
Valuing Hedge Fund Fees

by

Li Xiao

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2006
c© Li Xiao 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis applies a Partial Integral Differential Equation model, along with
a Monte Carlo approach to quantitatively analyze the no arbitrage value of hedge
fund performance fees. From a no-arbitrage point of view, the investor in a hedge
fund is providing a free option to the manager of the hedge fund. The no-arbitrage
value of this option can be locked in by the hedge fund manager using a simple
hedging strategy. Interpolation methods, grid construction techniques and parallel
computation techniques are discussed to improve the performance of the numerical
methods for valuing this option.

iii

Acknowledgments

I would like to thank my supervisors Dr. Peter Forsyth and Dr. Ken Vetzal for
their patience and guidance with my work.

Thanks also go to my family for supporting me throughout the years, and to
my friends and scicom lab mates.

iv

Contents

1 Introduction 1

2 Mathematical Model 6

2.1 The Evolution Equations . 6

2.2 Cash Flow, State Variables and Updating Rules 8

2.3 Boundary Conditions . 10

2.4 The Similarity Reduction . 11

3 Mesh Construction 17

3.1 S grid design . 18

3.2 Interpolation Rule Design . 21

3.2.1 Two Dimensional Case . 21

3.2.2 Three Dimensional Case . 23

3.3 Auxiliary Path Dependent State Variable Grid Design 24

4 PIDE Discretization 28

4.1 Finite Difference . 28

4.2 Fast Fourier Transform(FFT) . 30

4.3 Fixed Point Iteration . 31

5 Valuation Using the Monte Carlo Approach 33

5.1 Formulation . 34

5.2 Convergence and Error Estimation 36

v

6 Test Results 37

6.1 Contract Details and Input Parameters 37

6.2 Convergence Rate Tests . 37

6.3 Monte Carlo Test Results . 39

7 Interpretation of the Model 45

7.1 The Effect of the Endogenous Choice for b 46

7.2 The Effect of Market Parameters 46

7.3 The Effect of Contractual Parameters 51

7.4 Comparison Between Performance Fee and Fixed Rate Fee 52

8 Parallel Computation 55

8.1 Numerical Method . 55

8.2 Algorithm for the µC++ Language 57

8.2.1 Advance-time Function . 58

8.2.2 Interpolation Function . 60

8.2.3 Tasks . 62

8.2.4 Synchronization Issues . 62

8.3 Algorithm for OpenMP . 63

8.3.1 Parallelization . 64

8.3.2 Synchronization . 64

8.3.3 Allocation of Threads . 64

8.4 Running Time Analysis . 65

8.5 Test Results . 66

8.6 Evaluation . 68

9 Conclusion 69

9.1 Main Results . 69

9.2 Future Study . 70

A Monte Carlo algorithm for generating a sample path under a jump
diffusion process 71

vi

List of Figures

2.1 The interpolation situation if we use (2.38) in (a), or (2.39) in (b) to
carry out the similarity reduction. We assume that Smax = 600; S∗ =
100. The ”*”s represent interpolation points. In (a) we indicate the
effective computational domain (A) and ineffective computational
domain (B). Actually we do not need to compute the information at
the points located in domain (B). In (b) we only draw a subset of
the interpolation nodes. There are many interpolation nodes which
are larger than H = 900. 16

3.1 A representative computational domain formed by discretizing the
variable into a set of one dimensional problems, each of which con-
tains a discretization of the underlying asset price. 20

3.2 Two dimensional diagonal interpolation rule. This can be used in
the case where the asset price and state variable are homogeneous. . 22

3.3 Three dimensional diagonal rule: notice that we still need to do
inexact interpolation for point A and point B, which may not be
located on the computational grid. 27

6.1 This figure shows the convergence of the value of the performance fees
using the Monte Carlo method which uses the algorithm in Appendix
A to produce a sample path. Contract parameters are given in Table
6.1 and market parameters are given in Table 6.2. 42

6.2 This figure shows the convergence of the value of the performance fees
using the timestepping Monte Carlo method. Contract parameters
are given in Table 6.1 and market parameters are given in Table 6.2.
The time step decreases from one month to one day as the number
of sample paths increases from 10, 000 to 40, 000, 000. 44

vii

7.1 This figure shows the effect of b on the value of the performance fee. 46

7.2 This figure shows the effect of the volatility σ and the mean jump
arrival rate λ on the value of the performance fee. Observe that when
b is far away from one, the value of the performance fees increases as
σ or λ increases. When b is close to one, the value of the performance
fees decreases as σ increases; however, the value of fees still increases
as λ increases. 48

7.3 The effect of the mean of log(jump size) µ on the value of the per-
formance fees. 50

7.4 The effect of the standard deviation of log(jump size) γ on the value
of the performance fees. 50

7.5 The effect of the contract lifetime T and the endogenous choice b on
the value of the performance fees. We can observe that when T is
small, the influence of the liquidation level is very small. When the
lifetime is extended, the liquidation level has a large influence on the
value of the performance fees. 51

7.6 The effect of the performance rate p and hurdle rate h on the value
of the performance fees. 52

8.1 This figure shows the speedup using multi-processors compared with
a uni-processor. The straight line is the ideal situation using multi-
processors. Figure 8.1(a) shows test results using the µC++ lan-
guage, Figure 8.1(b) shows test results using OpenMP. 67

viii

List of Tables

6.1 Hedge fund contract details. 38

6.2 Parameters for the constant volatility case with jumps. 38

6.3 The value transferred from the investors to the managers of hedge
funds. Contract details are provided in Table 6.1. Market parameters
are given in Table 6.2. A similarity reduction is used, so no grid is
needed in the H direction. At each refinement level, new nodes are
inserted between each pair of grid nodes on the coarser grid, and the
timestep is halved. Difference refers to the change in numerical value
from one level of refinement to the next. Ratio refers to the ratio of
difference between successive refinements. 39

6.4 The value transferred from the investors to the managers of hedge
funds. Contract details are provided in Table 6.1. Market parameters
are given in Table 6.2. A full three dimensional PIDE is solved. At
each refinement level, new nodes are inserted between each pair of
grid nodes on the coarser grid, and the timestep is halved. Difference
refers to the change in numerical value from one level of refinement
to the next. Ratio refers to the ratio of difference between successive
refinements. 40

6.5 This table shows the standard error for the MC algorithm using
parameters in Table 6.1 and 6.2. 41

7.1 This table shows the quantitative relationship between the implied
volatility σ and the mean jump arrival rate λ. Observe that the
values under the column ”With jump” (the third column) are almost
equal to the corresponding values under the column ”No jump” (the
fifth column). From the columns ∆λ and ∆σ, we can see that an
increase of 0.1 in λ has a similar effect to an increase of 0.08 in σ. . 49

ix

7.2 Comparison between the performance fee and the fixed rate fee. We
can observe that the value of the performance fees (the second col-
umn) is almost equal to the corresponding value of fixed rate fee
(the fourth column). Then observe the first column and the third
column. In this case, if σ = 0.15, λ = 0.1, then a ten percent perfor-
mance rate corresponds to about 0.75 percent for the fixed rate. If
we increase the volatility σ from 0.15 to 0.25, then a ten percent per-
formance rate corresponds to about 1.07 percent for the fixed rate.
The increase in λ from 0.1 to 0.2 also has a similar effect. 54

x

Chapter 1

Introduction

Hedge funds are pooled investments that attempt to obtain superior returns for
their mostly wealthy investors. The fund manager runs the fund and collects fees
to compensate for expenses, management fees and superior performance. Hedge
funds have grown rapidly. Since the late 1980s, the number of hedge funds has
risen by more than 25 percent per year. The rate of growth in hedge fund assets
has been even more rapid. At the end of 2004, there were more than 8000 hedge
funds managing a total of almost one trillion dollars [40]. Hedge funds have come
to play a large role in financial markets, there has been increasing attention focused
on their management and investment practices.

The ideal fund structure aligns investors’ goals with fund managers’ incentives.
Generally, four basic mechanisms determine this alignment: market forces, gov-
ernment regulation, incentive contracts and ownership structure [1]. Mutual funds
generally emphasize the first two factors. In contrast, hedge funds tend to rely
more heavily on the latter two. Hedge fund incentive plans are primarily bonus
plans. Hedge fund managers typically receive a fraction of the fund’s return each
year in excess of the high-water mark. The high-water mark for each investor is
the maximum share value since his or her investment in the fund. We refer to this
fraction of the fund’s return as a performance fee. These performance fees generally
range from 15 percent to 25 percent of the new profit earned each year. Obviously,
this performance fee can be considered a call option on the profits associated with
managing other people’s money, since the fee structure gives the managers the pos-
itive fees with profits but no negative fees with losses. In addition, managers charge
a regular annual fee from one percent to two percent of portfolio assets to cover
overhead. Hedge fund managers are usually required to invest a significant amount

1

of their own wealth in the fund. The investors of hedge funds believe that the com-
bination of incentive bonus plans and managerial investment can move managerial
effort closer to the optimal level.

Hedge funds have been in existence for fifty years. However, the hedge fund industry
has remained opaque to the general investing public. The main reason may be that
hedge funds are not required to report their returns to the public, so obtaining data
for empirical studies is difficult. At present, academic research into hedge funds
mainly focuses on the following three directions.

The first direction documents the general characteristics of fund performance.
These papers use empirical data to analyze hedge fund performance characteris-
tics. Since integrated statistical history data on hedge fund performance is not
available, there exist various biases in existing hedge fund databases. Fung and
Hsieh [2] review these biases in these databases. Stephen et al. [29] try to deter-
mine, using existing hedge fund performance data, whether there are differential
skills which enable the hedge fund managers to obtain persistent performance. In
[3], the authors provide a rationale on how hedge funds are organized, and provide
some insight as to why hedge fund performance is different from traditional mu-
tual funds. Some previous papers have investigated the relationship between hedge
fund performance and standard asset indices [4, 5]. Fung and Hsieh [14] use look-
back straddles to model trend-following strategies, and show that they can explain
trend-following funds’ return better than standard asset indices.

Another research direction focuses on the effect of this bonus contract upon the op-
timal dynamic investment strategies of hedge fund managers. The research along
this line can be divided into two classes. The first class uses mathematical models
to analyze the behavior of hedge fund managers under a bonus plan. It is postu-
lated that the managers always attempt to maximize their expected utility. This
research includes works by Goetzmann et al. [7], Griblatt and Titman [8] and Car-
penter [9]. All of this work shows analytically that the portfolio variance of hedge
funds increases due to the option-like feature of the high-water mark contract. In
particular, Carpenter [9] identifies a strategy using the variance of the portfolio
that depends upon the distance of the net asset value of the portfolio from the
high-water mark. Out of the money managers have a strong incentive to increase
variance, while in the money managers prefer lower risk. Carpenter [10] and Basak
et al. [11] focus primarily on the optimal dynamic investment policy for a risk
averse fund manager compensated with a call option on the assets under manage-

2

ment. Another area of research attempts to observe the actual effect of the bonus
plan on hedge fund managers’ strategy from empirical data of hedge funds, such as
in Stephen et al. [6]. They found little evidence that managers take actions such
as increasing risk when their option-like position is out of money.

Another body of literature focuses on valuing the option-like performance fees on
hedge fund assets. Goetzmann et al. [12] consider the hedge fund performance
fee contract as a perpetual contract with a path-dependent payoff unless the fund
is closed by poor returns. The authors attempt to value this contract from the
investor’s point of view. The payoff at any time depends on the high-water mark
that is related to the maximum asset value achieved. Since the information about
the portfolio is not available for the investors, it is impossible to replicate the payoff
of the contract. Goetzmann et al. use a martingale framework to derive the value
equation.

In this thesis, we will value the option-like performance fees of hedge funds. We
consider this problem from the manager’s point of view. Note that the manager has
the fund portfolio information which is not available to the investors. Suppose the
asset of a hedge fund follows geometric Brownian motion. Imagine that the hedge
fund manager does nothing but follows a delta hedge strategy. He can always receive
the no arbitrage value from the bonus contract. As a result, when an investor puts
money into a hedge fund, he actually provides a free option to the manager of the
hedge fund. The manager can receive the option value with certainty. In this thesis,
we will quantify the value of this free option.

In [12], the authors suppose that the hedge fund asset follows geometric Brownian
motion, the high-water mark changes continuously and the hedge fund has no con-
tractual termination unless it is closed by poor performance. In this thesis, the asset
is assumed to follow geometric Brownian motion with Poisson jumps [30], which is
a more realistic model for hedge fund returns. We also assume that the high-water
mark changes discretely, and that there is contractual termination. There is also
some difference between the bonus contract in [12] and this thesis. In [12], the
payoff of the bonus contract depends on the high-water mark. In this work, the
payoff of the bonus contract depends on both a high-water mark and a hurdle rate.
The hurdle rate is also called the required rate of return. In this work, the manager
can receive the performance fees only if the asset is above the maximum value of
high-water mark and the initial value of asset times the hurdle rate. In addition,
both [12] and this thesis suppose that if the asset price falls to a constant fraction

3

of the high-water mark then the investor withdraws all his money and there are no
further costs or fees.

The option value of the hedge fund fee can be formulated as a path-dependent option
pricing problem [16, 24]. In the process of solving a path-dependent option pricing
problem, we must frequently interpolate the numerical solution. The interpolation
methods and grid construction techniques are very important in order to improve
the performance of the numerical method. In this thesis, we analyze and provide
some guidelines for these interpolation methods and grid construction techniques.

Generally, solving a path-dependent pricing problem requires a large amount of
computation, and parallel computation can greatly improve the efficiency of com-
putation. Fortunately, the present algorithm used in solving path-dependent pric-
ing problems can be easily modified to run efficiently on multiprocessor architec-
tures. In this thesis, we analyze parallel computation using the µC++ language
and OpenMP.

In general, the main results of this thesis are

• We provide a mathematical model to quantitatively analyze the no arbitrage
value of the option-like hedge fund performance fees.

• We analyze interpolation methods and grid construction techniques which can
improve the performance of the numerical method.

• We test the performance of the path-dependent pricing method in a parallel
processing environment.

