Gröbner Bases Theory and The Diamond Lemma

by
Wenfeng Ge
A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Pure Mathematics

Waterloo, Ontario, Canada, 2006
(c) Wenfeng Ge 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

Commutative Gröbner bases theory is well known and widely used. In this thesis, we will discuss thoroughly its generalization to noncommutative polynomial ring $k<X>$ which is also an associative free algebra. We introduce some results on monomial orders due to John Lawrence and the author. We show that a noncommutative monomial order is a well order while a onesided noncommutative monomial order may not be. Then we discuss the generalization of polynomial reductions, S-polynomials and the characterizations of noncommutative Gröbner bases. Some results due to Mora are also discussed, such as the generalized Buchberger's algorithm and the solvability of ideal membership problem for homogeneous ideals. At last, we introduce Newman's diamond lemma and Bergman's diamond lemma and show their relations with Gröbner bases theory.

Acknowledgments

I would like to give sincere thanks to my supervisor Professor John Lawrence who gave me a lot of advice and great ideas during my work on this thesis. Also I would like to thank my thesis readers Professor Ross Willard and Professor Peter Hoffman for taking time to read my thesis and giving me helpful comments and suggestions. Thanks also go to Professor Che Tat Ng, Shonn Martin and Lis D'Alessio for all the kindness and help they gave me.

I would also like to thank Kai Cheong Chan, Denglin Zhou and his wife Ying Li, Shengli Wu for their help and friendship during my three years at Waterloo.

Finally I would like to thank my family: my grandfather, my parents, my wife and my little sister. Without their love and support, I would never have achieved my goals.

Dedication

This thesis is dedicated to my wife Yali Hu and our coming baby.

Contents

1 Introduction 1
2 Commutative Gröbner Bases Theory 4
2.1 Notations and Basic Definitions 4
2.2 Noetherian Rings and Dickson's Lemma 8
2.3 Polynomial Reduction 11
2.4 Characterizations of Gröbner Bases 15
2.5 Buchberger's Algorithm and One Application 16
3 Generalization to Noncommutative Polynomial Rings 19
3.1 Notations and Basic Definitions 19
3.2 Infinitely Generated Ideals of $k<X\rangle$ 23
3.3 Discussion on Monomial Orders 24
3.4 Generalization of Polynomial Reduction 31
3.5 Noncommutative S-polynomials 37
3.6 Characterizations of Noncommutative Gröbner Bases 40
3.7 Generalization of Buchberger's Algorithm 47
4 Diamond Lemma(s) 54
4.1 Newman's Diamond Lemma 54
4.2 Bergman's Diamond Lemma 56
4.3 Relations between Gröbner Bases and Diamond Lemma(s) 65
Bibliography 73
List of Notations 75

Chapter 1

Introduction

Gröbner bases and Buchberger's algorithm were introduced by B.Buchberger in 1965[2]. Today they are well-known and widely applied to many problems in mathematics, computer science and engineering. For a basic example in commutative algebra, ideal membership problem for commutative polynomial rings, or equivalently saying, word problem for commutative algebra presentations can be solved by Gröbner bases theory(see section 2.5). Since Buchberger's Gröbner bases theory mostly concerns commutative algebra, we call it commutative Gröbner bases theory.

In 1978, G.M.Bergman introduced his diamond lemma for ring theory [3], which is an analogue and strengthening of Newman's diamond lemma [5]. As T.Mora has pointed out in [9], Bergman's diamond lemma essentially contains a generalization of commutative Gröbner bases theory to general noncommutative polynomial rings which are also associative free algebras. In [9](1986) and [10](1994), T.Mora made the generalization precise. In this thesis, we call this generalization ${ }^{1}$ noncommutative Gröbner bases theory.

[^0]The aim of this thesis is to discuss thoroughly the above noncommutative Gröbner bases theory and show explicitly the relations among commutative Gröbner bases theory, noncommutative Gröbner bases theory, Bergman's diamond lemma and Newman's diamond lemma.

The thesis is organized as follows.
In chapter 2 , we give a brief introduction to commutative Gröbner bases theory as the background. Most important definitions, results and algorithms of the theory are included but some proofs are omitted. Interested readers are referred to [12] [8] [7] for more information on this theory.

In chapter 3, we generalize the definitions, results and algorithms given in chapter 2 to general noncommutative polynomial rings. Most results are based on Mora's work [9] [10], but we give more complete proofs of the results and explain more details of the generalization such as non-commutative polynomial reductions and noncommutative S-polynomials. In particular, we believe the results on monomial orders are new and they are due to my supervisor Prof. John Lawrence. We show a result about monomial partial order and then we prove that a noncommutative monomial order is a well order. We also give an example which shows that a one-sided noncommutative monomial order may not be a well order.

In chapter 4, we introduce Newman's diamond lemma firstly and then Bergman's diamond lemma. After that we show the relation between Gröbner bases theory and diamond lemma(s). We give a brief comment on the relation between Gröbner bases theory and Newman's diamond lemma and then deduce most characterizations of noncommutative Gröbner bases from Bergman's diamond lemma.

We need point out that, the emphasis of this thesis is on theoretical aspect
not on computational aspect, although the latter is also very important, especially in practice. All the algorithms in this thesis are only explanatory, not written in formal programming languages. Topics on how to improve the efficiency of related algorithms are not covered. Readers are assumed to have a basic knowledge of rings(especially polynomial rings), vector spaces, modules and algebras.

Chapter 2

Commutative Gröbner Bases Theory

2.1 Notations and Basic Definitions

We let \mathbb{N} denote the set of natural numbers with $0 \in \mathbb{N}$. Let k be a field, $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ denote the commutative polynomial ring in n variables over $k, n \in \mathbb{N}-\{0\}$. For $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, the following facts are known:
(1) $\forall f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]-\{0\}, f=\sum_{i=1}^{t} c_{i} x_{1}{ }^{\beta_{i_{1}}} x_{2}{ }^{\beta_{i_{2}}} \ldots x_{j}{ }^{\beta_{i_{j}}} \ldots x_{n}{ }^{\beta_{i_{n}}}$,
where $t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, \beta_{i_{j}} \in \mathbb{N}, 1 \leqslant j \leqslant n, 1 \leqslant i \leqslant t$. Conventionally, $c_{i} x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{i_{2}}} \ldots x_{j}{ }^{\beta_{i j}} \ldots x_{n}{ }^{\beta_{i n}}$ is called a term, c_{i} is called the coefficient of the term, $x_{1}{ }^{\beta_{i_{1}}} x_{2}{ }^{\beta_{i_{2}}} \ldots x_{j}{ }^{\beta_{i}} \ldots x_{n}{ }^{\beta_{i_{n}}}$ is called a monomial, $\sum_{j=1}^{n} \beta_{i_{j}}$ is called the degree of the monomial. For any monomial m, the degree of m is denoted by $\operatorname{deg}(m)$. The set of all monomials in n variables is denoted by M_{n} or simply M when n is not necessary to be indicated. Note that $\forall j$ with $1 \leqslant j \leqslant n$, we let $x_{j}{ }^{0}=1 \in M$. Given $m_{1}, m_{2} \in M$, if $\exists m_{3} \in M$ such that $m_{2}=m_{3} m_{1}$, we say m_{2} is a multiple of m_{1}, or m_{1} divides m_{2}, denoted by $m_{1} \mid m_{2}$.
(2) $\forall f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]-\{0\}$, after all possible coalescence and cancel-
lation of terms, f has the uniqnue form as follows,

$$
\begin{equation*}
f=\sum_{i=1}^{t} c_{i} m_{i} \tag{2.1.1}
\end{equation*}
$$

where $t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, m_{i} \in M$ and $m_{i} \neq m_{j} \forall 1 \leqslant i \neq j \leqslant t$. Here, the uniqueness is up to a permutation on the terms in the form.

Next, before introducing the definition of monomial order, let's look at some prerequisite definitions.
Definitions 2.1.1. (i) Let S be a nonempty set, $S \times S$ denote the set of all ordered pairs (a, b) of elements a, b in S. A subset R of S is called a (binary) relation on S. Usually, when $(a, b) \in R$, we write $a R b$.
(ii) Relation \preceq on S is called a partial order if it satisfies the following properties:

- reflexivity : $a \preceq a, \forall a \in S$;
- transitivity : $a \preceq b$ and $b \preceq c \Rightarrow a \preceq c, \quad \forall a, b, c \in S$;
- antisymmetry : $a \preceq b$ and $b \preceq a \Rightarrow a=b, \forall a, b \in S$.

The strict part of \preceq, denoted by \prec, is defined by $a \prec b \Leftrightarrow a \preceq b$ and $a \neq b$. The inverse of \preceq, denoted by \succeq, is defined by $a \succeq b \Leftrightarrow b \preceq a$.
(iii) A partial order on S is said to be a total order , usually denoted by \leq, if it satisfies: $\forall a, b \in S, a \leq b$ or $b \leq a$. A total order \leq on S is said to be a well order if it satisfies descending chain condition $(D C C)$, i.e., there is no infinite strictly descending chain $a_{1}>a_{2}>\ldots$ in S with respect to(w.r.t.) \leq.
(iv) Let \preceq be a partial order on $S, T \subseteq S$, if for some $t \in T, t \preceq a \forall a \in T$, we say t is a least element of T. Then a well order on S is also defined by
a partial order \preceq with each nonempty subset of S having a least element w.r.t. \preceq.

Remarks 2.1.2. (i) For the proof of equivalence of two definitions of well order, see [8]. (ii) Usually, S is said to be partially ordered(totally ordered, well ordered) by \preceq, if \preceq is a partial order(total order, well order) defined on S. The ordered set S w.r.t. \preceq is denoted by (S, \preceq).

Now let's return to $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
Definition 2.1.3. \leq is said to be a monomial order on the set of all monomials M, if it satisfies the following conditions:
(i) M is totally ordered by \leq;
(ii) $1 \leq m, \forall m \in M$;
(iii) $m_{1} \leq m_{2} \Rightarrow m m_{1} \leq m m_{2}, \forall m, m_{1}, m_{2} \in M$.

Let \leq be a monomial order on M, suppose $m_{1}, m_{2}, m_{3} \in M$, and $m_{2}=$ $m_{3} m_{1}$, by the above condition(ii) $1 \leq m_{3}$, then by the condition(iii) $m_{1} \leq$ $m_{3} m_{1}=m_{2}$. Hence we can say $m_{1} \mid m_{2} \Rightarrow m_{1} \leq m_{2}$. This shows the monomial order relation is an extension of the division relation.

Examples 2.1.4. Let $<_{N}$ be the natural order on \mathbb{N}. The following are three frequently used monomial orders. (Verifications of conditions (i)(ii)(iii) in the above definition are omitted.)
(1)The lexicographical order(abbreviated as lex) on M with $x_{1}>x_{2}>$ $\ldots>x_{n}$. In the lex, $x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \ldots x_{n}{ }^{\alpha_{n}}<x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}} \Leftrightarrow \alpha_{1}=\beta_{1}, \alpha_{2}=$ $\beta_{2}, \ldots, \alpha_{l}=\beta_{l}, \alpha_{l+1}<_{N} \beta_{l+1}$, for some l.
(2)The degree lexicographical order(abbreviated as deglex) on M with $x_{1}>x_{2}>\ldots>x_{n}$. In the deglex, for all m_{1}, m_{2} in $M, m_{1}<m_{2} \Leftrightarrow$ either $\operatorname{deg}\left(m_{1}\right)<_{N} \operatorname{deg}\left(m_{2}\right)$ or $\operatorname{deg}\left(m_{1}\right)=\operatorname{deg}\left(m_{2}\right)$ and $m_{1}<_{\text {lex }} m_{2}$, where
$<_{l e x}$ is the lexicographical order with $x_{1}>x_{2}>\ldots>x_{n}$.
(3)The degree reverse lexicographical order(abbreviated as degrevlex) on M with $x_{1}>x_{2}>\ldots>x_{n}$. In the degrevlex, let $m_{1}=x_{1}{ }^{\alpha_{1}} x_{2}{ }^{\alpha_{2}} \ldots x_{n}{ }^{\alpha_{n}}$, $m_{2}=x_{1}{ }^{\beta_{1}} x_{2}{ }^{\beta_{2}} \ldots x_{n}{ }^{\beta_{n}}$, then $m_{1}<m_{2} \Leftrightarrow$ either $\operatorname{deg}\left(m_{1}\right)<_{N} \operatorname{deg}\left(m_{2}\right)$ or $\operatorname{deg}\left(m_{1}\right)=\operatorname{deg}\left(m_{2}\right)$ and $\alpha_{n}=\beta_{n}, \alpha_{n-1}=\beta_{n-1}, \ldots, \alpha_{l}=\beta_{l}, \alpha_{l-1}>_{N} \beta_{l-1}$, for some l.

Given any nonzero polynomial f, f can be written in the unique form (2.1.1). Now let M be totally ordered by some monomial order \leq, clearly there is a permutation on all terms in (2.1.1) such that $f=\sum_{i=1}^{t} c_{i} m_{i}$, and $m_{1}>m_{2}>\ldots>m_{t}$. In this case, we call $c_{1} m_{1}$ the leading term of f, denoted by $l t(f) ; m_{1}$ the leading monomial of f, denoted by $\operatorname{lm}(f) ; c_{1}$ the leading coefficient of f, denoted by $l c(f)$.

