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Abstract

Commutative Gröbner bases theory is well known and widely used. In

this thesis, we will discuss thoroughly its generalization to noncommutative

polynomial ring k<X> which is also an associative free algebra. We intro-

duce some results on monomial orders due to John Lawrence and the author.

We show that a noncommutative monomial order is a well order while a one-

sided noncommutative monomial order may not be. Then we discuss the

generalization of polynomial reductions, S-polynomials and the characteriza-

tions of noncommutative Gröbner bases. Some results due to Mora are also

discussed, such as the generalized Buchberger’s algorithm and the solvability

of ideal membership problem for homogeneous ideals. At last, we introduce

Newman’s diamond lemma and Bergman’s diamond lemma and show their

relations with Gröbner bases theory.
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Chapter 1

Introduction

Gröbner bases and Buchberger’s algorithm were introduced by B.Buchberger

in 1965[2]. Today they are well-known and widely applied to many problems

in mathematics, computer science and engineering. For a basic example in

commutative algebra, ideal membership problem for commutative polyno-

mial rings, or equivalently saying, word problem for commutative algebra

presentations can be solved by Gröbner bases theory(see section 2.5). Since

Buchberger’s Gröbner bases theory mostly concerns commutative algebra,

we call it commutative Gröbner bases theory.

In 1978, G.M.Bergman introduced his diamond lemma for ring theory

[3], which is an analogue and strengthening of Newman’s diamond lemma

[5]. As T.Mora has pointed out in [9], Bergman’s diamond lemma essentially

contains a generalization of commutative Gröbner bases theory to general

noncommutative polynomial rings which are also associative free algebras.

In [9](1986) and [10](1994), T.Mora made the generalization precise. In this

thesis, we call this generalization1 noncommutative Gröbner bases theory.

1There are different generalizations of Gröbner bases theory to noncommutative areas.
See [1] and “introduction” in [4].
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The aim of this thesis is to discuss thoroughly the above noncommutative

Gröbner bases theory and show explicitly the relations among commutative

Gröbner bases theory, noncommutative Gröbner bases theory, Bergman’s

diamond lemma and Newman’s diamond lemma.

The thesis is organized as follows.

In chapter 2, we give a brief introduction to commutative Gröbner bases

theory as the background. Most important definitions, results and algorithms

of the theory are included but some proofs are omitted. Interested readers

are referred to [12] [8] [7] for more information on this theory.

In chapter 3, we generalize the definitions, results and algorithms given

in chapter 2 to general noncommutative polynomial rings. Most results are

based on Mora’s work [9] [10], but we give more complete proofs of the re-

sults and explain more details of the generalization such as non-commutative

polynomial reductions and noncommutative S-polynomials. In particular, we

believe the results on monomial orders are new and they are due to my su-

pervisor Prof. John Lawrence. We show a result about monomial partial

order and then we prove that a noncommutative monomial order is a well or-

der. We also give an example which shows that a one-sided noncommutative

monomial order may not be a well order.

In chapter 4, we introduce Newman’s diamond lemma firstly and then

Bergman’s diamond lemma. After that we show the relation between Gröbner

bases theory and diamond lemma(s). We give a brief comment on the re-

lation between Gröbner bases theory and Newman’s diamond lemma and

then deduce most characterizations of noncommutative Gröbner bases from

Bergman’s diamond lemma.

We need point out that, the emphasis of this thesis is on theoretical aspect
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not on computational aspect, although the latter is also very important,

especially in practice. All the algorithms in this thesis are only explanatory,

not written in formal programming languages. Topics on how to improve

the efficiency of related algorithms are not covered. Readers are assumed to

have a basic knowledge of rings(especially polynomial rings), vector spaces,

modules and algebras.
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Chapter 2

Commutative Gröbner Bases
Theory

2.1 Notations and Basic Definitions

We let N denote the set of natural numbers with 0 ∈ N. Let k be a field,

k[x1, x2, . . . , xn] denote the commutative polynomial ring in n variables over

k, n ∈ N− {0}. For k[x1, x2, . . . , xn], the following facts are known:

(1) ∀f ∈ k[x1, x2, . . . , xn]− {0}, f =
t∑

i=1

cix1
βi1x2

βi2 . . . xj
βij . . . xn

βin ,

where t ∈ N−{0}, ci ∈ k−{0}, βij ∈ N, 1 6 j 6 n, 1 6 i 6 t. Conventionally,

cix1
βi1x2

βi2 . . . xj
βij . . . xn

βin is called a term, ci is called the coefficient of the

term, x1
βi1x2

βi2 . . . xj
βij . . . xn

βin is called a monomial,
∑n

j=1 βij is called the

degree of the monomial. For any monomial m, the degree of m is denoted by

deg(m). The set of all monomials in n variables is denoted by Mn or simply

M when n is not necessary to be indicated. Note that ∀j with 1 6 j 6 n,

we let xj
0 = 1 ∈ M . Given m1,m2 ∈ M , if ∃m3 ∈ M such that m2 = m3m1,

we say m2 is a multiple of m1, or m1 divides m2, denoted by m1 | m2.

(2) ∀f ∈ k[x1, x2, . . . , xn]− {0}, after all possible coalescence and cancel-
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lation of terms, f has the uniqnue form as follows,

f =
t∑

i=1

cimi, (2.1.1)

where t ∈ N− {0}, ci ∈ k− {0},mi ∈ M and mi 6= mj ∀1 6 i 6= j 6 t. Here,

the uniqueness is up to a permutation on the terms in the form.

Next, before introducing the definition of monomial order, let’s look at

some prerequisite definitions.

Definitions 2.1.1. (i) Let S be a nonempty set, S × S denote the set of all

ordered pairs (a, b) of elements a,b in S. A subset R of S is called a (binary)

relation on S. Usually, when (a, b) ∈ R, we write aRb.

(ii) Relation ¹ on S is called a partial order if it satisfies the following

properties:

- reflexivity : a ¹ a, ∀a ∈ S;

- transitivity : a ¹ b and b ¹ c ⇒ a ¹ c, ∀a, b, c ∈ S;

- antisymmetry : a ¹ b and b ¹ a ⇒ a = b, ∀a, b ∈ S.

The strict part of ¹, denoted by ≺, is defined by a ≺ b ⇔ a ¹ b and a 6= b.

The inverse of ¹, denoted by º, is defined by a º b ⇔ b ¹ a.

(iii) A partial order on S is said to be a total order ,usually denoted by ≤,

if it satisfies: ∀a, b ∈ S, a ≤ b or b ≤ a. A total order ≤ on S is said to be

a well order if it satisfies descending chain condition(DCC), i.e.,there is no

infinite strictly descending chain a1 > a2 > . . . in S with respect to(w.r.t.)

≤.

(iv) Let ¹ be a partial order on S, T ⊆ S, if for some t ∈ T , t ¹ a ∀a ∈ T ,

we say t is a least element of T . Then a well order on S is also defined by
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a partial order ¹ with each nonempty subset of S having a least element

w.r.t. ¹.

Remarks 2.1.2. (i) For the proof of equivalence of two definitions of well

order, see [8]. (ii) Usually, S is said to be partially ordered(totally ordered,

well ordered) by ¹, if ¹ is a partial order(total order,well order) defined on

S. The ordered set S w.r.t. ¹ is denoted by (S,¹).

Now let’s return to k[x1, x2, . . . , xn].

Definition 2.1.3. ≤ is said to be a monomial order on the set of all mono-

mials M , if it satisfies the following conditions:

(i) M is totally ordered by ≤;

(ii) 1 ≤ m, ∀m ∈ M ;

(iii) m1 ≤ m2 ⇒ mm1 ≤ mm2, ∀m,m1,m2 ∈ M .

Let ≤ be a monomial order on M , suppose m1,m2,m3 ∈ M , and m2 =

m3m1, by the above condition(ii) 1 ≤ m3, then by the condition(iii) m1 ≤
m3m1 = m2. Hence we can say m1|m2 ⇒ m1 ≤ m2. This shows the

monomial order relation is an extension of the division relation.

Examples 2.1.4. Let <N be the natural order on N. The following are three

frequently used monomial orders. (Verifications of conditions (i)(ii)(iii) in the

above definition are omitted.)

(1)The lexicographical order(abbreviated as lex ) on M with x1 > x2 >

. . . > xn. In the lex, x1
α1x2

α2 . . . xn
αn < x1

β1x2
β2 . . . xn

βn ⇔ α1 = β1, α2 =

β2, . . . , αl = βl, αl+1 <N βl+1, for some l.

(2)The degree lexicographical order(abbreviated as deglex ) on M with

x1 > x2 > . . . > xn. In the deglex, for all m1,m2 in M , m1 < m2 ⇔
either deg(m1) <N deg(m2) or deg(m1) = deg(m2) and m1 <lex m2, where
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<lex is the lexicographical order with x1 > x2 > . . . > xn.

(3)The degree reverse lexicographical order(abbreviated as degrevlex ) on

M with x1 > x2 > . . . > xn. In the degrevlex, let m1 = x1
α1x2

α2 . . . xn
αn ,

m2 = x1
β1x2

β2 . . . xn
βn , then m1 < m2 ⇔ either deg(m1) <N deg(m2) or

deg(m1) = deg(m2) and αn = βn, αn−1 = βn−1, . . . , αl = βl, αl−1 >N βl−1, for

some l.

Given any nonzero polynomial f , f can be written in the unique form

(2.1.1). Now let M be totally ordered by some monomial order ≤, clearly

there is a permutation on all terms in (2.1.1) such that f =
∑t

i=1 cimi, and

m1 > m2 > . . . > mt. In this case, we call c1m1 the leading term of f ,

denoted by lt(f); m1 the leading monomial of f , denoted by lm(f); c1 the

leading coefficient of f , denoted by lc(f).

Definition 2.1.5. Given any subset G of k[x1, x2, . . . , xn], we define the

leading monomial ideal of G w.r.t. some monomial order ≤ to be

lm(G) : = < lm(g)| g ∈ G >

= {
t∑

i=1

film(gi)| t ∈ N− {0}, fi ∈ k[x1, x2, . . . , xn], gi ∈ G}

Definition 2.1.6. Given a monomial order on M , let G be a finite subset

of k[x1, x2, . . . , xn], if lm(G) = lm(< G >), we say G is a Gröbner basis

(of the ideal < G >). If a finite set G ⊆ ideal I ⊆ k[x1, x2, . . . , xn] and

lm(G) = lm(I), G is called a Gröbner basis of I.

Remarks 2.1.7. (i) We do not need I =< G > in the above definition.

Instead, we will prove lm(G) = lm(I) ⇒ I =< G > in theorem 2.2.11.

(ii) Gröbner basis has different characterizations (see section 2.4) and every

characterization can work as the definition.

Next, let’s discuss some fundamental results.
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2.2 Noetherian Rings and Dickson’s Lemma

We start from general commutative rings. Let R always denote a commuta-

tive ring in this section.

Definition 2.2.1. Ring R is said to be Noetherian if it satisfies the ascending

chain condition(ACC) on ideals i.e.,there is no infinite properly ascending

chain of ideals I1 ( I2 ( . . . in R.

Definition 2.2.2. An ideal I of ring R is said to be finitely generated, if

∃a1, a2, . . . , as ∈ I, such that I =< a1, a2, . . . , as >= {∑s
i=1 riai | ri ∈ R}.

Lemma 2.2.3. Ring R is Noetherian iff every ideal of R is finitely generated.

Proof:“⇒” Zero ideal is trivially finitely generated. Suppose a nonzero ideal

I is not finitely generated. Select a1 ∈ I, then < a1 >( I. Next select

a2 ∈ I− < a1 >, we see < a1 >(< a1, a2 >( I. Then we can select

a3 ∈ I− < a1, a2 >, . . . Obviously, since I is not finitely generated, the pro-

cess can be continued without termination. Hence we would have an infinite

ascending chain of ideals < a1 >(< a1, a2 >( . . . in R. But R is Noetherian,

a contradiction. So every ideal of R is finitely generated.

“⇐” Suppose R is not Noetherian, then there is an infinite chain I1 ( I2 ( . . .

in R. Let I =
⋃∞

i=1 Ii, it’s easy to see I is also an ideal of R. Then

∃a1, a2, . . . , as ∈ I, such that I =< a1, a2, . . . , as >. Notice that for some

sufficient large l, a1, a2, . . . , as ∈ Il, then I ⊆ Il ( Il+1 ⊆ I. It’s a contradic-

tion. Therefore R is Noetherian. ¤

The next theorem is well-known and a complete proof for it is not short,

thus the proof is omitted here. Readers can refer to [11] or [12] for the proof.

Theorem 2.2.4.(Hilbert Basis Theorem) If R is Noetherian, so is R[x].

Notice that k[x1, x2, . . . , xn]= k[x1, x2, . . . , xn−1][xn] ∀n ∈ N−{0} and the
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field k is trivially noetherian, by applying Hilbert Basis Theorem recursively,

we can see the polynomial ring k[x1, x2, . . . , xn] is Noetherian ∀n ∈ N−{0}.
By combining this result with lemma 2.2.3, we have the following theorem.

Theorem 2.2.5. ∀n ∈ N − {0}, the polynomial ring k[x1, x2, . . . , xn] is

Noetherian and every ideal of k[x1, x2, . . . , xn] is finitely generated.

Corollary 2.2.6. Let I be a nonzero ideal of k[x1, x2, . . . , xn], suppose I is

generated by a nonempty set S, then ∃ finite S ′ ⊆ S such that I = < S >

= < S ′ >.

Proof: By theorem 2.2.5, ∃a1, a2, . . . , at ∈ I, such that I =< a1, a2, . . . , at >.

Since I =< S >, ∃ finite Si ⊆ S such that ai ∈< Si >,∀i. Then let S ′ =
⋃ t

i=1 Si, clearly finite S ′ ⊆ S and I =< a1, a2, . . . , at >⊆< S ′ >⊆< S >= I.

We’re done. ¤

If we let the set S in corollary 2.2.6 contain only monomials, we have a

result called Dickson’s Lemma.

Theorem 2.2.7.(Dickson’s Lemma) Let S be a nonempty set of monomials

in k[x1, x2, . . . , xn], then ∃ finite S ′ ⊆ S such that < S >=< S ′ >, or

equivalently saying, ∃ finite S ′ ⊆ S, ∀m ∈ S, ∃m′ ∈ S ′ such that m is a

multiple of m′.

Proof: The first statement < S >=< S ′ > is obvious by the corollary 2.2.6.

Notice the fact that

m ∈< S ′ > ⇒ m =
t∑

i=1

ciaimi

where ai, mi are monomials, mi ∈ S ′, ci ∈ k and ci = 0 except for those i with

aimi = m, then we can see m ∈< S ′ > ⇔ m is a multiple of some member

m′ of S ′. Therefore the second statement is equivalent to < S >=< S ′ >.

¤
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Next we prove some results based on Dickson’s Lemma.

Theorem 2.2.8.(Existence of Gröbner Bases for Ideals) For any nonzero

ideal I of k[x1, x2, . . . , xn], given any monomial order ≤ on M , there exists

some finite G ⊆ I such that lm(G) = lm(I)

Proof: By definition, lm(I) =< S > where S = {lm(f) | f ∈ I}. By

Dickson’s Lemma, ∃ finite S ′ = {lm(f1), lm(f2), . . . , lm(fl)} ⊆ S such that

< S >=< S ′ >. Let G = {f1, f2, . . . , fl}, clearly G ⊆ I and lm(G) = lm(I).

¤
Theorem 2.2.9. Every monomial order ≤ on M is a well order.

Proof: Let S be a nonempty subset of M , we will show S has a least element

w.r.t. ≤, then by the definition 2.1.1(iv), ≤ is a well order.

By Dickson’s Lemma, ∃ finite S ′ ⊆ S, ∀m ∈ S, ∃m′ ∈ S ′ such that m is a

multiple of m′. Because S ′ is finite, ≤ is known to be a total order, then S ′

has a least element m0. Now ∀m ∈ S, ∃m′ ∈ S ′,such that m = m′h, where

h ∈ M . Clearly h ≥ 1 by condition(ii) in the definition 2.1.3. By condition

(iii), m = m′h ≥ m′ ≥ m0. Hence m0 is a least element of S. We’re done. ¤
Remark 2.2.10. In chapter 3 we will give another proof of the above theo-

rem that does not use the Dickson’s Lemma or Hilbert Basis Theorem.

