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Abstract

Algebraic multigrid (AMG) is one of the most efficient algorithms for solving large

sparse linear systems on unstructured grids. Classical coarsening schemes such as the

standard Ruge-Stüben method [14] can lead to adverse effects on computation time

and memory usage that affect scalability. Memory and execution time complexity

growth is remedied for various large three-dimensional problems using the parallel

modified independent set (PMIS) coarsening strategy developed by De Sterck, Yang,

and Heys [18]. However, this coarsening strategy often leads to erratic grids without

a regular structure that diminish convergence.

This thesis looks at two modifications of the PMIS algorithm that aim to improve

scalability. These include a greedy implementation of PMIS and restricting PMIS

coarsening to finer grid levels while Cleary-Jones-Luby-Plassman coarsening (based

on the standard Ruge-Stüben method) is performed on all other grids. It is shown

that, for a variety of problems, the greedy PMIS algorithm does little to improve

convergence, while the second modification can improve convergence. However, it is

also shown that the second modification can result in increased memory usage that

is unfavorable to scalability.

The PMIS based algorithm can be improved by redefining interpolation. As shown

by De Sterck and Yang [17], PMIS coarsening combined with F-F interpolation dra-

matically improves convergence, but often has negative effects on computation time

per iteration and memory usage that affect scalability. A third modification is pro-

posed that aims to remedy this problem by altering F-F interpolation. The new

algorithm is called F-F1 interpolation, and is shown to reduce computation time per

iteration and memory usage compared to F-F interpolation, while maintaining fast

convergence and good scalability, for a variety of problems.
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Chapter 1

Introduction

Although the field of numerical analysis dates back more than 2000 years, it has vastly

grown in recent years due to the advent of the computer. The demands of modern

scientific computation center on speed of execution and data-storage cost. Consid-

erable research is being conducted around the world into algorithms that effectively

solve problems while keeping both speed and storage at optimal levels.

The need for robust and efficient solution methods manifests itself in a range of

applications: from engineering and atmospheric science, to finance and biological sys-

tems. Often, problems in these areas are inherently large by nature, or may require

a high level of resolution. In either case, the number of unknowns can be in the bil-

lions, thus making the need for efficient solution strategies all the more evident. For

many linear algebra problems, direct solution methods are impractical, and standard

iterative methods are slow to converge. In 1964, Fedorenko introduced the first in-

stance of a class of algorithms that could remedy these shortcomings and would come

to be known as multigrid methods [6]. Brandt then introduced the first practical

multigrid method in 1977 [2]. Multigrid methods have been very successful at solving

a variety of problems, and a substantial part of this success has been due to a par-

ticular versatile form known as algebraic multigrid (AMG). This thesis will examine

AMG and its range of applicability, and also present several modifications to current

implementations that improve both execution speed and storage characteristics.

1
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Figure 1.1: Discretized two-dimensional grid. The dots indicate points that appear
in the discrete equation for point (i, j).

1.1 Preliminary Background: Finite Difference Dis-

cretizations

As described by Atkinson [1], numerical analysis provides computational methods for

the study and solution of mathematical problems. Of interest to this thesis, is the

numerical solution of partial differential equations (PDEs). For example, consider the

standard two-dimensional (2D) Laplace equation with Dirichlet boundary conditions

on the unit square,

−uxx − uyy = f(x, y), 0 < x < 1, 0 < y < 1, (1.1.1)

u(0, y) = u(x, 0) = 0.

This equation can be discretized by first discretizing the domain and then applying a

Taylor series expansion at each of the grid points (as is done, for instance, in [4]). An

example of a discretized domain is illustrated in Figure 1.1. The labeling indicates

that the grid spacing in the x and y directions, respectively, can be defined as

hx =
1

n
, where i = 0, 1, . . . , n,

hy =
1

m
, where j = 0, 1, . . . ,m,



3

such that xi = ihx and yj = jhy. Then, applying a Taylor series in two variables at

all grid points (i, j),1

u(x, y) =
∞∑

k=0

∞∑
l=0

u(k,l)(xi, yj)

k!l!
(x− xi)

k(y − yj)
l, (1.1.2)

and taking appropriate combinations, yields expressions for the second order x and y

derivatives, respectively, as follows:

uxx(xi, yj) ≈
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2
x

, (1.1.3)

uyy(xi, yj) ≈
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

h2
y

. (1.1.4)

When uxx and uyy in (1.1.1) are replaced by (1.1.3) and (1.1.4), respectively, the

resulting discretization is referred to as a 5-point Laplace discretization, since approx-

imation of the x and y second derivatives involves five different grid points. Assuming

that spacing in the x and y directions is equal (i.e. hx = hy = h, so that n = m),

and letting ui,j be an approximation for u(xi, yj), this results in a system of (n− 1)2

equations in (n− 1)2 unknowns (recall that solution values at the boundary are 0):

4

h2
u1,1 −

1

h2
u2,1 −

1

h2
u1,2 = f1,1

...

− 1

h2
ui+1,j −

1

h2
ui−1,j +

4

h2
ui,j −

1

h2
ui,j+1 −

1

h2
ui,j−1 = fi,j

...

− 1

h2
un−1,n−2 −

1

h2
un−2,n−1 +

4

h2
un−1,n−1 = fn−1,n−1.

1u(k,l)(xi, yj) represents taking the kth partial derivative in x and the lth partial derivative in y
of u(xi, yj).
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This system may be written in matrix form as

Au = f , (1.1.5)

where entry aij in row i and column j of matrix A is the same as the coefficient of ui,j

in equation i of the set of discretized equations. For example, in the n = 4 case,

A =
1

h2



4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

0 0 0 −1 0 0 4 −1 0

0 0 0 0 −1 0 −1 4 −1

0 0 0 0 0 −1 0 −1 4



, u =



u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3



, f =



f1,1

f2,1

f3,1

f1,2

f2,2

f3,2

f1,3

f2,3

f3,3



.

Note that matrix A is sparse, as it contains a relatively small number of nonzero

elements.

The linear algebraic system (1.1.5) was obtained using what is known as a finite

difference discretization, and this is a very effective method for this problem. However,

for other problems, finite element discretizations (see for example [16]), finite volume

discretizations (see for example [12]), or other methods can be more suitable, and

may still lead to a sparse system in the form (1.1.5). While considerable research

focuses on obtaining effective discretizations, that is not the focus of this thesis. This

thesis is concerned with the efficient solution of sparse linear algebraic systems of the

form (1.1.5).

1.2 Outline

This thesis presents the standard algebraic multigrid algorithm, and then looks at

three modifications of current components of the algorithm. In order to provide some
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necessary background material, several standard iterative methods and an exact so-

lution technique are first examined in Chapter 2. These methods include Gaussian

Elimination, the standard Jacobi and Gauss-Seidel iterative processes, and the conju-

gate gradient and generalized minimal residual methods. For the Jacobi and Gauss-

Seidel methods, a convergence and spectral analysis of error reduction capabilities is

performed. Computational work requirements of the methods are also described.

Chapter 3 introduces the basic multigrid algorithm. All theory presented in this

chapter is applicable in the algebraic multigrid context, and is meant to be a precursor

to Chapter 4 where algebraic multigrid is described.

Chapter 4 presents the algebraic multigrid algorithm including all components

relevant to the new developments introduced in this thesis. This includes the stan-

dard Ruge-Stüben (RS) coarsening algorithm [14], the parallel modified independent

set (PMIS) coarsening algorithm introduced by De Sterck, Yang, and Heys [18], the

Cleary-Jones-Luby-Plassman (CLJP) parallel coarsening algorithm [10], and F-F in-

terpolation as defined by De Sterck and Yang [17].

Chapter 5 presents three proposed changes to current AMG components. These

include a greedy version of the PMIS coarsening algorithm, restricting PMIS coars-

ening to finer grid levels followed by CLJP coarsening on coarser grid levels, and a

modification of F-F interpolation that only considers one distance-two C-point in the

interpolation formula for strong F-F connections without a common C-point. A va-

riety of test problems are described in Chapter 6, and results along with a discussion

of their significance are presented in Chapter 7.

The thesis finishes with concluding remarks and a discussion of future work in

Chapter 8. An appendix containing algebra definitions that are used in the body of

the text is also included.





Chapter 2

Standard Numerical Methods for
Linear Algebraic Systems

This chapter examines several methods that have historically been used to solve lin-

ear systems of the form (1.1.5). These include Gaussian elimination, the Jacobi and

Gauss-Seidel (GS) iterative procedures, and the conjugate gradient (CG) and gener-

alized minimal residual (GMRES) methods. It should be noted that although these

methods may perform well for small problem sizes, they may in fact be prohibitively

computationally expensive for large ones. However, it is still useful to proceed with

this examination – not only because it will be helpful by providing a framework for

error analysis, but also because these methods do in fact play important roles within

the multigrid algorithm, either as error smoothers, or as convergence accelerators.1

This chapter will first look at the traditional exact solution technique, Gaussian elim-

ination, and then proceed to discuss the aforementioned iterative methods.

2.1 Gaussian Elimination

Gaussian elimination is one of the cornerstones of linear algebra and is a historically

significant method for exactly solving systems of equations of the form (1.1.5). The

basic algorithm will not be presented here as it may be found in any standard textbook

on linear algebra, for example [22].

1The conjugate gradient and generalized minimal residual methods can be used as accelerators
for the multigrid algorithm.

7
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In its most basic form, for a d-dimensional problem with n points in each dimen-

sion, Gaussian elimination requires O
(
n3d
)

operations. The reader may recognize

that this is true since O(nd) columns must be treated by multiplication and subtrac-

tion for O(nd) rows, and all this must be done for O(nd) pivot elements.

The fact that Gaussian elimination requires O
(
n3d
)

operations makes it compu-

tationally inefficient for large n. However, it may be a reasonable choice when an

exact solution technique is desired for a small problem, or when the matrix problem

is not sparse. Gaussian elimination may be used in the multigrid algorithm for direct

solution of coarse-grid problems. How this is done will be clarified in Chapter 3.

2.2 Relaxation Methods

This section introduces two iterative methods that are commonly referred to as re-

laxation methods, or smoothing methods. These include the Jacobi (or simultaneous

displacement) method and the Gauss-Seidel (GS) method.2 This section follows the

treatment of [4], and will introduce the methods, perform a convergence analysis

common to both methods, and then conclude with a spectral error analysis of the

GS method. First, however, it is necessary to introduce the components needed for

a standard error analysis of iterative methods. For simplicity, this is done in the

context of the one-dimensional (1D) version of the model problem from Section 1.1.

That is,

−uxx = f(x), 0 < x < 1, (2.2.1)

u(0) = u(1) = 0,

on the domain illustrated in Figure 2.1, with grid spacing

h =
1

n
, where i = 0, 1, . . . , n.

2The Jacobi and Gauss-Seidel methods are referred to as relaxation methods when they are used
for the purpose of reducing oscillatory error components. What is meant by “reduction of oscillatory
error components” will be clarified in Section 2.2.4.



9

x = 0 x = 1

x x x xx0 1 2 i n

h

Figure 2.1: Discretized one-dimensional grid.

The resulting finite difference discretization is

−ui−1 + 2ui − ui+1

h2
= fi , i = 1, 2, . . . , n− 1 , u0 = un = 0. (2.2.2)

System (2.2.2) can then be written in the form (1.1.5). The error analysis can now

be formulated.

Definition 2.2.1. Let v be an approximation to the exact solution of the discrete

problem (1.1.5), u, such that vi ≈ ui.

Definition 2.2.2. Let the error in the approximation be defined as e ≡ u− v.

Definition 2.2.3. Let the residual be defined as r ≡ f− Av.

Since u is assumed to be unknown, it can be noted that e is just as inaccessible as

u, but that r does provide an easily computable measure of how well v approximates

u. Using Definitions 2.2.2 and 2.2.3, the following equations are obtained:

Ae = r, (2.2.3)

u = v + e. (2.2.4)

Equations (2.2.3) and (2.2.4) are known as the residual equation and the residual

correction, respectively. Given an approximation v, one can compute r, solve (2.2.3)

approximately for e, and then use (2.2.4) to obtain a new (and hopefully improved)

approximation for u. If the error is only approximately computed from (2.2.3), the

value calculated from (2.2.4) will in fact only be an approximation for u. The entire

process can be summarized as follows. Let the superscript ‘k’ refer to the kth approx-

imation, ‘k + 1’ to the (k + 1)st approximation, and so on. Then from Definitions
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2.2.2 and 2.2.3,

e(k) = u− v(k), (2.2.5)

r(k) = f − Av(k). (2.2.6)

Equations (2.2.3) and (2.2.4) then become,

Ae(k) = r(k), (2.2.7)

u = v(k) + e(k), (2.2.8)

such that

e(k) = A−1r(k). (2.2.9)

If A−1 is replaced with an easily computable matrix approximation B, then (2.2.9)

becomes,

ẽ(k) = Br(k), (2.2.10)

where ẽ represents an approximation to e. Thus, the new approximation for u can

be obtained from (2.2.8), resulting in the general form

v(k+1) = v(k) + ẽ(k) = v(k) + Br(k). (2.2.11)

It can be noted that if f = 0, the exact solution is “known” (u = 0), and the error

in v is simply −v. This observation will be useful later. With this material in place,

the stage is now set to introduce the relaxation methods.

2.2.1 Jacobi Method

The Jacobi, or simultaneous displacement, method amounts to solving the ith equation

for the approximation vi while holding all other variables fixed. Therefore, rewriting

the 1D model problem (2.2.2) as

−vi−1 + 2vi − vi+1 = h2fi , i = 1, 2, . . . , n− 1 , v0 = vn = 0, (2.2.12)

a new approximation for point vi can be obtained according to the update equation

v
(k+1)
i =

1

2
(v

(k)
i−1 + v

(k)
i+1 + h2fi). (2.2.13)
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Equation (2.2.13) can also be written in matrix form. This is accomplished by

first expressing A as a combination of submatrices, that is,

A = D − L− U, (2.2.14)

where D is the diagonal part of A, and -L and -U are the strictly lower and upper

triangular parts of A, respectively. By absorbing the h2 term in f, the Jacobi method

can be expressed in matrix form as follows:

(D − L− U)u = f

Dv(k+1) = (L + U)v(k) + f

v(k+1) = D−1(L + U)v(k) + D−1f . (2.2.15)

Furthermore, letting

RJ = D−1(L + U), (2.2.16)

equation (2.2.15) can be rewritten as

v(k+1) = RJv
(k) + D−1f . (2.2.17)

RJ is known as the Jacobi iteration matrix or the Jacobi error propagation matrix.

This is because RJ propagates the error as the iterations progress. This point will be

clarified further in Section 2.2.3.

2.2.2 Gauss-Seidel Method

The Gauss-Seidel (GS) method is the same as the Jacobi method, except that when

equation i is solved, the updated value replaces vi immediately in the iteration process.

The GS method may be written as:

v
(k+1)
i ← 1

2

(
v

(k+1)
i−1 + v

(k)
i+1 + h2fi

)
, (2.2.18)

or, in matrix form, taking the same approach as in Section 2.2.1,

v(k+1) ← (D − L)−1Uv(k) + (D − L)−1f . (2.2.19)
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Here, ‘←’ stands for replacement or overwriting. The Gauss-Seidel error propagation

matrix is defined as:

RGS = (D − L)−1U, (2.2.20)

such that (2.2.19) becomes

v(k+1) ← RGSv
(k) + (D − L)−1f . (2.2.21)

Again, RGS propagates the error in successive iterations, or sweeps. This point will

be expanded on in the next section.

2.2.3 Convergence Analysis

For both the Jacobi and GS methods ((2.2.17) and (2.2.21), respectively), the update

formula is linear in v and does not change from one iteration to the next. This

type of formula is known as a stationary linear iteration. Sections 2.2.1 and 2.2.2

concluded by saying that the error propagation matrices propagate the error in each

new approximation. This point can be clarified in a general sense by first considering

that each method can be expressed in the form:

v(k+1) = Rv(k) + C(f). (2.2.22)

Also, it can be noted that the exact solution is unchanged by the iteration (i.e. is a

fixed point). This is verified for the GS method by using (2.2.20), (1.1.5), and (2.2.14)

in (2.2.21) such that

v(k+1) ← RGSv
(k) + (D − L)−1f

v(k+1) ← RGSv
(k) + (D − L)−1Au

v(k+1) ← (D − L)−1Uv(k) + (D − L)−1(D − L− U)u

v(k+1) ← (D − L)−1Uv(k) − (D − L)−1Uu + u

and thus

v(k+1) = v(k) = u if v(k) = u.
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The same result can be shown to hold for the Jacobi method. In general, it is true

that

u = Ru + C(f). (2.2.23)

Equation (2.2.22) can then be subtracted from (2.2.23) to show that

u− v(k+1) = Ru + C(f)−
(
Rv(k) + C(f)

)
= R

(
u− v(k)

)
⇒ e(k+1) = Re(k). (2.2.24)

Thus, (2.2.24) explains why R is called the error propagation matrix. If the iteration

is performed m times,

e(m) = Rme(0). (2.2.25)

Here the superscript ‘0’ corresponds to the initial approximation. With this result in

hand, a convergence analysis of the methods can be performed. First, however, some

preliminary work is required. Definition of the spectral radius, ρ, and a natural norm

are given in Appendix A by (A.0.9) and (A.0.2), respectively.

Theorem 2.2.1. [11] Let A be an arbitrary square matrix. Then for any natural

norm,

ρ(A) ≤ ‖A‖. (2.2.26)

Theorem 2.2.2. [11] For any ε > 0, there exists a natural norm such that

‖A‖ ≤ ρ(A) + ε (2.2.27)

Definition 2.2.4. A matrix A is convergent if limn→∞An = O, where O is the matrix

with all zero entries.
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Theorem 2.2.3. [5] The following statements are equivalent:

i. A is convergent;

ii. limn→∞ ‖An‖ = 0 for some natural norm;

iii. limn→∞ ‖An‖ = 0 for all natural norms;

iv. ρ(A) < 1.

Corollary 2.2.4. [11] A is convergent if a natural norm exists for which ‖A‖ < 1.

Noting that (2.2.25) leads to

‖em‖ ≤ ‖Rm‖‖e0‖, (2.2.28)

it follows from Theorem 2.2.3 that the iteration will converge if and only if ρ(R) < 1.

In other words, the norm of the error will approach zero as the number of iterations

is increased if and only if ρ(R) < 1. The spectral radius, ρ(R), can be interpreted as

the asymptotic convergence factor of the iterative error reduction equation (2.2.25),

because it predicts the worst case error reduction over many iterations [4]. It is the

asymptotic factor by which the norm of the error is reduced in each iteration, and

it can be used to estimate the number of iterations required to reduce the error by

a factor of 10−d. This estimate is obtained by letting m be the smallest integer that

satisfies
‖em‖
‖e0‖

≤ 10−d. (2.2.29)

It then follows approximately from (2.2.28) and Theorem 2.2.1 that

ρm(R) ≤ 10−d, (2.2.30)

and that

m ≥ − d

log10(ρ(R))
. (2.2.31)

The results of this section are valuable tools for the analysis of the convergence

properties of any stationary linear iteration. However, this only provides a general

picture of error reduction. To observe precisely how the error is reduced with each

relaxation sweep, a spectral analysis is required. This is presented in the next section.
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2.2.4 Spectral Error Analysis

This section presents the specific error reduction capabilities of the GS method. A

similar analysis can be performed for the Jacobi method. Analysis of the GS method

was selected for presentation since the GS method is a component of the AMG algo-

rithm used in obtaining the results of Chapter 7.

As shown in Section 2.2.3, the convergence properties of stationary linear iterations

depend directly on the spectral radius as highlighted in Theorem 2.2.3. While the

spectral radius is the asymptotic factor by which the norm of the error is reduced

in each iteration, it says nothing about how specific error components are reduced

in each iteration. To examine this point for the GS method, consider the eigenvalue

problem for the error propagation matrix,

RGSw = λw, (2.2.32)

where λ is an eigenvalue, and w is an eigenvector, of RGS. Using (2.2.20), (2.2.32)

can be rewritten as

Uw = λ(D − L)w. (2.2.33)

For the 1D model problem (2.2.1), the resulting problem is



0 1 0 · · · 0

0 0 1
. . .

...

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0





w1

w2

w3

...

wn−1


= λ



2 0 0 · · · 0

−1 2 0
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −1 2





w1

w2

w3

...

wn−1


,

where the indices of the eigenvector components, 0 ≤ j ≤ n, refer to the grid location

(w0 and wn are omitted since w is equal to 0 at the boundaries of the domain). It

can be shown that the eigenvalues of RGS are given by [3]

λk(RGS) = cos2

(
kπ

n

)
, 1 ≤ k ≤ n− 1, (2.2.34)
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Figure 2.2: GS eigenvalue plot for the case n = 64.

and that the eigenvectors of RGS are given by

wk,j(RGS) = cosj

(
kπ

n

)
sin

(
kπj

n

)
, 0 ≤ j ≤ n , 1 ≤ k ≤ n− 1. (2.2.35)

To proceed, it is worth establishing the eigenvalues and eigenvectors of the matrix

operator A. The eigenvalues and eigenvectors of A are given by [4]

λk(A) = 4 sin2

(
kπ

2n

)
, 1 ≤ k ≤ n− 1, (2.2.36)

wk,j(A) = sin

(
kπj

n

)
, 1 ≤ k ≤ n− 1 , 0 ≤ j ≤ n. (2.2.37)

There are two important things to note about these results. Firstly, the eigenvectors

of A are actually Fourier modes forming a basis for an (n − 1)-dimensional vector

space, and k is the corresponding wavenumber. As such, the error in an iterative

process may be expressed in terms of these eigenvectors such that

e(m) =
n−1∑
k=1

ckwk(A), (2.2.38)

where the coefficients ck ∈ R simply indicate the weight of each mode present in the

error. Secondly, the eigenvectors of RGS do not coincide with those of A. Therefore,

λk(RGS) gives the convergence rate for the kth mode of RGS, and not for the kth
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Figure 2.3: GS iteration matrix applied to the model problem with an initial guess
consisting of (a) single eigenvectors of RGS and (b) single eigenvectors of A. The
figure shows the number of iterations required to reduce the norm of the initial error
by a factor of 100 for each initial guess on a grid with n = 64 points (from [4]).

mode of A. This can be clarified by considering (2.2.32). There, it is noted that RGS

acting on the kth mode of RGS, wk (RGS), is the same as the kth eigenvalue of RGS,

λK (RGS), acting on wk (RGS). Thus, the magnitude of λK (RGS) gives the rate at

which the norm of wk (RGS) approaches zero with each application of RGS. This is

important when examining the error reduction capabilities of the GS method. For

example, consider the case where n = 64. The eigenvalues for RGS are shown in

Figure 2.2. This indicates that, when the initial guess (and error) consists of single

eigenvectors of RGS, one should expect modes near the middle of the spectrum to

exhibit the fastest convergence. Indeed this is the case as indicated in Figure 2.3 (a).

