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Abstract

Asynchronous networks present unique problems in timing analysis. Each compo-
nent of an asynchronous network may have a delay different from other components,
and moreover, the delay within a component may vary from communication to
communication. Because the components synchronise with each other locally, the
differences in delay can lead to blocking when a component tries to communicate

data to another component that is not ready for new data.

We give an analytical technique for finding bounds on the speed of asynchronous
networks of components. We give results as closed-form formulae for the worst-case
response time and average response time. Response time is the time between a
request made to the network and an acknowledging response made by the network.
We also give results for the worst-case cycle time and average cycle time. Cycle
time is the time between consecutive requests made to the network. In particular,
we give bounds for linear arrays of cells and for tree architectures. We give bounds

on average cycle time for more general networks.

We use parameters to describe the handshaking behaviour of components, the
size of the network, and the delay bounds of each component of the network.
These parameters may be instantiated with numeric values to obtain specific re-
sults. Closed-form formulae give us insight into design trade-offs and optimisation
of asynchronous architectures. We derive formulae by means of proofs, not simula-

tion.

iv
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Chapter 1

Introduction

1.1 The Problem

When we design a circuit there are several criteria that might be important to
us. We are often concerned with the speed of a circuit, though we might also be
concerned with area, energy consumption, or the cost of circuit fabrication. Most
designers have a target speed in mind before they even get to the circuit design.
How does the designer know that this performance target is reachable? Perhaps
the designer has to implement a few prototypes to get an idea of what speed is
attainable. This costs both time and money. Moreover, it may be impossible to
create accurate enough prototypes without actually implementing the whole circuit.
So, how then do we experiment with various design ideas without having to go to

the expense of implementing all of them?

The earlier we can make predictions about the performance of a design, the
sooner we can narrow our focus to designs that are worth implementing. Further-

more, if we understand the tradeoffs between the structure of a design and its speed,

1



CHAPTER 1. INTRODUCTION 2

we will be able to converge on a good design more quickly. In this thesis, we model
an asynchronous circuit by means of a network of components that communicate
asynchronously. Examples of such networks are linear arrays of cells, and trees
of cells. We prove bounds analytically on the delays of these specific networks of
components. We can use the high-level timing analysis of a network to predict the
timing properties of a circuit implementation of the network. Moreover, we give

results as closed-form formulae, and these give us insight into design trade-offs.

Historically, most researchers have focussed their attention on synchronous cir-
cuits, but now there is a burgeoning demand for timing analysis of asynchronous
circuits, hence this thesis. It is easiest to describe an asynchronous circuit by de-
scribing what it is not. A synchronous circuit uses the regular pulses of a single
global clock to synchronise the communications of components. Each subcircuit
in a synchronous circuit must complete its operation before the next clock pulse.
Throughput of the overall circuit can be derived from the clock frequency. This
typically means that the higher the clock frequency is the faster the circuit is.

Asynchronous circuits have no global clock, and components typically use hand-
shaking to synchronise with each other. Circuit components that wish to engage
in a transaction with each other communicate locally to decide when the compo-
nents are ready for the transaction. Asynchronous circuits have several potential

advantages.

o Low power consumption. The commonest circuit technology in use today is
Complementary Metal Oxide Silicon (CMOS). Almost all energy consumed
by a CMOS circuit occurs when a signal on a wire changes. When a wire
is at a high or low level, negligible energy is consumed, and hence, if any

part of an asynchronous circuit is idle, negligible energy is consumed in that
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part. In contrast, a synchronous circuit constantly charges and discharges the
clock-wires that are distributed over the entire chip. These clock wires may

be switching in parts of the circuit that are idle, thereby wasting energy.

® Modular design. In theory, we can build a circuit component by compo-
nent and, since timing issues are local in an asynchronous circuit, we can
easily to join the components into a composite that will function correctly.
Synchronous circuits may require retiming of the entire system before a com-

ponent may be added, since the clock is distributed globally.

e High speed. A component need not wait for a clock pulse to arrive before
processing new data. A circuit may run as fast as it can and, in theory, may

maintain average-case performance.

The last claim interests us most. Consider an asynchronous circuit with two
components A and B. Suppose component A and component B are linked in series.
A transfer of data from A to B can only happen if A has data, and B is empty.
In theory, when each component finishes a calculation, it may then proceed to
process a new piece of data immediately. In contrast, a component A of a clocked
circuit must always wait for the clock pulse before processing new data, even if it
has finished processing its current data. This restricts a synchronous circuit to the
worst-case speed of the slowest component, as the clock pulse has to arrive after

the last possible completion of all components.

The above model of the speed of an asynchronous circuit is too simplistic, how-
ever. A component cannot always process new data immediately, because there is
no guarantee that new data is available at the component’s inputs, i.e., the previous
component may not be ready with new data. This phenomenon has been called

starvation by some (31, 44]. Likewise, a component may not be able to transmit
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its results, because the receiving component is not yet ready. Despite finishing its
calculation. a component may not be able to get rid of its data. This phenomenon is
typically called blocking. See Figure 1.1. Asynchronous circuits cannot, therefore

)l

achieve average-case speed without considering blocking and starvation.

A B C

e[ el >

Figure 1.1: An example of an asynchronous circuit where blocking and starvation
can occur. Data is represented by the black spots, 1 and 2. Component C starves
as it has no data. Component A finishes processing data token 2, but then blocks,

because data token 1 still occupies component B.

Any analysis of asynchroncus circuits faces further obstacles. The variation in
delays of a component are crucial to the performance of an asynchronous system,
whereas in a synchronous system we are typically concerned with worst-case delays
only. There are many factors that can cause variation in the delay of a circuit. For

example,

e Circuit operating temperature can affect the delay of the transistors. Some

transistors may switch faster depending on whether an input rises or falls.

e A component’s delay may be data-dependent. Some inputs may be easier and
quicker to process than others. For example, consider a circuit that multiplies
two operands together. If one operand is zero, the computation is trivial, and

we may be able to design a circuit that deals with this case more quickly than
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the worst-case. There are many examples in the literature of circuits that
take advantage of “easy” cases to improve their average speed [21, 23, 28, 30,
34, 40, 50]. These data-dependent designs have varying delay depending on
the input.

Readers further interested in asynchronous circuits can pursue introductions to

them in the references [9, 15].

Not only is it harder to analyse an asynchronous circuit compared to a syn-
chronous circuit, but asynchronous timing analysis has been less thoroughly re-
searched than synchronous timing analysis. This thesis is a contribution to the

field of asynchronous timing analysis.

1.2 An Example Circuit

Figure 1.2: The control circuit of a micropipeline with individual cells outlined.

Consider the asynchronous circuit of Figure 1.2. The diagram illustrates the
control circuit of a five-stage micropipeline. The detailed operation of the circuit

and the behaviour of the C-elements do not concern us at this point. There is
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a brief description of C-element behaviour in Appendix C. Sutherland describes
micropipelines in [47] and we give some further explanation in the next chapter.
Data enters from the left and exiis to the right and moves from stage to stage as
illustrated by the arrows. The control wires are represented by requests r; and
acknowledgments a; where 0 < ¢ < 3. When a stage has data and wishes to pass
data to the next stage, it “handshakes” with the next stage. For example, a stage
communicates that it is ready to send data onwards by signalling to the next stage
on a request wire. When the next stage is ready to receive the data it signals back
to the previous stage on an acknowledgment wire. This is a 2-phase handshake.

We will describe the circuit more fully in Chapter 2.

Given the possible range of delays of each cell of the micropipeline we might try
to determine the throughput of the pipeline. That is, how fast per item can we put
a stream of data in one side, process the data in the pipeline, and then retrieve the
data from the other? There are many difficulties in determining the throughput in
a system such as this. Data must travel through each stage, and each stage may
have a different delay from every other stage. Each stage may have delays that vary
with each data item. Moreover, if there are many pieces of data in the pipeline,

the circuit may block as in Figure 1.1.

As a second problem, we might wish to compare several pipeline designs. How
do we compare the speed of these pipelines if they differ in length? Furthermore,
the pipelines may differ in the delays of each stage; one pipeline may have a slow
first stage, another might have stages with identical speeds, another might have
stages with data-dependent delays. To further confound us, the pipelines may not
be micropipelines; they may have a different handshaking behaviour. Can we pick

the best pipeline to meet our timing needs?

To answer timing questions about the pipelines we create a high level model as
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! Env ! Cell 0 Cell 1 Cell 2 Cell 3

Figure 1.3: The high level model of a pipeline.

in Figure 1.3. The full details of this model are given in Chapter 2. The leftmost cell
represents the environment of the pipeline, and controls the input. If we wish we can
consider the rightmost cell an output environment, but without loss of generality
we consider it integral to the pipeline. The model uses parameters that describe
the communication behaviours between the cells, and the component delays. One
parameter is the length of the pipeline, L, where L is the number of non-end cells.
In Figure 1.3 we have L = 3. The models and parameters are chosen for their
generality and applicability, allowing a wide range of pipelines to be represented.

A well defined model and set of parameters is necessary to derive provable results.

We give two basic measures that describe performance. Response time, RT, is
defined as the time between a request from the environment (r) and the successive
acknowledgment (ag). We give a closed-form formula for the upper bound of the
response time, RT. We also give both lower and upper bounds for the average
response time of pipelines, AR. Finally, we give similar measures for the cycle time

measured between consecutive requests from the environment.

These formulae allow us to reason about an architecture by studying how each
parameter influences a formula. We can also experiment rapidly with different
parameter values. For example, we show that average response time AR is bounded

as

mca, —A. < AR < MCs, -4,
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where the parameters 4., and A, are the minimum and maximum delays of the
environment respectively. The parameters mc,, and MCj, represent the minimum

and maximum delay cycles between cells. Figure 1.4 illustrates the possible cycles.

:- ) -,-’-'1 ro ri ri ri
IRV Y ) -
'---+a, a, a, a,

Env Cell 0 Cell 1 Cell 2 Cell 3

Figure 1.4: Cycles within a pipeline.

The formula above gives us insight into the timing properties of these linear
pipelines. The cycles described by mcs, and MCjs, act as bottlenecks for the
average speed of the pipeline. Note the absence of the parameter L in the formula.
This indicates that the length of the pipeline is unimportant in determining the
bounds on the average response time. Perhaps a designer could take advantage of
this and concentrate on the bottlenecks and not the pipeline length. For example,
the designer might divide up stages that cause bottlenecks into multiple faster
stages. We discuss this issue in detail in Chapter 4.

Lastly, we can instantiate the parameters with values we have derived from the
circuit, and thereby calculate bounds on the average response time for a specific
crcuit. We do just this for the example micropipeline above in Section 4.4. We

also calculate the worst-case response time for the same example in Section 3.5.

Our results give bounds, not specific values. This means we need not give spe-
cific implementations of cells or compute specific distributions of delays. Different

implementations must only satisfy the upper bounds and lower bounds for the

delays of the basic cells.
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1.3 To Simulate or not to Simulate?

One might ask why one would choose to use a proof-based method rather than
use simulation to study timing. Simulation is the workhorse of timing analysis.
Simulation involves making a model of the system under study, providing sample
inputs, and then simulating the execution of the system. For example, a transistor-
level circuit simulator would need to model properties of the transistors, such as
the speed at which the output changes when the inputs change. We provide the
simulator with a set of transistors, the connections among the transistors, and a set
of (possibly random) inputs, and the simulator then uses its model of transistors

to calculate the output of the system.

Simulation has the following advantages.

¢ One can obtain precision at any granularity. One can typically obtain more

accurate results by running a longer simulation.

e We have great flexibility in what we can model. One can usually use the same
simulator to model a wide range of architectures, a wide range of behaviours,

and a wide range of distributions of delays.

® We can model delay distributions and architectures that are impossible to
model accurately with mathematical analysis. For example, a commonly
used mathematical analysis technique is queueing theory. Queueing theory
typically assumes that components with varying delays have delays that are
exponentially distributed. Exponential distributions may not accurately re-
flect the real distribution of the delay.

On the other hand simulation has the following disadvantages.
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o Simulation is restricted by the computer time and memory available. We
cannot obtain arbitrary accuracy for a simulation, since more complex simu-
lations take more computer memory and more computer time. We never have

infinite amounts of either.

e Simulations do not usually give provable results, and we may have to live
with confidence intervals. Simulations using Monte-Carlo methods can only
gives us an estimate of the likely outcome; they cannot give us a guarantee,
since they only use a random subset of the possible inputs. We can only
obtain guarantees by performing an exhaustive search of a state space. An

exhaustive search is typically computationally intractable.

¢ Simulation results may not be generalisable. Simulations give us specific
results for a specific set of inputs, e.g., for a specific architecture, delay dis-

tribution, and behaviour.

o It takes time to set up a simulation to make sure that it is an accurate
reflection of the real thing. Obtaining an accurate delay distribution for

components, for example, can be difficult.

Therefore, we use an analytic method. The model is chosen so as to balance ap-
plicability of results and mathematical tractability. For tractability, we restrict the
architectures largely to networks of components that have some regularity to them.
For example, Chapters 2, 3 and 4 concentrate on pipelines. Nevertheless even this
restricted set of architectures offers a rich area of designs. There are many pipeline
designs for various computations where data is flowing in one or both directions.
See the references for examples [4, 17, 22, 29, 38, 46, 47]. Chapter 5 investigates
tree-based architectures and Chapter 6 examines more general architectures with

respect to the bounds on the average cycle time.
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1.4 Contributions

The main contributions of this thesis are as follows.

o We give bounds on the worst-case response time RT and worst-case cycle time
CT for linear asynchronous pipelines. Cells may have varying, but bounded
delays. Each cell may have different delay bounds from other cells, and each
cell may have separate delays for communications proceeding through the cell

in a forward direction or a reverse direction.

e We give both upper bounds and lower bounds on the average response time

AR and the average cycle time AC of linear pipelines.

e We extend the behaviours of simple pipelines to allow different communication
behaviours between cells. We can alter the ratio of the number of handshakes,
1.e., request/acknowledgment pairs, on one side of a cell with respect to the
number of handshakes on the other side. We can also allow for handshakes to
be passed conditionally to the next cell in a pipeline. This increased flexibility

allows us to apply our results to a larger class of implementations.

o We give upper bounds on the worst-case response time RT and worst-case
cycle time CT for tree-based architectures. We give both upper bounds and
lower bounds on the average response time AR and the average cycle time

AC of tree-based architectures.

e We give results as closed-form formulae. These formulae give insight into the
influence of each parameter on the performance of a circuit. We interpret
the results, identify bottlenecks, and give advice for pipeline optimisation.
Notably:
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— Worst-case response time is linearly dependent on the length of the
pipeline for pipelines with multiplication factor n = 1. Pipelines with
multiplication factor n = 1 have cells that have the same number of

handshakes on the left as on the right in each repetition cycle.

— Worst-case response time is dependent only on the first cell for pipelines
with multiplication factor n > 1, where each cell deeper in the pipeline
may be up to n times slower than its predecessor. A similar result holds
for trees. Pipelines with multiplication factor n > 1 have cells that have
n handshakes on the left to every one handshake on the right.

— Average response time is independent of the length of a pipeline or tree.
Asynchronous pipelines may be extremely long, and unlike a synchronous
circuit, they cannot suffer from clock-skew problems. Two independent
bottlenecks are observed in pipelines with multiplication factor n = 1.
These bottlenecks constrain respectively the upper and lower bounds on

the average response time.

— We observe the same upper bounds on response time and average re-
sponse time for pipelines when handshakes are conditionally passed deeper
into a pipeline.

Our use of parameterised formulae to compute bounds on pipeline delay is

new, but see the related work below.

e We can simplify the bounded delay model to a fixed delay model when com-

puting average-case bounds, thereby making analysis much simpler.

» We consider a range of architectures beyond pipelines and trees by allowing
limited connections between components. We calculate bounds on the average

cycle time AC of these new architectures.



CHAPTER 1. INTRODUCTION 13

Note that parameters, such as the multiplication factor n, and abbreviations, such
as AC for the average cycle time, are explained as they are encountered in the
following chapters. For reference, these symbols are also summarised in Table B.1
of Appendix B.

The contributions in this thesis extend those found in the work of Ebergen and
Berks [16]. This thesis is based on the previous work but extends it in the following

ways:
o Cell delays have forward and reverse latencies. Previously, each cell only had

one parameter.

o Each cell has its own set of delay parameters. Previously, each cell was

identical except for the end cell which had its own parameter.

e Lower bounds on average response time are calculated. Previously, only upper

bounds were calculated.

e Cycle time measures are calculated. Previously, the only measures were re-

sponse time and average response time.

e Results are calculated for tree-based architectures. Previously, they were

calculated for linear pipelines only.

¢ Results are simpler than the previous work. The proofs are also shorter and

simpler.

e Chapter 6 that discusses joining components is entirely novel.
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1.5 Related Work

We break the related work into two broad categories: (1) analytical approaches and

(ii) simulation and state-space search.

Both categories typically have several things in common.

e An event-based behavioural model. That is, actions in a circuit consist of
atomic actions, called events, that have time stamps associated with them.
Thus event e occurs at time T'(e). Events themselves have no duration. The

time stamps are determined by the delay model.

e A graphical description of behaviour. Graphical descriptions are an intuitive
way to describe behaviour. Dependency graphs, as used in this thesis, are
directed graphs, where the vertices represent events in the system, and the
edges represent dependencies between events. An event can only occur after

all events it is dependent on have occurred.

A similar model, Signal Transition Graphs (STGs), uses a dependency graph
to describe the behaviour. STGs also contain a notion of state, represented
by a marking of the graph. This marking indicates which events can happen
next as the behaviour is simulated. A description of the state of a circuit is
only necessary if we are simulating the execution of a system, or if we need

to observe the state of a system.

e A reliance on regularity and cyclic behaviour to simplify the analysis. We can
typically fold an infinite description of behaviour into a concise repetitious
behaviour. For example, consider the behaviour of a wire with input a and

output b. An infinite representation of the behaviour of the wire in terms of
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a sequence of symbols might be
ababababababa....

After an input a the wire eventually responds by producing an output b.
The behaviour then repeats. Using a repetition operator | | and sequence

operator ; we can concisely represent the behaviour of the wire as
(a;b]

¢ A method of finding a critical path, and some method of reducing the com-
plexity of finding that path. In many systems there may be more than one
sequence of events occurring concurrently. The critical path is the sequence
with the longest delay, as this sequence is responsible for the delay of the en-
tire system. We can restrict the problem of finding a critical path sufficiently
such that the problem only takes time polynomial in the size of the graph
that represents the behaviour. See Section 2.7.2 for a discussion of this and
why the general problem is NP-complete. One can reduce the complexity of

finding a critical path in several ways. We can
— keep to behaviours that are repetitive in nature.
— keep to behaviours that have some regular structure.
— simplify the delay model.

— restrict or disallow certain behaviours that involve choice.

In this thesis, we use an event based model, and describe behaviour using a
dependency graph. We largely restrict ourselves to cyclic behaviours, though we
often give an unfolded, and possibly infinite, representation of a behaviour to help

understand where the critical paths are.
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To simplify the complexity of finding a critical path we

— specify behaviours that are exclusively repetitive in nature with the ex-

ception of the more general behaviours of Chapter 6.

— keep mostly to investigating regular structures such as linear-arrays of

cells, and trees of cells.
— use a bounded delay model.

— make all choices deterministic.

The last point deserves further consideration. Some specifications can, either
non-deterministically or on the basis of the value of an input, choose an alternate be-
haviour. These kind of behaviours are sometimes known as disjunctive behaviours.
The nice property of deterministic cyclic behaviours is that the ordering of events
is predictable, and the timing relationships stay the same from one iteration to
the next. This will frequently allow us to iterate to a fixed point. Where choice
is involved, we have no way of knowing either the event ordering or the timing

relationships a priori. Thus, choice makes timing analysis far more difficult.

We deal with conditional behaviour by effectively eliminating the conditional
elements. If we are trying to find worst-case timing behaviour we assume that the
behaviour that produces the largest delay is always chosen. The alternatives that
give less than the worst-case delay are eliminated, and hence choice is removed.
While this may seem a pessimistic approach, it still gives tight worst-case bounds.
Since we do not specify the probability of making the worst choice, this choice may
indeed be made every time. We perform a similar analysis for best-case timing

behaviour.

In the sections below we restrict ourselves to examining work on timing analysis

of asynchronous circuits only.
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1.5.1 Analytical Approaches

Williams [49] examines rings and pipelines, where a ring is simply a pipeline with
the output looped back to the input. In Williams’s model, signals that pass through
a cell in one direction may have a different delay from those travelling in the other.
Williams describes the behaviour of a cell by a signal transition graph and then,
by finding critical paths through the signal transition graph, derives the forward
and reverse delays through the cell. Williams then uses the delays of each cell as
parameter values of formulae that compute the throughput and latency of a pipeline.
The formulae are simple, because a fixed delay model is used, and because all cells
are identical. Williams applies the result to an asynchronous divider circuit [50].

Sparsg and Staunstrup [45] build on the work of Williams. They also use a fixed
delay model, and describe component behaviours by means of a signal transition
graph. As with Williams, they calculate the delay of the critical path within a
component cell. Then they calculate the throughput of a network of components,
which this time is a set of rings connected together. They derive simple formulae

for throughput and instantiate the parameters with technology-derived values.

Greenstreet and Steiglitz[24] describe pipeline behaviour with a graphical model
similar to a signal transition graph. Like Williams, they simplify the model con-
siderably by making all cells identical. The authors use a variety of delay models
for the delays of each component of each pipeline cell, viz., a fixed-delay model, a
bounded-delay model, and an exponential delay model. They use a different anal-
ysis technique for each one. When using fixed delays, they use a simple algebraic
technique similar to that used by Williams. Secondly, given (upper) bounded delays
they compute a simple bound for throughput. Lastly, given delays with exponen-
tial distributions, they compute pipeline throughput using a queueing model and



CHAPTER 1. INTRODUCTION 18

Monte-Carlo simulation. The results focus on giving the optimum number of data
tokens in a pipeline given the cell delays, and calculating the utilisation of the cells.
The utilisation is the percentage of time a cell spends on average processing data

as opposed to being idle.

Pang and Greenstreet extend the results above [24] to arrays of cells [41]. These
architectures consist of rectangular arrays of identical cells. The delay distributions
are assumed to be exponential. Again queueing theory is used to obtain conservative
bounds on the average throughput and utilization given the number of data tokens

in the system.

Franklin and Pan [20] compare the throughput of asynchronous pipelines with
that of synchronous pipelines using algebraic methods similar to those used by
Williams. The large number of parameters values are sometimes simple approx-
imations, and sometimes they are modelled more accurately. For example, the
authors use the circuit simulation package Spice to calculate values for the clock
skew parameter in the synchronous pipeline analysis. They also have a parameter
that describes the ratio of the speed of the fastest calculation of a stage to the
slowest calculation of a stage. They guess that this parameter is 0.5. Clock skew is

a major factor in their conclusion that asynchronous pipelines are generally faster.

1.5.2 Simulation and State-Space Search

In this section we look at programming solutions to timing analysis rather than
mathematical solutions. Most of the methods given below are exhaustive simula-
tions. That is, all possibilities are examined. However, investigating all possibilities
takes time even after making many simplifying assumptions to make the problem

tractable.
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Burns and Martin [11] present an analysis technique largely derived from Steve
Burns’s PhD thesis [10]. They model delays with an event-rule system, which
describes the events in a system and the dependencies among those events. A
behaviour described by an event-rule system can also be described by a constraint
graph. A constraint graph is much the same as a dependency graph in this thesis.
The behaviours allowed are quite flexible and are not restricted to just pipelines, but
are nevertheless cyclic. The authors use a fixed delay model and allow a general set
of behaviours that is restricted to strongly connected constraint graphs, i.e, there
is a path from each event in the system to every other. They present an algorithm
for determining the time separation between events in a system. For example, they
can compute response time of a system by computing the time separation between

a request event and its corresponding acknowledgment.

Hulgaard et al. [25, 26, 27] extend the work of Burns. The fixed-delay model
is extended to allow for bounded delays, and two new algorithms are developed
to compute time separations of events. One algorithm works on systems without
choice, the other works on systems that allow a restricted form of choice. The
analysis algorithm processes cyclic constraint graphs by unfolding them into infinite
acyclic graphs. Bounds on the average case, much like our own bounds on average
cycle time, are calculated by repeated iterations until a fixed point is reached.
Walkup and Borriello (48] give an algorithm for computing event separations using
a similar model to Hulgaard, but they apply it to acyclic graphs. The authors do

not, however, allow disjunctive behaviours.

Nielsen and Kishinevsky [39] give another algorithm-based approach using the
model of Burns [10]. Again the model uses a fixed delay. They find the critical cycle
in a behaviour described by a Signal Transition Graph. The graphs describe a repet-

itive behaviour, but are otherwise arbitrary. The critical cycle is simply the longest
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cycle in the graph. Lee [33] also extends the model of Burns to allow a greater
number of behaviours to allow some forms of disjunction though delays are still
fixed. Lee’s algorithm also finds critical cycles in cyclic behaviours. Chakraborty
et al. [12, 13] calculate event separations given a bounded delay model and general
behaviours allowing choice. The behaviours are described as a constraint graph
much as in Hulgaard et al. [25]. The algorithm nevertheless runs in polynomial
time in the number of events as it is an approximation algorithm. The algorithm

gives conservative, i.e., not necessarily tight, bounds.

Xie and Beerel [51] calculate average event separations. They use Markov
Chains and stationary probabilities to describe a wide range of concurrent sys-
tems. They approximate delay distributions of components with discrete sample
points. Xie and Beerel describe a timing analysis algorithm and a tool which uses
Binary Decision Diagrams (BDDs) to ameliorate the problems with state-space ex-
plosion. BDDs make state-space exploration much quicker for typical problems.
The key advantage of their method is that the entire state space is searched ex-
haustively and so results are provable. The state space is, however, restricted by
the discretisation of the probability distributions. Lastly, Berkelaar [5] uses normal
distributions to approximate the delays of circuit components, and then computes
a statistical average delay of a circuit using max and + operators over these dis-
tributions. In effect he has a simulator that calculates the approximate worst-case

and average delays.

1.5.3 Comparison of Related Work to this Thesis

Our work borrows the delay model, and many other details, directly from Hul-
gaard [25] and Burns [11]. We prove bounds analytically, not by execution of a
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program. Furthermore, our use of closed-form formulae for bounds is novel. Green-
treet et al. (24, 41] and Williams [49] use formulae for throughput and latency, but
not for bounds, and restrict themselves to identical cells. Franklin and Pan (20]
do give some formulae for bounds, but our model uses fewer assumptions, fewer
parameters, yet it is more flexible, and gives simpler results. We allow for cells that
are not identical, and allow for forward and reverse latencies. Most importantly,
we do not have to instantiate our parameters with application-dependent values
to achieve meaningful insight. Our results concentrate on the control circuitry,
not the data. We are more interested in what the bounds are on the best-case
and worst-case throughput, not in finding under which circumstances the best case

occurs.

Our goal is not circuit synthesis. Rather we wish to gain understanding of the
performance of a system from simple, intelligible models. Unlike the analytic ap-
proaches of Franklin and Pan, or of Greenstreet and Steiglitz, the formulae derived
in this thesis are all based on one coherent methodology. We believe that the results

are more elegant than other approaches, and that proving new results is easier.

1.6 Roadmap of this Thesis

Chapters 1 and 2 in this thesis are largely introductory, and Chapter 7 presents
conclusions and future possibilities. Chapters 3 through 6 contain the heart of the
thesis: the results, the proofs, and the commentary on the results. Because the
proofs are one of the main contributions of this thesis, all proofs are contained
within the body of the text and are not hidden away in appendices. To make the
main chapters easier to digest, each chapter begins with a summary of the results
and of the salient points presented within the chapter. A good overview of the
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thesis can therefore be gained by reading the introductory sections of each chapter.

A more detailed chapter-by-chapter roadmap is:

1. This introduction, including related work.
2. The behavioural model used, the delay model used, and Jjustifications for both.

3. A discussion of worst-case response time RT and worst-case cycle time CT.

Results and proofs are given for pipeline architectures.

4. A discussion of average response time AR and average cycle time AC, two
performance measures that are related to throughput. Results and proofs are
given for pipeline architectures.

5. Tree-based architectures. The same performance measures as in chapters 3

and 4 are applied to tree architectures.

6. A further investigation of average cycle time. Cycle time is generalised to

arbitrary behaviours, and the average cycle time is calculated for networks of

components.

7. Conclusions.



Chapter 2

The Model

2.1 Motivation

To perform timing analysis of a system we need a model of the system, and this
model can be broken into two parts. First we need a model of the system behaviour.
Ideally this model is flexible, intuitive, and succinct. Secondly, we need a timing
model. Most importantly, this model needs to be mathematically tractable, so that

we may use analytic methods on it.

To describe the behaviours in this thesis, we use two forms. We use a regular-
expression like description of behaviour when we wish to be concise. This method
is summarised in Appendix A. We also give a graphical description of behaviour.
While only one representation of behaviour is strictly necessary, the graphical rep-

resentation is clearly more intuitive.

We wish to have no restriction on whether events are inputs or outputs, or
whether they are derived from voltage levels or from voltage tramsitions. Our

model is therefore event based, where each event is a single atomic action. If we

23
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wish to distinguish inputs, outputs, or levels, then we can by labelling events as
such. The behaviours we describe here are based on voltage transitions but there

is no inherent restriction in the model.

We wish our delay model to be as flexible as possible without compromising
mathematical tractability. Our delay model uses bounded delays for the delays of
each cell. Instead we could have used models which involved probability distri-
butions of delays. There are, however, several disadvantages of using probability

distributions.

e Which distributions should we use? Is the distribution appropriate for the
pipeline we are modelling? For example, suppose that we model an instruction
pipeline. How long does the instruction execute stage take? Not only do we
need to know all possible cases of delay in that stage (which presumably
depends on the instruction type), but we also need to know the frequency of

the type of instruction.

Is the distribution appropriate for the environment? As another example, in
an instruction pipeline, the arrival of new data is dependent on many factors,
including the type of caching, the number of levels c‘>f caching, the type of
memory, and the percentage of cache hits that occur. Without extensive
simulation we can’t be sure of the distributions of the inputs, and extensive

simulation defeats the original purpose, which was to avoid simulation.

o How do we perform the calculations? Is the distribution tractable mathemat-
ically or do we have to use simulation? If we choose something tractable (such
as uniform distributions or exponential distributions), we run into the prob-
lems above of whether the distribution is accurate. If we choose an accurate

distribution, we may not have anything tractable mathematically.
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e Are the results rigorously provable? If we don’t have a mathematical founda-
tion for our calculations, the answer is no. If the inputs to our calculations
are convenient approximations to a distribution, can we make any more than

approximate conclusions about the results?

The advantage of the bounded delay model is that it is (almost) always applica-
ble, it is simple enough that we can use it easily, and we can derive provable results,
because the bounded delay model is mathematically tractable. In any case, there
are some circumstances where we prefer to have bounds, e.g., when synchronising

a component with (or within) a clocked circuit.

Markov chain analysis is one compromise that can be made [51], but this requires
that the processes involved be memoryless. That is, the next state of a system is
based on the current state of a system, and not the entire history of states. One has
to use mathematically tractable distributions, such as exponential distributions, to
ensure that this property holds. These distributions may not be appropriate. It
may also be unclear whether this memoryless property accurately models a given
system. Simplifications, such as queueing theory, avoid simulation, but are difficult
to apply. Some authors [24, 41] make assumptions, for example, that delays in one

direction are negligible.

The parameters used in this chapter describe the behaviour and delays of a

pipeline. The symbols used are summarised in Table B.1 in Appendix B.

2.2 Pipelines

We describe pipelines with a behavioural model, a delay model, and a set of param-
eters. One such parameter is the length of the pipeline, L, where L is the number
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of non-end cells. In Figure 2.1 we have L = 3.

---- ro r, rz r3

| IL——- — -

1 Env Cell § Cell 1 Cell 2 Cell 3
! ] - - -
'----a, q, a, a;

Figure 2.1: A linear array of cells.

We are interested only in the communication behaviour at the interface of each
cell as an ordering of events. Each interface between two cells has the same commu-
nication behaviour, viz., a repetition of a request r followed by an acknowledgment
a. A request followed by an acknowledgment is called a handshake. The end cell
handshakes at its only interface, the other cells perform handshakes at both inter-

faces so that in each cycle one handshake occurs at either side.

Requests and acknowledgments are considered instantaneous events, and delays
can be incurred in the cells or the environment of the pipeline. For each cell we
assume that the delay between the receipt of the last input causing an output and
the production of that output is always bounded from above and below. Each cell
may have a set of bounds different from other cells, and we also distinguish between

whether a signal is transmitted through a cell in a “forward” or “reverse” direction.

The delays of the cells do not have to be fixed, but may vary between a fixed
upper and lower bound. Delays may depend on the data received, or they may vary

over different instances of the same cell, or they may vary over time.

Section 2.3 discusses the behavioural model. Section 2.4 discusses folded depen-
dency graphs and Section 2.5 introduces some notational conventions. Section 2.6
discusses the delay model. Section 2.7 discusses the computational complexity of
the problems in this thesis and relates them to a particular problem in graph theory.
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2.3 Communication Behaviours

We give a simple communication behaviour on a cell-by-cell basis, and then combine
the communication behaviours of the individual cells to form a pipeline. Consider

the cell in Figure 2.2 from a linear array. At interface i, the communication be-

7 —— —— T
Interface ¢ Cell i Interface i+/
a —— pr———al a

Figure 2.2: One cell.

haviour for the handshakes can be given by *[r;?;a;!]. That is, there is an input
request, 7;?, and then there is an output acknowledgement a;!. The notation ? de-
notes an input, while ! denotes an output. This behaviour then repeats (indicated
by «[..]). At interface 7 + 1 the communication behaviour is given by *[r;;!;a:417].

