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Abstract

This is an expository thesis which addresses the requirements for an operator algebra

to be similar to a C∗-algebra. It has been conjectured that this similarity condition is

equivalent to either amenability or total reductivity; however, the problem has only been

solved for specific types of operators.

We define amenability and total reductivity, as well as present some of the implications

of these properties. For the purpose of establishing the desired result in specific cases,

we describe the properties of two well-known types of operators, namely the compact

operators and quasitriangular operators. Finally, we show that if A is an algebra of

compact operators or of triangular operators then A is similar to a C∗ algebra if and only

if it has the total reduction property.
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Chapter 1

Introduction

The focus of this paper is some of the known conditions under which an operator algebra

is similar to a C∗-algebra. Since the current mathematical understanding of the topic is

incomplete, we discuss some of the properties of operator algebras which are involved in

the partial answers to this problem, and the interplay between these properties.

One reason this topic is of interest is the connection with Kadison’s similarity prob-

lem. Some time in the 50’s (see [12]), Kadison posed the following question: If we

have a C∗-algebra A and a representation φ : A → B(H), when is φ similar to a

*-homomorphism? Clearly, if there exists a similarity S such that a → Sφ(a)S−1 is

a *-homomorphism, then it follows that φ(A) is similar to a C∗-algebra. More impor-

tantly, the same concepts seem to be involved in the answer to both questions.

The key properties of operator algebras with which we will concern ourselves are

amenability, total reductivity and complete reductivity. These concepts are related, in

that amenable algebras are total reduction algebras, and in turn total reduction algebras

are complete reduction algebras. The inclusion at each step is known to be strict; however,

if specific additional constraints are imposed, some of these algebra classes can coincide.

It is conjectured that an operator algebra A is similar to a C∗-algebra whenever A has

the total reduction property.

This is an expository thesis; its aim is to give an overview of the relevant areas of

mathematics, present some of the known results, and direct the reader towards further

resources. The majority of the results presented in this paper are from [20], [8] and

[13]. Runde’s book [20] offers a thorough introduction to the theory of amenable groups
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2 On the Similarity of Operator Algebras to C* Algebras

and algebras. In his thesis [8], Gifford introduces complete and total reduction algebras,

building on earlier concepts of algebras with a reduction property. The interplay between

the two properties is presented in detail; the thesis is also a good source of examples of

algebras that have the various properties. Finally, [13] presents the results we describe

for triangular algebras, as well as some generalizations which are not included in this

thesis.

The concept of amenability has its roots in group theory, and as such we will in-

troduce it from that angle in Chapter 2. We also discuss a related similarity question

for groups, namely under what circumstances is a bounded representation similar to a

unitary representation. The connection between amenability for groups and amenability

for Banach algebras comes from Johnson’s theorem, which states that a locally compact

group G is amenable if and only if the algebra L1(G) is amenable.

In Chapter 3 we relate these general results to operator algebras. Since we are going

to be working with specific types of operators, we list some of the properties we will need

to establish our results. We also introduce the concepts of complete and total reduction

algebras.

Finally, in Chapter 4, we outline the current results about similarity to C∗-algebras.

The results which are available so far deal with special cases of operator algebras. The

strongest result, due to Gifford, is that if we have a subalgebra of compact operators,

then it is similar to a C∗-algebra if and only if it has the complete reduction property.

The other specific result available deals with unital subalgebras of triangular operators.

In this case, we have that the total reduction property, amenability and similarity to a

C∗-algebra are all equivalent.



Chapter 2

Amenable Groups and Algebras

2.1 Locally compact Groups

A brief history of amenability and its applications to various areas of mathematics is

given in [14]. The concept was introduced more than a hundred years ago; while he was

working on the properties of the integral which now bears his name, Lebesgue inquired

into the existence of a positive, finitely additive and translation invariant measure on R
such that the measure of the unit interval is 1. It was later noted that a finitely additive,

translation invariant probability measure which is absolutely continuous with respect to

the Lebesgue measure can be extended to a linear functional on L∞(R). It is from the

point of view of linear functionals that amenability has been defined and studied in recent

years, a change in perception that allows the full power of functional analysis to bear on

the concept.

This chapter introduces the subject of amenability for groups and for Banach algebras,

and explains why the same terminology is used in both cases, even though the connection

is not obvious from the definitions given. Most of the proofs shown follow the ones

presented in “Amenable Banach Algebras” by Volker Runde [20].

We let G be a locally compact group with Haar measure µ (a proof of the fact that any

locally compact group G has a left Haar measure can be found in [7], Section 2.2). For

g ∈ G and φ ∈ L∞(G) we define δg ∗φ to be left translation by g, so (δg ∗φ)(h) = φ(g−1h)

for any h ∈ G.

Definition 2.1. A mean on L∞(G) is a linear functional m ∈ L∞(G)∗ such that

3



4 On the Similarity of Operator Algebras to C* Algebras

‖m‖ = m(1) = 1. We say that m is left invariant if for all g ∈ G and φ ∈ L∞(G) we

have that m(δg ∗ φ) = m(φ).

If we consider L∞(G) with the multiplication operation given by pointwise multipli-

cation of functions and involution given by f ∗(g) = f(g) for f ∈ L∞(G), g ∈ G, then

L∞(G) is a commutative C∗-algebra. The above definition of mean corresponds to the

definition of a state in a C∗-algebra context. Therefore, the properties of states apply.

Consider E a subspace of L∞(G). In order to extend the above definitions to E, we

need E to contain the constant functions. For left invariant means, we also require that

δg ∗φ ∈ E for all g ∈ G and φ ∈ E (in which case we say that E is left invariant). Finally,

in order to identify the set of means with the positive functionals which evaluate to 1 at

1 (see [20], Proposition 1.1.2) we need E to be closed under complex conjugation. Two

subspaces of L∞(G) which satisfy these properties, and hence for which the definition of

left invariant mean makes sense, are Cb(G) (the set of continuous bounded functions on

G), and UC(G) (the set of uniformly continuous functions on G).

In general, if E ⊆ L∞(G) is a subspace which has the properties described above

then the set of means is non-empty. As an example let us consider E = Cb(G). We can

define for each g ∈ G the function mg : E → C given by mg(φ) = φ(g) for each φ ∈ E.

Then mg is linear, mg(1) = 1 and |mg(φ)| ≤ ‖φ‖∞, so mg is a mean on E. A result

which will prove useful later is that the set of convex combinations of means of type mg,

Am = {
n∑
i=1

kimgi
: n ∈ N, gi ∈ G, and ki ≥ 0 such that

n∑
i=1

ki = 1}, is weak*-dense in the

set of all means on Cb(G). This can be obtained as a consequence of the Hahn-Banach

Separation Theorem.

Moreover, in general, the set of means is weak*-compact in E∗. This follows easily

from the Banach-Alaoglu theorem, since the means are contained in the closed unit ball

of E∗ and the limit of a weak* convergent net of means is another mean. However,

the existence of a left invariant mean is not guaranteed. We have in fact the following

definition.

Definition 2.2. G is amenable if there is a left invariant mean on L∞(G).

F2, the free group on two generators, is a classic example of a group which is not

amenable. We will prove this result by contradiction. Suppose that m is a left in-

variant mean on F2, and denote the generators of F2 by a and b. Consider the set
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S = {w ∈ F2 : w starts with a b or a b−1}. Suppose m(χS) = α. Note that the sets S,

aS and a2S are disjoint. Hence χS +χaS +χa2S ≤ 1; since m is a positive functional this

implies that m(χS + χaS + χa2S) ≤ m(1) = 1. But m(χaS) = m(δa ∗ χS) = m(χS) since

m is left invariant, and similarly m(χa2S) = α. So by linearity of m we get 3α ≤ 1, i.e.

α ≤ 1/3. On the other hand, F2 = S ∪ bS, so 1 ≤ χS +χbS. Similarly to above we obtain

1 ≤ 2α, and hence α ≥ 1/2. So we have 1/2 ≤ α ≤ 1/3, a contradiction. Therefore, F2

is not amenable. However, we can show that all compact groups and all locally compact,

abelian groups are amenable.

Proposition 2.3. If G is a compact group then G is amenable.

Proof. We assume that G is equipped with a left-invariant Haar measure. For G compact

we have L∞(G) ⊂ L1(G), so we can define m ∈ L∞(G)∗ by m(φ) =
∫
G
φ(g) dg. It is then

easy to see that m is a mean; moreover, since the Haar measure h is left-invariant, so is

m. Therefore, G is amenable.

The result for locally compact, abelian groups is slightly harder to obtain. We will

use the fixed point theorem given below:

Theorem 2.4 (Markov-Kakutani). Let E be a locally convex Hausdorff space, and

K ⊂ E be a compact, convex set. If (Tα)α∈I is a family of continuous, affine endomor-

phisms on K such that TαTβ = TβTα for all α, β ∈ I, then all the Tα’s have a common

fixed point.

Proposition 2.5. Let G be a locally compact, abelian group. Then G is amenable.

Proof. We know that the set of means is weak* compact in L∞(G)∗; so we can letK be the

set of means. For each g ∈ G define Tg : K → K by [Tg(m)](φ) = m(δg∗φ) for φ ∈ L∞(G).

It is clear that Tg is a continuous, affine endomorphism, and its range is indeed contained

in K. Hence in order to use the Markov-Kakutani theorem, we just have to establish

that (Tg)g∈G is commutative. Note that [TgTh(m)](φ) = m(δh ∗ δg ∗ φ) = [Tgh(m)](φ), so

TgTh = Tgh. Since G is abelian we have Tgh = Thg, i.e. TgTh = ThTg.

Therefore the Markov-Kakutani Fixed Point Theorem (Theorem 2.4) applies; so there

is an m0 such that Tg(m0) = m0 for all g ∈ G. But by definition [Tg(m0)](φ) = m0(φ),

which implies m0(δg ∗φ) = m0(φ) for all g ∈ G; in other words, m0 is left invariant. Thus

G admits a left-invariant mean, namely m0, which proves that G is amenable.
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In order to prove that a group is amenable we can exhibit an explicit left invariant

mean or infer its existence from properties of the group, as in the examples above. Also,

the properties of amenability can be used to draw conclusions about a group by relating

it to known amenable groups. In this latter category, some examples of groups which

are amenable are: closed subgroups of amenable groups, quotients of amenable groups

by closed, normal subgroups and groups which have a closed normal subgroup such that

both the subgroup and the quotient by that subgroup are amenable ([20], Section 1.2).

The definition of left invariant mean can be applied to a subspace of L∞(G) as ex-

plained at the beginning of the chapter. In particular, UC(G) contains uniformly con-

tinuous functions, which are easier to work with than general functions in L∞(G). We

will in fact show that if there is a left invariant mean on UC(G), then G is amenable.

Recall that if f ∈ L1(G) and φ ∈ L∞(G) we define their convolution by

(f ∗ φ)(h) =
∫
G
f(g)φ(g−1h) dg. The interaction of L1(G) functions with L∞(G) func-

tions will allow us to define a useful subset of the left invariant means, as shown below.

Definition 2.6. Let P (G) := {f ∈ L1(G) : f ≥ 0 and ‖f‖1 = 1}. Let E = L∞(G), Cb(G)

or UC(G). If m ∈ E∗ then m is topologically left invariant if m(f ∗ φ) = m(φ) for

all f ∈ P (G) and φ ∈ E.

Note in particular that for f ∈ P (G) we can define mf : L∞(G) → C by

mf (φ) =
∫
G
f(g)φ(g) dg. Then mf is a bounded linear functional that satisfies mf (1) = 1

and |mf (φ)| ≤ ‖φ‖∞, so mf is a mean on L∞(G). Hence it follows that P (G) consists

exactly of those functions in L1(G) which are means (where we identify L1(G) with a

subset of its second dual L∞(G)∗). Since the Haar measure has the property that the

measure of the group is finite if and only if the group is compact, it is easy to check that

P (G) contains a left invariant mean if and only if G is compact.

We will also need the following result about bounded approximate identities on L1(G):

Theorem 2.7. ([20], Theorem A.1.8) If U is a basis of neighbourhoods of the identity

and {fα}α∈U is a net in P (G) such that the support of fα is contained in α then {fα}α∈U
is a bounded approximate identity for L1(G).

The next theorem relates UC(G) to L1(G), and allows us to use the bounded approx-

imate identity on L1(G) for UC(G), as we will explain below.
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Theorem 2.8. ([20], Theorem A.2.5) UC(G) = {f1 ∗ φ ∗ f2 : fi ∈ L1(G), φ ∈ L∞(G)}.

Suppose (fα)α is a bounded approximate identity for L1(G) as described in Theo-

rem 2.7. Hence, by Theorem 2.8 above, for any ϕ ∈ UC(G) we can write ϕ = f1 ∗ φ ∗ f2

for some f1, f2 ∈ L1(G) and φ ∈ L∞(G); since fα ∗f1→f1 (by the definition of a bounded

approximate identity), it follows from the definition of convolution that fα ∗ ϕ → ϕ in

UC(G).

Theorem 2.9. Let G be a locally compact group, and m ∈ UC(G)∗. Then m is left

invariant if and only if it is topologically left invariant.

Proof. Suppose m ∈ UC(G)∗ is topologically left invariant. Pick any f ∈ P (G). Then

for any g ∈ G and φ ∈ UC(G)∗ we have

m(δg ∗ φ) = m(f ∗ δg ∗ φ) (since m is topologically left invariant)

= m(φ) (since f ∗ δg ∈ P (G))

Thus m is left invariant.

Conversely, suppose m ∈ UC(G)∗ is left invariant. We want to show that

m(f ∗ φ) = m(φ) for all f ∈ P (G) and all φ ∈ UC(G). Fix φ ∈ UC(G) and define

H : L1(G) → C by ψ 7→ m(ψ ∗ φ). Recall that if ψ ∈ L1(G) and φ ∈ UC(G) then

ψ ∗ φ ∈ UC(G), so H is well-defined. It is clear that H ∈ L1(G)∗, so there exists some

ϕ ∈ L∞(G) such that H(ψ) =
∫
G
ψ(g)ϕ(g) dg. Since m is left-invariant, if we fix g0 ∈ G

we have that m(ψ ∗ φ) = m(δg0 ∗ ψ ∗ φ). However, using the definition of H,

m(ψ ∗ φ) =

∫
G

ψ(g)ϕ(g) dg

and

m(δg0 ∗ ψ ∗ φ) =

∫
G

(δg0 ∗ ψ)(g)ϕ(g) dg =

∫
G

ψ(g)(δg0−1 ∗ ϕ)(g) dg

(where in the last step we use the left-invariance of the Haar measure). Since the two

integrals are equal for all ψ ∈ L1(G) it follows that ϕ(g) = (δg0−1 ∗ ϕ)(g) = ϕ(g0 g). But

g0 was an arbitrary element of G, so in fact ϕ must be constant. Let ϕ = c0 ∈ C. Then

H(ψ) = c0
∫
G
ψ(g) dg for all ψ ∈ L1(G). In particular, for all f ∈ P (G) we have that∫

G
f(g) dg = 1, so H(f) = c0.

Let (eα)α ⊂ P (G) be a net such that eα ∗ φ → φ for every φ ∈ UC(G) (for the

existence of such a net see comment following Theorem 2.7). Then m(eα∗φ) = c0. Hence
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for f ∈ P (G) we have m(f ∗ φ) = c0 = limm(eα ∗ φ) = m(φ) (since m is continuous and

eα ∗ φ → φ). So if φ ∈ UC(G) is fixed, we have shown that m(f ∗ φ) = m(φ) for all

f ∈ P (G). Therefore, m is topologically invariant.

When we proved in the above theorem that every topological left invariant mean is

left invariant we did not use the fact that the mean m was on the space UC(G); in fact,

the same proof can be used if m is a topologically left invariant mean on L∞(G) or on

Cb(G). The converse does not hold in general; that is, not every left invariant mean is

topologically left invariant. We denote by Gd the group obtained by equipping G with

the discrete topology. In [14] it is proven that if G is a locally compact group such that

Gd is also amenable, then the set of topologically invariant means is equal to the set of

invariant means if and only if G itself is discrete (see [14], Theorem 7.21). We use the

fact that every left invariant mean on UC(G) is topologically left invariant to prove the

following:

Theorem 2.10. A locally compact topological group G is amenable if and only if there

is a left invariant mean on UC(G).

Proof. If G is amenable, then there is a left invariant mean m on L∞(G), and we can

restrict m to a left invariant mean on UC(G). Hence only the other direction needs proof.

Let m be a left invariant mean on UC(G). Then by the previous theorem, m is also

topologically left invariant. By Theorem 2.7 we can find a bounded approximate identity

for L1(G) with elements in P (G), and build an ultrafilter U on the index set of this

bounded approximate identity such that it dominates the order filter. Let (eα) be the

net we obtain. Define n ∈ L∞(G)∗ by n(φ) = lim
U
m(eα ∗ φ ∗ eα). Note that n is well-

defined (since, by Theorem 2.8, a ∗ φ ∗ b ∈ UC(G) for all a, b ∈ P (G) and φ ∈ L∞(G)).

Moreover, n ≥ 0 since m ≥ 0 and n(1) = 1, so n is a mean on L∞(G). Finally, we

just need to check that n is left-invariant. By the comments following Theorem 2.9, it is

enough to check that n is topologically left invariant. For f ∈ P (G) and φ ∈ L∞(G) we

have:

n(f ∗ φ) = lim
U
m(eα ∗ f ∗ φ ∗ eα) (by definition)

= lim
U
m(f ∗ eα ∗ φ ∗ eα) (since f ∈ P (G) and (eα)α is an

approximate identity for P (G))

= lim
U
m(eα ∗ φ ∗ eα) (since m is topologically left invariant)

= n(φ) (by definition of n)
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Thus n is topologically left invariant, and hence left invariant. Therefore, G is amenable.

Using the above theorem we can also show that G is amenable if and only if there is

a left-invariant mean on Cb(G). This follows since UC(G) is a subspace of Cb(G), which

in turn is a subspace of L∞(G). Hence, if G is amenable, we can restrict the mean on

L∞(G) to a mean on Cb(G). Conversely, if there is a mean on Cb(G), then we can restrict

it to a mean on UC(G), so by the above theorem we get that G is amenable.

Earlier in this chapter we mentioned without proof some of the stability results for

amenable groups. However, the fact that amenability is preserved by homomorphisms is

of particular interest to us, and so we present this result below. We will later show that

similar results hold for amenability of Banach algebras and for total reductivity.

Theorem 2.11. Let G, H be locally compact groups. If G is amenable and φ : G → H

is a continuous homomorphism with dense range, then H is amenable as well.

Proof. Let m be a left-invariant mean on Cb(G) (such a mean exists since G is amenable).

Note that if ξ : H → C is continuous and bounded, then ξ ◦φ : G→ C is also continuous

and bounded. So we can define n : Cb(H) → C by n(ξ) = m(ξ ◦ φ). Then n is linear and

n(1) = m(1) = 1. Moreover |n(ξ)| = |m(ξ ◦ φ)| ≤ ‖ξ ◦ φ‖ ≤ ‖ξ‖, so ‖n‖ ≤ 1. Hence it

follows that n is a mean on Cb(H).

We claim that n is also left-invariant. Consider h0 ∈ ran(φ); let g0 ∈ G be such that

φ(g0) = h0. Then for any ξ ∈ Cb(H) we have

((δh0 ∗ ξ) ◦ φ)(g) = (δh0 ∗ ξ)(φ(g))

= ξ(h−1
0 φ(g))

= ξ(φ(g0)
−1φ(g))

= ξ(φ(g−1
0 g)) (since φ is a homomorphism)

= (δg0 ∗ (ξ ◦ φ))(g).

We use this fact in the following calculation

n(δh0 ∗ ξ) = m((δh0 ∗ ξ) ◦ φ) (by definition of n)

= m(δg0 ∗ (ξ ◦ φ)) (as shown above)

= m(ξ ◦ φ) (since m is left-invariant)

= n(ξ)
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Therefore, if h0 ∈ ran(φ), then n(δh0 ∗ ξ) = n(ξ).

Now for any h ∈ H we can find (hα)α ⊂ ran(φ) converging to h (since the range

of φ is dense in H). So n(δh ∗ ξ) = lim
α
n(δhα ∗ ξ) = lim

α
n(ξ) = n(ξ). Hence in fact

n(δh ∗ ξ) = n(ξ) for any ξ ∈ Cb(H) and h ∈ H. Therefore, n is a left-invariant mean on

Cb(H), and so, by the comments following Theorem 2.10, H is amenable.

Let M be the set of means on UC(G). Then M is convex and weak*-compact.