However, the result is quite different if the initial guess consists of single modes of

A, as indicated in Figure 2.3 (b). Here it is observed that modes of higher frequency

are damped much more effectively with each iteration than modes of lower frequency.

Two definitions are now in order.

Definition 2.2.5. Loosely define oscillatory modes, or oscillatory error components,

as those Fourier modes whose wavenumber is greater than n
2
.
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Definition 2.2.6. Loosely define smooth modes, or smooth error components, as those

Fourier modes whose wavenumber is less than n
2
.

The efficiency of an iterative scheme is largely dependent on characteristics as

exhibited in Figure 2.3 (b). While a great deal of error elimination may be possible

early in the iteration process – this being due to reduction of oscillatory components

– it will not be beneficial to continue if the smooth components can not be effectively

reduced. This observation is at the heart of multigrid, which aims to represent smooth

modes as oscillatory ones by working on a grid with fewer points. This will be

explained further in Chapter 3.

In closing this section, it is worth stating two facts about the Jacobi method in

order to better justify the choice to use GS as a smoother in the multigrid algorithm

for the test cases that will be discussed later in this thesis. Firstly, Jacobi does not

effectively reduce oscillatory error components, and is therefore not a good candidate

for multigrid. The reason for this becomes clear by looking at the eigenvalue spec-

trum of the Jacobi error propagation matrix. The interested reader may find this

discussed in [4]. Also, while there exists a modified Jacobi relaxation scheme, known

as weighted Jacobi, that effectively reduces oscillatory error components and has sim-

ilar performance characteristics to the GS method (this is also examined in [4]), the

GS relaxation method is more straightforward to analyze from an implementation

perspective, and is therefore chosen for use in this thesis.

2.3 Acceleration Methods

This section presents the conjugate gradient (CG) and generalized minimal residual

(GMRES) methods for solving systems of the form (1.1.5). While these are histori-

cally and practically significant methods, they are not a component of the algebraic

multigrid algorithm. They are however often used as accelerators for algebraic multi-

grid. It is in this context that GMRES is used in the work of this thesis. As such, an

outline of the algorithm is in order. While CG is not used in the work of this thesis,

its introduction provides a good starting point for describing GMRES, and so will be
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presented. The discussion of CG and GMRES will be brief, and the reader is referred

to the literature for more information.

2.3.1 Conjugate Gradient Method

The classical conjugate gradient algorithm is presented here as in [8]. Although CG

is an iterative method, it does converge to the exact solution in a finite number of

iterations; however, it is only guaranteed to converge if A is symmetric and positive

definite (SPD) [9].

The CG method can be derived by modifying the method of steepest descent. The

latter is obtained using the procedure described below. First, consider the functional

F (v) =
1

2
〈v, Av〉 − 〈f ,v〉. (2.3.1)

Since A is SPD, it follows that solving Au = f is equivalent to minimizing F (v) over

v (the proof is left to the reader). It can also be shown that the gradient of F (v) is

given by

∇F (v) = f − Av = r. (2.3.2)

This indicates the direction of greatest instantaneous rate of change of F (v). If v(0) is

the initial guess, then successively better approximations v(1), v(2), . . . , v(i), . . . , v(m),

where m is the approximation at which convergence criteria are satisfied, can be

obtained by continually moving in the direction ∇F
(
v(i)
)
. The procedure is given

by

v(i+1) = v(i) + αi∇F
(
v(i)
)

= v(i) + αir
(i), (2.3.3)

where αi should be chosen to minimize F
(
v(i+1)

)
. Using (2.3.1), it follows that

αi =

(
r(i), r(i)

)
(r(i), Ar(i))

. (2.3.4)

Therefore, the steepest descent method can be described as
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v(0) = arbitrary

for i = 0 to m {

r(i) = f −Av(i)

αi =

(
r(i), r(i)

)(
r(i), Ar(i)

)
v(i+1) = v(i) + αir(i)

}.

Turning now to the CG method, take the same approach as for the steepest descent

method, but do not specify the direction for the next approximation by ∇F
(
v(i)
)
.

Instead, let v(i+1) = v(i)+αip
(i), where the direction vectors p(i) are to be chosen such

that they are A-orthogonal to each other
(
i.e. 〈p(i+1), Ap(i)〉 = 0

)
. The CG method

can then be written as follows:

v(0) = arbitrary

for i = 0 to m {

r(i) = f −Av(i)

p(i) =


r(i) , i = 0

r(i) + βip(i−1) , i = 1, 2, . . . , m

with βi = −
(
r(i), Ap(i−1)

)(
p(i−1), Ap(i−1)

)
αi =

(
p(i), r(i)

)(
p(i), Ap(i)

)
v(i+1) = v(i) + αip(i)

}.

While the method of steepest descent can be very slow to converge, CG is guaranteed

to converge to the exact solution in at most N iterations, where N is the number of

unknowns in the linear algebraic system (of the form (1.1.5)) that is to be solved.
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In practice, and for reasons too complicated to be explained here, the CG method is

often able to closely approximate the exact solution in much less than N steps.

2.3.2 Generalized Minimal Residual Method

Basic aspects of the GMRES method are summarized here as in [21]. For additional

information, the reader is also referred to [15].

Although it was not mentioned in Section 2.3.1, the CG method is a Krylov

subspace method,3 where the Krylov subspace Km is defined as

Km = span
[
r(0), Ar(0), . . . , Am−1r(0)

]
, (2.3.5)

and the Krylov subspace approximation is given by

v(m) ∈ v(0) + Km = v(0) + span
[
r(0), Ar(0), . . . , Am−1r(0)

]
. (2.3.6)

The vectors in (2.3.5) form an orthogonal basis for an m dimensional space, and (2.3.6)

corresponds to calculating the approximation with minimal residual in a suitable norm

for all m = 1, 2, . . . , until convergence criteria are satisfied. In the case of classical

CG, which applies to SPD matrices, the residual is minimized in the norm

‖r‖ = 〈r, A−1r〉. (2.3.7)

GMRES is not, however, restricted to SPD matrices, and the minimization is per-

formed using the ‖ · ‖2 norm, where ‖ · ‖2 is the matrix p-norm with p = 2 as defined

by equation (A.0.4). One difficulty with this approach is that all vectors in the Krylov

subspace must be stored in order to ensure that the norm of the residual is minimized

(note that for the CG method this is not needed). For large problems, this can present

storage complications. A fix for this problem is given by restarted GMRES(m), in

which the subspace is completely removed and restarted with a new one after m it-

erations. GMRES(m) with a right preconditioner C is summarized below. Note that

hi,j refers to the entry in row i and column j of matrix H.

3A presentation of other Krylov subspace methods, for example the biconjugate gradient method,
may be found in [23].
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v(0) = arbitrary

Set the matrix H = O with dimension (m + 1)×m

r(0) = f −Av(0)

β = ‖r(0)‖2

b1 =
r(0)

β

for j = 1 to m {

rj = C−1bj

w = Arj

for i = 1 to j {

hi,j = 〈w,bi〉

w = w − hi,jbj

hj+1,j = ‖w‖2

bj+1 =
w

hj+1,j

}

}

Define Bm = [b1, . . . , bm]

ym = min
y
‖βe1 −Hy‖2 ,

(
e1 = [1, 0, . . . , 0]T

)
v(m) = v(0) + C−1Bmym

r(m) = f −Av(m)

If r(m) satisfies convergence criteria : stop,

else : restart v(0) ← v(m)

Often, Krylov methods can be slow. This is because their convergence largely

depends on the condition number of the matrix A. However, their performance can

be substantially improved if they are effectively preconditioned. It is in this context

that multigrid was used to obtain some of the test results in Chapter 7.



Chapter 3

Multigrid

This chapter introduces the basic components and structure of the multigrid algorithm

following the treatment of [4]. Multigrid is a multilevel iterative method used for

solving systems of the form Au = f . Multigrid can be separated into two categories

known as geometric multigrid and algebraic multigrid. Geometric multigrid uses

successively coarser grids that are constructed based on the geometric grid information

from the discretized PDE problem. Since grid information is required by geometric

multigrid, it is unable to handle unstructured grids. AMG, in contrast, does not rely

on geometric grid information to construct coarse grids, but instead uses information

found in the matrix operator A. In this way, PDE problems on unstructured grids,

and even problems for which no physical grid exists, can be solved by AMG. This

chapter is meant to provide an overview of the multigrid algorithm and theory that

is common to both geometric and algebraic multigrid. The complete AMG algorithm

will be presented in Chapter 4. The reader interested in more details on geometric

multigrid is encouraged to consult the literature, for example [4] and [21]. This

chapter will first provide the motivation for multigrid based on the results developed

in Chapter 2. It will then expand on this motivation and present a detailed overview

of the entire algorithm that is common to both geometric and algebraic multigrid.

Several real applications of AMG will also be presented. The chapter will conclude

with an investigation of storage and computational costs of the multigrid algorithm.

23
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Figure 3.1: The k=4 and k=8 modes on a grid with (a) n=12 points (Ωh), and (b)
n=6 points (Ω2h).

3.1 Motivation

A significant result from Chapter 2 is the error reduction capability of many relaxation

methods. In particular, for the elliptic model problem (2.2.1), it was shown for the GS

method that only oscillatory Fourier modes could be effectively reduced. It was then

alluded to that multigrid attempted to remedy this weakness by expressing smooth

error modes as more oscillatory ones on coarser grids. This section clarifies this point.

The discussion that follows is meant to be interpreted in the context of GS relaxation

applied to the elliptic model problem (2.2.1). That is, it is assumed that relaxation

effectively reduces oscillatory error modes. This assumption allows the motivation of

multigrid to be explained in an intuitive fashion, but is not a requirement for AMG

algorithms. More will be said about this issue for AMG in Section 4.2.

Consider two waves, one with wavenumber k = 4 and the other with wavenumber

k = 8, on 1D grids with n = 12 and n = 6 points as illustrated in Figure 3.1. First,

note that Figure 3.1 refers to the n=12 grid as Ωh and the n=6 grid as Ω2h.This is

because the multigrid algorithm uses a series of grids with successively fewer points.

In geometric multigrid, the grid with the greatest number of points is often called

Ωh, the grid with the second greatest number of points Ω2h, the grid with the third

greatest Ω4h, and so on. The reason that the superscript labels contain powers of two



25

is because in geometric multigrid, successive grids are often selected by choosing half

of the points from each dimension of one grid to form the grid with the next greatest

number of points. Therefore, Ωh would have 2d as many points as Ω2h, where d is

the dimension of the problem, and so a power of two is used in the grid labeling.

Regardless of the type of grid structure, this thesis will adopt the notation that Ωh

represents the grid (in a series of grids with successively fewer points) that has the

greatest number of points, Ω2h represents the grid with the second greatest number of

points, Ω4h the grid with the third greatest number of points, and so on. To simplify

grid description, a definition is now introduced.

Definition 3.1.1. Call grid a finer than grid b if grid a contains more points than

grid b, and coarser than grid b if grid a contains fewer points than grid b.

Figure 3.1 illustrates that smooth modes (k < n
2
) become more oscillatory on

coarser grids. For example, the k = 4 mode in Figure 3.1 is the 4th mode out of

a possible 12 on Ωh, but is the 4th mode out of a possible 6 on Ω2h. This implies

that smooth modes which could not be effectively reduced on Ωh, could be on Ω2h if

some method for transferring between grids could be developed. With such a transfer

method, one could reduce oscillatory error on Ωh by relaxation, transfer to Ω2h such

that smooth error from Ωh appears more oscillatory, reduce the oscillatory error on Ω2h

(which is the smooth error from Ωh) by relaxation, and transfer back to Ωh such that

both smooth and oscillatory error components are now reduced. It should be noted,

however, that even when a mode is considered oscillatory by Definition 2.2.5, this does

not mean that it will be completely reduced by just a few relaxations on a particular

grid. As indicated in Figure 2.3, oscillatory modes of higher frequency exhibit the

best error reduction. Therefore, in order to effectively reduce smooth modes on Ωh

by the grid transfer method just described, it might be necessary to transfer several

times to successively coarser grids. In this way, the smooth error from Ωh becomes

sufficiently oscillatory on coarser grids to allow for effective error reduction. This idea

leads to the concept known in multigrid as a V-cycle, the grid configuration of which

is illustrated pictorially in Figure 3.2. In a V-cycle, an approximation of the exact

solution is relaxed on, and then transferred to a coarser grid. The process is repeated
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Figure 3.2: Four-level grid configuration for a V-cycle.

for some predetermined number of grids. The approximation is then transferred back

to successively finer grids until the finest grid is reached. In this way, all components

of the error on Ωh can hopefully be effectively reduced. This is the fundamental idea

behind the multigrid algorithm. As it turns out, the V-cycle is an effective method

for solving a variety of problems. This thesis will always assume that a V-cycle is

employed even though other types of cycles exist. Much more needs to be said about

the V-cycle, and this will be done in the remainder of this chapter and in Chapter 4.

The question remains as to what becomes of the oscillatory modes (k > n
2
) on

Ω2h. As in Figure 3.1 for the k = 8 case, it can be shown that the kth mode on Ωh

becomes the (n − k)th mode on Ω2h. This is caused by an effect known as aliasing,

and occurs when there is not enough information available to accurately construct a

signal.1 Therefore, oscillatory modes on Ωh are represented as smooth ones on Ω2h.

This is obviously an undesirable effect since relaxation will not be able to effectively

reduce these modes on Ω2h; however, this does not present a problem since these

modes can be effectively reduced on Ωh.

In summary, oscillatory modes on Ωh can be effectively reduced on Ωh, and smooth

modes on Ωh can be represented as oscillatory ones and effectively reduced on Ω2h, or

subsequently coarser grids. Therefore, in order to effectively reduce all components of

the error, it seems appropriate to use the recursive error reduction method proposed

in this section. This central idea behind the multigrid algorithm is further explained

in the next section.

1This is caused by violation of Nyquist’s Sampling Theorem. For more information on the subject
of aliasing, the reader is referred to [19].
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3.2 Multigrid Overview

This section first gives a summary of the basic multigrid algorithm that applies to both

geometric and algebraic multigrid. The motivation for multigrid from an application

perspective is then discussed, and several real applications of AMG are presented.

The section concludes with a more detailed introduction of the multigrid algorithm.

3.2.1 Summary of the Multigrid Algorithm

This summary is meant to serve as a reference for the reader in the remainder of this

thesis. All of the components listed in this summary are not meant to be understood

at this point, nor is their motivation. They will be further explained in the rest of

this chapter and in Chapter 4.

Multigrid (MG) is an algorithm that exploits the grid transfer method introduced

in Section 3.1. Assuming that a sequence of successively coarser grids has been

defined, where on a given level coarse grid points are a subset of fine grid points, and

assuming that a matrix operator A is defined on all grids, the multigrid algorithm

(using V-cycles) can be summarized as follows [4]:

vh ←MG
(
vh, fh

)
While convergence criteria not satisfied, do (perform a V-cycle):

• Relax on Ahuh = fh ν1 times with initial guess vh.

• Compute f2h = I2h
h rh.

• Relax on A2hu2h = f2h ν1 times with initial guess v2h = 0.

• Compute f4h = I4h
2hr2h.

• Relax on A4hu4h = f4h ν1 times with initial guess v4h = 0.

• Compute f8h = I8h
4hr4h.

...

• Solve ALhuLh = fLh.
...
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• Correct v4h ← v4h + I4h
8hv8h.

• Relax on A4hu4h = f4h ν2 times with initial guess v4h.

• Correct v2h ← v2h + I2h
4hv4h.

• Relax on A2hu2h = f2h ν2 times with initial guess v2h.

• Correct vh ← vh + Ih
2hv

2h.

• Relax on Ahuh = fh ν2 times with initial guess vh.

end do

Here L is used to label the coarsest grid, ν1 and ν2 are positive integers, and Ib
a is an

operator that takes a vector from grid a and represents it on grid b. Although it was

assumed that a set of successively coarser grids had already been defined, it should

be noted that a significant and important part of the AMG algorithm centers on the

coarse-grid selection process. This is commonly referred to as coarsening, and will be

discussed in Chapter 4. A method used to define the matrix operator A on all grids

will also be presented in Chapter 4.

As illustrated in the algorithm summary, multigrid is an iterative method. One

V-cycle corresponds to one iteration, and several V-cycles are usually required to

satisfy a convergence criterion.

3.2.2 Multigrid Objective

This section describes the motivation for the multigrid algorithm from an application

perspective. To aid in this discussion, several definitions are first in order.

Definition 3.2.1. Define the convergence factor of the kth iteration to be ‖rk‖2
‖rk−1‖2 .

2

Definition 3.2.2. Define a scalable algorithm to be one for which the convergence

factor is independent of problem size, and for which storage and computational cost

per V-cycle are linearly proportional to problem size.

2 ‖rk‖2
‖rk−1‖2

is also known as the residual ratio.
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Definitions 3.2.1 and 3.2.2 are somewhat idealized. Typically the convergence factor

will not be exactly the same for consecutive iterations. However, if an algorithm

converges in a constant number of iterations for all problem sizes, the convergence

factor can be considered independent of problem size, and therefore the algorithm

is scalable (assuming that storage and computational cost per V-cycle are linearly

proportional to problem size). In a multigrid context, a scalable algorithm is one

for which the number of V-cycles required for convergence is independent of problem

size, while also satisfying the V-cycle cost requirements of Definition 3.2.2. It should

be noted that scalability by itself does not guarantee an efficient algorithm. It could

be true that an algorithm is perfectly scalable by Definition 3.2.2, but requires a large

number of iterations to converge, and a large V-cycle cost. As such, the additional

requirement that V-cycle cost and number of iterations needed for convergence be

as low as possible is implied when discussing scalability. In this way, fast execution

time and low memory size can be attained even for large problems if an algorithm is

scalable.

The primary objective of multigrid is to be able to solve large problems efficiently.

As such, scalability is the most important factor in designing or improving a multigrid

algorithm, and will be the central focus in evaluating the effectiveness of the changes

to the AMG algorithm proposed in Chapter 5. It is also desirable that an AMG

algorithm be effective in a parallel implementation, as this allows problem size to be

substantially increased. Although the results of this thesis were obtained using serial

AMG, the potential for each of the algorithms tested to excel in parallel will also be

considered.

The theory of multigrid was originally developed for linear elliptic PDEs, but has

since been extended to a larger class of problems for both geometric and algebraic

multigrid (see for example [21]). In the AMG context, much of this work has focused

on problems for which the fine-grid operator is a symmetric M-matrix (see for example

[20]).3 It has also been found, however, that the concepts of multigrid can be applied

much more generally to a larger class of problems. While this is a positive result,

3Definition of an M-matrix is given in Definition A.0.1.
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the drawback is that no single multigrid algorithm exists that optimally achieves

scalability across a wide-range of problems. With this in mind, this thesis aims to

improve the robustness of AMG by modifying several existing components of the

algorithm such that scalability is improved for a variety of problems.

3.2.3 Real Applications of AMG

This section is meant to provide the reader with an idea of real applications for

which AMG can be applied. Two problems from the literature will be presented that

demonstrate the potential of AMG.

The first problem is taken from [26], and is a computational fluid dynamics (CFD)

problem that simulates physical flow phenomena for a Boeing 747 over the entire body

of the aircraft.4 The equations that need to be solved are the Navier-Stokes equations.

The surface mesh used is illustrated in Figure 3.3, and indicates that this is a large

problem.

As stated in [26], GMRES and Gauss-Seidel exhibit convergence difficulties due

to the complex configuration of the domain, while AMG works well in both serial and

parallel implementations.

The second problem is taken from [25], and deals with the field of Electro- and

MagnetoEncephaloGraphy (EEG/MEG) source localization. Using high resolution

finite element modeling, a current distribution inside the human brain can be nonin-

vasively reconstructed using electric field measurements taken outside the head. The

equations that need to be solved are omitted here since they require a detailed pre-

sentation; however, it can be stated that the resulting system is large, sparse, linear,

and has many different right-hand sides. The domain of the problem is illustrated in

Figure 3.4, where the mesh for the head model is shown. This is a tetrahedrae mesh

4Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. ACMSE04, April 2-3, 2004, Huntsville, Alabama, USA. Copyright 2004 ACM 1-58113-870-
9/04/04. . .$5.00.
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Figure 3.3: Boeing 747 configuration and surface mesh.

with 118299 nodes. Since medical and neuropsychological diagnosis and research are

time sensitive, efficient solution of such a large problem is necessary.

The work of [25] shows that for a parallel implementation, CG accelerated AMG

significantly outperforms the CG accelerated Jacobi method (a well-known solution

technique in finite element based source localization). This is accomplished for both

the 118299 node problem illustrated in Figure 3.4, and a 325384 node mesh with

cubic elements.

The two examples highlighted in this section illustrate the power of AMG for solv-

ing real applications. AMG is able to handle complex geometries and large problem

sizes, which allows for high resolution. These examples also demonstrate the robust-

ness of AMG, and its ability to effectively solve problems in parallel. Nevertheless,

the scalability of existing AMG algorithms for complex applications is often not opti-

mal. The modifications proposed in this thesis aim to improve scalability for difficult

applications.



32

Figure 3.4: Head model mesh.