Definition 2.1.5. Given any subset G of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, we define the leading monomial ideal of G w.r.t. some monomial order \leq to be

$$
\begin{aligned}
\operatorname{lm}(G): & =<\operatorname{lm}(g) \mid g \in G> \\
& =\left\{\sum_{i=1}^{t} f_{i} \operatorname{lm}\left(g_{i}\right) \mid t \in \mathbb{N}-\{0\}, f_{i} \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right], g_{i} \in G\right\}
\end{aligned}
$$

Definition 2.1.6. Given a monomial order on M, let G be a finite subset of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, if $\operatorname{lm}(G)=\operatorname{lm}(<G>)$, we say G is a Gröbner basis (of the ideal $<G>$). If a finite set $G \subseteq$ ideal $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\operatorname{lm}(G)=\operatorname{lm}(I), G$ is called a Gröbner basis of I.

Remarks 2.1.7. (i) We do not need $I=\langle G\rangle$ in the above definition. Instead, we will prove $\operatorname{lm}(G)=\operatorname{lm}(I) \Rightarrow I=<G>$ in theorem 2.2.11. (ii) Gröbner basis has different characterizations (see section 2.4) and every characterization can work as the definition.

Next, let's discuss some fundamental results.

2.2 Noetherian Rings and Dickson's Lemma

We start from general commutative rings. Let R always denote a commutative ring in this section.

Definition 2.2.1. Ring R is said to be Noetherian if it satisfies the ascending chain condition $(A C C)$ on ideals i.e.,there is no infinite properly ascending chain of ideals $I_{1} \subsetneq I_{2} \subsetneq \ldots$ in R.

Definition 2.2.2. An ideal I of $\operatorname{ring} R$ is said to be finitely generated, if $\exists a_{1}, a_{2}, \ldots, a_{s} \in I$, such that $I=<a_{1}, a_{2}, \ldots, a_{s}>=\left\{\sum_{i=1}^{s} r_{i} a_{i} \mid r_{i} \in R\right\}$.

Lemma 2.2.3. Ring R is Noetherian iff every ideal of R is finitely generated. Proof:" \Rightarrow " Zero ideal is trivially finitely generated. Suppose a nonzero ideal I is not finitely generated. Select $a_{1} \in I$, then $<a_{1}>\subsetneq I$. Next select $a_{2} \in I-<a_{1}>$, we see $<a_{1}>\subsetneq<a_{1}, a_{2}>\subsetneq I$. Then we can select $a_{3} \in I-<a_{1}, a_{2}>, \ldots$ Obviously, since I is not finitely generated, the process can be continued without termination. Hence we would have an infinite ascending chain of ideals $<a_{1}>\subsetneq<a_{1}, a_{2}>\subsetneq \ldots$ in R. But R is Noetherian, a contradiction. So every ideal of R is finitely generated.
" \Leftarrow " Suppose R is not Noetherian, then there is an infinite chain $I_{1} \subsetneq I_{2} \subsetneq \ldots$ in R. Let $I=\bigcup_{i=1}^{\infty} I_{i}$, it's easy to see I is also an ideal of R. Then $\exists a_{1}, a_{2}, \ldots, a_{s} \in I$, such that $I=<a_{1}, a_{2}, \ldots, a_{s}>$. Notice that for some sufficient large $l, a_{1}, a_{2}, \ldots, a_{s} \in I_{l}$, then $I \subseteq I_{l} \subsetneq I_{l+1} \subseteq I$. It's a contradiction. Therefore R is Noetherian.

The next theorem is well-known and a complete proof for it is not short, thus the proof is omitted here. Readers can refer to [11] or [12] for the proof. Theorem 2.2.4.(Hilbert Basis Theorem) If R is Noetherian, so is $R[x]$.

Notice that $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]=k\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]\left[x_{n}\right] \forall n \in \mathbb{N}-\{0\}$ and the
field k is trivially noetherian, by applying Hilbert Basis Theorem recursively, we can see the polynomial ring $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is Noetherian $\forall n \in \mathbb{N}-\{0\}$. By combining this result with lemma 2.2.3, we have the following theorem.
Theorem 2.2.5. $\forall n \in \mathbb{N}-\{0\}$, the polynomial ring $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is Noetherian and every ideal of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is finitely generated.

Corollary 2.2.6. Let I be a nonzero ideal of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, suppose I is generated by a nonempty set S, then \exists finite $S^{\prime} \subseteq S$ such that $I=<S>$ $=<S^{\prime}>$.

Proof: By theorem 2.2.5, $\exists a_{1}, a_{2}, \ldots, a_{t} \in I$, such that $I=<a_{1}, a_{2}, \ldots, a_{t}>$. Since $I=<S>, \exists$ finite $S_{i} \subseteq S$ such that $a_{i} \in<S_{i}>, \forall i$. Then let $S^{\prime}=$ $\bigcup_{i=1}^{t} S_{i}$, clearly finite $S^{\prime} \subseteq S$ and $I=<a_{1}, a_{2}, \ldots, a_{t}>\subseteq<S^{\prime}>\subseteq<S>=I$. We're done.

If we let the set S in corollary 2.2 .6 contain only monomials, we have a result called Dickson's Lemma.
Theorem 2.2.7.(Dickson's Lemma) Let S be a nonempty set of monomials in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, then \exists finite $S^{\prime} \subseteq S$ such that $<S>=<S^{\prime}>$, or equivalently saying, \exists finite $S^{\prime} \subseteq S, \forall m \in S, \exists m^{\prime} \in S^{\prime}$ such that m is a multiple of m^{\prime}.

Proof: The first statement $\langle S\rangle=<S^{\prime}>$ is obvious by the corollary 2.2.6. Notice the fact that

$$
m \in<S^{\prime}>\Rightarrow m=\sum_{i=1}^{t} c_{i} a_{i} m_{i}
$$

where a_{i}, m_{i} are monomials, $m_{i} \in S^{\prime}, c_{i} \in k$ and $c_{i}=0$ except for those i with $a_{i} m_{i}=m$, then we can see $m \in<S^{\prime}>\Leftrightarrow m$ is a multiple of some member m^{\prime} of S^{\prime}. Therefore the second statement is equivalent to $\left.\langle S\rangle=<S^{\prime}\right\rangle$.

Next we prove some results based on Dickson's Lemma.
Theorem 2.2.8. (Existence of Gröbner Bases for Ideals) For any nonzero ideal I of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, given any monomial order \leq on M, there exists some finite $G \subseteq I$ such that $\operatorname{lm}(G)=\operatorname{lm}(I)$
Proof: By definition, $\operatorname{lm}(I)=<S>$ where $S=\{\operatorname{lm}(f) \mid f \in I\}$. By Dickson's Lemma, \exists finite $S^{\prime}=\left\{\operatorname{lm}\left(f_{1}\right), \operatorname{lm}\left(f_{2}\right), \ldots, \operatorname{lm}\left(f_{l}\right)\right\} \subseteq S$ such that $<S>=<S^{\prime}>$. Let $G=\left\{f_{1}, f_{2}, \ldots, f_{l}\right\}$, clearly $G \subseteq I$ and $\operatorname{lm}(G)=\operatorname{lm}(I)$.

Theorem 2.2.9. Every monomial order \leq on M is a well order.
Proof: Let S be a nonempty subset of M, we will show S has a least element w.r.t. \leq, then by the definition $2.1 .1(\mathrm{iv}), \leq$ is a well order.

By Dickson's Lemma, \exists finite $S^{\prime} \subseteq S, \forall m \in S, \exists m^{\prime} \in S^{\prime}$ such that m is a multiple of m^{\prime}. Because S^{\prime} is finite, \leq is known to be a total order, then S^{\prime} has a least element m_{0}. Now $\forall m \in S, \exists m^{\prime} \in S^{\prime}$,such that $m=m^{\prime} h$, where $h \in M$. Clearly $h \geq 1$ by condition(ii) in the definition 2.1.3. By condition (iii), $m=m^{\prime} h \geq m^{\prime} \geq m_{0}$. Hence m_{0} is a least element of S. We're done.

Remark 2.2.10. In chapter 3 we will give another proof of the above theorem that does not use the Dickson's Lemma or Hilbert Basis Theorem.

Theorem 2.2.11. Let \leq be a monomial order on the set of all monomials M and let I be an ideal of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. If a finite set G satisfies $G \subseteq I$ and $\operatorname{lm}(G)=\operatorname{lm}(I)$ (so G is a Gröbner basis of the ideal I), then $I=<G>$. Proof: Given any $f \in I-\{0\}$, do the following process: Let $f_{1}=f, f_{1} \in$ $I, \operatorname{lm}\left(f_{1}\right) \in \operatorname{lm}(I)=\operatorname{lm}(G) \Rightarrow \exists g_{1} \in G \subseteq I, q_{1} \in M, c_{1} \in k-\{0\}$, such that $l t\left(f_{1}\right)=l t\left(c_{1} g_{1} q_{1}\right)$. Let $f_{2}=f_{1}-c_{1} g_{1} q_{1}$, clearly $f_{2} \in I$, when $f_{2} \neq 0, \operatorname{lm}\left(f_{2}\right) \in \operatorname{lm}(I)=\operatorname{lm}(G) \Rightarrow \exists g_{2} \in G \subseteq I, q_{2} \in M, c_{2} \in k-\{0\}$, such that $l t\left(f_{2}\right)=l t\left(c_{2} g_{2} q_{2}\right)$. Let $f_{3}=f_{2}-c_{2} g_{2} q_{2}$, clearly $f_{3} \in I$, and when
$f_{3} \neq 0$, we can move to $f_{4} \ldots$
Notice that $\operatorname{lm}\left(f_{1}\right)>\operatorname{lm}\left(f_{2}\right)>\operatorname{lm}\left(f_{3}\right)>\ldots$, the process must terminate, since the monomial order \leq is a well order. Moreover, the last f_{l} must be 0 , otherwise, we would be able to continue the process to f_{l+1}. Hence we have

$$
\begin{aligned}
0 & =f_{l}=f_{l-1}-c_{l-1} g_{l-1} q_{l-1}=f_{l-2}-c_{l-2} g_{l-2} q_{l-2}-c_{l-1} g_{l-1} q_{l-1}=\ldots \\
& =f_{1}-\sum_{i=1}^{l-1} c_{i} g_{i} q_{i}
\end{aligned}
$$

So $f=f_{1}=\sum_{i=1}^{l-1} c_{i} g_{i} q_{i} \in<G>$. This implies $I \subseteq<G>$. It's obvious that $<G>\subseteq I$. Therefore $I=<G>$.

At last we point out the following fact about the Dickson's Lemma and the theorem 2.2.5.

Claim 2.2.12. Theorem $2.2 .5 \Leftrightarrow$ Dickson's Lemma.
Proof: " \Rightarrow " We have shown that Theorem $2.2 .5 \Rightarrow$ Corollary $2.2 .6 \Rightarrow$ Theorem

2.2.7(Dickson's Lemma).

" \Leftarrow " We can define some monomial order on M. Notice that Dickson's Lemma \Rightarrow Theorem 2.2.8(Existence of Gröbner Bases for Ideals). Also Dickson's Lemma \Rightarrow Theorem 2.2.9 \Rightarrow Theorem 2.2.11. Therefore, every ideal of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is finitely generated (by its Gröbner basis). The theorem 2.2.5 is proved.

2.3 Polynomial Reduction

We assume a monomial order \leq has been defined on M in the following discussion.

Definition 2.3.1. For any $f, g \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, if $\operatorname{lm}(g)$ divides some nonzero term cm in f, let $h=f-\frac{c m}{l t(g)} g$, then it's easy to see the term cm
in f is replaced by a linear combination of monomials $<m$. We call this manipulation a polynomial reduction, denoted by $f \xrightarrow{g} h$, and say f reduces to h modulo g.
Definition 2.3.2. If there is a finite sequence of polynomial reductions $f \xrightarrow{g_{1}} h_{1} \xrightarrow{g_{2}} h_{2} \ldots \xrightarrow{g_{t}} h_{t}$, where $g_{i} \in$ finite set $G \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and g_{i} not necessarily pairwise distinct for $1 \leqslant i \leqslant t$, we say f reduces to h_{t} modulo G, denoted by $f \xrightarrow{G} h_{t}$.
Definition 2.3.3. Polynomial r is called reduced or in the reduced form w.r.t. some finite set $G \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, if $r=0$ or no monomial occurring in the unique form (2.1.1) of r is divisible by $\operatorname{lm}(g) \forall g \in G$. If $f \xrightarrow{G} r$ and r is reduced w.r.t. G, we say r is a reduced form of f w.r.t. G. When the reduced form of f w.r.t. G is unique, we denote it by $R(f, G)$. In particular, when f is reduced w.r.t. $G, R(f, G)=f$.

