Bridging Technical Spaces:
Model Translation from TA to XMI
and Back Again

by

Kristina Diew Hildebrand

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2006

© Kristina Diew Hildebrand 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

There are many different techniques and notations for extracting architecturally interesting
information from the source code of existing software systems. This process is known
as reverse engineering. One current problem with reverse engineering techniques is that
models of software systems cannot easily be transferred from one notation and storage
format to another. We refer to this as the problem of bridging technical spaces.

In this work, we approach the issue of bridging between the SWAG technical space and
the UML technical space. The SWAG technical space, named after the Software Architec-
ture Group at the University of Waterloo, consists of fact extractors, fact manipulators,
schemas, and a fact storage language - the Tuple-Attribute language (TA). The UML tech-
nical space consists of the UML metamodel, the XML Metadata Interchange (XMI) format
for encoding UML models, and various UML modeling tools. We have designed and im-
plemented a plugin for MagicDraw UML, which will import, export, and merge between
XMI-encoded UML models and TA-encoded Function-Level Schema models.

We document evidence of what is referred to as a bridge domain - a technical space
which exists between two encodable spaces. The metamodels of the two notation languages
that we have focused on are very rich and flexible, but neither technical space is capable
of fully expressing an accurate architectural model of any given software system; however,
each technical space is capable of maintaining certain semantic information relevant to

that technical space through multiple merge operations.

il

Acknowledgements

[would like to thank my supervisor, Andrew Malton, for his guidance throughout the
process of completing this work, and for helping to keep me on track. Thank you also to
my readers, Steve MacDonald and Krzysztof Czarnecki, for their feedback and suggestions
for my work.

In addition, I want to express my gratitude to my colleagues in the Software Architec-
ture Group, for their support and for making my time here more enjoyable. I'd particularly
like to thank Jingwei Wu for providing me with the QL source code and for his help with
learning how to use it.

Special thanks to Robert Munsch, for his input on the problem of expressing the same
concepts within different languages and cultures.

I would also like to thank my parents for encouraging me throughout my studies, and
for helping me get to the point where I could enter the MMath Program at the University
of Waterloo.

Thanks also to the Natural Sciences and Engineering Research Council of Canada,
for the financial support to pursue a Master’s degree, in the form of a Canada Graduate
Scholarship.

Last but certainly not least, I would like to thank Jason Taylor for his love and support
over the past three years, and his promise to continue to do the same for the rest of our
lives.

v

Contents

(1.3 An Examplel
(L4 Contributions L

[2

Background|

2.1 The UML Technical Space|
[2.1.1 XML Metadata Interchange (XMI)|

2.1.3 UML Diagrams|
|2‘1. 1 [JI&IL I‘!gzl g:ll(lis:g:l ----------------------------
2.2 The SWAG Technical Space|
2.2.1 The Tuple Attribute Language (TA)[.
2.2.2 Function Level Schema (FLS)|
223 SWAGToold
2.3 Merging Data]

[3.1 Design Decisions|
(3.2 Translation Scenarios|
[3.2.1 Import a FLS Factbase to a UML Model
[3.2.2 Merge a UML Model into Existing FLS Factbasel
[3.2.3 Export a UML Model to FLS|
[3.2.4 Merge a FLS Factbase into Existing UML model|
[3.3 Mapping of Entities|.

[3.4 Complications in Translation|.
[3.4.1 Naming Schemes|,
[3.4.2 Level of Calls Relationships|
3.4.3 Generalizationl.

[3.5 Merge Algorithms|
[3.5.1 Merging an FLS-based Model into UML|
[3.5.2 Merging UML into a FLS-based Model|

[3.6 Chapter Summary|

[4 The Bridge Domain|
[4.1 A Real-World Example| 00000
[4.2 Dependencies|

K3 Generalizationlo

[A Using the QL API
[A.1 ca.uwaterloo.cs.ql.io. TAFileReader|{.
[A.2 ca.uwaterloo.cs.ql.tb.Factbase| 0000
[A.3 Tuple Classes| e
[A.3.1 ca.uwaterloo.cs.ql.tb. TupleSet|
[A.3.2 ca.uwaterloo.cs.ql.tb. Tuplelist|
[A.3.3 ca.uwaterloo.cs.ql.tb.Tuplef o000
[A.4 ca.uwaterloo.cs.ql.tb.Show|o o000
[A.5 ca.uwaterloo.cs.ql.tb.AlgebraOperation|

(B Using the MagicDraw UML 10.5 OpenAP]|
[B.1 Creating MD UML Plugins witha Menuf
[B.2 Dealing with UML Models and Elements|

vi

List of Figures

[1.1 Relationships between elements of a Technical Space| 8
[1.2 A simple translation example from UML to LSedit| 9
(1.3 A simple translation example from LSedit to UML| 11
2.1 UML Class Metamodello o oo 18
[2.2 UML Packages Metamodel| 19
(2.3 UML Relationships Metamodel| 20
2.4 UML Class Diagram| 21
2.5 UML Class Diagram| 22
2.6 UML Sequence Diagram| 0. 23
2.7 UML Sequence Diagram| 27
[2.8 Overview of Merging FLLS into UML| 30
[2.9 Merging Existing FLS into Existing UML Model|. 31
[3.1 LSedit view of Gaim 1.5.0, from a TA tactbasel. 40
[3.2 MagicDraw UML view of Gaim 1.5.0 imported from factbase in|3.14 41|
[3.3 Edited UML model of part of Gaim 1.5.0 42
[3.4 Portion of merged Gaim 1.5.0 model in LSedat| 42
[3.5 Partial UML model of QL 44
[3.6 LSedit view of partial model of QL 45
[3.7 Modified partial LSedit view ot QL 46
[3.8 Portion of merged QL model in UML) 47
[3.9 Schema Mappings| 49
[3.10 TA “Inheritance” Semantics 54
[4.1 “Bridge Domain” arises through translation| 59
[4.2 Interesting Relationships| 61
[4.3 Privacy Source in UML{. o0 62
[4.4 Backwards Query on privacy.o| Lo 62

vil

[4.5 The IRC .libs SubSystem in LSedit| 64
[4.6 The IRC libs Package in UML| 65
[4.7 The IRC parse.o file in LSedit| 66
[4.8 Dependencies in LSedit and UML| 66
4.9 Translation of Generalizationl 68
[4.10 Imported TA Factbase| 69

viil

List of Tables

[3.1 Basic Mappings between FLS Entities and UML Entities|

X

Chapter 1

Introduction

Sharing information between two cultures is frequently a difficult problem — this is true
in human cultures, as well as the “cultures” of different software model storage formats.
Robert Munsch’s story A Promise Is a Promise [37], published in both English and Inuk-
titut, exemplifies the difficulties associated with adaptation required for different cultures.
Munsch describes the cultural issues that arose when writing this story: “I tried to make
it into a story that would work in both Inuit and Southern worlds” [36].

The story is about an Inuit girl, Allashua, who defies her mother and goes down to
the beach and onto the sea ice. She is caught by the gallupilluit, a mythical Inuit creature
that lives among the ridges and cracks in the ice on Hudson Bay. She is released but
only after promising to return with her brothers and sisters. Michael Kusugak wrote the
core of the story, which describes a child’s encounter with the qallupilluit. The story was
later modified by Munsch to better suit the various target Canadian cultures. The original

version has several children narrowly escaping the sea creature after being told by their

mothers not to go near the ice. It was a simple cautionary tale about the dangers of the sea
ice [31]. Such a moral would have less impact on children in many other parts of Canada
since they do not encounter sea ice in their daily lives. Munsch modified the story, with
the promise made by Allashua to the qallupilluit, subsequently making a broken promise
the central theme. “The big problem with my version was that Alashua was impolite to
the Quallupilluit. Kids of Michael’s generation were always polite to Elders, even if the
Elder was going to kill them” [36].

As we can see in Munsch’s story and its need to be adapted, some concepts are not easily
expressed within a given culture or language. In addition, not all concepts are relevant to
every culture. In software engineering, we refer to this as the problem of bridging between
technical spaces. This term refers to the notation, schema, domain, and tools with which a
programmer or software architect is working. Translating or merging information between

two technical spaces is a difficult but necessary task and thus motivates our research.

1.1 State of the Art

Abstraction is the act of creating a representation of the most important features of a
set of complex information and “is the primary way we as humans deal with complexity”
[3]. Abstraction is required in the field of software engineering because it helps analysts
design the high-level architecture of a new system, aids new developers in understanding
an existing system when they join a development team, and allows maintainers of legacy
systems to understand the structure and behaviour of a system that they may need to

modify. In Object Oriented Design with Applications, Grady Booch refers to Miller’s ex-

periments which show that an average person is capable of understanding between five and
nine pieces of information at a time [4]. This applies to any type of information, including
the components of a software system. We can aid comprehension by organising complex
information into visual categories and hierarchies, limiting the amount of information that
must be understood at any moment.

There are many different techniques for abstracting information about complex software
systems. The result of applying these abstraction techniques is a model of the software be-
ing investigated. Along with this variety of techniques comes a wide variety of notation lan-
guages, model storage formats, model interchange languages, and visualisation techniques.
Some of the languages used for storing models about software include Entity-Relationship
models [9], XML Metadata Interchange (XMI) [41], the Tuple-Attribute Language (TA)
[21], and general-purpose graph description languages, such as GXL [23] and DOT [29).
Each of these storage languages generally has its own metamodel and visualisation tech-
niques. For example, XMI is used to record UML models, and GXL is intended as a graph
description language.

Visualisations of software are useful because they provide a high-level description of a
complex system and allow a developer to see the important parts of the software at a glance.
This can improve a developer’s understanding of the software. These visualisations can
be created by extracting information from the source code of existing pieces of software.
This is called reverse engineering, and is a very active field of research within software
engineering. There are currently several well-developed and well-tested reverse engineering
tools and techniques, including a wide variety of commercial reverse engineering tools for

UML [5] [25] [39], and tools and techniques developed by researchers at various academic

institutions. For example, researchers at the University of Victoria have developed a suite
of tools, called Rigi, which includes reverse engineering tools, a graph model, a scripting
language for manipulating the graphs, and a rigiedit, a graph editor [35]. The Software
Architecture Group (SWAG) at the University of Waterloo, has developed a similar suite
of tools, hereafter referred to as SWAGKkit [45]. The usual output from using SWAGKit is
one or more files in the TA format, conforming to the Function Level Schema (FLS). TA
is a language for recording information about certain types of graphs, and the Function
Level Schema is a schema created by SWAG to give meaning to graphs about the static
structure of software systems. Using this schema, we can record details about relationships
between various entities in a piece of software. These TA files can be viewed in LSedit,
a software landscape editor and visualisation tool and also can be manipulated using a
relational algebra calculator known as grok.

The Unified Modeling Language (UML) is a standardised notation language, primarily
intended for designing object-oriented software systems. It is also useful for architectural
description [19]. The Object Management Group (OMG) is a consortium that maintains
computer industry standards for software development. The OMG has adopted XMI as
a standard for recording UML models. One of the primary benefits of UML is that it is
the industry standard notation for designing object-oriented software systems. When the
various participants in the software development process use a common language, they are
able to communicate better. As a standard, UML can facilitate communication between
different stakeholders in the software design, development and maintenance processes. We

are interested in producing XMI-encoded UML models from information extracted using

SWAGEKit and the reverse, producing input for the SWAG tools from XMI-encoded UML

models. This process will require us to provide the ability to import and export both types
of models, as well as the ability to merge information between existing models.

Many techniques have been developed to bring together information from multiple
stakeholders and merge different types of information. In any development group with
more than two members, different developers may be working on multiple versions of
source code concurrently. When they commit changes to a central source code repository,
a correct merge must take place, since possible conflicts may arise between the different
versions of the code. Several techniques have been developed by various researchers to
deal with these conflicts. Ziindorf et al. [55] have developed an object structure based
technique for merging the source code of object-oriented systems that overcomes many of
the problems associated with text-based merging. Malton et al. [34] developed a technique
for factoring source code into different streams of text, such as code and comments, then
merging them back together after making changes to the individual streams. Westfechtel
[53] has developed a technique for merging information from various types of software
documents, such as source code and design documents. This system uses an interface to
each document type, allowing new document types to be easily added to the system.

There has also been a lot of research into developing techniques for Round-Trip Engi-
neering in recent years. Round-trip engineering refers to the process of turning a design
into source code then extracting the design, possibly after the source source code has been
modified [38]. FUJABA [28], developed by researchers at the University of Paderborn, is
an example of one such system. FUJABA, short for “From UML to Java And Back Again,”
consists of tools for developing a model in UML, exporting the model to Java source code,

and then recreating the UML model from modified source code [28]. Some of the decisions

involved in the design of FUJABA are similar to those that were involved in our work.

1.2 Motivation

Different modeling tools are useful for a wide variety of different purposes. A developer
may wish to sketch out a general design before committing it to a model or a particular
notation language. Simple graph-drawing or diagramming tools, such as OmniGraffle [18],
Microsoft Visio [11], and Dia [32] are good for these purposes. A developer may later wish
to extract information about the design from existing source code, manipulate it, obtain
more detailed information about interactions between the various components, and explore
a visualisation of the software. These purposes would be well-served by tools similar to
those available in SWAGKkit [45], such as fact extractors (BFX [50], LDX [51], CPPX [22]),
relational calculators (grok [46], QL [47]), and software landscape editors (LSedit [48]).
A developer may also wish to view and edit the design of their software in a tool with
a standardised notation language, pattern-matching capabilities, the ability to export to
source code, and the ability to interface with a variety of other development tools; tools such
as MagicDraw UML [39] and Rational Software Architect [25] may serve these purposes.
Each of these sets of tasks require the information about a software system to be available
within different technical spaces.

In the specific case we approach with this work, we are working with the UML technical
space and the SWAG technical space. Both of these spaces will be described in detail in
Chapter 2] If a user starts with a UML model, it would be useful to be able to use the

tools within SWAGKkit to perform queries on the facts in the model and to manipulate the

model using one of the relational algebra calculators. On the other hand, if the model is
being extracted from source code, an architect could use the SWAG tools to extract the
facts about it then produce a set of UML diagrams documenting the system in a standard
modeling language.