3.2.4 Detailed Description of the Multigrid Algorithm

This section presents a detailed description of the multigrid algorithm, and expands

on the summary given in Section 3.2.1. It should be noted that this introduction

applies to both geometric and algebraic multigrid. Any component not explicitly

defined in this section will be covered for AMG in Chapter 4.

Recall from Chapter 2 that for a linear algebraic system (1.1.5), and an initial

guess v(0), the error and residual are given, respectively, by

e(0) = u− v(0), (3.2.1)

r(0) = f − Av(0). (3.2.2)

From (3.2.1) and (3.2.2), it follows that solving Au = f is equivalent to solving

Ae(0) = r(0). Furthermore, it can be shown that solving Au = f with an arbitrary

initial guess v, is equivalent to solving the associated residual equation (Ae = r) with

the specific initial guess e = 0. Also, recall that after several fine-grid relaxations, the

remaining error is smooth, and may therefore be calculated accurately on a coarser
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grid. These observations lead to the formulation of the multigrid algorithm, which

rests on the fact that the residual equation can be used to relax on the error on the

coarse grid. The first step in arriving at the multigrid algorithm is to present what

is known as the coarse-grid correction scheme, which as in [4], is defined as follows:

• Relax on Au = f on Ωh to obtain an approximation vh.

• Compute the residual, r = f −Avh.

• Relax on Ae = r on Ω2h with the initial guess e = 0 to obtain an approximation to the

error e2h.

• Correct the approximation obtained on Ωh with the error estimate obtained on Ω2h:

vh ← vh + e2h.

Thus, the idea is to relax on Ωh until convergence deteriorates (oscillatory modes

have been reduced), transfer the residual from Ωh to a coarser grid (Ω2h), relax on

the residual equation on Ω2h to obtain an approximation to the error e2h, and then

transfer the error back to Ωh to obtain a new approximation vh. Of course, several

issues still need to be addressed. In particular, how is the residual transferred from Ωh

to Ω2h? How is the matrix operator A defined on Ω2h? How is the error transferred

from Ω2h to Ωh so that the correction on vh can be made? The short answer to all

of these questions is through the use of suitable matrix operators. Definition of these

operators is now given.

Definition 3.2.3. Define the restriction operator, I2h
h , to be the matrix operator that

takes a vector from Ωh and expresses it on Ω2h: x2h = I2h
h xh.

Definition 3.2.4. Define the interpolation (or prolongation) operator, Ih
2h, to be the

matrix operator that takes a vector from Ω2h and expresses it on Ωh: xh = Ih
2hx

2h.

The restriction and interpolation operators are also used to define the coarse-grid ver-

sion of the matrix operator (A2h), called the coarse-grid operator. Explicit definition

of the restriction and interpolation operators and the coarse-grid operator are left
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Figure 3.5: Two-grid correction scheme.

until Chapter 4 where they are introduced for AMG. With Definitions 3.2.3 and 3.2.4

in place, the coarse-grid correction scheme can now be reformulated to give what is

known as the two-grid correction scheme (TG) [4]:

vh ← TG
(
vh, fh

)
• Relax ν1 times on Ahuh = fh on Ωh with a given initial guess vh.

• Compute the residual rh = fh−Ahvh on Ωh and restrict it to the coarse grid by r2h = I2h
h rh.

• Solve A2he2h = r2h on Ω2h.

• Interpolate the coarse-grid error to the fine grid by eh = Ih
2he

2h and correct the fine-grid

approximation by vh ← vh + eh.

• Relax ν2 times on Ahuh = fh on Ωh with initial guess vh.

In this discussion, ν1 and ν2 are positive integers, and typically take values of one

or two. It has been found experimentally that these values generally provide a good

balance between the cost of relaxation and the benefit gained in convergence. The

two-grid correction scheme is also illustrated pictorially in Figure 3.5.

Instead of solving the coarse grid problem exactly, its solution can be approx-

imated by recursively invoking the two-grid correction scheme. This leads to the

V-cycle scheme described in Section 3.1, and further discussed below. To economize
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on notation, the right-hand side of the residual equation is called f2h rather than

r2h, and the solution of the residual equation is called u2h instead of e2h (since they

represent new right-hand side and solution vectors, respectively). It then follows that

v2h can be used to denote the approximation to u2h. As in [4], the V-cycle scheme

(V) can be defined recursively as:

vh ← V
(
vh, fh

)
1. Relax ν1 times on Ahuh = fh with a given initial guess vh.

2. If Ωh = coarsest grid, go to step 4.

Else

f2h ← I2h
h

(
fh −Ahvh

)
,

v2h ← 0,

v2h ← V 2h
(
v2h, f2h

)
.

3. Correct vh ← vh + Ih
2hv

2h.

4. If Ωh = coarsest grid, solve Ahuh = fh.

Else, relax ν2 times on Ahuh = fh with initial guess vh.

This is simply the recursive definition of what is inside the while loop in the multigrid

summary in Section 3.2.1. Typically, when the coarsest grid is encountered in step 4,

an exact solution method such as Gaussian elimination or a large number of relax-

ation sweeps is applied in order to obtain an accurate solution. Doing so is usually

acceptable (i.e. computationally efficient) since the problem will have been coarsened

to a reasonably small size.

Remark 3.2.1. The multigrid V-cycle is often referred to as a V (ν1, ν2) cycle to signify

that ν1 relaxation sweeps are performed before each restriction step, and that ν2

relaxation sweeps are performed after each interpolation step.

The framework for the multigrid algorithm is now complete. The next section will

consider implementation costs. Specific definitions of all components of the algorithm

not yet explained will be presented for AMG in Chapter 4.
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3.3 Implementation Costs

The storage and computational costs of the multigrid algorithm will now be examined

based on the assumption that a V-cycle scheme is employed. It is also assumed that

a set of grids and coarse-grid operators have been defined. The analysis performed

in this section is done in the context of structured grids; however, a similar extension

to unstructured grids can be made that yields comparable results.

3.3.1 Storage Cost

The storage cost of the multigrid V-cycle algorithm is assessed here. Since AMG has

a unique method for measuring the storage cost of matrices (which will be presented

in Chapter 4), this section will only consider the storage cost of vectors.

A d-dimensional grid with n points in each dimension has nd total points. Two

arrays, v and f , must be stored on the finest level for a total of 2nd storage locations.

Assuming that n is a power of 2, and that Ω2h is recursively constructed by halving

the number of points in each dimension of Ωh (as is done in geometric multigrid),

subsequently coarser grids require 2−d times the amount of storage of the next finest

grid. Therefore, the total storage requirement (number of locations) can be expressed

as the following geometric series:

Storage Cost = 2nd{1 + 2−d + 2−2d + . . . + 2−nd} <
2nd

1− 2−d
. (3.3.1)

Therefore, in one, two, and three dimensions, the total storage cost is less than 2,
4
3
, and 8

7
times the cost of storage of the fine grid quantities, respectively. This

shows that the multigrid algorithm requires storage costs on the order of the fine grid

problem, and that the storage requirement increases linearly with respect to problem

size. This is a desirable result with regard to scalability.

3.3.2 Computational Cost

When considering the computational cost of the multigrid V-cycle algorithm, the cost

of intergrid transfer operations is usually neglected as they typically only amount to
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between 10-20% of the cost of the entire cycle [4]. To proceed with the analysis, a

definition is first in order.

Definition 3.3.1. Define a work unit, WU, to be the cost of performing one relaxation

sweep on the finest grid (O
(
nd
)

operations).

As in Section 3.3.1, assume that n is a power of 2 and that Ω2h is constructed by

halving the number of points in each dimension of Ωh. Then, the work required on

a coarse grid is 2−d times the amount of work required on the next finest grid. Since

each level is visited twice, and assuming that a V(1,1) cycle is employed, it follows

that the computational cost is given by the following geometric series:

Computational Cost = 2{1 + 2−d + 2−2d + . . . + 2−nd} WU <
2

1− 2−d
WU. (3.3.2)

In one, two, and three dimensions, this corresponds to approximately 4, 8
3
, and 16

3

WU, respectively. Note that the computational cost, when measured in terms of work

units, is not adversely affected if the problem size is increased. While this result is

desirable for the purpose of scalability, it does not indicate how multigrid performs

compared to other algorithms in terms of total computational cost. To facilitate such

a comparison, the number of iterations (V-cycles) required to reduce the error by

some standard amount needs to be known. This parameter is calculated below.

Although not stated explicitly until now, there are actually two forms of error

present in the numerical solution of a PDE problem. The first is called the discretiza-

tion error, and is a direct result of moving from the continuous problem u, to the

discrete problem uh. Considering the 1D model problem (2.2.1), the discretization

error can be defined as:

Eh
i = u(xi)− uh

i , 1 ≤ i ≤ n− 1. (3.3.3)

Using the definition of the discrete L2 norm in (A.0.5), it can be shown that (3.3.3)

can be bounded by

‖Eh‖h ≤ Khp , K > 0 ∈ R , p > 0 ∈ I. (3.3.4)
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A second type of error is that generated in approximating the exact solution of the

discrete problem uh with vh. This error is called the algebraic error, and is simply

that defined by Definition 2.2.2, namely,

eh = uh − vh. (3.3.5)

Returning now to the issue of computational cost, the goal of an iterative method

is to minimize the algebraic error efficiently, and hopefully attain a result that is of

the order of the discretization error. As in Section 3.3.1, consider a d-dimensional

problem with nd unknowns such that the grid spacing is h = 1
n

in each dimension.

Furthermore, assume that the V-cycle has a convergence factor bound, γ, that is

independent of h. If the scheme is to reduce the algebraic error from O(1) to the

order of the discretization error (that is O (hp) = O (n−p)), the number of V-cycles

required, υ, must satisfy:

γυ = O
(
n−p
)
, (3.3.6)

such that

υ = O (log n) . (3.3.7)

As can be noted from (3.3.2), the cost of one V-cycle is O
(
nd
)
. Therefore, the cost

of obtaining a solution whose error is of the order of the discretization error using

the multigrid V-cycle algorithm is O
(
nd log n

)
. This is clearly much better than the

O
(
n3d
)

result obtained for Gaussian elimination in Section 2.1, and is often much less

work than that required by standard iterative methods since multigrid has the ability

to reduce all error components efficiently, whereas many other methods do not.

While the results presented in this section are desirable with regard to the scala-

bility and work requirements of the multigrid V-cycle algorithm, it should be noted

that another type of cycle, the full multigrid (FMG) cycle, actually has a total com-

putational cost that is O
(
nd
)
, and is therefore optimal. Only the V-cycle scheme is

examined in this thesis since it is the basic building block of many multigrid schemes,

including the optimal FMG cycle.



Chapter 4

Algebraic Multigrid

This chapter expands on the multigrid algorithm introduced in Chapter 3 in the con-

text of AMG. This chapter will first present the underlying concepts and theoretical

background that motivate the design of an AMG algorithm, along with several con-

ventions that are unique to AMG for measuring storage and computational costs.

The ideas of coarsening (selection of coarse grids) and interpolation introduced in

Chapter 3 are then fully explained by introducing several different coarsening and

interpolation methods. Advantages and disadvantages of each of these methods are

also discussed. The chapter concludes by defining the restriction and coarse-grid

operators, and provides a theoretical justification for their definition.

4.1 Introduction

The most basic differences between geometric and algebraic multigrid are the way in

which coarsening is performed and the interpolation operators are defined. In geo-

metric multigrid, where structured grids are considered, coarsening and interpolation

are defined based on the known grid structure (i.e. fixed grid spacing). In this way,

coarsening and interpolation can be performed in exactly the same way regardless of

the location on the grid. For example, as stated in Chapter 3, coarsening in geometric

multigrid is often performed by simply selecting half the points (every second point)

in each dimension of a structured grid. Interpolation, the process by which coarse

39
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grid quantities are transferred to fine grids, also relies on spatial information in geo-

metric multigrid. This geometrical approach for coarsening and interpolation cannot

be adopted for unstructured grids (where there is no regular spatial structure), and

this is where the main differences lie between AMG and geometric multigrid. AMG

is able to handle both structured and unstructured grids, and problems for which no

physical grid exists, but coarsening and interpolation must be defined in a completely

different way than in geometric multigrid. AMG instead uses the information present

in the matrix operator A to select coarse grids and determine interpolation operators.

This process will be explained in detail in the remainder of this chapter.

4.2 Background Theory

Fourier modes cannot simply be constructed on an unstructured grid due to a lack

of spatial information. This observation is even more profound when one considers

problems for which no physical grid even exists. Therefore, while it makes sense

to discuss the reduction of smooth error components as defined by Definition 2.2.6

for structured grids, the same can not be said from an analytical perspective for

unstructured grids, or problems for which a grid is not defined. This does not imply

that the relaxation method reduces the error modes in a different way from the

structured case, it simply means that the analysis can not proceed in the same way.

To accommodate an analysis in AMG, it is necessary to redefine what is meant by

smooth error.

Definition 4.2.1. Define algebraically smooth error to be any error that is not effec-

tively reduced by relaxation.

For simplicity, algebraically smooth error will be referred to as smooth error in the

AMG context. When geometrically smooth error is considered, it will be clearly

stated. Note that it is possible for error to be algebraically smooth, but geometrically

unsmooth (oscillatory). This is described in greater detail in [4, 20].

The significance of smooth error in AMG can now be illustrated. This will be done

for the subset of symmetric M-matrices that are diagonally dominant (as defined by
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(A.0.1)), and in the context of GS smoothing. It should be noted that a similar

analysis can be performed for other relaxation methods. It follows that smooth error

is characterized by

‖Re‖A ≈ ‖e‖A, (4.2.1)

where the A-norm, ‖ · ‖A, is defined by (A.0.8). It can be shown that, for smooth

error,
N∑

i=1

r2
i

aii

�
N∑

i=1

riei, (4.2.2)

where ri refers to the ith entry in r (the same meaning applies for ei and e), and N

is the number of unknowns in the linear algebraic system (of the form (1.1.5)). As

discussed in [4], this implies that, on average, smooth error satisfies

|ri| � aii|ei|. (4.2.3)

This indicates that smooth error has relatively small residuals, which can be written

loosely as

Ae ≈ 0. (4.2.4)

Equation (4.2.4) is a very important result for AMG. It says that if the error is

smooth, then ei can be approximated (interpolated) well by a weighted average of

the error in its neighbouring points:

aiiei ≈ −
∑
j 6=i

aijej. (4.2.5)

As will be shown, this result can then be used to define the interpolation and re-

striction operators used to transfer between grids. Before this can be accomplished,

however, some preliminary work is needed.

It follows that since A is assumed to be diagonally dominant, there exists a dom-

inant entry aii in each row of A, or equivalently in each equation i of the discretized

system. As such, it makes sense to say that equation i primarily influences the value

of ui. Of course, the entire set of equations is required to accurately solve the system,

but one can still think of equation i as being principally responsible for calculating the

ith unknown. Now consider equation i exclusively, and assume that there are nonzero
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coefficients at positions j and k – that is, in row i of A, aii, aij, and aik are the only

entries that are nonzero. A critical observation of AMG is that not all of these entries

may be equally important in determining ui. For instance, if aik is relatively small in

comparison to aij, then the error in variable j may have more impact on the accuracy

of the iterative approximation of variable i than the error in variable k. If, in the

iterative process, uj is changed by a small amount, it will have a significant effect on

the calculation of ui. However, even if uk changes by a large amount, it will not have

a significant impact on the calculation of variable ui provided that the coefficient aik

is sufficiently small. This means that variable k is not as important as variable j in

determining the error of variable i in (4.2.5). Obviously what is meant by “sufficiently

small” needs to be clarified, and this leads to the following definitions.

Definition 4.2.2. [4] Given a threshold value 0 < θ ≤ 1, the variable (point) ui

strongly depends on the variable (point) uj if

−aij ≥ θ max
k 6=i
{−aik}. (4.2.6)

Definition 4.2.3. [4] If the variable ui strongly depends on the variable uj, then the

variable uj strongly influences the variable ui.

If ui strongly depends on uj, uj will be a good interpolatory candidate for ui. This

is true for two reasons. Firstly, a larger coefficient in equation i has a greater effect

on the calculation of ui than does a smaller one, and is therefore a better candidate

for interpolation if only a limited number of points can be used. The second reason

requires a more accurate description of how the error in point i relates to the error in

all other points, j, in equation i. It can be shown that, on average for each i,1

∑
j 6=i

|aij|
aii

(ei − ej)
2

e2
i

� 1 , 1 ≤ i ≤ n. (4.2.7)

For the inequality in (4.2.7) to be satisfied, it follows that either or both of the

fractions must be small. However, if variable i is strongly connected to variable j,

1This can be derived for symmetric M-matrices by first noting that ‖e‖A � ‖e‖D and then
performing a careful expansion. A detailed derivation may be found in [20].
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|aij|/aii will be O(1). Therefore, ei must be approximately equal to ej. As a result,

smooth error is said to vary slowly in the direction of strong connection. It is in this

direction that interpolation will be most accurate. Consequently, when interpolating

fine grid quantities from coarse grid ones, it is best to do so in the direction of strong

connection. Likewise, it is desirable that coarse grids be selected from fine ones such

that strong connections may be exploited in interpolation.

The motivation for defining the restriction and interpolation operators introduced

in Chapter 3 has now been established. The remainder of this chapter focuses on

methods for defining these operators, as well as the coarse grid operators, in prepa-

ration for the algorithmic modifications and results presented in Chapters 5 and 7.

First, however, several methods used to measure computational cost in AMG will be

introduced.

4.3 Computational Cost Measurement in AMG

As will be illustrated in the next section, the ratio of fine to coarse grid points is

not known until the coarsening process has been completed. Thus, unlike geometric

multigrid, a predictive cost analysis cannot be performed for AMG. This section will

present several tools that are used to measure computational cost in AMG.

One measure of computational cost used in AMG is grid complexity, which is

defined as follows.

Definition 4.3.1. [4] Define grid complexity to be the total number of grid points on

all grids, divided by the number of grid points on the finest grid.

The grid complexity for a specific coarsening method applied to a specific problem is

a useful tool for measuring aspects of computational cost. For geometric multigrid,

if coarse grids are selected by choosing half the points in each dimension from the

fine grid, the grid complexities for one, two, and three dimensions are 2, 4
3
, and 8

7
,

respectively. Grid complexity provides a direct measure of the storage required for
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right-hand side and solution vectors, and is useful for comparing the performance of

different coarsening strategies.

Another measure of computational cost used in AMG is operator complexity, which

is defined as follows.

Definition 4.3.2. [4] Define operator complexity, Cop, to be the total number of

nonzero entries, in all matrices Akh, divided by the number of nonzero entries in the

fine-grid operator Ah.

Like grid complexity, operator complexity is also useful for measuring storage cost, as

it indicates precisely the amount of storage required by all operators Akh on all grids.

Furthermore, the amount of work required by relaxation and residual computations

is directly proportional to the number of nonzeros in the Akh, and these processes

dominate a V-cycle. Therefore, operator complexity is also a good indicator of the

amount of work required in each iteration of an AMG algorithm. With all this in

mind, it follows that small operator complexity that increases linearly with problem

size signifies a scalable algorithm (if also accompanied by good convergence).

To introduce two other useful measures of computational cost in AMG, two defi-

nitions are required.

Definition 4.3.3. Define the setup phase to consist of those processes in an AMG

algorithm that are responsible for generating the components needed to perform a

V-cycle. This includes the coarsening procedure, definition of the interpolation oper-

ators, and definition of the coarse-grid operators Akh on all grids.

Definition 4.3.4. Define the solve phase to consist of the iterative application of the

V-cycle scheme.

The time required for the setup and solve phases of an AMG algorithm will be referred

to simply as setup time and solve time, respectively.
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4.4 Coarsening

Coarsening is a somewhat heuristic coarse grid selection procedure that aims to exploit

the result presented in the previous section – that smooth error varies slowly in the

direction of strong connection. Coarsening can be performed in many different ways,

and several methods that are relevant to the work of this thesis will be presented in

this section.

For any coarsening strategy, a trade-off exists in the resulting AMG algorithm

between storage and computational cost and convergence, which ultimately affect

scalability. Obviously, the greater the number of points that are kept on coarser

grids, the greater the accuracy that can be achieved in interpolation. However, re-

taining a large number of grid points when moving from a fine grid to a coarse grid

increases storage cost, and may result in a large execution time per V-cycle. The

primary objective of multigrid is to move to suitably coarser grids, in order to (hope-

fully) avoid high storage cost and execution time per V-cycle, while approximating

smooth error accurately through restriction and interpolation. Indeed, this thesis

examines modifications to current coarsening algorithms that aim to improve AMG

convergence properties and execution speed while reducing storage cost. This section

will introduce the standard Ruge-Stüben [14], parallel modified independent set [18],

and Cleary-Jones-Luby-Plassman [10] algorithms – all effective coarsening strategies

in their own respects. Before proceeding, however, several definitions are in order.

Definition 4.4.1. When referring to two subsequent grids, let the subset of fine-grid

points selected to form the coarse grid be called C-points, and let the fine-grid points

that are not C-points be called F-points.

Definition 4.4.2. [4] For each fine-grid point i, define the neighbourhood of i, Ni, to

be the set of all points j 6= i such that aij 6= 0.

Definition 4.4.3. Let Si ⊂ Ni be the set of points that strongly influence point i,

i.e. the points on which i strongly depends.
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Definition 4.4.4. Let ST
i be the set of points that strongly depend on point i, i.e.

the points strongly influenced by i.

Definition 4.4.5. For each F-point i, let Ci ⊂ Si ⊂ Ni be the set of C-points that

strongly influence i.

Definition 4.4.6. Define the auxiliary strength matrix S as:

Sij =

{
1 if i 6= j and ui strongly depends on uj

0 otherwise
(4.4.1)

The strength matrix provides a useful computational tool for accessing the strength

information of an operator. The nonzero entries in row i of S indicate the points in

Si, and the nonzero entries in column i of S indicate the points in ST
i . Calculation

of S is easy to implement, and S lends itself to sparse matrix storage which aids in

computational efficiency.

With this material in place, specific coarsening methods can now be introduced.

