗
3 have sublinear spectrum. But then A3 and B3 have

sublinear spectrum by reversing the argument for A∗ and B∗.

The same argument works for subadditivity by replacing λ with 1, so long as A

and B have rank at most one.

2

Having shown inheritability by quotients, we turn to the case of operators of rank

at most one.
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3.3.5 Lemma

Let S be an irreducible semigroup in Mn(C) consisting of operators of rank at most

one. Then

(i) There exist two bases, {ei} and {fj}, of column vectors for Cn such that the

basis

{eif ∗j : i, j = 1, . . . , n}

of Mn(C) is contained in S.

(ii) For each k ≤ n, there exists a k-dimensional subspace M of Cn and a subsemi-

group S0 of S leaving M invariant such that S0|M is irreducible.

(iii) In particular, if k = 2, there exist numbers α, β, γ, δ with αδ − βγ 6= 0 and

βγ 6= 0 such that S0|M is generated by(
α 0

β 0

)
and

(
0 γ

0 δ

)

with respect to an appropriate basis.

Proof. (i) Since S is irreducible, it contains a nonzero operator S. Since S has rank

one, S = ef ∗ for some nonzero column vectors e and f in Cn. As S is irreducible,

Se must contain a basis {ei} for Cn. Also, S∗ is irreducible, so S∗f must contain a

basis {fj} for Cn. Then S contains every operator of the form Sef ∗S which includes

every eif
∗
j .

(ii) Let M = span{e1, . . . , ek} and let S0 = {eif ∗j : i = 1, . . . , k, j = 1, . . . , n}.
Then for any S in S0, ran(S) is contained in M so M is an invariant subspace for

S0. We’ll show S0|M is irreducible by showing it contains a basis for Mk(C).

Every fj can be written as fj = gj + hj with gj in M and hj in M⊥. Since {fj}
is a basis for Cn, {gj} must be a spanning set for M. Write S0 with respect to the

basis {ei}. Then for eif
∗
j in S0, eif

∗
j |M = eig

∗
j |M. As {ei} and {gj} are bases for M,

eig
∗
j |M is a basis for Mk(C) contained in S0|M. Therefore, S0|M is irreducible.

(iii) If k = 2 then S0 contains {eif ∗j : i, j = 1, 2}. Let e1 =
(
α
β

)
and e2 =

(
γ
δ

)
with

respect to {f1, f2}. Since e1 and e2 are linearly independent αδ − βγ 6= 0. We can
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assume βγ 6= 0 since otherwise αδ 6= 0 and we can simply reverse the roles of e1 and

e2. Then we know S0 contains

S =

(
α 0

β 0

)
and T =

(
0 γ

0 δ

)
.

Let S1 be the subsemigroup of S0 generated by S and T . Then

δS − TS =

(
αδ − βγ 0

0 0

)
and αT − ST =

(
0 0

0 αδ − βγ

)
.

Since β 6= 0, γ 6= 0, and αδ − βγ 6= 0 we have that S, T, TS, and ST span M2(C).

Therefore S1 is an irreducible subsemigroup of S.

2

3.3.6 Theorem

Let S be a semigroup of operators of rank at most one with subadditive spectrum.

Then S is triangularizable.

Proof. By Corollary 3.3.4 and the Triangularization Lemma (2.2.3), it’s enough to

show that S is reducible. Assume S is irreducible. By Lemma 3.3.5, we can find a

subsemigroup S0 of S and an S0-invariant subspace, M, of dimension 2 such that

S0|M is irreducible and generated by

S =

(
α 0

β 0

)
and T =

(
0 γ

0 δ

)
,

with αδ − βγ 6= 0 and βγ 6= 0.

Then subadditivity applies to S and T so σ(S+T ) must be contained in {0, α, δ, α+

δ}. Now, the characteristic equation of S + T is

det(λ− (S + T )) = λ2 − (α+ δ)λ+ αδ − βγ = 0.

Substituting α or δ for λ gives βγ = 0 while substituting 0 or α + δ for λ gives

αδ−βγ = 0. These are both contradictions so S is reducible and thus triangularizable.

2
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3.3.7 Example

The assertion of Theorem 3.3.6 does not hold without the restriction on rank.

Proof. Take {Eij} to be the standard basis for M2(C) and take J =

(
1 0

0 −1

)
.

Then the following matrices on C4 form a semigroup S:

E11 ⊕ I, E22 ⊕ I, O ⊕ I, E12 ⊕ J, E21 ⊕ J , 0⊕ J

Let M be the space acted on by the Eij’s above. Then M is clearly invariant for S
and as S|M contains the standard basis for M2(C), it is irreducible. Therefore S is

not triangularizable.

Since triangularizability implies subadditivity of spectrum and since every com-

muting pair is triangularizable (2.2.4), we need only consider the noncommuting pairs,

of which there are five.

We have σ(E11 ⊕ I) = σ(E22 ⊕ I) = {0, 1} while σ(E12 ⊕ J) = σ(E21 ⊕ J) =

{0, 1,−1}. Now,

σ(E11 ⊕ I + E12 ⊕ J) = {0, 1, 2} ⊂ σ(E11 ⊕ I) + σ(E12 ⊕ J) = {0, 1,−1, 2},

σ(E11 ⊕ I + E21 ⊕ J) = {0, 1, 2} ⊂ σ(E11 ⊕ I) + σ(E21 ⊕ J = {0, 1,−1, 2},

so the spectrum is subadditive on these pairs. Similarly, the two pairs involving

E22 ⊕ I have subadditive spectrum. Finally,

σ(E12⊕ J +E21⊕ J) = {1,−1, 2,−2} ⊂ σ(E12⊕ J) + σ(E21⊕ J) = {0, 1,−1, 2,−2},

so S has subadditive spectrum.

2

This concludes our discussion of subadditivity. For sublinearity, we require the

following result from group theory.

3.3.8 Lemma

Every minimal nonabelian finite group G (i.e., group such that every proper subgroup

is abelian) is solvable. In particular, such a group contains a normal subgroup of

prime index.
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Proof. Assume that the theorem is not true and let G be a counterexample of

minimal order. We make a few preliminary claims.

First, we claim G is simple. Assume otherwise. Then there is a nontrivial normal

subgroup H of G. As G is minimal nonabelian, H is abelian and is thus solvable.

Every maximal subgroup of G/H is of the form M/H where M is a maximal

subgroup of G. Since G is minimal nonabelian we have that all such M are abelian

and thus M/H is abelian. Therefore G/H is either abelian (and thus solvable) or

minimal nonabelian and thus solvable since G was chosen to be the counterexample of

minimal order. Then H and G/H are solvable so G is solvable. This is a contradiction

so G must be simple.

Next, we claim that if M1 6= M2 are maximal subgroups of G then M1 ∩M2 =

{I}. Assume otherwise. Then let R = M1 ∩M2 6= {I}. Consider the normalizer of

R in G:

N = {G ∈ G | G−1RG = R}.

Since G is minimal nonabelian, M1 and M2 are abelian. Then M1 and M2 commute

with R so M1 ∪M2 ⊆ N . Since G is simple and R 6= {I}, R can’t be normal so

N 6= G. Since N is a proper subgroup, it must be abelian so M1 ∪M2 must be

abelian. As M1 and M2 are distinct maximal subgroups, they generate G so G is

abelian, which is a contradiction. Therefore M1 ∩M2 = {I}.

We claim G has at least two non-conjugate maximal subgroups. Let |G| =

pr11 p
r2
2 . . . prtt . Since G isn’t solvable it isn’t a p-group so t ≥ 2 and every Sylow

pi-group of G is contained in a maximal subgroup of G. If a maximal subgroup M
contains a Sylow pi-subgroup (which has order prii ) then prii divides |M|. Thus such

an M couldn’t contain a pi-subgroup for all 1 ≤ i ≤ t as it would then be the entire

group. Therefore G must have at least two non-conjugate maximal subgroups.

Let {M1, . . . ,Mk} be a maximal set of mutually nonconjugate maximal subgroups

of G. Fix 1 ≤ i ≤ k and consider the groups conjugate to Mi. They will also be

maximal subgroups of G. If x, y ∈ G and x−1Mix = y−1Miy then yx−1Mixy
−1 =

Mi. Let z = xy−1 so z−1Miz = Mi.

If the subgroup generated by Mi and z were all of G then Mi would be normal,

but G is simple so this can’t happen. Since Mi is maximal, Mi and z must generate

Mi so z ∈ Mi. Then, as z = xy−1, x and y are in the same coset of Mi. So

x−1Mix = y−1Miy if and only if x and y are in the same coset of Mi. Therefore the
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number of distinct maximal subgroups conjugate to Mi is |G| / |Mi|.

Such maximal subgroups must cover all of G and since maximal subgroups intersect

trivially we have that

|G| = 1 +
k∑
i=1

(|Mi| − 1)
|G|
|Mi|

= 1 + k |G| −
k∑
i=1

|G|
|Mi|

.

The Mi are maximal so they’re nontrivial. Therefore |Mi| ≥ 2 and |G| ≥ 1 + k
2
|G|.

Thus k < 2 which is a contradiction as there are at least two non-conjugate maximal

subgroups. Therefore all such groups are solvable as originally desired. Thus the

commutator subgroup G is proper. Let G0 be a maximal abelian subgroup containing

the commutator subgroup of G. It’s automatically normal so we need only show it

has prime index. Let x ∈ G\G0. By the minimality of G, G is generated by x and G0.

Let k be the smallest power of x such that xk ∈ G0. Again, since G was chosen to be

minimal, k is a prime. (If k = pn then xn and G0 would generate a strictly smaller

group that x and G0.)

2

3.3.9 Lemma

Let p be a prime. If A,B ∈Mp(C),

A =


0 1

1
. . .
. . . . . .

1 0

 ,

and B is nonscalar and diagonal, then the pair {A,B} is irreducible.

Proof. As {A,B} is reducible if and only if the algebra A generated by A and B is

reducible, we’ll show that A is irreducible.

If λ 6= 0 is a diagonal entry of B then B − 1
λ
B2 will have the same zeroes on the

diagonal as B, plus all those entries of B that were λ are now zero. All other nonzero

entries will still be nonzero. By repeating this argument, we can create a scalar

multiple of a nontrivial diagonal projection and by normalizing we get a nontrivial

diagonal projection in A.
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We claim that if A contains a diagonal rank one projection E then A is irreducible.

Let {ei} be the basis for Cp relative to which A and B have the above forms. Say E

is the projection onto the span of ek for some 1 ≤ k ≤ p. Consider an element of the

form A−iEAi with 1 ≤ i ≤ p. It’s the projection onto el where l + i ≡ k mod p and

1 ≤ l ≤ p.

The invariant subspaces of a projection on ej are those spaces that contain ej and

those spaces that are subsets of {ej}⊥. Thus the invariant subspaces of

B = {A−iEAi : 1 ≤ i ≤ p} ⊆ A

are precisely those spaces that contain some subset of the ej’s and are perpendicular

to all the others. However, if M is an invariant subspace for A and M contains ej

then M will contain e1, . . . , ep and thus M = Cp. Then the only common subspaces

between A and B are the trivial subspaces so A is irreducible.

We want to show that we have such a rank one diagonal projection in A. Let E

be a diagonal projection in A of minimal positive rank r. Since B isn’t scalar, we

know r < p.

For any i and j, we have that A−iEAi and A−jEAj will still be diagonal projections

of rank r. (A−iEAi)(A−jEAj) will also be a diagonal projection and thus of rank

either 0 or r by minimality. The only way that two diagonal projections of rank r

can multiply to make another rank r projection is if they’re equal.

If r > 1 then it’s impossible for there to be p diagonal projections of rank r on a p

dimensional space that are mutually orthogonal. Therfore there must be an i 6= j such

that A−iEAi = A−jEAj. Since Ap = I there is a 1 ≤ k < p such that A−kEAk = E.

Thus A−skEAsk = E for all integers s. As p is prime, there is an integer s such that

sk ≡ 1 mod p and therefore A−1EA = E. But this forces E to be either 0 or I and

E has postive rank r < p. This is a contradiction, so r = 1 and {A,B} is irreducible

as claimed

2

3.3.10 Lemma

Let G be a minimal nonabelian finite group of operators on Cn. Then there exist

primes p and q, not necessarily distinct, and a p-dimensional subspace M of Cn
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invariant under G such that G|M is, after a similarity, generated by two operators of

the form

A = α


0 1

1
. . .
. . . . . .

1 0

 B = β


θ1

θ2

. . .

θp

 ,

where B is nonscalar and θqi = 1 for all i. Furthermore, αp
r

= βq
s

= 1 for some

nonnegative integers r and s.

Proof. Since G is finite we can assume it’s a unitary group by Theorem 2.3.1. Let

H be the normal subgroup of index p from Lemma 3.3.8. Then H is a commutative

group of unitaries as G is minimal nonabelian. As H is commutative, it’s triangular-

izable and similar to a unitary group. Therefore, it’s self-adjoint and, as we saw in

Corollary 3.1.10, we can assume H is diagonal. Since H has index p in G, we can take

G ∈ G/H such that Gp ∈ H.

We can then decompose Cn = M1 ⊕ · · · ⊕ Mr where each Mi is a maximal

subspace of Cn invariant under H such that H|Mi
consists of scalars. Since H doesn’t

consist entirely of scalars (if it did then G would be commutative) we have that r ≥ 2.

Fix H in H. Since H is normal, GH = HG and there is an H ′ in H such that

GH = H ′G. For any x in Mi,

HGx = GH ′x = G(λx) = λGx,

where H ′|Mi
= λI|Mi

. Therefore GMi is invariant for H and H|GMi
consists of

scalars.

By definition, GMi must be contained within some Mj. If GMi isn’t maximal

with the scalar property, then it is contained inside a larger subspaceN with the scalar

property. By a similar argument, G−1N is a subspace with the scalar property that

properly contains Mi. This contradicts the maximality of Mi. Therefore GMi =

Mj. Since G is invertible, distinct i’s produce distinct j’s. Therefore G induces a

permutation τ such that GMi = Mτ(i) for all i. Since G isn’t commutative and is

generated by H and G, there is an i such that i 6= τ(i).

Let x ∈Mi and consider the subspace, M, of Cn spanned by {x,Gx, . . . , Gp−1x}.
ThenM is invariant underH as each Gjx ∈Mτj(i) is an eigenvector for every element

of H. Let A = G|M and H0 = H|M.
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Since x and Gx come from different subspaces, Mi andMτ(i), at least one element

of H isn’t a scalar on M as this would contradict the maximality of the Mi. Also,

the vectors {x,Gx, . . . , Gp−1x} are a basis as the subspaces GjMi must be distinct.

If they weren’t, we’d have GkMi = Mi for some k. Then GksMi = Mi for all s ∈ N.

As p is prime there is an s such that ks ≡ 1 mod p and, as Gp ∈ H and Mi is

invariant for H, GkMi = Mi. This is a contradiction, so the spaces are distinct.

Now each Gjx is an eigenvector for every element of H so H0 is diagonal with

respect to this basis. And

A =


0 λ

1
. . .
. . . . . .

1 0


as Ax = Gx, . . . , Ap−1x = Gp−1x and Gp ∈ H. Therefore Ap ∈ H0 and Ap acts as a

scalar on x ∈Mi.

H0 has nonscalar members as M was constructed from at least two distinct maxi-

mal scalar subspaces. Let B be a nonscalar in H0. Since H0 is a finite group, Bn = I

for some n. Let q be the smallest power such that Bq is scalar (such a q exists and is

at most n). By taking powers of B, we can assume q is a prime. So Bq = µI and, by

taking β = µ, B has the appropriate form.

Since G is a group, A is invertible and λ 6= 0. Take α to be a pth root of λ. Then

A is similar to αP where P is the invertible right shift. The similarity is give by

diag(1, α, . . . , αp−1), so it doesn’t change B. Therefore A and B are as required. The

group G0 generated by A and B is irreducible by Lemma 3.3.9. As G is minimal we

get G0 = G|M.

Finally, let the order of α be mpr where p doesn’t divide m. As p is prime, there

is an integer t such that mt ≡ 1 mod p. Then Amt has the same form as A except

that α has been replaced by α1 = αmt and thus αp
r

1 = 1. By minimality, α1 = α and

m = 1. We can apply a similar argument to β.

2
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3.3.11 Theorem

A finite group of matrices with sublinear spectrum is abelian (and thus diagonalizable)

Proof. Assume that there are finite groups with sublinear spectrum that are not

abelian. Consider a minimal counterexample. It’s a minimal nonabelian finite group

so, by Lemma 3.3.10, it has a restriction to a group G generated by operators A and

B as in the lemma and acting on a space of dimension p, a prime.

By Theorem 3.3.3, the spectrum is sublinear on G. Then the spectrum is sublinear

on CG as well. Therefore we can take α = β = 1 without loss of generality.