The outline of this thesis is as follows. In Chapter 2, we describe a mathematical
model for the option-like performance fee. Chapter 3 discusses the interpolation
methods and grid construction techniques that are important to improve the ef-
ficiency of the computation. Chapter 4 shows a robust and reliable numerical
method for the option-like performance fee problem. In Chapter 5, we value the
performance fees using the Monte Carlo (MC) method and provide an accurate and
fast MC algorithm to value a barrier option performance fee with jump diffusion.
Chapter 6 shows a convergence rate tests and a comparison of pricing using MC vs.
numerical PIDE methods. In Chapter 7, we use the mathematical model provided

4

in Chapter 2 to analyze the option-like performance fee. Chapter 8 presents meth-
ods of parallelizing the existing option pricing library using the µC++ language
and OpenMP in a multiprocessor computer in order to obtain better performance.
Finally, Chapter 9 draws some conclusions, and lists possible areas for future work.

5

Chapter 2

Mathematical Model

2.1 The Evolution Equations

Let S be the balance in an investor’s account, and let Ŝ be the price of the actual
underlying asset of the hedge fund. We assume the existence of a risk free money
market account, for which the rate of return is r(t) and that S follows the stochastic
differential equation in the real world probability measure:

dS = (µ−mtotal)Sdt + σSdz + (J − 1)Sdq. (2.1)

The actual underlying asset Ŝ satisfies the following random walk:

dŜ = µŜdt + σŜdz + (J − 1)Ŝdq, (2.2)

where

µ is the drift rate.

dq is an independent Poisson process, =

{
0 with probability 1− λP dt.
1 with probability λP dt.

J − 1 is an impulse function producing a jump from S to JS.
σ is the volatility.

dz is the increment of a Wiener process.
mtotal is the proportional rate at which management fees for the underlying

fund are deducted from the investor’s account.

The management fee is composed of two parts:

mtotal = mc + mr, (2.3)

6

where mc is used to partly compensate the manager’s work, mr is used to maintain
the daily operation of the hedge fund. Obviously if the dollar value of the balance
in investor’s account and underlying asset is the same at t0 then at time t we have

Ŝ = emtotal(t−t0)S. (2.4)

Let V (S, t) be the value of the cash flows to the manager of the hedge fund. These
cash flows include mc and performance fees, but exclude the expense mr. Consider
the viewpoint of a hedge fund manager who sets up a portfolio that consists of
a long position in the cash flow security and a short position, x1, in the actual
underlying asset. The value of this portfolio, Π(S, t), is given by,

Π(S, t) = V (S, t)− x1Ŝ. (2.5)

The change in the value of this portfolio over the interval t → t + dt is given by,

dΠtotal = dΠBrownian + dΠjump. (2.6)

Using Ito’s lemma we have

dΠBrownian =[Vt + (µ−mtotal)SVS +
1

2
σ2S2VSS]dt

+ σSVSdz − x1(µŜdt + σŜdz) + mcSdt,

dΠjump =[V (JS, t)− V (S, t)]dq − x1(J − 1)Ŝdq,

(2.7)

where mcSdt is the remain part of the continuous fee (mtotal) exclude the over-
head part (mr). To eliminate the diffusion risk over this infinitesimal interval, the
manager can choose to hold the position:

x1 =
S

Ŝ
VS. (2.8)

Substituting (2.8), (2.7) into (2.6), we have

dΠtotal = (Vt−mtotalSVS+
1

2
σ2S2VSS)dt+[V (JS, t)−V (S, t)]dq−VS(J−1)Sdq+mcSdt.

(2.9)
Taking the expected value of this change under the risk neutral measure (Q mea-
sure), and we obtain

EQ[dΠtotal] = (Vt −mtotalSVS +
1

2
σ2S2VSS)dt + EQ[V (JS, t)− V (S, t)]EQ[dq]

− VSSEQ[J − 1]EQ[dq] + mcSdt, (2.10)

7

where we assume that the probability of the jump and the distribution of the jump
size are independent. As a shortcut in the derivation, we take the expectation
under the risk neutral measure to obtain the final pricing equation. However the
manager could hedge the jump risk using the method discussed in [15]. Defining
EQ[J − 1] = κ and λ as the Q measure mean arrival rate of the Poisson process,
then we have

EQ[dΠtotal] = (Vt −mtotalSVS +
1

2
σ2S2VSS)dt + EQ[V (JS, t)]λdt

− V (S, t)λdt− VSSκλdt + mcSdt. (2.11)

The expected return of the portfolio under Q measure should be

EQ[dΠtotal] = rΠdt. (2.12)

Then, from (2.11) and (2.12) we have

Vτ =
1

2
σ2S2VSS−(r+λ)V +VSS(r−mtotal−κλ)+mcS+λ

∫ +∞

0

g(J)V (JS, T−τ)dJ,

(2.13)
where

T is the expiry/maturity date.
τ = T − t.
t is current time.

g(J) is the Q measure probability density function of the jump amplitude J such that,
∀J, g(J) ≥ 0 and

∫∞
0

g(J)dJ = 1.

A common assumption is that g(J) is log normal,

g(J) =
exp(− (log(J)−µ)2

2γ2)√
2πγJ

. (2.14)

Note that all parameters (λ, µ, γ) are risk neutral since we take the expectation
under Q measure in equation (2.10).

2.2 Cash Flow, State Variables and Updating Rules

In addition to the proportional fee mc in equation (2.3), the hedge fund manager is
entitled to a performance fee. Typically, the hedge fund manager receives a bonus

8

(usually quarterly or yearly) which is reflected in the performance of the fund. We
will precisely define the incentive fee in the following.

Let ti, i = 1, 2, · · · , N , be observation dates, typically quarterly or yearly. The
value of the amount in investor’s account at the instant before the ith observation
date is denoted by S(t−i). The value of the high-water mark at t−i is given by

H(t−i) = max
k=1,2,··· ,i−1

[S(t+k)], (2.15)

where S(t+k) is the value in the investor’s account at the instant after tk. Define
the following rates:

p− performance rate,

h− hurdle rate (least required rate of return).

We assume for simplicity that the interval between observation dates is a constant,
i.e. ∆t = ti+1 − ti = constant. The incentive fee paid to the hedge fund manager
at ti is then

P (ti) = p×max{S(t−i)−max[S(t+i−1)(1 + h∆t), H(t−i)], 0}. (2.16)

Note we assume that the investor’s account is adjusted to reflect the removal of the
fee,

S(t+i) = S(t−i)− P (ti). (2.17)

In order to determine the no-arbitrage value of the incentive fee to the manager, we
need to include extra state variables in pricing equation (2.13) to take into account
the path dependent effects implied by equation (2.16). Let

Sold(t) = S(t+i−1), t+i−1 ≤ t ≤ t−i ,

H(t) = max
k=1,2,··· ,i−1

[S(t+k)] t+i−1 ≤ t ≤ t−i . (2.18)

Then, the no-arbitrage value of the incentive fees is given by V = V (S, Sold, H, t),
where V satisfies equation (2.13) between valuation dates. In addition, we need to
determine the no-arbitrage jump condition at each valuation date ti. Readers can
refer to [16] for details concerning the jump condition.

Consider the ith observation date ti, let

S+
old = Sold(t

+
i), S−old = Sold(t

−
i), H+ = H(t+i), H− = H(t−i), S+ = S(t+i), S− = S(t−i).

(2.19)

9

Then we have the following jump condition at time ti

V (S+, S+
old, H

+, t+i) = V (S−, S−old, H
−, t−i)− Pi, (2.20)

or
V (S−, S−old, H

−, t−i) = V (S+, S+
old, H

+, t+i) + Pi, (2.21)

where Pi = P (ti) is the incentive payment in equation (2.16).

Let S = S−, H = H−, Sold = S−old, then

V (S, Sold, H, t−i) = V (S+, S+
old, H

+, t+i) + Pi, (2.22)

where

Pi = p×max{S −max[Sold(1 + h∆t), H], 0},
S+ = S − Pi,

S+
old = S+,

H+ = max(H, S+).

(2.23)

We also assume that
V (S, Sold, H, T) = 0, (2.24)

where T is the fund closing time (i.e. no further fees paid after t = T).

For computational purposes, we define a computational domain,

0 ≤ S ≤ Smax,

0 ≤ H ≤ Hmax,

0 ≤ Sold ≤ (Sold)max.

(2.25)

Since the PIDEs are independent one dimensional problems, which communicate
only by jump conditions at observation dates, we can discretize each one dimen-
sional PIDE (in the S direction) independently.

2.3 Boundary Conditions

We also suppose that all the investors withdraw their money when the hedge fund
asset price drops below a fraction of the high-water mark. Once this situation

10

occurs, there are no fees paid. For simplicity, we also suppose there is no cost when
the investors withdraw their money. As a result, we have the following Dirichlet
boundary condition [24],

V (S, Sold, H, t) = 0, S ≤ b×H, (2.26)

where b is a constant scalar. Effectively, S = b×H is a knock-out barrier, triggered
when the liquidation level is met.

As S → 0, equation (2.13) reduces to

Vτ = −rV. (2.27)

When S →∞, we make the common assumption that

VSS → 0. (2.28)

Readers can refer to [20] for the details concerning this boundary condition.

To summarize, the pricing problem then consists of a set of one dimensional prob-
lems (equation (2.13)) embedded in a three dimensional (S, Sold, H) space. These
one dimensional problems are independent between observation dates and commu-
nicate through jump conditions (2.22)-(2.23) and satisfy the boundary conditions
(2.26), (2.27), (2.28) and terminal condition (2.24) with computational domain
(2.25).

2.4 The Similarity Reduction

Many path-dependent option pricing problems admit similarity reductions under
simplified market conditions, such as a constant volatility. When there is a simi-
larity reduction, we can reduce the dimensionality of the problem. The existence
of a similarity reduction for a given problem is closely related to the concept of
homogenous functions.

Definition 1. A function, F (x1, x2, · · · , xn, τ), is said to be homogeneous of degree
m in the variables x1, x2, · · · , xn if:

F (cx1, cx2, · · · , cxn, τ) = cmF (x1, x2, · · · , xn, τ), (2.29)

for some integer m.

11

For example, the standard put option payoff function at terminal time T , P (S, K, T) =
max(K − S, 0), is homogeneous of degree one in the variables S and K since
P (cS, cK, T) = c×max(K − S, 0) = cP (S, K, T).

Theorem 1. We denote {χ} to be the set of variables {y1, y2, · · · , yn}. Suppose
that F (x, χ, τ) satisfies the equation:

Fτ = C1x
2Fxx + C2F + C3Fxx + C4x + C5

∫ +∞

0

g(J)F (Jx, χ, t)dJ, (2.30)

where C1, C2, C3, C4, C5 are constants. If the terminal condition F (x, χ, T) is
homogeneous of degree one in variables (x, χ) and the boundary condition (Fxx = 0
as x →∞) is imposed, then F (x, χ, τ) (0 ≤ τ ≤ T) is homogeneous of degree one
in variables (x, χ).

Proof. Define a new function F̂ such that,

F̂ (x̂, χ̂, τ) = cF (x, χ, τ), (2.31)

where x̂ = cx; χ̂ = cχ and c is a constant. Then we have

F (x, χ, τ) =
1

c
F̂ (x̂, χ̂, τ). (2.32)

Substitute (2.32) into (2.30) we get:

1

c
F̂τ = C1x

2cF̂x̂x̂ + C2
1

c
F̂ + C3xF̂x̂ + C4x + C5

1

c

∫ +∞

0

g(J)F̂ (Jx̂, χ̂, t)dJ

=
1

c
[C1x̂

2F̂x̂x̂ + C2F̂ + C3x̂F̂x̂ + C4x̂ + C5

∫ +∞

0

g(J)F̂ (Jx̂, χ̂, t)dJ].

=⇒ F̂τ = C1x̂
2F̂x̂x̂ + C2F̂ + C3x̂F̂x̂ + C4x̂ + C5

∫ +∞

0

g(J)F̂ (Jx̂, χ̂, t)dJ. (2.33)

So F̂ also satisfies PIDE (2.30). Similarly, we assume that F̂x̂x̂ = 0 as x̂ → ∞.
Since we suppose that the terminal condition is homogeneous of degree one, we
have

F̂ (x̂, χ̂, T) = cF (x, χ, T)

= F (cx, cχ, T)

= F (x̂, χ̂, T). (2.34)

12

Since F̂ and F satisfy the same terminal condition, PIDE (2.30) and boundary
conditions, we have

F̂ (x̂, χ̂, τ) = F (x̂, χ̂, τ)

= F (cx, cχ, τ). (2.35)

From (2.31) and (2.35) we have

F (cx, cχ, τ) = cF (x, χ, τ), (2.36)

where 0 ≤ τ ≤ T . Thus F (x, χ, τ) is homogeneous of degree one in the variables
(x, χ).

Consider the jump condition (2.22) and (2.23), if V (S+, S+
old, H

+, t+i) is homoge-
neous of degree one in S, Sold and H, then V (S, Sold, H, t−i) is homogeneous of
degree one in S, Sold and H (since Pi is homogeneous of degree one in S, Sold and
H). So, from Theorem 1 and equations (2.22), (2.23) we have,

V (cS, cSold, cH, τ) = cV (S, Sold, H, τ). (2.37)

There are at least two ways to use (2.37) to carry out a similarity reduction. If we
choose, c = H∗

H
, then we find that,

V (S, Sold, H, τ) =
H

H∗ × V (
S

H
H∗,

Sold

H
H∗, H∗, τ). (2.38)

Another possibility is to choose, c =
S∗old

Sold
, then we can use the transformation,

V (S, Sold, H, τ) =
Sold

S∗old

× V (
S

Sold

S∗old, S
∗
old,

H

Sold

S∗old, τ). (2.39)

Both of these transformations only need a single value of H∗ (in (2.38)) or S∗old (in
(2.39)) and hence reduce the dimensionality by one.