4.4.1 Classical Ruge-Stüben Coarsening

This section presents the classical Ruge-Stüben (RS) coarsening algorithm originally

introduced in [14]. This is perhaps the most historically significant coarsening strat-

egy, and is still commonly used today. Although RS was not used to produce any of

the results presented in this thesis (the reason for which is stated at the end of this

subsection), it is still useful for introducing coarsening and for comparing the design

of other coarsening schemes.

The RS algorithm selects coarse grid points, and therefore aims to approximate

smooth error accurately in restriction and interpolation, based on two heuristic cri-

teria. As in [4], these may be stated as follows:

H-1: For each F-point i, every point j ∈ Si that strongly influences i should either be

in the coarse interpolatory set Ci, or (if j is an F-point) should strongly depend

on at least one point in Ci (in short, strong F-F connections require a common

C-point).
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H-2: The set of coarse-grid points should be a maximal subset of all fine-grid points

with the property that no C-point strongly depends on another C-point (maxi-

mal independent set).

Heuristics H-1 and H-2 represent attempts to achieve good convergence with each V-

cycle, and minimal computational cost per V-cycle, respectively. The motivation for

H-1 follows from the fact that an effective coarsening scheme should allow accurate

interpolation of smooth functions. Since smooth error varies slowly in the direction

of strong connection, smooth error will be interpolated well between points that are

strongly connected. Thus, it is desirable that an F-point i have as many points as

possible from Si in Ci. However, as will be illustrated by example, this is not always

possible. Therefore, if a point j is in Si, but is not in Ci, it is desirable that j be

strongly influenced by a point in Ci. The reason for this is basically that, if point k

is in Ci and strongly influences point j, point j can be accurately interpolated from

point k, and then point i can be accurately interpolated from point j. In this sense,

point i interpolates from point j indirectly, in order to achieve accurate interpolation

along directions of strong connection. This is illustrated in Figure 4.1, where an edge

indicates a strong connection, an arrow indicates the direction of a strong connection,

a black dot indicates a C-point, and a white dot indicates an F-point.

Heuristic H-2 is much easier to justify, and is in place to ensure that coarse grids

are in fact sufficiently coarsened in order to keep computational costs per V-cycle

at scalable levels. As will be explained in Section 4.5 on interpolation, error values

at C-points are known from computations on the coarse grid, and can therefore be

interpolated directly to the fine grid. Thus, H-2 ensures that a maximal number of

C-points are chosen, which allows interpolation to be as accurate as possible, but also

states that C-points should not be strongly connected (on the fine grid), since this

would increase computation cost while providing no clear advantage to interpolation.

As will be shown by example, it is not always possible to enforce both H-1 and

H-2 simultaneously. When this occurs, H-1 is enforced rigorously while H-2 is used

only as a guide. Generally the reduction in computational cost per V-cycle that would

be achieved if H-2 were enforced rigorously is lost in the convergence behaviour of

the iteration. Thus, the RS algorithm proceeds in two passes. The first pass creates
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i

j k

Figure 4.1: Example illustrating indirect interpolation for a strong F-F connection.
Point i interpolates from point k, both directly, and also through point j.

an initial partition of the grid into C- and F-points, and the second pass enforces H-1

rigorously.

The first pass is accomplished by assigning to each point a measure of its candidacy

to serve as a C-point. Since interpolation is based on the fact that smooth error varies

slowly in the direction of strong connection, a good way to define the suitability

measure of a point i, is simply to count the number of points strongly influenced

by i. Call this count λi, and it follows that it is the cardinality of ST
i . From an

implementation perspective, λi is simply the column sum of column i of the strength

matrix S. The greater the value of λi, the more useful point i will be in interpolation

if defined as a C-point. Thus, the first pass commences by arbitrarily choosing one

point, i, that attains maxi λi to be a C-point. In accordance with H-2, all points

that are strongly influenced by i are then made F-points. Since it would be best

for a newly defined F-point, j, to interpolate from as many C-points as possible, the

measure of all unassigned points that strongly influence j is increased. In this way,

the points that strongly influence j are more likely to be chosen as C-points. The

process of choosing C-points based on maximal measure, and making all strongly

influenced points F-points is then repeated. This is done until all points are either

C- or F-points. Before proceeding, it should be noted that all fine-grid points, i, that

strongly influence no other point (ST
i = ∅), are defined as F-points. This is done

because there would be no benefit in making such a point a C-point, since it would

not be used by any other point in interpolation (interpolation is performed along the
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Figure 4.2: Illustration of the first pass of classical RS coarsening.

direction of strong connection). An example of the first pass is illustrated for an

unstructured grid in Figure 4.2. Edges are meant to indicate a strong connection in

both directions, a black dot indicates a C-point, a white dot indicates an F-point,

and a white dot containing a number indicates an unassigned point along with that

point’s measure at the corresponding stage in the coarsening process. Note that after

a point is assigned, all edges associated with that point are removed since they are

no longer needed.

It can be noted in Figure 4.2, that at the conclusion of the first pass, H-2 is

satisfied, but H-1 is not. The purpose of the second pass is to enforce H-1 rigorously.

This means that some F-points must be changed to C-points. This is usually done

so that a minimum number of C-points are added. In the case of the example in

Figure 4.2, the resulting grid becomes that shown in Figure 4.3.

As can be observed from the above example, the RS coarsening algorithm is

highly sequential. As a result, RS coarsening does not perform well in parallel, and

can lead to undesirable execution times in both serial and parallel implementations.
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Figure 4.3: Final coarsened grid using RS coarsening.

In addition, the second pass often contributes to high grid and operator complexities

such that storage and computational costs are adversely affected (this is especially

true along processor boundaries in parallel). However, RS coarsening does exhibit

almost optimal scalability in terms of convergence for a variety of problems. This

illustrates the trade-off between convergence and computational cost discussed earlier.

As a result, RS coarsening often causes an AMG algorithm to be unscalable when

both convergence and computational cost are considered. This is especially true for

three-dimensional (3D) problems. Since one goal of the work in this thesis is to be

able to solve large-scale problems effectively in parallel, RS was not used in any of

the algorithms tested.

4.4.2 PMIS Coarsening

This section presents the parallel modified independent set (PMIS) algorithm intro-

duced by De Sterck, Yang, and Heys [17, 18]. This is a maximal independent set

algorithm similar to that of Luby [13]. It also resembles RS coarsening, except that

heuristic H-1 is not enforced rigorously; that is, F-F connections without a common

C-point are permitted.

As in the case of RS coarsening, PMIS initially assigns a measure λi to all points

to quantify their suitability to become a C-point. In addition, PMIS then assigns a

random number between zero and one, Rand([0, 1]), to break ties between all points

that have maximal measure. Instead of then choosing the point with maximal measure
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as in the RS case, PMIS chooses as C-points those whose measure is greater than that

of all of their strongly influencing and strongly dependent neighbours (λi > λk ∀ k ∈
Si

⋃
ST

i ). Points that are strongly influenced by these new C-points are then made

F-points. The process is repeated – unassigned points whose measure is greater than

that of all of their unassigned neighbours are made C-points and so on – until all

points have been declared as C- or F-points. It should be noted that, as is done for

RS coarsening, all fine-grid points that strongly influence no other point (ST
i = ∅) are

defined as F-points.

The PMIS algorithm is summarized as follows (as in [18]), and assumes that the

strength matrix S has already been defined:

• Given S, define weights λi ∀ i ∈ Ω: λi =
∑

j Sji + Rand([0, 1]).

• Define the initial set of F-points: F = {i ∈ Ω |
∑

j Sji = 0}.

• Define the initial set of C-points: C = ∅.

• Remove the F-points from the remaining point set: Ω′ = Ω\F .

• While Ω′ 6= ∅ do:

– Choose an independent set Υ of Ω′: i ∈ Υ iff λi > λj ∀ j : Sij 6= 0 or Sji 6= 0.

– Make all elements of Υ C-points: C = C
⋃

Υ.

– Make all elements of Ω′\Υ that are strongly influenced by a new C-point, F-points:

F = F
⋃

Fnew, where Fnew = {j ∈ Ω′\Υ | ∃ i ∈ Υ : i ∈ Sj}.

– Remove all new C- and F-points from Ω′: Ω′ = Ω′\{Υ
⋃

Fnew}.

End do.

An example of the PMIS coarsening algorithm is illustrated in Figure 4.4 for the

2D 5-point Laplace problem (the model problem from Section 1.1) on a structured

grid.

Unlike RS coarsening, PMIS is not sequential in nature, and can be easily imple-

mented in parallel with minimal processor boundary communication. This translates

into positive benefits for execution time per V-cycle. De Sterck, Yang, and Heys [18]
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Figure 4.4: PMIS coarsening for the 2D 5-point Laplace operator, (adapted from [18]).
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show that PMIS coarsening works well for many problems when the resulting AMG

method is used as a preconditioner for GMRES. This thesis also shows that PMIS can

cause AMG to perform well as a stand-alone algorithm for many problems if interpo-

lation is modified to take into account certain distance-two C-points (see Chapters 5

and 7).

As illustrated in Figure 4.4, PMIS coarsening permits strong F-F connections with-

out a common C-point. This has the benefit of lower grid and operator complexities

(nearly optimal with regard to scalability); however, as shown in [18], convergence

can be degraded for some problems compared to schemes based on RS coarsening.

This is due to the fact that an inadequate amount of C-points and their location

reduces the accuracy of interpolation. Thus, PMIS coarsening exhibits an opposite

effect to that observed for RS coarsening; that is, low computational cost but poor

convergence. Therefore, PMIS coarsening leads to AMG algorithms that are not scal-

able. This thesis will present several modifications to current uses of PMIS that aim

to overcome this problem.

4.4.3 CLJP Coarsening

This section presents the Cleary-Luby-Jones-Plassman (CLJP) coarsening algorithm.

This coarsening scheme was proposed by Cleary, and is based on parallel graph par-

titioning algorithms introduced by Luby, and developed by Jones and Plassman [10].

The behaviour of the CLJP algorithm resembles that of both RS and PMIS coars-

ening. Like PMIS, CLJP is highly parallel, but CLJP also exhibits similar convergence

scalability as RS. As a result, CLJP can be used to replace RS in parallel implemen-

tations. Unfortunately, CLJP can lead to operator complexities and execution times

that are not scalable, and that may be significantly higher than those of RS.

The first phase of CLJP is similar to that of PMIS. An initial measure λi is assigned

to all points, along with a random number, Rand([0, 1]), to break ties between all

points that have maximal measure. Points whose measure is greater than that of all of

their strongly influencing and strongly dependent neighbours (λi > λk ∀ k ∈ Si

⋃
ST

i )

are declared as C-points. CLJP then adopts a similar approach to RS by enforcing
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two heuristic criteria that attempt to achieve a balance between good convergence

and minimal computational cost per V-cycle. These heuristics may be stated as

follows (where a lower case ‘h’ is used to distinguish them from H-1 and H-2 for RS

coarsening):

h-1: Since C-points are interpolated directly to the fine-grid (this is explained in

Section 4.5), their strongly influencing neighbours are less valuable as potential

C-points.

h-2: If a C-point i strongly influences two points k and j, and j strongly influences k,

then j is less valuable as a potential C-point since k can be interpolated from i.

Heuristics h-1 and h-2 represent attempts to achieve efficient interpolation. Heuris-

tic h-1 ensures that C-points are not declared where their benefit to interpolation

would be small, and h-2 is in place in an attempt to make interpolation at F-points

sufficiently accurate for good convergence, while minimizing computational cost per

V-cycle. From a practical perspective, these heuristics can be implemented as follows

[10]:

for each new C−point, i

for each j that strongly influences i

decrement λj

set Sij ← 0

for each j that strongly depends on i

set Sji ← 0

for each k that strongly depends on j

if k strongly depends on i

decrement λj

set Skj ← 0
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Decrementing the measure of point j decreases its potential to become a C-point

subject to h-1 and h-2. The appropriate entries in S are set to zero to indicate that

a strong influence has been considered (since S is used to determine new C-points).

Whenever the decrementing of λj results in λj < 1, point j is declared as an F-

point. The entire process is then repeated until all points have been declared as C-

or F-points. An example of CLJP coarsening is illustrated in Figure 4.5 for the 2D

9-point Laplace problem (which will be introduced in Chapter 6). Note that setting

an entry Sij ← 0 when applying the heuristics corresponds to removing edge ij from

the graph in Figure 4.5. Also note that F-F connections without a common C-point

are not possible with CLJP. This is due to the design of the method, about which

more information can be found in [10].

It should be noted that, like the second pass of RS, the computational cost of

implementing h-1 and h-2 can be high, and is increased in parallel due to the added

communication required between processors when λ values are changed. Furthermore,

since all j ∈ Si for a new C-point i are not immediately declared as F-points, the

number of C-points on each grid is significantly larger than that obtained with RS

coarsening [7]. While this is beneficial for convergence, it can lead to large operator

complexities that negatively affect AMG performance and scalability. Nevertheless,

since CLJP is highly parallel and generally exhibits good convergence, it is used to

compare with the performance of other algorithms in Chapter 7.

4.5 Interpolation

This section presents two types of interpolation known as classical interpolation and

F-F interpolation. This entails defining the interpolation operator that is used to

transfer functions from coarse to fine grids. The goal is to define interpolation such

that smooth functions are interpolated accurately. Since smooth error varies slowly

in the direction of strong connection, interpolation will be most effective if strong

connections can be taken into account appropriately.

Before proceeding with the classical and F-F interpolation formulations, some gen-

eral terminology common to all AMG interpolation methods needs to be introduced.
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Figure 4.5: CLJP coarsening for the 2D 9-point Laplace operator, (from [10]).
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As in [4], the neighbourhood Ni of each fine-grid point i can be divided into three

subsets, namely,

• the neighbouring C-points that strongly influence i, called the coarse interpola-

tory set for i, and denoted by Ci;

• the neighbouring F-points that strongly influence i, denoted by Ds
i ; and

• the points that do not strongly influence i, denoted by Dw
i . This set is called

the set of weakly connected neighbours, and may contain both C- and F-points.

The material is now in place to precisely define the interpolation operator, Ih
2h.

4.5.1 Classical Interpolation

Classical interpolation has been a standard component in many AMG algorithms, and

is an effective method for a variety of problems. This section will present classical

interpolation following the treatment done in [4].

As mentioned in Section 4.4.1, error values at C-points are known from computa-

tions on the coarse grid, and can therefore be interpolated directly to the fine grid.

It would not make sense to try and improve the approximation in a C-point, i, by

interpolating from its strongly influencing neighbours, since these neighbours have an

uncertainty that is similar in magnitude to the error in i. The question still remains

however, as to how exactly one should interpolate error values at F-points using the

coarse-grid error. The ith component of the interpolated error, Ih
2he, is given by

(
Ih
2he
)

i
=

ei , if i ∈ C;∑
j∈Ci

ωijej , if i ∈ F.
(4.5.1)

Therefore, the only task that remains is to define the interpolation weights, ωij, for

all i ∈ F . This can be accomplished by first recalling that, according to (4.2.5), ei can

be approximated well by a weighted average of the errors of its neighbours. Rewriting
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this weighted average using Definition 4.4.2, and expanding Ni into its component

sets, gives:

aiiei ≈ −
∑
j∈Ni

aijej, (4.5.2)

aiiei ≈ −
∑
j∈Ci

aijej −
∑
j∈Ds

i

aijej −
∑

j∈Dw
i

aijej. (4.5.3)

In order to determine the weights, ωij, it follows that the component sums must be

expressed either in terms of ei, or in terms of ej where j ∈ Ci, in accordance with

(4.5.1). For the sum over weakly connected points, redistribution to the diagonal is

permissible, such that (4.5.3) becomesaii +
∑

j∈Dw
i

aij

 ei ≈ −
∑
j∈Ci

aijej −
∑
j∈Ds

i

aijej. (4.5.4)

This step is justified by considering the nature of the sum over the weakly connected

points. If it turns out that an error was made in defining the strength threshold θ, and

that some j ∈ Dw
i should in fact be considered to strongly influence i, then, since error

varies slowly in the direction of strong connection, the error made in approximating

ej by ei is small, and the transfer to the diagonal is acceptable. If however point

j is only weakly connected to point i, as assumed, then the coefficient aij is in fact

small, and the error generated in multiplying aij by ei instead of ej will be relatively

insignificant.

According to [4], in the case of the sum over Ds
i , experience has shown that it

is better to approximate the ej’s with weighted sums of ek for k ∈ Ci

⋂
Cj, rather

than to distribute the terms to the diagonal. This can be done by taking a linear

combination of values of ek that are in Ci

⋂
Cj. Therefore, replacing the ej with the

ek corresponds to taking into account strong F-F connections using C-points that are

common between the F-points (as described in Section 4.4.1 and illustrated in Figure

(4.1)). Because smooth error varies slowly in the direction of strong connection, the

error introduced in making this approximation is relatively insignificant. It also fol-

lows that, again since smooth error varies slowly in the direction of strong connection,
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the ej are strongly influenced by the ek in proportion to the matrix entries ajk. Thus,

an appropriate approximation may be defined as

ej ≈
∑

k∈Ci
ajkek∑

k∈Ci
ajk

. (4.5.5)

The denominator simply ensures that constants are interpolated exactly. It is im-

portant to note that in order for (4.5.5) to be well-defined, at least one C-point is

required to be in both Ci and Cj; otherwise, the coefficients ajk are small or vanishing,

and ej can not be approximated well by this method. Since RS coarsening always

ensures that all strong F-F connections have a common C-point, this does not present

a problem. However, for PMIS coarsening, F-F connections without a common C-

point are permitted, and interpolation for these points must be handled differently.

In this case, the appropriate terms of the sum over Ds
i may be redistributed to the

diagonal [4] in a manner similar to that done for the weak connections. It will be

assumed that this approach is taken whenever classical interpolation is used on PMIS

coarsened grids further on in this thesis.

Equation (4.5.5) may be substituted into (4.5.4) to obtainaii +
∑

j∈Dw
i

aij

 ei ≈ −
∑
j∈Ci

aijej −
∑
j∈Ds

i

aij

∑
k∈Ci

ajkek∑
k∈Ci

ajk

. (4.5.6)

Then, since j, k ∈ Ci, and treating the denominator of the fraction as a constant,

(4.5.6) can be rewritten as:aii +
∑

j∈Dw
i

aij

 ei ≈ −
∑
j∈Ci

aij +
∑

m∈Ds
i

aimamk∑
k∈Ci

amk

 ej. (4.5.7)

However, ei represents the ith component of the interpolated error. Therefore, the

interpolation weights follow directly as:

ωij = −
aij +

∑
m∈Ds

i

(
aimamjP
k∈Ci

amk

)
aii +

∑
n∈Dw

i
ain

. (4.5.8)

The interpolation/prolongation operator is now completely defined by (4.5.1) and

(4.5.8) for classical interpolation.
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ij

Figure 4.6: Example indicating points used in F-F interpolation to construct the
interpolation formula for i – a point that has a strong F-F connection with point j,
but no common C-point.

4.5.2 F-F Interpolation

The definition of classical interpolation in Section 4.5.1 required that all strong F-F

connections have a common C-point. While (4.5.8) can be modified to handle these F-

F connections by redistributing them to the diagonal, this method is not guaranteed

to be sufficiently accurate. Another method for handling strong F-F connections

without a common C-point is to use so-called F-F interpolation. This section defines

and discusses F-F interpolation.

F-F interpolation was introduced by De Sterck and Yang in [17], and is similar

to Stüben’s standard interpolation [20]. It defines Ih
2h in exactly the same way as

classical interpolation, except when strong F-F connections without a common C-

point are encountered. When this occurs, F-F interpolation extends interpolation

to distance-two C-points. For strongly influencing F-points j that do not have a

common C-point with F-point i, the coarse interpolatory set Ci is extended to C∗
i ,

which additionally contains all C-points that strongly influence j.

For instance, consider the example in Figure 4.2. Rather than adding C-points to

accommodate classical interpolation, F-F interpolation takes the approach illustrated

in Figure 4.6 for point i. Strongly connected C-points are handled in the same way

as for classical interpolation. However, when treating the strongly connected F-point

j, which does not have a common C-point with i, all k ∈ Cj are now included in the

extended coarse interpolatory set, C∗
i . This is justified by the same argument as was
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done for strong F-F connections with a common C-point in classical interpolation.

Since error varies slowly along the direction of strong connection, ej can be approx-

imated by a weighted average of the ek, and the weights will be proportional to ajk.

Therefore, when a strong F-F connection without a common C-point is encountered,

(4.5.5) is replaced by

ej ≈
∑

k∈Cj
ajkek∑

k∈Cj
ajk

. (4.5.9)

Then for an F-point i, letting Ds
i
∗ represent the set of strongly connected F-points

without a common C-point, and redefining Ds
i to represent the set of strongly con-

nected F-points with a common C-point, (4.5.6) can be rewritten asaii +
∑

j∈Dw
i

aij

 ei ≈ −
∑
j∈C∗i

aijej −
∑
j∈Ds

i

aij

∑
k∈C∗i

ajkek∑
k∈C∗i

ajk

−
∑

j∈Ds
i
∗

aij

∑
k∈C∗i

ajkek∑
k∈C∗i

ajk

.

(4.5.10)

Taking the same approach that was used in the section on classical interpolation, it

follows that the interpolation weights are given by

ωij = −
aij +

∑
m∈Ds

i

S
Ds

i
∗

(
aimamjP
k∈C∗

i
amk

)
aii +

∑
n∈Dw

i
ain

. (4.5.11)

Having completed the formulation, it can be concluded that F-F interpolation

avoids the need for a second pass in RS and the added work in CLJP, and consequently

promotes the use of PMIS which gives lower grid and operator complexities. However,

an increase in the number of C-points considered in interpolation also produces more

entries in the interpolation operator, which requires an increase in storage compared

to classical interpolation. A denser interpolation operator in turn produces more

entries in the coarse-grid operator which is directly derived from Ih
2h (this is covered

in the next section), and thus computational costs are increased compared to classical

interpolation. In addition, a considerable amount of work may be required by F-F

interpolation to construct Ih
2h, since many distance-two C-points for all strong F-

F connections may have to be considered. As will be shown in Chapter 7, F-F

interpolation combined with PMIS coarsening may actually improve AMG scalability
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compared to CLJP coarsening with classical interpolation; however, this is still not to

a desirable level due to the larger coarse interpolatory set. This thesis will examine a

version of F-F interpolation that seeks to avoid these complications, and would thus

allow the advantages of PMIS and other coarsening algorithms that permit strong

F-F connections without a common C-point to be exploited. This will be called F-F1

interpolation and will be presented in Chapter 5.