Cell 7 synchronizes the handshakes at interface i and i + 1. In general, the
communication behaviour for a cell can take many different forms. We restrict
ourselves to behaviours for cells where for every n handshakes on interface i there

is one handshake on interface ¢ + 1. More precisely, the communication behaviours

we look at are given by

(r:?5 #[(ad; ) [(ris1ls a2a?) ])

In other words, every occurrence of the segment (riy;!; a;41?) takes place in
parallel with the n handshakes (a;}; r;?). The parallel bar || denotes concurrent

operation.
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Most pipelines operate with n = 1. That is, for each handshake on the left of a
cell there is a handshake on the right. Results for response time, RT, and average
response time, AR, were given in [6]. The results are repeated and expanded to
include cycle time here. Handshaking behaviours when n > 1 occur for some im-
plementations of counters. Designs that employ a linear array and a multiplication
factor of 2 are, for example, modulo-N counter implementations (3, 18, 42] and

up-down N counter implementations [19].

(r,.0) (a;.0) (r;.1) (a;.1) (r;,2) (a;,2)
Interface | ————®——c e e —— o -
® e
Interface i+] @ | v, cceeeel D L N . ____ -
("»1 .0) (a '»l'o) ("i.‘ ,1) (a “1.1) (ritl ,2)

Figure 2.3: Unfolded communication behaviour for a cell.
For n = 1 we have a communication behaviour that can be represented by
(% = (@ ) (rir!; @ia?) ])

An unfolded process graph for n = 1 for a cell is given in Figure 2.3. Let us denote
the k-th occurrence of event a; by (a;, k), where k£ > 0. A process graph gives a
precedence relation for occurrences of events. A precedence between occurrences
of events e, and e, is denoted by e — €;. For example, in Figure 2.3 we have the

precedences
(1‘;, 1) — (a;, 1) and (at'+1a0) — (at" 1)

These precedences indicate that occurrence j of event a; can only happen after

occurrence j of event r; and occurrence j — 1 of event a;y, has happened.
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Each precedence arrow has to be caused by either the cell itself or the environ-
ment of the cell. Solid arrows indicate precedence relations brought about by the
cell. Dashed arrows indicate precedence relations brought about by the environ-

ment of the cell.

- =
lel

Figure 2.4: Unfolded communication behaviour for a linear array of four cells and

multiplication factor n = 1.

If we consider the complete network of three non-end cells, one end cell, and the

environment of the pipeline, then we can depict its behaviour in a process graph as

in Figure 2.4.
Interface i r a ———— r a ——— r 3 . r a _——— r a _--->f
\ >_< cee
Interface i+/ Nl N oo ___
r a r a a

Figure 2.5: Unfolded communication behaviour for a cell with multiplication factor

n = 2.

For n = 2 we have a communication behaviour

(7?5 *[ (a5 )l (righs @i ?) )
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that can be represented by an unfolded process graph given in Figure 2.5. The
corresponding graph for a linear array of four cells is given in Figure 2.6.

,ﬁ a L) r, a 3 r’ a ° 'Q ‘. ’. ‘. ’G " r‘ ‘. ’. " r. e L] " ‘. '. ‘. r. ‘. r. ‘. r. a L ’. a L]
: r a, ; r e x n a, x r a, ; r a, x:r‘ ‘rX'z a, ;

r a
3 3

Figure 2.6: Part of an unfolded process graph for a linear array of four cells with

multiplication factor n = 2.

Our behavioural model is a compromise between applicability and tractability.
The behavioural model is tied closely with being able to model micropipelines,
as these are the most common pipeline architectures in the asynchronous world,
though there is no reason why other pipeline architectures cannot be modelled.
There is also nothing in the behavioural descriptions which denies the possibility
of other architectures. For example, Chapter 5 gives results for tree architectures.
The behavioural model of a pipeline has a regular structure which we exploit in
later chapters.

The model is extremely flexible, because we abstract away from the data flow
and concentrate on the communication protocols. Several authors [24, 41, 45, 49]
calculate the number of “bubbles” needed in pipelines and rings to maximise
throughput. These bubbles are the empty spaces in a system. Spaces are nec-
essary in an asynchronous system for data to move around without blocking. We
observe that bubbles and data tokens are functionally identical, though they travel
in opposite directions in an asynchronous circuit. That is, when a data token dis-

Places a bubble, the data moves to where the bubble was, and the bubble moves
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to where the data was. Therefore we do not talk of bubbles, data, or any kind of
token. All that is important is the timing of the control signals.

Another detail we abstract away from is whether a handshake is active or pas-
sive (2, 35, 36, 43]. A communication is active when it initiates a handshake and
passive when it waits for the other side to initiate the handshake. For example,
suppose cell ¢ in our pipeline model handshakes with cell i + 1. Cell 7 is the active
participant. because it initiates the handshake with a request r;. Cell i + 1 is the
passive participant, because it waits for the request r; before responding with an
acknowledgment a;. It is irrelevant to our model, however, which side of a hand-
shake is active and which is passive. We are only interested in the events that occur

and the dependencies.

One detail we do not deal with in this thesis is four-phase handshaking. Each
event is a transition, but we do not distinguish between a rising or falling transition.
Four phase handshaking introduces new complexities which we do not have time

to deal with here. See [8, 43] for some discussion of these.

2.4 Folded Dependency Graphs

We have been using unfolded dependency graphs to represent behaviour. They are
infinite, and contain no cycles. When behaviour follows a regular pattern we can
“fold” the dependency graph to give a more concise description of the behaviour.
This will become useful in Chapter 6.

As an example of a folded dependency graph consider Figure 2.7 which is the
folded representation of the unfolded graph of Figure 2.4. Edges can be labelled

with an occurrence index offset. This indicates the difference in occurrence index



CHAPTER 2. THE MODEL 32

between the target event of an edge, and the source event of an edge. For example,
at level 0, the edge ag — g in the folded dependency graph is labelled with +1.
That edge represents edge (ag,) — (ro,% + 1) for some i. The occurrence index
offset can be any integer including 0 or a negative number. Edges marked with 0
are usually omitted. Therefore we have an edge ry — ao with no occurrence index

offset.

Figure 2.7: Folded dependency graph representing the behaviour of a linear pipeline
with multiplication factor n = 1 and length L = 3.

Note that graphs representing pipelines with n > 1 and graphs representing
trees (see Chapter 5) cannot easily be represented as folded dependency graphs.
Consider a graph such as the pipeline of Figure 2.6. There are many more events
at level 0 than there are at level 1, for example. Note that occurrence 0 of a, is a
direct predecessor of occurrence 2 of ao. That is, there is an edge (a;, 0) — (ae,2).
In a folded dependency graph we might have an edge a; =+? ay where +2 is the
occurrence offset. Note, that in Figure 2.6 we also have an edge (a;,1) — (a0, 4).
Yet our folded dependency graph would give us (a1,1) — (ay,3). The problem is
that the offset is an additive offset, rather than a multiplicative one. This problem
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1s not easily solved by the current model of a dependency graph, though allowing
multiplicative offsets seems the obvious solution. Folded dependency graphs are a
small part of this thesis, but we will be returning to them in Section 2.7.2 and in
Chapter 6.

2.5 Notational Conventions

There are certain conventions we adhere to in this thesis. We will use a straight
arrow — to represent a single edge in the graph. For example, a — b represents an
edge between event a and its direct successor b. We will use a wWavy arrow ~~ to
indicate a path of zero or more edges between events. Thus a ~+ b describes a path
in the graph between a and b. Since the path may have zero edges, a and b may be

the same event.

We will use Greek letters such as a and B for specific occurrences of events
and Roman letters such as a and b for event labels. For example we might have a
specific event a such that a = (a, i), for a specific index i. Similarly, @ — 8 would
correspond to a particular edge in an unfolded dependency graph. For example,
if @ = (r0,0) and 8 = (r,0) then @ — B corresponds to the first request /request
edge in the graph. In contrast the edge r¢ — r, could correspond to the edge
between any occurrence of o and its successor. Also note that, a — b, without

further restrictions on a or b, could correspond to any occurrence of any edge.

2.6 The Delay Model

We need to add a delay model to our behavioural model. As stated in the introduc-
tion to this chapter, we will be using bounds on delays, rather than distributions
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of delays, for their general applicability and their mathematical tractability. The
delays in the model have parameters that describe the upper and lower bounds on
a delay. These parameters are further subdivided, by allowing different parameters
for different cells, and by allowing different parameters for forward or reverse signal

flow. Thus for each cell & in a pipeline we have four delay parameters.

® Jhy is the lower bound on the delay of information flowing forward through
the cell.

¢ Apy is the upper bound on the delay of information flowing forward through
the cell.

¢ dn, and Ay, are the corresponding lower and upper bounds on the delay

through the cell in the reverse direction.

“Forward” is defined as the direction away from the input environment. In all the
pipeline figures given in this thesis where the environment is at the left, this forward
direction is left to right. For example, see Figure 2.1. When the pipeline layout is
vertical as in Figure 2.4 the forward direction is down. All of these parameters are

assumed to have finite values greater than or equal to zero.

As with behaviour we can describe delays in two ways. One is the formal defini-
tion, which associates the delay parameters with formal definitions of separations of
events. There is also a graphical definition, which associates delays with individual
edges in a dependency graph. First we give the formal definition.

Let ¢ be a node in a (unfolded) process graph with ¢ an output of cell h. T(¢)

is the time assigned to node c and

Tored(c) = max{T'(b) | b is a direct predecessor of c}
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That is. Tprea(c) is the latest occurring direct predecessor of c. We stipulate
that the time stamp of an event ¢, i.e., T'(c), is calculated from the time stamp
of the last directly preceding event, i.e., Tored(c). For example, if the precedences
a — ¢, and b — c exist, then the time stamp, T'(c) is calculated by adding a delay
to the time stamp of the latest occurring of a and b. Thus we know both a and b
must have occurred before ¢ can occur. Our delay model prescribes that any timing

assignment T' of the process graph must satisfy the fcllowing constraints.
Tored(c) + dn.¢ < T(c) < Tpred(c) + Any

if node c is a request, and
Tored(c) + Onr < T(c) < Tprea(c) + As,

if node c is an acknowledgment. Thus, event c occurs at least d, £ later than T, .4(c)
and at most Apy later than Tp.q(c) if ¢ is a request. A similar reasoning applies

when c is an acknowledgment.

The constraints prescribe that “forward” delays through cell A have lower bound
dr,s and upper bound Ay 4, that is

dns < cell h forward delays < Ay, f

Similarly, “reverse” delays for cell A are bounded by dn, and Ay,.

We have only chosen to divide delays into “forward” and “reverse” delays. We
could have chosen to divide the parameters into four groups. For example, we
could have separate parameters for r — r and @ — r edges. Likewise, we could
have separate parameters for a —+ a and r — a edges. We have for simplicity used

only two sets of parameters, but in most cases two sets of parameters is enough.
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Consider the worst-case delay between an input request to an output request; that
1s, the delay on request/request edge. Call this worst-case delay D,_,. Consider
the delay between an input acknowledgment to an output request; that is, the delay
on acknowledgment /request edge. Call this delay D,_,,. Let D,_,, = z + z and let
D._,, = y+ z where z represents the delay of the part of the circuit that is common
to both paths. If there is combinational logic between cells, this common delay part
will be large. since part of this delay is the delay that matches the combinational
logic. Note that this delay is modelled by the triangular buffers in the micropipeline
schematics seen in Figure 1.2 and Figure 2.13(i). If z is large relative to z and v,
then D, ., = D,,, and the assumption that we need one set of parameters only

for the forward direction is reasonable.

Even if D,_,, is significantly different from D,_,, we can always make conser-
vative approximations. For example, if D,.,, > D,_,, then we use D,_,, as our
forward delay. Similarly, for lower bounds we take the smallest of the two possible
delays. These approximations mean the bounds we derive may not be tight. While
it is likely that reverse paths have similar commonality in delays, we can always

make conservative estimates here too.

Interface i [ Interface i+/

a - e a

Cell i

Figure 2.8: Forward delays in a cell.

We must be clear about the delays associated with cell A. Cell 0 controls the

“forward” edges ro — 7, and a; — r,. See Figure 2.8. Likewise, cell 0 controls the
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“reverse” edges rg — ao and a; —+ ag See Figure 2.9. Therefore cell i controls edges

re—0 . | .
Interface i Y Interface i+

a PSS Y )N ———a g

Figure 2.9: Reverse delays in a cell.

T — Titl .
forward latencies.

Rit1 = Tig

T — a; .
reverse latencies.
Gyl — a

Interface L v

Cell L

Figure 2.10: The end cell.

The end cell in Figure 2.10 is special in that it has only reverse latencies. The
only edge through the end cell is the “reverse” edge r, — ay. Similarly, the
environment has only forward latencies associated with it as the environment edges
are of the form ap — 7o. The bound for this delay can be thought of as §_; ; and
A_,s. Instead, we label the lower bound and upper bound on the environment

delays d. and A,, respectively.



CHAPTER 2. THE MODEL 38

Figure 2.11: Delays applied to the three edges in the graphical model of a pipeline

with length L = 3 and multiplication factor n = 1.

We can apply the delay model to the graphical behavioural model to get a better
understanding of the delay model. The behavioural model describes the infinite
behaviour of a pipeline. For any given execution of the pipeline behaviour, each
edge in the infinite behaviour has a delay associated with it. Refer to Figure 2.11.
We have associated delays only with the three highlighted edges. Normally we
would associate a delay with every edge. Note that the labelling of the edges here
corresponds to delays, not to the occurrence index offsets of folded dependency

graphs.

The edge (r0,0) — (r1,0) has been allocated delay Agy. Note that we could
have chosen any value between the bounds dg s to Ag s for this edge. This is the
delay of edge (r9,0) — (r1,0) in this execution, and ensures that event (r1,0) occurs

Ag s after event (rg, 0).

Now consider the edges marked with &;,. Here we could have chosen any delay
within the bounds do, to Ag, for these edges. The acknowledgment event at the

destination of the two edges either occurs at time T'(a,,0) +do,- or at time T'(rq, 1) +
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d0.-- The destination event depends on both predecessor events, so it occurs at time

max{T(ay,0) + do,, T(r0,1) + dor}-

Note that the choice of delay we make for these edges has no bearing on the
delays we choose for any other edge (including later occurrences of the same edges)

in the execution. By allowing complete independence of delays between edges, we

have a simple model to work with.

2.6.1 Minimum and Maximum Cycle Times

r r r r

S e W ;

tooia P P

T pryg S a, a, a,
0 2 3

Env Cell0 ' Celll Cell 2 Cell 3

Figure 2.12: Cycle times within a pipeline.

Lastly we define the following expressions representing the maximum cycle time
and minimum cycle time respectively between cells. These are derived by calculat-
ing the sum of a forward and of a reverse latency. See Figure 2.12. The cycle time
between consecutive cells will prove to be important. The maximum cycle time

between cells with the environment delay maximised is defined as
MCa, = max{A. + Ao, Aoy + A1, Ay + Agyy .., Ap_y 5 + ALy}

where we see that all delays are maximised. The minimum cycle time is defined as
mcs, = max{d + do,, 00,f + 810,01, + 82,5, ..., 0014 + 81, }

where we see that all delays are minimised.
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We also define the corresponding expressions that will be useful when we calcu-
late response time, which is a measure that excludes the delay of the environment.

The maximum cycle time between cells with the environment delay minimised is

defined as
MCs, = max{8. + Aoy, Do s+ Drsy A1+ Doy, Apa g+ AL}

Note that the environment delay is a lower bound, while all other values are up-
per bounds. We choose this representation because when we calculate worst-case
response times we are interested in the maximum delay of the pipeline and the

minimum delay of the environment. This will become clear in the next chapter.

Lastly we have the corresponding minimum cycle time. The minimum cycle

time is defined as
mca, = max{Ae + JO.rv 50,! + Jl.rv Jl.f + 62.?1 ceey JL—lJ + JL"'}

Note that the environment delay is an upper bound, while all other values are lower

bounds. Since A, > 4. it is not necessarily true that mcy, < M Cs..-

2.6.2 A Micropipeline Example

Micropipelines were first described by Sutherland [47] and are a frequently used type
of asynchronous circuits. Figure 2.13 shows three representations of a pipeline.

Figure 2.13 (i) gives the schematic of the control circuitry of a micropipeline.
Data (not illustrated) travels from left to right and the C-elements regulate the
data’s progress. Each C-element waits for a transition on both inputs before pro-
ducing an output transition. See Appendix C for a description of C-element be-
haviour. The small triangles represent delay buffers, that are associated with data

processing delay.
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Figure 2.13 (ii) gives a conceptual idea of the control circuitry. The wheels
represent the flow of control and turn in the same direction as the signals in the
micropipeline. Each spot on a wheel must synchronise with a matching spot on an
adjacent wheel at a bar, but may otherwise spin at any speed. The speed would
be governed by the delay buffers in the micropipeline. The bars perform the same
synchronisation as the C-elements in (i).

Figure 2.13 (iii) converts the micropipeline to our model. In our model the
pipeline has three non-end cells and one end-cell. Hence, we model it as a linear
pipeline with parameter L = 3. Micropipeline stages have one handshake on the
right to every handshake on the left and so we use the parameter n = 1.

In Figure 2.14 we annotate the micropipeline with delays. We assume that the
only delays in the circuit are the delay buffers. That is, we assume that the C-
elements and wires have zero-delay. This causes no loss of generality, because we
can always model the delays in the C-elements within the delays of the buffers. We
can do this by adding the delay of the C-element to the delay of both buffers.

2.6.3 Critical Paths

When a dependency graph and a timing assignment is given, we can define the
useful notion of critical paths. Informally, given two events a and 3, and a critical
path a ~ f between them, then the sum of the delays on this path is equal to
T(B) — T(a)- That is to say, the delay on this path is responsible for the delay

between the events.
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Figure 2.13: Three representations of a pipeline: (i) a micropipeline. The environ-

ment is labelled with an e and the cells are outlined, (ii) a simplified representation

of the control flow, and (iii) our model where length L = 3.
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Bye.ay,]
I a,
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Figure 2.14: A micropipeline with length L = 3. The environment delay is labelled

with an e.

We define an edge a — 3 to be a critical edge if one of the following conditions

i1s met,

(i) B = rg, and 4. < T(B) — T(a) < A. where @ must be an occurrence of the

event ao.
(it) B = Thy1, and 8y < T(B) — T(a) < Ap 4 for some event a.

(ili) B8 = an, and &, < T(B) — T(a) < A4, for some event a.

The above definition covers the three cases: environment delays, forward delays
and reverse delays. Note that the lower bound §, (where z € {e, (k, f), (k,7)}
depending on the type of edge) is automatic by our statement that edge delays
must be at least 4,. The candidate upper bound A, may not always reflect the
upper bound on delay between events « and B, because other dependencies may
make event 3 occur later. We call a directed path a critical path, if all its edges are
critical edges.
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We can view the critical edges as pieces of elastic which can “stretch” between
lengths 4, and A,. For each node at least one incoming edge must be a critical
edge, because of the delay constraints. If we stretch an edge beyond A. it breaks.
On a critical path, we know that no bit of elastic on that path is broken, since, by
the choice of the edges on the path, none of the bits of elastic is stretched beyond
its upper bound A,.

A) B)
T(f|)=o T(l‘)=A+l T(t|)=o T(‘i)=A
L a, L a;
L Ty Liel
T(am) =1 T(au)=1

Figure 2.15: Example of critical paths. In A) only edge a;;; — a; is critical. In
B) both edges are critical.

Examples of critical edges are given in the process graph fragments of Fig-
ure 2.15. The paths that we define as critical depend on the time stamps. The
edge delays may influence the time stamps, but do not directly determine whether
an edge is critical. In Figure 2.15 some critical edges are illustrated by means of
two different timing assignments to the nodes of a process graph. Notice that in
(A) only edge a;y) — a; is critical, while in (B) both edges are critical. In part (B),
note that edge a;41 — a; is critical by our definition, because T'(a;) — T(ai+1) < A.

2.6.4 Special Path Definitions

To simplify notation in later chapters we use the following definitions. These

types of paths will crop up when we look at average-case behaviours.
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ajtr 0
ajfr 1
alfr 2
a r 3

Figure 2.16: An example of a path P in [1,3].

A path P € [z,y] is a path in a dependency graph that consist of events between
level z and level y, where level refers to the depth in the pipeline of the event. For
example, a path P € [0, L] would be an unrestricted set of paths. A path P ¢ (1,3]
would consist of only the events r,, a;, 73, a,, r3, and aj. Figure 2.16 illustrates an

example path in [1, 3].

==
Ie‘

Figure 2.17: An example of a path P in (1,3]. Note that only the start and end

events are at level 1. All other events are in [2, 3].

A path P € (z,y] is a path P € [z + 1,y], except for the end points of the path,
which are events at level z. For example P € (1,3] might be a path r, = r; —
T3 —+ a3 — az = r; — az — a;. See Figure 2.17. We will typically be using paths,
P € (0, L], that have both endpoints at level 0, (i.e., at the environment), and no
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intervening events at level 0. Note, that the definition does not preclude single edge
paths at the environment in this case. For example, a path (rg,z) — (ao,i) is a
path in (0, L].

aj¥r 0
ajyr 1
alJfr 2
a r 3

Figure 2.18: A dependency graph, with an example of a path P in (1, 1] highlighted.

Finally, we call a path a level z path, if it consists of events only at level z. This
is represented in the graphs by a horizontal set of edges. A path P € [z,z] would
also describe a level z path. Figure 2.18 illustrates a path at level 1.

2.7 Related Problems in Graph Theory

Now that we have introduced our graphical model we can relate the problems in this
thesis to graph theory. First, however, we discuss the computational complexity of

the problem, if we were to compute our results by means of a program.

2.7.1 Min-Max Constraints

Our work is a restriction of a more general problem, the problem of finding event
separations in the presence of “Min-Max” constraints. When an event « is de-

pendent on all predecessor events, we find the time stamp of the last occurring
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predecessor using the max operator and calculate the time of event a from there.
We call the formula used to calculate the time stamp of an event a “max constraint”
if it uses only the max operator. We can see such constraints in Section 2.6. Some
concurrent systems such as those that have events that depend on only one of a set
of predecessor events may require the use of the min operator. These behaviours
crop up when we deal with choice in a behaviour. When an event « is dependent
on one of a set of predecessor events, we find the earliest time of the predecessors
using the 1win operator and calculate the time of event a from there. We call the
formula used to calculate the time stamp of an event a “min constraint” if it uses
only the min operator. Finally, we call a formula that calculates the time stamp of

an event a “min-max constraint” if it uses both min operators and max operators.

McMillan and Dill [37] show that finding event separations when we have “min-
max constraints” and bounded component delays is NP-complete for acyclic sys-
tems. As we saw in Section 1.5.2, most authors restrict the problem so that it is
not NP-complete. They examine either a cyclic system, avoid disjunction, or use
fixed delays. The concurrent systems in this thesis require only the use of the max

operator, and thus we stick to the simpler model of “max-algebras”.

2.7.2 The Minimal Cost-to-Time Ratio Cycle Problem

We relate the problems in this thesis to the Minimal Cost-to-Time Ratio Cycle
Problem as described in Dantzig [14] and in Lawler [32]. Here the problem is
described as a directed cyclic graph, which is like a folded dependency graph. Each
edge is weighted by two values, a “profit” value, and a “cost” value!. The problem

is to find the cycle that maximises the profit, while minimising the cost.

YThe terms used here are mine.



CHAPTER 2. THE MODEL 48

For example. consider a transport ship that may travel to any port it chooses [14,
32]. Each port is a vertex in the graph. Each arc is a voyage between ports and
the “cost” is the number of days that the voyage between ports takes. The “profit”
weighting is the amount of money that the ship collects by travelling between a
pair of ports. The journey that maximises the ship’s profits per day is therefore
the cycle through the graph that maximises the ratio of profits/cost, or in other
words minimises the ratio of cost/profits. This problem is a fixed delay problem
with max constraints. Lawler [32] gives an algorithm that solves this problem in

O([V|*log |V]|) time. where |V] is the number of vertices in the graph.

Williams [49] recasts this problem to finding the critical cycle in a folded de-
pendency graph. The “profit” value is now the (fixed) delay of an edge. The “cost”
value is now the change in occurrence indices around the cycle. The problem is
nevertheless the same as the Minimal Cost-to-Time Ratio Cycle problem. We wish
to find the cycle with the maximum delay divided by the number of occurrence in-
dices the cycle encompasses. For example, perhaps we have a cycle in a graph that
is weighted with 10 units of delay between events (e, %) and (e, + 1), and another
cycle that is weighted with 18 units of delay between events (e,:) and (e,i + 2).
The ratio of (delay/number of event occurrences) is 10 for the first cycle, and 9 for
the second cycle, so the first cycle is the critical one.

Solving the Minimal Cost-to-Time Ratio Cycle problem is addressed by other
authors, each giving a polynomial algorithm. Burns [10] gives an algorithm that
is O(|V||E|) given certain restrictions on the occurrence indices. Nielsen and
Kishinevsky [39] give an algorithm that computes the problem in O(b%|E|) for
some small value b and an initial state marking. So, in general, finding the critical
cycle is a problem polynomial in the size of a graph. In contrast, our solution gives

analytical solutions for specific examples.



Chapter 3

Calculating Worst-Case Response

Times

3.1 Response Times

In the previous chapter we described our model, and in particular, how that model
applied to pipelines. Now we are ready to start answering questions about the speed
of the pipeline. In this chapter we introduce two of our measures, Response Time,
RT, and Cycle Time, CT, and give closed-form formulae for the upper bounds of
both quantities.

Both response time and cycle time measure the worst-case time separation be-
tween two events given the worst possible combination of delay assignments to the
elements in a pipeline. In the case of response time, we measure the delay between
a request from the environment of the pipeline to the succeeding acknowledgment
from the pipeline. See the illustration in Figure 3.1. In the case of cycle time, we

measure the delay between a request from the environment and the next request

49
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from the environment. See the illustration in Figure 3.2.

Response Time
VN

| e | | e | | —

NCRORR XX R
SRR R R R X
NoX XX XXX

Figure 3.1: Response times are the time separations between a request and its corre-

a r

sponding acknowledgment. Given a graph of the behaviour of a pipeline with length
L =3 and multiplication factor n = 1, the relevant separations are illustrated. We
have to select the occurrence of the request/acknowledgment pair carefully to find

the worst-case response time.

Because we are calculating a worst-case bound, we can reduce the complexity
of the problem significantly. There are infinitely many possible choices of arbitrary
delay assignments for a process graph, as the delay ranges are continuous. Even
given a particular delay assignment we still have to find the critical path from the
infinite number of paths through the graph. Instead of considering an infinite num-
ber of cases. we show that we need to examine only one timing assignment and L
paths, where L is the length of the pipeline, by judiciously choosing delay assign-
ments and paths. This is one of the key strengths of using bounds - a reduction of

the complexity of calculating worst-case response times to manageable proportions.

The measures in this chapter are useful if we wish to know the worst possi-
ble delay of a pipeline for one communication. This may be vital information for

synchronizing the pipeline with other systems that represent the environment of
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Cycle Time
T
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N XX XK XK X, e
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Figure 3.2: Cycle times are the time separations between successive requests. Given

a graph of the behaviour of a pipeline with length L = 3 and multiplication factor

n = 1, the relevant separations are illustrated.

the pipeline. For example, we need guarantees of the worst-case speed of an asyn-
chronous circuit if we are to interface it with a clocked circuit. As another example,

consider a real-time system. Real-time systems also need to give delay guarantees.

This chapter proves the following.

o Response time for pipelines, RT, is bounded as follows

k-1
RT S ma-x({Ak,r + Ak—-l,f + Z(Ah,r - Jh.r)
h=0

—~(dor +de)n* + 80, |1 <k < L}YU{Aq,})

Response time depends on the longest of L + 1 possible critical paths, where
each path corresponds to the maximum depth the path reaches in the pipeline.
The formula above maximises over the delays on each of the [ + 1 paths.
Note that the response time is strongly dependent on the variation in reverse

latencies, viz., the summation term. If there is some variation in the reverse
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latencies, then this summation term gets bigger and bigger with k, and hence
1s maximised at L.

If we can rearrange the pipeline we can minimise the bound by careful place-
ment of cells. When the multiplication factor is n = 1, we place the slow cells
at the front. Thus when & = 1 we maximise A,, 4+ A_; ; and when k = L we
maximise the summation term. When n > 1 we can hide slower cells deeper
in the pipeline because the exponential term (o, + 8. )n* takes over. We then
optimise cell 0 for speed, and we have the freedom to optimise cells deeper
in the pipeline for other measures such as power consumption or area. See

Section 3.3 for discussion and caveats.

e An upper bound for the cycle time of pipelines, CT,, is
CTu& = RTub + Ae

where RT, is any upper bound on the response time RT. In particular, we

can add A, to the bound for response time given above to obtain

k-1
CT < Ac+max({Ar, + Qi1 s+ Y (Any — Ony)

h=0
—(50‘,- + 5,)n" + 50',- I 1 S k S L} U {Ao‘r})

Thus cycle time has the same bound as that for RT with the addition of one

environment delay A..

* In general, any upper bound on cycle time, CT),, is related to an upper bound

on response time, RTy,, for any system with a handshaking environment as

CTuw = RTy + A,
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e We can calculate cycle time between consecutive requests or consecutive ac-
knowledgments. We choose to calculate cycle time between consecutive re-
quests, since it serves as an upper bound for cycle time calculated between
consecutive acknowledgements. Surprisingly, the bounds calculated are not
necessarily the same in each case. See Section 3.4 and, in particular, the

discussion of Lemma 3.6 as to why this is so.

e Behaviour in which handshakes are conditionally passed deeper into the pipeline
have the same worst-case bounds for RT and CT as those calculated for
non-conditional behaviour. We define conditional pipeline behaviour in the
same way we define normal pipeline behaviour except that each cell has a
boolean guard. When the guard is true, a normal handshake communication
takes place with the cell’s right hand neighbour. When the guard is false,
the normal handshake communication with the cell’s right hand neighbour
is omitted. See Section 3.6. Conditional behaviour can be used to model
some implementations of stacks, for example. As with previous calculations,
we carefully select a set of possible critical paths to prove our results. Since
we are looking for worst-case bounds, we can choose a set of paths that is

equivalent to the set of paths chosen for non-conditional behaviour.

3.2 A Timing Property

Before we formulate and prove some properties about response times, we define
the concept of response depth of an occurrence of an event. For the definition of

response depth one can use Figure 3.3 as an illustration. Let the following path
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exist in B, where B is the process graph that describes the pipeline behaviour.

(Bitks Jivk) = (Givk—1, Jirko1) = - o(@ir1, Jiv1) = (a5, 7:)

with £ > 0 and occurrences ji . < Jitk—1 < Jitk—2 < ... < Jig1 < jJi- That is,
the acknowledgment a; depends on a;;; via a sequence of acknowledgments, one
for each interface. Let furthermore T be a timing assignment for behaviour B. We

Response Depth

(@iek2 Jisk2 )

(ks »Jivkcer )

- (ai-rk' ji-o-k)
Tivk Jivkd

Figure 3.3: Event (a;,j;) has response depth k. That is, there is a critical path
(@itk, Jisk) ~ (@i, Ji) consisting only of acknowledgment/ acknowledgment events.
All solid edges (az41,Jz41) = (az,7jz) have delay of at most A .. Either there is

00 edge (@itk+1, Jivk+1) = (@isk, Jisk) or that edge is not critical.

say that (a;, j;) has response depth k for behaviour B and timing assignment T iff
the path (air, Jivk) = (Gigk-1, Jivro1) = v-(@ig1,Jiv1) = (@5, i) is a critical path,
and the edge (@iti+1,Jitk+1) = (@isk, Jirk) does not exist, or, if it does exist, it is
not critical. Let us call this critical path the “response path” for acknowledgment

(a:,Ji). For example, if we have a response path with ¢ = 0, and k& = L, then we
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have a critical path of acknowledgments from the end-cell to the environment, with
response depth L.

The following auxiliary lemma will be useful when we actually calculate the

worst-case response time.

Lemma 3.1 If the response depth of (a;,5:) s k,i+1 < i+ k < L, then event
(ai. j; — nF) ezxists, and
k-1

T(a:i, ji) — T(as, ji = 2*) < Aigier + Aipk-1,5 + Z(Ai+h,r — Oithyr)
h=0

(5:0) (3,0 (5.1) (ayd) (5.2) (8,2) (5.3) (a) (.4) (ay4) (55} (a,5) (5,.8) (a,6) (,.7) (4,7) (r,.8) (4,8) (,.9) (a,9) (r,.10) (a,10)

. ———-

- -- - - -
(1.0} (armi z (r.1) (a,.l)j i (r,.2) (¢,.2)X{rl.l) “"JX (r,. 4} (d,l): i
\ >< (Y I )

(7.0 (a,0) (n.d) ta,d)

Figure 3.4: Part of an unfolded process graph for a linear array of three cells, i.e.,
length L = 2, with multiplication factor n = 2. The vertices are labelled with

occurrence indices.