If p = q = 2 then, since B is not scalar, we have, possibly after scaling, that

A =

(
0 1

1 0

)
B =

(
1 0

0 −1

)
,

so σ(A) = {1,−1} and σ(B) = {1,−1}. By sublinearity, σ(A + λB) is contained in

{1 + λ, 1− λ,−1 + λ,−1− λ}. However,

xI − (A+ λB) =

(
x− λ −1

−1 x+ λ

)
,

so its characteristic equation is x2−(λ2+1) = 0. But letting x take on any of the four

values from sublinearity gives ±2λ = 0 which only holds for λ = 0 which contradicts

sublinearity.

Assume at least one of p or q is not 2. We can scale B so that det(B) = 1. Then

det(AB) = det(A) and

AB =


0 θp

θ1
. . .
. . . . . .

θp−1 0

 .

By applying a diagonal similarity, we can show AB is similar to A. So σ(AB) =

σ(A) = {z : zp = 1}. Also

xI − (AB + λA) =


x −(λ+ θp)

−(λ+ θ1)
. . .
. . . . . .

−(λ+ θp−1) x

 .
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By performing a sequence of row reductions we get that

xI − (AB + λA) ∼



x −(λ+ θp)

x2 (−1)3(λ+ θp)(λ+ θ1)
. . .

...

xp−1 (−1)2p−3(λ+ θp)
∏p−2

i=1 (λ+ θi)

xp + (−1)2p−1
∏p

i=1(λ+ θi)


.

The characteristic equation of AB + λA is thus

xp + (−1)2p−1

p∏
i=1

(λ+ θi) = 0,

since we can ignore the excess multiples of x (as 0 is in the spectrum of AB + λA if

and only if it is not invertible which happens if and only if some λ+ θi = 0 in which

case 0 will be the only root of the above equation). So the spectrum of AB + λA

consists of the pth roots of
∏p

i=1(λ+ θi).

But sublinearity says that σ(AB+λA) is contained within {ψ+λφ : ψp = φp = 1}.
There are finitely many pth roots of unity so there are a finite number of elements of

the form ψ + λφ with ψp = φp = 1. Therefore there is an element ψ + λφ that is in

σ(AB + λA) for infinitely many λ. This value is a pth root for
∏p

i=1(λ + θi) for all

these λ, so
p∏
i=1

(λ+ θi) = (ψ + λφ)p = (
ψ

φ
+ λ)p

for infinitely many λ. But that means that a polynomial in λ of degree p has infinitely

many roots, so it must be the zero polynomial and therfore 0 on all values of λ. In

particular, for every i, λ = −θi we see

0 = (
ψ

φ
− θi)

p,

so θi = ψ
φ

for all i which contradicts that B isn’t scalar. Therefore no such counterex-

ample exists so such a group is abelian.

Since it’s a finite group, it’s bounded and simultaneously similar to a unitary group

by Theorem 2.3.1. Unitary groups are self-adjoint, abelian groups are triangularizable,

and triangularizable self-adjoint groups are diagonalizable by Corollary 3.1.10.

2
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We’re now ready to show that sublinearity of the spectrum is a sufficient condition

for triangularizability.

3.3.12 Theorem

Every semigroup of matrices with sublinear spectrum is triangularizable.

Proof.

By Corollary 3.3.4, sublinearity of spectrum is inherited by quotients so, by the

Triangularization Lemma (2.2.3), we need only show reducibility.

If S has sublinear spectrum then so does CS. Also, for any A and B in S and

{An} and {Bn}, sequences in S converging to A and B respectively,

σ(A+ λB) = lim
n−→∞

σ(An + λBn) ⊆ lim
n−→∞

σ(An) + λ lim
n−→∞

σ(Bn) = σ(A) + λσ(B)

by Lemma 2.4.5. Thus S has sublinear spectrum. Finally, for any ring automorphism

Φ induced by a field automorphism φ and A and B in S, we see that

σ(Φ(A) + λΦ(B)) = σ(Φ(A+ φ−1(λ)B))

= φ(σ(A+ φ−1(λ)B))

⊆ φ(σ(A) + φ−1(λ)σ(B))

= φ(σ(A)) + λφ(σ(B))

= σ(Φ(A)) + λσ(Φ(B))

by Lemma 2.5.3. Therefore Φ(S) also has sublinear spectrum and sublinear spectrum

satisfies the requirements of the Finiteness Lemma (3.2.2).

In order to show reducibility we need only show that sublinearity of spectrum

meets the requirements of Lemma 3.2.3.

For (i), any ideal of a semigroup S with sublinear spectrum is a subset of S and

thus has sublinear spectrum. For any minimal nonzero idempotent E in S and A

and B in S, EAE and EBE are in S so the spectrum is sublinear on them. By

Theorem 3.3.3, the spectrum is sublinear on EAE|EV and EBE|EV since EV is an

invariant subspace for EAE and EBE. Therefore, spectrum is sublinear on ESE|EV .

(ii) is proved by Theorem 3.3.11 and (iii) is proved by Theorem 3.3.6 as sublinearity

implies subadditivity. Therefore the requirements of Lemma 3.2.3 are met and S is

reducible. Therefore S is triangularizable.
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2

3.3.13 Corollary

If S is a self-adjoint semigroup of matrices with sublinear spectrum, then S is diago-

nalizable (and thus abelian).

Proof. By Theorem 3.3.12, S is triangularizable. As we saw in Corollary 3.1.10, a

triangularizable, self-adjoint family is diagonalizable.

2

3.3.14 Corollary

If G is a unitary group with sublinear spectrum then G is abelian

Proof. For any A in G, A∗ = A−1 which is in G as G is a group. Therefore G is

abelian by Corollary 3.3.13.

2

3.3.15 Corollary

If every pair of operators in a semigroup S is triangularizable, then so is S itself.

Proof. For every A and B in S, {A,B} is triangularizable. Therefore spectrum is

sublinear on every pair A and B from S so spectrum is sublinear on S. Therefore S
is triangularizable by Theorem 3.3.12.

2

3.3.16 Corollary

The following conditions are mutually equivalent for a semigroup S of operators in

B(V):

(i) S is triangularizable.
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(ii) for all integers m, scalars λ1, . . . , λm and members S1, . . . , Sm of S,

σ(λ1S1 + · · ·+ λmSm) ⊆ λ1σ(S1) + · · ·+ λmσ(Sm).

(iii) S has sublinear spectrum.

(iv) σ(A+ λB) ⊆ σ(A) + λσ(B) for all integers λ and all pairs A and B in S.

(v) for every pair A and B in S, there are infinitely many values of λ for which

σ(A+ λB) ⊆ σ(A) + λσ(B).

(vi) for n = dim(V) and for every pair A and B in S, there are more than L =

n2n/(n− 1)! values of λ for which

σ(A+ λB) ⊆ σ(A) + λσ(B).

Proof. (i) clearly implies (ii) and (ii) implies (iii) by taking m = 2 and λ1 = 1. (iii)

implies (iv) as taking λ to be an integer is a restriction on the sublinearity condition.

(iv) implies (v) as there are infinitely many integers and (v) obviously implies (vi).

Also, (iii) implies (i) by Theorem 3.3.12.

To complete the proof, we’ll show (vi) implies (iii). But this follows directly from

the second part of Lemma 3.3.2, so we’re done.

2

3.4 Polynomial Conditions on Spectra

In this section we consider the weakening of property P when it holds for a single

polynomial p(x, y) which vanishes whenever x and y commute. If A and B are

simultaneously upper triangularizable then p(A,B) would necessarily be nilpotent.

We investigate whether this nilpotence is a sufficient condition when we restrict p

to being linear in the second variable.
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3.4.1 Definition

Let g(x) =
∑m

j=0 ajx
j. Then we define a noncommutative, homogeneous polynomial

fg by fg(x, y) =
∑m

j=0 ajx
jyxm−j. When we define g as above, there is an implicit

assumption that am 6= 0.

3.4.2 Definition

Given a polynomial g(x), we say that fg is nilpotent on a family F of operators in

B(V) if fg(S, T ) is nilpotent for every S and T in F .

Unfortunately, there are many polynomials that are nilpotent, or even vanish, on

irreducible groups. For instance, there are irreducible groups whose elements have

order 1 or p. Any polynomial divisible by xp − 1 will vanish on such groups. The

results in this section show that this is the only real obstacle to triangularizability.

3.4.3 Lemma

Let p be a prime number and let {e1, . . . , ep} be a basis for Cp. Let T be the invertible

right shift defined by

Tei = ei+1 for i < p and Tep = e1.

If E is any proper, nonempty subset of {1, . . . , p} then e =
∑

j∈E ej is a cyclic vector

for T (e is a cyclic vector if {T ne : n ∈ N} spans Cp).

Proof. Assume e is not a cyclic vector. Then the set {Te, T 2e, . . . , T pe} must be

linearly dependent as otherwise it would form a basis for Cp. Note that T p = I so

T pe = e. By linear dependence, there exist α0, . . . , αp−1 ∈ C, not all zero such that

α0e + α1Te + · · · + αn−1T
p−1e = 0. Then the polynomial φ(x) =

∑p−1
i=0 aix

j is such

that φ(T )e = 0, but φ is not divisible by the minimal polynomial of T , namely xp−1,

since the degree of φ is less than p.

Therefore, in order to show that e is a cyclic vector for T , we’ll show that any

polynomial φ with φ(T )e = 0 is divisible by xp − 1, the minimal polynomial of T .

By performing a cyclic permutation on the basis, we can assume that 1 /∈ E . Let

the elements of E be 2 ≤ r1 < r2 < · · · < rs and define ψ(x) = xr1−1 + xr2−1 + · · · +
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xrs−1. Then

ψ(T )e1 = T r1−1e1 + T r2−1e1 + · · ·+ T rs−1e1 = er1 + er2 + · · ·+ ers = e.

Now, for any polynomial φ, φ(T )e = φ(T )ψ(T )e1.

Assume φ(T )e = φ(T )ψ(T )e1 = 0. For any k ∈ N,

(φψ)(T )T ke1 = T k(φψ)(T )e1 = 0.

Since e1 is cyclic for T , (φψ)(T ) is 0 on a spanning set of Cp. Therefore (φψ)(T ) is

zero, so by definition φ(x)ψ(x) is divisible by the minimal polynomial of T , namely

xp − 1.

Let δ(x) be the greatest common divisor of ψ(x) and xp − 1. Since xp − 1 divides

φ(x)ψ(x), if we can show that δ(x) is a constant then xp − 1 must divide φ(x).

Since ψ and xp − 1 are polynomials over the rationals, the division algorithm

for polynomials tells us that the coefficients of δ(x) are rational. However, since p

is prime, (x − 1)(xp−1 + · · · + 1) is an irreducible factorization of xp − 1 over the

rationals. Since ψ(1) = |E| 6= 0, (x − 1) doesn’t divide ψ(x). Therefore δ(x) must

divide xp−1 + · · · + 1 and since δ(x) has rational coefficients it is either constant or

xp−1 + · · ·+1. But δ(x) divides ψ(x) which has at most p−1 terms of degree at most

p− 1. Therefore xp−1 + · · ·+ 1 can’t divide ψ(x) so δ(x) is constant as required.

2

3.4.4 Theorem

Let g(x) be a polynomial that is not divisible by xp − 1 for any prime p. If G is a

finite group of operators in B(V) on which fg is nilpotent then G is abelian.

Proof. Let G be a minimal counterexample. By minimality, G must be a minimal

nonabelian group as fg is nilpotent on any subgroup of G. Therefore Lemma 3.3.10

applies and we have M, A, and B as in that lemma.

Since M is an invariant subspace, for any S and T in G if fg(S, T ) is nilpotent

then so is fg(S, T )|M = fg(S|M, T |M). Therefore fg is nilpotent on G|M. Also, A and

B don’t commute so G|M is nonabelian and we can assume M is the entire space.
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By definition, fg is homogeneous in x and y. Therefore every term in the poly-

nomial will contain the same powers of α and β, so we can factor them out. Since

nonzero scalar multiples don’t affect nilpotence, we can assume that α = β = 1.

Let g(x) =
∑m

j=0 ajx
j and fg(x, y) =

∑m
j=0 ajx

jyxm−j. Since fg is nilpotent on G,

fg(A,B
kA−m) is nilpotent for every k ∈ N ∪ {0}. Now,

fg(A,B
kA−m) = a0B

k + a1AB
kA−1 + · · ·+ amA

mBkA−m

is a diagonal matrix as B is diagonal and conjugation by A doesn’t change that.

However, the only nilpotent diagonal matrix is 0 so fg(A,B
kA−m) = 0. By the

linearity in y of fg(x, y) and the above statement holding for all k ∈ N ∪ {0} we see

that

a0h(B) + a1Ah(B)A−1 + · · ·+ amA
mh(B)A−m = 0

for any polynomial h.

We want an h(x) such that h(B) is a nontrivial diagonal idempotent. The diagonal

of B consists of qth roots of unity where q is a prime. If µ, λ 6= 1 are qth roots of

unity then the sets {λ, . . . , λq−1} and {µ, . . . , µq−1} are equal since all roots of unity

for a prime q are primitive, except for 1. Now, θ−1
1 B has a 1 in the (1, 1) position and

qth roots of unity on the rest of the diagonal. As B isn’t scalar, there is at least one

entry on the diagonal that isn’t 1. Then B +B2 + · · ·+Bq−1 has exactly two entries

on its diagonal: q and λ + λ2 + · · · + λq−1. To get the required h(x), subtract off qI

and rescale so that the remaining nonzero entries of h(B) are 1.

Let E = h(B) and let u be the column vector whose components are all one. Let

e = Eu and note that e is a cyclic vector for A by Lemma 3.4.3. Also, A−ju = u for

all j ∈ N since all of u’s components are identical. However

g(A)e =
m∑
j=0

ajA
jEu =

m∑
j=0

ajA
jEA−ju = (

m∑
j=0

ajA
jh(B)A−j)u = 0.

So g(A) = 0 since it is 0 on a cyclic vector. Therefore, g(x) is divisible by the minimal

polynomial of A, namely xp − 1, which is a contradiction.

2

We can get an affirmative result in certain limited situations. Note that if g(x) =

x− 1 then fg(A,B) = AB − BA. This special case is the subject of our next result.

While we are currently limited to operators of rank one, we will eventually extend

this result to operators of all ranks.
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3.4.5 Theorem

Let S be a semigroup of operators of rank at most one in B(V) such that AB − BA

is nilpotent for all A and B in S. Then S is triangularizable.

Proof. Nilpotent commutators are inhertited by quotients so we need only show S
is reducible by the Triangularization Lemma (2.2.3).

Assume S is irreducible. Then by Lemma 3.3.5 there is a subsemigroup S0 of S
and an invariant subspace M of S0 such that S0|M contains

S =

(
α 0

β 0

)
and T =

(
0 γ

0 δ

)

with βγ(αδ − βγ) 6= 0. Then

det(ST − TS) = det

(
−βγ αγ

−βδ βγ

)
= βγ(αδ − βγ).

However, S and T are in S0|M so ST − TS is nilpotent and thus βγ(αδ − βγ) =

det(ST − TS) = 0 which is a contradiction. Therefore S is reducible and thus

triangularizable.

2

The next result shows that nilpotence on one of a large family of polynomials is

sufficient for triangularizability.

3.4.6 Theorem

Let g(x) =
∑m

j=0 ajx
j such that g(1) =

∑m
j=0 aj 6= 0. If S is a semigroup of operators

in B(V) such that fg is nilpotent on S then S is triangularizable.

Proof. Take any element A in S. Then

fg(A,A) =
m∑
j=0

ajA
jAAm−j = (

m∑
j=0

aj)A
m+1

is nilpotent. Since
∑n

j=1 aj 6= 0 this means thatAm+1, and thus A, is nilpotent. There-

fore S consists of nilpotents and is triangularizable by Levitzki’s Theorem (2.2.11).
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2

We must now consider what happens when g(1) is zero. First, the following

calculation will be of some use.

3.4.7 Lemma

Let g =
∑m

j=0 ajx
j. For operators A and B in B(V)

(i) If A = A2, then

fg(A,B) = a0AB(I − A) + (
m∑
j=0

aj)ABA+ am(I − A)BA.

(ii) If A2 = 0 and m ≥ 3 then fg(A,B) = 0.

(iii) If A2 = 0 and m = 2 then fg(A,B) = a1ABA.

Proof. Let A = A2. Then

fg(A,B) =
m∑
j=0

ajA
jBAm−j

= a0AB +
m−1∑
j=1

ajABA+ amBA

= a0AB(I − A) +
m∑
j=0

ajABA+ am(I − A)BA.

Let A2 = 0 and m ≥ 3. Then fg(A,B) =
∑m

j=0 ajA
jBAm−j and either j or m− j is

at least 2 so either Aj or Am−j is 0 and fg(A,B) = 0. Finally, if m = 2 then

fg(A,B) = a0A
2B + a1ABA+ a2BA

2 = a1ABA.