4.6 Variational Properties

This section explicitly defines the restriction and coarse-grid operators on all grids.

As is common in AMG, this will be done using what are known as the variational

properties. Each of the two variational properties will be presented along with a

theoretical justification of its use.

Before introducing the variational properties, two necessary assumptions must be

stated. Firstly, all interpolation operators, Ih
2h ∈ RM×N with M > N , are assumed

to have full rank (i.e. N linearly independent vectors form the columnspace of Ih
2h).

This property will be shown to be necessary in order that the variational properties

can be extended recursively to apply to all grid levels of a V-cycle. It can be noted

that interpolation as defined in Section 4.5 is always guaranteed to have full rank.

This is due to the fact that coarse-grid error is interpolated exactly to the fine grid.

For example, consider the following interpolation operator that is used to transfer a

vector-function from a coarse grid with three points (rows 1, 3, and 5) to a fine grid

with five:

Ih
2h =



1 0 0

ω2,1 ω2,3 ω2,5

0 1 0

ω4,1 ω4,3 ω4,5

0 0 1


.

Even if the weights, ωi,j, used to interpolate the F-points are considered arbitrary, the

reduced-row-echelon form of Ih
2h is guaranteed to have three leading-ones – meaning
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that Ih
2h has full rank. Since, in this thesis, interpolation is always defined such that

the error of coarse-grid points is interpolated exactly on the fine grid, the interpolation

operator is always guaranteed to have full rank. The second assumption is that the

fine-grid operator, Ah, is symmetric and positive definite.

The restriction operator, I2h
h , and coarse-grid operator, A2h can now be defined,

respectively, as follows:

A2h = I2h
h AhIh

2h, (4.6.1)

I2h
h =

(
Ih
2h

)T
. (4.6.2)

Equations (4.6.1) and (4.6.2) are called the variational properties, and will now be

justified. Note that each of the variational properties will be used in motivating the

definition of the other.

By defining restriction to be the transpose of interpolation as in (4.6.2), it follows

that, as long as Ih
2h is full rank, A2h will be symmetric and positive definite. This is

observed using the Euclidean inner product as defined by (A.0.6), such that [20]

(
A2hv2h,v2h

)
E

=
(
I2h
h AhIh

2hv
2h,v2h

)
E

=
(
AhIh

2hv
2h, Ih

2hv
2h
)

E

=
(
v2h, A2hv2h

)
E

. (4.6.3)

This is a useful fact. Only the fine-grid operator was assumed to be symmetric and

positive definite, but since the coarse-grid operator is also, any analysis applicable

to a two-grid scheme can simply be recursively extended to accommodate a V-cycle.

Defining restriction in the form (4.6.2) also has computational benefits. Only the

interpolation operator needs to be stored, and the restriction operator can be easily

obtained.

Turning now to the justification of (4.6.1), which is also referred to as the Galerkin

condition, it is first useful to restate the two-grid correction scheme presented in

Section 3.2.4 more concisely. An exact solve is assumed on the coarse grid, and to

economize on notation, the right-hand side of the residual equation is called f2h rather
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than r2h, and the solution of the residual equation is called u2h instead of e2h (as is

done for the V-cycle scheme in Section 3.2.4). The AMG two-grid correction scheme

can then be written as follows [4]:

• Relax ν1 times on Ωh with scheme (error propagation matrix) R: vh ← Rν1vh + C(f).

• Restrict rh to Ω2h: f2h ← I2h
h

(
fh −Ahvh

)
.

• Solve the residual equation exactly: v2h =
(
A2h

)−1
f2h.

• Correct the approximation on Ωh: vh ← vh + Ih
2hv

2h.

• Relax ν2 times on Ωh with scheme (error propagation matrix) R: vh ← Rν2vh + C(f).

Ignoring the relaxation steps for the moment, the two-grid correction scheme may be

represented by the following operation:

vh ← vh + Ih
2h

(
A2h
)−1

I2h
h

(
fh − Ahvh

)
. (4.6.4)

It can also be noted that the exact solution is unchanged by the two-grid correction

scheme, such that

uh = uh + Ih
2h

(
A2h
)−1

I2h
h

(
fh − Ahuh

)
. (4.6.5)

Thus, (4.6.4) can be subtracted from (4.6.5) to give

eh ← Kope
h , with Kop ≡ I − Ih

2h

(
A2h
)−1

I2h
h Ah. (4.6.6)

This defines what is known as the coarse-grid correction operator, Kop. Including the

pre- and post-relaxation steps, the two-grid correction scheme may be summarized

as follows:

eh ←Mope
h , with Mop ≡ Rν2KopR

ν1 , (4.6.7)

where Mop is called the two-grid correction operator.

With this material in place, the advantage of defining the coarse-grid operator

A2h by (4.6.1) can be expressed in the following theorem. Note that <(X) is used to

denote the range of a matrix operator X.
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Theorem 4.6.1. [20] Let Ah be symmetric positive definite, let a coarse grid exist

that is an arbitrary subset of fine-grid points, and let interpolation be defined in any

way such that Ih
2h has full rank. Then, the coarse-grid correction operator Kop is an

orthogonal projector with respect to the A-inner product. In particular, it is true

that:

1. <(Kop) ⊥A <(Ih
2h) , i.e. (AhKopx

h, Ih
2hy

h)E = 0 ∀ xh ∈ <(Kop) and yh ∈ <(Ih
2h).

2. For xh ∈ <(Kop) and yh ∈ <(Ih
2h), it follows that ‖xh +yh‖2A = ‖xh‖2A + ‖yh‖2A.

3. ‖Kop‖A = 1.

4. For all eh: ‖Kope
h‖A = mine2h‖eh − Ih

2he
2h‖A.

The last statement of this theorem illustrates precisely why it is best to define the

coarse-grid operator according to the Galerkin condition. It states that, regardless of

the coarsening and (full rank) interpolation methods used, the Galerkin coarse-grid

correction operator is guaranteed to minimize the error over the space of all possible

coarse-grid error functions, and this is optimal.

Theorem 4.6.1 also indicates why it is useful to define the coarse-grid operator

by the Galerkin condition in terms of the convergence properties of the two-grid

correction scheme. In particular, the third statement says that the two-grid correction

scheme, (4.6.7), can never diverge as long as ‖R‖ ≤ 1. This important result can

be extended to consider complete V-cycles by recursive application of the following

lemma. Again, it is assumed that a coarse grid exists that is an arbitrary subset of

fine-grid points, and that interpolation is defined in any way such that Ih
2h has full

rank.

Lemma 4.6.2. [20] Let the exact coarse-grid error (i.e. the error just prior to interpo-

lation to Ωh), e2h, implied in (4.6.6), be replaced by any approximation ẽ2h satisfying

‖e2h − ẽ2h‖A2h ≤ ‖e2h‖A2h . Then the approximate two-grid correction operator still

satisfies ‖K̃op‖A ≤ 1.

Therefore, as long as a relaxation method is chosen such that ‖R‖ ≤ 1, e2h will satisfy

the condition of Lemma 4.6.2, and the V-cycle iteration is guaranteed not to diverge.





Chapter 5

AMG Modifications

As indicated in Chapter 4, and shown by De Sterck, Yang, and Heys in [18], the

PMIS coarsening algorithm works well for many problems when used as a precondi-

tioner for GMRES, but causes convergence to degrade for other problems compared

to CLJP coarsening. The reason for this is attributed to a lack of accuracy in inter-

polation due to a decreased number of C-points generated in the coarsening process

compared to CLJP coarsening. One solution to this problem is simply to add C-

points, as is done in the second pass of the RS algorithm. However, this can lead to

high grid and operator complexities that drastically affect computational costs. The

process of adding C-points can also be time consuming. This chapter presents three

modifications to current AMG components that are new in this thesis, and that aim

to improve the convergence properties of PMIS-coarsened AMG without adversely

affecting computational costs. These include a greedy implementation of the PMIS

coarsening algorithm, combining PMIS and CLJP in the coarsening process such that

PMIS is used on finer grid levels and CLJP is used on coarser grid levels, and a mod-

ification to the F-F interpolation scheme. The motivation for each of these changes

is also described.

5.1 Modification 1: PMIS Greedy

As mentioned before, one of the shortcomings of the PMIS coarsening method is

its inability to generate an adequate number of C-points for accurate interpolation.

67
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(a) (b) (c)

Figure 5.1: Sequence of coarsened grids for the 5-pt 2D Laplace problem on a struc-
tured grid with a) RS coarsening, b) PMIS coarsening, and c) PMIS greedy coarsen-
ing.

While inaccurate interpolation is partly caused by the low number of C-points that

are produced, it is also due their arrangement. In particular, this problem is caused

by strongly connected F-points without a common connected C-point which are not

effectively accounted for in the classical interpolation formula. For example, con-

sider the grids illustrated in Figure 5.1, where grey represents the finest grid, blue

the second finest grid, and red the coarsest grid, and all points are assumed to both

strongly depend on and strongly influence their adjacent neighbours. Figure 5.1 (a)

illustrates that the grid produced by RS coarsening is very structured; however, the

effect of the second pass is directly evident by the points marked with a dot. A CLJP

coarsened grid would have a similar appearance. While RS and CLJP coarsening

produce structured grids that are beneficial for accurate interpolation, they also re-

quire an increase in setup time, storage cost, and operator complexity that can be

prohibitively high. Figure 5.1 (b) illustrates the result obtained using PMIS coarsen-

ing. While this is a rather extreme example, the lack of grid structure is evident, and

there is a predominance of strong F-F connections without a common C-point. It

would be advantageous if the PMIS coarsening algorithm could be modified in some
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way to produce grids that are consistently more structured and allow for improved

interpolation. This is the motivation for the PMIS greedy coarsening algorithm.

In the RS coarsening algorithm, after an F-point is defined, the measure of all of its

strongly influencing neighbours is increased. This is done to increase the likelihood

that these neighbours are selected as C-points. If selected, they will cause the F-

point to have a greater number of strongly influencing C-points, and therefore greater

accuracy in interpolation. Also, this method usually produces grids that are highly

structured due to the sequential nature of the algorithm, and due to the updating of

weights of neighbours of neighbours. Often, newly assigned points spread out from

the first assigned C-point due to the fact that the measures of neighbours of new

F-points are updated at each step. In contrast, the PMIS algorithm simply selects

points whose measure is greater than that of all of their strongly influencing and

dependent neighbours, while breaking ties randomly. It may happen that a PMIS

coarsened grid possesses a large amount of structure, but this is much less likely

than in the RS case. To attempt to remedy this problem, one can add the structure

producing step of RS to PMIS. That is, one can update the measure of all strongly

influencing neighbours of newly defined F-points. In this way, the spreading-out effect

exhibited by RS will be present (at least to some extent) in PMIS, and F-points will

hopefully have a better set of strongly influencing C-points to interpolate from. The

resulting version of PMIS will be called PMIS greedy. The term “greedy” is used

to indicate the fact that the method adopts the meta-heuristic of making the locally

optimal choice at each stage with the hope of finding the global optimum [24].

The PMIS greedy algorithm may be summarized as follows:

• Perform PMIS coarsening as defined in Section 4.4.2, but after a point is defined

as an F-point, increment the measure of all unassigned points that strongly

influence that F-point.

By this method, coarsened grids will hopefully be more structured, and consequently

may allow for better interpolation and AMG convergence. As indicated in Figure 5.1

(c), the PMIS greedy algorithm can improve grid structure considerably compared to

PMIS. Also, compared to the grid generated using RS coarsening, the PMIS greedy
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grid has fewer C-points, and therefore produces a lower grid complexity. While Figure

5.1 indicates that PMIS greedy coarsening is promising, the question still remains as

to how it will perform on larger and more difficult problems. In particular, the

question remains as to whether the extra work contributed to updating measures will

in fact pay off in terms of improved convergence behaviour. These questions will be

investigated numerically for a variety of problems in Chapter 7.

5.2 Modification 2: Restrict PMIS to Finer Grid

Levels

This section proposes another method that aims to remedy the convergence problems

sometimes caused by the PMIS coarsening algorithm when combined with classical in-

terpolation. As indicated in Section 4.4, implementing the heuristic criteria for CLJP

can be computationally intensive. Therefore, PMIS coarsening has an advantage over

CLJP in terms of speed. It was also stated that CLJP coarsening can result in high

operator complexities, but generally produces good convergence properties. On the

other hand, PMIS generally produces lower operator complexities than CLJP, but

can suffer from diminished convergence. In this sense, PMIS and CLJP coarsening

exhibit an opposite trade-off between computational cost and convergence that pre-

vent both from achieving good scalability. This section presents a modification that

seeks to take advantage of the strengths of both methods; that is, the structure and

convergence properties demonstrated by CLJP, and the lower storage and computa-

tional cost per V-cycle incurred by PMIS. In this way, the resulting AMG algorithm

will hopefully be more scalable.

Consider the coarsening process of geometric multigrid for a symmetric problem

on a 3D structured grid. If coarse grids are chosen by selecting half the points in

each dimension from the fine grid, and coarse-grid operators are simply defined to be

the coarse-grid version of the fine-grid operator, then the operator complexity may
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be defined by the following geometric series:

Cop = 1 +
1

8
+

1

64
+ . . . <

8

7
. (5.2.1)

While this calculation is easily performed for this example with geometric multigrid,

the same reasoning can be applied to AMG for any problem. The critical observation

is that Cop can be expressed as a series of fractions of the number of nonzero entries in

the fine-grid operator, and that these fractions necessarily decrease as grids become

coarser. Therefore, to most effectively reduce operator complexity, it makes sense to

try and reduce the number of nonzero entries in the coarse-grid operator on finer grids,

since these contribute the largest values to the operator complexity as illustrated by

(5.2.1). The aim of Modification 2 is to use PMIS coarsening only on finer grid

levels, where its effect on reducing operator complexity will be most valuable, and to

use CLJP coarsening on coarser grid levels. Consequently, the increase in operator

complexity compared to pure PMIS will be minimal since it will occur on coarser grid

levels, and yet the better convergence properties of CLJP compared to PMIS may

still be exploited on coarser grids.

In summary, for Modification 2, PMIS coarsening is performed on the first g

grid levels, and CLJP coarsening is performed on all remaining levels. In this way,

PMIS coarsening reduces operator complexity compared to CLJP on the finest grid

levels where it makes the biggest difference, and CLJP produces more structured grids

with only a small number of strong F-F connections without a common C-point –

and therefore better interpolation and convergence – on coarser grid levels where

the impact on operator complexity is reduced. While this method appears to take

advantage of the strengths of both PMIS and CLJP, it is uncertain at this point how

the method will cause the AMG algorithm to perform. Also, the number of PMIS

coarsened grids that should be obtained before switching to CLJP coarsening still

needs to be determined. These issues are investigated numerically for a variety of

problems in Chapter 7.
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ij

Figure 5.2: Example indicating points used in F-F1 interpolation to construct the
interpolation formula for i – a point that has a strong F-F connection with point j,
but no common C-point.

5.3 Modification 3: F-F1 Interpolation

A third modification of the AMG algorithm is proposed in this section. In this case the

change does not involve the coarsening procedure, but instead targets interpolation.

In Chapter 7 it will be shown that, although PMIS coarsening combined with F-

F interpolation can reduce operator complexity while achieving similar convergence

compared to CLJP coarsening with classical interpolation, the computational benefit

is often not substantial. When implementing F-F interpolation, considerable work

may be required to account for all distance-two C-points for strong F-F connections

without a common C-point. Also, because a large number of additional C-points

often need to be considered, the resulting operator complexities (although better

than CLJP) may still be undesirable. If the amount of work could somehow be

reduced while also reducing operator complexity and retaining good convergence, the

true benefits of PMIS coarsening (fast execution, highly parallel, tendency for low

operator complexities) could be exploited while also achieving good scalability from

AMG. This section presents a modification that aims to do just that, and it will be

referred to as F-F1 interpolation.

The main difficulty with F-F interpolation is that all distance-two C-points for

strong F-F connections without a common C-point are considered. F-F1 interpolation

is defined in the same way as F-F interpolation, except that it only considers the
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first distance-two C-point encountered for each strong F-F connection. In this way,

operator complexity and the amount of work required to generate the interpolation

operator may be substantially reduced. At this point it is uncertain what the impact

will be on the convergence properties of AMG; however, this will be investigated using

numerical examples in Chapter 7. F-F1 interpolation is depicted in Figure 5.2 for the

example from Section 4.5.2. The arrow with an ‘X’ through it is meant to illustrate

that a C-point is used in F-F interpolation, but not in F-F1 interpolation.





Chapter 6

Model Problems

This chapter introduces all of the model problems used to generate the results in

Chapter 7. Each PDE problem is presented separately along with its finite difference

discretization. First, however, some elaboration is needed on the use of the finite

difference method. This preliminary discussion will expand on the material covered

in Section 1.1, and can be applied to all of the model problems presented in this

chapter.

6.1 Background: More on Finite Differences

The explanation of the finite difference method in Section 1.1 was limited in its

breadth. This section will clarify and expand on the details presented earlier by

illustrating different ways of discretizing first and second order derivatives for PDEs in

two dimensions on structured grids. The resulting expressions may be easily extended

to accommodate problems of dimension greater than two, and are relevant to all of

the model problems that follow.

Consider any two-dimensional problem that contains both x and y second deriva-

tives, uxx and uyy. As in Section 1.1, these derivatives can be discretized by con-

sidering appropriate combinations of Taylor series in two variables. For an interior

grid point on a structured grid, this can be done in a variety of ways. In Section

1.1, only the points north, south, east, and west of (xi, yj) were used to obtain an

75
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approximation for a derivative at a point (xi, yj). These points are illustrated in Fig-

ure 6.1 (a), where a line indicates that a point is to be used in the approximation at

point (xi, yj). This produced equations (1.1.3) and (1.1.4), which are rewritten here

for completeness:

uxx(xi, yj) ≈
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2
x

, (6.1.1)

uyy(xi, yj) ≈
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

h2
y

. (6.1.2)

Both (6.1.1) and (6.1.2) are second order accurate, and together form what is known

as a 5-point discretization. This is because a total of five different points are involved

in approximating the x and y second derivatives at each interior grid point. If instead

all nine neighbouring grid points of (xi, yj) are used in the approximation, as indicated

in Figure 6.1 (b), approximations of the second derivatives can be written as:

uxx(xi, yj) ≈
1

3h2
x

[u(xi+1, yj) +
1

2
u(xi+1, yj+1) +

1

2
u(xi+1, yj−1)− 4u(xi, yj)

+ u(xi−1, yj) +
1

2
u(xi−1, yj+1) +

1

2
u(xi−1, yj−1)], (6.1.3)

uyy(xi, yj) ≈
1

3h2
y

[u(xi, yj+1) +
1

2
u(xi+1, yj+1) +

1

2
u(xi−1, yj+1)− 4u(xi, yj)

+ u(xi, yj−1) +
1

2
u(xi+1, yj−1) +

1

2
u(xi−1, yj−1)]. (6.1.4)

Both (6.1.3) and (6.1.4) are second order accurate, and together form what is known as

a 9-point discretization, since a total of nine different points are used to approximate

the x and y second derivatives at each interior grid point. A similar extension to three

dimensions can be made to obtain the standard 7-point and 27-point discretizations

in the same form as (6.1.1) and (6.1.2), and (6.1.3) and (6.1.4), respectively. This is

left to the reader.
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(a) (b) (c)
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i j-1
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(x , y    )i j+1 (x , y    )i j+1 (x    , y    )i+1 j+1 (x    , y    )i+1 j+1
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(x   , y    )i-1 j+1 (x   , y    )i-1 j+1 (x   , y    )i-1 j+1
(x , y    )i j+1

Figure 6.1: Points on a 2D structured grid used in (a) a 5-point discretization, (b) a
9-point discretization, and (c) a 4-point mixed discretization.

The mixed term uxy (which will appear in the context of the 2D rotated anisotropic

Laplace problem) is most naturally discretized using the left-oriented 7-point dis-

cretization [20]. Using Taylor series expansions of the points indicated in Figure

6.1 (c), the left-oriented 7-point discretization is given by

uxy(xi, yj) ≈
1

2hxhy

[u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1)

− 2u(xi, yj)− u(xi+1, yj−1)− u(xi−1, yj+1)], (6.1.5)

which is second order accurate.

Finally, first order terms such as ux (which will appear in the context of the 3D

convection-diffusion problem) will be treated using standard upwind discretizations,

like

ux(xi, yj) ≈
u(xi, yj)− u(xi−1, yj)

hx

, (6.1.6)

which are first order accurate. The upwind discretization is used, rather than the

central difference discretization (which is second order accurate), due to stability

considerations. The reader is referred to [21] for more information on the use of

upwind discretizations.
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6.2 Model Problems

This section presents separately, all of the model problems used to generate the results

in Chapter 7. This includes giving a description of the continuous PDE problem,

followed by a discussion of how the problem was discretized for the work in this

thesis. The discretizations are presented in the context of the components introduced

in Section 6.1 for an interior grid point. Structured grids are considered, and it is

assumed that grid spacing is the same in all dimensions; that is, hx = hy = hz =

h. Definition of domains, boundary conditions, and right-hand sides is left until

Chapter 7.

The model problems are presented in an order that, historically, has represented

an increase in difficulty for algebraic multigrid algorithms. Often an algorithm will

perform well for simple problems, but eventually fails when applied to more difficult

ones. Therefore, these problems will help to evaluate the robustness of the modifica-

tions proposed in Chapter 5. In addition, this set of problems is relatively standard

in the multigrid community. Consequently, the results of this thesis can be compared

with other work.