A software system can be described using a model that conforms to one of many dif-
ferent metamodels. The important information about the software — that is, the model
— can be encoded in a language that relies on a particular metamodel to give the model
meaning. This model can then be visualised in a tool designed to understand the partic-
ular metamodel and encoding language. Figure shows the metamodels, encoding, and
visualisation tools for three technical spaces. These features, represented as boxes in this
diagram, show the various components of a technical space. In each box, we have shown
specific tools and languages for the UML space, the SWAG space, and the Rigi space.

The UML was originally intended for designing object-oriented systems but can be
used to model the architecture of a system that was not designed with object-oriented
principles in mind. SWAGKit currently uses a non-standard notation for describing software
architecture, and for this reason we are interested in making it possible to move this model
information between different technical spaces. Specifically, we aim to be able to move
model information between the SWAG and the UML technical spaces. Ideally, it should
be possible to work in multiple technical spaces at once and have any changes made in one
technical space be reflected in the other corresponding spaces.

We believe that a system can be represented in several technical spaces at once, and it is
possible to translate between these technical spaces. No one technical space fully reflects the

actual software, and each technical space provides different views of the software system.

Software Architecture
based on
Source Code

modeled by

Visualization Tool

Model of displays

Software System MagicDraw UML

Isedit
rigiedit/SHriMP

encoded in conforms-to understands
Encoding Language Meta-Model or Schema
XML Metadata Interchange UML Metamodel
Tuple-Attribute Function Level Schema
Rigi Standard Format Domain Model

Figure 1.1: Relationships between elements of a Technical Space

dFaCFRaUE

1

aPackage SOEET
——]
Super Liil n H Ltil
o~

-p
+fool) \

T pagn| a)

b | o M oo o |
+hbar]
(a) UML Class Diagram (b) LSedit View

Figure 1.2: A simple translation example from UML to LSedit

We will describe the process for moving models between UML’s standard interchange

format, XMI, and TA — the format required by SWAG’s architectural tools.

1.3 An Example

In this section, we will discuss two simple examples. Figure |[1.2] shows an example of a
UML diagram and its LSedit equivalent. This diagram was created in MagicDraw UML,
then was exported to TA, using our tool. The TA is shown below. This segment of TA

uses the function-level schema, which will be described in detail in Chapter [3]

FACT TUPLE :

$INSTANCE /aPackage/Super/foo cFunction
$INSTANCE /aPackage/Sub/foo cFunction
$INSTANCE /aPackage/Sub/bar cFunction
$INSTANCE /aPackage/Super cObjectFile
$INSTANCE /aPackage/Util cObjectFile
$INSTANCE /aPackage/Sub cObjectFile

$INSTANCE /aPackage/Super/p cObject
$INSTANCE /aPackage/Sub/p cObject
$INSTANCE /aPackage cSubSystem

contain /aPackage /aPackage/Super

contain /aPackage /aPackage/Util

contain /aPackage /aPackage/Sub

contain /aPackage/Super /aPackage/Super/p
contain /aPackage/Super /aPackage/Super/foo
contain /aPackage/Sub /aPackage/Sub/p
contain /aPackage/Sub /aPackage/Sub/foo
contain /aPackage/Sub /aPackage/Sub/bar
cLinks /aPackage/Super /aPackage/Util
cLinks /aPackage/Sub /aPackage/Super

The Function Level Schema for TA does not have the capability of recording different types
of relationships, other than containment and cLinks. Other schemas can be developed
for TA, but we have chosen to use this one, as it is the most commonly used within
SWAGEkit. As demonstrated in Figure [.2] when a UML-based generalization is exported
to the Function Level Schema, the internal elements of the superclasses are copied to the
subclass. This is done in order to preserve the semantics of this relationship. Translations
such as this one must be created, because the metamodels of these two technical spaces
have different sets of features. In this example, p is a member variable of the class Super,
foo is a function in this same class, and bar is a function defined only in the class Sub.
The translation copies the variables and functions of the superclass into the subclass, then
defines a cLinks relationship between the two classes — or cObjectFiles. The packages
become SubSystems.

Figure [1.3] shows a slightly different example. In this case, the example model starts

in LSedit, and we have imported it using our tool into a MagicDraw UML model. The

10

(a) LSedit Software Visu- (b) Imported UML Dia-
alisation gram

Figure 1.3: A simple translation example from LSedit to UML

main difference between these two views of the system is the position of the dependency
between foo and bar. In the LSedit diagram, the links relationship exists between individual
functions. In the MagicDraw UML version of this model, the dependency exists between

the classes, rather than the individual operations.

1.4 Contributions

Our primary goal was to create a method for producing UML diagrams from TA-based
factbases. To this end, we have provided a tool for translating models from the TA language
used by SWAG to the XMI storage format for UML models. We have focused on the
package and class diagrams of UML since they are the most commonly used and the most

useful for documenting software architecture [19]. Further, we have contributed to the

11

understanding of the issues involved in bridging between technical spaces. We now believe
that neither technical space fully reflects reality, resulting in the concept of a bridge domain.
This bridge domain exists between the technical spaces being bridged. It can be thought
of as a mental-only model, or as the reality reflected in the actual implementation of the
software system. Each modeling notation has its own features that contribute to the bridge
domain, but none fully capture it.

We wish to promote the use of well-developed and well-researched extraction and ma-
nipulation tools such as those found in SWAGkit. These tools include a variety of fact
extractors, a relational calculator, and a software landscape navigator and editor. The
techniques developed by SWAG have been validated with numerous case studies and have
proven to be quite useful in studying the architecture of a wide variety of software sys-
tems [6] [54]. We believe that these tools would enjoy more widespread use in industry if
they could produce visualisations in UML, a modeling language widely recognised as the
industry standard.

We eventually hope to be able to work in any technical space and have the changes
made by the developer or architect in one space be reflected in a meaningful way in all
other spaces. While moving toward this goal, we have created a tool for moving model
information back and forth between TA and XMI. We have also documented the process
for building these tools, which will allow others to follow our procedure for other modeling

notations.

12

1.5 Structure of Thesis

We begin this thesis with some background on the Unified Modeling Language (UML),
XML Metadata Interchange (XMI), the Function Level Schema (FLS) and the Tuple At-
tribute Language (TA), in Chapter . These technologies make up the two technical spaces
that are relevant to our research. We will then describe our overall approach to bridging
these two domains, in Chapter [3] Chapter [4] will discuss the concept of a Bridge Domain —
that is, a technical space that exists between the two encodable spaces. Finally, Chapter
summarises our contributions, and describes some areas for future work related to our

research.

13

Chapter 2

Background

We will frequently use the term technical space, which refers to the notation, schema, do-
main, and tool with which a programmer or architect is working. A technical space defines
the framework in which a program understanding task is being accomplished [49]. In our
work, the two main technical spaces we have studied are: the XMI format for storing UML
models, and the Tuple-Attribute language (TA). TA is used for storing the Function-Level
Schema (FLS) information extracted using the tools developed by the Software Architec-
ture Group (SWAG) at the University of Waterloo.

Any data format should provide and conform to a schema or meta-model in order to
give structure to the data. The data is given meaning through the documentation of the
schema or meta-model. Schemas can be internal or external, and implicit or explicit [27].
In TA, schemes are explicit and external; that is, they are explicitly defined outside of
the data being recorded. TA’s schemes are usually contained within the same file as the

data but in a separate section from the actual data. While working in the TA technical

14

space, we will be restricting ourselves to the FLS, the most commonly used schema in

this space. This schema and the TA language in general will be described in more detail

in Sections [2.2.1] and [2.2.2l The metamodel for UML is also explicit and external, but is

defined separately from the data, in the specification documents produced by the OMG.
The UML meta-model is very large; we will only concentrate on a subset of it, which will
be described in more detail in Section 2.1.2

This chapter will provide detailed background information for the reader. We begin
with a discussion of the UML and the UML-based tool we have chosen to work with. This
is followed by details on the SWAG technical space, including the tools involved, the TA
language, and the FLS. We conclude this chapter with some discussion of related research
on merging sets of related data and some techniques for promoting software engineering

tool interoperability.

2.1 The UML Technical Space

The UML “is a family of graphical notations, backed by single meta-model, that help in
describing and designing [...] software systems built using the object-oriented (OO) style”
[16]. The UML has also successfully been used to describe software architectures in the past.
It works particularly well for communicating the static structure of software. In Describing
Software Architecture with UML, Hofmeister et al. argue that a conceptual view, a module
view, and a code view can be readily described using standard UML diagrams, such as
Class & Object Diagrams, Package Diagrams, and Component Diagrams [20]. In Using

the UML for Architectural Description [19], Hilliard describes how the UML can be used

15

within the context of the IEEE Recommended Practice for Architectural Description. In
this paper, Hilliard points out that it has become standard practice to use multiple views
to describe software architecture. This need for multiple, consistent views is satisfied by
the different types of diagrams defined by the UML.

Throughout the history of software modeling techniques, there have been many differ-
ent decomposition and abstraction approaches developed and used. These historical ap-
proaches correspond to several of the views of software architecture proposed by Kruchten
in The 4+1 View Model of Software Architecture [30]. The logical view describes the object
model of the software and is concerned with the data associated with the software. This
view of software systems can be documented using the data-based Entity-Relationship dia-
grams proposed in 1976, by Peter P. Chen [9]. The process view describes the concurrency
and synchronisation aspects of the software system, which could be described, in part,
using the Jackson System Development specifications proposed by Cameron in 1985 [8].
The physical view describes the way in which the software is mapped onto the hardware.
This view has does not have a historical notation designed specifically for it, though sim-
ple network diagrams perform this task well. The development view describes the static
organisation of the software, as the developers see it. This view can be encoded using the
approach developed by SWAG, performing static architectural analysis then producing a
boxes-and-arrows diagram of the static relationships between compilation units.

The UML provides standard notations for each of these types of views, as well as
many others. The UML symbols and notations used for the representation of these views
have evolved out of their historical ancestors. For example, a deployment diagram shows

the physical view of a system. A package diagram provides the development view. The

16

process view can be obtained from a component diagram annotated with thread and process
stereotypes. The logical view can be described using a class diagram, since classes are
the fundamental data structure in object-oriented systems. The UML also introduces a

notation for use cases, satisfying the +1 scenario view described by Kruchten.

2.1.1 XML Metadata Interchange (XMI)

XMI was designed to allow software engineers to easily exchange model metadata between
software tools. It was primarily developed by the OMG as an interchange language for
UML models, but can be used for any model information that can be described using
Meta-Object Facility (MOF). MOF is another OMG standard, intended to support Model
Driven Engineering. Full XMI support within UML modeling tools is not currently very
widespread — this may be due to the significant changes that have been made between
the 1.X standards and the 2.X series of standards, the latest of which was released in
September of 2005 [41]. The more popular UML tools partially support XMI, at least for
the more common and straightforward features of the UML, which are all that is required

for our work.

2.1.2 UML Metamodel

We will describe the subset of the UML metamodel that is relevant to our work. The
diagrams in this section use the UML class diagram notation and come from the UML 2.0

Infrastructure document [17].

17

MultiplicityElement
TypedElement isOrdered - Boolean = false
isUnigue -Boolean = true
Type lower - Integer =1

upper -UnlimitedMatural = 1

Zf Property

Class dass ownedAtribue [isReadOnly -Boolean = false
isfbstract - Boolean = false e - default : String [0.1] opposite
0.1 [ordered) |isComposite : Boolean = false
isDerived : Boolean =false 0.1
| Typeasam:m:| ‘ MuliplicityElement ‘ ‘ TypedEﬂemem‘ ‘ MultiplicityElement
Operation cperation gwnedParameter Parameter

class i

ownedOperation o1 + [ordered)
0.1 [ordered) -

raisedException Type
:

superClass
B

Figure 2.1: UML Class Metamodel [17]

Class

Figure[2.1|shows the elements that can be related to a Class in UML. Classes are Types that
are made up of Properties and Operations and occasionally other Classes. An Operation is
analogous to a function, which is performed using the data stored in the properties of the
Class. The Properties are basically variables that may have different values for different

instances of the class. Classes can have relationships with other Classes, as outlined below.

Package

Figure [2.2] shows the metamodel for UML Packages. Packages can contain Types and other

18

NamedElement

?

Package package ownedType Type
0.1

nestingPac kage
0.1

nestedPackage

*

Figure 2.2: UML Package Metamodel [17]

Packages. As NamedElements, they can also be related to other model elements.

Relationships

Figure shows the metamodel for UML Relationships. Relationships are associated
with one or more elements, such as Classes and Packages. Generalization, Association,
and Dependency are all types of Relationships and are the Relationships that we will
focus on throughout this work. Other types of Relationships include Composition and
Aggregation. Generalization is a relationship which means that a subclass is an instance of
a superclass. This relationship is designated by a line with an empty arrowhead pointing
to the superclass. An Association is designated by a solid line, possibly with arrows,
labels, and multiplicities at either end. An Association has no strict implementation in
object-oriented Programming languages. Dependencies are designated by a dashed arrow,

pointing from one model entity to another, towards the entity that is depended upon.

19

Element
{from Ow nerships}

]

Relationship [relatedE lement Element
(from Ownermships)

{union} 1.+

ﬁl‘ /source

DirectedRelationship {subsets relatedElement, union}

1.7

/target
{subsets relatedElement, union}

1.7

Figure 2.3: UML Relationships Metamodel [17]

2.1.3 UML Diagrams

UML defines several types of diagrams, many of which do not require the programmer
to think in an object-oriented manner. UML diagrams are made up of entities and re-
lationships between the entities. The entities include: classes, packages, objects, and
components, among others, whereas the relationships include: dependencies, messages,
state transitions, associations, and generalization. Each different type of UML diagram is
composed of different subsets of these diagram elements. For example, a Class Diagram
can contain classes, packages, and a variety of relationships. All of the UML diagrams may

contain comments attached to any model element.

Static Diagrams

The Class, Package and Component diagrams defined by the UML specification are the
most useful for software architecture description [20]. These diagrams most readily repre-

sent static structure, which is the structure extracted using the SWAG tools. We will focus

20

]
Ordering]
Payment
ShoppingCart| _ _ | 3|
T
T
|
| |
L b
Pricing = NShipping

Figure 2.4: UML Package Diagram

on the Class and Package diagrams, as these are sufficient for representing the information
available in the FLS-based factbases extracted by SWAGKkit.

