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Abstract

Harnessing the power of DNA microarray technology requires the existence

of analysis methods that accurately interpret microarray data. Current lit-

erature abounds with algorithms meant for the investigation of microarray

data. However, there is need for an efficient approach that combines differ-

ent techniques of microarray data analysis and provides a viable solution to

dimensionality reduction of microarray data. Reducing the high dimension-

ality of microarray data is one approach in striving to better understand the

information contained within the data. We propose a novel approach for di-

mensionality reduction of microarray data that effectively combines different

techniques in the study of DNA microarrays. Our method, KAS (kernel

alignment with semidefinite embedding), aids the visualization of microarray

data in two dimensions and shows improvement over existing dimensionality

reduction methods such as PCA, LLE and Isomap.
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Chapter 1

Introduction

DNA microarray technology has lead to a new class of biological experiments

where data acquisition of gene activity is possible on a large scale. A typ-

ical microarray data matrix contains the expression levels of thousands of

genes across different experimental samples. DNA microarray technology

has directed the focus of computational biology towards analytical data in-

terpretation. However, when examining microarray data, the size of the data

sets and noise contained within the data sets compromises precise qualitative

and quantitative analysis. Conventionally, a dimensionality reduction tech-

nique may be used to reduce the size of the dataset before further processing.

Dimensionality reduction can also provide a low level visual representation

of gene behaviour across the samples. A standard objective of microarray

data analysis is to better understand the gene-to-gene interactions that take

place amongst the entire gene pool. However, applications of dimensionality

reduction techniques on microarray data have been only partially successful.

Dimensionality reduction of microarray data has yet to effectively tackle the

problem of finding a low dimensional embedding that provides an accurate

visual representation of gene-to-gene interactions. Visual representations of

genes in lower dimensions have often been only partially reflective of actual

gene-gene relationships indicated by the higher dimensional data set. The

level of accuracy in a low dimensional embedding needs improvement for cur-

1



rent dimensionality reduction methods that have been applied to microarray

data.

In our work, we apply a dimensionality reduction approach that incorpo-

rates semidefinite programming and kernel alignment into the dimensional-

ity reduction problem. Our method, KAS kernel alignment with semidefinite

embedding, uses the semidefinite embedding algorithm first described in [87],

and a derivation of kernel alignment [73] in order to successfully tackle the

dimensionality reduction of microarray data. KAS is a useful visual tool

for both the understanding of gene-to-gene interactions and the replacing of

a large unmanageable dataset with one of much lower dimensionality. We

describe, in detail, the full KAS algorithm and how it compares to more

conventional dimensionality reduction methods in chapter 5. This thesis is

structured as follows: Chapter 2 provides an overview of DNA microarray

technology. Chapter 3 is a survey of prior work and discusses three dimen-

sionality reduction methods in use today. Chapter 4 initiates the relevant

work for this thesis with a detailed description of the semidefinite embed-

ding algorithm. In chapter 5, we discuss the KAS algorithm and explain the

experimental methodology applied in this thesis. Results and comparisons

are discussed in chapter 6. Conclusions and the future direction of KAS

are discussed in chapter 7. Appendix A provides additional information on

the topics discussed in this thesis and bibliographic references are given in

alphabetical order.
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Chapter 2

DNA Microarray Technology

2.1 Overview

Since the beginning of this century we have seen the sequencing of the entire

human genome in addition to many other organisms such as fruit flies, yeast,

and other bacterium [7]. With the ability to recognize and sequence every

gene in the human body, the next imperative step in further understanding

our genetic make-up is to discover how genes work together in fulfilling func-

tional roles. The field of functional genomics aims to discover the functions

and roles of genes in different organisms. DNA microarray technology is a

new class of bioinformatics that allows parallel biological data acquisition

not possible in the past [61, 25]. Thousands of expression levels of genes can

be monitored simultaneously across many different experimental conditions.

Therefore, microarray technology plays a vital role in better understanding

the functions of genes. Microarray technology challenges the frontiers of data

mining and data analysis. As the data from microarray experiments accumu-

lates, it will be crucial to extract biological significance from the data [25].

This chapter provides an overview of DNA microarray technology and the

challenges faced by DNA microarray analysis methods. We begin with an

introduction to the human genome and some basic genetic concepts.

3



2.2 Human Genome

A cell is the basic unit of life within the human body. A cell functions by

using its genes to produce proteins. Although each cell within an organism

will usually contain the same set of genes, there are significant differences in

which genes are activated and how they are controlled. The specification of

genes is contained on strands of DNA present in the nucleus of the cell. In

figure 2.1 we see a detailed depiction of a human cell.

2.2.1 The Human Cell

All cells have a plasma membrane, which regulates the movement of any

molecules in and out of the cell and protects the cell from dangers in the

outside environment. Within the cell, there are many organelles such as the

lysosomes and mitochondria. The organelles are small structures that help

with the day-to-day operations of the cell. There are important functions

performed by each of the organelles within a cell. For the purposes of our in-

troduction to DNA microarrays, we focus on the nucleus of the cell. Within

the nucleus of the cell lies the chromatin and within the chromatin lies the

encoding for every gene. The encoding of genes is given by DNA subsections

of the chromatin. The specification of each gene requires thousands of tiny

units known as nucleotides. Whether any given gene plays a functional role

in a particular cell depends on the production of specific proteins associated

with each gene. A cell, such as the one given in figure 2.1, does not exist

in isolation, but is surrounded by a community of other cells. It is from

interactions with other cells, that a cell knows when to begin production of

different proteins.

If a protein specified by a gene is to be produced, the DNA sequence is

first copied or transcribed into mRNA (messenger RNA). After this copy is

made, the mRNA transcription is taken to the contents of the cell, in order

to produce the required protein. Therefore, the level of mRNA within a cell

4



Figure 2.1: The cell is the most basic unit of life within the human body. This figure
was taken from [14].
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that corresponds to the transcription of a particular gene, is a good indica-

tion of whether or not the gene is being used in a given cell at a particular

time. Many biological experiments centre around studying the amount of

mRNA present in a cell, that corresponds to different genes. In fact, before

the advent of DNA microarrays, analysis of this type was at the individual

level for one gene at a time. DNA microarrays have allowed the analysis

of gene activity within a cell, to occur in parallel for thousands of genes si-

multaneously. Section 2.3 discusses microarray technology in greater detail.

However, in order to better understand the basis of microarray technology

we need to first explore some details regarding the copying or transcription

of a strand of DNA.

2.2.2 Nucleotides

A nucleotide is the basic unit of DNA. It contains a five-carbon sugar and

one of four nucleotide bases (adenine, guanine, cytosine and thymine). Con-

ventionally, each nucleotide is labelled as a letter, one of A,G,C,T. A DNA

strand has a double-helix structure as seen in figure 2.2(c). A gene sequence

is conventionally given by a string of potentially thousands of nucleotides (i.e.

CAGCTCAGGGTTCCCATT...). We see in figure 2.2(b) that the nucleotide

bases will pair or hybridize with one another through hydrogen bonds and

form the double helix displayed in 2.2(c). The nucleotide bases actually hy-

bridize or bind exclusively to certain other nucleotides. Adenine will pair

with thymine and guanine will pair with cytosine. If the cell has to copy

a strand of DNA, the double helix is first unravelled. Next, complementary

bases will hybridize with the sequence of bases along the unravelled strand of

DNA and form a complementary copy of the original strand of DNA. Thus,

when a sequence of DNA is copied we say that it is transcribed. Such a

process occurs when mRNA is transcribed from a subsequence of DNA in

order to produce a protein [14]. The process of transcription plays a crucial

role in DNA microarray technology, discussed in the next section.
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Figure 2.2: A strand of DNA has a double helix structure. This figure was taken
from [39].

2.3 DNA Microarrays

In the last decade, molecular biology has seen the rise of a new technology

known as DNA microarrays (simplified as microarrays). DNA microarrays

allow the parallel monitoring of thousands of expression levels of genes simul-

taneously. The secret behind the technology is the fact that DNA nucleotide

bases will hybridize to certain other nucleotide bases. A DNA microarray

consists of an orderly arrangement of DNA fragments representing the genes

of an organism [15]. Each DNA fragment is a small portion of the nucleotide

sequence that represents an entire gene. A microarray consists of up to

200,000 spots on a square glass slide. With the use of microscopic robot-

ics, each spot on the array is set to contain many copies of the nucleotide

subsequence that is representative of a single gene. When the DNA mi-

croarray is immersed in a cellular sample, the mRNA within the cells will

hybridize to complementary strands of DNA contained on the microarray.

7



Figure 2.3: Experimental design used in oligonucleotide arrays. This figure was taken
from [22].

As explained in the next section, fluorescently labelling the mRNA allows

us to detect the level of hybridization occuring for a particular gene. The

three predominant types of microarray technologies are oligonucleotide ar-

rays, cDNA microarrays, and a related technology known as SAGE (serial

analysis of gene expression) [7]. Each technology uses the same principle of

measuring the presence of mRNA contained in the cells of a test sample.

The aim of any microarray technology is to derive an expression level, as a

scalar value, for each gene. High expression levels indicate a high amount

of genetic activity for a particular gene, and low expression levels indicate

relative inactivity [22]. Throughout this chapter, we will focus on oligonu-

cleotide arrays, and provide a more detailed description of the technology in

the next section.
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2.3.1 Oligonucleotide Arrays

Oligonucleotide arrays are trademarked as GeneChip by the Affymetrix

Corporation [16]. These microarrays, often called chips, consist of multiple

spots or probes of the same DNA fragment. Each DNA fragment is approxi-

mately 25 nucleotides in length and is representative of one gene. Therefore,

in oligonucleotide arrays the entire gene is not coded. The 25 nucleotide

bases are selected such that minimum cross-hybridization occurs with other

DNA fragments on the array. Within each probe there are millions of copies

of the DNA fragment and there are up to 20 probe pairs for each gene [22].

The purpose of the pairs is discussed in section 2.4. The oligonucleotide ar-

ray is immersed in a sample containing experimental cells. For example, one

sample type may be cancerous colon cells and another sample may be normal

colon cells. The mRNA from the sample cells will hybridize to a match of

DNA fragments on the chip [15]. The mRNA from the sample is initially

extracted and labelled with a fluorescent colour, which allows it to be seen

if hybridization occurs. If hybridization does not occur, then the mRNA

simply washes off the microarray slide. If a gene is active in a given cellular

sample, the mRNA within the cell will hybridize to the DNA subsequence

contained on the microarray. This will be demonstrated on the microarray

with a fluorescent colour turning high or low. We say that a gene is expressed

within a sample, if it is transcribed into mRNA and hybridization occurs.

Typically a bright colour is used to indicate a relatively abundant expression

level and black or no colour indicates that the gene is inactive in the given

sample.

An example of the design of oligonucleotide arrays is given in figure 2.3.

The amount of hybridization is indicated by the level of fluorescence present

in each probe. In order to transform this into a numerical value, the mi-

croarray is scanned and each probe is assigned a measure of intensity. The

location of the probes and the respective genes that they represent, is crucial

in understanding the data generated from microarrays. When the intensity is
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measured for any given probe, the corresponding gene that it represents must

be known. Therefore, following the microarray experiment, each gene is as-

signed an expression value based on its total expression across all probes [15].

Often multiple experiments are performed, testing similar samples. For ex-

ample, cancerous colon cells may be extracted from multiple patients. Each

patient’s sample is used on a separate oligonucleotide array, and the totals

are summarized in a matrix. Subsequent tests may be with normal colon

cells, tested in a similar manner across many patients without colon cancer.

An example of the data format in a matrix is given in figure 2.4.

Figure 2.4: An example of microarray input data.

2.3.2 Microarray Data Format

In section 2.3.1 the purpose of microarray technology was discussed. A DNA

microarray monitors the expression levels of thousands of genes in the cells of

a test sample. Let the number of genes being monitored by an oligonucleotide

microarray be represented by n. Therefore, the outcome following one mi-

croarray experiment is an expression value for all n genes, as indicated from
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a particular test sample. Typically, many samples are tested and this results

in a matrix or table of expression values. Let the number of test samples be

represented by D. Therefore, a DNA microarray, such as an oligonucleotide

array, can be represented by expression values stored in a matrix X. The

number of rows in X corresponds to the number of genes, n. The D different

samples that the expression values were taken from represent the columns of

X. Hence, X is an n × D matrix as given in figure 2.4. In the points given

below, we introduce the notation used throughout this thesis.

• Let the input data matrix X contain all n input vectors as the rows

of X, where each input vector corresponds to a different gene. Every

input vector of X, is represented by xi where i ∈ [1...n]. The matrix

X is an n × D matrix. The components of each input vector xi are

represented by xij where j ∈ [1...D]. The columns of X represent the

different samples tested in the experiment. Therefore, every xij is the

expression level of gene i taken from sample j.

• Matrices are denoted in bold such as K, M and G. The elements of

each matrix are denoted by kij, mij and, gij respectively.

2.4 DNA Microarray Analysis

Once a DNA microarray is ready for analysis, preprocessing steps are typ-

ically applied to the raw input data. In theory, the microarray’s ability to

extract the expression levels of thousands of genes is a tremendous accom-

plishment. In practice, however, there are many discrepancies or errors that

can occur in the data, and this requires the assistance of statistical pre-

processing methods. Often there are outliers, or noise within the data that

leads to some genes being misrepresented. For example, a common problem

when assessing the level of fluorescence present in a probe, is the existence

of background noise and non-specific/cross hybridization. The latter term

meaning that hybridization or binding occurs between the DNA fragments
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in a probe and non-target DNA. Background noise can be anything from mi-

croscopic chip defects to signal spillage of one probe onto its neighbour within

the microarray. Therefore, in order to account for background noise and non-

specific binding, the oligonucleotide arrays work with pairs of probes. The

pair consists of a perfect match (PM) probe and a mismatch (MM) probe.

The mismatch probe is purposely manufactured with an error, whereby the

DNA fragments within this probe are different by one nucleotide base. When

assessing the level of hybridization for a given probe pair, the hybridization

that occurs on the mismatch probe is considered erroneous and is subtracted

away from the perfect match probe. This is a common method in dealing

with background noise and hybridization errors, however, there are many

other approaches in attempting to tackle these problems [7, 22, 15]. Some

additional preprocessing steps that are typically applied to microarray data

are normalization, taking log2 of the expression values, scaling the expression

values or calculating the expression values based on the PM score subtracting

background noise, where some other measure of background noise is calcu-

lated [22].

2.4.1 Dimensionality Reduction of Microarray Data

Dimensionality reduction of microarray data involves taking an n × D input

matrix X and reducing its size while striving to retain much of the informa-

tion contained within the full data set. This is important because the size of

a microarray data set can often reach tens of thousands of genes across po-

tentially hundreds of samples [81]. As DNA microarray technology becomes

more and more widespread in the biological community, the need for efficient

and accurate analysis methods is crucial. Dimensionality reduction of the

data is a critical step in this process. The next chapter extensively discusses

the topic of dimensionality reduction, and current methods that are com-

monly applied to DNA microarrays. Dimensionality reduction of microarray

data has two possible approaches; (1) reducing the number of genes or rows

in the data while holding the number of columns or samples constant, or (2)
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reducing the number of columns while keeping the number of rows constant.

For the purposes of this thesis, we focus on the latter approach and strive to

better understand the relationships between genes in the data set. Dimen-

sionality reduction is often a critical step in the analysis of microarrays, as

the computational complexity of analysis methods is growing [57]. Working

with a smaller data set, that is still representative of the original, is very

desirable. Dimensionality reduction of microarray data also allows one to

visually depict the high dimensional data set and subsequently derive mean-

ing. It also assists in a better understanding of the gene-gene relationships

that occur in the data set. In this thesis we present a novel approach for

the dimensionality reduction of DNA microarray data. This is discussed in

chapter 5.

2.5 Applications of Microarrays

DNA microarray technology has broad utilization in the bio-medical com-

munity. Measuring the abundance of genetic activity for a particular cell

type allows a much deeper understanding of the inner workings of organ-

isms. Some of the immediate ramifications and existing applications of the

technology are related to disease discovery [70, 57, 31]. Microarrays allow

a comparison between test patient cells and diseased cells for possible early

detection of diseases. This type of analysis often requires the use of di-

mensionality reduction and support vector machines (SVM). Support vector

machines are briefly introduced in section A.6. This type of analysis alone,

has immense benefits and associated functions. Microarrays allow the study

of host genomic responses to bacterial infections [22]. Also, there exist appli-

cations of microarrays to genotyping, cancer research and measuring mRNA

decay rates. A huge benefit of microarray technology exists in the area of

drug discovery and design. DNA microarrays have effectively redirected the

focus of computational biology. However, as mentioned in section 2.4, DNA

microarray technology suffers from a small percentage of genes being mis-
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represented in the microarray experiments [15]. Therefore, the technology

is still definitely in need of improvements. The potential of this technology

is largely dependent upon microarray analysis methods and the ability to

draw meaning from the data. This thesis focuses on one aspect of microar-

ray analysis, namely dimensionality reduction as discussed in section 2.4.1.

In the next chapter we begin with a review of current methods for dimen-

sionality reduction and discuss applications of these methods to microarray

data sets.
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Chapter 3

Methods in Manifold Learning

3.1 Introduction

DNA microarray analysis, from the onset, has made use of algorithms from

a wide range of research areas such as artificial intelligence, statistical learn-

ing and data mining [34]. As discussed in chapter 2, due to the nature and

size of microarray data, examination of the data calls for the application of

dimensionality reduction techniques. In this chapter, we begin with a brief in-

troduction and motivation for dimensionality reduction. Subsequently, three

linear and nonlinear dimensionality reduction techniques are examined. A

review of the terminology and concepts used in this chapter, are presented

in Appendix A.

3.2 Goals of Dimensionality Reduction

In practice, when one acquires data from various sorts of experimentation,

the raw format of the data is often high dimensional [48]. Often, to work and

perform analysis on such high dimensional data is very difficult and computa-

tionally intensive. This type of problem data is often referred to as having the

curse of dimensionality [48]. Instead, one aims to uncover intrinsic patterns
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and behaviour that exist in this high dimensional data from a lower dimen-

sional representation of the original data. Searching for such low dimensional

structure is broadly known as dimensionality reduction. If the original data

is perceived as lying on a high dimensional manifold, then manifold learning

is a way to portray the original data within a lower dimensional manifold.

Essentially, a key objective for the dimensionality reduction of high dimen-

sional input data is to obtain a compact representation of the high dimen-

sional data in fewer dimensions [51]. This entails informative visualization

of the input space. What is not desired is the loss of valuable information

contained within the original manifold. Dimensionality reduction allows for

faster analysis and computations on the input data and ideally allows one

to focus on only the principal features of the data [84]. The sections that

ensue will introduce two categories of dimensionality reduction algorithms.

First, one of the principal methods in linear dimensionality reduction is in-

troduced. Subsequently, an introduction to two nonlinear manifold learning

algorithms is presented followed by a brief summary. Background material

for the algorithms that ensue and additional linear and nonlinear dimension-

ality reduction methods are covered in Appendix A (sections A.4 and A.5).

First, we summarize the notation presented in section 2.3.2, and build upon

this in the list given below. Next, we review a set of definitions that are

referred to in this chapter.

3.2.1 Notations and Definitions

Notations

• Let the input data matrix X contain all n input vectors as the rows of

X. Every input vector of X, is represented by xi where i ∈ [1...n]. The

matrix X is an n × D matrix. The components of each input vector

xi are represented by xij where j ∈ [1...D].

• Let the output data matrix Y contain all n output vectors as the rows

of Y. Every output vector yi ∈ Rd, where d << D. Therefore, Y is an
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n × d matrix. The components of each output vector yi are represented

by yij where j ∈ [1...d].

• Matrices are denoted in bold such as K, M and G. The elements of

each matrix are denoted by kij, mij and, gij respectively.

Definitions

• Manifold

A manifold is a topological space which is locally Euclidean [97], mean-

ing that every point has a neighbourhood which resembles Euclidean

space and points are separated by Euclidean distances. Examples

of manifolds with additional structure include differentiable manifolds

and Riemannian manifolds on which distances and angles can be de-

fined [93].