Theorem 2.2.11. Let ≤ be a monomial order on the set of all monomials

M and let I be an ideal of k[x1, x2, . . . , xn]. If a finite set G satisfies G ⊆ I

and lm(G) = lm(I) (so G is a Gröbner basis of the ideal I), then I =<G>.

Proof: Given any f ∈ I − {0}, do the following process: Let f1 = f, f1 ∈
I, lm(f1) ∈ lm(I) = lm(G) ⇒ ∃g1 ∈ G ⊆ I, q1 ∈ M, c1 ∈ k − {0},
such that lt(f1) = lt(c1g1q1). Let f2 = f1 − c1g1q1, clearly f2 ∈ I, when

f2 6= 0, lm(f2) ∈ lm(I) = lm(G) ⇒ ∃g2 ∈ G ⊆ I, q2 ∈ M, c2 ∈ k − {0},
such that lt(f2) = lt(c2g2q2). Let f3 = f2 − c2g2q2, clearly f3 ∈ I, and when
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f3 6= 0, we can move to f4. . .

Notice that lm(f1) > lm(f2) > lm(f3) > . . ., the process must terminate,

since the monomial order ≤ is a well order. Moreover, the last fl must be 0,

otherwise, we would be able to continue the process to fl+1. Hence we have

0 = fl = fl−1 − cl−1gl−1ql−1 = fl−2 − cl−2gl−2ql−2 − cl−1gl−1ql−1 = . . .

= f1 −
l−1∑
i=1

cigiqi.

So f = f1 =
∑l−1

i=1 cigiqi ∈< G >. This implies I ⊆< G >. It’s obvious that

< G >⊆ I. Therefore I =< G >. ¤

At last we point out the following fact about the Dickson’s Lemma and

the theorem 2.2.5.

Claim 2.2.12. Theorem 2.2.5 ⇔ Dickson’s Lemma.

Proof: “⇒” We have shown that Theorem 2.2.5⇒Corollary 2.2.6⇒Theorem

2.2.7(Dickson’s Lemma).

“⇐” We can define some monomial order on M . Notice that Dickson’s

Lemma⇒Theorem 2.2.8(Existence of Gröbner Bases for Ideals). Also Dick-

son’s Lemma⇒Theorem 2.2.9⇒Theorem 2.2.11. Therefore, every ideal of

k[x1, x2, . . . , xn] is finitely generated (by its Gröbner basis). The theorem

2.2.5 is proved. ¤

2.3 Polynomial Reduction

We assume a monomial order ≤ has been defined on M in the following

discussion.

Definition 2.3.1. For any f, g ∈ k[x1, x2, . . . , xn], if lm(g) divides some

nonzero term cm in f , let h = f − cm
lt(g)

g, then it’s easy to see the term cm
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in f is replaced by a linear combination of monomials < m. We call this

manipulation a polynomial reduction, denoted by f
g−→ h, and say f reduces

to h modulo g.

Definition 2.3.2. If there is a finite sequence of polynomial reductions

f
g1−→ h1

g2−→ h2 . . .
gt−→ ht, where gi ∈ finite set G ⊆ k[x1, x2, . . . , xn] and gi

not necessarily pairwise distinct for 1 6 i 6 t, we say f reduces to ht modulo

G, denoted by f
G−→ ht.

Definition 2.3.3. Polynomial r is called reduced or in the reduced form

w.r.t. some finite set G ⊆ k[x1, x2, . . . , xn], if r = 0 or no monomial occurring

in the unique form (2.1.1) of r is divisible by lm(g) ∀g ∈ G. If f
G−→ r and

r is reduced w.r.t. G, we say r is a reduced form of f w.r.t. G. When the

reduced form of f w.r.t. G is unique, we denote it by R(f, G). In particular,

when f is reduced w.r.t. G, R(f, G) = f .

Remarks 2.3.4. (i) In our definition of polynomial reductions(Definition

2.3.1), g is assumed in the unique form (2.1.1) but f is not. In general we do

NOT require the polynomial which is to be reduced is given in the unique

form. But in the case we need consider the leading monomial of f (such as

the case in the following algorithm 2.3.6), clearly f will be assumed in the

unique form.

(ii) The equivalence “monomial m ∈ lm(G) ⇔ ∃g ∈ G, lm(g)| m” is

often used in our discussion. For example, when we say r 6= 0 is reduced

w.r.t. G, it is equivalent to say no monomial in the unique form of r is in

lm(G).

(iii) Given a finite set G ⊆ k[x1, x2, . . . , xn], we let M(G) denote the set

of all monomials in lm(G),i.e.,M(G) = M
⋂

lm(G), let kR(G) denote the

set of all reduced polynomials w.r.t. G, then it’s easy to verify that kR(G) =

12



spank{M −M(G)} as a k-vector space.

By the above definitions, the following proposition is obvious.

Proposition 2.3.5. Given polynomials f and r, if r is a reduced form of f

w.r.t. some G, then either f = r or ∃s ∈ N−{0}, cu ∈ k−{0},mu ∈ M, gu ∈
G and not necessarily pairwise distinct ∀ u, 1 6 u 6 s, such that

f =
s∑

u=1

cugumu + r. (2.3.1)

Algorithm 2.3.6.(Reduction Algorithm) Given a nonzero polynomial f and

a finite G = {g1, g2, . . . , gj, . . . , gl} ⊆ k[x1, x2, . . . , xn], the following algo-

rithm provides one way to compute a reduced form of f w.r.t. G.

i := 1, r := 0, fi := f

(∗)while fi 6= 0 do

if ∃lm(gj)| lm(fi), choose the least j such that lm(gj)| lm(fi) and do

fi+1 := fi − lt(fi)
lt(gj)

gj

i := i + 1 and goto (∗)
else r := r + lt(fi)

fi+1 := fi − lt(fi)

i := i + 1 and goto (∗) ¤

Remarks 2.3.7. (i) Notice that in the above algorithm lm(fi) > lm(fi+1)∀i,
since the monomial order ≤ is a well order, the algorithm must terminate.

Moreover, when it terminates at some i = t, ft must be 0 and every monomial

occurring in the final r is not divisible by any lm(g), g ∈ G. Therefore the

final r is a reduced form of f w.r.t. G.

(ii) It’s not hard to see the algorithm actually produces the following
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representation for f :

f =
s∑

u=1

cug
′
umu + r, (2.3.2)

where s ∈ N(when s = 0, f = r), cu ∈ k − {0}, mu ∈ M, g′u ∈ G and

not necessarily pairwise distinct ∀ u, 1 6 u 6 s, r is the reduced form of

f w.r.t. G, and lm(f) = max{lm(g′1)m1, lm(g′2)m2, . . . , lm(g′s)ms, lm(r)}.
(Compare with 2.3.1)

In particular, when r = 0 in the above representation, (2.3.2) is said to

be a standard representation of f w.r.t. G.

(iii) In the algorithm, we always choose the least j such that lm(gj)| lm(fi).

This implies that when we change the index order of elements in G, the final

r produced by the algorithm may change too, hence the reduced form of a

polynomial w.r.t. a general G may not be unique.

Example 2.3.8. Let f = x2
1x

3
2, G = {x2

1, x1x2 − x2
2}, ≤ be the lex with

x1 > x2. Apply the algorithm 2.3.6, we have

f
x2
1−→ x2

1x
3
2 − x2

1x
3
2 = 0, (2.3.3)

when G = {g1 = x2
1, g2 = x1x2 − x2

2}; or

f
x1x2−x2

2−−−−−→ x2
1x

3
2− (x1x2− x2

2)x1x
2
2 = x1x

4
2

x1x2−x2
2−−−−−→ x1x

4
2− (x1x2− x2

2)x
3
2 = x5

2,

(2.3.4)

when G = {g1 = x1x2 − x2
2, g2 = x2

1}. That is to say, 0 and x5
2 are two

different reduced forms of f w.r.t. G.

Moreover, from (2.3.3) we see f ∈< G >, then from (2.3.4) we see x5
2 =

f − (x1x2 − x2
2)x1x

2
2 − (x1x2 − x2

2)x
3
2 ∈< G >, but clearly x5

2 is reduced

w.r.t. G. Then x5
2 is in lm(< G >) but not in lm(G). This implies that G

is not a Gröbner basis.
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2.4 Characterizations of Gröbner Bases

We need a new definition before introducing the characterizations of Gröbner

bases. Given m1,m2 ∈ M , it is known there exists the least common mul-

tiple of m1 and m2, denoted by lcm(m1,m2), such that m1| lcm(m1,m2),

m2| lcm(m1,m2) and ∀m ∈ M with m1| m and m2| m, lcm(m1,m2)| m.

Definition 2.4.1. Let f, g ∈ k[x1, x2, . . . , xn]−{0}, L = lcm(lm(f), lm(g)),

then S(f, g) = L
lt(f)

f − L
lt(g)

g is called the S-polynomial of f and g. Clearly,

S(g, f) = −S(f, g).

Theorem 2.4.2.(Characterizations of Gröbner Bases) Given a finite G =

{g1, g2, . . . , gj, . . . , gl} ⊆ k[x1, x2, . . . , xn] and gj 6= 0 ∀j = 1, 2, . . . , l, let

I =< G > be the ideal generated by G, let ≤ be a monomial order on M .

The following conditions are equivalent:

(a) lm(G) = lm(I);

(b) ∀f ∈ I − {0}, ∃j ∈ {1, 2, . . . , l}, such that lm(gj)| lm(f);

(c) f ∈ I ⇔ R(f, G) = 0;

(d) f ∈ I ⇔ f has a standard representation w.r.t. G;

(e) ∀f ∈ k[x1, x2, . . . , xn], the reduced form of f w.r.t. G is unique;

(f) As k-vector spaces, k[x1, x2, . . . , xn] = kR(G)
⊕

I;

(g) ∀g′1, g′2 ∈ G, R(S(g′1, g
′
2), G) = 0;

(h) ∀g′1, g′2 ∈ G, S(g′1, g
′
2) has a standard representation w.r.t. G.

Proof: The proof can be found in [12] [8]. Or you may refer to chapter 3 for

the proof of the characterizations of noncommutative Gröbner bases. The

basic idea of that proof also works here. ¤

Remarks 2.4.3. (i) In these characterizations, (a) and (b) are essentially

the same. When G is a Gröbner basis of the ideal <G>(or I), (c) and (d)
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show the property of elements in the ideal < G > and (c) is used to solve

the word problem (see problem 2.5.4). By (e) and (f), when G is a Gröbner

basis, every polynomial f in k[x1, x2, . . . , xn] has a unique representative

R(f, G) in the quotient ring k[x1, x2, . . . , xn]/ <G>, and as k-vector spaces,

k[x1, x2, . . . , xn]/ < G > is isomorphic to kR(G) which is spanned by the

monomials not in lm(G). Characterizations (g) and (h) are the foundations

of Buchberger’s Algorithm.

(ii) In the theorem, the condition “gj 6= 0 ∀j = 1, 2, . . . , l” has no effect

on the characterizations but deletes trivial element in our Gröbner basis. In

fact, we can add more conditions to G such that the Gröbner basis of an

ideal I is unique w.r.t. the idea I and the monomial order ≤. This Gröbner

basis is called a reduced Gröbner basis. In this thesis, we won’t discuss this

subject. See [12] [8] [7] for more information.

2.5 Buchberger’s Algorithm and One

Application

Given a finite G = {g1, g2, . . . , gj, . . . , gl} ⊆ k[x1, x2, . . . , xn] and gj 6= 0 ∀j =

1, 2, . . . , l, let I =< G > be the ideal generated by G, let ≤ be a monomial

order on M . The example 2.3.8 shows G is not necessary to be a Gröbner

basis of the ideal I. However, the theorem 2.2.8 and theorem 2.2.11 tell us

there does exist some finite G′ ⊆ I such that I =<G′> and lm(G′) = lm(I).

In this section we will introduce Buchberger’s algorithm which can decide

whether the given G(= G1) is a Gröbner basis of < G > and find out a

Gröbner basis G′(= Gi) of <G> if G is not.

Algorithm 2.5.1.(Buchberger’s Algorithm)
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i := 1, G1 := {g1, g2, . . . , gl}, H := {(gj1 , gj2)|gj1 , gj2 ∈ G1, 1 6 j1 < j2 6
l}

(∗)while H 6= ∅ do

choose (g′t1, g
′
t2) ∈ H, then let H := H − {(g′t1, g′t2)}

do algorithm 2.3.6 to compute a reduced form r of S(g′t1, g
′
t2) w.r.t. Gi

if r 6= 0 then

H := H
⋃{(g, r)| g ∈ Gi}

Gi+1 := Gi

⋃{r}
i := i + 1

goto (∗) ¤

Claim 2.5.2. The Buchberger’s algorithm terminates at some i, i > 1, and

the final Gi is a Gröbner basis of the ideal < G1 >.

Proof: Suppose the algorithm doesn’t terminate, then for each i, we must

have some r 6= 0 and lm(r) ∈ lm(Gi+1) but not in lm(Gi). This implies we

would have an infinite properly ascending chain in k[x1, x2, . . . , xn]: lm(G1) (

lm(G2) ( . . .. But k[x1, x2, . . . , xn] is Noetherian, this is impossible. Hence

the algorithm terminates at some i.

Clearly when the algorithm terminates, H = ∅. We have two cases:

Case 1: the initial H = ∅, the algorithm ends at i = 1 without doing

anything. H = ∅ implies l = 1, i.e., G1 contains a single element g. Clearly

S(g, g) = 0, thus by the characterization (g) or (h), G1 = {g} is a Gröbner

basis of < g >.

Case 2: the initial H 6= ∅ and the algorithm ends at i > 1. Obviously,

G1 ⊆ Gi ⊆< G1 >, then I =< G1 >=< Gi >. From the algorithm,

we can see the reduced form of S(g′1, g
′
2) that is produced by the algorithm

2.3.6 must be 0, ∀g′1, g′2 ∈ Gi. Then every S(g′1, g
′
2) must have a standard
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representation w.r.t. Gi. By the characterization (h), Gi is a Gröbner basis of

< Gi >=< G1 >. ¤
Remark 2.5.3. The proof actually gives us more information. (i) When

the algorithm terminates at i = 1, G1 is a Gröbner basis. Otherwise, the

algorithm terminates at i > 1 and lm(G1) ( lm(G2) ( . . . ( lm(Gi) =

lm(I). (ii) A generator of a principle ideal of k[x1, x2, . . . , xn] is a Gröbner

basis of that ideal.

At last, we introduce a basic application of commutative Gröbner bases

theory.

Problem 2.5.4.(Word Problem for Commutative Algebra Presentations)

For a k-algebra presentation R = k[x1, x2, . . . , xn]/ < g1, g2, . . . , gl >, is

there an algorithm which, given f ∈ k[x1, x2, . . . , xn], decides whether f = 0̄

in R ? (Clearly, f = 0̄ in R ⇔ f ∈< g1, g2, . . . , gl >, so it is actually an ideal

membership problem for k[x1, x2, . . . , xn]).

Solution: f = 0 is trivial. If f 6= 0, let I =< g1, g2, . . . , gl > and define a

monomial order ≤ on M . Then, apply the Buchberger’s algorithm to com-

pute out a Gröbner basis of I, denoted by G. Given G, apply the reduction

algorithm 2.3.6 to compute a reduced form of f w.r.t. G. By the charac-

terization (e), the reduced form is unique, then by the characterization (c),

R(f, G) = 0 ⇔ f ∈ I. ¤
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Chapter 3

Generalization to
Noncommutative Polynomial
Rings

In this chapter, we generalize the commutative Gröbner bases theory to gen-

eral noncommutative polynomial rings which are also associative free alge-

bras. We will mainly discuss the generalization for two-sided ideals(called

ideals simply). The generalization for one-sided ideals can be discussed in a

similar way thus is omitted mostly.

3.1 Notations and Basic Definitions

Let <Xn > denote the free monoid generated by set Xn = {x1, x2, . . . , xn},
let xj

0 = 1 ∈<Xn > ∀ 1 6 j 6 n, then

<Xn >= {xβ1

i1
xβ2

i2
. . . x

βj

ij
. . . xβl

il
| βj ∈ N, xij ∈ Xn, 1 6 j 6 l, l ∈ N− {0}}.