Package diagrams can help identify the higher-level dependencies in an application.
These diagrams basically show the packages in a software system, as well as the relation-
ships between those packages. Normally, these relationships will be determined based on
the relationships between the contents of the packages then lifted to the package level.
Figure [2.4] is an example of a very simple UML Package Diagram. It shows two packages
(Ordering and Payment) that depend on the Shipping package, ShoppingCart depends on
Payment and Pricing, and Pricing and ShoppingCart are sub-packages of Ordering.

Figure [2.5| is an example of a UML Class Diagram. This is far from being a complete
specification for any system, but is used here to demonstrate some of the features of Class
Diagrams. On the left side of the diagram is a generalization hierarchy. Payments can
be of two types: Cash or Credit. Each Order is associated with any number of Payments
and is composed of one or more OrderLines. At the OrderLine end of this Composition
relationship there is a role name, lineitems. This notation is used on associations to give

more details about the relationship. On the far right of this diagram is the class Customer,

21

Payment Order = Customer

* 1 1
1 -name
-balance

+getMamel)
Cash Credit 1
lineiterns YW 1. *{ordered}
OrderLine
1
Address

Figure 2.5: UML Class Diagram

which has a one-to-one association with an Address. Customers have the properties name

and balance, and the operation getName().

Dynamic Diagrams

The UML also defines a number of diagrams that are not about static structure, but
rather about behaviour of the software system. Recent activities [13] [7] [52] [43] within the
software engineering research community have been aimed at extracting and understanding
dynamic software architecture information, and therefore it would be useful to consider the
ability to put this information into a standard visualisation format such as UML. Specific
dynamic interaction traces can be documented using UML’s sequence diagrams. Figure|2.6
is an example of a sequence diagram. An instance of the class Order sends getQuantity
and getProduct messages to each OrderLine. The message getPricingDetails is sent to a
Product, then the Order object makes a method call to itself to calculate the price of the
order. A similar notation could be used for describing non-object-oriented sequences of

events, using compilation units in place of classes, and function calls and returns between

22

:0rder Line | | ‘Product
[

| 1: getQuantity ., |

2. getProduyct

3. aProduct

|
4: qetF‘t;iu:ianetaiIs

5: calculatePrice

|
|
| |
|
|
Figure 2.6: UML Sequence Diagram

those compilation units. The same sorts of techniques could be applied to Collaboration
and Activity Diagrams. Statecharts can also be applied to non-object-oriented information,
but that level of detail is not generally considered to be interesting with respect to the

software’s architecture.

2.1.4 UML Tool Choice

After studying and using several UML modeling tools, including IBM’s Rational Software
Architect [25], various Eclipse-based plugins and tools [42] [14] [15], Poseidon for UML [1],
ArgoUML [10] and Visual Paradigm [44], we have chosen MagicDraw UML (MD UML)
[39] as our target platform. This is for a number of reasons. First, it uses XMI as its

standard model storage format. As previously noted, XMI is the OMG standard for UML

23

interchange. MD UML also features the OpenA PI, which makes creating and editing UML
models a fairly straightforward programming task. This eliminates a need for separate
XML tools or our own software to create an XMI-compatible model, thus avoiding unnec-
essary steps in translation that could remove flexibility and introduce errors. The use of
the OpenAPI will be discussed in some detail in Appendix[B MD UML closely follows the
latest published standards for UML and XMI, and has one of the best layout algorithms
for UML class diagrams [12]. The other tools that were part of our survey have limited or
non-existing support in at least one of the above areas.

The main drawback to using an existing tool, such as MD UML, is that the developers
of the tool have their own set of interpretations of how the UML notation is intended to
be used. For example, an association is an abstract concept that is not tied to a particular
implementation in object-oriented programming languages. Each developer may implement
an association in a different way. MD UML records navigable associations within the model
information as properties within the associated classes, but non-navigable associations have
no assumed implementation in MD UML. The MD UML interpretation for particular parts
of the UML notation, such as associations, may not match ours, and both may not match
the reader’s. We have chosen to accept MD UML’s implementation of these types of
concepts, rather than attempting to impose our own interpretation. In addition, MD UML

users will understand and expect the interpretation that this tool imposes.

24

2.2 The SWAG Technical Space

The SWAG technical space consists of several software architecture tools, the Tuple-
Attribute (TA) Language, and several schemas for TA. In our work, we concentrate on
one particular TA schema for software systems. The tools involved in the SWAG technical
space have been used to extract and study the architectures of a wide variety of software
systems, including the Linux Kernel, PostgreSQL, and OpenSSH [54], among others. This

section describes the elements of the SWAG technical space.

2.2.1 The Tuple Attribute Language (TA)

The TA language, developed by Ric Holt [21], is a data format that records information
about nodes and edges in a graph. These nodes and edges can also be thought of as entities
and relations. Information recorded in a file in the TA format is called a TA program. TA
programs are separated into a scheme section and a fact section — often referred to as the
factbase. The scheme section describes the meaning of the facts. Both the scheme and fact

sections consist of Tuple and Attribute sub-sections.

The Tuple Sub-Language

Each line in the tuple sub-language of TA can be interpreted as information about an edge
in the graph. This could include information such as function calls, variable references, or
containment relationships. For example, the following TA fragment shows that P contains

Q and R, and R calls Q.

contain P Q

25

contain P R
call R Q

The Attribute Sub-Language

The Attribute sub-language defines information about each node. This can include labels,
size, description, and position of a given node. For example, the following TA shows that

P has the attribute label, with the value “foo”.

P { label = "foo" }

Schemes

A TA program should also define a scheme, which describes the shape of the graph. The
data has no meaning without the scheme. A scheme identifies what types of nodes can
be related, what edges are allowed between them, as well as the list of types allowed for
nodes in the factbase. The scheme also defines the allowed attributes for each node and
optional default values for these attributes. The scheme encodes a set of constraints that
we expect the graphs encoded in the fact level of the language to satisfy. We say that
a graph conforms to a scheme when the fact level graph uses the entities defined in the
scheme in the way the scheme allows. As an example, the piece of scheme information
below shows that a contain edge can exist between a subsystem and a file, meaning that
a subsystem can contain any file.

contain subsystem file

26

_._cnntain
.,.cLinks cSubSystem
cObjectFle

‘o

| cRunction e cObject

Figure 2.7: FLS for TA

2.2.2 Function Level Schema (FLS)

In this work, we will be concentrating on the Function Level Schema (FLS), which is used
to define certain information about software systems. Other schemas can be developed
to describe other types of information, but we have chosen to use this one as it readily
describes the static structre of a system under study. The output from the QLDX pipeline,
described in Section is a set of facts about the piece of software. Several QL scripts
are included with the QLDX pipeline and are normally used to process the extracted facts,
producing a TA factbase that conforms to either the FLS or that has been lifted to the
file level. In this section, we will describe each of the entities and relations allowed by the
FLS. It is summarised in Figure [2.7] This schema was designed for describing information

extracted from compiled C source code, which explains the naming conventions involved.

27

cSubSystem

Each cSubSystem normally corresponds to file system directories containing source code
files. These subsystems can be interpreted as components or modules of the software

system.

cObjectFile, cExecutable, cArchiveFile

As the names suggest, Object Files, Executables, and Archive Files created from C source
code are represented by cObjectFile, cExecutable, and cArchiveFile. In our work, we have
concentrated on the cObjectFiles, as these are the most relevant in the static structural

diagrams.

cObject

cObjects are the variables that are declared within a given .c file. These will not be

included in the factbase if the facts have been lifted to the file level.

cFunction

cFunctions directly correspond to actual functions. These are contained within cObject-
Files and can be linked to other functions, or can refer to objects. As with cObjects,

cFunctions will not be included in the factbase if the facts have been lifted to the file level.

cLinks

cLinks can occur between the various entities in the FLS. This relation is used to document

relationships like function calls and variable references. In the FLS, cLinks will normally

28

occur between cObjects and cFunctions. If the facts have been lifted to the file level, cLinks

will occur between files, rather than entities within those files.

contain

This relation is used to define a containment hierarchy, identifying which entities are con-
tained by others. For example, subsystems will normally contain the various types of files.

The files, in turn, will usually contain functions and objects.

2.2.3 SWAG Tools

The SWAG architectural tools that are relevant to this work include BFX (a fact extrac-
tor), QL (a relational calculator), and LSedit (a software landscape editor). This set of
tools is often referred to as the Build/Comprehend pipeline [24]. BFX is used to extract ar-
chitecturally interesting information from compiled object files, with the option to include
additional information by using a custom linker (LDX) [54]. The extracted facts include
information such as function calls, variable names, and containment hierarchies. This data
is stored in a TA file. The relational calculator QL understands the TA file format, and
allows the user to manipulate the database of extracted facts. For example, using QL, a
containment hierarchy can be added, and relationships can be lifted to the file level, rather
than the function and variable level. A set of pre-written QL scripts included with the
SWAGKkit can help with these tasks. The landscape editor, LSedit, reads a TA file and
displays it in a coloured “boxes and arrows”-style set of navigable diagrams.

Since QL is written in Java, it was easy to leverage the source code for it and integrate

it into our MagicDraw UML plugin. We use QL to read and interpret the TA programs

29

would Exported
WML Seat P Ris

roducesy” to
£ ? UML view of
Ssoﬂ:\évare (FLS merged
stem |\ ;
Y “produces inte UML

FLS-to-be-merged

Figure 2.8: Overview of Merging FLS into UML

and to perform transformation operations on the facts, enabling us to compare sets of facts
to information in the UML models. Pre-made QL scripts, included in the SWAG kit, have

also been used to prepare the factbases for use in our tool.

2.3 Merging Data

In this thesis, we attempt to solve the problem of bridging between two technical spaces. To
accomplish this bridge, we must have the ability to import, export, and merge information
from one space to another. Import and export operations are relatively simple because
they do not require the ability to map existing entities across different technical spaces.
Merging, on the other hand, requires these types of mappings.

Figure [2.§ shows an overview of the process involved in merging two sets of facts. The
case we have illustrated shows the merging of an existing set of facts using the FLS into an
existing UML model, encoded in XMI. We show three sets of facts: the existing UML, the
FLS-based set of facts to be merged, and what we call the exported FLS. Both the UML
and the “to be merged” FLS factbase are models of the same system, which may have
been modified in either of these technical spaces. The end result of this merge is a model

that contains the relevant information from both technical spaces, and can be viewed in

30

Exported FLS To-be-merged FLS| Legend
exportsto = =>
¢ @ maps-to weee D

/ translatesto —»
O |

= o
OG SO

Figure 2.9: Merging Existing FLS into Existing UML Model

- - -
—Fd
-

=l

— 1
=
—

the UML space. The exported FLS refers to the FLS information that would result from
exporting the UML model using our export technique. This export does not actually take
place during a merge operation, but it is used here to show how the mappings are achieved.

Figure [2.9| shows how mappings are determined between the entities in each of these
models. The dashed arrows from b to both d and e show the mapping between some UML
entities and their equivalent exported TA entities. In this case, this might be a situation
where b is a method in a superclass that exports to two functions in the FLS — one for
the superclass, and one for the subclass. The dotted arrows show which entities in the
exported FLS match up with entities in the to-be-merged FLS-based factbase. By doing
this matching, the dashed and dotted arrows can be combined to become the solid arrows,
which identify those entities in the to-be-merged TA that already exist in the UML model.

After obtaining this list of entities which already exist in the UML model, it can be used

31

to determine which entities in the to-be-merged TA must be added to the UML model.
This information can also be used to delete those items in the UML model that exist in
the exported FLS, but do not have a corresponding entity in the to-be-merged FLS-based
factbase. If the UML entities have no possible equivalent in the FLS, they are not touched.
In our example, i would need to be added to the UML model, ¢ would be deleted, and a

and b would not be touched.

2.4 Related Work

We describe previous research work in the areas of bridging technical spaces, merging infor-
mation from multiple sources, and promoting the interoperability of software architecture
tools.

Staikopoulos and Bordbar [49] created a metamodel refinement approach for bridging
technical spaces. To apply their technique, the technical spaces involved must be well-
established and well-formalised. They discuss the process of determining the mappings
between metamodels. Their focus is on solving the problem of what to do when some
metamodel elements from the source cannot be directly mapped to metamodel elements
in the target. In our work, each technical space may have such un-mappable metamodel
elements. We do not focus on mappings in one particular direction, but mappings in
both directions, as well as the problem of deciding which information should be ignored or
acknowledged in the case of a merge.

Zundorf et al. [55] have developed a technique for merging graph-like object struc-

tures. They argue that text-based methods for merging of object structures have signifi-

32

cant limitations and propose a graph-based approach to deal with these perceived problems.
Specifically, they state that if the order of the information in text documents changes, most
systems will not properly recognise matching objects, unless a unique ID is assigned to each
object. In contrast, we need not be concerned about global unique identifiers, but we can
identify and map to entities based on their location within the containment structure of
the model.

Westfetchel [53] has developed a multilingual structure-oriented technique to merge
different types of software documents written in arbitrary languages. His technique uses
the idea of a Document Interface for each document type, to retrieve structural information
from the documents. This merge technique takes the underlying syntactic and semantic
structures into consideration. The interfaces provide a bridge into the documents, thus
providing access to, and a translation for, the information relevant to the merges. The use
of interfaces allows additional document types (and languages) to be added to the system
without significant changes to the underlying environment.

Some researchers are using the process of model synchronisation to record information
about the evolution of software systems. For example, Ivkovic and Kontogiannis [26] have
developed a technique to track changes to objects based on a unique ID for each object.
Recording this change information provides them with traceability information about the
changes that occur during software evolution. While doing this work, they developed some
key terminology and techniques for performing model synchronisation. They argue that
there are two types of mappings between sets of related data. A mapping can be explicit,
which means that specific entities in the source are explicitly mapped to specific entities in

the target. The other type of mapping is implicit. This style of mapping is done between

33

metamodels and is the type of mapping we will be performing in this work. Relations
between specific entities are implied, based on the mappings between the metamodels.
These two researchers argue that propagating changes between software models is a “first
step towards maintaining consistency between architectural, design, and implementation
models” [26].