We can define an action of G on M by (g · m)(φ) = m(δg ∗ φ) for g ∈ G, m ∈ M
and φ ∈ UC(G). If m0 is a fixed point of this action, ie. g · m0 = m0 for all g ∈ G,

then m0 is a left-invariant mean. It follows that a fixed point exists if and only if G

is amenable. If G is amenable the existence of a fixed point can be deduced in a more

general context, as shown below. We say that an action of G on a set K is affine if

g · (tx+ (1− t)y) = t(g · x) + (1− t)(g · y) for g ∈ G, x, y ∈ K, t ∈ [0, 1].

Theorem 2.12. [Day’s Fixed Point Theorem] Let G be an amenable, locally compact

group. Suppose E is a locally convex space, and K ⊂ E is convex and compact. If G acts

affinely on K, and the function (g, k) 7→ g · k from G×K to K is separately continuous

(continuous if either g or k is fixed), then there exists a k0 ∈ K such that g · k0 = k0 for

all g ∈ G.

Proof. Let m be a left-invariant mean on Cb(G) (m exists since G is amenable). Let A
be the set of all affine, continuous functions on K. Fix x0 ∈ K, and for each φ ∈ A
define ψφ : G → C by g 7→ φ(g · x0). Note that ψφ ∈ Cb(G), since φ and g 7→ g · x0 are

continuous, and φ is bounded.

For each φ in A define φg0 by k 7→ φ(g0 · k). Then φg0 is also in A. We want to show

that m(ψφ) = m(ψφg0
). By definition, ψφg0

(g) = φg0(g · x0) = φ(g0 · g · x0). On the other

hand, note that (δg0−1 ∗ ψφ)(g) = ψφ(g0g) = φ(g0g · x0), so δg0−1 ∗ ψφ = ψφg0
. Since m is

left invariant, we have m(ψφ) = m(δg0−1 ∗ ψφ) = m(ψφg0
).

From a previous discussion, we know we can write m as the limit of a net (mα)α,

where each mα is an affine combination of means mgi
, where mgi

(ψ) = ψ(gi). For a fixed

α, suppose mα =
n∑
i=1

timgi
. Then mα(ψφ) =

n∑
i=1

tiψφ(gi) = φ(
n∑
i=1

ti · gi · x0) (using the

definition of ψφ and the fact that φ is an affine function). Let kα =
n∑
i=1

ti(gi · x0); so

mα(ψφ) = φ(kα), where kα is independent of φ. We have constructed a net (kα)α in K.
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Since K is compact we can assume without loss of generality that kα converges to some

k0 ∈ K.

We will show that k0 is our desired fixed point. First note that for any φ in A,

φ(k0) = lim
α
φ(kα) = lim

α
mα(ψφ) = m(ψφ) (using the continuity of φ). Now consider any

µ ∈ E∗. Then µ|K is a continuous, affine function on K. For any g ∈ G we have that

µ(k0) = m(ψµ) = m(ψµg) = µg(k0) = µ(g · k0). Thus µ(k0) = µ(g · k0) for any µ ∈ E∗

and any g ∈ G. Since E∗ separates points of E it follows that k0 = g · k0 for any g ∈ G,

so k0 is a fixed point of the action of G on K.

In particular, this theorem can be applied when E is the dual of a vector space. It is

in fact used in this manner later, in the proof of Johnson’s theorem. Though this is not

used later in this thesis, it should be noted that the hypothesis of the above theorem can

be relaxed to require the existence of just one x0 ∈ K such that g 7→ g · x0 is continuous;

some of the useful consequences of this modification were pointed out by Anthony Lau

at the 2006 Istanbul International Abstract Harmonic Analysis Conference.

2.2 Representation of Groups

In [12], Kadison examines representations of groups and algebras and the occurrence of

certain similarity conditions. In particular, for group representations, he concerns himself

with the question of when a similarity matrix can be applied to the representation in such

a way that the operators in the range of the representation become unitary. Kadison also

examines some of the connections between the similarity question for groups and the one

for algebras.

Definition 2.13. Let G be a locally compact group, and let E be a Banach space. A

representation of G on E is a group homomorphism π from G into the invertible

bounded operators on E which is continuous with respect to the given topology on G and

the weak operator topology on B(E).

For a locally compact group G we can define the function λ : g 7→ λg, where

λg(f) = δg ∗ f for f ∈ L2(G). This is a representation of G on L2(G); it is called the left

regular representation of G, and occurs frequently in the literature. Note moreover that λ

is not continuous with respect to the norm topology on B(E) unless G is discrete. Hence

the norm topology is considered too restrictive to be used in the definition of continuity
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given above. On the other hand, as shown by the theorem below, the weak operator

topology could be replaced by the strong operator topology without affecting the set of

homomorphisms under consideration.

Theorem 2.14. Let G be a locally compact group, let E be a Banach space, and let

π : G → B(E) be a representation of G on E. Then π is continuous with respect to the

given topology on G and the strong operator topology.

Proof. Denote by eG be the identity element of G. Let K be a compact neighbourhood

of eG, and choose U a symmetric neighbourhood of eG such that UU ⊂ K. Since

K is compact and π is a group representation, π(K) is compact in the weak operator

topology. It follows that if we fix v0 ∈ E then {π(g)v0 : g ∈ K} is compact in the weak

topology, and hence, by the Uniform Boundedness Principle, it is bounded in the norm

topology. A second application of the Uniform Boundedness Principle then gives us that

{‖π(g)‖ : g ∈ K} is bounded, say by a constant C.

Define the set F = {v ∈ E : g 7→ π(g)v is continuous with respect to the norm

topology on E}. In order to conclude that π is continuous with respect to the strong

operator topology, we need to show that F = E.

First we shall prove that F is closed in the norm topology. Suppose {un}n is a sequence

in F converging in the norm topology to some u ∈ E. Since π is a homomorphism, in

order to conclude that u ∈ F it is enough to show that whenever {eβ}β is a net converging

to eG in G we have π(eβ)u → π(eG)u = u. In addition, since K is a neighbourhood of

eG, we can assume without loss of generality that {eβ}β ⊂ K. Given ε > 0 choose n0

such that ‖un0 − u‖ < ε
2(C+1)

. Since un0 ∈ F , by definition π(eβ)un0 → un0 , and so we

can find β0 such that ‖π(eβ)un0 − un0‖ < ε
2

for β ≥ β0. Thus for β ≥ β0 we have

‖π(eβ)u− u‖ ≤ ‖π(eβ)u− π(eβ)un0‖+ ‖π(eβ)un0 − un0‖+ ‖un0 − u‖
≤ C‖un0 − u‖+ ε

2
+ ‖un0 − u‖

(since ‖π(g)‖ ≤ C for all g ∈ K)

≤ C ε
2(C+1)

+ ε
2

+ ε
2(C+1)

= ε.

Hence π(eβ)u → u as desired, so u ∈ F . Therefore, F is closed, and in particular it is

weakly closed.
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Let (ψα)α be a bounded approximate identity for L1(G), where each ψα is a continuous

function with support in U , as described in Theorem 2.7. Fix v0 ∈ E. We will construct

a net (vα)α ⊂ E such that vα ∈ F and vα
wk→ v0. This will allow us to conclude that

v0 ∈ F . Let vα =
∫
G
ψα(g)[π(g)v0] dg. Recall that ψα is a function in L1(G) and was

defined to have support in the compact set K, so since [π(g)v0] is bounded the integral

can be calculated (for an overview of vector-valued integrals see [22], p. 12). We will

show that vα ∈ F , and that vα
wk→ v0. By definition, vα ∈ F for a fixed α if g 7→ π(g)vα

is continuous with respect to the norm topology on E. As above, it is enough to show

that if (eβ)β ⊂ U is a net such that eβ → eG then π(eβ)vα → vα. We have

π(eβ)vα = π(eβ)(
∫
G
ψα(g)π(g)v0) dg

=
∫
G
ψα(g)π(eβg)v0 dg

=
∫
G
ψα(e

−1
β g)π(g)v0 dg.

Hence
‖π(eβ)vα − vα‖ = ‖

∫
G
[ψα(e

−1
β g)π(g)v0 − ψα(g)π(g)v0] dg‖

≤ ‖π(g)v0‖‖ψα(e−1
β g)− ψα(g)‖1.

But ‖ψα(e−1
β g) − ψα(g)‖1 → 0 as eβ → eG, so since {‖π(g)‖ : g ∈ K} is bounded and

‖v0‖ is fixed, it follows that ‖π(eβ)vα − vα‖ → 0. Therefore, vα ∈ F as claimed.

Now we need to show that vα
wk→ v0. Fix φ ∈ E∗. Then φ(vα) =

∫
G
ψα(g)φ(π(g)v0) dg.

For a fixed α we have that φ(v0) =
∫
G
ψα(g)φ(v0) dg (since φ(v0) does not depend on

g, and ψα ∈ P (G)). Hence ‖φ(vα)− φ(v0)‖ = ‖
∫
G
ψα(g)[φ(π(g)v0)− φ(π(eG)v0)] dg‖.

But φ is continuous with respect to the weak operator topology; moreover, {α} is a

neighbourhood basis of eG and the support of ψα is contained in α ⊂ K, where K

is compact. Hence for any ε > 0 we can find a neighbourhood α0 of eG such that

‖φ(π(g)v0)− φ(π(eG)v0)‖ < ε for g ∈ α0. Therefore, φ(π(g)v0) → φ(v0).

Thus vα
wk→ v0. Since vα ∈ F for each α and F is closed in the weak topology, we can

conclude that v0 ∈ F . But v0 ∈ E was arbitrary, so E ⊂ F . Therefore, g 7→ π(g)v is

continuous for each v ∈ E, and hence π is continuous with respect to the strong operator

topology.

Definition 2.15. Let G be a locally compact group, and let E be a Banach space.

Two representations π1 and π2 of G on E are similar if there is an invertible operator

T ∈ L(E) such that π1(g) = Tπ2(g)T
−1 for all g ∈ G.
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A representation π of G on E is uniformly bounded if supg∈G ‖π(g)‖ <∞.

A representation π of G on a Hilbert space H is unitary if π(g) is unitary for each

g ∈ G.

An example of a continuous unitary representation is the left regular representation

defined at the beginning of this section.

It is clear that every representation similar to a unitary representation is uniformly

bounded, leading us to the question of what are the necessary conditions for all the

(continuous) uniformly bounded representations of a group G to be similar to unitary

representations. A history of this question and the various related results can be found in

the Introduction of [15]. In particular, the following theorem was proven independently

by Dixmier and Day in 1950.

Theorem 2.16. Let G be an amenable locally compact group and let π : G → H be a

uniformly bounded representation on some Hilbert space H. Then there exists a similarity

matrix T such that T−1πT is a unitary representation. Moreover, if C = sup
g∈G

‖π(g)‖, then

T can be chosen such that ‖T‖‖T−1‖ ≤ C2.

Proof. For u, v ∈ H define a function on G by φuv(g) = 〈π(g−1)u |π(g−1)v〉.

First we will show that φuv is continuous. Consider gα → g a net in G. Then, since

π is continuous with respect to the topology on G and the strong operator topology on

B(H), it follows that ‖π(gα
−1)w − π(g−1)w‖ → 0 for any w ∈ H. Hence we have that

|φuv(gα)− φuv(g)| = |〈π(gα
−1)u |π(gα

−1)v〉 − 〈π(g−1)u |π(g−1)v〉|
= |〈π(gα

−1)u |π(gα
−1)v〉 − 〈π(gα

−1)u |π(g−1)v〉+
〈π(gα

−1)u |π(g−1)v〉 − 〈π(g−1)u |π(g−1)v〉|
≤ |〈π(gα

−1)u |π(gα
−1)v − π(g−1)v〉|+

|〈π(gα
−1)u− π(g−1)u |π(g−1)v〉|

≤ ‖π(gα
−1)u‖‖π(gα

−1)v − π(g−1)v‖+
‖π(gα

−1)u− π(g−1)u‖‖π(g−1)v‖ (by Cauchy-Schwarz)

≤ C‖u‖‖π(gα
−1)v − π(g−1)v‖+ ‖π(gα

−1)u− π(g−1)u‖C‖v‖

But ‖u‖ and ‖v‖ are constants, ‖π(gα
−1)v − π(g−1)v‖ → 0, and likewise

‖π(gα
−1)u− π(g−1)u‖ → 0. It follows that |φuv(gα) − φuv(g)| → 0, and hence φuv is

continuous.
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Moreover, for a fixed g ∈ G we also have that

|φuv(g)| = |〈π(g−1)u |π(g−1)v〉|
≤ ‖π(g−1)u‖‖π(g−1)v‖ (by Cauchy-Schwarz)

≤ C‖u‖C‖v‖ (by definition of C)

so, since ‖u‖ and ‖v‖ are constant for this function, φuv is bounded by C2‖u‖‖v‖. Hence

we have shown that φuv is in Cb(G).

Let m be a left invariant mean on Cb(G). Define [u, v] = m(φuv). Since m is linear

and 〈· | ·〉 is sesquilinear, it follows that [·, ·] is a sesquilinear form. Moreover, m is a

positive functional, and φuu is a positive function (once again because 〈· | ·〉 is an inner

product), so it also follows that [·, ·] is positive semidefinite. So we can define a seminorm

on H given by |||u||| = [u, u]1/2.

Next we show that ||| · ||| is equivalent to the usual norm on H. Consider a fixed u ∈ H.

First note that

|||u|||2 = m(φuu)

≤ ‖m‖‖φuu‖
= sup

g∈G
|〈π(g−1)u |π(g−1)u〉| (since ‖m‖ = 1)

= sup
g∈G

‖π(g−1)u‖2

≤ C2‖u‖2

and hence |||u||| ≤ C‖u‖. On the other hand, for any g ∈ G we have

‖u‖ = ‖π(g)π(g−1)u‖ ≤ C‖π(g−1)u‖,

so 1
C2‖u‖2 ≤ ‖π(g−1)u‖2 = φuu(g)∀g ∈ G. Since m is positive it follows that

m( 1
C2‖u‖2) ≤ m(φuu). But m(1) = 1 and m is linear, so m( 1

C2‖u‖2) = 1
C2‖u‖2; and

m(φuu) = |||u|||2 by definition. Thus 1
C
‖u‖ ≤ |||u|||.

Therefore we have shown that 1
C
‖u‖ ≤ |||u||| ≤ C‖u‖ for any u ∈ H, so the norms

‖ · ‖ and ||| · ||| are equivalent. Using the Riesz Representation Theorem and the fact that

the inner products are equivalent, we can find an invertible operator S such that for all

u, v ∈ H we have 〈Su|v〉 = [u, v] (whence it follows that [S−1u, v] = 〈u|v〉). The following

calculation

‖Su‖2 = 〈Su|Su〉 = [u, Su] ≤ |||u||||||Su||| ≤ C‖u‖C‖Su‖
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shows that ‖S‖ ≤ C2, and similarly we get ‖S−1‖ ≤ C2.

S is a positive operator, since for u 6= 0 we have 〈Su|u〉 = [u, u] > 0. Hence there exists

an invertible, self-adjoint operator T such that T = S1/2. Note that ‖T‖ = ‖S‖1/2 and

‖T−1‖ = ‖S−1‖1/2, so from ‖S‖ ≤ C2 and ‖S−1‖ ≤ C2 we get ‖T‖‖T−1‖ ≤ C2. Note

that, for Q ∈ B(H), if we denote by Q[∗] the adjoint with respect to [·, ·] and by Q∗ the

adjoint with respect to 〈·|·〉, then Q∗ = S∗Q[∗](S∗)−1 = SQ[∗]S−1. Hence the adjoint of T

is the same with respect to both inner products.

We will show that T is the similarity matrix which changes π into a unitary rep-

resentation. Fix h ∈ G; we need to show that Tπ(h)T−1 is a unitary operator. We

have
〈Tπ(h)T−1x|Tπ(h)T−1y〉 = 〈T ∗Tπ(h)T−1x|π(h)T−1y〉

= 〈Sπ(h)T−1x|π(h)T−1y〉
= [π(h)T−1x, π(h)T−1y]

= m(φπ(h)T−1x,π(h)T−1y).

Since
φπ(h)T−1x,π(h)T−1y(g) = 〈π(g−1)π(h)T−1x|π(g−1)π(h)T−1y〉

= 〈π((h−1g)−1)T−1x|π((h−1g)−1)T−1y〉

we get φπ(h)T−1x,π(h)T−1y = δh ∗ φT−1x,T−1y. But m is a left invariant mean; so

m(δh ∗ φT−1x,T−1y) = m(φT−1x,T−1y)

= [T−1x, T−1y]

= [T−2x, y]

= [S−1x, y]

= 〈x|y〉

Thus for every h ∈ G and x, y ∈ H we have 〈Tπ(h)T−1x|Tπ(h)T−1y〉 = 〈x|y〉, and hence

Tπ(h)T−1 is a unitary operator.

Therefore we have found an invertible operator T such that Tπ(·)T−1 is a unitary

representation, and ‖T‖‖T−1‖ ≤ C2, as desired.

If we drop the amenability requirement in the above theorem, then we can give an

example of a group for which the result no longer holds. We denote by F∞ the free group

on countably many generators. Using the construction described in [15] we can exhibit

a representation of G = F∞ on l2(G)⊕ l2(G) which is not unitarizable.
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Let U = {un : n ∈ N} be the set of generators of G. Denote by |g| the length of

g ∈ G as a reduced word. As usual, let δg be the function which evaluates to 1 at g and

0 everywhere else. Recall that δg is an orthonormal basis for l2(G). In the following we

denote the empty word by v (usually we use e for the identity in G, but we will need e

for the natural logarithm later in this proof).

For a fixed g ∈ G we define [λg(F )](t) = F (g−1t) for F ∈ l2(G). Then we have∑
‖F (g−1t)‖2 =

∑
‖F (t)‖2, so λg(F ) is also in l2(G) and λg has norm 1. Also define a

function φg on l2(G) by [φg(F )](t) =
∑

b∈U∪U−1

|g−1t|>|g−1tb|

F (g−1tb)−
∑

a∈U∪U−1

|t|>|ta|

F (g−1ta). Note that

each sum in the definition of [φg(F )](t) has finitely many terms; in fact, if for g ∈ G we

denote by g0 the first letter of g and by gl the last, then the above function evaluates to

[φg(F )](t) =



0 if t = g = v

F (g−1g0) if t = v and g 6= v

−F (tl
−1) if t 6= v and g = t

F (k−1k0)− F (k−1tl
−1) if t 6= v and g = tk for some k 6= v

with k0 6= tl
−1

0 otherwise

In the above definition of φg, g is fixed; hence there can only be finitely many t for which

there is a k ∈ G such that g = tk as a reduced word. The other values where [φg(F )](t)

might be non-zero are t = g when g 6= v or t = v. So there are only finitely many t for

which [φg(F )](t) 6= 0. Therefore, φg(F ) ∈ l2(G).

In particular, consider F = δv. Then clearly −δv(tl−1) = 0 for any t 6= v. If |g| = 1,

then δv(g
−1g0) = 1 and there are no values of t, k 6= v for which g = tk (as a reduced

word) so [φg(δv)](t) = 0 in all other cases; therefore, if |g| = 1 then φg(δv) = δv. On the

other hand, if |g| 6= 1 then [φg(δv)](t) = 0, hence φg(δv) ⊂ {δv}⊥.

Define the representation π : g 7→

[
λg φg

0 λg

]
. First we show that π(g)π(h) = π(gh)

for g, h ∈ G, so π is indeed a homomorphism. Fix g, h ∈ G. It is straightforward to check

that λgλh = λgh. Over the next couple of pages we will show that λgφh + φgλh = φgh

for all g, h ∈ G. Consider F ∈ l2(G) and t ∈ G, and define K(t) = F (h−1t). Then
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[(λgφh + φgλh)(F )](t) = [φhF ](g−1t) + [φgK](t). But

(φhF )(g−1t) =



0 if g−1t = h = v

F (h−1h0) if g−1t = v and h 6= v

−F ((g−1t)l
−1

) if g−1t 6= v and h = g−1t

F (k−1k0)− F (k−1(g−1t)l
−1

) if g−1t 6= v with h = g−1tk for some

k 6= v with k−1
0 6= (g−1t)l

0 otherwise

and

(φgK)(t) =



0 if t = g = v

F (h−1g−1g0) if t = v and g 6= v

−F (h−1tl
−1) if t 6= v and g = t

F (h−1k−1k0)− F (h−1k−1tl
−1) if t 6= v and g = tk for some k 6= v

with k0 6= tl
−1

0 otherwise.