Remarks 2.3.4. (i) In our definition of polynomial reductions(Definition 2.3.1), g is assumed in the unique form (2.1.1) but f is not. In general we do NOT require the polynomial which is to be reduced is given in the unique form. But in the case we need consider the leading monomial of f (such as the case in the following algorithm 2.3.6), clearly f will be assumed in the unique form.
(ii) The equivalence "monomial $m \in \operatorname{lm}(G) \Leftrightarrow \exists g \in G, \operatorname{lm}(g) \mid m$ " is often used in our discussion. For example, when we say $r \neq 0$ is reduced w.r.t. G, it is equivalent to say no monomial in the unique form of r is in $\operatorname{lm}(G)$.
(iii) Given a finite set $G \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, we let $M(G)$ denote the set of all monomials in $\operatorname{lm}(G)$, i.e., $M(G)=M \bigcap \operatorname{lm}(G)$, let $k_{R}(G)$ denote the set of all reduced polynomials w.r.t. G, then it's easy to verify that $k_{R}(G)=$
$\operatorname{span}_{k}\{M-M(G)\}$ as a k-vector space.
By the above definitions, the following proposition is obvious.
Proposition 2.3.5. Given polynomials f and r, if r is a reduced form of f w.r.t. some G, then either $f=r$ or $\exists s \in \mathbb{N}-\{0\}, c_{u} \in k-\{0\}, m_{u} \in M, g_{u} \in$ G and not necessarily pairwise distinct $\forall u, 1 \leqslant u \leqslant s$, such that

$$
\begin{equation*}
f=\sum_{u=1}^{s} c_{u} g_{u} m_{u}+r \tag{2.3.1}
\end{equation*}
$$

Algorithm 2.3.6. (Reduction Algorithm) Given a nonzero polynomial f and a finite $G=\left\{g_{1}, g_{2}, \ldots, g_{j}, \ldots, g_{l}\right\} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, the following algorithm provides one way to compute a reduced form of f w.r.t. G.

$$
\begin{aligned}
& i:=1, r:=0, f_{i}:=f \\
& \text { (*)while } f_{i} \neq 0 \text { do } \\
& \quad \text { if } \exists \operatorname{lm}\left(g_{j}\right) \mid \operatorname{lm}\left(f_{i}\right) \text {, choose the least } j \text { such that } \operatorname{lm}\left(g_{j}\right) \mid \operatorname{lm}\left(f_{i}\right) \text { and do } \\
& \\
& \quad f_{i+1}:=f_{i}-\frac{l t\left(f_{i}\right)}{l t\left(g_{j}\right)} g_{j} \\
& \quad i:=i+1 \text { and goto }(*) \\
& \text { else } r:=r+l t\left(f_{i}\right) \\
& \quad f_{i+1}:=f_{i}-l t\left(f_{i}\right) \\
& \quad i:=i+1 \text { and goto }(*) \quad \square
\end{aligned}
$$

Remarks 2.3.7. (i) Notice that in the above algorithm $\operatorname{lm}\left(f_{i}\right)>\operatorname{lm}\left(f_{i+1}\right) \forall i$, since the monomial order \leq is a well order, the algorithm must terminate. Moreover, when it terminates at some $i=t, f_{t}$ must be 0 and every monomial occurring in the final r is not divisible by any $\operatorname{lm}(g), g \in G$. Therefore the final r is a reduced form of f w.r.t. G.
(ii) It's not hard to see the algorithm actually produces the following
representation for f :

$$
\begin{equation*}
f=\sum_{u=1}^{s} c_{u} g_{u}^{\prime} m_{u}+r \tag{2.3.2}
\end{equation*}
$$

where $s \in \mathbb{N}($ when $s=0, f=r), c_{u} \in k-\{0\}, m_{u} \in M, g_{u}^{\prime} \in G$ and not necessarily pairwise distinct $\forall u, 1 \leqslant u \leqslant s, r$ is the reduced form of f w.r.t. G, and $\operatorname{lm}(\mathbf{f})=\max \left\{\operatorname{lm}\left(\mathrm{g}_{1}^{\prime}\right) \mathbf{m}_{1}, \operatorname{lm}\left(\mathrm{~g}_{2}^{\prime}\right) \mathbf{m}_{\mathbf{2}}, \ldots, \operatorname{lm}\left(\mathrm{g}_{\mathrm{s}}^{\prime}\right) \mathbf{m}_{\mathrm{s}}, \operatorname{lm}(\mathbf{r})\right\}$. (Compare with 2.3.1)

In particular, when $r=0$ in the above representation, (2.3.2) is said to be a standard representation of f w.r.t. G.
(iii) In the algorithm, we always choose the least j such that $\operatorname{lm}\left(g_{j}\right) \mid \operatorname{lm}\left(f_{i}\right)$. This implies that when we change the index order of elements in G, the final r produced by the algorithm may change too, hence the reduced form of a polynomial w.r.t. a general G may not be unique.
Example 2.3.8. Let $f=x_{1}^{2} x_{2}^{3}, G=\left\{x_{1}^{2}, x_{1} x_{2}-x_{2}^{2}\right\}, \leq$ be the lex with $x_{1}>x_{2}$. Apply the algorithm 2.3.6, we have

$$
\begin{equation*}
f \xrightarrow{x_{1}^{2}} x_{1}^{2} x_{2}^{3}-x_{1}^{2} x_{2}^{3}=0, \tag{2.3.3}
\end{equation*}
$$

when $G=\left\{g_{1}=x_{1}^{2}, g_{2}=x_{1} x_{2}-x_{2}^{2}\right\}$; or
$f \xrightarrow{x_{1} x_{2}-x_{2}^{2}} x_{1}^{2} x_{2}^{3}-\left(x_{1} x_{2}-x_{2}^{2}\right) x_{1} x_{2}^{2}=x_{1} x_{2}^{4} \xrightarrow{x_{1} x_{2}-x_{2}^{2}} x_{1} x_{2}^{4}-\left(x_{1} x_{2}-x_{2}^{2}\right) x_{2}^{3}=x_{2}^{5}$,
when $G=\left\{g_{1}=x_{1} x_{2}-x_{2}^{2}, g_{2}=x_{1}^{2}\right\}$. That is to say, 0 and x_{2}^{5} are two different reduced forms of f w.r.t. G.

Moreover, from (2.3.3) we see $f \in<G>$, then from (2.3.4) we see $x_{2}^{5}=$ $f-\left(x_{1} x_{2}-x_{2}^{2}\right) x_{1} x_{2}^{2}-\left(x_{1} x_{2}-x_{2}^{2}\right) x_{2}^{3} \in<G>$, but clearly x_{2}^{5} is reduced w.r.t. G. Then x_{2}^{5} is in $\operatorname{lm}(<G>)$ but not in $\operatorname{lm}(G)$. This implies that G is not a Gröbner basis.

2.4 Characterizations of Gröbner Bases

We need a new definition before introducing the characterizations of Gröbner bases. Given $m_{1}, m_{2} \in M$, it is known there exists the least common multiple of m_{1} and m_{2}, denoted by $\operatorname{lcm}\left(m_{1}, m_{2}\right)$, such that $m_{1} \mid \operatorname{lcm}\left(m_{1}, m_{2}\right)$, $m_{2} \mid \operatorname{lcm}\left(m_{1}, m_{2}\right)$ and $\forall m \in M$ with $m_{1} \mid m$ and $m_{2}\left|m, \operatorname{lcm}\left(m_{1}, m_{2}\right)\right| m$.

Definition 2.4.1. Let $f, g \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]-\{0\}, L=\operatorname{lcm}(\operatorname{lm}(f), \operatorname{lm}(g))$, then $S(f, g)=\frac{L}{l t(f)} f-\frac{L}{l t(g)} g$ is called the S-polynomial of f and g. Clearly, $S(g, f)=-S(f, g)$.

Theorem 2.4.2.(Characterizations of Gröbner Bases) Given a finite $G=$ $\left\{g_{1}, g_{2}, \ldots, g_{j}, \ldots, g_{l}\right\} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $g_{j} \neq 0 \forall j=1,2, \ldots, l$, let $I=<G>$ be the ideal generated by G, let \leq be a monomial order on M. The following conditions are equivalent:
(a) $\operatorname{lm}(G)=\operatorname{lm}(I)$;
(b) $\forall f \in I-\{0\}, \exists j \in\{1,2, \ldots, l\}$, such that $\operatorname{lm}\left(g_{j}\right) \mid \operatorname{lm}(f)$;
(c) $f \in I \Leftrightarrow R(f, G)=0$;
(d) $f \in I \Leftrightarrow f$ has a standard representation w.r.t. G;
(e) $\forall f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, the reduced form of f w.r.t. G is unique;
(f) As k-vector spaces, $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]=k_{R}(G) \bigoplus I$;
(g) $\forall g_{1}^{\prime}, g_{2}^{\prime} \in G, R\left(S\left(g_{1}^{\prime}, g_{2}^{\prime}\right), G\right)=0$;
(h) $\forall g_{1}^{\prime}, g_{2}^{\prime} \in G, S\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ has a standard representation w.r.t. G.

Proof: The proof can be found in [12] [8]. Or you may refer to chapter 3 for the proof of the characterizations of noncommutative Gröbner bases. The basic idea of that proof also works here.

Remarks 2.4.3. (i) In these characterizations, (a) and (b) are essentially the same. When G is a Gröbner basis of the ideal $<G>$ (or I), (c) and (d)
show the property of elements in the ideal $\langle G\rangle$ and (c) is used to solve the word problem (see problem 2.5.4). By (e) and (f), when G is a Gröbner basis, every polynomial f in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has a unique representative $R(f, G)$ in the quotient ring $\left.k\left[x_{1}, x_{2}, \ldots, x_{n}\right] /<G\right\rangle$, and as k-vector spaces, $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] /<G>$ is isomorphic to $k_{R}(G)$ which is spanned by the monomials not in $\operatorname{lm}(G)$. Characterizations (g) and (h) are the foundations of Buchberger's Algorithm.
(ii) In the theorem, the condition " $g_{j} \neq 0 \forall j=1,2, \ldots, l$ " has no effect on the characterizations but deletes trivial element in our Gröbner basis. In fact, we can add more conditions to G such that the Gröbner basis of an ideal I is unique w.r.t. the idea I and the monomial order \leq. This Gröbner basis is called a reduced Gröbner basis. In this thesis, we won't discuss this subject. See [12] [8] [7] for more information.

2.5 Buchberger's Algorithm and One Application

Given a finite $G=\left\{g_{1}, g_{2}, \ldots, g_{j}, \ldots, g_{l}\right\} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $g_{j} \neq 0 \forall j=$ $1,2, \ldots, l$, let $I=<G>$ be the ideal generated by G, let \leq be a monomial order on M. The example 2.3 .8 shows G is not necessary to be a Gröbner basis of the ideal I. However, the theorem 2.2.8 and theorem 2.2.11 tell us there does exist some finite $G^{\prime} \subseteq I$ such that $I=<G^{\prime}>$ and $\operatorname{lm}\left(G^{\prime}\right)=\operatorname{lm}(I)$. In this section we will introduce Buchberger's algorithm which can decide whether the given $G\left(=G_{1}\right)$ is a Gröbner basis of $\langle G\rangle$ and find out a Gröbner basis $G^{\prime}\left(=G_{i}\right)$ of $<G>$ if G is not.

Algorithm 2.5.1.(Buchberger's Algorithm)
$i:=1, G_{1}:=\left\{g_{1}, g_{2}, \ldots, g_{l}\right\}, H:=\left\{\left(g_{j_{1}}, g_{j_{2}}\right) \mid g_{j_{1}}, g_{j_{2}} \in G_{1}, 1 \leqslant j_{1}<j_{2} \leqslant\right.$ l\}
(*)while $H \neq \emptyset$ do
choose $\left(g_{t 1}^{\prime}, g_{t 2}^{\prime}\right) \in H$, then let $H:=H-\left\{\left(g_{t 1}^{\prime}, g_{t 2}^{\prime}\right)\right\}$
do algorithm 2.3.6 to compute a reduced form r of $S\left(g_{t 1}^{\prime}, g_{t 2}^{\prime}\right)$ w.r.t. G_{i} if $r \neq 0$ then
$H:=H \bigcup\left\{(g, r) \mid g \in G_{i}\right\}$
$G_{i+1}:=G_{i} \bigcup\{r\}$
$i:=i+1$
goto (*)
Claim 2.5.2. The Buchberger's algorithm terminates at some $i, i \geqslant 1$, and the final G_{i} is a Gröbner basis of the ideal $<G_{1}>$.
Proof: Suppose the algorithm doesn't terminate, then for each i, we must have some $r \neq 0$ and $\operatorname{lm}(r) \in \operatorname{lm}\left(G_{i+1}\right)$ but not in $\operatorname{lm}\left(G_{i}\right)$. This implies we would have an infinite properly ascending chain in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]: \operatorname{lm}\left(G_{1}\right) \subsetneq$ $\operatorname{lm}\left(G_{2}\right) \subsetneq \ldots$. But $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is Noetherian, this is impossible. Hence the algorithm terminates at some i.

Clearly when the algorithm terminates, $H=\emptyset$. We have two cases:
Case 1: the initial $H=\emptyset$, the algorithm ends at $i=1$ without doing anything. $H=\emptyset$ implies $l=1$, i.e., G_{1} contains a single element g. Clearly $S(g, g)=0$, thus by the characterization (g) or (h), $G_{1}=\{g\}$ is a Gröbner basis of $\langle g\rangle$.