Round-trip engineering is another related aspect of software engineering. For example,
FUJABA is a tool that translates information from UML to Java and back to UML.
The tool must handle the issues of interpreting the semantics of UML and the mappings
required from UML to source code. We face similar issues in our work. For example, there
are several different ways to implement associations in Java. The FUJABA project has
chosen to implement associations as private attributes and access methods in the associated
classes [28]. We have made a similar decision for associations in our mapping choices.

Aside from model synchronisation, some other techniques for tool interoperability have
been developed. Notably, GXL and the Dagstuhl Middle Metamodel (DMM) have been
designed as interchange languages for models of software. GXL is an XML-based exchange
format designed by Holt et al. [23] as a standard for describing and interchanging graphs
about software. The DMM was initiated by a group of researchers at the Dagstuhl Seminar
on Reverse Engineering Tool Interoperability, held in January 2001 [33]. The DMM was
designed to be a schema for interchanging information about software between different
tools. The authors of this metamodel suggest that it can be used to describe the objects
and their relationships, and that the choice of encoding syntax is up to the user. They
recommend the use of GXL or TA for encoding purposes.

Bézivin et al. [2] have a completely different approach for tool interoperability. They

34

argue that model engineering should not be based on single, monolithic languages like
UML, but rather on small Domain Specific Languages defined by focused metamodels. In
their approach, interoperability is attained by using model transformations. Our approach
is similar, in that we argue that different notations, tools and diagrams are useful for
different purposes — bridging between the different modeling notations is the interesting

part of this problem.

35

Chapter 3

Model Translation

In this chapter, we describe the process involved in bridging between the UML technical
space and the SWAG technical space. This bridging requires that we provide the ability to
import, export, and merge between models encoded in each space. We begin this chapter
by discussing alternative approaches to solve this problem. We follow this with some
examples of bridging in each direction. We then describe the mapping choices we have
made between the entity types in each of these spaces, and discuss the complications we
encountered while building this tool. We conclude this chapter with an overview of the

algorithms we have used for the merge procedures.

3.1 Design Decisions

There are several ways the bridging process could be performed. The simplest solution,

but the least useful, would be to develop a TA scheme for UML, and create QL scripts to

36

translate from the FLS to the UML schema. With this approach, a translation would then
be required between a TA factbase conforming to the UML schema and an actual XMI
encoding of the model, meaning that the provision of a UML schema for TA would not get
us any closer to solving the problem.

An alternative would be to create an XML schema for the FLS, create an XML encoding
of the FLS-based TA factbase, then create a transformation from the FLS-based XML to
XMI. This would require us to understand all of the details of the XMI specification and
to create an XMI encoding that would be compatible with a specific UML tool. This
would also require a tool to perform the translation from FLS-based TA to XML, and a
transformation from the XML to XMI. Again, this introduces unnecessary steps.

Finally, there is the option of using existing pieces of software, each of which understand
the details of their respective technical spaces, and creating a simple tool to bridge between
these two pieces of software. This is the approach we have taken. QL, written in Java by
Jingwei Wu at the University of Waterloo [54], is a tool for interpreting and manipulating
TA factbases. A major benefit is that we have access to the source code for QL, and we
have made significant use of this. MagicDraw UML is a UML modeling tool developed in
Java by MagicDraw that allows users to add their own plugins to extend it. Plugins can
use a Java API called OpenAPI [40] to create and edit UML models programmatically.
We used these two facilities to create a MagicDraw UML plugin to bridge the UML and

SWAG technical spaces.

37

3.2 Translation Scenarios

There are four possible scenarios for translating between the UML and SWAG technical
spaces. Model information can be imported from the TA format into a MagicDraw Model,
and vice-versa. Two models can also be merged, in either direction. For instance, a FLS
model can be merged into an existing UML model, or a UML model can be merged into
an existing FLS-based TA factbase. We have implemented all four of these scenarios in

one plugin for MD UML. This section covers examples of each of these scenarios.

3.2.1 Import a FLS Factbase to a UML Model

Figure |3.1 shows an LSedit visualisation of a TA factbase containing the extracted archi-
tecture of Gaim 1.5.0. Many of the details are not shown in this diagram, but those that
are shown are important to note. For example, we have shown the inner details of sha.o.
In this part of this figure, we can see the details of cLinks between functions. We can also
see which functions are being called from outside of sha.o. LSedit allows us to view as
many or as few details about each entity in the model as desired.

Figure shows the architecture of Gaim 1.5.0, as imported into a UML model, from
the FLS-based TA factbase shown in Figure The contents of the subsystem src have
been mostly suppressed due to space limitations. Some details are shown between the
package protocols and the class sha.o. In the UML view of this model, we can see that
sha.o depends on itself, but we cannot see the internal details of which functions rely on
which other functions. This information isn’t relevant within the UML technical space, so

it is discarded. As will be seen, it is still maintained when a UML model is merged into

38

an existing TA factbase.

3.2.2 Merge a UML Model into Existing FLS Factbase

Starting from the model shown in Figure|3.2, we have made some modifications to the UML
model. In Figure 3.3, we have added a class named SuperSha as a superclass to sha.o. We
have also moved the method shalnit() from sha.o to its new parent. The resulting modified
section of the model is shown in Figure[3.3] After using our tool to merge this model back
into the existing FLS Factbase shown in Figure [3.1], the resulting LSedit visualisation is
shown in Figure As can be seen in this figure, the method in the superclass has been

copied to the subclass, and all other relationships remain intact.

3.2.3 Export a UML Model to FLS

Figure |3.5| shows a portion of the model of the Java source code for QL. Because QL is
written in Java and thus contains object-oriented concepts from the beginning, it is a more
appropriate example for the translation in this direction. The portion of code modeled
in these diagrams is essentially those classes in the QL API which we have directly used
to write our tool. Each of these classes is described in more detail in Appendix [A] The
UML model in Figure [3.5| was reverse engineered from Java byte code, using the reverse
engineering tools built into MagicDraw UML.

We then exported this model to a FLS-based TA factbase, and the LSedit visualisation
of this factbase is shown in Figure . This figure shows the generalisation (between Edge-

Set, NodeSet and TupleSet) and realization (between Tuple and Tuplelmpl) relationships

39

protocaols

H

Figure 3.1: LSedit view of Gaim 1.5.0, from a TA factbase

40

1
protocols o
]]] b
ascar it navell I shaao
EE o
1]]] = = 7 |+zhalpdsten
jabber ag zephyr +Ehnhg
& L3 L3
]]]
yahon TS Eh rapEsLer
&) L3 L3
L3

Figure 3.2: MagicDraw UML view of Gaim 1.5.0 imported from factbase in

41

]

protocols
[] [] []
oscar irc novell
|_

]]]

jabber qg zephyr| |
]]]

yahoo msn napster|

r— —

SuperSha

+:zhalnit
[4)

W

shao

+zhablock]
+zhaFinal
+shalpdate)

Figure 3.3: Edited UML model of part of Gaim 1.5.0

SUperaha

shalnit

shallpdate

shalnit

Figure 3.4: Portion of merged Gaim 1.5.0 model in LSedit

42

as cLinks between the classes. Because of the restrictions of the SWAG technical space, we
are required to map the different types of UML relationships to a semantic equivalent in
the SWAG space. We have shown the contents of TupleSet and EdgeSet to show the oper-
ations that EdgeSet has inherited from TupleSet. In this case, it is important to note that
the dependencies shown in Figure |3.6| exist between classes, and not between individual

functions or operations.

3.2.4 Merge a FLS Factbase into Existing UML model

As was demonstrated in the previous section, exporting a UML model containing a gen-
eralization relationship to the FLS will create a copy of a superclass’ operations in each
of its subclasses. When browsing the LSedit visualisation, a user may decide that these
copies of the operations are redundant and should be removed. We have shown this in Fig-
ure [3.7] In this case, we have removed the constructor TupleSet, and operations trySort,
newSet, appendDB, appendTA, print, printTA, sort, sortDom, and sortRng from the sub-
class EdgeSet. Figure shows the merged results in TupleSet and EdgeSet. For the sake
of clarity, we have omitted the rest of the elements as seen in Figure [3.5l In Figure [3.8|
we can see that the deleted functions have been removed from the subclass, and the rest

of the inherited operations have been added to the subclass.

3.3 Mapping of Entities

The general translation between UML and the FLS for TA follows the basic mappings as

defined in Table [3.1] This mapping groups the functions and variables contained within a

43

pios { weansinding - weansinding iy uud+
pio

(LS S TRV LE it
proa: QBugHosg
plon: QWoguos

ploa: Quosg

OIS <-F= 15Ty | (19530p3

T1259bp= 1259bp3 - 1253bpa W]

HEE I Rt ET

Bumns T Tasebpg 1as8bps 0]
<BULLS< -1 ARA Y (1S 1B+ < <3
(S]] suyleb+<<lanbs >
w1 jawepnal4 < cdanabs
proa: Qdnias+<=<131ass >

ploa: (32526p7 1 1a5aBpa)suwppe+
ploa:{13520p3 @ 1asabpa)s|agppR+
QIR0 S+ <d01IN0SU0TE >

THVIsb+ < <1aneb> >

FUTEN (170
Wi gTawEd -
JayngBurLing aagng-
R ETE LTI YT
1smajdn] c sl
1sM3dnL D isue-
1sMadn L arapR Y-

moysg

proa: (BULS D BULLS MEDXKINS +
proa: € Bunig @ Bulias Jieixaad+
A Buls D Buls iy puadde+

{weansinding @ weadsindno puud+
JLApon Qs3pop| web+ << b >
apop : Qapopyod+

@sapon (U gand 4

Buls : Qyad+

ue3joog : (Bulas : Bus jJueuod+
185a1dn L nagnal 4+

proac: {Bunys Buls Jppe+

ploa: (1 ppe+

15 - BULIS JUoIa[Bu[s +

FERET

1SR ON 4= <I01INEUEE =
15 BULLS JASIPON+<<4010NISUIs >
(1A5APON+=<4010NSU0D =5

pioa: {weangsinding | weansindino j4syiud4

proa: § Weaasinding @ weaagsindino Jy auuad+

£ BulLs - Bulis 19530p3+ € <A010N4LsU00 > >

3saidn] ; Qmoprys
RSN SUTRYBIVLLL P
A BuyLIos
ploa: QUogQuUos

o (uosg|

15 - Bulls Jsypuadde+

ploa: (B

proa § Bunls Bulys 1y puadde+

13g3dnl : Juasmau+

A12BP3 (saBpg|viab+=<ianafis=
Buys s (n aingunylab+<<danabz
WU RN U TR B <l b
pros: (T ppE 4

pioa: {Bunis - TEuLs ‘Bung | Buus jppe+
{3Un 1 3353BPT 001N 0T

EMadng OsalEandnaas Wal pHos-

Eradng (saiEdnaa a0 el

prosc (oS

ploa: QoS-

En3dng c (JoeEsadng @ Jo3)as3dn ioaEs+
azfEng ¢ [Lau s EnRdnaEbe < <lanabe >
inRdnL: (s snadnabie < caanabiz =

proa: § <3|dn [<-35=15ARLY | ISIARLIE JISIIRS~ < <Ialass =

<3| | < -3=15MARY | 0151336~ < <danabm >
ploa: (1sn31dnL S as)adni juRd -

Joyeaay C (uoieaay 4

ueaoog QA WIS+ < <886 =

Ali2ziao : fAzyol+

123[00 : Jauopa+

plos: (ueajn+

i azIs4

ploa: fasmadnl Enadn) yppr+
on:{3pdnL: admppe+
LR ST R LSS EINE] 5

1 EMR N L+ =< <d030NsU0 >
s L+ < <d010N4LSU00 > >

13530p3 +<<401INNSU0D >

<3]dN < -3= 15 ARL Y ARDQY:

13SIPON

w5abp3

1s3dng

1353PPg - (19550p3 1953Bpa J9sIaAlIF

1359BP (13590p3 [1353Bpa JaIsA0[0@ WA+

19530P3 1 1952DPd © 1953Dpa Jadns 003 A3 33+

Ta5abPg [1353bP4 - 193D pa JaNs 0|08 AIS UET

13530P] © {590 | 1253bpe Jnsoun+

T953[AN L (1953P0R 1953p 00 IUT [1R53[dRL : i95a[dn: JFguoEodwoi+
T953[ANL . (1959[dN L [3959]dN1 1959[dN L 195 3[dN1 J[Fgu0 00 moi+
TICARL " ([195a[dA] 1a33]dN 135abpg | ja5abpa g Iosoamo+
953N L [13536p] [19390p3 5 alan] 3959 [dny JFguoisodmos T
1353[ANL [1953[dN L 1959[dN1 1359P0N 1359p 00 J[gUos0d oo+
135N [1353p0f _1353p00 a5 ajan] 135a[dn] J[3guoisod ot
Ta5a[dn L [19530fd T135aBPa 135aBAg jasabfa Jlaguoisodmai+
VLS (1e53[aN] THEa[any Ja5a[dn | jesa[dny jooysedmos+
1953[dNL - (1959[dNL ; 1959[dN1 1353DpP3 - 1959bpa JU0[Ws0dmoi+
1353001 1 195303 (1353Dpa 195a[0n L 1asa[dn Juoisodmait
TISAaN L (395300 - R59]an] 195 3p0N | 1959p00 JUsiE0dmos T
1953[AN L (1953P0R 1953p00 1353[dN L 1953[anL JUoE0d oo+
19590p3 [19590p4 : 11953Dp3 19590pd ; 1953bpa JU0[s0dWoi+
135303 ([195ap0N | 1asapol 1a5ahpg 135 ahpa Juns0dmasF
1953007 19590F] 1353003 195 3P0 | 195ap0U JUnEodwos T
1353BP3 (U] ['1959Bpd 1953Bpa JUos0dWoi+

