
Bridging Technical Spaces:
Model Translation from TA to XMI

and Back Again

by

Kristina Diew Hildebrand

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2006

c© Kristina Diew Hildebrand 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

There are many different techniques and notations for extracting architecturally interesting

information from the source code of existing software systems. This process is known

as reverse engineering. One current problem with reverse engineering techniques is that

models of software systems cannot easily be transferred from one notation and storage

format to another. We refer to this as the problem of bridging technical spaces.

In this work, we approach the issue of bridging between the SWAG technical space and

the UML technical space. The SWAG technical space, named after the Software Architec-

ture Group at the University of Waterloo, consists of fact extractors, fact manipulators,

schemas, and a fact storage language - the Tuple-Attribute language (TA). The UML tech-

nical space consists of the UML metamodel, the XML Metadata Interchange (XMI) format

for encoding UML models, and various UML modeling tools. We have designed and im-

plemented a plugin for MagicDraw UML, which will import, export, and merge between

XMI-encoded UML models and TA-encoded Function-Level Schema models.

We document evidence of what is referred to as a bridge domain - a technical space

which exists between two encodable spaces. The metamodels of the two notation languages

that we have focused on are very rich and flexible, but neither technical space is capable

of fully expressing an accurate architectural model of any given software system; however,

each technical space is capable of maintaining certain semantic information relevant to

that technical space through multiple merge operations.

iii

Acknowledgements

I would like to thank my supervisor, Andrew Malton, for his guidance throughout the
process of completing this work, and for helping to keep me on track. Thank you also to
my readers, Steve MacDonald and Krzysztof Czarnecki, for their feedback and suggestions
for my work.

In addition, I want to express my gratitude to my colleagues in the Software Architec-
ture Group, for their support and for making my time here more enjoyable. I’d particularly
like to thank Jingwei Wu for providing me with the QL source code and for his help with
learning how to use it.

Special thanks to Robert Munsch, for his input on the problem of expressing the same
concepts within different languages and cultures.

I would also like to thank my parents for encouraging me throughout my studies, and
for helping me get to the point where I could enter the MMath Program at the University
of Waterloo.

Thanks also to the Natural Sciences and Engineering Research Council of Canada,
for the financial support to pursue a Master’s degree, in the form of a Canada Graduate
Scholarship.

Last but certainly not least, I would like to thank Jason Taylor for his love and support
over the past three years, and his promise to continue to do the same for the rest of our
lives.

iv

Contents

1 Introduction 1
1.1 State of the Art . 2
1.2 Motivation . 6
1.3 An Example . 9
1.4 Contributions . 11
1.5 Structure of Thesis . 13

2 Background 14
2.1 The UML Technical Space . 15

2.1.1 XML Metadata Interchange (XMI) 17
2.1.2 UML Metamodel . 17
2.1.3 UML Diagrams . 20
2.1.4 UML Tool Choice . 23

2.2 The SWAG Technical Space . 25
2.2.1 The Tuple Attribute Language (TA) 25
2.2.2 Function Level Schema (FLS) . 27
2.2.3 SWAG Tools . 29

2.3 Merging Data . 30
2.4 Related Work . 32

3 Model Translation 36
3.1 Design Decisions . 36
3.2 Translation Scenarios . 38

3.2.1 Import a FLS Factbase to a UML Model 38
3.2.2 Merge a UML Model into Existing FLS Factbase 39
3.2.3 Export a UML Model to FLS . 39
3.2.4 Merge a FLS Factbase into Existing UML model 43

3.3 Mapping of Entities . 43

v

3.4 Complications in Translation . 50
3.4.1 Naming Schemes . 51
3.4.2 Level of Calls Relationships . 52
3.4.3 Generalization . 53

3.5 Merge Algorithms . 55
3.5.1 Merging an FLS-based Model into UML 55
3.5.2 Merging UML into a FLS-based Model 56

3.6 Chapter Summary . 57

4 The Bridge Domain 58
4.1 A Real-World Example . 60
4.2 Dependencies . 63
4.3 Generalization . 67

5 Conclusions 70
5.1 Contributions . 71
5.2 Future Work . 72

A Using the QL API 79
A.1 ca.uwaterloo.cs.ql.io.TAFileReader . 79
A.2 ca.uwaterloo.cs.ql.fb.Factbase . 80
A.3 Tuple Classes . 80

A.3.1 ca.uwaterloo.cs.ql.fb.TupleSet . 80
A.3.2 ca.uwaterloo.cs.ql.fb.TupleList . 80
A.3.3 ca.uwaterloo.cs.ql.fb.Tuple . 81

A.4 ca.uwaterloo.cs.ql.fb.Show . 81
A.5 ca.uwaterloo.cs.ql.fb.AlgebraOperation . 81

B Using the MagicDraw UML 10.5 OpenAPI 82
B.1 Creating MD UML Plugins with a Menu 82
B.2 Dealing with UML Models and Elements 83
B.3 UML Model Elements . 84

vi

List of Figures

1.1 Relationships between elements of a Technical Space 8
1.2 A simple translation example from UML to LSedit 9
1.3 A simple translation example from LSedit to UML 11

2.1 UML Class Metamodel . 18
2.2 UML Packages Metamodel . 19
2.3 UML Relationships Metamodel . 20
2.4 UML Class Diagram . 21
2.5 UML Class Diagram . 22
2.6 UML Sequence Diagram . 23
2.7 UML Sequence Diagram . 27
2.8 Overview of Merging FLS into UML . 30
2.9 Merging Existing FLS into Existing UML Model 31

3.1 LSedit view of Gaim 1.5.0, from a TA factbase 40
3.2 MagicDraw UML view of Gaim 1.5.0 imported from factbase in 3.1 41
3.3 Edited UML model of part of Gaim 1.5.0 42
3.4 Portion of merged Gaim 1.5.0 model in LSedit 42
3.5 Partial UML model of QL . 44
3.6 LSedit view of partial model of QL . 45
3.7 Modified partial LSedit view of QL . 46
3.8 Portion of merged QL model in UML . 47
3.9 Schema Mappings . 49
3.10 TA “Inheritance” Semantics . 54

4.1 “Bridge Domain” arises through translation 59
4.2 Interesting Relationships . 61
4.3 Privacy Source in UML . 62
4.4 Backwards Query on privacy.o . 62

vii

4.5 The IRC .libs SubSystem in LSedit . 64
4.6 The IRC libs Package in UML . 65
4.7 The IRC parse.o file in LSedit . 66
4.8 Dependencies in LSedit and UML . 66
4.9 Translation of Generalization . 68
4.10 Imported TA Factbase . 69

viii

List of Tables

3.1 Basic Mappings between FLS Entities and UML Entities 48

ix

Chapter 1

Introduction

Sharing information between two cultures is frequently a difficult problem – this is true

in human cultures, as well as the “cultures” of different software model storage formats.

Robert Munsch’s story A Promise Is a Promise [37], published in both English and Inuk-

titut, exemplifies the difficulties associated with adaptation required for different cultures.

Munsch describes the cultural issues that arose when writing this story: “I tried to make

it into a story that would work in both Inuit and Southern worlds” [36].

The story is about an Inuit girl, Allashua, who defies her mother and goes down to

the beach and onto the sea ice. She is caught by the qallupilluit, a mythical Inuit creature

that lives among the ridges and cracks in the ice on Hudson Bay. She is released but

only after promising to return with her brothers and sisters. Michael Kusugak wrote the

core of the story, which describes a child’s encounter with the qallupilluit. The story was

later modified by Munsch to better suit the various target Canadian cultures. The original

version has several children narrowly escaping the sea creature after being told by their

1

mothers not to go near the ice. It was a simple cautionary tale about the dangers of the sea

ice [31]. Such a moral would have less impact on children in many other parts of Canada

since they do not encounter sea ice in their daily lives. Munsch modified the story, with

the promise made by Allashua to the qallupilluit, subsequently making a broken promise

the central theme. “The big problem with my version was that Alashua was impolite to

the Quallupilluit. Kids of Michael’s generation were always polite to Elders, even if the

Elder was going to kill them” [36].

As we can see in Munsch’s story and its need to be adapted, some concepts are not easily

expressed within a given culture or language. In addition, not all concepts are relevant to

every culture. In software engineering, we refer to this as the problem of bridging between

technical spaces. This term refers to the notation, schema, domain, and tools with which a

programmer or software architect is working. Translating or merging information between

two technical spaces is a difficult but necessary task and thus motivates our research.

1.1 State of the Art

Abstraction is the act of creating a representation of the most important features of a

set of complex information and “is the primary way we as humans deal with complexity”

[3]. Abstraction is required in the field of software engineering because it helps analysts

design the high-level architecture of a new system, aids new developers in understanding

an existing system when they join a development team, and allows maintainers of legacy

systems to understand the structure and behaviour of a system that they may need to

modify. In Object Oriented Design with Applications, Grady Booch refers to Miller’s ex-

2

periments which show that an average person is capable of understanding between five and

nine pieces of information at a time [4]. This applies to any type of information, including

the components of a software system. We can aid comprehension by organising complex

information into visual categories and hierarchies, limiting the amount of information that

must be understood at any moment.

There are many different techniques for abstracting information about complex software

systems. The result of applying these abstraction techniques is a model of the software be-

ing investigated. Along with this variety of techniques comes a wide variety of notation lan-

guages, model storage formats, model interchange languages, and visualisation techniques.

Some of the languages used for storing models about software include Entity-Relationship

models [9], XML Metadata Interchange (XMI) [41], the Tuple-Attribute Language (TA)

[21], and general-purpose graph description languages, such as GXL [23] and DOT [29].

Each of these storage languages generally has its own metamodel and visualisation tech-

niques. For example, XMI is used to record UML models, and GXL is intended as a graph

description language.

Visualisations of software are useful because they provide a high-level description of a

complex system and allow a developer to see the important parts of the software at a glance.

This can improve a developer’s understanding of the software. These visualisations can

be created by extracting information from the source code of existing pieces of software.

This is called reverse engineering, and is a very active field of research within software

engineering. There are currently several well-developed and well-tested reverse engineering

tools and techniques, including a wide variety of commercial reverse engineering tools for

UML [5] [25] [39], and tools and techniques developed by researchers at various academic

3

institutions. For example, researchers at the University of Victoria have developed a suite

of tools, called Rigi, which includes reverse engineering tools, a graph model, a scripting

language for manipulating the graphs, and a rigiedit, a graph editor [35]. The Software

Architecture Group (SWAG) at the University of Waterloo, has developed a similar suite

of tools, hereafter referred to as SWAGkit [45]. The usual output from using SWAGkit is

one or more files in the TA format, conforming to the Function Level Schema (FLS). TA

is a language for recording information about certain types of graphs, and the Function

Level Schema is a schema created by SWAG to give meaning to graphs about the static

structure of software systems. Using this schema, we can record details about relationships

between various entities in a piece of software. These TA files can be viewed in LSedit,

a software landscape editor and visualisation tool and also can be manipulated using a

relational algebra calculator known as grok.