Case 2: the initial $H \neq \emptyset$ and the algorithm ends at $i \geqslant 1$. Obviously, $G_{1} \subseteq G_{i} \subseteq<G_{1}>$, then $I=<G_{1}>=<G_{i}>$. From the algorithm, we can see the reduced form of $S\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ that is produced by the algorithm 2.3.6 must be $0, \forall g_{1}^{\prime}, g_{2}^{\prime} \in G_{i}$. Then every $S\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ must have a standard
representation w.r.t. G_{i}. By the characterization (h), G_{i} is a Gröbner basis of $<G_{i}>=<G_{1}>$.

Remark 2.5.3. The proof actually gives us more information. (i) When the algorithm terminates at $i=1, G_{1}$ is a Gröbner basis. Otherwise, the algorithm terminates at $i>1$ and $\operatorname{lm}\left(G_{1}\right) \subsetneq \operatorname{lm}\left(G_{2}\right) \subsetneq \ldots \subsetneq \operatorname{lm}\left(G_{i}\right)=$ $\operatorname{lm}(I)$. (ii) A generator of a principle ideal of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a Gröbner basis of that ideal.

At last, we introduce a basic application of commutative Gröbner bases theory.

Problem 2.5.4. (Word Problem for Commutative Algebra Presentations) For a k-algebra presentation $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] /<g_{1}, g_{2}, \ldots, g_{l}>$, is there an algorithm which, given $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, decides whether $f=\overline{0}$ in R ? (Clearly, $f=\overline{0}$ in $R \Leftrightarrow f \in<g_{1}, g_{2}, \ldots, g_{l}>$, so it is actually an ideal membership problem for $\left.k\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right)$.

Solution: $f=0$ is trivial. If $f \neq 0$, let $I=<g_{1}, g_{2}, \ldots, g_{l}>$ and define a monomial order \leq on M. Then, apply the Buchberger's algorithm to compute out a Gröbner basis of I, denoted by G. Given G, apply the reduction algorithm 2.3.6 to compute a reduced form of f w.r.t. G. By the characterization (e), the reduced form is unique, then by the characterization (c), $R(f, G)=0 \Leftrightarrow f \in I$.

Chapter 3

Generalization to Noncommutative Polynomial Rings

In this chapter, we generalize the commutative Gröbner bases theory to general noncommutative polynomial rings which are also associative free algebras. We will mainly discuss the generalization for two-sided ideals(called ideals simply). The generalization for one-sided ideals can be discussed in a similar way thus is omitted mostly.

3.1 Notations and Basic Definitions

Let $<X_{n}>$ denote the free monoid generated by set $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, let $x_{j}{ }^{0}=1 \in<X_{n}>\forall 1 \leqslant j \leqslant n$, then

$$
<X_{n}>=\left\{x_{i_{1}}^{\beta_{1}} x_{i_{2}}^{\beta_{2}} \ldots x_{i_{j}}^{\beta_{j}} \ldots x_{i_{l}}^{\beta_{l}} \mid \beta_{j} \in \mathbb{N}, x_{i_{j}} \in X_{n}, 1 \leqslant j \leqslant l, l \in \mathbb{N}-\{0\}\right\}
$$

When n is not important, we simply write $\langle X\rangle$ instead of $\left.<X_{n}\right\rangle$. A typical element $x_{i_{1}}^{\beta_{1}} x_{i_{2}}^{\beta_{2}} \ldots x_{i_{j}}^{\beta_{j}} \ldots x_{i_{l}}^{\beta_{l}}$ in $<X>$ is called a monomial, $\sum_{j=1}^{l} \beta_{j}$ is called the degree of the monomial. For any monomial m, the degree of m
is denoted by $\operatorname{deg}(m)$. Each $m \in\langle X\rangle-\{1\}$ can be written as $u_{1} u_{2} \ldots u_{s}$, where $u_{i} \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, 1 \leqslant i \leqslant s, s \in \mathbb{N}-\{0\}$ and $\operatorname{deg}(m)=s$. In addition, for $m_{1}, m_{2} \in\langle X\rangle$, if $\exists l, r \in\langle X\rangle$ such that $m_{2}=l m_{1} r$, we say m_{2} is a multiple of m_{1}, or m_{1} divides m_{2}, denoted by $m_{1} \mid m_{2}$.

Let k be a field, we use $\left.k<X_{n}\right\rangle$ or simply $k<X>$ to denote the associative free k-algebra generated by set X_{n}. When $n=1$, the algebra is also a commutative polynomial ring in one variable. In the following discussion, we always assume $n \geqslant 2$, then $k<X>$ is known to be a noncommutative polynomial ring. For $k\langle X\rangle$, we have the following facts:
(1) $\forall f \in k<X>-\{0\}, f=\sum_{i=1}^{s} c_{i} m_{i}$, where $s \in \mathbb{N}-\{0\}, c_{i} \in k-$ $\{0\}, m_{i} \in\langle X\rangle, 1 \leqslant i \leqslant s$. We call $c_{i} m_{i}$ a term, c_{i} the coefficient of the term.
(2) $\forall f \in k<X>-\{0\}$, after all possible coalescence and cancellation of terms, f has the unique form,

$$
\begin{equation*}
f=\sum_{i=1}^{t} c_{i} m_{i} \tag{3.1.1}
\end{equation*}
$$

where $t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, m_{i} \in<X>$ and $m_{i} \neq m_{j} \forall 1 \leqslant i \neq j \leqslant t$. The uniqueness is up to a permutation on the terms.

Definition 3.1.1. \leq is said to be a (noncommutative) monomial order on $<X\rangle$, if it satisfies the following conditions:
(i) $\langle X\rangle$ is totally ordered by \leq;
(ii) $1 \leq m, \forall m \in<X>$;
(iii) $m_{1} \leq m_{2} \Rightarrow l m_{1} r \leq l m_{2} r, \forall l, r, m_{1}, m_{2} \in\langle X\rangle$.

Let \leq be a monomial order on $\langle X\rangle$, suppose $m_{1}, m_{2} \in\langle X\rangle$, and $m_{2}=l m_{1} r$ for some $l, r \in\langle X\rangle$. By the above condition(ii) $1 \leq l$ and
$1 \leq r$, then by the condition(iii) $m_{1} \leq l m_{1} \leq l m_{1} r=m_{2}$. Hence we can say $m_{1} \mid m_{2} \Rightarrow m_{1} \leq m_{2}$, i.e., the generalized monomial order is still an extension of the division relation.

Examples 3.1.2. We let $m_{1}=u_{1} u_{2} \ldots u_{s}$ and $m_{2}=v_{1} v_{2} \ldots v_{t}$ denote two monomials in $<X>$, where $u_{i}, v_{j} \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, 1 \leqslant i \leqslant s, 1 \leqslant j \leqslant t$ and $s, t \in \mathbb{N}$. In particular, we let $s=0(t=0)$ imply $m_{1}=1\left(m_{2}=1\right)$.
(1)In the lex on $<X>$ with $x_{1}>x_{2}>\ldots>x_{n}$,

$$
\begin{gathered}
m_{1}=u_{1} u_{2} \ldots u_{s}<m_{2}=v_{1} v_{2} \ldots v_{t} \\
\Leftrightarrow \begin{cases}u_{1}=v_{1}, u_{2}=v_{2}, \ldots, u_{l}=v_{l}, u_{1+1}<v_{l+1}, 0 \leqslant l<s ; & \text { or }, \\
0<s<t & \text { and } \quad u_{1}=v_{1}, u_{2}=v_{2}, \ldots, u_{s}=v_{s} ; \\
s=0<t\end{cases}
\end{gathered}
$$

Now let $m_{1}=x_{2} x_{2} x_{1}, m_{2}=x_{2} x_{1}$, then $m_{1}=x_{2} x_{2} x_{1}<x_{2} x_{1}=m_{2}$ since $x_{2}<x_{1}$. But this contradicts with conditions (ii) and (iii) in definition 3.1.1 which require that $m_{2}=1 \cdot x_{2} x_{1}<x_{2} \cdot x_{2} x_{1}=m_{1}$. Hence the lexicographical order is NOT a monomial order on $\langle X\rangle$.
(2)In the deglex on $\left\langle X>\right.$ with $x_{1}>x_{2}>\ldots>x_{n}$,

$$
\begin{gathered}
m_{1}=u_{1} u_{2} \ldots u_{s}<m_{2}=v_{1} v_{2} \ldots v_{t} \\
\Leftrightarrow\left\{\begin{array}{l}
\operatorname{deg}\left(m_{1}\right)=s<t=\operatorname{deg}\left(m_{2}\right) ; \\
\operatorname{deg}\left(m_{1}\right)=s=t=\operatorname{deg}\left(m_{2}\right) \quad \text { and } \quad m_{1}<\text { lex } m_{2} ;
\end{array}\right.
\end{gathered}
$$

where the $<_{\text {lex }}$ is the lexicographical order on $<X>$ with $x_{1}>x_{2}>\ldots>x_{n}$.
(3)In the degrevlex on $\left\langle X>\right.$ with $x_{1}>x_{2}>\ldots>x_{n}$,

$$
\begin{gathered}
m_{1}=u_{1} u_{2} \ldots u_{s}<m_{2}=v_{1} v_{2} \ldots v_{t} \\
\Leftrightarrow\left\{\begin{array}{l}
\operatorname{deg}\left(m_{1}\right)=s<t=\operatorname{deg}\left(m_{2}\right) ; \\
\operatorname{deg}\left(m_{1}\right)=s=t=\operatorname{deg}\left(m_{2}\right) \quad \text { and } \quad u_{s}>v_{s} ; \\
\operatorname{deg}\left(m_{1}\right)=s=t=\operatorname{deg}\left(m_{2}\right) \\
u_{s}=v_{s}, \ldots, u_{l+1}=v_{l+1}, u_{l}> \\
v_{l}, 1 \leqslant l<s
\end{array}\right.
\end{gathered}
$$

It's easy to verify the deglex and the degrevlex are still monomial orders on $\langle X\rangle$.

Given any nonzero noncommutative polynomial f, f can be written in the unique form (3.1.1). Again we can arrange the terms by a monomial order, such that $f=\sum_{i=1}^{t} c_{i} m_{i}$, and $m_{1}>m_{2}>\ldots>m_{t}$. In this case, we call $c_{1} m_{1}$ the leading term of f, denoted by $l t(f) ; m_{1}$ the leading monomial of f, denoted by $l m(f)$; c_{1} the leading coefficient of f, denoted by $l c(f)$.
Definition 3.1.3. Given any $G \subseteq k<X>$, we define the leading monomial ideal of G w.r.t. some monomial order \leq to be

$$
\begin{aligned}
\operatorname{lm}(G): & =<\operatorname{lm}(g) \mid g \in G> \\
& =\left\{\sum_{i=1}^{t} f_{i} \operatorname{lm}\left(g_{i}\right) h_{i} \mid t \in \mathbb{N}-\{0\}, f_{i}, h_{i} \in k<X>, g_{i} \in G\right\}
\end{aligned}
$$

Definition 3.1.4. Given a monomial order on $\langle X\rangle$, let G be a subset of $k<X>$, if $\operatorname{lm}(G)=\operatorname{lm}(<G>)$, we say G is a Gröbner basis (of the ideal $<G>)$. If a set $G \subseteq$ ideal $I \subseteq k<X>$ and $\operatorname{lm}(G)=\operatorname{lm}(I), G$ is called a Gröbner basis of I.

Remark 3.1.5. Unlike commutative Gröbner bases, noncommutative Gröbner bases are allowed to be infinite. There are two reasons for this.

Firstly, finite Gröbner bases do not exist for some ideals in $k<X>$. In the next section we will show that some ideals of $k\langle X\rangle$ cannot be finitely generated. Clearly those ideals have no finite Gröbner bases(see theorem 3.3.8). Moreover, in section 3.4 we will explain why there even exist finitely generated ideals which have no finite Gröbner bases.

Secondly, there do exist infinite sets of noncommutative polynomials which can play the same role as finite Gröbner bases in our theory(see claim 3.4.15 and theorem 3.7.6).

3.2 Infinitely Generated Ideals of $k<X>$

Recall that we based most fundamental results of commutative Gröbner bases theory on the fact that $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is Noetherian. For noncommutative polynomial ring $k<X>$, things are not as nicely behaved.

Definition 3.2.1. A noncommutative ring R is said to be left(right) Noetherian if R satisfies the $A C C$ on left(right) ideals. R is said to be Noetherian if R is both left and right Noetherian.

Lemma 3.2.2. Noncommutative ring R satisfies the $A C C$ on ideals(left ideals, right ideals) iff every ideal(left ideal, right ideal, respectively) of R is finitely generated.

Proof: For ideals, the proof of lemma 2.2.3 still works here. For left and right ideals, only appropriate modification on terminologies are needed.

Next we give an example of infinite properly ascending chain of ideals in $k<X>$. Since ideals are both left and right ideals, the example shows that $k<X>$ satisfies $A C C$ neither on left nor on right ideals.

Example 3.2.3. For convenience, we use x, y to denote two noncommutative variables in $k<X>. \forall i \in \mathbb{N}$, define I_{i} to be the (two-sided) ideal generated by the set $\left\{x y^{j} x \mid 0 \leqslant j \leqslant i\right\}$, i.e., $I_{i}=<x^{2}, x y x, \ldots, x y^{i} x>$. Obviously, $x y^{i+1} x \in I_{i+1}$ but not in I_{i}, and $I_{i} \subseteq I_{i+1}$, for all $i \in \mathbb{N}$. Hence we have an infinite ascending chain in $k<X>: I_{1} \subsetneq I_{2} \subsetneq \cdots I_{i} \subsetneq I_{i+1} \cdots$.