Ta5abpg [1353p 0N [1953p00 1353p0[135900 JIINPOIgssnait

TB53P0N 1 1a5alan] | 135 a[dny JIoebel+

VISIPON | [1R5R(dn] WREslant JJOuE mopF

1959P 0N - (1959[aN L 195a[dm o MAua+

1353003 - § 1a5a[drn] - 135a[dny)

TESadN L ([1953P0N 125 9P 00 Ta5aldn] s a[dni Jias

(2L

IREEAN L (1953[0n L wEa[dnL 250N 1959pou 333

old+

1959P0N - (1959P0N_ 1959p00 13520p3 © 1959bpa J104

o+

Ta5aP0R (1359003 13530[a "1359P 0 1359p00 J173

(2L

1359BP3 | [1353DPT [11953Dps 1953BpPT ; 1959bpa U055,

SF

1353bpg

12530p3 - Tia5abpa jasabpy

T95IPON - [1959P 0N T1e59p0U 1953p0N | 1953p00 JUD[139s4a1ul+
Taahp3 JaiuaiaipT

1353bp3g -

T353P 0N (1950 | 1135 ap00 Ta5apaN 1asapal Jaiuaia i
1353BP ; 11959bpa 1353bpg | 135aBp8 JUOUn+

P TeEadni g s[dn L : wEa]

1359[aNL | [J359[GNL . @Ea[dnL]as an
T35A[GNL - T195a[dny 1953]an L 135a[any Jpus

3
Quoneiadoraqal|y+-<<101an415u03

ra
=

proa (16U | BULs dppe+

plos: (BuLs : Bulis ygapuadde+

proa: § Buls @ Buuls)y puadde+

1o Wealsinding | Weaasinding by uud+
proac: { weraasinding | weaasndmno puud+
ploa; Dsamdnganowad+

| JngAag
COBUHL OS]
ploa: Qwoguosg

ploa; Quosg

133000 Gaua+

sapdng (uasmau 4+

ERaEnd : QisnadnLieb4 < <danabs
Wlardng c Qsajdnppyiab+ ccianabiz =
apdng : (w1 nab4 <<l >
proac{adng cadnyppe+
W Qsuwnod+

i Jazis+
|ANASEHIRS 4 <3RS 2
uea|00q : Gsaeddngsey+

proa {1)BR|j1asun4

proa: { [BR13S + << IalasE

prod (BULG §BULILE)3 WERIES 4<<lalas> >
Buris | Jawepab+ << anabs =

uRa|00q ;3 WeNSEY+

(BULS @ BLLLS 1853 dn | 4= <l0)2n01SU00 5 =
(U101 1R531dN |+ <d03ansuoas >
Q1a53|dn L+ < <J012M1sU0d s >

proac{ URa|00g g)sae

sadnL e
Wi BATTLOS#

i sBeg
BLILIE | 3 WRLE

LT orang SvHT
SOTHD+

TAUOPETe = 30

TUOPEaAf0 = W

uoi e I3doeIgaby

wgardnL

proa: { Wealsinding | Wweaaisinding uud4
uonezWnLY : O5asabpI IR+

UOIRAIWNUT | BS1353PONIE+

13536p3 1 { Bulns Bus 31asaBpiafi4<<aanabis>
wsapop : (BuLng Bus NasIponIEB+<<i3nab= =
ploa: f1asapdnl es3jdninasppe+

1gadny : (Bulns ©Bus Naseb+=<aanalbiz >
pios: { BuLg T BUls Jaa0 wad+

uonRIIWNUG C Oslas|e+

ueR|00q ; { BuLs D Bulis 1ssey+

ploa: {Bupis : Aus jadAg1as+ <<lanassx
Bunns : QadA b+« <aanafisz=

oo { BULS D BULLE J3 WRR RS+ <<l3a5 >
Buris : Qawenab+<caanafiz»

£ BULIE T BULIS JASRIIR 4+ <01 IS0 =
DRFRQINRA+ << I0INIEUDD >

“13s3dn -2 BuS -3 3GRIYSEY [A1gR1-
Bug - adhy-
BULILS A WRU-

Jseque]

{12l walgojolamdwon+
1algo : Jauoa+

J1aU1 QAR+

adn) : QasdaaupEb4=<azpab>>
[T s 10000 B+ caanafis»
PIoAT {IUn T AS+ < <IalasE
wi (U b4 <aanabis
oA DBU R+ <<laass
wil QBuyIR0+ < <ianabiz>
JWOQIAS+ << 4311a5
QWoqiRb+<<ianabe»
BN
Wi Qazis+

§UL D IRPONFA|AN [~ <0100 0SU00 s

ui

waja

aponpajdn)

13alqg © Qaun)a+

(U0 T3 133BPTF3|AN - < 00 NS U0

abpapaldnL

!

i (3330 - palqo joaedwod+
a0 Jauop+

g s ARy o+

3dnL : fasaanunab+ < <aanabz =

J{l (L1 neh+ < <lanafis -
(LT SVTER (U BT E LSS ER -
s a4 < aanabs >
proa: ()] BUI9S + <3 NAs s >
W QBUY1aB4 << 3B >
JUOQIRs+< ISR
W QUOQaB+ < <aanabs
ur: (azis+
U T[] A WE N - < 01N S U0T S >
L 11 Uz dwidn s < <103an0E0e0E =
{ueajoog . q Jidwadn L ~=<1012N15U00 =
[$10]) |dwfadn L - << d0)3RSU0D =
Callaun s dwipdn] < <1030N05U000 >
Lol) s swaga-
1dwiagdng

T

b
W00 elge doLrarduwes+
33RO D DRues+
WDt T AL O
AN PRSI ANRE AR E R
T S IV DT B E P
BIGA T T S S AR
— - — PYRR ST S S

BroA L BRI RS SRR s
PRI e T L

W Henis+

Partial UML model of QL

Figure 3.5

44

FE ‘Tuple Hﬁa Tupled4Node Hﬁa AIgebraOperation|

FE Factbase i FE Show

:

FE Tuplelmpl
Y

FE NodeSet i ’EE TuplelList

FE Tupled4Edge

TupleSet

appendDE
narme
removeDu... m setHasDu...

columns
Joetaiimupt. .

hasDuplic... hasName

CHAOS

“
=)
jwl
=]
N E

p

EdgeSet HAS_DUPLIC... TupleSet

getAttribute
getAttributelD m m hasDuplicates
hasName
rintRSF setFlag
setHasDuplic...

CHAOS

appendRSF

appendTA

Figure 3.6: LSedit view of partial model of QL

4

ot

] & ;

& Tuple F TupledMode AlgebraQperation
&
| Ea

3 = Factbase Show
Tuplelmpl
Fy
| & MNodeSet = TuplelList
TupledEdge

TUpTeset

appendRSFE

getillEdges

getittribute

getTuplelist

name
sethlame

sortlevel

Figure 3.7: Modified partial LSedit view of QL

46

TupleSet

+CHACS : int = Df{readOnly}

£HAS _DUPLICATES @ int = H{readCnly}
#name : 5tring

#flags :int

#zortlevel :int

#data : TupleList

<<constructor==+Tuplesetd
“<constructor=>=+TupleSet{i:int)
“=<constructors=>=+Tupleset{ string : String)
+hazNamed) : boaolean
“getters=4+getMamed : String
=<zetter>=x+setMamed string @ String) : void
<=setter=x+setFlagli:int) void
+unsetFlagii: int) void

+hasDuplicatez() : boolean
<<setter=»+setHasDuplicates{ b : boolean) :woid
+sizedint

+columns{ :int

+add{ tuple : Tuple) : void
<<getter==+get{i:int): Tuple
“getters=4+gethliTuples : Tuple[]
==getter>=+getTupleList(: Tuplelist
+newset(y : TupleSet

+clonedy : Object

#zort) o woid

#sortDom () : void

#sortRngd cwoid

#rySort(i:int) void

+removeluplicatesd :woid

+print{ outputstream ; OutputStream) wvoid
+printTA{ outputstream : OutputStream) @ void
+appendTAl string : 5tring) void
+appendDB(string : 5tring) : woid

+add({ string : String[]) : woid

EdgeSet

=<constructors=>=+Edgeset)

<< constructor=>+Edgeset{ string : 5tring)
“constructors==+Edgesetdiint)

+add{ string : String, stringl : String) : woid
+add{i:int, il :int}): void
wgetter>>4getAttributelD (i int) int

<< getters=+gethttribute i int) : String

< -=getter==+getAllEdges() . Edge[]
+printREF{ outputstream | OutputStream) @ woid
+appendRSF{ string : String) woid
#shadowd) : TupleList

+hasNamed) : boalean
“<getter==+getMamed : String
=<zetter>=x+setMamed string @ String) : void
<<setter>=>+setFlagdi:int) void
+unsetFlagdi: int) void

+hasDuplicates{ : bonlean
<<setter>>+setHazsDuplicates{ b : boolean) :woid
+sizedint

+columnsd:int

+add{ tuple : Tuple) : void
wgetter>>4get{iint): Tuple
“getters=+gethllTuples : Tuple[]

= =getter>>+getTupleList(: TupleList
+clane) : Object

+add({ string : String[]) : woid
+removeluplicates ©woid

Figure 3.8: Portion of merged QL model in UML

47

FLS Entity | UML Entity
cSubSystem | Package
cObjectFile | Class

cObject Property
cFunction Operation
cLinks Dependency

Table 3.1: Basic Mappings between FLS Entities and UML Entities

given source file into a class. This is validated by the founding principle of Object Oriented
Development, which is to group related properties and operations into classes.

Section contains more specific details regarding each of the entity types in the
function-level schema, and Section describes the UML entities. We will now describe
the relationships between these two sets of entities. Each directory in the source code
is identified as a Subsystem during fact extraction. This is semantically equivalent to a
Package, since packages tend to also be based around directory structure. ObjectFiles
refer to each .o file generated during compilation. These are compilation units, just as
Classes are compilation units. ObjectFiles contain “Objects” and Functions. In this case,
some confusion can arise due to naming choices. An Object in the FLS technical space is
simply a variable of some type, contained within an ObjectFile. This is similar to Objects
in object-oriented programming, since an Object is an instance of some particular Class.
A FLS “Object” can be thought of as a member variable of a Class. Functions are units
of executable code, similar to Operations in Classes. The FLS refers to a reference from
one function to another or from a function to a variable as a Link. We consider this to
be semantically equivalent to a UML Dependency, except that dependencies are usually

between classes rather than operations, as will be discussed in Section Figure |3.9

48

_Pagkage

I_d cSubSystem “ c I
|c—

___Il

c- contains
u - uses |

Figure 3.9: Schema Mappings

summarises this mapping. The “uses” edges in this figure represent links or dependencies.

One limitation of this basic mapping is that it does not take into account some of the
central principles of object-oriented programming, such as Generalization. This is because
procedural languages, such as C, have no equivalent concept. Since the SWAGkit was
originally designed with languages such as C in mind, we have been forced to develop our
own technique for dealing with Generalization when it is introduced into the UML version
of a model. This will be discussed in detail in Section [3.4.3

Associations present another interesting decision. MD UML has its own assumed im-
plementation for some types of associations. It distinguishes between navigable and non-
navigable associations. Navigable associations are implemented as variables in the classes
at either end of the association. Non-navigable associations have no default implementa-
tion in MD UML. For simplicity, our tool follows the MD UML implementation in this
case. For navigable associations, we add the appropriate variables to the classes at the
association endpoints. This decision is supported by other researchers who have made sim-
ilar decisions regarding the implementation for associations, such as those involved with

the FUJABA project [2§]. If the associations are not navigable, we ignore them, since as-

49

sociations are an abstract concept with no standard implementation. The same situation
applies for composition and aggregation, which are specific types of associations.

Another limitation is that object files are not entirely semantically equivalent to classes.
In an executing C program there will only be one instance of any given object file in
memory; there is no reason for there to be more. By definition, Classes are instantiated
multiple times, in order to promote re-use. We can think of the classes in a UML model
of a software system written in a non-Object Oriented language like C as being singletons;
alternately, they can be thought of as classes with only static members. We have chosen
not to add any stereotypes to make this distinction in our generated UML models, instead

leaving the architect free to think about the “classes” in the way he or she chooses.

3.4 Complications in Translation

When performing these import, export and merge operations, we run into several compli-
cations, requiring our tool to consist of more than a simple translation mechanism. The
names of entities in a TA factbase have no semantic impact on the model, whereas in
UML, the naming scheme is entirely based on the fully qualified path to a specific entity
in the containment structure. Also, in UML static structure models, relationships tend
to exist between classes, whereas the FLS in TA is fully capable of documenting and dis-
playing relationships between entities at a lower level, between functions and variables.
The final complication that will be discussed in this section is the problem of dealing with

generalization semantics, when moving information from the UML to the FLS in TA.

50

3.4.1 Naming Schemes

When a FLS-based TA factbase is produced by the QLDX pipeline, the entities contained
within each cObjectFile — such as cFunctions and cObjects — are named by a coding system,
with names such as napster.o[.text+0x13e0]. When LSedit, the software landscape ed-
itor, reads in a TA factbase, it uses labels from the FACT ATTRIBUTE section of the factbase
as the human-readable name of the function or variable, such as gaim_init_plugin. If no
labels exist, LSedit will use the last part of the name as the display name. For example,
if the name of the entity is /napster/.libs/napster.o[.text+0x13e0], LSedit will use
napster.o[.text+0x13e0] as the display name. On the other hand, UML uses the actual
operation or property name as part of the fully qualified identifier. The same name is also
displayed on diagrams. For example, a function named gaim_init_plugin within the file
napster.o would be identified as napster.o::gaim_init_plugin.

This difference between these two naming schemes is most notable when comparing an
initial TA factbase with one that has been imported using our plugin and then exported
again. In an exported factbase, the FACT ATTRIBUTE section of the factbase is basically
removed and merged into the FACT TUPLE section. A factbase will be generated by the

BFX/QLDX pipeline containing information such as follows:

FACT TUPLE :

$INSTANCE .../napster.o cObjectFile

$INSTANCE .../napster.o[.text+0x13e0] cFunction

FACT ATTRIBUTE :

.../napster.o[.text+0x13e0] { label = "gaim_init_plugin" }

After this information has been imported via our MD UML plugin, then exported back to

TA, it will have been modified to the following:

51

FACT TUPLE :
$INSTANCE .../napster.o cObjectFile
$INSTANCE .../napster.o/gaim_init_plugin cFunction

This modification has no negative impact on the usefulness of the factbase, since every
cFunction or cObject within a cObjectFile must have a unique name. This change also
significantly reduces the size of the TA file. If there are no labels in the FACT ATTRIBUTE
section of the factbase, the representations in LSedit will be unaffected, as LSedit resorts
to using the last item in the path for labels in the visual representation of the facts.