On the other hand,

[φgh(F )](t) =



0 if t = gh = v

F (h−1g−1(gh)0) if t = v and gh 6= v

−F (tl
−1) if t 6= v and gh = t

F (k−1k0)− F (k−1tl
−1) if t 6= v and gh = tk for some k 6= v

with k0 6= tl
−1

0 otherwise.

We want to compare the function defined above with [φhF ](g−1t) + [φgK](t), so we need

to consider all possible cases for values of t, g and h. For ease of calculation, we will use

the cases in the definition of φgK, and consider subcases as necessary so we can evaluate

φghF and φhF .

• Suppose t = g = v, so [φgK](t) = 0.

– If h = v, then [φhF ](g−1t) = 0 and [φghF ](t) = 0.
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– If h 6= v, then [φhF ](g−1t) = F (h−1h0), and

[φghF ](t) = F (h−1g−1(gh)0) = F (h−1h0).

Therefore, for any value of h, [φhF ](g−1t) + [φgK](t) = [φghF ](t).

• Suppose t = v and g 6= v. Then g−1t 6= v, so we need to consider three cases:

– If h = g−1t = g−1, then

[φhF ](g−1t) = −F ((g−1t)l
−1

) = −F ((g−1
0 )−1) = −F (g0),

[φgK](t) = F (h−1g−1g0) = F (g0) and [φghF ](t) = 0.

– If h = g−1tk = g−1k for some k 6= v with k−1
0 6= (g−1t)l, then

[φhF ](g−1t) = F (k−1k0)− F (k−1(g−1t)l
−1

) = F (k−1k0)− F (k−1g0),

[φgK](t) = F (h−1g−1g0) = F (k−1g0) and

[φghF ](t) = F ((gh)−1(gh0) = F (k−1k0).

– If h has neither of the above two forms, then [φhF ](g−1t) = 0,

[φgK](t) = F (h−1g−1g0) and [φghF ](t) = F (h−1g−1g0) (since gh 6= v).

Therefore, for any value of h, [φhF ](g−1t) + [φgK](t) = [φghF ](t).

• Suppose t 6= v and g = t. Then g−1t = v.

– If h = v then [φhF ](g−1t) = 0, [φgK](t) = −F (h−1tl
−1) = −F (tl

−1) and

[φghF ](t) = −F (tl
−1) (since gh = t).

– If h 6= v then [φhF ](g−1t) = F (h−1h0), and [φgK](t) = −F (h−1tl
−1). If

h0 6= tl
−1 we can use k = h to get gh = tk, so

[φghF ](t) = F (k−1k0) − F (k−1tl
−1) = F (h−1h0) − F (h−1tl

−1). On the other

hand, if h0 = tl
−1, then [φghF ](t) = 0; however, note that in this case we also

have h−1h0 = h−1tl
−1, and so [φhF ](g−1t) = −[φgK](t).

Therefore, for any value of h, [φhF ](g−1t) + [φgK](t) = [φghF ](t).

• Suppose t 6= v and g = tk for some k 6= v with k0 6= tl
−1. Then g−1t = k−1 6= v.

– If h = g−1t = k−1, then [φhF ](g−1t) = −F ((g−1t)l
−1

) = −F (k0),

[φgK](t) = F (h−1k−1k0)− F (h−1k−1tl
−1) = F (k0)− F (tl

−1), and

[φghF ](t) = −F (tl
−1) (since gh = t).
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– If h = g−1tr = k−1r for some r 6= v with r0 6= k0 then

[φhF ](g−1t) = F (k−1k0)− F (k−1(g−1t)l
−1

) = F (k−1k0)− F (k−1k0) = 0, and

[φgK](t) = F (h−1k−1k0)− F (h−1k−1tl
−1) = F (r−1k0)− F (r−1tl

−1).

If r0 6= tl
−1, then gh = tr where tr is a reduced word, and so

[φghF ](t) = F (r−1r0)− F (r−1tl
−1); otherwise, [φghF ](t) = 0, but also

r−1k0 = r−1tl
−1 and so [φgK](t) = 0.

– If h has neither of the above forms then [φhF ](g−1t) = 0,

[φgK](t) = F (h−1k−1k0)− F (h−1k−1tl
−1) and

[φghF ](t) = F ((kh)−1k0)− F ((kh)−1tl
−1) (since gh = tkh, and (kh)0 6= tl

−1).

Therefore, for any value of h, [φhF ](g−1t) + [φgK](t) = [φghF ](t).

• Suppose t 6= v and g has neither of the previous two forms. Then [φgK](t) = 0.

– If h = g−1t then [φhF ](g−1t) = −F ((g−1t)l
−1

) = −F (tl
−1), and

[φghF ](t) = −F (tl
−1) (since gh = t).

– If h = g−1tk for some k 6= v with k0 6= (g−1t)l
−1

then

[φhF ](g−1t) = F (k−1k0)− F (k−1(g−1t)l
−1

) = F (k−1k0)− F (k−1tl
−1) and

[φghF ](t) = F (k−1k0)− F (k−1tl
−1) (since gh = tk, with k0 6= tl

−1).

– If h has neither of the above two forms then [φhF ](g−1t) = 0 and [φghF ](t) = 0.

Therefore, for any value of h, [φhF ](g−1t) + [φgK](t) = [φghF ](t).

We conclude that [φghF ](t) = [φhF ](g−1t) + [φgK](t) for any values of g, h and t. There-

fore, λgφh + φgλh = φgh for all g, h ∈ G.

Note that

〈π(g)(0⊕ δv) | (δv ⊕ 0)〉 = 〈λg(0) + φg(δv) | δv〉+ 〈λg(δv)|0〉

=

1 if |g| = 1

0 otherwise
(using the earlier calculations for F = δv).

Suppose π is unitarizable; so we can find a matrix S such that π(g) = S−1ρ(g)S for

some unitary representation ρ. Let F1 = S(0⊕ δv) and F2 = (S−1)∗(δv ⊕ 0). So

〈ρ(g)F1|F2〉 = 〈ρ(g)S(0⊕ δv) | (S−1)∗(δv ⊕ 0)〉 = 〈π(g)(0⊕ δv) | (δv ⊕ 0)〉
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which evaluates to 1 if |g| = 1 and to 0 otherwise, as shown earlier.

Let αn = [ρ(un) + ρ(u−1
n )]/2 for n ∈ N. Since ρ is unitary, ‖αn‖ ≤ 1 and α∗n = αn.

Define Rn =
n∏
i=1

(I + i√
n
αi). For each i we have

‖(I + i√
n
αi)‖2 = ‖(I + i√

n
αi)

∗(I + i√
n
αi)‖

= ‖(I − i√
n
αi)(I + i√

n
αi)‖

= ‖I + 1
n
α2
i ‖

≤ 1 + 1
n

Hence ‖Rn‖2 ≤
n∏
i=1

(1 + 1
n
)2 < lim

n→∞
(1 + 1

n
)2n = e2, so ‖Rn‖ < e.

We can multiply out the product used in the definition of Rn to obtain

Rn = I +
i√
n

(α1 + . . .+ αn) + (
i√
n

)2
∑

1≤i<j≤n

αiαj + . . .+ (
i√
n

)nα1 . . . αn

Replacing αn by its definition, and using the fact that ρ is a homomorphism, we can

write Rn as a sum where each term is a scalar multiple of ρ(g) for some g ∈ G. We

are particularly interested in the terms which have ρ(g) for |g| = 1. These terms are

i√
n
(α1 + . . .+ αn) = i

2
√
n

n∑
i=1

ρ(ui) + ρ(u−1
i ). So we have

〈RnF1|F2〉 = 〈S−1RnS(0⊕ δv)|(δv ⊕ 0)〉

= 〈
[

i
2
√
n

n∑
i=1

(
π(ui) + π(u−1

i )
)]

(0⊕ δv) | (δv ⊕ 0)〉

(using the expansion of Rn given above, and the fact that

〈π(g)(0⊕ δv) | (δv ⊕ 0)〉 is non-zero only when |g| = 1)

= i
2
√
n
(2n)

(since 〈π(g)(0⊕ δv) | (δv ⊕ 0)〉 = 1 when |g| = 1)

= i
√
n

Since F1 and F2 are fixed, we conclude that ‖Rn‖ → ∞, contradicting the earlier state-

ment that ‖Rn‖ < e for each n. Therefore, π is not unitarizable.

We have constructed a representation of F∞ on l2(F∞) ⊕ l2(F∞) which is uniformly

bounded but not unitarizable. Note that F∞ can be embedded in Fn for any n ∈ N , n ≥ 2;
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so the above construction can be applied to show that we can find a non-unitarizable

representation of Fn.

Amenability is a sufficient condition for every bounded representation to be similar

to a unitary representation, and we have seen above that we can find a non-amenable

group such that this similarity condition no longer holds. In order to exhaust this line

of inquiry we need to know if it is possible to find a non-amenable group for which all

representations are unitarizable. This question, posed by Dixmier in 1950, remains open.

Recent advances made in answering this question can be found in [16].

2.3 Banach Algebras

The concept of amenability for Banach algebras was introduced by Johnson. The theory

was evolved as a consequence of the properties of the algebra L1(G) and used cohomology

theory; in fact, while this section might seem unconnected to the earlier discussion for

groups, the culminating result is that G is amenable if and only if L1(G) is amenable.

Moreover, the concept can be applied to general Banach algebras with fruitful results.

Suppose M is a Banach space on which we define a module action of an alge-

bra A. We say that M is a left Banach module of A if there exists a k such that

‖a ·m‖ ≤ k‖a‖‖m‖, and respectively a right Banach module of A if there exists a t such

that ‖m ·a‖ ≤ t‖m‖‖a‖. If both the inequalities hold then M is a Banach-bimodule of A.

Since the only modules we are concerned with in the following are Banach modules we

will refer to them simply as A-modules, or just modules if the algebra A can be inferred

from context. Also, module will be understood to mean ’bimodule’; the explicit terms

’left module’ and ’right module’ will be used when such distinctions are necessary.

Note that if M is an A-module then we can define a representation π : A → B(M)

by [π(a)](m) = a · m. On the other hand, if we have a representation π : A → B(V)

then we can define a module action of A on V by a · v = [π(a)](v) for a ∈ A and v ∈ V .

This equivalence between module actions and representations will be particularly relevant

when we discuss operator algebras and invariant subspaces in later chapters.

Note also that if M is a bimodule of A then we can make M∗ into a bimodule by

defining (a · φ)(m) = φ(m · a) and (φ · a)(m) = φ(a · m), where a ∈ A, m ∈ M and
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φ ∈ M∗. It is straigtforward to check that this does indeed define a module action of A

on M∗.

Definition 2.17. A linear function ρ : A → M is called a derivation if it satisfies

ρ(ab) = a · ρ(b) + ρ(a) · b. Moreover, such a derivation is called inner if there is a fixed

α ∈ M such that ρ(a) = a · α − α · a for all a ∈ A. The inner derivation ρ is often

denoted by adα.

Denote by Z1(A,M) the space of all continuous derivations from A to M and by

B1(A,M) the set of all inner derivations. We define H1(A,M) = Z1(A,M)/B1(A,M),

called the first Hochschild cohomology group of A with coefficients in M.

It is not always the case that all derivations are inner. Consider A(D), the algebra of

functions which are analytic inside the unit disc and continuous on D. We can make C
into an A(D) bimodule by defining f · c := f(0)c =: c · f . Note that since f · c = c · f ,

any inner derivation from A(D) to C would in fact have to be 0. Define D : A(D) → C
by D(f) = f ′(0). By properties of derivative, D is linear and satisfies

D(fg) = (fg)′(0) = f ′(0)g(0) + f(0)g′(0) = f ′(0) · g + f · g′(0) = D(f)g + fD(g)

Moreover, we can use the Cauchy Integral Formula to show that D is bounded. So D is

a continuous derivation from A(D) into C, but D 6= 0 so D is not inner.

Definition 2.18. A Banach algebra A is amenable if H1(A,B∗) = 0 for all Banach

bimodules B of A.

Recall that amenability for groups was preserved by homomorphisms. The same

result holds for Banach algebras, though of course the proof is different.

Theorem 2.19. Let A be an amenable Banach algebras. Suppose B is a Banach algebra

and φ : A → B is a continuous homomorphism such that φ(A) is dense in B. Then B

is also amenable.

Proof. Suppose M∗ is a B dual bimodule, and D : B →M∗ is a continuous derivation.

We need to find µ0 ∈M∗ such that D(b) = b · µ0 − µ0 · b for all b ∈ B.

We can make M∗ into an A bimodule by defining a · µ = φ(a) · µ and µ · a = µ · φ(a)

for any a ∈ A and µ ∈M∗. Since φ is continuous, it is easy to check that this definition
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satisfies all the requirements for M∗ to be an A-bimodule. Moreover, we can define a

derivation DA : A →M∗ by DA(a) = D(φ(a)). But D and φ are both continuous, and

hence so is DA; moreover, since A is amenable, DA must be inner. Thus there exists

µ0 ∈M∗ such that DA(a) = a · µ0 − µ0 · a for any a ∈ A. But then, using the definition

of DA and of the action of A on M∗ we see that D(φ(a)) = φ(a) · µ0 − µ0 · φ(a). Since

φ(A) is dense in B, by continuity of D and of the action, we get that D(b) = b ·µ0−µ0 · b
for any b ∈ B. Thus D is an inner derivation. Therefore, any derivation from B to a

dual space is inner, and hence B is amenable.

Our goal is to prove that the algebra L1(G) is amenable if and only if the group G

is amenable. Building on our knowledge of amenable groups, this result will provide us

with a large number of examples of amenable algebras.

For C∗-algebras, amenability is equivalent to nuclearity. A C∗-algebra A is nuclear if

for every C∗-algebra B there is exactly one C∗-norm that can be defined on the algebraic

tensor product A ⊗ B. The fact that every amenable C∗-algebra is nuclear was shown

by Connes in [4], and the converse was established a few years later by Haagerup in [9].

From known results about nuclear C∗-algebras it follows that every abelian C∗-algebra is

amenable.

Bounded approximate identities play a significant role in discussions of amenability

for Banach algebras since it can be shown that any amenable algebra has a bounded

approximate identity. A result about the stability of the amenability property says

that a closed ideal of an amenable algebra is amenable if and only if it has a bounded

approximate identity ([20], Theorem 2.2.1). Recall that any ideal in a C∗-algebra has a

bounded approximate identity; hence any closed ideal of an amenable C∗-algebra is also

amenable. A consequence of these observations is that we can restrict our discussion to

Banach algebras which have a bounded approximate identity. This allows us to use the

theorem stated below.

Theorem 2.20 (Cohen’s Factorization Theorem). Let A be a Banach algebra and E be

a Banach left A-module. Suppose that there exists a bounded net (eα)α in A such that

eα · x→ x for all x ∈ E. Then for every z ∈ E and δ > 0 we can find a ∈ A and y ∈ E
such that z = a · y and ‖z − y‖ < δ.

Suppose we have A and E as described in the above theorem. Since eα · x → x, it
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follows that φ·eα → φ in the weak* topology on E∗ for any φ ∈ E∗. This is easy to see once

we recall that the definition of the action for A on E∗ gives us that [φ · eα](x) = φ(eα ·x).

Theorem 2.21. Let A be a Banach algebra with a bounded right approximate identity,

and let E be a Banach A-bimodule such that A · E = {0}. Then H1(A, E∗) = {0}.
Note: The symmetric result “if A has a bounded left approximate identity and E ·A = {0}
then H1(A, E∗) = {0}” also holds.

Proof. Consider ρ a continuous derivation from A to E∗. Let (eα)α be a bounded right

approximate identity for A. Then, since ρ is a bounded linear function, ρ(eα) is bounded,

so it has a weak*-limit point. By passing to a subnet as necessary, we can assume without

loss of generality that ρ(eα) is in fact convergent in the weak* topology to some e ∈ E∗.

For any a ∈ A we have that ρ(a) = weak*- lim ρ(a · eα) (since ρ is continuous). But

ρ(a · eα) = ρ(a) · eα+a ·ρ(eα) (by properties of derivations). Finally, since A ·E = {0}, it

follows from the way E∗ is defined as a bimodule that E∗ · A = {0}; hence ρ(a) · eα = 0

for all a ∈ A and α. So ρ(a) = weak*- lim a · ρ(eα) = a · e = a · e− e · a. Hence we have

in fact shown that ρ is an inner derivation. Therefore, H1(A, E∗) = {0}.

Next we will show that we do not need to examine all the A-bimodules in order to

show that A is amenable. It is enough to consider modules of the type introduced below,

whose advantages are explained in the remarks following the definition.

Definition 2.22. If A is a Banach algebra and E is a Banach A-bimodule, we say that

E is pseudo-unital if E = {a · x · b : a, b ∈ A, x ∈ E}.

Lemma 2.23. Suppose that A is a Banach algebra with a bounded approximate identity

(eα)α, and M is a Banach A-bimodule. Then {a · x : a ∈ A, x ∈M} and

{a · x · b : a, b ∈ A, x ∈M} are closed subspaces of M.

Proof. Let F0 = {a · x : a ∈ A, x ∈ M} and F = spanF . If y = a · x is in F0 then

eαa → a (since eα is an approximate identity), and so eα · (a · x) = (eαa) · x → a · x. It

then follows that eα · (
n∑
i=1

ai · xi) → (
n∑
i=1

ai · xi) (by linearity of the module operation and

since the sum has finitely many terms). Now fix z ∈ F ; find a sequence zn → z where

zn ∈ spanF . By the definition of a Banach-bimodule there is a constant k such that for

any α and n we have ‖eα · (z− zn)‖ ≤ k‖eα‖‖z− zn‖ ≤ C‖z− zn‖ where C is a constant

(the existence of C follows from the fact that (eα)α is a bounded net). Hence, given ε > 0
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we can find N such that ‖zN − z‖ < ε/3 and ‖eα · (z − zN)‖ < ε/3 for all α. But also

zN ∈ spanF , so eαzN → zN from the earlier comments. It follows that we can find an

α0 such that ‖eαzN − zN‖ < ε/3 for α ≥ α0. Combining these inequalities, for α ≥ α0

we get

‖eα · z − z‖ ≤ ‖eα · z − eα · zN‖+ ‖eα · zN − zN‖+ ‖zN − z‖ < 3 · ε
3

= ε

Therefore, we have shown that for any z ∈ F we have eα · z → z. Hence, we can apply

Cohen’s Factorization Theorem (Theorem 2.20) to find a ∈ A and w ∈ F ⊂ M such

that z = a · w. It follows that z ∈ F0. Hence, since z was arbitrary, F = F0. Therefore,

F0 = {a · x : a ∈ A, x ∈M} is a closed subspace of M.

The proof that {a · x · b : a, b ∈ A, x ∈M} is a closed subspace of M is similar to the

above.

Note that if A is a Banach algebra with a bounded approximate identity (eα)α and E

is pseudo-unital, then eα · u→ u for any u ∈ E. This follows directly from the fact that

any u ∈ E can be written as a · v · b for a, b ∈ A, and eαa→ a for any a ∈ A. Therefore,

as in the comment following Cohen’s Factorization Theorem (Theorem 2.20), in this case

we also have that eα · φ→ φ in the weak* topology on E∗.

Theorem 2.24. Let A be a Banach algebra with a bounded approximate identity. If

H1(A, F ∗) = {0} whenever F is a pseudo-unital Banach A-bimodule, then A is amenable.

Proof. Let E be any Banach A-bimodule. We want to show that H1(A, E∗) = {0}.
Define E0 = {a · x · b : a, b ∈ A, x ∈ E} and E1 = {a · x : a ∈ A, x ∈ E}. By Lemma 2.23

E0 and E1 are closed subspaces of E. Moreover, E0 is pseudo-unital.

Consider first a derivation D from A into E∗
1 . Define D0(a) = D(a)|E0

for each a ∈ A.

Then clearly D0 is a derivation into E∗
0 . Since E0 is pseudo-unital, by hypothesis we can

find φ ∈ E∗
0 such that D0 = adφ. By the Hahn-Banach theorem we can find ϕ ∈ E∗

1 such

that ϕ extends φ. Let D1 = D − adϕ. Then for any a ∈ A we get

D1(a)|E0
= D(a)|E0

− adϕ(a)|E0
= D0(a)− adφ(a) = 0

(since D0 = adφ by definition, and ϕ extends φ). Therefore, ranD1 ∈ E⊥
0 . But

E⊥
0
∼= (E1/E0)

∗. Note that (E1/E0) · A = {0}, so Theorem 2.21 gives us that

H1(A, (E1/E0)
∗) = {0}. In particular, it follows that D1, which is a derivation into E⊥

0 ,
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is inner; hence, there exists a ψ ∈ E⊥
0 such that D1 = adψ. Recall that D = D1 + adϕ,

whence we get D = adψ + adφ = adψ+φ. Thus D is also inner.