It is not clear which equation, (2.38) or (2.39), would be a better choice. To
answer this question, we need to analyze the updating rule (2.23) carefully. Sup-
pose the computational domain of S is 0 ≤ S ≤ Smax, and we want to compute
V (S∗, S∗old, H

∗, t = 0) with H∗ = S∗old = S∗. For convenience, we use equation (2.38)
or (2.39) to carry out the similarity reduction.

13

If we choose equation (2.38) to carry out the similarity reduction, then at each
observation point, from equation (2.22) we have to interpolate at the point,

V (
S+

H+
H∗,

S+
old

H+
H∗, H∗, t+). (2.40)

Recalling equation (2.23), we have that,

S+
old = S+,

H+ = max(H,S+),

so that equation (2.40) becomes,

V

(
S+

max(H, S+)
H∗,

S+

max(H, S+)
H∗, H∗, t+

)
. (2.41)

Clearly we have
S+

max(H, S+)
H∗ ≤ H∗,

so that interpolated information is required only in

0 ≤ S ≤ H∗,

0 ≤ Sold ≤ H∗.
(2.42)

If H∗ = S∗, then we only require information at

0 ≤ Sold ≤ S∗.

This is very convenient since we never need information outside the original com-
putational domain if 0 ≤ Sold ≤ S∗.

On the other hand, if we choose equation (2.39) to carry out the interpolation, then
we have to interpolate at the points,

V (
S+

S+
old

S∗old, S
∗
old,

H+

S+
old

S∗old, t
+). (2.43)

14

Recalling that S+
old = S+, H+ = max(H, S+) (from (2.23)), then equation (2.43)

becomes,

V

(
S∗old, S

∗
old,

max(H, S+)

S+
S∗old, t

+

)
. (2.44)

or, recalling that S+ = S − Pi, then (2.44) becomes,

V

(
S∗old, S

∗
old,

max(H, S − Pi)

S − Pi

S∗old, t
+

)
. (2.45)

Then the value needed for the H interpolation, Hinter, is

Hinter =
max(H, S − Pi)

S − Pi

S∗old,

which can be very large if S − Pi is small, and can be outside the original compu-
tational domain 0 ≤ H ≤ Hmax.

From Figure 2.1, we can see this problem more clearly. If we use identical S
grids for each value of Sold and of H, and suppose that Smax = 600, S∗ = 100.
The ”*”s in Figure 2.1 represent the interpolation points. In Figure 2.1(a), we
show the interpolation situation if the equation (2.38) is used to carry out the
similarity reduction. In Figure 2.1(b) we show the interpolation situation if we use
(2.39) to carry out the similarity reduction. From Figure 2.1(a) we can see that the
information is only required at the points 0 ≤ Sold ≤ H∗ = S∗. This means that the
computational domain is restricted to a fairly small region. Conversely, in Figure
2.1(b), we can see that information is required at the points in 0 ≤ H ≤ Hmax, and
for H > Hmax. This is clearly undesirable.

15

Asset Price: S

S
ta

te
V

a
ri

a
b

le
S

o
ld

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Ineffective Computational Domain (B)

Interpolation Points
Effective Computational Domain (A)

(a)

Asset Price: S

S
ta

te
V

a
ri

a
b

le
:H

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900
Interpolation Points

(b)

Figure 2.1: The interpolation situation if we use (2.38) in (a), or (2.39) in (b) to
carry out the similarity reduction. We assume that Smax = 600; S∗ = 100. The
”*”s represent interpolation points. In (a) we indicate the effective computational
domain (A) and ineffective computational domain (B). Actually we do not need to
compute the information at the points located in domain (B). In (b) we only draw
a subset of the interpolation nodes. There are many interpolation nodes which are
larger than H = 900.

16

Chapter 3

Mesh Construction

In order to solve the fundamental path-dependent pricing problem, (2.13) with
the updating rule (2.22)-(2.23), we must frequently interpolate the numerical so-
lution. The performance of the numerical method often depends crucially on the
interpolation strategy and grid construction techniques. In this chapter, we dis-
cuss interpolation methods and grid construction techniques that are important to
improve the efficiency of the computation.

Suppose we solve V (S, {χ}, τ) where V satisfies some PIDE, (i.e. equation (2.13))
with some terminal and boundary conditions. {χ} represents a set of path depen-
dent state variables. Assume that there are discrete observation points where we
need to apply jump conditions. From [22] and [23], we first discretize these state
variables, then for each combination of these discretized state variables, we use a
numerical method to solve a PIDE. This PIDE is characterized by a set of discrete
nodes {Si} i = 1, 2, · · · , imax. We solve the PIDE until we advance the solution to
an observation time. At each observation time, we need to apply jump conditions,
which usually require interpolation. The error in this algorithm is a result of

• The process of computing V between two adjacent observation times (the
discretization error).

• The interpolation operation at each observation time.

The error from PIDE discretization is mainly affected by the S grid distribution
along the asset price direction and the τ grid distribution along the time direction.

17

To decrease this error, we construct the computational domain so that there are
more nodes in the regions where the value is changing rapidly and in the regions
where we need accurate information when we apply interpolation rules.

The error from interpolation is mainly affected by the arrangement of the grid of
the path dependent state variables, the method used to do the interpolation, and
the accuracy of the solution value used as data for the interpolation. To decrease
this error we need to analyze the updating rule and the character of the payoff and
the PIDE.

To summarize, the main issues which determine solution accuracy are:

• The S grid for each PIDE solver.

• The interpolation method.

• The discretization of the auxiliary path dependent state variables.

Often these issues interact with each other.

3.1 S grid design

The S grid design is very important for computational efficiency. As a general rule,
we need to add more nodes in the regions where the value changes rapidly, and in
the regions where we need accurate information when we apply interpolation rules.

Recall that for path dependent contracts, we can visualize the solution method
as follows. We have a set of one-dimensional PIDEs embedded in a higher di-
mensional space. These one-dimensional PIDEs communicate only at observation
times. Consequently, each one-dimensional PIDE can have a different S grid. We
need to consider how each one-dimensional PIDE, which is associated with a fixed
set of path dependent state variables, interacts with the interpolation method.

In order to get the ideas across, without undue algebraic complication, we will
illustrate the ideas using a simple example, a look back option [16]. Suppose we
follow the numerical algorithm in [13] to price a discrete look back option. There is
an auxiliary path dependent state variable M which represents the maximum value

18

of the asset price S up to the current time. At each observation time, M changes
discretely following the updating rule,

M+ = max(S, M−), (3.1)

where M− is the maximum value of S before the observation time and M+ is the
maximum value of S after the observation time. Obviously if S > M−, we need to
obtain values at node (S, S) in the (S, M) plane. Suppose that at time t = 0, S =
S∗, then the initial value of M is also S∗. For M = S∗, we have a set of nodes which
form a prototype S grid. Denote this set of nodes by (Sg)

0 = (S1)
0, · · · , (Smax)

0.
Normally, in the grid (Sg)

0, we choose a fine node spacing near S = S∗, since this is
the region of most interest. We also assume that the grid has been constructed so
that the point S∗ is contained in the grid. In the following discussion, we suppose
that the grid for M is equal to the grid (Sg)

0. Under the above preconditions, we
discuss the S grids for other discrete values of M .

We consider two types of S grid design, which we refer to as the repeated grid and
the scaled grid in the following. The repeated grid is such that each S grid for
each different value of M is just a copy of the S grid for M = S∗, i.e. (Sg)

0. For
the scaled grid, let (Sg)

i represent the S grid corresponding to the discrete value
Mi. The (Sg)

i is composed of (S1)
i, · · · , (Smax)

i. The following algorithm is used
to construct (Sg)

i (i = 1, · · · , imax).

Scaled Grid Construction

For i = 1, · · · , imax

For j = 1, · · · , imax

(Sj)
i = (Sj)

0Mi/S
∗;

EndFor
EndFor

The repeated grid and scaled grid are shown in Figure 3.1. For the scaled grid,
since S∗ is in the prototype grid (Sg)

0, for each line of constant Mi, there is a node
on the diagonal S = M , as depicted in Figure 3.1(a). In the repeated grid, since
the grid of M is equal to the prototype S grid, for each line of constant Mi, there
is also a node on the diagonal S = M , as depicted in Figure 3.1(b).

19

Asset Price S

S
ta

te
V

ar
ia

bl
e

M

0 100 200 300
0

20

40

60

80

100

120

140

160

180

S=M

(a) Scaled grid

Asset Price S

S
ta

te
V

ar
ia

bl
e

M

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

S=M

(b) Repeated grid

Figure 3.1: A representative computational domain formed by discretizing the vari-
able into a set of one dimensional problems, each of which contains a discretization
of the underlying asset price.

20

At each observation time, if we use the repeated grid Figure 3.1(b), then no inter-
polation is required to enforce the jump condition (3.1) even in the case of S > M−,
since for all possible S values, (S, S) is always in the grid. However, the repeated
grid is not generally very accurate at node (S, M = S) for large S values, since
usually the grid is sparse in these regions (i.e. S À S∗), which can be seen in Fig-
ure 3.1(b). We can reduce this problem by using the scaled grid in Figure 3.1(a).
However, in this case, we may need interpolation to apply the jump conditions.

Clearly, there is a tradeoff between these two effects: interpolation accuracy, and
accuracy of the data used to do the interpolation (the PIDE solution).

3.2 Interpolation Rule Design

In many cases, the jump conditions may require interpolation of our discrete solu-
tion. The simplest interpolation scheme is to use the value of the closest points in
the computational domain to do linear or quadratic interpolation [24]. However,
there are some important and special cases which allow us to do exact interpolation.

Definition 2. An interpolation rule is termed exact if, given exact data, the inter-
polation produces the exact solution.

3.2.1 Two Dimensional Case

Consider the following hypothetical example. Suppose that we have a contract with
value V = V (S, Sold, t), where Sold is the value of S at the previous observation.
Suppose that the jump condition is

V (S, Sold, t
−) = V (S, S, t+), (3.2)

and suppose that
V (cS, cSold, t) = cV (S, Sold, t), (3.3)

where c is a constant. Then the jump condition (3.2) requires data at

V (S, S, t+).

21

Suppose
Sl ≤ S ≤ Sh.

If we interpolate along the diagonal of the (S, Sold) plane, which is shown in Figure
3.2,

Asset Price S

S
ta

te
V

a
ri

a
b

le
S

o
ld

0 50 100 150
0

20

40

60

80

100

120

(S*, S*
old)

Figure 3.2: Two dimensional diagonal interpolation rule. This can be used in the
case where the asset price and state variable are homogeneous.

then this is equivalent to

V (S, S, t+) =
Sh − S

Sh − Sl

V (Sl, Sl, t
+) +

S − Sl

Sh − Sl

V (Sh, Sh, t
+).

From equation (3.3), we have

V (Sh, Sh, t
+) =

Sh

Sl

V (Sl, Sl, t
+),

then we obtain

V (S, S, t+) =
S

Sl

V (Sl, Sl, t
+).

22

which is the exact result assuming V (Sh, Sh, t
+) and V (Sl, Sl, t

+) are exact.

In the following, we will refer to this type of interpolation as a two dimensional
diagonal rule. In order for this rule to be exact, we must have S = Sold contained
in each S grid for each discrete Sold value.

3.2.2 Three Dimensional Case

In the case of hedge fund fees, from updating rules (2.22) and (2.23), we need values
at

V (S+, S+, H+, t+),

with
H+ = max(H, S+).

We would like to develop an interpolation method which is exact if the similarity
reduction is valid. If H < S+ then H+ = S+, assuming that the H grid is the same
as the Sold grid, then linear interpolation along diagonal is exact. Suppose

S+
l ≤ S+ ≤ S+

h .

Then if we interpolate along diagonal, which is shown in Figure 3.3, then this is
equivalent to

V (S+, S+, S+, t+) =
S+

h − S+

S+
h − S+

l

V (S+
l , S+

l , S+
l , t+) +

S+ − S+
l

S+
h − S+

l

V (S+
h , S+

h , S+
h , t+).

Assuming that V is homogeneous of degree one in (S, Sold, H),

V (S+
h , S+

h , S+
h , t+) =

S+
h

S+
l

V (S+
l , S+

l , S+
l , t+).

Then we obtain

V (S+, S+, S+, t+) =
S+

S+
l

V (S+
l , S+

l , S+
l , t+),

23

which is the exact result assuming V (S+
h , S+

h , S+
h , t+) and V (S+

l , S+
l , S+

l , t+) are
exact. We will refer to this type of interpolation as a three dimensional diagonal
rule. In order for this rule to be exact, we must have S = Sold = H contained in
each S grid for each combination of discrete Sold and H values such that Sold = H.

However, if H > S+ then the interpolation in the H direction is not necessary. In
this case, the jump condition requires the data at

V (S+, S+, H, t+).

One might suppose that the two dimensional diagonal rule would be a good rule to
use in this case. Unfortunately, this is not exact in this case, since the similarity
reduction (2.37) requires a scaling of all three variables(S, Sold and H) not just (S,
Sold) with H fixed.

Consequently, in the case of hedge fund fees, we use equation (2.38) to carry out
the similarity reduction. In the (S, Sold) plane, we choose a scaled (S, Sold) grid
and use the two dimensional diagonal rule to do the interpolation, since in this
way we can always use the data which is in the dense area of the S grids. This is,
however, not an exact interpolation rule.

3.3 Auxiliary Path Dependent State Variable Grid

Design

The grid for the path dependent state variable also affects the accuracy of inter-
polation and the efficiency of computation. For most path dependent options, the
state variable is a function of the asset price S, so the state variable grid is highly
related to the S grid design.

Consider the example of a look back option [16]. In Section 3.1, we discussed the S
grid design for each value of the state variable M . For simplicity, we assume that
the M grid is equal to the prototype S grid (Sg)

0. In fact, we should also consider
the grid design of the state variable M . The design of M grid is closely related
to the S grid. If we use a repeated grid, then we should set the M grid to be the
same as the S grid. If the grids of M and S are the same, then interpolation is not

24

necessary. However, if we use a scaled grid, then we have to do interpolation for
any M grid. If the look back option satisfies the similarity reduction in variables
S and M , then the interpolation is exact. However, even if a similarity reduction
is not valid, the scaled grid with two dimensional diagonal interpolation rule still
works well [18].