The Unified Modeling Language (UML) is a standardised notation language, primarily

intended for designing object-oriented software systems. It is also useful for architectural

description [19]. The Object Management Group (OMG) is a consortium that maintains

computer industry standards for software development. The OMG has adopted XMI as

a standard for recording UML models. One of the primary benefits of UML is that it is

the industry standard notation for designing object-oriented software systems. When the

various participants in the software development process use a common language, they are

able to communicate better. As a standard, UML can facilitate communication between

different stakeholders in the software design, development and maintenance processes. We

are interested in producing XMI-encoded UML models from information extracted using

SWAGkit and the reverse, producing input for the SWAG tools from XMI-encoded UML

4

models. This process will require us to provide the ability to import and export both types

of models, as well as the ability to merge information between existing models.

Many techniques have been developed to bring together information from multiple

stakeholders and merge different types of information. In any development group with

more than two members, different developers may be working on multiple versions of

source code concurrently. When they commit changes to a central source code repository,

a correct merge must take place, since possible conflicts may arise between the different

versions of the code. Several techniques have been developed by various researchers to

deal with these conflicts. Zündorf et al. [55] have developed an object structure based

technique for merging the source code of object-oriented systems that overcomes many of

the problems associated with text-based merging. Malton et al. [34] developed a technique

for factoring source code into different streams of text, such as code and comments, then

merging them back together after making changes to the individual streams. Westfechtel

[53] has developed a technique for merging information from various types of software

documents, such as source code and design documents. This system uses an interface to

each document type, allowing new document types to be easily added to the system.

There has also been a lot of research into developing techniques for Round-Trip Engi-

neering in recent years. Round-trip engineering refers to the process of turning a design

into source code then extracting the design, possibly after the source source code has been

modified [38]. FUJABA [28], developed by researchers at the University of Paderborn, is

an example of one such system. FUJABA, short for “From UML to Java And Back Again,”

consists of tools for developing a model in UML, exporting the model to Java source code,

and then recreating the UML model from modified source code [28]. Some of the decisions

5

involved in the design of FUJABA are similar to those that were involved in our work.

1.2 Motivation

Different modeling tools are useful for a wide variety of different purposes. A developer

may wish to sketch out a general design before committing it to a model or a particular

notation language. Simple graph-drawing or diagramming tools, such as OmniGraffle [18],

Microsoft Visio [11], and Dia [32] are good for these purposes. A developer may later wish

to extract information about the design from existing source code, manipulate it, obtain

more detailed information about interactions between the various components, and explore

a visualisation of the software. These purposes would be well-served by tools similar to

those available in SWAGkit [45], such as fact extractors (BFX [50], LDX [51], CPPX [22]),

relational calculators (grok [46], QL [47]), and software landscape editors (LSedit [48]).

A developer may also wish to view and edit the design of their software in a tool with

a standardised notation language, pattern-matching capabilities, the ability to export to

source code, and the ability to interface with a variety of other development tools; tools such

as MagicDraw UML [39] and Rational Software Architect [25] may serve these purposes.

Each of these sets of tasks require the information about a software system to be available

within different technical spaces.

In the specific case we approach with this work, we are working with the UML technical

space and the SWAG technical space. Both of these spaces will be described in detail in

Chapter 2. If a user starts with a UML model, it would be useful to be able to use the

tools within SWAGkit to perform queries on the facts in the model and to manipulate the

6

model using one of the relational algebra calculators. On the other hand, if the model is

being extracted from source code, an architect could use the SWAG tools to extract the

facts about it then produce a set of UML diagrams documenting the system in a standard

modeling language.

A software system can be described using a model that conforms to one of many dif-

ferent metamodels. The important information about the software – that is, the model

– can be encoded in a language that relies on a particular metamodel to give the model

meaning. This model can then be visualised in a tool designed to understand the partic-

ular metamodel and encoding language. Figure 1.1 shows the metamodels, encoding, and

visualisation tools for three technical spaces. These features, represented as boxes in this

diagram, show the various components of a technical space. In each box, we have shown

specific tools and languages for the UML space, the SWAG space, and the Rigi space.

The UML was originally intended for designing object-oriented systems but can be

used to model the architecture of a system that was not designed with object-oriented

principles in mind. SWAGkit currently uses a non-standard notation for describing software

architecture, and for this reason we are interested in making it possible to move this model

information between different technical spaces. Specifically, we aim to be able to move

model information between the SWAG and the UML technical spaces. Ideally, it should

be possible to work in multiple technical spaces at once and have any changes made in one

technical space be reflected in the other corresponding spaces.

We believe that a system can be represented in several technical spaces at once, and it is

possible to translate between these technical spaces. No one technical space fully reflects the

actual software, and each technical space provides different views of the software system.

7

Figure 1.1: Relationships between elements of a Technical Space

8

(a) UML Class Diagram (b) LSedit View

Figure 1.2: A simple translation example from UML to LSedit

We will describe the process for moving models between UML’s standard interchange

format, XMI, and TA – the format required by SWAG’s architectural tools.

1.3 An Example

In this section, we will discuss two simple examples. Figure 1.2 shows an example of a

UML diagram and its LSedit equivalent. This diagram was created in MagicDraw UML,

then was exported to TA, using our tool. The TA is shown below. This segment of TA

uses the function-level schema, which will be described in detail in Chapter 3.

FACT TUPLE :

$INSTANCE /aPackage/Super/foo cFunction

$INSTANCE /aPackage/Sub/foo cFunction

$INSTANCE /aPackage/Sub/bar cFunction

$INSTANCE /aPackage/Super cObjectFile

$INSTANCE /aPackage/Util cObjectFile

$INSTANCE /aPackage/Sub cObjectFile

9

$INSTANCE /aPackage/Super/p cObject

$INSTANCE /aPackage/Sub/p cObject

$INSTANCE /aPackage cSubSystem

contain /aPackage /aPackage/Super

contain /aPackage /aPackage/Util

contain /aPackage /aPackage/Sub

contain /aPackage/Super /aPackage/Super/p

contain /aPackage/Super /aPackage/Super/foo

contain /aPackage/Sub /aPackage/Sub/p

contain /aPackage/Sub /aPackage/Sub/foo

contain /aPackage/Sub /aPackage/Sub/bar

cLinks /aPackage/Super /aPackage/Util

cLinks /aPackage/Sub /aPackage/Super

The Function Level Schema for TA does not have the capability of recording different types

of relationships, other than containment and cLinks. Other schemas can be developed

for TA, but we have chosen to use this one, as it is the most commonly used within

SWAGkit. As demonstrated in Figure 1.2, when a UML-based generalization is exported

to the Function Level Schema, the internal elements of the superclasses are copied to the

subclass. This is done in order to preserve the semantics of this relationship. Translations

such as this one must be created, because the metamodels of these two technical spaces

have different sets of features. In this example, p is a member variable of the class Super,

foo is a function in this same class, and bar is a function defined only in the class Sub.

The translation copies the variables and functions of the superclass into the subclass, then

defines a cLinks relationship between the two classes – or cObjectFiles. The packages

become SubSystems.

Figure 1.3 shows a slightly different example. In this case, the example model starts

in LSedit, and we have imported it using our tool into a MagicDraw UML model. The

10

(a) LSedit Software Visu-
alisation

(b) Imported UML Dia-
gram

Figure 1.3: A simple translation example from LSedit to UML

main difference between these two views of the system is the position of the dependency

between foo and bar. In the LSedit diagram, the links relationship exists between individual

functions. In the MagicDraw UML version of this model, the dependency exists between

the classes, rather than the individual operations.

1.4 Contributions

Our primary goal was to create a method for producing UML diagrams from TA-based

factbases. To this end, we have provided a tool for translating models from the TA language

used by SWAG to the XMI storage format for UML models. We have focused on the

package and class diagrams of UML since they are the most commonly used and the most

useful for documenting software architecture [19]. Further, we have contributed to the

11

understanding of the issues involved in bridging between technical spaces. We now believe

that neither technical space fully reflects reality, resulting in the concept of a bridge domain.

This bridge domain exists between the technical spaces being bridged. It can be thought

of as a mental-only model, or as the reality reflected in the actual implementation of the

software system. Each modeling notation has its own features that contribute to the bridge

domain, but none fully capture it.

We wish to promote the use of well-developed and well-researched extraction and ma-

nipulation tools such as those found in SWAGkit. These tools include a variety of fact

extractors, a relational calculator, and a software landscape navigator and editor. The

techniques developed by SWAG have been validated with numerous case studies and have

proven to be quite useful in studying the architecture of a wide variety of software sys-

tems [6] [54]. We believe that these tools would enjoy more widespread use in industry if

they could produce visualisations in UML, a modeling language widely recognised as the

industry standard.

We eventually hope to be able to work in any technical space and have the changes

made by the developer or architect in one space be reflected in a meaningful way in all

other spaces. While moving toward this goal, we have created a tool for moving model

information back and forth between TA and XMI. We have also documented the process

for building these tools, which will allow others to follow our procedure for other modeling

notations.

12

1.5 Structure of Thesis

We begin this thesis with some background on the Unified Modeling Language (UML),

XML Metadata Interchange (XMI), the Function Level Schema (FLS) and the Tuple At-

tribute Language (TA), in Chapter 2. These technologies make up the two technical spaces

that are relevant to our research. We will then describe our overall approach to bridging

these two domains, in Chapter 3. Chapter 4 will discuss the concept of a Bridge Domain –

that is, a technical space that exists between the two encodable spaces. Finally, Chapter 5

summarises our contributions, and describes some areas for future work related to our

research.

13

Chapter 2

Background

We will frequently use the term technical space, which refers to the notation, schema, do-

main, and tool with which a programmer or architect is working. A technical space defines

the framework in which a program understanding task is being accomplished [49]. In our

work, the two main technical spaces we have studied are: the XMI format for storing UML

models, and the Tuple-Attribute language (TA). TA is used for storing the Function-Level

Schema (FLS) information extracted using the tools developed by the Software Architec-

ture Group (SWAG) at the University of Waterloo.

Any data format should provide and conform to a schema or meta-model in order to

give structure to the data. The data is given meaning through the documentation of the

schema or meta-model. Schemas can be internal or external, and implicit or explicit [27].

In TA, schemes are explicit and external; that is, they are explicitly defined outside of

the data being recorded. TA’s schemes are usually contained within the same file as the

data but in a separate section from the actual data. While working in the TA technical

14

space, we will be restricting ourselves to the FLS, the most commonly used schema in

this space. This schema and the TA language in general will be described in more detail

in Sections 2.2.1 and 2.2.2. The metamodel for UML is also explicit and external, but is

defined separately from the data, in the specification documents produced by the OMG.

The UML meta-model is very large; we will only concentrate on a subset of it, which will

be described in more detail in Section 2.1.2.

This chapter will provide detailed background information for the reader. We begin

with a discussion of the UML and the UML-based tool we have chosen to work with. This

is followed by details on the SWAG technical space, including the tools involved, the TA

language, and the FLS. We conclude this chapter with some discussion of related research

on merging sets of related data and some techniques for promoting software engineering

tool interoperability.

2.1 The UML Technical Space

The UML “is a family of graphical notations, backed by single meta-model, that help in

describing and designing [...] software systems built using the object-oriented (OO) style”

[16]. The UML has also successfully been used to describe software architectures in the past.

It works particularly well for communicating the static structure of software. In Describing

Software Architecture with UML, Hofmeister et al. argue that a conceptual view, a module

view, and a code view can be readily described using standard UML diagrams, such as

Class & Object Diagrams, Package Diagrams, and Component Diagrams [20]. In Using

the UML for Architectural Description [19], Hilliard describes how the UML can be used

15

within the context of the IEEE Recommended Practice for Architectural Description. In

this paper, Hilliard points out that it has become standard practice to use multiple views

to describe software architecture. This need for multiple, consistent views is satisfied by

the different types of diagrams defined by the UML.