Now suppose T is a derivation from A to E∗. Then a 7→ T (a)|E1
is a derivation into

E∗
1 , which is inner by the first part of the proof. Moreover, since A · (E/E1) = {0}, we

can show similarly to above that T is inner. So H1(A, E∗) = 0.

Hence for every Banach A bimodule E we have shown that H1(A, E∗) = 0. Therefore,

A is amenable.

Suppose A is a Banach algebra with a bounded approximate identity and A is con-

tained as a closed ideal in some other algebra B. Then, if E is a pseudo-unital Banach

A-bimodule, we can make it into a Banach B-bimodule as follows: consider b ∈ B and

x ∈ E. By Cohen’s Factorization Theorem (Theorem 2.20) we can find a ∈ A and y ∈ E
such that x = a · y. Since A is an ideal of B and hence ba ∈ A we can define b · x by

setting it equal to (ba) · y. We need to show that this is well-defined. Let (eα)α be a

bounded approximate identity for A. Suppose x = a·y = a′ ·y′ for a, a′ ∈ A and y, y′ ∈ E.

Then we have (ba) · y = lim
α
beαa · y = lim

α
beα(a

′ · y′) = ba′ · y′. So it follows that the

definition of b · x is independent of the factorization of x. It is easy to check that the

above definition of b · x satisfies all the required properties of a module action, and that

‖b · x‖ ≤ ‖b‖‖x‖ sup
α
‖eα‖; hence E is a left Banach B-module. Similarly we can make E

into a right Banach B-module.

This construction leads us to question whether a derivation can be extended from a

subalgebra to the algebra containing it. The next theorem describes a situation in which

such an extension exists and is unique.

If A,B are two Banach algebras such that A is a closed ideal of B, we define the

strict topology on B with respect to A to be the weakest topology such that for each

a ∈ A the maps b 7→ ab and b 7→ ba (where b ∈ B) are both continuous. It is clear that

this topology is generally weaker than the norm topology. Note that if bλ → b in the

strict topology on B and E is a pseudo-unital Banach A-bimodule, then bλ · v → b · v for

every v ∈ E. This follows from the action of B on E defined earlier; if we write v = a · u
for a ∈ A and u ∈ E then bλ ·v = (bλa) ·u→ ba ·u (by the definition of the strict topology

and the fact that the action of A on E is continuous). Similarly, v · bλ → v · b.
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Theorem 2.25. Let A be a Banach algebra with a bounded approximate identity. Suppose

A is contained as a closed ideal in a Banach algebra B. Let E be a pseudo-unital Banach

A-bimodule, and let D ∈ Z1(A, E∗). Then E is a Banach B-bimodule, and there is a

unique T ∈ Z1(B, E∗) such that T |A = D and T is continuous with respect to the strict

topology on B and the weak∗-topology on E∗.

Proof. Let (eα)α be a bounded approximate identity for A. The construction which makes

E into a Banach B-bimodule was described in the comments leading up to this theorem.

If T is a derivation on B note that in particular it must satisfy T (beα) = T (b)·eα+b·T (eα)

for any b ∈ B. If T also extends D, this is equivalent to D(beα) = T (b) · eα + b ·D(eα)

(beα ∈ A since A is an ideal). Recall that T (b) · eα → T (b) in the weak* topology on

E∗. This suggests that, if {[D(beα) − b · D(eα)]}α has a weak*-limit φb, then we must

have T (b) = φb. Thus, since beα, eα ∈ A for each α and T |A = D, T is determined by its

values on A; hence, T is unique.

Fix b ∈ B and consider the net (D(beα)− b ·D(eα))α. We want to show that this net

has a weak* limit. Let u ∈ E. By Cohen’s Factorization Theorem (Theorem 2.20) we

can find a ∈ A and v ∈ E such that u = v · a. Note that

[D(beα)− b ·D(eα)](v · a) = [a ·D(beα)](v)− [a · b ·D(eα)](v)

(by the definition of the action of A on E∗)

= [D(abeα)−D(a)beα](v)− [D(abeα)−D(ab)eα](v)

(since D is a derivation)

= [D(ab)eα](v)− [D(a)beα](v)

= [D(ab)eα](v)− [D(a)](beα · v)

But D(ab)eα
wk∗→ D(ab) and eα · v → v (since (eα)α is a bounded approximate identity for

A and E is a pseudo-unital module). Therefore,

[D(beα)− b ·D(eα)](a · v) → [D(ab)](v)− [D(a)](b · v).

Define T : B → E∗ by b 7→ wk*- lim
α

[D(beα) − b · D(eα)]. We will show that this map

satisfies all the requirements of the theorem.
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Consider a ∈ A. Then

T (a) = wk*- lim
α

[D(aeα)− a ·D(eα)] (by definition)

= wk*- lim
α

[a ·D(eα) +D(a) · eα − a ·D(eα)] (since D is a derivation)

= wk*- lim
α

[D(a) · eα]

= D(a).

Hence T |A = D.

Next we show that T is continuous with respect to the strict topology on B and

the weak* topology on E∗. Let (bλ)λ be a net which converges to some b ∈ B in

the strict topology. Consider u ∈ E and suppose u = a1 · v · a2 for a1, a2 ∈ A,

and v ∈ E (we can write u this way since E is pseudo-unital). Then from before

[T (bλ)](u) = [T (bλ)](a1 · v · a2) = [D(a2bλ)](a1v)− [D(a1)](bλa1v). But a2bλ → a2b and

bλa1 → ba1 (by the definition of the strict topology), so it follows that

[T (bλ)](u) → [T (b)](u). Therefore, T (bλ) → T (b) in the weak* topology whenever bλ → b

in the strict topology on B.

Finally, we need to check that T is a derivation. Let b1, b2 ∈ B. Since (eα)α is a

bounded approximate identity for A, we have that beα → b in the strict topology for any

b ∈ B. So we can write

T (b1b2) = wk*- lim
α

wk*- lim
β
T ((b1eα)(b2eβ))

(by continuity of T with respect to the strict topology)

= wk*- lim
α

wk*- lim
β
D((b1eα)(b2eβ))

(since A is an ideal of B, and T |A = D)

= wk*- lim
α

wk*- lim
β
b1eαD(b2eβ) +D(b1eα)b2eβ

(since D is a derivation)

= b1T (b2) + T (b1)b2

(by continuity with respect to the strict topology)

Therefore, T is a derivation.

In particular, if G is a locally compact group, we can apply the above theorem for

A = L1(G), B = M(G), where M(G) is the set of all complex, regular Borel measures on

G. Moreover, the extension T mentioned in the theorem above is uniquely determined

by its values on {δg : g ∈ G}, since such measures are weak*-dense in M(G).
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We are finally able to connect the definition of amenability from groups to Banach

algebras.

Theorem 2.26. [Johnson] Let G be a locally compact group. Then G is amenable if and

only if L1(G) is amenable.

Proof. Suppose G is amenable. Let E be a pseudo-unital Banach L1(G) bimodule. We

want to show that H1(L1(G), E∗) = {0}. Suppose D is a derivation from L1(G) to E∗;

as described by Theorem 2.25 above we can extend D to a derivation T from M(G) to

E∗.

Define an action of G on E∗ by g·φ = [δg ·φ+T (δg)]·δg−1 . In order to conclude that this

does indeed define an action, the only thing which is not obvious is that g ·(h·φ) = (gh)·φ
for all g, h ∈ G and φ ∈ E∗.

(gh) · φ = [δgh · φ+ T (δgh)] · δ(gh)−1

= [δgh · φ+ δgT (δh) + T (δg)δh] · δ(gh)−1

(since T is a derivation and δgh = δg ∗ δh)
= δg · δh · φ · δh−1δg−1 + δgT (δh) · δh−1δg−1 + T (δg) · δg−1

= δg · [δh · φ · δh−1 + T (δh) · δh−1 ] · δg−1 + T (δg) · δg−1

= [δg · (h · φ) + T (δg)] · δg−1

= g · (h · φ)

Also, the action of G on E∗ defined above is affine, since for g ∈ G and φ1, φ2 ∈ E∗ and

t ∈ [0, 1] we have

t[g · φ1] + (1− t)[g · φ2] = t[δg · φ1 + T (δg)] · δg−1 + (1− t)[δg · φ2 + T (δg)] · δg−1

= δg · [tφ1 + (1− t)φ2] · δg−1 + (t+ (1− t))T (δg) · δg−1

= g · [tφ1 + (1− t)φ2]

Let K be the weak*-closed convex hull of {T (δg) · δg−1 : g ∈ G}. Then K is weak*

compact (since bounded in norm) and convex by definition. We want to use Day’s Fixed

Point Theorem, so we need g · φ ∈ K for g ∈ G and ψ ∈ K. To prove this, it is enough

to show that g · (T (δh) · δh−1) is in K for any g, h ∈ G (the result for any ψ ∈ K follows

by continuity and linearity). We have

g · (T (δh) · δh−1) = δg · T (δh) · δh−1 · δg−1 + T (δg) · δh−1 · δg−1

= T (δgδh) · δ(gh)−1 − T (δg) · δh · δh−1δg−1 + T (δg) · δg−1

= T (δgh) · δ(gh)−1
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Hence g · (T (δh) · δh−1) = T (δgh) · δ(gh)−1 ∈ K.

We also need to check that (g, k) 7→ g · k is separately continuous. Fix ψ0 ∈ K and

suppose (gα)α is a net converging to g ∈ G. Then gα · ψ0 = [δgα · ψ0 + T (δgα)] · δ(gα)−1 .

Since δgα → δg in the strict topology on M(G) and T is continuous with respect to the

strict topology as shown in Theorem 2.25, we know that T (δgα)
wk∗→ T (δg). From the

comment made before Theorem 2.25 we also know that δgα · v → δg · v for every v ∈ E,

whence it follows that δgα ·ψ0
wk∗→ δg ·ψ0. Let φα = δgα ·ψ0 +T (δgα) and φ = δg ·ψ0 +T (δg).

We have shown above that φα → φ in the weak* topology; we still need to show that

φα · δ(gα)−1
wk∗→ φ · δg−1 . Fix v ∈ E. Then [φα · δ(gα)−1 ](v) = φα(δ(gα)−1 · v). We can write

‖(φα(δ(gα)−1 · v)− φ(δg−1 · v)‖ ≤ ‖φα‖‖δ(gα)−1 · v − δg−1 · v‖+ ‖φα(δg−1 · v)− φ(δg−1 · v)‖.
But δ(gα)−1 · v → δg−1 · v and (φα)α is bounded, so this allows us to conclude that

φα · δ(gα)−1
wk∗→ φ · δg−1 . This concludes the proof of the fact that gα · ψ0 → g · ψ0.

Fix g0 ∈ G and suppose (ψβ)β is a net converging to ψ ∈ K in the weak* topology.

Since the action of L1(G) on E is continuous in the norm topology, the definition of the

action of L1(G) on E∗ implies δg · ψβ
wk∗→ δg · ψ. From this it follows immediately that

g0 · ψβ
wk∗→ g0 · ψ, as desired.

Therefore, all the requirements of Day’s Fixed Point Theorem are satisfied. Hence

there exists a φ0 ∈ K such that g ·φ0 = φ0 for all g ∈ G. Using the definition of the action

we get that δg ·φ0 +T (δg)] · δg−1 = φ0, hence T (δg) = φ0 · δg − δg ·φ0 for all g ∈ G. Recall

that the set {δg : g ∈ G} is weak* dense in M(G) and T is continuous with respect to the

weak* topology on E∗; it follows that T (µ) = φ0 · µ− µ · φ0 for any µ ∈M(G). Finally,

since D = T |L1(G), it follows that D is inner. Therefore, all the continuous derivations

on L1(G) are inner, and hence L1(G) is amenable.

Conversely, suppose L1(G) is amenable. Define an L1(G)-bimodule action on L∞(G)

by φ · α = φ ∗ α and α · φ = (
∫
G
φ(g) dg)α for φ ∈ L1(G) and α ∈ L∞(G). By the

Hahn-Banach theorem, we can find some n0 ∈ L∞(G)∗ such that n0(1) = 1. Define

D : L1(G) → L∞(G)∗ by φ 7→ φ · n0 − n0 · φ.

Let E = L∞(G)/C1. Then E is a quotient module of L∞(G). Moreover, note that
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for φ ∈ L1(G) we have

[D(φ)](1) = [φ · n0](1)− [n0 · φ](1)

= n0(1 · φ)− n0(φ · 1)

= n0((
∫
G
φ(g) dg)1)− n0(φ ∗ 1)

Since φ ∗ 1 =
∫
G
φ(g) dg, it follows that [D(α)](1) = 0, and hence D|C1 = 0. Therefore,

we can consider D as a derivation from L1(G) to E∗. But since L1(G) is amenable,

every derivation into a dual group is inner; hence there exists an r0 ∈ E∗ such that

D(φ) = φ · r0 − r0 · φ for every φ ∈ L1(G). Comparing with the previous definition of D,

we get φ ·n0−n0 ·φ = φ · r0− r0 ·φ for any φ ∈ L1(G). Hence φ · (n0− r0) = (n0− r0) ·φ,

which implies (n0 − r0)(α · φ) = (n0 − r0)(φ · α) for any α ∈ L∞(G) and φ ∈ L1(G).

Let n = n0 − r0. From the above observation n(α · φ) = n(φ · α) for any α ∈ L∞(G)

and φ ∈ L1(G). In particular, this is true for ϕ ∈ P (G). Since α · ϕ = ‖ϕ‖1α = α and

ϕ · α = ϕ ∗ α (by definition), it follows that n(ϕ ∗ α) = n(α) for any ϕ ∈ P (G) and

α ∈ L∞(G). Thus, by an argument similar to the proof for Theorem 2.9, we can show

that n is left invariant. Note however that n is not necessarily a mean (since it might

not be a positive functional).

Finally, we use the n obtained above to define a left invariant mean on L∞(G). Since

L∞(G) is an abelian C∗-algebra and ΣL∞(G) is compact, the Gelfand transform is an

isometric *-isomorphism from L∞(G) to C(ΣL∞(G)). It follows that any linear functional

on L∞(G) can be identified with a measure on ΣL∞(G) by the Riesz Representation

Theorem. Then |n| is a positive linear functional on L∞(G), and since n is left invariant

so is |n|. Recall that a mean is a positive linear functional which evaluates to 1 at 1; so

all we need to do to obtain a mean from |n| is to scale it. Let m = (|n|(1))−1|n|. Then

m is a left invariant mean on L∞(G), and therefore G is amenable.



Chapter 3

Operator Algebras and Invariant

Subspaces

We are now ready to apply the concepts of the previous chapter to operator algebras.

Let H be a Hilbert space, and denote by B(H) the set of bounded linear operators on

H. Recall that B(H) equipped with the usual operator norm and the involution given by

the adjoint operation is a C∗-algebra. We will most often be working with subalgebras of

B(H) which are not necessarily self-adjoint.

In this chapter we also discuss the invariant subspaces of an operator algebra. We

will find that it is useful to be able to describe the invariant subspaces of an algebra

made up of specific types of operators, as well as to recognize that from a description of

the set of invariant subspaces of an algebra we can occasionally draw conclusions about

the algebra itself.

Definition 3.1. For T ∈ B(H) we say that a subspace M ⊂ B(H) is an invariant

subspace if M is closed and TM⊆M.

For A ⊆ B(H) we define LatA = {M : M is an invariant subspace for all T ∈ A}.

Note that if we order the subspaces by inclusion and define M∧N = M∩N and

M∨N = M+N , then the above set does indeed form a lattice. Moreover, the lattice

is non-empty since {0} and H are invariant for any A ⊂ B(H).

A chain of subspaces in Lat A is complete if it is closed under arbitrary intersections

and closed linear spans. A complete chain C which contains {0} and H is called a nest.

33
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For every N in a chain, we define the predecessor of N to be N = ∨{M ∈ C : M ( N}
If for every N ∈ C we have that N = N−, then C is called a continuous nest. If

N 6= N−, then N 	N− is an atom of the chain. A chain is maximal in Lat A if it is not

contained in any other chain in Lat A. A chain is maximal in the family of all chains if

and only if it is complete and all its atoms are one-dimensional ([18], Theorem 5.10).

We can make H into a module for A by defining T · u = T (u) for all T ∈ A and

u ∈ H. It is then easy to see that the submodules of H are exactly the spaces in Lat A.

A module M is cyclic (with cyclic vector v) if M = Av, and it is irreducible if every

v ∈M is cyclic for M. Irreducible modules will prove to be particularly important when

we examine algebras of compact operators.

If M and N are two closed subspaces of H such that M∩N = {0} and H = M+N
then we will write H = M⊕N (even though M and N might not be orthogonal). In

particular, if M∈ Lat A then we say that M is complemented if there exists a subspace

N ∈ Lat A such that H = M⊕N .

There is a connection between complemented modules and idempotents in B(H).

First recall that P ∈ B(H) is an idempotent if P 2 = P . In general, in a Hilbert space the

term projection is reserved for self-adjoint idempotents. However, in keeping with Gifford

([8]), we will refer to idempotents as projections and we will use the term “orthogonal

projection” for self-adjoint idempotents.

If M and N are complementary subspaces then there is a projection P which has

range M and kernel N , called the projection on M along N (see [17]).

On the other hand, suppose P is a projection onto a submoduleM, and letN = kerP .

Then clearly H = M⊕N . Moreover, N is a submodule if and only if P ∈ A′ (as we

shall prove below, following [2]).

First suppose that N is an invariant subspace of A. Consider v ∈ H. Then Pv ∈M
and (I − P )v ∈ N (follows from the definition of the subspaces). Fix T ∈ A. Since the

subspaces are invariant we have that TPv ∈ M and T (I − P )v ∈ N . But note that

Tv = TPv + T (I − P )v. Since TPv is in the range of P we have PTPv = TPv; and

T (I−P )v is in the kernel of P , so PT (I−P )v = 0. Hence, we can apply P to both sides

of the equality to obtain PTv = TPv. Since v ∈ H was arbitrary, we conclue PT = TP ,
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and hence P ∈ A′ as desired.

On the other hand, if P ∈ A′ then for any u ∈ N we have Pu = 0 (by definition of

the subspace), and so for any T ∈ A we have PTu = TPu = 0, and hence Tu ∈ kerP .

Therefore N = kerP is invariant for A.

Finally, note that there can be multiple projections onto a module M. If N is a com-

plementary module ofM, the matrix of a projection ontoM has the form

[
I E

0 0

]
M
N

,

where E = 0 if and only if the projection is along N . In particular, note that if M and

N are not orthogonal, the projection on M along N is not self-adjoint.

We have already observed that the projections we deal with might not be self-adjoint.

However, the lemma below tells us that, under certain conditions, we can find a sim-

ilarity transform which orthogonalizes all the projections in a given set. Even though

the conditions on the set of idempotents might seem restrictive, this turns out to be a

very useful result. If P,Q are two operators, we define the symmetric difference to be

P4Q = P +Q− 2PQ.

Lemma 3.2. Let P ⊆ B(H) be a uniformly bounded set of commuting idempotents,

closed under symmetric differences. Then there exists a similarity S ∈ B(H) such that

SPS−1 is self-adjoint for all P ∈ P. In particular, if ‖P‖ ≤ K for all P ∈ P then S can

be chosen with ‖S‖‖S−1‖ ≤ (1 + 2K)2.

Proof. Let G = {I − 2P : P ∈ P}. We claim that G is a group under multiplica-

tion. Pick any P ∈ P . Since P is closed under symmetric difference, we get that

0 = P + P − 2P 2 = P4P (since P is idempotent, P 2 = P ) is in P , and hence I ∈ G.

Also, since P is idempotent, (I − 2P )2 = I and hence I − 2P is invertible. Finally, for

any Q ∈ P we have that (I − 2P )(I − 2Q) = I − 2(P +Q− 2PQ) ∈ G since P is abelian

and closed under symmetric differences. Therefore G is a group under multiplication.

Moreover, since we are given that the idempotents commute, G is in fact abelian.

Consider G with the discrete topology, and a representation of G onto B(H) given

by the identity map. Since any locally compact abelian group is amenable, we can use

Theorem 2.16 to find a similarity S such that S(I − 2P )S−1 = I − 2SPS−1 is uni-

tary for each P ∈ P . Hence [I − 2SPS−1]−1 = [I − 2(SPS−1)]∗. On the other hand,

[I − 2SPS−1]2 = I − 4SPS−1 + 4SPS−1SPS−1 = I, so [I − 2SPS−1]−1 = I − 2SPS−1
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as well. Therefore I − 2SPS−1 is self-adjoint, whence it follows that SPS−1 is also

self-adjoint. Moreover, since ‖1 − 2P‖ ≤ 1 + 2K for any P ∈ P , we have that

‖S‖‖S−1‖ ≤ (1 + 2K)2.