When n is not important, we simply write <X> instead of < Xn >. A

typical element xβ1

i1
xβ2

i2
. . . x

βj

ij
. . . xβl

il
in <X> is called a monomial,

∑l
j=1 βj

is called the degree of the monomial. For any monomial m, the degree of m
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is denoted by deg(m). Each m ∈ <X> − {1} can be written as u1u2 . . . us,

where ui ∈ {x1, x2, . . . , xn}, 1 6 i 6 s, s ∈ N − {0} and deg(m) = s. In

addition, for m1,m2 ∈ <X>, if ∃l, r ∈ <X> such that m2 = lm1r, we say

m2 is a multiple of m1, or m1 divides m2, denoted by m1| m2.

Let k be a field, we use k<Xn> or simply k<X> to denote the asso-

ciative free k-algebra generated by set Xn. When n = 1, the algebra is also

a commutative polynomial ring in one variable. In the following discussion,

we always assume n > 2, then k<X> is known to be a noncommutative

polynomial ring. For k<X>, we have the following facts:

(1) ∀f ∈ k<X> − {0}, f =
∑s

i=1 cimi, where s ∈ N − {0}, ci ∈ k −
{0},mi ∈ <X>, 1 6 i 6 s. We call cimi a term, ci the coefficient of the

term.

(2) ∀f ∈ k<X> − {0}, after all possible coalescence and cancellation of

terms, f has the unique form,

f =
t∑

i=1

cimi, (3.1.1)

where t ∈ N − {0}, ci ∈ k − {0},mi ∈ <X> and mi 6= mj ∀1 6 i 6= j 6 t.

The uniqueness is up to a permutation on the terms.

Definition 3.1.1. ≤ is said to be a (noncommutative) monomial order on

<X>, if it satisfies the following conditions:

(i) <X> is totally ordered by ≤;

(ii) 1 ≤ m, ∀m ∈ <X>;

(iii) m1 ≤ m2 ⇒ lm1r ≤ lm2r, ∀ l, r,m1,m2 ∈ <X>.

Let ≤ be a monomial order on <X>, suppose m1,m2 ∈ <X>, and

m2 = lm1r for some l, r ∈ <X>. By the above condition(ii) 1 ≤ l and
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1 ≤ r, then by the condition(iii) m1 ≤ lm1 ≤ lm1r = m2. Hence we can say

m1|m2 ⇒ m1 ≤ m2, i.e., the generalized monomial order is still an extension

of the division relation.

Examples 3.1.2. We let m1 = u1u2 . . . us and m2 = v1v2 . . . vt denote

two monomials in <X>, where ui, vj ∈ {x1, x2, . . . , xn}, 1 6 i 6 s, 1 6 j 6 t

and s, t ∈ N. In particular, we let s = 0(t = 0) imply m1 = 1(m2 = 1).

(1)In the lex on <X> with x1 > x2 > . . . > xn,

m1 = u1u2 . . . us < m2 = v1v2 . . . vt

⇔





u1 = v1, u2 = v2, . . . , ul = vl, u1+1 < vl+1, 0 6 l < s; or,

0 < s < t and u1 = v1, u2 = v2, . . . , us = vs; or,

s = 0 < t.

Now let m1 = x2x2x1, m2 = x2x1, then m1 = x2x2x1 < x2x1 = m2 since

x2 < x1. But this contradicts with conditions (ii) and (iii) in definition 3.1.1

which require that m2 = 1 ·x2x1 < x2 ·x2x1 = m1. Hence the lexicographical

order is NOT a monomial order on <X>.

(2)In the deglex on <X> with x1 > x2 > . . . > xn,

m1 = u1u2 . . . us < m2 = v1v2 . . . vt

⇔
{

deg(m1) = s < t = deg(m2); or,

deg(m1) = s = t = deg(m2) and m1 <lex m2;

where the <lex is the lexicographical order on <X> with x1 > x2 > . . . > xn.

(3)In the degrevlex on <X> with x1 > x2 > . . . > xn,

m1 = u1u2 . . . us < m2 = v1v2 . . . vt

⇔





deg(m1) = s < t = deg(m2); or,

deg(m1) = s = t = deg(m2) and us > vs; or,

deg(m1) = s = t = deg(m2) and

us = vs, . . . , ul+1 = vl+1, ul > vl, 1 6 l < s.
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It’s easy to verify the deglex and the degrevlex are still monomial orders

on <X>.

Given any nonzero noncommutative polynomial f , f can be written in

the unique form (3.1.1). Again we can arrange the terms by a monomial

order, such that f =
∑t

i=1 cimi, and m1 > m2 > . . . > mt. In this case, we

call c1m1 the leading term of f , denoted by lt(f); m1 the leading monomial

of f , denoted by lm(f); c1 the leading coefficient of f , denoted by lc(f).

Definition 3.1.3. Given any G ⊆ k<X>, we define the leading monomial

ideal of G w.r.t. some monomial order ≤ to be

lm(G) : = < lm(g)| g ∈ G >

= {
t∑

i=1

film(gi)hi| t ∈ N− {0}, fi, hi ∈ k<X>, gi ∈ G}

Definition 3.1.4. Given a monomial order on <X>, let G be a subset of

k<X>, if lm(G) = lm(< G >), we say G is a Gröbner basis (of the ideal

< G >). If a set G ⊆ ideal I ⊆ k<X> and lm(G) = lm(I), G is called a

Gröbner basis of I.

Remark 3.1.5. Unlike commutative Gröbner bases, noncommutative Gröbner

bases are allowed to be infinite. There are two reasons for this.

Firstly, finite Gröbner bases do not exist for some ideals in k<X>. In

the next section we will show that some ideals of k<X> cannot be finitely

generated. Clearly those ideals have no finite Gröbner bases(see theorem

3.3.8). Moreover, in section 3.4 we will explain why there even exist finitely

generated ideals which have no finite Gröbner bases.

Secondly, there do exist infinite sets of noncommutative polynomials

which can play the same role as finite Gröbner bases in our theory(see claim

3.4.15 and theorem 3.7.6).
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3.2 Infinitely Generated Ideals of k<X>

Recall that we based most fundamental results of commutative Gröbner bases

theory on the fact that k[x1, x2, . . . , xn] is Noetherian. For noncommutative

polynomial ring k<X>, things are not as nicely behaved.

Definition 3.2.1. A noncommutative ring R is said to be left(right) Noethe-

rian if R satisfies the ACC on left(right) ideals. R is said to be Noetherian

if R is both left and right Noetherian.

Lemma 3.2.2. Noncommutative ring R satisfies the ACC on ideals(left

ideals, right ideals) iff every ideal(left ideal, right ideal, respectively) of R is

finitely generated.

Proof: For ideals, the proof of lemma 2.2.3 still works here. For left and right

ideals, only appropriate modification on terminologies are needed. ¤

Next we give an example of infinite properly ascending chain of ideals in

k<X>. Since ideals are both left and right ideals, the example shows that

k<X> satisfies ACC neither on left nor on right ideals.

Example 3.2.3. For convenience, we use x, y to denote two noncommutative

variables in k<X>. ∀i ∈ N, define Ii to be the (two-sided) ideal generated

by the set {xyjx|0 6 j 6 i}, i.e., Ii =< x2, xyx, . . . , xyix >. Obviously,

xyi+1x ∈ Ii+1 but not in Ii, and Ii ⊆ Ii+1, for all i ∈ N. Hence we have an

infinite ascending chain in k<X>: I1 ( I2 ( · · · Ii ( Ii+1 · · · .

By the definition 3.2.1 and the above example, we have the claim:

Claim 3.2.4. k<X> is neither left nor right Noetherian, thus not Noethe-

rian.

By the lemma 3.2.2 and the above example, we have the claim:
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Claim 3.2.5. In k<X> there exists an ideal(left ideal, right ideal) which

cannot be finitely generated. (We call such an ideal an infinitely generated

ideal.)

Actually, in the proof of lemma 2.2.3, we suggest a way to construct

explicitly an infinitely generated ideal.

Example 3.2.6. Let I =
⋃∞

i=0 Ii, where Ii is the ideal defined in the

example 3.2.3. It’s easy to see I is also an ideal of k<X>. Suppose

∃a1, a2, . . . , as ∈ I, such that I =< a1, a2, . . . , as >, then for some sufficient

large l, all a1, a2, . . . , as ∈ Il, then I ⊆ Il ( Il+1 ⊆ I. This is impossible.

Therefore, the ideal I of k<X> cannot be finitely generated.

Clearly we can find many other infinitely generated ideals of k<X> in

the same way.

Notice that the above ideal I is actually generated by a set of monomials

S = {xyix|i ∈ N}, but I cannot be generated by any finite subset of S. So

example 3.2.6 is also a counter example in k<X> for Dickson’s Lemma.

Claim 3.2.7. Dickson’s Lemma doesn’t hold in k<X>.

3.3 Discussion on Monomial Orders

In this section we will show the generalized monomial order on <X> is still

a well order, although k<X> is not Noetherian and the Dickson’s Lemma

doesn’t hold in k<X>.

First, let’s see a result about monomial partial order on <X>, which is

given by Prof. John Lawrence.

Definition 3.3.1. ¹ is said to be a monomial partial order on <X>, if it

satisfies the following conditions:
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(i) <X> is partially ordered by ¹;

(ii) 1 ¹ m, ∀m ∈ <X>;

(iii) m1 ¹ m2 ⇒ lm1r ¹ lm2r, ∀ l, r,m1,m2 ∈ <X>.

Theorem 3.3.2. Let ¹ be a monomial partial order on the free monoid

<Xn> =<x1, x2, . . . , xn >. When n = 2, (<Xn>,¹) satisfies DCC.

Before proving the above theorem, we introduce the following lemma.

Lemma 3.3.3. Let {an}∞n=0 be a sequence in the well-ordered set (A,≤).

Then there exists a subsequence {an(j)}∞j=0 of {an}∞n=0 such that an(j) ≤
an(j+1) ∀j ∈ N.

Proof: Since ≤ is a well order, we can find a least element an(0) in the

sequence {an}∞n=0, then we define an(j) recursively to be a least element in

{an}∞n=n(j−1)+1, for all j > 0. Clearly {an(j)}∞j=0 is non-descending. ¤

Proof of Theorem 3.3.2: (Due to John Lawrence) To simplify notations, we

let <X2 >= ∆ =<u, v >. Suppose we have an infinite properly descending

chain of monomials in (∆,¹): w0 Â w1 Â · · · . Multiply each monomial of

the chain by u on the left. By the property of the monomial partial order, the

chain uw0 Â uw1 Â · · · is still infinite properly descending. Hence, without

loss of generality(WLOG), assume wi starts with the same variable u, for all

i ∈ N.

For any monomial w ∈ ∆, define φ(w) to be the number of times “uv”

occurs in w, e.g., φ(uvuv) = 2, φ(uuvv) = 1 and φ(uuu) = 0. Now we have

two cases for {φ(wi)}∞i=0.

Case 1: {φ(wi)}∞i=0 is unbounded. Let w0 = y1y2 · · · yl, yj ∈ {u, v}(y0 =

u), 1 6 j 6 l. Then ∃t > 0 such that φ(wt) > l. Clearly, wt can be written as

wt = u · · · uvm1uvm2 · · ·uvml, where mj ∈ ∆, 1 6 j 6 l. Then yj ≺ uvmj

25



for all 1 6 j 6 l. Hence w0 ≺ wt, a contradiction.

Case 2: {φ(wi)}∞i=0 is bounded.

Claim: there exists a subchain of w0 Â w1 Â · · · , denoted by w′
0 Â w′

1 Â
· · · , and some s > 1, such that, ∀i ∈ N, w′

i = uαi1vαi2uαi3vαi4 · · · uαi(2s−1)vαi(2s) ,

αij ∈ N, 1 6 j 6 2s, and ∀j, the sequence {αij}∞i=0 is non-descending.

Proof of the claim: Let’s start with the original chain w0 Â w1 Â
· · · . Since {φ(wi)}∞i=0 is bounded, clearly there is some bound s > 1,

such that ∀i ∈ N, wi = uαi1vαi2uαi3vαi4 · · · uαi(2s−1)vαi(2s) , where αij ∈ N,

1 6 j 6 2s. Suppose for some j = J , the sequence {αiJ}∞i=0 is not non-

descending. Since it is a sequence in (N, <N) and the natural order <N is

a well order on N, by the lemma 3.3.3, there exists a non-descending sub-

sequence {αi(p)J}∞p=0 of {αiJ}∞i=0. Hence, there exists a subchain of w0 Â
w1 Â · · · , denoted by wi(0) Â wi(1) Â · · · , such that ∀p ∈ N, wi(p) =

uαi(p)1vαi(p)2uαi(p)3vαi(p)4 · · ·uαi(p)(2s−1)vαi(p)(2s) , αi(p)j ∈ N, 1 6 j 6 2s and

αi(p)J 6 αi(p+1)J . Clearly, after repeating the above and applying lemma

3.3.3 recursively at most 2s times, we can get the subchain required in the

claim. Thus the claim is proved.

In the claim, αij 6 α(i+1)j for all i, j. By the property of the monomial

partial order, this implies that, in the subchain, for all i ∈ N,

w′
i = uαi1vαi2uαi3vαi4 · · · uαi(2s−1)vαi(2s)

¹ w′
i+1 = uα(i+1)1vα(i+1)2uα(i+1)3vα(i+1)4 · · · uα(i+1)(2s−1)vα(i+1)(2s) .

It’s impossible since w′
0 Â w′

1 Â · · · is properly descending.

To sum up, it’s impossible to have an infinite properly descending chain

of monomials in (∆,¹), so (<X2 >,¹) = (∆,¹) satisfies DCC. ¤

Theorem 3.3.4. Every monomial order ≤ on <Xn> is a well order. (As
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we have pointed out earlier, we always assume n > 2.)

Proof: We prove the statement by induction on n.

Assume n = 2. Let ≤ be a monomial order on < X2 >. Obviously, it is

also a monomial partial order on <X2 >, then by theorem 3.3.2, (<X2 >,≤)

satisfies DCC. Since the monomial order ≤ is a total order, it is a well order.

Suppose the statement is true for n = l (n > 2, n ∈ N), let’s look at

n = l + 1. Let ≤ be a monomial order on < Xl+1 >=< x1, x2, . . . , xl+1 >.

Since ≤ is a total order, WLOG, we assume xl+1 ≥ xi, ∀i = 1, 2, . . . , l + 1.

Let <Xl > denote the free monoid generated by {x1, x2, . . . , xl}. Obviously

< Xl >⊂< Xl+1 > and ≤ is also a monomial order on < Xl >. By our

induction hypothesis, ≤ is a well order on <Xl >.

For any w ∈<Xl+1 >, define φ(w) to be the number of “xl+1” occurring

in w. For example, φ(x2
l+1) = 2, φ(x1xl+1x2) = 1 and φ(x1x2) = 0. Suppose

we have an infinite properly descending chain of monomials in (<Xl+1 >,≤):

w0 > w1 > · · · . Then for {φ(wi)}∞i=0, we still have two cases.

Case 1: {φ(wi)}∞i=0 is unbounded. Let w0 = u1u2 · · ·us, where uj ∈
{x1, x2, · · · , xl+1}, 1 6 j 6 s. Then ∃t > 0 such that φ(wt) > s. Clearly, wt

can be written as wt = m1xl+1m2xl+1 · · ·msxl+1ms+1, where mj ∈ < Xl >,

1 6 j 6 s + 1. Then uj ≤ mjxl+1 for all j = 1, 2, . . . , s and 1 ≤ ms+1. Hence

w0 ≤ wt, a contradiction.