In the case of hedge fund fees, if the similarity reduction is not valid, then from the
jump condition (2.22) and (2.23), we require data at

V (S+, S+
old, H

+, t+i),

with

S+
old = S+,

H+ = max(H,S+).

Obviously we have H+ ≥ S+
old in V (S+, S+

old, H
+, t+i), which means that in each

plane of H, we can limit the grid of Sold to H ≥ Sold ≥ 0, which is usually much
smaller than the area Smax ≥ Sold ≥ 0.

If V (S, Sold, H, t) admits a similarity reduction (2.37) (V (cS, cSold, cH, τ) =
cV (S, Sold, H, τ)), then instead of solving V (S, Sold, H, t) directly, we always solve
H
H∗V (S

H
H∗, Sold

H
H∗, H∗, t) for fixed H∗. Then from equation (2.42) (0 ≤ S ≤ H∗, 0 ≤

Sold ≤ H∗), we can limit the grid of Sold to S∗ ≥ Sold ≥ 0 if H∗ equal to S∗. We only
need a rectangular computational domain, as shown in Figure 2.1(a) (domain (A)),
to solve the problem, which can greatly improve the efficiency of computation.

From the above discussion, we can see that the three issues(S grid design, interpo-
lation rule design and path dependent state variable grid design) impact each other.
There is not a rule which is better than others in all different cases. Generally, when
we consider the solution of a path dependent option pricing problem, we need to

• Check whether the partial differential equation and jump conditions satisfy
a similarity reduction (Section 2.4). If possible, we should, of course, use the
similarity reduction. Using a similarity reduction can not only reduce the
dimensionality of the problem but also impact the interpolation rule design.

• Design the interpolation rule. If the problem satisfies a similarity reduction,
we should use a two dimensional diagonal rule or three dimensional diagonal

25

rule to get exact interpolation. Even in the case where a similarity reduction
is not valid, these interpolation rules usually work well [18].

• Design the path dependent state variables grids using the interpolation rule
and jump conditions. Information which is unnecessary when applying the
interpolation rule should be taken into account when designing the grid.

• Design one-dimensional PIDE grids for each combination of path dependent
state variables. In this process, we should put more nodes in the regions where
the value changes rapidly, and in regions where we need accurate information
when we do the interpolation.

• Put all these criteria together to check whether they are compatible.

In addition, in our case, in light of the boundary condition (2.26), we always put a
node on the grid (b×H, Sold, H) [33], corresponding to the barrier node.

26

0
50

100
150

200

0
50

100
150

200
0

50

100

150

Asset Price SPrevious Price S
old

H
ig

h
 W

a
te

rm
a
rk

 H

(x
new

,y
new

,z
new

)

B

A

Figure 3.3: Three dimensional diagonal rule: notice that we still need to do in-
exact interpolation for point A and point B, which may not be located on the
computational grid.

27

Chapter 4

PIDE Discretization

In this chapter, we give a brief overview of the method used to solve (2.13). Readers
can refer [25, 19, 41] for more details. In general, we use finite difference to discretize
the PIDE, use Fast Fourier Transform(FFT) method to compute the integral term
and use a fixed point iteration technique to obtain the performance fee value at
time τn+1 from the value at time τn.

4.1 Finite Difference

In this section, we will derive the discretized equation from equation (2.13) using
the finite difference method. First, Define a grid of points in the (S, τ) plane:

S0, S1, · · · , Sm 0 ≤ Si ≤ Sm,

τn = n∆τ 0 ≤ τn ≤ N∆τ = T.

Then let
V (Si, τn) = V n

i .

The time derivative in equation (2.13) is approximated by

(
∂V

∂τ

)n

i

' V n+1
i − V n

i

δτ
. (4.1)

28

The second order derivative term in equation (2.13) is approximated by

(
1

2
σ2S2VSS

)n

i

' 1

2
σ2S2

i

(
V n

i+1−V n
i

Si+1−Si

)
−

(
V n

i −V n
i−1

Si−Si−1

)

Si+1−Si−1

2

 . (4.2)

The discounting term in equation (2.13) is represented by

[(r + λ)V]ni = (r + λ)V n
i . (4.3)

The first derivative term on the right hand side of equation (2.13) can be approxi-
mated in three ways.
A central difference:

((r −mtotal − κλ)SVS)n
i ' (r −mtotal − κλ)Si

(
V n

i+1 − V n
i−1

Si+1 − Si−1

)
. (4.4)

A forward difference:

((r −mtotal − κλ)SVS)n
i ' (r −mtotal − κλ)Si

(
V n

i+1 − V n
i

Si+1 − Si

)
(4.5)

A backward difference:

((r −mtotal − κλ)SVS)n
i ' (r −mtotal − κλ)Si

(
V n

i − V n
i−1

Si − Si−1

)
. (4.6)

If Si+1−Si = Si−Si−1, then equation (4.4) is second order, while equation (4.5) and
(4.6) is only first order. Consequently, we will want to use the central approximation
as mush as possible. Substituting equations (4.1), (4.2), (4.3) and one of (4.4), (4.5)
or (4.6) into equation (2.13) gives a discrete equation of form,

V n+1
i = V n

i (1− (αi + βi + r + λ)∆τ) + V n
i−1∆ταi + V n

i+1∆τβi (4.7)

+ mcSi∆τ + ∆τλ

∫ +∞

0

g(J)V (JS, t)dJ, (4.8)

where if we discretize the first derivative term of (2.13) with central differences

29

(4.4), this results in

αi,central =
σ2

i S
2
i

(Si − Si−1)(Si+1 − Si−1)
− (r − λκ−mtotal)Si

Si+1 − Si−1

βi,central =
σ2

i S
2
i

(Si+1 − Si)(Si+1 − Si−1)
+

(r − λκ−mtotal)Si

Si+1 − Si−1

.

(4.9)

If αi,central or βi,central is negative, oscillations may appear in the numerical solution.
These can be avoided by using forward differences (4.5) at the problem nodes,
leading to (forward difference)

αi,forward =
σ2

i S
2
i

(Si − Si−1)(Si+1 − Si−1)

βi,forward =
σ2

i S
2
i

(Si+1 − Si)(Si+1 − Si−1)
+

(r − λκ−mtotal)Si

Si+1 − Si−1

.

(4.10)

4.2 Fast Fourier Transform(FFT)

The integral term I(S) =
∫ +∞

0
g(J)V (JS, t)dJ in (2.13) can be transformed to

I(S) =

∫ +∞

−∞
V (x + y)f(y)dy, (4.11)

where V (x) = V (ex), f(y) = g(ey)ey. The integral (4.11) can be evaluated effi-
ciently using an FFT. In the FFT, an equally spaced grid in log S coordinates is
needed, which may not coincide with an unequally spaced grid in S coordinates.
So we linearly interpolate to get V j from Vk, i.e. if

Sγ(j) ≤ ej∆x ≤ Sγ(j)+1,

then
V j = ψγ(j)Vγ(j) + (1− ψγ(j))Vγ(j)+1 + O((∆Sγ(j)+1/2)

2), (4.12)

where ψγ(j) is an interpolation weight, and ∆Si+1/2 = Si+1 − Si.

After obtaining I(Si) = Ii using the FFT, we need to interpolate back to the S
grid, i.e. if

exπ(k) ≤ Sk ≤ exπ(k)+1 ,

30

then

I(Sk) = φπ(k)Iπ(k) + (1− φπ(k))Iπ(k)+1 + O((exπ(k) − exπ(k)+1)2), (4.13)

where φπ(k) is an interpolation weight. Note that

0 ≤ φi ≤ 1, 0 ≤ ψi ≤ 1.

Then we have

I(Sk) =

j=N
2∑

j=−N
2

+1

χ(V, k, j)f j∆y, (4.14)

where V = [V0, V1, · · ·Vm]T and m + 1 is the number of nodes in S coordinates,
f j = g(ej∆y)ej∆y and

χ(V, k, j) = φπ(k)[ψγ(π(k)+j)Vγ(π(k)+j) + (1− ψγ(π(k)+j))Vγ(π(k)+j)+1]+

(1− φπ(k))[ψγ(π(k)+1+j)Vγ(π(k)+1+j) + (1− ψγ(π(k)+1+j))Vγ(π(k)+1+j)+1].
(4.15)

Another issue is that the FFT effectively assumes that the input functions are
periodic. This may cause wrap-around pollution unless special care is taken when
implementing the algorithm. In this thesis, we use the technique suggested in [41]
to solve this problem.

4.3 Fixed Point Iteration

After evaluating the integral term, we use a fixed point iteration method to get the
value at time τn+1 from the value at time τn. Define a (m + 1) × (m + 1) matrix
M̂ such that

M̂ = ∆τ

−(r + λ) 0
α1 −(α1 + β1 + r + λ) β1

. . .

αm−1 −(αm−1 + βm−1 + r + λ) βm−1

γm−2 γm−1 γm

31

From boundary assumption VSS → 0 when S →∞ and backward difference (4.6),
we have [20],

γm−2 = 0

γm−1 = −Sm(r −mtotal − κλ)

Sm − Sm−1

γm = −(r + λ)− γm−1

Also define the vector Ω(V n) (which is a linear function of V n) such that

[Ω(V n)]i =

j=N
2∑

j=−N
2

+1

χ(V n, i, j)f j∆y. (4.16)

Thus we can write a fully implicit(θ = 0) or Crank-Nicolson(θ = 1
2
) discretization

as

[I − (1− θ)M̂]V n+1 = [I + θM̂]V n + (1− θ)λ∆τΩ(V n+1) + θλ∆τΩ(V n) + ImcS∆τ,
(4.17)

where I is a m + 1 dimensional identity matrix, and S = [S0, S1, · · ·Sm]T .
We can then derive the fixed point iteration method [19, 41] as follows:

Fixed point Iteration

Let (V n+1)
0

= V n

Let V̂ k = (V n+1)
k

For k = 0,1,2,· · · until convergence

Solve [I − (1− θ)M̂]V̂ k+1 =[I + θM̂]V n + (1− θ)λ∆τΩ(V̂ k)+
θλ∆τΩ(V n) + ImcS∆τ

If maxi
|V̂ k+1

i −V̂ k
i |

max(1,|V̂ k+1
i |) < tolerance then quit

EndFor

32

Chapter 5

Valuation Using the Monte Carlo
Approach

The Monte Carlo (MC) approach is a statistical technique that simulates a stochas-
tic process directly rather than solving the underlying differential equations that
describe the pricing problem.

The basic steps involved in the MC method are:

• Simulate a geometric Brownian motion sample path with jump diffusion under
risk neutral measure.

• Compute the payoff produced by the sample path and discount it to time
zero.

• Add the discounted payoffs from many sample paths together, then compute
the arithmetic average of these payoffs.

Typically we use forward Euler to integrate the stochastic differential equation to
produce each sample path. We refer to this method as a timestepping Monte Carlo
(MC) method in the following. There is, however, a problem with this approach.
The time discretization of the jump diffusion paths introduces a timestepping bias
in the pricing estimate. This bias should not be underestimated. To reduce the
bias, one should make the time discretization fine enough, but as a result the
computation becomes very slow. In this chapter, we provide an algorithm which

33

eliminates the timestepping bias completely to value the option-like performance
fee. In addition, this method is orders of magnitude more efficient computationally
than the timestepping MC method.

We start by generating the jump times of the process. The time intervals between
any two adjacent jump events are independent and identically distributed exponen-
tial random variables with mean 1/λ. Since the jump size follows an independent
lognormal distribution, we can obtain the asset value immediately before and im-
mediately after the jump instant given the time interval and jump size. Then,
between these generated points, we have a pure diffusion with known end points,
hence a Brownian bridge [34].

We assume that investors withdraw their money without any cost, if the asset price
drops below some given level (the liquidation barrier). Once this situation occurs,
there is no future performance fee. This performance fee is similar to a continuously
observed knock out barrier option. Using the Brownian bridge concept, we can
obtain the barrier-crossing probability in this interval between two adjacent jump
events, given the two end-points of the pure diffusion process. With this probability,
we can generate a uniform random variable to decide if the barrier is crossed in this
interval [35]. Note that we do not use forward Euler to integrate the stochastic
differential equation, so there is no timestepping error. The detailed algorithm is
shown in Appendix A.

5.1 Formulation

To simulate a sample path with a jump diffusion, we first determine two things,
the jump event time and jump size.

Recall that we assume that the jump size J follows the lognormal distribution
(i.e. J ∼ LN(µ, γ)) and that the distribution of J is independent of dq and dz.
Consequently, by generating a lognormally distributed random number, we can
determine the jump size.

For the jump event time, we can simulate the sequence of interval times between
two adjacent jump events ∆t∗j , j = 1, 2, 3, · · ·, which are independent identically
distributed exponential random variables with mean 1/λ.

34

After obtaining the sequence of intervals between jump events we can get the jump
event times 0 < t∗1 < t∗2 < · · · [21], where t∗j , j = 0, 1, 2, . . . is the jth random arrival
time of the jump event. Since we assume that dz and dq in (2.1) are independent
of each other, S(t) evolves as an ordinary geometric Brownian motion from one
jump time to the next. When a jump occurs, S(t) changes to J(t)S(t). To be
more precise, under the risk neutral measure, equation (2.1) can be re-written in
the following form:

dS

S
= (r − λκ−mtotal)dt + σdz, if a jump does not happen,

= (r − λκ−mtotal)dt + σdz + (J − 1), if a jump happens.

Let t∗−j denote the instant before the jth jump event occurs, let t∗+j denote the

instant after the jth jump event, and let ∆t∗j+1 = t∗j+1 − t∗j denote the time interval
between the (j + 1)th and the jth jump events. Then we have the following exact
solution of S(t):

S(t∗−j+1) = S(t∗+j) exp[(r −mtotal − λκ− σ2

2
)∆t∗j+1 + σφ

√
∆t∗j+1]

S(t∗+j+1) = S(t∗−j+1)J(tj+1),
(5.1)

where φ is a random variable drawn from a standard normal distribution.