3.1 Types of Operators

In this section we discuss properties of compact, triangular and quasitriangular operators.

This will lay the foundation for the proofs presented in the next chapter, when we examine

the conditions required for specific types of operator algebras to be similar to C∗-algebras.

Definition 3.3. An operator K is compact if Kb1(H) is compact (where b1(H) is the

unit ball of H).

The set of compact operators is denoted by K(H). It is a standard result that any

compact operator on a Hilbert space can be written as a limit of finite rank operators.

The set of compact operators is an ideal in B(H).

Every compact operator has a non-trivial invariant subspace. In fact, LatT contains

a maximal subspace chain (see [18], p. 89). It is, however, Lomonosov’s Lemma which

will prove to be key for the discussion of operator algebras contained in K(H). In order

to avoid introducing too many new concepts we state a few theorems without proof and

concentrate on the parts of Lomonosov’s Lemma that we will need later.

Theorem 3.4. [[18], Corollary 2.13] Let A ∈ B(H). If f is analytic on σ(A) and the

bounded components of ρ(A) then LatA ⊂ Lat f(A).

We define H(n) to be the direct sum of n copies of H. To extend this to the countable

case use the l2 direct sum; that is,

H(∞) =
∑
i∈N

⊕2

H = {(v1, v2, . . .) : vi ∈ H and
∞∑
i=1

‖vi‖2 <∞}

If T is an operator in B(H), then we can obtain a corresponding operator T (n) in H(n) by

applying T to each component. Finally, if A is an algebra of operators, then we define

A(n) to be the algebra {T (n) : T ∈ A}.

Theorem 3.5. [[18], Corollary 7.2] Let A be an algebra of operators containing the

identity. The weak operator closure of A is given by

{T ∈ B(H) : LatA(n) ⊂ LatT (n) for all n ∈ N}.
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Combining the two previous theorems, ifK is a compact operator, and A is the algebra

generated by I and K, then whenever f is a function which is analytic on σ(K) we have

that f(K) is in the weak closure of A (since for each n we haveK(n) is compact, so ρ(K(n))

has no unbounded components; Theorem 3.4 gives us that LatK(n) ⊂ Lat f(K)(n), and

Theorem 3.5 gives us that f(K) ∈ A
WOT

). An alternate way of establishing this result

is to recall that f(K) ∈ A
‖·‖

by the holomorphic functional calculus.

Theorem 3.6. [[18], Theorem 8.12] Let A be an algebra such that I ∈ A and

LatA = {{0},H}. If A contains a finite rank operator, then A is weakly dense in B(H).

The above theorem and the comment preceding it are the tools we need to prove

Lomonosov’s Lemma.

Theorem 3.7. [Lomonosov’s Lemma] Suppose an algebra A ⊆ B(H) contains the iden-

tity operator and satisfies LatA = {{0},H}. If A also contains a non-zero compact

operator, then A is weakly dense in B(H).

Proof. This proof is from [18], Lemma 8.22. Let K be a non-zero compact operator in

A. Suppose that we can show that there is an A ∈ A such that 1 is an eigenvalue of AK.

Since AK is compact, 1 is an isolated point of the spectrum. By the Riesz Decomposition

Theorem, we can find a function f which is holomorphic on an open set containing the

spectrum such that P = f(AK) is a projection and σ(AK|PH) = {1}. But AK|PH is

a compact operator, so since its spectrum does not contain 0 it must have finite rank.

Moreover, f(AK) is in the weak closure of A by the comment following Theorem 3.5.

Then by Theorem 3.6 we get that the weak closure of A must be all of B(H).

So all that is left is to construct an A ∈ A such that AK has 1 as an eigenvalue, i.e.

AKv1 = v1 for some v1 ∈ H. Suppose that φ is a continuous function on H given by

φ(v) = AvKv for some Av ∈ A. If moreover there exists a compact, convex subset C of H
such that φ(C) ⊂ C, then the Schauder Fixed Point Theorem gives us that φ has a fixed

point in C, and the desired result follows. So the goal is to define a suitable function φ.

By scaling if necessary, we can assume without loss of generality that ‖K‖ = 1. Pick a

v0 ∈ H such that ‖v0‖ > 1 and ‖Kv0‖ > 1. Let S be the closed ball of radius 1 centered at

v0. So KS is compact (since K is a compact operator). Moreover, for any v ∈ S we have

|‖Kv‖ − ‖Kv0‖| ≤ ‖Kv−Kv0‖ ≤ ‖v−v0‖ ≤ 1 (recall ‖K‖ = 1), and so since ‖Kv0‖ > 1

we get ‖Kv‖ > 0; hence 0 6∈ KS. But then KS ⊂ H\{0} ⊂
⋃
A∈A

{u ∈ H : ‖Au−v0‖ < 1}.
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Note that the latter inclusion follows because Lat A = {{0},H}, so for every u ∈ H\{0}
we have Au = H, and in particular v0 can be written as a limit of elements in Au.

Since any open cover of KS has a finite subcover, we can find A1, A2, . . . An such that

KS ⊂
n⋃
i=1

{u ∈ H : ‖Aiu− v0‖ < 1}.

For i = 1, . . . , n define αi(w) = max {0, 1− ‖Aiw − v0‖} for w ∈ KS. Note from the

definition that 0 ≤ αi(w) ≤ 1. Moreover, for any w we have that w ∈ Aj for some j,

whence ‖Ajw− v0‖ < 1 so αj(w) 6= 0. Thus we can scale the αi’s such that they add up

to 1; define βi(w) = αi(w)/(
n∑
k=1

αk(w)).

Finally, for u ∈ S define ψ(u) =
n∑
i=1

βi(Ku)AiKu. Since the βi’s are defined to be

between 0 and 1 and to add up to 1, the range of ψ is contained in the convex hull of

AiKS. The range of ψ is also contained in S, since for a fixed u0 ∈ S and 1 ≤ i ≤ n,

if ‖AiKu0 − v0‖ ≥ 1 then βi(Ku0) = 0 (this follows from the definition of αi); hence

‖
n∑
i=1

βi(Ku0)AiKu0 − v0‖ ≤
n∑
i=1

βi(Ku0) = 1.

Note that
n⋃
i=1

AiKS is compact. By Mazur’s Theorem, the closed convex hull of

n⋃
i=1

AiKS is likewise compact. Let C = S ∩ (
n⋃
i=1

AiKS). Then C is a compact, convex set

for which ψ(C) ⊂ C. As mentioned earlier, we can now use the Schauder Fixed Point

Theorem to get a v1 ∈ H such that
n∑
i=1

βi(Kv1)AiKv1 = v1. Therefore, A =
n∑
i=1

βi(Kv1)Ai

is an operator in A for which AKv1 = v1, so AK has 1 as an eigenvalue. From the

comment made at the beginning of the proof this allows us to conclude that the weak

closure of A contains a finite rank compact operator, and hence is all of B(H).

Note in particular from the proof that if A satisfies the conditions of the above theo-

rem, then there exists a compact operator in A whose spectrum contains 1. This obser-

vation will be useful in Chapter 4, when we discuss algebras of compact operators.

For the rest of the section we discuss the relationship between compact operators,

triangular operators and quasitriangular operators, as well as methods of identifying

quasitriangular operators.

Definition 3.8. An operator T is triangular if there exists an increasing sequence
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of finite rank projections Pn such that Pn → I in the strong operator topology, and

‖PnTPn − TPn‖ = 0 for each n.

From the above definition it is obvious that, for each n, PnH is an invariant subspace

of T . The closure of the set of triangular operators is the set of quasitriangular operators,

as defined below.

Definition 3.9. An operator T is quasitriangular if there is an increasing sequence

of finite rank projections Pn such that Pn → I in the strong operator topology, and

‖PnTPn − TPn‖ → 0.

Compact operators are quasitriangular since any compact operator on a Hilbert space

can be written as a limit of finite rank operators. However, as we shall show below, it is

not the case that all compact operators are triangular.

The Volterra operator V : L2(0, 1) → C is defined by (V f)(x) =
∫ x

0
f(y)dy. Let

Mα = {f ∈ L2(0, 1) : f = 0 a.e. on [0, α]}. Then LatV = {Mα : α ∈ [0, 1]} (for a proof

of this, see [18], Theorem 4.14). It is known that V is compact and hence quasitriangular,

but V is not triangular. In fact, if we let AV be the unital Banach algebra generated by

V , there is no contractive homomorphism which maps V to a triangular operator. The

proof of this fact, given below, is due to D. R. Farenick (from a private communication).

Before we can present the proof we need to define the numerical range of an operator

and present some of its properties.

The spatial numerical range of an operator T ∈ B(H) is defined by

W (T ) := {〈Tv|v〉 : v ∈ H, ‖v‖ = 1}.

The Toeplitz-Hausdorff Theorem tells us that the numerical range is a convex set (for

a proof of this theorem, see [19]). Halmos mentions in [10] that W (V ) is the set lying

between the curves t 7→ 1−cos(t)
t2

± i t−sin(t)
t2

for 0 ≤ t ≤ 2π. A calculation shows that

0 ∈ ∂W (V ).

Recall that if B is a C∗-algebra then the set of states of B, denoted by S(B), consists

of the positive linear functionals on B which have norm 1. An equivalent description of

S(B) which will be used later is that it consists of the linear functionals on B which have

norm 1 and evaluate to 1 at I. The algebraic numerical range of b ∈ B is defined by

Wa(b) = {Ψ(b) : Ψ ∈ S(B)}. The extreme points of S(B) are called pure states. If B
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is unital then S(B) is compact (in the weak* topology) as well as convex, so the Krein-

Milman theorem gives us that S(B) is the closed convex hull of the pure states. Suppose

additionally that B ⊂ B(H). Then another subset of S(B) which is of interest is the set

of vector states of B, given by {φv : B → C : φv(T ) = 〈Tv|v〉, v ∈ H and ‖v‖ = 1}. If

B ⊂ B(H) contains the identity operator then the pure states are contained in the weak*

closure of the set of vector states ([3], Theorem 12). It follows that W (T ) = Wa(T ).

Suppose T ∈ B(H) is an operator and ρ is a contractive homomorphism from AT

to B(H). Then Wa(ρ(T )) = {Ψ(ρ(T )) : Ψ(I) = 1, ‖Ψ‖ = 1}. Note that for each

Ψ ∈ S(B(H)) we have that Ψ ◦ ρ is a linear functional on AT and (Ψ ◦ ρ)(I) = 1;

moreover, since ρ is contractive we also have ‖Ψ ◦ ρ‖ = 1. By the Hahn-Banach Theo-

rem Ψ ◦ ρ can be extended to a linear functional ΦΨ on B(H) with ‖ΦΨ‖ = 1. Hence

{(Ψ ◦ ρ)(T ) : Ψ(I) = 1, ‖Ψ‖ = 1} ⊂ {Φ(T ) : Φ(I) = 1, ‖Φ‖ = 1} = Wa(T ) Thus we have

shown that Wa(ρ(T )) ⊂ Wa(T ), which from the comments in the previous paragraph

implies W (ρ(T )) ⊂ W (T ).

We now apply this information to AV , the unital norm-closed algebra generated by

the Volterra operator V . Suppose by contradiction that a contractive homomorphism

ρ : AV → B(H) such that ρ(V ) is triangular did exist. Let {uk} be an orthonormal basis

of H for which ρ(V ) is triangular, say ρ(V ) = [tij], where tij = 0 for i < j. Now V is

quasinilpotent, so σ(V ) = {0}. Since σ(ρ(V )) ⊂ σ(V ) (ρ is a homomorphism), we get

that tii = 0 for each i. However, ρ(V ) is not the zero operator, so there exist indices

r < s such that trs 6= 0. Denote by R the compression of ρ(V ) to the subspace spanned

by ur and us. Then R =

[
trr trs

tsr tss

]
=

[
0 trs

0 0

]
, where trs 6= 0. Note that 0 is an

interior point of W (R). Since R is a restriction of ρ(V ), we have W (R) ⊂ W (ρ(V )). But

W (ρ(V )) ⊂ W (ρ(V )) ⊂ W (V ) (shown a few paragraphs earlier), contradicting the fact

that 0 ∈ ∂W (V ).

Theorem 3.10. Let A be a quasitriangular operator and ε > 0. Then we can find T

triangular and K compact such that A = T +K and ‖K‖ ≤ ε.

Proof. Since A is quasitriangular we can find an increasing sequence of finite rank projec-

tions {En}n≥1 such that AEnH ⊆ En+1H (since AEn is a finite rank operator), En → I

strongly and ‖AEn−EnAEn‖ ≤ 1
n2 (the existence of such En follows from the definition

of quasitriangularity).



Operator Algebras and Invariant Subspaces 41

Let Hi = (Ei−Ei−1)H for i ≥ 2 and H1 = E1H. Then with respect to the decompo-

sition HS = ⊕Hi we get A = [Aij] where Aij : Hi → Hj and Aij = 0 for i ≥ j + 2.

Let An =
∞∑
i=n

AEi − EiAEi (note that the sum converges for each n because of the

norm condition above). Clearly ‖An‖ → 0 as n → ∞; let K = AN , where N is chosen

such that ‖K‖ < ε. We will show that K is compact and A−K is triangular.

Write K = [Kij] with respect to the above decomposition of H. The definition of K

gives us that Ki+1,i = Ai+1,i for i ≥ N and Kij = 0 otherwise. Let Ks =
s∑

j=N

AEj−EjAEj

for s ≥ N . Since Ej is a finite rank projection for each j, it is clear that Ks is a finite

rank operator. Moreover ‖K−Ks‖ = ‖Ks+1‖ = ‖
∞∑

i=s+1

AEi−EiAEi‖ ≤
∞∑

i=s+1

1/i2, which

can be made as small as we want by choosing s large enough. Hence Ks → K; so K is

a limit of finite rank operators, and as such it is compact. Moreover, for each m ≥ N

we have (I − Em)(A − K)Em = 0, so {Em}m≥N is a sequence of increasing finite rank

projections which can be used to show that (A−K) satisfies the definition of a triangular

operator. Therefore A = K + (A −K), where A −K is triangular and K is a compact

operator with ‖K‖ < ε.

Definition 3.11. An operator T is biquasitriangular if T and T ∗ are both quasitri-

angular.

Since the set of compact operators is self-adjoint and compact operators are quasitri-

angular, it follows that compact operators are biquasitriangular. There is a very useful

theorem of Apostol, Foias and Voiculescu which enables us to identify quasitriangular

operators. Since the proof is quite involved, it is not included here; it can be found in

[1]. First, however, we need the following definition.

Definition 3.12. For an operator T ∈ B(H) we say that T is semi-Fredholm if ranT

is closed and at least one of nulT = dim ker T and nulT ∗ = dim ker T ∗ is finite.

For T semi-Fredholm we define the Fredholm index of T to be ind(T ) = nulT −nulT ∗

(with the convention that ind(T ) = ∞ if nulT = ∞, and ind(T ) = −∞ if nulT ∗ = ∞).

Finally, for any operator T we define ρsF (T ) = {λ ∈ C : T − λI is semi-Fredholm}.

Theorem 3.13. Consider T ∈ B(H). Then T is quasitriangular if and only if

ind(T − λI) ≥ 0 for all λ ∈ ρsF (T ).
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In particular, the above theorem allows us to conclude that T is biquasitriangular if

and only if ind (T − λI) = 0 for all λ ∈ ρsF (T ). Normal operators are biquasitriangular

because ker(N − λI) = ker(N − λI)∗ for each λ ∈ C, and hence ind(N − λI) = 0

whenever λ ∈ ρsF (N). Suppose T is an operator similar to N , say T = S−1NS. Then

(T−λI) = S−1(N−λI)S for any λ ∈ C and u 7→ S−1u is a bijection between ker(N−λI)
and ker(T−λI). So nul(T−λI) = nul(N−λI), and similarly nul(T−λI)∗ = nul(N−λI)∗.
Thus ind(T − λI) = ind(N − λI) = 0 for any λ, and hence T is itself biquasitriangular.

In fact, it can be shown that the set of biquasitriangular operators is the closure of the

set of operators similar to a normal operator (see [11]).

3.2 Reductive Algebras

In this section we discuss the properties of an algebra A which follow as a result of certain

properties of the lattice of invariant subspace of A.

Definition 3.14. Consider a Banach algebra A and a Hilbert space H which is a Banach

module for A. We say that H has the reduction property if for every closed submodule

V ⊆ H there is another closed submodule W ⊆ H with H = V ⊕W. If A ⊂ B(H) with

the standard module action on H, we refer to A as a reduction algebra.

A is a complete reduction algebra if the module H(∞) has the reduction property. In

this case we also say that H has the complete reduction property.

A is a total reduction algebra if every Hilbert space which is an A-module has the

reduction property.

Consider A a total reduction algebra and a Hilbert space H which is an A-module.

Recall the definition of H(∞) from the previous section (before Theorem 3.5). Then H(∞)

is an A-module (we can apply the action of A to each component), so from the definition

of a total reduction algebra it follows that H(∞) has the reduction property. Therefore,

A is a complete reduction algebra. However, as we will see later, there are complete

reduction algebras which are not total reduction algebras.

The next theorem restates the definition of a total reduction algebra as a cohomology

property. This will allow us to relate total reductivity to the concept of amenability, as

defined in the previous chapter.
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Theorem 3.15. An operator algebra A has the total reduction property if and only if

H1(A,B(H)) = 0 for every representation θ : A → B(H).

Proof. Suppose A has the total reduction property, and θ : A → B(H) is a representation.

Let D : A → B(H) be a derivation; we want to show that D is inner. In order to

use the total reduction property we have to find a representation of A that has an

invariant subspace. Define φ : A → B(H⊕H) by a 7→

[
θ(a) D(a)

0 θ(a)

]
; then φ is a

representation of A on B(H⊕H), and H ⊕ 0 is a submodule of H ⊕ H. Since A has

the total reduction property, it follows that H⊕ 0 has a complementary module, say V .

Since V + (H ⊕ 0) = H ⊕ H for each w ∈ H there must exist at least one u ∈ H for

which u ⊕ w ∈ V . But also V ∩ (H ⊕ 0) = {0}, so such a u must be unique (if u1 ⊕ v

and u2 ⊕ v are both in V, then so is (u2 − u1) ⊕ 0). Therefore, for each v ∈ H there

is a unique uv ∈ H such that uv ⊕ v ∈ V . Define T : H → H by T (v) = uv. Then

V = {Tv ⊕ v : v ∈ H}. From the fact that V is a subspace it follows that T must be

linear; and, since V is closed, T is continuous by the Closed Graph Theorem.

Thus V = {Tu ⊕ u : u ∈ H} where T is a continuous operator. But V is invariant

for φ(a), so for any u ∈ H there is a v ∈ H such that

[
θ(a) D(a)

0 θ(a)

] [
Tu

u

]
=

[
Tv

v

]
,

which implies

[
θ(a)Tu+D(a)u

θ(a)u

]
=

[
Tv

v

]
. By equating matrix entries, v = θ(a)u;

so D(a)u = (Tθ(a)− θ(a)T )(u) for all u ∈ H, i.e. D(a) = Tθ(a) − θ(a)T . Therefore D

is inner, as desired.

Conversely, suppose θ : A → B(H) is a representation of A. Consider U a submodule

of H. We want to use the fact that every derivation from A to B(H) is inner to find a

complementary submodule V of U . This is accomplished by reversing the steps from the

previous paragraph. For each a ∈ A the matrix θ(a) has the form

[
A11 A12

0 A22

]
with

respect to the decomposition H = U ⊕ U⊥ (since U is an invariant subspace). Then

π : a 7→

[
A11 0

0 A22

]
is a representation of A. Define D by D(a) =

[
0 A12

0 0

]
. Note

that

D(ab) =

[
0 A11B12 + A12B22

0 0

]
= π(a)D(b) +D(a)π(b).



44 On the Similarity of Operator Algebras to C* Algebras

Therefore D is a derivation with respect to π. But then by hypothesis D is inner, so

there exists a T ∈ B(H) such that D(a) = π(a) · T − T · π(a). Equating the entries in

the matrices we get A12 = A11T12 − T12A22 for all a ∈ A.

Let V = {−Tv ⊕ v : v ∈ U⊥}. Then[
A11 A11T12 − T12A22

0 A22

] [
−Tv
v

]
=

[
−TA22v

A22v

]
,

so V is an invariant subspace. Moreover, it is clear that U ∩ V = {0} and U + V = H.

Hence V is a closed submodule which complements U . Therefore A has the total reduction

property.