Throughout the history of software modeling techniques, there have been many differ-

ent decomposition and abstraction approaches developed and used. These historical ap-

proaches correspond to several of the views of software architecture proposed by Kruchten

in The 4+1 View Model of Software Architecture [30]. The logical view describes the object

model of the software and is concerned with the data associated with the software. This

view of software systems can be documented using the data-based Entity-Relationship dia-

grams proposed in 1976, by Peter P. Chen [9]. The process view describes the concurrency

and synchronisation aspects of the software system, which could be described, in part,

using the Jackson System Development specifications proposed by Cameron in 1985 [8].

The physical view describes the way in which the software is mapped onto the hardware.

This view has does not have a historical notation designed specifically for it, though sim-

ple network diagrams perform this task well. The development view describes the static

organisation of the software, as the developers see it. This view can be encoded using the

approach developed by SWAG, performing static architectural analysis then producing a

boxes-and-arrows diagram of the static relationships between compilation units.

The UML provides standard notations for each of these types of views, as well as

many others. The UML symbols and notations used for the representation of these views

have evolved out of their historical ancestors. For example, a deployment diagram shows

the physical view of a system. A package diagram provides the development view. The

16

process view can be obtained from a component diagram annotated with thread and process

stereotypes. The logical view can be described using a class diagram, since classes are

the fundamental data structure in object-oriented systems. The UML also introduces a

notation for use cases, satisfying the +1 scenario view described by Kruchten.

2.1.1 XML Metadata Interchange (XMI)

XMI was designed to allow software engineers to easily exchange model metadata between

software tools. It was primarily developed by the OMG as an interchange language for

UML models, but can be used for any model information that can be described using

Meta-Object Facility (MOF). MOF is another OMG standard, intended to support Model

Driven Engineering. Full XMI support within UML modeling tools is not currently very

widespread – this may be due to the significant changes that have been made between

the 1.X standards and the 2.X series of standards, the latest of which was released in

September of 2005 [41]. The more popular UML tools partially support XMI, at least for

the more common and straightforward features of the UML, which are all that is required

for our work.

2.1.2 UML Metamodel

We will describe the subset of the UML metamodel that is relevant to our work. The

diagrams in this section use the UML class diagram notation and come from the UML 2.0

Infrastructure document [17].

17

Figure 2.1: UML Class Metamodel [17]

Class

Figure 2.1 shows the elements that can be related to a Class in UML. Classes are Types that

are made up of Properties and Operations and occasionally other Classes. An Operation is

analogous to a function, which is performed using the data stored in the properties of the

Class. The Properties are basically variables that may have different values for different

instances of the class. Classes can have relationships with other Classes, as outlined below.

Package

Figure 2.2 shows the metamodel for UML Packages. Packages can contain Types and other

18

Figure 2.2: UML Package Metamodel [17]

Packages. As NamedElements, they can also be related to other model elements.

Relationships

Figure 2.3 shows the metamodel for UML Relationships. Relationships are associated

with one or more elements, such as Classes and Packages. Generalization, Association,

and Dependency are all types of Relationships and are the Relationships that we will

focus on throughout this work. Other types of Relationships include Composition and

Aggregation. Generalization is a relationship which means that a subclass is an instance of

a superclass. This relationship is designated by a line with an empty arrowhead pointing

to the superclass. An Association is designated by a solid line, possibly with arrows,

labels, and multiplicities at either end. An Association has no strict implementation in

object-oriented Programming languages. Dependencies are designated by a dashed arrow,

pointing from one model entity to another, towards the entity that is depended upon.

19

Figure 2.3: UML Relationships Metamodel [17]

2.1.3 UML Diagrams

UML defines several types of diagrams, many of which do not require the programmer

to think in an object-oriented manner. UML diagrams are made up of entities and re-

lationships between the entities. The entities include: classes, packages, objects, and

components, among others, whereas the relationships include: dependencies, messages,

state transitions, associations, and generalization. Each different type of UML diagram is

composed of different subsets of these diagram elements. For example, a Class Diagram

can contain classes, packages, and a variety of relationships. All of the UML diagrams may

contain comments attached to any model element.

Static Diagrams

The Class, Package and Component diagrams defined by the UML specification are the

most useful for software architecture description [20]. These diagrams most readily repre-

sent static structure, which is the structure extracted using the SWAG tools. We will focus

20

Figure 2.4: UML Package Diagram

on the Class and Package diagrams, as these are sufficient for representing the information

available in the FLS-based factbases extracted by SWAGkit.

Package diagrams can help identify the higher-level dependencies in an application.

These diagrams basically show the packages in a software system, as well as the relation-

ships between those packages. Normally, these relationships will be determined based on

the relationships between the contents of the packages then lifted to the package level.

Figure 2.4 is an example of a very simple UML Package Diagram. It shows two packages

(Ordering and Payment) that depend on the Shipping package, ShoppingCart depends on

Payment and Pricing, and Pricing and ShoppingCart are sub-packages of Ordering.

Figure 2.5 is an example of a UML Class Diagram. This is far from being a complete

specification for any system, but is used here to demonstrate some of the features of Class

Diagrams. On the left side of the diagram is a generalization hierarchy. Payments can

be of two types: Cash or Credit. Each Order is associated with any number of Payments

and is composed of one or more OrderLines. At the OrderLine end of this Composition

relationship there is a role name, lineitems. This notation is used on associations to give

more details about the relationship. On the far right of this diagram is the class Customer,

21

Figure 2.5: UML Class Diagram

which has a one-to-one association with an Address. Customers have the properties name

and balance, and the operation getName().

Dynamic Diagrams

The UML also defines a number of diagrams that are not about static structure, but

rather about behaviour of the software system. Recent activities [13] [7] [52] [43] within the

software engineering research community have been aimed at extracting and understanding

dynamic software architecture information, and therefore it would be useful to consider the

ability to put this information into a standard visualisation format such as UML. Specific

dynamic interaction traces can be documented using UML’s sequence diagrams. Figure 2.6

is an example of a sequence diagram. An instance of the class Order sends getQuantity

and getProduct messages to each OrderLine. The message getPricingDetails is sent to a

Product, then the Order object makes a method call to itself to calculate the price of the

order. A similar notation could be used for describing non-object-oriented sequences of

events, using compilation units in place of classes, and function calls and returns between

22

Figure 2.6: UML Sequence Diagram

those compilation units. The same sorts of techniques could be applied to Collaboration

and Activity Diagrams. Statecharts can also be applied to non-object-oriented information,

but that level of detail is not generally considered to be interesting with respect to the

software’s architecture.

2.1.4 UML Tool Choice

After studying and using several UML modeling tools, including IBM’s Rational Software

Architect [25], various Eclipse-based plugins and tools [42] [14] [15], Poseidon for UML [1],

ArgoUML [10] and Visual Paradigm [44], we have chosen MagicDraw UML (MD UML)

[39] as our target platform. This is for a number of reasons. First, it uses XMI as its

standard model storage format. As previously noted, XMI is the OMG standard for UML

23

interchange. MD UML also features the OpenAPI, which makes creating and editing UML

models a fairly straightforward programming task. This eliminates a need for separate

XML tools or our own software to create an XMI-compatible model, thus avoiding unnec-

essary steps in translation that could remove flexibility and introduce errors. The use of

the OpenAPI will be discussed in some detail in Appendix B. MD UML closely follows the

latest published standards for UML and XMI, and has one of the best layout algorithms

for UML class diagrams [12]. The other tools that were part of our survey have limited or

non-existing support in at least one of the above areas.

The main drawback to using an existing tool, such as MD UML, is that the developers

of the tool have their own set of interpretations of how the UML notation is intended to

be used. For example, an association is an abstract concept that is not tied to a particular

implementation in object-oriented programming languages. Each developer may implement

an association in a different way. MD UML records navigable associations within the model

information as properties within the associated classes, but non-navigable associations have

no assumed implementation in MD UML. The MD UML interpretation for particular parts

of the UML notation, such as associations, may not match ours, and both may not match

the reader’s. We have chosen to accept MD UML’s implementation of these types of

concepts, rather than attempting to impose our own interpretation. In addition, MD UML

users will understand and expect the interpretation that this tool imposes.

24

2.2 The SWAG Technical Space

The SWAG technical space consists of several software architecture tools, the Tuple-

Attribute (TA) Language, and several schemas for TA. In our work, we concentrate on

one particular TA schema for software systems. The tools involved in the SWAG technical

space have been used to extract and study the architectures of a wide variety of software

systems, including the Linux Kernel, PostgreSQL, and OpenSSH [54], among others. This

section describes the elements of the SWAG technical space.

2.2.1 The Tuple Attribute Language (TA)

The TA language, developed by Ric Holt [21], is a data format that records information

about nodes and edges in a graph. These nodes and edges can also be thought of as entities

and relations. Information recorded in a file in the TA format is called a TA program. TA

programs are separated into a scheme section and a fact section – often referred to as the

factbase. The scheme section describes the meaning of the facts. Both the scheme and fact

sections consist of Tuple and Attribute sub-sections.

The Tuple Sub-Language

Each line in the tuple sub-language of TA can be interpreted as information about an edge

in the graph. This could include information such as function calls, variable references, or

containment relationships. For example, the following TA fragment shows that P contains

Q and R, and R calls Q.

contain P Q

25

contain P R

call R Q

The Attribute Sub-Language

The Attribute sub-language defines information about each node. This can include labels,

size, description, and position of a given node. For example, the following TA shows that

P has the attribute label, with the value “foo”.

P { label = "foo" }

Schemes

A TA program should also define a scheme, which describes the shape of the graph. The

data has no meaning without the scheme. A scheme identifies what types of nodes can

be related, what edges are allowed between them, as well as the list of types allowed for

nodes in the factbase. The scheme also defines the allowed attributes for each node and

optional default values for these attributes. The scheme encodes a set of constraints that

we expect the graphs encoded in the fact level of the language to satisfy. We say that

a graph conforms to a scheme when the fact level graph uses the entities defined in the

scheme in the way the scheme allows. As an example, the piece of scheme information

below shows that a contain edge can exist between a subsystem and a file, meaning that

a subsystem can contain any file.

contain subsystem file

26

Figure 2.7: FLS for TA

2.2.2 Function Level Schema (FLS)

In this work, we will be concentrating on the Function Level Schema (FLS), which is used

to define certain information about software systems. Other schemas can be developed

to describe other types of information, but we have chosen to use this one as it readily

describes the static structre of a system under study. The output from the QLDX pipeline,

described in Section 2.2.3, is a set of facts about the piece of software. Several QL scripts

are included with the QLDX pipeline and are normally used to process the extracted facts,

producing a TA factbase that conforms to either the FLS or that has been lifted to the

file level. In this section, we will describe each of the entities and relations allowed by the

FLS. It is summarised in Figure 2.7. This schema was designed for describing information

extracted from compiled C source code, which explains the naming conventions involved.