The process follows a pure Brownian motion between any two adjacent jump times
t∗+j and t∗−j+1. Since we know the initial and terminal values (from equation (5.1)),
the Brownian motion is actually a Brownian bridge [34].

Let Bj
t be a Brownian bridge in the interval [t∗+j−1, t

∗−
j] with two end points value

Bj

t∗+j−1

= S(t∗+j−1), Bj

t∗−j

= S(t∗−j), and τj = t∗−j − t∗+j−1. From [34], we can obtain the

probability that the minimum of Bj
t is always above the barrier in the interval τ :

Pj = P

(
inf

t∗+j−1≤t≤t∗−j

(Bj
t) > H|Bj

t∗+j−1

= S(t∗+j−1), B
j

t∗−j

= S(t∗−j)

)

=

1− exp(−2[log H−log S(t∗+j−1)][log H−log S(t∗−j)]

τjσ2) if min[S(t∗+j−1), S(t∗−j)] > H,

0 otherwise,

(5.2)

where H is the barrier level, and σ is the volatility.

35

5.2 Convergence and Error Estimation

There are two sources of error in the timestepping MC approach: timestepping error
and sampling error. In the timestepping MC method, forward Euler generates the
timestepping error. The timestepping error is of size O(∆t) [36, 37]. The source
of the sampling error lies in using the MC method to calculate the mean. The
sampling error is of size O(1/

√
M), when M is the number of sample paths.

As we noted above, the algorithm in Appendix A can eliminate the timestepping
error completely, so we need only to consider the sampling error. Let V m be the
present value of the sum of the payoffs in the mth path, where m = 1, · · · ,M . The
estimated mean of the sample is given by

µ̂ =
1

M

M∑
m=1

(V m), (5.3)

and the standard deviation of the estimate is given by

ω = [
1

M − 1

M∑
m=1

(V m − µ̂)2]
1
2 . (5.4)

Then the 95% confidence interval for the actual value V of the performance fee is
([41, 42])

µ̂− 1.96ω√
M

≤ V ≤ µ̂ +
1.96ω√

M
. (5.5)

Note that in order to reduce this sampling error by a factor of 2, the number of
simulations must be increased by 4 [36].

36

Chapter 6

Test Results

In this chapter, we will present numerical tests for the PIDE and MC algorithm
for valuing the hedge fund performance fee. We will look at the convergence rate
of the PIDE methods, as well as a comparison of numerical results using the two
methods. In order to evaluate the role of investor’s withdrawal option, we will
show the results under two assumptions. The first case assumes that the investors
withdraw their money without any cost when the value of their investment drops
below half of high-water mark (equation (2.26), b = 0.5). The second case assumes
that the investors are not allowed to withdraw their money until the contract expires
(equation (2.26), no-barrier).

6.1 Contract Details and Input Parameters

All numerical tests of the PIDEs use Crank-Nicolson with the Rannacher smoothing
technique [38, 39], the diagonal interpolation rule (Section 3.2) and constant time
steps. Details of the contract used in these tests are provided in Table 6.1. In these
tests, we use a constant volatility model with jump diffusion. Input parameters are
presented in Table 6.2.

6.2 Convergence Rate Tests

In this section, we test the convergence rate of our numerical algorithm for the
PIDE (2.13) as the grid size is refined. Since the volatility is assumed constant, we
can use the similarity reduction to reduce this problem to a two dimensional PIDE.

37

Parameter Value
Observation times 1.0,2.0,3.0,4.0,5.0

T 5.0
Performance rate 0.2

Hurdle rate 0.05
Management rate mtotal 0.01

mc 0

Table 6.1: Hedge fund contract details.

Parameter Value
S∗ 100
σ 0.25
r 0.05
λ 0.1
µ -0.9
γ 0.45

Table 6.2: Parameters for the constant volatility case with jumps.

38

A series of tests were carried out, where at each refinement level, new nodes were
inserted between each pair of nodes in the coarser grid, and the timestep is halved.
The results of the convergence tests are shown in Table 6.3. From the results,
convergence appears to be asymptotically quadratic. If we do not use the similarity
reduction, then we have to solve a three dimensional problem and the results are
shown in Table 6.4. Compared with the values in Table 6.3, we can see that they
are in good agreement. We can also note that in Table 6.4, the convergence rate
is only first order. This is probably due to the fact that the three dimensional
interpolation is not exact.

Refine- Number of Time Fixed
grid nodes point Value Difference Ratio

ment in S, Sold direction steps iterations
Crank-Nicolson (b = 0.5)

0 35 40 114 8.836762424
1 69 80 225 8.91300492 0.076242496
2 137 160 449 8.931048657 0.018043737 4.23
3 273 320 685 8.935510431 0.004461774 4.04
4 545 640 1227 8.936638217 0.001127786 3.96

Crank-Nicolson (no-barrier)
0 35 40 120 8.942057159
1 69 80 234 8.995195025 0.053137866
2 137 160 463 9.006712117 0.011517092 4.61
3 273 320 745 9.009408524 0.002696407 4.27
4 545 640 1259 9.010072595 0.000664071 4.06

Table 6.3: The value transferred from the investors to the managers of hedge funds.
Contract details are provided in Table 6.1. Market parameters are given in Table
6.2. A similarity reduction is used, so no grid is needed in the H direction. At
each refinement level, new nodes are inserted between each pair of grid nodes on
the coarser grid, and the timestep is halved. Difference refers to the change in
numerical value from one level of refinement to the next. Ratio refers to the ratio
of difference between successive refinements.

6.3 Monte Carlo Test Results

In this section, we use the MC method to obtain the value of the option-like per-
formance fee. We use the contract and input parameters given in Section 6.1. To

39

Refine- Number of Time Fixed
grid nodes point Value Difference Ratio

ment in S, Sold, H direction steps iterations
Crank-Nicolson (b = 0.5)

0 35 40 97 8.826223921
1 69 80 196 8.899703693 0.073479772
2 137 160 391 8.926223287 0.026519594 2.77
3 273 320 613 8.933267855 0.007044568 3.76
4 545 640 1108 8.936269911 0.003002056 2.35

Crank-Nicolson (no-barrier)
0 35 40 117 8.933938289
1 69 80 226 8.98196105 0.048022761
2 137 160 438 9.00193398 0.01997293 2.40
3 273 320 730 9.007176061 0.005242081 3.81
4 545 640 1223 9.009716259 0.002540198 2.06

Table 6.4: The value transferred from the investors to the managers of hedge funds.
Contract details are provided in Table 6.1. Market parameters are given in Table
6.2. A full three dimensional PIDE is solved. At each refinement level, new nodes
are inserted between each pair of grid nodes on the coarser grid, and the timestep
is halved. Difference refers to the change in numerical value from one level of
refinement to the next. Ratio refers to the ratio of difference between successive
refinements.

40

eliminate the timestepping error, we use the algorithm in Appendix A to generate
the sample path for the case b = 0.5. For the no-barrier case, since the investors are
not allowed to withdraw their money, we do not need to compute the probability of
crossing the barrier. As the timestepping error has been eliminated, we only need
to consider the sampling error of the MC method.

To analyze the sampling error, we compute the mean µ̂ and the standard error
ω√
M

, where ω is the standard deviation and M is the number of sample paths. The
results are shown in Table 6.5. From Table 6.5, we can observe that the standard
sampling error is linear to 1/

√
M .

Number of Value Standard Error Value Standard Error

Sample Paths 1/
√

M (no- (no-
(M) (b = 0.5) (b = 0.5) barrier) barrier)

10,000 1/100 9.08239 0.114064 8.90413 0.11122
40,000 1/200 9.02045 0.0572686 9.0809 0.0568983
160,000 1/400 8.91238 0.0281759 9.00866 0.028335
640,000 1/800 8.95142 0.0141302 9.00977 0.0141273

2,560,000 1/1600 8.92982 0.00705891 9.00864 0.0070529
10,240,000 1/3200 8.93318 0.00353282 9.00771 0.00352613
40,960,000 1/6400 8.93647 0.00176678 9.01276 0.00176398
163,840,000 1/12800 8.93688 0.000883206 9.00999 0.0008818

Table 6.5: This table shows the standard error for the MC algorithm using param-
eters in Table 6.1 and 6.2.

Using the equation (5.5), and substituting in values from Table 6.5, we obtain

8.93515 ≤V ≤ 8.93861 For the case b = 0.5

9.00826 ≤V ≤ 9.01172 For the case no-barrier

This implies that in the case b = 0.5, we are 95% confident that the true value of the
performance fees lies between $8.93515 and $8.93861. In the no-barrier case, we are
95% confident that the true value of the performance fees lies between $9.00826 and
$9.01172. In each case, the value of numerical methods with the highest refinement
level lies inside the 95% confidence interval of the MC estimates (from Table 6.3

41

Log(Number of Paths)

V
a

lu
e

o
f

P
e

rf
o

rm
a

n
c
e

F
e

e
s

10 12 14 16
8.85

8.9

8.95

9

9.05

9.1

9.15

MC

PIDE

a. b = 0.5

Log(Number of Paths)

V
a

lu
e

o
f

P
e

rf
o

rm
a

n
c
e

F
e

e
s

10 12 14 16
8.9

8.925

8.95

8.975

9

9.025

9.05

9.075

9.1

MC

PIDE

b. no-barrier

Figure 6.1: This figure shows the convergence of the value of the performance fees
using the Monte Carlo method which uses the algorithm in Appendix A to produce
a sample path. Contract parameters are given in Table 6.1 and market parameters
are given in Table 6.2.

42

and Table 6.4). Figure 6.1 plots the convergence of the MC method to the PIDE
solution for both case b = 0.5 and no-barrier case.

We then use the timestepping MC method and check the barrier condition at each
time step to determine the value of the performance fees. The test results are shown
in Figure 6.2. In Figure 6.2, the time step decreases from one month to one day
as the number of sample paths increases from 10, 000 to 40, 000, 000. From Figure
6.2, we can observe that the timestepping MC method also converges to the PIDE
solution. However, on an SGI machine with SUSE Linux (kernel version: 2.6.5-
7.244-sn2), when the number of sample paths is equal to 40, 000, 000, the algorithm
in Appendix A (using the Brownian bridge) only requires 152.3 seconds for the
case b = 0.5 and 87.5 seconds for the no-barrier case. The corresponding CPU
times using the timestepping MC method are 11646.2 seconds (the case b = 0.5)
and 14640.7 seconds (the no-barrier case). We can see that the algorithm using the
Brownian bridge is much more efficient than the timestepping MC method.

43

Log(Number of Paths)

V
a

lu
e

o
f

P
e

rf
o

rm
a

n
c
e

F
e

e
s

10 12 14 16

8.75

8.8

8.85

8.9

8.95

9

9.05

9.1

9.15

PIDE

MC

a. b = 0.5

Log(Number of Paths)

V
a

lu
e

o
f

P
e

rf
o

rm
a

n
c
e

F
e

e
s

10 12 14 16
8.85

8.9

8.95

9

9.05

9.1

9.15

PIDE

MC

b. no-barrier

Figure 6.2: This figure shows the convergence of the value of the performance fees
using the timestepping Monte Carlo method. Contract parameters are given in
Table 6.1 and market parameters are given in Table 6.2. The time step decreases
from one month to one day as the number of sample paths increases from 10, 000
to 40, 000, 000.

44

Chapter 7

Interpretation of the Model

In this chapter, we will use the model (2.13) to analyze the hedge fund performance
fee. Note that in the following, we suppose that the management rate mtotal = 0.01,
the extra compensation rate mc = 0 and the initial value S∗ = 100. Then we have
the following parameters which can affect the present value of the performance fees:

σ is the volatility.
λ is the mean arrival rate of the Poisson process.
µ is the mean of log(J), where J is jump size.
γ is the standard deviation of log(J), where J is jump size.
b is the liquidation level which is a constant fraction of the

high-water mark (refer to Section 2.2).
T is the lifetime of the hedge fund contract.
p is the performance rate.
h is the hurdle rate.

S∗ is the initial asset price.

σ, λ, µ and γ are market parameters; b is an endogenous choice made by the
investor; T , p and h are contractual parameters. In the following sections, we will
analyze the effects of these parameters on the value of the hedge fund performance
fees. Except where otherwise specified, the test parameters are b = 0.5, σ = 0.25,
λ = 0.1, µ = −0.9, γ = 0.45, T = 5.0, p = 0.2, h = 0.05, S∗ = 100.

45

7.1 The Effect of the Endogenous Choice for b

Since hitting the liquidation barrier cancels all future fee payments, a barrier near S∗

reduces the value of future fees. For the same reason, the value of the performance
fees decreases as b increases, which is shown in Figure 7.1. From Figure 7.1, we can
see that when b is small, the influence of withdrawal is small. However, when b is
more than 0.60 (i.e. the barrier is close to the asset price), withdrawal reduces the
value of the performance fees by a large amount.

Liquidation Level (b)

V
a

lu
e

o
f

P
e

rf
o

rm
a

n
c
e

F
e

e
s

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

Figure 7.1: This figure shows the effect of b on the value of the performance fee.

7.2 The Effect of Market Parameters

The present value of the performance fees is generally increasing as σ and λ increase,
since the performance fee has option-like characteristics. An exception occurs when
the asset value is close to the liquidation barrier. This is similar to the well-known
result that the value of a knock-out barrier option can be decreasing in volatility
if the underlying asset price is close to the barrier. This is because an increase
in σ increases the possibility of hitting the liquidation barrier. If the barrier is

46

close to the asset price, this effect dominates, and the value of the performance fees
decreases (see Figure 7.2 (a) line B).

The mean jump arrival rate λ generally has a similar effect to the volatility σ
when the barrier is far away from the asset price. However increases in σ and
λ have different effects on the value of the performance fees when the barrier is
close to the asset price. As σ increases, the asset price fluctuates more intensely,
but the extent is much smaller than the fluctuation from jump events. When a
jump event occurs, the asset price may increase or decrease by a large amount
suddenly. If the asset price decreases suddenly and hits the liquidation barrier,
the future performance fees become zero. If the asset price increases suddenly,
the performance fees increases by a large amount. Note that the loss is limited in
magnitude (no future fees at most), but there is no upper limit of increase. Thus the
effects of increase and decrease are not symmetric. The effect of increase dominates
the effect of decrease when λ increases (see Figure 7.2 (b) line B).