This theorem says that if acknowledgment (a;, j;) has a response depth of k,z +
1 <1+k < L, then the duration of the n* handshake cycles at interface i that end
in (a;,j:) is at most Airrr + Aiyror,g + XF2a(Aishr — Sisn,). The factor n* in the
above equation will prove useful, because we give a linear bound to the duration
between two events that have an exponential number of events between them if
n > 1. Note also that the only term that depends on the length of the pipeline, i.e.,

the summation term, only refers to reverse latencies. We will return to this later.
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Here is a brief example of the main theorem. Suppose the multiplication factor
is n = 2. the response depth is k = 2, and the pipeline length is L = 2, and that
we are looking at event ag so ¢ = 0. Refer to Figure 3.4. Let us choose j; = 10.
Therefore we wish to show that

k-1
T(a(h 10) - T(af), 10 - 22) S AH-k,r + Ai+k-—1,! + Z(Ai-{-h,r - Ji-l-h.r)
h=0
2-1
T'(ao,10) — T'(aq.10 — 4) < AQgiar+ Aogta-14 + Z(A0+h.r — So+hr)
h=0

1
Az.r + Al,f + Z(Ah,r - Jh.r)
h=0
T(ao,10) — T'(ao,6) < Dpr + A1+ (A1y —81,0) + (Ao, — dor)

T(ao, 10) - T(ao, 6)

IN

Since the response depth ¥ = 2, we know that (ao, 10) is dependent on an ac-
knowledgment 2 levels deeper in the pipeline, viz., (a;,1). So, tracing further back,
(@0, 10) must be dependent on (rs,1). In turn (r5,1) is dependent on both (r;,2)
and (az,0). Suppose for the moment that the critical edge is (az,0) — (r2,1). The
path from (a;,0) to (ao, 10) comsists of the following four edges: (a2,0) — (r2,1),
(r2,1) = (a3,1), (az,1) = (a1,4), and (a;,4) — (o, 10). Maximising this path
means assigning the following delays respectively for each edge: A, 4,A2,,A;,, and
Ao Notice that edges going up have a reverse delay while edges going down have a
forward delay. The horizontal edges alternate between forward and reverse delays.
The path from (as, 0) to (ao, 6) consists of the following two edges: (a2,0) — (ay1,2),
and (a1,2) — (ao,6). Minimising this path means assigning the following delays
respectively for each edge: 4,,, and & ,. Then,

T(ao,10) — T(a0,10 —2?) < (T(a3,0) + Ay s+ Agy + Ay, + Ag,)
-(T(Gg, 0) + Jl.r + Jo.r)
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which is equivalent to

T(a0,10) — T(a0,6) < Az, +A1s5+ (A1 = 81) + (Ao — o)

If the critical edge is (r;,2) — (r2,1) the same result can be derived.

Before we prove the main theorem, we give another lemma. The lemma says
that if an acknowledgment to a request to cell k depends only on cell & itself and
not on cells k£ + 1,... L, then the only delay incurred is the delay of cell k.

Lemma 3.2 For any k,0 < k < L, if the response depth of (Gk,Jx) is 0, then
T(ak,3k) — T(re, ji) < A,

Proof. In any behaviour B of a pipeline with the given restrictions, there are at

most two direct dependencies that end in (ag, ji), viz.

(7%, Je) = (ak,jk) and possibly (a@k41,Jre1) = (Gks k)

If the response depth of (a,ji) is 0, then either the dependency (ak+1, Jrs1) —

(@k, jk) does not exist or, if it does exdst,

T(ak,jk) - T(ak+17jk+1) > Ak,r

This is equivalent to saying that the edge (ar41,je41) = (ak, J), if it exists, is not
a critical edge. Since each node must have at least one incoming critical edge, the
edge (re,jk) — (ax,Jji) is a critical edge. Furthermore, we observe that the delay
through any edge of the form (rg, ji) — (@k, jk) is not an environment delay. Hence,

by our definition of the timing model, the delay through edge (r&,ji) — (as, Jk)
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must be bounded above by A, since it is a “reverse” delay.

O

We can now prove the main lemma.

Proof of Lemma 3.1. By induction on k.
Basis. Assume that (a;, j;) has a response depth of £ = 1. Let (@is1,Jiv1) = (as, 7:):
then (ai41.Jis+1) has response depth 0. We have a (portion of a) dependency graph

as in Figure 3.5 which we can derive from the behavioural model.

First we deal with the statement that event (a,, j, — n*) exists. Let us look at

the behaviour of a cell at level 1.
(7 #[ (@i 7)) |[(risa); aia?) )

If (ai, ji) exists and has a response depth greater than 0 then it must depend on an
acknowledgment from a deeper level. Therefore, from the behaviour given above,
there must be at least n handshakes at level 7 before the first synchronisation with
an acknowledgment from level i + 1. Hence, (a:, ji) must be at least the n + 1st
occurrence of a;. Therefore (a;, j; — n) exists. This is illustrated in Figure 3.5.

(r..j;n) (@, j,-n) (r..jJ (a.j;)

@y Jiur ) (N1 Jint) (@0 Jsut)

Figure 3.5: Example of paths used in the base case. The Jagged line comsists of
2n — 1 edges.
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We now move onto the central claim. From the definition of Tpred() and the
dependency graph in Figure 3.5, we have Tored(Tis1, Jiv1) = Tprea(ai, ji —n). In the
proof below we take Tpreq = Tprea(as, ji — ). We wish to derive an upper bound for

T(a:, i) — T(ai, ji — n). We observe
T(a,-, Jt) - T(au]t - n)
=  { Break path into 4 edges. }

(T(a;,j,-) - T(a,-+1,j,-+1)) + (T(ai+11ji+1) - T(Ti+1,ji+1)) + (T(r,-+1,j,-+1) -
Tpred) + (Tpred - T(au ji - n))

< {(ai,J:) has positive response depth so timing dependency exists. Also,

ack/ack pair is a “reverse” delay. }
Ai,r+(T(ai+lvji+1)—T(ri+17jt'+l))+(T(ri+1aji+1)_Tpred)+(Tpred—T(aiy ji—n))
< {(@it1,5i41) has resp. depth 0, Lemma 3.2 }

A,-,,. + Ai+1.r + (T(Ti+1,ji+1) - Tprcd) + (Tprcd - T(Gi,ji - n))

{ Torea = Tprea(ai, 3i — 1) = Tpped(Tis1, Jis1) }
Bir + Bisrr + (T(ritr, Jivr) = Tpred(Tivrs Jiv1)) + (Tprea — T{as, Ji — n))

< { From definition of timing assignments and because edges ending in re-

quest are forward delays }
Ai,r + Ai-l—l,r + Ai,f + (Tpred - T(au ji - n))
< { Minimum edge delay is &;, }

Dir + Dipre + Aip + (—6iy)
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= {cale. }
Ai+l..1' + Ai,f + (Ai.r - 61'..1')

{calc,k=1}

Ditkr + Aiti-15 + E"h;cly(Ai+h.r — Oithr)

Step. Assume the theorem holds for k > 0 and that (a;,j;) has response depth
k + 1. Then there is a node (@41, ji+1) such that dependency (ait1, Ji+1) — (ai, Ji)
exists and (ai41,Ji+1) has response depth k. From the induction hypothesis it
then follows that node (@41, ji+1 — n*) exists. Given that node (a1, jis1 — n¥)
and dependency (aiyi1,ji+1) — (a;, j;) exist, we show that node (@, ji — nF*') and
dependency (ai41,Jis1 —n*) = (a;, 5 — n**1) also exist and that we can depict the

dependencies only for levels 7 and i + 1 as in Figure 3.6.

(r‘ . J.) (“i . I,)

(@eyediggl) Ty diad) (CHYRY )

Figure 3.6: A part of the behaviour graph at levels i and 7 + 1. The Jagged line
consists of 2n — 1 edges. Dotted lines represent paths.

Let us look at the behaviour of a cell at level i.
(r? *#[ (al; 7:?)"||(rigsh; @i ?)])

From this behaviour it follows that between any two successive edges a;y; — a;

there are n edges a; — r;. It follows that dependency (a;;1, jiy1 — 1) = (ai,5i — n)
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exists. Repeating this step n* times yields the dependency graph above with direct
dependency (aiyi, Jit1 — nk) - (a, Ji — nk+1)-
Note that the above proof also gives us the existence of (a;, j; — n**!).

Now we observe
T'(a:. i) — T(ai, j; — n*+t)
= { Break path into three: edge, path, edge. }

(T (a1, 3:)) = T (@41, Ji41)) + (T (@is1, Jit1) — T(@it1, Jiwr —1%)) + (T (Gig1, Jivr —
n*) — T(a;, j; — n*+1))
< { (@i41,Ji41) has resp. depth k, induction hyp. }

(T(a:. i) =T (@iv1s Jiv1)) + Airrier +Divrebot, g + 52 (Aip14hr — it1+hr )+

(T(@it1. Jie1 — nk) - T(ai, Ji — nk“))

< { (a:, i) has positive response depth, and ack/ack pair is a reverse la-

tency }

Air +Disitre + Disk s+ ko) (Divhr = Givhe) + (T(@is1, Jigr — k) — T(ai,7:—

)

< { (@i41,Jir1 — n¥) = (a;, 5 — n*+!) exist, minimum edge delay is 4;, }
Air + Divigre + Digief + They (Dishe — Signr) + (—6ir)

< {ecal}

Aivisre + Aivieg + TFo(Dishr — Oignr)
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3.3 Worst-Case Response Time

The worst-case response time is useful if we are comparing an asynchronous circuit
against a clocked circuit. It is also useful should we wish to interface an asyn-
chronous circuit with a synchronous one. In this case we have to show that the
asynchronous circuit will be ready with a result within the time allowed, even if

the worst case occurs.

With the preceding theorem, we have now done most of the work to find an
upper bound for worst-case response time. We divide the calculation into L cases

depending on the depth from which the critical path of acknowledgments originates.
We have the following theorem.

Theorem 3.3 The worst-case response time RT for any pipeline (as defined in

Section 2.3 operating under a delay model of Section 2.6 ) is bounded from above as

k-1
RT < max({Aw, + Ae-rp + > (Dhr — Ony)
h=0

—(do,r + 8.)n* + 8o, |1 <k < L}U {Ao,})

Proof. We have to find an upper bound for T'(aq, j) — T(ro,j) over all j > 0 and
all valid delay distributions. Each acknowledgment has some response depth, say
k, where 0 < k < L. For a response depth k = 0, we have from Lemma 3.2,
T(ao,7) — T(ro,3) < Aq,. For a response depth of k > 0, we use the result of the

previous Section. We observe

T(a01 ]) - T("Os j)

=  {calc. }
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(T(ao,3) — T(ao, j — n¥)) + (T(a0, j — »*) — (T(ro,5))
< { (a0, ) has response depth k, Lemma 3.1,{=0 }

Air + Bicr s + TiZo(Bbr = &ns) + (T(a0, 5 — n*) = (T(70, 7))

Notice that there are n* handshakes at level 0 between occurrences (ao,7) and
(@o.j — n*). The handshakes at level 0 experience delays through the environment
and through cell 0. Assuning that the environment’s minimum delay is 4, for edge
a9 — 1o and the minimum delay of cell 0 for a reverse latency edge ro — aq is
do.r» the minimum duration of one cycle through environment and cell is §o, + J..
Therefore the minimum duration from T'(aq, j — n*) to T(ro, 7) is (o, + d.)n* — o,
This then leads to the inequality

k-1

T(a0,J) = T(r0,J) < Akr + Brcrp + I _(Anr — &ny) — (dor + 8.)0* + 8o,
h=0

Maximising these upper bounds over all k,0 < k < L gives the desired result.
o

3.3.1 Simplifying the Bound

The bound above cannot be simplified further without further assumptions about

the variables.

Let us look at the n = 1 case.

k-1
RT < max({Ae,+ Ar_rs+ ) (Any — On,)
h=0

—(60.1- + Je) -1+ 60.1' I 1<k< L} U {AO.P})
k-1
= max({Ak,r + Ak—l,f + Z(Ah,r - Jh.r) - Je I 1 S k S L} U {AO.r})
h=0
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We maximise over L+1 possibilities. One possibility corresponds to a path through
cell 0 and gives us the delay Ag,. The other L cases correspond to a response
depth of k, where 1 < k < L. Each case consists of the delays Ag, + Ak—14, a
summation term Y5=1(As, — dx,), and an environment delay term —4. Notice
that the summation term depends only on the reverse latencies. As k gets larger
the summation term can only get bigger, since Ay, > dhr for all . The bound
always depends on the cycle time between cells k£ and k — 1. Consequently, the
bound becomes smaller if we put the adjacent cells with the slowest cycles, i.e.,
Akr + Ark_y ¢, near the entrance of the pipeline, as this is where the summation

term is minimised.

In many implementations the variation among cell delays is only in the forward
latencies. The reverse latencies may be fixed, i.e., Ap, = 0, for 0 < h < L.
Consider a pipeline with combinational logic (for example, arithmetic logic) between
the latches. There may very well be a variation in delay in the forward path, since
the delay of the combinational logic may have variations and the delay of the forward
path matches this delay. The reverse path simply signals an acknowledgement and
is not matched with any computations. Thus variation in the delay of the reverse
path are less likely. With this assumption the summation term disappears and the
result is independent of the length of the pipeline. Thus,

RT

IN

max({Ag, + Apoy g + E(O) -0 |1<k<L}Uu{Ao,.})
= max({Ag, + Agor g — ;:(i 1<k<L}u{Ao.})

= max({Agr + A1 |1 S k< LU {Ao, +6.}) — 6.

= MCs, — 4.

In other words, in a linear pipeline with no variation in reverse latencies per cell,
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the worst-case response time is at most the maximum cycle time between adjacent

cells minus the minimum environment delay.

Now, we can look at the n > 1 case. To simplify the formula we restrict the
possible delay ranges of the maximum forward and reverse latencies of each cell.
We assume that Ax, < Ag, -n* and Ap_y s < 4. - n* where A > 1. Each cell has
maximum delays that are exponential in the depth of the cell in the pipeline. That
15, cell ¢ + 1 can be up to n times slower than cell : and the bound still holds. In
most designs this will be a reasonable assumption. It is hard to imagine the delay of
cells getting more than exponentially bigger the further one gets into the pipeline.

To simplify the formula further, we again assume that there is no variation in

reverse latencies, i.e., Ay, = 8y, forall 0 < h < L.

k-1

RT < max({Ax, + Apr g+ Y_(0) — (dor + 6e)n* + 80, |1 <k < L}YU {Ao,})
h=0
{Using Ap, < Ao, -n*}

IA

max({Ao, - n* + Aroy = (Sor +8)n* + b0, | 1 <k < L}U{A0,})
{Using &, = Ao}
= max({Ao, - * + Ak-1s — (Aor +8.)0% + Ag, |1 <k < L}U{Ao,})
= max({Ak-1s — 6. -1+ Ag, |1 <k < L}U{Ao,})
{Using Ap-1 s < 8. -2 }
< max({0+ Ao, |1 <k < L}U {Ao,})
= Qor

This is a tight bound, because Ao, is always a possible worst-case response time

when the response depth is zero. That is, cell 0 alone is responsible for the delay.

Note that we can simplify the formula in different ways by making different
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assumptions. The assumptions Ap, < Aq, - 1P, Ap_yy < 6. -nh, and A, = Ons
seem reasonable and give a tight bound. With these assumptions one can say that
if the reverse latencies have no variance (i.e., Ap, = Onr) the delay in the first cell
is the only one that matters. The rest of the pipeline can be extremely slow and

may be optimised for power consumption or area.

3.3.2 Tightness of the Bound

| <=——=| Separation

Figure 3.7: Dependency graph of a pipeline with multiplication factor n = 1 and
length L = 2. Maximised paths are in bold. All other edges are minimised.
Four events of interest are labelled by a A, O, 7, and O respectively. The re-
quest/acknowledgment pair that we use to calculate the response-time separation

1s also marked.

The bound given in Theorem 3.3 may not necessarily be tight. For example, the
proof of Lemma 3.1 relies on the property that certain edges have their minimum
delay d,. If these edges are critical edges then the bound is tight. In particular
cases, however, these edges cannot be critical. As an example, consider the graph
in Figure 3.7 and with bounds described by Table 3.1. Our formula for worst-case

response time can be determined from calculations with reference to points () and
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ol 1| 1| 2| 2
1)1 (1] 1] 10
2| ——| —| 2| 2

Table 3.1: Delays for a pipeline of length L = 2.

0. For each 1 < k < L we calculate

k-1

Ak.r + Ak—l,f + Z(Ah,r - ¢sh.t') - (Jﬂ.r + Jc) ° nk + 60.!'
h=0

We have n = 1. Therefore we can simplify the formula to

k-1

Dy + Dicr s+ Y (Any — 8n,) — 4.

h=0
At point () we have k = 1.

k-1
ADpr + Doy g + Z(Ah,r —ne) -4 = Ayr+ Aoy + (Ao, — do,r) — 8.

h=0
= 10+1+(2-2)-2
=9
At point O we have k = 2.

k-1

Arr + Apoy g + Z(Ah,r — ) =8 = Az, +A1p+ (A1, ~81,)
= By — Boy) — &,
= 2414+(10—1)+(2—-2)—2
= 3+(9) = +(0) -2
= 10
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So. according to our formula, the bound is

k-1

RT < max({Aes + Bicrs + 5 (Any — bhr)
h=0

—(Jo',- + 5,)11." + 50',- | 1<k< L} U {Ao',-})
= max({9,10} U {2})
= 10

The formula for worst-case response time gives a tight bound in this example if
the path between O and A is a critical path and the delays of the edges on that path
are minimised. Here, however, no matter how we choose the delays on the path
V ~ O, the path ¥ ~ O ~ A is not critical. In the diagram, we see that there
is an alternative path 7 ~» A consisting of the path a; ~ a; ~ ag ~+ 1y ~ aq.
The edges on this path are minimised in the diagram. The delay on this path (i.e.,
1+2+2+2 =17) is as short as it can be, yet it is the critical path 7 ~» A. Because
of the choice of delays, the paths ) ~ A and O ~+ A cannot be critical paths as
assumed.

This contradiction does not prevent our formula from giving a bound, it is Jjust
that in some circumstances, such as this cooked up example, the bound may not

be tight.

3.4 Worst-case Cycle Time

We can also calculate bounds on worst-case cycle time of a pipeline. Response
time was the separation between a request and the corresponding acknowledgment.

Cycle time is the time between consecutive requests, i.e., the separation

T(ry,i + 1) = T(ro,1)
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Obviously the delay of the environment (T(ro,i + 1) — T(ao,1)) is the crucial dif-

ference between response time and cycle time.

Theorem 3.4 The worst-case cycle time CT for any pipeline (as defined in Sec-

tion 2.3 operating under a delay model of Section 2.6) is bounded from above as

k-1
cTr S Ae + max({Ak,r + Ak—l,f + Z(Ah,r - Jh,r)
h=0

"(JO.r + Je)nk + 60.1' I 1 S k S L} U {Ao'f})

Proof. This upper bound is the same as the bound for RT plus one maximum
environment delay A,.. The cycle time CT between (ro,2) = (ro,2+ 1) is calculated
by maximising the delay on (ro,%) — (ao,). The delay on edge (ag,?) — (ro,i + 1)

is independent of other constraints and so has maximum delay A.. See Figure 3.2.
O

Given that an architecture has a handshaking behaviour at the environment,
viz, the environment alternates between making requests and recetving acknowl-

edgments, and given that we know the upper bound for the worst-case response

time for that architecture we can make the following generalisation.

Lemma 3.5 Given an upper bound for the response time, RT,, for any architecture
where the environment has a handshaking behaviour, an upper bound on the cycle-

time between requests is
CTw < RTu + A.

where A, is the mazimum delay of the environment.



CHAPTER 3. CALCULATING WORST-CASE RESPONSE TIMES 70

Proof. We wish to find the maximum separation T'(ro, i+ 1)=T(rq,1) for somei. We
note that due to the handshaking behaviour of the environment, (ro,7+1) has only
one predecessor event, i.e. (ao,). This is the environment edge (@0,%) = (70,2 +1)
and has maximum delay A,.. The separation T'(ao, ) — T(ro,1) < RTyus. The result

follows immediately.

0

Note that we have chosen to define cycle time to be the delay between consecu-
tive requests. We could also define cycle time to be the delay between consecutive
acknowledgments. The worst case cycle time may be different in this case. This is

formalised in the following lemma.

Lemma 3.6 The cycle time CT defined between (r0,%) = (10,2 + 1) is an upper
bound for the cycle time, CT, defined between (@o,%) — (ao, + 1).

Proof. Let us label the cycle time between (aq,i) — (ao,i + 1) as CT,. We can
calculate an upper bound for C7, in the same way as we did above. The edge
(@0,2) = (70,% + 1) has maximum delay A.. The edge (ro,t + 1) — (ag,i + 1)
can be bounded by RT,;. Summing these two delays gives us the same formula as
for CT between (rq.7) and (ro,i + 1). This is enough to show that the maximum
cycle time between acknowledgments is no greater than the maximum cycle time

between requests.

O

Note, the cycle time between acknowledgments might be less than between
requests, because the calculation of the separation between (ro,i+1) and (ao,i+1)
(i.e., RTy) relies on the delay of the previous edge. In other words we must minimise

the delay on (ag,i — 1) — (ro,i) to maximise the separation between (r0,t) and
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(ao,2). If we minimise the delay on (ag,i — 1) — (ro, %) this is obviously going to
affect the delay (ao,i — 1) = (ao,1) (i-e., CTy).

3.5 An Example Micropipeline

Here we give an example of calculating the response and cycle times of a mi-
cropipeline. We refer back to the example given in Section 2.6.2 where we have a
pipeline with L = 3. We instantiate the delay elements as in Table 3.2 and as in
Figure 3.8.

M o gt B R oaw oaa

Figure 3.8: An example micropipeline with length L = 3. The environment delay
1s labelled with an e. The stages of our pipeline model are labelled in outline.

Suppose we wish to find the bounds on the response time, RT. For n = 1 we have

the formula.

k-1
RT S max({Ak.r + Ak—l,f + E(Ah,r - Jh,r) - Jc I 1 S k S L} U {AO,r})
h=0
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h Jh,f Ah'f Jh.,r Ah,r

NN
W | OV W |

Wl |=~lo
N = s |
| e |

Table 3.2: Delays for a pipeline of length L = 3.

We have to calculate the maximised term of the formula for all values of 1 <k<L.

For £ = 1 we have
1-1
Arr+80s+ Y (Any ~bhy)—8. = 3
h=0
For k = 2 we have
2-1
AZ.r + Al.f + Z(Ah,r - Jh,r) - Je = 6
h=0
For k = 3 we have
3-1
AS.r + Az,f + Z(Ah,r - Jh,r) - Je =7
h=0
Combining these results we have,
k-1
RT < ma.x({Ak,r + Ak-l,j + Z(Ah,r - Jh.r) - Je I 1 < k < L} U {Ao.r})
h=0

= max({3,6,7} U {1})
= 7
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Suppose we wish to find the bounds on the cycle time, CT. We have the formula.

CT < A.+ max({Ag,+ A1 g + S(Ah,r —0ne) —0.|1<Ek<L L}
U{Ao,}) -
= 447
= 11

3.6 Conditional Behaviour

We can make a simple extension to the behaviour given in Chapter 2 by allowing

conditional behaviour. Suppose that we have a behaviour of the form
(r:7: «[if B; then (ai!; r:?)" ||(ri41h @iy ?) else (ai; 7;?7)"fi )

The guard B; may depend on data values that have been communicated. If B; =
false, no handshake takes place with the right-hand neighbour.

This thesis strives to avoid probabilistic models; therefore we have chosen a
method that avoids specifying the probability that a guard is true. All we assume
is that each guard has the possibility of being true at some point, i.e., that P({B; =
true}) > 0}. Note that if any guard B; is false all the time, we effectively have a
shorter pipeline and we can calculate results using L = min{i | P({B; = true}) = 0}.
In any case, this situation will not happen in a useful design.

Conditional behaviours could be used to model an up-down counter. We can
give linear-pipeline implementations of up-down counters [19] with the following
behaviour. When incrementing the counter, carries may be propagated through the

counter. When decrementing the counter, carries may have to be borrowed. The
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environment of the pipeline determines the sequence of increments and decrements
that are performed, and hence determines how deep handshaking propagates into
the pipeline. A different sequence of operations may produce a different set of

handshake depths. We can model the depth to which handshaking propagates by
the guards B;.

We have the following theorem.

Theorem 3.7 Given the behavioural model of Section 3.6, and given that the prob-
ability that a guard B; is true is non-zero, upper bounds for RT and CT can be
given by the upper bounds for non-conditional behaviour as given in Theorems 9.9

and 3.4.

Proof. To prove the main theorem above we again prove our auxiliary lemma, i.e.,
we reprove Lemma 3.1. for the conditional behaviour. If we can prove our auxiliary
lemma, then Theorems 3.3 and 3.4 that prove the upper bounds for RT and CT
will also hold. Hence, if Theorems 3.3 and 3.4 hold for the conditional behaviour,
then Theorem 3.7 above holds.

Lemma 3.8 Given the behavioural model of Section 3.6, if the response depth of
(ai,gi) sk,i+1<it+ k<L, then event (as, J: —n") ezists, and

k-1
T(ai, i) — T(as, ji = n*) < Aigrr + Bivk-1.5 + D (Divhy — Signy)
h=0

The proof is almost identical to the proof for Lemma 3.1. The only difference
is the addition of a “slack” term that deals with the possibility that some guards
may be false.
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Proof of Lemma $.8. By induction on k.
We note that the conditional behaviour strips edges from the behavioural graph
when guards are false. This messes up the regular numbering of occurrence indices

that we have in the normal behaviour. See Figures 3.9 and 3.10 for simple examples.

al

ot

0 (r.0 0) al) (r2 @a2) __(r3 a3)
1 A rl) ( Iﬁ :r.Z) (:Zrd
(a@/ rl) (al) ,
3 \.p.o; (@0 nl) (al

Figure 3.10: Conditional behaviour. Guard B, is false once.

Basis. Assume that (ay, j;) has a response depth of k = 1. Then edge (@i41, Jit1) =
(@i, ji) exists and (@41, ji+1) has response depth 0. See Figure 3.11. Let z >n
be some value that allows for the possibility of extra slack caused by guards being
false. How big z is depends on the values of the guards. For example, look at
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level 1 and 2 of Figure 3.10. The first acknowledgment/ acknowledgment edge is
(a2,0) — (a1,1) and the second is (az,1) — (a;,3). Note the changes in occurrence

indices.

(r,.j;x) (a;.j;x) (a;.j;-n) (r..j;) (a;.];)

.

@iy Jiuyl) (Tipt +Jin) (@1 Jiny)

Figure 3.11: Example of paths used in the base case where z > n. The Jjagged lines
are paths. possibly of zero length,

First we deal with the statement that event (as, 7. — n) exists. Let us look at

the behaviour of a cell at level 3.
(r:?; *[if B; then (a;}; 7:7)* ||(res1); @ig1?) else (ai!; ~:?)"fi 1)

The reasoning proceeds as before. If (a;, j;) exists and has a response depth greater
than 0 then it must depend on an acknowledgment from a deeper level. Therefore,
from the behaviour given above, there must be at least » handshakes at level 3
before the first synchronisation with an acknowledgment from level i + 1. Hence,
(ai, 7;) must be at least the n + 1st occurrence of a;. Therefore (a;,7; — n) exists.
This is illustrated in Figure 3.11.

We wish to derive an upper bound for T(a;, ;) - T(a:,j: — n). We note that
the critical paths between (a;, j; — z) and (ay, Ji), £ > n, are identical to the critical
paths between (a;,ji — n) and (a;,j;) given in the original proof of Lemma 3.1.
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Using the same proof we can show that

k-1
T(ai, ji) = T(ai,5i — 2) < Diger + Bisiors + 3 (Aivny — Sivnr)
h=0

where k£ = 1. Since £ > n we trivially have that T(a:, ji — z) < T(a:,ji —n). Then
k-1
T(ai.ji) = T(ai. Ji = n) < Aigier + Divkerg + 3 (Dighy — Sithr)
h=0

and so the base case is done.

Step. Assume the theorem holds for £ > 0 and that (ai, j;) has response depth
k +1. Then there is a node (a1, ji1) such that dependency (@1, Ji+1) —* (ai, Ji)
exists and (@i41,Jji+1) has response depth k. From the induction hypothesis it
then follows that node (a4, jiy; — n*) exists. Given that node (Git1, Jit1 — n*)
and dependency (aiyi1, ji+1) — (ai,j;) exist, we show that node (a;,ji — z) and
dependency (@it1,jiv1 — n¥) — (a;, 5: — z) also exist where z > n**!. We can

depict the dependencies, only for levels 7 and i + 1, as in Figure 3.12.

(1, ) (a;. j,)

@iy Jioym) @0y s ding1) (Tiwr+Jind) (@ipy o diny)

Figure 3.12: A part of the behaviour graph at levels ¢ and i + 1. The Jagged line

consists of at least 2n — 1 edges. Dotted lines represent paths. z, > n and z > nF.

Let us look at the behaviour of a cell at level 3.

(r:?7; #[if B; then (a!; 7:7)"||(risa); aiq1?) else (ail; ) fi ])
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From this behaviour it follows that between any two successive edges a;y; — a; there
are at least n edges a; — r;. It follows that dependency (@41, jis1 —1) = (i, ji—21)
exists where z, > n. Repeating this step n* times yields the dependency graph

nk

above with direct dependency (ai41, jir1 — n*) = (a;, j; — z) where z = Yi=: Tt and
r; > nfor all 1 <1 < n*. In other words. z > n**!. Again. how big z is depends

on the values of the guards.

We now follow the same proof steps given in the original proof of Lemma 3.1
in Section 3.2 to calculate the separation between T(a;, j; — z) and T'(a;, ;). The
original proof calculated the separation between T'(a;, ji—n) and T'(a;, J:) but we can
use the same steps to calculate the separation 7'(a;, Ji~z) and T'(a;, 5;) here. Notice
the similarity between Figure 3.12 and Figure 3.6. Using the previous method we
have

k
T(ai,ji) = T(ai, i — ) < Aigrsrr + Divis + hgo(Ai+h,r — bitnr)
Since z > n**! we trivially have that T(a;, j; — n¥*1) > T'(a;, j; — z). Then
T(a;,j:) = T(ai, i — 2**) < Avgirrr + Diyig + g(A;Hm — Sithr)

and so we are done.

O

Lastly we conclude our main proof for conditional behaviours.

Proof of Theorem 3.7. Theorems 3.3 and 3.4 hold for the conditional behaviour due
to Lemma 3.8 given above. Theorem 3.7 therefore holds.
O

We will give an example of conditional behaviour in the stack example of the

next chapter.
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3.7 Summary

We have introduced two delay measures in this chapter, i.e., Response Time RT
and Cycle Time CT. Worst-case response time is the worst-case delay between a
request and a corresponding acknowledgment at the environment. Worst-case cycle
time is the worst-case delay between consecutive requests. This chapter has proven

the following results.

e Response time for pipelines, RT, is bounded as follows

k-1

RT < max({Ag,+ Aiy s+ Z(Ah,r — Onr)
h=0

—(60,1' + Je)nk + 60.1' | 1 S k S L} U {AO,r})

That is, response time is strongly dependent on the variation in the reverse
delays, i.e, the summation term. If there is no variation in the reverse delays
the term A, + Ai_1 s becomes a bottleneck. This value is the cycle time

between consecutive cells.

e An upper bound for the cycle time of pipelines, CT.,, is
CTw = RT,+ A,

In general, this formula holds for any behaviour with a handshaking envi-
ronment. Therefore, if we can calculate an upper bound on the worst-case
response time, we can always calculate an upper bound on the worst-case
cycle time. Conversely, if we can calculate an upper bound on the worst-
case cycle time, we can always calculate an upper bound on the worst-case

response time.
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e The bounds for worst-case response time and worst-case cycle time calculated

for non-conditional behaviour are also bounds for the conditional behaviour

described in Section 3.6.



Chapter 4

Bounds on Average Response

Times

4.1 Average-Case Measures

In a previous work [16] “amortized” response time was described as an upper bound
on the average response time. That is, over many handshake cycles at level 0 we
calculate the maximum possible delay caused by the pipeline and divide this by the
number of cycles. Over a large enough period of time the average response time

will be no worse than the upper bound we calculate in this fashion.

In this chapter we also find a lower bound on the average response time by a simi-
lar technique. Averaged over many request/acknowledgment cycles we calculate the
manimum possible delay caused by the pipeline. In contrast to these average-case
measures, the response time measures of the previous chapter were calculated as
the separation between a single request and its successive acknowledgment. Aver-

age response time, AR, is a measure related to the average throughput of a pipeline

81
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and may be more important than the worst-case response time. The change of
terminology from amortized response time to average response time has been made
for two reasons. Firstly, the word amortized may imply an upper bound only. Here
we calculate lower bounds also. Secondly, the value of AR is some unknown average
value. We only calculate bounds on AR. While the bounds on AR are calculated
by amortized analysis, AR itself is never explicitly calculated and we do not wish
to imply any method of calculation.

We can also compute bounds on the average cycle time AC. Average cycle time is
calculated in the same way as average response time except that we do not subtract
the environment delays. Unlike worst-case cycle time, CT, it is immaterial whether
we measure the time between requests or between acknowledgments, since we are

averaging over a potentially infinite number of cycles.

Obviously, an upper bound for the worst-case response time RT is also an upper
bound for the average response time AR. An upper bound for the worst-case is
clearly an upper bound for the average. It may be less clear why upper bounds
for AR and RT could be different. The reason for this possible difference is as
follows. The worst-case response time is measured over one particular request-
to-acknowledgment edge. It may happen that we can only obtain a worst-case
response time for that particular request-to-acknowledgment pair, if the delays
of certain parts of the pipeline have been minimised previous to that request-to-
acknowledgment edge. When we calculate the bounds for the average response time
AR, any minimisation of delays somewhere is going to be reflected in the bound on
the average, since we calculate the bound on AR over a potentially infinite period

of time.

The bounds for average response time AR and average cycle time AC are easier

to compute than the response-time bounds of the previous chapter. When calculat-
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ing response time, RT, we have to find the time separation between two events by
tracing the difference in lengths of two paths. On one of the two paths we take the
maximum delays, and on the other we take the minimum delays. When computing
bounds on the average, we only need to trace one path, and this path is maximised
to obtain an upper bound, and minimised to obtain a lower bound. Since only one
set of delays is used for each problem, i.e., minimal delays for computing the lower
bound and maximal delays for computing the upper bound, it turns out we may
simplify our model to a fixed delay model.