27

cSubSystem

Each cSubSystem normally corresponds to file system directories containing source code

files. These subsystems can be interpreted as components or modules of the software

system.

cObjectFile, cExecutable, cArchiveFile

As the names suggest, Object Files, Executables, and Archive Files created from C source

code are represented by cObjectFile, cExecutable, and cArchiveFile. In our work, we have

concentrated on the cObjectFiles, as these are the most relevant in the static structural

diagrams.

cObject

cObjects are the variables that are declared within a given .c file. These will not be

included in the factbase if the facts have been lifted to the file level.

cFunction

cFunctions directly correspond to actual functions. These are contained within cObject-

Files and can be linked to other functions, or can refer to objects. As with cObjects,

cFunctions will not be included in the factbase if the facts have been lifted to the file level.

cLinks

cLinks can occur between the various entities in the FLS. This relation is used to document

relationships like function calls and variable references. In the FLS, cLinks will normally

28

occur between cObjects and cFunctions. If the facts have been lifted to the file level, cLinks

will occur between files, rather than entities within those files.

contain

This relation is used to define a containment hierarchy, identifying which entities are con-

tained by others. For example, subsystems will normally contain the various types of files.

The files, in turn, will usually contain functions and objects.

2.2.3 SWAG Tools

The SWAG architectural tools that are relevant to this work include BFX (a fact extrac-

tor), QL (a relational calculator), and LSedit (a software landscape editor). This set of

tools is often referred to as the Build/Comprehend pipeline [24]. BFX is used to extract ar-

chitecturally interesting information from compiled object files, with the option to include

additional information by using a custom linker (LDX) [54]. The extracted facts include

information such as function calls, variable names, and containment hierarchies. This data

is stored in a TA file. The relational calculator QL understands the TA file format, and

allows the user to manipulate the database of extracted facts. For example, using QL, a

containment hierarchy can be added, and relationships can be lifted to the file level, rather

than the function and variable level. A set of pre-written QL scripts included with the

SWAGkit can help with these tasks. The landscape editor, LSedit, reads a TA file and

displays it in a coloured “boxes and arrows”-style set of navigable diagrams.

Since QL is written in Java, it was easy to leverage the source code for it and integrate

it into our MagicDraw UML plugin. We use QL to read and interpret the TA programs

29

Figure 2.8: Overview of Merging FLS into UML

and to perform transformation operations on the facts, enabling us to compare sets of facts

to information in the UML models. Pre-made QL scripts, included in the SWAG kit, have

also been used to prepare the factbases for use in our tool.

2.3 Merging Data

In this thesis, we attempt to solve the problem of bridging between two technical spaces. To

accomplish this bridge, we must have the ability to import, export, and merge information

from one space to another. Import and export operations are relatively simple because

they do not require the ability to map existing entities across different technical spaces.

Merging, on the other hand, requires these types of mappings.

Figure 2.8 shows an overview of the process involved in merging two sets of facts. The

case we have illustrated shows the merging of an existing set of facts using the FLS into an

existing UML model, encoded in XMI. We show three sets of facts: the existing UML, the

FLS-based set of facts to be merged, and what we call the exported FLS. Both the UML

and the “to be merged” FLS factbase are models of the same system, which may have

been modified in either of these technical spaces. The end result of this merge is a model

that contains the relevant information from both technical spaces, and can be viewed in

30

Figure 2.9: Merging Existing FLS into Existing UML Model

the UML space. The exported FLS refers to the FLS information that would result from

exporting the UML model using our export technique. This export does not actually take

place during a merge operation, but it is used here to show how the mappings are achieved.

Figure 2.9 shows how mappings are determined between the entities in each of these

models. The dashed arrows from b to both d and e show the mapping between some UML

entities and their equivalent exported TA entities. In this case, this might be a situation

where b is a method in a superclass that exports to two functions in the FLS – one for

the superclass, and one for the subclass. The dotted arrows show which entities in the

exported FLS match up with entities in the to-be-merged FLS-based factbase. By doing

this matching, the dashed and dotted arrows can be combined to become the solid arrows,

which identify those entities in the to-be-merged TA that already exist in the UML model.

After obtaining this list of entities which already exist in the UML model, it can be used

31

to determine which entities in the to-be-merged TA must be added to the UML model.

This information can also be used to delete those items in the UML model that exist in

the exported FLS, but do not have a corresponding entity in the to-be-merged FLS-based

factbase. If the UML entities have no possible equivalent in the FLS, they are not touched.

In our example, i would need to be added to the UML model, c would be deleted, and a

and b would not be touched.

2.4 Related Work

We describe previous research work in the areas of bridging technical spaces, merging infor-

mation from multiple sources, and promoting the interoperability of software architecture

tools.

Staikopoulos and Bordbar [49] created a metamodel refinement approach for bridging

technical spaces. To apply their technique, the technical spaces involved must be well-

established and well-formalised. They discuss the process of determining the mappings

between metamodels. Their focus is on solving the problem of what to do when some

metamodel elements from the source cannot be directly mapped to metamodel elements

in the target. In our work, each technical space may have such un-mappable metamodel

elements. We do not focus on mappings in one particular direction, but mappings in

both directions, as well as the problem of deciding which information should be ignored or

acknowledged in the case of a merge.

Zundorf et al. [55] have developed a technique for merging graph-like object struc-

tures. They argue that text-based methods for merging of object structures have signifi-

32

cant limitations and propose a graph-based approach to deal with these perceived problems.

Specifically, they state that if the order of the information in text documents changes, most

systems will not properly recognise matching objects, unless a unique ID is assigned to each

object. In contrast, we need not be concerned about global unique identifiers, but we can

identify and map to entities based on their location within the containment structure of

the model.

Westfetchel [53] has developed a multilingual structure-oriented technique to merge

different types of software documents written in arbitrary languages. His technique uses

the idea of a Document Interface for each document type, to retrieve structural information

from the documents. This merge technique takes the underlying syntactic and semantic

structures into consideration. The interfaces provide a bridge into the documents, thus

providing access to, and a translation for, the information relevant to the merges. The use

of interfaces allows additional document types (and languages) to be added to the system

without significant changes to the underlying environment.

Some researchers are using the process of model synchronisation to record information

about the evolution of software systems. For example, Ivkovic and Kontogiannis [26] have

developed a technique to track changes to objects based on a unique ID for each object.

Recording this change information provides them with traceability information about the

changes that occur during software evolution. While doing this work, they developed some

key terminology and techniques for performing model synchronisation. They argue that

there are two types of mappings between sets of related data. A mapping can be explicit,

which means that specific entities in the source are explicitly mapped to specific entities in

the target. The other type of mapping is implicit. This style of mapping is done between

33

metamodels and is the type of mapping we will be performing in this work. Relations

between specific entities are implied, based on the mappings between the metamodels.

These two researchers argue that propagating changes between software models is a “first

step towards maintaining consistency between architectural, design, and implementation

models” [26].

Round-trip engineering is another related aspect of software engineering. For example,

FUJABA is a tool that translates information from UML to Java and back to UML.

The tool must handle the issues of interpreting the semantics of UML and the mappings

required from UML to source code. We face similar issues in our work. For example, there

are several different ways to implement associations in Java. The FUJABA project has

chosen to implement associations as private attributes and access methods in the associated

classes [28]. We have made a similar decision for associations in our mapping choices.

Aside from model synchronisation, some other techniques for tool interoperability have

been developed. Notably, GXL and the Dagstuhl Middle Metamodel (DMM) have been

designed as interchange languages for models of software. GXL is an XML-based exchange

format designed by Holt et al. [23] as a standard for describing and interchanging graphs

about software. The DMM was initiated by a group of researchers at the Dagstuhl Seminar

on Reverse Engineering Tool Interoperability, held in January 2001 [33]. The DMM was

designed to be a schema for interchanging information about software between different

tools. The authors of this metamodel suggest that it can be used to describe the objects

and their relationships, and that the choice of encoding syntax is up to the user. They

recommend the use of GXL or TA for encoding purposes.

Bézivin et al. [2] have a completely different approach for tool interoperability. They

34

argue that model engineering should not be based on single, monolithic languages like

UML, but rather on small Domain Specific Languages defined by focused metamodels. In

their approach, interoperability is attained by using model transformations. Our approach

is similar, in that we argue that different notations, tools and diagrams are useful for

different purposes – bridging between the different modeling notations is the interesting

part of this problem.

35

Chapter 3

Model Translation

In this chapter, we describe the process involved in bridging between the UML technical

space and the SWAG technical space. This bridging requires that we provide the ability to

import, export, and merge between models encoded in each space. We begin this chapter

by discussing alternative approaches to solve this problem. We follow this with some

examples of bridging in each direction. We then describe the mapping choices we have

made between the entity types in each of these spaces, and discuss the complications we

encountered while building this tool. We conclude this chapter with an overview of the

algorithms we have used for the merge procedures.

3.1 Design Decisions

There are several ways the bridging process could be performed. The simplest solution,

but the least useful, would be to develop a TA scheme for UML, and create QL scripts to

36

translate from the FLS to the UML schema. With this approach, a translation would then

be required between a TA factbase conforming to the UML schema and an actual XMI

encoding of the model, meaning that the provision of a UML schema for TA would not get

us any closer to solving the problem.

An alternative would be to create an XML schema for the FLS, create an XML encoding

of the FLS-based TA factbase, then create a transformation from the FLS-based XML to

XMI. This would require us to understand all of the details of the XMI specification and

to create an XMI encoding that would be compatible with a specific UML tool. This

would also require a tool to perform the translation from FLS-based TA to XML, and a

transformation from the XML to XMI. Again, this introduces unnecessary steps.

Finally, there is the option of using existing pieces of software, each of which understand

the details of their respective technical spaces, and creating a simple tool to bridge between

these two pieces of software. This is the approach we have taken. QL, written in Java by

Jingwei Wu at the University of Waterloo [54], is a tool for interpreting and manipulating

TA factbases. A major benefit is that we have access to the source code for QL, and we

have made significant use of this. MagicDraw UML is a UML modeling tool developed in

Java by MagicDraw that allows users to add their own plugins to extend it. Plugins can

use a Java API called OpenAPI [40] to create and edit UML models programmatically.

We used these two facilities to create a MagicDraw UML plugin to bridge the UML and

SWAG technical spaces.

37

3.2 Translation Scenarios

There are four possible scenarios for translating between the UML and SWAG technical

spaces. Model information can be imported from the TA format into a MagicDraw Model,

and vice-versa. Two models can also be merged, in either direction. For instance, a FLS

model can be merged into an existing UML model, or a UML model can be merged into

an existing FLS-based TA factbase. We have implemented all four of these scenarios in

one plugin for MD UML. This section covers examples of each of these scenarios.

3.2.1 Import a FLS Factbase to a UML Model

Figure 3.1 shows an LSedit visualisation of a TA factbase containing the extracted archi-

tecture of Gaim 1.5.0. Many of the details are not shown in this diagram, but those that

are shown are important to note. For example, we have shown the inner details of sha.o.

In this part of this figure, we can see the details of cLinks between functions. We can also

see which functions are being called from outside of sha.o. LSedit allows us to view as

many or as few details about each entity in the model as desired.

Figure 3.2 shows the architecture of Gaim 1.5.0, as imported into a UML model, from

the FLS-based TA factbase shown in Figure 3.1. The contents of the subsystem src have

been mostly suppressed due to space limitations. Some details are shown between the

package protocols and the class sha.o. In the UML view of this model, we can see that

sha.o depends on itself, but we cannot see the internal details of which functions rely on

which other functions. This information isn’t relevant within the UML technical space, so

it is discarded. As will be seen, it is still maintained when a UML model is merged into

38

an existing TA factbase.