• Isometry

As given in [92], an isometry is a mapping of a metric space onto

another or onto itself so that the distance between any two points in

the original space is the same as the distance between their images in

the second space.

• Covariance

The covariance between x and y, is often written as Cov(x,y). Covari-

ance is the measure of how two variables vary together. The measure

of Cov(x,y) becomes more positive for each pair of x and y that differ

from their mean in the same direction, and becomes more negative if x

and y differ from their mean in opposite directions [89].

3.3 Principal Component Analysis

A common statistical method used for dimensionality reduction of high di-

mensional data sets is principal component analysis (PCA). PCA is one of

the best known unsupervised dimensionality reduction or feature extraction
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methods [63, 27, 85]. Other methods in the same family as PCA are factor

analysis and principal coordinate analysis [59]. The objective of principal

component analysis is to find a projection of the input vectors to a low di-

mensional subspace that maximizes the projected variance in the data [87].

PCA attempts to find a set of d orthogonal vectors that account for as much

of the data’s variance as possible. This is achieved by calculating the covari-

ance matrix of the inputs X, and subsequently finding the set of eigenvectors

and eigenvalues of the covariance matrix. The eigenvectors of the covariance

matrix are maintained in descending order based on the corresponding eigen-

values. The result of this eigendecompostion of the covariance matrix is a

d dimensional embedding of the original D dimensional data. The eigenvec-

tors are the principal components of the data in d dimensions and define the

embedding coordinates in the outputs Y. The eigenvectors are the columns

of the output matrix Y. The eigenvalue that corresponds to each eigenvector

is a measure of the total variance maintained in this particular eigenvector.

Therefore, the d dimensions of the embedding space are defined by the num-

ber of eigenvalues having a value that is sufficiently larger than zero. We

refer to this as the number of nontrivial eigenvalues. There is a one-to-one

correspondence between the input vectors and output vectors, obtained from

the eigenvectors of the covariance matrix; that is every output vector yi is

a low dimensional representative of the original input vector xi. In what

follows, an outline of the PCA algorithm from [72, 43] is summarized.

1. Given a random input population X, where X is an n × D matrix,

define the mean of each column vector to be µj for j ∈ [1...D]. We

centre the input matrix X by subtracting the column means from each

element xij:

xij ← (xij − uj). (3.1)

This results in the row vectors of X having a sum of zero:

n∑
i=1

xi = 0. (3.2)
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2. Define a covariance matrix C, given in equation (3.3):

C =
1

n

n∑
i=1

xix
t
i . (3.3)

3. The covariance matrix C is an (n× n) positive definite matrix, having

nonnegative eigenvalues. Therefore, when performing eigenanalysis,

the following eigenvalue problem is solved:

λv = Cv . (3.4)

4. To create an ordered orthogonal basis, simply order the eigenvectors

in descending order based on their respective eigenvalues. The first

eigenvector will have the largest proportion of variance of the original

data. The outputs Y are contained in the highest d eigenvectors of C

having nontrivial corresponding eigenvalues.

5. Let the d eigenvectors of C represent row vectors in a matrix V. The

d dimensional output vectors yi are derived from the matrix V and

centred inputs xi, as defined in equation(3.5) [36].

yi = VxT
i . (3.5)

Ideally when PCA is applied to an input matrix X, for purposes of dimen-

sionality reduction, one would aspire to have the principle variance of the

data contained in the top two or three eigenvectors. This allows an embed-

ding into two or three dimensions. However, this would require that only

the first two to three eigenvectors contain the principal variance of the data,

which is not always the case. In order to assess the inherent dimensionality

of the data, we examine the number of nontrival eigenvalues of the covariance

matrix C.

Principal component analysis and related schemes, such as factor analysis [69]

and singular value decomposition [52, 68], have had much popularity with
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gene expression data [59]. When any dimensionality reduction method such

as PCA is applied to DNA microarray data [61, 60, 85], either the genes (rows

in X) or the experimental conditions (columns in X) can be the variables.

A significant drawback to the PCA algorithm is that, by itself, PCA does

not generalize to nonlinear dimensionality reduction. Nor does it provide a

prediction function that can be applied to new inputs. It is this fact, in part,

that motivated extensions to the original PCA algorithm. Kernel PCA is

one such extension to the original PCA algorithm and is the subject of the

next section.

3.3.1 Kernel PCA

Given the success of PCA with feature extraction of linear data, kernel PCA

was meant to improve the quality of the PCA algorithm on nonlinear data.

Assuming there is a body of problems that exists having data with nonlinear

relationships, can one apply linear analysis methods and still draw significant

features from the data? This question is the main focus behind kernel PCA.

The basic idea is to project the original data into an even higher dimensional

space, called a feature space, and work with linear methods within such a

feature space. However, this methodology of projecting data into higher

dimensions can result in an infeasible problem due to the computational

burdens of explicitly calculating the projection function. Instead, the kernel

trick [43] is employed whereby one no longer needs to explicitly calculate the

projection function. Kernels and the kernel trick is discussed in section A.6.1.

The kernel approach in equation (3.6) allows computations to work with dot

products of the projection function, Φ, and adapts the covariance matrix of

the traditional PCA algorithm above to work with the kernel function. Each

element cij of the covariance matrix C is defined in equation (3.7).

K(xi, xj) = 〈Φ(xi), Φ(xj)〉 . (3.6)

cij =
n∑

i=1

Φ(xi)Φ(xj)
t. (3.7)
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Applying the derivation given in [57, 24], kernel PCA reduces to an eigenvalue

problem of the kernel matrix K as follows:

λv = Kv . (3.8)

In the same manner as PCA, we solve the eigenvalue problem given in equa-

tion (3.8) and derive the d dimensional embedding of the original inputs.

However, a difference in the kernel PCA method is the ability to derive a

prediction function for new inputs [24]. Let vkq represent the qth coordinate

of the kth eigenvector of C. Given λk, the kth eigenvalue of C, we define

lk= λkn. Therefore, an output projection function Pk, for a test point xt, is

given in equation (3.9). The full derivation for equation (3.9) can be seen

in [4]. For example, if a two dimensional prediction for a test point is desired,

we derive P1(xt) and P2(xt) based on the two eigenvectors that contain the

highest percentage of variance of the original data.

Pk(xt) =
1√
lk

n∑
q=1

vkqK(xt, xq). (3.9)

We see that the difference between PCA and kernel PCA is to a great extent

this predictive function for new test points, and the fact that kernel PCA

is more suited to nonlinear input data. Similar to PCA, kernel PCA has

been evaluated on microarray data sets. In [57] Pochet et al. evaluate kernel

PCA with different kernel functions to assess the role of nonlinearity in di-

mensionality reduction of DNA microarray data. In recent years alternative

nonlinear algorithms based on PCA, such as total principal component re-

gression (TPCR) in [76], have been applied to microarray data with positive

results showing improvement over traditional PCA. An alternative widely

held method in dimensionality reduction of microarray data is multidimen-

sional scaling. Section A.4 in Appendix A discusses multidimensional scaling

at greater length.

In the past, linear dimensionality reduction methods such as PCA and MDS

were popular analysis tools for microarray data. However, recent years have

seen the rise of newer dimensionality reduction or manifold learning methods.
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These methods are more sensitive to nonlinear input data. We proceed with

a discussion of nonlinear dimensionality reduction.

3.4 Linear vs. Nonlinear Dimensionality Re-

duction

The need for nonlinear dimensionality reduction techniques is motivated by

the fact that linear methods such as PCA and MDS have difficulty in detect-

ing the intrinsic dimensionality of high dimensional data, and fail to learn

complicated nonlinear structure that may exist in the data [10]. In the past

five to six years, a handful of nonlinear dimensionality reduction algorithms

have been proposed from manifold learning theory. Common to all meth-

ods, including PCA and MDS, is the application of eigendecomposition to

a matrix M, where M is representative of the original problem data set in

a well defined manner. As in PCA and MDS, the eigenvectors having the

largest nontrivial eigenvalues provide a low dimensional embedding of the

originally high dimensional data set. We begin with the local linear embed-

ding algorithm followed by an overview of the Isomap algorithm. Appendix

A provides a summary of two additional nonlinear dimensionality reduction

methods, namely Hessian and Laplacian Eigenmaps.

3.4.1 Local Linear Embedding

The locally linear embedding (LLE) algorithm of Roweis and Saul [66] tries

to find the best d dimensional projection of the data which preserves global

nonlinear geometry. We see an example of a nonlinear manifold in figure 3.1.

The LLE algorithm will take such nonlinear input data and attempt to main-

tain local patches from the original manifold to the embedding space. LLE

assumes that if there is sufficient sampling from a high dimensional manifold,

each point will lie on a locally linear patch with its neighbours. Every input

vector xi is approximated by a weighted linear combination of its neighbours.
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Figure 3.1: A sample manifold in three dimensions. This particular manifold is entitled
the Swiss Roll. (Figure taken from [27])

.

These weights are subsequently used to define a similar neighbourhood in

d << D dimensions. A brief, three step overview of the LLE algorithm [65]

is given in figure 3.2. A more detailed description of the LLE algorithm given

in [27, 64] follows:

1. Given n input vectors in D dimensions, find all k nearest neighbours

for each input vector xi. Let the neighbours of xi be represented by

the matrix Ni

2. For every input xi, construct a weight matrix W from Ni. Each element

wij of W represents the weight coefficient between input xi and its

neighbour xj. The construction of W must hold to the constraint

given in step (3).

3. Reconstruct xi as x̂i from the neighbours of xi, and their respective

weights wij. We see that x̂i is defined as:

x̂i =
n∑

j=1

wijxj. (3.10)

The matrix of weights W must be chosen such that the error, E(W),

is minimized between xi and x̂i. W is defined by equation (3.11), and
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Figure 3.2: An overview of local linear embedding as defined in [65]

.

constraints (a) and (b) below, in order to preserve local isometry of the

input vectors in a low dimensional embedding.

E(W ) =
n∑

i=1

|xi −
n∑

j=1

wijxj|2. (3.11)

In minimizing the cost function in equation (3.11), we restrict the ma-

trix of weights W with the following constraints:

(a) For all xi and xj that are not neighbours, wij = 0.

(b) The row sums of W must be equal to 1. This is defined in equation

(3.12). Essentially, the constraint in equation (3.12) will allow

the reconstruction weights to be invariant to translations for any

particular input vector and its neighbours [64].

For all i
n∑

j=1

wij = 1, for all i. (3.12)
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4. The matrix of weights W is used to reconstruct the output vectors yi,

as given in equation (3.13). Let ŷi represent the reconstructed output

vectors for all i ∈ [1...n].

ŷi =
n∑

j=1

wijyj. (3.13)

5. The final embedding coordinates Y can be obtained by minimizing the

cost function in equation (3.14). In equation (3.11) we optimize the

matrix of weights W, given that the input vectors xi are held constant.

The optimization in equation (3.14) optimizes the output vectors yi,

given that the weight matrix is held constant. The output vectors yi are

also restricted to be centred about the origin in equation (3.15). This

is in order to remove a translational degree of freedom from equation

(3.14).

φ(Y ) =
n∑

i=1

|yi −
n∑

j=1

wijyj|2. (3.14)

n∑
i=1

yi = 0. (3.15)

6. Construct a sparse Hermitian matrix M representing the matrix of

weights W Appendix A, section A.1 discusses Hermitian matrices).

Calculate low dimensional projection of the original inputs by perform-

ing eigendecomposition on the matrix M as given in equation (3.16).

λv = Mv. (3.16)

The output vectors in Y, that give the final d dimensional embedding

coordinates, are directly equal to a subset of the eigenvectors gener-

ated by equation (3.16). In this case, the selected eigenvectors are the

first d+1 eigenvectors derived from the eigendecomposition of M. The

matrix M is an extremely sparse matrix [27].

Due to the nature of the LLE algorithm, particularly constraint (b) from step

3, the first eigenvector of M is always a vector of ones. Its corresponding
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eigenvalue is also equal to one. This eigenvector and eigenvalue are essen-

tially ignored when deriving the final embedding coordinates. Discarding

this eigenvector is necessary in order to ensure that the outputs sum to zero

(equation (3.15)). The components of the remaining eigenvectors sum to

zero and the constraint in equation (3.15) is satisfied by virtue of orthogo-

nality [27]. Therefore, the d dimensional embedding is obtained by selecting

the first d+1 eigenvectors of M. We observed that the final LLE problem

is simplified into the sparse eigendecomposition problem given in equation

(3.16). This gives the LLE algorithm an advantage of simplicity over other

nonlinear dimensionality reduction methods such as Isomap (discussed in the

next section). A key difference behind the LLE algorithm when compared to

other predecessor dimensionality reduction methods is the concept of isom-

etry (discussed in section 3.2.1). By formulating a mapping of xi from its

neighbours and associated weights, the projection of xi is simply a rotation

plus translation to a lower dimensional embedding. LLE is computationally

simple and unsupervised, thus the algorithm has gained much interest since

its formulation in 2000 [66]. A drawback of the algorithm is the fact that

the eigenvalue spectra does not provide significant insight into the inherent

dimensionality of the high dimensional data set [87]. This was due to the

fact that the largest eigenvector derived from equation (3.16) is a vector of

ones and the smallest eigenvector is always a vector of zeros. Therefore, the

eigenvalue spectra of the final embedding vectors is not representative of the

overall variance retained from the high dimensional data set and is derived

based on the contraint in equation (3.12) of the LLE algorithm.

The effectiveness of LLE on DNA microarray data was reviewed in [70],

where Chao and Lihui applied LLE to data sets dealing with cancer. Chao

and Lihui also proposed a revised form of LLE using fractional distance met-

rics and compared this to the original LLE algorithm (see section A.3.1 for

an overview of fractional distance metrics). Some improvements were seen

by employing fractional distance metrics to select the k nearest neighbours.
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In their experiments the accuracy of LLE on microarray input data was eval-

uated by the classification accuracy of a support vector machine. It was seen

that accuracy results with LLE (Euclidean or fractional metrics) were con-

sistently better than those of prior dimensionality reduction approaches such

as PCA, correlation coefficient (CC) and signal to noise ratio (SNR). In [28]

a novel clustering approach called fuzzy map clustering (FMC) was proposed

for clustering microarray data. FMC linearly approximates the fuzzy mem-

berships of neighbouring objects in a manner that is similar to steps 2 and

3 of the LLE algorithm. FMC runs in reasonable execution time similar to

LLE, and yields informative clusters of microarray data [28]. In their work

in [42], Katagiri and Glazebrook introduced a new nonlinear dimensional-

ity reduction approach for pattern recognition given the name local context

finder (LCF). LCF was also adapted from the original LLE algorithm by

Roweis and Saul [66], and was found to be a robust method for extracting

information from microarray data. As mentioned above, the LLE algorithm

as formulated in [66], does not easily allow analysis of the eigenvalue spectra

of the matrix M. Therefore, it is difficult to assess the inherent dimensional-

ity of the input data set. We have seen that LLE uses the notion of a weight

function assigned to each neighbour in order to find a low dimensional ap-

proximation to the input data. Isomap employs a different mechanism when

assessing neighbourhoods in the high dimensional space, which is the topic

of discussion in the next section.

3.4.2 Isomap

The underlying motivation for the Isomap algorithm, given in [77], is similar

to that of LLE. The problem is as follows: Given a Riemannian manifold in

high dimensional space, find a lower dimensional submanifold that maintains

local distances. Whenever the idea of local distances arises in manifold learn-

ing, one immediately thinks of a neighbourhood. Isomap is short for isomet-

ric feature mapping [27]. In order to reveal an isometric feature mapping,

the algorithm takes into account geodesic distances between neighbouring
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Figure 3.3: Graph of input data where edges exist from each node to its k nearest
neighbours.

points on the manifold. Geodesic distances are discussed in the next section.

In the Isomap algorithm, a distance matrix M is computed using geodesic

distances between input vectors. The geodesic distances are typically ap-

proximated using a shortest paths algorithm. Subsequently, MDS is applied

to the covariance matrix of M, from which the low dimensional embedding

is extracted in a routine manner using eigenanalysis [27]. We first provide

an overview of geodesic distances, followed by the rudiments of the Isomap

algorithm.

3.4.3 Geodesic Distances

In manifold learning, we are often interested in the shortest path between

points on the manifold in high dimensional space, and approximating this

distance in a representative manifold embedded in lower dimensional space.

Typically, Euclidean distance is used as an approximation of the shortest

path between points on the high dimensional manifold. One can imagine

as the dimensionality of the dataset increases, Euclidean distance may not
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Figure 3.4: Computing geodesic distances on a manifold. (Figure taken from [33])

be an accurate representation of true shortest path between points within

the framework of the manifold. This was discovered by Aggarwal et al. [2]

and discussed in section A.3.1. For example in figure 3.4, the shortest path

between ci and cj is a line straight across the manifold. However, if one was

to maintain the restriction that the manifold must be traversed in determin-

ing the shortest path, then the shortest distance between ci and cj would

be much larger. This is given as the geodesic distance between the points.

As mentioned in [77, 27, 91] the geodesic distance is believed to be a funda-

mental distance metric when considering a manifold’s structure. The Isomap

algorithm employs a geodesic approximation within the algorithm whereby

geodesic distances are approximated by the shortest path algorithm.

The key steps in the Isomap algorithm are; (1) build a graph of all input

vectors that is locally connected to the k nearest neighbours (2) measure

pairwise distances by the length of the shortest paths to each neighbour.

This length is an approximation to the geodesic distance between a node

and its neighbours (3) Lastly, MDS is used to find a set of low-dimensional

points with similar pairwise distances [27, 77]. A more detailed description
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follows:

1. Find k nearest neighbours of every input vector xi using standard

Euclidean metrics (another approach is to choose all neighbours within

a radius e).

2. Construct an undirected graph G. Let all inputs xi be represented by

nodes in G with neighbours of xi being connected by edges. An example

of such a graph can be seen in figure 3.3. For example, the three

neighbours of xi are labelled xj , xk and xl.

3. For every connected component of G, compute the shortest distances

between all neighbours, such as xj and xk: this is taken to be the sum

of edges along the shortest path between the two nodes. The shortest

path algorithm is an approximation to geodesic distances [62, 23].

4. Construct a matrix M of all shortest paths between nodes. Compute a

covariance matrix C of the matrix M. Perform MDS of the covariance

matrix C, and thereby find a low dimensional embedding representative

of the original high dimensional inputs. The final embedding coordi-

nates are derived from the final eigenvectors and eigenvalues of C. This

is similar to equation (A.11) of MDS.

Given a well sampled manifold in high dimensional space, geodesic distances

can be accurately approximated using shortest path algorithms as given in

step 3. Proof for this can be seen in [77, 10]. The Isomap algorithm, as

tested by Tenenbaum et al. [77], is able to recover an underlying Euclidean

manifold reasonably well, given that the underlying manifold intrinsically

represents a convex region of Euclidean space [27]. The Isomap algorithm,

incorporating geodesic distance calculations discussed in step 3, is tested on

microarray data in [40]. In their experiments, Nilsson et al. compared the

Isomap algorithm to standard Euclidean metrics. Their findings indicate

that the Isomap algorithm was much more accurate in the visualization of

relationships between genes. Their conclusions highlight the relevance and
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applicability of nonlinear dimensionality reduction methods to microarray

data sets, and suggest that the Isomap algorithm is a reliable tool for the

analysis and interpretation of microarray data [40]. Lu and Wu [44] in their

work applied an innovative version of the Isomap algorithm to the microar-

ray data set from Spellman et al. [58]. They employ the Isomap algorithm

followed by a wavelet transformation. The algorithm is termed, Isomap +

DWT (nonlinear dimensionality reduction and wavelet transform). The find-

ings in [44] show that Isomap + DWT produced an improved visualization

of data over traditional Isomap (see figure 1 of [44]). Zhang and Zhang, au-

thors of the GMap software tool [96], examined the effectiveness of Isomap

for analysis of public microarray data. They also proposed slight modifica-

tions to the original algorithm in [77], offering additional distance metrics for

choosing the initial k nearest neighbours, and proposed a method to ensure

the connectivity of the nearest neighbour graph.