Case 2: {φ(wi)}∞i=0 is bounded. Then there is some bound b > 1, such

that ∀i ∈ N, wi = mi1x
βi1

l+1mi2x
βi2

l+1 · · ·mibx
βib

l+1mi(b+1), where mij ∈< Xl >

for all j = 1, 2, . . . , b + 1, and βij ∈ {0, 1} for all j = 1, 2, . . . , b. Notice

that for all j, {mij}∞i=0 is a sequence in the well-ordered set (< Xl >,≤),

{xβij

l+1}∞i=0 is a sequence in the well-ordered set ({1, xl+1},≤), we can apply

lemma 3.3.3 recursively with finite times, like we did in the proof of theorem
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3.3.2, and find a subchain of w0 > w1 > · · · , denoted by w′
0 > w′

1 > · · · ,
such that ∀i ∈ N, w′

i = m′
i1x

β′i1
l+1m

′
i2x

β′i2
l+1 · · ·m′

ibx
β′ib
l+1m

′
i(b+1) and for all j, the

sequence {m′
ij}∞i=0 and {xβ′ij

l+1}∞i=0 are non-descending. But by the property of

the monomial order, this implies that, for all i ∈ N,

w′
i = m′

i1x
β′i1
l+1m

′
i2x

β′i2
l+1 · · ·m′

ibx
β′ib
l+1m

′
i(b+1)

≤ w′
i+1 = m′

(i+1)1x
β′
(i+1)1

l+1 m′
(i+1)2x

β′
(i+1)2

l+1 · · ·m′
(i+1)bx

β′
(i+1)b

l+1 m′
(i+1)(b+1).

It’s impossible since w′
0 > w′

1 > · · · is properly descending.

Hence when n = l + 1, the statement still holds.

By induction on n, the statement holds for all n > 2. ¤
Corollary 3.3.5.(Theorem 2.2.9.) Every monomial order ≤ on M(the set

of commutative monomials) is a well order.

Proof: It can be proved in the same way as above. (Here we do not need the

Hilbert Basis Theorem or Dickson’s Lemma.) ¤

It is known that every partial order can be refined to a total order. We

may ask the following question: can every monomial partial order ¹ be

refined to a monomial (total) order ≤? If the answer is yes, then, by the

theorem 3.3.4, ≤ satisfies DCC on <Xn> for all n > 2, so would ¹. Hence

the statement in theorem 3.3.2 could be proved true for all n > 2 in this way.

However, the following example gives a negative answer to our question.

Example 3.3.6.(Due to Bergman [3]) Consider <X> =< u, v, x, y >, let

¹ be a monomial partial order which is generated by the basic relations

yu ≺ xu and xv ≺ yv. Then ¹ can be refined to a total order but can NOT

be refined to a monomial order. Because either x < y or y < x will bring

about contradiction with yu < xu or xv < yv respectively.

Remark 3.3.7. Recently Prof. John Lawrence has proved a generalized
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Dickson’s Lemma for finitely generated free monoids. We point out that, as

a corollary of that new result, the statement in theorem 3.3.2 does hold for

all n. Then theorem 3.3.4 and corollary 3.3.5 (theorem 2.2.9) are immediate

results from the complete version of theorem 3.3.2.

Next let’s apply theorem 3.3.4 to prove the noncommutative version of

theorem 2.2.11.

Theorem 3.3.8. Let ≤ be a monomial order on <X> and let I be an ideal

of k<X>. If a set G satisfies G ⊆ I and lm(G) = lm(I) (so G is a Gröbner

basis of the ideal I), then I =<G>.

Proof: The proof is similar to the one for theorem 2.2.11.

Given any f ∈ I − {0}, do the following process: Let f1 = f, f1 ∈
I, lm(f1) ∈ lm(I) = lm(G) ⇒ ∃g1 ∈ G ⊆ I, l1, r1 ∈ <X>, c1 ∈ k − {0},
such that lt(f1) = lt(c1l1g1r1). Let f2 = f1 − c1l1g1r1, clearly f2 ∈ I, when

f2 6= 0, lm(f2) ∈ lm(I) = lm(G) ⇒ ∃g2 ∈ G ⊆ I, l2, r2 ∈ <X>, c2 ∈
k−{0}, such that lt(f2) = lt(c2l2g2r2). Let f3 = f2− c2l2g2r2, clearly f3 ∈ I,

and when f3 6= 0, we can move to f4. . .

Notice that lm(f1) > lm(f2) > lm(f3) > . . ., since we have proved the

monomial order ≤ is a well order, the process must terminate at some fl = 0.

Hence we have

0 = fl = fl−1 − cl−1ll−1gl−1rl−1 = fl−2 − cl−2ll−2gl−2rl−2 − cl−1ll−1gl−1rl−1

= . . . = f1 −
l−1∑
i=1

ciligiri.

So f = f1 =
∑l−1

i=1 ciligiri ∈<G>. This implies I ⊆<G>. It’s obvious that

<G>⊆ I. Therefore I =<G>. ¤

We now show that a one-sided noncommutative monomial order on <X>

may not be a well order.
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Definition 3.3.9. ≤ is said to be a right monomial order on <X>, if it

satisfies the following conditions:

(i) <X> is totally ordered by ≤;

(ii) 1 ≤ m, ∀m ∈ <X>;

(iii) m1 ≤ m2 ⇒ m1r ≤ m2r, ∀ m1,m2, r ∈ <X>.(But m1 ≤ m2

doesn’t imply lm1 ≤ lm2, for some m1,m2, l ∈ <X>.)

Example 3.3.10.(Due to John Lawrence) Let’s consider the free monoid

∆ =< x, y >. For any m ∈ ∆, define degx(m) = the number of “x” occurring

in m, define φ(m) = the number of “y” which is to the right of an “x” in m.

For example, let m = yxyxyy, then degx(m) = 2 and φ(m) = 3.

Now for any two monomials m1,m2 ∈ ∆, we define a total order ≤ on ∆

by m1 < m2

⇔





degx(m1) < degx(m2); or,

degx(m1) = degx(m2) and φ(m1) > φ(m2); or,

degx(m1) = degx(m2), φ(m1) = φ(m2) and deg(m1) < deg(m2); or,

degx(m1) = degx(m2), φ(m1) = φ(m2), deg(m1) = deg(m2) and

m1 <lex m2,

where <lex is the lexicographical order on ∆ with y < x.

It’s easy to verify that the above order ≤ satisfies the conditions of the

definition 3.3.9, i.e., ≤ is a right monomial order on ∆. But we have an

infinite properly descending chain in (∆,≤): x > xy > xy2 > · · · . (Notice

that degx(xyi) = degx(xyi+1) = 1 but φ(xyi) = i < φ(xyi+1) = i+1, therefore

xyi > xyi+1, ∀i ∈ N).

Hence the right monomial order ≤ is not a well order.
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3.4 Generalization of Polynomial Reduction

Let ≤ be a monomial order on <X>, we will discuss noncommutative poly-

nomial reductions in this section.

Definition 3.4.1. For any f, g ∈ k<X>, if lm(g) divides some nonzero term

cm in f , then ∃l, r ∈ <X> such that cm = c · l · lm(g) ·r. Let h = f− c
lc(g)

lgr,

then it’s easy to see the term cm in f is replaced by a linear combination of

monomials < m. We call this manipulation a polynomial reduction, denoted

by f
g−→ h, and say f reduces to h modulo g.

Definition 3.4.2. If there is a finite sequence of polynomial reductions

f
g1−→ h1

g2−→ h2 . . .
gt−→ ht, where gi ∈ G ⊆ k<X> and gi not necessarily

pairwise distinct for 1 6 i 6 t, we say f reduces to ht modulo G, denoted by

f
G−→ ht.

Definition 3.4.3. Polynomial d is called reduced or in the reduced form

w.r.t. some G ⊆ k<X>, if d = 0 or no monomial occurring in the unique

form (3.1.1) of d is divisible by lm(g) ∀g ∈ G. If f
G−→ d and d is reduced

w.r.t. G, we say d is a reduced form of f w.r.t. G. When the reduced form

of f w.r.t. G is unique(in general it is not, see examples 3.4.16), we denote

it by R(f,G). In particular, when f is reduced w.r.t. G, R(f, G) = f .

Remarks 3.4.4. (i) We do NOT require f in the definitions to be in the

unique form except in the case we need consider its leading term or leading

monomial, like in the following reduction process.

(ii) The equivalence “monomial m ∈ lm(G) ⇔ ∃g ∈ G, lm(g)| m” is still

true. Hence, when we say d 6= 0 is reduced w.r.t G, it is equivalent to say no

monomial in the unique form of d is in lm(G).

(iii) Given G ⊆ k<X>, let M(G) denote the set of all monomials in

lm(G), i.e.,M(G) = <X>
⋂

lm(G) and let kR(G) denote the set of all re-
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duced polynomials w.r.t. G. Then it’s easy to verify that, as a k-vector space,

kR(G) = spank{<X>−M(G)}, i.e.,kR(G) is spanned by monomials not in

lm(G).

By the above definitions, the following proposition is obvious. It will be

useful in proofs.

Proposition 3.4.5. Given polynomials f and d, if d is a reduced form of

f w.r.t. some G, then either f = d or ∃s ∈ N − {0}, cu ∈ k − {0}, lu, ru ∈
<X>, gu ∈ G and not necessarily pairwise distinct ∀ u, 1 6 u 6 s, such that

f =
s∑

u=1

culuguru + d. (3.4.1)

Next we introduce a reduction process which shows that, for any nonzero

polynomial f and a set G ⊆ k<X>, the reduced form of f w.r.t. G always

exists.

Reduction Process 3.4.6.

i := 1, d := 0, fi := f

(∗)while fi 6= 0 do

if ∃gi ∈ G, li, ri ∈ <X> such that lm(fi) = li · lm(gi) · ri, do

fi+1 := fi − lc(fi)
lc(gi)

ligiri

i := i + 1 and goto (∗)
else d := d + lt(fi)

fi+1 := fi − lt(fi)

i := i + 1 and goto (∗) ¤
Remarks 3.4.7. (i) In the above process lm(fi) > lm(fi+1)∀i, since the

monomial order ≤ is a well order, the process must terminate at some i = t

and ft = 0. It’s easy to see every monomial occurring in the final d is not
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divisible by any lm(g), g ∈ G. Therefore the final d is a reduced form of f

w.r.t. G.

(ii) The process actually shows that f has the following representation:

f =
s∑

u=1

culuguru + d, (3.4.2)

where s ∈ N(when s = 0, f = d), cu ∈ k − {0}, lu, ru ∈ <X>, gu ∈ G and

not necessarily pairwise distinct ∀ u, 1 6 u 6 s, d is the reduced form of f

w.r.t. G, and lm(f)= max{l1lm(g1)r1, l2lm(g2)r2, . . . , lslm(gs)rs, lm(d)}.
(Compare with 3.4.1)

In particular, when d = 0 in the above representation, (3.4.2) is said to

be a standard representation of f w.r.t. G.

(iii) Obviously, the process is a generalization of reduction algorithm 2.3.6.

But we don’t call the above process an “algorithm”. When we apply the

process to reduce f modulo some infinite G, we may not be able to decide

whether “∃gi ∈ G, li, ri ∈ <X> such that lm(fi) = li · lm(gi) · ri” or not,

although one of two cases must be true theoretically. In other words, the

process only shows the reduced form of f exists in theory, but in practice we

may not be able to compute it for some infinite G.

Next let’s explain why there does exist such an infinite G in k<X>.

Problem 3.4.8.(Word Problem for Noncommutative Algebra Presentations)

For a k-algebra presentation R = k<X>/ < g1, g2, . . . , gl >, is there an

algorithm which, given f ∈ k<X>, decides whether f = 0̄ in R ? (Clearly,

f = 0̄ in R ⇔ f ∈< g1, g2, . . . , gl >, so it is also an ideal membership problem

for k<X>).

Claim 3.4.9. The word problem for noncommutative algebra presentations,

or the ideal membership problem for k<X>, is unsolvable in general.
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Proof: See [1].

Theorem 3.4.10. Let G ⊆ ideal I ⊆ k<X>, lm(G) = lm(I),i.e.,G is a

Gröbner basis of the ideal I, then f ∈ I ⇔ R(f, G) = 0.

Proof: See the characterizations of noncommutative Gröbner bases.

By the above results, there exists a finitely generated ideal I ⊆ k<X>

for which the ideal membership problem is unsolvable. I can be regarded

as an infinite set and by our definition I is a Gröbner basis of itself. Now

suppose the reduction process 3.4.6 could compute a reduced form of any

given f w.r.t. I, then by theorem 3.4.10, we could decide whether f ∈ I

or not. Hence the ideal membership problem would be solved. This is a

contradiction. Therefore we have the following claim:

Claim 3.4.11. (i) There exists an infinite G ⊆ k<X> such that the re-

duction process 3.4.6 cannot be implemented. (ii) There exists a finitely

generated ideal I of k<X> for which we cannot find a finite Gröbner basis.

Moreover, with the above results, the following claim is also obvious.

Definition 3.4.12. For a set G ⊆ k<X>, if given any f ∈ k<X>, one can

compute a reduced form of f w.r.t. G, then we say G is computable.

Claim 3.4.13. For any ideal I of k<X>, if we can find a computable

Gröbner basis of I, then we can solve the ideal membership problem for that

ideal. On the other hand, there does exist an ideal I in k<X> whose ideal

membership problem is unsolvable. For such an ideal I, there is no algorithm

which can find a computable Gröbner basis of I.

Now let’s focus on the computable sets in k<X>. Clearly, finite sets

are always computable. Given a finite set G = {g1, g2, . . . , gj, . . . , gl}, the

reduction process 3.4.6 can be refined to the following algorithm.

Algorithm 3.4.14.(Reduction Algorithm)
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i := 1, d := 0, fi := f

(∗)while fi 6= 0 do

if ∃lm(gj)| lm(fi), choose the least j from 1 to l, li, ri ∈ <X> such

that lm(fi) = lilm(gj)ri, and do

fi+1 := fi − lc(fi)
lc(gj)

ligjri

i := i + 1 and goto (∗)
else d := d + lt(fi)

fi+1 := fi − lt(fi)

i := i + 1 and goto (∗) ¤

For infinite sets, we have the following claim.

Claim 3.4.15. Given an infinite G ⊆ k<X>, if for any D ∈ N, the subset

G(D) = {g ∈ G| deg(lm(g)) 6 D} is finite and every element of G(D) can

be calculated explicitly, then G is computable.

Proof: In the reduction process 3.4.6, to decide whether “∃gi ∈ G, li, ri ∈
<X> such that lm(fi) = lilm(gi)ri” or not, we only need compare lm(fi) to

every lm(g) with deg(g) 6 deg(fi) and g ∈ G, i.e., we only need know every

element in G(D), where D = deg(fi). Clearly G in our claim is satisfactory.

Then given any f in k<X>, we can apply the reduction process 3.4.6 to

compute a reduced form of f w.r.t. G, i.e., G is computable. ¤

At last, we give some examples which show that the reduced form of f is

not unique w.r.t. general computable G.

Examples 3.4.16. (1) Let f = x2
1x2x1 − x1x

2
2x1, G = {g1, g2} ⊆ k<X>,

where g1 = x2
1 − x1x2,g2 = x1x2x1 − x2x1x2. Let ≤ be the deglex with

x1 > x2, then lm(f) = x2
1x2x1, lm(g1) = x2

1, lm(g2) = x1x2x1. Applying the

algorithm 3.4.14 to reduce f modulo {g1, g2} and {g2, g1}, we have

f
g1−→ f − g1x2x1 = 0 (3.4.3)
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and

f
g2−→ f−x1g2 = x1x2x1x2−x1x

2
2x1

g2−→ (f−x1g2)−g2x2 = −x1x
2
2x1 +x2x1x

2
2.

(3.4.4)

That is to say, we find two different reduced forms of f w.r.t. G, 0 and

−x1x
2
2x1 + x2x1x

2
2.

Moreover, from (3.4.3) we see f ∈< G >, then from (3.4.4) we see d =

−x1x
2
2x1 + x2x1x

2
2 = f − x1g2 − g2x2 ∈< G >, then lm(d) ∈ lm(<G>) but

clearly not in lm(G). Hence lm(G) ( lm(< G >), so G is not a Gröbner

basis.

(2) Let f = x3
1, G = {g = x2

1−x2}. If they are considered in commutative

Gröbner bases theory, G will be a Gröbner basis since it contains a single

polynomial(see remark 2.5.3(ii)). Then by a characterization of commutative

Gröbner bases, the reduced form of f w.r.t. G will be unique.

But now, let’s consider them in noncommutative polynomial rings. Let

≤ be the deglex with x1 > x2, then lm(f) = x3
1, lm(g) = x2

1. We apply the

algorithm 3.4.14 to reduce f modulo G. Clearly we have only one choice of

gj such that lm(gj)| lm(fi), but we do have different choices of li, ri such that

lm(fi) = lilm(gj)ri. Thus we have the following results.

f
g−→ f − x1g = x3

1 − x1(x
2
1 − x2) = x1x2, (3.4.5)

and

f
g−→ f − gx1 = x3

1 − (x2
1 − x2)x1 = x2x1. (3.4.6)

That is to say, we find two different reduced forms of f w.r.t. G, x1x2 and

x2x1.