3.2.2 Merge a UML Model into Existing FLS Factbase

Starting from the model shown in Figure 3.2, we have made some modifications to the UML

model. In Figure 3.3, we have added a class named SuperSha as a superclass to sha.o. We

have also moved the method shaInit() from sha.o to its new parent. The resulting modified

section of the model is shown in Figure 3.3. After using our tool to merge this model back

into the existing FLS Factbase shown in Figure 3.1, the resulting LSedit visualisation is

shown in Figure 3.4. As can be seen in this figure, the method in the superclass has been

copied to the subclass, and all other relationships remain intact.

3.2.3 Export a UML Model to FLS

Figure 3.5 shows a portion of the model of the Java source code for QL. Because QL is

written in Java and thus contains object-oriented concepts from the beginning, it is a more

appropriate example for the translation in this direction. The portion of code modeled

in these diagrams is essentially those classes in the QL API which we have directly used

to write our tool. Each of these classes is described in more detail in Appendix A. The

UML model in Figure 3.5 was reverse engineered from Java byte code, using the reverse

engineering tools built into MagicDraw UML.

We then exported this model to a FLS-based TA factbase, and the LSedit visualisation

of this factbase is shown in Figure 3.6. This figure shows the generalisation (between Edge-

Set, NodeSet and TupleSet) and realization (between Tuple and TupleImpl) relationships

39

Figure 3.1: LSedit view of Gaim 1.5.0, from a TA factbase

40

Figure 3.2: MagicDraw UML view of Gaim 1.5.0 imported from factbase in 3.1

41

Figure 3.3: Edited UML model of part of Gaim 1.5.0

Figure 3.4: Portion of merged Gaim 1.5.0 model in LSedit

42

as cLinks between the classes. Because of the restrictions of the SWAG technical space, we

are required to map the different types of UML relationships to a semantic equivalent in

the SWAG space. We have shown the contents of TupleSet and EdgeSet to show the oper-

ations that EdgeSet has inherited from TupleSet. In this case, it is important to note that

the dependencies shown in Figure 3.6 exist between classes, and not between individual

functions or operations.

3.2.4 Merge a FLS Factbase into Existing UML model

As was demonstrated in the previous section, exporting a UML model containing a gen-

eralization relationship to the FLS will create a copy of a superclass’ operations in each

of its subclasses. When browsing the LSedit visualisation, a user may decide that these

copies of the operations are redundant and should be removed. We have shown this in Fig-

ure 3.7. In this case, we have removed the constructor TupleSet, and operations trySort,

newSet, appendDB, appendTA, print, printTA, sort, sortDom, and sortRng from the sub-

class EdgeSet. Figure 3.8 shows the merged results in TupleSet and EdgeSet. For the sake

of clarity, we have omitted the rest of the elements as seen in Figure 3.5. In Figure 3.8,

we can see that the deleted functions have been removed from the subclass, and the rest

of the inherited operations have been added to the subclass.

3.3 Mapping of Entities

The general translation between UML and the FLS for TA follows the basic mappings as

defined in Table 3.1. This mapping groups the functions and variables contained within a

43

Figure 3.5: Partial UML model of QL

44

Figure 3.6: LSedit view of partial model of QL

45

Figure 3.7: Modified partial LSedit view of QL

46

Figure 3.8: Portion of merged QL model in UML

47

FLS Entity UML Entity
cSubSystem Package
cObjectFile Class
cObject Property
cFunction Operation
cLinks Dependency

Table 3.1: Basic Mappings between FLS Entities and UML Entities

given source file into a class. This is validated by the founding principle of Object Oriented

Development, which is to group related properties and operations into classes.

Section 2.2.2 contains more specific details regarding each of the entity types in the

function-level schema, and Section 2.1.2 describes the UML entities. We will now describe

the relationships between these two sets of entities. Each directory in the source code

is identified as a Subsystem during fact extraction. This is semantically equivalent to a

Package, since packages tend to also be based around directory structure. ObjectFiles

refer to each .o file generated during compilation. These are compilation units, just as

Classes are compilation units. ObjectFiles contain “Objects” and Functions. In this case,

some confusion can arise due to naming choices. An Object in the FLS technical space is

simply a variable of some type, contained within an ObjectFile. This is similar to Objects

in object-oriented programming, since an Object is an instance of some particular Class.

A FLS “Object” can be thought of as a member variable of a Class. Functions are units

of executable code, similar to Operations in Classes. The FLS refers to a reference from

one function to another or from a function to a variable as a Link. We consider this to

be semantically equivalent to a UML Dependency, except that dependencies are usually

between classes rather than operations, as will be discussed in Section 3.4.2. Figure 3.9

48

Figure 3.9: Schema Mappings

summarises this mapping. The “uses” edges in this figure represent links or dependencies.

One limitation of this basic mapping is that it does not take into account some of the

central principles of object-oriented programming, such as Generalization. This is because

procedural languages, such as C, have no equivalent concept. Since the SWAGkit was

originally designed with languages such as C in mind, we have been forced to develop our

own technique for dealing with Generalization when it is introduced into the UML version

of a model. This will be discussed in detail in Section 3.4.3.

Associations present another interesting decision. MD UML has its own assumed im-

plementation for some types of associations. It distinguishes between navigable and non-

navigable associations. Navigable associations are implemented as variables in the classes

at either end of the association. Non-navigable associations have no default implementa-

tion in MD UML. For simplicity, our tool follows the MD UML implementation in this

case. For navigable associations, we add the appropriate variables to the classes at the

association endpoints. This decision is supported by other researchers who have made sim-

ilar decisions regarding the implementation for associations, such as those involved with

the FUJABA project [28]. If the associations are not navigable, we ignore them, since as-

49

sociations are an abstract concept with no standard implementation. The same situation

applies for composition and aggregation, which are specific types of associations.

Another limitation is that object files are not entirely semantically equivalent to classes.

In an executing C program there will only be one instance of any given object file in

memory; there is no reason for there to be more. By definition, Classes are instantiated

multiple times, in order to promote re-use. We can think of the classes in a UML model

of a software system written in a non-Object Oriented language like C as being singletons;

alternately, they can be thought of as classes with only static members. We have chosen

not to add any stereotypes to make this distinction in our generated UML models, instead

leaving the architect free to think about the “classes” in the way he or she chooses.

3.4 Complications in Translation

When performing these import, export and merge operations, we run into several compli-

cations, requiring our tool to consist of more than a simple translation mechanism. The

names of entities in a TA factbase have no semantic impact on the model, whereas in

UML, the naming scheme is entirely based on the fully qualified path to a specific entity

in the containment structure. Also, in UML static structure models, relationships tend

to exist between classes, whereas the FLS in TA is fully capable of documenting and dis-

playing relationships between entities at a lower level, between functions and variables.

The final complication that will be discussed in this section is the problem of dealing with

generalization semantics, when moving information from the UML to the FLS in TA.

50

3.4.1 Naming Schemes

When a FLS-based TA factbase is produced by the QLDX pipeline, the entities contained

within each cObjectFile – such as cFunctions and cObjects – are named by a coding system,

with names such as napster.o[.text+0x13e0]. When LSedit, the software landscape ed-

itor, reads in a TA factbase, it uses labels from the FACT ATTRIBUTE section of the factbase

as the human-readable name of the function or variable, such as gaim_init_plugin. If no

labels exist, LSedit will use the last part of the name as the display name. For example,

if the name of the entity is /napster/.libs/napster.o[.text+0x13e0], LSedit will use

napster.o[.text+0x13e0] as the display name. On the other hand, UML uses the actual

operation or property name as part of the fully qualified identifier. The same name is also

displayed on diagrams. For example, a function named gaim_init_plugin within the file

napster.o would be identified as napster.o::gaim_init_plugin.

This difference between these two naming schemes is most notable when comparing an

initial TA factbase with one that has been imported using our plugin and then exported

again. In an exported factbase, the FACT ATTRIBUTE section of the factbase is basically

removed and merged into the FACT TUPLE section. A factbase will be generated by the

BFX/QLDX pipeline containing information such as follows:

FACT TUPLE :

$INSTANCE .../napster.o cObjectFile

$INSTANCE .../napster.o[.text+0x13e0] cFunction

FACT ATTRIBUTE :

.../napster.o[.text+0x13e0] { label = "gaim_init_plugin" }

After this information has been imported via our MD UML plugin, then exported back to

TA, it will have been modified to the following:

51

FACT TUPLE :

$INSTANCE .../napster.o cObjectFile

$INSTANCE .../napster.o/gaim_init_plugin cFunction

This modification has no negative impact on the usefulness of the factbase, since every

cFunction or cObject within a cObjectFile must have a unique name. This change also

significantly reduces the size of the TA file. If there are no labels in the FACT ATTRIBUTE

section of the factbase, the representations in LSedit will be unaffected, as LSedit resorts

to using the last item in the path for labels in the visual representation of the facts.

This complication is simple to handle in an import or export situation, but the merge

process becomes slightly more complicated. When merging, our plugin must check to see

whether the entity in question exists in any form, in the file that the model is being merged

with. To merge UML entities with TA factbases, we must match up individual entities.

These must match based on both the label name for a function and the containment

structure, in order to locate the entity in the model.

3.4.2 Level of Calls Relationships

Another minor complication arises from the fact that UML models normally do not docu-

ment dependencies between individual operations, and instead document dependencies at

a higher level – that is, between classes. For this reason, we have chosen to lift the links

in the TA factbase before adding them to the UML models. This means that we raise the

links to be between object files, rather than between functions. This is accomplished by a

couple of straightforward composition operations, using relational algebra operations from

QL, as outlined below. The o is a composition operation between two EdgeSets, and inv

52

returns the inverse of the EdgeSet.

lifted = (containment o dependencies) o inv containment

In this example, the containment EdgeSet might contain something like:

contain ../napster.o ../napster.o/gaim_init_plugin cFunction

contain ../accounts.o ../account.o/gaim_accounts_init cFunction

and dependencies might look something like:

cLinks ../account.o/gaim_accounts_init ../napster.o/gaim_init_plugin

The resulting TupleSet, lifted, would then contain the following, for the above example:

../accounts.o ../napster.o

This TupleSet records the links between the files that contain the functions that partici-

pated in the original links relationship. Duplicates are removed. This lifted information

can then be used to create dependencies in a new UML model, or could be compared

against existing dependencies or links in the case of a merge. The interesting result of

this complication will be discussed in more detail in Section 4.2. It is worth noting that

lower-level calls relationships between functions in the TA factbase are not replaced when

merging back in the opposite direction.

3.4.3 Generalization

The FLS for TA was not designed to handle object-oriented concepts such as generalization

relationships. As a result, conversion from a FLS-based factbase to UML, and back to the

FLS – without making changes in the UML model – will not contain any generalization

hierarchies. However, the goal is to allow the user to modify the model in some way, in

53

Figure 3.10: TA “Inheritance” Semantics

any tool or notation, and have the changes be reflected in the other technical space. Since

the metamodel of the SWAG technical space does not support any semantic equivalent

to the object-oriented concept of generalization, we have been forced to create our own

FLS-compatible translation for this concept.