Not only are the results of this chapter simpler to compute, but the results are

also simpler to express. The main results of this chapter are:

o The average response time, AR, for pipelines with multiplication factor,n =1

1s bounded as follows.
mca, — Ae S AR S 1‘405c —Je

where mca, is the “minimum cycle time” of the pipeline with a slow environ-

ment given by
mca, = max{A. + do, 0o s + &y, 01,5+ 820,...,00-1,s +3L,}

and where MCj;, is the “maximum cycle time” of the pipeline with a fast

environment given by
MCs, = max{. + Dos, Doy + A1 Ay + Doy ..\ Apy g+ Ar.}

This bound is tight.

The results tell us that the average response time of the pipeline is con-
strained by two independent bottlenecks that depend on the cycle time be-
tween neighbouring cells. Note that the bounds are independent of the length
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of the pipeline, and hence enormously deep pipelines do not affect our bounds

except that we take the maximum over larger sets.

e The average cycle time AC for pipelines with multiplication factor n =1 is

bounded as follows.
mcs, < AC < MCa,

where mc;, is the “minimum cycle time” of the pipeline with a fast environ-

ment given by
mes, = max{d. + dor.do s + 81,015 +d2r,..., 8-1.4+0L,}

and where MCj,, is the “maximum cycle time” of the pipeline with a slow

environment given by
Mch¢ = ma.x{A, + Ao‘,, Ao'f + Al.ra Al,f + Az',-, ey AL—I.[ + AL',-}

This bound is tight.

Notice that this is a similar result to that given for average response time AR.

Again, the bounds are independent of the depth of the pipeline.

¢ The average response time AR for pipelines with multiplication factor n > 1

is bounded as follows.
dor < AR < max{Ao,, Ao, + Aoy~ 4.}

provided that A;; < Aoy -n' and A;, < Ag, -7’ for 0 < i < L. That is,
a cell may be exponentially slower than cell 0 depending on its depth in the
pipeline. The lower bound still applies if the conditions on the delays A;
and A;, do not hold.
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Note that in most cases the delays of cell 0 and the environment are the only
ones that are important. Because of this property, we can optimise cell 0
for speed and optimise cells deeper in the pipeline for power and area. For
example. a designer may choose smaller transistors sizes for cells 1, ..., L, thus
trading speed for swaller area and power consumption. Or, if it is possible to
scale down voltage, then cells 1,..., L could be supplied with a lower voltage,
again sacrificing speed for lower power consumption. In both cases the bounds
on the average response time are based on the speed of cell 0 alone provided

that A; 5 < Aoy -n' and A;p <Ap,-nPfor0<i<L.

o The average cycle time AC for pipelines with multiplication factor n > 1 is

bounded as follows.
dor +0. < AC < Ao, +max{Agy, AL}

given A; 5 < Aoy -7’ and A;, < Ag, -7’ for 0 < i < L. The lower bound
still applies if the conditions on A; ¢ and A;, do not hold. For this result a

similar explanation can be given as for the previous result.

* Bounds for AR and AC are clearly related. We give the relationship between
the two measures for the pipeline and tree architectures as discussed in this
thesis. We derive bounds on AC by choosing a critical path between two level
0 events arbitrarily far apart. We then average the delay on this path over
the number of handshakes at level 0. We calculate bounds on AR similarly
except that we also subtract the environment delay. We call these unique
bounds derived from the critical path “critical” bounds. We only define crit-
ical bounds for deterministic behaviours, i.e., those that have no conditional

behaviour.
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Let ARy and AR, be the critical lower bound and critical upper bound
respectively for average response time. Let ACy and AC,, be the critical
lower bound and critical upper bound respectively for average cycle time.
Let Py and P, be critical paths over which we derive the critical bounds for

average cycle time ACy, and AC,,.

For upper bounds we have
AR, = ACy, — A,

when Py is a level 0 path, i.e., P, contains edges only from cell 0 and the

environment. We also have
ARy, = ACy — 6.

when the level 0 part of P, is negligible. For lower bounds
ARy = ACy, — 4.

when Py is a level 0 path, and
ARy = ACj, - A,

when the level 0 part of Py is negligible. We do not deal with the case when
Py or Py are split over segments at level 0, and segments not at level 0.

The formulae above allow us to calculate bounds on average cycle time from
the bounds on average response time, and vice versa. This halves the number

of proofs we have to do.
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e Behaviour in which handshakes are conditionally passed deeper into the pipeline
have the same worst-case bounds for AR and AC as those calculated for non-
conditional behaviour. In conditional behaviour for pipelines, as defined in
the previous chapter, each cell has a boolean guard that decides in each rep-
etition step whether a handshake with a cell’s right neighbour takes place or

not.

4.2 Critical Bounds for Average Response Time

and Cycle Time

Before calculating any average delay measures for pipelines, we formally describe
our method for calculating tight bounds. We also show that for obtaining bounds
on average response time and average cycle time, we can simplify our delay model
to a model that uses fixed delays. We describe average cycle time first, since it is

easier to explain.

4.2.1 Average Cycle Time

We define average cycle time to be the time between two events at level 0, arbitrarily
far apart, divided by the number of handshakes at level 0 between the two events.
For example, suppose that we are given a behavioural graph such as one of those
given in Section 2.3 to describe the behaviour of a pipeline. To calculate the
bounds on the average cycle time we find a critical path P between two events
at level 0 in the graph. Since these events are arbitrarily far apart, we can choose
events (ry,2) and (ro,7 + k), where k¥ — co. We find the delay on the critical path
P = (r9,t) ~ (ro,i + k) and divide by k, the number of handshakes at level 0 that
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occur between (ro,t) and (ro,% + k). If we maximise the delays between (ro,) and
(0,1 + k) we maximise the delay on path P. Then the above process gives us an

upper bound on the average cycle time.

Let us formalise the method. Let P. be a critical path between (r0,%) and

(ro-¢ + k) with maximum possible delay. Then,

ACy, = lim delay(P;)

JLim A (4.1)

We call AC,; the critical upper bound for average cycle time, because it is derived
from a critical path Py of infinite length. We have that AC < AC,. The critical

upper bound is the tightest possible bound and is therefore unique.

We can also calculate a lower bound on cycle time in similar fashion. Formally,
let Py be a critical path between (rg,) and (rq, %+ k) with minimum possible delay.

As above we derive,

ACp = lim M (4.2)
k—+c0 k

We call AC), the critical lower bound for average cycle time. We have that AC >
ACp. The critical lower bound is the tightest possible bound and is therefore
unique. The formula is the same as for the upper bound, the only change is that
we have minimised all delays between (ro,i) and (ag,i+ k) so that we minimise the

delay on critical path P.

We note that our method of deriving critical bounds relies on knowing what
the critical path is. Thus, although our method may apply to a wide variety of
possible behaviours, these behaviours must be deterministic. If a behaviour is non-
deterministic, we may not know what the critical path of a given execution will be.
We have encountered non-deterministic behaviours in the conditional pipelines of

Section 3.6. We will encounter these behaviours again in Section 4.9.
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It is possible to simplify our delay model to a fixed delay model, when calculating
bounds on average response time. This calculation of critical bounds is formalised

in the following lemma.

Lemma 4.1 The critical upper bound for average cycle time AC,, for any deter-
ministic behaviour can be obtained when we mazimise all delays. The critical lower
bound for average cycle time ACy for any deterministic behaviour can be obtained

when we minimise all delays.

Proof. Consider the calculation of AC,;. We need to choose a critical path with
maximum delay P between two events a and 3 at level 0. Since P is a critical
path of maximum delay, all delays on this path are maximised. No other path
P’ = a ~ [ can have a longer delay than path P, because path P is critical. No
matter what delay assignments we make to path P’, P remains a critical path.
Without loss of generality we maximise all delays of all edges.

Consider the calculation of ACy. We need to choose a critical path with min-
imum delay P between two events a and 3 at level 0. We choose a critical path
P = a ~ [ on which all edge delays are minimised. No other path PP =a~ 8
can have a longer delay than path P, since P is critical. Without loss of generality
we minimise all delays of all edges.

0

Therefore we simplify a bounded delay model to a fixed delay model. This will
greatly simplify proofs.



CHAPTER 4. BOUNDS ON AVERAGE RESPONSE TIMES 90
4.2.2 Average Response Time

Average response time differs from cycle time in that we exclude the delay of the
environment. To maximise our upper bound on average response time, therefore,
we minimise environment delay. We will prove this property formally in Lemma 4.2.
To look at it another way, the upper bound on the average response time is produced
when the pipeline is at its slowest, hence all edges have maximum delay, but the
environment is putting requests into the pipeline as fast as possible. That is,
environment edges have delay d.. When the pipeline is making requests as fast as
possible, it gives the pipeline no “slack” to finish dealing with previous requests.

To calculate average response time we find a critical path between (ro,2) and
(@0, + k) for some large k. To maximise the upper bound on average response
time we maximise all delays between (ro,i) and (ao,i + k) except those of the

environment. We minimise all environment delays to 4,.

Formally, let all delays between (ro,7) and (ro,i + k) be maximised except the
delays of the environment which are minimised to d,. Let P, be the critical path
between (rq,7) and (ag, t+k). There are k environment edges ag — o between (79, 7)
and (a@g.% + k) and therefore kd, environment delays between (ro,%) and (aq,t + k).

We subtract this delay from our formula. Thus

lim delay(Py) — kd.

ARub = k—o0 k + 1
_ (hm delay(P;) +6,) _s
k—oa k +1
- (Ji‘f,‘o %) ~ 4. {Since k — oo} (4.3)

We call AR, the critical upper bound for average response time. We have that
AR < ARy,
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Lastly, we define the critical lower bound for average response time AR;. In this
case we maximise the environment delay to A.. Let all delays between (ro,) and
(@g, 2+ k) be minimised except the delays of the environment which are maximised.
Let P be the critical path between (ro,7) and (ao,i + k). There are k environment
edges ag — 7y between (rq,7) and (ao,i + k) and therefore kA, environment delay
between (ro,2) and (ao,i + k). We subtract this delay from our formula as above

and obtain
ARy = (lim delay(Fi) ")) ~ A, (4.4)
k—oo k

We call ARy, the critical lower bound for average response time. We have that
AR 2> ARy. The critical bounds for response time are tight and therefore unique.
As with critical bounds for average cycle time, the critical bounds for average

response time are defined only for deterministic behaviours.

Again we have a lemma that allows us to use a fixed delay model.

Lemma 4.2 The critical upper bound for average response time ARy for any de-
termanistic behaviour can be obtained when we minimise the delay of the environ-
ment and mazimise all other delays. The critical lower bound for average response
time ARy for any deterministic behaviour can be obtained when we mazimise the

delay of the environment and minimise all other delays.

Proof. We prove the lemma only for the upper bound, as the proof for the lower
bound follows by a symmetrical argument. To find the upper bound for AR we
choose two events at level 0 @ = (e,i) and 8 = (f, ) such that ID>i Ifj—1is
sufficiently large, we can choose e to be a request and f to be an acknowledgment
without loss of generality. This reduces the number of cases we have to consider in

the following calculations.
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Now we find the longest delay path possible between a and 8. Since we are
trying to find the response time, not the cycle time, we subtract the time taken
by the environment. Lastly we divide by the number of request/acknowledgement
cycles between a and S at level 0 to obtain the bound on the average response time.

That is.
AR < max{(delay(a~+ B) — env. delay)/(num. cycles)}
This equation corresponds to the unsimplified version of Equation 4.3.

(5.i,) (s5,)

3o S S, S S,

Figure 4.1: Path @ ~ § broken into segments, Sg,...S,. Two example events,

(ez.t2) and (es,13), are illustrated.

To maximise the formula we have to maximise delay(a ~+ 3) while minimising
the environment delay. Let us break a ~ 8 into segments Sg, Sy, -+ S, such that
each segment S; is either a path at level 0 or a path in (0, L] as defined in Sec-
tion 2.6.4. That is, either S; consists of events at level 0 alone, or starts and ends
with an event at level 0 and contains no other events at level 0. See Figure 4.1.
Each segment S; is a path (ex,%x) ~+ (€x41,%k41) With x4y > ix and where e and

er+1 are level 0 events.

AR < max{(delay(a ~ §) — env. delay)/(num. cycles)}
= max{(zk:(delay(Sk) — env. delay(Si)))/(num. cycles)} (4.5)
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where the environment delay(S;) refers to the delay of the environment edges be-

tween (ex,ir) and (ex41,tr41) at level 0.

There are two cases.

1. If S is a path in (0, L], then (delay(Si) — env. delay(S;)) is maximised when

non-environment edges are maximised and environment edges are minimised.

2. If Si is a level 0 path, (delay(Si) — env. delay(Si)) is also maximised when
non-environment delays are maximised. It is irrelevant what the environment
delays are, because they are cancelled out in this expression, and therefore

also in expression 4.5 above.

Without loss of generality, we can therefore maximise non-environment delays and

minimise environment delays, and the lemma holds.

a

The above lemma is a blueprint for all of the analyses carried out for average-
case behaviour in the thesis. Equations 4.1, 4.2, 4.3, and 4.4 require that we choose
a critical path P of infinite length. Instead we sometimes choose a finite critical

path P’ that we can repeat over and over again.

Note, that in the definition of average response time, the implicit assumption is
made that the environment has a handshaking protocol and that we are averaging
over the number of handshakes between the environment and cell 0. For example,
between (ro,%) and (ao,j) in the above proof we know that there are J—i+1
request-to-acknowledgment edges, which are responses from the first cell of the
architecture, and j — ¢ acknowledgment-to-request edges, which is the time taken

by the environment to issue a request. This handshaking assumption is unnecessary
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for this lemma. The number of cycles can be defined to be anything we want and
is defined more generally in Chapter 6.

4.3 Average-Case Response Time

We now proceed to calculate bounds on average response time for pipelines. We
show that we can have great freedom in designing asynchronous pipelines, in both
cell ordering and pipeline length, without compromising the worst-case throughput.

In all proofs involving average-case bounds, any finite critical path P we use to
derive the bound must be infinitely repeatable. For example, the critical path in
a behavioural graph may be the path consisting of level 0 events only. We might
calculate average response time using only a short segment of this path, viz., the
single edge rg — ao. This is only one edge, but we can repeat the path ad infinitum.
We need this property, because our average-case measures must be bounds on the

average over the entire possible execution of the network.

We have the following theorem.

Theorem 4.3 The average response time AR for any pipeline (as defined in Sec-
tion 2.3 operating under a delay model of Section 2.6), and with multiplication

factor n =1, is bounded as follows
mca, — Ae S AR S MC& —5,

where meca, — A, = ARy, and MCs, — 8, = AC, are critical bounds as defined in
Section 4.2.

Proof. First we prove the upper bound AC,, = MC;, — §..
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From request (ro, %) there is a critical path P to acknowledgment (aq, jo) with
10 < jo and on this critical path there is no other event at level 0. That is, we have
P € (0.L]. Let this path be of length 2k + 1 with ¥ > 0. There may be many
paths between (ro, 1) and (aq, jo) of length 2k +1. Note that the only possible path
that is wholly at level 0 is the single-edge path when £ = 0 and 1y = j;. We label
each edge on each path with maximum delays and then we choose a critical path
P. This path P is the longest path in terms of delay between (rq,%5) and (ao, jo)
excluding paths through the environment. We call the delay on this critical path
of length 2k + 1, D,.

Between (rg,1%0) and (ay, jo) on level 0 there are k environment edges (i.e, ag —
o) and k + 1 “response” edges (i.e, rg — ao). Environment delays are at least 4,.
In k handshake cycles, the total time for the environment delays is at least kd.. To
obtain the upper bound on the average response time we subtract the environment

delay over k handshake cycles and divide by the number of responses.

ARy = max{(Ds - k&)/(k +1) |k > 0}
= max{(Dy +6.)/(k+1) | k > 0} — 6.

We look in more detail at the first term max{(Ds + 4.)/(k + 1) | k > 0}.

Suppose there is either an edge r; — r;4; or an edge a;4; — 741 in our path
P. Event 1y, is the output request signal of cell i. The path must pass back
through cell 7 at some point which means there must be an acknowledgement a;,,
forthcoming from cell 7 + 1. So, for each edge on the path that ends in r;y; there
must be a corresponding edge that ends in @;4;. For each pair of such edges we
have a maximum delay of A; s + Ay, < MCs,. There are k edges ending in a
request in the path and so we have k pairs with total delay less than or equal to



CHAPTER 4. BOUNDS ON AVERAGE RESPONSE TIMES 96

k- MCs,. We also have one “loose” reverse edge at the end of the path. So the
total delay on the path is bounded as Dy < k- MCj, + Ao,

wax{(Di +d.)/(k + 1) | k > 0}
ma‘x{(k ) MCJ: + AO.r + ‘se)/(k + 1) I k 2 0}

IA

< max{(k-MCs, + MC;,)/(k +1) | k> 0}
= MC;,
Level 0 r, a,
Level p \’ ~d, 7, "\/\’"_—’{
| - - |
DelayMCs_

Figure 4.2: A possible critical path P where MC;, = A,, + Ap_y,4 with p > 1.
Suppose that
MC¢§¢ = Je + AO.r

Then for k = 0, where P is a single edge path through cell 0, we have D, = Ao,
Then,

max{(De +&)/(k+1) | k 20} = (Ao, +4)/(1)
= MCj;,
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If on the other hand,
M Ca¢ > Je + Ao',.

we can maximise the upper bound for AR at k — oo. We note that there exist paths
P that almost exclusively consist of handshake cycles with delay MC;_, except for
a begin part and end part, and, because M Cs. > d. + Ag,, these handshake cycles
are not at level 0. Suppose that MCj, = A,, + A, where p > 1. Then the
critical path may look like Figure 4.2.

Let us break the delay on our critical path into two. Let Dy = E; + Fi. The
horizontal part of our critical path at level p has total delay E; = ko - M Cs. + A,
for some ko such that lim;_,(ko/k) = 1. That is, ks approaches infinity as k does.
Let the begin and end parts of our critical path have total delay F,. We assume
that all edge delays are finite, and we assume that the pipeline length L is also
finite. Therefore the delay Fj is also finite. As k — 0o, we have

. (Dk+¢5¢) o (Ek-f-Fk-{-J,)
e el |
= lim (kO'MCJ¢+Ap,r+Fk+Je)
k—oc k+1

lim ko - MCs. {Eliminating finite terms}

- k—co k

MC;, {Since limi_o0 (ko/k) = 1}

So in either case we find that our upper bound MCs, is tight and that max{(Dy +
de)/(k+1) [ k > 0} = MC;,. Consequently

ARw = max{(Di+4.)/(k+1)|k>0} -4,
= MC;, —d,
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We can use a similar explanation to prove the lower bound. Let the same paths
exist as before except the delay or each non-environment edge is minimised. Let
the critical path of length 2k + 1 have delay di. Since we are trying to find a lower

bound, we have to maximise the environment delay when we subtract it. We obtain

ARy = max{(de — kA.)/(k + 1) | k > 0}
= max{(dr + A.)/(k+1) | k >0} — A,

Using the same steps as above we can show that
max{(di + A)/(E +1) | k > 0} = mea,

and the result follows.

]

The above theorem states that the average response time of a pipeline with
multiplication factor n = 1 is bounded by two bottlenecks. One bottleneck is
described by the minimum cycle time mca, and the other by the maximum cycle
time MCjs,. These bottlenecks need not occur at the same place in the pipeline. If
one has the freedom to rearrange stages in the pipeline one might be tempted to
split up stages that have a large cycle time between them so as to minimise M Cs..
Two remarks are in order, however. Firstly, if the reverse latencies of stages are
identical, then there is no benefit in rearranging stages. Secondly, our formulae are
only dealing with bounds. As a consequence, these formulae say what happens to
the bounds of the average-case response time under any rearrangement of stages.

They do not say what happens with the actual average-case response time.

The optimisation process for a synchronous pipeline has some similarities to that
of an asynchronous pipeline. In a clocked circuit, we are also interested in minimis-

ing the worst-case bottleneck. Yet, in any synchronous design, the clock frequency
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must be slow enough such that the slowest component, i.e., the bottleneck, has
time to complete its operation. This means that any redesign of the circuit requires
global retiming if we are to take advantage of the redesign. If we do not do a global
retiming we will not be able to increase the clock frequency. Any retiming in an
asynchronous circuit need only be local. Lastly, a synchronous circuit will always
be restricted by its worst-case bottleneck. An asynchronous circuit may possibly
go faster as it does not have to wait for a clock pulse before proceeding.

Franklin and Pan [20] give a similar result to our lower bound mc,,, but they
assumed a non-blocking model in which no data in the pipeline can ever be blocked.
We do not need this assumption. They also give a result somewhat similar to our
upper bound MCj,, but they assume that each pipeline stage operates in lockstep,
and they give no proof that this could happen in practice or that the bound they
give is tight.

4.4 An Example Micropipeline

We refer back to the example given in Section 2.6.2 where we have a pipeline
with length L = 3. We instantiate the delay elements as before and as in Figure 4.3.

The minimum cycle time mc,, is calculated as follows.

mca, max{A. + do,,d0,s + 4y, Sip+ 020,00 15+ 0L}
= ma.x{4+1,2+1,1+1,1+2}
= max{5,3,2,3}

= 95
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1,1}

IR 2.4 O 2 n.y (.3 3

Figure 4.3: The environment delay is labelled with an e. The minimum and maxi-

mum cycle times are illustrated.

We calculate the maximum cycle time, MCs,.

MCs, = max{d.+ Ag,, Aoy + By Ay s+ D2, .. A1 s+ AL}
= max{2+1,4+1,5+3,3+4}
= max{3,5,8,7}
= 8

Since mca, — A, < AR < MCj, — 6, we have 1 < AR <.

Compare these results with the bounds for RT calculated in the previous chap-
ter, where we found RT < 7. So, the bounds on the average response time can
be different from the worst case response time. Any single response time of 7 time
units must be compensated over time by one or more response times of less than 6

time units.
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4.5 Average Cycle Time for n =1

We can also calculate bounds on the average cycle time. Since the paths involved
are potentially infinite, it does not matter whether we calculate from request to
request or from acknowledgment to acknowledgment. The proof proceeds in the

same way as for average response time AR.

Recall the definitions of mcs, and MC,,.
mes, = max{d, + dor,d0,f + 017,017 + 820y..., 00 14 + orr}

MCAg = ma.x{Ae + AO.r, AOJ + Al.r) Al.f + Az,r’ e ey AL—I,f + AL,!'}

Theorem 4.4 The average cycle time AC for any pipeline (as defined in Sec-
tion 2.3 operating under a delay model of Section 2.6), and with multiplication

factor n = 1, is bounded as follows
mcs, S AC S M CA,
This bound is tight.

Proof. First we prove the upper bound.

We are going to look at a path between (rq,1,) and (ro, jo + 1) where 75 < jo.
For acknowledgment (ao, jo) there is a critical path from some request (rq, o) to
(a0, jo) with iy < jo. We do not restrict the path to be in (0, L} as we did with

response time, since we do not need any special cases.

Let this path be of length 2k +1 with k > 0. There may be many paths between
(r0,%0) and (ao, jo) of length 2k+1. We label each edge on each path with maximum
delays and then we choose a critical path P. This path P is the longest path in
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terms of delay between (rq,%0) and (ao, jo). The delay on this critical path of length
2k + 1 is given by D;.

Between (79, 10) and (r, jo) on level 0 there are k handshake cycles consisting of
environment edges, i.e, ag —> o, and k “response” edges, i.e, ro = ag. We do not
subtract the environment delay as we did with response time. To obtain the bound
on the average cycle time we take the delay on path P (= D) plus the delay on
the edge (a0, jo) ~ (r0,50+1) (= A.) and divide by the number of cycles (= k+1).

ACyw = max{(Di+ A.)/(k+1) !k >0}

In the same way as in the proof of Theorem 4.3 we can show that the delay on

path P is bounded as D, < k- MCa, + Ao,

ACy

max{(Ds + Ac)/(k+1) | k > 0}

max{(k- MCa, + o, + A.)/(k+1) | k > 0}
max{(k- MCa, + MCa,)/(k +1) | k > 0}
MCa,

IN IN

We can maximise the right-hand side at k¥ — oo for all cases. We note that
there exist paths P that almost exclusively consist of handshake cycles with delay
MCa,., . except for a begin part and end part. Suppose that MCa, = A,, + A,y 4
where p > 1. Then the critical path may again look like Figure 4.4. Alternatively,
the critical path may be a level 0 path when MC,, = Aq, + A..

Let us break the delay on path our critical path into two. Let Dy = E.+ F;.. The
horizontal part of our critical path at level p has total delay Er = ko- MCa, + A,,
for ko such that limg ,oo(ko/k) = 1. That is, ko approaches infinity as k does. Let



CHAPTER 4. BOUNDS ON AVERAGE RESPONSE TIMES 103

Level 0 ro a,

Level p r a ro - a

Delay MC,_

Figure 4.4: A possible critical path P where MC,, = Apr+ Apy g with p > 1.

the begin and end parts of our critical path have total delay Fi. We assume that
all edge delays are finite, and we assume that the pipeline length L is also finite.
Therefore the delay Fj is also finite. As k = oo, we have

lim (De + A.) lim (Bx + F + A,)
k—oo k+1 k—oco k+1
. (kO'MCA¢+Ap,r+FIc+Ae)
= lim
k—oo k+1

= lim ko - MCa. {Eliminating finite terms}

k—oc k
= AJC'Ae {Since hmk—boo(kO/k) = 1}

From the above equations we find that max{Di + A.)/(k +1) | k > 0} = MCa,.
Consequently

ACw = max{(De+Ac)/(k+1)[k >0}
= MCa,,

We can use a similar explanation to prove the lower bound. Let the same paths

exist as before except the delay on each edge is minimised. Let the critical path of
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length 2k + 1 have delay di. We add the minimum environment delay §, to this
delay and then divide by the number of cycles. We obtain

ACp = max{(dx+d.)/(k+1) ]|k >0}

Using the same steps as above we can show that max{(dx +4.)/(k + 1) | k > 0} =

mc;, and the result follows.

m

4.6 The Relationship Between AR and AC

There is clearly a relationship between the values of AC and AR. For example,
when the multiplication factor is n = 1, an upper bound on AR can be given by
ACu — 4. in most cases, though there are special cases if the critical path passes
only through the environment. If we could construct a general relationship between
the bounds for AR and AC, then we would only have to write one proof to calculate
both values. We will be using this in future proofs for deriving the average cycle
time later in the thesis. For example, we calculate the average cycle time for a
pipeline with multiplication factor n > 1 in Section 4.8 by using this relationship.
We can thereby avoid repeating a longwinded proof. The chief problem with finding
such a relationship is that while environment delays are maximised to compute an
upper bound for average cycle time, the environment delays are minimised when

computing an upper bound on average response time.

In this section we give a general relationship between the critical bounds for AR
and AC under certain restrictions. First we require that the environment has a

handshaking behaviour with the first cell, such that every other edge at level 0 is
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an environment edge. Next, critical bounds as described in Section 4.2 prescribe
a particular method of calculating the bounds. We calculate critical bounds by
finding a critical path between two level 0 events that are a large distance apart
and then averaging over the number of handshake cycles at level 0. This critical
path is made up of segments {S, | g € G} at level 0 for some set G, and segments
{Sh | h € H} each in (0, L] for some set H. We assume that we have to consider

only two cases.

Case (i) The critical path is a level 0 path. Therefore {Sy | h € H} = 0.

Case (ii) The delay on the critical path caused by level 0 segments is negligible.
That is, if £ is the difference in occurrence indices between the first event on
the critical path and the last event of the critical path

lim Ea€G Delay(S,) =0

k—co k

The second case is more restrictive than we actually need, but it makes proofs
simpler. All the behaviours in this thesis meet these restrictions, as they all have
handshaking environments, and we can always choose a suitable critical path that
is either a level 0 path or a critical path that consists largely of an infinitely long
segment in (0, L]. In general we might need to consider mixed paths rather than

the two cases presented above.

We define AC,; as the upper bound on the cycle time calculated if we only
consider the horizontal paths at level 0. We define AC,, as the upper bound on the
cycle time calculated if we only consider paths that have delay that is negligible at
level 0. These concepts are formalised in the following definitions. The definitions
are based on the formulae for critical bounds defined in Section 4.2. As with critical

bounds, these values are only defined for deterministic behaviour.
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First let us define what we mean by path delays.

Definition 4.5 Let the path delay be the sum of the edge delays on ¢ path.

For example, if all edge delays were maximised, a path r¢ = r; — r, would have
path delay Ao s+ A, . It would have this path delay whether or not it was a critical
path. If. however, a path a — 8 is critical, then path delay(a ~ 8) = T(8) - T(a).

Definition 4.6 Let B represent a process graph where the environment handshakes
with the component. Let Py be a path at level 0 between (ro,2) and (ro,i + k) with

all edge delays mazimised. Then,

_ th d P
AC. = lim Peth dclay(Pi) (4.6)

k—ac k

Again, let all edge delays be mazimised. Let B, be the path with the greatest path
delay between (ro,1) and (ro,i + k) when the path has negligible delays at level 0.
That is, if P, is made up of segments {S; | 9 € G} at level 0 for some set G, and
segments {Sy | h € H} each in (0, L] for some set H, then

lim 2gec Delay(S;) =0

k—oc k

Given P, we have

Eub = lim path dela.y(Pk) (47)
k—+oo k

ACy, and Zbu, are similarly defined.

]
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Notice that if we assume that the reverse delay of the cell interfacing with the
environment is bounded by &y, and Ag,, then we can compute AC;, = 4§, + dor
and ACu = A, + Ay, for all behaviours with a handshaking environment. We can
perform this calculation easily because there is only one possible path of length &
at level 0. The values of R;b and Rub are dependent on the behaviour we are

examining. For example, these values will be different for pipelines and for trees.

We define AR, TM, ARy, and ﬁia, in a similar fashion to the definitions

above.

Definition 4.7 Let B represent a process graph where the environment handshakes
with the component. Let P’y be a path at level 0 between (r0,2) and (ao,i + k)
when the delays of all edges are mazimised ezcept the environment delays which are

manimised. Then,

AR, = (klim path delay(P’k)) _d

—+00 k

Again, let all edge delays be mazimised ezcept the environment delays which are
minimised. Let P’y be the path betweern (ro, i) and (aq,i+k) with greatest path delay
when P’y has negligible delays at level 0. That is, if D', is made up of segments
{Ss | 9 € G} at level 0 for some set G, and segments {S, | h € H} each in (0, L]

for some set H, then

lim Secc Delay(s,) _

k—oco k

Given P’ we have

ARy = (hm path delay( P k)) s

k—roc k
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ARy, and Rb are similarly defined as

AR, - (hm path delay(P)) _AL

k—oc k
and
— th delay(P’
ARy = (,,ll,m pa dekay( k)) _ A,

where all delays are minimised ezcept those of the environment which are maz-
tmised.

o

If we assume that the reverse delay of the cell interfacing with the environment
is bounded by do, and Ag,, then we can compute AR, = dor and ARy = Ao,
for all behaviours that have a handshaking environment. Note that all of these
definitions define a unique value for a particular behaviour.

We can calculate the critical bounds for the tree and pipeline architectures in
this thesis by only examining the two cases described above. We formalise this

property in a lemma.

Lemma 4.8 Let B represent a process graph where the environment handshakes
with the component. Let (ro,1) and (ro,i + k) be events at level 0. Let ACy, be
the critical bound (as defined in Section {.2) derived from path P, = (ro,) ~
(ro,i+ k) in B. Let AC, and ZE',‘,, be defined between (rg,1) and (ro,% + k) as in
Definition {.6. If Pi is either (i) a path at level 0, or (1) has negligible delays at
level 0, then

° ACy = max{m,d,, ZE’.,,,}
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Using similar definitions we have
° ACu, = ma.x{TC—zb, Ezb}

Let (ro,1) and (aq,i + k) be events at level 0. Let ARy, be the critical bound
(as defined in Section 4.2) derived from path P] = (r9,1) ~+ (ao,i + k) in B. Let
AR and ARy be defined between (ro,i) and (ro,i + k) as in Definition 4.7. If P!
is either (1) a path at level 0, or (ii) has negligible delays at level 0, then

. AR, = max{AR,, TR‘,I,}

[ Asz = mu{mlb. ﬁlb}

Proof. We show only AC,;, = max{AC,, E’ub}, since the other results follow
similarly. If the critical path is a level 0 path, then from Definition 4.6 we have
AC., > AC.,. We also have ACyu = AC.. Therefore AC,, = max{ACy, R,,b}
for this case. If the critical path has negligible delays at level 0, then AC,, = AC.;
and AC,, < Zbub and the result follows.

0

Given Lemma 4.8 we demonstrate the relationship between the critical bounds

for AC and AR.

Theorem 4.9 Let B be a behavioural graph. Let AC., ZE',,;,, AR, and TR@ be
defined as in Definition 4.6. Then

Cw — A,
u.b-Je

&

AR, =

ARy, = AC
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Simailarly we have

AR, = ACy- 6.
;172(5 = @lb—Ae

Proof. Let us show that AR, = AC, — A.. Let P, be a level 0 path between
(r0.1) and (ro,% + k) with all edge delays on the path maximised.

The environment delay on path P, in each handshake cycle has been maximised
at A., since this is how we calculate AC,,. Since the path P, is a level 0 path with
k handshakes, there must be k environment edges. Hence the environment delay
on path Py is A, - k. Let Q, be the level 0 path (7o,%) ~ (o, + k) with all delays

maximised except the environment delays which are minimised. We have
path delay(Q,) =path delay(P;) — k- A, + k- 4.

We calculate AR,; between a request and an acknowledgment, not between
two requests. Let P’y be the level 0 path (ro,%) ~ (a@o,7 + k — 1) with all delays
maximised except for environment delays which are minimised. That is, P'¢ is the
same as path Q, minus the last edge (ag,? + k — 1) — (ro,7 + k). We have path
delay(P";) = path delay(Q,) — ..