This complication is simple to handle in an import or export situation, but the merge
process becomes slightly more complicated. When merging, our plugin must check to see
whether the entity in question exists in any form, in the file that the model is being merged
with. To merge UML entities with TA factbases, we must match up individual entities.
These must match based on both the label name for a function and the containment

structure, in order to locate the entity in the model.

3.4.2 Level of Calls Relationships

Another minor complication arises from the fact that UML models normally do not docu-
ment dependencies between individual operations, and instead document dependencies at
a higher level — that is, between classes. For this reason, we have chosen to [ift the links
in the TA factbase before adding them to the UML models. This means that we raise the
links to be between object files, rather than between functions. This is accomplished by a
couple of straightforward composition operations, using relational algebra operations from

QL, as outlined below. The o is a composition operation between two EdgeSets, and inv

52

returns the inverse of the EdgeSet.

lifted = (containment o dependencies) o inv containment

In this example, the containment EdgeSet might contain something like:

contain ../napster.o ../napster.o/gaim_init_plugin cFunction
contain ../accounts.o ../account.o/gaim_accounts_init cFunction

and dependencies might look something like:
cLinks ../account.o/gaim_accounts_init ../napster.o/gaim_init_plugin
The resulting TupleSet, 1ifted, would then contain the following, for the above example:

../accounts.o ../napster.o

This TupleSet records the links between the files that contain the functions that partici-
pated in the original links relationship. Duplicates are removed. This lifted information
can then be used to create dependencies in a new UML model, or could be compared
against existing dependencies or links in the case of a merge. The interesting result of
this complication will be discussed in more detail in Section [4.2] It is worth noting that
lower-level calls relationships between functions in the TA factbase are not replaced when

merging back in the opposite direction.

3.4.3 Generalization

The FLS for TA was not designed to handle object-oriented concepts such as generalization
relationships. As a result, conversion from a FLS-based factbase to UML, and back to the
FLS — without making changes in the UML model — will not contain any generalization

hierarchies. However, the goal is to allow the user to modify the model in some way, in

53

Sub

+f 3= - — 5
+bnaigc super. foogd

Figure 3.10: TA “Inheritance” Semantics

any tool or notation, and have the changes be reflected in the other technical space. Since
the metamodel of the SWAG technical space does not support any semantic equivalent
to the object-oriented concept of generalization, we have been forced to create our own
FLS-compatible translation for this concept.

Generalization means that the member operations of the superclass are inherited by the
subclass. As a result, in the FLS, we have converted generalization relationships to links
and copied the methods of the superclass into the subclass. This preserves the semantics
of the generalization concept. Figure [3.10|is a UML diagram showing the meaning of this
translation. The inherited operations of the superclass are copied to the subclass. If the
inherited operation had not previously been redefined in the subclass, we can think of the
subclass version as being a simple call to the superclass version. This is the reason for the
links arrow in the FLS. This not only shows a function call, but also shows that these two
compilation units are related in some way. This translation will be discussed in greater
detail in Chapter [4]

When performing a merge, our tool determines whether an entity already exists in the

o4

model, and if it does, it does not get replaced. The generalization arrow is one such entity
when merging from TA to UML. This maintains the generalization semantics in a merge.
Unfortunately, there is no way to preserve this information when performing an import to
an empty model, since the additional semantic information is not there.

It is worth noting that we have not taken actual implementation details into consider-
ation. If the models were intended to be used to generate code for a non-object oriented
language, such as C, a prefix may be necessary for the functions created in the subclass,

in order to prevent ambiguity during linking.

3.5 Merge Algorithms

In this section, we will provide an overview of the algorithms we have used to perform the

merge operations in our tool.

3.5.1 Merging an FLS-based Model into UML

The algorithm to merge a FLS-based model into an existing UML model is a fairly simple

two-step procedure. The steps are outlined below.

1. Using the Visitor pattern, visit relevant Elements in the UML model:
(a) If no FLS equivalent is found, delete the UML Element.
2. Loop through the entities in the FLS-based factbase:

(a) If no corresponding UML Element exists, add one.

95

When compared to the merge requirements described in Section [2.3] the only difference
in the resulting models is that when a UML model is exported to TA, then merged back
in again, some information will be added to the UML model using our technique. More
specifically, the methods of the superclass will be copied into the subclass if a generalization
relationship exists. This does not affect the meaning of the model nor does it violate any
object-oriented principles. The appearance of a superclass method in a subclass normally
shows that the method has been overridden in some way. The actual contents of the

subclass version could be a simple call to the superclass version, as previously described in

Section B.4.3

3.5.2 Merging UML into a FLS-based Model

In the reverse direction, to merge a UML model into an existing FLS-based TA program,
we follow the algorithm outlined below. The merge in this direction is slightly more

complicated, due to the differences in naming schemes, as previously described in Section

B.41

1. Visit UML Elements:

(a) Add Packages, Classes, Operations, and Properties to output factbase as $IN-
STANCES.
(b) Create contains relationship between parents and children, as they are added.

(c) For Generalisations:
i. Add to the factbase, as described in Section [3.4.3]

ii. Remove duplicate cFunctions, cObjects and cLinks.

2. Loop through the cLinks in the old factbase.

56

(a) Using the old containment structure, determine the UML name for each entity
involved in a given cLinks relationship.

(b) If a corresponding (lifted) dependency exists in the UML, add the cLinks using
the new entity names.

3.6 Chapter Summary

In this chapter, we have described the obstacles we encountered during the translation
process, as well as the solutions we have implemented for these particular problems. The
translation activities have been described for the two specific tools we have studied. Sim-
ilar problems and similar solutions should be applicable in implementing a translation
procedure and tool for bridging between other technical spaces. This information should
be useful to other researchers or developers who would like to bridge between another

technical space and the ones we have bridged in this work.

57

Chapter 4

The Bridge Domain

In this chapter, we discuss our evidence for the existence of a bridge domain. This evidence
supports the claim that the real architecture of a software system cannot be fully expressed
in any one specific notation or modeling language. We argue that a software system can
be best understood through multiple views of the software, with different technical spaces
providing each view. This set of views essentially defines the bridge domain.

Even with two very expressive and flexible schemas, there are certain concepts that
can only be described in one or the other, but this information can be maintained through
merge operations between the two technical spaces. The fact that these types of concepts
exist points to the existence of a bridge domain. This bridge domain cannot be expressly
encoded, but is held as a mental model or as a collection of views seen through several
technical spaces. One could argue that the bridge domain is automatically encoded in the
source code, but there is a problem with this perspective. A program may be written in a

procedural language like C, yet have object-oriented concepts embedded in it. To include

58

B
IHI/' wu
L =L

L ety =11

Figure 4.1: “Bridge Domain” arises through translation

these concepts in a program understanding task, the software must be abstracted into a
model and viewed within some technical space that includes a mechanism for demonstrating
these concepts.

Figure[4.1|shows how the bridge domain relates to the notation languages used to model
the software. L refers to a notation language. B refers to a Bridge Domain. A translation
from L; to Ly means that some transformation can be performed on the models L; and
Lo to represent them in equivalent encodings in the bridge domain. The actual encoding
of this bridge domain is not possible, except through both languages, as each notation
language contains information that is not expressible in the other. This information can
be maintained during a merge operation, but not during import or export operations.

We begin this chapter with an example of how the UML and SWAG technical spaces
can be used together to investigate various properties of a real software system. This
example shows that information viewable in each technical space can be important for a
program understanding task, thus demonstrating the conceptual importance of the bridge

domain.

59

4.1 A Real-World Example

Throughout the course of the development of our tool, we have been using the Gaim Instant
Messaging client, version 1.5.0, as a testbed for our tool. Gaim is a multi-protocol instant
messaging client, which means that it allows users to register accounts for various instant
messaging protocols, such as ICQ, MSN, AIM, IRC, Jabber, Napster, and Yahoo, among
others. Architecturally speaking, this is a small program (151 KLOC). It was chosen for its
small size, which made it possible to develop and test our tool relatively quickly. It uses the
GTK rendering engine, and is a standard application in the Gnome desktop environment
for Linux. There are also versions available for Windows, BSD, and Mac OS X.

Certain aspects of the implementation of Gaim have made it an interesting testbed
for our work. For instance, there are many pairs of source files with similar names, such
as account.o and gtkaccount.o, log.o and gtklog.o, blist.o and gtkblist.o, privacy.o and
gtkprivacy.o, and conversation.o and gtkconv.o. We speculated that these files may have
code duplication and could potentially be thought of as super and subclasses. It is clear
from examining the LSedit visualisation that the GTK versions of these files depend on
the non-GTK version and no dependencies exist in the other direction. This is shown in
Figure 4.2

A closeup of the privacy.o and gtkprivacy.o portion of the UML diagram is visualised in
Figure[4.3] In this visualisation, we can easily see that there appears to be several functions
that have similar names, such as gaim_gtk_privacy_init() and gaim_privacy_init().
It seems likely that the dependency we see in the UML diagram is related to these similarly

named functions. Therefore, we return to the visualisation in LSedit to attempt to validate

60

gtkblist.o

o

- : o
gtkaccount.o| -

" 'account.o

gtkconv.o >

conversation.o

e o
gtkprivacy.o privacy.o

Figure 4.2: Interesting Relationships

this theory.

Figure shows the relevant portion of a backward query performed on the privacy.o
file, from within gtkprivacy.o, in LSedit. This query shows which functions in gtkpri-
vacy.o depend on functions contained in privacy.o. In this case, it shows that clear_cb(),
remove_cb() and confirm_permit_block_cb() are the only functions in gtkprivacy.o that
depend on functions in privacy.o. This disproves our theory about the nature of the de-
pendencies, but it shows how these two tools can be used together to investigate certain
properties of a software system.

LSedit is useful for performing queries on the entities, and has the ability to show the
strength of a dependency based on the size of the arrowhead. The size of the arrowhead is
directly proportional to the number of cLinks relationships from one entity to the other.
UML makes it easy to see which functions exist in each source file and provides the ability

to add meaning to the structure of a software system by adding things like generalization

61

grkpr ivacy.o privacy.o

+gaim_gtk_privacy_init{ +gaim_privacy_init{
+qaim_atk_privacy_get_ui_opsd +gaim_privacy_get_ui_ops(
+aaim_agtk_deny_added_removed(+gaim_privacy_set_ui_ops
+gaim_agtk_permit_added_removed(| |[+gaim_privacy_deny_removed

+gaim_gtk_request_add_permit +qaim_privacy_deny_add
+gaim_atk_request_add_block(+gaim_privacy_permit_remove
+aaim_agtk_privacy_dialog_hide +gaim_privacy_permit_addd
+gaim_agtk_privacy_dialog_show) T
+gaim_gtk_privacy_is_showabled)

+add_permit_block_cb | _ _ _

+confirm_permit_block_chd
+destroy_request_data)
+cloze_chi)

+add_ch

+destroy_ch
+check_account_funci
+clear_ch

+remove_chi
+type_changed_cb
+zelect_account_chi)
+hbuild_list(
+uzer_selected_ch{
+find_permit_block_by_named
+rebuild_block_listd i
+rebuild_allow_list{ |

L

Figure 4.3: Privacy Source in UML

remove cb

clear_cb g confirm_permit_block_cb

Sre, inherits , o 5K,
connection.o privacy.o gtkutils. o
||

Figure 4.4: Backwards Query on privacy.o

62

hierarchies. UML also provides the ability to easily see multiple levels of the containment
structure at once, which provides printable diagrams, whereas LSedit is a more interactive
visualisation and navigation tool. The use of these two technical spaces, together, brings
out information that would be difficult to discover by viewing the model of the software in

one technical space by itself.

4.2 Dependencies

Part of demonstrating the existence of a bridge domain that cannot be expressly encoded is
showing that there are concepts in each of our technical spaces which cannot be accurately
expressed in the other. In this section, we discuss dependencies, which can be expressed in
more detail in the SWAG technical space than in a UML model. When merging dependency
information between TA and XMI, the TA “error-corrects” some of the information that
cannot reasonably be held in the UML model. In the LSedit visualisation, it useful to
know which functions call which other functions. The LSedit visualisation is dynamic
— it changes depending on which parts the user is looking at — and can visualise this
detailed information very well. The UML Class Diagram has no reasonable way to display
information about calls between functions. Thus, we require the ability to maintain the
detailed information about call relationships through a merge with a UML model.

We will demonstrate this using an example from Gaim 1.5.0. Figure shows the
contents of the .libs SubSystem for IRC in LSedit. The call relationships shown that end
somewhere off-diagram are references to functions or variables in other subsystems. Figure

[4.6] shows the same package in UML. One advantage to LSedit is that it is possible to tell

63

Er]
H dcc_send.o

e

Figure 4.5: The IRC .libs SubSystem in LSedit

the strength of a dependency based on the size of the arrowhead. A larger arrow denotes
more links between the functions contained in these compilation units; UML has no such
distinction. Since a UML Class Diagram with multiple dependencies contains the same
information as one with single dependencies between classes, it makes sense to omit this
multiple dependency information from the XMI encoding of the model.

Figure [4.7 shows the internal structure of the parse.o file within the subsystem shown
in Figure [£.5] In this case, it is possible to visualise the dependencies contained within an
object file. Since LSedit is able to visualise dependencies between individual functions and
objects, it makes sense to attempt to retain this information during a merge operation.

Figure shows the difference between the dependencies in UML and LSedit. When
merging links information into an existing UML model, the process is simple. It’s a matter
of lifting each links relationship to the file level and — if the involved entities exist in UML
and the dependency does not — creating the dependency. To lift the links to the file level,
one can use a combination of a few simple relational algebra calculations, demonstrated in

the code below.