However, when σ increases, the asset fluctuations are not as extreme as in the jump
case. If the barrier is close to the current asset price, the effect of hitting the barrier
dominates the increase in the asset price. That is why the effect of the increase in
σ and λ on the value of the performance fees is different if the liquidation barrier
is close. From Figure 7.2, we can see the difference clearly.

From Figure 7.2, we can observe that if b is not close to one, the volatility σ and
the mean jump arrival rate λ have a similar effect on the value of hedge fund
performance fees. If we assume that there is no jump diffusion, we can calibrate
the volatility σ to the value of the performance fees with jump diffusion. In other
words, we can adjust σ in a model with λ = 0, to obtain the same value for the
performance fees as in the full jump diffusion model. We will refer to this calibrated
volatility as the implied volatility in the following.

Table 7.1 shows the implied volatility (no jump) which gives the same fee value
as in the λ 6= 0 jump model. Roughly, an increase in λ by 0.1, corresponds to an
increase in the implied volatility by about 0.08.

We then observe the effect of the mean of log(jump size) µ on the value of the

47

A

A

A

B B
B

Volatility (sigma)

V
al

ue
of

P
er

fo
rm

an
ce

F
ee

s

0.1 0.2 0.3 0.4
4

5

6

7

8

9

10

11

12

b=0.5
b=0.8

A
B

a. The effect of σ on the value of the performance fees.

A

A

A

B

B

B

The Mean Arrival Rate (lambda)

V
al

ue
of

P
er

fo
rm

an
ce

F
ee

s

0 0.1 0.2 0.3 0.4
5

6

7

8

9

10

11

12

13

b=0.5
b=0.8

A
B

b. The effect of λ on the value of the performance fees.

Figure 7.2: This figure shows the effect of the volatility σ and the mean jump
arrival rate λ on the value of the performance fee. Observe that when b is far away
from one, the value of the performance fees increases as σ or λ increases. When b
is close to one, the value of the performance fees decreases as σ increases; however,
the value of fees still increases as λ increases.

48

performance fees. The test results are shown in Figure 7.3. Observe that under
typical parameters, the value of the performance fees decreases as µ increases. In
order to analyze the effect of µ on the value of the performance fees, we rewrite the
equation (2.13) as following

Vτ =
1

2
σ2S2VSS − (r + λ)V + VSS(r−mtotal−κλ) + mcS + λ

∫ +∞

0

g(J)V (JS, t)dJ,

(7.1)

where g(J) =
exp(− (log(J)−µ)2

2γ2)
√

2πγJ
, so κ = EQ[J − 1] = exp(µ + γ2

2
)− 1. From equation

(7.1), we can see that when µ decreases, S has a higher probability to decrease as
a jump occurs, which results in a higher probability of knock-out. A decrease in µ
also results in a decrease in κ, hence a higher drift rate (r −mtotal − κλ). So they
have opposite effects on the value of the performance fees. From our test results
in Figure 7.3, the effect of the increase in the drift rate dominates the effect of the
higher probability of knock-out.

The effect of the standard deviation of log(jump size) γ on the value of the perfor-
mance fees is shown in Figure 7.4. Observe that under typical parameters, the plot
of the value and performance fees vs. γ has a smile shape, though the magnitude
of the effect is much smaller than the other jump parameters λ and µ.

With jump No jump Difference
λ σ Value σ Value ∆λ ∆σ

0.1 0.15 6.63372 0.230403 6.63373 0.1 0.080403
0.2 0.15 8.79043 0.314975 8.79044 0.2 0.164975
0.1 0.25 8.93663 0.321137 8.93665 0.1 0.071137
0.2 0.25 10.6359 0.400142 10.6359 0.2 0.150142
0.1 0.35 11.0549 0.42252 11.0549 0.1 0.07252
0.2 0.35 12.4224 0.50891 12.4224 0.2 0.15891

Table 7.1: This table shows the quantitative relationship between the implied
volatility σ and the mean jump arrival rate λ. Observe that the values under
the column ”With jump” (the third column) are almost equal to the corresponding
values under the column ”No jump” (the fifth column). From the columns ∆λ and
∆σ, we can see that an increase of 0.1 in λ has a similar effect to an increase of
0.08 in σ.

49

Mean of Log(jump size)

V
al

ue
of

P
er

fo
rm

an
ce

F
ee

s

-1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6

8.4

8.6

8.8

9

9.2

9.4

9.6

Figure 7.3: The effect of the mean of log(jump size) µ on the value of the perfor-
mance fees.

Standard Deviation of Log(jump size)

V
al

ue
of

P
er

fo
rm

an
ce

F
ee

s

0.2 0.3 0.4 0.5 0.6 0.7
8.9

8.925

8.95

8.975

9

9.025

9.05

Figure 7.4: The effect of the standard deviation of log(jump size) γ on the value of
the performance fees.

50

7.3 The Effect of Contractual Parameters

In this section, we will use the model to evaluate the proportion of the present
value of the performance fees in the value of assets under the typical market and
contractual parameters. Suppose that σ = 0.25, λ = 0.1, p = 0.2, h = 0.05 and
the initial value of the asset is 100, then the present value of fees depends on the
contract lifetime T and the endogenous choice of withdrawal level b. The test results
are shown in Figure 7.5.

A

A

A
A

A
A A A A A

B

B

B

B

B

B

B

B
B

B

Lifetime (years)

V
a

lu
e

o
fP

e
rf
o
rm

a
n
ce

F
e

e
s

0 10 20 30 40 50
5

10

15

20

25

30

35

40

45

b=0.5
no-barrier

A
B

Figure 7.5: The effect of the contract lifetime T and the endogenous choice b on the
value of the performance fees. We can observe that when T is small, the influence
of the liquidation level is very small. When the lifetime is extended, the liquidation
level has a large influence on the value of the performance fees.

From Figure 7.5, we can see that generally, the present value of the performance
fees is a large fraction of the value of the assets under the typical parameters (40%
no-barrier; 25% b = 0.5) when the lifetime is long. As the contract lifetime is
extended, the liquidation level b plays a more important role. This is intuitively
reasonable, since as the contract lifetime increases, the possibility of hitting the
liquidation barrier also increases, and so the present value of the performance fees
is more sensitive to the withdrawal behavior.

51

We then observe the effects of the performance rate p and hurdle rate h on the
value of the performance fees. The test results are shown in Figure 7.6. From
Figure 7.6, we can observe that when the performance rate increases, the value of
the performance fees also increases and when the hurdle rate increases, the value of
the performance fees decreases. Comparing these two parameters, we can see that
the performance rate has a larger effect than the hurdle rate on the value of the
performance fee.

A
A

A
A

A
A

A
A

A

B
B

B
B

B
B

B
B

B

C
C

C
C

C
C

C
C

C

Hurdle Rate

V
a

lu
e

o
f

P
e

rf
o

rm
a

n
c
e

F
e

e
s

0 0.02 0.04 0.06 0.08
5

6

7

8

9

10

11

12

13
p = 0.15
p = 0.20
p = 0.25

A
B
C

Figure 7.6: The effect of the performance rate p and hurdle rate h on the value of
the performance fees.

7.4 Comparison Between Performance Fee and

Fixed Rate Fee

At present, the option-like performance fee structure is widely used in hedge funds,
while the fixed rate fee structure is widely used in mutual funds. In this section,
we will compare these two structures quantitatively. We still assume that the
investors withdraw their money if the asset price drops to half of the high-water

52

mark (b = 0.5). Consider that at some discrete times (once a year), instead of the
performance fee, the manager charges a fixed rate fee S× f , where S is the current
price of asset, f is the fixed proportion. We wish to calibrate f to the present value
of the performance fees.

Since we assume that investors withdraw their money if the asset price hits half
of the high-water mark, we should keep the high-water mark H as an extra state
variable. However, we do not need Sold any more. Denote the present value of the
fixed rate fees to be Vf . Obviously, Vf also satisfies the equation (2.13). The only
difference is the payoff and jump condition. Instead of the payoff equation (2.16),
the payoff for fixed rate fees is

P (ti) = S(t−i)× f. (7.2)

The jump condition is

Vf (S,H, t−i) = Vf (S
+, H+, t+i) + Pi, (7.3)

where

Pi = S × f,

S+ = S − Pi,

H+ = max(H, S+).

(7.4)

Obviously, if f is known, we can use a similar numerical method to obtain Vf .
Conversely, with the value of incentive performance fee V , we can use an iterative
method to compute f such that Vf = V . Following this idea, we can evaluate the
performance fee cash flow using the fixed rate cash flow. The result is shown in
Table 7.2.

From Table 7.2, we see that if σ = 0.15, λ = 0.1, a performance fee rate of 10%
is roughly equal in present value terms to a fixed rate fee of 0.75%. If we increase
the volatility σ from 0.15 to 0.25, then a ten percent performance rate corresponds
to a fixed rate of about 1.07 percent. The increase in λ from 0.1 to 0.2 also has a
similar effect. This indicates that managers with an incentive fee structure have an
obvious interest in raising the risk of underlying asset, e.g. through increasing σ or
λ.

53

Performance Present value of F ixed Present value of
performance fee fixed rate

rate cash flow rate fee cash flow
σ = 0.15, λ = 0.1

0.1 3.3688 0.0075819 3.3689
0.2 6.63337 0.0151587 6.63336
0.4 12.8600 0.030303 12.8600

σ = 0.25, λ = 0.1
0.1 4.56850 0.0107505 4.56850
0.2 8.93551 0.0215526 8.93551
0.4 17.0940 0.0433871 17.0940

σ = 0.15, λ = 0.2
0.1 4.4890 0.010798 4.4890
0.2 8.7900 0.0216015 8.7900
0.4 16.8530 0.0432399 16.8530

Table 7.2: Comparison between the performance fee and the fixed rate fee. We can
observe that the value of the performance fees (the second column) is almost equal
to the corresponding value of fixed rate fee (the fourth column). Then observe the
first column and the third column. In this case, if σ = 0.15, λ = 0.1, then a ten
percent performance rate corresponds to about 0.75 percent for the fixed rate. If
we increase the volatility σ from 0.15 to 0.25, then a ten percent performance rate
corresponds to about 1.07 percent for the fixed rate. The increase in λ from 0.1 to
0.2 also has a similar effect.

54

Chapter 8

Parallel Computation

In this chapter, we will use two techniques for implementing parallel processing
(µC++ and OpenMP) to speed up the hedge fund fee computation. In the test
process, we use an existing option pricing library. The existing pricing library
consists of about 50K lines of C++, developed by a number of professors and
students over several years [27]. This primary design objective of this software was
ease of extensibility for pricing new contracts. This objective was met through
extensive use of inheritance and containers. The use of the µC++ language and
OpenMP on a multiprocessor computer was not in the original design criteria.
Hence, this is an interesting case study to demonstrate and compare the ease of use
of the µC++ language and OpenMP for path dependent option pricing problems.

8.1 Numerical Method

In the existing option pricing library [27], the valuation of path dependent options
reduces to a set of one-dimensional Partial Integral Differential Equations(PIDEs)
embedded in a two or three-dimensional space [31]. In the computing process, the
two or three-dimensional space is discretized. The greater the accuracy desired,
the finer the two or three-dimensional grid. This means a problem in a three-
dimensional space can have k2 one-dimensional PIDE problems, where k is of the
order of 50− 100.

The one-dimensional PIDEs are independent except at discrete observation times,
which are called events. Between two adjacent event times, the one-dimensional

55

PIDEs advance in time to the next event. Upon reaching an event, these one-
dimensional PIDEs exchange information, usually by some type of interpolation
methods. In order to facilitate the discussion of the parallelization of the library,
some of the important classes and functions in this library are described.

In the following, the class which solves a one-dimensional PIDE is called OneD.
Its basic high-level operations are

• Advance-time: Each object of class OneD advances the solution from the
previous event time to the next event time.

• Interpolation: At an event time, each object of class OneD may exchange
information with other objects of the class OneD, usually by means of an
interpolation operation. In the existing option pricing library, the interpola-
tion operation is carried out by the interpolation function, which is a member
routine of the Event class. The interpolation function is triggered at each
event time.

Between any two adjacent event times, the advance-time operations are completely
independent. The only difficulty is that all operations must share intermediate
results at each event time.

The interpolation function consists of three parts. First, data is read from all the
OneD objects. Then an interpolation operation is performed, and finally the new
interpolated values are written back to the OneD objects. Note that all reading and
interpolation operations are independent, as are all writing operations. However,
reading and interpolating must finish before the next writing starts.

Clearly there are many operations which can be executed concurrently in a path
dependent option pricing problem, which suggests the use of a multiprocessor com-
puter to accelerate the computation.

In the following discussion, the no-arbitrage valuation of hedge fund fees is used
as an example of a path dependent option to carry out testing. The technique
discussed in this paper can be easily extended to other path dependent option
pricing problems embedded in a higher or lower dimensional space, as discussed in
[31, 32, 17, 13]. As a test example, we use the data given in Section 6.1 to do the
parallel computation test (no similarity reduction used).

56

8.2 Algorithm for the µC++ Language

The µC++ language is an extension of the C++ programming language [26]. The
extensions introduce new kinds of objects that augment the existing set of control
flow facilities and provide for lightweight concurrency on a uniprocessor and parallel
execution on a multiprocessor running the Unix or Linux operating system.

In µC++, a task and a monitor with condition variables and wait/signal statements
are used to implement concurrency and synchronization. In µC++, a task is an
object created from a task type in which a new thread of control is started in its
main member routine called the task main. After a task is created, its thread starts
to run automatically.

A monitor is an abstract data type with an implicit mutual-exclusion property,
similar to a critical region, i.e., only one task at a time can be executing a monitor
operation on its shared data. Tasks and monitors also have all the properties of
classes.