2

The next two examples reveal some difficulties with nonlinear polynomials.
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3.4.8 Example

There exists an irreducible semigroup on which fg is nilpotent for every polynomial

g(x) =
∑m

j=0 ajx
j so long as m ≥ 2 and g(1) =

∑m
j=0 aj = 0.

Proof. Let S = {Eij : 1 ≤ i, j ≤ n} ∪ {0}. S where the Eij are the standard matrix

units in Mn(C). Then S is a semigroup as the product of any two Eij’s is another

Eij or 0. Also, since the Eij’s are a basis for Mn(C), S is irreducible.

For any A in S either A2 = A or A2 = 0. We want to show that fg(A,B) is

nilpotent for every A and B in S.

Assume A2 = 0. If m ≥ 3 then by Lemma 3.4.7, fg(A,B) = 0. If m = 2

then fg(A,B) = a1ABA so (fg(A,B))2 = a2
1ABA

2BA = 0. Either way, fg(A,B) is

nilpotent.

Now assume A2 = A 6= 0. By Lemma 3.4.7,

fg(A,B) = a0AB(I − A) + am(I − A)BA

since g(1) = 0. Therefore A = Eii for some i. If B = A or B = 0 then fg(A,B) = 0.

If B = Ejj for i 6= j then AB = BA = 0 so fg(A,B) = 0. Finally, if B = Ekl for

k 6= l then B is strictly upper or lower triangular. Since A and I − A are diagonal,

fg(A,B) will be either strictly upper or lower triangular so it’s nilpotent. Therefore

fg is nilpotent on S.

This can be extended to include operators of all ranks. If we adjoin all diagonal

idempotents to S this creates another semigroup, S1. Take A and B from S1. If

A2 = 0 then fg(A,B) is nilpotent as before. If A2 = A and B is in S0 then fg(A,B) is

nilpotent as before since A is diagonal. Finally, if A = A2 and B is not from S0 then

A and B are both diagonal so they commute and fg(A,B) = 0. Therefore fg(A,B)

is nilpotent on S1.

2

3.4.9 Example

Let g(x) =
∑m

j=0 ajx
j with m ≥ 2 and g(0) = g(1) = 0. Then fg is nilpotent on the

entire semigroup of operators of rank at most 1.

Proof. Let A and B be rank 1 operators. We need to show that fg(A,B) is nilpotent.
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Since A is rank 1, either A2 = 0 or A2 = λA where λ is the single nonzero

eigenvalue of A. In this second case, since fg(A,B) is homogeneous in A, we can factor

out λ−m from each term and can assume that A2 = A without affecting nilpotence.

Recall that a0 = g(0) = 0 and
∑m

j=0 aj = g(1) = 0. If A2 = A then Lemma 3.4.7

gives us that fg(A,B) = am(I − A)BA. Therefore (fg(A,B))2 = a2
m(I − A)B(A −

A2)BA = 0.

If A2 = 0 and m ≥ 2, fg(A,B) = 0 by Lemma 3.4.7. If A2 = 0 and m = 2,

fg(A,B) = a1ABA by Lemma 3.4.7. In the second case, (fg(A,B))2 = a2
1ABA

2BA =

0.

Therefore fg is nilpotent on all operators of rank at most one.

2

Polynomials with g(0) = g(1) = 0 are thus of no use in showing triangularizability.

We will therefore consider polynomials g with g(0) 6= 0. As for Example 3.4.8, the

next result shows it is, up to similarity, the only irreducible semigroup of operators

of rank at most one on which fg, with sufficient restrictions, is nilpotent.

3.4.10 Theorem

Let g =
∑m

j=0 ajx
j with m ≥ 2, g(0) = a0 6= 0 and g(1) =

∑m
j=0 aj = 0. Let S be an

irreducible semigroup of operators of rank at most one in B(V). If fg is nilpotent on

S then CS is simultaneously similar to

C{eie∗j : 1 ≤ i, j ≤ n},

where {ei} is the standard basis of column vectors and n = dim(V).

Proof. Assume that S = CS since fg will still be nilpotent on this (possibly) larger

set by linearity and continuity. We claim that, if E and F in S are distinct nonzero

idempotents, then EF = FE = 0.

First we check that E and F must have either distinct ranges or distinct kernels.

Since E is an idempotent, E(I −E)x = 0 for every x ∈ Cn. Since x = Ex+(I −E)x

and Ex ∈ ran(E) and (I − E)x ∈ ker(E) we see that ran(E) + ker(E) = Cn and

similarly for F . Therefore, if E and F share the same kernel and the same range then

E = F as they agree on a basis (for any x ∈ ran(E) = ran(F ), Ex = x = Fx and for
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any x ∈ ker(E) = ker(F ), Ex = 0 = Fx). So, if E and F are distinct they must have

either distinct ranges or distinct kernels.

We want them to have distinct ranges. Assume E and F have distinct kernels.

We claim that E∗ and F ∗ have distinct ranges. Let x ∈ ran(E∗)⊥. Then 〈x,E∗z〉 =

0 for all z in Cn. This is true if and only if 〈Ex, z〉 = 0 for all z. In other words, if

and only if Ex = 0 so x ∈ ker(E). Therefore, ran(E∗)⊥ = ker(E). Since we’re in

finite dimensions

ran(E∗) = ran(E∗) = (ran(E∗)⊥)⊥ = ker(E)⊥.

The same is true for F . As ker(E) and ker(F ) are distinct subspaces, they have

distinct perpendicular spaces. Therefore E∗ and F ∗ have distinct ranges.

If h =
∑m

j=0 ām−jx
j then

(fh(A
∗, B∗))∗ = (

m∑
j=0

ām−j(A
∗)jB∗(A∗)m−j)∗

=
m∑
j=0

am−jA
m−jBAj

=
m∑
j=0

ajA
jBAm−j = fg(A,B),

so h is nilpotent on S∗, has rank m since a0 6= 0, has h(0) = ām 6= 0 and has h(1) =

(g(1)) = 0. Therefore S∗ has the same properties as S and note that EF = FE = 0 if

and only if E∗F ∗ = F ∗E∗ = 0. Therefore, passing to S∗ if necessary, we may assume

that E and F have distinct ranges.

Take e and f , nonzero vectors in the ranges of E and F respectively. Since E

and F are rank one and have distinct ranges, e and f are linearly independent and

ran(E) = span{e}, ran(F ) = span{f}. Let M = span{e, f}. Then M contains the

ranges of E and F so it is invariant under them. With respect to M we have

E =

(
A S

0 0

)
F =

(
B T

0 0

)
,

61



where

A =

(
1 α

0 0

)
S =

(
s1 . . . sn−2

0 . . . 0

)

B =

(
0 0

β 1

)
T =

(
0 . . . 0

t1 . . . tn−2

)
.

We claim that EF = FE = 0 if and only if AB = BA = 0. If AB = 0 then α = 0.

If BA = 0 then β = 0. If α = β = 0 then AT = BS = 0 so EF = FE = 0. The

other direction is trivial. Therefore, in order to show that EF = FE = 0 we need

only check that AB = BA = 0 or equivalently that α = β = 0.

We have that A2 = A and g(1) = 0, so, by Lemma 3.4.7,

fg(A,B) = a0AB(I − A) + am(I − A)BA.

By calculation, det(fg(A,B)) = a0amαβ(αβ−1). But fg is nilpotent on S, so fg(E,F )

is nilpotent. Since nilpotence is preserved by quotients, fg(A,B) is nilpotent, so its

determinant is 0. Therefore, as a0, am 6= 0, αβ(αβ − 1) = 0.

As S is irreducible, it spans Mn(C) by Burnside’s Theorem (2.2.8). Now, EMn(C)

contains all rank one operators with range equal to span{e}, so it has dimension n.

As S spans Mn(C), ES must have dimension n and ES|M must have dimension two.

Therefore ES|M must contain a member

C =

(
γ δ

0 0

)
,

which is linearly independent of A. In other words, αγ − δ 6= 0. Since S = CS we

can assume that γ is either 1 or 0 so C2 is either C or 0.

As A and B are both idempotent, Lemma 3.4.7 tells us that

fg(B,C) = a0BC(I −B) + am(I −B)CB,

fg(A,BC) = a0ABC(I − A) + am(I − A)BCA,

and calculation together with the nilpotence of fg on S gives us that

det(fg(B,C)) = a0amβδ(γ − δβ) = 0,

det(fg(A,BC)) = a0amαβ
2γ(αγ − δ) = 0.

We have the following four relations:
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(i) αβ(αβ − 1) = 0,

(ii) αγ − δ 6= 0,

(iii) βδ(γ − δβ) = 0, and

(iv) αβ2γ(αγ − δ) = 0.

Now, if neither α nor β is 0 then combining (ii) and (iv) gives us that γ = 0.

Combining this with (iii) then gives us that δ = 0. But then C = 0 which is a

contradiction. Therefore, either α or β is 0. Since reordering the basis of M switches

the roles of A and B we can assume that α = 0.

By (ii), δ 6= 0. Now, if β 6= 0 then (iii) gives us that γ = δβ. In particular,

γ 6= 0 so, as previously mentioned, we can assume that γ = 1 so C is idempotent.

Therefore, using Lemma 3.4.7,

f(C,BA) = a0CBA(I − C) + am(I − C)BAC.

Then calculation plus the nilpotence of fg on S gives us that

det(fg(C,BA)) = a0amβ
2δ2 = 0,

which is impossible as a0, am, β, δ 6= 0. Hence α = β = 0 and EF = FE = 0.

To complete the proof, we use Lemma 3.3.5 to obtain bases {ei} and {fi} such

that eif
∗
j ∈ S for every i and j. Since S = CS, we can perform a similarity and scale

so that {ei} coincides with the standard basis.

Since the fi’s form a basis there must be some ji such that f ∗jie
i = 〈fji , ei〉 6= 0.

Then tr(eif
∗
ji
) = tr(f ∗jiei) 6= 0 so Ti = eif

∗
ji
6= 0. Now, Ti has exactly one nonzero row,

the ith row, and nonzero trace means that its (i, i) entry is nonzero. Therefore, Ti is

a multiple of an idempotent with range ei and kernel {fji}⊥.

We claim that this ji is unique. Assume there was a ki 6= ji with the same

properties as ji and let Si = eif
∗
ki

. Then Si is also a scalar multiple of an idempotent

with the same range as Ti, but a different kernel as fji and fki
are linearly independent,

so they have distinct perpendicular spaces. By our first claim, SiTi = 0. But

tr(SiTi) = tr(eif
∗
ji
eif

∗
ki

) = tr(f ∗jieif
∗
ki
ei) = 〈fji , ei〉 〈fki

, ei〉 6= 0,

which is a contradiction so the ji is unique.
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We also claim that for i 6= k, ji 6= jk. If ji = jk then Ti = eif
∗
ji

and Tk = ekf
∗
ji

are

multiples of idempotents with the same kernel, but different ranges. However, their

product has nonzero trace so TiTk 6= 0 which contradicts our first claim.

Therefore there is a bijective map i 7→ ji. By reordering we can assume i = ji.

Then 〈ei, fj〉 is nonzero if i = j and zero otherwise. By rescaling the fi’s, we can

assume fi = ei for every i. Therefore S contains C{eie∗j : 1 ≤ i, j ≤ n}.

Let A be any element in S. Assume A is a multiple of an idempotent, but is not

one of the eie
∗
i ’s. By our claim about distinct idempotents, Aeie

∗
i = 0 = eie

∗
iA for all

i. But then A commutes with a spanning set of B(V) so A = 0. Therefore the only

multiples of idempotents in S are the eie
∗
i ’s.

If A is not a multiple of an idempotent, then A is nilpotent since it’s rank one.

Then A must have an off diagonal entry. By a permutation of the basis and scaling

A, we can assume that A’s (1, 2) entry is one.

Now, Ae2e
∗
1 is in S. Its first column is the second column of A and all its other

columns are zero. Also, its (1, 1) entry is 1. Therefore, Ae2e
∗
1 is an idempotent. Since

the only idempotents in S are the eie
∗
i ’s, Ae2e

∗
1 = e1e

∗
1. Therefore, the second column

of A must have only one nonzero entry.

Similarly, e2e
∗
1A is in S, has its second row equal to the first row of A, and has

all other rows being zero. Its (2, 2) entry is 1, so it is an idempotent. We must then

have that e2e
∗
1A = e2e

∗
2, so the first row of A must have only one nonzero entry.

Since A has rank one, all of its nonzero columns must be multiples of one another.

Since the second column is the only one with a nonzero entry on the first row, all the

other columns must be zero. Therefore A = e1e
∗
2 and the result is proved.

2

3.4.11 Corollary

Let g =
∑m

j=0 ajx
j with g(0) = a0 6= 0 and g(1) =

∑m
j=0 aj = 0. Let S be an

irreducible semigroup of operators in B(V) that contains a rank one operator. If fg

is nilpotent on S then S has a matrix representation in which every member has at

most one nonzero entry in each row and in each column.

Proof. We can assume S = CS as S will have the required property if this potentially
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larger group does. Let J 6= {0} be the ideal of S consisting of operators of rank one

at most one. Then J is irreducible by Lemma 2.2.12 and coincides with C{eie∗j} by

Theorem 3.4.10.

Let S be in S. Then Seie
∗
i has range equal to the span of the Sei and kernel

{ei}⊥. Also, Seie
∗
i is an element of J so it is equal to λeje

∗
i for some j which has

range equal to the span of λej. Therefore Sei, which is the ith column of S, is in the

span of λej so it has at most one nonzero entry, the jth.

Next, eie
∗
iS has range contained in the span of ei (it could have zero range, de-

pending on S). Its kernel is {e∗iS}⊥, which is the perpendicular space of the ith row

of S. Since eie
∗
iS is in J , it is equal to λeiej for some j and this operator has kernel

{ej}⊥. By taking the perpendicular space of each of these equal kernels, we see that

the ith row of S is contained within the span ej and therefore has at most one nonzero

entry.

2

We can now achieve a positive result for full-rank operators in B(V).

3.4.12 Theorem

Let g =
∑m

j=0 ajx
j with g(0) = a0 6= 0 and g not divisible by xp − 1 for any prime p.

Let S be a semigroup of invertible operators in B(V). If fg is nilpotent on S then S
is triangularizable.

Proof. If g(1) 6= 0 then S is triangularizable by Theorem 3.4.6. Otherwise, if m = 0

then fg(A,B) = a0B so nilpotence of fg on S implies nilpotence of every element of

S. But nilpotent elements aren’t invertible so this is a contradiction so m ≥ 1.

Since a nilpotent fg extends to quotients we need only show reducibility by the

Triangularization Lemma (2.2.3).

Let Φ be a ring automorphism of B(V) induced by the field automorphism φ. By

Lemma 2.5.3, for any A and B in S

σ(Φ(fg(A,B))) = φ (σ(fg(A,B))) = φ({0}) = {0}
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since fg(A,B) is nilpotent. Define h(x) =
∑m

j=0 φ(aj)x
j. Since

Φ(fg(A,B)) = Φ(
m∑
j=0

ajA
jBAm−j) =

m∑
j=0

φ(aj)Φ(A)jΦ(B)Φ(A)m−j,

fh is nilpotent on Φ(S). By continuity and linearity, fh is nilpotent on CΦ(S). Finally,

Φ−1 is the field automorphism induced by φ−1 so, for any A and B in Φ(S),

Φ−1(fh(A,B)) = Φ−1

(
m∑
j=0

φ(aj)A
jBAm−j

)

=
m∑
j=0

ajΦ
−1(A)jΦ−1(B)Φ−1(A)m−j

= fg(Φ
−1(A),Φ−1(B)).

Thus

σ(fg(Φ
−1(A),Φ−1(B))) = σ(Φ−1(fh(A,B))) = φ(σ(fh(A,B))) = {0},

so fg is nilpotent on Φ−1(CΦ(S)). Therefore the conditions of the Finiteness Lemma

(3.2.2) are met for the property P of fg being nilpotent.

If m = 1 then a1 = −a0. Since multiplication by a scalar doesn’t affect nilpotence,

we can assume that g(x) = x−1. Therefore fg(x, y) = xy−yx. We want to show that

the conditions of Lemma 3.2.3 apply. Since S consists of invertible elements, the only

nonzero idempotent in S is I and ISI|IV = S, on which fg is nilpotent. If J is an

ideal in S then fg is nilpotent on J since J is a subset of S. Every finite group with

fg nilpotent is abelian, and therefore reducible, by Theorem 3.4.4. And fg(A,B) =

AB − BA and fg nilpotent gives AB − BA nilpotent so every such semigroup of

operators of rank at most one is reducible by Theorem 3.4.5. So Lemma 3.2.3 applies

and S is reducible.