Moreover, from (3.4.5) and (3.4.6), we see that

x1x2 − x2x1 = gx1 − x1g ∈<G> (3.4.7)
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Therefore, lm(x1x2 − x2x1) = x1x2 ∈ lm(< G >) but x1x2 is not in lm(G),

hence lm(G) ( lm(<G>), so G is not a Gröbner basis.

3.5 Noncommutative S-polynomials

This section is devoted to the generalization of S-polynomials(see definition

2.4.1). Two problems arise. Firstly, given m1,m2 ∈ <X>, it’s often impossi-

ble to find the least common multiple of m1,m2 like we did for commutative

monomials. For example, both xyx and yxy are common multiples of xy

and yx, but we cannot find lcm(xy, yx), such that lcm(xy, yx)| xyx and

lcm(xy, yx)| yxy. Secondly, for noncommutative m1,m2, even if we have

found L = lcm(m1,m2), the expression L
m1

(or L
m2

) is ambiguous since we

may have different choices of l, r such that L = lm1r (or L = lm2r). In the

example 3.4.16(2), we have seen the ambiguity of
x3
1

x2
1

caused by two possibil-

ities x3
1 = x1 · x2

1 or x2
1 · x1.

For the first problem, we will investigate all cases of common multiples

of m1,m2. Instead to look for a least common multiple, we try to find out

the minimal common multiple in each case. To avoid the ambiguity in the

second problem, for an ordered pair of monomials (m1,m2) ∈ <X>2, we

let T (m1,m2) denote the set of 4-tuples (l1, r1, l2, r2) ∈ <X>4 satisfying

l1m1r1 = l2m2r2.

The Cases of Common Multiples of m1 and m2

Given an ordered pair of monomials (m1,m2) ∈ <X>2, if (l1, r1, l2, r2) ∈
T (m1,m2), then according to the relative locations of m1 and m2 in the

common multiple W , we have the following three cases.

Case 1: ∃w ∈ <X> between m1 and m2.
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Case 1-1: W = l1m1wm2r2, the minimal common multiple is m1wm2.

Case 1-2: W = l2m2wm1r1, the minimal common multiple is m2wm1.

Since w can be any monomial, we have an infinite set of minimal common

multiples in Case 1. Fortunately, in later discussion, we will see that we don’t

need the generalization of S-polynomials for this case.

Case 2: There is no w between m1 and m2. The monomials m1,m2

overlap but no one contains the other.

Case 2-1: ∃(1, R1, L2, 1) ∈ T (m1,m2), R1 6= 1, L2 6= 1 such that m1R1 =

L2m2 = m0. Then W = l1m0r2, the minimal common multiple is m0.

Case 2-2: ∃(L1, 1, 1, R2) ∈ T (m1,m2), L1 6= 1, R2 6= 1 such that L1m1 =

m2R2 = m0. Then W = l2m0r1, the minimal common multiple is m0.

Since m1,m2 overlap, deg(m0) < deg(m1)+deg(m2), hence we have finite

minimal common multiples of m1 and m2 in case 2.

Case 3: There is no w between m1 and m2, and one contains the other.

Case 3-1: m1 contains m2. Then the minimal common multiple is m0 =

m1, W = l1m0r1 and ∃(1, 1, L2, R2) ∈ T (m1,m2) such that m0 = m1 =

L2m2R2.

Case 3-2: m2 contains m1. Then the minimal common multiple is m0 =

m2, W = l2m0r2 and ∃(L1, R1, 1, 1) ∈ T (m1,m2) such that m0 = m2 =

L1m1R1.

Clearly, we have finite minimal common multiples in case 3.

With the above discussion, we can define noncommutative S-polynomials.

Definition 3.5.1. Given an ordered pair of monomials (m1,m2) ∈ <X>2,

the set of matches of (m1,m2), denoted by MS(m1,m2), is the finite set of

all ordered 4-tuples (L1, R1, L2, R2) ∈ T (m1,m2), such that, either
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(i) (L1, R1, L2, R2) = (1, R1, L2, 1) with R1 6= 1, L2 6= 1 and ∃w 6= 1 such

that wR1 = m2 and L2w = m1;

or (ii) (L1, R1, L2, R2) = (L1, 1, 1, R2) with L1 6= 1, R2 6= 1 and ∃w 6= 1

such that wR2 = m1 and L1w = m2;

or (iii) (L1, R1, L2, R2) = (1, 1, L2, R2) with m1 = L2m2R2;

or (iv) (L1, R1, L2, R2) = (L1, R1, 1, 1) with m2 = L1m1R1.

Definition 3.5.2. Given f, g ∈ k<X>−{0}, if MS(lm(f), lm(g)) 6= ∅, then

S(f, g)[L1, R1, L2, R2] :=
1

lc(f)
L1fR1 − 1

lc(g)
L2gR2

is called an S-polynomial of f and g w.r.t. (L1, R1, L2, R2), where

(L1, R1, L2, R2) ∈ MS(lm(f), lm(g)).

Remarks 3.5.3. (i)The four cases in the definition of MS(m1,m2) clearly

corresponds to minimal common multiples in cases 2-1, 2-2, 3-1 and 3-2.

By the discussion there, MS(m1,m2) is finite. Note that MS(x, y) may be

empty.

(ii)By symmetry,

(L1, R1, L2, R2) ∈ MS(lm(f), lm(g)) ⇔ (L2, R2, L1, R1) ∈ MS(lm(g), lm(f)),

thus S(f, g)[L1, R1, L2, R2] = −S(g, f)[L2, R2, L1, R1].

We conclude the discussion in this section with the following observation.

Theorem 3.5.4. For any polynomial

1

lc(f)
l1fr1 − 1

lc(g)
l2gr2,

where (l1, r1, l2, r2) ∈ T (lm(f), lm(g)), f, g ∈ k<X>−{0} and l1lm(f)r1 =

l2lm(g)r2 = W , we have the following three cases.
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Case 1: ∃w ∈ <X> such that W = l1 · lm(f) · w · lm(g) · r2.

Case 2: ∃w ∈ <X> such that W = l2 · lm(g) · w · lm(f) · r1.

Case 3: ∃l, r ∈ <X>, ∃(L1, R1, L2, R2) ∈ MS(lm(f), lm(g)), such that

W = l(L1lm(f)R1)r = l(L2lm(g)R2)r, and

1

lc(f)
l1fr1 − 1

lc(g)
l2gr2 = l · S(f, g)[L1, R1, L2, R2] · r.

Proof: By our previous discussion, the result is obvious. ¤

3.6 Characterizations of Noncommutative

Gröbner Bases

In this section we will prove several characterizations of noncommutative

Gröbner bases.

Theorem 3.6.1.(Characterizations of Noncommutative Gröbner Bases)Given

G ⊆ k<X>, assume 0 is not in G, let I =<G> be the ideal generated by G,

let ≤ be a monomial order on <X>. The following conditions are equivalent:

(a) lm(G) = lm(I);

(b) ∀f ∈ I − {0}, ∃g ∈ G such that lm(g)| lm(f);

(c) f ∈ I ⇔ R(f, G) = 0;

(d) f ∈ I ⇔ f has a standard representation w.r.t. G;

(e) ∀f ∈ k<X>, the reduced form of f w.r.t. G is unique;

(f) As k-vector spaces, k<X> = kR(G)
⊕

I;

(g) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

R(S(g1, g2)[L1, R1, L2, R2], G) = 0;

(h) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

S(g1, g2)[L1, R1, L2, R2] has a standard representation w.r.t. G.
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Proof: We show the cycle (a)⇒(b)⇒(c)⇒(f)⇒(e)⇒(g)⇒(h)⇒(d)⇒(a)

as follows.

(a)⇒(b): If f ∈ I − {0}, then lm(f) ∈ lm(I) = lm(G).

(b)⇒(c): By prop.3.4.5, R(f, G) = 0 ⇒ f = 0 or f =
∑s

u=1 culuguru, where

s ∈ N− {0}, cu ∈ k − {0}, lu, ru ∈ <X>, gu ∈ G. Clearly, f ∈ I.

Conversely, when f = 0, R(f,G) = f = 0. For f ∈ I − {0}, if d 6= 0

is a reduced form of f w.r.t. G, again by prop.3.4.5, d = f ∈ I − {0} or

d = f−∑s
u=1 culuguru ∈ I−{0}, then by (b), ∃g ∈ G such that lm(g)| lm(d).

But d is reduced w.r.t. G, a contradiction. So the reduced form of f w.r.t. G

must be 0 and thus must be unique, i.e., R(f,G) = 0.

(c)⇒(f): ∀f ∈ k<X>, the process 3.4.6 shows that f = d+
∑s

u=1 culuguru(see

(3.4.2) in remark 3.4.7(ii)), where d is a reduced form of f w.r.t. G. Hence,

k<X> = kR(G) + I. We only need show kR(G)
⋂

I = {0}. ∀d ∈ kR(G)
⋂

I,

d ∈ kR(G) ⇒ d = R(d, G); also, d ∈ I ⇒ R(d,G) = 0 by (c). Therefore

d = 0, i.e., kR(G)
⋂

I = {0}.

(f)⇒(e): ∀f ∈ k<X>, if f is reduced w.r.t. G, then R(f,G) = f . When

f is not reduced, let d1 and d2 be two reduced forms of f w.r.t. G. By

prop.3.4.5, f =
∑s

u=1 culuguru + d1 =
∑t

v=1 c′vl
′
vg
′
vr
′
v + d2 (see 3.4.1). Then

d1 − d2 =
∑t

v=1 c′vl
′
vg
′
vr
′
v −

∑s
u=1 culuguru ∈ kR(G)

⋂
I. By (f), d1 − d2 = 0.

Hence, the reduced form of f w.r.t. G is unique.

(e)⇒(g): ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)), by (e),

the reduced form of S(g1, g2)[L1, R1, L2, R2] w.r.t. G is unique. We only need

show it is zero.

Let W = L1lm(g1)R1 = L2lm(g2)R2, h1 = W − 1
lc(g1)

L1g1R1, h2 = W −
1

lc(g2)
L2g2R2. By reduction process 3.4.6, there exist two finite sequence of
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reductions as follows:(Although we possibly cannot compute them out, they

do exist!)

W
g1−→ h1 = W − 1

lc(g1)
L1g1R1

g11−→ . . .
g1a−−→ d1 = R(W,G)

and

W
g2−→ h2 = W − 1

lc(g2)
L2g2R2

g21−→ . . .
g2b−→ d2 = R(W,G).

Then for S(g1, g2)[L1, R1, L2, R2], there is a finite sequence of reductions:

S(g1, g2)[L1, R1, L2, R2] = h2 − h1
g11−→ . . .

g1a−−→ h2 − d1
g21−→ . . .

g2b−→ d2 − d1.

(3.6.1)

Since R(W,G) is unique, d2 − d1 = 0, hence,

R(S(g1, g2)[L1, R1, L2, R2], G) = 0.

(g)⇒(h): By (g), R(S(g1, g2)[L1, R1, L2, R2], G) = 0, then by remark 3.4.7(ii),

each corresponding S(g1, g2)[L1, R1, L2, R2] has a standard representation

w.r.t. G.

(h)⇒(d): Obviously, “f has a standard representation w.r.t. G ”⇒ “f ∈
I ”(see 3.4.2 in remark 3.4.7(ii)). We only show “f ∈ I ”⇒ “f has a standard

representation w.r.t. G ”.

Now 0 has a trivial standard representation w.r.t. G. ∀f ∈ I − {0},
I is generated by G, thus f can be written as f =

∑t
i=1 ciligiri, where

t ∈ N− {0}, ci ∈ k − {0}, li, ri ∈ <X>, gi ∈ G. Then

Γ =

{
max
16i6t

{li · lm(gi) · ri}| f =
t∑

i=1

ciligiri, t ∈ N− {0},

ci ∈ k − {0}, li, ri ∈ <X>, gi ∈ G

}

6= ∅.
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Since the monomial order ≤ is a well order, Γ has a least element m. This

implies, there is a representation of f such that,

f =
t∑

i=1

ciligiri, (3.6.2)

t ∈ N− {0}, ci ∈ k − {0}, li, ri ∈ <X>, gi ∈ G, and

max
16i6t

{li · lm(gi) · ri} = m.

Claim: the above (3.6.2) is a standard representation of f w.r.t. G.

Proof of the claim: Obviously, lm(f) ≤ m. By the definition of standard

representation, we need show lm(f) = m. WLOG, assume

li · lm(gi) · ri ≥ li+1 · lm(gi+1) · ri+1,∀i = 1, 2, . . . , t− 1, in (3.6.2).

Let J = max{i| li · lm(gi) · ri = m, 1 6 i 6 t}, then (3.6.2) looks like

f = c1l1g1r1 + · · ·+ cJ lJgJrJ +
t∑

i=J+1

ciligiri, (3.6.3)

where

m = li · lm(gi) · ri,∀i = 1, 2, . . . , J,

and

m > li · lm(gi) · ri ≥ li+1 · lm(gi+1) · ri+1,∀i = J + 1, . . . , t− 1.

Let ai = lc(gi), ∀i = 1, 2, . . . , J . If J = 1 or c1a1 + · · · + cJaJ 6= 0, since

m cannot be canceled on the right side of (3.6.3)(i.e.,(3.6.2)), lm(f) has to

be m. Then (3.6.3)(i.e.,(3.6.2)) is a standard representation of f .
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Assume now that J > 2 and c1a1 + · · · + cJaJ = 0. Let’s show this case

is impossible. Notice that (3.6.3) can be rewritten as follows.

f = c1a1(
1

a1

l1g1r1 − 1

a2

l2g2r2) + (c1a1 + c2a2)(
1

a2

l2g2r2 − 1

a3

l3g3r3)

+ · · ·+ (c1a1 + · · ·+ cJ−1aJ−1)(
1

aJ−1

lJ−1gJ−1rJ−1 − 1

aJ

lJgJrJ)

+(c1a1 + · · ·+ cJaJ)
1

aJ

lJgJrJ +
t∑

i=J+1

ciligiri.

Since c1a1 + · · ·+ cJaJ = 0, we have

f = c1a1(
1

a1

l1g1r1 − 1

a2

l2g2r2) + (c1a1 + c2a2)(
1

a2

l2g2r2 − 1

a3

l3g3r3)

+ · · ·+ (c1a1 + · · ·+ cJ−1aJ−1)(
1

aJ−1

lJ−1gJ−1rJ−1 − 1

aJ

lJgJrJ)

+
t∑

i=J+1

ciligiri. (3.6.4)

Now consider

1

ai

ligiri − 1

ai+1

li+1gi+1ri+1,∀i = 1, 2, . . . , J − 1.

Since

m = li · lm(gi) · ri = li+1 · lm(gi+1) · ri+1, ∀i = 1, 2, . . . , J − 1,

by theorem 3.5.4, we have three cases.

Case 1: ∃w ∈ <X> such that m = li · lm(gi) · w · lm(gi+1) · ri+1. Then

ri = w · lm(gi+1) · ri+1, (3.6.5)

li+1 = li · lm(gi) · w. (3.6.6)
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Notice that the unique forms(see (3.1.1)) of gi and gi+1 look like:

gi = ailm(gi) +

t1∑
p=2

cipmip , (3.6.7)

gi+1 = ai+1lm(gi+1) +

t2∑
q=2

c(i+1)qm(i+1)q , (3.6.8)

where t1, t2 ∈ N− {0}, cip, c(i+1)q ∈ k − {0}, mip,m(i+1)q ∈ <X> and

lm(gi) > mip > mp+1, ∀p = 2, . . . , t1 − 1,

lm(gi+1) > m(i+1)q > m(i+1)(q+1), ∀q = 2, . . . , t2 − 1.