6.2.1 5-Point (2D) Laplace Problem

The 2D Laplace problem,

−uxx − uyy = f(x, y), (6.2.1)

is discretized using the 5-point discretization, such that

1

h2
[−u(xi+1, yj)−u(xi−1, yj)−u(xi, yj+1)−u(xi, yj−1)+4u(xi, yj)] = f(xi, yj). (6.2.2)

6.2.2 9-Point (2D) Laplace Problem

The 2D Laplace problem,

−uxx − uyy = f(x, y), (6.2.3)
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is discretized using the 9-point discretization, such that

1

3h2
[− u(xi+1, yj)− u(xi+1, yj+1)− u(xi−1, yj)− u(xi−1, yj−1)

− u(xi, yj+1)− u(xi−1, yj+1)− u(xi, yj−1)− u(xi+1, yj−1) + 8u(xi, yj)] = f(xi, yj).

(6.2.4)

6.2.3 7-Point (3D) Laplace Problem

The 3D Laplace problem,

−uxx − uyy − uzz = f(x, y, z), (6.2.5)

is discretized using the 7-point discretization, such that

1

h2
[− u(xi+1, yj, zk)− u(xi−1, yj, zk)− u(xi, yj+1, zk)− u(xi, yj−1, zk)

− u(xi, yj, zk+1)− u(xi, yj, zk−1) + 6u(xi, yj, zk)] = f(xi, yj, zk). (6.2.6)

6.2.4 27-Point (3D) Laplace Problem

The 3D Laplace problem,

−uxx − uyy − uzz = f(x, y, z), (6.2.7)

is discretized using the 27-point discretization, such that

1

9h2
[− u(xi+1, yj, zk)− u(xi−1, yj, zk)− u(xi, yj+1, zk)− u(xi, yj−1, zk)

− u(xi, yj, zk+1)− u(xi, yj, zk−1)− u(xi+1, yj+1, zk)− u(xi−1, yj−1, zk)

− u(xi+1, yj−1, zk)− u(xi−1, yj+1, zk)− u(xi+1, yj, zk+1)− u(xi−1, yj, zk−1)

− u(xi+1, yj, zk−1)− u(xi−1, yj, zk+1)− u(xi, yj+1, zk+1)− u(xi, yj−1, zk−1)

− u(xi, yj+1, zk−1)− u(xi, yj−1, zk+1)− u(xi+1, yj+1, zk+1)− u(xi−1, yj−1, zk−1)

− u(xi+1, yj−1, zk−1)− u(xi+1, yj+1, zk−1)− u(xi+1, yj−1, zk+1)− u(xi−1, yj+1, zk+1)

− u(xi−1, yj−1, zk+1)− u(xi−1, yj+1, zk−1) + 26u(xi, yj, zk)] = f(xi, yj, zk).

(6.2.8)
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6.2.5 3D Anisotropic Laplace Problem

The 3D anisotropic Laplace problem,

−cuxx − uyy − uzz = f(x, y, z), (6.2.9)

where c ∈ R, is discretized using the 7-point discretization, such that

1

h2
[− c{u(xi+1, yj, zk) + u(xi−1, yj, zk)} − u(xi, yj+1, zk)− u(xi, yj−1, zk)

− u(xi, yj, zk+1)− u(xi, yj, zk−1) + (2c + 4)u(xi, yj, zk)] = f(xi, yj, zk). (6.2.10)

6.2.6 3D Convection-Diffusion Problem

The 3D convection-diffusion problem,

−cxuxx − cyuyy − czuzz + axux + ayuy + azuz = f(x, y, z), (6.2.11)

where {cx, cy, cz, ax, ay, az} ∈ R, is discretized using the 7-point and upwind dis-

cretizations, such that

1

h2
[− cx{u(xi+1, yj, zk) + u(xi−1, yj, zk)} − cy{u(xi, yj+1, zk) + u(xi, yj−1, zk)}

− cz{u(xi, yj, zk+1) + u(xi, yj, zk−1)}+ (2cx + 2cy + 2cz)u(xi, yj, zk)]

+
1

h
[ax{u(xi, yj, zk)− u(xi−1, yj, zk)}+ ay{u(xi, yj, zk)− u(xi, yj−1, zk)}

+ az{u(xi, yj, zk)− u(xi, yj, zk−1)}] = f(xi, yj, zk). (6.2.12)

6.2.7 2D Rotated Anisotropic Laplace Problem

The 2D rotated anisotropic Laplace problem,

−(c2 + εs2)uxx + 2(1− ε)csuxy − (s2 + εc2)uyy = f(x, y), (6.2.13)
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where ε ∈ R, c = cos γ, s = sin γ, and γ is the angle of rotation, is discretized using

the 5-point and left-oriented 7-point discretizations, such that

1

h2
[(c2 + εs2){−u(xi+1, yj) + 2u(xi, yj)− u(xi−1, yj)}

+ (1− ε)cs{u(xi+1, yj) + u(xi−1, yj) + u(xi, yj+1) + u(xi, yj−1)

− 2u(xi, yj)− u(xi+1, yj−1)− u(xi−1, yj+1)}

+ (s2 + εc2){−u(xi, yj+1) + 2u(xi, yj)− u(xi, yj−1)}] = f(xi, yj). (6.2.14)

6.2.8 3D Elliptic PDE with Jumps

The 3D elliptic PDE with jumps in the coefficients,

−(aux)x − (auy)y − (auz)z = f(x, y, z), (6.2.15)

is discretized using the 7-point discretization, such that

1

h2
[− a(xi+ 1

2
, yj, zk)u(xi+1, yj, zk)− a(xi− 1

2
, yj, zk)u(xi−1, yj, zk)

− a(xi, yj+ 1
2
, zk)u(xi, yj+1, zk)− a(xi, yj− 1

2
, zk)u(xi, yj−1, zk)

− a(xi, yj, zk+ 1
2
)− u(xi, yj, zk+1)− a(xi, yj, zk− 1

2
)u(xi, yj, zk−1)

+ {a(xi+ 1
2
, yj, zk) + a(xi− 1

2
, yj, zk) + a(xi, yj+ 1

2
, zk)

+ a(xi, yj− 1
2
, zk) + a(xi, yj, zk+ 1

2
) + a(xi, yj, zk− 1

2
)}u(xi, yj, zk)]

= f(xi, yj, zk). (6.2.16)
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6.3 Multigrid Performance

This section discusses the performance characteristics of existing geometric and al-

gebraic multigrid algorithms for the model problems in Section 6.2. This includes

summarizing traditional modifications to the geometric multigrid algorithm for prob-

lems in which difficulties arise.

The model problems in Section 6.2 can be divided into four categories. These are

standard Laplace problems (model problems 6.2.1 through 6.2.4), anisotropic prob-

lems (model problems 6.2.5 and 6.2.7), convection-diffusion problems (model problem

6.2.6), and discontinuous coefficient problems (model problem 6.2.8). Standard ge-

ometric multigrid algorithms perform well for standard Laplace problems (see for

example [4, 21]); however, efficiency can be significantly degraded for the other three

types of problems. For anisotropic problems, it follows that standard pointwise relax-

ation methods such as GS do not effectively reduce error in the direction of anisotropy

since they only smooth error in the direction of strong coupling [21]. One solution to

this problem is to use block relaxation, in which a block of unknowns is updated si-

multaneously (for example, a line in 2D or a plane in 3D). Another solution is to keep

pointwise relaxation, but modify the coarsening method according to the problem.

One such approach is to use semicoarsening, in which coarsening is performed only

along the direction of strong coupling. In this way, pointwise relaxation can still be

effective. More information on block relaxation and semicoarsening can be found in

[4, 21]. Further difficulties arise when the anisotropy is not aligned with the grid, as

is true for the rotated anisotropic problem. One method for overcoming this problem

is to use a more robust smoother such as modified ILU, an “ILU-type” (incomplete

LU matrix decomposition) smoother, which also reduces certain low frequency error

components on the fine grid [21].

The ideas of semicoarsening and block relaxation can also be applied to convection-

diffusion problems. For these problems, geometric multigrid performance can be

improved by using higher order upwind-biased discretizations combined with KAPPA

smoothers or multistage Jacobi smoothers [21].
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Interpolation in standard geometric multigrid relies on the continuity of ∇u. Con-

sequently, for problems with discontinuous coefficients, the algorithm must be mod-

ified accordingly. This can be accomplished using operator-dependent interpolation

(which resembles classical interpolation in AMG) and the Galerkin condition to define

the coarse-grid operator. Discussion of this method and several others that apply to

problems with discontinuous coefficients may be found in [21].

Standard AMG (RS coarsening with classical interpolation) generally performs

well for all four types of problems in terms of convergence scalability. Problem-

dependent modifications, like those discussed above for geometric multigrid, are usu-

ally not required for AMG since it automatically performs coarsening and interpo-

lation in the direction of strong connection. As a result, AMG automatically semi-

coarsens and uses operator-dependent interpolation, and in this sense is a more robust

algorithm than geometric multigrid. However, complexity problems often occur for

AMG, especially for 3D problems. These complexity issues may lead to a significant

loss of scalability for the AMG algorithm, which causes existing AMG methods to be

inefficient for large problem sizes – in particular on parallel computers. The modifica-

tions proposed in Chapter 5 are aimed at improving AMG efficiency for these cases.

Their performance for the model problems introduced in Section 6.2 will be evaluated

in Chapter 7.





Chapter 7

Numerical Results

This chapter presents a numerical comparison of standard AMG coarsening and in-

terpolation methods with the modified methods as described in Chapter 5. The

standard methods include CLJP coarsening with classical interpolation, PMIS coars-

ening with classical interpolation, and PMIS coarsening with F-F interpolation. The

modifications include PMIS greedy coarsening with classical interpolation, restricting

PMIS to finer grid levels while CLJP is performed only on coarser levels with classical

interpolation, and PMIS coarsening with F-F1 interpolation. This study will be per-

formed for all eight model problems introduced in Chapter 6, and will include results

for both stand-alone AMG and GMRES(5)-accelerated AMG (AMG-GMRES(5)).1

GMRES(5) was used for all problems, rather than using CG for the symmetric prob-

lems and GMRES(5) for the nonsymmetric problems, so that algorithms could be

consistently compared.

In the case of the second modification (PMIS on the first g finest grids, and

CLJP on all remaining grids), tests were performed for g = 1, 2, 3, 4, and 5. For

simplicity, only the value of g that exhibited the best result in terms of a combination

of operator complexity, convergence, and execution time is presented for each of the

model problems. Since it was found that the algorithm with g = 1 always converges

in the fewest number of iterations, it follows that if the algorithm listed has g 6= 1,

then it executed faster and had a lower operator complexity than the algorithm with

1Choosing to restart GMRES after precisely five iterations was somewhat of an arbitrary choice,
and is not necessarily the optimal choice.
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g = 1. A more detailed analysis of modification 2 is presented in Section 7.2. This

includes discussion of an interesting trade-off that was observed between operator

complexity, convergence, and execution speed.

Tests were done on a serial computer with 2 GB of memory and a Pentium

4 processor with a speed of 3.2 GHz using Hypre. Hypre is an optimized AMG

code developed by the Center for Applied Scientific Computing at Lawrence Liv-

ermore National Laboratory in Livermore, California, and can be obtained from

http://www.llnl.gov/CASC/linear solvers/. Unless otherwise stated, the following

parameters were used for all runs:

• Cycle type: V(1,1)

• Relaxation method: Gauss-Seidel, in CF order on the finest grid and on the

downward part of the V-cycle (except for the coarsest grid, for which the

coarsest-grid solve method is employed), and in FC order on the upward part

of the V-cycle (except for the finest grid).2

• Strength threshold: α = 0.25

• Maximum size of the coarsest level: 9

• Coarsest-grid solve method: Gaussian elimination

• Convergence tolerance (relative residual using the L2 norm)3: 1× 10−6

• Initial guess on the finest level: v(0) = 0

The legend for all tables is as follows:

• CLJP: CLJP coarsening with classical interpolation

2CF order means to relax on all variables that are C-points, and then on all variables that are
F-points (FC order is the reverse). GS relaxation in CF order is an efficient smoother in practice,
and is related to red-black Gauss-Seidel relaxation in geometric multigrid [20]. More information
on Gauss-Seidel in CF order and red-black Gauss-Seidel relaxation can be found in [20] and [4, 21],
respectively.

3The relative residual is defined to be the norm of the residual divided by the norm of the
right-hand side; that is, ‖r‖

‖f‖ .
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• PMIS: PMIS coarsening with classical interpolation

• PMIS greedy: PMIS greedy coarsening with classical interpolation

• PMIS(g)-CLJP: PMIS coarsening performed on the first g finest grids and CLJP

coarsening on all remaining grids, with classical interpolation

• PMIS-FF: PMIS coarsening with F-F interpolation

• PMIS-FF1: PMIS coarsening with F-F1 interpolation

• n: problem size per dimension

• Cop: operator complexity

• #lev: total number of grid levels in the V-cycle

• iter: number of iterations required to reach the convergence tolerance

• tsetup: time required for the setup phase (s)

• tsolve: time required for the solve phase (includes the GMRES(5) component for

AMG-GMRES(5)) (s)

• ttot: total run time (setup time + solve time) (s)

For all 2D and 3D problems, the domain was chosen to be the unit square and

the unit cube, respectively. Dirichlet boundary conditions (u = 0) were enforced for

all problems, and discretization of the continuous problems was performed according

to the methods described in Section 6.2.

It is generally observed that PMIS coarsened AMG methods are scalable with

respect to storage cost since Cop normally does not increase with respect to problem

size asymptotically. Any discussion of scalability for a PMIS-coarsened algorithm will

assume this to be true, and therefore only applies to the convergence criteria. Unless

otherwise stated, scalability of storage cost will be implied.
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Method Cop #lev iter tsetup tsolve ttotal

CLJP 2.21 8 2 small small small
PMIS 1.76 7 4 small small small
PMIS greedy 1.76 7 4 small small small
PMIS(5)-CLJP 1.76 7 4 small small small
PMIS-FF 1.77 7 4 small small small
PMIS-FF1 1.77 7 4 small small small

Table 7.1: AMG on a 1024× 1024 structured grid for the 5-point Laplace problem.

7.1 Results and Discussion

7.1.1 5-Point (2D) Laplace Problem

The 2D Laplace problem,

−uxx − uyy = 1, (7.1.1)

was considered using a 5-point discretization. As none of the three proposed modi-

fications showed a marked improvement over current methods, only the data for the

largest problem size tested is included here. This is presented in Table 7.1 for AMG

on a 1024 × 1024 grid. A time value of ‘small’ is meant to indicate that a value

close to zero was obtained, but that it could not be accurately determined. Results

for AMG-GMRES(5) were exactly the same for this problem size, and showed no

improvement of scalability over AMG for all problem sizes considered. As such, the

AMG-GMRES(5) results will not be displayed. Consequently, it can be said that

there is no advantage to accelerating AMG with GMRES for this problem for the

problem sizes tested.

As expected, PMIS reduces operator complexity compared to CLJP, but requires

more iterations to converge. As illustrated in Table 7.1 – in terms of operator com-

plexity, convergence, and execution time – all three modifications basically exhibit

the same behaviour as the PMIS algorithm. As such, there is no advantage to any of

the proposed modifications for this simple problem compared to PMIS, at least for

the problem sizes that were investigated. It should be noted that AMG with CLJP
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coarsening is essentially optimal for the 5-point Laplace problem, so one should not

expect to observe much, if any, improvement in comparison. It was also noted that the

number of iterations required to reach the convergence criteria was almost constant

as a function of problem size for all methods, and that Cop only increased linearly

with respect to problem size for CLJP. Consequently, all methods can be considered

scalable for this problem.

In summary, CLJP performs slightly better than all other methods in terms of

convergence, and slightly worse in terms of operator complexity; however, scalability

of all methods was found to be the same. None of the proposed modifications improve

convergence or reduce operator complexity for this problem compared to PMIS.

7.1.2 9-Point (2D) Laplace Problem

The 2D Laplace problem,

−uxx − uyy = 1, (7.1.2)

was considered using a 9-point discretization. Results for the largest problem size

tested are included in Tables 7.2 and 7.3 for AMG and AMG-GMRES(5), respectively.

A scalability study for several of the algorithms is also presented in Figure 7.1, where

number of iterations is plotted as a function of problem size.

Table 7.2 illustrates that, while PMIS reduces operator complexity compared to

CLJP, convergence is significantly degraded due to inaccurate interpolation. This

is directly evidenced through the number of iterations required to reach the conver-

gence criteria, which also negatively affects the corresponding solve times. AMG-

GMRES(5) does accelerate convergence, but not to a satisfactory level.

The effect of the three proposed modifications is analyzed as follows.

1 The PMIS greedy modification improves both AMG and AMG-GMRES(5) in

terms of convergence, and with only a slight increase in operator complexity com-

pared to PMIS; however, this improvement is not sufficient, and still results in poor

scalability properties as illustrated in Figure 7.1.

2 Performing PMIS coarsening on only the first grid and CLJP on all remaining

grids does appear to have a positive effect. Execution time is comparable to that of
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Method Cop #lev iter tsetup tsolve ttotal

CLJP 1.92 12 18 10.65 11.31 21.96
PMIS 1.24 9 197 4.59 88.97 93.56
PMIS greedy 1.26 9 153 4.72 70.07 74.79
PMIS(1)-CLJP 1.40 12 33 5.62 16.19 21.81
PMIS-FF 1.45 8 16 7.78 8.05 15.83
PMIS-FF1 1.41 9 19 7.10 9.16 16.26

Table 7.2: AMG on a 1024× 1024 structured grid for the 9-point Laplace problem.

Method Cop #lev iter tsetup tsolve ttotal

CLJP 1.92 12 10 10.59 9.41 20.00
PMIS 1.24 9 46 4.66 32.99 37.65
PMIS greedy 1.26 9 43 4.73 31.03 35.76
PMIS(1)-CLJP 1.40 12 18 5.65 13.91 19.56
PMIS-FF 1.45 8 10 7.90 7.76 15.66
PMIS-FF1 1.41 9 11 7.26 8.67 15.93

Table 7.3: AMG-GMRES(5) on a 1024×1024 structured grid for the 9-point Laplace
problem.

CLJP while operator complexity is considerably reduced. While this has a benefit in

terms of storage, it is noted that many more iterations are needed for convergence

compared to CLJP. This is less explicit for AMG-GMRES(5), but still undesirable.

As illustrated in Figure 7.1, scalability for both AMG and AMG-GMRES(5) with

modification 2, although significantly better than PMIS, is still not ideal for this

problem.

3 The most notable improvement is observed for PMIS coarsening combined with

F-F and F-F1 interpolation. For both AMG and AMG-GMRES(5), convergence is

comparable to that of CLJP with classical interpolation, but significant time is saved

in both the setup and solve phases. Operator complexity is significantly reduced

compared to that of CLJP, and the extra time spent in defining the interpolation op-

erator far outweighs the penalty paid in convergence when using PMIS with classical

interpolation. It can also be noted for this problem that, compared to F-F, the lack of
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Figure 7.1: Scalability comparison for the 9-point Laplace problem.

accuracy in interpolation with F-F1 resulted in poorer convergence, and only a slight

decrease in operator complexity. As such, there does not appear to be an advantage

to using F-F1 interpolation, and PMIS coarsening with F-F interpolation seems to be

the best choice of all algorithms tested for solving the 9-point Laplace problem. Note

that the convergence results of CLJP and PMIS-FF1 were similar to those obtained

with PMIS-FF for both AMG and AMG-GMRES(5), respectively, and are not shown

in Figure 7.1.

7.1.3 7-Point (3D) Laplace Problem

The 3D Laplace problem,

−uxx − uyy − uzz = 1, (7.1.3)
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was considered using a 7-point discretization. Results for AMG and GMRES(5)-

accelerated AMG are shown for a 128× 128× 128 grid in Tables 7.4 and 7.5, respec-

tively. A scalability study for several of the algorithms is also presented in Figure

7.2, where number of iterations is plotted as a function of problem size.

It should be noted that, not only did the CLJP test run out of memory on the

1283 grid, it was also about three times slower than AMG with PMIS, and about

four times slower than AMG-GMRES(5) with PMIS, on a 643 grid. In addition,

operator complexity was about ten times smaller for PMIS coarsening compared to

that obtained using CLJP. Thus, even without any of the proposed modifications,

PMIS coarsening appears to be a much better choice than CLJP for this problem

with respect to execution time and storage cost. It was observed, however, that

CLJP converged in significantly fewer iterations than PMIS, and is more scalable

with respect to convergence.

1 Convergence with PMIS greedy coarsening is negligibly improved compared to

PMIS for AMG, and is unchanged for AMG-GMRES(5). Also, as expected, PMIS

greedy operator complexity is higher than that obtained using PMIS. As such, there

is little or no advantage to using PMIS greedy instead of PMIS for this problem. This

would also be true for parallel implementations, since an added communication cost

would exist for PMIS greedy (the measure of unassigned neighbours of F-points must

be incremented on adjacent processors), and would likely cause any advantage to be

completely lost.

2 As illustrated in Tables 7.4 and 7.5, PMIS(3)-CLJP considerably improves exe-

cution time compared to PMIS for AMG, but the improvement is only small for AMG-

GMRES(5). It should be noted that for both AMG and AMG-GMRES(5), PMIS(1)-

CLJP and PMIS(2)-CLJP actually converge in fewer iterations than PMIS(3)-CLJP,

but require larger setup times since more CLJP coarsening is performed. In addition,

operator complexity is much higher for PMIS(1)-CLJP and PMIS(2)-CLJP compared

to PMIS(3)-CLJP. For this reason, PMIS(3)-CLJP is considered the best performer

out of all PMIS(g)-CLJP variants tested. As illustrated in Figure 7.2, PMIS(3)-CLJP

shows an improvement over PMIS in terms of convergence scalability for both AMG

and AMG-GMRES(5). Since the operator complexity generated using PMIS(3)-CLJP
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Method Cop #lev iter tsetup tsolve ttotal

CLJP (643) 22.51 14 9 20.36 5.83 26.19
PMIS 2.36 8 77 16.63 85.93 102.56
PMIS greedy 2.44 9 74 17.53 84.57 102.10
PMIS(3)-CLJP 2.49 12 47 17.70 53.82 71.52
PMIS-FF 4.80 8 13 83.81 22.86 106.67
PMIS-FF1 3.68 8 15 44.22 22.07 66.29

Table 7.4: AMG on a 128×128×128 structured grid for the 7-point Laplace problem.
CLJP results are for the 643 problem because the 1283 test ran out memory.