64

| parse.o

+irc_mirc_colars
| [#drcmsas
+_irc_cmds

+irc_parse_ctopid)
+Hirc_parse_msgi
+irc_formatf)
+Hrc_mirczhtmlgy

+irc_ischannel)
Firc_mirc2txt)

FirC_recy_COnvertd

+irc_cmd_table_build()
+irc_msg_table_build()

+irc_register_commands(

+irc_parse_gaim_cmdd

T L3 T
| | |

msgs.o

+id. 15517

Hirc_msg_away(
+ire_msg_whois(|

+irc_msg_ignored L

+irc_msg_wallopsd
+irc_msg_quitd
+irc_msg_regonly
+irc_msg_notice)

Hirc_msg_privmsg() F— —

+irc_msa_pangl
+irc_msg_ping()
+irc_msg_pari()
+irc_msg_nachangenick(s
+irc_msg_nickused(
+irc_mzg_badnickg
+irc_msa_nicky
+irc_msg_moded
Hirc_msg_kickd
+irc_msa_joing
+irc_msa_isang
+irc_msg_inviteanky
+irc_msg_invite)
+irc_msg_notop
+irc_msa_notinchan ()
+irc_msg_nosendd
+irc_msg_nonick(
+irc_msg_nochand
+irc_msg_time()
+irc_msa_endmotd(
+irc_msa_matd(
+irc_msg_namesi)
+irc_msg_unknowng)
+irc_msg_topicd
+irc_msg_list
+irc_msg_endwhoizg
+irc_msg_chanmoded
+irc_msg_banfull
+irc_msg_bannedi
+irc_msg_badmode(
+irc_msg_default ()
+irc_buddy_status()
+irc_chat_rem owe_buddy (i
+irc_mask_nickd

'

cmds.o

— [+irc_cmd_topi

+irc_cmd_op(
+irc_cmd_whois
+irc_cmd_wallopsd

+irc_cmd_time()
+irc_cmd_remowed
+Hirc_emd_query (s
+irc_emd_quotels
+irc_emd_gquitiy
+irc_cmd_ctcp_actioni)
+irc_cmd_privmsg
+irc_cmd_ping
+irc_cmd_part
+irc_cmd_nicky
+irc_cmd_namesd
+irc_cmd_moded
+Hirc_emd_listd
+irc_emd_kick
+irc_emd_joing
+irc_emd_inviteq)
Firc_cmd_awmy
+irc_cmd_default

i

dcc_send.o

=

+irc_docsend_recw ()
+irc_dccsend_send_file(
+irc_docsend_send_write(y
+irc_deesend_send_initd)
+irc_deesend_send_connected(s
+irc_dccsend_send_read()
+irc_deesend_send_destroy(r
+irc_docsend_recw_initd
+irc_dccsend_recw_ackd
+irc_docsend_recw_destrovd

irco

+_irc_plugin
+status_chars
+prefs_infa
+prpl_infa
+infa

+gaim_init_pluging
+irc_blist_timeautd
+irc_sendf
+irc_chat_info_defaultsg)
+irc_input_chg)
+irc_login_ch(
+irc_nick_hash{
+irc_nick_equal)
+irc_buddy_free(
+irc_buddy_append)
Hirc_wiewme motd()
+irc_roomlist_canceld)
+irc_roomlist_get_list()
+irc_chat_set_tapic(
+irc_ping_server()
+irc_chat_send
+irc_chat_leave(
+irc_chat_inwited
+irc_get_chat_name(
Hirc_chat_joind
+irc_remove_buddyd
+irc_add_buddy @
+irc_set_anay ()
+irc_get_infog
+irc_im_send()
+irc_closel)
+irc_loging
+irc_chat_join_infod
+irc_anay_states(

+irc_pref_frame(
+irc_actions(

Figure 4.6: The IRC libs Package in UML

65

[e mivc corors [v rosos [ivc cnas P
irc_parse_ctcp | Irc_parse_msg | irc_mircZhiml | Irc_register_commands |

Figure 4.7: The IRC parse.o file in LSedit

A A
I F I +f()

]

«—>

1

. Y
L B

I_i—l +gi)

Figure 4.8: Dependencies in LSedit and UML

66

TupleSet lifted = AlgebraOperation.composition(
AlgebraOperation.composition(hierarchy, calls),
AlgebraOperation.inverse(hierarchy));

In the opposite direction, merging relationship information becomes more complicated. As
described in Section [3.4.1], the naming schemes for entities in the UML and the FLS are
different. Before comparing the links relationships, the names must be made consistent,
using the containment structure of the existing TA factbase. Once this is complete, we go
through the links in the existing factbase and individually lift it to be between the files,
check to see if the lifted dependency exists in the UML, and if so, create the pre-lifted link
in the new merged factbase using the new consistent entity names. If a dependency exists
in the UML with no corresponding lower-level link in the factbase, we add a link between
files to the merged factbase.

When exporting an existing UML model to FLS-based TA (rather than merging), the
dependencies are exported as links between files rather than between functions, since there
is no information in an existing factbase to provide more details. Importing a factbase
into a new UML model is similar in that the existing links in the factbase are lifted to
relationships between files and simply added as dependencies. These procedures guarantee
the maintenance of as much detailed information about dependencies as possible during

imports, exports and merges.

4.3 Generalization

Similar to the details concerning dependencies, information about generalization can be

maintained during merge operations. The UML records certain information that the FLS

67

et

Super

Super

+a

+a

+foof)
+food

ol
oz
j
| "l 1
_
2

Sub

+hard

+bar +foog

(a) UML (b) Exported TA (c) Merged UML

Figure 4.9: Translation of Generalization

for TA cannot. For example, in UML a generalization relationship is denoted by a particular
arrow type. As described in Section [3.4.3] when a generalization relationship is exported
to TA it becomes a regular links relationship between the .o files, and the functions in the
superclass are copied to the subclass. When this information is merged into an existing
UML model, we wish to maintain the generalization relationship.

Figure [4.9] shows an example of generalization in the two different notations, as well as
what the UML model would look like after the exported TA factbase has been merged back
in. As described in Section [2.3] when merging the new TA factbase back into UML, some
information will be added to the UML model — Figure 4.9|(c) shows the added information.
The generalization arrow will not be replaced, as the existing UML model maintains this
piece of semantic information. The methods that had to be added to the TA factbase to
translate the generalization semantics, will be added to the existing UML model. It would
be possible to avoid adding this information to the model, but we have chosen not to do so.

A user may have intentionally left the subclass version of the function in the FLS-based

68

Sub Super

+a | _ +a
+faad +faad
+barg

Figure 4.10: Imported TA Factbase

factbase, so we do not override the user’s decision. On the other hand, if a subclass version
of a function has specifically been removed from the FLS-based factbase, it will also be
removed from the subclass in the UML model during a merge. Data members will not be
re-added to subclasses because subclasses will never have a reason to redefine variables.
Figure [4.10] shows the differences between importing and merging a FLS-based factbase
to a UML model when there has been generalization information added to the factbase.
The primary difference between this figure and Figure (c) is that during a merge the
arrow type is preserved, whereas with a simple import it is not. In addition, member
variables will be added to the “subclass”, contrary to the semantics of generalization.
Again, as with the detailed information about dependencies between functions, gener-
alization relationships are one type of information that can be maintained during a merge
but not during imports and exports. This is because each technical space has the ability
to record semantic information that is irrelevant to another technical space. The fact that
this information can be maintained during a merge implies the existence of a bridge domain
that captures all of the architectural details of the software system; however, this bridge
domain cannot be expressly encoded, and in order to get a complete and accurate picture

of a piece of software, a view through multiple technical spaces must be considered.

69

Chapter 5

Conclusions

Our original motivation for this work was to improve the usability and usefulness of the
SWAG architectural tools. Specifically, our goal, which we have accomplished, was to
provide the ability to produce UML models from facts extracted using the fact extraction
tools provided by SWAGKkit.

There are many reasons why interoperable software tools are more useful than those
that stand on their own. Different tools are suited to serving different purposes. It should
be possible to share model information between different software design and architecture
tools. Models can only be compared to each other when they are in the same format. A
clear architectural picture of a software system is best obtained through a collection of
views reflecting different features of the system. Each of these views may be managed by
different tools, but they all work within the same bridge domain.

We believe it should be possible to work in any technical space and have the changes

made by the developer or architect be reflected in a meaningful way in all other spaces.

70

We have made this a reality for the UML and SWAG technical spaces, as described in
this work. It has been made clear to us through the completion of this work that no one

technical space can fully reflect the actual architecture of a software system.

5.1 Contributions

We have provided a tool for bridging between the UML and SWAG technical spaces.
Users can import a FLS-based TA factbase into a new UML model using MagicDraw
UML. An XMI or MagicDraw-based UML model can also be exported to a new FLS-
based TA factbase. These models can also be merged in either direction. Certain semantic
information, as described in Chapter [, can be maintained during the merge process, even
though that information is not encoded in the space from which the information is being
merged. This maintenance of semantic information that cannot be stored in both models
is what points to the existence of a bridge domain.

Along with providing this tool for bridging these two technical spaces, we have provided
the documentation on how to bring other tools into this work. In Appendices[A]and [B] we
have provided documentation on how to use the two APIs that are used in our MagicDraw
UML plugin. The problems we encountered during this work and their solutions have also
been documented, in the hope of allowing others to bypass a lot of difficulties when bridging
between another technical space and one of the two for which our tool was developed.

This tool can be used for several applications. The most obvious is to get a clearer
understanding of the actual structure of a piece of software. If a user starts with a UML

model, it would be useful to be able to use the tools within SWAGkit to perform queries

71

on the facts in the model and to manipulate the model using one of the relational algebra
calculators. On the other hand, if the model is being extracted from source code, an
architect could use the SWAG tools to extract the facts about it then produce a set
of UML diagrams documenting the system in a standard modeling language. Another
potential application would be to use these tools to perform a very rough object discovery
on an existing non-object-oriented system. Testing this particular application is left for

future work.

5.2 Future Work

One obvious extension of this work would be to add the translation of layout information
to our tool. Currently, we import model information programmatically, but use the tools
built into MagicDraw UML to produce the UML class diagrams. These diagrams can be
created programmatically through the OpenAPI instead. LSedit has the built-in ability
to use layout information contained in the Attribute section of the TA factbase. The
OpenAPI has the ability to determine where items are in the diagrams, and where to put
diagram elements based on input from the TA factbase. As a result, translating the layout
from the UML to LSedit would be a matter of generating the UML diagrams program-
matically, determining a mapping from the MagicDraw coordinates to LSedit coordinates,
and outputting the position information in the attribute section of the TA factbase. The
opposite direction would be similar.

There are several encoding languages for models of software architecture that we would

like to see brought into this collection of tools. GXL is an XML-based exchange format

72

designed by Holt et al. [23] as a standard for describing and interchanging graphs about
software. RSF, part of the Rigi toolset developed at the University of Victoria [35], is an
encoding language similar to TA. DOT is a language used for recording basic information
about graphs. Bringing any of these languages into this tool would be useful. In addition,
many diagramming tools are capable of producing UML diagrams of software, such as Dia
or OmniGraffle. Both of these tools have the ability to export diagrams to text-based
encoding languages, which means it would be possible to read in the diagram data and
output it to TA or XMI.

Another possible extension would require some work on the fact extractors and schemas
available in SWAGEKit. It should be possible to extract some other types of information from
the compiled (or pre-compilation) source code, such as enumerations and state transitions
on those enumerations. Using this information, we could produce UML state transition
diagrams. Using some of the work that has recently been done in SWAG to extract runtime
information from executing programs, we could also produce UML sequence diagrams.
These extensions would require new TA schemes for these new types of information, and

new translation options for the MagicDraw UML plugin we have implemented.

73

Bibliography

1]
2]

[10]

Gentleware AG. Poseidon for UML. http://gentleware.com.

Jean Bézivin, Hugo Bruneliere, Frédéric Jouault, and Ivan Kurtev. Model engineering
support for tool interoperability. In WISME 2005 - 4" Workshop in Software Model
Engineering, 2005.

Grady Booch. Handbook of software architecture.
http://www.booch.com/architecture.

Grady Booch. Object Oriented Design with Applications. Benjamin/Cummings Pub.
Co., Redwood City, California, USA, 1991.

Borland Software Corporation. Borland Together.
http://www.borland.com/us/products/together/.

Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case study: Its
extracted software architecture. In ICSE '99: International Conference on Software
Engineering, Los Angeles, California, USA, May 1999.

L.C. Briand, Y. Labiche, and Y. Miao. Towards the reverse engineering of UML
sequence diagrams. In WCRE 2003: Proceedings of the 10th Working Conference on
Reverse Engineering, 2003.

John R. Cameron. An overview of JSD. IEEE Transactions on Software Engineering,
SE-12(2), Feb 1985.

Peter Pin-Shan Chen. The entity-relationship model — toward a unified view of data.
ACM Trans. Database Syst., 1(1):9-36, 1976.

CollabNet. ArgoUML. http://argouml.tigris.org.

74

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

Microsoft ~ Corporation. Visio 2003. http://office.microsoft.com/en-
us/FX010857981033.aspx.

Holger Eichelberger. Aesthetics of class diagrams. In Proceedings of the 15t Inter-
national Workshop on Visualizing Software for Understanding and Analysis. IEEE,
2002.

Mohammad El-Ramly, Eleni Stroulia, and Paul Sorenson. Mining system-user interac-
tion traces for use case models. In IWPC 2002: Proceedings of the 10th International
Workshop on Program Comprehension, 2002.

The Eclipse Foundation. Eclipse Modeling Project. http://www.eclipse.org/modeling.
The Eclipse Foundation. UML2. http://www.eclipse.org/uml2.

Martin Fowler. UML Distilled : A Brief Guide to the Standard Object Modeling
Language. Addison Wesley, Reading, Mass., 3rd edition, 2003.

Object Management Group. Unified Modeling Language: Infrastructure version 2.0,
March 2006.

The Omni Group. Omnigraffle. http://www.omnigroup.com/applications/omnigraffle/.

Rich Hilliard. Using the UML for architectural description. In UML 99 - The Unified
Modeling Language: Beyond the Standard, Second International Conference, volume
1723, pages 32-48, Fort Collins, CO, USA, October 1999. Lecture Notes in Computer
Science.