Generalization means that the member operations of the superclass are inherited by the

subclass. As a result, in the FLS, we have converted generalization relationships to links

and copied the methods of the superclass into the subclass. This preserves the semantics

of the generalization concept. Figure 3.10 is a UML diagram showing the meaning of this

translation. The inherited operations of the superclass are copied to the subclass. If the

inherited operation had not previously been redefined in the subclass, we can think of the

subclass version as being a simple call to the superclass version. This is the reason for the

links arrow in the FLS. This not only shows a function call, but also shows that these two

compilation units are related in some way. This translation will be discussed in greater

detail in Chapter 4.

When performing a merge, our tool determines whether an entity already exists in the

54

model, and if it does, it does not get replaced. The generalization arrow is one such entity

when merging from TA to UML. This maintains the generalization semantics in a merge.

Unfortunately, there is no way to preserve this information when performing an import to

an empty model, since the additional semantic information is not there.

It is worth noting that we have not taken actual implementation details into consider-

ation. If the models were intended to be used to generate code for a non-object oriented

language, such as C, a prefix may be necessary for the functions created in the subclass,

in order to prevent ambiguity during linking.

3.5 Merge Algorithms

In this section, we will provide an overview of the algorithms we have used to perform the

merge operations in our tool.

3.5.1 Merging an FLS-based Model into UML

The algorithm to merge a FLS-based model into an existing UML model is a fairly simple

two-step procedure. The steps are outlined below.

1. Using the Visitor pattern, visit relevant Elements in the UML model:

(a) If no FLS equivalent is found, delete the UML Element.

2. Loop through the entities in the FLS-based factbase:

(a) If no corresponding UML Element exists, add one.

55

When compared to the merge requirements described in Section 2.3, the only difference

in the resulting models is that when a UML model is exported to TA, then merged back

in again, some information will be added to the UML model using our technique. More

specifically, the methods of the superclass will be copied into the subclass if a generalization

relationship exists. This does not affect the meaning of the model nor does it violate any

object-oriented principles. The appearance of a superclass method in a subclass normally

shows that the method has been overridden in some way. The actual contents of the

subclass version could be a simple call to the superclass version, as previously described in

Section 3.4.3.

3.5.2 Merging UML into a FLS-based Model

In the reverse direction, to merge a UML model into an existing FLS-based TA program,

we follow the algorithm outlined below. The merge in this direction is slightly more

complicated, due to the differences in naming schemes, as previously described in Section

3.4.1.

1. Visit UML Elements:

(a) Add Packages, Classes, Operations, and Properties to output factbase as $IN-
STANCES.

(b) Create contains relationship between parents and children, as they are added.

(c) For Generalisations:

i. Add to the factbase, as described in Section 3.4.3.

ii. Remove duplicate cFunctions, cObjects and cLinks.

2. Loop through the cLinks in the old factbase.

56

(a) Using the old containment structure, determine the UML name for each entity
involved in a given cLinks relationship.

(b) If a corresponding (lifted) dependency exists in the UML, add the cLinks using
the new entity names.

3.6 Chapter Summary

In this chapter, we have described the obstacles we encountered during the translation

process, as well as the solutions we have implemented for these particular problems. The

translation activities have been described for the two specific tools we have studied. Sim-

ilar problems and similar solutions should be applicable in implementing a translation

procedure and tool for bridging between other technical spaces. This information should

be useful to other researchers or developers who would like to bridge between another

technical space and the ones we have bridged in this work.

57

Chapter 4

The Bridge Domain

In this chapter, we discuss our evidence for the existence of a bridge domain. This evidence

supports the claim that the real architecture of a software system cannot be fully expressed

in any one specific notation or modeling language. We argue that a software system can

be best understood through multiple views of the software, with different technical spaces

providing each view. This set of views essentially defines the bridge domain.

Even with two very expressive and flexible schemas, there are certain concepts that

can only be described in one or the other, but this information can be maintained through

merge operations between the two technical spaces. The fact that these types of concepts

exist points to the existence of a bridge domain. This bridge domain cannot be expressly

encoded, but is held as a mental model or as a collection of views seen through several

technical spaces. One could argue that the bridge domain is automatically encoded in the

source code, but there is a problem with this perspective. A program may be written in a

procedural language like C, yet have object-oriented concepts embedded in it. To include

58

Figure 4.1: “Bridge Domain” arises through translation

these concepts in a program understanding task, the software must be abstracted into a

model and viewed within some technical space that includes a mechanism for demonstrating

these concepts.

Figure 4.1 shows how the bridge domain relates to the notation languages used to model

the software. L refers to a notation language. B refers to a Bridge Domain. A translation

from L1 to L2 means that some transformation can be performed on the models L1 and

L2 to represent them in equivalent encodings in the bridge domain. The actual encoding

of this bridge domain is not possible, except through both languages, as each notation

language contains information that is not expressible in the other. This information can

be maintained during a merge operation, but not during import or export operations.

We begin this chapter with an example of how the UML and SWAG technical spaces

can be used together to investigate various properties of a real software system. This

example shows that information viewable in each technical space can be important for a

program understanding task, thus demonstrating the conceptual importance of the bridge

domain.

59

4.1 A Real-World Example

Throughout the course of the development of our tool, we have been using the Gaim Instant

Messaging client, version 1.5.0, as a testbed for our tool. Gaim is a multi-protocol instant

messaging client, which means that it allows users to register accounts for various instant

messaging protocols, such as ICQ, MSN, AIM, IRC, Jabber, Napster, and Yahoo, among

others. Architecturally speaking, this is a small program (151 KLOC). It was chosen for its

small size, which made it possible to develop and test our tool relatively quickly. It uses the

GTK rendering engine, and is a standard application in the Gnome desktop environment

for Linux. There are also versions available for Windows, BSD, and Mac OS X.

Certain aspects of the implementation of Gaim have made it an interesting testbed

for our work. For instance, there are many pairs of source files with similar names, such

as account.o and gtkaccount.o, log.o and gtklog.o, blist.o and gtkblist.o, privacy.o and

gtkprivacy.o, and conversation.o and gtkconv.o. We speculated that these files may have

code duplication and could potentially be thought of as super and subclasses. It is clear

from examining the LSedit visualisation that the GTK versions of these files depend on

the non-GTK version and no dependencies exist in the other direction. This is shown in

Figure 4.2.

A closeup of the privacy.o and gtkprivacy.o portion of the UML diagram is visualised in

Figure 4.3. In this visualisation, we can easily see that there appears to be several functions

that have similar names, such as gaim_gtk_privacy_init() and gaim_privacy_init().

It seems likely that the dependency we see in the UML diagram is related to these similarly

named functions. Therefore, we return to the visualisation in LSedit to attempt to validate

60

Figure 4.2: Interesting Relationships

this theory.

Figure 4.4 shows the relevant portion of a backward query performed on the privacy.o

file, from within gtkprivacy.o, in LSedit. This query shows which functions in gtkpri-

vacy.o depend on functions contained in privacy.o. In this case, it shows that clear_cb(),

remove_cb() and confirm_permit_block_cb() are the only functions in gtkprivacy.o that

depend on functions in privacy.o. This disproves our theory about the nature of the de-

pendencies, but it shows how these two tools can be used together to investigate certain

properties of a software system.

LSedit is useful for performing queries on the entities, and has the ability to show the

strength of a dependency based on the size of the arrowhead. The size of the arrowhead is

directly proportional to the number of cLinks relationships from one entity to the other.

UML makes it easy to see which functions exist in each source file and provides the ability

to add meaning to the structure of a software system by adding things like generalization

61

Figure 4.3: Privacy Source in UML

Figure 4.4: Backwards Query on privacy.o

62

hierarchies. UML also provides the ability to easily see multiple levels of the containment

structure at once, which provides printable diagrams, whereas LSedit is a more interactive

visualisation and navigation tool. The use of these two technical spaces, together, brings

out information that would be difficult to discover by viewing the model of the software in

one technical space by itself.

4.2 Dependencies

Part of demonstrating the existence of a bridge domain that cannot be expressly encoded is

showing that there are concepts in each of our technical spaces which cannot be accurately

expressed in the other. In this section, we discuss dependencies, which can be expressed in

more detail in the SWAG technical space than in a UML model. When merging dependency

information between TA and XMI, the TA “error-corrects” some of the information that

cannot reasonably be held in the UML model. In the LSedit visualisation, it useful to

know which functions call which other functions. The LSedit visualisation is dynamic

– it changes depending on which parts the user is looking at – and can visualise this

detailed information very well. The UML Class Diagram has no reasonable way to display

information about calls between functions. Thus, we require the ability to maintain the

detailed information about call relationships through a merge with a UML model.

We will demonstrate this using an example from Gaim 1.5.0. Figure 4.5 shows the

contents of the .libs SubSystem for IRC in LSedit. The call relationships shown that end

somewhere off-diagram are references to functions or variables in other subsystems. Figure

4.6 shows the same package in UML. One advantage to LSedit is that it is possible to tell

63

Figure 4.5: The IRC .libs SubSystem in LSedit

the strength of a dependency based on the size of the arrowhead. A larger arrow denotes

more links between the functions contained in these compilation units; UML has no such

distinction. Since a UML Class Diagram with multiple dependencies contains the same

information as one with single dependencies between classes, it makes sense to omit this

multiple dependency information from the XMI encoding of the model.

Figure 4.7 shows the internal structure of the parse.o file within the subsystem shown

in Figure 4.5. In this case, it is possible to visualise the dependencies contained within an

object file. Since LSedit is able to visualise dependencies between individual functions and

objects, it makes sense to attempt to retain this information during a merge operation.

Figure 4.8 shows the difference between the dependencies in UML and LSedit. When

merging links information into an existing UML model, the process is simple. It’s a matter

of lifting each links relationship to the file level and – if the involved entities exist in UML

and the dependency does not – creating the dependency. To lift the links to the file level,

one can use a combination of a few simple relational algebra calculations, demonstrated in

the code below.

64

Figure 4.6: The IRC libs Package in UML

65

Figure 4.7: The IRC parse.o file in LSedit

Figure 4.8: Dependencies in LSedit and UML

66

TupleSet lifted = AlgebraOperation.composition(

AlgebraOperation.composition(hierarchy, calls),

AlgebraOperation.inverse(hierarchy));

In the opposite direction, merging relationship information becomes more complicated. As

described in Section 3.4.1, the naming schemes for entities in the UML and the FLS are

different. Before comparing the links relationships, the names must be made consistent,

using the containment structure of the existing TA factbase. Once this is complete, we go

through the links in the existing factbase and individually lift it to be between the files,

check to see if the lifted dependency exists in the UML, and if so, create the pre-lifted link

in the new merged factbase using the new consistent entity names. If a dependency exists

in the UML with no corresponding lower-level link in the factbase, we add a link between

files to the merged factbase.

When exporting an existing UML model to FLS-based TA (rather than merging), the

dependencies are exported as links between files rather than between functions, since there

is no information in an existing factbase to provide more details. Importing a factbase

into a new UML model is similar in that the existing links in the factbase are lifted to

relationships between files and simply added as dependencies. These procedures guarantee

the maintenance of as much detailed information about dependencies as possible during

imports, exports and merges.

4.3 Generalization

Similar to the details concerning dependencies, information about generalization can be

maintained during merge operations. The UML records certain information that the FLS

67

(a) UML (b) Exported TA (c) Merged UML

Figure 4.9: Translation of Generalization

for TA cannot. For example, in UML a generalization relationship is denoted by a particular

arrow type. As described in Section 3.4.3, when a generalization relationship is exported

to TA it becomes a regular links relationship between the .o files, and the functions in the

superclass are copied to the subclass. When this information is merged into an existing

UML model, we wish to maintain the generalization relationship.