With (3.6.5)—(3.6.8), we have

1

ai

ligiri − 1

ai+1

li+1gi+1ri+1

=
1

aiai+1

{
ligiwai+1lm(gi+1)ri+1 − liailm(gi)wgi+1ri+1

+ligiwgi+1ri+1 − ligiwgi+1ri+1

}

=
1

aiai+1

{
li[gi − ailm(gi)]wgi+1ri+1 − ligiw[gi+1 − ai+1lm(gi+1)]ri+1

}

=
1

aiai+1

{
li[

t1∑
p=2

cipmip]wgi+1ri+1 − ligiw[

t2∑
q=2

c(i+1)qm(i+1)q]ri+1

}

where

li ·mip · w · lm(gi+1) · ri+1 < li · lm(gi) · w · lm(gi+1) · ri+1 = m,

li · lm(gi) · w ·m(i+1)q · ri+1 < li · lm(gi) · w · lm(gi+1) · ri+1 = m,

for all p = 2, . . . , t1, and q = 2, . . . , t2. In other words, we have rewritten

1

ai

ligiri − 1

ai+1

li+1gi+1ri+1 =

si∑
j=1

cjljgjrj (3.6.9)
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where si ∈ N− {0}, cj ∈ k − {0}, lj, rj ∈ <X>, gj ∈ G, and

max
16j6si

{lj · lm(gj) · rj} < m.

Case 2: ∃w ∈ <X> such that m = li+1 · lm(gi+1) · w · lm(gi) · ri. Clearly

this case is symmetric to the case 1. With the same method, we also can

rewrite
1

ai

ligiri − 1

ai+1

li+1gi+1ri+1 =

si∑
j=1

cjljgjrj (3.6.10)

where si ∈ N− {0}, cj ∈ k − {0}, lj, rj ∈ <X>, gj ∈ G, and

max
16j6si

{lj · lm(gj) · rj} < m.

Case 3: ∃l, r ∈ <X> and ∃(L1, R1, L2, R2) ∈ MS(lm(gi), lm(gi+1)), such

that

1

ai

ligiri − 1

ai+1

li+1gi+1ri+1 = l · S(gi, gi+1)[L1, R1, L2, R2] · r.

The condition (h) says that S(gi, gi+1)[L1, R1, L2, R2] has a standard rep-

resentation w.r.t. G, as does l · S(gi, gi+1)[L1, R1, L2, R2] · r. Hence we can

rewrite
1

ai

ligiri − 1

ai+1

li+1gi+1ri+1 =

si∑
j=1

cjljgjrj (3.6.11)

where si ∈ N− {0}, cj ∈ k − {0}, lj, rj ∈ <X>, gj ∈ G, and

max
16j6si

{lj · lm(gj) · rj} = lm(
1

ai

ligiri − 1

ai+1

li+1gi+1ri+1) < m.

With above results, let’s revisit (3.6.4). For all i = 1, 2, . . . , J − 1, we can

rewrite
1

ai

ligiri − 1

ai+1

li+1gi+1ri+1

46



to the form (3.6.9) or (3.6.10) or (3.6.11). For all i = J +1, . . . , t, it is known

li · lm(gi) · ri < m.

Hence (3.6.4) can be rewritten as

f =
t′∑

j=1

c′jl
′
jg
′
jr
′
j (3.6.12)

where t′ ∈ N− {0}, c′j ∈ k − {0}, l′j, r
′
j ∈ <X>, g′j ∈ G, and

max
16j6t′

{l′j · lm(g′j) · r′j} = m′ < m.

Obviously, m′ ∈ Γ, but m is the least element of Γ, it’s impossible that

m′ < m.

Therefore the case “J > 2 and c1a1 + · · · + cJaJ = 0” is impossible for

(3.6.3)(i.e.,(3.6.2)). Then (3.6.3)(i.e.,(3.6.2)) is a standard representation of

f w.r.t. G. The claim is proved, thus “(h)⇒(d)” is proved.

(d)⇒(a): ∀f ∈ I, by (d), f has a standard representation w.r.t. G, then

lm(f) = li · lm(gi) · ri for some gi ∈ G, li, ri ∈ <X>. Then lm(f) ∈ lm(G),

which implies lm(I) ⊆ lm(G). It’s obvious that lm(G) ⊆ lm(I). Thus

lm(I) = lm(G). ¤

Remark 3.6.2. As we can see, the above theorem is almost the same as its

counterpart in chapter 2. In chapter 4, we will explain why.

3.7 Generalization of Buchberger’s Algorithm

As we have pointed out, in noncommutative polynomial ring k<X>, there

are ideals which cannot be finitely generated. For such an ideal I, we do not
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know if there is an algorithm which can find an infinite computable Gröbner

basis G of I when G does exist. For a finitely generated ideal of k<X>,

we have the following semi-decision algorithm, which is a generalization of

Buchberger’s algorithm and is one of the best results known so far.

Algorithm 3.7.1.(Generalized Buchberger’s Algorithm Due to Mora)

i := 1, H1 := F , G1 := F , (F is a given finite subset of k<X>)

(∗)while Hi 6= ∅ do

Hi+1 := ∅
Bi := {(f, g, L1, R1, L2, R2)|f ∈ Gi, g ∈ Hi, (L1, R1, L2, R2) ∈

MS(lm(f), lm(g))}
(?)while Bi 6= ∅ do

choose (f1, f2, L1, R1, L2, R2) ∈ Bi

Bi := Bi − {(f1, f2, L1, R1, L2, R2)}
f := 1

lc(f1)
L1f1R1 − 1

lc(f2)
L2f2R2

do reduction algorithm 3.4.14 to compute a reduced form d

of f w.r.t. Gi

⋃
Hi+1

if d 6= 0 then Hi+1 := Hi+1

⋃{d}
goto (?)

Gi+1 = Gi

⋃
Hi+1

i := i + 1 and goto (∗) ¤

In the above algorithm, we assume F is nonempty and a monomial order

≤ has been defined on <X>. About the above algorithm, we now make the

following claims.

Claim 3.7.2. ∀i ∈ N− {0}, ∀(f1, f2) ∈ G2
i , ∀(L1, R1, L2, R2) ∈

MS(lm(f1), lm(f2)), S(f1, f2)[L1, R1, L2, R2] has a standard representation

w.r.t. Gi+1. (If the algorithm terminates at i, let Gj = Gi, ∀j > i.)
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Proof: We prove the statement by induction on i.

Consider i = 1. Notice that G1 = H1, ∀(f1, f2) ∈ G1 × G1 = G1 ×
H1, ∀(L1, R1, L2, R2) ∈ MS(lm(f1), lm(f2)), the algorithm reduces f =

S(f1, f2)[L1, R1, L2, R2] to a reduced form d w.r.t. G1

⋃
H2. If d = 0, clearly,

f has a standard representation w.r.t. G2 ⊇ G1

⋃
H2. If d 6= 0, then d ∈ G2,

again, f has a standard representation w.r.t. G2.

Suppose the statement holds for i, let’s prove that it holds for i + 1.

If the algorithm terminates at i + 1, Hi+1 = ∅, and Gi+2 = Gi+1 = Gi.

Then by our induction hypothesis, ∀(f1, f2) ∈ G2
i+1 = G2

i , ∀(L1, R1, L2, R2) ∈
MS(lm(f1), lm(f2)), S(f1, f2)[L1, R1, L2, R2] has a standard representation

w.r.t.Gi+2 = Gi+1. The statement is true.

If the algorithm doesn’t terminate at i + 1, Gi+1 = Gi

⋃
Hi+1, we then

have two cases.

Case 1: (f1, f2) ∈ Gi+1 × Hi+1. Like the case i = 1, the algorithm

will reduce f = S(f1, f2)[L1, R1, L2, R2] to d. Whether d = 0 or not, the

algorithm ensures f has a standard representation w.r.t.Gi+2.

Case 2: (f1, f2) ∈ Gi+1 ×Gi. We have two sub-cases:

Case 2-1: (f1, f2) ∈ Gi×Gi. By hypothesis inductions, every S-polynomial

of (f1, f2) has a standard representation w.r.t.Gi+2 ⊇ Gi+1.

Case 2-2: (f1, f2) ∈ Hi+1 × Gi. Then (f2, f1) is in the case 1, every S-

polynomial of (f2, f1) has a standard representation w.r.t.Gi+2. By remark

3.5.3(ii), so does every S-polynomial of (f1, f2).

Hence, the statement holds for i + 1. By induction, the statement holds

for all i. ¤

Claim 3.7.3. (i)The algorithm terminates at some i+1, i ∈ N−{0}, if and

only if, Gi is a finite Gröbner basis of the ideal I =<F >.
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(ii)If the algorithm never terminates, then
⋃∞

i=1 Gi is an infinite Gröbner

basis of the ideal I =<F >.

Proof: Notice that F = G1 ⊆ . . . ⊆ Gi ⊆ . . . ⊆ I =<F >. Then

<F >⊆ . . . ⊆<Gi >⊆ . . . ⊆<F > .

Hence, <Gi >= I =< F >, ∀i ∈ N− {0}.
(i) If the algorithm terminates at some i + 1, then Hi+1 = ∅, and Gi+1 =

Gi

⋃
Hi+1 = Gi. By claim 3.7.2, ∀(f1, f2) ∈ G2

i , every S-polynomial of

(f1, f2) has a standard representation w.r.t.Gi+1 = Gi. Since <Gi >= I, by

the characterization (h), Gi is a Gröbner basis of I. Obviously, Gi is finite.

Conversely, if Gi is a finite Gröbner basis of the ideal I, then Hi+1 will

be empty since all d = R(f,Gi

⋃
Hi+1) = 0. Thus the algorithm terminates

at i + 1.

(ii) If the algorithm never terminates, let G =
⋃∞

i=1 Gi, then ∀(f1, f2) ∈
G2, there is sufficient large J such that (f1, f2) ∈ G2

J , then every S-polynomial

of (f1, f2) has a standard representation w.r.t.GJ+1 ⊆ G. Obviously <G>=

I, then by the characterization (h), G is a Gröbner basis of the ideal I. Since

the algorithm never terminates, Gi ( Gi+1, G must be infinite. ¤

Claim 3.7.4. If I =< F > has a finite Gröbner basis w.r.t. ≤, then the

algorithm must terminate.

Proof: Let G′ = {g1, g2, . . . , gl} be a finite Gröbner basis of I w.r.t. ≤. Sup-

pose the algorithm never terminates. By claim 3.7.3(ii), G =
⋃∞

i=1 Gi is an

infinite Gröbner basis of I. Then ∀j = 1, 2, . . . , l, ∃J(j) ∈ N − {0} such

that lm(gj) ∈ lm(GJ(j)). Let J = max16j6l{J(j)}, then lm(I) = lm(G′) ⊆
lm(GJ) ⊆ lm(I), thus lm(GJ) = lm(I), i.e., GJ is a finite Gröbner basis of

I. By claim 3.7.3(i), the algorithm terminates, a contradiction! Hence the

algorithm does terminate. ¤
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Given a finitely generated ideal, if algorithm 3.7.1 terminates and pro-

duces a finite Gröbner basis of the ideal, then we can solve the ideal member-

ship problem for the ideal by characterizations of noncommutative Gröbner

bases, like we did for problem 2.5.4.

In the last part of this chapter, we show that when the ideal is finitely

generated by homogenous polynomials, the ideal membership problem is still

solvable even if the algorithm 3.7.1 never terminates.

Definition 3.7.5. A polynomial f ∈ k<X> is said to be homogeneous if in

the unique form (3.1.1) of f ,

f =
t∑

i=1

cimi, deg(mi) = deg(mj) ∀1 6 i 6= j 6 t,

i.e.,f is a linear combination of monomials of the same degree. If an ideal is

generated by homogeneous polynomials, it is said a homogeneous ideal.

Theorem 3.7.6. Given a homogeneous ideal I =<f1, f2, . . . , fl >⊆ k<X>,

given a monomial order ≤ on <X>, algorithm 3.7.1 always produces a com-

putable Gröbner basis of the ideal I. (Thus the ideal membership problem

for the ideal is solvable.)

Proof: If the algorithm terminates, then by claim 3.7.3(i), it produces a finite

Gröbner basis G of the ideal I. Clearly G is computable.

Next we assume the algorithm never terminates. By claim 3.7.3(ii),

G =
⋃∞

i=1 Gi is an infinite Gröbner basis of the ideal I. We will show that

G satisfies the conditions in claim 3.4.15, i.e.,“for any D ∈ N, the subset

G(D) = {g ∈ G| deg(lm(g)) 6 D} is finite and every element of G(D) can

be calculated explicitly”, thus G will be computable by the claim.

For convenience, if g is a homogeneous polynomial, we let deg(g) denote

the degree of the leading monomial of g, i.e., deg(g) = deg(lm(g)). By
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computing, it’s easy to see the following claim is true.

Claim 1: If f1, f2 are homogeneous, then f = S(f1, f2)[L1, R1, L2, R2] is

homogeneous ∀(L1, R1, L2, R2)∈MS(lm(f1), lm(f2)), and

deg(f) = deg(L1f1R1) = deg(L2f2R2)> max{deg(f1), deg(f2)}.

Claim 2: If G′ is a finite set of homogeneous polynomials and f is homoge-

neous, then d, which is the reduced form of f w.r.t. G′ produced by reduction

algorithm 3.4.14, is also homogeneous and deg(d) = deg(f) if d 6= 0.

Proof of the claim 2: Notice that in reduction algorithm 3.4.14, there

are totaly three types of computation, either “fi+1 := fi − lc(fi)
lc(gj)

ligjri”, or

“d := d + lt(fi)”, or “fi+1 := fi − lt(fi)” preserves deg(f) and homogeneity.

Hence the claim is true.

Now let’s look at Gi, Hi in algorithm 3.7.1.

Claim 3: ∀i ∈ N− {0}, Gi+1 = Gi

⋃̇
Hi+1 (i.e., Gi+1 is a disjoint union of

Gi and Hi+1). Moreover, ∀d1 ∈ Hi+1 and ∀d2 ∈ Hi, lm(d1) 6= lm(d2).

Proof of the claim 3: By the algorithm, Gi+1 is a union of Gi and Hi+1.

∀d1 ∈ Hi+1, since d1 is a reduced form of f w.r.t. Gi

⋃
Hi+1 and d1 6= 0,

clearly, d1 is not in Gi. So the union is disjoint. Also, notice that Hi ⊆ Gi

and obviously there is no g ∈ Gi such that lm(g)|lm(d1), so there is no

d2 ∈ Hi with lm(d1) = lm(d2). Thus the claim 3 is proved.

Applying claims 1 and 2 recursively, we can see all elements in Gi and

Hi are homogeneous. Then all elements in the infinite Gröbner basis G are

homogeneous. Moreover, by claim 3, we can see

G = H1(G1)
⋃̇

H2

⋃̇
· · ·

⋃̇
Hi

⋃̇
Hi+1 · · · ,

i.e., G is a pairwise disjoint union of Hi, i ∈ N − {0}. Define Di :=

min{deg(d)| d ∈ Hi}.
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Claim 4: Di 6 Di+1, ∀i ∈ N− {0}.
Proof of the claim 4: ∀d ∈ Hi+1, since d is the reduced form of f

w.r.t. Gi

⋃
Hi+1 and d 6= 0, where f = S(f1, f2)[L1, R1, L2, R2] with f1 ∈ Gi,

f2 ∈ Hi, by claims 1 and 2,

deg(d) = deg(f) > max{deg(f1), deg(f2)} > deg(f2) > Di.

Hence, Di 6 Di+1.

Now let’s prove G is computable. Since the algorithm 3.7.1 never termi-

nates, Di > D1 > 1, ∀i ∈ N−{0}. Thus G(0) is empty. Given D ∈ N−{0},
suppose ∀i ∈ N− {0}, Di 6 D, then there is at least one di in Hi such that

deg(di) 6 D. By claim 3, lm(di) 6= lm(dj) for all i 6= j, then we would have

infinite different monomials with degree 6 D. This is impossible. Hence,

there exists some J ∈ N − {0} such that DJ > D. By claim 4, Di > D for

all i > J . Hence, G(D) = {g ∈ G| deg(lm(g)) 6 D} ⊆ ⋃̇J−1

i=1 Hi = GJ−1.

Clearly, G(D) is finite and every element of G(D) can be calculated explicitly

by algorithm 3.7.1. ¤
Remark 3.7.7. In practice, since we need check each Di, we need modify

algorithm 3.7.1 to make it pause after computing out each Gi. That is easy

to realize and not the topic of this thesis.
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Chapter 4

Diamond Lemma(s)

4.1 Newman’s Diamond Lemma

Newman’s diamond lemma was firstly introduced by M.H.A.Newman in [5].