Method Cop #lev iter tsetup tsolve ttotal

CLJP (643) 22.51 14 5 20.32 4.23 24.55
PMIS 2.36 8 20 16.67 35.26 51.93
PMIS greedy 2.44 9 20 17.54 35.77 53.31
PMIS(3)-CLJP 2.49 12 16 17.70 29.89 47.59
PMIS-FF 4.80 8 9 83.87 22.97 106.84
PMIS-FF1 3.68 8 9 43.85 19.85 63.70

Table 7.5: AMG-GMRES(5) on a 128 × 128 × 128 structured grid for the 7-point
Laplace problem. CLJP results are for the 643 problem because the 1283 test ran out
memory.

is not much higher than that obtained using only PMIS coarsening, this modification

does show a promising improvement in overall scalability.

3 For PMIS-FF and PMIS-FF1, a considerable reduction in the number of it-

erations required for convergence is observed for both AMG and AMG-GMRES(5).

It is noted, however, that there is a significant increase in operator complexity for

PMIS-FF compared to PMIS, with no saving in execution time for either AMG or

AMG-GMRES(5). As evidenced by high setup times, this is due to the fact that a

large number of distance-two C-points need to be considered in the interpolation pro-

cedure. F-F1 interpolation does well to reduce operator complexity compared to F-F,

and also demonstrates a significant time saving over the F-F runs. PMIS-FF1 shows

the best overall improvement in execution time over PMIS with classical interpolation
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Figure 7.2: Scalability comparison for the 7-point Laplace problem.

of all AMG runs, and does relatively well for the AMG-GMRES(5) runs. The real

benefit, however, is that F-F1 interpolation is able to mirror the scalability of F-F in-

terpolation while significantly reducing computational cost. As such, it appears that

only considering one distance-two C-point for strong F-F connections without a com-

mon C-point is sufficient. Of all PMIS methods tested, PMIS-FF and PMIS-FF1 are

the most scalable, and are comparable to CLJP in terms of convergence scalability.

This is illustrated in Figure 7.2. Only the PMIS-FF1 results are included in Fig-

ure 7.2 since the PMIS-FF results are similar for both AMG and AMG-GMRES(5),

respectively.

In summary, when considering a combination of operator complexity and exe-

cution time, PMIS(3)-CLJP is the best method for small problem sizes; however, it

does not scale well in terms of convergence. Due to its superior scalability, PMIS-FF1

appears to be the best choice for large problem sizes.
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Method Cop #lev iter tsetup tsolve ttotal

CLJP 2.67 15 9 209.88 25.24 235.12
PMIS 1.10 8 47 33.67 65.08 98.75
PMIS greedy 1.12 8 38 36.37 54.01 90.38
PMIS(2)-CLJP 1.12 11 27 34.55 38.05 72.6
PMIS-FF 1.35 7 7 119.34 12.92 132.26
PMIS-FF1 1.27 7 8 84.29 13.52 97.81

Table 7.6: AMG on a 128×128×128 structured grid for the 27-point Laplace problem.

Method Cop #lev iter tsetup tsolve ttotal

CLJP 2.67 15 6 208.94 74.72 283.66
PMIS 1.10 8 17 33.72 42.09 75.81
PMIS greedy 1.12 8 15 36.39 36.99 73.38
PMIS(2)-CLJP 1.12 11 12 34.58 30.55 65.13
PMIS-FF 1.35 7 7 124.51 31.94 156.45
PMIS-FF1 1.27 7 7 85.31 36.60 121.91

Table 7.7: AMG-GMRES(5) on a 128 × 128 × 128 structured grid for the 27-point
Laplace problem.

7.1.4 27-Point (3D) Laplace Problem

The 3D Laplace problem,

−uxx − uyy − uzz = 1, (7.1.4)

was considered using a 27-point discretization. Results for AMG and GMRES(5)-

accelerated AMG are shown for a 128× 128× 128 grid in Tables 7.6 and 7.7, respec-

tively. A scalability study for several of the algorithms is also presented in Figure

7.3, where number of iterations is plotted as a function of problem size. As indicated

in Tables 7.6 and 7.7, PMIS coarsening provides a significant advantage over CLJP

in terms of operator complexity and setup time, but not in the number of iterations

required for convergence. For AMG, PMIS has a larger solve time and requires more

iterations than CLJP, but ultimately outperforms CLJP in total execution time. The
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Figure 7.3: Scalability comparison for the 27-point Laplace problem.

larger solve time is due to a lack of accuracy in interpolation as a result of an insuffi-

cient number of C-points. While the PMIS solve time is smaller than that of CLJP for

AMG-GMRES(5), it is estimated that this advantage would be lost for larger problem

sizes since CLJP converges in fewer iterations and scales better in terms of conver-

gence. Thus, for the problem sizes tested, PMIS appears to perform better overall

than CLJP; however, convergence of PMIS needs to be improved since it does scale

poorly (CLJP scales much better than PMIS). Scaling for this problem is illustrated

in Figure 7.3. CLJP results are not shown in Figure 7.3 since they are similar to the

PMIS-FF1 results. 1 The PMIS greedy algorithm improves convergence for both

AMG and AMG-GMRES(5); however, the improvement is only small. As indicated

in Figure 7.3, PMIS greedy scalability is still poor. Also, there is a slight increase in

operator complexity and setup time as expected. The increase in setup time would

be larger in a parallel implementation due to added communication cost, causing the

advantage gained in execution time from improved convergence to likely be lost.
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2 The PMIS(2)-CLJP algorithm provides a better improvement than PMIS

greedy in terms of convergence and solve time, while requiring only a negligible in-

crease in operator complexity and setup time compared to PMIS. This is a promising

improvement; however, the number of iterations required to satisfy the convergence

criteria is still excessively high which indicates poor scalability. Indeed, poor scala-

bility is confirmed in Figure 7.3.

3 PMIS with F-F interpolation provides the desired improvement in convergence

that PMIS greedy and PMIS(2)-CLJP could not. While setup times are considerably

higher for PMIS-FF compared to PMIS greedy and PMIS(2)-CLJP, solve times and

the number of iterations required for convergence are much lower. While operator

complexity is slightly higher than that obtained for PMIS greedy and PMIS(2)-CLJP,

it is not excessive, and still offers a considerable improvement over that obtained using

CLJP only.

PMIS with F-F1 interpolation proves to be the best choice for this problem when

scalability is considered. It not only matches the convergence characteristics of PMIS-

FF, but also provides a substantial reduction in operator complexity and setup time

(compared to PMIS-FF), with only a minimal increase in solve time. Thus, includ-

ing only one distance-two C-point for strong F-F connections without a common

C-point in interpolation is sufficient. Although execution times are larger and opera-

tor complexity is slightly higher for PMIS-FF1 compared to PMIS, PMIS greedy, and

PMIS(2)-CLJP, it still appears that PMIS-FF1 is the best algorithm for large prob-

lem sizes due to superior scalability. This is affirmed by considering the scalability

profiles in Figure 7.3. Although not shown in Figure 7.3, the convergence results for

CLJP were almost identical to those of PMIS-FF1. As such, it can be concluded that

both CLJP and PMIS-FF1 are almost optimal methods with respect to convergence

scalability.

It can be noted for many of the algorithms in Tables 7.6 and 7.7, that due to a

faster solve time, AMG actually outperforms AMG-GMRES(5) in terms of total ex-

ecution time. This is a confounding result (since GMRES usually accelerates AMG),

and may indicate that an extra load was mistakenly added to the computer during

execution of the AMG-GMRES(5) runs. However, setup times are not affected in the
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same way, which is puzzling. Regardless of the cause, this issue is worth investigating

further in future work.

In summary, when considering operator complexity and execution time, PMIS(2)-

CLJP is the best algorithm for solving small problem sizes. However, PMIS-FF1

appears to be the best choice for large problem sizes due to its superior scalability.

7.1.5 3D Anisotropic Laplace Problem

The 3D anisotropic Laplace problem,

−cuxx − uyy − uzz = 1, (7.1.5)

was considered using a 7-point discretization, and c = 0.001. Results for AMG and

GMRES(5)-accelerated AMG are shown for a 128 × 128 × 128 grid in Tables 7.8

and 7.9, respectively. A scalability profile for several of the algorithms tested for this

problem is presented in Figure 7.4, where number of iterations is plotted as a function

of problem size.

It should be noted that, not only did the CLJP test run out of memory on the

1283 grid, it was also about four times slower than PMIS for both AMG and AMG-

GMRES(5) on a 643 grid, and setup and solve times for PMIS were faster than for

CLJP. In addition, operator complexity was about ten times smaller for PMIS coars-

ening compared to that obtained using CLJP on the 643 grid. While CLJP did exhibit

better convergence scalability than PMIS (similar to the PMIS-FF results shown in

Figure 7.4), it can be concluded that, even without any of the proposed modifications,

PMIS coarsening is preferable to CLJP for the problem sizes investigated.

1 For this problem, PMIS greedy does not significantly outperform PMIS for

either AMG or AMG-GMRES(5). Although convergence is slightly improved, opera-

tor complexity is negatively affected. In addition, while not illustrated in Figure 7.4,

scalability for PMIS greedy was similar to that obtained for PMIS. In also consider-

ing that a parallel implementation would only increase setup time due to processor

boundary communication, it can be concluded that PMIS greedy does not provide

a useful advantage over PMIS for this problem. 2 PMIS(3)-CLJP moderately
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Method Cop #lev iter tsetup tsolve ttotal

CLJP (643) 22.34 16 8 20.23 5.25 25.48
PMIS 2.36 9 52 16.60 58.20 74.00
PMIS greedy 2.43 9 48 17.48 54.61 72.09
PMIS(3)-CLJP 2.48 13 34 17.79 39.12 56.91
PMIS-FF 4.81 8 12 82.18 20.88 103.06
PMIS-FF1 3.68 8 13 43.51 18.93 62.44

Table 7.8: AMG on a 128× 128× 128 structured grid for the 3D anisotropic Laplace
problem. CLJP results are for the 643 problem because the 1283 test ran out memory.

Method Cop #lev iter tsetup tsolve ttotal

CLJP (643) 22.34 16 6 20.21 5.54 25.75
PMIS 2.36 9 25 16.62 43.53 60.15
PMIS greedy 2.43 9 24 17.56 42.68 60.24
PMIS(3)-CLJP 2.48 13 20 17.96 35.54 53.50
PMIS-FF 4.81 8 9 82.10 22.95 105.05
PMIS-FF1 3.68 8 10 43.43 21.70 65.13

Table 7.9: AMG-GMRES(5) on a 128×128×128 structured grid for the 3D anisotropic
Laplace problem. CLJP results are for the 643 problem because the 1283 test ran out
memory.

improves convergence for both AMG and AMG-GMRES(5), while only increasing

operator complexity slightly compared to PMIS. Setup times are marginally worse

than those obtained for PMIS, but the advantage of performing CLJP coarsening on

coarser grid levels is directly evident in the reduction in solve times and the number

of iterations required for convergence. Although this represents an improvement over

PMIS, the scalability of the algorithm is still undesirable as illustrated in Figure 7.4.

3 Tables 7.8 and 7.9 show that PMIS-FF dramatically improves convergence com-

pared to the other modifications, and it can be noted that convergence of PMIS-FF

is comparable to that of CLJP coarsening with classical interpolation. The drawback

of PMIS-FF is that operator complexity is rather large (although still much less than

for CLJP), and setup time is increased due to the consideration of all distance-two
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Figure 7.4: Scalability comparison for the 7-point anisotropic Laplace problem.

C-points for strong F-F connections without a common C-point in interpolation. How-

ever, the situation is noticeably improved for PMIS-FF1. Operator complexity and

setup time are substantially reduced by only considering one distance-two C-point,

while the convergence benefits of F-F interpolation are still maintained. As illustrated

in Figure 7.4, PMIS-FF1 is comparable to PMIS-FF as being the best algorithm of

all those tested in terms of convergence scalability, and as shown in Tables 7.8 and

7.9, performs well in terms of execution time for both AMG and AMG-GMRES(5),

respectively. Although operator complexity for PMIS-FF1 is somewhat high, it is still

acceptable, and is much better than that of CLJP.

In summary, when a combination of execution speed and operator complexity is

considered, PMIS(3)-CLJP is the best method for solving small problem sizes like

those tested in this thesis. PMIS-FF1 also performs well with respect to execution

time, and, due to its superior scalability, appears to be the best method for large

problem sizes.
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Method Cop #lev iter tsetup tsolve ttotal

CLJP (643) 22.49 15 9 20.38 5.93 26.31
PMIS 2.36 9 74 16.78 82.87 99.65
PMIS greedy 2.44 9 72 17.51 82.52 100.03
PMIS(3)-CLJP 2.49 12 45 18.05 51.58 69.63
PMIS-FF 4.80 7 13 84.02 22.59 106.61
PMIS-FF1 3.68 8 15 43.80 21.85 65.65

Table 7.10: AMG on a 128×128×128 structured grid for the 3D convection-diffusion
problem. CLJP results are for the 643 problem because the 1283 test ran out memory.

Method Cop #lev iter tsetup tsolve ttotal

CLJP (643) 22.49 15 6 20.45 5.64 26.09
PMIS 2.36 9 22 16.84 39.15 55.99
PMIS greedy 2.44 9 21 17.57 38.33 55.90
PMIS(3)-CLJP 2.49 12 17 17.92 31.15 49.07
PMIS-FF 4.80 7 9 83.93 23.01 106.94
PMIS-FF1 3.68 8 9 43.83 19.84 63.67

Table 7.11: AMG-GMRES(5) on a 128 × 128 × 128 structured grid for the 3D
convection-diffusion problem. CLJP results are for the 643 problem because the 1283

test ran out memory.

7.1.6 3D Convection-Diffusion Problem

The 3D convection-diffusion problem,

−cxuxx − cyuyy − czuzz + axux + ayuy + azuz = 1, (7.1.6)

was considered using 7-point and upwind discretizations. Convection and diffusion

parameters were taken to be cx = cy = cz = 1 and ax = ay = az = 10, respectively.

Results for AMG and GMRES(5)-accelerated AMG are shown for a 128× 128× 128

grid in Tables 7.10 and 7.11, respectively. A scalability study for several of the

algorithms is also presented in Figure 7.5, where number of iterations is plotted as a

function of problem size.
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Figure 7.5: Scalability comparison for the 3D convection-diffusion problem.

While the CLJP test did run out of memory on the 1283 grid, it should also be

noted that it was about three times slower than PMIS for AMG, and about five

times slower than PMIS for AMG-GMRES(5), on a 643 grid. In addition, operator

complexity was about 10 times larger for CLJP compared to PMIS on a 643 grid.

However, CLJP did converge in significantly fewer iterations than PMIS, indicating

better convergence scalability. These results illustrate that, for the problem sizes

tested, PMIS is a better choice than CLJP, even though CLJP is more scalable in

terms of convergence.

1 For this problem, PMIS greedy essentially offers no improvement in terms

of convergence or execution time for either AMG or AMG-GMRES(5) compared to

PMIS. In addition, operator complexity is increased for PMIS greedy compared to

PMIS, and scalability is approximately the same as for PMIS. Consequently, it can be

concluded that the PMIS greedy algorithm does not improve PMIS for this problem.
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2 The PMIS(3)-CLJP algorithm provides a considerable improvement over PMIS

in terms of convergence, with only a small increase in setup time, for both AMG and

AMG-GMRES(5). This is accompanied by only a small increase in operator complex-

ity. As such, the improved structure on coarser grids resulting from CLJP coarsening

aids convergence, but does not significantly increase storage cost. While this repre-

sents an improvement over PMIS, it can be noted that convergence scalability is still

undesirable. This is illustrated in Figure 7.5.

3 PMIS with F-F interpolation significantly improves convergence compared to

PMIS with classical interpolation, but produces an increase in setup time and operator

complexity. PMIS-FF1 is able to match the convergence properties of PMIS-FF, while

also significantly reducing setup time and operator complexity. Although the operator

complexity generated by PMIS-FF1 is somewhat undesirable, it is still much better

than that of CLJP. PMIS-FF1 also has excellent scalability as illustrated in Figure

7.5. Although not shown in Figure 7.5, CLJP convergence scalability is approximately

equal to that of PMIS-FF1.

In summary, for small problem sizes like those tested, PMIS(3)-CLJP is the best

method in terms of a combination of execution time and operator complexity. PMIS-

FF1 performed well with respect to execution time, and appears to be the best method

for large problem sizes due to its superior scalability.

7.1.7 2D Rotated Anisotropic Laplace Problem

The 2D rotated anisotropic Laplace problem,

−(c2 + εs2)uxx − 2(1− ε)csuxy − (s2 + εc2)uyy = 1, (7.1.7)

where ε ∈ R, c = cos γ, s = sin γ, and γ is the angle of rotation, was considered

with ε = 0.001 and using 5-point and left-oriented 7-point discretizations. Results

for AMG and GMRES(5)-accelerated AMG are shown for a 256× 256 grid in Tables

7.12 through 7.15 for rotation angles of γ = 45o and γ = 60o. A scalability study for

several of the algorithms is also presented in Figures 7.6 and 7.7, where number of
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Method Cop #lev iter tsetup tsolve ttotal

CLJP 2.77 14 8 0.34 0.35 0.69
PMIS 1.88 10 89 0.21 2.73 2.94
PMIS greedy 1.88 10 77 0.22 2.40 2.62
PMIS(1)-CLJP 2.29 14 26 0.28 0.95 1.23
PMIS-FF 2.04 10 24 0.25 0.80 1.05
PMIS-FF1 2.03 10 24 0.24 0.79 1.03

Table 7.12: AMG on a 256 × 256 structured grid for the 2D rotated anisotropic
Laplace problem with γ = 45o.

Method Cop #lev iter tsetup tsolve ttotal

CLJP 2.77 14 6 0.36 0.43 0.79
PMIS 1.88 10 25 0.22 1.19 1.41
PMIS greedy 1.88 10 26 0.21 1.27 1.48
PMIS(1)-CLJP 2.29 14 12 0.27 0.68 0.95
PMIS-FF 2.04 10 13 0.25 0.69 0.94
PMIS-FF1 2.03 10 12 0.24 0.65 0.89

Table 7.13: AMG-GMRES(5) on a 256 × 256 structured grid for the 2D rotated
anisotropic Laplace problem with γ = 45o.

iterations is plotted as a function of problem size, for rotation angles of γ = 45o and

γ = 60o, respectively.

Tables 7.12 and 7.13 indicate that for an angle of rotation of γ = 45o, convergence

of PMIS is much worse than that of CLJP for both AMG and AMG-GMRES(5).

While there is some improvement in terms of operator complexity for PMIS compared

to CLJP, it is only moderate, and the resulting execution times show that CLJP is a

better choice than PMIS for this problem. Furthermore, while the PMIS results are

not included in Figure 7.6, it was found that CLJP is much more scalable in terms

of convergence than PMIS for this problem.

1: γ = 45o It can be noted in Tables 7.12 and 7.13 that PMIS greedy only

slightly improves convergence compared to PMIS for AMG, while not at all for AMG-

GMRES(5), and that the operator complexity for PMIS and PMIS greedy is the same.
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Figure 7.6: Scalability comparison for the 2D rotated anisotropic Laplace problem
with γ = 45o.

Thus, for both AMG and AMG-GMRES(5), CLJP far outperforms PMIS greedy.

2: γ = 45o PMIS(1)-CLJP does well to improve convergence compared to PMIS,

while also reducing operator complexity compared to CLJP, for both AMG and AMG-

GMRES(5), respectively. As illustrated in Figure 7.6, convergence scalability is only

slightly worse than for CLJP for AMG-GMRES(5), but is much worse for AMG.

3: γ = 45o Tables 7.12 and 7.13 indicate that the extra work performed in consid-

ering all distance-two C-points in PMIS-FF is not necessary, as PMIS-FF1 produces

similar results in terms of convergence (for this reason, the PMIS-FF results are not

included in Figure 7.6). PMIS-FF and PMIS-FF1 show comparable performance to

PMIS(1)-CLJP for AMG and AMG-GMRES(5), respectively, but provide a greater

reduction in operator complexity. However, as was true for PMIS(1)-CLJP, conver-

gence scalability of PMIS-FF and PMIS-FF1 is worse than for CLJP (slightly worse

for AMG-GMRES(5), and much worse for AMG). It was also noted that operator
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Method Cop #lev iter tsetup tsolve ttotal

CLJP 4.71 13 40 0.84 2.34 3.18
PMIS 1.82 8 � 200 Slow to converge
PMIS greedy 1.85 8 � 200 Slow to converge
PMIS(5)-CLJP 1.81 8 � 200 Slow to converge
PMIS-FF 2.47 8 176 0.48 6.11 6.59
PMIS-FF1 2.25 8 197 0.41 6.50 6.91

Table 7.14: AMG on a 256 × 256 structured grid for the 2D rotated anisotropic
Laplace problem with γ = 60o.

Method Cop #lev iter tsetup tsolve ttotal

CLJP 4.71 13 15 0.84 1.21 2.05
PMIS 1.82 8 87 0.28 3.95 4.23
PMIS greedy 1.85 8 83 0.28 3.77 4.05
PMIS(1)-CLJP 2.63 11 49 0.46 2.73 3.19
PMIS-FF 2.47 8 42 0.48 2.22 2.70
PMIS-FF1 2.25 8 45 0.40 2.23 2.63

Table 7.15: AMG-GMRES(5) on a 256 × 256 structured grid for the 2D rotated
anisotropic Laplace problem with γ = 60o.

complexity for CLJP only increased linearly with problem size. Thus, although CLJP

produces slightly higher operator complexity, it is the best method for this problem

with γ = 45o.