The original Isomap algorithm in [77] does not simplify to a sparse eigen-

value problem and is quite computationally expensive, O(n3), where n is the

number of inputs [78]. It was noted in [21] that the Isomap algorithm is pri-

marily suited to data sets having an underlying convex subset from which the

low dimensional embedding is extracted. Tenenbaum et al. applied the idea

of landmarks to the Isomap algorithm to improve the computational over-

head [20]. Initially, a set of l << n landmark vectors are chosen from the set

of all input vectors in X. Isomap was first applied to only the landmark vec-

tors. Based on the embedding coordinates of the landmarks, the embedding

coordinates of the remaining n-l input vectors were estimated. Landmark

Isomap was seen to improve the complexity costs to O(l2n). However this

comes at the price of somewhat less accuracy in visualizing the input data. A

detailed analysis of the landmark approach with Isomap can be seen in [20].
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3.5 Summary

In this chapter, we have seen both linear and nonlinear dimensionality reduc-

tion methods applied to DNA microarray data. The literature indicates that

there are improvements achieved in the application of nonlinear dimension-

ality reduction techniques, over traditional linear methods such as PCA and

MDS. It was noted in section 3.4.1 and 3.4.2 that nonlinear algorithms such as

LLE and Isomap, having successful application to microarray data, are lim-

ited in some respects. For example, Isomap assumes that the underlying low

dimensional manifold is convex which is not always the case [21]. However,

the Isomap algorithm does provide the eigenvalue spectra of the underlying

manifold, and therefore allows one to determine the intrinsic dimensionality

of the data set. LLE does not allow this type of analysis, as the eigenvalue

spectra is not clearly indicative of such a relationship. Given that the area of

nonlinear dimensionality reduction is relatively new [66, 77, 21, 27], there is

room for new and improved nonlinear dimensionality reduction or manifold

learning techniques. The LLE and Isomap algorithms perform dimensional-

ity reduction of a high dimensional data set, based on the manner in which

a neighbourhood is defined. Each algorithm employs a different mechanism

in characterizing a neighbourhood in high dimensional data, and uses this

to find a low dimensional embedding which maintains the neighbourhood

properties. The chapter that ensues will cover a new method in nonlinear

manifold learning which defines a more restrictive measure for a neighbour-

hood. The algorithm, semidefinite embedding, is discussed in chapter 4.
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Chapter 4

Overview of Semidefinite

Embedding

4.1 Introduction

In section 3.3 and A.4.1 the PCA and MDS algorithms were discussed. These

two linear dimensionality reduction techniques can be classified as linear spec-

tral embedding of high dimensional data. Linear spectral embedding methods

perform eigenanalysis on a matrix M that is a linear representative of the

original input vectors in X. Other methods that were discussed in chapter

3, such as Isomap, apply eigenanalysis to nonlinear representations of the

original data matrix M. This is classified as nonlinear spectral embedding.

Semidefinite embedding (SDE), as introduced by Weinberger and Saul [87], is

another form of nonlinear spectral embedding. Eigenanalysis of a representa-

tive matrix M is performed and the highest order d eigenvectors, containing

the principle variance of the data, are extracted to view a low dimensional

portrayal the data. SDE derives a low dimensional manifold by employing

techniques from semidefinite programming. This allows the definition of con-

straints and tighter control on the learned outputs Y. In this chapter we will

discuss the semidefinite embedding algorithm and its descendant, landmark

semidefinite embedding.
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4.1.1 Isometry and Manifold Learning

Semidefinite embedding, similar to other manifold learning methods, entails

the detection of a low dimensional manifold from a set of data points drawn

from the original high dimensional manifold. Semidefinite embedding aims

to discover such a manifold with the property that it is locally isometric to

the original. As discussed in section A.1, an isometry is a mapping of a met-

ric space onto another such that distances between points are maintained

in the mapping [92]. For example, in a three dimensional plane any com-

bination of a rotation plus a translation is an isometry of the plane. Thus,

the problem in semidefinite embedding, as characterized by Weinberger and

Saul [87], requires finding a smooth and invertible mapping that preserves

local distances and behaves locally like a rotation plus a translation. In this

manner SDE is similar to algorithms such as LLE and Isomap. In their work,

Weinberger and Saul [87] apply the concept of isometry to data sets. They

find a d dimensional isometric embedding for the original D dimensional in-

put space. The SDE, LLE and Isomap algorithms primarily differ in their

respective definitions of a neighbourhood. We saw in section 3.4.1 that the

LLE algorithm calculates the best coefficients to approximate each input vec-

tor on the high dimensional manifold, by a weighted linear combination of

its neighbours. Subsequently, LLE tries to find a set of low-dimensional out-

put vectors, which can be linearly approximated by its neighbours using the

same coefficients. It was also seen in section 3.4.2 that the Isomap algorithm

defines a neighbourhood based on geodesic approximations. Geodesic dis-

tances between input vectors in the high dimensional data are approximated

using a shortest path algorithm. This distance between neighbouring points

is again used as a basis to derive a low dimensional embedding. The semidef-

inite embedding algorithm also tries to perserve neighbourhood relationships

from the high dimensional manifold to a low dimensional representation.

However, as we shall see, the SDE algorithm attempts to tighten the con-

straints on what defines a neighbourhood. We now go step by step through

the mechanics of the semidefinite embedding algorithm. The notation that
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we use in this thesis was introduced in section 3.2.1, and briefly reviewed in

section 4.1.2.

4.1.2 Problem Definition

Consider a D dimensional input space and n input vectors xi, where i ∈
[1...n]. Therefore, all input vectors xi ∈ RD. Let yi represent n output vec-

tors of dimension d, where d << D and i ∈ [1...n]. It follows that all output

vectors yi ∈ Rd. Define a neighbourhood matrix A ∈ Rn×n, where all aij ∈
[0, 1], and each entry is indicative of a neighbourhood relationship between

two input vectors. If aij = 1, this indicates the inputs i and j are neigh-

bours and accordingly, if aij = 0, this indicates they are not neighbours. Let

Ax represent a neighbourhood matrix defined for X and let Ay represent a

neighbourhood matrix defined for Y. It follows that each entry, ax
ij in Ax,

is indicative of a neighbourhood relationship between xi and xj across all

i, j ∈ [1...n]. This holds similarly for Ay. Therefore, Y is a representative

locally isometric data set of X, if for every ax
ij=1 in X, there exists ay

ij=1

in Y. That is, for every neighbourhood in X, there exists a rotation plus

translation to a similar neighbourhood in Y. Given that the semidefinite em-

bedding algorithm employs a semidefinite programming methodology, a set

of constraints must be applied to the semidefinite program that is solved. A

semidefinite program seeks to optimize the value of an unknown, given a set

of constraints. See Appendix A, section A.2 for an introductioni to semidef-

inite programming and convex optimization theory. In the case of SDE, the

optimization variable will be learning the outputs Y. The set of constraints

comes from the isometric restrictions placed on the outputs. Thus, the prob-

lem definition leads Weinberger and Saul [87] to a set of equality constraints

on the learning of Y.
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Figure 4.1: (a)Edges only exist from xi to its neighbours (b)Graph is further connected
by adding edges between neighbours of xi.

4.1.3 Isometry Constraints

In order to preserve isometry in a low dimensional embedding of the high

dimensional input space, it was explained in section 4.1.2 that neighbour-

hoods from the input space X must be preserved in the output space Y. Let

G represent a graph of all input vectors as given in figure 4.1(a). Let us ex-

amine one input vector xi and its neighbours xj, xk and xl. The distance to

each neighbour is represented by the length of the connecting edge. We see

that local isometry will only exist if edge lengths representing distances to

neighbours, and the corresponding angles of those edges are preserved from

neighbourhoods in X to neighbourhoods in Y. Thus, for every xj and xk that

are neighbours of xi, the dot products of the edge lengths to each neighbour

must be preserved. This not only preserves the distance to each neighbour

of xi, but also preserves the angles. This is defined in equation (4.1).

〈(yi − yj), (yi − yk)〉 = 〈(xi − xj), (xi − xk)〉 . (4.1)

Next, Weinberger and Saul [87] take the idea of neighbourhoods one step fur-

ther. Examine figure 4.1(b). We see that figure 4.1(a) is simply a graph of all

neighbourhood relationships on xi. Here the number of neighbours, k, is equal

to three. In figure 4.1(b), the graph is further connected by adding edges

between xj, xk and xl. The further connected neighbourhood in figure 4.1(b)

indicates that xj, xk and xl are also neighbours of each other, leading to the
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formulation of triangles between xi and its neighbouring pairs. Weinberger

and Saul [87] apply the further connectivity constraint in figure 4.1(b) to the

semidefinite embedding algorithm. This ensures that tight connectivity con-

straints exist on all neighbourhoods, and allows the constraint in equation

(4.1) to be reformulated as a difference of square distances. The reformula-

tion of equation (4.1) into a difference of square distances, equation (4.2),

is due to an inherent property of triangles. When lengths of all edges of

a triangle are preserved, the corresponding angles between edges are also

preserved.

‖yi − yj‖2 = ‖xi − xj‖2 , for all i,j. (4.2)

It is clear that equation (4.2) applies to all edges between xi and its neigh-

bours xj, xk and xl (from figure 4.1). However, due to the additional edges

between xj, xk and xl, equation (4.2) will apply to the edge between xk and

xl, xk and xj, and xj and xl. Thus, the lengths of all sides of the three

triangles in figure 4.1(b) are preserved by the constraint in equation (4.2)

and therefore, the angles to each neighbour are preserved. The problem of

learning the output vectors in Y for a locally isometric manifold in d << D

dimensions, now has the notion of preserving local isometry given in equation

(4.2).

4.1.4 Formulation Into A Kernel Matrix

In section 4.1.3 we derived the contraints necessary for the preservation of

local isometry in the low dimensional embedding. Next, in order to correctly

formulate the semidefinite embedding algorithm as a semidefinite program,

Weinberger and Saul redefine the output vectors in Y in terms of a kernel

matrix K. The problem becomes learning the kernel matrix K, and subse-

quently recovering the output vectors for the low dimensional embedding.

The kernel matrix K is defined as the dot product between output vectors

yi, where i ∈ [1...n]. K is an n × n symmetric matrix:

kij = 〈yi, yj〉 . (4.3)
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Given equations (4.2), (4.3) and (4.4) the constraints necessary for the preser-

vation of local isometry can be restated entirely in terms of the kernel matrix

K and input vectors xi (equation (4.5)).

‖yi − yj‖2 = 〈yi, yi〉 − 2 〈yi, yj〉+ 〈yj, yj〉 . (4.4)

kii − 2kij + kjj = ‖xi − xj‖2 . (4.5)

It is this formulation that is used in the final optimization problem of the

semidefinite embedding algorithm given in the subsequent section.

4.1.5 Additional Constraints

Thus far, the problem of learning an isometric embedding for the input vec-

tors xi, where i ∈ [1...n], has been constrained to preserve local isometry

(equations (4.3) and (4.5)). The formulation chosen in equation (4.5) is

expressed in terms of a kernel matrix K, where K is defined as the dot

product between output vectors yi, i ∈ [1...n]. Next, the problem is further

constrained by centering all output vectors yi about the origin as given in

equation (4.6). This step is essential in order to reduce the final SDP problem

by one degree of freedom (see section A.1). It is also necessary in order to

simplify the optimization of the SDP (equation (4.10)) as will be discussed

shortly.
n∑

i=1

yi = 0. (4.6)

We see that equation (4.6) can also be expressed in terms of K, as K is defined

to be a matrix of dot products between all output vectors yi (equation (4.3)).

We see that equation (4.6) can be restated as equation (4.7) by restricting

the sum of all elements in the kernel matrix to equal zero.
n∑

i=1

n∑
j=1

kij = 0. (4.7)

Thus far, the original problem of learning the underlying low dimensional

and isometric manifold from a set of high dimensional data points, is re-

structured into a learning problem over the kernel matrix K. If K is known,
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extracting the lower dimensional output vectors in Y, is a straightforward

eigendecomposition of K. The problem being defined in this manner allows

greater restraint on the final solution for output vectors in Y. This is due to

the fact that semidefinite programming, as discussed in section A.2.2, allows

the definition of constraints on the final solution of K. Equations (4.5) and

(4.7) characterize the matrix K in terms of desired properties in the low di-

mensional embedding. In addition to this, Weinberger and Saul explain that

the matrix K must also maintain the following characteristics [87]:

• K must be confined to only symmetric matrices.

• K must have nonnegative eigenvalues.

As defined in A.1, a symmetric, real valued matrix having nonnegative eigen-

values is characteristic of a positive semidefinite matrix. This implies that

our problem is restricted to an optimization over semidefinite matrices, and

is formulated thereby as a semidefinite programming problem [8].

Bear in mind, that in order to construct this problem as an instance of a

semidefinite program, there must exist an optimization over an unknown.

Weinberger and Saul [87] chose to maximize the variance between output

vectors in the low dimensional manifold. This ensures that the projected

outputs are as far apart as possible, and thus unfolding the high dimensional

manifold to a flat, and more spread out respresentation in lower dimensions.

Maximizing the projected variance in the output vectors can be restated as

maximizing the square distance between output vectors yi. This is defined

in equation (4.8).

Max(var(Y)) = Max(
1

2n

n∑
i=1

n∑
j=1

‖yi − yj‖2). (4.8)

By employing the centering constraint from equation (4.6), the constraint in

equation (4.8) can be restated in terms of only the output vectors yi, as given

in equation (4.9).

Max(var(Y)) = Max(
n∑

i=1

‖yi‖2). (4.9)
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Again, we want to formulate this into a constraint on the kernel matrix K.

This is accomplished by using the definition of the kernel matrix (equation

(4.3)), and the centering constraint in equation (4.6). We simplify equation

(4.9) to maximizing the sum of all diagonal elements of the kernel matrix

as given in equation (4.10). This is further simplified as maximizing the

trace of the kernel matrix K (equation (4.11)). Therefore, the optimization

of maximizing the variance or square distance between output vectors yi,

simplifies to maximizing the trace of the kernel matrix K as demonstrated

in equation (4.10).

Max(var(Y)) = Max(
n∑

i=1

‖yi‖2),

= Max(
n∑

i=1

kii), (4.10)

= Max(trace(K)). (4.11)

4.1.6 Semidefinite Programming Problem

In summary, the semidefinite embedding algorithm as proposed by Wein-

berger and Saul [87] is formulated into the following semidefinite program-

ming problem:

Maximize trace(K) subject to: (4.12)

K is a positive semidefinite matrix: K� 0 , (4.13)∑n
i=1

∑n
j=1 kij = 0, (4.14)

For all i,j where ax
ij = 1, kii − 2kij + kjj = ‖xi − xj‖2 . (4.15)

The ultimate goal of the semidefinite embedding algorithm, like other mani-

fold learning algorithms, is to recover a low dimensional embedding of a high

dimensional data set. The problem has now been reformulated as a semidefi-

nite programming problem (equations (4.12) to (4.15)). We see that the trace

of K is the selected maximization parameter, and given equation (4.3), the

output vectors yi are recovered from K in order to produce the desired low
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dimensional embedding. Recovering the outputs will be discussed in more

detail in the next section. Maximizing the trace of K, as discussed 4.1.5,

essentially is aspiring to have output vectors that are as far apart as possible

in the low dimensional embedding. In addition to this restriction, the output

vectors are constrained to centering about the origin in equation (4.14), and

to preserve local isometry in equation (4.15). The matrix K is also restricted

to the class of semidefinite matrices in equation (4.13), thus requiring it to

be symmetric, real and having only positive eigenvalues. It is important to

note that Weinberger and Saul show in [87] that maximizing the trace of K

is bounded. Therefore, the output vectors cannot be pulled infinitely apart.

This is primarily due to the constraint in equation (4.15) preserving local dis-

tances, and the underlying assumption that the graph of all neighbourhoods

is indeed a connected graph.

4.1.7 Recovering Outputs

Of course, the final step in this algorithm is to recover the output vectors yi

for i ∈ [1...n]. The embedding space Y is recovered from the eigenvectors

and eigenvalues of the matrix K. Let the n eigenvectors of K, denoted by

vα where α ∈ [1...n], be established as the rows of V. Let vαi denote the ith

element of the αth eigenvector, and let λα denote its respective eigenvalue.

Therefore, each entry of the kernel matrix can be represented as follows:

kij =
n∑

α=1

λαvαivαj. (4.16)

Thus, a d dimensional embedding, which is locally isometric to the input

vectors xi, for i ∈ [1...n], can be obtained as follows:

yiα =
√

λαvαi. (4.17)

Here, each yi corresponds to an input vector xi, where i ∈ [1...n]. The number

of eigenvectors and eigenvalues of K that are necessary for a d dimensional

embedding is equal to d. In this case α ∈ [1...d]. For example if a two dimen-

sional embedding is desired, each output vector yi will have a component in
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Figure 4.2: SDE maps the teapot images taken at 360o of rotation to a circle where
similarly angled images are displayed closer to one another in the circle. This image is
taken from [87].

the first and second dimension in order to plot this point in two dimensions.

This will result in yi1 and yi2 for all n output vectors. Although a two or

three dimensional embedding may be desired, the inherent dimensionality of

the data set is represented by the number of nontrivial eigenvalues of K. Let

the number of nontrivial eigenvalues of K be denoted as T. If the desired

number of output dimensions is d, and d << T , there is loss of information

in a d dimensional embedding of the data set. By examining the number of

nontrivial eigenvalues of K, one is able to assess the quality of a d dimen-

sional embedding. We will use this sort of analysis in the next chapter, when

comparing dimensionality reduction algorithms on microarray data sets.

4.2 Applications of Semidefinite Embedding

The authors of [87] applied SDE to many different image data sets where

the number of input vectors n did not exceed 2000 images. Typically, the

number of dimensions D, of the tested data sets was 250. In assessing the

quality of the SDE two dimensional embeddings, Weinberger and Saul [87]
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considered the location of output vectors with respect to one another, and the

number of nontrivial eigenvalues. The findings were that SDE successfully

recovered patterns of information from the input data. In assessing the two

dimensional output plots of the data sets, it is clear that similar images are

plotted in close proximity, and dissimilar images are plotted further apart.

For example, Weinberger and Saul [87] tested a data set containing random

images of a teapot taken at 360◦ of rotation. We see the sample output in

figure 4.2, where SDE accurately depicts the ordering in a low dimensional

view of the original images. The two dimensional embedding of the images is

essentially a circle and all n output vectors representing each of the n images

are plotted, however only a few of the actual input images are displayed. We

see that the output display of the images shows the teapot in correct order

of rotation. Related or similar images are plotted nearer to one another and

unlike images are the furthest apart.

4.2.1 Eigenvalue Spectra

In [87] SDE was applied to six image data sets in total and the two dimen-

sional embedding of each data set was analysed. Two dimensional embed-

dings are extracted and examined in terms of the eigenvalues corresponding

to each eigenvector. In figure 4.3 we see the percentages of all nontrivial

eigenvalues from the SDE outputs of each image data set. From left to

right, the chart displays the value in percentages of variance contained in

the eigenvalues for each of the six images. Figure 4.3(a) indicates that the

teapot images taken at 180◦ of rotation were completely characterized on a

straight line in one dimension. Therefore, the first eigenvalue is nonzero and

accounts for all the variance in the output data. Images (b,c,d) of figure 4.3

are also entirely captured in the top two eigenvalues, therefore there were

only two nontrivial eigenvalues. To view the two dimensional SDE plots of

the images in figure 4.3 please see [87]. Notice that images of figure 4.3(e,f)

have a greater number of nontrivial eigenvalues. The principal variance of

the data is still contained in the first eigenvalue which accounts for over 60%
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of the variance. The remaining eigenvalues are decreasing in percentages,

as is expected. It may appear that SDE does not correctly estimate the

inherent dimensionality of the data due to the higher number of nontrivial

eigenvalues. However, as noted by Weinberger and Saul [87], SDE actually

performed with greater accuracy than other existing manifold learning algo-

rithms such as PCA and LLE.