C. Hofmeister, R. L. Nord, and D. Soni. Describing software architecture with UML.
In Proceedings of the First Working IFIP Conference of Software Architecture, 1999.

Ric Holt. TA: The tuple attribute language, February 1997.

Ric Holt, Andrew Malton, and Tom Dean. CPPX: Open source c++ fact extractor.
http://www.swag.uwaterloo.ca/~cppx/.

Ric Holt, Andy Schiirr, Susan Elliott Sim, and Andreas Winter. Graph eXchange
Language, July 2002. http://www.gupro.de/GXL/.

Richard C. Holt, Michael W. Godfrey, and Andrew J. Malton. The build / comprehend
pipelines (position paper). In Second ASERC Workshop on Software Architecture,
February 2003.

75

[25]
[26]

[27]

28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

IBM. IBM Rational Software. http://www-306.ibm.com/software/rational/.

Igor Ivkovic and Kostas Kontogiannis. Tracing evolution changes of software artifacts
through model synchronization. In ICSM °04: Proceedings of the 20" IEEE Interna-
tional Conference on Software Maintenance, pages 252-261, Washington, DC, USA,
2004. IEEE Computer Society.

Dean Jin, James R. Cordy, and Thomas R. Dean. Where’s the schema? A taxonomy
of patterns for software exchange. In IWPC ’02: Proceedings of the 10" International
Workshop on Program Comprehension, page 65, Washington, DC, USA, 2002. IEEE
Computer Society.

Thomas Klein, Ulrich A. Nickel, Jorg Niere, and Albert Ziindorf. From UML to Java
And Back Again. Technical report, University of Paderborn, Paderborn, Germany,
September 1999.

Eleftherios Koutsofios and Stephen North. Drawing graphs with dot, February 2002.
http://www.graphviz.org/Documentation/dotguide.pdf.

Philippe Kruchten. The 441 view model of architecture. IEEE Software, 12(6):42-50,
1995.

Michael Kusugak. Qallupilluit, 1986. From Personal Correspondence with Robert
Munsch.

Alexander Larsson. Dia a drawing program. http://www.gnome.org/projects/dia/.

Timothy C. Lethbridge, Sander Tichelaar, and Erhard Ploedereder. The dagstuhl
middle metamodel: A schema for reverse engineering. In ateM 2003: Proceedings of

the International Workshop on Meta-Models and Schemas for Reverse Engineering,
May 2004.

Andrew Malton, Kevin A. Scheneider, James R. Cordy, Thomas R. Dean, Cousineau
Darren, and Jason Reynolds. Processing software source text in automated design re-
covery and transformation. In IWPC '01: Proceedings of the 9" International Work-
shop on Program Comprehension, pages 127-134, Toronto, ON, Canada, 2001. IEEE.

Hausi A. Miiller, Scott R. Tilley, and Kenny Wong. Understanding software systems
using reverse engineering technology: Perspectives from the Rigi project. In CAS-
CON ’93: Proceedings of the 1993 conference of the Centre for Advanced Studies on
Collaborative research, pages 217-226. IBM Press, 1993.

76

[36] Robert Munsch. Personal Communication, February 2006.

[37] Robert Munsch and Michael Kusugak. A Promise Is a Promise. Annick Press (Classic
Munsch), 1992.

[38] Ulrich A. Nickel, Jorg Niere, Jorg P. Wadsack, and Albert Ziindorf. Roundtrip en-
gineering with FUJABA. In WSR: Proceedings of the 2"* Workshop on Software-
Reengineering, Bad Honnef, Germany, August 2000. Fachberichte Informatik, Univer-
sitat Koblenz-Landau.

[39] No Magic, Inc. MagicDraw UML. http://www.nomagic.com.
[40] No Magic, Inc. MagicDraw OpenAPI UserGuide, February 2006.

[41] Object Management Group. Meta Object Facility (MOF) 2.0 XMI Mapping Specifi-
cation, v2.1, September 2005.

[42] Omondo. EclipseUML. http://www.omondo.com.

[43] Atousa Pahlevan. Enhancing static architecture design recovery by lightweight dy-
namic analysis. Master’s thesis, School of Computer Science, University of Waterloo,
2006.

[44] Visual Paradigm. Visual Paradigm for UML. http://www.visual-
paradigm.com /product /vpuml.

[45] University of Waterloo Software Architecture Group. About SWAG kit.
http://www.swag.uwaterloo.ca/swagkit /index.html.

[46] University — of Waterloo Software Architecture Group. Grok.
http://www.swag.uwaterloo.ca/tools.html#grok.

[47] University —of Waterloo Software Architecture Group. Grokdoc.
http://www.swag.uwaterloo.ca/~nsynytskyy/grokdoc/index.html.

[48] University — of = Waterloo Software Architecture Group. Lsedit.
http://www.swag.uwaterloo.ca/lsedit /index.html.

[49] Athanasios Staikopoulos and Behzad Bordbar. A metamodel refinement approach
for bridging technological spaces, a case study. In WISME 2005: Bridging Technical
Spaces and Model-Driven Evolution, 2005.

7

[50] Nikita Synytskyy. Setting up and using the bfx pipeline.
http://www.swag.uwaterloo.ca/qldx/README.bfx.html.

[51] Nikita Synytskyy. Setting up and using the ldx-bfx pipeline.
http://www.swag.uwaterloo.ca/qldx/README.ldx.bfx.html.

[52] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright, Darin Swan-
son, and Jeremy Isaak. Visualizing dynamic software system information through
high-level models. In OOPSLA '98: ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, 1998.

[53] Bernhard Westfechtel. Structure-oriented merging of revisions of software documents.
In SCM-3: Proceedings of the 3" International Workshop on Software Configuration
Management, pages 68-79, New York, NY, USA, 1991. ACM Press.

[54] Jingwei Wu. Open Source Software Evolution and Its Dynamics. PhD thesis, School
of Computer Science, University of Waterloo, 2006.

[55] Albert Ziindorf, Jorg P. Wadsack, and Ingo Rockel. Merging graph-like object struc-
tures. In (SCM-10) Proceedings of the 10" International Workshop on Software Con-
figuration Management, Toronto, Ontario, Canada, May 2001.

78

Appendix A

Using the QL API

In this appendix, we describe the Java classes from the implementation of QL [47] that
we used in implementation of our tool. This information is provided for readers who may
wish to extend our work. In order to use these classes, ql.jar and java_readline. jar
must be on the Java classpath. These files are both available upon request to Jingwei Wu,

the author of QL (http://swag.uwaterloo.ca/~j25wu/).

A.1 ca.uwaterloo.cs.ql.io. TAFileReader

This class is used to read in the information from a TA file. The read(String filename)

method returns a Factbase, ready to be used as described below.

79

A.2 ca.uwaterloo.cs.ql.fb.Factbase

A Factbase contains a collection of Tuples. These can be accessed in several ways. An
EdgeSet containing all Edges of a particular relation can be obtained with the method
getEdgeSet (String name). For instance, to obtain all call relations, one would use
getEdgeSet("call"). An EdgeSet containing all nodes in the graph can be retrieved
with getEdgeSet ("$INSTANCE"). On the other hand, a NodeSet containing all instances

of a particular type of node can be retrieved with a call to getNodeSet (String name).

A.3 Tuple Classes

A.3.1 ca.uwaterloo.cs.ql.fb.TupleSet

ca.uwaterloo.cs.ql.fb.EdgeSet and ca.uwaterloo.cs.ql.fb.NodeSet are both sub-
classes of TupleSet. As the name suggests, a TupleSet is a set of Tuples. In addition
to being a container, the TupleSet class provides the functionality to output element
data in TA form, using printTA(java.io.OutputStream out). This class also provides
the functionality to return a TupleList (getTupleList()), return an array of Tuples

(getAllTuples()), and remove duplicate items from the set.

A.3.2 ca.uwaterloo.cs.ql.fb.TupleList

The TuplelList class simply provides the regular operations expected from a List. It will

return a Tuple given an index, return an Iterator for the elements of the list, and so on.

80

A.3.3 ca.uwaterloo.cs.ql.fb.Tuple

The Tuple class is probably the most important class for directly interacting with the data.
This class provides the ability to get the domain and range of the tuple, using getDom()
and getRng (). It also provides matching set methods. These methods get and set integer
values, which are internal node IDs. To get the String names of the entities, one must
use the static method ca.uwaterloo.cs.ql.fb.IDManager.get (int id). IDManager also

provides the opposite method, for retrieving an ID: getID(String name).

A.4 ca.uwaterloo.cs.ql.fb.Show

Show can be used to obtain information about a node’s attributes. Show.getAtt(int
nodeID, EdgeSet att) will return a node’s attribute value. The EdgeSet required is
the EdgeSet from the factbase containing all of the attributes of a particular type. The
attributes are referred to using “@” in front of the attribute name. For example, if one
wanted to retrieve all of the labels on a graph, one would use fb.getEdgeSet (¢ ‘@label’’).

To obtain a particular label, the static method getAtt () must be used, as described above.

A.5 ca.uwaterloo.cs.ql.fb.AlgebraOperation

AlgebraOperation provides static methods for the operations that can be performed be-
tween TupleSets, EdgeSets and NodeSets that are provided by QL. These operations
include composition, inverse, intersection, transitive closure, difference, and so on. The

JavaDoc for this class should be consulted for more details on the individual operations.

81

Appendix B

Using the MagicDraw UML 10.5
OpenAPI

In this Appendix, we describe the classes that are relevant to developing a plugin similar to
ours, in MD UML using the OpenAPI. For the sake of clarity, we have omitted the package
names, unless they are relevant to the discussion. The JavaDoc included in an installation
of MagicDraw makes it easy to determine the package of a particular class. More details

can be found in the Open API User’s Guide [40].

B.1 Creating MD UML Plugins with a Menu

To create a plugin in MD UML, one must begin with a class that inherits from Plugin. This
class requires init (), close() and isSupported() methods. If menu options are desired,

the init method should create an object that is a specialisation of AMConfigurator, and

82

add it to the ActionsConfiguratorsManager. The specialisation of the AMConfigurator
is where menu options are added.

The actual plugin consists of the Java .jar file containing the compiled code, and a
plugin.xml file telling MD UML where to find the class that inherits from Plugin. The
plugin.xml file should also contain information on where to find any .jar libraries that are
needed to run the code. More information on the formatting of the plugin.xml file can be

found in [40)].

B.2 Dealing with UML Models and Elements

UML models are made up of Elements. There are several classes included in the OpenAPI
to assist with handling Models and their Elements.

ModelElementsManager is a utility class for adding, moving, and removing model ele-
ments.

ModelHelper is a utility class for finding parents of Elements, and getting and setting
client and supplier Elements on Relationships.

Other utility classes include RepresentationTextCreator, which is useful for retriev-
ing various information about an Element. For example, getFullUMLName (Element) will
return the path to the root element, with path items separated by ‘::’. For example, a
method named ‘method’ in the class ‘Class’ in the package ‘package’ will have a UML
Name of “package::Class::method”. As the name suggests, getPathToRoot (Element) will
return the full path to the root element, which can be useful for certain operations.

In the MagicDraw implementation, visiting model elements is based on the Visitor

83

Design Pattern. Every Element can accept a Visitor. To implement a specific Visitor,
you simply override the visit methods for each relevant element type in your own extension
of the Visitor class. Using this method, you can restrict your application to only visit
the types of model elements that are relevant to your interests. For example, in our
export operation, we visit Packages, Classes, Dependencies, Generalisations, Associations,
Properties, and Operations. We can then perform specific operations based on which type
of model element is being visited.

Creating model elements can be done using the ElementsFactory class. Instances of
the model Elements are created, then the attributes can be modified using methods specific
to the type of the Element. VisibilityKindEnum provides PACKAGE, PRIVATE, PROTECTED,

and PUBLIC visibility types for setting the visibility of a property or operation.

B.3 UML Model Elements

The package com.nomagic.uml2.ext.magicdraw.classes.mdkernel contains classes for
most of the various types of elements in UML. Element is the superclass of each of these
types. The methods available in each of these classes are extensive. For this reason, we will
not document them here, other than to state that these classes exist. More details on each

individual class can be found in [40]. These classes directly follow the UML2 specifications.
1. Class
2. DirectedRelationship

3. Generalization

84

4. Operation

5. Package

6. Property

The class for Depenencies is found in:

com.nomagic.uml2.ext .magicdraw.classes.mddependencies.Dependency.

85

	Introduction
	State of the Art
	Motivation
	An Example
	Contributions
	Structure of Thesis

	Background
	The UML Technical Space
	XML Metadata Interchange (XMI)
	UML Metamodel
	UML Diagrams
	UML Tool Choice

	The SWAG Technical Space
	The Tuple Attribute Language (TA)
	Function Level Schema (FLS)
	SWAG Tools

	Merging Data
	Related Work

	Model Translation
	Design Decisions
	Translation Scenarios
	Import a FLS Factbase to a UML Model
	Merge a UML Model into Existing FLS Factbase
	Export a UML Model to FLS
	Merge a FLS Factbase into Existing UML model

	Mapping of Entities
	Complications in Translation
	Naming Schemes
	Level of Calls Relationships
	Generalization

	Merge Algorithms
	Merging an FLS-based Model into UML
	Merging UML into a FLS-based Model

	Chapter Summary

	The Bridge Domain
	A Real-World Example
	Dependencies
	Generalization

	Conclusions
	Contributions
	Future Work

	Using the QL API
	ca.uwaterloo.cs.ql.io.TAFileReader
	ca.uwaterloo.cs.ql.fb.Factbase
	Tuple Classes
	ca.uwaterloo.cs.ql.fb.TupleSet
	ca.uwaterloo.cs.ql.fb.TupleList
	ca.uwaterloo.cs.ql.fb.Tuple

	ca.uwaterloo.cs.ql.fb.Show
	ca.uwaterloo.cs.ql.fb.AlgebraOperation

	Using the MagicDraw UML 10.5 OpenAPI
	Creating MD UML Plugins with a Menu
	Dealing with UML Models and Elements
	UML Model Elements