Let m ≥ 2 and assume S is irreducible. Let Ŝ be the maximal semigroup contain-

ing S with property P . By Lemma 2.3.3, Ŝ contains a minimal rank idempotent E.

The Finiteness Lemma (3.2.2) gives us that EŜE|EV is contained within multiples of

a finite group. So Lemma 3.4.4 tells us that EŜE|EV is abelian. If E has rank at

least 2 then EŜE|EV is reducible so Ŝ is reducible by Lemma 2.2.13.

All that remains is the case where the rank of E is one. Then Ŝ contains E, a

rank one operator, so Corollary 3.4.11 applies and Ŝ has a matrix representation with
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each member having at most one nonzero entry in each column and in each row. Let

{ei} be the basis with respect to which Ŝ has this form.

Let S be a member of Ŝ. We claim that, after a permutation of the basis, S is

the direct sum of cyclic operators. Fix any i and consider the action of S on ei. If

the ith column of S is all zeroes then Sei = 0 and S is cyclic on span(ei).

Otherwise, the ith column of S contains a single nonzero entry, λi. If λi occurs in

the ith row then Sei = λiei so S is cyclic on span(e1).

Finally, if λi occurs in the jth row of S then Sei = λiej. We repeat the above

argument for the jth column of S. If Sej = 0 then S is cyclic on span{ei, ej}. If

Sej = λjei for some λj 6= 0 then S is again cyclic on span{ei, ej}. Otherwise, the

jth column of S has a nonzero entry, λj, at the kth row where k 6= i. Note also that

k 6= j since S has exactly one nonzero entry on its jth row and that’s λi. Continuing

this argument we get a sequence of distinct basis elements. Eventually, either S will

have a zero column or, since V is finite, S will map the most recent basis vector to

span(ei). Either way, S is cyclic on the span of these vectors.

By permuting the basis, S becomes a direct sum of each of these cyclic operators.

Let A be a nondiagonal cyclic operator. So

A =


0 λn

λ1
. . .
. . . . . .

λn−1 0

 .

By construction, all the λi’s are nonzero, with the possible exception of λn. If

det(A) = 0 leave A as is. Otherwise, since Ŝ = CŜ by maximality, we can replace A

with (det(A))−1/n. Therefore det(A) is either zero or one.

We can then apply a diagonal similarity, which won’t change the form of A, to

guarantee that each nonzero λi is one. Then

A =


0 α

1
. . .
. . . . . .

1 0

 ,

where α = det(A) is either zero or one.
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Then S is a subset of Ŝ, so each member of S has this form. Since S is invertible it

has full rank so every column and row must have at least one nonzero entry. Therefore,

if A is in the direct sum of cyclic operators for some S in S then A is invertible and

α = 1.

Since S is irreducible it can’t be diagonalizable so there is an S in S with such

an A. Let {e1, . . . , en} be the basis for A. Now, An = I. Let p be a prime that

divides n and replace A with An/p which is still a restriction of an element of Ŝ since

Ŝ is a semigroup. Then A consists of n
p

cyclic permutations ei 7→ en
p
+i 7→ . . . 7→

e(p−1)n
p
+i 7→ ei for 1 ≤ i ≤ n

p
. Further restrict A to one of these cycles so that A is a

cyclic permutation on a p dimensional space M.

Additionally, since Ap = I, Ap−1 = A−1 so A−1 is the restriction of Sp−1 which is

in Ŝ.

Let J be the ideal of rank at most one operators in Ŝ. Since Ŝ has a rank one

idempotent J 6= {0}. Since Ŝ is irreducible, J is irreducible by Lemma 2.2.12. By

Theorem 3.4.10 and how Corollary 3.4.11 was constructed, J must contain T = e1e
∗
1.

Let B be the restriction of T to span{e1, . . . , en}.

Then, since S is the direct sum of operators, and since T is 0 everywhere except

B, as fg(S, TS
m) is nilpotent, so is fg(A,BA

−m). But

fg(A,BA
−m) =

m∑
j=0

ajA
j(BA−m)Am−j

=
m∑
j=0

ajA
jBA−j

= diag(b0, b1, . . . , bp−1),

where bi = ai + ai+p + . . . . This last equality is true since the only nonzero entry of

AjBA−j is in the (k, k) position where k ≡ j mod p and 0 ≤ k ≤ p− 1. Nilpotence

implies that b0 = b1 = · · · = bp−1.

Now,

g(x) =
m∑
j=0

ajx
j =

p−1∑
i=0

xi(ai + ai+px
p + . . . ),
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and for any pth root of unity λ,

g(λ) =

p−1∑
i=0

λi(ai + ai+pλ
p + . . . )

=

p−1∑
i=0

λi(ai + ai+p + . . . )

=

p−1∑
i=0

λibi = 0,

so xp − 1 divides g(x) which is a contradiction. Therefore S is reducible and thus

triangularizable.

2

3.4.13 Corollary

Let {a0, . . . , ak} be any scalars such that
∑k

j=0 ajx
j is not divisible by xp − 1 for

any prime p. Let G be a group of operators in B(V) such that
∑k

j=0 ajA
jBAk−j is

nilpotent for all A and B in G. Then G is triangularizable and, in particular, if such

a G consists of unitary operators then it’s commutative.

Proof. Let r and t be such that ar is the first nonzero ai and at is the last nonzero ai.

Let m = t−r and g =
∑m

j=0 ar+jx
j. Then xrg(x) =

∑m
j=0 ajx

j so, since xp−1 doesn’t

divide
∑k

j=0 ajx
j for any prime p, it doesn’t divide g(x) either. Also, g(0) = ar 6= 0.

For any A and B in G,

m∑
j=0

ajA
jBAk−j =

t∑
j=r

ajA
jBAk−j

=
t∑

j=r

ajA
j−r(ArBAk−t)Ak−j−(k−t)

=
m∑
j=0

aj+rA
j(ArBAk−t)Am−j

= fg(A,A
rBAk−t).

Therefore fg(A,A
rBAk−t) is nilpotent. Since G is a group, A−rBA−(k−t) is an ele-

ment of G. By replacing B with A−rBA−(k−t) we see that fg(A,B) is nilpotent. By

Theorem 3.4.12, G is triangularizable.
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If G consists of unitaries then G is self-adjoint so it’s diagonalizable and thus

commutative (3.3.13).

2

3.4.14 Corollary

Let g be a polynomial that is not divisible by xp − 1 for any prime p. Let S be a

semigroup of operators in B(V) on which fg is nilpotent. Then either of the following

conditions imply reducibility:

(i) S does not contain a rank-one operator and g(0) 6= 0.

(ii) CS does not contain a rank-one operator.

Proof. (i) Assume S is irreducible. Let m be the minimal rank in S and let A be a

nonzero member of S with rank m. By putting A in Jordan form and taking powers

of A we can assume A = A0 ⊕ 0 for some invertible A0 acting on the m dimensional

space AV .

Consider S0 = ASA|AV and let E = IAV ⊕ 0. Since S is irreducible, it must span

B(V). Therefore the set ESE|AV must span B(AV) and therefore has dimension m2.

For any S in S, ASA = AESEA so S0 = A0ESEA0|AV . Since A0 is invertible, the

dimension of S0 is m2. Therefore S0 spans B(AV), so S0 is irreducible. But for any

S in S,

ASA =

(
A0 0

0 0

)(
S11 S12

S21 S22

)(
A0 0

0 0

)
=

(
A0S11A0 0

0 0

)
,

so the rank of ASA is at most m, the rank of A0. By minimality of rank in S, rank

ASA is m. Therefore A0S11A0 has rank m and acts on an m dimensional space so it

is invertible. So S0 consists of invertible operators. As fg is nilpotent on S, it is also

nilpotent on S0. By Theorem 3.4.12, S0 is reducible.

That’s a contradiction, so S is reducible.

(ii) Assume S is irreducible. Then CS is irreducible, so it contains an idempotent

E of minimal rank by Lemma 2.3.3. The same lemma says that ECSE|EV is a group.

By Corollary 3.4.13, ECSE|EV is triangularizable. But by Lemma 2.2.13, ECSE|EV
is irreducible. This is a contradiction, so S is reducible.
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2

We can now extend Theorem 3.4.5 to operators of arbitrary rank.

3.4.15 Theorem

Let S be a semigroup of operators such that AB − BA is nilpotent for every pair

{A,B} in S. Then S is triangularizable.

Proof. Let g(x) = x− 1. Then fg(A,B) = AB −BA, so fg is nilpotent on S. Since

nilpotence of commutators extends to quotients, we need only show reducibility by

the Triangularization Lemma (2.2.3).

If S contains no rank one operators then as g(0) 6= 0, S is reducible by Corol-

lary 3.4.14.

If S contains a rank one operator then the ideal of rank at most one operators in

S is nonzero and reducible by Theorem 3.4.5. Then S is reducible by Lemma 2.2.12.

2

This concludes our discussion of the nilpotence of polynomials. We now con-

sider extending our results to infinite dimensions. In Chapter 5, we return to Theo-

rem 3.4.15 and consider if the condition of nilpotence can be weakened.
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Chapter 4

Infinite Dimensions

In this chapter, we investigate extensions of the results in the previous chapter to

infinite dimensional spaces. We will mostly be interested in K(X ), the set of compact

operators on a Banach space X . Occasionally, we will restrict our results to K(H), the

set of compact operators on a Hilbert space H. We will also consider some extensions

to the set of bounded operators B(X ).

Many of the finite dimensional proofs require no modification. We will deal only

with those results that require significant modification.

4.1 Definitions and Notation

In this chapter, linear subspaces are assumed to be closed and span should be read

as the closed linear span. The concept of reducibility remains otherwise unchanged,

but we need to extend the concept of triangularizability for Definition 2.1.6 to infi-

nite dimensions. The following definition reduces to the previous case if X is finite

dimensional.

4.1.1 Definition

A family of operators F in B(X ) is said to be triangularizable if there is a chain C of

subspaces of X which is maximal (as a chain of subspaces) and if M is in C then M
is an invariant subspace for F . Such a chain is called a triangularizing chain.

Triangularizing chains in infinite dimensions don’t always look like they do in
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finite dimensions. See Example 4.1.5.

4.1.2 Definition

A chain of subspaces is called complete if it is closed under arbitrary intersections

and closed spans.

If an element of a complete chain is not the span of its predecessors we can define

its immediate predecessor as follows.

4.1.3 Definition

If C is a chain of subspaces and M∈ C then M− is defined as

M− = span{N ∈ C : N ⊂M}.

If M− 6= M, then M− is the immediate predecessor of M in C.

This allows us to characterize maximal subspace chains in X .

4.1.4 Theorem

A chain of subspaces of a Banach space X is maximal as a subspace chain if and only

if it satisfies the following three conditions:

(i) it contains {0} and X ,

(ii) it is complete, and

(iii) if M is in the chain and M− 6= M, then the quotient space M/M− is one

dimensional.

Proof. Let C be a maximal subspace chain. Then {0} and X are clearly in C as they

are comparable with every subspace of X . Intersections and spans of elements of a

chain are also comparable with every element in that chain so they must be in C by

maximality. Finally, if M/M− has dimension at least 2 then the subspace N taken

to be the span of M− and an element in M that is not in M− is properly between

the two spaces. By maximality, it must be in C, which is a contradiction as then N
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should be contained within M−. Therefore a maximal subspace chain satisfies all

three properties.

Let C be a chain satisfying all three properties and letM be a subspace comparable

with every element of C. We want to show that M is in C. Assume otherwise and

define

M0 = span{N ∈ C : N ⊂M} M1 = ∩{N ∈ C : N ⊃M}.

Since C is a complete chain, M0 and M1 are in C. And M0 ⊆ M ⊆M1. Since M
is not in C, both inclusions are proper. But this means the gap between M0 and M1

has dimension at least 2.

Now, every proper subset of M1 in C is contained in M0 by definition. But this

means that M1− is contained in M0. However, this contradicts (iii). Therefore M
must be in C and therefore C is maximal.

2

In finite dimensions, M− 6= M for any M 6= {0} in a triangularizing chain. The

following example shows this isn’t necessarily true in infinite dimensions.

4.1.5 Example

For each t in [0, 1] let Mt = {f ∈ L2(0, 1) : fχ(0,t) = f}. Then the chain C consisting

of {Mt}t∈[0,1] is a triangularizing chain for A = Alg({Mt}t∈[0,1]) (the set of operators

that leaves each Mt invariant) and M− = M for all M in C.

Proof. By definition, C consists of invariant subspaces for A. Also, A isn’t trivial

as the operators taking f to f̂ where f̂(t) =
∫

[t,1]
f are in A. We therefore need only

show that C satisfies the conditions of Theorem 4.1.4.

Since M0 = {0} and M1 = L2(0, 1), (i) is satisfied. For any subset Λ of [0, 1],⋂
t∈Λ

Mt = Minf(Λ),

so C is closed under arbitrary intersections. Now, let t0 = sup Λ. Since Mt0 is a

closed linear subspace and Mt ⊆Mt0 for t in Λ, the span of the Mt with t from Λ is

contained within Mt0 . We claim the span is actually equal to Mt0 . Let f be in Mt0 .
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Then for any t in Λ, ft = fχ[0,t] is in Mt. Since t0 = sup(Λ), we have ft converges to

f as t in Λ approaches t. Therefore f is in the span of the Mt with t in Λ. Therefore

the span is Mt0 and C is closed under arbitrary spans so (ii) is satisfied.

For (iii), note that (Mt0)− is the span of the Mt with t from Λ = [0, t0). Therefore

(Mt0)− = Mt0 by the previous paragraph.

Therefore C is a maximal subspace chain so it’s a triangularizing chain and M− =

M for all M in C.

2

We can now prove the infinite dimensional version of the Triangularization Lemma.

4.1.6 Lemma (Triangularization Lemma)

If P is a property of families of operators in B(X ) that is inherited by quotients, and

if every family on a space of dimension at least 2 satisfying P is reducible, then every

family satisfying P is triangularizable.

Proof. Let F be a family satisfying P and let C be a chain of invariant subspaces

for F that is maximal as a chain of invariant subspaces. We need to show that C is

maximal. We’ll do this by showing it satisfies the three properties of Theorem 4.1.4.

As {0} and X are always invariant subspaces, (i) is clear. Spans and intersections

of invariant subspaces also always produce invariant subspaces.

Assume that C does not satisfy (iii). Let M be in C with dimension of M/M−

at least 2. Consider F̂ , the set of quotients of F in M/M−. F̂ then has property

P and acts on a space of dimension at least 2. Therefore it is reducible and has

an invariant subspace L. Take N = {x ∈ M : [x] ∈ L}. Then N is an invariant

subspace for F that lies properly betweenM andM−, so, by maximality as a chain of

invariant subspaces, N must be in C. This is a contradiction as M− is the immediate

predecessor of M in C.

Therefore C satisfies the three properties and is a triangularizing chain.

2

Every compact operator is triangularizable. In fact, we can extend this result to

commutative families of operators.
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4.1.7 Theorem

Every commutative family of compact operators is triangularizable.

Proof. See [7, Theorem 7.2.1].

2

We can define diagonal coefficients for compact operators that allow us to read

off the spectrum of a compact operators from its triangular form.

4.1.8 Definition

Let C be any triangularizing chain for K in K(X ). For each M in C we define the

diagonal coefficient of K corresponding to M (denoted λM) as follows: If M =

M− then λM = 0. Otherwise, λM is the lone element in the spectrum of the one

dimensional operator K|(M/M−). (It’s the unique number such that (K − λMI)M⊆
M−.)

4.1.9 Theorem (Ringrose’s Theorem)

If K is in K(X ), X is infinite dimensional, and C is a triangularizing chain for K

then

σ(K) = {0} ∪ {λM : M∈ C}.

Proof. See [7, Theorem 7.2.3].

2

4.1.10 Theorem

The diagonal multiplicity of each nonzero eigenvalue with respect to any triangular-

izing chain of an operator in K(X ) is equal to its algebraic multiplicity.

Proof. See [7, Theorem 7.2.9].

2
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4.1.11 Theorem

Let K be a compact operator on an infinite-dimensional space and let C be a complete

chain of invariant subspaces of K. For each M∈ C for which M− 6= M, define KM

to be the quotient operator on M/M− induced by K. Then

σ(K) = {0} ∪ {σ(KM) : M∈ C and M− 6= M}.

Proof. See [7, Theorem 7.2.7].

2

A number of finite dimensional results extend to compact operators.

4.1.12 Theorem (Spectral Mapping Theorem)

If {K1, . . . , Kn} is a triangularizable family of operators in K(X ) and p is any poly-

nomial in n (possibly noncommuting) variables, then

σ(p(K1, . . . , Kn)) ⊆ p(σ(K1), . . . , σ(Kn)).

Proof. Adding multiples of the identity shifts both sides of the inclusion equally, so

we can assume the constant term of p is zero. Therefore p(K1, . . . , Kn) is in K(X ).