4.2.2 Synthetic Data

The authors of [87] also compare output embeddings from synthetic data

sets, such as input vectors drawn from a two dimensional image of the letter

P. This is an example of nonconvex data. Figure 4.4 shows the results of

SDE and other dimensionality reduction algorithms on the synthetic data.

The ability of SDE to output the image P almost exactly, demonstrates that

SDE is not foiled by nonconvex data. The HLLE (section A.5) algorithm

of Donoho and Grimes [21] displays the image of P with similar accuracy.

Weinberger and Saul compare the eigenvalue spectra of SDE to other linear

and nonlinear dimensionality reduction methods and find that SDE consis-

tently shows greater accuracy in determining the inherent dimensionality of

the data set [87]. Also, due to the nature of the semidefinite programming

problem defined for SDE (equations (4.12) to (4.15)), the constraint set es-

sentially guarantees that the solution will lead to an embedding that is locally

isometric to the original data set. Such guarantees are not well defined for

other nonlinear dimensionality reduction methods [87].

4.2.3 Drawbacks

The main drawbacks of the SDE algorithm, as mentioned by Weinberger

and Saul [87], is the fact that SDE is comparatively slow in computation

time. The computational intensity required by SDE exists primarily due to

the nature of the semidefinite programming problem in learning the kernel
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Figure 4.3: Spectrum of eigenvalues from SDE outputs on given image data sets. Figure
(a) is completely characterized in a single dimension of SDE low dimensional outputs.
Figures (e) and (f) indicate that greater than two dimensions are required to fully repre-
sent the variance in the high dimensional data sets. However, when comparing to other
algorithms, SDE comes closest to correctly estimating the underlying dimensionality of
the data sets. This image is taken from [87].

Figure 4.4: SDE almost exactly replots the input data, as does HLLE. Isomap and LLE
result in some distortion to the original input data. SDE also exactly characterizes the
inherent dimensionality of the output data. This is taken from [87].
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matrix K. Also the SDE problem is not working with sparse matrices, there-

fore computation time is realistically too long for larger data sets. The work

on semidefinite embedding was extended by Weinberger et al. in, Nonlinear

Dimensionality Reduction by Semidefinite Programming and Kernel Matrix

Factorization [86]. The authors attempt to factor the kernel matrix K, and

allow its computation to occur in steps, rather than all at once. This de-

creases the computational overhead of calculations and allows the basic SDE

algorithm to work with larger data sets. The improved algorithm is called

Landmark Semidefinite Embedding and is described in the next section.

4.3 Landmark Semidefinite Embedding

As was discussed in 4.1.4, the primary goal of the semidefinite embedding

algorithm is to learn the kernel matrix K, from which the output coordinates

Y can be derived. However, running the SDE algorithm is computationally

intense for large data sets, and generally only works well for data sets having

2000 inputs or less. Weinberger et al. expand their work on semidefinite

embedding to incorporate larger data sets [86]. It is shown in [86] that for a

well sampled manifold M, the derivation of the kernel matrix K, can be fac-

tored into a product of smaller matrices. A manifold is well sampled when

distances between neighbours are small enough for the Euclidean approxi-

mation to be accurate [30]. As defined in the SDE algorithm (section 4.1),

the kernel matrix K is an n× n matrix formed from the dot products of all

pairs of output vectors yi. The landmark semidefinite embedding algorithm

(lSDE) defines a matrix of landmarks in a similar manner. The landmark

set is a set of m selected input vectors taken from the original input data

where m << n. The landmark set can be a randomly selected subset of

input vectors, or a set that is chosen in some ordered manner. The matrix L

is defined to be an m×m matrix of dot products between landmark output

vectors. Weinberger et al. define Q to be an n × m linear transformation

that approximates the entire data set from the landmark set. Therefore, the
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factorization of K in the lSDE algorithm is an approximation, and is given

in equation (4.18):

K ≈ QLQt. (4.18)

The n×n kernel matrix K can be approximated by a much smaller m×m

matrix L and its linear transformation Q. The integration of factorization

in equation (4.18) into the SDE algorithm was seen to results in order-of-

magnitude reductions in computation time. The factorization allows the

possibility of studying much larger problems within the SDE framework. The

idea of landmarks was first presented in [20], where landmarks were used to

enhance the computational performance of MDS in the Isomap algorithm.

Landmark Isomap is briefly discussed in section 3.4.2 of this thesis. The

idea of landmarks is also the topic of discussion in [56] where landmarks are

applied to accelerate the embedding of points in a sparse similarity graph.

Intuitively, the lSDE algorithm is based on mapping high dimensional input

vectors to a low dimensional space based on their distances to the selected

set of landmarks. The main attraction of the landmark approach is the fact

that the derivation of a large n×n matrix K can be broken up into solving a

much smaller submatrix L, and subsequently using a linear transformation

on the submatrix in order to map back to the embedding space. The number

of landmarks m is a free parameter of the problem as is the number of k

nearest neighbours. Kernel matrix factorization (equation (4.18)), is the

fundamental difference in the lSDE algorithm as compared to the original

SDE algorithm. A breakdown of how the kernel matrix K is factorized into

equation (4.18) is given step by step in the subsequent section [86].

4.3.1 lSDE Algorithm

1. Given m randomly selected input vectors or landmarks from the data

set, construct a linear transformation for approximately reconstructing

the remaining (n-m) input vectors of the data set. Let m landmark

vectors be denoted by ur, where r ∈ [1...m], and the reconstructed input

47



vectors by x̂i for i ∈ [1...n-m]. Each of the reconstructed input vectors

is defined as follows:

x̂i =
m∑

r=1

Qriur. (4.19)

2. Q is an n×m linear transformation derived from a sparse weighted

graph G defined in steps 3 and 4 [86, 56].

3. G is defined as follows:

• Let the n nodes of G represent the input vectors in X, including

the m selected landmarks.

• Weights are assigned to the input vectors and are used to propa-

gate the landmark points towards the n-m points that are not in

the landmark set. Let the matrix of weights be denoted by W.

4. The matrix of weights W, can be determined by reconstructing each

input vector as a weighted sum of its k nearest neighbours. Therefore,

W is found by minimizing the following error function:

E(W) =
n∑

i=1

∣∣∣∣∣∣xi −
k∑

j=1

wijxj

∣∣∣∣∣∣
2

. (4.20)

This is subject to the constraints that the row sums of W must equal 1

as this ensures that the weights are not affected by the choice of origin

for the input vectors [86]. Also for every entry in W where inputs xi

and xj are not neighbours, wij = 0.

5. Given the derivation of Q (steps 1-4), we proceed with the derivation

of the embedding points in Y. Let the set of landmark output vectors

lr, for r ∈ [1...m], represent the set of low dimensional embeddings after

the application of SDE to the initial m landmark input vectors.

6. The landmark output vectors lr are used to derive a complete set of

embeddings for the reconstructed input vectors x̂i, where i ∈ [1...n-m].
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Thus the set:

ŷi =
m∑

r=1

Qrilr, (4.21)

is the set of low dimensional embeddings for x̂i.

7. Next, we examine the output sets assuming that the m landmark out-

put vectors are included in the set of all output vectors. Let the set

of output vectors ŷi, for i ∈ [1...n] be represented by Ŷ. Recall from

section 4.1.2 that the original output set from the SDE algorithm, yi

where i ∈ [1...n], is represented by Y. In the lSDE algorithm, Wein-

berger et al. [86] take Ŷ to be a sufficiently close to Y. Therefore, it is

understood that Ŷ ≈ Y.

8. Let L represent an m×m matrix of dot products of all pairs of landmark

output vectors lr, r ∈ [1...m] (equation (4.22)). Therefore, the matrix

L is defined in a similar manner to the matrix K (equation (4.3) from

section 4.1.4).

lrt = 〈lr, lt〉 , where r,t ∈ [1...m] . (4.22)

We see that kernel matrix factorization in the lSDE algorithm (equation

(4.18)) follows if we make the following approximation for each entry

in the kernel matrix K:

kij = 〈yi, yj, 〉 ≈ 〈ŷi, ŷj〉 where i,j ∈ [1...n] . (4.23)

The final mechanics of lSDE are very similar to the original SDE algorithm.

The problem is formulated as a semidefinite programming problem similar

to that in equations (4.12) to (4.15). The primary difference being only the

factorization of K to get the approximation of QLQt. Therefore, given this

factorization, the semidefinite program for the lSDE algorithm is as follows:

Maximize trace(QLQt) subject to: (4.24)

L is positive semidefinite: L � 0 (4.25)∑n
i=1

∑n
j=1 (QLQt)ij = 0 (4.26)
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For all i,j where nij = 1,

(QLQt)ii − 2(QLQt)ij + (QLQt)jj ≤ |xi − xj|2 (4.27)

We see that K is replaced by QLQt from equation (4.12) to (4.24). Also the

final equality constraint in equation (4.15) is replaced by the inequality in

equation (4.27). This is due to QLQt being only an approximation to the

original kernel matrix K. Therefore, to ensure feasibility of the final solu-

tion, the distance constraints are relaxed to the inequality form. In practice,

Weinberger et al. did not find this relaxation to be a great impedance to

performance.

A further optimization in the lSDE algorithm is the number of constraints

imposed on the semidefinite programming problem. As is noted by Wein-

berger et al., there is redundancy in the constraint set passed to the original

semidefinite program for SDE (equations (4.12)-(4.15)). The large number

of constraints can be another bottleneck in SDE performance. In the lSDE

implementation only a subset of the original constraints is applied to the

semidefinite programming problem (equations (4.24)-(4.27)). Once a solu-

tion is found, it is tested against all original constraints. Any constraint

being violated leads to another attempt at the solution for the semidefinite

program. However, the next iteration will include the violated constraint(s).

Again, it is noted in [86] that this iterative constraint process certainly im-

proves computation time and does not compromise results. It should also be

noted that the constraints on centering about the origin and restricting the

matrix L to be positive semidefinite (equations (4.26) and (4.25)) are always

applied to the semidefinite programming problem for lSDE.

In summary the lSDE algorithm directly implements the semidefinite pro-

gramming problem from the original SDE algorithm with the kernel matrix

factorized into QLQt. Given m landmark input vectors, the linear transfor-

mation matrix Q can be derived from a sparse weighted graph of the input

vectors while minimizing the error function in equation (4.20). The matrix L
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is the solution to the semidefinite programming problem for lSDE (equations

(4.24)-(4.27)). Subsequently the landmark output vectors lr, r ∈ [1...m], can

be recovered from L. Lastly the remaining set of output vectors ŷi, for i ∈
[1...n-m], can be deduced using equation (4.21).

4.3.2 Findings: Landmark Semidefinite Embedding

In [87] the authors, Weinberger and Saul, described the theory and applica-

tions of the semidefinite embedding algorithm. It was noted that running the

SDE algorithm on a data set which exceeds 2000 input vectors is computa-

tionally expensive, and requires impractical run times. A typical application

would require on the order of several hours on a mid range desktop com-

puter, running a pentium IV processor and average size RAM. The authors

of SDE also discovered that a large portion of the constraint set passed to

the semidefinite program are redundant or not explicitly required. The main

objective behind landmark SDE was to reduce the computational burden of

the original SDE alorithm, allow data sets to exceed the input size limitation,

reduce the constraint set passed to the semidefinite programming problem,

and not adversely affect the reliability of results. Weinberger et al. in their

work on lSDE [86], test several large data sets with sizes ranging from 10000

to 60000 input vectors. It was found that the lSDE algorithm had significant

impact on computation time. Given m, the number of landmarks ranging

from 10 to 40, Weinberger et al. find lSDE took a fraction of the original

SDE computation time. Weinberger et al. performed their testing in Matlab,

using the SDP solver CSDP version 4.9 [11]. The authors also demonstrate

that accuracy was sufficiently maintained from SDE to lSDE, and the com-

putational time improvements were not heavily inhibitive to the reliability of

results [86]. It is concluded by Weinberger et al. that the landmark approach

to semidefinite embedding is a positive upgrade to the original algorithm, and

successfully tackles the problems of computation time and input size.
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4.4 Summary

In the preceeding sections we have seen the basic outline of the SDE and

lSDE algorithms. As noted in section 4.2, there are certain advantages to the

SDE approach over prior manifold learning or dimensionality reduction tech-

niques. SDE is only concerned with local patches of the manifold. Therefore,

in contrast to the Isomap algorithm, if the embedding space is non-convex

the results are not flawed in any manner. SDE is able to determine the inher-

ent dimensionality of the data set with greater accuracy than other methods.

Also, the optimization in the final semidefinite programming problem (equa-

tions (4.12) to (4.15)) defines unfolding restrictions on the manifold in low

dimensional space and this more accurately defines the output vectors yi.

The very nature of the semidefinite programming problem for SDE ensures

the constraint set is satisfied in the final solution. This essentially guaran-

tees that the low dimensional embedding will preserve local isometry due to

the isometry constraints defined on every neighbourhood of the input space.

The lSDE algorithm maintains all desirable properties of the original SDE

algorithm, however it allows the kernel matrix to be determined in a more

efficient manner and thereby heavily improves computation time. In this the-

sis, we incorporate the lSDE algorithm into a new method for dimensionality

reduction of DNA microarray data. The KAS (kernel alignment with semi-

definte embedding) algorithm, employs additional steps that are particularly

suitable for microarray data. An outline of the KAS algorithm follows in the

next chapter.
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Chapter 5

KAS Algorithm and

Experimental Methodology

The purpose of this study is to find an improved dimensionality reduction

technique for DNA microarray data. We propose a novel method for dimen-

sionality reduction of DNA microarray data which incorporates kernel align-

ment and feature selection in the semidefinite embedding algorithm. Our

method, KAS kernel alignment with semidefinite embedding, is described in

detail throughout this chapter. We begin with the motivation behind the

KAS algorithm, followed by an overview of each step of the algorithm. This

chapter concludes with a synopsis of the experimental methodology employed

in this thesis.

5.1 Motivation

In chapter 2 we first introduced DNA microarray technology. When per-

forming analysis of microarray data, often the size of the data sets and noise

contained within the data sets is invasive and compromises precise qualitative

and quantitative analysis. Once aquired, microarray data can be represented

by an n × D matrix denoted by X, where n is the number of genes (rows)

across D samples. Each row in the data set represents the expression pat-
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tern of one gene, and each column represents a sample type or experimental

condition. An input vector from the data set is considered to be an en-

tire row, denoted by xi; this represents the expression pattern for one gene

across all experimental conditions. As discussed in section 2.3, dimensional-

ity reduction methods are often applied to microarray data inorder to first

reduce the size of the data set before further computational analysis and al-

low visualization in two dimensions. However, applications of dimensionality

reduction techniques on microarray data have been only partially success-

ful due to noise contained within the data and the large size of the data

sets. Chao and Lihui [70] tested dimensionality reduction methods across

the samples or columns of the microarray data set and subsequently used

this for cancer classification. However, a standard objective of microarray

data analysis is to better understand the gene-to-gene interactions that take

place amongst the entire gene pool. Dimensionality reduction of microarray

data has yet to effectively tackle the problem of finding a low dimensional

embedding that provides an accurate visual representation of gene-to-gene

interactions. Visual representations of gene relationships have been, at best,

scattered and difficult to understand [61, 25]. As noted by Fellenberg et

al. [25], in their work on microarray visualization techniques, often the prob-

lem in a two dimensional plot of microarray data is the unseparability of the

data and the large number of genes. This renders a two dimensional diagram

ineffective and difficult if not impossible to read. A problem with existing

dimensionality reduction methods is the loss of information when project-

ing the data into two or three dimensions. Therefore, pre-processing steps

that cater towards dimensionality reduction while maintaining accuracy, are

greatly desired tools in the world of microarrays [61]. We attempt to deal

with the current problems affecting dimensionality reduction methods by first

pre-processing the data with feature selection and kernel alignment strate-

gies. In our work, we endeavour to use semidefinite embedding (SDE) and

landmark semidefinite embedding (lSDE), as tools for both the understand-

ing of gene-to-gene interactions, and the replacing of a large unmanageable
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data set with one of much lower dimensionality. SDE and lSDE are dis-

cussed at length in chapter 4. First, we work with the microarray data set

and extract its relevant features, as described in more detail in the next

section. Next, we apply an adaptation of the kernel alignment algorithm,

first proposed by Cristianini et al. [19], to a kernel matrix of input vectors.

Subsequently, the aligned inputs will undergo dimensionality reduction by

lSDE. Following the application of landmark semidefinite embedding on the

aligned inputs, we have a final two dimensional plot of genes that maintains

a high degree of accuracy and allows visual assessment of gene-to-gene rela-

tionships. As recommended by Weinberger and Saul [86], for the larger data

sets that were tested in this thesis, we use the lSDE algorithm. This is done

in order to ensure reasonable computation times that are competitive with

other dimensionality reduction methods such as PCA and LLE. Our method,

KAS provides an improvement over conventional algorithms on the data sets

that were tested. We first briefly describe the techniques employed in our

algorithm. The results of our experimentation is discussed in chapter 6.

5.1.1 Feature Selection

Feature selection of microarray data is a common approach in order to extract

the relevant features or genes in the data set. Relevance is determined by

genes being highly associated with one particular experimental class over

other experimental classes. Feature selection is a tool that can be used to

reduced the noise contained within microarray data. For the purposes of this

study, the microarray samples will have two classes. In our study microarray

data may consist of normal vs tumorous samples or type1 vs type2 cancer

samples. The samples are classified as either being positive or negative. A

feature selection strategy was tested by Golub et al. [31] in their work on

leukemia classification. We employ this feature selection algorithm in order

to determine which genes are top ranking. The leukemia data set tested

by Golub et al. contained acute myeloid and acute lymphoblastic samples.

These samples were labeled as either AML or ALL. The data sets we use are
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discussed further in chapter 6. The genes are indexed by i, where i ∈ [1...n].

Let µ+
i and µ−i refer to the mean of all positive(+) and negative(-) expression

levels given for each gene. It follows that σ+
i and σ−i are the corresponding

standard deviations. We employ the weight function given in equation (5.1).

The weight assigned to each gene, or input vector xi, is given as wi:

wi =
µ+

i − µ−i
σ+

i + σ−i
. (5.1)

Input vectors having very high weight values show an association to the

positive samples. Input vectors with very low weight values are strongly

associated with the negative samples. The idea of feature selection is to trim

away, from the original data set, genes that are not showing high association

to either positive or negative samples. If we desire to have the top t ranking

features of the data set, we select the highest t/2 positive weights and lowest

t/2 negative weights. In addition, we employ the features selection algorithm

of Golub et al. [31], to assign a labeling to the gene pool that remains. For

example, genes with an association to positive samples will be assigned to

the +1 group. Genes having an association to negative samples are assigned

to the -1 group. Labeling is a necessary step for performing the next step

in the KAS algorithm, kernel alignment reduction, which is discussed in the

next section.

5.1.2 Kernel Alignment

In recent years we have seen the formulation of many new kernel based learn-

ing algorithms. Successful application of kernel-based algorithms is demon-

strated in numerous fields including optical pattern recognition, text catego-

rization and gene expression profile analysis to name a few [46]. This wide

range work with kernels has lead to the recent concept of kernel alignment,

first proposed by Cristianini et al. [19] in 2001. Given that a kernel is a

representation of the original input data in higher dimensions [46], kernel

alignment is a proposed measure of the degree of agreement between a ker-

nel matrix and the given data set [19]. Let us begin with a matrix of input
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vectors, denoted by X, as discussed in section 2. The expression pattern of

each gene in X is represented by one row or input vector xi. Let u represent

the column vector assigning each gene in X to class +1 or class -1. There-

fore, for all i ∈ [1...n], each element of u, is denoted ui ∈ [+1,−1]. The outer

product Gram matrix of the label vector is defined as M = uut. Also, we

define a kernel matrix P to be comprised of the dot products between each

of the input vectors in X. Therefore, each entry of P is expressed in equation

(5.2) where i,j ∈ [1...n].

pij = 〈xi, xj〉 . (5.2)

The computation of kernel alignment is taken as the correlation between the

kernel matrix P, and the matrix M. Let the Frobenius Product [19] between

two matrices be defined as 〈P,M〉F =
∑n

i=1

∑n
j=1 pijmij. As defined by Cris-

tianini et al. [19], the measure of alignment A between the two matrices is

given in equation (5.3).