Figure 4.9 shows an example of generalization in the two different notations, as well as

what the UML model would look like after the exported TA factbase has been merged back

in. As described in Section 2.3, when merging the new TA factbase back into UML, some

information will be added to the UML model – Figure 4.9(c) shows the added information.

The generalization arrow will not be replaced, as the existing UML model maintains this

piece of semantic information. The methods that had to be added to the TA factbase to

translate the generalization semantics, will be added to the existing UML model. It would

be possible to avoid adding this information to the model, but we have chosen not to do so.

A user may have intentionally left the subclass version of the function in the FLS-based

68

Figure 4.10: Imported TA Factbase

factbase, so we do not override the user’s decision. On the other hand, if a subclass version

of a function has specifically been removed from the FLS-based factbase, it will also be

removed from the subclass in the UML model during a merge. Data members will not be

re-added to subclasses because subclasses will never have a reason to redefine variables.

Figure 4.10 shows the differences between importing and merging a FLS-based factbase

to a UML model when there has been generalization information added to the factbase.

The primary difference between this figure and Figure 4.9(c) is that during a merge the

arrow type is preserved, whereas with a simple import it is not. In addition, member

variables will be added to the “subclass”, contrary to the semantics of generalization.

Again, as with the detailed information about dependencies between functions, gener-

alization relationships are one type of information that can be maintained during a merge

but not during imports and exports. This is because each technical space has the ability

to record semantic information that is irrelevant to another technical space. The fact that

this information can be maintained during a merge implies the existence of a bridge domain

that captures all of the architectural details of the software system; however, this bridge

domain cannot be expressly encoded, and in order to get a complete and accurate picture

of a piece of software, a view through multiple technical spaces must be considered.

69

Chapter 5

Conclusions

Our original motivation for this work was to improve the usability and usefulness of the

SWAG architectural tools. Specifically, our goal, which we have accomplished, was to

provide the ability to produce UML models from facts extracted using the fact extraction

tools provided by SWAGkit.

There are many reasons why interoperable software tools are more useful than those

that stand on their own. Different tools are suited to serving different purposes. It should

be possible to share model information between different software design and architecture

tools. Models can only be compared to each other when they are in the same format. A

clear architectural picture of a software system is best obtained through a collection of

views reflecting different features of the system. Each of these views may be managed by

different tools, but they all work within the same bridge domain.

We believe it should be possible to work in any technical space and have the changes

made by the developer or architect be reflected in a meaningful way in all other spaces.

70

We have made this a reality for the UML and SWAG technical spaces, as described in

this work. It has been made clear to us through the completion of this work that no one

technical space can fully reflect the actual architecture of a software system.

5.1 Contributions

We have provided a tool for bridging between the UML and SWAG technical spaces.

Users can import a FLS-based TA factbase into a new UML model using MagicDraw

UML. An XMI or MagicDraw-based UML model can also be exported to a new FLS-

based TA factbase. These models can also be merged in either direction. Certain semantic

information, as described in Chapter 4, can be maintained during the merge process, even

though that information is not encoded in the space from which the information is being

merged. This maintenance of semantic information that cannot be stored in both models

is what points to the existence of a bridge domain.

Along with providing this tool for bridging these two technical spaces, we have provided

the documentation on how to bring other tools into this work. In Appendices A and B, we

have provided documentation on how to use the two APIs that are used in our MagicDraw

UML plugin. The problems we encountered during this work and their solutions have also

been documented, in the hope of allowing others to bypass a lot of difficulties when bridging

between another technical space and one of the two for which our tool was developed.

This tool can be used for several applications. The most obvious is to get a clearer

understanding of the actual structure of a piece of software. If a user starts with a UML

model, it would be useful to be able to use the tools within SWAGkit to perform queries

71

on the facts in the model and to manipulate the model using one of the relational algebra

calculators. On the other hand, if the model is being extracted from source code, an

architect could use the SWAG tools to extract the facts about it then produce a set

of UML diagrams documenting the system in a standard modeling language. Another

potential application would be to use these tools to perform a very rough object discovery

on an existing non-object-oriented system. Testing this particular application is left for

future work.

5.2 Future Work

One obvious extension of this work would be to add the translation of layout information

to our tool. Currently, we import model information programmatically, but use the tools

built into MagicDraw UML to produce the UML class diagrams. These diagrams can be

created programmatically through the OpenAPI instead. LSedit has the built-in ability

to use layout information contained in the Attribute section of the TA factbase. The

OpenAPI has the ability to determine where items are in the diagrams, and where to put

diagram elements based on input from the TA factbase. As a result, translating the layout

from the UML to LSedit would be a matter of generating the UML diagrams program-

matically, determining a mapping from the MagicDraw coordinates to LSedit coordinates,

and outputting the position information in the attribute section of the TA factbase. The

opposite direction would be similar.

There are several encoding languages for models of software architecture that we would

like to see brought into this collection of tools. GXL is an XML-based exchange format

72

designed by Holt et al. [23] as a standard for describing and interchanging graphs about

software. RSF, part of the Rigi toolset developed at the University of Victoria [35], is an

encoding language similar to TA. DOT is a language used for recording basic information

about graphs. Bringing any of these languages into this tool would be useful. In addition,

many diagramming tools are capable of producing UML diagrams of software, such as Dia

or OmniGraffle. Both of these tools have the ability to export diagrams to text-based

encoding languages, which means it would be possible to read in the diagram data and

output it to TA or XMI.

Another possible extension would require some work on the fact extractors and schemas

available in SWAGkit. It should be possible to extract some other types of information from

the compiled (or pre-compilation) source code, such as enumerations and state transitions

on those enumerations. Using this information, we could produce UML state transition

diagrams. Using some of the work that has recently been done in SWAG to extract runtime

information from executing programs, we could also produce UML sequence diagrams.

These extensions would require new TA schemes for these new types of information, and

new translation options for the MagicDraw UML plugin we have implemented.

73

Bibliography

[1] Gentleware AG. Poseidon for UML. http://gentleware.com.

[2] Jean Bézivin, Hugo Brunelière, Frédéric Jouault, and Ivan Kurtev. Model engineering
support for tool interoperability. In WISME 2005 - 4th Workshop in Software Model
Engineering, 2005.

[3] Grady Booch. Handbook of software architecture.
http://www.booch.com/architecture.

[4] Grady Booch. Object Oriented Design with Applications. Benjamin/Cummings Pub.
Co., Redwood City, California, USA, 1991.

[5] Borland Software Corporation. Borland Together.
http://www.borland.com/us/products/together/.

[6] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case study: Its
extracted software architecture. In ICSE ’99: International Conference on Software
Engineering, Los Angeles, California, USA, May 1999.

[7] L.C. Briand, Y. Labiche, and Y. Miao. Towards the reverse engineering of UML
sequence diagrams. In WCRE 2003: Proceedings of the 10th Working Conference on
Reverse Engineering, 2003.

[8] John R. Cameron. An overview of JSD. IEEE Transactions on Software Engineering,
SE-12(2), Feb 1985.

[9] Peter Pin-Shan Chen. The entity-relationship model – toward a unified view of data.
ACM Trans. Database Syst., 1(1):9–36, 1976.

[10] CollabNet. ArgoUML. http://argouml.tigris.org.

74

[11] Microsoft Corporation. Visio 2003. http://office.microsoft.com/en-
us/FX010857981033.aspx.

[12] Holger Eichelberger. Aesthetics of class diagrams. In Proceedings of the 1st Inter-
national Workshop on Visualizing Software for Understanding and Analysis. IEEE,
2002.

[13] Mohammad El-Ramly, Eleni Stroulia, and Paul Sorenson. Mining system-user interac-
tion traces for use case models. In IWPC 2002: Proceedings of the 10th International
Workshop on Program Comprehension, 2002.

[14] The Eclipse Foundation. Eclipse Modeling Project. http://www.eclipse.org/modeling.

[15] The Eclipse Foundation. UML2. http://www.eclipse.org/uml2.

[16] Martin Fowler. UML Distilled : A Brief Guide to the Standard Object Modeling
Language. Addison Wesley, Reading, Mass., 3rd edition, 2003.

[17] Object Management Group. Unified Modeling Language: Infrastructure version 2.0,
March 2006.

[18] The Omni Group. Omnigraffle. http://www.omnigroup.com/applications/omnigraffle/.

[19] Rich Hilliard. Using the UML for architectural description. In UML ’99 - The Unified
Modeling Language: Beyond the Standard, Second International Conference, volume
1723, pages 32–48, Fort Collins, CO, USA, October 1999. Lecture Notes in Computer
Science.

[20] C. Hofmeister, R. L. Nord, and D. Soni. Describing software architecture with UML.
In Proceedings of the First Working IFIP Conference of Software Architecture, 1999.

[21] Ric Holt. TA: The tuple attribute language, February 1997.

[22] Ric Holt, Andrew Malton, and Tom Dean. CPPX: Open source c++ fact extractor.
http://www.swag.uwaterloo.ca/∼cppx/.

[23] Ric Holt, Andy Schürr, Susan Elliott Sim, and Andreas Winter. Graph eXchange
Language, July 2002. http://www.gupro.de/GXL/.

[24] Richard C. Holt, Michael W. Godfrey, and Andrew J. Malton. The build / comprehend
pipelines (position paper). In Second ASERC Workshop on Software Architecture,
February 2003.

75

[25] IBM. IBM Rational Software. http://www-306.ibm.com/software/rational/.

[26] Igor Ivkovic and Kostas Kontogiannis. Tracing evolution changes of software artifacts
through model synchronization. In ICSM ’04: Proceedings of the 20th IEEE Interna-
tional Conference on Software Maintenance, pages 252–261, Washington, DC, USA,
2004. IEEE Computer Society.

[27] Dean Jin, James R. Cordy, and Thomas R. Dean. Where’s the schema? A taxonomy
of patterns for software exchange. In IWPC ’02: Proceedings of the 10th International
Workshop on Program Comprehension, page 65, Washington, DC, USA, 2002. IEEE
Computer Society.

[28] Thomas Klein, Ulrich A. Nickel, Jörg Niere, and Albert Zündorf. From UML to Java
And Back Again. Technical report, University of Paderborn, Paderborn, Germany,
September 1999.

[29] Eleftherios Koutsofios and Stephen North. Drawing graphs with dot, February 2002.
http://www.graphviz.org/Documentation/dotguide.pdf.

[30] Philippe Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50,
1995.

[31] Michael Kusugak. Qallupilluit, 1986. From Personal Correspondence with Robert
Munsch.

[32] Alexander Larsson. Dia a drawing program. http://www.gnome.org/projects/dia/.

[33] Timothy C. Lethbridge, Sander Tichelaar, and Erhard Ploedereder. The dagstuhl
middle metamodel: A schema for reverse engineering. In ateM 2003: Proceedings of
the International Workshop on Meta-Models and Schemas for Reverse Engineering,
May 2004.

[34] Andrew Malton, Kevin A. Scheneider, James R. Cordy, Thomas R. Dean, Cousineau
Darren, and Jason Reynolds. Processing software source text in automated design re-
covery and transformation. In IWPC ’01: Proceedings of the 9th International Work-
shop on Program Comprehension, pages 127–134, Toronto, ON, Canada, 2001. IEEE.