Take a triangularizing chain C for the family of operators. Then C also triangularizes

p(K1, . . . , Kn).

By Ringrose’s Theorem (4.1.9), we have to check that λM (for p(K1, . . . , Kn))

is in the right hand side for every M in C. Let M be in C. If M = M− then

λM = 0 which is clearly in the right hand side since 0 is in the spectrum of every

compact operator. Otherwise, let K̂i be the quotient of Ki on the space M/M−.

Then p(K̂1, . . . , K̂n)[f ] = λM[f ] for every [f ] in M/M−. For each i, since M is

invariant for Ki, there is a λi such that K̂i[f ] = λi[f ] for each [f ] in M/M−. That

λM = p(λ1, . . . , λn) is clear. Finally, each λi is a diagonal coefficient for Ki, so

λi ∈ σ(Ki) and the inclusion holds.

2
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4.1.13 Lemma

If {Kn} is a sequence of compact operators converging to K in norm then

σ(K) = {λ : λ = lim
n−→∞

λn, λn ∈ σ(Kn) for all n}.

Proof. See [7, Theorem 7.2.13].

2

4.2 The Downsizing Lemma

The goal of this section is to reduce problems about compact operators to problems

about finite dimensional operators. We need a number of preliminary results.

4.2.1 Lemma

If S is a semigroup of operators in K(X ) with S = R+S and if S contains non-

quasinilpotent operators then S contains a finite-rank operator other than zero that is

nilpotent or idempotent

Proof. See [7, Lemma 7.4.5].

2

4.2.2 Theorem (Turovskii’s Theorem)

A semigroup of compact quasinilpotent operators on a Banach space is triangulariz-

able.

Proof. See [7, Theorem 8.1.11].

2
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4.2.3 Lemma

If a semigroup of operators S in B(X ) has a reducible nonzero ideal then S is reducible.

In other words, a nonzero ideal of an irreducible semigroup of operators in B(X ) is

irreducible.

Proof. The proof is the same as for Lemma 2.2.12, except that we deal here with

closed linear spans.

2

4.2.4 Definition

A linear functional φ on a linear space L in B(X ) is called a coordinate functional if

there is a nonzero x in X and a nonzero linear functional f on X such that φ(L) =

f(Lx) for every L in L.

Note that such a φ is continuous on B(X ) if and only if f is continuous. Also, if L
separates the points of X then φ is obviously nonzero. In particular, any coordinate

functional on B(X ) is nonzero.

4.2.5 Lemma

Let S be an arbitrary semigroup in B(X ) and φ a continuous coordinate functional

on B(X ). Then S is reducible if φ is constant on S.

Proof. Let φ(S) = f(Sx) for all S in S, where x is in X and f is in X ∗.

If φ is zero on S, take M to be the closed linear span of Sx. So M is invariant

under S. We know M 6= {0} as S is not the zero semigroup (if it is, it’s reducible).

Also, f is not zero (since φ is a coordinate functional), but f |M = 0, so M 6= X .

Therefore M is a nontrivial invariant subspace for S.

Assume instead that φ(S) = λ 6= 0 for all S in S. If S is a singleton the it’s

a commutative family and thus triangularizable by Theorem 4.1.7. Otherwise, take

A 6= B in S. Take A to be the algebra spanned by S and J 6= {0} to be the ideal

generated by A−B. For any S, T in S,

φ(S(A−B)T ) = φ(SAT )− φ(SBT ) = 0.
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Therefore J is reducible by the first paragraph and S is reducible by Lemma 4.2.3.

2

4.2.6 Lemma

Let P be a projection on X and S any semigroup in B(X ). Let C be a chain of

invariant subspaces for PS|PX . Then there is a one-to-one, order preserving map

from C into the lattice of invariant subspaces of S.

Proof. For every M in C we define M1 to be the closed linear span of M∪ SM.

Then M1 is an invariant subspace for S. Now take N in C with M ⊂ N . Clearly

M1 ⊆ N1. We want to show that this inclusion is proper.

Take x from N/M. Then x is in N1. Assume that x is in M1. Now, x is in N ,

so it’s in PX . Therefore Px = x. Also, M is a subset of PX so PM = M. Finally,

since M is in C, PSM ⊆M. Then

x = Px ∈ P span(M∪SM) = span(PM∪ PSM) = span(M∪M) = M,

which is a contradiction, so x /∈M1 and the inclusion is proper.

2

4.2.7 Lemma

Let S be an irreducible semigroup of operators of rank at most one in B(X ), with X
infinite dimensional.

(i) For each positive integer k, there is a k-dimensional subspace M of X and a

subsemigroup S0 of S leaving M invariant such that S0|M is irreducible.

(ii) S contains members A and B with independent ranges R1 and R2 such that the

restrictions of A and B to R1 +R2 are simultaneously similar to

A0 =

(
α 0

β 0

)
B0 =

(
0 γ

0 δ

)

with αδ − βγ 6= 0 and βγ 6= 0.
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Proof. (ii) follows directly from (i) and Lemma 3.3.5.

(i) We first show that for any f in X ∗, S∗f is infinite dimensional. Assume

otherwise. Then there are S1, . . . , Sn in S such that S∗1f, . . . , S
∗
nf span S∗f . Each

Si is rank one and X is infinite dimensional, so ∩{ker(Si) : 1 ≤ i ≤ n} is nontrivial.

Take x from this intersection. Then, for any S in S, f(Sx) = (S∗f)(x). But S∗f

is in S∗f and S∗i f(x) = f(Six) = 0. Therefore f(Sx) = 0 and S is reducible by

Lemma 4.2.5. This is a contradiction, so S∗f is infinite dimensional.

Fix a positive integer k and take a nonzero K = x⊗ f from S with x in X and f

in X ∗. Since S∗f is infinite dimensional it contains k linearly independent functionals

fj = T ∗j f for 1 ≤ j ≤ k. Take N = ∩{ker(fj) : 1 ≤ j ≤ k} and note that N will

have codimension k in X since every Tj is rank one. Since S is irreducible, Sx spans

X (otherwise, it’s a nontrivial invariant subspace). We can therefore find elements

S1, . . . , Sk so that S1x, . . . , Skx are linearly independent and span a complement of

N . Call this complement M and let xi = Six for 1 ≤ i ≤ k.

Let S0 be the subsemigroup of S generated by the elements

SiKTj = (Six)⊗ (T ∗j f) = xi ⊗ fj

for 1 ≤ i, j ≤ k. Since M includes all the xi’s, M is invariant for S0. Since the

xi’s and fj’s are linearly independent, the k2 operators that generate S0 are linearly

independent. Also, they are zero on N by definition so they are of the form Aij ⊕ 0

relative to M⊕N . Therefore S0|M must span a space of dimension k2. Therefore it

contains a basis for B(M) and is irreducible.

2

We can now prove the major result of this section.

4.2.8 Lemma (The Downsizing Lemma)

Let P be a property defined for semigroups in K(X ). Assume that whenever the

semigroup S has property P, so do

(i) every subsemigroup of S,

(ii) S|X0, where X0 = span{ran(S) : S ∈ S}, and
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(iii) the semigroup R+S.

Let S be an irreducible semigroup in K(X ) with property P. Then there is an integer

k ≥ 2 and an idempotent E of rank k on X such that S contains a subsemigroup

S0 = ES0, where S0|ran(E) is an irreducible semigroup in Mk(C) with property P.

Moreover, E can be chosen from R+S if the minimal positive rank in R+S is greater

than 1.

Proof. By (iii), we can assume that S = R+S. By Turovskii’s Theorem (4.2.2), S
does not consist entirely of quasinilpotent operators. By Lemma 4.2.1, S contains a

finite rank operator that is either nilpotent or idempotent.

If S contains a rank one operator then let J 6= {0} be the ideal of operators in S
of rank at most one. Then J is irreducible by Lemma 4.2.3 and has property P by

(i). By Lemma 4.2.7, there is a 2-dimensional subspace M and a subsemigroup S0 of

J leaving M invariant such that S0|M is irreducible. Taking E to be an idempotent

with range M completes the proof.

Now, let k ≥ 2 be the smallest nonzero rank in S. Let F be a member in S of

rank k. We claim that S1 = FS|ran(F ) is an irreducible semigroup in Mk(C). Since S
is irreducible, {Sx : S ∈ S} spans X for any x 6= 0. Specifically, this is true for any

nonzero x in ran(F ). Therefore {FSx : S ∈ S} spans ran(F ) for any nonzero x in

ran(F ). This shows that S0 is nonzero and is, in fact, an irreducible semigroup.

Our next claim is that every element of S1 has rank either zero or k. Obviously,

every element has rank at most k. Assume FS|ran(F ) has nonzero rank less than

k. Then it has zero in its spectrum. Then FSF is a nonzero element of S whose

range is exactly FS(ran(F )) which has dimension at most k − 1 since FS|ran(F ) has

rank less than k. But FSF is nonzero element of rank less than k in S, which is a

contradiction.

By Lemma 2.3.3, since S1 is irreducible with minimum rank k, it contains an

idempotent of rank k which must be IranF . By the construction of S1, S contains an

element of the form

E =

(
I C

0 0

)
,

relative to a decomposition of X using ran(F ) and one of its complements. Then E

is an idempotent in S of rank k with ran(E) = ran(F ). Then EF = F , so if S0 = ES
then S0|ran(E) contains S1. Thus S0 is irreducible and has property P by (i) and (ii).
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2

4.3 Subadditive and Sublinear Spectra

The definitions of subadditivity and sublinearity of the spectrum remain the same

as in finite dimensions (Definition 3.3.1). Our first new proof is an analogue of

Theorem 3.3.3.

4.3.1 Theorem

Let A and B be operators in K(X ) with a common invariant subspace M. If the

spectrum is sublinear on A and B then it is sublinear on A|M and B|M. The same

holds for subadditivity if A and B are at most rank one.

Proof. Assume the spectrum is sublinear on A and B. By the sublinearity of the

spectrum, every eigenvalue of A + λB is of the form α + λβ for α in σ(A) and β

in σ(B). Since M is a common invariant subspace for A and B, each eigenvalue of

Cλ = A0 +λB0 is also of this form. We want to show that for every eigenvalue of Cλ,

α is in σ(A0) and each β is in σ(B0).

For every (α, β) in (σ(A)× σ(B))\(σ(A0)× σ(B0)) define

F(α,β) = {λ : α+ λβ ∈ σ(Cλ)}.

Showing that the spectrum is sublinear amounts to showing that every such F(α,β) is

empty.

We claim that each F(α,β) is closed and nowhere dense. Let {λn} be a sequence in

F(α,β) converging to λ. Then {Cλn} must converge to Cλ. By Lemma 4.1.13, α+ λβ

is in σ(Cλ) so λ is in F(α,β), so the set is closed.

Assume that F(α,β) is not nowhere dense. Then it’s uncountable, so Cλ is not

invertible for uncountably many λ. Since we chose (σ(A) × σ(B))\(σ(A0) × σ(B0))

either α is not in σ(A0) or β is not in σ(B0). If α is not in σ(A0) then A0 − α is

invertible so

λ−1Cλ(A0 − α)−1 = λ−1 + (B0 − β)(A0 − α)−1

is not invertible for an uncountable number of λ’s. But it’s the translate of the

compact operator (B0 − β)(A0 − α)−1 so it should have at most countable spectrum.
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A similar contradiction is reached if β is not in σ(B0). Therefore F(α,β) is nowhere

dense.

Let F be the union of all the F(α,β) and take E = C\F . Then F is the finite

union of nowhere dense sets so E is a dense Gδ set by the Baire Category Theorem. If

E = C then each F(α,β) is empty and the spectrum is sublinear on A0 and B0. Since

E is dense we need only show that it is closed.

Let {λn} be a sequence in E converging to λ. Then {Cλn} converges to Cλ. By

Lemma 4.1.13

σ(Cλ) = lim
n−→∞

σ(Cλn).

Take a convergent sequence {αn+λnβn} with αn+λnβn in σ(Cλn). Then (αn, βn) is in

σ(A0)×σ(B0) since λn is in E . As σ(A0) and σ(B0) are finite, by taking subsequences

α = lim
n−→∞

αn β = lim
n−→∞

βn

and α is in σ(A0) and β is in σ(B0). Then

lim
n−→∞

αn + λnβn = α+ λβ,

so σ(Cλ) is contained in σ(A0) + λσ(B0). Therefore λ is not in F , so λ is in E .

Therefore E = C and the spectrum is sublinear on A0 and B0.

The proof for subadditivity on rank one operators is unchanged from the finite

dimensional case.

2

We next need to show inheritability by quotients in infinite dimensions (an ana-

logue to Corollary 3.3.4).

4.3.2 Corollary

Sublinearity of spectrum for compact operators is inherited by quotients. Subadditivity

is inherited by quotients if the operators have rank at most one.

Proof. Let A and B be operators in K(X ) with sublinear spectrum. Due to Theo-

rem 4.3.1 we need only show that, for an invariant subspace M, Â and B̂, the induced

operators on X/M, have sublinear spectrum.
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Let M⊥ denote the annihilator of M, the set of elements in X ∗ that vanish on

M (if X is a Hilbert space this is simply the perpendicular space of M). Then there

is an isometric isomorphism from M⊥ onto (X/M)∗ (see Rudin [8, p. 96]).

As A and B leave M invariant, A∗ and B∗ leave M⊥ invariant. Since σ(K∗) =

σ(K) for any K in K(X ), A∗ and B∗ have sublinear spectrum. By Lemma 4.3.2,

A∗|M⊥ and B∗|M⊥ have sublinear spectrum.

We can then use the isometric isomorphism to identify A∗|M⊥ with A∗|(X/M)∗

so they share the same spectrum. And σ(K̂) = σ(K∗|(X/M)∗) for any K in K(X )

invariant on M. Therefore A|X/M and B|X/M have sublinear spectrum.

The proof for subadditivity is unchanged from the finite dimensional case.

2

Subadditivity remains sufficient for triangularizability of rank one operators.

4.3.3 Theorem

Let S be a semigroup of operators of rank at most one in B(X ) with subadditive

spectrum. Then S is triangularizable.

Proof. By Lemma 4.3.2 and the Triangularization Lemma (4.1.6), it suffices to show

S is reducible. Assume S is irreducible.

By Lemma 4.2.7 (i), we have a subsemigroup S0 of S and a two dimensional

subspace M which is invariant for S0 such that S0|M is irreducible. Then S0 consists

of operators of rank at most one with subadditive spectrum. But by Theorem 3.3.6,

S0 is triangularizable which contradicts irreducibility. Therefore S is reducible.

2

We can also extend Theorem 3.3.12.

4.3.4 Theorem

Every semigroup of operators in K(X ) with sublinear spectrum is triangularizable.

Proof. By Corollary 4.3.2, sublinear spectrum is inherited by quotients so showing re-

ducibility is sufficient by the Triangularization Lemma (4.1.6). Since Theorem 3.3.12
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shows that sublinear spectrum is sufficient for triangularizability in finite dimensions,

if we can show it satisfies the conditions of the Downsizing Lemma (4.2.8), then we’re

done.

For (i), every subset of a set with sublinear spectrum clearly has sublinear spec-

trum. For (ii), X0 is an invariant subspace for S so the property holds by Corol-

lary 4.3.2. For (iii), if S has sublinear spectrum, then so does R+S as σ(mA) = mσ(A)

for any m in R+. Also, the spectrum is continuous by Lemma 4.1.13, so R+S has

sublinear spectrum.

Therefore the conditions of the Downsizing Lemma (4.2.8) are met and the result

follows.

2

As in finite dimensions, pairwise triangularizability is sufficient.

4.3.5 Corollary

If every pair of operators in a semigroup S in K(X ) is triangularizable, then so is S
itself.

Proof. If every pair is triangularizable then every pair has sublinear spectrum.

Therefore the semigroup has sublinear spectrum so by Theorem 4.3.4 the entire semi-

group is triangularizable.

2

If we restrict ourselves to a Hilbert space H we can achieve diagonalizability of

self-adjoint families.

4.3.6 Corollary

If S is a self-adjoint semigroup of operators in K(H) with sublinear spectrum, then S
is abelian.

Proof. By Theorem 4.3.4, there is a triangularizing chain C for S. If M is in C
and M− 6= M then M	M− is one dimensional. Since S is self-adjoint, it leaves

invariant both M	M− and its orthogonal complement.

86



Take H0 to be the direct sum of these one dimensional spaces and let H1 be its

orthogonal complement. Then H = H0⊕H1 and H0 and H1 are both invariant under

S. Then S|H0 is diagonal since S was invariant on each of the one dimensional spaces

and their orthogonal complements.

For S in S, S|H1 is quasinilpotent by Ringrose’s Theorem (4.1.9) as all the one

dimensional gaps are in H0. As S is self-adjoint, S∗S is in S and S∗S|H1 is also

quasinilpotent so S|H1 = 0.