A(P,M) =
〈P,M〉F√

〈P,P〉F 〈M,M〉F
(5.3)

Our method, KAS employs a reduction algorithm that we will call kernel

alignment reduction. The methodology was first proposed by Thomas [73].

Let P (xi, ∗)t represent the ith row in the kernel matrix P. This is shown

in equation (5.4). Using (uiu)t to represent the label vector times the ith

label, the alignment value ai, of each individual input vector xi, is given by

equation (5.5). Each ai is thus dependent upon the ith row of both P and

M.

P(xi, ∗)t = (pi1 , pi2 , ..., pin)t . (5.4)

ai =
P(xi, ∗)t(uiu)√

P(xi, ∗)tP(xi, ∗)(uiu)t(uiu)
(5.5)

Kernel alignment reduction, as employed in KAS, aims to reduce the size

of the data set based on the alignment values ai. As discussed in section 2,

we strive towards improving the effectiveness of dimensionality reduction

on microarray data. One problem in visualization of microarray data is
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the inseparability of the genes in two dimensions. Groups or clusters are

intermixed and the line of separation is difficult to assess. As noted by

Thomas [73], when employing equation (5.5), we see that low alignment

values represent genes or inputs that are bordering between groups or classes.

In the context of microarray data, this is indicative of the fact that these

genes are not strongly associated to either group. Therefore, we remove all

such genes with low alignment values, and attempt to retain only the genes

having strong association to others in the data set. The kernel alignment

reduction algorithm involves three basic steps.

• Compute alignment values for all input vectors xi where i ∈ [1...n]

(equation (5.5)).

• Remove the input vector with the lowest ranking alignment value, and

reconstruct the matrices P and M.

• Compute alignment values again for the remaining inputs.

Repeat steps 2 and 3, until all alignment values satisfy a lower bound. The

final product, following kernel alignment reduction, is the kernel matrix P

containing only highly aligned inputs. This matrix is then used by the lSDE

algorithm in order to reduce the size of the original microarray data set, and

provide a useful two dimensional plot of the data.

5.1.3 Summary of the KAS Algorithm

The semidefinite embedding algorithm and landmark semidefinite embedding

was discussed at length in chapter 4. Building upon this, and the overview

of feature selection and kernel alignment reduction given in sections 5.1.1

and 5.1.2, we are now ready to outline the full KAS algorithm.

• Given the input data matrix X, first perform feature selection (sec-

tion 5.1.1) of the top ranking features in the data set. Let the new

data matrix be denoted by Fx.
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• Assign a label vector u to the features in Fx.

• Perform kernel alignment reduction, as described in section 5.1.2, on the

input matrix Fx. Let the resulting matrix following kernel alignment

reduction be denoted by X̂.

• Derive the lSDE embedding of X̂ and plot the two dimensional display

of the outputs in Y.

The computational demands of this algorithm primarily reside in the third

step, where kernel alignment reduction is performed. However, in compari-

son to other methods, KAS has reasonable computation times. As we will

see in upcoming chapters, the computational overhead is made up by the fact

that KAS is able to perform dimensionality reduction with a higher degree

of accuracy than the three other algorithms tested in this thesis. In the ex-

perimentation for this thesis, the KAS algorithm is tested on four different

microarray data sets and rigorously compared with PCA, LLE and Isomap.

The data sets are described in the next section. An overview of these al-

gorithms can be found in chapter 3. For the remainder of this chapter we

describe the experimentation process applied in this thesis.

5.2 Experimentation

The purpose of the experimentation described in this thesis is to test the

dimensionality reduction capability of the KAS algorithm when compared

to other conventional dimensionality reduction methods. The data sets used

in this study are discussed in section 5.2.1. The experimental methodology

follows in sections 5.2.2 and 5.2.3. An overview of the results is given in the

next chapter.
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5.2.1 Data Sets

The four microarray data sets that are used in the experimentation for this

thesis are listed below. As discussed in section 3.2.1, each of the rows in

the data sets represents the expression pattern of one gene and each column

represents an experimental sample. The microarray data sets used in this

thesis contain two types of samples. Typically one group of samples is normal

and one group is cancerous. For experimentation purposes only two standard

pre-processing procedures were applied to each data set. Thus, the data sets

were normalised and scaled to have expression values all greater than zero.

Such procedures were discussed in section 2.4. The microarray data sets used

in this thesis are as follows:

1. Colon Cancer Data: The colon cancer data set was first tested by Alon

et al. [1] in their work on colon cancer classification. The sampling

was taken from colon adenocarcinoma tissues that were collected from

patients. The test set employed in our testing consists of 22 samples

where 8 are normal samples and 14 are cancerous samples. The number

of genes in the data set is 2000.

2. AML/ALL Data: The acute myeloid leukemia (AML) and acute lym-

phoblastic leukemia (ALL) data set was first used by Golub et al.

in [31]. We used the combined leukemia data set consisting of 38 bone

marrow samples obtained from adult acute leukemia patients at the

time of diagnosis before chemotherapy. This data set measured expres-

sion levels across 7129 genes. The first 28 columns represent the ALL

samples, the latter 10 columns represent the AML samples.

3. Prostate Cancer: The Prostate cancer data set was used by Singh

et al. in [71]. In this data set, high-quality expression profiles were

successfully derived from 52 prostate tumors and 50 nontumor prostate

samples. These were obtained from patients undergoing surgery. This

data set measures expression levels across 7216 genes and 102 samples
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in total. Therefore, the first 50 columns represent normal samples and

the last 52 columns represent tumourous samples.

4. Breast Cancer: The breast cancer data set was first studied by van’t

Veer et al. in their work on breast cancer classification [81]. For the

purposes of our experimentation, we used a smaller breast cancer test

data set that measured expression levels across 2000 genes and 19 sam-

ples. From these samples, 12 patients developed breast cancer and 7

remained disease free within 5 years of the study. Therefore, again

the comparison is across cancerous and normal samples. This data set

initially contained missing values which were filled in as an estimation

based on the average value of the gene’s expression profile across simi-

lar samples. The approximation algorithm for missing values is outside

the scope of this thesis.

5.2.2 Determination of Results

The final product of the KAS algorithm is a two dimensional plot of the

outputs in matrix Y, where each output vector yi is a label representing

a corresponding input vector xi . For purposes of this study, it is impera-

tive to examine how well the KAS algorithm depicts the microarray data

in two dimensions. We tested the effectiveness of the KAS algorithm on

four microarray data sets, and compared results to those generated by three

conventional techniques in dimensionality reduction. The three methods

of comparison were selected as Principal Components Analysis(PCA) [60],

which qualifies as a linear dimensionality reduction approach, Local Linear

Embedding(LLE) [66] and Isomap [77], which are two typical techniques for

non-linear dimensionality reduction. Typically, when assessing the accuracy

of dimensionality reduction algorithms on image data, or synthetic data such

as the swiss roll, it is sufficient to view the two dimensional plot of the output

vectors [27, 77, 66]. One can visually assess the quality of the plots by analyz-

ing the images and checking if similar images are plotted in close proximity,
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and dissimilar images are plotted further apart. An example of this is the

application of SDE to teapot images taken at different degrees of rotation,

seen in chapter 4 figure 4.2. The LLE, Isomap, SDE and lSDE algorithms

have all been tested on image data sets [87, 86, 77, 66, 27]. When working

with microarray data, the problem of evaluating the accuracy of dimension-

ality reduction methods is not quite as simple. One can view the outputs in

two or three dimensions, however, many of the gene-gene relationships are

unknown in advance. Therefore, one can not accurately assess the validity

of an algorithm based only on visualizing the outputs. In order to test the

relative accuracy of the low dimensional outputs, we used a measure called

the inherent dimensionality of the data set. This is used as a measure in

estimating the accuracy of a two dimensional embedding as given by the dif-

ferent algorithms. The inherent dimensionality of the data is discussed in the

next section. In addition to the inherent dimensionality of the data in two

dimensions, we also clustered the output from each algorithm. The clusters

were examined and compared on the basis of clustering validation indices

across all tested agorithms. Our exact clustering methodology is discussed

below. In this thesis, the use of visual results is limited to the assessment

and comparison of two dimensional embeddings generated by the four algo-

rithms. There are further zooming in and out tools that may be applied to

microarray two dimensional embeddings. However, for the purposes of our

work we examine only the outputs that are generated by the dimensionality

reduction algorithms and compare the embeddings based on this.

Inherent Dimensionality of Data

The output matrix Y contains the embedding coordinates for a d dimen-

sional embedding. Often, as in our study, it is a two dimensionl plot that

is desired from the dimensionality reduction methods. However, all of the

dimensionality reduction techniques that were tested in this thesis allow for

outputs yi in as many as d dimensions, where d ∈ [1...n]. The eigenvalues

of each dimension of the embedding provide an estimate of the percent-
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age of variance retained in that dimension. In an approach that is similar

to the methods employed by Weinberger and Saul [87] in testing the SDE

algorithm, we also examined the eigenvalue spectra generated by the dimen-

sionality reduction algorithms tested in this thesis. This allowed us to assess

the quality of the two dimensional display as given by each algorithm, and

indicates when the outputs are an accurate depiction of the original data

set. Therefore, ideally the first two dimensions contain all of the variance of

the data set, thus proving that the algorithm is very accurate in depicting

the high dimensional data in two dimensional space. However, often, in the

case of dimensionality reduction methods, this is not the case, and we saw

varying percentages of variance maintained in many more dimensions. For

purposes of our study, we used the eigenvalue spectra of the output data

as a measure of the variance retained in each of the lower d dimensions.

This provided an estimate of the percentage of variance maintained in each

dimension of the output data contained in Y. We compared the eigenvalue

spectra of each method and interpreted this as an estimate of the accuracy

retained in the low dimensional embedding space. The maximum allowable

dimensions was set to ten due to the computational burden experienced in

the Isomap algorithm. (Note: The one algorithm that does not allow this

sort of analysis is LLE (see section 3.4.1). Therefore, LLE was left out of the

inherent dimensionality results.)

Clustering Validation

A popular approach for biologists in examining DNA microarray data has

been applying clustering to the data. This allows assessment of gene-to-

gene groupings and relationships that exist within the data. Genes with like

expression profiles across the samples will cluster together and genes with

dissimilar expression profiles will cluster apart. In this study we applied two

clustering algorithms that have been used on microarray data, to the four

microarray data sets in section 5.2.1. K-Means and Gustafson-Kessel clus-

tering were applied to the two dimensional outputs from the dimensionality
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reduction methods and comparisons were made across the clusterings. A

detailed description of the clustering algorithms is given in [3]. We com-

pared a set of four indices that help evaluate the clustering quality from

these two algorithms. It is important to note that these indices are not di-

rectly related to output data from the dimensionality reduction methods,

however they provide a useful measure in comparing clusterings of the out-

put data. We compared clusterings of the original unreduced data sets to

those of the dimensionalty reduced data and were able to derive meaning

from the clustering indices. An underlying assumption that was made is

that the unreduced data sets will cluster with more accuracy and thus higher

validation scores than the reduced data sets generated by the dimensional-

ity reduction algorithms. We examined an index set of four indices, as each

index alone is not a reliable numerical representation of the clustering [3].

However, the indices together can serve as a useful measure in comparing the

outputs across multiple clusterings. Two of the indices are only generated by

a fuzzy clustering algorithm, therefore the Gustafson-Kessel (GK) clustering

method allowed assessment of such indices. The set of four clustering indices

that were examined in this thesis are taken from [3] and are listed below.

Clustering Validation Indices

K-Means and GK clustering are applied to the output data sets of the dimen-

sionality reduction methods that were tested in this thesis. Let t represent

the total number of clusters and ci represent each cluster where i ∈ [1, t].

Let n represent the number of rows in the data set. We define uij as the

membership indicator of data point j in cluster i where uij ∈ [0, 1]. Let wj

represent an input vector from the data set W that is clustered, where j

∈ [1, n]. We have V = {v1, v2, ...vt} representing the set of cluster centers.

Therefore, ‖wj − vi‖ is the distance between element wj and the cluster cen-

ter vi in the clustering of W. Also, nminij
is the minimum distance between

an element wj and any of the clusters centers vi.

1. The Xie and Beni’s Index (XB) aims to quantify the ratio of the total

64



variation within clusters and the separation of clusters [3].

XB(t) =

∑ t
i=1

∑ n
j=1(uij)

m(‖wj − vi‖)2

nminij
‖wj − vi‖2

(5.6)

The optimal number of clusters should minimize the value of the XB

index. In this experimentation the value of m is set to 2. Although

there is no logical arguement for this assignment to m, this has been

chosen because a value of m = 2 has been commonly used in the

literature [3, 32].

2. The Dunn index (DI) is ideally used to check for well separated and

compact clusters [32]. Let x and y be input vectors from the data set

W that is clustered. Let ci, ck and cp represent the clusters where i,k,p

∈ [1, t]. We let D(ci,ck) represent a dissimilarity function between the

two clusters i and k. This dissimilarity function is defined in 5.7 as the

minimum distance between x and y from two different clusters. Here

d(x,y) represents the distance between x and y.

D(ci, ck) = min(x∈ci)(y∈ck)d(x, y) (5.7)

Let diam(cp) represent the diameter of a cluster cp. This is expressed as

the maximum distance between any inputs x and y in the same cluster

as given in equation (5.8).

diam(cp) = max(x,y∈cp)d(x, y) (5.8)

Therefore, the Dunn index for a clustering of t clusters can be expressed

as follows:

DI(t) = mini

{
mink,i6=k

d(ci, ck)

maxp∈[1,t]diam(cp)

}
(5.9)

The main drawback with direct implementation of the Dunn index is

computational since calculating becomes computationally very expen-

sive as t and n increase. Also the Dunn index is sensitive to the presence

of noise within the data [32].
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3. Bezdek [6] designed the partition coefficient (PC) to measure the amount

of overlap between clusters. He defined the partition coefficient (PC)

as follows.

PC(t) =
1

n

∑
t
i=1

∑
n
j=1u

2
ij (5.10)

The optimal number of clusters will have a maximum value for this

index.

4. Classification Entropy (CE) measures the fuzzyness of the cluster par-

tition alone and is similar to the partition coefficient. When measuring

the fuzzyness of the clusters, either PC or CE alone may be sufficient.

However, we used both measures in our testing, in order to strengthen

the results.

CE(c) = − 1

n

∑
t
i=1

∑
n
j=1uijlog(uij) (5.11)

All experiments were performed in MatlabTM using the FuzzyClustering [3],

LLE [66], Isomap [77] and LSDE [86] toolboxes.

KAS Parameters

The KAS algorithm as discussed in section 5.1.3 has parameters that need

to be set before execution of the algorithm. These parameters are used for

the feature selection and kernel alignment portion of the KAS algorithm.

The first parameter, α, is needed for the feature selection step of KAS. This

parameter defines in the algorithm the percentage of data that will be kept

following feature selection. We generally set α to be between 80-90%, as

the goal is to maintain the relevant features of the data while not sacrificing

accuracy. We further preprocess the data in the kernel alignment reduction

step of the KAS algorithm. The kernels are aligned and only input vectors

with low alignment values are discarded. A low alignment threshhold value,

β, is selected in order to ensure that a maximum of one third of the inputs

may be discarded. In the experiments that were performed, on average for the

AML/ALL and prostate cancer data sets, 15-20% of the inputs are left out
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due to low alignment values. The smaller data sets were aligned with a less

restrictive value for β, where only 10% of inputs were discarded due to low

alignment values. The number of nearest neighbours, k was set to three for

all dimensionality reduction methods. We consistently maintained this value

of k across all of the algorithms tested in this thesis, as the computational

burden of experimentation rose significantly with increasing values of k. In

their work with semidefinite embedding [87], Weinberger and Saul worked

with a value of k set to four or five. There exists unreported experiments

within our work where higher k values were tested, and we did not see a

noticeable change in the results.

5.2.3 Biological Perspective

Before discussing the results, we would like to briefly examine the biologist’s

perspective and a few methods by which a biologist can currently examine

DNA microarray data. A biologist is interested in using the dimensionality

reduced data in order to better understand underlying relationships within

the data. For example, a biologist may view a microarray data set in two

dimensions and subsequently view the expression profiles across the genes in

each cluster. An example of this is given in figure 5.2, for 16 clusters where

all expression profiles for a given cluster are monitored in (a), and only

the expression profile for the mean of each cluster is given in (b). Results

from the experimentation in this thesis indicate that using the dimensionality

reduced data set and subsequently clustering the data, can be used in a

similar manner to the representation given in figure 5.2, thereby highlighting

underlying relationships in the data. Also, we see in figure 5.1 (a) Heirarchical

Clustering of a typical microarray data. This is a common method to again,

divide the gene expression profiles into groups.
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Figure 5.1: A view of gene expression data in a hierarchical clustering. Genes are
clustered based on their expression profiles and grouped with like genes in the heirarchy
at indicated at the top.

Figure 5.2: A view of gene expression profiles across 16 clusters. In (a), the profiles for
each gene in the cluster is given, and only the mean profiles across each cluster is given in
(b).
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Chapter 6

Results

The list of experiments, data sets and the experimental methodology applied

in this thesis were discussed in section 5.2 of the last chapter. The purpose

of the experiments performed in this thesis was to test the dimensionality

reduction capability of the KAS algorithm when compared to other conven-

tional dimensionality reduction methods. The purpose of this chapter is to

state the results of the experimentation without making any assumptions

about the conclusions. The results of the tests conducted on each of the

data sets is given in the sections that proceed. There is a summary of all

the results provided in section 6.5. Chapter 7 will discuss the conclusions at

greater length.

6.1 Results: Breast Cancer Data Set

The smaller data sets that were tested in this thesis are the colon and breast

cancer data sets used by Alon et al. and van’t Veer et al. respectively [1, 81].

The two dimensional outputs from each of the four algorithms is much clearer

when working with the smaller data sets. We first tested the application of

the four dimensionality reduction algorithms on the breast cancer data set

and applied K-Means clustering to output data. This is given in figure 6.1.

The outputs are plotted according to the first and second primary dimensions
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of the output data. Therefore, the x and y axes represent the first and second

dimensions of the output vectors of each respective algorithm. In figure 6.1,

the number of clusters, r was set to six. We did not find unexpected or

significant changes with a varying number of clusters. We can see that the

KAS outputs are well spread across two dimensions, and the division of the

clusters is more easily detectable when comparing to the embedding of other

algorithms. The KAS outputs in 6.1(a) allocate fewer genes to each cluster

and do well in the separation of genes in two dimensions. The edges of each

cluster are not closely connected to any group. We see that generally the

output data from the four dimensionality reduction methods clusters well.

LLE displays an embedding where the outputs are concentrated along one

particular axis. This is a typical display of the LLE algorithm and can be seen

in subsequent results. PCA and Isomap appear to have the most similarites

in the two dimensional display of the data.

6.1.1 Clustering Validation Indices

The clustering validation indices from the K-Means and GK clustering al-

gorithms are given in figure 6.2. In some of the clustering indices such as

XB, there is inconsistent behaviour displayed by all algorithms, KAS, PCA,

Isomap and LLE. This again is representative of the fact that not any one

index alone is a reliable validation measure. However, we examine the in-

dices for general behaviour patterns, particularly for KAS. As stated in sec-

tion 5.2.2, we assume that the clustering of the unreduced data set will have

more accuracy, and thus generate higher validation scores, than that of the

dimensionality reduced data sets.