From Definition 4.7 we calculate AR,; over path P’y as

AR, = (kﬁm path delia.y(P k)) _s.
_ (kﬁm path delaz(_Q—,‘) - 5,) s

_ (hm path delay(?k)—k-Ae+k-5,—5,) _d

k=0 k
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_ (klim path dela.:(Pk) - 6',) A 44 —6.
_ (hm path delay('P-k) - J,) _A
k=00 k <

{Eliminating finite terms}
(lim path dela.y(_lsk)) _AL

k—oc k
{Equation 4.6}

= ACu — A,

Let us now show that Z\R‘d, = ZZ',,I, — .. Let all edge delays be maximised.
Let P, be the path between (ro.t) and (ro, i + k) with greatest path delay when the
level 0 parts of the path have negligible delay. That is, B, is made up of segments
{Sa | 9 € G} at level 0 for some set G, segments {Sy | A € H} each in (0, L] for
some set H, and that

lim EgGG Dela}'(sy) =0

k—+oc k

Cousider the segments of P in {Sg | g € G}. These segments are the parts of
path B that are at level 0. The environment delay on path B in each handshake
cycle has been maximised at A., since this is how we calculate AC,;. Therefore
all environment edges in segments at level 0 have delay A.. Let the total delay of
environment edges in segments at level 0 be kq - A, for some ko > 0. The total
environment delay over the level 0 segments is less than the total delay of the level
0 segments themselves. That is, ko - A, < Y gec Delay(S,;). Then

lim 2gec Delay(S;) =0 = lim ko - A. =0 (4.8)

k—roc k k—oc k

The environment edges traversed by the critical path contribute negligible delay to
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the overall path. Let Qi be the same path as P, between (ro,1) and (rq,t + k) with

all delays maximised except the environment delays which are minimised. We have
path delay(Q) = path delay(B;) — ko - A, + ko - 4.

We calculate AR, between a request and an acknowledgment, not between two
requests. Let path P’; be the same as path Qi minus the last edge (ag,i+k—1) =
(ro,t + k). We have path dela.y(I?'k) = path delay(Qy) - 6..

From Definition 4.7 we calculate .:1?‘2“1, over path }?’k as

AR

B _ (kh'm path delay(}?'k)) s

—oC k

(Hm path delay(Q:) — 6',) s

k—o0 k

_ (. path delay(B,) — ko - A, + ko - 6. — .
- (kh—fgo k —d
{ Equation 4.8, d. < A., eliminating finite terms }

_ (Hm path d§ay(ﬁk)) 5.

k—oc k
{Equation 4.7}
= ACu - 4.

We can construct a similar proof for the lower bounds ARy, and ARy.

0O

Corollary 4.10 Let B be a behavioural graph and let AR, be derived from a crit-
ical path either (i) at level 0, or (ii) having negligible delays at level 0. Let AC,,
and AC . be defined as in Definition {.6. Then

AR, = max{AC, — A.,ACy — 5.}
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where AR, is the critical upper bound for average response time. Stmilarly we have
ARy = max{mu, - 4., E’u, - A}
where ARy, is the critical lower bound for average response time.

Proof. The result follows directly from Lemma 4.8 and Theorem 4.9.
0

Let us demonstrate Corollary 4.10 for pipelines with multiplication factor n = 1.

ACw = MCa,
{ By defn. of MCa.. }
= max{A.+ Ao, . Dos+ A1, AL+ Aspy.. ., A 1 s+ Ar.}
= max({A. + Ao,} U {Doys+ Ay, Ayy+ADzp,... AL s+ ALY

We have

ACub = Ae + A0,1-
and
AC, = max{Aos+ A1r  Ars+ Agpy.. ., Apy g+ AL}

We derive the upper bound on average cycle time AC,; from the critical path.
For pipelines with multiplication factor n = 1, the critical path can either be a path
at level 0, or a path with negligible delay at level 0. Then Corollary 4.10 gives us,

AR, = max{AC, - A., ACy, - s}
= max{Ag,, max{Aoys+ Ay,, A1 s+ Aysy. .., Apy s+ AL} -4}
= max{d. + Aogs, Doy + A1, Ars+ Doy, , ALy g+ AL} — 6.
= MCs, -4



CHAPTER 4. BOUNDS ON AVERAGE RESPONSE TIMES 114

Similarly, from ACy, = mc;, we have
ACp =34, + &,
and
ACw = max{dos + &1.r, 81, + G2, ..., 8p_1 g + 81}
Then Corollary 4.10 gives us,

ARu, = ma.x{ﬁu, - 5,, ;1-5' mh — Ae}
= max{do, max{dos + 1,015 + 8arr.... 8015+ 1.} — AL}
= max{so-r + Aev 50,! + &l.rs 61.] + Jz.r’ ) JL-I.f + JL,r} - Ae

= mca, — A,

So the theorem correctly derives critical bounds for AR from the critical bounds

for AC in the case of a linear pipeline with a multiplication factor of n = 1.

Clearly we can derive bounds for AC from the bounds for AR as well as bounds

for AR from the bounds for AC.

Corollary 4.11 Let B be a behavioural graph and let ACy, be derived from a crit-
ical path either (i) at level O, or (ii) having negligible delays at level 0. Let AR,
and ARy be defined as in Definition 4.7. Then

ACy = max{AR + A, AR, + 4.}
where ACy is the critical upper bound for average cycle time. Similarly we have
AC, = max{ARy + 8., ARy + AL}

where ACy, is the critical lower bound for average cycle time.
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Proof. Lemma 4.8 and Theorem 4.9 together give us the following formulae.

AR, = AC, - A.

ACub = max{Eub,ZE'ub}

By rearranging the first two equations and substituting them into the third we
obtain the first part of the corollary. Similarly we can prove the lower bound.

a

4.7 Average Response Time for n > 1

We now turn our attention to pipelines with handshaking behaviours that have
multiplication factor » > 1. When the multiplication factor of a cell is n > 1 we
might expect that cell 0 determines the delay, because cell 0 communicates n times
more frequently than the next cell. The following theorem proves that the delays of
cell 0 do indeed dominate the bounds. In fact, given certain conditions, cell 0 and
the environment are the only factors in determining the bounds. These conditions
actually simplify the problem considerably. We restrict the range on the delays of
the cells, such that cells deeper in the pipeline can be no more than n times slower
than their predecessor cell. Since cell i > 0 may be exponentially slower than cell

0, these restrictions are slight.

We have the following theorem.
Theorem 4.12 Let the mazimum delays for each cell be bounded as follows.

Ay

IN

Ao'f . ni

Ai.r S AO.? 'ni
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The average response time AR for any pipeline (as defined in Section 2.9 operating
under @ delay model of Section 2.6), and with multiplication factorn > 1, is bounded

as follows
50_,. < AR < ma-x{AO.r~ AO,r + onf - Je}

The lower bound even applies when the cell delays Aiy and A;, are not bounded.

The upper bound is a critical bound when Aig=002gy- n* and A;r = Ag, - 0.

]

The proof is considerably more convoluted than that for n = 1. Before we
prove the main theorem, we will need an auxiliary theorem. By using this auxiliary
theorem we can reduce the number of possible paths we have to examine when

calculating the bounds on AR.

Theorem 4.13 Let A;; = A, ¢-7 and A;r = Ay, -0’ be given. Let paths P and
P’ ezist between (r4,1) and (ax,j), for h > 0 and j > i. Let path P € (h,h + K]
have mazimal delays on each edge, and let P’ be a level h path, also with mazimal

delays on each edge. Then the delay on P is the same as the delay on P'.

In other words, if we have a path between request and acknowledgment events at
level h, then the “direct” level h path has the same maximum delay as a path that
goes deeper. A corollary of this is that all paths P ¢ [k, h + k] between the two

events have the same maximum delay.

Note that we explicitly exclude k = 0 from our reckoning, because the environ-

ment delays have no restrictions.

The proof proceeds by a nested induction. The outer induction is on the maxi-

mum depth of the path in the pipeline, k. The inner induction is on m, where m-n
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is the difference in occurrence indices of the first and last event in the path. So,
intuitively, we have a two-dimensional induction. One dimension, k corresponds to

the vertical axis, the other dimension, m corresponds to the horizontal axis.

Proof of Theorem 4.13. By induction on k.

Basis. Let k = 1. That is, we are exploring only paths in [h,h+1]. We prove the

base case by a separate induction on m.

Basis. Let m = 1. Then j =i+ n. Refer to Figure 4.5.

(r,. i) (a,. i) (. i+n) (ah, i+n)

(Bper Gusl) (R peif,) CITE Y

Figure 4.5: Example of path when k = 1 and m = 1.

We can trace a path P’ directly at level h between T(rh,t) and T(ap,: + n).
Assume that P’ is a critical path. We have n +1 edges of the form r;, — aj on this
path and n edges of the form a;, — r,. The delay on each r;, — a is maximised at

Ap,. Likewise the delay on each ap, — rp, is at most Ay 4. Then,

Delay(P’) = T(an,i+n) — T(r4,1)
= (TI. + I)Ah'r +n- Ah—l.f

= (r+1)nPAg, + 0" Agy {By assumptions}

This is the delay on the level A path P'.
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Now assume path P € (h,h + 1] with j = i 4+ n is critical. There is only one
such path, and it is 75, = rny; = anyy — an. We can calculate the corresponding

maximum delay.

Delay(P) = T(an,i+n)— T(rs,1)
= Ah.f + Ah.+1.r + Ah,r
= nf. Ao+ 2ttt Ay, + 0. Ag,, {By assumptions}

= (n -+ l)nhAo',- + n" . Ao‘f

So the delay on P is the same as the delay on P’.

Step. Assume that our property holds for j = i + m - n. Now we prove for the
case when j =1+ (m + 1) - n. Note that we still have k = 1. We are trying to
prove that the property holds for paths in [k, h + 1] of arbitrary width. Refer to
Figure 4.6.

By the inductive assumption the delay between T(rn,t) and T(ap, i +m-n) is
the same independent of whether the critical path is P € (h,h + 1], or whether it
is P’ € [h.h]. Let T(an,i + m-n) — T(r4,i) = z.

(n,.i) (a,,i) (r,, i+m.n) (q,. i+m.n) (. i +(m+1)n) (a,, i +(m+1).n)

netr mar ) (hyy i) (Opeps Bpuitm-l) (i pm) (a0, +m)

(a

Figure 4.6: Example of path when k =1 and m > 1.

We derive the delay T'(an,i + (m + 1) - n) - T'(ra,1). First we assume that the
level h path, P', is critical. Between (as,i +m - n) and (an,t 4+ (m + 1) - n) there
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are n 7, — ap and n ap — 75, edges.

Delay(P') = T(an,i+(m+1)-n) = T(rs,i)
= (T(ah.i+(m+1)-n) — T(ani+m-n))
+(T(an.i+m-n) — T(rs,i))
= (T(ani+(m+1)-n) —T(an,i+m-n)) +z
= n-Ap,+n-Bpyp+z

= nMlLAg, +2b A, s+ 2z {By assumptions}

Now assume path P € (h,h + 1] between (r,i) and (an,i + (m+1)-n)is a
critical path. Path P is restricted to events at level A+ 1, except for the endpoints,
and so must pass through point (aps1,ihey + m — 1). See Figure 4.6. For brevity,

we call this event a. We determine T'(a).

First note that both the level k path and the path in (k, k + 1] between T'(74, %)
and T'(an,i + m - n) have delay z by our inductive assumption. The delays on
each edge of each path are maximised. Now, observe that the two incoming edges
to (an.t + m - n) must have maximal delay of Ap,. Thus both predecessors of
(@h.i + m - n), ie., (rh.t + m-n) and (@h41,%h41 + m — 1) = @, must occur at

T(an,i+m-n) - A,,.

T(C!) = T(Gh+1, ih+1 +m — 1)
= T(an,t+m-n)— Ay,
= T(rni) +2z — An,.

Path P is restricted to events at level A + 1 except for the endpoints and so

must pass through point «, i.e., (ah41,%h41 +m — 1). We have a path

(rh,i)«»a—w(ah,i-i-(m-i-l)-n)



CHAPTER 4. BOUNDS ON AVERAGE RESPONSE TIMES 120

The path a ~ (an,i+(m+1)-n) consists of one apyy — Thyy edge, onerpy; — apqr
edge, and one any; —+ a, edge. These have delays respectively of Ay 5, Apty,, and
Ap,.

Delay(P) = T(an,i+ (m+1)-n)—T(rs,i)
= (T(an,i+(m+1) -n) — T(a)) + (T(a) — T(rs,1i))
= (Ang+ Ani1r + Asy) + (T(a) — T(rn, 1))
= (Ans+ Arirr + Ahy) + (T(rh,i) + 2 — Ap, — T(rh, 1))
= (Ans+ Bprr + Ary) + (2 — Ary)
= Anf+Anprr+cz

= ph+l. Do, + nh. Dos+z

This is the same as the delay on path P’ and we are done. We have now completed

the base case for when £ = 1.

Step. Assume that the property holds for k. We prove that the property holds
for £ +1. We wish to show that if we have a path P € (h,h+k+ 1], between (74, 1)
and (as,j), and we have a level h path P’ between the two, then the maximum
delay on each path is the same.

Note that path P must begin with an r, — r4,; edge and finish with an
@h+1 — ap edge. So we have a path ry, = rpyy ~ anyy — an. The path rhy; ~ apyy
is a path in [h 4+ 1,h + k + 1], or by setting g = h + 1, path r, ~» ag is a path in
l9,9 + K.

The path r; ~ a, is either a path at level g, or consists of segments S, some of
which are paths at level g and some of which are paths S € (g, g + .

Suppose that somewhere on the path r, ~+ a, there is a segment S of the form

(rg,3g) ~ (ag,j;) where j, = i, + m-n, m > 0. Refer to Figure 4.7. By the
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& 3,

( . 1 (a i ‘) (r :‘wn.n) (a 3 +m.n) /
o \ / e
gel’ p)

o1t 1)

Figure 4.7: Example of possible critical path in (h,h + k + 1].

induction hypothesis, the maximal delay on this segment is identical whether it is
a segment at level g or if it is a segment in (g,g + k]. Without loss of generality
we assume that segment S is a level g path, and do the same for all other such
segments. So, without loss of generality, we may assume that path T, Gg s a
level g path, and therefore path P € (h,h + 1]. We now have the base case, which

we have already proven and we are done.

0

Now we are ready for the proof of Theorem 4.12.

Proof of Theorem 4.12

Because all 7o — ag edges have a minimum delay of &, ,, we know that AR > 8o+

and we have proven the lower bound.

Now we prove the upper bound, viz,
AR S ma.x{Ao‘,, Ao',. + Ao'f - Je}

Let there be a critical path P, from from event i at level 0 to event J at level 0,
with 7 > 1. If j and ¢ are sufficiently far apart then, without loss of generality, we
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let event ¢ be a request and event j be an acknowledgement. We can do this because
edge delays are assumed to be finite, and on an infinite path a single edge causes
negligible extra delay. We choose ¢ and j such that j = i + m - n, for some m > 0.
Because we are looking for a bound for worst-case behaviour we may assume that
Dif=ADoy- n' and A;, = Agy - n' and we derive our critical bound based on this
assumption.

We assume the critical path P is withiz [0,1] due to Theorem 4.13 above.
Remember that Theorem 4.13 does not apply to level 0 paths as the environment

delays are unbounded.

Suppose that the critical path P is a level 0 path. Then T(a0,3) — T(ro,2) <
(j =i+1)- Ao, +(j — ) - (Environment Delay). To determine the average response
time between (ro,2) and (ao,j) we subtract the environment delay and divide by
the number of cycles. The number of cycles is j —i + 1, so if the critical path P is
a level 0 path, the average response time satisfies AR < Ao,.

If the critical path P is not a level 0 path then we can break P into segments.
There is at least one segment S of the form S € (0.1]. Let S start at (rg,4o) and
end at (ag, jo). Then jo = ig + m’-n with m’ > 0. We can calculate the maximum
delay on S. S consists of the first request /request edge, 2m’ — 1 “horizontal edges”,
and one final acknowledgment/acknowledgment edge.

T(ao,%0 + m' - n) — T'(ro,1p)
= Aos+m A +(m' —1)-Ag s+ Ao,
{ From assumptions}
= QAos+m -n-Ag,+(m' —1)- Aoy + Ay,
{ Since n > 1}

< Ags+m n-Do,+(m' —1)n-Agy + Ag,
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We derive the average response time over this segment by subtracting the number

of environment delays, and dividing by the number of cycles at level 0.

ARy = (Bos+m' -n-Ag, +(m' —1)n-Agy
+hg, —m'-n-§.)/(m'-n+1)
= (Bog—Aor+(m' —1)n-Agy + Aoy +8.)/(m' -0 + 1)
+8o, — 6.
= (Bos+(m' —1)n-Aos+8.)/(m -n+1)+ Ao, — 6,
= (Aos+(m'-n+1)-Agy—n-Bos—Agys+4.)/(m -n+1)
+Ao, — 4.

= (be—mn- ADoy)/(m' -n + 1) + Aoy + Do, — 4,
First let us consider the case where §, > n - Qg ;. We maximise over m' > 0.

ARy = max{(d. —n-Agys)/(m'-n+1)+ Ags+ Ao, — 8, | 1 <m'}
{ Maximise at m’ = 1}

(de = - Doyg)/(n+ 1) + Aoy + Ag, — 4.

(Bos —m-de)/(n+1) + Ao,

(n-Bos—n-8)/(n+1)+ Ao, {Aos>0}

IA

(de =n -8.)/(n+1) + Ao, { From assumption above}
(0)/(n+1)+ Ao, {n>1andéd. >0}
A0.1'

IN A

We have shown that if §. > n-Agy then AR < A,,. But Ay, is the delay through
cell 0 alone and is the value of AR when using a level 0 path. We can therefore
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surmise that if e > n - Agy, the critical path is at level 0 and goes no deeper in the
pipeline.

Let us now cousider the case when &, < n - Ay ;. We maximise over m’ > 0.

ARy = max{(d. —n-Agy)/(m' -n+ 1)+ Agys+ Aoy —6. |1 <m'}
{ Maximise at m’ - oo}
= max{(0)/(m'-n+1)+ Ag s+ Ao, — 4. |1 <m'}

= Qg s+ Ag, — 0.

The contribution of delay by level 0 paths is negligible here.

Combining the above results, and maximising over all possible segments, we get

for the average response time

AR S ma'x{AO,rs AO,r + AO,} - Je}

4.7.1 Interpreting the Results.

As with worst-case response time, cell 0 is the only cell that matters for a bound on
average response time. We can allow cells deeper in the pipeline to be exponentially
slow without affecting the bounds on average response time. So, for both average
and worst-case response time we need to optimise only cell 0 for speed and make

sure that the other cells satisfy the delay bounds.
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4.8 Average Cycle Time for n > 1.

We now extend the results to average cycle time, AC.

Theorem 4.14 Let the mazimum delays for each cell be bounded as follows.

Ag'f Ao'f . ni

IN

Air < Ag,-7t

The average response time AC for any pipeline (as defined in Section 2.9 operating
under a delay model of Section 2.6) and with multiplication factor n > 1 is bounded

as follows
60.1- + 63 S AC S AO.r + ma.x{Ac, Ao.f}

The lower bound even applies when the cell delays A; s and A;, are not bounded.

The upper bound is a critical bound when Aiy = Aoy -1 and A;, = Ay, - 1.

Proof. Because all 1o — aq edges have a minimum delay of do,r, and all ag — 74
edges have a minimum delay of ., we know that AC > do,r + &, and we have proven

the lower bound.

There are two ways we could derive the upper bound. We could derive the value
by using the same path tracing algorithm or we can derive the bound for AC from
the bound AR simply by using Corollary 4.11 and Lemma 4.8 from Section 4.6.
Lemma 4.8 defines AR, as

where AR, is derived from a level 0 path, and AR, is derived from a path in
which the contribution of level 0 paths is negligible. The proof of the upper bound
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for AR in Theorem 4.12 splits the path calculation into two. One path is the level
0. and one path is a path in (0,1]. One of these paths is the critical path. These
paths respectively derive AR, = Aq, and ARy = Ao, + Ao,y — .. Theorem 4.12

gives

ARub = ma.x{Ao',, Ao',- + Ao'f ot 5,}
= max{ARu, ARw}

Because the critical path is either (i) a path at level 0, or (ii) a path with negligible
delay at level 0, we can apply Corollary 4.11 which states

ACw = max{ARu, + A., ARy +6.}}
= ma-X{AO,r + Acv AO,!‘ + Ao'f}
= Ao, +max{A., Aoy}

4.9 Conditional Behaviour

As with the worst-case analysis of the previous chapter, let us assume that we have

a behaviour of the form
(r:?; #[if B; then (a;!; :?)" ||[(ris1!; ais1?) else (a3!; 77) £ )

The guard B; may depend on data values that have been communicated. If B; =
false, no handshake takes place with the right-hand neighbour.

We prove that the upper bounds for AR and AC still hold for this behaviour.
First we show that the AR bound still holds. The guards B; restrict the depth
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to which any critical path may reach, but do not introduce any new paths. The
bounds on average response time are derived from the critical path. This critical
path is the maximum delay path of a set of paths. Therefore, reducing the number
of paths can only reduce the bound. The bound for non-conditional behaviour AR
may not be tight for conditional behaviour. A similar argument holds for AC.

The lower bounds for AR and AC may no longer hold. For example when we
find a lower bound for AC, we minimise the delays on all edges. We then find the
critical path, i.e, the longest path between two events arbitrarily far apart when
all delays are minimised. By a similar argument to that given above, the more
paths that are possible, the larger the delay is likely to be. With fewer paths we
will likely have a smaller delay in the best case. The minimum possible number of
paths occurs when all guards are false. Therefore we can calculate lower bounds by
assuming that the pipeline has minimum length, i.e. L = 0. Hence, AR > do,r and
AC 2 bo, +6..

It is important to note that these bounds are no longer critical bounds. Con-
ditional behaviour is non-deterministic. We do not know what the critical path is,

so we cannot compute the critical bound.

4.10 An Example: The Eager Stack of Hulgaard
et al.

Hulgaard and Burns [27] give an example of a pipeline called an eager stack. The
eager stack is a linear array of data-storing cells. On a Put operation, all data
already in the stack is moved one place deeper. On a Get operation, all data
already in the stack is moved one place closer to the top. We choose this example,
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because they have done a separation analysis similar to ours. We can compare our
results, derived by formula, with their results, derived by an iterative computation.

We will be calculating cycle time, as this is one of the measures they use.

We make two simplifications to their model. We are only interested in the
communications between cells, so we do not distinguish between a “put” or a “get”.
Since the pipeline is a stack, the decision to communicate with the next cell is
dependent on the number of data elements currently stored in the stack. We can
model this as the conditional behaviour given in Section 4.9. We know that the
upper bound for AC in this conditional behaviour is the same as for non-conditional

behaviour.

We have two problems translating their model to ours.

e The possible delay assignment allowed by Hulgaard et al. is more restrictive
than our model allows. We assign a delay to every edge in our behavioural
graphs independent of all other edges. This may not be true for all behaviours.
For example, some behaviours may assign identical delays to edges (ro,i) —
(ao,7) and (ro,i) = (r1,5). That is, these edges cannot be assigned delays
independent of each other. This lack of independence may mean we may not
be able to give tight results for RT and CT, though our results will still be

bounds.

* Since our model uses handshakes, and the model used in Hulgaard and Burns
assumes an underlying synchronization mechanism, we have to massage the
model somewhat to make sure our model is consistent with theirs. For ease
of understanding, we model their pipeline as a micropipeline. See Figure 4.8.
There are four cycles within this model, synchronized by C elements. Each
of these cycles represents one of the four Petri nets in Figure 12 of (27] that
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are composed to form the original net.

Our model is shown in Figure 4.8. The P; markings give some idea of the
original synchronisation points. As with the model in Hulgaard et al. all
delays have the range [1,2] except the environment and end-cell which have
zero delay. Note that our method calculates the delay between requests at
the environment, whereas Hulgaard et al. calculate it between consecutive P,
operations. We solve this problem by discarding the left-hand stage since the
loop between P, and the environment has maximum delay less than MCj,
and minimum delay less than mca, and do not influence our results below.
Our trimmed pipeline is illustrated in Figure 4.9. In Section 6.2 we will show.

that for the bounds on average cycle time, this pruning step is unnecessary.

1
(1.2) (2] (1.2] (1.2)

Figure 4.8: The eager stack modelled by a micropipeline with length L = 3 and
multiplication factor n = 1. The original synchronisation points in the model of [27]
are labelled Py ... P,.

For this example the parameters are n = 1 and L = 3. We can now easily
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(12] (12

0

N
Vr
1 2
(1.21 {12] (1.2

Figure 4.9: The eager stack modelled by a micropipeline with length L = 2 and
multiplication factor n = 1, modified so that P, is at the entrance of the pipeline.

calculate the value of AC. Since AC < M Cs., and MCj, = 4 in this example, we
have that AC < 4. This is also the value given in the Hulgaard et al. paper.

We calculate an upper bound for CT also. Below we skip some steps.

k-1
A + max({Agr + Dby p + Y (Bhr —Ohy) — 8. |1 <k < L}
h=0

U{Ao,+})

{ Maximum occurs at k = 1}
0
= Ac + Al,r + AO,f + Z(Ah.r - Jh.r) - Je
h=0

= 242+24(2-1)—-1

cT

IN

= 6

Their result is CT < 5. The discrepancy occurs, because we take cycle time from re-

quest to request rather than acknowledgment to acknowledgment. See Lemma 3.6.
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Most of the work in this example is taking another model and translating it to
ours. Our model is slightly different, and the measures we use are slightly different,
but the bounds provided by the formulae are still relevant and valid. Once the

example is translated to our model, the results can be calculated trivially.

Note that our formulae easily generalise to stacks with other parameter values.

Hulgaard et al. would have to execute their algorithm for every new set of values.

4.11 Summary

We have calculated bounds on average response time and average cycle time in this

chapter. This chapter has proven the following results.

o The average response time, AR, for pipelines with multiplication factor, n =1

is bounded as follows.
mca, — A, < AR < MC;, - 4.

The two bottlenecks mca, and MCj, constrain the throughput and these
bottlenecks are calculated from the delays between each neighbouring pair of
cells. The formula is largely independent of cell ordering, though we must
consider which cells are adjacent. The formula is independent of the pipeline
length L. Therefore, when we optimise such a pipeline, we have some freedom
to rearrange the pipeline or add cells without affecting the bounds on the

average response time.

o The average cycle time AC for pipelines with multiplication factor n = 1 is

bounded as follows.

mcs, < AC < MCa,
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o The average response time AR and average cycle time AC for pipelines with

multiplication factor n > 1 are bounded as follows.

60,1' S AR S max{AO.rv AO,r + AO,f - 6:}
Jo,,- + Je S AC S Ao_,- + max{AoJ, Ac}

provided that A; s < Ags-n' and A;, < Ag, -7 for 0 <i < L. We optimise
such a pipeline by optimising cell 0 and the environment for speed. We
have some freedom to optimise other cells for low power or low area without
affecting the worst-case bounds on average response time or average cycle

time.

o We relate the bounds for AR and AC so that we may easily calculate one
value from the other.

e The bounds for average response time and average cycle time calculated for
non-conditional behaviour are also bounds for the conditional behaviour de-

scribed in Section 3.6.



Chapter 5

Trees

5.1 Tree-Based Networks

In software. many data structures are implemented by means of trees. For example.
by ordering the data stored in a tree one can construct efficient data structures
suitable for searching, insertion, deletion, or sorting. To implement tree-based data
structures in hardware one could use a tree architecture, where each cell contains
one item of data. For example, a stack can be implemented as a tree where we can

use an efficient algorithm for push and pop operations.

An advantage of tree architectures is that they minimise the number of com-
munications between cells, thereby reducing power consumption. The idea is that
the number of cells a communication passes through is smaller than with a linear
pipeline. For example, the depth of a balanced tree is only logarithmic in the num-
ber of cells, and hence the maximum number of communications may be less than
for a pipeline with similar capacity. Potentially the tree has small response times
for the same reason. A high-level model of a tree is given in Figure 5.1.

133
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Figure 5.1: A tree of cells with depth L = 2 and arity n = 2.

Again we can ask questions about the delay behaviour of a tree architecture
much as we did for the pipelines in the previous chapter. We calculate response
time, average response time, and the corresponding analogues for cycle time in this
chapter. This time we have to worry about how the branching of a tree affects the
tree’s speed. It is not immediately obvious how communications on one branch of
the tree interfere with the timing of communications on another branch. Moreover,
we still have to worry about variation in cell delays and the differences between

forward and reverse delays.

Another interesting tree architecture can be seen in Figure 5.2, where we abut
two trees. We can construct a FIFO like this, as shown in [7]. Data passes from
the left-hand environment to the right-hand environment. Each consecutive item of

data takes a slightly different path from its predecessor. For example, each cell in
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the left half of the FIFO alternates between sending data to one child and its other
child. In the right half of the FIFO each cell alternates between receiving data from
one child or from its other child. This architecture presents us with new analysis
problems, since we need to understand how the two trees interact. Combining two
trees in this way introduces many new possible critical paths. We will need the
results of both this chapter and the next to answer questions about the throughput
of this FIFO.

i
AT

kAl |

g

=
M L—d [

/v’

Figure 5.2: Two trees joined.

There are several possible disadvantages of tree architectures. One problem is
the delay and extra circuitry required for steering data. That is, we need extra
circuitry to switch data to one branch of a tree or to another. This is one of the

key problems described by Brunvand in his discussion of tree-based FIFOs [7].



CHAPTER 5. TREES 136

Another problem is layout. When implementing a tree architecture on a chip,
there are two problems. Area directly affects the cost of circuit fabrication, and tree-
based circuits waste a lot of space. Ideally all circuits are square and tile nicely on
a chip. Another problem in layout is that the wires that pass between the cells are
longer in a tree than between cells in a pipeline. Wires are an important component
of the delay of a circuit and transitions on wires dissipate energy. Longer wires mean
less speed and higher energy consumption. The speed penalty is unlikely to be too

costly. as we will see below, but the power consumption may be a factor.

We can analyse trees in the same way as we did pipelines. Our parameter n refers
to the arity of the tree. For example. binary trees would have arity n = 2. When
n = 1 we have a pipeline, and when n = 3 we have a ternary tree. We consider a
restricted subset of possible tree behaviours, viz, trees that direct communications
to each branch in turn. For example, in a binary tree we specify that each cell
alternates between communicating between its left child and its right child. We
will generalise this behaviour at the end of this chapter.

For the most part, we will consider trees where the arity is n > 1, and we will
use a binary tree for examples. The arity of the tree is similar to the multiplication
factor given for pipelines. As one might expect, the results for trees have similarities
to those given for pipelines with n > 1.

o Response Time, RT, is bounded as follows

k-1

RT < max({Ai; + Akcrp+ Y (Dby — Ony)
h=0

~(8or +0)n* " + 6o, |1 S k< LYU{Ao,})

The parameters are analogous to those used for pipelines. Each cell has
a set of delay parameters based on the depth h of a cell in the tree. All



CHAPTER 5. TREES 137

cells at depth k have the same delay bounds. Again, simplicity is the main
reason for these parameter choices. In particular, choosing delay bounds that
are identical for all cells at level h simplifies the analysis greatly, and is a
reasonable assumption in general. Typically one might expect one branch of
the tree to have functionality (and hence circuitry) identical to other branches.
Therefore each branch of the tree would have identical delay bounds at each
level. By choosing parameters that are analogous to those for pipelines, it

makes it easier for us to compare trees with pipelines.

This differs from the result given in Chapter 3 only in the factor n*~!. For
pipelines this factor was n*. If n = 1. the result is the same as for pipelines.
When n > 1, the first cell and the environment play a slightly smaller role
than for linear pipelines.

Since the parameter n is greater than 1, and since delays 4. and &g, are
positive, the upper bound for response time of pipelines RT b pipetines given in
Chapter 3 is less than or equal to the upper bound for the response time of

trees RT,, given here. That is,
RT b pipetines < RTws

This occurs, because cell 0 in a tree performs more communications, as it has
to deal with all branches rather than just one, and delay is associated with

each communication.
e Cycle time for trees, CT, is bounded as follows
CTub = RTub + Ac

where RT,; is an upper bound on the response time RT. This is as predicted

by Lemma 3.5.
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We then have
C T pipetines < CTy

¢ The average response time, AR, for trees with arity n > 1 is bounded as

follows.
Ju.r S AR S ma-x{AO.rv Al.r + AO,} - Je}

given A;; < Agg-n' and A;, < Ag, -nffor 0 < i < L. That is, a cell may be
exponentially slower than cell 0 depending on its depth in the pipeline. The
lower bound even applies when the cell delays A; s and A;, are not bounded.

Compare these bounds for trees with those for pipelines. The bounds for
pipelines with n > 1 are

JO,r S ARpipeline: S max{AO.ry A0.1- + AO,! - Je}
We then have

ARub.pipelinec S ARub

The lower bound is the same for both pipelines and trees.

As with pipelines with n > 1 in most cases the delays of cell 0 and the
environment are the only ones that are important. This would indicate that
problems with wire delays beyond the root may not be significant. Secondly,
note that we can optimise the layout as we wish, and optimise all cells, except
the root cell, without affecting the speed, as long as we are careful not to
exceed the exponential delay bounds of the cells. For example, we can make

the transistors smaller which will typically reduce speed, energy consumption,
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and area for individual cells. We could conceivably arrange the tree in a
squarer configuration at the expense of longer wiring. This would increase
energy consumption, and increase some delays. In both cases, we should be

able to avoid increasing the bound on AR.
o The average cycle time, AC, for trees with arity n > 1 is bounded as follows.
dor +d. < AC < max{Ao,+ A, A, + Doy}

given A; s < Agy-n* and A;, < Ag, -n' for 0 < i < L. The lower bound

even applies when the cell delays A; s and A;, are not bounded.