By the definition 3.2.1 and the above example, we have the claim:
Claim 3.2.4. $k<X>$ is neither left nor right Noetherian, thus not Noetherian.

By the lemma 3.2.2 and the above example, we have the claim:

Claim 3.2.5. In $k<X>$ there exists an ideal(left ideal, right ideal) which cannot be finitely generated. (We call such an ideal an infinitely generated ideal.)

Actually, in the proof of lemma 2.2.3, we suggest a way to construct explicitly an infinitely generated ideal.

Example 3.2.6. Let $I=\bigcup_{i=0}^{\infty} I_{i}$, where I_{i} is the ideal defined in the example 3.2.3. It's easy to see I is also an ideal of $k<X>$. Suppose $\exists a_{1}, a_{2}, \ldots, a_{s} \in I$, such that $I=<a_{1}, a_{2}, \ldots, a_{s}>$, then for some sufficient large l, all $a_{1}, a_{2}, \ldots, a_{s} \in I_{l}$, then $I \subseteq I_{l} \subsetneq I_{l+1} \subseteq I$. This is impossible. Therefore, the ideal I of $k<X>$ cannot be finitely generated.

Clearly we can find many other infinitely generated ideals of $k<X>$ in the same way.

Notice that the above ideal I is actually generated by a set of monomials $S=\left\{x y^{i} x \mid i \in \mathbb{N}\right\}$, but I cannot be generated by any finite subset of S. So example 3.2.6 is also a counter example in $k\langle X\rangle$ for Dickson's Lemma.

Claim 3.2.7. Dickson's Lemma doesn't hold in $k<X\rangle$.

3.3 Discussion on Monomial Orders

In this section we will show the generalized monomial order on $\langle X\rangle$ is still a well order, although $k<X>$ is not Noetherian and the Dickson's Lemma doesn't hold in $k<X>$.

First, let's see a result about monomial partial order on $\langle X\rangle$, which is given by Prof. John Lawrence.
Definition 3.3.1. \preceq is said to be a monomial partial order on $\langle X\rangle$, if it satisfies the following conditions:
(i) $<X>$ is partially ordered by \preceq;
(ii) $1 \preceq m, \forall m \in<X>$;
(iii) $m_{1} \preceq m_{2} \Rightarrow l m_{1} r \preceq l m_{2} r, \forall l, r, m_{1}, m_{2} \in\langle X\rangle$.

Theorem 3.3.2. Let \preceq be a monomial partial order on the free monoid $<X_{n}>=<x_{1}, x_{2}, \ldots, x_{n}>$. When $n=2,\left(<X_{n}>, \preceq\right)$ satisfies $D C C$.

Before proving the above theorem, we introduce the following lemma.
Lemma 3.3.3. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence in the well-ordered set (A, \leq). Then there exists a subsequence $\left\{a_{n(j)}\right\}_{j=0}^{\infty}$ of $\left\{a_{n}\right\}_{n=0}^{\infty}$ such that $a_{n(j)} \leq$ $a_{n(j+1)} \forall j \in \mathbb{N}$.
Proof: Since \leq is a well order, we can find a least element $a_{n(0)}$ in the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, then we define $a_{n(j)}$ recursively to be a least element in $\left\{a_{n}\right\}_{n=n(j-1)+1}^{\infty}$, for all $j>0$. Clearly $\left\{a_{n(j)}\right\}_{j=0}^{\infty}$ is non-descending.

Proof of Theorem 3.3.2: (Due to John Lawrence) To simplify notations, we let $\left\langle X_{2}\right\rangle=\Delta=\langle u, v\rangle$. Suppose we have an infinite properly descending chain of monomials in $(\Delta, \preceq): w_{0} \succ w_{1} \succ \cdots$. Multiply each monomial of the chain by u on the left. By the property of the monomial partial order, the chain $u w_{0} \succ u w_{1} \succ \cdots$ is still infinite properly descending. Hence, without loss of generality(WLOG), assume w_{i} starts with the same variable u, for all $i \in \mathbb{N}$.

For any monomial $w \in \Delta$, define $\phi(w)$ to be the number of times " $u v$ " occurs in w, e.g., $\phi(u v u v)=2, \phi(u u v v)=1$ and $\phi(u u u)=0$. Now we have two cases for $\left\{\phi\left(w_{i}\right)\right\}_{i=0}^{\infty}$.

Case 1: $\left\{\phi\left(w_{i}\right)\right\}_{i=0}^{\infty}$ is unbounded. Let $w_{0}=y_{1} y_{2} \cdots y_{l}, y_{j} \in\{u, v\}\left(y_{0}=\right.$ $u), 1 \leqslant j \leqslant l$. Then $\exists t>0$ such that $\phi\left(w_{t}\right)>l$. Clearly, w_{t} can be written as $w_{t}=u \cdots$ uvm $_{1}{u v m_{2}}^{\cdots}{u v m_{l}}_{l}$, where $m_{j} \in \Delta, 1 \leqslant j \leqslant l$. Then $y_{j} \prec u v m_{j}$
for all $1 \leqslant j \leqslant l$. Hence $w_{0} \prec w_{t}$, a contradiction.
Case 2: $\left\{\phi\left(w_{i}\right)\right\}_{i=0}^{\infty}$ is bounded.
Claim: there exists a subchain of $w_{0} \succ w_{1} \succ \cdots$, denoted by $w_{0}^{\prime} \succ w_{1}^{\prime} \succ$ \cdots, and some $s \geqslant 1$, such that, $\forall i \in \mathbb{N}$, $w_{i}^{\prime}=u^{\alpha_{i 1}} v^{\alpha_{i 2}} u^{\alpha_{i 3}} v^{\alpha_{i 4}} \cdots u^{\alpha_{i(2 s-1)}} v^{\alpha_{i(2 s)}}$, $\alpha_{i j} \in \mathbb{N}, 1 \leqslant j \leqslant 2 s$, and $\forall j$, the sequence $\left\{\alpha_{i j}\right\}_{i=0}^{\infty}$ is non-descending.

Proof of the claim: Let's start with the original chain $w_{0} \succ w_{1} \succ$ \cdots. Since $\left\{\phi\left(w_{i}\right)\right\}_{i=0}^{\infty}$ is bounded, clearly there is some bound $s \geqslant 1$, such that $\forall i \in \mathbb{N}, w_{i}=u^{\alpha_{i 1}} v^{\alpha_{i 2}} u^{\alpha_{i 3}} v^{\alpha_{i 4}} \cdots u^{\alpha_{i(2 s-1)}} v^{\alpha_{i(2 s)}}$, where $\alpha_{i j} \in \mathbb{N}$, $1 \leqslant j \leqslant 2 s$. Suppose for some $j=J$, the sequence $\left\{\alpha_{i J}\right\}_{i=0}^{\infty}$ is not nondescending. Since it is a sequence in $\left(\mathbb{N},<_{N}\right)$ and the natural order $<_{N}$ is a well order on \mathbb{N}, by the lemma 3.3.3, there exists a non-descending subsequence $\left\{\alpha_{i(p) J}\right\}_{p=0}^{\infty}$ of $\left\{\alpha_{i J}\right\}_{i=0}^{\infty}$. Hence, there exists a subchain of $w_{0} \succ$ $w_{1} \succ \cdots$, denoted by $w_{i(0)} \succ w_{i(1)} \succ \cdots$, such that $\forall p \in \mathbb{N}$, $w_{i(p)}=$ $u^{\alpha_{i(p) 1}} v^{\alpha_{i(p) 2}} u^{\alpha_{i(p) 3}} v^{\alpha_{i(p) 4}} \cdots u^{\alpha_{i(p)(2 s-1)}} v^{\alpha_{i(p)(2 s)}}, \alpha_{i(p) j} \in \mathbb{N}, 1 \leqslant j \leqslant 2 s$ and $\alpha_{i(p) J} \leqslant \alpha_{i(p+1) J}$. Clearly, after repeating the above and applying lemma 3.3.3 recursively at most $2 s$ times, we can get the subchain required in the claim. Thus the claim is proved.

In the claim, $\alpha_{i j} \leqslant \alpha_{(i+1) j}$ for all i, j. By the property of the monomial partial order, this implies that, in the subchain, for all $i \in \mathbb{N}$,

$$
\begin{aligned}
w_{i}^{\prime} & =u^{\alpha_{i 1}} v^{\alpha_{i 2}} u^{\alpha_{i 3}} v^{\alpha_{i 4}} \cdots u^{\alpha_{i(2 s-1)}} v^{\alpha_{i(2 s)}} \\
\preceq \quad w_{i+1}^{\prime} & =u^{\alpha_{(i+1) 1}} v^{\alpha_{(i+1) 2}} u^{\alpha_{(i+1) 3}} v^{\alpha_{(i+1) 4}} \cdots u^{\alpha_{(i+1)(2 s-1)}} v^{\alpha_{(i+1)(2 s)}} .
\end{aligned}
$$

It's impossible since $w_{0}^{\prime} \succ w_{1}^{\prime} \succ \cdots$ is properly descending.
To sum up, it's impossible to have an infinite properly descending chain of monomials in (Δ, \preceq), so $\left.\left(<X_{2}\right\rangle, \preceq\right)=(\Delta, \preceq)$ satisfies $D C C$.

Theorem 3.3.4. Every monomial order \leq on $\left\langle X_{n}\right\rangle$ is a well order. (As
we have pointed out earlier, we always assume $n \geqslant 2$.)
Proof: We prove the statement by induction on n.
Assume $n=2$. Let \leq be a monomial order on $\left\langle X_{2}\right\rangle$. Obviously, it is also a monomial partial order on $\left\langle X_{2}\right\rangle$, then by theorem 3.3.2, $\left.\left(<X_{2}\right\rangle, \leq\right)$ satisfies $D C C$. Since the monomial order \leq is a total order, it is a well order.

Suppose the statement is true for $n=l(n \geqslant 2, n \in \mathbb{N})$, let's look at $n=l+1$. Let \leq be a monomial order on $\left.\left\langle X_{l+1}\right\rangle=<x_{1}, x_{2}, \ldots, x_{l+1}\right\rangle$. Since \leq is a total order, WLOG, we assume $x_{l+1} \geq x_{i}, \forall i=1,2, \ldots, l+1$. Let $\left\langle X_{l}\right\rangle$ denote the free monoid generated by $\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$. Obviously $<X_{l}>\subset<X_{l+1}>$ and \leq is also a monomial order on $<X_{l}>$. By our induction hypothesis, \leq is a well order on $\left\langle X_{l}\right\rangle$.

For any $\left.w \in<X_{l+1}\right\rangle$, define $\phi(w)$ to be the number of " x_{l+1} " occurring in w. For example, $\phi\left(x_{l+1}^{2}\right)=2, \phi\left(x_{1} x_{l+1} x_{2}\right)=1$ and $\phi\left(x_{1} x_{2}\right)=0$. Suppose we have an infinite properly descending chain of monomials in $\left.\left(<X_{l+1}\right\rangle, \leq\right)$: $w_{0}>w_{1}>\cdots$. Then for $\left\{\phi\left(w_{i}\right)\right\}_{i=0}^{\infty}$, we still have two cases.

Case 1: $\left\{\phi\left(w_{i}\right)\right\}_{i=0}^{\infty}$ is unbounded. Let $w_{0}=u_{1} u_{2} \cdots u_{s}$, where $u_{j} \in$ $\left\{x_{1}, x_{2}, \cdots, x_{l+1}\right\}, 1 \leqslant j \leqslant s$. Then $\exists t>0$ such that $\phi\left(w_{t}\right)>s$. Clearly, w_{t} can be written as $w_{t}=m_{1} x_{l+1} m_{2} x_{l+1} \cdots m_{s} x_{l+1} m_{s+1}$, where $m_{j} \in\left\langle X_{l}\right\rangle$, $1 \leqslant j \leqslant s+1$. Then $u_{j} \leq m_{j} x_{l+1}$ for all $j=1,2, \ldots, s$ and $1 \leq m_{s+1}$. Hence $w_{0} \leq w_{t}$, a contradiction.