• Dunn Index: The DI scores in figure 6.2(a) show the breast cancer

unreduced data set as having the highest or best DI score and LLE

as having the lowest or worst DI score. The Dunn index is meant to

evaluate the compactness and separation of the clusters. We saw the

K-Means clustering in figure 6.1 applied to all dimensionally reduced
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Figure 6.1: Two dimensional outputs of dimensionality reduction methods tested on
Breast Cancer Data: The output of each algorithm was clustered with K-Means clustering.
The circles within each cluster represents the cluster centre. KAS outputs show greater
separation between bordering clusters. The number of clusters, r = 6.
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Figure 6.2: Breast Cancer Data: Clustering validation indices for K-Means and GK
clustering of two dimensional output data. K-Means clustering is applied in (a) and (b)
and GK clustering is applied in (c) and (d).
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data sets. It is intuitive that the unreduced data sets would score well

in clustering validation indices, as the number of data dimensions is

much greater than only two. The clustering validation indices were

evaluated on four to ten clusters. KAS, PCA and Isomap also have low

DI scores. The KAS and Isomap DI scores are similar with an average

difference of 0.0076. The KAS clusters follow the unreduced breast

cancer data in general behaviour, as we see the value is higher for eight

clusters and subsequently decreases for ten clusters. The unreduced

data set peaks at eight clusters with a score of 0.031. KAS also peaks

at eight clusters with a score of 0.046.

• XB Index: The XB index, again is a ratio of the total variation within

clusters. The XB clustering index, will have the lowest value for an

optimal number of clusters generated by the clustering algorithm. Al-

though there is variation on XB scores across the clusterings in 6.2(b),

we see that the unreduced breast cancer data set in 6.2(b) had the

lowest XB score and KAS follows next. The unreduced data set has

XB scores in the range of 2.84 to 3.74. KAS scores range from 12.66 to

24.41 and have the lowest range next to the unreduced data set.

• PC/CE Index: The partition coefficient and classification entropy in-

dices try to assess the fuzziness or overlap between the clusters. Ideally,

we would like crisp separation between the clusters, however often in

reality this is not the case. The fuzziness of a clustering is highly re-

lated to the data set itself. As the number of clusters increases, the PC

score will rise, and the amount of overlap between clusters decreases.

We see in figure 6.2(c) that, next to the unreduced data set, KAS has

the highest PC scores. Both KAS and the unreduced data set peak at

ten clusters with PC scores of 1.37 and 2.3 respectively. The unreduced

breast cancer data, again shows the best scores across all clusters. The

PCA, Isomap and LLE algorithms all behave quite similarly. The PC

scores are basically repeated in the CE index scores of 6.2(d). Here,
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however the lower CE score indicates a cleaner, less fuzzy partition.

The unreduced breast cancer data has the best CE rating, followed

closely by KAS, PCA, Isomap and LLE. It is intuitive that LLE would

have a worse CE and PC score, as the two dimensional outputs are

very compact and close together, thereby more conducive to overlap

of the clusters. Again the CE scores are best at ten clusters when the

unreduced data set has a score of 0.1 and KAS has a score of 0.41.

6.1.2 Variance in Two Dimensional Embedding

We see in figure 6.3 the eigenvalue spectra of the four algorithms on the

breast cancer data set is given. The variance in the first dimension is given

by the dark blue area at the very bottom of the bar graph. The subsequent

eigenvalues for each dimension of output is given by the different shaded

areas. The percentage of variance in the first dimension for the KAS outputs

is 38%, which is highest amongst the algorithms. In this particular data

set the PCA outputs have a relatively higher percentage of accuracy. The

first dimension of the PCA outputs manages to retain approximately 37% of

total variance of the data. We see that in two dimensions the KAS outputs

do give a higher percentage of variance when compared to the three other

algorithms. The LLE and Isomap outputs have lower percentages of variance

retained in two dimensions for this particular data set as compared to the

other tested data sets. Also, if we examine the total number of dimensions

that retain a substantial percentage of overall variance, the KAS outputs

show the least number of dimensions. This implies that the KAS outputs

require a smaller number of total dimensions to preserve accuracy in a low

dimensional embedding.

6.2 Results: Colon Cancer Data Set

Next, we performed a similar set of tests on the colon cancer data set. The

two dimensional outputs of each algorithm can be seen in figure 6.4. K-
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Figure 6.3: Comparison of variance in each dimension of output data generated by
dimensionality reduction methods. First dimension is dark blue and begins at the bottom
of the bar graph. KAS has the highest percentage of variance retained in two dimensions.
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Means clustering is applied to each of the output data sets generated by

the dimensionality reduction methods. In figure 6.4, the number of clusters,

r was set to six. We see the PCA outputs are distributed across the two

dimensions and more broad in size than other figures. The KAS outputs

are also spread across the two dimensions, however to a lesser degree than

the PCA outputs. The borders between clusters is easily discernible. The

Isomap outputs are more bunched together in this figure than that of the

breast cancer data set. LLE outputs in two dimensions and six clusters are

not easily discernible and difficult to separate with only the human eye. We

do see that the KAS outputs make for a clear visual display in two dimensions.

6.2.1 Clustering Validation Indices

The clustering validation indices, derived from the K-Means and GK cluster-

ing of the colon cancer data set, are given in figure 6.5. Again, we see that

some of the clustering indices are useful for only general behaviour patterns

as discussed below.

• Dunn Index: The DI scores in figure 6.5(a) shows the clustering of

the Isomap output data and PCA output data as having the lowest

or worst DI scores across the clusterings. For this particular data set

the unreduced data set has scores that are very close to KAS. LLE

begins with DI scores that are better than those of the unreduced data

set. KAS and the unreduced colon cancer data set have DI scores that

range from 0.0044 to 0.0065. For the number of clusters set to ten,

KAS has the highest DI score. LLE outputs begin with high DI scores

and fall back down to 0.0048 for ten clusters. Again, KAS outputs

show similar behavior to the unreduced data set, which fairs well for

the Dunn Index.

• XB Index: The XB clustering index, will have the lowest value for

an optimal number of clusters generated by the clustering algorithm.
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Figure 6.4: Two dimensional outputs for Colon Cancer Data. K-Means clustering is
applied to the two dimensional data. The number of clusters, r = 6.
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In this case, again the clustering of the unreduced colon cancer data

provided the best XB index scores. The clustering of KAS output data

follows that of the unreduced data set and indicates a general trend of

good XB scores. KAS outputs have XB scores that range from 17.85

for r = 4 clusters, and end at 13.23 for r = 10 clusters. The Isomap

outputs have a clustering that results in fair XB scores ranging from

18.76 to 19.82. PCA and LLE have XB scores that are not easily

interpretable and jump drastically as the number of clusters changes.

However, when the number of clusters is set to ten, both the PCA and

LLE scores fall back down to 20.59 and 15.04 respectively.

• PC/CE Index: The partition coefficient and classification entropy of

a clustering attempts to assess the fuzziness or overlap between the

clusters. In figure 6.5(c) and (d) we see the two indices are close to the

inverse of one another. In figure 6.5(c), the clustering of the unreduced

colon cancer data attained the highest or best PC score. The unreduced

data had scores ranging from 1.38 to 2.27 for the PC index. Similarly,

in figure 6.5(b) the clustering of the unreduced colon cancer data gives

the lowest or best CE score. Here the unreduced data set had CE

scores in the range of 0.26 to 0.11. In both cases, the KAS outputs

have the next best scores. The KAS scores range from 0.76 to 1.32

for the PC index and from 0.60 to 0.44 for the CE index. The PCA

outputs, again have the next highest scores, following the KAS outputs.

In this experiment, the Isomap and LLE clusters had the lowest PC

and CE scores in comparison to the other algorithms.

6.2.2 Variance in Two Dimensional Embedding

Let us examine figure 6.6 where we see the eigenvalue spectra for three of

the four tested algorithms on the colon cancer data set. KAS retained the

highest percentage of variance in the first two dimensions which is close

to 80%. Also, the top three dimensions in the KAS outputs account for
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Figure 6.5: Colon Cancer Data: Clustering Validation Indices for K-Means and GK
clustering of two dimensional output data of Colon cancer data set.K-Means clustering is
applied in (a) and (b) and GK clustering is applied in (c) and (d).
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Figure 6.6: Comparison of Variance in each dimension of output generated by dimen-
sionality reduction algorithms. First dimension is dark blue and begins at the bottom of
the bar graph. KAS retains highest percentage of variance in two dimensions, which is
close to 80% of total variance.
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approximately 95% of the total variance in the data. This is significant

especially in comparison to the other dimensionality reduction methods which

require up to nine dimensions for the same percentage of variance. The PCA

and Isomap outputs generally had similarities in eigenvalue spectra results

for the colon cancer data set. PCA retains approximately 56% of variance in

three dimensions and Isomap retains approximately 58% of variance in three

dimensions. In only two dimensions of output, we see that the PCA and

Isomap outputs are not able to retain even 50% of total variance contained

in the high dimensional data.

6.3 Results: Prostate Cancer Data

In the experimentation for this thesis, two dozen tests were performed on the

prostate cancer data set used by Singh et al. [71]. We tested across random

subsets of the 7129 genes, each across 102 experimental conditions. Many

tests with the entire data set were also performed. The two dimensional

clustering results given in figure 6.8 were taken from experiments using the

entire data set. In both the prostate data set and AML/ALL data set, the

Isomap algorithm was replaced by the landmark -Isomap version of the orig-

inal Isomap algorithm discussed in 3.4.2. In figure 6.8, K-Means clustering

was applied to all output data generated by the four algorithms. We have

selected a clustering where the number of clusters, r was set to eight. We

see in figure 6.8(b), the PCA outputs display a typical PCA visual depiction.

There is no significant concentration towards the centre, and the outputs

form a circular shape in two dimensions. We can not easily assign a shape to

the other diagrams. Again, they follow a similar pattern as seen in the other

data sets. The KAS outputs, in figure 6.8(a) are more concentrated towards

the centre, and the gene-to-gene distances increase as we move away from the

centre. The LLE outputs are concentrated across three distinct directions

and the Isomap outputs have less concentration of genes as we move away

from the centre.

81



6.3.1 Clustering Validation Indices

The clustering validation indices are derived from the application of K-Means

and GK clustering on the two dimensional outputs generated by each algo-

rithm. We can see the results in figure 6.7. A clustering was also performed

on the unreduced prostate data set, in order to compare. As expected, the

index scores were highest for the unreduced data set.

• Dunn Index: The DI scores in figure 6.7(a), shows the clustering of the

unreduced data set as having the highest and best DI scores across the

clusterings. The LLE output data and KAS follow a similar pattern to

that of the unreduced data set, whereby the DI scores drop for r = 8

clusters, and come back up for r = 10 and 12 clusters. KAS scores

most closely resemble those of the unreduced data set. The KAS DI

scores range from 0.0024 to 0.011 and the unreduced data set has DI

scores ranging from 0.0031 to 0.0021. The Isomap output data gave

the lowest DI scores and the PCA outputs rise in DI scores for the last

two clusterings of r = 10 and r = 12.

• XB Index: The XB index had the best results for the unreduced data

set, followed by the KAS outputs. A lower value for the XB index, is

indicative of a good XB score. Also, the PCA outputs have good XB

scores, close behind the KAS outputs. The KAS XB scores range from

32.16 to 30.37. The unreduced data set XB scores range from 4.61 to

3.41. A clear pattern of XB scores for the Isomap and LLE outputs is

not obvious.

• PC/CE Index: To assess the PC and CE indices, we applied the GK

fuzzy clustering algorithm to the two dimensional outputs generated

by all four of the dimensionality reduction methods. In figure 6.7(c)

and (d) we see the best scores are again held with the clustering of

the unreduced prostate data set. The unreduced prostate data set had

significantly better scores than the tested algorithms. KAS and PCA
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Figure 6.7: Prostate Cancer: Clustering validation indices for output data generated by
all four dimensionality reduction methods.
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Figure 6.8: Two dimensional outputs for Prostate Data with K-Means clustering applied
to the data. Here the number of clusters, r = 8.
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follow the closest behind for both indices. In this case PCA scores were

slightly higher than KAS scores for both indices. The two algorithms

differ by an average score of 0.03 for the CE index and 0.27 for the PC

index.

6.3.2 Variance in Two Dimensional Embedding

In figure 6.9 the eigenvalue spectra is given as a bar graph similar to the

graphs in sections 6.1 and 6.2. The percentage of variance is given for each

of the output dimensions. As we are interested in only two dimensions we

hope the top two dimensions contain a large percentage of the total variance.

For the prostate cancer data set, the KAS outputs retained approximately

62% variance in two dimensions. This rises to 72% in only three dimensions.

The other algorithms need five or six dimensions of output data to attain

results that are even close to this. In only two dimensions, we see that the

PCA outputs retain approximately 40% of total variance and the Isomap

outputs retain less than 30% of total variance.

6.4 Results: AML/ALL Data

In the experimentation for this thesis, approximately 20 tests were performed

on the AML/ALL data set used by Golub et al. [31]. We tested across random

subsets of the 7129 genes across 38 experimental conditions. Many tests with

the entire data set were also performed. The two dimensional clustering

results given in figure 6.10 were taken from experiments using the entire

data set. In figure 6.10 we see the two dimensional embeddings from each of

the dimensionality reduction algorithms tested in this thesis. The outputs

were clustered using K-Means clustering with the number of clusters, r = 10

in this particular diagram. The visual results using a different number of

clusters were very similar to figure 6.10. We see in figure 6.10(b) the PCA

outputs are comparably the most spread out across two dimensions. It is

difficult to derive meaning or assess gene-to-gene relationships from the data
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Figure 6.9: Comparison of Variance in each dimension of output generated by dimen-
sionality reduction algorithms. First dimension is dark blue and begins at the bottom of
the bar graph. KAS retains highest percentage of variance in two dimensions, which is
close to 62% of the total variance contained in the unreduced prostate data set.
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without clustering. KAS outputs are not so broadly spanned, however they

show a clear view of the separation between clusters. The KAS outputs

generally have fewer genes in each cluster, as the preprocessing steps trim

away unnecessary genes. We saw similiar results with the prostate cancer

data set in section 6.3. We see that the LLE and Isomap outputs are a bit

more difficult to group visually as some clusters are very compact. Again,

the LLE outputs would be the easiest to divide into groups, if a coloured

separation was not superimposed on the data.

6.4.1 Clustering Validation Indices

The clustering validation indices are derived from the application of K-Means

and GK clustering on the two dimensional outputs generated by each algo-

rithm. We can see the results in figure 6.11. A clustering was also performed

on the unreduced AML/ALL data set, in order to draw a comparison.

• Dunn Index: The DI index in figure 6.11(a) shows that the clustering

of the unreduced data has the highest DI scores. We see, when r = 8

and 10 clusters, the score seems to rise and shifts back again for r = 12

clusters. In this test the KAS scores were lower than PCA and LLE.

The KAS DI scores range from 0.008 to 0.005, whereas the unreduced

data set scores are much higher, ending at 0.041 for r = 12 clusters.

Although, the KAS scores are lower for this particular data set, they

are still within a close range to the other algorithms.

• XB Index: The XB clustering index, will have the lowest value for an

optimal number of clusters generated by the clustering algorithm. In

this case, again, the clustering of the unreduced AML/ALL data had

the best XB result beginning at a score of 4.92 for r = 6 clusters, and

ending at 4.40 for r = 12 clusters. When examining the XB scores

for the four dimensionality reduction algorithms, the PCA and KAS

outputs have the next best XB scores. The KAS scores are initially

high and fall back down to 26.02 and 21.33 for r = 10 and 12 clusters.
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Figure 6.10: Two dimensional outputs for AML/ALL Data. K-Means clustering is
applied to the two dimensional data with the number of clusters r = 10.
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Figure 6.11: Clustering validation indices for K-Means and GK clustering of the
AML/ALL data.
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Therefore, as the number of clusters increase, the gap between the PCA

and KAS scores becomes very little. The Isomap and LLE outputs have

XB scores that are not easily interpretable as the scores vary with the

number of clusters.

• PC/CE Index: The partition coefficient and classification entropy of

a clustering attempts to assess the fuzziness or overlap between the

clusters when GK clustering is applied to each output data sets. In fig-

ure 6.11(c) and (d) we see the two indices are close to the inverse of one

another. In figure 6.11(c), the clustering of the unreduced AML/ALL

data attained the highest or best PC score. Similarly, in figure 6.11(b)

the clustering of the unreduced AML/ALL data gives the lowest or best

CE score. In both cases, the KAS and PCA outputs are close behind

in scores. As is similar to the prostate data set, KAS scores are slightly

lower than that of the PCA outputs. However, the difference between

PCA and KAS scores is very small. The average difference between the

two scores for the PC index is 0.045 and 0.02 for the CE index. Again,

in comparison to the other algorithms, the Isomap and LLE clusters

had the worst PC and CE scores.

6.4.2 Variance in Two Dimensional Embedding

Let us examine figure 6.12 where we see the eigenvalue spectra of the three

tested algorithms. KAS retained the highest percentage of variance in the

first two dimensions which is approximately 68%. The top three dimensions

in the KAS outputs account for approximately 85% of the total variance in

the data. This is significant, especially in comparison to the other dimension-

ality reduction methods. PCA and Isomap generate outputs which require

close to six dimensions in order to have similar results to KAS. The Isomap

two dimensional embedding retains approximately 25% of total variance, and

the PCA two dimensional outputs retain a little over 30% of total variance.
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Figure 6.12: Comparison of Variance in each dimension of output generated by dimen-
sionality reduction algorithms. First dimension is dark blue and begins at the bottom of
the bar graph. KAS retains highest percentage of variance in two dimensions, which is
close to 68% of the total variance contained in the unreduced AML/ALL data set.
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6.5 Summary of Results

In this section we summarize the results discussed in sections 6.1 to 6.4.

6.5.1 Two Dimensional Output

The two dimensional depictions of the original high dimensional data sets

show great variation across all the dimensionality reduction algorithms. We

examined the quality of the two dimensional visual depictions of the data

with K-Means clustering applied to the outputs. However, we did not ac-

count for additional software tools that could be used to further examine

the outputs. Based on the data sets that were tested, we saw the outputs

from the PCA algorithm generally span the largest two dimensional area.

The KAS algorithm generates two dimensional outputs that are more con-

centrated in the centre, and generally have fewer genes in each cluster due

to the KAS preprocessing steps. K-Means clustering is able to divide the

genes clearly for both algorithms. The Isomap outputs have more variation

from one dataset to the next and the LLE outputs are the most compact and

occupy the least area. The LLE outputs, without a superimposed clustering

on the outputs, would be the easiest to separate into distinct groups. This is

due to the fact that the LLE outputs are separated across different axes. Al-

though, it is not reasonable to assign a grading to each of the dimensionality

reduction algorithms based on visual outputs alone, we can see that ease of

visualization is best achieved by the PCA and KAS outputs.

6.5.2 Variance in Two Dimensions

We also examined the eigenvalue spectra of each algorithm in order to assess

the two dimensional embedding quality in terms of total variance in the

data. Given each experiment with the different data sets, it was clear in

every experiment that KAS retained the highest percentage of variance in

a two dimensional display of the data. Therefore, it is safe to say that the
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KAS outputs have the highest percentage of accuracy in a two dimensional

depiction of the data. We saw that the PCA and Isomap algorithms were

both far behind in terms of the variance in each output dimension. The one

algorithm that we were not able to test for variance, was the LLE algorithm.

The LLE algorithm [66] does not allow interpretations of variance in each

output dimension, as do the other algorithms tested in this thesis.