Compare these bounds with the bounds for pipeline average cycle time when

n > 1.

dor + 8. < ACpipetines < Ao+ max{Agy, A}
We then have

ACub pipetines < ACw

The lower bound is the same for both pipelines and trees.

e We discuss more general behaviours in which the handshakes are conditionally

passed deeper in the tree.

5.2 The Behaviour

We formalise our notion of the behaviour of a tree. There are many possible be-
haviours to choose from. We choose a behaviour that is an extension of the be-

haviour we have for pipelines. If we choose a tree with arity n = 1, we should get
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a pipeline with multiplication factor n = 1. We change only the behaviour, not the
behavioural model itself. Moreover we do not change the delay model, and also the

parameters and their meanings are kept the same as those used for pipelines.

Consider a tree where each internal cell for each handshake with its parent has
one handshake with one of its children. The handshakes with the children, how-
ever, alternate between left and right child for a binary trce. The communication

behaviours are given by

(r:?5 #[ (@ m?)l(rlinnls alina?); (@l m?)|(rrisns arein?) )

The terminals v/ and al connect the internal node with its left child, the terminals
rr and er with its right child. See Figure 5.3.

—
r[iq-l
r aliol
]
—
i
-—— ] —
a
i
rriol
arnl

Figure 5.3: One cell of a tree.

To adapt our old proofs we use a few simplifying definitions. Let ¥ be a set of
subscript labels. ¥ contains n elements. In the n = 2 case, i.e., a binary tree, we
can choose labels r and [ representing right and left. The example tree is shown
in Figure 5.1. In this case, ¥ = {r,{}. In the following examples s is a string of
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elements from ¥. That is, s € £*. Rewriting the communication behaviour for a

binary tree, we have.
(re?; *[ (a5 ) (ratls au?); (ad; 7 N))(ro; a0 ?) ])
For the more general n-ary tree we have a behaviour

(r?5 #[(@hs 7 (e s 8ee, 75 (@as 7 (Pams s Geas ?);

oo (@, ) (Pazn ) Giz,?) ])

where z;, 1 < i < n are the distinct elements of £. We generalise this behaviour
later in the chapter.

The delay model is the same as that used for linear pipelines. Edges ending
in a request are considered “forward” delays. Edges ending in an acknowledgment
are considered “reverse” delays. For the response-time proof we assume that all
cells at level ¢ have the same delay bounds. We allow a bit more flexibility for the

average-time proofs.

As well as using the string s in examples, we will use the following conventions.
Labels b,c € I are single elements. For example sb is the concatenation of element
b to the end of string s. |- | is the function from &* to the non-negative integers
that determines the length of a word in £*. For example, € is the empty word, and
lel = 0. Note that |s| gives the depth in the tree at which an event occurs. For

example, let r;. be an event. Since |bc| = 2, 4. occurs at depth 2.

We are going to show for trees that

k-1
RT < max({Ar, + Aer s+ D (Any — bny)
h=0

—(50,1- + Je)nk_l + 60,1- I 1 S k S L} U {AO.P})
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Note the factor n*~! that occurs here, in contrast to the factor n* that occurred in

the formula for pipelines. This is the only difference between the equations.

The proof is almost identical to the original proof for worst-case response times
of linear pipelines. The major difference is that we relabel the subscripts. We
can use |- | as a mapping between the proof for trees and the linear pipeline case.
Suppose that |s| = i. We replace ¢ in the original proof with s. We replace i + 1
with sb. Since all cells at level i are identical it doesn’t matter which s and b we

choose (as long as |s| = 1).

The graph corresponding to the binary tree of Figure 5.1 is given in Figure 5.4.
A ternary tree would not be much harder to draw, but increasing the depth of the
tree beyond L = 2, would make the graph exceedingly complex.

(r.0) (a0) (rl) (al) r2) (a2) (r3) (a3) (rd) (a4) (r5) (a5) (r.6) (ab)

0 ———— - ——- R, ———— ———
\"L"’ \ ««.xww >< (°»0’><('w“ ><
2 L .4 — .4

(r0) (a,0) (ry.0) (a,.0) (ral)

Figure 5.4: Unfolded process graph for a binary tree of cells with tree depth L = 2.

Response depth is defined as in Chapter 3. Hence, response depth refers to the
number of edges in a critical path of acknowledgments.

Lemma 3.2 still holds without further proof. This lemma states that if the
response depth of an acknowledgment (ay, ji) is zero, then the separation between
that acknowledgment and the corresponding request is bounded to

T(ak’jk) - T(rkijk) S Ak.r
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The proof of this lemma for trees is identical to that for pipelines. Now we are

ready for the following lemma.

Lemma 5.1 If the response depth of (a,,j,) is k,1 < k < L — |s|, then event
(@4, jo — n*~1) ezists and we have

k-1

T(anjl) - T(an jl - nk—l) S A|a|+k.1' + Alc|+k—1.f + Z(Alll-l»h.r - JIIH—’IJ')
h=0

a

Note that n = 2 for binary trees.

Proof. By induction on k.

Basis. Assume that (a,,j,) has a response depth of k = 1. Let the edge (a.s, jas) —*
(a,,J,) exist, then (a,, j.) has response depth 0. We have a dependency graph as
in Figure 5.5.

('.'v'j:-l) (ax’j:-“ \/\/ (’;:I) (a.f'j.f)

(ax 'jx 'I) (rlb 'jw) (a:b 'j,b)

Figure 5.5: Example of paths used in the base case. Dotted edges may not neces-
sarily be present. The wavy line is a path of one or more edges.

First we deal with the statement that event (a,,j, — n*~!) exists. Let us look
at the behaviour of a cell at level [s|.

(re?; *[(@hs D) (rees s Gez,?); (@05 7)oz s @e, ?);
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e (@Y T ) (Fazal; 8eza?) ])

where z; are the distinct elements of X. If (a,,j,) exists and has a response depth
greater than 0 then it must depend on an acknowledgment from a deeper level.
Therefore, from the behaviour given above, (a,, ,) must be at least the second oc-

currence of a,. Therefore (a,, j, —1) exists. This can easily be seen from Figure 5.5.

From the definition of T},.4(c) and the dependency graph in Figure 5.5, we have
Tored(Tabs Job) = Tpred(@s, jo —1). In the proof below we take Tpreq = Tpred(8s, 7o — 1).
We wish to derive an upper bound for T'(a,,j,) — T'(a,,j. — 1). We observe

T(as7:) —T(a4,3. — 1)
= { Break path into 4 edges. }

(T(an jl)—T(alb‘) jab))+(T(alb1 jcb) —T(rnb, jlb))+(T(rlb7 jlb) _Tpred) +(Tprcd_
T(as, js — 1))

< { (a.,J.) has positive response depth so timing dependency exists. Also,

ack/ack pair is a “reverse” delay. }
Alal.r + (T(acba jab) - T(rab, jab)) + (T(raln jab) - Tpred) + (Tpred - T(ai, ji - 1))
< { (@s,jus) has resp. depth 0, Lemma 3.2 }

Alcl,r + AIl|+1.r + (T("’:b, j-b) - Tp'ed) + (Tpred - T(an ja - 1))

{ Tpred = Tp'cd(an ja - 1) = Tprcd(rnb, jab) }
Alcl,r + A|c|-§-l.,1- + (T(rnbajab) - Tpred(rnb,jcb)) + (Tpred - T(a., j. - 1))

< { From definition of timing assignments and because edges ending in re-

quest are forward delays }
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Apr + A1, + Al s + (Tprea — T(as, 7, — 1))
<  { Minimum edge delay is 4|, }

Aplr + Apaptre + Apaps + (—dpyr)
= {cal }

Aptsrr + Apaps + (Biajr — Opayr)

{k=1,calc }

Altir + Blark—1,f + TE-(Apithr — Ojalhs)

Step. Assume the theorem holds for ¥ > 0 and that (a,, 7,) has response depth k+1.
Then there is a node (a., j) such that dependency (a.,js) = (a., j.) exists and
(@sb, Job) has response depth k. From the induction hypothesis it then follows that
node (@,,Jjs — n*!) exists. Given that node (@us,Js — n*-') and dependency
(@uby Jub) = (., 7,) exist, we show that node (a,,j, —n*) and dependency (a,, 7.6 —
n*-1)  (a,,j, — n*) also exist and that we can depict the dependencies for levels

|s| and |s| + 1 only as in Figure 5.6.

Figure 5.6: A part of the behaviour graph at levels |s| and |s| + 1.

Let us look at the behaviour of a cell at level |s|.

(r. 75 *[(a.}; 7)) (razy b .z, ?); (a.); T )| (Tozs b ez, 7);
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R CRER S| [( auz,?) ])

where z; are the distinct elements of X.

Let b = z; € Z. From this behaviour it follows that between any two successive
dependencies a,; — a, for a particular b € £ there are n dependencies a, ~ r,. It
follows that dependency (a,», je6 — 1) — (a,,j, — n) exists. For example, there are
n = 2 edges of the form a — r at level 0 in Figure 5.4, between each two a; — a
edges. Note that the dependency a, ~+ r, is a sequence of edges if s # €. Note
also that a,, — a, is a direct dependency, i.e., a single edge, as is (a,5, 7 — 1) —
(@.,Js — n). Both of these facts are easily seen from the graph in Figure 5.4.

If (as,Jeo — 1) —+ (., j, — 1) exists, we can iteratively show that (a,s, j.p —2) —
(@4, Js — 2n) exists. Repeating this step n*~! times yields the dependency graph

above with direct dependency (a.s,jus — n*%) = (a,, j, — n*).
Note that the above proof also gives us the existence of (a,, j, — n*).

Now we observe
T(G,,j.) - T(al7jl - nk)
= { Break path into three: edge, path, edge. }

((T(@4,75)) =T (aubs Jub)) + (T (ast, Jab) — T (Guts Juis—15 1)) +(T(as, Fop —F—1) —
T(an ja - nk))

< { (@, ) has resp. depth k, induction hyp. }

((T(an ]c)) - T(acba jnb)) + A|¢6I+k,r + A[an-k—l,f + El’i;(l)(A[le-h.r - 5|¢b|+h,r) +
(T(anba jlb - nk—l) - T(an jn - nk))

< {calk.}
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((T(84:3a)) =T (asby o6 )+ Alap1 ke F Aapi14k1,4F Thmt (Dol 14hir = Ola s 14hir )+
(T(acbrjlb - nk-l) - T(anjn - nk))

< { (a.,1.) has positive response depth, and ack/ack pair is a reverse latency
}
Alalr + Dbty + Apajik s + Ty (Apsshir = Sapihe) + (T(8eb, Jap — n*71) —
T(a,, js — n*))
< { (2w jw —n*"!) = (a,,]. — n*) exists, minimum edge delay is 4., }
Alalr + Apaitktre + Blatsies + Thot (Aapehe — Saishr) + (—8jatr)
< {cale}

Apperstr + Aptik s + Thoo(Apthr = Sjaj+hr)

5.3 Worst-Case Response Time

We now calculate the worst-case response time so we have bounds on the worst-case
behaviour of the tree. The result for RT follows identically to the original proof
for pipelines, given the mappings a. < ag, and r, < ro. We have the following

theorem.

Theorem 5.2 The worst-case response time RT for any tree (as defined in Sec-
tion 5.2 operating under a delay model of Section 2.6) is bounded from above as

k-1
RT < max({Ais + Aeorp+ ) (Any — 8iy)
h=0

~(dor + 8e)n*t + 80, |1 <k < L}U{A0,})
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Proof. We have to find an upper bound for T'(a,,j) — T(r.,j) over all j > 0 and
all valid delay distributions. Each acknowledgment has a response depth k, where
0 <k < L. For a response depth k = 0, we have from Lemma 3.2, T(a.,j) —
T(re,j) < Aoq,r. For a response depth of k > 0, we use the result of the previous

section. We observe

T(aﬂj) - T(revj)
= {calc}
(T(ace,5) — T(ae,  — 2*71)) + (T(ae, j — n*7) = (T(re, 7))
< {(ac,J) has response depth k, Lemma 5.1, s = ¢ }
AI'H'"" + Alal-l-k—l,f + E’I:;CIJ(AIIIHM - 6|a|+h.r) + (T(ae»j - nk—l) - (T(r,, J))
< A{lsi=lg=0}
Ak.r + Ak—l.f + Zz;(lj(Ah.r - Jh,r) + (T(aeaj - nk-l) - (T(rea J))
Notice that there are n*~! handshakes at level 0 between occurrences (ae,j) and
(@e, 7—n*"1). The handshakes at level 0 experience delays through the environment
and through cell 0. Assuming that the environment’s minimum delay is 4, (for edge
a. =+ r.) and the minimum delay of cell 0 (for a reverse latency edge r, — a.) is
do,r, the minimum duration of one cycle through environment and cell is dor + 9e.
Hence the minimum duration from T'(a,, j —n*~!) to T(r., j) is (do,r +8c)n 1 =4y ,.

This then leads to the inequality

k-1
T(aer J) - T(r,,j) < Ak.f + Ak—l.f + Z(Ah.f - 5,,',) - (50.1' + Je)nk-l + 50.?
h=0

Maximising these upper bounds over all k,0 <k < L gives the desired result.
a
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5.3.1 Simplifying the Bound

We simplify the bound in the same fashion as we did in Section 3.3.1. We ignore
the case where n = 1, as this gives us rather uninteresting trees. When n > 1, we
use the following simplifying assumptions. We restrict the possible delay ranges of

the maximum forward and reverse latencies of each cell. We assume that

h-1

IA

Ah,r AO.r n

Ary < 6. -nh

where A > 1. To simplify the formula further, we again assume that forward and
reverse latencies are equal, i.e., Ay, = §,, where b > 0. That is, the reverse
latencies are constant at each depth, though the reverse latency of a cell at level h
may still have a different reverse latency from a cell at level g, where g # A.

k~-1
RT S max({Ak,r + Ak—l,! + Z(O) - (50,1- + ¢ge)‘n'k.'l + 60,? I 1 S k S L}

h=0
U{Ao,})
{Using Ap, < A, - nh-1}
max({Ao, - "7 + Ap_y s ~ (8o, + )% + 8o, |1 <k < L}
U{Aq,})
{Using o, = Ao}

IA

= max({Aq, -2 + Ap_rp — (Aop + 8 )05 + Ao, [ 1<k < L}
U{Ao,})
= max({Ap-1,5 — - 0"+ Ao, |1 < k< L}U{Ao,})
{Using Apy < 6. -nh }
< max({0+ Ao, [ 1< kK< L}U{Ao,})
= Ao,
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The simplifying assumptions about cell delays for pipelines given in Section 3.3.1

were

Ah,r

Ah-l,[ < 5,-11."

IN

A0,1' * nh

where h > 1. There is a factor of n difference between these assumptions and those
given for trees. The assumptions about cell delays for trees are more restrictive
than those given for pipelines, even though delays of cells deep in the tree may be
exponentially slow. Note that if we set A = 1 we restrict the delays of the first two
levels of a tree as follows A;, < Ag,. Another is that Ao,y < 8. which might seem

a little stringent. We can use the following assumptions instead.

Ah,r

IA

AO.r R nh-l

Ahf < Je'nh

o]

where kb > 2. We leave the delays unrestricted when & = 1 and this is the only
change from the previous assumptions for trees. We again assume that reverse

latencies are constant, i.e., As, = 8, with A > 0.

RT < max({Ax, + Aioyy+ kf(O) — (Sor + &)t + 8o, | 1<k < L}
U{Ao.,}) =
{Using steps as above, we are left with one last case when k = 1}
< max({Aer + Aucrg + 5°(0)  (Bop + &)2 + do | £ = 1)
U{Ao,}) =
< max({Ayr + Ao — (dor +8c) + S0} U {Ao,})
< max({A;, + Aoy — 6.} U {Aor})
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This is still a simple result. With these assumptions one can say that if the reverse
latencies have no variance (i.e., As, = dx,) the delays in the first two levels are
the only ones that matter. The rest of the pipeline can be exponentially slow in
the depth of the cells in the pipeline and may be optimised for power consumption

or area rather than for speed.

5.4 Average Response Time

We would like to find the throughput of a tree-based circuit. Again we calculate
the bounds on the average response time AR for trees, but, as with the proof for
response time, we have to worry about possible interference between the signals

travelling on different branches of the tree.

In the following proofs we use s € £*, and we let h = |s|. If we specify an event
an, we are referring to any acknowledgment event at the hth interface. If we refer
to a,, however, we are referring to a particular acknowledgment. For example, if
s1=1l,s2=1Ir, s3=rl,and sg =rr, and [3;1] = [33] = |s3| = |s4| = h = 2, then we

have ay, a;,, a,1, and a,, are four a, events. We define things similarly for requests.
Theorem 5.3 Let the mazimum delays for each cell be bounded as follows.

Ai,f

IA

Ao'f . ni

Ai,r S AO,r 'ni

where 1 > 0 is the depth of the cell in the tree.

The average response time AR for any tree (as defined in Section 5.2 operating

under a delay model of Section 2.6) and with n > 1, is bounded as follows

do, < ARZ max{Ao,, A1, + Aoy — 8}
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The lower bound even applies when the cell delays A;y and A;, are not bounded.
The upper bound is a critical bound when A;5 = Aoy -1’ and A;, = Ao, - 1.

O

Before we prove the main theorem, we need an auxiliary lemma. We again use

the definition of level A paths and paths € (h,k + k] as defined in Section 2.6.4.

Lemma 5.4 Let A;y = Aoy -n' and A;, = Ao, - n° be given. Let paths P and P’
ezist between (r,,1) and (a,,j), for|s| = h, h >0, and j > i. Let path P € (h,h+k]
have mazimal delays on each edge, and let P’ be a level h path, also with mazimal
delays on each edge. Then the delay on P is the same as the delay on P'.

m]

Note, as with the n = 2 average-case analysis we considered in Chapter 4, we
explicitly exclude A = 0 from our reckoning, because the environment delays are
unconstrained. Note also that the statement of the problem, i.e., path P exists and
P € (h,h + k|, means that the first edge in P is an r, — r4y; edge and the last
edge in P is an a4y — ax edge. This constraint also implies that j = i + m with

m > 0.

As with the similar proof in Chapter 4 we do a nested induction. The outer
induction is on the maximum depth of the path in the pipeline, k. The inner
induction is on m, the difference in occurrence indices of the first and last event in

the path.

Proof of Lemma 5.4{. We induct on the number of levels, k. Note that h = |s].

Basis. Let k = 1. Let j = i + m. We induct on m, the number of occurrence

indices between (ry, ) and (as, 5).
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Basis. Let m = 1. Then j =i+ 1. Refer to Figure 5.7.

(r,.i) (a,.i) (r‘,i+1) (a,,x'+I)

Figure 5.7: Example of path when kK =1 and m = 1.

We can trace a path directly at level h between T'(r,,t) and T'(a,,i + 1) where
[s| = h. We have n + 1 edges of type r, — aj on this path and n edges of type
an — T, recalling that a; and rj, are any events at level A, not just events a, and

r,. To convince ourselves, let us look at the behaviour of a cell at level |u| (= h—1).

(ra?; *#[(aul; 7uD[(Tuz, s @uzy 7); (3l Tu?) [ (Tuzs b Guzy 7);

cov i (@ah Ta D (Fuzahs Guza?) ])

where z, € {Zo,Z1,-,Zn} are the distinct elements of . Let u € £* such that
uz; = 3. Between (ry;,,%) and (rys, , i +1) there are n edges of the form ryz, = Guz,
and n of the form Guz, = Tuz(y ey mysr- Lastly, from (ruz),i+1) = (Guz,,i + 1) we

have one more r, — aj edge.

As an example, consider Figure 5.4. Let s =“lI”. Between (ry,0) and (ay,1)
we have the edges (ry,0) — (au,0), (au,0) = (rr,0), (rir,0) = (a1r,0), (ar,0) =
(ru,1), and (ry,1) = (au,1). We have n + 1 r, — a, edges on this path and n

ap — T, edges as predicted.

The delay on each edge r, — aj is maximised at Aj,. Likewise the delay on
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each edge of type a, — rj is at most A,_; 4. Then,

T(a,,i+1) —T(r,,i) = (Rn+1)Ap, +n-Ap_yy
= (n+1)ntAg, +n* Aoy

This is the delay on the level A path P’.

Now we derive the delay of the path P € (k,h+1] between T'(r,,t) and T'(a,,i+
1) with j = ¢+ 1. There is only one such path and it is r, — r,5 — a5 — a,. We

can calculate the corresponding maximum delay.

T(ani+1) = T(r,,i) = Ans+Bpyrs + An,
{From statement of theorem}
= n" . Ao,f + n"“ . Ao',. + nh . AQ',

= (n + l)nhAo_,. + nh. Ao'f

So the delay on P is the same as the delay on P’.

Step We have k = 1 as above. Assume that our property holds for j = i + m. Now
we prove for the case when j =i + m + 1. Refer to Figure 5.8. Let T'(a,,i + m) —
T(r,, i) =z.

We derive the delay T(a,,i + m + 1) — T'(r,,t). First we assume that the level k
(= [s]) path P’ is critical. Using the same reasoning as for the base case we know
that there are n edges of type ry, — ax and n edges of type an — ), edges between

(@.,i+m) and (a,,i+ m + 1). Consequently,

Delay(P') = (T(a,i+m+1)— T(a,, i+ m))
+(T(a,, i + m) — T(r,,1))
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(r', i+m) (a,i+m) (r,, i +m+l) (a,,i+m+l)

vig )=a (ry ig) (ay iy )

Figure 5.8: Example of path when k =1 and m > 1.

= (T(a.,,i+m+1)-T(a,,i+m))+z
= n-Bpr+n-BDpyp+z

= oA, +nf Aoy +2z {By assumptions}

Now assume the path P € (h, h+1] between (r,,7) and (a,,i+m + 1) is critical.
Path P is restricted to events at level h + 1 except for the endpoints and so must
pass through point (a.c,1,.). See Figure 5.8. For brevity, we call this event . We
determine T'(a).

First note that both the level & path and the path in (h,h + 1] between T'(r,,1)
and T'(a,,t + m) have delay z by our inductive assumption. The delays on each
edge of each path are maximised. Now, observe that the two incoming edges to
(@s,i+m) must have maximal delay of A,. Thus both predecessors of (a,,t+m),

ie. (rs,i+m) and (G,c,tuc) = a, must occur at T(a,,i + m) — Ap,.
T(a) = T(auc,te)
= T(a,,i+m)— A,
= T(T.,i) +z- Ah,,..

We know path P is a path (r,,i) ~ & ~+ (a,,i+m+1). The path @ ~ (a,,i+m+1)

consists of one apy; — T4y edge, ie., (@acrtac) = (Taby1as), ODE Thyy — anyy edge,
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i-e., (Tew,%8) = (3eb, 1), and one any1 — a4 edge, i.e., (a.s, i) = (a,,t + m+ 1).

These have delays respectively of A s, Apt1, and Ap,. Consequently,

T(a,,i+m+1) — T(r,,3)
= (T(ani+m+1)-T(a)) + (T(a) — T(r,, 1))
= (Ans+ Antrr + Ag,) + (T(a) — T(r,,1))
= (Ans+Angre + Any) + (T(ray i) + 2 — Ag, — T(r,,1))
= (Ang+ Apprr + Anp) + (z — Agy,)
= Aps+Apu+z

= nh'“ . Ao', + nh . Ao'f +z

This is the same as the delay on path P’, and we are done. We have now completed

the base case for when k& = 1.

Step. Assume that the property holds for k. We prove that the property holds for
k+1. We wish to show that if we have a path P € (h, h+k+ 1], between (r,,) and
(a.,7), and we have a level h path P’ between the two, then the maximum delay

on each path is the same.

Note that path P must begin with an r, — r,. edge and finish with an a,; — a,
edge. So we have a path r, = r,. ~ a,5 — a,. The path r,. ~ a,; is a path in
[Ah+1,h + k + 1], or by setting g = h + 1 (= |sb| = |sc|), path r,. ~ a,4 is a path
in [g,g + K.

The path r,. ~+ a,; is either a path at level g, or consists of segments S, some

of which are paths at level g, and some of which are paths in (g, g + k|

Let t € I° be a string of length [s| + 1. Let S be any segment on the path
Tec ~* Gg Of the form (r¢,%;) ~ (a,j,). Either this is a path at level g or it is a
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(r 1‘) (a l‘) {r H»m) l+ll)

N
N7

Figure 5.9: Example of path when k=1 and m > 1.

path in (g,g + k] with j, = i; + m, m > 0. Refer to Figure 5.9. By the induction
hypothesis, the maximal delay on segment S is the same whether it is a segment
at level g, or if § € (g,g + k]. Without loss of generality we assume that segment
S is a level g path.

So, we may assume that path r,. ~+ a, is a level g path, and therefore path P
in (h,h +1]. We now have the base case, which we have already proven and we are

done.

a

We are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Because all 7o — ag edges have a minimum delay of do,r, We

know that AR > 4y, and we have proven the lower bound.

Now we prove the upper bound.
AR < max{Aq,, Ay, + Ao,y — 8.}

Let there be a critical path P, from event (e, io) at level 0 to event (f, jo) at level
0, with jo > #. If e and f are sufficiently far apart then, without loss of generality,



CHAPTER 5. TREES 158

we let event e be a request and event f be an acknowledgement. We can do this,
because edge delays are assumed to be finite, and on an infinite path a single edge
causes negligible extra delay. We choose i and j, such that jo = i + m, for some
m > 0. Because we are looking for a worst-case bound, we assign delays to cells
that make them as slow as they can be. That is, A; s = Ags-n' and A;, = Ag, -n'.

We may assume path P € [0,1] due to Lemma 5.4 above. Remember that

Lemma 5.4 does not apply to level 0 paths as the environment delays are unbounded.

Suppose that the critical path P is a level 0 path. Then
T(@e,j) = T(re,8) < (F —i+1) - Ag, + (j — i) - (Environment Delay)

To determine the average response time between (r.,t) and (a., j) we subtract the
environment delay and divide by the number of cycles. The number of cycles is
J —t+1, so, if the critical path P is a level 0 path, the average response time
satisfies AR < A,,.

If the critical path P is not a level 0 path then we can break P into segments.
There is at least one segment S of the form S € (0,1]. Let S start at (r.,i.) and
end at (a,j.). Then j. = i, + m’ with m’ > 0. We can calculate the maximum
delay on §. S consists of the first request/request edge, 2m’ — 1 “horizontal edges”,
and one final acknowledgment/acknowledgment edge.

T(ae,te +m') — T(reyie) = Agyp+m'- Ay, +(m'—1)-Ag g+ Ao,
= m' - (A, + Agy) + Ao,

We derive the average response time over this segment by subtracting the number

of environment delays, and dividing by the number of cycles at level 0.

ARy = (m'-(Ays+ Boy) + Aoy —m'-8.)/(m' +1)
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First let us consider the case where §. > A;, + Ag s — Ag, We maximise over

m' > 0.

ARy = (m'-(Ayr+ Doy) + Aoy —m'-8,.)/(m' +1)
{From assumption above}
< (m'-(Air + Bog) + Ao, —m' - (A1, + Doy — Ag,))/(m' + 1)
= (Bor +m - Ao,)/(m' +1)
= Ao,

We have shown that if §, > A;, + Ag s — Ag, then AR < Ag,. But Ay, is the
delay through cell 0 alone and is the value of AR when using a level 0 path. We
can therefore surmise that if §, > n - Aoy, the critical path is at level 0 and goes

no deeper in the tree.

Let us now consider the case when d, < A,, + Ag s — Ao, We maximise over

m' > 0.

ARy = (m'-(Ay,+Agg) + Aoy —m' - 8.)/(m' +1)
= (b + Aoy — Arr — Bog)/(m' +1) + Ay + Aoy — 4.
{From assumption above}
< (A1 + Do —Bor + Aor — Ay — Agyg)/(m' +1)
+A1, + Ag g — 9.
= (0)/(m' +1) + Ay, + Aoy — 4.
= A, +Ay—6.

The contribution of delay by level 0 paths is negligible here.
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Combining the above results, and maximising over all possible segments, we get

for the average response time

AR < ma-x{AO,ry Al.r + AO.! - Je}

As we saw with linear pipelines with n > 1, the delay of the first cell is the most
important. Even if we let the cells deeper in the tree become exponentially slow,
the bound on the average cycle time still depends on the first cell.

So, what do these results mean for optimising tree structures? Presumably we
wish to size transistors to optimise the speed of cell 0. Smaller transistors are
usually slower, but obviously take up less chip area. As our results show, we can
minimise the size of transistors deeper in the tree without affecting the bounds on
the average throughput. Consequently we can shrink the transistors and reduce the
area penalty of using a tree without compromising the worst-case bounds. We also
have more freedom to use longer wires, with their accompanying greater delay, to
suit our layout requirements. We still have a problem with the delay of directing
data to different branches, but this will only be a problem at cell 0.

5.5 Cycle-Time of Tree Architectures

Bounds on the worst-case cycle time and average-case cycle time are easy to com-

pute. We have the following theorems.

Theorem 5.5 The worst-case cycle time CT for any tree (as defined in Section

5.2 operating under a delay model of Section 2.6) is bounded from above as

k-1

CT < A.+max({Axr+Axorg + O (Any — Ir)
h__.o
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_(50,1' + Jc)nk-l + 60,1' l 1 S k S L} U {on'})

Proof. By using Lemma 3.5 we know that CT < RT,,+ A, where RT,; is an upper
bound on response time. We use the value of RT,; calculated by Theorem 5.2 and
the result follows.

a

Theorem 5.6 Let the mazimum delays for each cell be bounded as follows.

IA

Ay Aoy - nf

Ai,r S AO,r * ni
where © > 0 is the depth of the cell in the tree.

The average cycle time AC for any tree (as defined in Section 5.2 operating
under a delay model of Section 2.6) and with n > 1 is bounded as follows

50',- + Jc S AC S max{Ao,, + Ae,n . Ao', +n- Ao'f}

The lower bound even applies when the cell delays A;y and A;, are not bounded.

The upper bound is a critical bound when Aiy = Agy-n' and A;, = Ag, -1t

Proof. Because all ro — ao edges have a minimum delay of do,r, and all ag — 7
edges have a minimum delay of §., we know that AC > 8o, + 8. and we have proven

the lower bound.

To prove the upper bound, we use Corollary 4.11 and Lemma 4.8 from Sec-
tion 4.6. Lemma 4.8 defines AR, as

ARy = max{AR.,AR.}
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where AR,; is derived from a level 0 path, and AR, is derived from a path in
which the contribution of level 0 paths is negligible. The proof of the upper bound
for AR in Theorem 5.3 splits the path calculation into two. One path is the level
0, and one path is a path in (0,1]. One of these paths is the critical path. These
paths respectively derive AR, = A, and TRJ, = Aj, + Ao,y — d.. Theorem 5.3

gives

ARub = max{AO.n Al,r + AO.f - 53}
= max{AR,, AR}

Because the critical path is either (i) a path at level 0, or (ii) a path with negligible
delay at level 0, we can apply Corollary 4.11 which states

ACw = max{AR, + A., ARy + 4.}
= max{Ao, + A., Ay, + Agy}

We will apply the above formulae to a tree-based FIFO in the next chapter.

5.6 Generalised Behaviours

We can generalise the behaviour given in Section 5.2 in a number of ways and
therefore widen the scope of the results. For example, consider the following im-
plementation of a stack with a binary tree. On a push operation data is inserted
at the root, and the data at the root is displaced down into the tree. The root
decides whether to send the displaced data to the left child or to the right child

and its choice might depend on the number of items in the stack, or where it sent
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previously displaced data. On the next pop operation it may retrieve data from the
same child. That is, we may have consecutive communications with the left-hand
child.

The behaviour given in Section 5.2 is

(re?; *[ (a5 7o)l (Tezs s @y 7); (@4l 7)) |[(Tomy s Bz, ?);

oo (@ T )(Fezns ez ?) 1)

where z, € {20, 21, -+, 2.} are the distinct elements of £. This behaviour requires

that a node communicates with each child in turn. We generalise the behaviour as

(r:?; #[(a. )Tzl aiz?)])

where z is a random element of ¥ at each repetition step. That is, the behaviour
specifies in each repetition step a handshake at interface |s|, i.e., (a,}; r,?), with
the parent, and a handshake on interface |s| + 1, i.e., (r,2!; a,2?), made with an
arbitrary child.

This behaviour is extremely flexible, but note that it is a form of conditional
behaviour. We assume that the probability of choosing any particular child is
greater than zero. If we look for worst-case behaviour we always choose the worst-
case child. If we look for best-case behaviour, we always choose the best-case child.

For our purposes, therefore, the choice is deterministic.

Let us extend the behaviour even further.
(rs?; *[if B, then (a,!; ,?) ||(r.z!; a.2?) else (a,}; r,7) i ])

where z is a random element of ¥ at each repetition step. Not only can a cell

choose any to communicate with, but a cell can also choose not to communicate
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deeper into the tree. This is analogous to the conditional behaviour for pipelines
described in Section 3.6.

Consider again the stack example. We insert data into the stack with a push
operation, which may or may not displace data already at the root node. If there
is no data to displace, maybe no further communication is necessary. In this case
guard B, is false. If we do displace the data at the root node, the root then has to
make a choice as to where to send the data. Suppose the displaced data is moved
to the left child, which in turn chooses to displace data to its left child. In some
cases, therefore, we may simply shift data in the left-hand branches of the tree.
Similarly, on a pop operation we might shift data in the left-hand branches of the
tree only. Hence, the case may occur on consecutive push and pop operations that
the stack only uses the left-hand branches. Effectively this would be a pipeline of
left-hand branches.