Therefore S is diagonalizable and abelian.

2

Sublinearity is actually stronger than necessary.

4.3.7 Theorem

The following conditions are mutually equivalent for a semigroup S of operators in

K(X ):

(i) S is triangularizable.

(ii) for all integers m, scalars λ1, . . . , λm and members S1, . . . , Sm of S,

σ(λ1S1 + · · ·+ λmSm) ⊆ λ1σ(S1) + · · ·+ λmσ(Sm).

(iii) S has sublinear spectrum.

(iv) S has real sublinear spectrum. That is, σ(A+ λB) ⊆ σ(A) + λσ(B) for all real

numbers λ and all pairs A and B in S.

Proof. (i) implies (ii) by the Spectral Mapping Theorem (4.1.12), (ii) implies (iii)

by taking m = 2 and λ1 = 1. (iii) clearly implies (iv).

The Baire-Category argument from Theorem 4.3.1 works for real sublinearity as

well, so the analogous result to Corollary 4.3.2 holds and real sublinearity is inherited

by quotients. It suffices by the Triangularization Lemma (4.1.6) to show that S is

reducible. Since real sublinearity satisfies the conditions of the Downsizing Lemma

in the same way as regular sublinearity, it suffices to show that a semigroup of finite

dimensional operators with real sublinear spectrum is reducible. This is clear from

Theorem 3.3.16(v).
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2

In order to extend this result to bounded operators, we need the following defini-

tion.

4.3.8 Definition

An operator T in B(X ) is called a strong quasiaffinity if TM = M for every invariant

subspace of T .

4.3.9 Corollary

Let S be a semigroup of operators in B(X ) with sublinear spectrum. If S contains

a nonzero compact K, then it is reducible. If K is a strong quasiaffinity then S is

triangularizable.

Proof. Assume S is irreducible. The ideal of compact operators in S is nonzero since

K is nonzero. By Lemma 4.2.3, it must be irreducible. But, by Theorem 4.3.4, the

ideal must be reducible. This is a contradiction so S must be reducible.

For triangularizability, we want to show that the property of having a nonzero

compact strong quasiaffinity is inherited by quotients. If N ⊂ M are invariant

subspaces for such a K we want to show that K0 = K|M/N is a strong quasiaffinity.

Let L0 be a nontrivial invariant subspace for K0. Then

L = {x ∈M : [x] ∈ L0}

is a nontrivial invariant subspace for K. Then KL = L, so K0L0 = L0 and K0 is a

strong quasiaffinity. It’s obviously compact and strong quasiaffinities are nonzero.

Therefore S is triangularizable.

2

4.4 Polynomial Conditions on Spectra

Many of the results from finite dimensions extend easily to infinite dimensions. We

look at those proofs that require significant modification.
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Recall that in Definition 3.4.1, for a polynomial g(x) =
∑m

j=0 ajx
j we defined a

noncommutative, homogeneous polynomial fg by fg(x, y) =
∑m

j=0 ajx
jyxm−j. This

definition is unchanged in infinite dimensions, however Definition 3.4.2 requires a

slight modification.

4.4.1 Definition

Let g(x) be a polynomial. We say fg is quasinilpotent on a semigroup S if fg(A,B)

is quasinilpotent for all A and B in S.

Our first result addresses the case of g(x) = x− 1.

4.4.2 Theorem

Let S be a semigroup of operators in K(X ) such that AB − BA is quasinilpotent for

all A and B in S. Then S is triangularizable.

Proof. By the Triangularization Lemma (4.1.6), we need only show reducibility as

polynomial quasinilpotence extends to quotients.

Since Theorem 3.4.15 says any semigroup in finite dimensions with this property

is triangularizable, it’s sufficient to show that this property satisfies the conditions

of the Downsizing Lemma (4.2.8). Every subsemigroup of S clearly satisfies the

condition, as does any restriction to an invariant subspaces. Finally, polynomial

quasinilpotence is unaffected by scalars and closure. Therefore the conditions are

met and S is triangularizable.

2

In Section 3.4, we saw that there are irreducible semigroups that are nilpotent

on all polynomials of degree at least two (Example 3.4.8) and polynomials of degree

at least two that are nilpotent on the entire semigroup of rank one operators (Ex-

ample 3.4.9). These examples can easily be extended. Example 3.4.8 was already

extended to arbitrary rank and the extension to infinite dimensions is analogous.

Example 3.4.9 extends immediately.

In order to extend Theorem 3.4.12, we’ll use the following result.
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4.4.3 Lemma

Let S be an irreducible semigroup of operators in B(X ) with rank at most one. Assume

S = CS. Let g(x) =
∑m

i=0 a0x
m with g(0) 6= 0. If fg is quasinilpotent on S then:

(i) the closed linear span of {EX : E ∈ E} is X ,

(ii) the idempotents in S form an abelian semigroup E, and

(iii) for each nonzero A in S, there are unique E and F in E such that EAF is

nonzero; moreover, A = EAF .

Proof. (i) Let E be the set of idempotents in S. Let A be an arbitrary nonzero

member of S. If AS contains no nonzero idempotents then it consists entirely of

nilpotents. But then, for any S and T in S and k in N,

(SAT )k = S(ATS)k−1AT,

so the ideal of S generated by A consists of nilpotents. But then it’s reducible by Tur-

ovskii’s Theorem (4.2.2) and S is reducible by Lemma 4.2.3. This is a contradiction,

so AS contains nonzero idempotents.

Let E = AB be such an idempotent. Then EA = ABA 6= 0, so it has rank one.

Since it has exactly the same kernel and range as A it must be equal to A. Since E

is in E , we see that ES = S. Similarly SE = S.

Since the closed linear span of SX is invariant for S and S is irreducible, the

closed linear span must be X . But then the closed linear span of EX ⊃ ESX = SX
must be X as well, so (i) is proved.

(ii) To prove (ii) we want to show for E 6= F in E that EF = 0. First we’ll show

that EX 6= FX . Assume otherwise. Let EX = FX = Cx0. Since E 6= F , they

are rank one, and share the same range they must have distinct kernels as we saw in

Theorem 3.4.10. Let φ and ψ be elements of X ∗ such that E = x0⊗ψ and F = x0⊗φ.

Since E and F are idempotents, φ(x0) = ψ(x0) = 1.

Let N = ker(φ)∩ ker(ψ). Then N must have codimension 2 in X . Since x0 is not

in their kernels, N ⊕Cx0 must have codimension 1 in X . Take x1 so that Cx1 is not

contained within N ⊕Cx0. Since S is irreducible, SX must span X so S contains an

element T = x1 ⊗ θ.
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Now, S is irreducible and Sx0 6= {0}. Since Sx0 is invariant for S, it must span

X . Therefore, there is an S in S such that θ(Sx0) 6= 0 so x0 is not in the kernel of

S∗θ. Since (x1 ⊗ θ)S = x1 ⊗ S∗θ we can assume x0 is not in the kernel of θ.

Let M = span{x0, x1}. Then M is invariant for E,F, and T . Their restrictions

to M are

A =

(
1 α

0 0

)
B =

(
1 β

0 0

)
C =

(
0 0

γ δ

)
respectively. Also E = A ⊕ 0 and F = B ⊕ 0 since their kernels have codimension

one. Since E 6= F , α 6= β. Since x0 is not in the kernel of θ, γ 6= 0. Thus A,B, and

C generate an irreducible semigroup S0 in M2(C). However, fg is nilpotent on S0

and the degree of g is at least 2 since linear polynomials are quasinilpotent only on

reducible semigroups by Theorem 4.4.2. By Theorem 3.4.10, AB = 0 which is a clear

contradiction. Therefore EX 6= FX .

Therefore E = x ⊗ φ and F = y ⊗ ψ where Cx 6= Cy. Relative to the span of x

and y we can write

A =

(
1 α

0 0

)
B =

(
0 0

β 1

)
.

As S is irreducible it contains an element S with αx − y not in its kernel. Then

ES = x ⊗ S∗φ has a different kernel from E and has a restriction to the span of x

and y of

C =

(
γ δ

0 0

)
,

which is linearly independent of A. The exact same calculations as in Theorem 3.4.10

apply and EF = 0.

(iii) When proving (i) we saw that S = ES = SE so S = ESE . This proves

existence of E and F . For uniqueness, if E1AF1 = A with E1 6= E or F1 6= F

then, by what we just proved for (ii), either E1E = 0 or FF1 = 0. Either way,

A = E1AF1 = E1EAFF1 = 0 which is a contradiction.

2

We can now extend Theorem 3.4.12 to a subset of K(X ).
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4.4.4 Theorem

Let g =
∑m

j=0 ajx
j with g(0) 6= 0 and g not divisible by xp − 1 for any prime p. Let

S be a semigroup of strong quasiaffinities in K(X ). If fg is nilpotent on S then S is

triangularizable.

Proof. The quotients of strong quasiaffinities are strong quasiaffinities as seen in

Corollary 4.3.9. Quasinilpotence of polynomials is also inherited by quotients. There-

fore it’s enough to show reducibility by the Triangularization Lemma (4.1.6). Assume

S is irreducible.

Unfortunately, a semigroup consisting of strong quasiaffinities does not satisfy

the conditions of the Downsizing Lemma (4.2.8) since limits of strong quasiaffinities

can easily be 0. Quasinilpotence of polynomials does satisfy the conditions of the

Downsizing Lemma though.

Since fg is quasinilpotent on S it is also quasinilpotent on CS by Lemma 4.1.13. If

CS does not contain rank one operators then the idempotent E of minimal rank k ≥ 2

from the Downsizing Lemma (4.2.8) can be taken to be in CS. Then everything in the

irreducible subsemigroup S0 is either zero or has rank k. Therefore S0|M\{0} must

consist of invertibles and is therefore reducible by Theorem 3.4.12. This contradicts

the assumption that S is irreducible.

The only remaining case is when CS contains rank one operators. Then the

ideal J of rank one operators in CS is irreducible by Lemma 4.2.3. Let E be the

abelian semigroup of idempotents in J from Lemma 4.4.3. Then SE = ES = J
since J E = EJ = J and everything in E has rank at most one. Let E1 be the set of

nonzero elements of E and take E0 from E1.

As S is irreducible, {Sx : S ∈ S} spans X for any nonzero x in X . Therefore there

is a strong quasiaffinity T in S such that TE0 6= E0TE0. By Lemma 4.4.3, there are

E1, F in E1 such that E1TE0F = TE0. By uniqueness, F = E0 and E1TE0 = TE0.

Since T is a strong quasiaffinity, TE1 6= 0 and we can repeat this argument and get

an E2 in E1 such that TE1 = E2TE1 6= 0. We can continue this argument and get a

sequence {En} in E1 with TEn = En+1TEn 6= 0 for each n.

There are two cases: the sequence consists of distinct element or there are dupli-

cates.

(1) Assume the sequence {En} has distinct elements. Since J is irreducible we
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can choose an S in J such that R = E0SEm 6= 0. Since T is a strong quasiaffinity,

T jRTm−j 6= 0 and therefore it must be rank one for all j. By repeated use of the

property TEn = En+1TEn for all n, we see that

T jE0 = EjT
jE0 6= 0 and Tm−jEj = EmT

m−jEj 6= 0 .

Combining this with the fact that E0REm = R, we see that

EjT
jRTm−jEj = EjT

jE0REmT
m−jEj 6= 0.

By part (iii) of Lemma 4.4.3, T jRTm−j = EjT
jRTm−jEj so, since Ej is a rank one

idempotent, T jRTm−j = µjEj for some µj 6= 0.

We can now apply the quasinilpotence of fg. Since E1 is abelian, the sequence

{En} is triangularizable by Theorem 4.1.7. But

m∑
j=0

ajµjEj =
m∑
j=0

ajT
jRTm−j,

with T and R in S. Therefore the aj must all be zero, which is a contradiction. Thus

S must be reducible.

(2) The last case occurs if there exists positive integers i < j with Ei = Ej and

we take the first such pair. As we saw in the first case, T kE0 = EkT
kE0 and T k is a

strong quasiaffinity so, by passing to a power of T , we can take j = i+ p, p a prime.

(We can’t have p = 1. If it were, then i 6= 0 since E0 6= E1 by definition. However,

the two rank one operators TEi = EiTEi and TEi−1 = EiTEi−1 would have the same

range. This is impossible as T is injective since it’s a strong quasiaffinity and Ei and

Ei−1 rank one idempotents with distinct ranges.)

We can assume i = 0 and j = p since Ei 6= Ei+1. Take M to be the span of the

ranges of E0, . . . , Ep−1. Thus M is invariant for each of Ei’s and also T since T |Ek
has

its range contained within the range of Ek+1. Let S0 be the semigroup of operators in

Mp(C) generated by T |M and Ek|M. Since the Ei’s are idempotent, every invariant

subspace of S0 would be a span of a subset of their ranges. However, T acts as a

cyclical weighted permutation of their ranges. Therefore S0 is irreducible. Also, fg is

nilpotent on S0.

We can apply a diagonal similarity to S0, so thatA = T |M is a cyclical permutation

of the ranges of the Ei’s and B = E0|M = diag(1, 0, . . . , 0). The rest of the proof is
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as in Theorem 3.4.12. Moreover, fg(A,BA
−m) is nilpotent so we get a contradiction

and S is reducible.

2

We can extend this result to bounded operators.

4.4.5 Corollary

Let g be as in Theorem 4.4.4 and let S be a semigroup of strong quasiaffinities in

B(X ). If fg is quasinilpotent on S and S contains a nonzero compact operator then

S is triangularizable.

Proof. We saw in Corollary 4.3.9 that having a strong quasiaffinity extends to quo-

tients. Compactness also extends to quotients, as does quasinilpotence of polynomials.

Therefore it is sufficient to show reducibility by the Triangularization Lemma (4.1.6).

The ideal of compact operators in S is nontrivial and it is reducible by Theo-

rem 4.4.4. By Lemma 4.2.3, S is reducible.

2

We can also extend the result to the following special case in B(X ).

4.4.6 Theorem

Let g be as in Theorem 4.4.4. let S = R+S be any semigroup in B(X ) with fg

quasinilpotent on S. If the minimal rank in S is r and if S contains a finite rank

idempotent E of rank r then S has distinct invariant subspaces

{0} = M0 ⊂M1 ⊂ · · · ⊂ Mr.

Proof. Since r is minimal, G = ESE|EX\{0} is a group by Lemma 2.3.3. Now

fg is quasinilpotent on G so it’s nilpotent as G operates on a finite dimensional

space. Therefore G is triangularizable by Theorem 4.4.4. The result then follows

from Lemma 4.2.6.

2
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4.5 Permutability of the Trace

In this section, we restrict ourselves to operators on a Hilbert space H. More specif-

ically, we restrict ourselves to trace class operators. The existence of such operators

and their properties is not discussed here. For such a discussion, see [5, Chapter 1]

or [7, Section 6.5].

4.5.1 Definition (Trace Class Operators)

The trace class operators are those compact operators K for which σ(
√
K∗K), listed

according to multiplicity, is summable.

In other words, if {λn} is the set of eigenvalues of K∗K then K is in the trace

class if and only if
∑∞

n=1

√
λn < ∞ (The eigenvalues of K∗K are in [0,∞) for every

compact operator K). In fact, this sum is a norm on the trace class operators known

as the trace norm.

We start with a definition of the trace on the trace class.

4.5.2 Definition

For K in the trace class, we denote the trace of K by tr(K) and define it as

tr(K) =
∞∑
m=1

〈Kgm, gm〉

for any orthonormal basis {gm}. This is well-defined ([7, Corollary 6.5.13]), tr(AB) =

tr(BA), and it clearly reduces to the finite dimensional case if H is finite dimensional.

We want an analogue to Theorem 3.1.7 on the trace class. We will need the

following two results.

4.5.3 Theorem (Lidskii’s Theorem)

If K is in the trace class then tr(K) is the sum of the eigenvalues of K, counting

multiplicity.

Proof. This result was originally proved by Lidskii [6].

2
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4.5.4 Corollary

The trace of a trace-class operator is the sum of its diagonal coefficients relative to

any triangularizing chain

Proof. This follows directly from Lidskii’s Theorem (4.5.3) and Theorem 4.1.10.

2

We can now give an analogue for the trace class.

4.5.5 Theorem

Let F be a family of trace-class operators on a Hilbert space. Then F is triangular-

izable if and only if trace is permutable on F .

Proof. If F is triangularizable then trace is permutable by Corollary 4.5.4. We now

assume that trace is permutable.

The permutability of the trace will extend to the algebra generated by F so

without loss of generality, F is an algebra. By Theorem 4.4.2, we need only show

that AB −BA is quasinilpotent for all A and B in F .