For γ = 60o, Table 7.14 shows that, except in terms of operator complexity, no

improvement over CLJP is made by any of the methods for AMG. Convergence and

scalability were found to be poor for all modifications. Of all algorithms tested, CLJP

is the best choice for AMG.

As shown in Table 7.15 for γ = 60o, accelerating AMG with GMRES(5) provides

a better result in terms of convergence than stand-alone AMG. However, as indicated

in Figure 7.7, convergence scalability of all algorithms except CLJP is still undesir-

able. It was also noted that operator complexity for CLJP only increased linearly with

problem size. Consequently, even though CLJP results in a large operator complexity,
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Figure 7.7: Scalability comparison for AMG-GMRES(5) for the 2D rotated
anisotropic Laplace problem with γ = 60o.

it is the best solution method. If operator complexity is an important consideration

to the user, PMIS(1)-CLJP, PMIS-FF, or PMIS-FF1 may provide a reasonable alter-

native since the scalability of these three methods is not overly prohibitive. Of the

three, Table 7.15 and Figure 7.7 indicate that PMIS-FF1 offers the best combination

of operator complexity and convergence.

In summary, although CLJP produces higher operator complexities than the other

algorithms tested, it still exhibits the best scalability, and is the best choice for this

problem. Note that this is the first and only test problem where F-F and F-F1

interpolation do not sufficiently improve the convergence of PMIS-coarsened AMG.
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7.1.8 3D Elliptic PDE with Jumps

The 3D elliptic PDE with jumps in the coefficients on the unit cube,

−(aux)x − (auy)y − (auz)z = 1, (7.1.8)

was considered using a 7-point discretization and

a(x, y, z) = 1000, on 0.1 ≤ x, y, z ≤ 0.9

= 0.01, on 0 < x, y, z < 0.1, and the other

cubes of size 0.1× 0.1× 0.1 located (7.1.9)

on the corners of the domain

= 1, elsewhere.

Results for AMG and GMRES(5)-accelerated AMG are shown in Tables 7.16 and

7.17, respectively. A scalability study for several of the algorithms is also presented

in Figure 7.8, where number of iterations is plotted as a function of problem size.

Note that, while the CLJP test ran out of memory for both AMG and AMG-

GMRES(5) for the problem sizes named in Tables 7.16 and 7.17, it did take about

the same amount of execution time as PMIS on the next smallest grid (803 points for

AMG and 403 points for AMG-GMRES(5), respectively). Also, operator complex-

ity was about nine times larger for CLJP compared to PMIS on the 803 grid, but

CLJP converged in approximately ten iterations for both AMG and AMG-GMRES(5)

(whereas convergence for PMIS was much worse). This illustrates the trade-off be-

tween CLJP and PMIS for this difficult problem – CLJP has excellent convergence

scalability but poor operator complexity, and PMIS results in much better operator

complexity but poor convergence scalability.

1 For this problem, convergence properties are poor for PMIS and PMIS greedy

for both AMG and AMG-GMRES(5), respectively. Although convergence is improved

slightly by PMIS greedy compared to PMIS for AMG-GMRES(5), the result is still

impractical.

2 PMIS(1)-CLJP improves convergence significantly for both AMG and AMG-

GMRES(5). As illustrated in Figure 7.8, convergence scalability of PMIS(1)-CLJP
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Method Cop #lev iter tsetup tsolve ttotal

CLJP (803) 21.54 14 11 39.58 14.6 54.18
PMIS 2.44 8 � 200 Slow to converge
PMIS greedy 2.52 8 � 200 Slow to converge
PMIS(1)-CLJP 7.21 13 23 47.93 44.32 92.25
PMIS-FF 4.94 7 14 62.95 20.54 83.49
PMIS-FF1 3.84 8 18 35.36 22.47 57.83

Table 7.16: AMG on a 120× 120× 120 structured grid for the 3D elliptic PDE with
varying coefficients. CLJP results are for the 803 problem because the 1203 test ran
out memory.

Method Cop #lev iter tsetup tsolve ttotal

CLJP (403) 15.88 13 6 3.15 1.06 4.21
PMIS 2.46 7 188 4.06 77.34 81.40
PMIS greedy 2.54 8 144 4.19 59.90 64.09
PMIS(1)-CLJP 6.97 12 11 12.76 8.38 21.14
PMIS-FF 4.90 7 9 16.46 5.34 21.80
PMIS-FF1 3.85 7 10 9.67 4.99 14.66

Table 7.17: AMG-GMRES(5) on a 80 × 80 × 80 structured grid for the 3D elliptic
PDE with varying coefficients. CLJP results are for the 403 problem because the 803

test ran out memory.

for AMG is still poor (but may level-off for large problems), but is quite good for

AMG-GMRES(5) (comparable to that achieved with CLJP). In considering AMG-

GMRES(5) with PMIS(1)-CLJP, it is also noted that operator complexity is sig-

nificantly increased compared to PMIS. While this increase is not as severe as the

operator complexity obtained using CLJP, the result is still undesirable. Thus, al-

though PMIS(1)-CLJP with AMG-GMRES(5) appears to be an effective solver for

this problem, severe storage complications may arise for larger grids.

3 PMIS-FF improves convergence significantly compared to PMIS, and to an

almost optimal level with regard to scalability as illustrated in Figure 7.8.4 This is

4PMIS-FF and PMIS-FF1 results are not included for AMG-GMRES(5) in Figure 7.8 for the
largest problem size because the runs could not be completed due to inadequate computational
resources.
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Figure 7.8: Scalability comparison for the 3D PDE with jumps in the coefficients.

best observed for AMG-GMRES(5) and to a lesser extent for AMG. Unfortunately,

this is accompanied by a large increase in operator complexity. Compared to PMIS-

FF, PMIS-FF1 significantly reduces operator complexity, and maintains an improved

level of convergence; however, scalability may be degraded as illustrated in Figure

7.8. While accounting for only one distance-two C-point in interpolation may be

sufficient, more tests should be performed to confirm whether or not this is true for

larger problem sizes. Furthermore, although operator complexity is high for PMIS-

FF1, it is still much better than that obtained with CLJP. It can also be noted in

Tables 7.16 and 7.17 that PMIS-FF1 is considerably faster than all other algorithms

for both AMG and AMG-GMRES(5), respectively. In summary, PMIS-FF1 is the

best method for small problems. Since scalability results are limited, it is uncertain

which of PMIS-FF and PMIS-FF1 would be the best method for large problems. As

such, future work should be performed with appropriate computational resources to

investigate this further.
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7.2 More on Modification 2

As mentioned at the start of the chapter, modification 2 – performing PMIS on the

first g finest grids and CLJP on all remaining grids – requires a separate discussion

in order to best interpret the results. Recall that PMIS(g)-CLJP was performed for

g = 1, 2, 3, 4 and 5; and that only the g that provided the best overall result, taking

into account operator complexity, convergence, and execution time, was presented for

each model problem in Section 7.1. This section will investigate trends observed in

results across all values of g. While only a select set of data will be presented here,

a short discussion of whether or not these observations apply to a each of the model

problems will also be provided.

Modification 2 is designed with the aim of achieving low operator complexity

resulting from PMIS, while also taking advantage of the strong convergence scalability

of CLJP. However, it does not appear that these two coarsening methods can be

combined in a way such that a scalable algorithm with low operator complexity is

obtained. This is best illustrated for the 3D PDE with jumps in the coefficients.

Tables 7.18 and 7.19 show the results across all g for the problem described in Section

7.1.8 for AMG and AMG-GMRES(5), respectively. In both of these tables, a trade-off

between operator complexity and convergence is directly evident.

Tables 7.18 and 7.19 show that both operator complexity and the number of it-

erations required to converge for PMIS(g)-CLJP approach the values obtained for

PMIS as g is increased. As a result, the best convergence is obtained when g = 1.

Unfortunately, this also corresponds to the worst operator complexity, since the most

CLJP coarsening is performed when g = 1. This trade-off between convergence and

operator complexity diminishes scalability, and was observed for all problems. Oper-

ator complexity was reduced (often substantially) compared to CLJP with classical

interpolation, and this was most evident for larger g (where more PMIS is performed).

While convergence was improved for all problems with PMIS(1)-CLJP compared to

PMIS, this was never to the same level as CLJP.

For every problem, PMIS(1)-CLJP always converged in the fewest number of

iterations (of all g), and was therefore the best in terms of convergence scalability.
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Method Cop #lev iter tsetup tsolve ttotal

CLJP (803) 21.54 14 11 39.58 14.6 54.18
PMIS 2.44 8 � 200 Slow to converge
PMIS(1)-CLJP 7.21 13 23 47.93 44.32 92.25
PMIS(2)-CLJP 3.49 12 168 20.58 190.16 210.74
PMIS(3)-CLJP 2.56 11 � 200 Slow to converge
PMIS(4)-CLJP 2.45 11 � 200 Slow to converge
PMIS(5)-CLJP 2.44 10 � 200 Slow to converge

Table 7.18: Modification 2 comparison for AMG on a 120 × 120 × 120 structured
grid for the 3D elliptic PDE with varying coefficients. CLJP results are for the 803

problem because the 1203 test ran out memory.

Method Cop #lev iter tsetup tsolve ttotal

CLJP (403) 15.88 13 6 3.15 1.06 4.21
PMIS 2.46 7 188 4.06 77.34 81.40
PMIS(1)-CLJP 6.97 12 11 12.76 8.38 21.14
PMIS(2)-CLJP 3.42 11 30 5.69 14.20 19.89
PMIS(3)-CLJP 2.56 11 105 4.24 44.20 48.44
PMIS(4)-CLJP 2.48 9 146 4.10 60.26 64.36
PMIS(5)-CLJP 2.46 8 177 4.05 71.78 75.83

Table 7.19: Modification 2 comparison for AMG-GMRES(5) on a 80× 80× 80 struc-
tured grid for the 3D elliptic PDE with varying coefficients. CLJP results are for the
403 problem because the 803 test ran out memory.

This occurred since PMIS(1)-CLJP incorporates the most CLJP coarsening of all g.

However, the resulting scalability was often significantly worse than that of CLJP.

Thus, while PMIS(1)-CLJP improves convergence scalability compared to PMIS, it is

not to a level that one would hope for. Furthermore, for the 7-point Laplace problem,

the 3D anisotropic Laplace problem, and the 3D convection-diffusion problem, an

increase in operator complexity with problem size was observed at a rate that indicates

that PMIS(1)-CLJP is not scalable with respect to storage cost. While this was not

to the same extent as that observed for CLJP, it does not appear that Cop will cease
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Method Cop #lev iter tsetup tsolve ttotal

CLJP (643) 22.51 14 9 20.36 5.83 26.19
PMIS 2.36 8 77 16.63 85.93 102.56
PMIS(1)-CLJP 7.17 14 23 59.31 53.41 112.72
PMIS(2)-CLJP 3.43 13 36 25.15 48.46 73.61
PMIS(3)-CLJP 2.49 12 47 17.70 53.82 71.52
PMIS(4)-CLJP 2.37 11 61 16.73 68.74 85.47
PMIS(5)-CLJP 2.36 10 73 16.62 81.99 98.61

Table 7.20: Modification 2 comparison for AMG on a 128×128×128 structured grid
for the 7-point Laplace problem. CLJP results are for the 643 problem because the
1283 test ran out memory.

Method Cop #lev iter tsetup tsolve ttotal

CLJP (643) 22.51 14 5 20.32 4.23 24.55
PMIS 2.36 8 20 16.67 35.26 51.93
PMIS(1)-CLJP 7.17 14 11 59.33 37.36 96.69
PMIS(2)-CLJP 3.43 13 14 25.00 28.59 53.59
PMIS(3)-CLJP 2.49 12 16 17.70 29.89 47.59
PMIS(4)-CLJP 2.37 11 19 16.79 33.59 50.38
PMIS(5)-CLJP 2.36 10 20 16.65 34.99 51.64

Table 7.21: Modification 2 comparison for AMG-GMRES(5) on a 128 × 128 × 128
structured grid for the 7-point Laplace problem. CLJP results are for the 643 problem
because the 1283 test ran out memory.

to increase with respect to problem size asymptotically, and could therefore cause

storage complications for large problem sizes.

It was also noted that, except for the 5- and 9-point Laplace and the rotated

anisotropic Laplace problems, the version of PMIS(g)-CLJP that took the fewest

number of iterations to converge, PMIS(1)-CLJP, was not always the fastest in terms

of execution time. This means that a method with a larger value of g actually exe-

cuted faster than PMIS(1)-CLJP. To illustrate this, consider the data for the 7-point

Laplace problem presented in Tables 7.20 and 7.21 for AMG and AMG-GMRES(5),
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respectively. These tables show that, although PMIS(1)-CLJP converges in the fewest

iterations, PMIS(3)-CLJP is actually the fastest for both AMG and AMG-GMRES(5)

for this problem size. This occurs for two reasons. First, larger setup times are re-

quired for PMIS(1)-CLJP than PMIS(3)-CLJP since more CLJP coarsening is per-

formed in the former. Second, since operator complexity is larger for PMIS(1)-CLJP

than PMIS(3)-CLJP, PMIS(1)-CLJP requires more time for matrix multiplication

per iteration in the solve phase.

The results presented in this section illustrate the interplay between convergence,

execution time, and operator complexity that exists when trying to combine PMIS and

CLJP coarsening on different grid levels. From these results it does not appear that

modification 2 can produce an algorithm that possesses the convergence properties of

CLJP and operator complexities similar to PMIS. In addition, fine-tuning the balance

between convergence and operator complexity is not straightforward, and was found

to be problem dependent. While the user may find some of the results presented

here interesting, modification 2 certainly lacks the robustness required for general

application to large problems. It appears that PMIS-FF1 is the best choice in this

respect. However, for moderately small problem sizes like those examined in this

thesis, modification 2 produces a solver with an attractive balance between execution

time and storage cost for a variety of problems.

7.3 Summary

This section presents a general summary of how each of the modifications performed

for all of the problems.

1 PMIS greedy always produced a small increase in operator complexity com-

pared to PMIS (except for the 5-point Laplace problem for which operator complexity

was found to be the same for both methods), and never significantly improved con-

vergence and scalability for any of the problems. Since PMIS greedy would require an

increase in processor boundary communication compared to PMIS in parallel imple-

mentations, any advantage gained in execution time through improved convergence

would likely be lost.
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2 With respect to execution time and operator complexity, PMIS(g)-CLJP was

the best solver for many of the problems with small to moderate problem size. How-

ever, due to poor scalability, PMIS(g)-CLJP can not be considered an effective solver

for large problems.

3 PMIS-FF and PMIS-FF1 produced scalable results, similar to those of CLJP

in terms of convergence, for most problems. PMIS-FF operator complexity was often

high; however, it was still much better than that of CLJP. In addition, PMIS-FF1

generally reduced operator complexity significantly compared to PMIS-FF, while also

achieving good scalability. For these reasons, PMIS-FF1 is considered the best algo-

rithm for many of the problems tested. The exception was the rotated anisotropic

Laplace problem, for which CLJP is considered the best solver. For this problem, scal-

ability of PMIS-FF1 was poor for AMG, and more reasonable for AMG-GMRES(5);

however, this was still not to the level achieved by CLJP. It was also found that,

for the 3D PDE with jumps in the coefficients, PMIS-FF is slightly more scalable

than PMIS-FF1 for small problems, although PMIS-FF1 still results in lower opera-

tor complexity. Since the problem sizes tested were limited for this problem, future

work is necessary to accurately confirm this observation.





Chapter 8

Conclusion and Future Work

This thesis presented three modifications to current coarsening and interpolation pro-

cedures for algebraic multigrid. The goal was to improve AMG in terms of conver-

gence, storage cost, scalability, and robustness. The modifications included a greedy

implementation of the PMIS coarsening algorithm, performing PMIS coarsening only

on finer grids while CLJP coarsening is performed on coarser grids, and a modified

version of F-F interpolation, known as F-F1 interpolation. The performance of these

modifications in the context of the AMG algorithm was evaluated for a variety of test

problems.

The PMIS greedy algorithm consists of performing standard PMIS, but incre-

menting the measures of unassigned strongly influencing neighbours when an F-point

is assigned. This was done with the motivation that F-points would have a greater

number of strongly influencing neighbours defined as C-points, and that this would in

turn improve interpolation. It was found that the structure of coarsened grids could

be improved compared to those obtained with PMIS. However, this did not provide

a significant improvement in terms of convergence compared to PMIS. For all model

problems tested, PMIS greedy at best provided only a small improvement in conver-

gence compared to PMIS. In addition, due to the increased structure of coarsened

grids, PMIS greedy always produced operator complexities that were equal to or larger

than those of PMIS. Also, since PMIS greedy has to update the measures of strongly

influencing neighbours after an F-point is declared, larger setup times were observed
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compared to PMIS. In considering the operator complexities and setup times gener-

ated by PMIS greedy, and the fact that any improvement in convergence was only

small for all problems tested, it can be concluded that PMIS greedy does not improve

PMIS. Furthermore, PMIS greedy would increase setup time in a parallel implemen-

tation due to added processor boundary communication that would be required when

updating the measures of unassigned points. Thus, it can be further concluded that

PMIS greedy would provide no advantage over PMIS in a parallel implementation.

As such, no future work incorporating PMIS greedy is recommended.

The second modification of AMG was to perform PMIS coarsening on finer grid

levels, and CLJP coarsening on all remaining grids. This was done with the motiva-

tion that PMIS coarsening could reduce operator complexity on finer grids where it

would make the biggest difference, while the strong convergence properties of CLJP

coarsening could still be exploited on coarser grids where the impact on operator

complexity would be reduced. The resulting algorithm was called PMIS(g)-CLJP,

indicating that PMIS coarsening was performed on the first g finest grids, and CLJP

coarsening was performed on all remaining grids. This was tested for a variety of

problems with g = 1, 2, 3, 4 and 5. It was found that PMIS(1)-CLJP consider-

ably improves convergence compared to PMIS; however, convergence scalability was

never as good as that achieved by CLJP. Furthermore, it was found that opera-

tor complexity and the number of iterations required for convergence approached

PMIS values as g was increased. Unfortunately, this means that operator complexity

is always greatest when the number of iterations required for convergence is least.

The magnitude of this trade-off was found to be problem dependent; consequently,

a universal g that optimizes both operator complexity and the number of iterations

required for convergence across all problems cannot be found. It was found, however,

that PMIS(g)-CLJP did exhibit good convergence without prohibitively high opera-

tor complexity for some problems when problem size is not too large (with g being

problem dependent). Future work could include confirmation of the results found

here for a parallel implementation of PMIS(g)-RS.

The third attempt to improve AMG involved modifying F-F interpolation. As
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shown by De Sterck and Yang in [17], PMIS coarsening combined with F-F interpo-

lation can produce good convergence results, but may also lead to large increases in

operator complexity and setup time for a variety of problems. PMIS-FF can lead to

good convergence since it accurately accounts for strong F-F connections without a

strongly connected C-point in interpolation. This is accomplished by considering all

distance-two C-points for these F-F connections. In doing so, however, interpolation

matrix densities, operator complexity, and setup time can be significantly increased.

The third modification, PMIS-FF1, seeks to remedy this complication by only adding

one distance-two C-point when defining interpolation for each strong F-F connection

without a common strongly connected C-point. As illustrated in Chapter 7, this

change reduces operator complexity and setup time significantly, while maintaining

similar convergence properties as PMIS-FF, for almost all problems tested. This is a

strong result, as it indicates that PMIS-FF1 is a robust and scalable algorithm with

reasonable operator complexity and execution time for a wide range of problems.

Future work should confirm the results found here for larger problem sizes. Parallel

implementation of PMIS-FF1 also appears promising, and is a candidate for future

research.





Appendix A

Algebra Definitions

Definition A.0.1. Define an M-matrix to be an N × N matrix A that is positive
definite

(
uT Au > 0, ∀ u 6= 0

)
, diagonally positive, and off-diagonally non-positive.

Definition A.0.2. Define a matrix a to be (weakly) diagonally dominant if

n∑
j 6=i

|aij| ≤ |aii| , 1 ≤ i ≤ N. (A.0.1)

Definition A.0.3. [5] A matrix norm on the set of all N×N matrices is a real-valued
function, ‖ · ‖, defined on this set, satisfying for all N ×N matrices A and B and all
real numbers α:

i. ‖A‖ ≥ 0,

ii. ‖A‖ = 0 if and only if A is O, the matrix with all zero entries,

iii. ‖αA‖ = |α|‖A‖,

iv. ‖A + B‖ ≤ ‖A‖+ ‖B‖,

v. ‖AB‖ ≤ ‖A‖‖B‖.

Definition A.0.4. Define a natural matrix norm as:

‖A‖ = max
x s.t. ‖x‖=1

‖Ax‖, (A.0.2)

where ‖ · ‖ is some vector norm on RN .

This is sometimes also referred to as the matrix norm induced by the vector norm,

‖ · ‖. Note that it can be shown that any natural norm is a matrix norm.
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Definition A.0.5. Define a vector p-norm and its associated matrix p-norm for all
p ≥ 1 as:

‖x‖p = (
N∑

i=1

|xi|p)
1
p , (A.0.3)

‖A‖p = max
x s.t. ‖x‖p=1

‖Ax‖p. (A.0.4)

Note that the set of matrix p-norms is a subset of all natural norms.

Definition A.0.6. Define the discrete L2 norm for a d-dimensional domain with
uniform grid spacing h as:

‖xh‖h =

(
hd
∑

i

(
xh

i

)2) 1
2

. (A.0.5)

Definition A.0.7. Define the Euclidean inner product as:

(x,y)E = 〈x,y〉2 =
∑

i

xiyi. (A.0.6)

Definition A.0.8. Define the A-inner product for a symmetric positive definite ma-
trix, A, as:

(x,y)A = (Ax,y)E = 〈Ax,y〉2. (A.0.7)

Definition A.0.9. Define the A-norm for a symmetric positive definite matrix, A,
induced by the A-inner product, as:

‖x‖A = (Ax,x)
1
2
E. (A.0.8)

Definition A.0.10. Define the spectral radius of a matrix A as:

ρ(A) = max
i
|λi| , i = 1, 2, . . . , N, (A.0.9)

where λi are the eigenvalues of A.
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