This leads us to the following conjectures. Given a tree of depth L, where L is
log(N) and N is the number of cells, and the tree behaviour described above, then
the worst-case response time RT of the tree is the same as that of a linear pipeline
of length L and multiplication factor n = 1. Secondly, given a tree of depth L,
where L is log(N'), and the tree behaviour described above, then the bounds on
the average response time, AR, of the tree are those of a linear pipeline of length

L and multiplication factor n = 1.

We can give similar conjectures for the cycle time and average cycle time. We
note that none of these conjectures will give us a critical bound as we only define

critical bounds for deterministic behaviours.

Therefore, given the most general behaviour above, the response time and av-

erage response time of a tree may be no better than a pipeline in the worst case.
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- Note, however, that a balanced tree is going to have less depth, L, than a pipeline
with equivalent capacity. Since worst-case response time depends on the depth,
a tree may well be better. The upper bound on average response time, on the
other hand, is independent of depth for a linear pipeline. Using a tree would offer
no obvious advantage for the above behaviour, and the extra hardware required
for switching between branches would probably add delay. Note, however, the
limitations of our model of choice. If we always choose the worst-case path, the
tree may fare worse than the pipeline. In many cases, such as the stack exam-
ple above, we might expect a more favourable distribution of communications that
used all parts of the tree evenly. In this case the average response time is bounded
as with the non-conditional behaviour described earlier in this chapter. That is,
the average response time for a tree with arity n > 1 is bounded from above by
max{Aoy,n-Agy + - Aoy — 8.} given A;y < Agy-n and A;, < Ag, - n'. So
we can have exponentially slow cells deeper in the tree without affecting the upper
bound on the average response time. The average response time for a pipeline with
multiplication factor » = 1 is bounded from above by MCj;, — §.. Exponentially
slow cells will be reflected in the worst-case delay of such a pipeline. So, if we can
guarantee a more favourable distribution of communications than the worst-case,

a tree may well be a better choice for average-case response time also.

5.7 Summary

We have applied the timing measures of Chapters 3 and 4 to tree-based architec-
tures. We have assumed that each level of the tree has the same delay parameters.

This chapter has proven the following results.
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¢ Response Time, RT, is bounded as follows

k-1

RT < max({Aw, + Ai-r,s + D (Dnr — biy)
h=0

—(60.1' + Je)nk—l + 60,1' | 1 S k S L} U {onf})

This differs from the result given in Chapter 3 only in the factor n*~1. As with
pipelines, the worst-case response time depends on the variation in reverse
delays. Again, if there is no variation in reverse delays, the bottleneck is the

cycle of delays between levels.

We compute the cycle time CT,; = RT,; + A. using Lemma 3.5.

o The average response time AR and average cycle time AC for trees with arity

n > 1 are bounded as follows.

JO,r S AR S max{Ao‘,., Al,r + AO,f - 6:}
dor+d. < AC < max{Ao, + A, Ay, + Aoy}

given A; s < Agy-n' and A;, < Ag, -7 for 0 < i < L. We optimise such
a tree by optimising cells at the first two levels and at the environment for
speed. We have some freedom to optimise other cells for low power or low area
without affecting the worst-case bounds on average response time or average

cycle time.



Chapter 6

Joining Components

So far we have considered only pipelines and trees. If we have formulae for the per-
formance of these architectures, would it be possible to find formulae for networks
of pipelines and trees? Would it be possible to find formulae for other behaviours?
It may be possible to connect components, such as pipelines and trees, to form
new structures. In some restricted cases it is possible to derive bounds on the
average-cycle time of the new structure from the bounds previously derived from
the components. For example, if we connect two of our pipelines with multiplica-
tion factor » = 1 together to form one long pipeline, we can derive results for the
composite pipeline. Moreover we could join a pipeline with multiplication factor
n = 1, to a pipeline with multiplication factor n = 2, or to a tree. We can still de-
rive throughput results for the composite structure by looking at the components.

We do not need to prove results from scratch.

In this chapter we only apply one of our measures, average cycle time, AC.
Average cycle time is the easiest measure to compute, because we can simplify the

delay model to fixed delays due to Lemma 4.1. Moreover, we need not worry about

167
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which edges represent the environment, as all edges are treated identically. Both of
these properties allow us to generalise the computation of bounds for average cycle
time to arbitrary graphs. We work with critical bounds as defined in Section 4.2,

because these bounds are unique.

In this section:

e We generalise average cycle time of pipelines and trees to average cycle time
of arbitrary events in arbitrary behaviours. We introduce the concept of ratio,
which relates the average cycle time of two events to each other. If we know
the average cycle time of one event, and we know the ratio of that event
relative to another event, we can calculate the average cycle time of that

other event.

e We give a method for composing two arbitrary graphs by a synchronisation
set of events and give bounds on the average cycle time for the composite.
The synchronisation set is a matching of events from two components. The

components are joined by fusing together each pair of events.

Let two graphs A and B be joined to form a composite C. Let event e be
an event in the synchronisation set that is used to join A and B. Therefore
event e is the fusing of an event in graph A, and an event in graph B. Then
ACus.c(e), the critical upper bound on the average cycle time of event e in
C, satisfies

max{ACu (e), ACuw 5(e)} < ACuc(e) < ACuwa(e) + ACus p(e)

where ACu,4(e) and ACy B(e) are the critical upper bounds on the cycle

times of event e in A and B before composition.
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In words, we are given an event in A and an event in B. These are fused to
become one event e in the composite C. The critical bound on the average
cycle time of e in C, ACy,c(e), cannot be smaller than the average cycle time
bounds of the event in either of the original graphs. Moreover, AC, c(e)
cannot be larger than the sum of the original average cycle time bounds. The
formula gives us a straightforward estimate of the critical upper bound of a
composite behaviour. Note that this formula is very general. We can choose
arbitrary behaviours A and B as long as both behaviours are deterministic

and the behaviours can be composed into a composite C.

We give a similar result for the lower bounds.

ma.x{ACu,,A(e), ACu,,a(e)} < ACpc(e) < ACp a(e) + ACu.p(e)

o We give tight bounds on the average cycle time on two special cases of com-

bining two components.

1. When the two components are “mirror images” of each other (as defined
later), the critical bounds on the average cycle times of the composite are
exactly the critical bounds of the average cycle time of the components.
Thus, if behaviours A and B are “mirror images” and behaviour C is

the composite, we have
ACub,C(e) = AC@'A(e) = ACub,B(e)

where ACy5,c(e) is the critical upper bound on the average cycle time of
an event e in the synchronisation set, and where ACy 4(€) and AC,; p(e)
are the critical upper bounds of event e in the original graphs A and B.
Using similar definitions we have

ACu,'c(e) = ACu,'A(e) = ACu,,B(e)
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2. When the synchronisation set has only occurrences of one periodic event
(as defined later), the critical bound on the average cycle time of the
composite, is exactly the maximum of the critical bounds on the average
cycle time of the components. Thus, if behaviours A and B are composed

to form behaviour C, we have
ACub‘c(e) = max{AC'ub,A(e), ACubj(c)}

where ACy; c(e) is the critical upper bound on the average cycle time of
event e in the synchronisation set, and where ACy; 4(e) and ACy 5(e)
are the critical upper bounds of event e in the original graphs A and B.
Using similar definitions we have

ACu,,c(e) = ma.x{ACa,,A(e), ACu,,B(e)}

Examples are given of both special cases of combining components.

As we deal with critical bounds in this chapter, we only deal with deterministic
behaviours. If we do not have a deterministic behaviour it is difficult to determine
what the critical path is. This chapter can be broken into two distinct parts. The
first part discusses generalising cycle time and the concept of ratio of events. The

second part discusses composing behaviours.

6.1 Generalising Cycle Time

Throughout the calculations in this thesis, the events of interest are those at level
0. Specifically we are interested in a request at level 0 and its corresponding ac-
knowledgment. More generally, the cycle time is the time separation between an
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event (e, i) and the next occurrence of that event (e,i+ 1). This delay is called the
cycle period by Burns [10].

Burns states that in a strongly connected subgraph, i.e., when there is a path
from every vertex to every other vertex in the subgraph, the cycle time of each event
in a cycle is the same as all other events in a cycle. Below, we generalise this notion
of cycle time of events by including the relative frequency of an event occurring
within a cycle. That is, within a cycle of a graph an event e may occur more times
than another event f. Consider, for example, a pipeline with multiplication factor
n = 2. Events at the end cell occur far less frequently than those at the environment.
Therefore, the ratio of events states how often an event occurs relative to another

event.

Note that Burns’s formulation used fixed delays. We also use fixed delays, as

Lemma 4.1 allows us to do this when we calculate bounds on average cycle time.

6.2 Ratio

The measures we have calculated so far in this thesis are based on separations
between events at level 0, viz., paths through cell 0 and the environment. If we
can find a timing relationship between arbitrary events and the events at level 0,
we may be able to easily calculate other separations. In general we consider the
relationship between two events e and f. We make the restriction that between
occurrences of events e and f there must always be a path with a finite number of
edges and vice-versa. As noted in the introduction, we also restrict the behaviours

to deterministic behaviours.

We calculate the ratio of e relative to f, denoted by ratio(e/ f), which is the



CHAPTER 6. JOINING COMPONENTS 172

number of times an event e occurs for every occurrence of event f. Formally, let
there be two events ¢ and f. For each occurrence (e,%) of e let there be some
occurrence (f, j) of f such that there is a path with a finite number of edges from
(e,1) to (£,7). Let there be a similar path between (f, j) to occurrence (e,i+z),z >
0. We assume that all edge delays are finite, and therefore the paths between e and
f have finite delay. Let us construct an infinite subgraph of the unfolded process
graph that contains all paths between (e,%) and (e, + k — 1) where ¥ = co. By
definition of occurrence indices, this graph contains k instances of event e. We
compare this number with the number of times that f occurs. The ratio is then

defined as

ratiO(e/f) = k=00 %
_ k
T k—eo W
Note that

e ratio(e/f) > 0 always, since when k — oo there is a positive number of
occurrences of ¢ and f. WE have ratio(e/ f) = 0 when num(f) is infinite and
num(e) is finite.

e ratio(e/f) is the reciprocal of ratio(f/e).

e num(f) is a fanction of k.

Consider our pipeline with multiplication factor n. When n = 1, we can pick
any events e and f and their ratio is 1. This case is dealt with by Burns [10].
Typically, we would compare an event f with another event at the environment,

for example, ¢ = ro. When n = 2 in a linear array, for example, the events ro and
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ar, have ratio(rg/ar) = 2-. In general, the ratio of events a; and r; relative to ro or

ao is n* for linear arrays with multiplication factor .

6.2.1 Using Ratio to Compute Cycle Time

If we know the bounds on the average cycle time AC at one event, we can derive

the average cycle time at any other event, if we know the ratios of the events.

Theorem 6.1 Let e and f be events with finite non-zero ratio(e/f). Suppose the
average cycle time of event e is bounded from below by finite critical bound ACp(e)
and from above by finite critical bound AC,(e). Then the average cycle time of
event f is bounded from below by finite critical bound ACy(f) given by

ACu(f) = ACn(e) - ratio(e/ f)
and from above by finite critical bound AC,(f) given by

ACu(f) = ACus(e) - ratio(e/ f)

Before proving the theorem, we give an example. Suppose the cycle time of rq
in a linear pipeline with multiplication factor n = 2, and length L = 3 is bounded
from below by 2 and from above by 5. Now suppose we wish to find the cycle time

of event a,. Let rq be event e, and event a, be event f.

ratio(e/f) =

|H=|IH
~

]
B s
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Then

ACu(f) = ACu(e)-ratio(e/f)

= 2-4=8
ACu(f) = ACu(e)-ratio(e/f)

Thus the average cycle time of f is bounded as 8 < AC(f) < 20.

Proof. We will prove only that ACy(f) = ACys(e) - ratio(e/ f) is the critical upper
bound for the average cycle time of f. The lower bound proof is identical.

Let us choose a path P of the form (e,z) ~ (f,7) ~ (f,J + 1) ~ (e,i + k),
where the index j is chosen to be as small as possible, and the index ! is chosen
to be as large as possible, for a given k. Since the behaviour is deterministic, the

values j and [ are uniquely determined for a given ¢ and k.

We know from Section 4.2 that

lim (max. delay{(e,z) ~ (e,i + k)})
k—co k

as this is the definition of the upper bound. Similarly we have

i (max. delay{(f,j) ~ (f,j +1)})

=00 l

= ACu(f) (6.2)
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Note that ! and & are related by a monotonically non-decreasing function I =
h(k). That is, [ gets bigger as k does. We can change limits thus.

i (2% delay{(£,5) ~ (£,5 +D})

k—+oco l
- im (max. delay{(f,lj) ~ (£,i +0})
We also have
kh_{g h—(kk—)- = kli_fgo % = ratio(f/e) (6.3)

Similarly we have lim;_, % = ratio(e/ f). For the analysis below we let £ — oo and

hence | — oo also.

We note that the paths (e,i) ~ (f,7) and (f,j + {) ~ (e,i + k) have finite

maximum delays because:

1. for ratio to be defined, we need to have a path between e and f with a finite

number of edges.
2. we assume edge delays to be finite.
3. j is as small as possible.

4. l is as large as possible.

We call the maximum delays on these paths D; and D, respectively.

ACu(e)
k]-i_f?o (max. delay{(e,;) ~ (e,i+k)}) {From equation 6.1}

i (A% delay{(e,i) > (£,5) ~ (f5 +1) ~ (i + K)})

k=00 k

v
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i Tax- delay{(e,i) ~ (f,5)} + max. delay{(f,j + 1)~ (e,i + &)}
k—oco k

+ Lim (max- delay{(f,7) ~ (f,j + D}

k—+o0 k

lim D, + D, + lim (max. delay{(f,j)~ (f,j +1)})

= k—oo k k—oco k
{Since D, and D, are finite}
0+ lim (max- delay{(f.j) ~ (£,j +1)})

k—oco k

A property of limits is
lim £(k)- (k) = (lim £(5)) - (fim o(k))

when limg_,o, f(k) and lim;,o, g(k) are finite. Then
i (max. delay{(f,7) ~ (f,5+)})

k—+oo k

{Properties of limits}
_ ( lim 1) . (ﬁm (max. delay{(f,§) ~ (f,5 + z)}))

ACub(e) =

k—oo k k—+co l
{Changing limits}
o) e g s

= (klggo %) - ACu(f) {From equation 6.2}

= ratio(f/e) - ACus(f) {From equation 6.3}
So we have that

ACu(e) > ratio(f/e)- ACuw(f)
ratio(e/f) - ACuws(e) > ACu(f) {Since ratio(e/f) = 1/ratio(f/e)} (6.4)

If we swap e and f in the above proof we can show that

ACu(f) = ratio(e/f) - ACu(e) (6.5)
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since the relationships between ¢ and f are identical. From equations 6.4 and 6.5
we obtain equality.

ACu(f) = ratio(e/f) - ACu(e)

Lastly, since ratio(e/f) and AC,(e) are finite, ACu,(s) must also be finite.

a

We have now greatly extended the concept of cycle time and can now determine
the cycle time of any event in a system. Consider the example of an eager stack in
Section 4.10. We wished to calculate the average cycle time of event P,, where P,
was not an event at the environment. We solved this in Section 4.10 by discarding
the left-hand cell, making cell 0 the environment, and so bringing event P, to the
environment. With the results above, there would be no need to make this hack.
Since the multiplication factor of the eager stack is n = 1, the ratio of any two
events is 1. From Theorem 6.1, the bounds on the average cycle time of all events
in the system must therefore be equal. We can then calculate the bounds on the

average cycle time at the environment, and apply it to event P,.

6.3 Defining Composition of Behaviours

Previously we have restricted ourselves to pipelines and trees. What we would like
to do is to take components for which we know the average cycle time bounds, and
to combine them into new components. We would like to do so in a manner that
allows us to easily compute the average cycle time bounds for the composite from
the average cycle time bounds already computed for the components. If we can do
this, then we will have greatly expanded the behaviours we can apply our method

to.
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In the rest of the chapter we discuss

¢ a method whereby we join two components to form one new component.

e the timing behaviour of the composite.

We need to decide which compositions are possible and to define the behaviour that

results from the composition.

6.3.1 Generalising the Delay Model

The delay model we describe in Section 2.6 uses delay parameters for forward
and reverse delays for individual cells. That is, we have a set of parameters
Ohes DhyryOh,g, A s for a cell h. The formulae we use to calculate time stamps use
the direction of an edge, i.e., whether the edge is a “forward” or a “reverse” edge.
A graph of an arbitrary behaviour may not have cells enumerated by their depth
within the pipeline or tree. An arbitrary behaviour may also not have “forward”
and “reverse” delays either. It is easy to generalise our delay model, however. In
fact, the model formalised in Section 2.6 is a restriction of the more general model
described by an arbitrary behavioural graph. For example, suppose an event c has
predecessors a and b. The event c cannot happen until both a and b have occurred
and the delays across a — ¢ and b — ¢ have occurred. Our old model prescribed
the values that the delays across a — ¢ and b — c take depending on whether the

edges were considered “forward” or “reverse” edges.
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In general, let c be an event. Let cyreq be the set of direct predecessors of c.
Then

max{T(b) + min. delay(b — c) | b € cpreq}

IN

T(e)

IN

max{T(b) + max. delay(b — c) | b € cpreq} (6.6)

The definitions given in Section 2.6 are as follows for an event c.

Tored(€) + 8ns S T(c) < Tprea(c) + Any
if node c is a request, and

Tored(c) + 8ne < T(c) < Tpred(c) + An,
if node c is an acknowledgment. T},.4(c) is defined as

Tpred(c) = max{T'(b) | b is a direct predecessor of c}
A simple substitution of Tpr.q(c) gives us the general formula of Equation 6.6, albeit
with a restricted set of possible edge delays.
6.3.2 Composition of Two Graphs

To increase the flexibility of our model we would like to be able to compose be-
haviours in a simple, consistent way. One method would be to synchronise be-

haviours by adding extra dependencies. In our graphical behavioural model this
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would mean adding extra edges between graphs. While this model is visually quite
intuitive, the actual synchronisation occurs at the events. For example, in the
pipeline examples we have an event ag that has direct predecessors ro and a;. The
event ag acts as a synchronisation point for the two incoming edges from ry and
a;. Therefore, rather than synchronise using edges, we synchronise using events.
That is, we compose two behaviours, represented by behavioural graphs A and B,
by means of a synchronisation set of events. An event A is paired with and event
in B and these events are fused together into one event in the composite. This new

event in the composite retains all the predecessors and successors that it had in

both behavioural graphs.

A problem with synchronising on events is that we might construct a composite
graph that is messy and difficult to understand. In the following example, we
synchronise events and then transform the resulting graph into something more
familiar. This transformation does not alter the overall timing behaviour. Note
that we assume that the synchronisation itself has negligible delay. In practice, we
need something like a C-element to perform the synchronisation of two components,
and the C-element will add delay to the synchronised paths. For mathematical
simplicity we ignore this delay.

In the example below, let us synchronise r3 that belongs to process graph A
and ag that belongs to process graph B. That is, we wish to make occurrence
(r3,1) occur at the same time as (a},#'). See Figure 6.1. For later use, example

predecessors and successors of the two events are given.

We can synchronise two events by joining them together to become one event.
See Figure 6.2. We synchronise on events, not on edges. As will become clear in
the next section, transforming the graph into another graph with equivalent timing

behaviour can sometimes give us a cleaner and more intuitive representation of the
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B (r,%0) ’ (a’i’) (1,"i+1’)

“(aJ")

Figure 6.1: Events (r3,) in A and (af, ) in B drawn with their respective successors
(a3,7) in A and (rg,#'+ 1) in B. Example predecessors are also drawn. The edge in
A illustrated by a dashed line has delay bounds [d3,, A3, ]. The edge in B illustrated
by a solid line has delay bounds [d/,A’].

behaviour. We transform the graph of Figure 6.2 to the graph of Figure 6.3 by
splitting the event r3/a back into two events (r3,i) and (a},i') and adding two
edges. The delay bounds on the dotted edges are [ds,, As,] and the delay bounds
on the solid edges are [4., Al]. That is, we have preserved the delays of the original
edges, and also conveniently preserved the property that “forward” edges end in a

request and that “reverse” edges end in an acknowledgment.

We can show that the timing behaviour of Figure 6.2 is equivalent to that of
Figure 6.3, at least at the points at which we measure the delay. The events (r3,1)
and (ag,t’) are no longer synchronised in Figure 6.3. What we show instead is that
the bounds on the timestamps T'(as, i) and T'(r},’ + 1), i.e., the timestamps of the
successor events, are the same for both the behaviour described by Figure 6.2 and

the behaviour described by Figure 6.3. For completeness, below is the proof.
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Figure 6.2: Events (r3,%) in A and (ap,#’) in B synchronised to become one event.

The occurrence index of r3/aj is left unspecified as we do not know it.

-

(a,i’) (ri'+1)

ey

Figure 6.3: The transformed graph. Dashed edges have delay bounds [ds,,As,]
and solid edges have delay bounds [4, A!].



CHAPTER 6. JOINING COMPONENTS 183

Proof. Consider T'(a3,#). Let us find the upper bound on the possible timing
assignments for (as,?) in both the behaviours. Let us look at the behaviour given
in Figure‘6.3 first. From Section 6.3.1 we have

T(as,3) < max{T(b)+ max. delay(b — (as,?)) | b € (as,t)prea}
= max{T(5) + As, | b € {(a5,7'), (r3,9)}}
= max{T(®)|b € {(ap,1),(rs,3)}} + As, (6.7)

We also have

T(ahi) < max{T(b)+ max. delay(b— (ah,)) | b € (ah, #)prea}
= max{T(8) + Ao, | b € {(a},7), (v} i)}
= max{T(5) | b€ {(a}, ), (v} )}} + Ao, (6.8)

T(rs,7) < max{T () + max. delay(b — (r3,)) | b € (r3,%)prea}
= max{T(b) + Ass | b € {(as,i — 1), (r2,5)}}
= max{T'(%) | b€ {(as,i—1),(r2,7)}} + Azy (6.9)

Substituting Equations 6.8 and 6.9 into Equation 6.7 and we have

T(as,i) < max{T(8)|be {(ah, i), (rs,)}} + As,
{ Substituting }
< max{
max{T(8) | b € {(a, "), (5, ¥)}} + Aoy,
max{T'(b) | 5 € {(as,i — 1), (r2,7)}} + Az 4} + As, (6.10)
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Consider T'(a3,t) in Figure 6.2. We have

T(as,i) < max{T(b) + max. delay(b — (a3,?)) | b € (as,%)prea}
= max{T'(}) + As, | b € {ra/ap}}
= T(rs/ag) + As, (6.11)

We also have that

T(rs/ay) < max{T(})+ max. delay(b— r3/ap) | b € (rs/ap)prea}
= max{T(b) + max. delay(b— rs/a}) |
b € {(a},7),(r0, %), (a3, — 1), (72, 5)}}
= max{
max{T(b) + Ao, | b € {(a1,5'), (r0,i)}},
max{T(b) + Az | b € {(as,i —1),(r2,5)}}}
= max{
max{T(b) | b € {(a},5'), (r5,7)}} + Ao,
max{T'(b) | b € {(as,i — 1), (r2,7)}} + Az} (6.12)

Substituting Equation 6.12 into Equation 6.11 and we get Equation 6.10. Simi-
larly we can show that the lower bound on T'(a3,%) is the same for both Figure 6.2
and Figure 6.3. Lastly, we can show that the bounds on T(r),i’ + 1) are likewise

the same for both behaviours.

a

Thus, for our purposes, the transformation does not alter the timing of (a3, 1)

and (!, ¢ + 1).
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6.3.3 Path Notation

We refer $o a path of events and edges contained only in subgraph A by the notation
a ~+4 3, where a and S are events. The edges of path a ~+, 8 are also contained
in A, since all the vertices on the path are in A. As we shall see, some events in A

are also in B; the path a ~+,4 8 may include events in the intersection of A and B.

6.3.4 Compatibility

Before we compose two behaviours, we must decide whether they are compati-
ble. That is, can the behaviours be joined in a sensible fashion? We try to make

restrictions on compatibility as loose as possible.

When we compose two behaviours, we will do so by composing the behavioural
graphs at certain vertices. We choose a subset of vertices in each graph so that each
of these chosen vertices is synchronised with a matching vertex in the other graph.
These matched vertices become one vertex in the new composite graph and these
vertices are what we call the synchronisation set. Compatibility is a restriction on
the choice of synchronisation set.

Formally, let two unfolded process graphs A =< V4, E4 > and B =< Vg, Eg >
be given. V, and Vp are the vertex sets, and hence represent the events of the sys-
tem. Note that each event « € V, UV} consists of an event label and an occurrence
index. E4 and Ep are the edge sets and represent the dependencies. Let S be the
synchronisation set of events such that § = V, N Vp (after composition). Each
event in S, (e;, A;), consists of the event label e; and an occurrence index A;. Not
every occurrence of a particular event need be represented in the synchronisation

set. In all interesting cases S is an infinite set of events.
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Let a; = (e;, A;) and a; = (ej, Aj) be eventsin S. When A and B are compatible
with respect to synchronisation set S, then there exists a path o; ~+ 4 a; iff there

is also a path a; ~ 5 a;.

Let us give an example of a composition. We might compose two linear pipelines
of length L = 3 and L = 2 respectively, by synchronising rs of pipeline A and
ag of pipeline B. We synchronise every occurrence of each event. It is fairly
easy to prove that the two pipelines are compatible. The synchronisation set is
S = {(e,A) | A € I,e = r3 = ay} where I is the range of occurrence indices. Let
us pick (r3,1),(r3,j) € S with j > i. Then we have (r3,i) ~+4 (r3,7)- The event
r3 in A is matched with a5 in B. We also have (a§,i) ~p (af,j). Therefore the
two behaviours are compatible w.r.t. synchronisation set S. We will build on this
example again in the next section when we compose A and B. In general, we would
like to compose components that do not have the same behaviour or architecture;
that is, we would like to be able to analyse more complicated circuits than we
have done previously in the thesis. Combining two identical pipelines to form one
long pipeline is of little practical interest, but, since we have already analysed
linear pipelines, we can show that our composition method indeed produces correct
results. We will address the more interesting problem of a tree-based FIFO later
in the chapter.

6.3.5 Composition

If A and B are compatible w.r.t. synchronisation set S, then we may compose

graphs A and B to form a composite behavioural graph.

The graph of the composite consists of the two unfolded process graphs A and
B synchronised at events in the synchronisation set. An event « € S has the
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predecessors of @ in both the original graph A and the original graph B.

Suppose we have graphs A and B that represent linear pipelines of length L,
and Lp respectively and multiplication factor n4 and ng. We abut the two pipelines
to form one long pipeline of length L4 + Lp + 1. Intuitively, what we would like to
do is as in Figure 6.4, which joins two micropipelines, with multiplication factors
nas = np = 1, of lengths L = 3 and L = 2 respectively to form a micropipeline
of length L = 6. We choose to form the composite by synchronising rs and af
at every occurrence. Therefore our synchronisation set for these two pipelines is

S ={(e,A) | A € I,e = r; = a}} where I is the range of occurrence indices.

Now, suppose we compose the graphs by synchronising events r3 and a},. We
can compose graphs as in Figure 6.5. We have made our task simpler by starting
pipeline B with an acknowledgment, viz, a, rather than the usual request. Each
synchronisation is illustrated using the method of Figure 6.3. We can see that
composing the graphs this way gives us a graph that looks more or less like a graph
of a pipeline with L = 6.

Note that we can easily apply our composition method to folded dependency
graphs, by ensuring that every occurrence of a particular event is in the synchroni-

sation set.

Lastly note that composition does not affect the ratio of events. Since the
original graphs do not change, the relative frequency of events within the original
graphs does not change either.

6.3.6 Bounds on Cycle Time for Composite Graphs

Now that we have a method of composition, we give the following theorem that

relates the average cycle time of the composite graph to that of its components.
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[4) (%)
[ 4]
o < - -
(4] 14
<~ : <)
\’] \.]
< 2

Figure 6.4: Joining two pipelines A and B of length L, = 3 and Lg = 2, to form
one new pipeline of length L = 6. The synchronisation of events rs and a}, is done

by means of a C-element. The new section is drawn with dashed lines.
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Synchronisation between A and B

Figure 6.5: Joining two pipelines A and B of length L4 = 3 and Lg = 2, to form
one new pipeline of length L = 6. The pipelines are synchronised at r; and ag-

These events are enclosed in dashed ovals in the composite graph.
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Theorem 6.2 Let two process graphs A and B be compatible graphs with synchro-
nisation set S. Let C be the composite graph of A and B w.r.t. S. Leta = (e,\) € S

be an event.

Let ACu,a(e) be the critical upper bound on the average cycle time of e in
original graph A.

Let ACuwp(e) be the critical upper bound on the average cycle time of e in
original graph B.

Let ACuc(e) be the critical upper bound on the average cycle time of e in
composite graph C.

Then ACuc(e) satisfies

max{ACu(e), ACus 5(e)} < ACuc(e) < ACua(e)+ ACu5(e)

Using similar definitions for lower bounds, we also have

max{ACip 4(e), ACp(e)} < ACrc(e) < ACw.a(e) + ACi 5(e)

Proof. Let us prove first that max{ACus 4(e), ACus.8(€)} < ACusc(e)
Let (e,?) and (e, + k) be occurrences of e in C. We have

i 22X delay{(e,i) ~4 (e,i + k)}

k—oco k

= ACu,4(e)

and

i 22X delay{(e,) ~35 (e,i + k)}
k—oo k

= ACw,(€)

The original paths (e,i) ~4 (e,i + k) in A and (e,i) ~5 (e, + k) in B are

not destroyed by the composition process. That is, the same paths exist in the
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composite C. Therefore, the critical path (e,i) ~¢ (e, i + k) through C must be at
least as long as the path through either of the subcomponents. Then
. max. dela.y{(e, ‘) ~c (et 1+ k)}
lim
k~roo k
2 max{ACu (e), ACus5(e)}

ACub,c (e)

Now let us prove that ACus,c(e) < ACus a(€)+AC,s.8(€). Let (e,7) and (e,i+k)

be occurrences of e in C.

i X delay{(e, ) ~¢ (e,t + k)}

k—oco k

= ACuc(e)

as before. Let P represent the critical path (e,i) ~¢ (e,i+k). Let us break path P
into two sets of segments corresponding to paths through A and paths not through
A. Let there be hq segments in A and l; segments in B. We call the segments in A,
Ap, where 0 < h < hg and the segments not in A, B;, where 0 < I < ly. Formally
each segment A starts and ends in an event in S (noting that § C A), and all
events on the path are events in A. Each segment B, starts and ends in an event

in S. The other events on the path of the segment are not in A, i.e., they are in
B-S.

po(c . ivk)

Figure 6.6: Illustration of a possible critical path, P, from (e, ) to (e, i + k) made
up of segments in A and B.

Each segment is constructed to be as long as possible. We can therefore re-
construct the path P from alternating segments from {As | 0 < A < ho} and
{Bi | 0 <1< ly}. Refer to Figure 6.6.
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' A, ' 1Al

! Ay 1
A T /\"“\\/\
Y Y : o (e . ivk)

(e .5)

Figure 6.7: Illustration of a path, P,, from (e, 1) to (e,t+ k) made up only of events
in A, using segments A, and extra segments represented by dashed lines.

Let us link each segment A; to segment A, within A. Suppose segment Aj
ends in event (f,As) and segment Ay, starts with event (g,A;). Since path P
consists of -+« — A, = By — Ap4y — ---, there is a segment By in P of the form
(f,As) ~8 (9,A;). From the definition of compatibility, there is a path in A of
the form (f, Af) ~4 (9,A;). Therefore we can construct a path of events only in A
between (e,t) and (e, + k) of the form A; ~ Az ~+ --- ~» A,. We call this path
P,. See Figure 6.7.

By a similar construction we construct Pg.

We then have

ACub,C(e) = k]'i_fn max. delay{(es;c) ~c (C,t + k)}

lim Th2, (delay{An }) + Tk, (delay{B; })
k~rco k

< lim delay{P4 } + delay{Pg }

~ k—=oo k

C i delay(Pa} | dday(Ps )

k—oo k k—oo k
= ACuw,a(e) + ACuw,5(e)
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The bounds given may seem somewhat wide, but the worst case, ACyc(e) =
ACu a(e)+ ACu B(€), can occur. Consider Figure 6.8. The two folded dependency
graphs represent a couple of cooked-up behaviours.We are going to synchronise the
two graphs by matching every occurrence of ey and fo, and also e, and f,. We use
a synchronisation set consisting of all occurrences of eo/fo and e;/f,. The cycle

time of ep in graph A is 20 time units, and the cycle time of f, in graph B is 30

time units.
A B
o f
10 0
+1 cl fl +1

Figure 6.8: Two folded dependency graphs. The edges are annotated with (fixed)
delays. The outer edges of graph A and B are also annotated with +1 indicating

the occurrence index offset. Four events e, €;, fo, and f; are labelled.

Now consider the composite graph of Figure 6.9. The critical path (illustrated
as the solid line) has a total delay of 20 + 30 = 50. Therefore, the worst case may
occur in some cases. By restricting the types of graphs, we can avoid this kind of

worst case.

6.3.7 Mirror Images

A special case of joining components occurs when one component is a mirror
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Figure 6.9: The composite graph. The solid line is the critical path.

Figure 6.10: Two mirror-image trees become a FIFQ.
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image of another. A component A is a “mirror image” of another component B if a
set of paths that exists between particular events in A has a matching set of paths in
B. Roughly speaking, we take a component A and place a “mirror” somewhere over
it and “reflect” the behaviour in it to get 2 new component B. To compose A and
B we join the components at the point where we place a “mirror”. Defining mirror
images gives us a convenient way of composing two behaviours that are similar.
We will be demonstrating this by abutting two trees together to form a FIFO as
in Figure 6.10. Then we can derive bounds on the average cycle time of the FIFO
from bounds we already kncw for trees without having to go through a full-blown
proof. Another architecture we may be able to analyse by using mirroring is a ring.