In particular, this result allows us to relate the total reduction property to amenability.

Suppose θ : A → B(H) is a representation. The action of A on B(H) is given by

a · T = θ(a)T and T · a = Tθ(a) for each a ∈ A and T ∈ B(H). In order to relate this

to amenability, we need to identify B(H) as a dual space, and show that the dual action

of A on B(H) is identical to the one just described. Below we introduce the space C1,

which is the predual of B(H).

For K a compact operator, denote the eigenvalues of |K| = (KK∗)1/2 by {sn}n∈N;

we know that sn → 0. For 1 ≤ p ≤ ∞ the Schatten p-class of operators, denoted by

Cp, is defined to consist of those compact operators for which {sn}n∈N ∈ lp. We are

particularly interested in the situations when p = ∞, since C∞ is clearly the set of all

compact operators, and when p = 1. For K ∈ C1, let {φn} be an orthonormal basis of

H and define tr(K) =
∞∑
n=1

〈Kφn|φn〉. It can be shown that this sum converges and is

independent of the choice of basis ([6]). Since we can define a trace function as described

above, the operators in C1 are called the trace class operators. It is known that C1 is a

two-sided ideal in B(H). Also, for A ∈ B(H) andK ∈ C1 we have that tr(AK) = tr(KA).

The following two theorems give us the relationship between the trace class operators

and K(H) and B(H) respectively. The proofs can be found in [6].

Theorem 3.16. For T0 ∈ C1 define the linear functional φT0 : K(H) → C by

φT0(K) = tr(T0K). Then T 7→ φT is an isometric isomorphism from C1 to K(H)∗.

Theorem 3.17. For S0 ∈ B(H) we can define the map φS0 : C1 → C given by

φS0(K) = tr(S0K). Then S 7→ φS is an isometric isomorphism from C∗
1 to B(H).
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So B(H) is a dual module, and there is a weak* topology on B(H) (in some of the

literature this topology is also called the ultraweak topology, and it should be noted that

it coincides with the σ-weak topology). If θ is a representation of A on B(H) then, as

explained earlier, the action of A on C1 is given by a ·C = θ(a)C and C · a = Cθ(a). So

for S0 ∈ B(H) and K ∈ C1 we have

[a · φS0 ](K) = φS0(K · a) (the definition of the dual action)

= φS0(Kθ(a))

= tr(S0Kθ(a))

= tr(Kθ(a)S0) (properties of trace)

= φθ(a)S0(K)

Therefore, a · φS0 = φθ(a)S0 . Similarly we can show that φS0 · a = φS0θ(a). So we may

identify B(H) with C∗
1 and under this identification a · S0 = θ(a)S0 and S0 · a = S0θ(a)

for a ∈ A and S0 ∈ B(H). Therefore, the dual action of A on B(H) is identical to the

module action of A on B(H).

If, moreover, A is amenable, then H1(A, E∗) = {0} for every Banach A-bimodule E;

so, in particular, since B(H) is a dual A-bimodule, H1(A,B(H)) = {0}. Hence it follows

that if A is amenable, then A has the total reduction property. The converse is not in

general true. An example of a Banach algebra that has the total reduction property but

is not amenable is B(H) for H an infinite dimensional, separable Hilbert space. See [8],

Corollary 2.4.7 and the comment following for an explanation of why this is true (the

proof relies on several results not covered here).

The cohomology definition of total reduction algebra also allows us to easily show the

following.

Theorem 3.18. Let A be a Banach algebra with the total reduction property. Suppose

B is a Banach algebra and φ : A → B is a continuous homomorphism such that φ(A) is

dense in B. Then B has the total reduction property.

Proof. This proof is identical to the one for Theorem 2.19, except that instead of consid-

ering derivations to an arbitrary dual space we consider derivations to the set of bounded

operators on a Hilbert space.

Note however that we cannot replace the total reduction property by the complete

reduction property in the above theorem. For example, suppose A ⊂ B(H) has the com-
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plete reduction property but not the total reduction property. Then by definition there

exists a Hilbert space L and a representation θ : A → B(L) such that L does not have

the reduction property. It follows that L does not have the complete reduction property;

hence, even though A is a complete reduction algebra, θ(A) ⊂ B(L) is not. Therefore,

the complete reduction property is not in general preserved by homomorphisms.

Theorem 3.19. Let A be an operator algebra, and H a Hilbertian A-module with the

complete reduction property. Then there exists K ≥ 1 such that for any submodule V ⊆ H
there is a module projection P : H → V with ‖P‖ ≤ K.

Proof. We will prove the result by contradiction. Suppose that no such K exists. Then

for each i ∈ N we can find a submodule Vi such that any projection from H to Vi has

norm greater than i.

Consider U =
∑⊕ Vi as a submodule of H(∞). Since A has the complete reduction

property there exists a module W such that H(∞) = U ⊕W . Hence there is a module

projection P onto U . For each i ∈ N we define a projection Pi onto Vi as follows: identify

H with the ith copy of it in H(∞), apply P , and get the ith coordinate from the result.

Since P is a projection and the ith module in the direct sum for U is Vi, we obtain a

projection of H onto Vi. Moreover, it is clear that ‖Pi‖ ≤ ‖P‖. But by the way Vi was

chosen at the beginning of the proof, we also have ‖Pi‖ ≥ i for each i, which leads to

a contradiction. Therefore, we can find a K such that for every module V there is a

projection P onto V such that ‖V ‖ ≤ K.

The minimum K which satisfies the above Theorem is called the projection con-

stant of A.

Lemma 3.20. Let A ⊆ B(H) be a complete reduction algebra with projection constant

K, and let P be the set of central projections of A′′. Then P is bounded by K. Also,

there exists a similarity S of H which makes all the central projections self-adjoint.

Proof. Consider any P ∈ P. Then, since P commutes with any A ∈ A, PH is a

submodule of H. Hence by Theorem 3.19 we can find a module projection Q onto PH
with ‖Q‖ ≤ K. But then, using the fact that P and Q are idempotents it follows that

PQ = Q and QP = P (since P and Q have the same range, PH). Thus, since P and Q

commute, we get P = Q. Therefore ‖P‖ ≤ K, as desired.
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P is a set of commuting idempotents which is uniformly bounded by K and closed

under symetric difference (it is easy to check that if P,Q ∈ P , then so is P +Q− 2PQ).

Hence by Lemma 3.2 we know that we can find a matrix S such that SPS−1 is self-adjoint

for all P ∈ P and ‖S‖‖S−1‖ ≤ (1+2K)2. This proves the second part of the Lemma.

Definition 3.21. Suppose V,W are submodules of H under the action of A. Then φ is

a module map if φ : V → W is a linear map which satisfies φ(a · v) = a · φ(v).

If φ : V → W is a non-zero module map, we say that φ intertwines V and W . It is of

course possible that no such non-zero module map exists. As a simple example, consider

the algebra A =

{[
a b

0 c

]
: a, b, c ∈ C

}
acting on C2. Let M =

{[
u

0

]
: u ∈ C

}
.

Then M is a submodule of C2, and the identity map from M to C2 is a module map.

However, we shall show that there is no non-zero module map from C2 to M. If such

a module map did exist, it would have to be a bounded operator on C2 whose range is

contained in M and which commutes with all the operators in A. But A′ = {λI : λ ∈ C},
so there is no non-zero operator in the commutant of A which has range contained in M.

Therefore, there is no non-zero module map from C2 to M.

In particular, the above example shows that it is possible to have two modules V and

W such that there exists a nonzero module map from V to W but no such map exists

from W to V . However, we shall show below that this can no longer occur if A is a

complete reduction algebra.

Theorem 3.22. Let A ⊆ B(H) be a complete reduction algebra. Suppose V,W are

submodules of H such that φ : V → W is a non-zero module map. Then there exists a

non-zero module map ψ : W → V .

Proof. If V ∩ W 6= {0} or V + W is not closed, we can consider the action of A on

H⊕H, embed V into H⊕ 0 and embed W into 0⊕H. Then H⊕H has the complete

reduction property, and there is a correspondence between the nonzero module maps

from V to W and those from V ⊕ 0 to 0⊕W (and similarly for module maps from W to

V ). Hence we have found an equivalent question, but (V ⊕ 0) + (0 ⊕W ) is closed and

(V ⊕ 0) ∩ (0⊕W ) = {0}.

Therefore, we can assume without loss of generality that V ∩W = {0} and V +W is

closed. So V + W is a submodule of H, and as such has the complete reduction property.
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By restricting the representation of A to V + W we can assume H = V ⊕W . Thus any

module map on H has the form

[
A B

C D

]
V

W
where A is a module map from V to V ,

B is a module map from W to V , C is a module map from V to W , and D is a module

map from W to W . Assume that there is no non-zero module map from W to V . Then

we must have that B = 0 in the above representation.

By assumption, a module map from V to W exists, so suppose T is such a map.

For each λ ∈ R+ let Mλ = {u ⊕ λTu : u ∈ V }; note that, since

[
I 0

λT 0

]
∈ A′ is an

idempotent, Mλ is a submodule of V ⊕W . We know that a module projection onto Mλ

exists; let us figure out what this projection would look like. By the above discussion

it must have the form

[
A 0

C D

]
V

W
. Since

[
A 0

C D

] [
u

λTu

]
=

[
u

λTu

]
, it follows

that A = I. Finally, if we look at the kernel of this projection it is 0 ⊕ U for some

U ⊂ W . Since however V ⊕W = Mλ ⊕ (0 ⊕ U), the only possibility is U = W . Hence

the unique module projection onto Mλ is the projection along W , which has the matrix

form

[
I 0

λT 0

]
.

If we let K be the projection constant of A, Theorem 3.19 tells us that for each

submodule of H there is a module projection with norm at most K. Hence we must

have

∥∥∥∥∥
[
I 0

λT 0

]∥∥∥∥∥ ≤ K for all λ ∈ R+. But

∥∥∥∥∥
[
I 0

λT 0

]∥∥∥∥∥ → ∞ as λ → ∞, so we

have obtained a contradiction. Therefore, a non-zero module map from W to V must

exist.

If A has the total reduction property instead of just the complete reduction the result

of Theorem 3.19 can be strengthened so that the projection constant for a particular

representation does not depend on the representation itself, only on its norm.

Theorem 3.23. Let A be an operator algebra with the total reduction property. There

is an increasing function K : R+ → R+ such that if θ : A → B(H) is a representation

of A and V ⊆ H is a submodule then there is a module projection p : H → V such that

‖p‖ ≤ K(‖θ‖).

Proof. Suppose that for any C ∈ R+ we can find KC such that whenever θ is a repre-

sentation with ‖θ‖ ≤ C. Then the projection constant of θ(A) is at most KC . Then
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the function K(C) = sup
θ with

‖θ‖≤C

{projection constant of θ(A)} is well-defined and satisfies the

requirements. So to prove this theorem by contradiction, we assume that there is some

C for which no such KC exists.

Hence, for each i ∈ N we can find a representation θi such that ‖θi‖ ≤ C, and for each

θi we can find a module Vi such that all projections onto Vi have norm greater than i.

We define a representation θ of A to B(⊕Hi) by applying θi to the ith coordinate. Then

‖θ‖ ≤ C (since ‖θi‖ ≤ C for each i).

Let V = ⊕Vi. We are given that A has the total reduction property; hence θ(A)

has the complete reduction property. This means that there exists a module projection

P onto V . As in the proof for Theorem 3.19 we can restrict P to its ith coordinate to

obtain a projection Pi onto the module Vi. But then ‖Pi‖ < ‖P‖ for all i, and since

each Vi was chosen such that any projection onto it has norm greater than i we obtain a

contradiction. Therefore, we can construct the desired increasing function K.

We now briefly discuss C∗-algebras with the total reduction property. Namely, for

every representation similar to a *-representation we can show that the similarity matrix

has certain restrictions on its norm, as given below.

Theorem 3.24. Let A be a C∗-algebra with the total reduction property, and let

θ : A → B(H) be a representation which is similar to a ∗-representation. If K is the

projection constant function of Theorem 3.23, then there is a similarity S such that

SθS−1 is a ∗-representation and ‖S‖‖S−1‖ ≤ 128K(‖θ‖)2.

Proof. Suppose ψ : A → B(G) is a *-representation. If S is a similarity such that

ψ = SθS−1, then for u ∈ H we have S(a·u) = Sθ(a)u = Sθ(a)S−1Su = ψ(a)Su = a·(Su),
so S is a module isomorphism from H to G. Conversely, if S is a module isomorphism

from H to G then θ = S−1ψS.

Let α = inf{‖S‖‖S−1‖ : SθS−1 is a *-representation}. By assumption α < ∞.

Scaling S if necessary, we can find a contractive module isomorphism S : H → G such

that SθS−1 : A → B(G) is a *-representation and ‖S−1‖ ≤ 2α.

Consider the representation θ ⊕ (SθS−1) : B(H)⊕ B(G). Then ‖θ ⊕ (SθS−1)‖ = ‖θ‖
(since SθS−1 is a *-homomorphism, and as such it is contractive). Since A has the total

reduction property, by definition H ⊕ G has the reduction property. By Theorem 3.23,
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there exists a constant M ≤ K(‖θ‖) such that for any submodule of H⊕ G there exists

a projection with norm at most M onto that submodule.

Fix µ ∈ R. Then M = {v ⊕ µSv : v ∈ H} is a submodule of H ⊕ G, so there exists

a projection P onto M such that ‖P‖ ≤ M . Suppose P =

[
P1 P2

P3 P4

]
with respect

to H ⊕ G, where each Pi is a module map; from the calculations for P

[
0

u

]
∈ M,

P

[
v

0

]
∈ M and P

[
v

µSv

]
=

[
v

µSv

]
we get that P3 = µSP1, P4 = µSP2 and

P1 = I − µP2S respectively. Hence P has the form

[
I + µRS −R
µS(I + µRS) −µSR

]
, where

R = −P2 from above. Since ‖P‖ ≤ M , we must also have ‖µS(I + µRS)‖ ≤ M and

‖ −R‖ ≤M .

Define T : H → G ⊕ G by Tu = 1
2
Su ⊕ 1

2M
(µS(I + µRS)u). Then from the

bounds on the two operators making up T it follows that ‖T‖ ≤ 1/
√

2. Since S

is bounded below, T is also bounded below; so T is a contractive module isomor-

phism onto some closed submodule of G ⊕ G. Hence, by the definition of α, we have

‖T‖‖T−1‖ ≥ α. Suppose that for any u ∈ H such that ‖u‖ = 1 we had ‖Tu‖ > 2α−1.

Then 1 = ‖u‖ = ‖T (T−1u)‖ > 2α−1‖T−1u‖, so since this is true for any u ∈ H with

‖u‖ = 1 we get ‖T−1‖ < α/2. Combining this with ‖T‖ ≤ 1/
√

2 we get

‖T‖‖T−1‖ < α/(2
√

2) < α. This contradiction shows that there is some u0 ∈ H such

that ‖u0‖ = 1 and ‖Tu0‖ ≤ 2α−1.

On the other hand ‖Tu0‖ ≥ 1
2M
‖µS(u0 +µRSu0)‖ ≥ 1

2M
µ 1

2α
|‖u0‖ − µ‖RSu0‖| (note

that here we are using the fact that ‖S−1‖ ≤ 2α, and so ‖Su0‖ ≥ 1
2α
‖u0‖). Hence

‖Tu0‖ ≥ µ
4Mα

|1− µ‖RSu0‖|. Note that if ‖Su0‖ ≤ 1
2Mµ

then since ‖R‖ ≤ M we get

µ‖RSu0‖ ≤ 1
2

and ‖Tu0‖ ≥ µ
8Mα

. Combining this with ‖Tu0‖ ≤ 2
α

we get 2
α
≥ µ

8Mα
,

which implies µ ≤ 16M . Hence if µ > 16M we have ‖Su0‖ > 1
2Mµ

.

Suppose µ = 16M + ε for some ε > 0. Then from the above comment we know

‖Su0‖ > 1
2Mµ

= 1
2M(16M+ε)

. But also ‖Su0‖ ≤ 2‖Tu0‖ ≤ 4
α

(where the first inequality fol-

lows from the definition of T , and the second from the choice of u0). Thus 1
2M(16M+ε)

< 4
α
,

which implies α < 8M(16M + ε). Since ε > 0 is arbitrary, by letting it go to 0 we get
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α < 128M2. Therefore inf{‖S‖‖S−1‖ : SθS−1is a *-representation} ≤ 128K(‖θ‖)2, giv-

ing us the desired result.

The above theorem is crucial in proving the following:

Theorem 3.25. [[8], Corollary 2.4.5] Let A be a C∗-algebra. Then A has the total

reduction property if and only if every representation is similar to a *-representation.





Chapter 4

Operator Algebras Similar to

C*-algebras

It has been conjectured that an operator algebra is similar to a C∗-algebra if and only if

it has the total reduction property. The results we have so far (for algebras of compact

or triangular operators) seem to support this idea, but a definite answer has not been

established.

4.1 Algebras of Compact Operators

In this section we consider A ⊂ K(H). The additional properties of such an algebra

will in fact allow us to describe the structure of A when it has the complete reduction

property. If A is such that A′′ has no proper central projections, then A is similar to

K(V)(n) for some V (Theorem 4.9); otherwise A is a direct sum of such algebras (Theorem

4.12). The main result of this section is that an algebra of compact operators is similar

to a C∗-algebra if and only if it has the complete reduction property.

In order to prove this result we will need the following two theorems:

Theorem 4.1. [Ringrose] Let K be a compact operator and C be any maximal nest in

LatK. Then the spectrum of K consists of {0} and the entries of K at the atoms of C.

In particular, if LatK contains a continuous nest, then it contains a maximal nest

with no atoms. Hence, by the above theorem, σ(K) = {0}, and K is quasinilpotent. A

proof for the following theorem can be found in [8] (see Theorem 4.3.3).

53
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Theorem 4.2. [Shul’man] Let A ⊂ K(H) be an operator algebra such that LatA contains

a continuous nest. If T =
n∑
i=1

aibi for some n ∈ N, ai ∈ A and bi ∈ A′, then T is

quasinilpotent.

Lemma 4.3. Let A ⊆ K(H) be a nondegenerate complete reduction algebra such that A′′

has no proper central projections. Then LatA contains a non-zero irreducible submodule.

Proof. We will prove the contrapositive. Suppose Lat A does not contain any irreducible

submodules. Then we can use Zorn’s Lemma to show that Lat A contains a continuous

nest. Denote by A ·A′ the algebra generated by products of operators in A and A′. The

above theorems of Ringrose and Shul’man (4.1 and 4.2) give us that the operators in

A · A′ (and in particular in A ⊂ A · A′) are quasinilpotent.

Since K(H) is a closed ideal of B(H), A · A′ is made up of compact quasinilpotent

operators. Suppose Lat A · A′ = {{0},H}; then by the comment following Lomonosov’s

Lemma (Theorem 3.7) we know that there is an operator in A · A′ whose spectrum

contains {1}, contradicting the fact that all the operators in A · A′ are quasinilpotent.

Thus A · A′ has a non-trivial invariant subspace, say M.

First we show that Lat A · A′ = Lat A ∩ Lat A′. Clearly, Lat A ∩ Lat A′ ⊂ Lat A · A′.

To prove the converse, consider U ∈ Lat A · A′. Since I ∈ A′ it follows that U is

invariant for any element of A. Since A is a complete reduction algebra there exists a

V ∈ Lat A such that H = U ⊕ V . But then H = A(H) = A(U ⊕ V) ⊂ AU ⊕ AV . Since

U is invariant for A we have that AU ⊂ U and hence it follows that U = AU . Hence

A′U = A′AU . From (A · A′)U ⊂ U we get that A′AU ⊂ U , and hence U ∈ Lat A′.

Therefore, Lat A · A′ = Lat A ∩ Lat A′.

Hence M ∈ Lat A · A′ implies that M ∈ Lat A and M ∈ Lat A′. Now A is a

complete reduction algebra, so there exists a N ∈ Lat A which complementsM. Suppose

P =

[
I B

0 0

]
N
M

is a projection onto N , where B : M → N is a module map.

In particular, since B is a module map,

[
0 B

0 0

]
∈ A′. However, M ∈ Lat A′; so{[

0 B

0 0

] [
0

m

]
: m ∈M

}
⊂M. On the other hand, the range of

[
0 B

0 0

]
= ranB

is contained in N . Since M∩N = {0}, we must have B = 0. It follows that M is the
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unique complementary module to N , and the only module map from M to N is 0. By

Theorem 3.22, 0 is the only module map from N to M as well.