We know tr(AB − BA) = tr(AB) − tr(BA) = 0. For n ≥ 2, let C = AB − BA

and then

tr(Cn) = tr(ABCn−1)− tr(BACn−1) = 0

by permutability so tr((AB −BA)n) = 0 for all n in N.

By Lidskii’s Theorem (4.5.3), if we take the sequence of eigenvalues of AB −BA

to be {λi} then ∑
i

λni = tr((AB −BA)n) = 0

for all n in N. We claim that this means that λi = 0 for all i. Assume otherwise.

We can assume that |λ1| ≥ |λ2| ≥ · · · . In particular, since not all the λi are zero,

|λ1| 6= 0. We can then divide every λi by λ1 (without affecting the sums) so that

1 = |λ1| = |λ2| = · · · = |λk| > |λk+1| ≥ · · · .

Note that, since AB − BA is trace class,
∑∞

i=1 |λi| < ∞ ([5, Theorem 1.3] or [7,

Lemma 6.5.10]).
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We claim that lim
n−→∞

∑∞
i=k+1 λ

n
i = 0. For any ε > 0, since the λi converge abso-

lutely, we can find an M > k such that
∑∞

i=M |λi| <
ε
2
. Since |λi| < 1 for i ≥M ,

∞∑
i=M

λni ≤
∞∑
i=M

|λi| <
ε

2

for all n. And for each k < i < M , |λi| < 1 so λni converges to zero. Then for n large

enough, we have
∑M−1

i=k+1 λ
n
i <

ε
2
. Therefore lim

n−→∞

∑∞
i=k+1 λ

n
i = 0.

Since
∑

i λ
n
i = 0, we have lim

n−→∞
λn1 + · · · + λnk = 0. Now, each λni is bounded so

there is a subsequence nj such that λ
nj

i converges to some µi for 1 ≤ i ≤ k with

|µ| = 1. And for any m in N, λ
njm
i converges to µmi , so

µm1 + · · ·+ µmk = 0.

By Lemma 3.1.5, each µi = 0 which contradicts that there are nonzero λi.

Therefore AB −BA is quasinilpotent for every A and B in F so F is triangular-

izable.

2

We can make this even simpler in the case of semigroups.

4.5.6 Lemma

Let φ be a linear functional on a semigroup S of operators in B(H). Then φ is

permutable on S if and only if both

(i) φ(ST ) = φ(TS), and

(ii) φ(STR) = φ(TSR)

for all R,S, and T in S.

Proof. The proof of this fact is exactly the same as Lemma 3.1.2.

2
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4.5.7 Corollary

A semigroup S of trace-class operators is triangularizable if and only if

tr(ABC) = tr(BAC)

for all A,B, and C in S.

Proof. This follows directly from Theorem 4.5.5 and Lemma 4.5.6.

2

Finally, we also have an analogue for Corollary 3.1.10.

4.5.8 Corollary

Let F be a self-adjoint family of trace-class operators. Then F is abelian if and only

if trace is permutable on F .

Proof. Commutativity clearly implies a permutable trace. For the other direction,

we know that F is triangularizable by Theorem 4.5.5 and therefore so is S, the

semigroup generated by F . Now S is also self-adjoint and, as it’s triangularizable, it

has sublinear spectrum. Therefore it is abelian by Corollary 4.3.6.

2
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Chapter 5

Commutators and Spectral Radius

We saw in Theorem 3.4.15 that if AB − BA is nilpotent for every pair of operators

A and B in a semigroup S then S is triangularizable. This is clearly a necessary

condition for triangularizability and can be rephrased as ρ(AB − BA) = 0 for every

A and B in S.

In this section, we investigate whether we can loosen this condition and still retain

triangularizability or, at least, reducibility. In particular, how small does ρ(AB−BA)

have to be relative to ρ(A) and ρ(B) before we get triangularizability (at which point,

AB − BA will automatically be nilpotent). These results were originally published

in a paper by Janez Bernik and Heydar Radjavi [1].

We have also seen that a permutable trace is sufficient for triangularizability (The-

orem 3.1.7 and Theorem 4.5.5). This condition can be similarly weakened so that an

approximately permutable trace will still lead to triangularizability ([2]). However,

this will not be dealt with here.

5.1 Compact Groups

We first consider the case of compact groups and discover that
√

3 is sufficiently small

and, in fact, sharp. Note that compact groups of matrices are simultaneously similar

to unitary groups (Theorem 2.3.1), so ρ(A) = 1 for every A in a compact group.

99



5.1.1 Theorem

Let G be a compact group of invertible operators in B(V) such that ρ(AB−BA) <
√

3

for every A and B in G. Then G is abelian.

Proof. Assume that G is not abelian. Then G is a nonabelian compact group so,

by [3], it contains a finite nonabelian group H. We can assume, taking a subgroup

if necessary, that H is a minimal nonabelian group. By Lemma 3.3.10, there is a

prime p and a p-dimensional subspace M which is invariant under H such that H|M
is generated by two elements of the form

A = α


0 1

1
. . .
. . . . . .

1 0

 B = β


θ1

θ2

. . .

θp

 ,

where α and β are roots of unity, the θi are qth roots of unity, q a prime, and B is

not scalar. If S and T are in H then ρ(S|MT |M − T |MS|M) = ρ((ST − TS)|M) ≤
ρ(ST − TS) <

√
3 so the

√
3 condition holds for H|M as well.

For any X and Y in B(V) and µ, ν in C with |µ| = |ν| = 1, we have

ρ[(µX)(νY )− (νY )(µX)] = ρ(XY − Y X),

so we can assume α = β = 1 and that some θi = 1. Since B isn’t scalar, we can

replace B with AjBA−j for some j so that θ1 = 1 and θp 6= 1. Then for every n

in N, ABnA−1 − Bn is a diagonal matrix with θnp − 1 as its first entry. Since θp is

a primitive qth root of unity, θnp takes on all qth roots of unity as n ranges over N.

Therefore there is a value of n such that
∣∣θnp − 1

∣∣ ≥ √
3. For this n,

ρ((ABn)A−1 − A−1ABn) = ρ(ABnA−1 −Bn) ≥
∣∣θnp − 1

∣∣ ≥ √
3,

which contradicts that H|M satisfies the
√

3 inequality.

2

The
√

3 bound is sharp.
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5.1.2 Example

The group G in M3(C) generated by

A =

 0 0 1

1 0 0

0 1 0

 and B =

 1 0 0

0 ζ 0

0 0 ζ2

 ,

where ζ is a primitive third root of unity, is irreducible and satisfies the relationship

ρ(CD −DC) ≤
√

3

for every C and D in G.

Proof. Since B is nonscalar and diagonal, {A,B} is irreducible by Lemma 3.3.9, so

G is irreducible.

As for the spectral radius condition, note that every element of G turns out to

be an assignment of values from the set {1, ζ, ζ2} to one of the three disjoint sets of

entries (those corresponding to the nonzero entries of I, A, and A2), along with the

matrices I, A, and A2. We can also check that if you take two matrices C andD of this

form then CD−DC = (1− ζn)CD where n is either 0, 1, or 2. Since CD is a matrix

in G, σ(CD) is either {1} or {1, ζ, ζ2}. Thus ρ(CD) = 1 and ρ(CD−DC) = |1− ζn|
which is either 0 or

√
3, depending on n.

2

5.2 Semigroups

We now move on to semigroups and investigate the effect of the following condition.

5.2.1 Definition (The
√

3 Condition)

We say that a semigroup S of operators in B(V) satisfies the
√

3 condition if there is

exists 0 < ε <
√

3 such that

ρ(AB −BA) ≤ ερ(A)ρ(B)

for every A,B in S.

The following lemma will be useful.
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5.2.2 Lemma

Let S be a nonnilpotent operator in B(V) and let r be the number of eigenvalues

(counting multiplicities) of S with maximum modulus. Let S be the semigroup gener-

ated by S. Then CS contains either an idempotent of rank r or a nonzero nilpotent

of rank strictly less than r.

Proof. This was actually shown during the proof of Lemma 2.3.3. Assume that CS
contains no nonzero nilpotent of rank strictly less than r. We want to show that CS
contains an idempotent of rank r. Since we are concerned with CS, we may assume

that ρ(S) = 1.

We can express S as

S =

(
B 0

0 C

)
,

where σ(B) is on the unit circle and ρ(C) < 1. Further, we can assume B is in Jordan

form so B = U + N where U is unitary, N is nilpotent, and NU = UN . Note that

B acts on a space of dimension r since S has r eigenvalues (counting multiplicity) of

maximum modulus.

As in Lemma 2.3.3, we can show that, if N 6= 0, then CS contains(
Nk 0

0 0

)
,

where Nk 6= 0, but Nk+1 = 0. However, since N acts on a space of dimension r and

is nilpotent, this operator has rank less than r. It is also nonzero and nilpotent. This

contradicts our initial assumption so N = 0.

Then, as in Lemma 2.3.3, a sequence of powers of S converges to(
I 0

0 0

)
,

with I acting on the same space as B, which has dimension r and the result is proved.

5.2.3 Definition

A semigroup S of operators in B(V) is said to be totally reducible if V decomposes as

V1⊕ · · · ⊕ Vm with each Vi invariant for S and each S|Vi
irreducible. In particular, S

has a block diagonal form with respect to the Vi’s.
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This condition is equivalent to the existence of mutually orthogonal idempotents

P1, . . . , Pm such that
∑m

i=1 Pi = I with S =
∑m

i=1 PiSPi, and where PiSPi|ran(Pi) is

irreducible. Note that these Pi commute with every S in S. In particular, PiSPi =

PiS = SPi.

We can now prove our first result on semigroups with the
√

3 condition.

5.2.4 Lemma

Let S be a totally reducible semigroup of operators in B(V) satisfying the
√

3 condition.

Then S contains no nonzero nilpotents.

Proof. Let P1, . . . , Pm be the complete set of mutually orthogonal projections onto

minimal invariant subspaces for S. Assume that S contains a nonzero nilpotent N .

We can assume without loss of generality that N2 = 0 as Nk is an element of S for

every k in N.

For any A in S, ρ(AN − NA) = 0 by the
√

3 condition as ρ(N) = 0. Therefore

AN −NA is nilpotent. Also, there must exist a j such that PjN 6= 0. When we pass

to PjSPj, AN −NA remains nilpotent and N remains a nonzero nilpotent. We may

therefore assume S is irreducible and m = 1.

Since N is a nonzero nilpotent with N2 = 0, we may write it as

N =

(
0 X

0 0

)
,

with respect to the decomposition V = ker(N)⊕ker(N)⊥ where X 6= 0. With respect

to the same decomposition,

A =

(
A1 A2

A3 A4

)
.

Therefore

AN −NA =

(
−A3X (A1 − A4)X

0 A3X

)
,

so since AN−NA is nilpotent, the only eigenvalues of A3X are zero. Hence tr(A3X) =

0. But φ(A) = tr(A3X) is nonzero linear functional on B(V) which is zero on S, so

S is reducible by Lemma 2.2.10. This is a contradiction, so S contains no nonzero

nilpotents.
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2

Unfortunately, even with arbitrarily small ε, there are examples of irreducible

semigroups in B(V) that satisfy the
√

3 condition. Consider the following example.

5.2.5 Example

For 0 < δ < 1, define

Sδ =

{
c

(
1 x∗

y yx∗

)
: c ∈ C∗, x, y ∈ Cn−1, ‖x‖ ≤ δ, ‖y‖ ≤ δ

}
.

Every Sδ is an irreducible semigroup and for any ε > 0, there is a delta such that

ρ(AB −BA) < ερ(A)ρ(B) for every A and B in Sδ.

Proof. That Sδ is a semigroup is immediate. To see that Sδ is irreducible, consider

the algebra Aδ it generates. By taking A to be the matrix with x = y = 0 and B to

be the matrix with y = 0 and x zero in every entry except the (j − 1)st, we can see

that A − B is a scalar multiple of E1j. By using C as the matrix with x = 0 and y

zero in every entry except the (k − 1)st, we can see that A − C is a scalar multiple

of Ek1. Therefore Aδ contains all the standard basis units so it is B(V) and Sδ is

irreducible.

Fix an ε > 0. We want to find an Sδ that satisfies ρ(AB − BA) < ερ(A)ρ(B) for

every A and B in Sδ.

Let A be in Sδ and calculate ρ(A). A =

[
1

y

]
[ 1 x∗ ] so

An =

[
1

y

](
[ 1 x∗ ]

[
1

y

])n−1

[ 1 x∗ ]

= (1 + 〈x, y〉)n−1

[
1

y

]
[ 1 x∗ ].

Therefore (‖An‖) 1
n converges to 1 + 〈x, y〉 so ρ(A) = 1 + 〈x, y〉. Since ‖x‖ ≤ δ and

‖y‖ ≤ δ, |〈x, y〉| ≤ δ2 so ρ(A) is in the set [1− δ2, 1+ δ2]. The same, of course, is true

for any B in Sδ.
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We now need to look at ρ(AB−BA). Since scalar multiples obviously cancel out

of both sides of the
√

3 condition we can assume

A =

(
1 x∗

y yx∗

)
and B =

(
1 u∗

v vu∗

)
,

so

AB =

[
1

y

]
[ 1 x∗ ]

[
1

v

]
[ 1 u∗ ] = (1 + 〈x, v〉)

[
1

y

]
[ 1 u∗ ]

and

BA = (1 + 〈u, y〉)

[
1

v

]
[ 1 x∗ ].

Let r = 1 + 〈x, v〉 and s = 〈u, y〉. Then

AB −BA =

(
r − s rv∗ − sx∗

ry − su ryv∗ − sux∗

)
.

We know the spectral radius of AB − BA is less than its norm. All norms are

equivalent in finite dimensions so we consider ‖AB −BA‖1. Now,

|r − s| ≤ |〈x, v〉|+ |〈u, y〉| ≤ 2δ2 ≤ 2(1 + δ2)δ2 ≤ 2(1 + δ2)δ,

|rv∗ − sx∗| ≤ |r| ‖v‖+ |s| ‖x‖ ≤ 2(1 + δ2)δ,

|ry − su| ≤ |r| ‖y‖+ |s| ‖u‖ ≤ 2(1 + δ2)δ,

|ryv∗ − sux∗| ≤ |r| ‖y‖ ‖v‖+ |s| ‖u‖ ‖x‖ ≤ 2(1 + δ2) ≤ 2(1 + δ2)δ.

Therefore ‖AB −BA‖1 ≤ 8(1 + δ2)δ. Taking C > 0 to be the equivalence constant

between ‖·‖1 and the operator norm, ρ(AB −BA) ≤ ‖AB −BA‖ ≤ 8C(1 + δ2)δ.

Given our estimates on spectral radii, we need to choose a δ such that

8C(1 + δ2)δ < ε(1− δ2)2

or, by rearranging,
8C(1 + δ2)δ

(1− δ2)2
< ε.

Since the left side goes to zero as δ goes to zero we can find the required δ.

2
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Some positive results can be achieved. The semigroups in the above example are

rank one. The following results shows that this is not accidental as, among other

things, irreducible semigroups satisfying the
√

3 condition must contain rank one

idempotents in their homogenized closure.

5.2.6 Theorem

Let S be a totally reducible semigroup of operators in B(V) satisfying the
√

3 condi-

tion with P1, . . . , Pm denoting the complete set of mutually orthogonal idempotents to

minimal invariant subspaces of S. Then the following hold:

(i) There exist minimal idempotents in CS.

(ii) Let E be any minimal idempotent in CS. Then the rank of EPi is either zero

or one for all i = 1, . . . ,m. In particular, if S is irreducible, then there is a

rank-one idempotent in CS.

Proof. If S satisfies the
√

3 condition then so does CS, so we can assume without

loss of generality that S = CS. And as I commutes with everything we can also

assume that I is in S.

Take any nonzero element A in S. By Lemma 5.2.4, it is nonnilpotent. By

Lemma 5.2.2, S contains idempotents of rank at most equal to A or nonzero nilpotents

of rank less than A. However, the second is impossible by Lemma 5.2.4, so S contains

idempotents. By starting with an A of minimal rank, we get an idempotent E of rank

at most equal to A. By minimality, E has rank equal to that of A and is an idempotent

of minimal rank in S. Therefore it must be minimal in S. This proves (i).

Take any minimal idempotent E in S. Then ESE is simultaneously similar to

scalar multiples of unitaries by Lemma 2.3.3. By Theorem 5.1.1, it’s abelian.

Assume Pj is such that PjE 6= 0. By definition, PjSPj|ran(Pj) is irreducible. Since

Pj commutes with S, PjESEPj|ran(EPj) is irreducible by Lemma 2.2.13. But it’s also

abelian, so it must be on a space of dimension one or it would be reducible. Therefore

PjE has rank one.