See Figure 6.11.

Figure 6.11: Two mirror-image pipelines become a ring.

Definition 6.3 . Let A and B be process graphs with synchronisation set S. Let
C be the composite of A and B w.r.t. synchronisation set S. Let two process graphs
A=< Vy,Ey> and B =< Vg, Ep > be given. Let S be the synchronisation set of
events such that § = V4 NVp. Let o = (e, \) and a; = (e;, ;) be events in S.
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A and B are mirror images of each other iff

1. A and B are compatible with respect to synchronisation set S.

2. If all delays of all edges are mazimised in C, the critical path, a; ~+4 a;, has
the same total delay as the critical path, a; ~+p a;.

3. If all delays of all edges are minimised in C, the critical path, a; ~+4 aj, has
the same total delay as the critical path, a; ~g a;.

Note that this definition says nothing about the events in A and B, only the
paths in A and B with starts and end events in the intersection of A and B, i.e.,
the events in S. Note also, that the “mirroring”, so to speak, is done around
the synchronisation set. The mirror image of a component depends on what the
synchronisation set is. In words, the mirror image of a component may depend on

where we place the “mirror”.

As an example of mirror images consider mirroring a pipeline with n = 1 and
length L = 3. We can mirror about any single event here, but for the sake of
this example we mirror about r;. This becomes r} in the mirrored pipeline. Our
synchronisation set for composition consists of all occurrences of rs /5. We mirror
the pipeline as in Figure 6.12. We also “mirror” the la-xtencies. Thus edge 19 — r;
has delay bounds [do,7, Aoy] in the original pipeline A. In the mirror image B these
delay bounds are applied to edge rj — rf.

Let us show that the three conditions of the definition of mirror images are
satisfied for pipelines A and B. The synchronisation set is § = {(e,A) | AeI,e=

r3 = r3} where [ is the range of occurrence indices.
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Figure 6.12: Pipeline is A is mirrored to become pipeline B.

1. Let &z = (e;, A;) and a; = (ej,);) be events in S. When A and B are
compatible with respect to synchronisation set $, then there exists a path
a; ~+4 a;, iff there is also a path a; ~p a;. In this case we have a; =
(ra/r3, X)) and a; = (r3/rj, Aj). From the behaviour of a pipeline described
in Section 2.3 we have a path path (r3, A;) ~+4 (r3,A;) for any A; > ;.
Similarly, path (r5, ;) ~p (r5, A;) exists. Therefore A and B are compatible
w.r.t. synchronisation set S.

2. Let all delays in C be maximised. Let ap —4 a; =4 az ~+4 a; be a critical
path for some ¢ > 0 and where ag, a; € S. Let the delay of edge ax —4 aryy
be A, where 0 < k < i. By our construction of pipeline B, there exists a
path ay =5 a} =5 &} ~+p af in B, where a} in B is the reflection of oy
in A and where aj = ap and o} = ;. Moreover, by construction, the delays
of edge @, — i, are Ap where 0 < k < i. Thus, given a critical path in
A with delay S°=5" A, there exists a path in B with delay 51 A,. The
path in B must also be critical. If there is a longer path af ~+5 ! we could
show that path ay ~»4 a; was not critical. This would be a contradiction.

3. The last condition is proven similarly to the previous condition.
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We will give a theorem that relates the cycle time of the events in each original

graph to their cycle time in the composite. First we give a preparatory lemma.

Lemma 6.4 Given mirror image process graphs A and B, synchronisation set S,
and event e € S, then ACy a(e), the critical upper bound on the average cycle time
of e in graph A, equals ACy p(e), the upper bound on the average cycle time of e
in graph B. Similarly, ACp 4(e) = ACn 5(e).

Proof. When all delays are maximised the critical path between (e, ) and (e, i + k)
in A has the same delay as the critical path between (e, ) and (e,i + k) in B by

condition 2 of the definition of mirror images. Then

ACuwa(e) = ,E,IEO max. delay{(e, ;) ~4 (e,i+ k)}

{By definition of mirror images.}
lim (max. delay{(e,i) ~5 (e, + k))
k—co k
= ACw,sp(e)

The proof for lower bounds is similarly trivial.

0

Now we give the main theorem.

Theorem 6.5 Let two process graphs A and B be mirror image graphs with syn-
chronisation set S = {(e;,A;) | i € I,j € J} for some sets I and J. Let C be the
composite graph of A and B. Let e € S be an event. Let ACy 4(e) = ACu 5(e)
be the critical upper bound on the average cycle time of e in both the original graph
A, and in the original graph B. Let AC . c(e) be the critical upper bound on the
average cycle time of e in the composite graph C. Then

ACub,C(C) = ACub'A(e) =ACub,3(e)



CHAPTER 6. JOINING COMPONENTS 199

Using similar definitions for critical lower bounds, we also have

ACu,'c(e) = ACu,,A(e) = AC[b'a(e)

Proof. As usual we give the proof only for the upper bounds. We assume all edge
delays are maximised. Let (e, ) and (e, i + k) be occurrences of e in C.

o max. delay{(e,i) ~ (e,i+ k)}

k—oo k
Let path P be a critical path between (e,i) and (e,i + k). Let (e, h) ~ (e,h+10)
be a segment on path P, such that i < k and ! < k and such that all events in the

= ACu.c(e)

segment path are contained either entirely in A or entirely in B. That is, path P
is of the form (e,i) ~ (e, h) ~ (e,h + 1) ~ (e,i + k).

The definition of compatibility ensures that there is a path in A between two
events in S, if and only if there a path in B between those two events. Therefore,
segment P’ = (e,h) ~+ (e,h + 1) could be contained either in A or in B. If there
is a path in one, there is a path in the other. We note that the longest delay path
between (e, k) and (e,h +!) in A has the same delay as the longest delay path
between (e, k) and (e, h + ) in B by condition 2 of the definition of mirror images.
Then without loss of generality, we assume that the segment is contained entirely
within A.

In a similar fashion we assume that all of path P is contained entirely within
A. It follows trivially that ACu,c(e) = ACu4(e), and from Lemma 6.4 we have
that ACu 4(€e) = ACy 5(e).

a

We now use this theorem to demonstrate a tree FIFO circuit (7). The tree
FIFO circuit is similar to the wagging buffer described by van Berkel [1]. This is

the circuit we described in the previous chapter, and we are now ready to tackle it.
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The two trees in Figure 6.13 are mirror images of each other. We synchronise
at the leaf cells. For example, ry is synchronised with ay, and so on for r;, with
cell rl’, etc. As we did with the pipeline example earlier we reflect the delays. For
example, if r; — ry has delay bounds [§, A], then so does edge r} — -

l 1 u'j_r
__Lu dJ g
_rgd 1:'_{__{A
1L {7
A _Ln : - B

Figure 6.13: Two mirror image trees.

We combine the trees as in Figure 6.14. For a FIFO, we assume that data
enters from the left-hand environment and exits via the right-hand environment.
Note that when calculating cycle times, we don’t actually need to differentiate the
environment from other cells. The first item of data is passed to the left subtree,
the second is passed to the right, and so on where left and right subtrees are defined
by the labels in Figure 6.14. In the second half of the buffer, the reverse happens.
Data is input first from one child and then the other. The idea is that an item of
data need only travel a distance logarithmic in the capacity of the FIFO, instead
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of linear, thereby saving power and reducing the time a piece of data spends in the
pipeline.

Now we restrict the delays to conform with Theorem 5.6.

wmr )
= 1Y -
_—L i |
e kAT ‘ 1
P T ——] - - | ——1 "7
: Eav 1 € € Eav :
l-----l‘_‘— ey 1 _._—‘_—--.l
| anr i
T FE I 4 e
=1 i
o/’
C

Figure 6.14: Two trees joined.

Consider the split trees again, as in Figure 6.13. Let the maximum delays for
each cell in tree A be bounded as follows.

Aiy < Agy-nf
Ai,r < Ao,r -n'

where 0 < ¢ < 2 is the number of cells between the cell in question and the
environment of tree A. The forward delay of the leaf cells, i.e., Az, is irrelevant
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because there is no edge that corresponds with that delay. For example, there is

no ry — T edge.

The maximum delays for each cell in tree B are bounded similarly, but, if
we assume “forward” is always horizontally to the right, the forward and reverse

directions are switched.

Aé,f S on! - n"

é'f S AO.r'ni

where 0 < ¢ < 2 is the number of cells between the cell in question and the
environment of tree B and where Ag s and Ag, are the delays of the root cell in
tree A. The reverse delays of the leaf cells, i.e., A3, are irrelevant in this tree.
The environment delays of tree B are assumed to be the same as the environment

delays of tree A. That is, 8. = 4, and A = A..

We join the trees as in Figure 6.14. The central cells synchronise the two trees
via the synchronisation set S = {(e,A) | e € {ru/rly, 71 /7y, Tt/ T, Tee /T 3 A € T}
where J is the set of all occurrence indices. The central cells have delay bounds

governed by A; ; and A;,.

We have constructed the two trees so that they are “mirror images” of each
other when reflected around the leaf cells. It is easy, albeit a little tedious, to prove
that they are mirror images. If we pick any path @ ~+¢c B where a, 8 € S we can
show that there exist paths @« ~4 A and a ~p B. Each path has an equivalent
set of edges, and the same set of delay bounds on each edge. From this we can
easily prove: (i) A and B are compatible, (ii) that if the delays on each path are
maximised the delays on each path are the same (iii) that if the delays on each
path are minimised the delays on each path are the same.
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Since the trees are mirror images, we can use Theorem 6.5 to show that for any

event e € S.

ACuc(e)= ACuwa(e) = ACus5(e) (6.13)

Let f be an event in A that is not necessarily in S. We wish to show that
f has the same upper bound for average cycle time after composition as it did
before composition. Since we can derive the ratio of events in a tree, we can derive
ratio(e/f) where e is in the synchronisation set. Then we can use Theorem 6.1 to
show ACuw,c(f) = ACusc(e) - ratio(e/f) in the composed graph and AC, 4(f) =
ACus,a(e) - ratio(e/f) in the original graph. Note that ratio(e/f) is the same in
both the original graph and in the composite. Note also that AC,s4(e) = ACuc(e)
from Equation 6.13. Trivially, we then have ACu 4(f) = ACuc(f), and similarly
we have ACu,8(f') = ACuc(f'). In other words, any event in either of the original
graphs has the same critical upper bound on cycle time in the composite as in the
original graph.

From Theorem 5.6 we have ACu,4(r0) < max{Ag,+A.,n-Ag,+n-Agy} for a

single tree. At the left-hand environment of the joined trees we therefore also have
ACu.c(ro) < max{QAo, + Ac,n-Ag,r +n - Agy}

Consequently, for this FIFO example, an upper bound on average cycle time at the

environment is dominated by the same values as that for a simple tree.

6.3.8 Periodicity and Single Synchronisation Points

As a last special case, we connect components at one synchronisation point. That

1s, we synchronise at a set of occurrences of one event. We will demonstrate this
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by connecting two pipelines together as we did in Figure 6.4 and analysing the
composite. If we compose two components A and B at only one synchronisation
point, we introduce no new possible critical paths. That is, we need only examine
the critical paths in A and B alone. We do not need to examine any new critical

paths in C. This makes the problem tractable.

We restrict the synchronisation to one type of event, hereafter described as

periodic events.

Definition 6.6 Let I be the range of possible occurrence indices. Event e of a
graph A is a periodic event iff for every h € I and Il > 0 such that a path P =
(e,h) ~ (e,h +1) exists, there ezists a path P’ = (e,h+1)~ (e,h + 2l). Moreover,
the delay on path P when all edges have mazimum delay is the same as delay on
path P' when all edges have mazimum delay. Similarly, the delay on path P when
all edges have minimum delay is the same as the delay on path P’ when all edges

have minimum delay.

(]

In other words, a periodic event is one that occurs at regular intervals in a
graph, and for each periodic event, the path between two successive occurrences
has the same maximum and minimum delay. For example, suppose we are given
a behaviour #[e; Sg]. That is, event e occurs, followed by some behaviour Sy and
then the behaviour repeats. As long as the delay in Sy is deterministic, then e
is periodic. Consider in contrast the behaviour *[e; So;e; S)]. That is, event e
occurs, then some behaviour Sy, then e again, then some behaviour S1, and then
the behaviour repeats. Periodicity stipulates that the best-case and worst-case path
delays for paths between occurrences of e is the same if the offset in occurrences is

the same. Unless Sy and S; have identical delay bounds, e is not periodic. Lastly,
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consider behaviour *[e; So; €’; S1]. Both event e and event ¢’ are periodic.

Note that all the vertices of a folded dependency graph are i)eriodic events as
long as each vertex has a unique label. Our model of periodic events is similar
to that of pseudorepetitive behaviour given in Burns’s thesis [10]. Pseudorepetitive
behaviour consists of an initial behaviour followed by a repetitive behaviour that can
be described by a folded dependency graph. All events in the repetitive behaviour
would be periodic in our model. Our model of periodicity is more general in two

ways.

e We describe periodicity of an event. It need not be true that every event in

a repetitive behaviour is periodic.

e We avoid problems with folded dependency graphs as described in Section 2.4.
That is, we can deal with cases such as pipelines with multiplicity » > 1. In
this case, all events are periodic, but events at the environment have a different
period from those at the end cell. The above definition of periodicity handles
this.

We give the following lemma, that relates periodic events to the average cycle

time bounds. This lemma allows us to bound the cycle time on finite paths.

Lemma 6.7 Let A represent a behaviour in which e is a periodic event. Let
ACu,a(€) and ACyp a(e) be the critical upper and lower bound respectively on the
cycle time of e in A.

If the path (e,i) ~ (e,i + k) ezists, where k > 0, i € I and I is the range of
occurrence indices, then the critical upper and lower bounds on the cycle time of e

satisfy

maz. delay((e,i) ~4 (e,i + k))

AC@'A(C) 2 k
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and

min. delay((e,i) ~» 4 (e, + k))

ACp.a(e) 2 %

Proof. Let us prove the bound on AC,s 4(¢) first. We note that if there exists a path
(e,3) ~ (e,i + k) there also exists a path (e,i + k) ~+ (e, + 2k) by the definition
of periodic events. Inductively there exists a path (e,i) ~ (e,i + z - k) for z > 0
that has delay z-{max. delay ((e,i) ~ (e,i +k))}. The maximum time separation
T(e,i + z - k) — T(e, i) must be at least the delay on path (e,i) ~ (e,i + z - k).

ACuale) = lim 22% delay{(e,i) >4 (e,i+z-K)}

z—o0 z-k

s i 2 (me delay {(e)on (e )
=00 -
max. delay {(e,) ~4 (e,i + k)}

k

We can do the same proof for the lower bound.

Suppose we have two components such that we know the critical bounds on
the average cycle time of the events in each. If we compose those two components
using only one synchronisation point, we would like to determine the bounds on
the average cycle time of the events in the composite. For example, consider the
pipelines of Figures 6.4 and 6.5. Remember that we are composing a pipeline of
length L, = 3 with a pipeline of length Lg = 2 to form a pipeline of length L = 6.
From Figure 6.4 it is clear that we only need one synchronisation point, as we can
synchronise the pipeline with only one C-element. This C-element synchronises r3
in A and @ in B. We might ask what the bounds on the average cycle time of

event r3/ag would be.

We have the following theorem.
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Theorem 6.8 Let two process graphs A and B be compatible graphs with synchro-
nisation set S = {(e, \;) | + > 0}, such that the only elements of S are occurrences
of a single event e that is periodic in both A and B.

Let C be the composite graph of A and B.

Let ACus a(e) be the critical upper bound on the average cycle time of e in
original graph A.

Let ACu B(e) be the critical upper bound on the average cycle time of e in

original graph B.

Let ACyuc(e) be the critical upper bound on the average cycle time of e in
composite graph C.

Then

ACub,c(e) = ma.x{ACub,A(e), ACub,B(e)}

Using similar definitions for lower bounds, we also have

ACu,'c(e) = max{AC'u,,A(e), ACu,'B(e)}

Proof. From Theorem 6.2 we have that ACu.c(e) > max{AC 4(€), ACu5(e)}.
We prove that AC.c(e) < max{ACu4(e), ACus5(e)}.

Without loss of generality, we will assume that ACyus4(€e) > AC, 5(e).

Let (e,) and (e,i + k) be occurrences of e in C where k — co. Let all edge
delays be maximised. By the definition of critical bounds contained in Section 4.2,
we have

Yim delay{(e,i) ~¢ (e,i +k)}

k—co k

= ACuwc
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Let path P be the critical path between (e,i) and (e,i + k). Let us break P
into consecutive segments of the form P; = (e, h;) ~»4 (e, h; + ;) or of the form
P; = (e, h;) ~p (e, hj + ;). That is each P; is a segment starting at event e and
ending at event e and consisting of events and edges in A only or in B only. Note
that there may be an infinite number of segments P; or there may be a finite number
of segments that have infinite length.

From periodicity, and Lemma 6.7, we have delay(P;) < ;- ACw 4(e) if Pjis a
path in A and delay(P;) < l; - ACy p(e) if P; is in B. Because we have AC.usa(e) >
ACu p(e), we then have
delay(P;) < lj - ACu, a(e) for both types of segment.

Then

ACuo(e) = Jim SN 2e (it B)
2; delay(F;)
il
{Using Theorem 6.7 and ACys.4(e) > ACus.5(e)}
EJ- I,' . ACub,A(e)
- 25l

= ACuale)-
= AC'ub'A(e)

il
il

From the assumption that ACu4(e) > AC. p(e) we have that ACuc(e) <
max{ACyu 4(e), ACu ()} as desired.

We can follow a similar proof to show ACu,c(e) = max{ACu 4(e), ACy 5(e)}.

Note that this theorem does not require every occurrence of the periodic event

e to be in the synchronisation set S, just that e is periodic in both A and in B.
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The set {A; | ¢ > 0} is simply a subset of the possible occurrence indices.

Let us return to our example of Figure 6.4. We synchronise the two pipelines
at all occurrences of e = r; = aj. The cycle time of rp in pipeline A is critically

bounded as ACp 4(r0) = mcs,4 and ACys4(r0) = MCa, 4 where
mcs, a4 = max{d. + do,, 80,7 + 01,015 + 82,025 + 85, }

and
MCa. . =max{A. + Ao, Ao+ Ay, Ar g + Azy, B g + As,}

From Theorem 6.1 and since ratio(ro/r3) = 1, we have that ACp a(r3) = mcs, 4
and ACu,4(r3) = MCa, 4. Similarly, we can show that ACy B(ag) = mcs_ g and
ACu(ag) = MCa, 5.

Using Theorem 6.8 above, and synchronising at the single event r3/a; we have.

ACpc(rs/ag) = max{mecs, 4, mes. g} (6.14)
ACuc(rsfag) = max{MCa, 4, MCa_ 5} (6.15)
Observe that

mes,c = max({d. + dor, 00,6 + O1,r, 01,5 + I3, 825 + 85,} U
{0c+ 85,005+ 01,,8, 4+ 65.})
= max{J. + do.,d0,¢ + 01,015 + 82,824 + 83,
O¢ + 800180, + 010,81 5 + 83}

Therefore max{mcs, 4, mcs, 8} = mcs, ¢ and similarly we can show
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max{MCa,4,MCs, 8} = MCa,c. Consequently, Equation 6.14 becomes
ACpc(rs/ag) = mes,c
and Equation 6.15 becomes
ACuc(r3fag) = MCa.c

which match the calculations we made in Chapter 4.

6.3.9 Parallel Pipelines

We can create a more interesting example of composition by considering archi-
tectures with parallel pipelines. For example, consider a system where input is
split into parts which are then processed in parallel. Each part is processed in-
dependently of and concurrently with the other parts. All of the behaviours are
synchronised so that they start at the same time on each iteration.

Let us consider a twin pipeline of the form of Figure 6.15. This can be con-
structed using our methods by synchronising two pipelines as in Figure 6.16. The
difference between this example and the example in the previous section is that
we synchronise two acknowledgments rather than synchronising a request and an
acknowledgment. That is, we synchronise aq and af.

For simplicity, assume that both pipelines have multiplicity factor of n = 1. We
synchronise the two pipelines at all occurrences of e = ag = a;. From Theorem 4.4
the cycle time of rq in pipeline A is critically bounded as ACj 4(r0) = mes, 4

and ACua(ro) = MCa, 4. Since we have ratio(ro/ag) = 1, we can show that
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Figure 6.15: Two pipelines joined to form parallel pipelines. The requests from the
environment are forked to both pipelines. The acknowledgments to the environment

are synchronised.

ACy 4(a0) = ACip a(r0) by using Theorem 6.1. Therefore we can show

ACpa(a0) = mcs 4
ACua(as) = MCas. .4

and similarly

ACw.p(ag) = mes. B
ACuwp(a;) = MCa.p

for pipeline B.

Using Theorem 6.8, and synchronising at the single event ag/a} we have.

ACuc(ao/ay) = max{mecs, 4, mcs, 5}
ACuc(ao/ag) = max{MCa, s, MCa, 5}
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We could easily extend the results to fatter pipelines simply by synchronising
more pipelines. For example, suppose we synchronise four pipelines A, B, C and
D to produce a composite parallel pipe E. We could then calculate

AClbvB(ao/al{)/ag/ag' = max{mCJuA1 mCJ"B, mc‘cpc’ mc‘erD}
ACus.5(a0/ay/a5/ay’) = max{MCa, 4, MCa, 5, MCa.c,MCa,p}

r--="To T £ Ts
A EEnv: cend |[ceni |cenz |cen3
'-=-aq, a4 4, %
o r n r
g T
'Eav, |Celo| [cem: Cell 2 Cell 3
| [P
a; a, a; a,
%o r r, )
J Cell O Cell 1 Cell 2 Cell 3
! --L' “o al d: 07
C t Env ;
] »
) _.L.' T r r ry
Cell O Cell 1 Cell 2 Cell 3

,
a dJ

Figure 6.16: Pipelines A and B are joined by synchronising events ag and af.

Note that we have connected two similar types of pipeline. Instead, we could
have connected a pipeline with multiplication factor n = 1 to a pipeline with mul-
tiplication factor n > 1, to a pipeline with conditional behaviour, or to a tree, and
then apply Theorem 6.8 above. In general, we can connect any two architectures

at one synchronisation point, as long as the synchronisation events are periodic.
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6.4 Summary

In this chapter we have:

¢ Generalised average cycle time to apply to any event. By using the concept
of ratio of events, we can compute the bounds on the average cycle time of

one event from the average cycle time of another event.

o We give a method of synchronising two behaviours by “fusing” events to-
gether. Given the bounds on the average cycle time of events in the original
behaviours we can then calculate bounds on the average cycle time of the
events in the composite behaviour. We find tight bounds for two special
cases: the two composed behaviours are “mirror images” of each other, and

when the two composed behaviours are joined at only one place.



Chapter 7

Conclusions and Future Work

7.1 Summary of Results

We have given closed-form formulae for the timing behaviour of several asyn-

chronous system architectures. We looked at four basic timing measures:

e worst-case response time
e worst-case cycle time
® average response time

e average cycle time

We have given results for pipelines with various handshaking behaviours and ex-
tended these results to trees. Furthermore, we have extended bounds on average
cycle time to more general architectures. These formulae allow us to experiment
with a number of parameters easily and quickly and, therefore, experiment with a

number of designs.

214



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 215

Perhaps the greatest contribution of this thesis is the insight these formulae give
into the timing behaviour of various architectures. The formulae give us an under-
standing of how best to optimise a design, and what the various tradeoffs can be.
For example, we have shown that asynchronous pipelines may be made arbitrarily
(though finitely) large without affecting the bounds on the average response time
or average cycle time. As another example, we have shown that the response time
and cycle time of tree architectures may not need to be affected by layout problems
as they seem to be, and we can therefore take advantage of their potential for low

energy consumption.

We can speak with confidence about our results, because we have proofs. Since
simulations often only use a (random) sample of the possible inputs, they may only
give us a sample of possible outputs. Exhaustive simulation is usually computa-
tionally infeasible unless large amounts of detail are discarded from the model. Our
proofs exploit the regularity of the architectures investigated.

When calculating bounds on the average-case measures we have shown that we
can greatly simplify the computations by reducing our variable delay model to a
fixed delay model. We have shown that we can do this without affecting the results.
It is much harder to calculate worst-case response time and worst-case cycle time
than it is to calculate bounds on average-case measures, because we still need the
variable delay model. That is, when we calculate worst-case response time, we find
the maximum event separation between a request and an acknowledgment. We
make the request happen as early as possible and the acknowledgment happen as
late as possible. This results in a set of paths to the request that have minimum

delays and a set of paths to the acknowledgment that have maximum delays.

We have given a general definition of cycle time that applies to any event in a

system. The notion of “ratio” of events allows us to calculate average cycle time
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bounds of any event in a deterministic system. That is, we can calculate the bounds
on the average cycle time of an event if we know the bounds on the average cycle

time of another event and we know the ratio of the two events.

We have given a method of composing general behaviours given by arbitrary
graphs. We have given bounds on the average cycle time of the composite behaviour.
In particular, we have given tight bounds for two special cases, viz., components
synchronised at one point, and components that have so-called mirror-image be-
haviour. This greatly extends the number of architectures to which we can apply
our formulae to. In this thesis, for example, we have considered a buffer based on
the connection of two trees and a pipeline constructed from shorter pipelines. We
can also connect pipelines to other pipelines with different handshaking behaviours
or pipelines to trees.

We have given examples of a micropipeline and an eager stack and determined
bounds on the worst-case response time and average-case response time. We have
also calculated bounds on the worst-case cycle time and average-case cycle time for
these examples. Lastly we have used our formulae to calculate the bounds on the

average cycle time of a tree buffer.

7.2 Future Work

The most obvious limitation of this thesis is the restriction of architectures. One
set of architectures that is not addressed is the set of array-based architectures.
It is likely that the proofs in this thesis could be adapted to rectangular arrays of
cells. Each column of a rectangular array could be viewed as a linear pipeline and
maybe one could use the techniques of Chapter 6 to join columns of cells into an

array. A ring is another interesting architecture. A ring is like a pipeline, where
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the outputs are fed back to the inputs, so any proof would have to worry about
critical paths doubling back on themselves in a ring. We may be able to analyse
a ring by unrolling it into a pipeline. Since the results for average cycle time are
independent of the pipeline length, given a finite length pipeline, it may be possible
to adapt the proofs to rings. That is, the results for average cycle time and average

response time may apply to rings.

Chapter 6 briefly delved into the problem of joining components when the com-
ponents are described by arbitrary graphs. We have only dealt with the simplest of
cases. We could extend the theory by allowing two synchronisation points between
components. This would allow us to model a more realistic environment. We only
deal with one environment for the pipelines and trees in this thesis. In general a
circuit might have one environment supplying input data and another environment
receiving the output data. For example, FIFOs get input data from one part of
their environment and output it to another. The end cell in the pipelines in this
thesis can effectively function as a second environment, but this assumes that this
second environment had no interaction with the original environment other than
throagh the component. With two synchronisation points, we could model both en-
vironments as one component. Our main circuit component would then synchronise
with the environment at two places. For example, a FIFO would synchronise with
the environment where it input data and it would synchronise with the environment

where it output data.

While it would be nice to allow two synchronisation points, this opens a can of
worms. We can use our formulae to tell us how long the critical path in each sub-
component is. When there is only one synchronisation point, we do not introduce
any new critical paths, and we can use our previous results. As we saw from the ex-

ample in Section 6.3.6, when we have two synchronisation points we can introduce
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new critical paths. The new critical path may weave in and out of subcomponents.
To compose arbitrary graphs we would need to know the critical paths between
every two synchronisation points, something that our current formulae do not tell

us.

We have considered only two-phase handshaking. That is, a handshake is com-
plete after one request and its acknowledgment. In this case, voltage transitions
are important, but not the direction of the transition. In contrast, consider four-
phase handshaking. Here, we discriminate between a rising transition and a falling
transition. As with alternate architectures, we can redraw our behavioural graphs
and apply our proof techniques. There is likely to be a large commonality between
results for two-phase and four-phase handshaking.

It would be nice to find further applications. Digital Signal Processors frequently
use pipelines, though there is often a feedback loop between stages. Asynchronous
arithmetic circuits typically use rings. There are other FIFO implementations that
use a hybrid of architectures described in this thesis. For example, one can describe
FIFOs that are linear pipelines bent into a U shape to become a 2 x L rectangular
array. Another example is that of FIFOs that split into multiple pipelines.

Lastly, it would be nice to reduce the complexity of the proofs, perhaps avoiding
inductions. Two important simplifying steps have been made already in this thesis.
The first is defining the relationship between average cycle time and average re-
sponse time, which allows us to derive one result from the other easily. The second
is simplifying the delay model to fixed delays for average case analysis. Not only
does this make proofs much simpler to construct, but it often allows us to use the

same proof for upper and lower bounds.



Appendix A

Trace Descriptions

Behaviour can be described as a sequence of atomic actions or events. For example

we can describe the behaviour of a wire with input a and output b as
ababababababa....

We can more concisely define such sequences of actions by means of a “program”.

We can represent the behaviour of a wire component as

*(a; b]

where we use a sequence operator “;” and a repetition operator “[ |”. The repe-
q P P P

tition operator allows the enclosed sequence to be repeated any number of times.
We represent a fixed finite number of repetitions by means of a superscript. For

example,
(a;8)°

produces the trace ababab.

219



APPENDIX A. TRACE DESCRIPTIONS 220

The operator “||” represents parallel composition. For example, the behaviour

*[ (a||b); c]

represents a behaviour whereby events a and b may occur “concurrently” followed
by event c. This behaviour may be repeated any number of times. This be-
haviour might generate a trace of actions such as abcabcabeabe... or bacha.... or
abcbacbacabe..... Parallel composition is described by an interleaving semantics. In
the above example, a and b are atomic actions and cannot occur at exactly the
same time. They can, however, occur in either order, viz., ab or ba. As another

example, consider a behaviour

((a;B)][c)

The following traces are possible: abc, ach and cab.

We can describe conditional behaviour using a boolean guard B. The value of
the guard B is determined by the data values that have been communicated. Since
our notation abstracts from the actual data communications, the value of gunard B
can be considered to be non-deterministically true or false. We can then specify

alternate behaviour dependent on the value of the guard. For example,
*(a; if B then b else c|

describes a behaviour ab or ac depending on the value of the guard B. The be-
haviour then repeats; the guard is checked again on each iteration as its value may
have changed. A trace produced by this behaviour might be ababacabac.....

Lastly, some behavioural descriptions have a notation that indicates whether an

action is an input or an output. In our example component of the wire we could
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have
*[a?; bl]

where ? denotes an input and ! denotes an output.



Appendix B

Symbols

Table B.1 describes the parameters and symbols used in the delay and behavioural
models. It also describes abbreviations used for the timing measures. The chapter

most relevant to the parameter or abbreviation is noted at the right.

222



APPENDIX B. SYMBOLS 223

Symbol Usage Chapter
n Handshake multiplication factor. 2
(n =1 is typical of micropipelines)

Onr Lower bound on “reverse” latency of cell A
Ap, Upper bound on “reverse” latency of cell A
On s Lower bound on “forward” latency of cell &
Ap g Upper bound on “forward” latency of cell &

. Lower bound on the environment delay

A, Upper bound on the environment delay

L Number of non-end cells and

index of end cell
mca, Minimum cycle time between cells (slow environment)
mca, = max{A, + do, Jo 5 + 01,4, 01+ 0d2,,...,00-14+0L,}
MCj, Maximum cycle time between cells (fast environment)
MCs, = max{d. + Aoy, Ao s+ A1ry Argp+Dgypy. .., Ap 15+ AL}
mes, Minimum cycle time between cells (fast environment)
mcs, = max{d. + o, do. s+ 010,014+ 2y..., 0p-1,6+0L.}
MCj,, Maximum cycle time between cells (slow environment)
MCa, = max{A. + Ao, Aoy + A1y Arg + Asry .., Apy g+ AL}

RT Response time 3

CcT Cycle time

AR Average response time 4
ARy Critical lower bound on average response time

AR, Critical upper bound on average response time

AC Average cycle time

ACy Critical lower bound on average cycle time

ACy Critical upper bound on average cycle time

Table B.1: Summary of symbols used in this thesis.



Appendix C

C-elements

The “Muller C-element” is a component used to synchronise voltage transitions in
an asynchronous circuit. See Figure C.1. Informally, if a voltage transition occurs
on both inputs, a voltage transition is produced at the output. If only one input

changes, then no change is produced at the output.

a? b?

c!

Figure C.1: A C-element with inputs a? and b? and where ¢! is the output.
The behaviour of a C-element can be described as
*[ (a?][57); ! ]

That is, output c is produced after inputs a and b have occurred. Inputs a and b
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may occur in any order. The behaviour then repeats; the C-element waits again

for inputs to occur on both a and b before producing an output c.

a? b?

c!

Figure C.2: An initialised C-element with inputs a? and b? and where c! is the
output. Input b? is the initialised input.

Often one input of a C-element is initialised. See Figure C.2. The behaviour of
this C-element can be described by

(a?; ct; #[ (a?]|5?);¢'])

That is, after the first voltage transition on a? output c! is produced. Thereafter
the behaviour is the same as a normal C-element. Informally, it is as if input b7

has already occurred once initially.

The behaviours above are sufficient to describe the C-elements in this thesis. A
more general model of behaviour allows inputs to be withdrawn. Suppose a voltage
transition on @ occurs followed by a second voltage transition on a to return a to its
original value before any voltage tramsition on b occurs. The input on a is said to
be withdrawn. One can specify the behaviour of a C-element so that this behaviour
is permitted and no c output is produced when an input is withdrawn. No inputs

are withdrawn in the circuits in this thesis.
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