Readers are referred to [6] for an introduction to the lemma in the termi-

nology of graph theory. In this section, we will introduce the lemma in

the terminology of reduction theory. Our introduction is based on [8]. We

also point out that [8] actually has shown the relations between Newman’s

diamond lemma and commutative Gröbner bases theory.

Definition 4.1.1. We define a general reduction on a nonempty set S to be

a strictly antisymmetric relation on S, i.e., a reduction on S is a subset R

of S × S such that (a, b) ∈ R ⇒ (b, a) not in R, ∀(a, b) ∈ R.

Notations 4.1.2. For a reduction relation R on nonempty set S, we will

write:

(i)a → b ⇔ (a, b) ∈ R.

(ii)

a
n−→ b (n ∈ N) ⇔





a = b when n = 0,

or ∃a0, a1, . . . , an ∈ S, such that

a = a0 → a1 → · · · → an = b when n > 1.
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(iii)a
∗−→ b ⇔ ∃n ∈ N, a

n−→ b.

(iv)a ↔ b ⇔ a → b or b → a.

(v)

a
n↔ b (n ∈ N) ⇔





a = b when n = 0,

or ∃a0, a1, . . . , an ∈ S, such that

a = a0 ↔ a1 ↔ · · · ↔ an = b when n > 1.

(vi)a
∗↔ b ⇔ ∃n ∈ N, a

n↔ b.

(vii)b ← a → c ⇔ a → c and a → b. (This notation rule also applies to
n−→ and

∗−→.)

(viii)a ↓ b ⇔ ∃c ∈ S such that a
∗−→ c

∗←− b.

The following claim is obvious.

Claim 4.1.3.“
∗↔” is an equivalence relation on S.

Definition 4.1.4. Let → be a reduction defined on a nonempty set S.

(i) If there is no infinite reduction chain w.r.t. → in S,i.e., every reduction

chain in S is finite, then we say → satisfies DCC.

(ii) Let S ′ be a nonempty subset of S, an element a ∈ S ′ is called a

minimal element of S ′ w.r.t. → if there is no b ∈ S ′ such that a → b. In

particular, if a is a minimal element of S, we say a is a normal form or in

normal form w.r.t. →. If a
∗−→ b and b is in normal form, we say b is a normal

form of a.

Lemma 4.1.5. Let → be a reduction defined on nonempty set S. If →
satisfies DCC, then every element a ∈ S has at least one normal form in S.

Proof: For any a ∈ S, define S ′(a) = {b ∈ S|a ∗−→ b}, then a ∈ S ′(a) 6= ∅.
Since → satisfies DCC, S ′(a) has a minimal element b0 w.r.t →. (Otherwise,

we would have an infinite reduction chain in S ′(a)). Suppose b0 is not minimal

in S, then we would have b0 → b1. But then a
∗−→ b1 implies b1 ∈ S ′(a). Since
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b0 is minimal in S ′(a), this is impossible. Hence b0 is minimal in S,i.e.,b0 is

a normal form of a. ¤

The following theorem is introduced in [8] as “Newman’s lemma”, which

is essentially a variation of Newman’s diamond lemma.

Theorem 4.1.6. Let → be a reduction defined on nonempty set S. If →
satisfies DCC, then the following conditions are equivalent:

(i)Local confluence(diamond condition): b ←a→ c ⇒ b ↓ c, ∀a, b, c ∈ S.

(ii)Confluence: b
∗←− a

∗−→ c ⇒ b ↓ c, ∀a, b, c ∈ S.

(iii)Every element in S has a unique normal form.

(iv)Church-Rosser property : a
∗↔ b ⇒ a ↓ b, ∀a, b ∈ S.

Proof: see [8].

Theorem 4.1.7.(Newman’s Diamond Lemma)Let → be a reduction defined

on nonempty set S. If → satisfies two conditions (i)DCC and (ii)diamond

condition, then every equivalence class of
∗↔ contains a unique normal form.

Proof: Let a
∗↔ b. By lemma 4.1.5, a has a normal form a0, b has a normal

form b0. By (iii) in theorem 4.1.6, a0, b0 are unique respectively of a and

b. By transitivity of equivalence relation, a0
∗↔ b0. Then by (iv) in theorem

4.1.6, a0 ↓ b0, i.e.,∃c ∈ S such that a0
∗−→ c

∗←− b0. Since a0, b0 are normal

forms, a0 = c = b0. Since a, b are arbitrary, every equivalence class of
∗↔

contains a unique normal form. ¤

4.2 Bergman’s Diamond Lemma

In this section we still let <X> denote the free monoid generated by set

X, but X is allowed to be any nonempty set. Let k<X> denote the free
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associative k-algebra on X, where k is allowed to be any commutative asso-

ciative ring with 1. Without causing confusion, we will still use terminologies

introduced in previous chapters, such as monomials, terms, polynomials, etc.

In particular, we assume all polynomials are written in the unique form,

i.e.,∀f ∈ k<X>− {0},
f =

t∑
i=1

cimi,

where t ∈ N− {0}, ci ∈ k − {0},mi ∈ <X> and mi 6= mj ∀1 6 i 6= j 6 t. 0

is the unique form of 0.

Notice that k<X> is also a k-module, we have the following definitions.

Definitions 4.2.1.(i) For k<X>, we define a reduction system S to be a set

of pairs σ = (mσ, fσ) where mσ ∈ <X> and fσ ∈ k<X>. For any σ ∈ S,

any l, r ∈ <X>, we define a reduction Rlσr by a k-module endomorphism of

k<X> which, given any element f of k<X>, sends the monomial lmσr in

f to lfσr but fixes all other monomials.

(ii) Let f ∈ k<X>. If the coefficient of lmσr in f is 0, then Rlσr(f) = f

and we say Rlσr is trivial on f . If every reduction under S is trivial on f ,

i.e., f = 0 or no monomial in f is divisible by any mσ, σ ∈ S, we say f

is reduced under S or S-reduced. It’s easy to see all S-reduced elements of

k<X> form a k-submodule, which is denoted by kR(S).

(iii) Let f ∈ k<X>, if there is a finite sequence of reductions R1, R2, . . . , Rl

under S such that Rl . . . R2R1(f) = d and d is S-reduced, then we say d is a

reduced form of f under S.

(iv) Let f ∈ k<X>, if for every infinite sequence of reductions R1, R2, . . .,

∃i ∈ N such that ∀j > i, Rj+1 is trivial on Rj . . . R2R1(f), then we say f

is reduction-finite. It’s easy to see, all reduction-finite elements form a k-

submodule of k<X> and if f is reduction-finite, f has a reduced form. We
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call f reduction-unique if it is reduction-finite and has a unique reduced form.

The unique reduced form of f under S is denoted by RS(f).

Remark 4.2.2. A reduction system S actually defines a reduction relation

→ on k<X> by

f
lσr−→ g ⇔ σ ∈ S, l, r ∈ <X>,Rlσr(f) = g and Rlσr is not trivial on f.

Hence we will make use of notations 4.1.2 to simplify the following discussion.

Definitions 4.2.3. (i) A 5-tuple (σ, τ, l, m, r) with σ, τ ∈ S, l, m, r ∈ <X>−
{1}, such that mσ = lm, mτ = mr, is called an overlap ambiguity of S. If

fσr ↓ lfτ , we say the overlap ambiguity is resolvable.

(ii) A 5-tuple (σ, τ, l,m, r) with σ, τ ∈ S, σ 6= τ , l, m, r ∈ <X>, such

that mσ = m, mτ = lmr, is called an inclusion ambiguity of S. If lfσr ↓ fτ ,

we say the overlap ambiguity is resolvable.

Definitions 4.2.4.(Weaker Monomial Partial Order) (i) In this chapter, by

a monomial partial order we mean a partial order ≤ on <X>such that

m1 ≤ m2 ⇒ lm1r ≤ lm2r, ∀l, r,m1, m2 ∈ <X>.

(ii) We say ≤ satisfies DCC if there is no infinite properly descending

chain in <X> w.r.t. ≤.

(iii) Given a reduction system S, if for all σ = (mσ, fσ) ∈ S, fσ is a linear

combination of monomials < mσ, then the monomial partial order ≤ is said

to be compatible with S.

Definition 4.2.5. Let ≤ be a monomial partial order on <X> and compat-

ible with the reduction system S. For any m ∈ <X>, define Im to be the

submodule of k<X> spanned by all l(mσ−fσ)r such that lmσr < m. For an

overlap(inclusion) ambiguity (σ, τ, l,m, r), if fσr−lfτ ∈ Ilmr(lfσr−fτ ∈ Ilmr),

then we say the ambiguity is resolvable relative to ≤.
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Lemma 4.2.6. Let ≤ be a monomial partial order on <X> and compatible

with the reduction system S. If≤ satisfies DCC on <X>, then every element

of k<X> is reduction-finite.

Proof: Since reduction-finite elements form a k-submodule of k<X>, we

only need show every monomial is reduction-finite. Assume that

N := {m ∈ <X>| m is not reduction−finite} 6= ∅,

then there is a minimal monomial m0 in N , since ≤ satisfies DCC. Then

there is some Rlσr which is not trivial on m0 such that Rlσr(m0) = lfσr.

By the compatibility of ≤ with S and the minimality of m0 in N , lfσr is a

linear combination of reduction-finite monomials < m0. Then m0 must be

also reduction-finite, a contradiction. Hence N = ∅, i.e., every monomial is

reduction-finite. ¤

Lemma 4.2.7.(i) ∀f, g ∈ k<X>, c ∈ k, if f, g are reduction-unique, so is

cf +g. Hence reduction-unique elements also form a k-submodule of k<X>.

Moreover, RS(cf +g) = cRS(f)+RS(g), thus we can regard RS as a k-linear

map from this submodule to the submodule kR(S) of S-reduce elements.

(ii) Let f, g, h ∈ k<X>, if for all monomials mf ,mg,mh occurring in

f, g, h respectively, mfmgmh is reduction-unique, then for any finite compo-

sition of reductions, denoted by R for short, fR(g)h is reduction-unique and

RS(fR(g)h) = RS(fgh).

Proof: A complete proof of (i) can be found in [3]. Here we give a complete

proof of (ii).

Claim 1: ∀ma,mb,mc ∈ <X>, if mambmc is reduction-unique, then for a

single reduction R, maR(mb)mc is reduction-unique too and RS(maR(mb)mc)

= RS(mambmc).
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Proof of the claim 1: Let R = Rlσr, notice that

maRlσr(mb)mc = Rmalσrmc(mambmc),

thus maRlσr(mb)mc must be reduction-finite. Moreover, suppose there is a

finite composition of reductions R′ such that R′(maRlσr(mb)mc) is S-reduced,

then

R′(maRlσr(mb)mc) = R′Rmalσrmc(mambmc) = RS(mambmc).

Hence R′(maRlσr(mb)mc) is unique and is RS(mambmc).

The following two claims are immediate results from (i) and claim 1.

Claim 2: Let f, g, h ∈ k<X>, if for all monomials mf , mg,mh occurring

in f, g, h respectively, mfmgmh is reduction-unique, then for a single reduc-

tion R, for all monomials mf , mR(g),mh occurring in f, R(g), h respectively,

mfmR(g)mh is reduction-unique.

Claim 3: Let f, g, h ∈ k<X>, if for all monomials mf ,mg,mh occurring in

f, g, h respectively, mfmgmh is reduction-unique, then for a single reduction

R, fR(g)h is reduction-unique and RS(fR(g)h) = RS(fgh)

Now given a finite composition of reductions, by claim 2, we can apply

claim 3 recursively, hence (ii) is proved. ¤

Lemma 4.2.8. Let ≤ be a monomial partial order on <X> and compatible

with the reduction system S, then any resolvable ambiguity is resolvable

relative to ≤.

Proof: The following fact is useful:

f
lσr−→ g ⇒ f − g = cl(mσ − fσ)r, (4.2.1)

where c ∈ k − {0}, σ ∈ S and l, r ∈ <X>.
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Now for a resolvable overlap ambiguity (σ, τ, l, m, r), fσr ↓ lfτ implies

fσr = f10 → f11 → . . . → f1a = f0,

lfτ = f20 → f21 → . . . → f2b = f0.

Hence

fσr − f0 =
a∑

i=1

cili(mσi − fσi)ri, and

lfτ − f0 =
b∑

j=1

cjlj(mσj − fσj)rj.

Since fσr and lfτ are linear combinations of monomials < mσr = lmr or

< lmτ = lmr, each limσiri < lmr and each ljmσjrj < lmr. Hence fσr− lfτ ∈
Ilmr, i.e., the ambiguity is resolvable relative to ≤.

For a resolvable inclusion ambiguity, proof will be similar thus is omitted.

¤
Example 4.2.9. The following example shows the converse of the above

lemma is not true. Let

S := {σ1 = (x4
2, x

2
1), σ2 = (x2

2, x1), σ3 = (x2
1, x1x2)}

be a reduction system of k<X>, where <X> =<x1, x2 >. ≤ is the deglex

with 1 < x2 < x1. Clearly ≤ is also a monomial partial order and compatible

with S. Consider the overlap ambiguity (σ1, σ1, x2, x
3
2, x2). Since we have

fσ1x2 − x2fσ1 = x2
1x2 − x2x

2
1 = x2(x

2
2 − x1)x1 − (x2

2 − x1)x2x1

+x1x2(x
2
2 − x1)− x1(x

2
2 − x1)x2 ∈ Ix5

2
,

the ambiguity is resolvable relative to ≤. However, the only possible non-
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trivial reduction sequences on fσ1x2 and x2fσ1 are as follows:

fσ1x2 = x2
1x2

σ3x2−−→ x1x2x2
x1σ2−−→ x2

1
σ3−→ x1x2,

x2fσ1 = x2x
2
1

x2σ3−−→ x2x1x2.

Therefore, we cannot have finite compositions of reductions such that fσ1x2 ↓
x2fσ1, i.e., the ambiguity is not resolvable.

In fact the above example can be illustrated by the following figure. No-

tice that in order to make the ambiguity resolvable, we need fσ1x2 ↓ x2fσ1,

i.e., we need two finite sequences of reductions leading from fσ1x2 and x2fσ1

to a common element of k<X>, but for the ambiguity resolvable relative to

≤, by the fact (4.2.1), we only need fσ1x2 and x2fσ1 are connected by finite

reductions staying “below” x5
2. Clearly the latter is a more general condition.
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2
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Theorem 4.2.10.(Bergman’s Diamond Lemma) If S is a reduction system

for k<X>, ≤ is a monomial partial order on <X> and compatible with S,
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≤ satisfies DCC, then the following conditions are equivalent:

(a)All ambiguities of S are resolvable;

(a’)All ambiguities of S are resolvable relative to ≤;

(b)All elements of k<X> are reduction-unique under S;

(c)As k-modules, k<X> = kR(S)
⊕

I, where I is the two-sided ideal of

k<X> generated by {mσ − fσ|σ ∈ S}.
Sketch of Proof: We follow the proof given by Bergman. Firstly, by lemma

4.2.6, every element of k<X> is reduction-finite, thus has a reduced form.

(b)⇒(c): By lemma 4.2.7(i), RS is a k-linear map from k<X> onto kR(S).

Hence, we only need show ker(RS) = I, i.e.,

f ∈ I ⇔ RS(f) = 0. (4.2.2)

By lemma 4.2.7(i)(ii), RS(l(mσ − fσ)r) = RS(lmσr) − RS(lfσr) = 0, thus

“⇒” of (4.2.2) is proved. The other direction in (4.2.2) can be proved by the

fact (4.2.1). Thus (b)⇒(c) is proved.

(c)⇒(b): Let RS(f) = f1 or f2, then by the fact (4.2.1), it’s easy to see that

f1 − f2 ∈ I
⋂

kR(S) = {0}.

(b)⇒(a): Given any overlap or inclusion ambiguity, by (b) we will have

fσr
∗−→ RS(lmr)

∗←− lfτ or lfσr
∗−→ RS(lmr)

∗←− fτ ,

thus the ambiguity is resolvable.

(a)⇒(a’): Use lemma 4.2.8.