Thus the elements of A′ have the form

[
A 0

0 D

]
(whereA : N → N andD : M→M

are module maps). Clearly

[
I 0

0 0

]
, the projection onto N along M, commutes with

all such matrices, and hence is a proper central projection in A′′.

Therefore, if A′′ contains no proper central projections, then Lat A must contain a

non-zero irreducible submodule.

Lemma 4.4. Let A ⊆ K(H) be a nondegenerate complete reduction algebra, and suppose

that V ,W ∈ LatA. If V is irreducible and T : V → W is a non-zero module map, then

the range of T is closed and T is an isomorphism onto its range.

Proof. TV is a submodule of W , so T : V → TV is a non-zero module map. By The-

orem 3.22 there is a module map S : TV → V (since A is a complete reduction alge-

bra). Note that ST ∈ B(V). Moreover, since both S and T are module maps we have

ST (a · v) = a · ST (v) for a ∈ A and v ∈ V . Hence ST ∈ A|′V .

However, since V is irreducible, Lat A|V = {{0},V}. Moreover, A|V consists of

compact operators; so by Lomonosov’s Lemma A|V is weakly dense in B(V). It follows

that A|′V = CI. Combining this with the result from the previous paragraph we get that

ST = αI for some α ∈ C. Therefore, we can conclude that the range of T is closed and

T is an isomorphism onto its range.

Lemma 4.5. Suppose that A ⊆ K(H) is a nondegenerate complete reduction algebra.

Let V ∈ LatA be irreducible and W ∈ LatA be arbitrary. There is a non-zero module

map T : W → V if and only if W contains a submodule isomorphic to V.

Proof. Suppose that there exists a non-zero module map T : W → V. Then there is a

module map S : V → W by Theorem 3.22, and by the previous theorem SV is closed

and S is an isomorphism onto SV . Hence SV is a submodule of W isomorphic to V .

Conversely, suppose U ⊆ W is a submodule isomorphic to V . Let T : U → V be the

isomorphism. Let P : W → U be the module projection onto U . Then TP is a module

map from W to V .
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Lemma 4.6. Let A ⊆ K(H) be a nondegenerate complete reduction algebra. If

V ,W ∈ LatA and V is irreducible, then V +W is closed.

Proof. Since V is an irreducible module we must have either V ∩W = {0} or V ∩W = V .

In the second case, V ⊆ W , so V +W = W is closed.

Hence, we may suppose that V ∩W = {0}. Now A is a complete reduction algebra,

so W has a complement U ∈ Lat A. Let P be the module projection of H onto U with

kernel W . Then P |V is a module map from V to U , so since V is irreducible it follows

that P |V is invertible by Theorem 4.4.

If V +W is not closed, then sup
a∈V,b∈W
‖a‖=‖b‖=1

〈a|b〉 = 1 (see [21], theorem 2.1). Hence, we can

find v ∈ V and w ∈ W such that ‖v‖ = 1 and ‖v + w‖ = (〈v + w|v + w〉)1/2 is as small

as we want; say ‖v + w‖ < (‖(P |−1
V )‖‖P‖)−1. But then we have

‖v‖ = ‖(P |V)−1Pv‖
= ‖(P |V)−1P (v + w)‖ (since w ∈ W , so Pw = 0)

≤ ‖(P |V)−1‖‖P‖‖v + w‖
< 1 (by choice of v and w).

This contradicts the fact that ‖v‖ was chosen such that ‖v‖ = 1; thus no such v and w

exist, and so V +W must be closed.

Lemma 4.7. Let A ⊆ K(H) be a nondegenerate complete reduction algebra and suppose

that V ∈ LatA is irreducible. Then A contains a projection which restricts to a non-zero

projection on V.

Proof. Consider A|V as a (not necessarily closed) subalgebra of B(V). Since V is irre-

ducible, we must have Lat A|V = {{0},V}. The proof to Lomonosov’s Lemma (Theo-

rem 3.7) tells us that we can find a compact operator K ∈ A such that K|V is a compact

operator which has 1 as an eigenvalue. Since 1 is an isolated point of the spectrum of K

we can use the Riesz functional calculus to find a projection E such that σ(K|EH) = {1}.
Hence E satisfies the requirements of the lemma.

Lemma 4.8. Let A ⊆ K(H) be an operator algebra with the complete reduction property

and suppose that V ∈ LatA is an irreducible submodule. Let F be a family of submodules

of H where each submodule is module isomorphic to V. Let M = span
⋃
U∈F

U . Then M

is the direct sum of finitely many submodules isomorphic to V.
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Proof. Construct a sequence Vi of submodules isomorphic to V as follows: assume we

have a sequence {V1, . . .Vn} for n ≥ 1 (the first module picked, V1, can be any module in

F). If M 6=
⊕n

i=1 Vi, then we can find Vn+1 in F such that Vn+1 6⊆
⊕n

i=1 Vi. In fact, since

all the Vi’s are irreducible, we must have Vn+1 ∩ Vi = {0} for each 1 ≤ i ≤ n. Moreover,

V1 + V2 + . . .+ Vn+1 is closed by Theorem 4.6. Thus
⊕n

i=1 Vi + Vn+1 =
⊕n+1

i=1 Vi.

In this manner we construct a sequence of modules {Vi}i∈N ⊂ F such that

V1 ⊕ V2 ⊕ . . . ⊆M . By Theorem 4.7 we can find P ∈ A a projection such that P |V
is non-zero. But then since each Vi in the above list is module isomorphic to V , it follows

that P |Vi
is also non-zero. Since A is an algebra of compact operators, P is compact; in

particular, since P is a projection, it must have finite rank; hence our list of submodules

Vi can contain only finitely many elements. It follows that there is some N such that

M =
⊕N

i=1 Vi.

Theorem 4.9. Let A ⊆ K(H) be a complete reduction algebra, and suppose A′′ contains

no proper central idempotents. Then there exists an irreducible submodule V ∈ LatA,

and A is similar to K(V)(n) for some n ∈ N.

Proof. By Theorem 4.3, since A′′ does not contain any proper central idempotents, we

know thatH contains an irreducible submodule V . Let F = {M : M is isomorphic to V}.
Lemma 4.8 tells us that the closed span of all modules in F can be written as W :=

n⊕
i=1

Vi
for some n and modules Vi isomorphic to V . Since A is a complete reduction algebra, we

can write H = W ⊕ U , where the module U has no submodule isomorphic to V . Since

U has no submodule isomorphic to V , Lemma 4.5 tells us that there is no non-zero map

from U to V . But then there can be no non-zero map from V to U either (Theorem 3.22).

So with respect to the decomposition H = W ⊕ U , the matrices for elements of A′

look like

[
A 0

0 D

]
, where A : W → W and D : U → U are module maps. It follows

that

[
I 0

0 0

]
, the projection onto W along U , is a central projection of A′′. But we

know that A′′ contains no proper central idempotents; hence U must in fact be {0}.

Therefore, H =
⊕n

i=1 Vi. For each i, let Ti : Vi → V be a module isomorphism. Then

the norm on H given by |||
n∑
i=1

vi||| = (
n∑
i=1

‖Tivi‖2)1/2 is equivalent to the usual norm on H.

This renorming gives us a similarity under which A is similar to K(V)(n).
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Lemma 4.10. Suppose that A ⊆ K(H) is a complete reduction algebra such that A′′

contains no proper central projections, and suppose H(∞) has projection constant M .

Then there is a similarity S on H with ‖S‖‖S−1‖ ≤ 128M2 such that SAS−1 is self-

adjoint.

Proof. By Theorem 4.9, since A′′ contains no proper central projections, there is an

irreducible module V ∈ LatA such that A is similar to K(V)(n) for some n ∈ N, and H is

module isomorphic to
⊕n

i=1 V .

Let α = inf{‖S‖‖S−1‖ : S : H → V(n) is a module isomorphism}. Since H⊕ V(n) is

embedded isometrically in H(n+1), it has the reduction property, and projection constant

at most M .

This proof is very similar to the proof of Theorem 3.24, where G is replaced by

V(n). As before we choose an isomorphism S, fix µ ∈ R, let P be a projection onto

{v ⊕ µSv : v ∈ H}, and define T : H → V(n) ⊕ V(n) by Tu = 1
2
Su⊕ 1

2M
(µS(1 +RµS)u).

In order to be able to finish the proof as in Theorem 3.24 we need to show T is in fact a

module isomorphism from H to V(n). However, this follows easily since T is a contractive

module isomorphism onto some closed submodule of V(n) ⊕ V(n). The submodules of

V(2n) are V(i) for i ≤ 2n (since V is irreducible), so a submodule module isomorphic to

V(n) is isometrically isomorphic to V(n). Hence T : H → V(n) is a module isomorphism,

so ‖T‖‖T−1‖ ≥ α, and result follows as before.

We have found a description for the structure of a complete reduction algebra

A ⊂ K(H) when its double commutant contains no proper central projections. This

suggests that for a general complete reduction algebra B ⊂ K(H) we should examine

the central projections in B′′ and use them to relate B to complete reduction algebras

whose double commutants do not contain proper central projections.

In general, a von Neumann algebra is generated by its projections ([18], Theorem 7.3).

However, we are going to be looking at the von Neumann algebra generated by the central

projections of B′′, which has the added property that it is abelian. Moreover, this von

Neumann algebra also commutes with the algebra of compact operators B ⊂ B′′; this

will enable us to use the result shown below.

Lemma 4.11. Suppose that A ⊆ K(H) is an algebra of compact operators acting non-

degenerately on H. If R is an abelian von Neumann algebra commuting with A, then R
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is generated as a von Neumann algebra by its minimal projections.

Proof. Let B be the C∗-algebra generated by A. Since R is self-adjoint, it commutes with

every A∗ for A ∈ A as well as with A, and hence R commutes with B. So R ⊂ B′.

The crucial point in this proof is the structure theory of compact operators; namely,

since B is a non-degenerate C∗-algebra of compact operators, it is unitarily equivalent

to {
∑
γ

c0K
(nγ)
γ : Kγ ∈ K(Hγ)} (see [5], Theorem 16.18). This allows us to identify the

commutant of B as well as certain abelian subalgebras of the commutant. Clearly, if B

has the form described above, then B′ is isomorphic to
∑l∞

γ Mnγ . Note that for each γ

the projection onto Mnγ is a central projection of B′.

Now R is contained in a maximal abelian self-adjoint subalgebra of B′, say M . The

maximality of M gives us that M =
∑l∞

γ (M∩Mnγ ), where M∩Mnγ is a maximal abelian

self-adjoint subalgebra of Mnγ . But the maximal abelian self-adjoint algebras of Mn for

n ∈ N are precisely the subalgebras of Mn whose matrices are diagonal relative to some

fixed orthonormal basis for Cn. Hence the maximal abelian self-adjoint algebras of Mn

are isomorphic to l∞(n). Therefore, M ∼=
∑l∞ l∞(nγ); by reindexing we can find a set ω

such that M ∼= l∞(ω).

Therefore, R is a self-adjoint subalgebra of l∞(ω). In fact, we can show that R is

isomorphic to l∞(Λ) for a suitably constructed Λ. Define an equivalence relation on ω

by w1 ∼ w2 if and only if r(w1) = r(w2) for all r ∈ R. Let Λ be the set of equivalence

classes of ω with respect to this relation. Then R is a subalgebra of l∞(Λ).

Fix λ ∈ Λ and define Uλ = {p ∈ R : p is idempotent and p(λ) = 1}. The infimum

of Uλ is given by a characteristic function on a subset of Λ which contains λ. But R

is generated by its projections and for any µ ∈ Λ with µ 6= λ there exists an r ∈ R

such that r(µ) 6= r(λ) (by the definition of Λ). It follows that the infinum of Uλ is

given by χλ. Hence R = l∞(Λ). Therefore, R is generated by its minimal projections,

{χλ : λ ∈ Λ}.

Theorem 4.12. Suppose A ⊆ K(H) is a nondegenerate complete reduction algebra.

Denote the set of minimal central projections of A′′ by P. For each P ∈ P the algebra

AP = PA is a closed two-sided ideal of A, and A ∼=
∑
P∈P

c0AP . Moreover, considering

AP as a subset of B(PH), the bicommutant A′′
P ⊆ B(PH) contains no proper central

projections.
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Proof. Without loss of generality we can assume that the central projections of A′′ are

self-adjoint (otherwise we can apply a similarity to make them self-adjoint by Lemma

3.20).

Fix P ∈ P , we want to show that AP is a closed two-sided ideal of A. Suppose that

there was some A ∈ A such that PA 6∈ A. Since PA is a compact operator and A is

closed, by the Hahn-Banach Separation Theorem we can find a linear functional φ in

K(H)∗ = C1(H) such that φ|A = 0 and φ(pA) = 1. Since A′′ is the closure of A in the

weak* topology of B(H) and PA ∈ A′′ we can find a net (Bα)α in A such that Bα
wk∗→ PA.

Note that φ(Bα) = 0 for any α and φ(PA) = 1 by definition. But φ is continuous in the

weak* topology so we should also have φ(Bα) → φ(PA), a contradiction. This shows

that PA ∈ A for each A ∈ A. Since P commutes with A it follows that AP is a two-

sided ideal of A. To see that AP is also norm closed consider PAn ∈ AP converging

to some B ∈ A. Then given ε > 0 there exists an N such that for n ≥ N we have

‖PAnu − Bu‖ < ε‖u‖ for any u ∈ H. In particular, if we substitute u = Pv for v ∈ H
we get ‖PAnPv−BPv‖ < ε‖Pv‖, which means, since P is a projection which commutes

with A, that ‖PAnv − PBv‖ < ε‖v‖ for any v ∈ H and n ≥ N . Therefore, PAn → PB,

whence B = PB ∈ AP . Therefore, AP is closed, as claimed.

Suppose Q ∈ A′′
P is a central projection of A′′

P . Since P is a central projection of A′′

we have A′′
P = PA′′ (see [5], Proposition 43.8). It then easily follows that QP is central

for A′′. But P and Q are projections, so we also have 0 ≤ QP ≤ P . By hypothesis P is

minimal as a central projection in A′′, hence either Q = 0 or Q = P . Therefore, A′′
P has

no proper central projections.

Let R be the abelian von Neumann algebra generated by the central projections of

A′′. In particular R commutes with A ⊂ A′′, so by Theorem 4.11, R is generated by

its minimal projections. For each P ∈ P let HP = PH; since A is non-degenerate,

H =
∑⊕HP and

∑
P∈P

P = I (where the sum is defined using convergence in the strong

topology).

We know that AP is an ideal of A for each P ∈ P ; also, P consists of self-adjoint and

mutually orthogonal projections. Hence we can embed
∑
P∈P

c00AP (the algebraic direct sum

with finitely many non-zero terms) isometrically into A. It follows that the norm closure

of
∑
P∈P

c00AP , that is
∑
P∈P

c0AP , is contained in A. The other inclusion follows because for
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each A ∈ A we have A =
∑
P∈P

PA, and A is a compact operator so {‖PA‖}P∈P ∈ c0(P).

Hence, A =
∑
P∈P

c0AP as desired.

Theorem 4.13. Let A ⊆ K(H) be an operator algebra. Then A has the complete reduc-

tion property if and only if A is similar to a C∗-algebra.

Proof. Any self-adjoint algebra has the complete reduction property. Since the complete

reduction property is preserved by similarities, it follows that if A is similar to a C∗-
algebra, then A has the complete reduction property.

Suppose conversely that A has the complete reduction property. We can assume

without loss of generality that A is not degenerate (otherwise we can restrict H to AH).

Let P be the set of minimal projections of A′′. Fix P ∈ P . We already know that PA

is an algebra (from Theorem 4.12) which contains no proper central projections. Also if

M is an invariant subspace of PA, then PM is an invariant subspace of A so since A

is a complete reduction property there is a subspace N ∈ A such that H = PM⊕N .

Then PN ∈ LatPA and PH = PM⊕PN . Thus PA has the complete reduction prop-

erty. By Theorem 4.10 there is a similarity Sp such that SP PA (SP )−1 is self-adjoint and

‖SP‖‖S−1
P ‖ ≤ 128M2

P , where MP is the projection constant of (PH)(∞). By scaling if nec-

essary we can ensure ‖SP‖ = 1, which implies ‖S−1
P ‖ ≤ 128M2

P . Note that if M is the pro-

jection constant of H(∞), then MP ≤ M . Let S = ⊕P∈PSP . Then ‖S‖‖S−1‖ ≤ 128M2.

Since A ∼=
∑
P∈P

c0PA (Theorem 4.12) we get that SAS−1 is a C∗-algebra. Therefore, A is

similar to a C∗-algebra, as desired.

Suppose A ⊂ K(H) has the complete reduction property. Then by the above theorem

A is similar to a C∗-algebra B. Moreover, since the compact operators form an ideal of

B(H), B is also an algebra of compact operators. But then, as mentioned previously, B

is unitarily equivalent to
∑
γ

c0K(Hλ)
(nλ); hence, B is amenable. In the previous chapter

we showed that all amenable operator algebras have the total reduction property. So

B has the total reduction property, and therefore, so does A. Hence for algebras of

compact operators the total reduction property and the complete reduction property are

the same. Note that this also implies that every representation of a complete reduction

algebra A ⊂ K(H) is similar to a *-representation.
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4.2 Algebras of Triangular Operators

Let H be a separable Hilbert space and {en} be a basis for H. We denote by T∞ the

set of operators which are upper triangular with respect to this basis; in other words,

T∞ = {T ∈ B(H) : 〈Tej|ei〉 = 0 for i > j}. In this section we show that A ⊂ T∞ is similar

to an abelian C∗-algebra if and only if it has the total reduction property (the proofs are

adapted from [13]).

We will ocasionally find it easier to assume that A contains the identity operator.

However, this will not result in any loss of generality due to the following theorem.

Theorem 4.14 ([8], Theorem 3.3.6). An algebra A ⊂ B(H) has the total reduction

property if and only if the algebra generated by A ∪ {I} does.

The first theorem we prove establishes that any discussion of total reduction algebras

of T∞ is necessarily confined to abelian algebras. We then present some general results

about abelian total reduction algebras, in particular that every operator in such an

algebra has at most countably many eigenvalues, and that we can then find a set of

eigenvectors which span the whole space. This will allow us to establish the desired

result.

Theorem 4.15. Suppose that A ⊆ T∞ has the total reduction property. Then A is

abelian.

Proof. Define πn by πn(T ) = PnTPn where Pn is the projection onto the span of {e1, . . . en}.
First we will show that πn(A) is abelian. Now πn is a homomorphism and πn(A) is closed

(since πn(A) is finite dimensional); so by Theorem 3.18, πn(A) also has the total reduction

property. However, πn(A) consists of finite rank operators; since finite rank operators

are compact, by Theorem 4.13 there exists a similarity matrix S such that S−1πn(A)S

is a C∗-algebra. For every R ∈ πn(A), since R is triangular it has Hk = span{e1, . . . , ek}
as an invariant subspace. It then follows that S−1Hk is an invariant subspace of S−1RS.

It is a well known property of C∗-algebras that if M is an invariant subspace, then so is

M⊥. Combining this with the fact that rank S−1Pk = k we get that S−1πn(A)S consists

of diagonal operators, and as such it is abelian. Therefore, πn(A) must itself be abelian.

Consider M,N ∈ A. Pick any v ∈ H, and any ε > 0. Since Pn
SOT→ I we can find r

such that ‖Prv − v‖ < ε. So we have
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‖MNv −NMv‖ = ‖MNv −MNPrv +MNPrv

−NMPrv +NMPrv −NMv‖
≤ ‖MNv −MNPrv‖+ ‖MNPrv −NMPrv‖+

‖NMPrv −NMv‖
≤ ‖MN‖‖v − Prv‖+ ‖MrNrv −NrMrv‖+ ‖NM‖‖Prv − v‖

(MNPr = MrNr since M, N are triangular)

≤ ‖MN‖ε+ 0 + ‖NM‖ε
(MrNr = NrMr since πr(A) is abelian)

Since M and N are fixed (and hence ‖MN‖ and ‖NM‖ are constants), and ε > 0 is

arbitrary it follows that ‖MNv − NMv‖ = 0. But v ∈ H was also arbitrary; hence for

any M and N in A we can show that MN = NM . Therefore, A is abelian as claimed.

So all the total reduction algebras in T∞ are abelian. For this reason, in this section we

are mainly concerned with abelian algebras that have the total reduction property. This

additional property enables us to draw some conclusions about the invariant subspaces

of the algebra.

Suppose that A is an abelian Banach algebra and T ∈ A. Then we can show that

ker T and ranT are in Lat A. Clearly, both sets are closed subspaces of H, so we only

need to check that they are invariant for any operator in A. Pick any S ∈ A; since A

is abelian, ST = TS. For u ∈ ker T we have TSu = STu = S(0) = 0, so Su ∈ ker T .