6.5.3 Clustering Validation Indices

The clustering validation indices were compared in order to better inter-

pret and assess the quality of the clustering on each of the two dimensional

outputs generated from the different algorithms. The clustering validation

indices were meant to examine general trends and patterns in the behaviour

of the algorithms. An examination of clustering validation indices for the

unreduced data sets was used as a basis of comparison. As expected, the

unreduced data set had the best scores across the validation indices. We

found that the DI and XB results for each clustering showed variation across

the data sets. The KAS outputs generated XB scores that were most similar

to the unreduced data set in three of the four experiments, and a close second

to PCA in the last experiment. The KAS scores for the Dunn Index showed

more variation. However, in comparison to the four dimensionality reduction

algorithms, KAS scores were either first or second for three of the four exper-

iments. The PC and CE results were fairly straightforward. Again, we saw

that the KAS outputs generated PC and CE scores that were closest behind

the unreduced data sets in the first and second experiments. However, for

the larger data sets, KAS scores were close behind PCA. Again, when ex-

amining the clustering validation indices, we were only interested in general

behaviour patterns. This is due to the fact that each clustering validation

index, in itself, is not an exact measure of clustering quality [3]. We found

that clustering applied to the KAS outputs, using either K-Means or GK

clustering, faired well in each of the clustering validation indices. KAS did

particularly well for the PC, CE and XB indices. This indicates that the
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KAS outputs have a low amount of overlap between the clusters, the clus-

ters have low intra-variation and are easily separated and compact. In the

chapter that proceeds, we will discuss the conclusions and interpretations of

these results.
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Chapter 7

Conclusions and Final Remarks

In this section we discuss the results seen in chapter 6 and expand on the

behaviour of the dimensionality reduction methods tested in this thesis. We

first briefly review the KAS results in section 7.1, followed by a discussion

of the other algorithms in section 7.2, and summarize the conclusions in

section 7.4.

7.1 KAS Summary

Through the experimentation performed in this thesis, we found that the

KAS algorithm proved to be an effective mechanism for the dimensionality

reduction of DNA microarray data. The KAS algorithm initially preprocesses

the data in order to extract the relevant features of the data and reduce the

amount of noise present, by trimming away expression profiles that are not

displaying a large amount of variation. Next, the KAS algorithm applies

a kernel alignment step that further refines the input data by discarding

genes with low alignment values. It is only after both the feature selection

and kernel alignment steps that the lSDE algorithm is applied to the data

in order to reduce its dimensionality. The KAS results are summarized in

subsequent sections.
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7.1.1 Inherent Dimensionality

It was seen in sections 6.1 to 6.4, the KAS outputs retained a high percent-

age of variance in a two dimensional embedding of the data. The PCA and

Isomap algorithms were far behind in comparison. The accuracy in the KAS

outputs comes from the fact that the lSDE dimensionality reduction algo-

rithm applies a more restrictive definition of Isometry than LLE and Isomap.

All three of the nonlinear dimensionality reduction algorithms strive to main-

tain neighbourhoods from the high dimensional space to neighbourhoods in

the low dimensional space. However, the SDE and lSDE algorithms define a

tighter boundary on the idea of a neighbourhood. The nonlinear dimension-

ality reduction methods were discussed in detail in chapters 3 and 4. The

basic idea behind these algorithms is to maintain an input vector from X,

and all of its k neighbours, in the low dimensional embedding Y. The LLE

algorithm (section 3.4.1) strives to maintain local patches from the high di-

mensional space to a low dimensional embedding by defining a weight for

each neighbour. These weights are subsequently used to form similar neigh-

bourhoods in a low dimensional embedding. The LLE algorithm is limited

by the cost function that is used to derive the weights assigned to each

neighbour. Therefore, the tightness bound on neighbourhoods and the ac-

curacy of the low dimensional embedding is not guaranteed. The Isomap

algorithm also incorporates the idea of Isometry(section 3.4.1), in defining

neighbourhoods based on geodesic approximations. The shortest paths to

the k nearest neighbours of an input vector are used to define a matrix to

which MDS is applied. The idea is that the low dimensional embedding will

also have neighbourhoods with similar pairwise distances. Isomap will re-

cover the true dimensionality of data whose intrinsic geometry is that of a

convex region of Euclidean space [77]. However, not all data sets can guar-

antee this property [21]. The SDE and lSDE algorithms are able to retain a

higher percentage of overall variance due to a tighter definition of what con-

stitutes a neighbourhood. SDE and lSDE not only attempt to keep the same

neighbours in a low dimensional embedding, but also preserve the respec-

96



tive angles to each neighbour, and distances and angles between neighbours

from neighbourhoods in X to neighbourhoods in Y. The SDE and lSDE con-

straint sets were discussed in section 4.1.3 and 4.1.5. The SDE and lSDE

algorithms define the constraints using semidefinite programming and thus,

provide guarantees that each neighbourhood constraint will be satisfied in

the low dimensional data [86]. Therefore, we can see why the KAS outputs

seem to retain a much higher percentage of variance in a low dimensional

representation of the original high dimensional data set.

Clustering Indices

The four clustering validation indices that were tested in the results section

provide a general measure of validation for the clustering of the KAS two

dimensional outputs. The clustering of KAS outputs scored well in terms of

the PC(Partition Coefficient) and CE(Classification Entropy) results. This

indicates that the KAS outputs have less overlap between clusters in a fuzzy

partition of the data. Therefore, the low dimensional embedding of the genes

are more easily separated into distinct groups with less overlap of genes be-

tween clusters. This property of KAS is directly related to the kernel align-

ment step of the algorithm, which is meant to specifically remove genes that

are amongst the boundary points between groups.

The XB scores for the KAS algorithm were second to the unreduced data

sets in three of the four experiments. It was seen that the unreduced data set

had the best overall scores when clustered. The experiment working with the

AML/ALL data set had KAS scores that were next best to the unreduced

data set and PCA. The XB index attempts to quantify the intra-cluster vari-

ation and cluster to cluster separation. Therefore, the KAS scores for the XB

index indicate that the KAS outputs can be clustered into separable groups

that have low intra-cluster variation. The ability of KAS to form clusters

that are distinguishable and detached can, again be attributed to the kernel

alignment step of the KAS algorithm.
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The KAS scores for the Dunn Index were also good in comparison to the

other dimensionality reduction algorithms. For the first two experiments,

KAS scores were first and second in comparison to the three other dimen-

sionality reduction methods. Again, the unreduced data set had overall best

DI scores. For the last two experiments, KAS scores were second and third in

comparison to the three other dimensionality reduction methods. Again, the

KAS scores were a little lower for the last experiment using the AML/ALL

data. The Dunn Index takes the ratio of the minimum distance between

points in differing clusters over the maximum diameter in any cluster. There-

fore, the KAS clusters may have a larger diameter or a lower inter-cluster

distance. From inspection of the two dimensional outputs we can see that

this is true. The KAS outputs sufficiently spread across two dimensions.

Consequently, the diameter of each cluster is next largest when compared to

the PCA clusters. The KAS clusters also have a relatively low inter-cluster

distance. The next section discusses the KAS two dimensional display.

7.1.2 Two Dimensional Display

The KAS and PCA two dimensional displays are the most spread out in two

dimensions, across all four experiments. The Isomap two dimensional outputs

begin to cramp together as the data sets get larger. The LLE outputs are

difficult to assess without additional software visualization tools. However,

it is noted in results sections 6.1 to 6.2 that each of the algorithms has

positive and negative qualities in a two dimensional display. For example,

the KAS outputs allow detection of outliers easier than PCA, since PCA

generally depicts data in a dome or circular manner. In the absence of a

superimposed clustering on the data, the LLE outputs are the easiest to

separate into groups. The fact that the KAS clusters are well spread across

two dimensions can be primarily attributed to the maximization constraint

in the SDE and lSDE problem definitions. Recall, from chapter 4.1.5, that

the selected maximization by Weinberger and Saul [87] is to maximize the
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variance or distance between the outputs. This effectively results in a well

distributed two dimensional embedding that is not achieved by the other

nonlinear dimensionality reduction methods.

7.2 PCA, LLE, Isomap Results

In the results sections 6.1 to 6.2 we found the behaviour of the PCA, LLE

and Isomap algorithms to be fairly consistent across the four tested data

sets. The percentage of variance retained in a two dimensional embedding,

for both Isomap and PCA, was quite low. The PCA outputs on average

retained approximately 43% of total variance, and the Isomap outputs on

average retained approximately 33% of total variance. In chapter 3, we saw

that the PCA algorithm is very simple, and does not attempt the study the

relationships in the data beyond covariance between input vectors. Also,

PCA is not well suited to nonlinear input data (section 3.3). The Isomap

algorithm makes an underlying assumption about the input data set, as dis-

cussed in section 7.1.1. The assumption of convexity can fail for a number

of data sets [21]. Also, as discussed in [21], for small neighbourhoods in X,

geodesic distances are equivalent to Euclidean distances. We found in 6.3

and 6.4, that Isomap performance was a little worse for the larger datasets.

This is most likely due to the landmark -Isomap algorithm that was used for

the larger data sets, which compromises accuracy. Both Isomap and PCA

had percentage of variance values that were much less than KAS in one to

ten dimensions. The PCA algorithm had fairly high scores in terms of the

clustering validation indices and slightly outperforms KAS for the larger data

sets on the PC and CE indices only. In a two dimensional embedding of the

data, the PCA outputs are well distributed and have less overlap between

clusters. Therefore, it is intuitive from the two dimensional embeddings, that

PCA scores well in the PC and CE indices. LLE scores are typically behind

KAS and PCA for the clustering validation indices. LLE performance is

typically better when applied to the larger data sets. Isomap scores were
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generally a little lower for the clustering validation indices. We also found

that the performance of the Isomap algorithm was better for the smaller data

sets.

7.3 Computational Efficiency

The computational efficiency in terms of execution time was best for PCA,

followed by LLE. These algorithms are far faster to run than KAS and

Isomap. Landmark -Isomap had a faster runtime than the non landmark ver-

sion. KAS is slower than all of the other dimensionality reduction methods

that were tested in this thesis with the exception of the non landmark Isomap

algorithm on the larger data sets, which was the slowest. If comparing to

LLE alone, KAS is slower by a factor of four times, for the small data sets,

and by a factor of eight to nine times for the larger data sets. The bottleneck

for the KAS algorithm is the kernel alignment step and the lSDE computa-

tion, where the latter takes less time. Part of the lSDE computation includes

constraints that restrict the neighbourhood in the low dimensional space to

closely resemble neighbourhoods in the high dimensional space. KAS pro-

vides guarantees that these neighbourhoods will be maintained in the lower

dimensional embedding, where as LLE and Isomap do not have such guaran-

tees. The kernel alignment step in the KAS algorithm is an effective way of

assuring KAS outputs are more easily separable into distinguishable groups

or clusters. Therefore, although this step may add to the overall computation

time, it is an effective addition to dimensionality reduction. KAS does not

make any assumptions regarding the input data, as does Isomap. Similar

to Isomap and PCA, the eigenvalue spectrum of lSDE reveals the underly-

ing dimensionality of the input data. This is a helpful tool in assessing the

reliability of the dimensionality reduction method. The KAS algorithm in-

corporates steps that attempt to diminish the noise in the data and remove

any non differentially expressing genes. Although these two additional steps

in the KAS algorithm may be burdensome on the total computation time,
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they add critical refinements to the dimensionality reduction of microarray

data. The other algorithms do not make any prior assessment of the data

before dimensionality reduction is performed.

7.4 Conclusions and Application

Our initial results for KAS, as applied to the four tested microarray data sets

in this thesis, are quite promising. KAS has proved to be an effective method

of dimensionality reduction for microarray data. The lSDE algorithm, em-

ployed by KAS, has different properties than algorithms such as PCA, LLE

and Isomap. As mentioned in section 7.1.1, many of these differences can

be seen as advantages. KAS applies feature selection and kernel alignment

in order to effectively reduce the data set before dimensionality reduction is

applied. KAS performs well and, in many instances, better than the other

dimensionality reduction methods tested in this thesis. KAS can be applied

to a high dimensional microarray data set, prior to clustering. We have seen

that this will reduce accuracy if compared to the unreduced data, however

two dimensional data is far more efficient to cluster than an original data

set containing noise, outliers etc. Also, many different clustering methods

may be applied to the KAS reduced data, and compared. This would be

far too time intensive if working with the unreduced data set. KAS can be

used to first reduce microarray data, and subsequently the two dimensional

data may be passed on to many different analysis methods, such as support

vector machines (SVMs) [57]. SVMs are commonly applied to microarray

data for disease classification, however the microarray data must first have a

reduced dimensionality. In this case, dimensionality reduction is applied to

the rows or genes of the microarray data set while the samples or columns

are held constant. In the experimentation for this thesis, we applied KAS to

the columns of the microarray data set, while keeping the number of rows

constant. However, another important potential application for KAS is to

apply dimensionality reduction to the rows of the data set. We also found
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that KAS was an effective way to better visualize the data in two dimen-

sions. This is a very common approach in assessing the output of microarray

experiments. The work presented in this thesis indicates that KAS retains a

high level of accuracy in a low dimensional embedding of a high dimensional

data set.

7.5 Future Directions

The author of this work would like to explore different facets of this research

for possible future direction. Some of these areas are listed below:

• Computational efficiency: An area for futher work is working on the

parts of the KAS algorithm that lead to slower computation times. In

particular, restructuring the the kernel alignment step of the algorithm

may achieve higher running time efficiency.

• KAS for classification: As discussed in section 2.4.1 and 7.4, dimen-

sionality reduction can be applied in two ways to microarray data sets.

In this thesis, we explored the application of dimensionality reduction

to the columns or samples of the microarray data set, with the num-

ber of genes held constant. However, an important direction for future

work with KAS, would be applying the dimensionality reduction to the

rows of the input data set while keeping the number of samples held

constant. This application has a broad range of applications in the

study of classification and disease prediction.

• Preprocessing steps of KAS: There is also potential research in examing

different preprocessing methods in order to further improve the KAS

algorithm

• Other dimensionality reduction methods: An unexplored area of re-

search is the modification of other dimensionality reduction methods

to incorporate the KAS preprocessing steps of feature selection and
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kernel alignment. A comparison between KAS and these modified al-

gorithms would be a very worth while endeavour.

• Testing KAS: In the experimentation for this thesis we tested KAS on

four disease related microarray data sets. Further study of KAS applied

to timeseries [25] microarray data would be beneficial.

The author of this work would like to thank you for reading through this

thesis.
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Appendix A

Mathematical Backgound

Material

This chapter presents background material for many of the topics discussed

in this thesis. References are provided for further detail as needed.

A.1 Definitions

• Hessian Matrix

The Hessian matrix is a square matrix of second order partial deriv-

atives of a scalar-valued function. If we have a vector x ∈ Rn and a

function f : Rn → R which has second order partial derivatives, then

the Hessian matrix of f is the matrix of second order partial deriva-

tives evaluated at x [79]. The Hessian matrix of a function is denoted

by H(f). Let the vector x be represented as x = (x1, x2, ...xn), where

each xi is a component of x. Therefore, each entry hij of H is given by

equation (A.1).

hij =
∂2f

∂xi∂xj

(A.1)

• Hermitian Matrices

A Hermitian matrix is a square matrix that is equal to its own con-
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jugate transpose [94]. Therefore, if a square matrix A is Hermitian,

we say that A = AH and A(i,j)=conjugate(A(j,i)). For real matrices,

Hermitian and symmetric are equivalent [12].

• Definite Matrices

A real and symmetric matrix A is positive definite if xTAx > 0 for all

nonzero x. The matrix A is positive semidefinite if xTAx ≥ 0 for all

nonzero x. The matrix A is considered to be indefinite if xTAx > 0

and xTAx < 0 for different nonzero values of x. A real and symmetric

matrix A is positive definite if all of its corresponding eigenvalues are

strictly greater than zero. Similarly, a real and symmetric matrix A is

positive semidefinite if all of its eigenvalues are greater than or equal

to zero [88].

• Manifold

A manifold is a topological space which is locally Euclidean [97], mean-

ing that every point has a neighbourhood which resembles Euclidean

space and points are separated by Euclidean distances. Examples

of manifolds with additional structure include differentiable manifolds

and Riemannian manifolds on which distances and angles can be de-

fined [93].

• Isometry

As given in [92] an isometry is a mapping of a metric space onto another

or onto itself such that the distance between any two points in the

original space is the same as the distance between their images in the

second space.

• Translation

Motion of an object where the path of every point is a straight line [90].

• Rotation

Motion of an object where the path of every point is a circle or circular

arc. A rotation is defined by a point and vector which determine the
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axis of rotation. The direction of the vector is the direction of the axis

and the magnitude of the vector is the angle of rotation [90].

• Degrees of Freedom

The degrees of freedom (DOF) of an object are the set of independent

displacements that specify completely the displaced position of the ob-

ject [90]. In the two dimensional plane, a rigid object has three degrees

of freedom: two translations and one rotation. In three dimensional

space, a rigid object has six degrees of freedom: three translations and

three rotations [45].

A.2 Mathematical Optimization

A large variety of practical problems involving decision making and quanti-

tative analysis can be perceived and modelled as constrained optimization

problems [35]. In this regard, mathematical optimization has become an im-

portant tool in many areas such as electronic design automation, engineering,

finance, scheduling and other areas involving optimal design problems [9].

Some important definitions related to mathematical optimization are given

in A.1. An optimization problem seeks to find the optimal value of a variable

x ∈ Rn. The standard form of a mathematical optimization problem is as

follows:

minimize: f0(x)

subject to: fi(x) ≤ bi, i= 1,...,m. (A.2)

Where the following problem data is given:

• f0: Rn → R is the objective function,

• bi are scalars, i = 1,...,m.

• fi: Rn → R are the constraint functions, i = 1,...,m.
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The optimal value of x that satisfies all constraint functions in fi must also

minimize the objective function f0. Constrained optimization problems may

choose to minimize or maximize an objective function based on the mod-

elling scenario [13]. Optimization problems can be quite difficult to solve

due to often impractical computation times and a solution that is not always

guaranteed [8]. However, there are certain classes of optimization problems

that can be solved with reasonable computation times and efficiency. This

class of problems can be broadly divided into three types.

1. Linear Programming Problems

2. Least Squares Problems

3. Convex Optimization Problems

Linear programming problems and least square problems are a subset of con-

vex optimization problems. Therefore, we continue our discussion on math-

ematical optimization focussing primarily on convex optimization problems.

A detailed review of linear programming and least squares problems can be

found in [9].

A.2.1 Convex Optimization Problems

We now define convex sets and properties of convex sets for the purposes of

this thesis. If further details are required see [35]. Let S ⊂ Rn. If x1, x2 ∈
S and θ1, θ2 ∈ R, then the line segment joining x1 and x2 can be defined as:

x = θ1x1 + θ2x2, (A.3)

where θ1, θ2 ≥ 0 and θ1 + θ2 = 1. It follows that S is a convex set if for

any two distinct points in S, the line segment joining these points is also

contained completely within S. Therefore, the linear combination of x1 and

x2 as defined in equation (A.3) must also be contained in S. An example of

convex data sets can be seen in figure A.1 and examples of convex functions

in figure A.2. In figure A.2, we see that if fi is a concave function, then −fi is
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.

Figure A.1: Difference between convex and non convex data sets diagram from (Figure
taken from [35])

a convex function. Convex optimization problems are optimization problems

in which the constraint and objective functions from equation (A.2) are all

convex [8]. The goal is to minimize or maximize a convex function over a

convex set. For example the constraint and objective functions from equation

(A.2) must satisfy,

fi(θ1x + θ2y) ≤ θ1fi(x) + θ2fi(y), (A.4)

where x and y ∈ Rn. A general case of equation (A.4) is introduced by

replacing the inequality with an equality and simply requiring that θ1 and θ2

∈ R.

fi(θ1x + θ2y) = θ1fi(x) + θ2fi(y) (A.5)

In this case equation (A.5) is a linear program [8]. Since the inequality of

equation (A.4) is replaced by a more restrictive equality in equation (A.5), it

follows that linear programming problems are a subset of convex optimiza-

tion problems. This fact is further discussed in [8]. Also, it can be shown

that least squares problems are a subset of convex optimization problems

as discussed in [9]. Therefore, the formulation of an optimization problem

into a convex form is often desirable. This is due to the fact that convex

optimization problems are more general than least square and linear pro-

gramming problems. Also, an important property of convex optimization

problems is the existence of one optimal and global solution [37]. Convex

optimization problems are more conducive to larger data sets allowing up to

thousands of variables and constraints [37]. Also, there exist many methods
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Figure A.2: Convex and non convex functions. (Figure taken from [35])

and tools available to solve convex optimization problems and semidefinite

programming is one such application.

A.2.2 Semidefinite Programming

In this section the basic semidefinite programming algorithm is discussed.

We reviewed a few important matrix definitions in section A.1.