Case 2: $\left\{\phi\left(w_{i}\right)\right\}_{i=0}^{\infty}$ is bounded. Then there is some bound $b \geqslant 1$, such that $\forall i \in \mathbb{N}, w_{i}=m_{i 1} x_{l+1}^{\beta_{i 1}} m_{i 2} x_{l+1}^{\beta_{i 2}} \cdots m_{i b} x_{l+1}^{\beta_{i b}} m_{i(b+1)}$, where $m_{i j} \in<X_{l}>$ for all $j=1,2, \ldots, b+1$, and $\beta_{i j} \in\{0,1\}$ for all $j=1,2, \ldots, b$. Notice that for all $j,\left\{m_{i j}\right\}_{i=0}^{\infty}$ is a sequence in the well-ordered set $\left(<X_{l}>, \leq\right)$, $\left\{x_{l+1}^{\beta_{i j}}\right\}_{i=0}^{\infty}$ is a sequence in the well-ordered set $\left(\left\{1, x_{l+1}\right\}, \leq\right)$, we can apply lemma 3.3.3 recursively with finite times, like we did in the proof of theorem
3.3.2, and find a subchain of $w_{0}>w_{1}>\cdots$, denoted by $w_{0}^{\prime}>w_{1}^{\prime}>\cdots$, such that $\forall i \in \mathbb{N}, w_{i}^{\prime}=m_{i 1}^{\prime} x_{l+1}^{\beta_{11}^{\prime}} m_{i 2}^{\prime} x_{l+1}^{\beta_{i 2}^{\prime}} \cdots m_{i b}^{\prime} x_{l+1}^{\beta_{1 b}^{\prime}} m_{i(b+1)}^{\prime}$ and for all j, the sequence $\left\{m_{i j}^{\prime}\right\}_{i=0}^{\infty}$ and $\left\{x_{l+1}^{\beta_{i j}^{\prime}}\right\}_{i=0}^{\infty}$ are non-descending. But by the property of the monomial order, this implies that, for all $i \in \mathbb{N}$,

$$
\begin{aligned}
w_{i}^{\prime} & =m_{i 1}^{\prime} x_{l+1}^{\beta_{i 1}^{\prime}} m_{i 2}^{\prime} x_{l+1}^{\beta_{i 2}^{\prime}} \cdots m_{i b}^{\prime} x_{l+1}^{\beta_{i b}^{\prime}} m_{i(b+1)}^{\prime} \\
\leq \quad w_{i+1}^{\prime} & =m_{(i+1) 1}^{\prime} x_{l+1}^{\beta_{(i+1) 1}^{\prime}} m_{(i+1) 2}^{\prime} x_{l+1}^{\beta_{l+1) 2}^{\prime}} \cdots m_{(i+1) b}^{\prime} x_{l+1}^{\beta_{(i+1) b}^{\prime}} m_{(i+1)(b+1)}^{\prime}
\end{aligned}
$$

It's impossible since $w_{0}^{\prime}>w_{1}^{\prime}>\cdots$ is properly descending.
Hence when $n=l+1$, the statement still holds.
By induction on n, the statement holds for all $n \geqslant 2$.
Corollary 3.3.5.(Theorem 2.2.9.) Every monomial order \leq on M (the set of commutative monomials) is a well order.

Proof: It can be proved in the same way as above. (Here we do not need the Hilbert Basis Theorem or Dickson's Lemma.)

It is known that every partial order can be refined to a total order. We may ask the following question: can every monomial partial order \preceq be refined to a monomial (total) order \leq ? If the answer is yes, then, by the theorem 3.3.4, \leq satisfies $D C C$ on $\left\langle X_{n}\right\rangle$ for all $n \geqslant 2$, so would \preceq. Hence the statement in theorem 3.3.2 could be proved true for all $n \geqslant 2$ in this way. However, the following example gives a negative answer to our question.

Example 3.3.6.(Due to Bergman [3]) Consider $\langle X\rangle=\langle u, v, x, y\rangle$, let \preceq be a monomial partial order which is generated by the basic relations $y u \prec x u$ and $x v \prec y v$. Then \preceq can be refined to a total order but can NOT be refined to a monomial order. Because either $x<y$ or $y<x$ will bring about contradiction with $y u<x u$ or $x v<y v$ respectively.
Remark 3.3.7. Recently Prof. John Lawrence has proved a generalized

Dickson's Lemma for finitely generated free monoids. We point out that, as a corollary of that new result, the statement in theorem 3.3.2 does hold for all n. Then theorem 3.3.4 and corollary 3.3.5 (theorem 2.2.9) are immediate results from the complete version of theorem 3.3.2.

Next let's apply theorem 3.3.4 to prove the noncommutative version of theorem 2.2.11.

Theorem 3.3.8. Let \leq be a monomial order on $\langle X\rangle$ and let I be an ideal of $k<X\rangle$. If a set G satisfies $G \subseteq I$ and $\operatorname{lm}(G)=\operatorname{lm}(I)$ (so G is a Gröbner basis of the ideal I), then $I=\langle G>$.
Proof: The proof is similar to the one for theorem 2.2.11.
Given any $f \in I-\{0\}$, do the following process: Let $f_{1}=f, f_{1} \in$ $I, \operatorname{lm}\left(f_{1}\right) \in \operatorname{lm}(I)=\operatorname{lm}(G) \Rightarrow \exists g_{1} \in G \subseteq I, l_{1}, r_{1} \in\langle X\rangle, c_{1} \in k-\{0\}$, such that $l t\left(f_{1}\right)=l t\left(c_{1} l_{1} g_{1} r_{1}\right)$. Let $f_{2}=f_{1}-c_{1} l_{1} g_{1} r_{1}$, clearly $f_{2} \in I$, when $f_{2} \neq 0, \operatorname{lm}\left(f_{2}\right) \in \operatorname{lm}(I)=\operatorname{lm}(G) \Rightarrow \exists g_{2} \in G \subseteq I, l_{2}, r_{2} \in\langle X\rangle, c_{2} \in$ $k-\{0\}$, such that $l t\left(f_{2}\right)=l t\left(c_{2} l_{2} g_{2} r_{2}\right)$. Let $f_{3}=f_{2}-c_{2} l_{2} g_{2} r_{2}$, clearly $f_{3} \in I$, and when $f_{3} \neq 0$, we can move to $f_{4} \ldots$

Notice that $\operatorname{lm}\left(f_{1}\right)>\operatorname{lm}\left(f_{2}\right)>\operatorname{lm}\left(f_{3}\right)>\ldots$, since we have proved the monomial order \leq is a well order, the process must terminate at some $f_{l}=0$. Hence we have

$$
\begin{aligned}
0 & =f_{l}=f_{l-1}-c_{l-1} l_{l-1} g_{l-1} r_{l-1}=f_{l-2}-c_{l-2} l_{l-2} g_{l-2} r_{l-2}-c_{l-1} l_{l-1} g_{l-1} r_{l-1} \\
& =\ldots=f_{1}-\sum_{i=1}^{l-1} c_{i} l_{i} g_{i} r_{i} .
\end{aligned}
$$

So $f=f_{1}=\sum_{i=1}^{l-1} c_{i} l_{i} g_{i} r_{i} \in<G>$. This implies $I \subseteq<G>$. It's obvious that $<G>\subseteq I$. Therefore $I=<G>$.

We now show that a one-sided noncommutative monomial order on $\langle X\rangle$ may not be a well order.

Definition 3.3.9. \leq is said to be a right monomial order on $\langle X\rangle$, if it satisfies the following conditions:
(i) $\langle X\rangle$ is totally ordered by \leq;
(ii) $1 \leq m, \forall m \in\langle X\rangle$;
(iii) $m_{1} \leq m_{2} \Rightarrow m_{1} r \leq m_{2} r, \forall m_{1}, m_{2}, r \in\left\langle X>\right.$. (But $m_{1} \leq m_{2}$ doesn't imply $l m_{1} \leq l m_{2}$, for some $m_{1}, m_{2}, l \in\langle X\rangle$.)
Example 3.3.10.(Due to John Lawrence) Let's consider the free monoid $\Delta=<x, y>$. For any $m \in \Delta$, define $\operatorname{deg}_{x}(m)=$ the number of " x " occurring in m, define $\phi(m)=$ the number of " y " which is to the right of an " x " in m. For example, let $m=y x y x y y$, then $\operatorname{deg}_{x}(m)=2$ and $\phi(m)=3$.

Now for any two monomials $m_{1}, m_{2} \in \Delta$, we define a total order \leq on Δ by $m_{1}<m_{2}$
$\Leftrightarrow\left\{\begin{array}{lll}\operatorname{deg}_{x}\left(m_{1}\right)<\operatorname{deg}_{x}\left(m_{2}\right) ; & \text { or, } \\ \operatorname{deg}_{x}\left(m_{1}\right)=\operatorname{deg}_{x}\left(m_{2}\right) \quad \text { and } \quad \phi\left(m_{1}\right)>\phi\left(m_{2}\right) ; & \text { or, } \\ \operatorname{deg}_{x}\left(m_{1}\right)=\operatorname{deg}_{x}\left(m_{2}\right), \phi\left(m_{1}\right)=\phi\left(m_{2}\right) \quad \text { and } \quad \operatorname{deg}\left(m_{1}\right)<\operatorname{deg}\left(m_{2}\right) ; & \text { or, } \\ \operatorname{deg}_{x}\left(m_{1}\right)=\operatorname{deg}_{x}\left(m_{2}\right), \phi\left(m_{1}\right)=\phi\left(m_{2}\right), \operatorname{deg}\left(m_{1}\right)=\operatorname{deg}\left(m_{2}\right) \quad \text { and } & \\ m_{1}<_{\text {lex }} m_{2}, & \end{array}\right.$
where $<_{l e x}$ is the lexicographical order on Δ with $y<x$.
It's easy to verify that the above order \leq satisfies the conditions of the definition 3.3.9, i.e., \leq is a right monomial order on Δ. But we have an infinite properly descending chain in $(\Delta, \leq): x>x y>x y^{2}>\cdots$. (Notice that $\operatorname{deg}_{x}\left(x y^{i}\right)=\operatorname{deg} x\left(x y^{i+1}\right)=1$ but $\phi\left(x y^{i}\right)=i<\phi\left(x y^{i+1}\right)=i+1$, therefore $\left.x y^{i}>x y^{i+1}, \forall i \in \mathbb{N}\right)$.

Hence the right monomial order \leq is not a well order.

3.4 Generalization of Polynomial Reduction

Let \leq be a monomial order on $\langle X\rangle$, we will discuss noncommutative polynomial reductions in this section.

Definition 3.4.1. For any $f, g \in k<X>$, if $\operatorname{lm}(g)$ divides some nonzero term $c m$ in f, then $\exists l, r \in\langle X\rangle$ such that $c m=c \cdot l \cdot l m(g) \cdot r$. Let $h=f-\frac{c}{l c(g)} l g r$, then it's easy to see the term $c m$ in f is replaced by a linear combination of monomials $<m$. We call this manipulation a polynomial reduction, denoted by $f \xrightarrow{g} h$, and say f reduces to h modulo g.
Definition 3.4.2. If there is a finite sequence of polynomial reductions $f \xrightarrow{g_{1}} h_{1} \xrightarrow{g_{2}} h_{2} \ldots \xrightarrow{g_{t}} h_{t}$, where $g_{i} \in G \subseteq k<X>$ and g_{i} not necessarily pairwise distinct for $1 \leqslant i \leqslant t$, we say f reduces to h_{t} modulo G, denoted by $f \xrightarrow{G} h_{t}$.
Definition 3.4.3. Polynomial d is called reduced or in the reduced form w.r.t. some $G \subseteq k<X>$, if $d=0$ or no monomial occurring in the unique form (3.1.1) of d is divisible by $\operatorname{lm}(g) \forall g \in G$. If $f \xrightarrow{G} d$ and d is reduced w.r.t. G, we say d is a reduced form of f w.r.t. G. When the reduced form of f w.r.t. G is unique(in general it is not, see examples 3.4.16), we denote it by $R(f, G)$. In particular, when f is reduced w.r.t. $G, R(f, G)=f$.

Remarks 3.4.4. (i) We do NOT require f in the definitions to be in the unique form except in the case we need consider its leading term or leading monomial, like in the following reduction process.
(ii) The equivalence "monomial $m \in \operatorname{lm}(G) \Leftrightarrow \exists g \in G, \operatorname{lm}(g) \mid m$ " is still true. Hence, when we say $d \neq 0$ is reduced w.r.t G, it is equivalent to say no monomial in the unique form of d is in $\operatorname{lm}(G)$.
(iii) Given $G \subseteq k<X>$, let $M(G)$ denote the set of all monomials in $\operatorname{lm}(G)$, i.e., $M(G)=<X>\bigcap \operatorname{lm}(G)$ and let $k_{R}(G)$ denote the set of all re-
duced polynomials w.r.t. G. Then it's easy to verify that, as a k-vector space, $k_{R}(G)=\operatorname{span}_{k}\{<X>-M(G)\}$, i.e., $k_{R}(G)$ is spanned by monomials not in $\operatorname{lm}(G)$.

By the above definitions, the following proposition is obvious. It will be useful in proofs.

Proposition 3.4.5. Given polynomials f and d, if d is a reduced form of f w.r.t. some G, then either $f=d$ or $\exists s \in \mathbb{N}-\{0\}, c_{u} \in k-\{0\}, l_{u}, r_{u} \in$ $<X>, g_{u} \in G$ and not necessarily pairwise distinct $\forall u, 1 \leqslant u \leqslant s$, such that

$$
\begin{equation*}
f=\sum_{u=1}^{s} c_{u} l_{u} g_{u} r_{u}+d \tag{3.4.1}
\end{equation*}
$$

Next we introduce a reduction process which shows that, for any nonzero polynomial f and a set $G \subseteq k\langle X\rangle$, the reduced form of f w.r.t. G always exists.

Reduction Process 3.4.6.