2
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5.2.7 Corollary

Let S be a totally reducible semigroup of operators in B(V) satisfying the
√

3 condition

with P1, . . . , Pm denoting the complete set of mutually orthogonal idempotents to min-

imal invariant subspaces of S. If CS contains a set E1, . . . , El of mutually orthogonal

minimal idempotents of ranks ri respectively, then the lattice of invariant subspaces of

S contains a chain of length at least r1 + · · ·+ rl. In particular, if E1 + · · ·+El = I,

then S is diagonalizable.

Proof. We may assume without loss of generality that S = CS.

First we’ll show that if PjEi 6= 0 then PjEk = 0 for all k 6= i. Assume other-

wise and fix such i, j, and k. By definition, PjSPj|ran(Pj) is irreducible. Therefore

EiPjSPjEk is nonzero since Ei and Ek are nonzero on ran(Pj) by our choice of i, j,

and k. Since the Pj’s commute with S, PjEiSEkPj is nonzero, so EiSEk is nonzero.

But each such element is in S and is nilpotent since EkEi = 0. By Lemma 5.2.4, S
has no nonzero nilpotents, so this is a contradiction and no such i, j, and k exist.

Each Ei has rank ri and each PjEi has rank at most one. Since the ranges of the

Pi span V , there must be ri such projections for Ei. By our first claim, the projections

are unique for each Ei. Therefore we have r1 + · · ·+rl distinct projections. This gives

us the required chain of invariant subspaces. In particular, if the Ei’s sum to the

identity, their ranks sum to the dimension of V . Thus each projection is rank one

and the totally reducible semigroup is diagonalizable.

2

We now drop the requirement of total reducibility for semigroups, but consider

the special case of groups of invertible operators. In contrast to arbitrary semigroups,

the
√

3 condition forces reducibility in such groups.

5.2.8 Theorem

Let G be a group of invertible operators in B(V) satisfying the
√

3 condition with

m = dim(V). Then G is solvable and the following hold:

(i) If m ≤ 3, then G is triangularizable and if m ≥ 4, then the lattice of invariant

subspaces of G contains a chain of length at least three.
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(ii) The derived subgroup G ′ is triangularizable.

(iii) For each A ∈ G ′, we have σ(A) ⊂ {z ∈ C : |z| = 1}.

(iv) If σ(A) ⊂ {z ∈ C : |z| = ρ(A)} for every A in G, then G is triangularizable.

Proof. Multiplication by C∗ = C\{0} does not affect the
√

3 condition so we can

assume without loss of generality that G = C∗G. We’ll first deal with the case where

G is totally reducible. Then the (totally reducible) semigroup S = G also satisfies

the
√

3 condition and we let P1, . . . , Pm be a complete set of mutually orthogonal

idempotents onto minimal invariant subspaces of G (and S).

By Theorem 5.2.6, S contains a minimal idempotent E. If E = I then S (and

G) is diagonalizable by Corollary 5.2.7 and this result is trivial. Assume E 6= I and

consider a sequence {Gn} in G converging to E. The sequence {G−1
n / ‖G−1

n ‖} consists

of elements of norm one so, by passing to a subsequence, we may assume that it

converges to some A 6= 0 in S.

Clearly, AE = EA by construction. Since the norms of the G−1
n ’s are unbounded

(otherwise E would be invertible and therefore equal to I), AE = EA = 0. Let S1 be

the subsemigroup of S generated by A. As we saw in the proof of Theorem 5.2.6, CS1

must contain an idempotent, F . As S1 is generated by A, EF = FE = 0. Therefore

there is an idempotent in S which is orthogonal to E so any maximal set of mutually

orthogonal minimal idempotents in S must contain at least two elements.

Take {E1, . . . , Ek} to be such a set. By Corollary 5.2.7, for each Pi, the rank of

PiEj is either zero or one. If the rank is one, we claim that the rank of Pi is one as

well. Assume otherwise.

We claim that Ej does not commute with everything of the form EjB with B in

S. Assume otherwise. Then for every B in S and x in ker(Ej),

Ej(Bx) = E2
jBx = EjBEjx = 0,

so ker(Ej) is an invariant subspace of S. Since PiEj is rank one and the rank of Pi is

more than one, ker(Ej) ∩ ran(Pi) is a nontrivial invariant subspace for PiSPi|ran(Pi).

But this is a contradiction as PiSPi|ran(Pi) is irreducible. Therefore the claim is

proved and there is a B in S such that C = EjB does not commute with Ej. Thus

EjC = C 6= CEj.
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Take {Gn} to be a sequence in G converging to Ej. Assume the sequence CG−1
n

was bounded. Then, by considering a subsequence, it converges to some T in S. But

then

C = CG−1
n Gn −→

n−→∞
TEj,

so CEj = C. Therefore the sequence CG−1
n cannot be bounded. Consider a sub-

sequence so that ‖CG−1
n ‖ converges to infinity. By taking yet another subsequence,

we may also assume that the bounded sequence {CG−1
n / ‖CG−1

n ‖} converges to some

S 6= 0 in S. Clearly, EjS = S, while

SEj = lim
n−→∞

CG−1
n Gn

‖CG−1
n ‖

= lim
n−→∞

C

‖CG−1
n ‖

= 0.

Therefore S2 = SEjS = 0 so S is a nonzero nilpotent in S. But this is a contradiction

by Lemma 5.2.4. Therefore Pi has rank one.

Let M be the span of the ranges of the Ej’s. The fact we just proved shows that S
is diagonal on M as each Pi whose range intersects M is rank one. We’ve also shown

that there are at least two Ej’s. If m = 3, the third projection must automatically be

rank one as well, proving diagonalizability. The result for m ≥ 4 is also clear. This

proves (i) in the totally reducible case.

We now look at G ′. If M = V then G is abelian and the entire result holds so

assume M 6= V . We know M has dimension at least two as there are at least two

Ej’s. Since G is diagonal on M, G ′ acts trivially on M. Take N = (I −⊕Ej)V and

consider the action of G ′ on N .

We want to show that G ′ is simultaneously similar to a unitary group. Since G ′

acts trivially on M, ρ(A) ≥ 1 for all A in G ′. If ρ(A) > 1 for some A in G ′ then, using

the technique from Lemma 5.2.2, we get an idempotent (since there are no nilpotents

in G by Lemma 5.2.4) E in CG ′. Since ρ(A|M) = 1, M would be in ker(E). Also,

ran(E) would be contained in N by the block diagonal nature of G ′ implied by total

reducibility. This contradicts the maximality of the set {E1, . . . , Ek}. Therefore,

ρ(A) = 1 for every A in G ′.

We claim that G ′ is totally reducible. Let M be a minimal invariant subspace for

G ′ (no nontrivial subspace of M is invariant for G ′). We need to show that M has

a complementary space N which is also invariant for G ′. Recall that G ′ is a normal

subspace of G. Now, for any G in G,

G ′(GM) = G(G ′M) ⊆ GM,
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so GM is invariant for G ′. Then M∩ GM is invariant for G ′ and contained within

M. Thus M is minimal, the intersection must be either M or {0}.

If M∩GM = M then, since GM is a minimal invariant subspace (as otherwise

G−1M would be a nontrivial invariant subspace properly contained within M), we

must have that M = GM. If GM = M for all G in G then M is invariant for G

and must be minimally, so as G ′ ⊆ G. Therefore, as G is totally reducible, M has a

complementary subspace N that is invariant for G and thus G ′.

In the other case, there is some G such that M ∩ GM = {0} and GM is in-

variant for G ′. Let {G1, . . . , Gl} be a minimal set with M ∩ GiM = {0} such

that for any H in G, either HM = M or HM ⊆ span{G1M, . . . , GlM}. Let

L = span{G1M, . . . , GlM}. Obviously N ∩M = {0}. By definition, M + L is an

invariant subspace of G. Since G is totally reducible, M + L has a complementary

invariant subspace L′. Taking N = L + L′ gives us the required complementary

invariant subspace of M for G ′.

Now, G ′ is totally reducible and every element in G ′ has spectral radius one. G ′

is therefore the direct sum of irreducible groups, each of which has bounded spectral

radius. By Lemma 2.2.15, each of these irreducible groups is bounded and therefore,

G ′ is bounded so by Theorem 2.3.1 it is simultaneously similar to a unitary group.

This proves (iii) for the totally reducible case. By Theorem 5.1.1, G ′ is abelian and

triangularizable. This proves (ii) for the totally reducible case. If σ(A) ⊂ {z ∈ C :

|z| = ρ(A)} then G1 = {A ∈ G : ρ(A) = 1} will be bounded and then abelian by

Theorem 5.1.1. This proves (iv) for the totally reducible case. Finally, since G ′ is

abelian, G is solvable.

We now consider the general case. Let C be a maximal chain of invariant subspaces

of G. Let P1, P1⊕P2, . . . , P1⊕· · ·⊕Pl be the corresponding projections onto invariant

subspaces. Consider the group

Gs = {P1AP1 ⊕ P2AP2 ⊕ · · · ⊕ PlAPl : A ∈ G}.

By the maximality of C, Gs is totally reducible. Also, the map from G to Gs (block

upper-triangular to block diagonal) preserves spectral radius. Therefore Gs has the
√

3 condition and the theorem holds for Gs.

Results (i)-(iv) for G follow directly from the results for Gs. Thus, we need only

show that G is solvable. Take φ to be the map from G to Gs. Then φ is a homomor-

110



phism and φ(G) = Gs is solvable. Therefore, in order to show G is solvable, we need

only show that ker(φ) is solvable.

Now, ker(φ) is a subset F , the group of the upper triangular matrices with ones

on the diagonal. The commutator subgroup F ′ = [F ,F ] is contained within those

matrices that are block upper triangular with all blocks being 2×2 and whose diagonal

blocks are the identity. Further, [F ′,F ′] is contained within a similar set except that

the blocks are 4 × 4. Repeating this dlog(dim(V ))e times, we are eventually left

with {I} so F is solvable. Since subgroups of solvable groups are solvable, ker(φ) is

solvable. Therefore G is solvable.

2

For connected groups, the result is stronger.

5.2.9 Corollary

A connected group satisfying the
√

3 condition is triangularizable.

Proof. G is solvable so the claim follows from the Lie-Kolchin Theorem ([4, Corollary

1.5]) which says that a connected and solvable linear algebraic group is triangulariz-

able.

2

Without connectedness, we cannot hope for better as seen by the following exam-

ple.

5.2.10 Example

Consider the group G in M4(C) generated by the two elements

U =


2 0 0 0

0 1
2

0 0

0 0 1 0

0 0 0 −1

 and V =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


is a group that satisfies the

√
3 condition, but is not triangularizable.
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Proof. Since

(
1 0

0 −1

)
and

(
0 1

1 0

)
share no invariant subspaces, G is not

triangularizable and its longest chain of invariant subspaces is of length three.

Note that G is commutative on the first two basis elements. On the third and

fourth basis elements, it acts as one of ±E11 ±E22 or ±E12 ±E21, where Eij are the

standard matrix units on M2(C). Consider the commutators of elements A and B

of these two forms. If A and B are of the same type, (either both diagonal or both

zero on the diagonal), then AB and BA are both diagonal matrices with entries of

modulus 1. If A and B are different types, the AB and BA are both zero on the

diagonal with entries of modulus 1 off it. In either case AB−BA will have entries of

modulus at most 2 either all on or all off the diagonal so ρ(AB − BA) ≤ 2. Since G
is commutative on the first two elements, ρ(AB −BA) ≤ 2 for every element of G.

Consider elements A and B in G and write each as a word in U and V . If the

exponents of the U ’s in A add up to zero then A acts as one of I,−I, E12 + E21 or

−(E12 + E21) on the third and fourth basis element. If the exponents of B similarly

add up to zero then A and B will commute, so they satisfy the
√

3 condition.

Otherwise, either A or B has spectral radius at least 2 (due to the first or second

basis element). The other will have spectral radius at least 1 since every element in

G has that property. Therefore the
√

3 condition will be satisfied in this case as well.

2

We now return to arbitrary semigroups for a few final results. We need the

following definition.

5.2.11 Definition

Given a maximal chain C of invariant subspaces for a semigroup S of operators in

B(V) with corresponding projections P1, P1⊕P2, . . . , P1⊕· · ·⊕Pl we write the “block

diagonal form” of S as

Ss = {P1SP1 ⊕ P2SP2 ⊕ · · · ⊕ PlSPl : S ∈ S}.

Then Ss is totally reducible.
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5.2.12 Lemma

Let S be a semigroup of operators in B(V) and assume S contains nonnilpotent ele-

ments. Let r be the minimal nonzero rank of elements of CS and let rs be the minimal

nonzero rank of element of CSs. Then rs ≥ r.

Proof. We first show that CSs contains an idempotent E of rank rs. Take J to be the

ideal of elements of rank at most rs in CSs. If J consists entirely of nilpotents, then

it is triangularizable by Levitzki’s Theorem (2.2.11). By total reducibility, PiCSsPi
is irreducible, so the ideal PiJPi should be irreducible by Lemma 2.2.12. Thus each

Pi would have to operate on a one dimensional space but this means that J , which

consists entirely of nilpotents, is diagonal and thus the zero ideal. This contradicts

that there are nonzero elements of rank rs. Therefore, J contains a nonnilpotent

operator. By Lemma 5.2.2, J contains either an idempotent E or a nilpotent of rank

less than rs. But rs is the minimal rank, so such an idempotent E must exist.

Since E is a limit of elements in CSs and the spectrum is continuous (2.4.5), there

must be an element A in Ss whose spectrum contains at most rs elements (counting

multiplicity) with maximal modulus. Let B be an element in S that maps to A under

the obvious map from S to Ss. Then B has exactly the same spectrum as A. By

Lemma 5.2.2, CS contains an element of rank at most rs so rs ≥ r.

2

We can now extend Theorem 5.1.1 from compact groups to semigroups.

5.2.13 Theorem

Let S be a semigroup of operators in B(V) satisfying the
√

3 condition. Let m be the

minimal nonzero rank in CS. Then S has a chain of invariant subspaces of length at

least m.

Proof. If S consists of nilpotents then it’s triangularizable by Levitzki’s Theorem

(2.2.11). Otherwise, CSs contains a minimal idempotent E of rank rs ≥ m. As S
satisfies the

√
3 condition, so does Ss. By Corollary 5.2.7, Ss has a chain of invariant

subspaces of length at least m. This same chain is also a chain of invariant subspaces

for S, so the result is proved.
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5.3 Infinite Dimensions

In infinite dimensions, there are few affirmative results, especially without any com-

pactness assumptions. It is still an open problem whether a bounded operator T on a

Hilbert space has invariant subspaces so we don’t know if the semigroup generated by

T is reducible. However, this semigroup is abelian and thus satisfies the
√

3 condition.

We will therefore restrict ourselves to semigroups of compact operators. We can

extend Example 5.2.5 to infinite dimensions by replacing Cn−1 with `2. Our one

affirmative result in infinite dimensions is a partial analogue to Corollary 5.2.7.

5.3.1 Theorem

Let S be a semigroup of operators in K(X ) which satisfies the
√

3 condition and let

m be the minimal nonzero rank in CS, which may be infinite. Then S has a chain of

invariant subspaces of length at least m.

Proof. We can assume without loss of generality that S = CS. If m is infinite then

S contains no finite rank operators. Therefore S consists entirely of quasinilpotents

by Lemma 4.2.1. By Turovskii’s Theorem (4.2.2), S is triangularizable. Therefore we

can assume m <∞.

Let C be a maximal chain of invariant subspaces of S. We want to show that C
has length at least m or, in other words, that it has at least m+1 elements including

{0} and X . Assume it has k + 1 < m+ 1 elements, then

{0} ⊂ M1 ⊂ · · · ⊂ Mk = X .

For each i ≥ 1, denote the quotient space Mi/Mi−1 by Xi. We can then create

a Banach space Y = ⊕iXi where the norm of an element y = (x1, . . . , xk) in Y is

‖y‖ = max{‖xi‖ : 1 ≤ i ≤ k}.

Consider the new semigroup T defined on Y where the elements of T are ⊕iAi

where Ai is the quotient operator on Xi induced by A for every A in S. The homo-

morphism from S to T taking A to ⊕iAi is a contraction and preserves spectrum,

including multiplicity (Theorem 4.1.10 and Theorem 4.1.11).
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Now, the proof of Lemma 5.2.12 works in infinite dimensions except that we

consider quasinilpotents instead of nilpotents and use Turovskii’s Theorem (4.2.2)

instead of Levitzki’s Theorem (2.2.11). Therefore there is a minimal idempotent

E in CT of minimal rank l ≥ m. The semigroup ECT E|EX is similar to scalar

multiples of a unitary group by Lemma 2.3.3. Hence it is abelian by Theorem 5.1.1,

is therefore diagonalizable, and thus has a chain of invariant subspaces of length l.

By Lemma 4.2.6, T has a chain of invariant subspaces of length at least l which

contradicts that such a chain for T has length at most k.

2
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