(a’)⇒(b): By lemma 4.2.7(i), it’s sufficient to show all monomials are

reduction-unique. Assume that

N := {m ∈ <X>| m is not reduction−unique} 6= ∅,
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then there is a minimal monomial m0 in N , since ≤ satisfies DCC. If for

any σ, τ in S, l1, r1, l2, r2 in <X> such that m0 = l1mσr1 = l2mτr2 and

Rl1σr1(m0) 6= Rl2τr2(m0), we still have

RS(Rl1σr1(m0)) = RS(Rl2τr2(m0)), (4.2.3)

then m0 would be reduction-unique which leads to a contradiction.

To prove (4.2.3), we assume without loss of generality that deg(l1) 6
deg(l2), then we have three cases for m0 = l1mσr1 = l2mτr2,

Case 1: ∃w ∈ <X> such that m0 = l1mσwmτr2. Then (4.2.3) can be

proved by lemma 4.2.7(ii).

Case 2: ∃ an overlap ambiguity (σ, τ, l, m, r) such that m0 = l1lmrr2.

Then by (a’), we can show

f = Rl1σr1(m0)−Rl2τr2(m0) ∈ Im0 and RS(f) = 0,

hence (4.2.3) is proved.

Case 3: The ambiguity is an inclusion ambiguity. The discussion is similar

to the case 2. ¤
Remark 4.2.11. Comparing with Newman’s diamond lemma, the strength-

ening of Bergman’s diamond lemma lies in two aspects.

(i) We don’t need verify DCC or diamond condition for all elements in

k<X>. Instead, we only need DCC of a monomial partial order and the di-

amond condition on “minimal nontrivial ambiguously reducible monomials”.

(ii) From the discussion in the example 4.2.9, we can see the condition

(a’) in Bergman’s diamond lemma is a further improvement of the diamond

condition.
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4.3 Relations between Gröbner Bases and Di-

amond Lemma(s)

Firstly, we give a brief comment on the relation between Gröbner bases theory

and Newman’s diamond lemma.

T. Becker and V. Weispfenning have combined general reduction theory

and Newman’s diamond lemma in their introduction of commutative Gröbner

bases theory [8]. The techniques used there are actually applicable to both

commutative and noncommutative Gröbner bases theory.

1. We need to define polynomial reductions more carefully by requiring

all polynomials given in the unique forms(see (2.1.1)(3.1.1)), then it’s easy

to see, w.r.t. a given set G and a given monomial order, the new definition

of polynomial reductions does define a strictly antisymmetric (reduction)

relation on k[x1, x2, . . . , xn] or k<X>, denoted by
G−→.

2. To apply Newman’s diamond lemma, we need some techniques to de-

duce the DCC of the reductions from the DCC of the monomial order. We

can apply Bergman’s technique which regards a reduction as an endomor-

phism and then proves every element is reduction-finite(see lemma 4.2.6).

Or, we can extend the monomial order to a partial order or a quasi-order ¹
on all polynomials(see [8]) such that ¹ satisfies DCC and

f
g−→ h ⇒ f Â h, ∀f, g, h ∈ k[x1, x2, . . . , xn]− {0} (or k<X>− {0}),

then we have DCC on all reductions.

3. After the above preparations have been done, we can apply New-

man’s diamond lemma and get some new characterizations of Gröbner bases.

The following result is for noncommutative Gröbner bases. For commutative

Gröbner bases, see [8].
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Theorem 4.3.1. Given G ⊆ k<X>, let ≤ be a monomial order on <X>,

let
G−→ denote the polynomial reduction modulo G w.r.t. ≤. The following

conditions are equivalent:

(1)
G−→ satisfies local confluence condition(diamond condition);

(2)
G−→ satisfies confluence condition;

(3) Every element in k<X> has a unique reduced form w.r.t.G;

(4)
G−→ satisfies Church-Rosser property.

Proof: See theorem 4.1.6(a variation of Newman’s diamond lemma). ¤
Clearly, the above (3) is the characterization (e) in theorem 3.6.1. But

notice that in the proof (e)⇒(g) in theorem 3.6.1, we did selective poly-

nomial reductions when reducing h2 − h1. That is allowed there but not

allowed by our new definition of polynomial reductions, since the new defi-

nition requires us to do coalescence and cancellation of terms to get unique

forms of related polynomials before each reduction. However, even under

the new definition, we will show that all the conditions in theorem 3.6.1 are

still equivalent(see theorem 4.3.4 and remark 4.3.5(i)). Therefore, the above

(1)(2)(3)(4) are indeed equivalent to characterizations (a)–(h) in theorem

3.6.1 and are new characterizations of noncommutative Gröbner bases.

From the above, we can see, among the characterizations (a)–(h) in the-

orem 3.6.1, only (e) is obviously contained in Newman’s diamond lemma.

Next let’s turn to Bergman’s diamond lemma. We will see that most impor-

tant characterizations in theorem 3.6.1 are contained in Bergman’s diamond

lemma.

Let k<X> denote the general noncommutative polynomial ring, where

k is a field and <X> is a free monoid generated by Xn = {x1, x2, . . . , xn}.
To apply Bergman’s diamond lemma, we assume all polynomials are given
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in the unique forms. Let ≤ be a monomial order on <X>. Let G ⊆ k<X>.

Notice that: if G is a Gröbner basis in k<X> w.r.t. ≤, then so is G′ =

{ 1
lc(g)

g| g ∈ G}. Hence, without loss of generality, we assume all g in G is

monic, i.e., lc(g) = 1,∀g ∈ G. Define a reduction system S w.r.t. ≤ and G,

S := {σ = ( mσ = lm(g), fσ = lm(g)− g )| g ∈ G}.

Clearly ≤ is compatible with S and each polynomial reduction modulo G

corresponds to a Bergman’s “endomorphism” reduction under S. This im-

plies that we may translate definitions and results in section 4.2 to our

discussion here. In fact, most translations are obvious. For example, “S-

reduced” is equivalent to “reduced w.r.t. G”, kR(S) = kR(G) and RS(f) =

R(f, G). In particular, let’s see the correspondence between ambiguities and

S-polynomials.

Correspondence Between Ambiguities and S-polynomials

Given an S-polynomial of (g1, g2) ∈ G2,

S(g1, g2)[L1, R1, L2, R2] = L1g1R1 − L2g2R2,

where (L1, R1, L2, R2) ∈ MS(lm(f), lm(g)).

Case 1: (L1, R1, L2, R2) = (1, R1, L2, 1), ∃w 6= 1 such that wR1 = lm(g2)

and L2w = lm(g1). This corresponds to an overlap ambiguity (σ, τ, L2, w,R1)

such that mσ = lm(g1), mτ = lm(g2). Notice that

fσr − lfτ = −S(g1, g2)[L1, R1, L2, R2].

Case 2: (L1, R1, L2, R2) = (L1, 1, 1, R2), ∃w 6= 1 such that wR2 = lm(g1)

and L1w = lm(g2). This corresponds to an overlap ambiguity (σ, τ, L1, w,R2)

such that mσ = lm(g2), mτ = lm(g1). Notice that

fσr − lfτ = S(g1, g2)[L1, R1, L2, R2].
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Case 3: (L1, R1, L2, R2) = (1, 1, L2, R2), lm(g1) = L2lm(g2)R2. This

corresponds to an inclusion ambiguity (σ, τ, L2, lm(g2), R2) such that mσ =

lm(g2), mτ = lm(g1). Notice that

lfσr − fτ = S(g1, g2)[L1, R1, L2, R2].

Case 4: (L1, R1, L2, R2) = (L1, R1, 1, 1), lm(g2) = L1lm(g1)R1. This

corresponds to an inclusion ambiguity (σ, τ, L1, lm(g1), R1) such that mσ =

lm(g1), mτ = lm(g2). Notice that

lfσr − fτ = −S(g1, g2)[L1, R1, L2, R2].

Conversely, given an overlap ambiguity (σ, τ, l, m, r), by the definition of

S, ∃g1, g2 ∈ G such that mσ = lm(g1) = lm, mτ = lm(g2) = mr. Then

(1, r, l, 1) ∈ MS(lm(g1), lm(g2)) and notice that

fσr − lfτ = −S(g1, g2)[1, r, l, 1].

Given an inclusion ambiguity (σ, τ, l, m, r), ∃g1, g2 ∈ G such that mσ =

lm(g1) = m, mτ = lm(g2) = lmr. Then (l, r, 1, 1) ∈ MS(lm(g1), lm(g2)) and

notice that

lfσr − fτ = −S(g1, g2)[l, r, 1, 1].

Although the above correspondences are not required to be one-to-one,

they are sufficient for us to deduce the following equivalence.

Claim 4.3.2.(i) All ambiguities of S are resolvable. ⇔
∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

L1(lm(g1)− g1)R1 ↓ L2(lm(g2)− g2)R2.

(ii) All ambiguities of S are resolvable relative to ≤. ⇔
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∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

S(g1, g2)[L1, R1, L2, R2] =
t∑

i=1

ciligiri and

max
16i6t

{lilm(gi)ri} < L1lm(g1)R1 = L2lm(g2)Ri,

where t ∈ N − {0}, ci ∈ k − {0}, li, ri ∈ <X>, gi ∈ G and not necessarily

pairwise distinct ∀ i, 1 6 i 6 t.

With the above results, we can translate Bergman’s diamond lemma as

follows.

Theorem 4.3.3. Given G ⊆ k<X>, let I =< G > be the ideal generated

by G, let ≤ be a monomial order on <X>. The following conditions are

equivalent:

(1) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

L1(lm(g1)− g1)R1 ↓ L2(lm(g2)− g2)R2.

(2) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

S(g1, g2)[L1, R1, L2, R2] =
t∑

i=1

ciligiri and

max
16i6t

{lilm(gi)ri} < L1lm(g1)R1 = L2lm(g2)Ri,

where t ∈ N − {0}, ci ∈ k − {0}, li, ri ∈ <X>, gi ∈ G and not necessarily

pairwise distinct ∀ i, 1 6 i 6 t.

(3) ∀f ∈ k<X>, the reduced form of f w.r.t. G is unique;

(4) As k-vector spaces, k<X> = kR(G)
⊕

I.

Proof: By the above discussion, the proof of Bergman’s diamond lemma has

actually shown that (3)⇒(4)⇒(3) and (3)⇒(1)⇒(2)⇒(3). ¤

Moreover, in the proof of Bergman’s diamond lemma, (b)⇒(c) contains

the following condition(see (4.2.2)).
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(5) f ∈ I ⇔ R(f, G) = 0.

By the proof there, we can see (3)⇒(5)⇒(4)⇒(3).

Notice that all S-polynomials are in the ideal I, hence (5) implies the

following condition.

(6) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

R(S(g1, g2)[L1, R1, L2, R2], G) = 0.

From (6), it’s easy to deduce a condition about standard representations.

(7) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

S(g1, g2)[L1, R1, L2, R2] has a standard representation w.r.t. G.

Notice that (7) actually is a strengthening of (2), so (7) implies (2)

obviously. Therefore we have a cycle (3)⇒(5)⇒(6)⇒(7)⇒(2)⇒(3).

So far, most important characterizations of noncommutative Gröbner

bases have been deduced from Bergman’s diamond lemma.

At last, we conclude our discussion by listing all characterizations we have

found for noncommutative Gröbner bases and summarize the proof based on

diamond lemmas.

Theorem 4.3.4. Assume (?) all polynomials of k<X> are given in the

unique forms (3.1.1). Given G ⊆ k<X>, let I =<G> be the ideal generated

by G, let ≤ be a monomial order on <X>, let
G−→ denote the polynomial

reduction modulo G w.r.t.≤. The following conditions are equivalent:

(1) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

L1(lm(g1)− g1)R1 ↓ L2(lm(g2)− g2)R2.
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(2) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

S(g1, g2)[L1, R1, L2, R2] =
t∑

i=1

ciligiri and

max
16i6t

{lilm(gi)ri} < L1lm(g1)R1 = L2lm(g2)Ri,

where t ∈ N − {0}, ci ∈ k − {0}, li, ri ∈ <X>, gi ∈ G and not necessarily

pairwise distinct ∀ i, 1 6 i 6 t.

(3) ∀f ∈ k<X>, the reduced form of f w.r.t. G is unique.

(4) As k-vector spaces, k<X> = kR(G)
⊕

I.

(5) f ∈ I ⇔ R(f, G) = 0.

(6) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

R(S(g1, g2)[L1, R1, L2, R2], G) = 0.

(7) ∀(g1, g2) ∈ G2, ∀(L1, R1, L2, R2) ∈ MS(lm(g1), lm(g2)),

S(g1, g2)[L1, R1, L2, R2] has a standard representation w.r.t. G.

(8)
G−→ satisfies local confluence condition(diamond condition).

(9)
G−→ satisfies confluence condition.

(10)
G−→ satisfies Church-Rosser property.

(11) lm(G) = lm(I).

(12) ∀f ∈ I − {0}, ∃g ∈ G such that lm(g)| lm(f).

(13) f ∈ I ⇔ f has a standard representation w.r.t. G.

Proof: From Bergman’s diamond lemma, we have deduced

(3) ⇒ (5) ⇒ (4) ⇒ (3),

(3) ⇒ (1) ⇒ (2) ⇒ (3) and

(3) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (2) ⇒ (3).

Hence (1)⇔(2)⇔(3)⇔(4)⇔(5)⇔(6)⇔(7).
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Newman’s diamond lemma ensures (3)⇔(8)⇔(9)⇔(10).

The proofs in theorem 3.6.1 for (11)⇒(12)⇒(5) and (13)⇒(11) are

still effective under the assumption (?). It’s obvious that (5)⇒(13). Hence,

(11)⇔(12)⇔(5) ⇔(13)⇔(11).

To sum up, all the conditions are equivalent. ¤
Remarks 4.3.5. (i) The above theorem contains all characterizations in the-

orem 3.6.1. This implies that theorem 3.6.1 is still true under the assumption

(?). In other word, the assumption (?) has no effect on the characterizations

of Gröbner bases.

(ii) Newman’s diamond lemma and Bergman’s diamond lemma actually

form a common theoretical foundation of characterizations of both commu-

tative and noncommutative Gröbner bases. This explains why theorem 2.4.2

and theorem 3.6.1 are almost the same.
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List of Notations

N set of natural numbers including 0, page 4

k[x1, x2, . . . , xn] commutative polynomial ring, page 4

Mn or M set of commutative monomials, page 4

<Xn > or <X> set of noncommutative monomials(free monoid),
page 19, page 56

k<Xn>or k<X> noncommutative polynomial ring(free algebra)
page 20, page 56

<X>2 set of ordered pairs of elements in <X>, page 37

<X>4 set of ordered 4-tuples of elements in <X>, page 37

<G> ideal generated by G, page 7, page 22

S × S set of ordered pairs of elements in set S, page 5

lex lexicographical order, page 6, page 21

deglex degree lexicographical order, page 6, page 21

degrevlex degree reverse lexicographical order, page 7, page 21
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deg(m) degree of monomial m, page 4, page 20

deg(g) degree of leading monomial of g, page 51

lt(f) leading term of f , page 7, page 22

lm(f) leading monomial of f , page 7, page 22

lc(f) leading coefficient of f , page 7, page 22

lm(G) leading monomial ideal of set G, page 7,
page 22

M(G) set of all monomials in lm(G), page 12,
page 31

kR(G) set of all reduced polynomials w.r.t. G,
page 12, page 31

f
g−→ h f reduces to h modulo g, page 11, page 31

f
G−→ ht f reduces to ht modulo G, page 12, page 31

R(f, G) unique reduced form of f w.r.t. G, page 12,
page 31

lcm(m1,m2) least common multiple, page 15

S(f, g) S-polynomial of f and g, page 15

T (m1,m2) set of 4-tuples (l1, r1, l2, r2) ∈ <X>4

satisfying l1m1r1 = l2m2r2, page 37

MS(m1,m2) set of matches of m1 and m2, page 38

S(f, g)[L1, R1, L2, R2] noncommutative S-polynomial of f and g,
page 39
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⋃̇
disjoint union, page 52

a ↓ b, a
∗↔ b, etc. page 55

Rlσr endomorphism reduction, page 57

kR(S) set of all S-reduced elements, page 57

RS(f) unique reduced form of f under S, page 58

f
lσr−→ g Rlσr(f) = g, page 58

(σ, τ, l, m, r) overlap or inclusion ambiguity of S, page 58

Im page 58

G−→ polynomial reduction modulo G, page 65,
page 66

DCC descending chain condition, page 5, page 55

ACC ascending chain condition, page 8, page 23

77