$i:=1, d:=0, f_{i}:=f$
(*) while $f_{i} \neq 0$ do

$$
\begin{aligned}
& \text { if } \exists g_{i} \in G, l_{i}, r_{i} \in<X>\text { such that } \operatorname{lm}\left(f_{i}\right)=l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i} \text {, do } \\
& \quad f_{i+1}:=f_{i}-\frac{l c\left(f_{i}\right)}{l c\left(g_{i}\right)} l_{i} g_{i} r_{i} \\
& \quad i:=i+1 \text { and goto }(*) \\
& \text { else } d:=d+l t\left(f_{i}\right) \\
& \quad f_{i+1}:=f_{i}-l t\left(f_{i}\right) \\
& \quad i:=i+1 \text { and goto }(*) \quad \square
\end{aligned}
$$

Remarks 3.4.7. (i) In the above process $\operatorname{lm}\left(f_{i}\right)>\operatorname{lm}\left(f_{i+1}\right) \forall i$, since the monomial order \leq is a well order, the process must terminate at some $i=t$ and $f_{t}=0$. It's easy to see every monomial occurring in the final d is not
divisible by any $\operatorname{lm}(g), g \in G$. Therefore the final d is a reduced form of f w.r.t. G.
(ii) The process actually shows that f has the following representation:

$$
\begin{equation*}
f=\sum_{u=1}^{s} c_{u} l_{u} g_{u} r_{u}+d \tag{3.4.2}
\end{equation*}
$$

where $s \in \mathbb{N}($ when $s=0, f=d), c_{u} \in k-\{0\}, l_{u}, r_{u} \in\left\langle X>, g_{u} \in G\right.$ and not necessarily pairwise distinct $\forall u, 1 \leqslant u \leqslant s, d$ is the reduced form of f w.r.t. G, and $\operatorname{lm}(\mathbf{f})=\max \left\{\mathbf{l}_{1} \operatorname{lm}\left(\mathrm{~g}_{1}\right) \mathbf{r}_{1}, \mathrm{l}_{2} \operatorname{lm}\left(\mathrm{~g}_{2}\right) \mathbf{r}_{2}, \ldots, \mathrm{l}_{\mathrm{s}} \operatorname{lm}\left(\mathrm{g}_{\mathrm{s}}\right) \mathbf{r}_{\mathrm{s}}, \operatorname{lm}(\mathrm{d})\right\}$. (Compare with 3.4.1)

In particular, when $d=0$ in the above representation, (3.4.2) is said to be a standard representation of f w.r.t. G.
(iii) Obviously, the process is a generalization of reduction algorithm 2.3.6. But we don't call the above process an "algorithm". When we apply the process to reduce f modulo some infinite G, we may not be able to decide whether " $\exists g_{i} \in G, l_{i}, r_{i} \in\langle X\rangle$ such that $\operatorname{lm}\left(f_{i}\right)=l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}$ " or not, although one of two cases must be true theoretically. In other words, the process only shows the reduced form of f exists in theory, but in practice we may not be able to compute it for some infinite G.

Next let's explain why there does exist such an infinite G in $k<X>$.
Problem 3.4.8. (Word Problem for Noncommutative Algebra Presentations)
For a k-algebra presentation $\left.R=k<X>/<g_{1}, g_{2}, \ldots, g_{l}\right\rangle$, is there an algorithm which, given $f \in k<X>$, decides whether $f=\overline{0}$ in R ? (Clearly, $f=\overline{0}$ in $R \Leftrightarrow f \in<g_{1}, g_{2}, \ldots, g_{l}>$, so it is also an ideal membership problem for $k<X>$).

Claim 3.4.9. The word problem for noncommutative algebra presentations, or the ideal membership problem for $k\langle X\rangle$, is unsolvable in general.

Proof: See [1].
Theorem 3.4.10. Let $G \subseteq$ ideal $I \subseteq k<X>, \operatorname{lm}(G)=\operatorname{lm}(I)$, i.e., G is a Gröbner basis of the ideal I, then $f \in I \Leftrightarrow R(f, G)=0$.
Proof: See the characterizations of noncommutative Gröbner bases.
By the above results, there exists a finitely generated ideal $I \subseteq k<X>$ for which the ideal membership problem is unsolvable. I can be regarded as an infinite set and by our definition I is a Gröbner basis of itself. Now suppose the reduction process 3.4.6 could compute a reduced form of any given f w.r.t. I, then by theorem 3.4.10, we could decide whether $f \in I$ or not. Hence the ideal membership problem would be solved. This is a contradiction. Therefore we have the following claim:

Claim 3.4.11. (i) There exists an infinite $G \subseteq k<X>$ such that the reduction process 3.4.6 cannot be implemented. (ii) There exists a finitely generated ideal I of $k<X>$ for which we cannot find a finite Gröbner basis.

Moreover, with the above results, the following claim is also obvious.
Definition 3.4.12. For a set $G \subseteq k<X>$, if given any $f \in k<X>$, one can compute a reduced form of f w.r.t. G, then we say G is computable.

Claim 3.4.13. For any ideal I of $k<X\rangle$, if we can find a computable Gröbner basis of I, then we can solve the ideal membership problem for that ideal. On the other hand, there does exist an ideal I in $k<X>$ whose ideal membership problem is unsolvable. For such an ideal I, there is no algorithm which can find a computable Gröbner basis of I.

Now let's focus on the computable sets in $k<X>$. Clearly, finite sets are always computable. Given a finite set $G=\left\{g_{1}, g_{2}, \ldots, g_{j}, \ldots, g_{l}\right\}$, the reduction process 3.4.6 can be refined to the following algorithm.

Algorithm 3.4.14. (Reduction Algorithm)
$i:=1, d:=0, f_{i}:=f$
(*) while $f_{i} \neq 0$ do
if $\exists \operatorname{lm}\left(g_{j}\right) \mid \operatorname{lm}\left(f_{i}\right)$, choose the least j from 1 to $l, l_{i}, r_{i} \in\langle X\rangle$ such that $\operatorname{lm}\left(f_{i}\right)=l_{i} \operatorname{lm}\left(g_{j}\right) r_{i}$, and do

$$
\begin{aligned}
& \quad f_{i+1}:=f_{i}-\frac{l c\left(f_{i}\right)}{l c\left(g_{j}\right)} l_{i} g_{j} r_{i} \\
& i:=i+1 \text { and goto }(*) \\
& \text { else } d:=d+l t\left(f_{i}\right) \\
& f_{i+1}:=f_{i}-l t\left(f_{i}\right) \\
& \\
& i:=i+1 \text { and goto }(*)
\end{aligned}
$$

For infinite sets, we have the following claim.
Claim 3.4.15. Given an infinite $G \subseteq k<X>$, if for any $D \in \mathbb{N}$, the subset $G(D)=\{g \in G \mid \operatorname{deg}(\operatorname{lm}(g)) \leqslant D\}$ is finite and every element of $G(D)$ can be calculated explicitly, then G is computable.
Proof: In the reduction process 3.4.6, to decide whether " $\exists g_{i} \in G, l_{i}, r_{i} \in$ $<X>$ such that $\operatorname{lm}\left(f_{i}\right)=l_{i} \operatorname{lm}\left(g_{i}\right) r_{i}$ " or not, we only need compare $\operatorname{lm}\left(f_{i}\right)$ to every $\operatorname{lm}(g)$ with $\operatorname{deg}(g) \leqslant \operatorname{deg}\left(f_{i}\right)$ and $g \in G$, i.e., we only need know every element in $G(D)$, where $D=\operatorname{deg}\left(f_{i}\right)$. Clearly G in our claim is satisfactory. Then given any f in $k<X>$, we can apply the reduction process 3.4.6 to compute a reduced form of f w.r.t. G, i.e., G is computable.

At last, we give some examples which show that the reduced form of f is not unique w.r.t. general computable G.
Examples 3.4.16. (1) Let $f=x_{1}^{2} x_{2} x_{1}-x_{1} x_{2}^{2} x_{1}, G=\left\{g_{1}, g_{2}\right\} \subseteq k<X>$, where $g_{1}=x_{1}^{2}-x_{1} x_{2}, g_{2}=x_{1} x_{2} x_{1}-x_{2} x_{1} x_{2}$. Let \leq be the deglex with $x_{1}>x_{2}$, then $\operatorname{lm}(f)=x_{1}^{2} x_{2} x_{1}, \operatorname{lm}\left(g_{1}\right)=x_{1}^{2}, \operatorname{lm}\left(g_{2}\right)=x_{1} x_{2} x_{1}$. Applying the algorithm 3.4.14 to reduce f modulo $\left\{g_{1}, g_{2}\right\}$ and $\left\{g_{2}, g_{1}\right\}$, we have

$$
\begin{equation*}
f \xrightarrow{g_{1}} f-g_{1} x_{2} x_{1}=0 \tag{3.4.3}
\end{equation*}
$$

and
$f \xrightarrow{g_{2}} f-x_{1} g_{2}=x_{1} x_{2} x_{1} x_{2}-x_{1} x_{2}^{2} x_{1} \xrightarrow{g_{2}}\left(f-x_{1} g_{2}\right)-g_{2} x_{2}=-x_{1} x_{2}^{2} x_{1}+x_{2} x_{1} x_{2}^{2}$.

That is to say, we find two different reduced forms of f w.r.t. $G, 0$ and $-x_{1} x_{2}^{2} x_{1}+x_{2} x_{1} x_{2}^{2}$.

Moreover, from (3.4.3) we see $f \in\langle G\rangle$, then from (3.4.4) we see $d=$ $-x_{1} x_{2}^{2} x_{1}+x_{2} x_{1} x_{2}^{2}=f-x_{1} g_{2}-g_{2} x_{2} \in<G>$, then $\operatorname{lm}(d) \in \operatorname{lm}(<G>)$ but clearly not in $\operatorname{lm}(G)$. Hence $\operatorname{lm}(G) \subsetneq \operatorname{lm}(<G>)$, so G is not a Gröbner basis.
(2) Let $f=x_{1}^{3}, G=\left\{g=x_{1}^{2}-x_{2}\right\}$. If they are considered in commutative Gröbner bases theory, G will be a Gröbner basis since it contains a single polynomial(see remark 2.5.3(ii)). Then by a characterization of commutative Gröbner bases, the reduced form of f w.r.t. G will be unique.

But now, let's consider them in noncommutative polynomial rings. Let \leq be the deglex with $x_{1}>x_{2}$, then $\operatorname{lm}(f)=x_{1}^{3}, \operatorname{lm}(g)=x_{1}^{2}$. We apply the algorithm 3.4.14 to reduce f modulo G. Clearly we have only one choice of g_{j} such that $\operatorname{lm}\left(g_{j}\right) \mid \operatorname{lm}\left(f_{i}\right)$, but we do have different choices of l_{i}, r_{i} such that $\operatorname{lm}\left(f_{i}\right)=l_{i} \operatorname{lm}\left(g_{j}\right) r_{i}$. Thus we have the following results.

$$
\begin{equation*}
f \xrightarrow{g} f-x_{1} g=x_{1}^{3}-x_{1}\left(x_{1}^{2}-x_{2}\right)=x_{1} x_{2}, \tag{3.4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f \xrightarrow{g} f-g x_{1}=x_{1}^{3}-\left(x_{1}^{2}-x_{2}\right) x_{1}=x_{2} x_{1} . \tag{3.4.6}
\end{equation*}
$$

That is to say, we find two different reduced forms of f w.r.t. $G, x_{1} x_{2}$ and $x_{2} x_{1}$.

Moreover, from (3.4.5) and (3.4.6), we see that

$$
\begin{equation*}
x_{1} x_{2}-x_{2} x_{1}=g x_{1}-x_{1} g \in<G> \tag{3.4.7}
\end{equation*}
$$

Therefore, $\operatorname{lm}\left(x_{1} x_{2}-x_{2} x_{1}\right)=x_{1} x_{2} \in \operatorname{lm}(<G>)$ but $x_{1} x_{2}$ is not in $\operatorname{lm}(G)$, hence $\operatorname{lm}(G) \subsetneq \operatorname{lm}(<G>)$, so G is not a Gröbner basis.

3.5 Noncommutative S-polynomials

This section is devoted to the generalization of S-polynomials(see definition 2.4.1). Two problems arise. Firstly, given $m_{1}, m_{2} \in\langle X\rangle$, it's often impossible to find the least common multiple of m_{1}, m_{2} like we did for commutative monomials. For example, both $x y x$ and $y x y$ are common multiples of $x y$ and $y x$, but we cannot find $\operatorname{lcm}(x y, y x)$, such that $\operatorname{lcm}(x y, y x) \mid x y x$ and $\operatorname{lcm}(x y, y x) \mid y x y$. Secondly, for noncommutative m_{1}, m_{2}, even if we have found $L=\operatorname{lcm}\left(m_{1}, m_{2}\right)$, the expression $\frac{L}{m_{1}}$ (or $\frac{L}{m_{2}}$) is ambiguous since we may have different choices of l, r such that $L=l m_{1} r$ (or $L=l m_{2} r$). In the example 3.4.16(2), we have seen the ambiguity of $\frac{x_{1}^{3}}{x_{1}^{2}}$ caused by two possibilities $x_{1}^{3}=x_{1} \cdot x_{1}^{2}$ or $x_{1}^{2} \cdot x_{1}$.