A condition variable has to be owned by a monitor, which ensures that at most one
task can operate with this condition variable at any time. The condition variable
contains a queue on which tasks can be blocked and reactivated in FIFO order.
When a task executes a wait statement of the condition variable, the active task
is blocked and inserted in the queue of the condition variable. The blocked task is
reactivated when another (active) task executes a signal statement of this condition
variable (refer to [26] for more details concerning condition variables and wait/signal
statements).

As discussed above, the hedge fund fees pricing problem includes three types of
operations, the advance-time operation, which is carried out by the advance-time
function in the OneD object, the interpolation operation, which is carried out by
the interpolation function in the Event object and the control operation, which is
carried out by the main function which initializes variables, releases memory, and
so on. Tasks are used to carry out these three operations.

In µC++, each application has a main task named uMain. That is similar to the
main routine in the C++. It is natural to let this task carry out control operations,
such as creating necessary monitors and tasks.

57

For the advance-time and interpolation operations, it is not obvious how to carry
out these operations with tasks. In the current architecture of the pricing software,
these operations are naturally encapsulated in different classes. This design choice
separates contractual features (which are specified in the interpolation function)
from the stochastic process models (which are specified in the advance-time func-
tion). In general, the task design for the advance-time and interpolation functions
should achieve the following criteria, as much as possible:

• Parallelize the necessary operations.

• Keep the functions related to the stochastic process models unchanged.

• Keep the functions related to contractual features unchanged.

• Design the tasks so as to allow easy extension to other path dependent option
pricing problems.

8.2.1 Advance-time Function

As discussed earlier, the pricing problem has a set of one dimensional PIDEs em-
bedded in a two- or three-dimensional space. From a software point of view, this
is a set of container classes:

• TwoD - contains a collection of OneD objects.

• ThreeD - contains a collection of TwoD objects.

In this work, there is only one ThreeD object, which contains many TwoD objects.
Each of these TwoD objects contains many OneD objects.

The advance-time function is a member of the ThreeD class, which calls the
advance-time functions of class TwoD and class OneD. The actual computation is
performed in the objects of the OneD class.

There are at least three possibilities for designing the task for the advance-time
function:

58

• Declare all OneD objects as tasks, and have them perform their advance-time
functions in parallel.

• Declare all TwoD objects as tasks, and have them perform their advance-time
functions in parallel.

• Define a pool of worker tasks to execute the advance-time function in the
OneD objects.

The first option is to convert the OneD class into a task type, giving it its own
thread of execution. This alternative is appealing because it reflects the parallelism
inherent in the problem: an individual OneD task can perform the independent
parts of its computation using its own thread, and synchronize with other tasks
at well-defined points in order to communicate intermediate results. However, this
design does not correspond well to the structure of the program as written. Much
of the calculation logic falls outside the OneD class but makes use of data stored
within the OneD object. Since multiple threads must access each object, they
must be properly synchronized. However, the implicit synchronization provided by
µC++ protects each individual operation on the OneD object and hence is too
expensive, while disabling the implicit synchronization leads to a system whose
correctness is difficult to verify. Without a significant restructuring of the system,
this design is not an effective use of µC++.

Furthermore, even if the system were restructured to support this design, there
is an additional limitation to this approach. A task requires more resources than
a class, since it has an implicit execution context which requires memory, and a
thread which adds scheduling and synchronization overhead. For this problem, a
typical level of discretization results in more than 30000 OneD tasks. Preliminary
experiments with this design show that this number of tasks has a significant effect
on the scalability of the system.

Declaring all TwoD objects as tasks decreases the number of tasks running in
parallel by a significant amount. For example, for the same level of discretization
which gives rise to more than 30000 OneD objects, there are only about 180 TwoD
objects. However, this method does not work for a pure two-dimensional option
pricing problem, since in this case there is only one TwoD object. The other
shortcoming of declaring OneD or TwoD objects as tasks is that both OneD and
TwoD objects are kernel parts of the existing library, which are inherited by other

59

objects. However, in µC++, a task cannot be inherited by an ordinary class. It
is unrealistic to convert all the derived classes to be task types. Because of these
fatal shortcomings, these two designs are ruled out in future discussions.

The third option is to leave the OneD and TwoD objects as they are, and use a
separate pool of worker tasks to execute the advance-time routine in the OneD
objects. Consequently a new task which is called AdvanceTask is defined to carry
out the advance-time function in the OneD objects. In order to decrease the
overhead associated with the number of tasks and make use of the multiprocessor
as much as possible, the number of tasks is set to be equal to the number of
processors in use. However, this design method leads to task allocation problems.

Suppose that the number of tasks and the number of OneD objects are different.
There are at least two possibilities for allocating OneD objects to tasks, dynamic
allocation or static allocation. Dynamic allocation means that once a task is free
and there is an unexecuted advance-time function in a OneD object, then the
OneD object will be allocated to this free task and its advance-time function will
be executed. Static allocation, on the other hand, means that all OneD objects
are pre-allocated to different tasks. Since all tasks have to synchronize at an event
time, static allocation will lead to the situation where the total running time is
equal to the time spent by the most overloaded task. Dynamic allocation can avoid
this problem. However the dynamic allocation process itself requires some over-
head. There is a tradeoff in the choice of the allocation method. So the allocation
criteria depends on whether the work can be distributed evenly. If the work can
be distributed evenly (i.e. all OneD objects require the same work), then the obvi-
ous and optimal solution would be to statically allocate an equal number of OneD
objects to each task. However, since the total work to be done for any time step
is unequally distributed over the OneD objects (that is, some OneD objects re-
quire more work than others), it is worth the overhead of dynamic allocation in
order to increase parallelism. Consequently, the dynamic allocation is used in the
AdvanceTask tasks allocation and the monitor data structure is used to carry out
the dynamic allocation.

8.2.2 Interpolation Function

The interpolation function mainly reads and writes data from the OneD objects.
In the existing library, the interpolation function is a type of event. After all OneD
objects reach an event time, the main routine calls the do event function, which is a

60

virtual function of the Event class. The do event function is redefined in the derived
class of the Event class. For different events, depending on contract details, the
redefined do event function calls corresponding functions to deal with events. At
present, there are many types of events that can be used directly by a user. These
events enable the user to add new contract features easily. However, the present
code for these existing events cannot be executed in parallel without modifying
the software. Most of these events can be divided into three independent parts,
reading, interpolating and writing. All of the reading, interpolating and writing
operations can be done in parallel. However, all reading and interpolating must
be completed before any writing can begin. The general strategy used to alter the
events to expose concurrency is as follows:

• Define the event as a task.

• Divide the event into two parts, reading and writing (interpolation is often
combined with reading).

• Use a synchronization technique to guarantee the reading completes before
the next writing starts.

When the main routine calls the do event function, instead of the original event
function, the do event calls a member routine in the newly defined tasks to activate
the tasks to read data from the OneD objects. This enables the event to be
executed in parallel. For this problem, the InterpTask task is defined to implement
the interpolation function, and the interpolation function is divided into a reading
function and a writing function, which are member routines of the InterpTask
task. Unlike the advance-time functions in the OneD objects, all reading functions
require almost the same work, as do all writing functions. So in this case, it is
not worth paying the price for the overhead of dynamic allocation. Consequently a
static method is used to allocate the reading and writing works to the InterpTask
tasks.

This requires defining a new task for each contract type. Since each new contract
type requires a new class derived from the Event class in any case, this is not too
onerous. However, for existing contract types, a new task must also be defined to
achieve parallel execution, which violates one of our design criteria. Fortunately
this set of alterations is fairly straightforward.

61

8.2.3 Tasks

The above implementation results in three type of tasks:

• AdvanceTask task - This task is a pool of worker tasks and is dynamically
allocated to execute the advance-time functions in the OneD objects.

• InterpTask task - This task is mainly composed of two parts: a reading
function and a writing function. The reading function reads data from the
OneD objects, then uses interpolation to obtain new data which is written
back to the OneD objects by the writing function. All the InterpTask tasks
are statically allocated to read and write the data in the OneD objects.

• uMain task - This task initializes, deletes all AdvanceTask tasks and InterpTask
tasks and administrates the synchronizations between tasks.

8.2.4 Synchronization Issues

To guarantee the correctness of the concurrent computation, three synchronization
conditions must be guaranteed:

• The InterpTask tasks can only start after all AdvanceTask tasks reach an
event time.

• All AdvanceTask tasks can only restart after all InterpTask tasks complete
their writing functions.

• At each event time, all writing functions can only start after all reading func-
tions finish.

In µC++, there are many ways to implement these synchronizations. For this prob-
lem, a monitor data structure with condition variables and wait/signal statements
is used to implement these synchronizations.

62

8.3 Algorithm for OpenMP

OpenMP [43] is an Application Program Interface (API) that is primarily a directive-
based method to invoke parallel computations on many shared-memory multipro-
cessor UNIX- and NT-based computers. OpenMP is comprised of three comple-
mentary components:

• A set of compiler directives used by the programmer to communicate with
the compiler about parallelism.

• A runtime library which enables the setting and querying of parallel param-
eters such as the number of participating threads and the thread number.

• A limited number of environment variables that can be used to define runtime
system parallel parameters such as the number of threads.

From the operating system point of view, the OpenMP functionality is based on
the use of threads. In this report, the number of threads is set to be equal to the
number of processors in use. An OpenMP application begins with a single thread,
the master thread. As the program executes, the application may encounter parallel
regions in which the master thread creates thread teams (which include the master
thread). At the end of a parallel region, the thread teams are parked and the
master thread continues execution. In a parallel region, there can be nested parallel
regions where each thread of the original parallel region becomes the master of its
own thread team. Nested parallelism can continue to further nest other parallel
regions.

In OpenMP, from programmer’s point of view, a loop is the basic unit of alloca-
tion of processors, so the following discussion is based on the loops in the source
code. As discussed above, the pricing process mainly includes the advance-time
operation and interpolation operation. The advance-time operation is composed of
the loops that call advance-time functions in OneD objects [27]. The interpolation
operation is composed of reading and writing loops. In order to parallelize the pric-
ing process using OpenMP, there are three problems to be solved: parallelization,
synchronization and allocation of threads.

63

8.3.1 Parallelization

In OpenMP, the primary means of parallelization is through the use of directives
inserted in the source code. One of the most fundamental and most powerful direc-
tives is loop-level parallelism. In C/C++, if the clause #pragma omp parallel for
is inserted before a FOR loop, then the FOR loop is to be executed in parallel. Note
that there is a limit in this parallelization mode: the iterations in the loop must be
independent. Fortunately, the iterations in advance-time loops are all independent,
as are the iterations of interpolation operations (reading and writing loops). Conse-
quently, it is very easy to parallelize the advance-time and interpolation operations
using OpenMP, we only need to insert the #pragma omp parallel for clause before
the loops of the advance-time and interpolation operations (including the reading
and writing loops).

8.3.2 Synchronization

Similar to the µC++ case, in order to guarantee the correctness of the concurrent
computation, the three synchronization conditions described in Section 8.2.4 must
be satisfied.

All these three synchronization conditions require that after each thread finishes a
loop (advance-time, reading or writing), it has to wait until all other threads have
reached this point, and the master thread then continues. In OpenMP, there is
an implied barrier at the end of a loop with a for directive, so no special code is
necessary for the synchronizations.

8.3.3 Allocation of Threads

As discussed in Section 8.2.1 and 8.2.2, it is best to assign threads to the advance-
time operation dynamically, and to the interpolation operation statically.

In OpenMP, it is easy to apply the dynamic or static assignment of threads by
adding an option to the parallelization directives, for example,
#pragma omp parallel for schedule(dynamic).

64

8.4 Running Time Analysis

First, consider the case of using one processor to process serially all operations.
The CPU time should satisfy

T uni
total = Tinit + Tadvance + Tread + Twrite

= Tinit + Tadvance + Tinterp,
(8.1)

where

T uni
total is the total CPU time on a uniprocessor computer,
Tinit is the CPU time for the initializing operation,

Tadvance is the total time spent on executing the advance-time functions,
Tread is the total time spent on the reading function at an event time,
Twrite is the total time spent on the writing function at an event time,
Tinterp is the total execution time for the interpolation operations, which is

equal to the sum of Tread and Twrite.

Now consider the case of using a multiprocessor to process all operations in paral-
lel. Suppose the number of processors is c. All advance-time operations can run
independently during the interval between two adjacent event times. At each event
time, all reading operations are independent, as well as the writing operations.
Ideally, the time spent on the advance-time functions, the reading and the writ-
ing functions can be decreased by a factor of c. Here the execution time of each
advance-time function for each OneD object is assumed to be identical. Similarly,
suppose that the reading and writing functions require the same CPU time for every
OneD object. However as the number of tasks and processors increase, the time
spent on overhead also increases. Textra is used to represent this extra overhead, so
that

Tmulti
total = Tinit +

Tadvance + Tinterp

c
+ Textra, (8.2)

where

Tmulti
total is the total CPU time on a multiprocessor computer,

Tadvance is the total execution time for the advance-time functions
on a uniprocessor computer,

Tinterp is the execution time for the interpolation operation
(i.e. reading and writing functions) on a uniprocessor,

Textra is the extra time spent on multiprocessor and task overhead,
c is the number of processors.

65

8.5 Test Results

In this section, µC++ and OpenMP are used to test the parallelization of the
hedge fund fees pricing problem using different numbers of processors. All tests
are carried out on an SGI machine with SUSE Linux (kernel version: 2.6.5-7.244-
sn2), 64 processors and 128G memory. Four different cases are tested. Each case
is denoted by the combination of the number of OneD objects, the number of
nodes in each OneD object, and the time step. For example, in Case I, there are
552 OneD objects and each of them has 35 nodes and the time step is 1/8 years,
which is denoted by [552, 35, 1/8]. Case II is the combination [2115, 69, 1/16],
Case III is the combination [8277, 137, 1/32], and Case IV is the combination
[32745, 273, 1/64].