Therefore, ker T is an invariant subspace for A. For v ∈ ranT , say v = Tw for some

w ∈ H, we have Sv = STw = TSw, and so Sv ∈ ranT . Hence Sv ∈ ranT . Using

convergent sequences we can then show that ranT is invariant for A. In particular, if

I ∈ A, then we can use the above to conclude that, for any T ∈ A and λ ∈ C, ker T −λI
and ranT − λI are invariant subspaces for A.

We now consider the question of what an abelian total reduction operator algebra

might look like in general. Suppose we have an abelian algebra A similar to a C∗-algebra

B. Then B is itself abelian, and since B is self-adjoint it follows that every operator in B

is normal. Thus every operator in A is similar to a normal operator. Recall from Chapter

3 that the set {S−1NS : N normal } is dense in the set of biquasitriangular operators.

Therefore, if similarity to a C∗-algebra is equivalent to having the total reduction property

we would expect that an abelian total reduction algebra consists of biquasitriangular

operators. This is the result we prove below.
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Theorem 4.16. Let A be a unital, abelian, total reduction subalgebra of B(H). Then

every element of A is biquasitriangular.

Proof. Fix T ∈ A. We will use Theorem 3.13 to show that T is biquasitriangular. That

is, we want to show that for any λ ∈ ρsF (T ) we have ind(T − λI) = 0.

Fix λ in C. Let M := ker T − λI. We have shown that M ∈ Lat A. Write the

matrices of A with respect to M and M⊥. Then there is a similarity matrix S such that

S−1AS =

[
A1 0

0 A4

]
for A =

[
A1 A2

0 A4

]
∈ A (see Remark 4.17). In particular, since

T |M = λI, entry T1 in the matrix for T is λI. It follows that

S−1(T − λI)S =

[
0 0

0 (T − λI)|M⊥

]
M
M⊥ .

From this matrix representation, it is easy to see that M⊂ ker(S−1(T − λI)S)∗. Hence,

dim ker(T − λI)∗ = dim ker(S−1(T − λI)S)∗ (since S is a bijection)

≥ dimM (since M ⊂ ker(S−1(T − λI)S)∗)

= dim ker(T − λI) (by definition of M)

Therefore, nul(T − λI)∗ ≥ nul(T − λI).

Consider N = ran(T − λI). Again, we have shown that N ∈ Lat A. If we write

the matrices in A with respect to N and N⊥, then there is a similarity matrix R

such that R−1AR =

[
A1 0

0 A4

]
for A =

[
A1 A2

0 A4

]
∈ A (see Remark 4.17). Since

ker(T − λI)∗ = N⊥, it follows that entry T4 of the matrix for T is λI. Hence

R−1(T − λI)R =

[
∗ 0

0 0

]
N
N⊥ .

From this matrix representation we can see that ran(R−1(T − λI)R)∗ ⊆ N . Thus we

have

dim ker(T − λI) = dim ker(R−1(T − λI)R) (since R is a bijection)

= dim [ran (R−1(T − λI)R)∗]⊥ (kerQ = (ranQ∗)⊥ for any Q ∈ B(H))

≥ dimN⊥ (since N ⊂ ran(R−1(T − λI)R)∗)

= dim ran(T − λI)
⊥

= dim ker(T − λI)∗.
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Therefore, nul(T − λI) ≥ nul(T − λI)∗.

Combining the two inequalities proven above we get that nul(T −λI) = nul(T −λI)∗

for all λ ∈ C. In particular, if λ ∈ ρsF (T ), then

ind(T − λI) = nul(T − λI)− nul(T − λI)∗ = 0.

Therefore, T is biquasitriangular.

Now consider the result from Theorem 3.25, namely the fact that for a C∗-algebra

with the total reduction property every representation is similar to a *-representation.

Suppose A ⊂ T∞ has the total reduction property and is similar to a C∗-algebra C (we shall

prove later that these two conditions are equivalent). So there is some similarity matrix S

such that C = SAS−1. Then C also has the total reduction property, so by Theorem 3.25

every representation is similar to a *-representation. Suppose also that B ⊂ B(H) is

isomorphic to A, with some isomorphism ρ : A → B. Then φ : T 7→ ρ(S−1TS) is a

representation of C with range B ⊂ B(H). Since φ is similar to a *-representation we

get that B is similar to a C∗-algebra. Therefore, any operator algebra isomorphic to A

is also similar to a C∗-algebra.

Remark 4.17. Suppose A ⊂ B(H) has the complete reduction property. If M is an

invariant subspace of A, we can find a similarity S such that both M and M⊥ are

invariant for S−1AS. The construction described below will be used in multiple theorems

in this section; the form of the similarity matrix S and of S−1AS plays an important

role.

Write the operators of A with respect to M and M⊥. Since M is invariant, we know

all the operators will have the form

[
A1 A2

0 A4

]
. Let P =

[
I P2

0 0

]
∈ A′ be a projection

onto M (such a projection exists since A is a complete reduction algebra, so M has a

complementary module). Since P is in the commutant of A, by multiplying the matrices

we get that A2 + P2A4 = A1P2 for each matrix A =

[
A1 A2

0 A4

]
∈ A.

Define S =

[
I −P2

0 I

]
. Note that S−1 =

[
I P2

0 I

]
. Then we can multiply the

matrices to get that if A =

[
A1 A2

0 A4

]
then S−1AS =

[
A1 0

0 A4

]
(note: to get this
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result, use the fact that A2 + P2A4 = A1P2, as shown above). Hence M and M⊥ are

both invariant for S−1AS.

From the above remark it is clear that if M is an invariant subspace and we write A

with respect to M and M⊥, then A cannot contain a matrix

[
0 T2

0 0

]
where T2 6= 0. To

see this, if P is a projection onto M as in the proof, then we must have T2 + P20 = 0P2,

which gives us T2 = 0.

Observe that if A is an abelian, total reduction algebra, then so is S−1AS where S

is a similarity matrix (recall that the total reduction property is preserved by homomor-

phisms).

Theorem 4.18. Suppose A ⊆ B(H) is an abelian unital subalgebra with the total reduc-

tion property. If T ∈ A and λ ∈ C, then ker(T − λI) = ker(T − λI)m for all m ≥ 2.

Proof. Consider m = 2. Let M = ker(T − λI) and N = ker(T − λI)2. We have already

seen that M,N ∈ Lat A. Also clearly M⊂ N . We want to show that M = N .

Suppose first that N = H, and assume that M 6= N . Write the matrices of A

with respect to the decomposition H = M⊕M⊥; we want to figure out the matrix

for T . Suppose T − λI =

[
A1 A2

A3 A4

]
. We know A3 = 0 since M is invariant for

A. For every u ∈ M we have (T − λI)u = 0 (by definition of M), and so we must

have A1 = 0. Consider any v ∈ H = N ; by definition of N , (T − λI)2v = 0. Hence

(T − λI)v ∈ ker (T − λI) = M; so the range of T − λI is contained in M. From this

observation we get that A4 = 0 as well. So T − λI =

[
0 T2

0 0

]
. Since A has the total

reduction property, we also have T2 = 0 (follows from the comment made after Remark

4.17). So for any v ∈ M⊥ we get (T − λI)v = 0, i.e. v ∈ M. This contradiction allows

us to conclude that we must have M = N .

If N 6= H, then the algebra B = PNAPN (where PN is the orthogonal projection onto

N ) has the total reduction property (since this property is preserved by homomorphisms).

Moreover, we can consider B as a subset of B(N ); since M is an invariant subspace for

B, the discussion above (for N = H) applies, and gives us M = N .

Suppose ker (T − λI)i = ker (T − λI) for some i ≥ 2. Then u ∈ ker (T − λI)i+1
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means that (T − λI)u ∈ ker (T − λI)i = ker (T − λI). So (T − λI)2u = 0, and hence

u ∈ ker (T −λI)2 = ker (T −λI). Therefore, ker (T −λI)i+1 ⊂ ker (T −λI), and since the

opposite inclusion is obvious equality follows. Therefore, ker (T − λI)m = ker (T − λI)

for all m ≥ 2.

Lemma 4.19. Let A be a unital, abelian, total reduction subalgebra of B(H). Consider

T ∈ A and λ ∈ C an eigenvalue of T . Then there exists an unique projection E onto

ker (T − λI). Moreover, E is a central projection in A′′.

Proof. We can assume without loss of generality that λ = 0, since otherwise we can

replace T by (T − λI) ∈ A. Let M = ker T and E be a projection onto M. Recall that

M∈ Lat A, so T =

[
λI T2

0 T4

]
M
M⊥ =

[
0 T2

0 T4

]
.

We want to show that ker T4 = {0} and ranT4 is dense in M⊥. By the com-

ments in Remark 4.17 we can find a similarity S such that S−1TS =

[
0 0

0 T4

]
and

S−1ES =

[
I 0

0 0

]
. Now if u ∈ ker T4, then

[
0

u

]
∈ kerS−1TS. It follows that

S−1

[
0

u

]
∈ ker T = M. Recall however from Remark 4.17 that S−1 =

[
I P2

0 I

]

for some module map P2 : M⊥ →M. Multiplying this out we get that

[
P2u

u

]
∈ M,

and hence u = 0. Therefore, ker T4 = {0}.

Now by contradiction suppose that ranT4 is not dense in M⊥, and let N = ranT4.

Then with respect to the decomposition M⊕N⊕(M⊥	N ) the matrix for S−1TS looks

like

 0 0 0

0 T4,1 T4,2

0 0 0

. Note that ranS−1TS = M⊕N . HenceM⊕N is an invariant sub-

space for S−1AS, and since S−1AS has the total reduction property (the property is pre-

served by similarities), we can apply the construction in Remark 4.17 again to find a simi-

larity U such that U−1(S−1TS)U =

 0 0 0

0 T4,1 0

0 0 0

, with U−1 =

[
I Q2

0 I

]
(M⊕N )

(M⊕N )⊥

for some module map Q2. Clearly any w ∈ (M⊥ 	N ) is in the kernel of U−1S−1TSU ,
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and hence U−1S−1w ∈M. With respect to the decomposition M⊕N ⊕ (M⊥ 	N ) we

have U−1 =

 I 0 Q1,2

0 I Q2,2

0 0 I

 and S−1 =

 I P2,1 P2,2

0 I 0

0 0 I

, so

U−1S−1

 0

0

w

 =

 P2,2w + T2,1w

T2,2w

w


This vector is in M only if w = 0, so M⊥ 	N = {0}. Therefore, N = M⊥.

Consider any R ∈ (S−1AS)′, say R =

[
R1 R2

R3 R4

]
M
M⊥ . Since R commutes with

S−1TS, the matrix multiplication R(S−1TS) = (S−1TS)R gives us that R2T4 = 0, and

0 = T4R3. Using the fact that T4 is injective and has dense range we can conclude that

R2 = R3 = 0. So R =

[
R1 0

0 R4

]
. Recall that S−1ES =

[
I 0

0 0

]
; this matrix clearly

commutes with R. Hence S−1ES ∈ (S−1AS)′′. Therefore, E ∈ A′′.

Finally, suppose P ∈ A′ is a projection onto M. Then P commutes with E (since

E ∈ A′′) and the range of P is the same as that of E, so P = E. Therefore, E ∈ A′ ∩ A′′

is the unique projection onto M.

Lemma 4.20. Let A be an abelian, total reduction subalgebra of B(H). Consider T ∈ A.

Let Λ be the set of eigenvalues of T . For λ ∈ Λ, denote by Eλ the projection onto

ker T − λI described in Lemma 4.19. Then F = {
n∑
i=1

Eλi
: n ∈ N, λi ∈ Λ} is a bounded

set of commuting idempotents closed under symmetric differences. Moreover, if H is

separable, it follows that Λ is countable.

Proof. Consider eigenvalues λ and µ such that λ 6= µ. Recall from Lemma 4.19 that

Eλ, Eµ ∈ A′ ∩ A′′. It follows that Eλ and Eµ commute. Then, as a consequence of

Lemma 3.2, there exists a similarity S which orthogonalizes Eλ and Eµ. Let Fλ = SEλS
−1

and Fµ = SEµS
−1. The range of Fλ is S ker (T − λI)S−1 and the range of Fµ is

S ker (T − µI)S−1; the two sets are clearly disjoint. Thus Fλ and Fµ are commuting or-

thogonal projections with disjoint ranges, so we have FλFµ = 0. But

(SEλS
−1)(SEµS

−1) = 0 implies EλEµ = 0. Therefore, we have shown that, when-

ever λ 6= µ are two eigenvalues in Λ, we get EλEµ = 0. It follows immediately that any

element of F is an idempotent.
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Suppose Fλ =
n∑
i=1

Eλi
and Fµ =

m∑
j=1

Eµj
are two operators in F . Since the Eλ’s and

the Eµ’s commute, it follows that Fλ and Fµ commute as well. So all the idempotents in

F commute. Moreover, Fλ + Fµ − 2FλFµ =
n∑
i=1

Eλi
+

m∑
j=1

Eµj
− 2

∑
i=1...n
j=1...m

Eλi
Eµj

. We can

use the fact that Eλi
Eµj

= 0 if λi 6= µj and to Eλi
if λi = µj to simplify the sum to∑

i=1...n

λi 6∈{µj}m
j=1

Eλi
+

∑
j=1...m

µj 6∈{λi}n
i=1

Eµj
, which is clearly an element of F . Therefore, F is closed

under symmetric differences.

Finally, we want to show that F is a bounded set. Consider any element Fλ =
n∑
i=1

Eλi

in F . Since Eλi
belongs to A′∩A′′ for each i, so does Fλ. Also, ranFλ = span{ranEλi

}ni=1

(note that ranFλ is closed since ranEλi
is closed for each i and as explained earlier there

is a similarity matrix which makes the Eλi
’s orthogonal). But then, similar to the earlier

proof that Eλi
is unique (see Theorem 4.19), Fλ is the unique projection in A′ onto ranFλ.

Since A has the total reduction property, it follows that {‖E‖}E∈F is bounded by the

projection constant of A (see Theorem 3.19).

IfH is separable, then there are only countably many mutually orthogonal projections

in B(H). But we have shown earlier that if λ and µ are two distinct eigenvalues in Λ, then

there is a similarity matrix S for which SEλS
−1 and SEµS

−1 are mutually orthogonal

projections. In fact, since F is a bounded set of commuting idempotents closed under

symmetric differences, Lemma 3.2 gives us that the same S can be used for all the

eigenvalues in Λ. Hence the set {SEλS−1 : λ ∈ Λ} is a subset of the set of mutually

orthogonal projections of B(H), and as such is countable. Therefore, Λ is countable.

By Lemma 3.2 we can find a similarity matrix S such that SPS−1 is self-adjoint for

each P ∈ F .

Now suppose that A ⊂ T∞ is a total reduction algebra. Denote by {rii} the diagonal

entries of R. We will show that each rii is an eigenvalue of R. Since R is upper trian-

gular, e1 is an eigenvector of R corresponding to r11. For i > 1, consider the subspace

Hi−1 = span{e1, . . . , ei−1}. This is an invariant subspace for A; hence, by Remark 4.17,

we can find a similarity S for which SRS−1 =

 R1 0 0

0 rii R2

0 0 R3

 (where the Ri’s are cor-
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responding submatrices from the original matrix R). It follows immediately that rii is

an eigenvalue of R which has S−1ei as an eigenvector. Denote by λ1, λ2, . . . the distinct

values in {rii}. Using Theorem 4.18, we can show that span{ker (R− λiI) : i ∈ N} = H,

so the eigenvectors of R span H. Then we can find a decomposition of H with respect

to which we get

R =


λ1I1 R12 R13 . . .

0 λ2I2 R23 . . .

0 0 λ3I3 . . .

0 0 0
. . .


Y1

Y2

Y3

...

In order to prove our main result for A ⊂ T∞ we will also need the following theorem.

Theorem 4.21. [[8], Theorem 4.2.1] Suppose A ⊂ B(H) is an abelian, total reduction

algebra and B ⊂ B(H) is an abelian C∗-algebra such that A ⊂ B. Then A is self-adjoint.

Finally, we are able to prove the main theorem of this section.

Theorem 4.22. Suppose A ⊆ T∞ is a unital Banach algebra. Then the following are

equivalent:

a) A is a total reduction algebra.

b) A is amenable.

c) A is similar to an abelian C∗-algebra.

Proof. c) ⇒ b) Recall that all abelian C∗-algebras are amenable. In particular, if we

let B be the abelian C∗-algebra similar to A, then B is amenable. Since the similarity

matrix allows us to define a continuous homomorphism from B to A whose range is A,

by Theorem 2.19 it follows that A must be amenable.

b) ⇒ a) All amenable algebras are total reduction algebras, as shown in the comment

following Theorem 3.15.

a) ⇒ c) Suppose A is a total reduction algebra. Then by Theorem 4.15, A is abelian.

Given T ∈ A denote by πT the identity representation of A into B(H), with the under-

standing that πT (T ) is assumed to have the form described in the comment following

Theorem 4.20. Then each πT is injective and {‖πT‖} is bounded.

Consider the Gelfand map Γ : A → C(ΣA). We will show that Γ is injective, has dense
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range and is bounded below; hence Γ is invertible, and so it is an isomorphism from A

to C(ΣA). This will allow us to conclude that A is similar to a C∗-algebra.

To show that Γ is injective, we will show that ker Γ = {0}. Recall that for A ∈ A

ran Γ(A) = spr(A), so the kernel of Γ is the set of quasinilpotent operators of A. Consider

Q ∈ A a quasinilpotent operator. Then the only possible eigenvalue of Q is 0, so by

looking at the form of πQ(Q) it must consist of a single block λI where λ = 0. Thus

πQ(Q) = 0. But πQ is injective, so we must have Q = 0. Therefore, ker Γ = {0}.

The total reduction algebra is preserved by homomorphisms (Theorem 3.18), so

Γ(A) ⊂ C(ΣA) is an abelian, total reduction algebra. Hence by Theorem 4.21, Γ(A)

is self-adjoint. It also contains the constants and separates the points of ΣA (properties

of the Gelfand map), so the Stone-Weierstrass Theorem gives us that Γ(A) = C(ΣA).

Now we shall show that Γ is bounded below. Since {πT : T ∈ A} is bounded, by

Theorem 3.24 we know that we can find a constant K such that for every submod-

ule of πT (A) there is a projection onto the submodule with norm at most K. Fix

T ∈ A and denote by λi the distinct diagonal entries in πT (T ). From the comment

following Theorem 4.20, we know that the λi’s are eigenvalues of T whose eigenvec-

tors span H. Let Mi = ker πT (T ) − λiI. Let F be the set of projections Ei onto

Mi, as described in Theorem 4.19. We know that Ei is the unique projection onto

Mi. So since a projection onto Mi with norm at most K must exist, we have that

‖Ei‖ ≤ K. Recall from Theorem 4.19 that F is a set of commuting projections closed

under symmetric differences. From above, F is bounded by K. So by Theorem 3.2

there is a similarity S such that ‖S−1‖‖S‖ ≤ (1 + 2K)2 and S−1EiS is self-adjoint. Also

S−1EiS commutes with S−1TS (since Ei ∈ A′). It follows that S−1TS = diag {tiIHi
}.

So spr(S−1TS) = sup |ti| ≤ spr(T ). But then

‖T‖ = ‖SS−1TSS−1‖ ≤ ‖S‖‖S−1‖‖S−1TS‖
≤ (1 + 2K)2‖diag {tiIHi

}‖
≤ (1 + 2K)2spr(T )

(since ti is an eigenvalue of T )

Recall that K does not depend on T , and that ‖Γ(T )‖ = spr(T ); so Γ is bounded below.

Therefore, Γ is invertible. Then Γ−1 is a representation from the abelian total reduc-

tion C∗-algebra C(ΣA) to A ⊂ B(H), so by Theorem 3.25 it is similar to a *-representation.
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It follows that A is similar to a C∗-algebra, as desired.

4.3 Concluding Remarks

We have shown that total reductivity is a necessary and sufficient condition for A to

be similar to a C∗-algebra in the cases where A is an algebra of compact operators or

an abelian algebra of triangular operators. In each of these cases A also proved to be

amenable.

However, recall that the class of totally reductive algebras is strictly larger than

that of amenable algebras. Hence further research is needed, in particular to check if

the condition that if an algebra A is abelian is sufficient for the algebra to be totally

amenable (though such a condition is clearly not necessary), and in general, to find out

what conditions one can place on A such that amenability implies total reductivity.

It is to be hoped that a better understanding of the properties of amenability and

total reductivity will eventually lead us to a complete description of the operator algebras

which are similar to C∗-algebras.
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