Overview of SDP

Semidefinite programming (SDP) is considered to be the most exciting de-

velopment in mathematical programming in the past two decades [26]. SDP

has applications in such diverse fields as control theory in engineering and

operations research. Semidefinite programs are convex optimization prob-

lems [80]. Therefore, most of the applications of SDP can usually be solved

very efficiently in practice [26]. Let the notation, F(x) � 0 imply that a

matrix F(x) is positive semidefinite and let the vectors x and c ∈ Rm. Semi-

definite programming works with a constraint set defined by m+1 symmetric

matrices F0...Fm ∈ Rn×n [80]. The objective is to minimize (or maximize)

the function cT x subject to the constraints. As stated above, a semidefinite

program is a convex optimization problem because the objective and con-

straint set are all convex. Therefore, if F(x) � 0 and F(y) � 0, then for all
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θ ∈ [0, 1] equation (A.6) follows:

F (θx + (1− θy)) = θF (x) + (1− θ)F (y). (A.6)

The standard form of a semidefinite programming problem, as discussed

in [9], is given in equation (A.7).

minimize: cT x

subject to: F (x) � 0

F (x) = F0 +
∑m

i=1 Fixi. (A.7)

Again, the objective is to minimize cT x given the restrictions of the prob-

lem data. Just as F(x) ≥ 0 signifies that every component of F(x) must

be nonnegative, F(x) � 0 signifies that each of the n eigenvectors of F(x)

must be nonnegative. In addition to the above SDP problem definition,

there exists variations of the exact derivation of the main SDP problem.

These can be seen in [80, 26]. Once a problem is formulated into a semidefi-

nite programming problem, there are numerous applications that efficiently

solve semidefinite programs. Some of these are Sedumi [74], CSDP [11] and

SDPA [29] to name only a few. Semidefinite programming is the basis of the

semidefinite embedding algorithm discussed in chapter 4. For further details

regarding semidefinite programming see [80].

A.3 Distance Metrics

A.3.1 Fractional Distances

Chao and Lihui [70] discuss a fractional metric for determining pair wise

distances between inputs in a data set. The fractional distance metric was

applied to high dimensional microarray data sets and showed favorable re-

sults. In their work, Chao and Lihui also used a contrast metric r, (relative

contrast) for any vector xi in D dimensions [2]. Let distMaxi represent the

maximum distance from input xi to any other input vector. Let distMini
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represent the minimum distance from input xi to any other input vector.

The relative contrast, defined in equation (A.8), is the maximum contrast

between distMax and distMin for xi to any other input vector.

ri =
distMaxi − distMini

distMini

(A.8)

It was noted by Aggarwal et al. in [2] that the measure of relative contrast r,

using Euclidean distances, becomes less reflexive of true relative contrast as

the dimensionality of the data set increases. Meaning, r is no longer reflexive

of the true contrast in distances between an input xi and all other inputs.

It was shown in [2, 70], a relative contrast based on the fractional distance

metrics provided a better approximation of true distances between inputs in

high dimensional space. Let xi[k] represent the kth component of ith input

vector in D dimensions. The fractional distance metric dist from [70], is

defined between two inputs xi and xj in equation (A.9).

distij = [
D∑

k=1

(xi[k] − xj[k])
1
f ]f (A.9)

Given equation (A.9), having f = 1
2

results in distij being equivalent to

a Euclidean distance measure. The findings in [70] suggest using f values

between [(0.1)...(0.5)].

A.4 Linear Dimensionality Reduction

A.4.1 Multidimensional Scaling

Multidimensional scaling (MDS), first presented by Cox and Cox [17], is yet

another statistical method for finding low dimensional structure from a high

dimensional input space. Multidimensional scaling is another nonlinear di-

mensionality reduction method comparable to PCA. MDS is often applied

to the analysis of microarray data [54, 75]. Multidimensional scaling tries to

preserve distances between vectors from a high dimensional space to a low

111



dimensional embedding. Typically, MDS computes a distance or dissimilar-

ity matrix from the inputs. The more dissimilarity between two objects in

the input space, the greater the expected distance between the two objects

in a lower dimensional embedding. In theory, the dissimilarity matrix can

be based on any metric that distinguishes the input vectors sufficiently and

allows expression through Euclidean distances in the final low dimensional

embedding. MDS can be categorized as metric and non-metric MDS. Metric

MDS, assumes that the entries in the dissimilarity matrix D are Euclidean

distances [55]. The non-metric model requires the data to be in the form

of ranks [27]. The rankings are used to assign similarity between input vec-

tors. Although there are a wide range of possibilities for the dissimilarity

metric [18], a typical form is metric classical MDS (CMDS) [95]. CMDS

finds a projection of the input vectors into a low dimensional subspace that

best preserves their pairwise squared distances, |xi−xj|2, defined in a matrix

D [87]. The matrix D is reformulated into a (Gram) or kernel matrix G,

which is defined as a matrix of dot products (see [95] for this derivation).

Each element gij is the dot product between input vectors xi and xj as given

in equation (A.10).

gij = 〈xi, xj〉 . (A.10)

Given that the original distance matrix D is based on Euclidean distances

(metric MDS), the Gram matrix G is positive semi-definite. Next, eigen-

decomposition is performed on the n × n matrix G. Similar to PCA, the

outputs Y are derived from the eigenvectors having nontrivial eigenvalues.

Let λk represent the kth eigenvalue, where k ∈ [1...d]. Let Q represent the set

of orthonormal eigenvectors of G. Assume the eigenvalues and correspond-

ing eigenvectors are maintained in descending order based on the eigenvalue

spectra. The kth embedding coordinate for each output yi can be derived as

follows [55]:

yik =
√

λkQik. (A.11)

MDS is applied to microarray data for analysis in many current software

applications such as [38, 83, 67] to name a few. Also, in [75] Taguchi and
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Oono applied a novel nonmetric MDS approach to microarray data attain-

ing promising results. In addition, MDS can be utilized for qualitative two

or three dimensional displays rather than serious quantitative analysis [54].

Dimensionality reduction techniques such as PCA and MDS are quite ver-

satile in applications such as clustering microarray data sets. Frequently,

DNA microarray data undergoes clustering analysis whereby the genes are

divided into groups or clusters with like expression patterns. Various cluster-

ing algorithms, such as k-means clustering, require specifying the number of

partitions in advance [59]. Often this is difficult to estimate and a tool such

as PCA or MDS is required to visualize the data and estimate the number

of partitions in two or three dimensions.

A.5 Nonlinear Dimensionality Reduction

A.5.1 Laplacian Eigenmaps

Laplacian Eigenmaps is another unsupervised manifold learning algorithm

that reduces the dimensionality of large data sets. First introduced to mani-

fold learning in 2001 by Belkin and Niyogi [49], the algorithm first takes the

Laplacian of a graph of input data in order to construct a Laplacian matrix.

This approximates the Laplace-Beltrami operator defined for the input data.

The Laplacian matrix is solved using eigenanalysis in order to construct a

d dimensional embedding of the original input data. It was stated by the

authors of [49, 84], that the Laplacian Eigenmaps algorithm is insensitive to

outliers and noise, yet is able to highlight the natural clusters and groupings

of the data in low dimensional space. The algorithm is also quite simple and

not extremely computationally intensive, with local computations and one

sparse eigenvalue problem that is given in step(4):

1. Construct a weighted graph with nodes representing every input vector

xi. Edges occur between neighbouring nodes. Neighbours are based on

113



one of the following:

(a) ‖xi − xj‖2 < ε

(b) k nearest neighbours

2. Construct a symmetric weights matrix, W. Assign wij to be the weight

of an edge between two nodes based on one of the following:

(a) Heat function:

wij = e−
‖xi−xj‖2

t where t ∈ R (A.12)

(b) wij =1 if xi and xj are neighbours, else wij = 0

3. Let D represent a diagonal weight matrix from the column or row

sums of W. Let L= D -W, a Laplacian matrix which is symmetric

and positive semidefinite.

4. Solve the eigenvalue problem in equation (A.13).

Ly = λDy . (A.13)

Obtain the d highest order eigenvectors, based on the eigenvalues with

the largest percentage of variance, and construct a low dimensional

embedding directly from the eigenvectors.

Laplacian Eigenmaps have been applied to vision, dictionary, and speech

data in [49]. The results indicate that Laplacian Eigenmaps are able to illus-

trate relationships in the data far better than traditional PCA. The Lapla-

cian Eigenmaps algorithm has been formulated as a semi-supervised learning

approach as illustrated in [51]. Laplacian Eigenmaps for embedding and clus-

tering was assessed in [50], where a linear extension to Laplacian Eigenmaps

was also proposed. At the time of this thesis, to the best of our knowl-

edge, there is no existing publication reviewing the application of Laplacian

Eigenmaps to DNA microarray data.
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A.5.2 Hessian Eigenmaps

Hessian Eigenmaps, or Hessian based local linear embedding, has a theoret-

ical bases similar to Laplacian Eigenmaps and LLE. Introduced by Donoho

and Grimes in [21], Hessian Eigenmaps replaces the Laplacian with a quadratic

form based on the Hessian (see section A.1 for further details on Hessian ma-

trices). Hessian Eigenmaps also follows the basic steps of the LLE algorithm

discussed in section 3.4.1. In principle, Hessian Eigenmaps is a dimensional-

ity reduction method meant to preserve isometry when mapping from a high

dimensional manifold to a low dimensional submanifold, without the restric-

tion that an underlying submanifold must be a convex subset of the original.

A general overview of the Hessian Eigenmaps algorithm, as described in fur-

ther detail in [21], follows:

1. Identify the k nearest neighbours of each input vector xi. For each

neighbourhood, construct a k × D matrix Mi. Let µi represent the

average of all k neighbours of xi. The rows of Mi consist of the k

neighbours of xi. However, each row or neighbour xj is re-centered

based on µi.

xj ← xj − µi. (A.14)

2. Define a smooth function f, mapping each neighbourhood matrix Mi

to R (f : Mi → R). Let the Hessian matrix of f be represented by

H. Construct a least square approximation of H. The least square

approximation matrix is denoted by Ḣ.

3. Derive the quadratic form Ĥ of the Hessian approximation matrix Ḣ.

Perform eigenanalysis on Ĥ as given in equation (A.15).

λy = Ĥy . (A.15)

4. Derive the low dimensional embedding in a similar manner to other

nonlinear dimensionality algorithms. The output vectors Y are equal

to the eigenvectors of Ĥ that have the largest percentage of variance.

115



The possibility to integrate noise aware methodologies and statistical mod-

elling in Hessian Eigenmaps is discussed in [21]. HLLE was tested on wire-

less sensor networks in [53] and, in certain classes of problems, demonstrated

superior results over other nonlinear dimensionality reduction methods. Ex-

periments on LLE, Isomap, and Laplacian Eigenmaps in [5] showed that

extending these algorithms to formulate an out-of-sample prediction func-

tion, such as that given in equation (3.9), is possible and quite effective.

Similar extensions can be applied to Hessian Eigenmaps using the Nystrom

formula [4, 5]. At the time of this writing, as is the case with Laplacian

Eigenmaps, we have not come across any published work on the application

of Hessian Eigenmaps to DNA microarray data.

A.6 Support Vector Machines

A support vector machine (SVM) is a supervised learning method that is used

for data classification and regression analysis. For the purposes of data clas-

sification, support vector machines separate the data into one of two classes.

For example, if the data set of interest is two dimensional, as in figure A.3(a),

the goal is to separate the data into two groups and any linear classifier can

do this to a reasonable extent. The linear classifier that separates the two

classes by a maximum margin, is called the maximum margin classifier as

given in figure A.3(b). The aim of support vector machines is to classify the

data with a maximum margin between the two classes. Therefore, a linear

support vector machine for two dimensional data is also a maximum margin

classifier. We see that support vectors as seen in figure A.3(c) are the points,

or vectors in higher dimensional data, that are bordering on the margin. In

the case of multidimensional data, a hyperplane is desired that separates the

data. The optimal hyperplane is known as the maximum margin hyperplane

and the support vectors are the vectors that are bordering on the hyperplane

from either of the two groups. However, often data is not easily separable,

and linear classification is not possible in the original dimension. A two di-
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Figure A.3: Introductory slides on support vector machines. (Figures modified from [47])
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Figure A.4: An example of data that is inseparable by a linear classifier. This figure
was taken from [24]

mensional example of this can be seen in figure A.4. Similarly, when dealing

with multidimensional data, there may not be a guaranteed hyperplane that

definitively classifies every vector into one of two groups. In this case, the

inseparable data is mapped to higher dimensions called a feature space, where

the data becomes separable. SVMs employ a popular method used in kernel

based learning algorithms, known as the kernel trick and this is discussed in

the next section.

A.6.1 Kernel Trick

In machine based learning algorithms, often the data is inseparable in its

original form. VC (Vapnik-Chervonenkis) theory [82] explains that often

mappings which take us into a space that is of higher dimension than that

of the input space, results in improved classification power [24]. The kernel

trick is a method of projecting the data into a higher dimensional space,

where the data becomes separable by an ordinary linear classification method.
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Therefore, in the higher dimensional space linear classification is equivalent

to non-linear classification in the original space. An simple example of this

can be seen in figure A.3(d). The problem of mapping into higher dimensions

is that this can seriously increase computation time if we have to explicitly

compute the mappings for every input vector [24]. Let a mapping function be

represented by Φ : Rn → Rm, where n < m. Instead of using the mapping

function explicitly we work with the dot products between input vectors

mapped by Φ. Let K represent a kernel function which is equivalent to the

dot product between Φ(xi) and Φ(xj) as given in equation (A.16). Therefore,

given such a kernel function, we can compute K(xi, xj) and never have to

compute Φ(xi) or Φ(xi) explicity.

K(xi, xj) = 〈Φ(xi), Φ(xj)〉 (A.16)

Mercer’s theorem [41] states that for some Φ, a symmetric function K(xi, xj)

can be expressed as the inner product in equation (A.16), if and only if

K(xi, xj) is a positive semidefinite matrix (see A.1 for definitions). Therefore,

if we can appropriately choose K(xi, xj), then subsequent processing can be

carried out using dot products alone. The function Φ is never computed,

as it is not needed if one works only with the dot products. By employing

the kernel trick, SVM’s first project data into a higher dimensional feature

space. The mapping function, Φ never needs to be calculated, as SVM’s are

able to work exclusively with the dot product given in equation A.16. This

allows support vector machines to find a maximum margin hyperplane for

data that is initially inseparable. Kernels are used in many areas to ease the

transformation of data into higher dimensions. Examples of kernel functions

are given in [47, 24, 41]. See [47] for further information on support vector

machines.
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Bernhard Schölkopf. An introduction to kernel-based learning algo-

rithms. IEEE Transactions on Neural Networks, 12(2):181–200, 2001.

[47] Andrew W. Moore. Support vector machines. Technical report, 2001.

[48] Partha Niyogi and Mikhail Belkin. An introduction to manifold meth-

ods. University of Chicago.

124



[49] Partha Niyogi and Mikhail Belkin. Laplacian eigenmaps for dimension-

ality reduction and data representation. Technical report.

[50] Partha Niyogi and Mikhail Belkin. Laplacian eigenmaps and spectral

techniques for embedding and clustering.

citeseer.ist.psu.edu/belkin01laplacian.html, 2002.

[51] Partha Niyogi and Mikhail Belkin. Semi-supervised learning on rie-

mannian manifolds. Machine Learning, 56:209–239, 2004.

[52] D. Botstein O. Alter, P. Brown. Singular value decomposition for

genome-wide expression data processing and modeling. Proc. Natl. Acad.

Sci., 97:10101–10106, 2000.

[53] Neal Patwari and Alfred O. Hero III. Manifold learning algorithms for

localization in wireless sensor networks. University of Michigan, 2003.

[54] Carsten Peterson and Markus Ringnér. Analyzing tumor gene expression

profiles. Artificial Intelligence in Medicine, 28:59–74, 2003.

[55] John C. Platt. Fastmap, metricmap, and landmark mds are all nystom

algorithms. Technical report, Microsoft Research, 1 Microsoft Way.

[56] John C. Platt. Fast embedding of sparse similarity graphs. In Advances

in Neural Information Processing Systems 16. MIT Press, Cambridge,

MA, 2004.

[57] Nathalie Pochet, Frank De Smet, Johan A.K. Suykens, and Bart L.R. De

Moor. Systematic benchmarking of microarray data classification: As-

sessing the role of nonlinearity and dimensionality reduction. Bioinfor-

matics, 17:3185–95, 2004.

[58] Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R., Anders K, Eisen

M.B., Brown P.O., Botstein D., and Futcher B. Comprehensive identifi-

cation of cell cycle-regulated genes of the yeast saccharomyces cerevisiae

by microarray hybridization, 1998.

125



[59] John Quackenbush. Computational analysis of microarray data. Neural

Computing and Applications, 2:418–427, 2001.

[60] M. Rattray, N. Morrison, D. Hoyle, and A. Brass. DNA microarray

normalisation and pca. University of Manchester, 2001.

[61] S. Raychaudhuri, J.M. Stuart, and R.B. Altman. Principal components

analysis to summarize microarray experiments: application to sporula-

tion time series. 2000.

[62] Robert W. Floyd. Algorithm 97 (shortest path). Communications of

the ACM, 5(6):345, 1962.

[63] R. Rosipal, M. Girolami, L. Trejo, and A. Cichocki. Kernel-pca for

feature extraction and de-noising in non linear regression. Neural Com-

puting and Applications, pages 10:231–243, 2001.

[64] Sam T. Roweis and Lawrence K. Saul. A introduction to local linear

embedding. Technical report, Gatsby Computational Neuroscience Unit,

AT&T Labs Research.

[65] Sam T. Roweis and Lawrence K. Saul. Pseudocode for lle algorithm.

http://www.cs.toronto.edu/∼roweis/lle/algorithm.html.

[66] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduc-

tion by local linear embedding. Science, 290:2323–2326, 2000.

[67] Lao H Saal, Carl Troein, Johan Vallon-Christersson, Sofia Gruvberger,

Ake Borg, and Carsten Peterson. Bioarray software environment (base):

a platform for comprehensive management and analysis of microarray

data. http://genomebiology.com/2002/3/8/software/0003.1.

[68] Jessica Shah. A review of dna microarray data analysis. Technical

report, Stanford University.

126



[69] R. Shealy, S. Clough, R. Philip, A. Khanna, and L. Vodkin. Analysis of

microarray data. Technical report.

[70] Chao Shi and Lihui Chen. Feature dimension reduction for microarray

data analysis using locally linear embedding. In APBC, pages 211–217,

2005.

[71] Dinesh Singh, Phillip G. Febbo, Kenneth Ross, Donald G. Jackson,

Judith Manola, Christine Ladd, Pablo Tamayo, Andrew A. Renshaw,

Anthony V. D’Amico, Jerome P. Richie, Eric S. Lander, Massimo Loda,

Philip W. Kantoff, Todd R. Golub, and William R. Sellers. Gene ex-

pression correlates of clinical prostate cancer behavior. Cancer Cell,

1(2):203–209, 2002.

[72] Lindsay Smith. A tutorial on principal components analysis.

http://csnet.otago.ac.nz/cosc453/student tutorials/principal components.pdf,

2002.

[73] Thomas Strohman. Using kernel alignment to pick support vectors.

http://csel.cs.colorado.edu/∼strohman/KA SVM paper.pdf, 2004.

[74] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization

over symmetric cones. Optimization Methods and Software, 11–12:625–

653, 1999. Special issue on Interior Point Methods (CD supplement with

software).

[75] Yh. Taguchi and Y. Oono. C. elegans microarray data seen through

a novel nonmetric multidimensional scaling method. Chuo University

UIUC.

[76] Yongxi Tan, Leming Shi, Weida Tong, and Charles Wang. Multi-class

cancer classification by total principal component regression (tpcr) using

microarray gene expression data. Nucleic Acids Research, 33, 2005.

127



[77] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global

geometric framework for nonlinear dimensionality reduction. Science,

290:2319–2323, 2000.

[78] Burak Turhan. Nonlinear dimensionality reduction methods for pattern

recognition. Master’s thesis, 2004.
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