First, the original sequential version was run on the four cases. Next, the two
concurrent versions were run on each of the four cases, with varying number of pro-
cessors. In the multiprocessor tests, the speedup effects of the number of processors
using µC++ and OpenMP are determined. These are shown in Figure 8.1, where
Speedup = T uni

total/T
multi
total (T uni

total and Tmulti
total are total CPU times using uniproces-

sor and multiprocessor respectively). The straight line is the ideal situation using
multi-processors. Figure 8.1(a) presents the test results using the µC++ language.
Figure 8.1(b) shows the test results using OpenMP. In each figure, as the problem
size increases, fixing the number of processors, the speedup improves. Comparing
Figure 8.1(a) with (b), µC++ has a similar speedup compared to OpenMP.

66

A
A A AB

B
B

B

C

C

C
C

D

D

D

D

Number of Processors

S
p

e
e

d
u

p

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Ideal
Case I
Case II
Case III
Case IV

A
B
C
D

A A A AB

B
B B

C

C

C

C

D

D

D

D

Number of Processors

S
p

e
e

d
u

p

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Ideal
Case I
Case II
Case III
Case IV

A
B
C
D

a. (the µC++ case) b. (the OpenMP case)

Figure 8.1: This figure shows the speedup using multi-processors compared with a
uni-processor. The straight line is the ideal situation using multi-processors. Figure
8.1(a) shows test results using the µC++ language, Figure 8.1(b) shows test results
using OpenMP.

67

8.6 Evaluation

From the performance test of the hedge fund performance fee pricing problem using
the µC++ language and OpenMP, the following conclusions can be obtained:

• Both the µC++ language and OpenMP on a multiprocessor can greatly im-
prove the performance of pricing path dependent contingent claims.

• As the number of processors increases, the proportion of overhead in the total
running time also increases.

From the performance point of view, µC++ and OpenMP are similar. From the
implementation point of view, OpenMP is superior. The reasons are the following:

• In OpenMP, no new concepts are needed to carry out the parallelization.

• In OpenMP, the allocation of the iterations to the threads are transparent.
In µC++, programmers have to allocate actual computation work to tasks
by hand.

• In OpenMP, the synchronization is implicit.

In most programs, the execution of loops costs most of the CPU times. In OpenMP,
an iteration is the basic unit of allocation to processors, while in µC++, a task is the
basic unit of allocation to processors. When modifying an existing serial program,
where loops account for most of the CPU times, OpenMP would appear to have
some advantages compared to µC++, since the compiler of OpenMP can allocate
the iterations to the processors directly.

However, this convenience comes at the cost of flexibility. OpenMP does not work
if the iterations are not independent. In this case, we can use µC++ to realize
parallelism. From this point of view, µC++ is more flexible and powerful.

68

Chapter 9

Conclusion

In this chapter, we present a summary of the major contributions of this thesis,
along with a discussion for possible further research.

9.1 Main Results

Hedge funds are an interesting investment class with an unusual form of manager
compensation. The high-water mark provision creates a distinct option-like feature
to the contract. In this thesis, we provide a mathematical model to quantitatively
analyze the cost of a hedge fund manager contract and examine its implication. We
find that if the lifetime of the contract is long enough, depending on the withdrawal
strategy, the performance fee effectively ”costs” the investors almost 25 to 40 per-
cent of the portfolio under the typical market parameters. For short term contracts,
the cost is more on the order of 5%− 10%. By comparing the incentive plan with
a fixed rate contract and quantifying the relationship between these two compen-
sation plans, we show that the manager with the incentive fee has an interest in
increasing risk, provided other non-modelled considerations are not overriding.

In this thesis, we analyze and summarize some effective interpolation methods and
grid construction techniques which can improve the efficiency of numerical method.
We also provide some basic guidelines for interpolation and grid arrangement when
we solve a path-dependent pricing problem using a numerical method.

We then verify the accuracy of our numerical method using the MC method and

69

provide a fast and accurate MC algorithm to price the performance fee with jump
diffusion, and a withdrawal barrier.

Finally we also analyze and apply two parallel computation techniques (µC++
and OpenMP) to a existing option pricing library, and compare these two parallel
techniques when solving a high dimensional path-dependent pricing problem.

9.2 Future Study

In this thesis, we assume that the volatility is a constant. As we know, this is not
very realistic. In the future we may use stochastic volatility with jump diffusion to
model the asset price.

As discussed above, when an investor puts money into a hedge fund, he actually
provides a free option to the manager of the hedge fund. Although the manager
can receive the option value for sure without any special skill, this incentive plan is
still widely used in hedge funds. The only explanation is that the investor believes
that the hedge fund manager can outperform the market (given the level of risk
assumed). We can use an equilibrium model to evaluate the manager’s skill from the
investor’s viewpoint and check that whether the ”free option” is justified. Actually,
some work has been done in [12] in this direction, but the authors suppose that the
asset price follows geometric Brownian motion. We may add jump diffusion into
the equilibrium model in the future.

70

Appendix A

Monte Carlo algorithm for
generating a sample path under a
jump diffusion process

Generating one sample path of jump diffusion in ∆t = ti+1 − ti

Telapsed ⇐ ∆t∗ // ∆t∗ is the interval between the next jump event time and ti
if Telapsed > ∆t then

Generate standard normally distributed random number φ

Send ⇐ Sstart × exp[(r −mtotal − λκ− σ2

2
)∆t + σφ

√
∆t]

if Send < barrier then
return (−1.0) // knock out

end if
Compute the probability P of no barrier crossing
during interval ∆t according to (5.2)
Generate uniformly distributed random number u in [0,1]
if u > P then

return (−1.0) // knock out
end if

else
while Telapsed < ∆t do

Generate standard normally distributed random number φ

Send ⇐ Sstart × exp[(r −mtotal − λκ− σ2

2
)∆t∗ + σφ

√
∆t∗]

continued on the next page

71

Generating one sample path of jump diffusion in ∆t = ti+1 − ti

continue from the previous page

if Send < barrier then
return (−1.0) // knock out

end if
Compute the probability P of no barrier crossing
during interval ∆t∗ according to (5.2)
Generate uniformly distributed random number u in [0,1]
if u > P then

return (−1.0) // knock out
end if
Generate lognormally distributed random number R, where R ∼ LN(µ, γ)
Send ⇐ Send ×R
if Send < barrier then

return (−1.0) // knock out
end if
Generate ∆t∗ from the exponential distribution with mean 1/λ
Telapsed ⇐ Telapsed + ∆t∗

end while
∆tleft ⇐ ∆t− (Telapsed −∆t∗)
Generate standard normally distributed random number φ

Send ⇐ Send × exp[(ξ − λκ− σ2

2
)∆tleft + σφ

√
∆tleft]

if Send < barrier then
return (−1.0) // knock out

end if
Compute the probability P of no barrier crossing during interval ∆t∗

according to (5.2)
Generate uniform distributed random number u in [0,1]
if u > P then

return (−1.0) // knock out
end if

end if
∆t∗ ⇐ Telapsed −∆t // ∆t∗ is now the interval between
the next jump event time and ti+1

return Send // Send is the price at time ti+1

72

Bibliography

[1] C. Ackermann, R. McEnally and D. Ravenscraft The performance of hedge
funds: risk, return, and incentives. The Journal of Finance, Vol. 54 Issue 3
(June 1999) pp. 833-874.

[2] W. Fung and D.A. Hsieh Performance characteristics of hedge funds and com-
modity funds: natural vs. spurious biases. Journal of Financial and Quantitative
Analysis, Vol. 35 (2000) pp. 291-307.

[3] W. Fung and D.A. Hsieh A primer on hedge funds. Journal of Empirical Finance,
Vol. 6 (1999) pp. 309-331.

[4] W. Fung and D.A. Hsieh Empirical characteristics of dynamic trading strategies:
the case of hedge funds. Review of Financial Studies, Vol. 10 (1997) pp. 275-302.

[5] T. Schneeweis and R. Spurgin Mutlifactor analysis of hedge fund, managed fu-
tures, and mutual fund return and risk characteristics. Journal of Alternative
Investments, Vol. 1 (1998) pp. 1-24.

[6] S.J. Brown, W.N. Goetzmann and J. Park Conditions for survival: changing
risk and the performance of hedge fund managers and CTAs. Working paper,
International Center for Finance, Yale School of Management (1997).

[7] W.N. Goetzmann, J.E. Ingersoll Jr. and S.A. Ross High water marks. Working
paper, Yale School of Management (1997).

[8] M. Grinblatt and S. Titman Adverse risk incentives and the design of
performance-based contracts. Management Science, Vol. 35 (1997) pp. 807-822.

[9] J. Carpenter The optimal investment policy for a fund manager compensated
with an incentive fee. Working paper, Stern School of Management, NYU (1997).

[10] J. Carpenter Does option compensation increase managerial risk appetite?
Journal of Finance, Vol. 55 (2000) pp. 2311-2331.

73

[11] S. Basak, A. Pavlova, and A. Shapiro Offsetting the incentives: risk shifting and
benefits of benchmarking in money management. Working paper, MIT (2003).

[12] W.N. Goetzmann, J.E. Ingersoll Jr. and S.A. Ross High-water marks and hedge
fund management contracts. The Journal of Finance, Vol. 58 Issue 4 (August
2003) pp. 1685-1717.

[13] M.A.H. Dempster and J.P. Hutton Fast numerical valuation of American, ex-
otic and complex options. Applied Mathematical Finance, Vol. 4 (1997) pp.
1-20.

[14] W. Fung and D.A. Hsieh The risk in hedge fund strategies: theory and evidence
from trend followers. Review of Financial Studies, Vol. 41 (2001) pp. 313-341.

[15] C. He, J.S. Kennedy, T. Coleman, P.A. Forsyth, Y. Li and K.R. Vetzal Cali-
bration and hedging under jump diffusion. Submitted to Review of Derivatives
Research (2006).

[16] P. Wilmott Paul Wilmott on quantitative finance. John Wiley and Sons Ltd,
Chichester, (2000).

[17] P. Wilmott Cliquet options and volatility models. Wilmott Magazine, December
(2002) pp. 78-83.

[18] H.A. Windcliff, P.A. Forsyth, and K.R. Vetzal Numerical methods and volatility
models for valuing cliquet options Working paper, School of Computer Science,
University of Waterloo, (2006).

[19] Y. d’Halluin, P.A. Forsyth and K.R. Vetzal Robust numerical methods for
contingent claims under jump diffusion processes. IMA Journal of Numerical
Analysis, Vol. 25 (2005) pp. 87-112.

[20] H.A. Windcliff, P.A. Forsyth and K.R. Vetzal Analysis of the stability of the
linear boundary condition for the Black-Scholes equation. The Journal of Com-
putational Finance, Vol. 8:1 (Fall, 2004) pp. 65-92.

[21] P. Glasserman Monte Carlo methods in financial engineering. Springer, (2003).

[22] P.A. Forsyth, K.R. Vetzal, and R. Zvan Convergence of lattice and PDE meth-
ods for valuing path dependent options with interpolation. Review of Derivatives
Research, Vol. 5 (2002) pp. 273-314.

[23] P. Wilmott, J. Dewynne and S. Howison Option pricing: mathematical models
and computation. Oxford Financial Press, January, (2000).

74

[24] H.A. Windcliff Computational methods for valuing path-dependent derivatives.
PhD thesis, School of Computer Science, University of Waterloo (2003).

[25] Y. d’Halluin Numerical methods for real options in telecommunications. PhD
thesis, School of Computer Science, University of Waterloo (2004).

[26] P.A. Buhr and R.A. Stroobosscher µC++ annotated reference manual. School
of Computer Science, University of Waterloo, (2005).

[27] P.A. Forsyth, H.A. Windcliff and K.R. Vetzal PathDepPricer a user’s overview.
School of Computer Science, University of Waterloo, (2005).

[28] G. de Brouwer Hedge funds in emerging markets. Cambridge University Press,
(2001).

[29] S.J. Brown, W.N. Goetzmann and R.G. Ibbotson Offshore hedge funds, sur-
vival and performance:1989-1995. Journal of Business, Vol. 72, No. 1 (Jan.,1999)
pp. 91-118.

[30] R.C. Merton Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics, Vol. 3 (1976) pp. 125-144.

[31] R. Zvan, P.A. Forsyth and K.R. Vetzal Robust numerical methods for PDE
models of Asian options. The Journal of Computational Finance, Vol. 1 (Winter
1998) pp. 39-78.

[32] K.R. Vetzal and P.A. Forsyth Discrete Parisian and delayed barrier options:
a general numerical approach. Advances in Futures and Options Research, Vol.
10 (1999) pp. 1-16.

[33] R. Zvan, K.R. Vetzal and P.A. Forsyth PDE methods for barrier options. Jour-
nal of Economic Dynamics and Control, Vol. 24 (2000) pp. 1563-1590.

[34] I. Karatzas and S.E. Shreve Brownian motion and stochastic calculus. New
York: Springer-Verlag, (1991).

[35] S. Metwally and A. Atiya Using Brownian bridge for fast simulation of jump-
diffusion processes and barrier options. Journal of Derivatives, Vol. 10 (Fall
2002) pp. 43-54

[36] P. Boyle, M. Broadie and P. Glasserman Monte Carlo methods for security
pricing. Journal of Economic Dynamics and Control, Vol. 21 (1997) pp. 1267-
1321.

75

[37] D. Higham An algorithmic introduction to numerical simulation of stochastic
differential equations. SIAM Review, Vol. 43 (2001) pp. 525-546.

[38] R. Rannacher Finite element solutions of diffusion problems with irregular
data. Numerical Mathematics, Vol. 43 (1984) pp. 309-327.

[39] L. Walbein A remark on parabolic smoothing and finite element methods. SIAM
Journal on Numerical Analysis, Vol. 17 (1980) pp. 33-38.

[40] R.G. Ibbotson and P. Chen Sources of hedge fund returns: alphas, betas, and
costs. Working paper, International Center for Finance, Yale School of Manage-
ment (2005).

[41] P.A. Forsyth and K.R. Vetzal Computational finance. CS870, course notes
(2005).

[42] R.V. Hogg and A.T. Craig Introduction to mathematical statistics. Prentice
Hall, (1995).

[43] D. Sondak, K. Tseng and J.T. von Hoffman Introduction to OpenMP. Scientific
Computing and Visualization, Boston University.

76