[35] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Understanding software systems
using reverse engineering technology: Perspectives from the Rigi project. In CAS-
CON ’93: Proceedings of the 1993 conference of the Centre for Advanced Studies on
Collaborative research, pages 217–226. IBM Press, 1993.

76

[36] Robert Munsch. Personal Communication, February 2006.

[37] Robert Munsch and Michael Kusugak. A Promise Is a Promise. Annick Press (Classic
Munsch), 1992.

[38] Ulrich A. Nickel, Jörg Niere, Jörg P. Wadsack, and Albert Zündorf. Roundtrip en-
gineering with FUJABA. In WSR: Proceedings of the 2nd Workshop on Software-
Reengineering, Bad Honnef, Germany, August 2000. Fachberichte Informatik, Univer-
sität Koblenz-Landau.

[39] No Magic, Inc. MagicDraw UML. http://www.nomagic.com.

[40] No Magic, Inc. MagicDraw OpenAPI UserGuide, February 2006.

[41] Object Management Group. Meta Object Facility (MOF) 2.0 XMI Mapping Specifi-
cation, v2.1, September 2005.

[42] Omondo. EclipseUML. http://www.omondo.com.

[43] Atousa Pahlevan. Enhancing static architecture design recovery by lightweight dy-
namic analysis. Master’s thesis, School of Computer Science, University of Waterloo,
2006.

[44] Visual Paradigm. Visual Paradigm for UML. http://www.visual-
paradigm.com/product/vpuml.

[45] University of Waterloo Software Architecture Group. About SWAG kit.
http://www.swag.uwaterloo.ca/swagkit/index.html.

[46] University of Waterloo Software Architecture Group. Grok.
http://www.swag.uwaterloo.ca/tools.html#grok.

[47] University of Waterloo Software Architecture Group. Grokdoc.
http://www.swag.uwaterloo.ca/∼nsynytskyy/grokdoc/index.html.

[48] University of Waterloo Software Architecture Group. Lsedit.
http://www.swag.uwaterloo.ca/lsedit/index.html.

[49] Athanasios Staikopoulos and Behzad Bordbar. A metamodel refinement approach
for bridging technological spaces, a case study. In WISME 2005: Bridging Technical
Spaces and Model-Driven Evolution, 2005.

77

[50] Nikita Synytskyy. Setting up and using the bfx pipeline.
http://www.swag.uwaterloo.ca/qldx/README.bfx.html.

[51] Nikita Synytskyy. Setting up and using the ldx-bfx pipeline.
http://www.swag.uwaterloo.ca/qldx/README.ldx.bfx.html.

[52] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright, Darin Swan-
son, and Jeremy Isaak. Visualizing dynamic software system information through
high-level models. In OOPSLA ’98: ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, 1998.

[53] Bernhard Westfechtel. Structure-oriented merging of revisions of software documents.
In SCM-3: Proceedings of the 3rd International Workshop on Software Configuration
Management, pages 68–79, New York, NY, USA, 1991. ACM Press.

[54] Jingwei Wu. Open Source Software Evolution and Its Dynamics. PhD thesis, School
of Computer Science, University of Waterloo, 2006.

[55] Albert Zündorf, Jörg P. Wadsack, and Ingo Rockel. Merging graph-like object struc-
tures. In (SCM-10) Proceedings of the 10th International Workshop on Software Con-
figuration Management, Toronto, Ontario, Canada, May 2001.

78

Appendix A

Using the QL API

In this appendix, we describe the Java classes from the implementation of QL [47] that

we used in implementation of our tool. This information is provided for readers who may

wish to extend our work. In order to use these classes, ql.jar and java_readline.jar

must be on the Java classpath. These files are both available upon request to Jingwei Wu,

the author of QL (http://swag.uwaterloo.ca/∼j25wu/).

A.1 ca.uwaterloo.cs.ql.io.TAFileReader

This class is used to read in the information from a TA file. The read(String filename)

method returns a Factbase, ready to be used as described below.

79

A.2 ca.uwaterloo.cs.ql.fb.Factbase

A Factbase contains a collection of Tuples. These can be accessed in several ways. An

EdgeSet containing all Edges of a particular relation can be obtained with the method

getEdgeSet(String name). For instance, to obtain all call relations, one would use

getEdgeSet("call"). An EdgeSet containing all nodes in the graph can be retrieved

with getEdgeSet("$INSTANCE"). On the other hand, a NodeSet containing all instances

of a particular type of node can be retrieved with a call to getNodeSet(String name).

A.3 Tuple Classes

A.3.1 ca.uwaterloo.cs.ql.fb.TupleSet

ca.uwaterloo.cs.ql.fb.EdgeSet and ca.uwaterloo.cs.ql.fb.NodeSet are both sub-

classes of TupleSet. As the name suggests, a TupleSet is a set of Tuples. In addition

to being a container, the TupleSet class provides the functionality to output element

data in TA form, using printTA(java.io.OutputStream out). This class also provides

the functionality to return a TupleList (getTupleList()), return an array of Tuples

(getAllTuples()), and remove duplicate items from the set.

A.3.2 ca.uwaterloo.cs.ql.fb.TupleList

The TupleList class simply provides the regular operations expected from a List. It will

return a Tuple given an index, return an Iterator for the elements of the list, and so on.

80

A.3.3 ca.uwaterloo.cs.ql.fb.Tuple

The Tuple class is probably the most important class for directly interacting with the data.

This class provides the ability to get the domain and range of the tuple, using getDom()

and getRng(). It also provides matching set methods. These methods get and set integer

values, which are internal node IDs. To get the String names of the entities, one must

use the static method ca.uwaterloo.cs.ql.fb.IDManager.get(int id). IDManager also

provides the opposite method, for retrieving an ID: getID(String name).

A.4 ca.uwaterloo.cs.ql.fb.Show

Show can be used to obtain information about a node’s attributes. Show.getAtt(int

nodeID, EdgeSet att) will return a node’s attribute value. The EdgeSet required is

the EdgeSet from the factbase containing all of the attributes of a particular type. The

attributes are referred to using “@” in front of the attribute name. For example, if one

wanted to retrieve all of the labels on a graph, one would use fb.getEdgeSet(‘‘@label’’).

To obtain a particular label, the static method getAtt() must be used, as described above.

A.5 ca.uwaterloo.cs.ql.fb.AlgebraOperation

AlgebraOperation provides static methods for the operations that can be performed be-

tween TupleSets, EdgeSets and NodeSets that are provided by QL. These operations

include composition, inverse, intersection, transitive closure, difference, and so on. The

JavaDoc for this class should be consulted for more details on the individual operations.

81

Appendix B

Using the MagicDraw UML 10.5

OpenAPI

In this Appendix, we describe the classes that are relevant to developing a plugin similar to

ours, in MD UML using the OpenAPI. For the sake of clarity, we have omitted the package

names, unless they are relevant to the discussion. The JavaDoc included in an installation

of MagicDraw makes it easy to determine the package of a particular class. More details

can be found in the Open API User’s Guide [40].

B.1 Creating MD UML Plugins with a Menu

To create a plugin in MD UML, one must begin with a class that inherits from Plugin. This

class requires init(), close() and isSupported() methods. If menu options are desired,

the init method should create an object that is a specialisation of AMConfigurator, and

82

add it to the ActionsConfiguratorsManager. The specialisation of the AMConfigurator

is where menu options are added.

The actual plugin consists of the Java .jar file containing the compiled code, and a

plugin.xml file telling MD UML where to find the class that inherits from Plugin. The

plugin.xml file should also contain information on where to find any .jar libraries that are

needed to run the code. More information on the formatting of the plugin.xml file can be

found in [40].

B.2 Dealing with UML Models and Elements

UML models are made up of Elements. There are several classes included in the OpenAPI

to assist with handling Models and their Elements.

ModelElementsManager is a utility class for adding, moving, and removing model ele-

ments.

ModelHelper is a utility class for finding parents of Elements, and getting and setting

client and supplier Elements on Relationships.

Other utility classes include RepresentationTextCreator, which is useful for retriev-

ing various information about an Element. For example, getFullUMLName(Element) will

return the path to the root element, with path items separated by ‘::’. For example, a

method named ‘method’ in the class ‘Class’ in the package ‘package’ will have a UML

Name of “package::Class::method”. As the name suggests, getPathToRoot(Element) will

return the full path to the root element, which can be useful for certain operations.

In the MagicDraw implementation, visiting model elements is based on the Visitor

83

Design Pattern. Every Element can accept a Visitor. To implement a specific Visitor,

you simply override the visit methods for each relevant element type in your own extension

of the Visitor class. Using this method, you can restrict your application to only visit

the types of model elements that are relevant to your interests. For example, in our

export operation, we visit Packages, Classes, Dependencies, Generalisations, Associations,

Properties, and Operations. We can then perform specific operations based on which type

of model element is being visited.

Creating model elements can be done using the ElementsFactory class. Instances of

the model Elements are created, then the attributes can be modified using methods specific

to the type of the Element. VisibilityKindEnum provides PACKAGE, PRIVATE, PROTECTED,

and PUBLIC visibility types for setting the visibility of a property or operation.

B.3 UML Model Elements

The package com.nomagic.uml2.ext.magicdraw.classes.mdkernel contains classes for

most of the various types of elements in UML. Element is the superclass of each of these

types. The methods available in each of these classes are extensive. For this reason, we will

not document them here, other than to state that these classes exist. More details on each

individual class can be found in [40]. These classes directly follow the UML2 specifications.

1. Class

2. DirectedRelationship

3. Generalization

84

4. Operation

5. Package

6. Property

The class for Depenencies is found in:

com.nomagic.uml2.ext.magicdraw.classes.mddependencies.Dependency.

85

	Introduction
	State of the Art
	Motivation
	An Example
	Contributions
	Structure of Thesis

	Background
	The UML Technical Space
	XML Metadata Interchange (XMI)
	UML Metamodel
	UML Diagrams
	UML Tool Choice

	The SWAG Technical Space
	The Tuple Attribute Language (TA)
	Function Level Schema (FLS)
	SWAG Tools

	Merging Data
	Related Work

	Model Translation
	Design Decisions
	Translation Scenarios
	Import a FLS Factbase to a UML Model
	Merge a UML Model into Existing FLS Factbase
	Export a UML Model to FLS
	Merge a FLS Factbase into Existing UML model

	Mapping of Entities
	Complications in Translation
	Naming Schemes
	Level of Calls Relationships
	Generalization

	Merge Algorithms
	Merging an FLS-based Model into UML
	Merging UML into a FLS-based Model

	Chapter Summary

	The Bridge Domain
	A Real-World Example
	Dependencies
	Generalization

	Conclusions
	Contributions
	Future Work

	Using the QL API
	ca.uwaterloo.cs.ql.io.TAFileReader
	ca.uwaterloo.cs.ql.fb.Factbase
	Tuple Classes
	ca.uwaterloo.cs.ql.fb.TupleSet
	ca.uwaterloo.cs.ql.fb.TupleList
	ca.uwaterloo.cs.ql.fb.Tuple

	ca.uwaterloo.cs.ql.fb.Show
	ca.uwaterloo.cs.ql.fb.AlgebraOperation

	Using the MagicDraw UML 10.5 OpenAPI
	Creating MD UML Plugins with a Menu
	Dealing with UML Models and Elements
	UML Model Elements