For the first problem, we will investigate all cases of common multiples of m_{1}, m_{2}. Instead to look for a least common multiple, we try to find out the minimal common multiple in each case. To avoid the ambiguity in the second problem, for an ordered pair of monomials $\left(m_{1}, m_{2}\right) \in\langle X\rangle^{2}$, we let $T\left(m_{1}, m_{2}\right)$ denote the set of 4-tuples $\left(l_{1}, r_{1}, l_{2}, r_{2}\right) \in\langle X\rangle^{4}$ satisfying $l_{1} m_{1} r_{1}=l_{2} m_{2} r_{2}$.

The Cases of Common Multiples of m_{1} and m_{2}

Given an ordered pair of monomials $\left(m_{1}, m_{2}\right) \in\langle X\rangle^{2}$, if $\left(l_{1}, r_{1}, l_{2}, r_{2}\right) \in$ $T\left(m_{1}, m_{2}\right)$, then according to the relative locations of m_{1} and m_{2} in the common multiple W, we have the following three cases.

Case 1: $\exists w \in<X>$ between m_{1} and m_{2}.

Case 1-1: $W=l_{1} m_{1} w m_{2} r_{2}$, the minimal common multiple is $m_{1} w m_{2}$.
Case 1-2: $W=l_{2} m_{2} w m_{1} r_{1}$, the minimal common multiple is $m_{2} w m_{1}$.
Since w can be any monomial, we have an infinite set of minimal common multiples in Case 1. Fortunately, in later discussion, we will see that we don't need the generalization of S-polynomials for this case.

Case 2: There is no w between m_{1} and m_{2}. The monomials m_{1}, m_{2} overlap but no one contains the other.

Case 2-1: $\exists\left(1, R_{1}, L_{2}, 1\right) \in T\left(m_{1}, m_{2}\right), R_{1} \neq 1, L_{2} \neq 1$ such that $m_{1} R_{1}=$ $L_{2} m_{2}=m_{0}$. Then $W=l_{1} m_{0} r_{2}$, the minimal common multiple is m_{0}.

Case 2-2: $\exists\left(L_{1}, 1,1, R_{2}\right) \in T\left(m_{1}, m_{2}\right), L_{1} \neq 1, R_{2} \neq 1$ such that $L_{1} m_{1}=$ $m_{2} R_{2}=m_{0}$. Then $W=l_{2} m_{0} r_{1}$, the minimal common multiple is m_{0}.

Since m_{1}, m_{2} overlap, $\operatorname{deg}\left(m_{0}\right)<\operatorname{deg}\left(m_{1}\right)+\operatorname{deg}\left(m_{2}\right)$, hence we have finite minimal common multiples of m_{1} and m_{2} in case 2 .

Case 3: There is no w between m_{1} and m_{2}, and one contains the other.
Case 3-1: m_{1} contains m_{2}. Then the minimal common multiple is $m_{0}=$ $m_{1}, W=l_{1} m_{0} r_{1}$ and $\exists\left(1,1, L_{2}, R_{2}\right) \in T\left(m_{1}, m_{2}\right)$ such that $m_{0}=m_{1}=$ $L_{2} m_{2} R_{2}$.

Case 3-2: m_{2} contains m_{1}. Then the minimal common multiple is $m_{0}=$ $m_{2}, W=l_{2} m_{0} r_{2}$ and $\exists\left(L_{1}, R_{1}, 1,1\right) \in T\left(m_{1}, m_{2}\right)$ such that $m_{0}=m_{2}=$ $L_{1} m_{1} R_{1}$.

Clearly, we have finite minimal common multiples in case 3 .

With the above discussion, we can define noncommutative S-polynomials. Definition 3.5.1. Given an ordered pair of monomials $\left(m_{1}, m_{2}\right) \in\langle X\rangle^{2}$, the set of matches of $\left(m_{1}, m_{2}\right)$, denoted by $M S\left(m_{1}, m_{2}\right)$, is the finite set of all ordered 4-tuples $\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in T\left(m_{1}, m_{2}\right)$, such that, either
(i) $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)=\left(1, R_{1}, L_{2}, 1\right)$ with $R_{1} \neq 1, L_{2} \neq 1$ and $\exists w \neq 1$ such that $w R_{1}=m_{2}$ and $L_{2} w=m_{1}$;
or (ii) $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)=\left(L_{1}, 1,1, R_{2}\right)$ with $L_{1} \neq 1, R_{2} \neq 1$ and $\exists w \neq 1$ such that $w R_{2}=m_{1}$ and $L_{1} w=m_{2}$;
or (iii) $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)=\left(1,1, L_{2}, R_{2}\right)$ with $m_{1}=L_{2} m_{2} R_{2}$;
or (iv) $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)=\left(L_{1}, R_{1}, 1,1\right)$ with $m_{2}=L_{1} m_{1} R_{1}$.
Definition 3.5.2. Given $f, g \in k<X>-\{0\}$, if $M S(\operatorname{lm}(f), \operatorname{lm}(g)) \neq \emptyset$, then

$$
S(f, g)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]:=\frac{1}{l c(f)} L_{1} f R_{1}-\frac{1}{l c(g)} L_{2} g R_{2}
$$

is called an S-polynomial of f and g w.r.t. $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)$, where $\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S(\operatorname{lm}(f), \operatorname{lm}(g))$.

Remarks 3.5.3. (i) The four cases in the definition of $M S\left(m_{1}, m_{2}\right)$ clearly corresponds to minimal common multiples in cases $2-1,2-2,3-1$ and $3-2$. By the discussion there, $M S\left(m_{1}, m_{2}\right)$ is finite. Note that $M S(x, y)$ may be empty.
(ii)By symmetry,
$\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S(\operatorname{lm}(f), \operatorname{lm}(g)) \Leftrightarrow\left(L_{2}, R_{2}, L_{1}, R_{1}\right) \in M S(\operatorname{lm}(g), \operatorname{lm}(f))$, thus $S(f, g)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]=-S(g, f)\left[L_{2}, R_{2}, L_{1}, R_{1}\right]$.

We conclude the discussion in this section with the following observation.
Theorem 3.5.4. For any polynomial

$$
\frac{1}{l c(f)} l_{1} f r_{1}-\frac{1}{l c(g)} l_{2} g r_{2},
$$

where $\left(l_{1}, r_{1}, l_{2}, r_{2}\right) \in T(\operatorname{lm}(f), \operatorname{lm}(g)), f, g \in k<X>-\{0\}$ and $l_{1} \operatorname{lm}(f) r_{1}=$ $l_{2} \operatorname{lm}(g) r_{2}=W$, we have the following three cases.

Case 1: $\exists w \in\langle X\rangle$ such that $W=l_{1} \cdot \operatorname{lm}(f) \cdot w \cdot \operatorname{lm}(g) \cdot r_{2}$.
Case 2: $\exists w \in\langle X\rangle$ such that $W=l_{2} \cdot \operatorname{lm}(g) \cdot w \cdot \operatorname{lm}(f) \cdot r_{1}$.
Case 3: $\exists l, r \in<X>, \exists\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S(\operatorname{lm}(f), \operatorname{lm}(g))$, such that $W=l\left(L_{1} l m(f) R_{1}\right) r=l\left(L_{2} l m(g) R_{2}\right) r$, and

$$
\frac{1}{l c(f)} l_{1} f r_{1}-\frac{1}{l c(g)} l_{2} g r_{2}=l \cdot S(f, g)\left[L_{1}, R_{1}, L_{2}, R_{2}\right] \cdot r .
$$

Proof: By our previous discussion, the result is obvious.

3.6 Characterizations of Noncommutative Gröbner Bases

In this section we will prove several characterizations of noncommutative Gröbner bases.
Theorem 3.6.1. (Characterizations of Noncommutative Gröbner Bases)Given $G \subseteq k<X>$, assume 0 is not in G, let $I=<G>$ be the ideal generated by G, let \leq be a monomial order on $\langle X\rangle$. The following conditions are equivalent:
(a) $\operatorname{lm}(G)=\operatorname{lm}(I)$;
(b) $\forall f \in I-\{0\}, \exists g \in G$ such that $\operatorname{lm}(g) \mid \operatorname{lm}(f)$;
(c) $f \in I \Leftrightarrow R(f, G)=0$;
(d) $f \in I \Leftrightarrow f$ has a standard representation w.r.t. G;
(e) $\forall f \in k<X>$, the reduced form of f w.r.t. G is unique;
(f) As k-vector spaces, $k<X>=k_{R}(G) \bigoplus I$;
(g) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$, $R\left(S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right], G\right)=0 ;$
(h) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$,
$S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ has a standard representation w.r.t. G.

Proof: We show the cycle $(\mathbf{a}) \Rightarrow(\mathbf{b}) \Rightarrow(\mathbf{c}) \Rightarrow(\mathbf{f}) \Rightarrow(\mathbf{e}) \Rightarrow(\mathrm{g}) \Rightarrow(\mathbf{h}) \Rightarrow(\mathbf{d}) \Rightarrow(\mathbf{a})$ as follows.
$\mathbf{(a)} \Rightarrow \mathbf{(b)}$: If $f \in I-\{0\}$, then $\operatorname{lm}(f) \in \operatorname{lm}(I)=\operatorname{lm}(G)$.
$(\mathbf{b}) \Rightarrow(\mathbf{c})$: By prop.3.4.5, $R(f, G)=0 \Rightarrow f=0$ or $f=\sum_{u=1}^{s} c_{u} l_{u} g_{u} r_{u}$, where $s \in \mathbb{N}-\{0\}, c_{u} \in k-\{0\}, l_{u}, r_{u} \in\langle X\rangle, g_{u} \in G$. Clearly, $f \in I$.

Conversely, when $f=0, R(f, G)=f=0$. For $f \in I-\{0\}$, if $d \neq 0$ is a reduced form of f w.r.t. G, again by prop.3.4.5, $d=f \in I-\{0\}$ or $d=f-\sum_{u=1}^{s} c_{u} l_{u} g_{u} r_{u} \in I-\{0\}$, then by (b), $\exists g \in G$ such that $\operatorname{lm}(g) \mid \operatorname{lm}(d)$. But d is reduced w.r.t. G, a contradiction. So the reduced form of f w.r.t. G must be 0 and thus must be unique, i.e., $R(f, G)=0$.
$(\mathbf{c}) \Rightarrow \mathbf{(f) : ~} \forall f \in k<X>$, the process 3.4.6 shows that $f=d+\sum_{u=1}^{s} c_{u} l_{u} g_{u} r_{u}$ (see (3.4.2) in remark 3.4.7(ii)), where d is a reduced form of f w.r.t. G. Hence, $k<X>=k_{R}(G)+I$. We only need show $k_{R}(G) \bigcap I=\{0\} . \forall d \in k_{R}(G) \bigcap I$, $d \in k_{R}(G) \Rightarrow d=R(d, G)$; also, $d \in I \Rightarrow R(d, G)=0$ by (c). Therefore $d=0$, i.e., $k_{R}(G) \bigcap I=\{0\}$.
$(\mathbf{f}) \Rightarrow(\mathbf{e}): \forall f \in k<X>$, if f is reduced w.r.t. G, then $R(f, G)=f$. When f is not reduced, let d_{1} and d_{2} be two reduced forms of f w.r.t. G. By prop.3.4.5, $f=\sum_{u=1}^{s} c_{u} l_{u} g_{u} r_{u}+d_{1}=\sum_{v=1}^{t} c_{v}^{\prime} l_{v}^{\prime} g_{v}^{\prime} r_{v}^{\prime}+d_{2}$ (see 3.4.1). Then $d_{1}-d_{2}=\sum_{v=1}^{t} c_{v}^{\prime} l_{v}^{\prime} g_{v}^{\prime} r_{v}^{\prime}-\sum_{u=1}^{s} c_{u} l_{u} g_{u} r_{u} \in k_{R}(G) \bigcap I$. By (f), $d_{1}-d_{2}=0$. Hence, the reduced form of f w.r.t. G is unique.
$(\mathbf{e}) \Rightarrow(\mathrm{g}): \forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$, by (e), the reduced form of $S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ w.r.t. G is unique. We only need show it is zero.

Let $W=L_{1} \operatorname{lm}\left(g_{1}\right) R_{1}=L_{2} \operatorname{lm}\left(g_{2}\right) R_{2}, h_{1}=W-\frac{1}{l c\left(g_{1}\right)} L_{1} g_{1} R_{1}, h_{2}=W-$ $\frac{1}{l c\left(g_{2}\right)} L_{2} g_{2} R_{2}$. By reduction process 3.4.6, there exist two finite sequence of
reductions as follows:(Although we possibly cannot compute them out, they do exist!)

$$
W \xrightarrow{g_{1}} h_{1}=W-\frac{1}{l c\left(g_{1}\right)} L_{1} g_{1} R_{1} \xrightarrow{g_{11}} \ldots \xrightarrow{g_{1 a}} d_{1}=R(W, G)
$$

and

$$
W \xrightarrow{g_{2}} h_{2}=W-\frac{1}{l c\left(g_{2}\right)} L_{2} g_{2} R_{2} \xrightarrow{g_{21}} \ldots \xrightarrow{g_{2 b}} d_{2}=R(W, G) .
$$

Then for $S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$, there is a finite sequence of reductions:

$$
\begin{equation*}
S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]=h_{2}-h_{1} \xrightarrow{g_{11}} \ldots \xrightarrow{g_{1 a}} h_{2}-d_{1} \xrightarrow{g_{21}} \ldots \xrightarrow{g_{2 b}} d_{2}-d_{1} . \tag{3.6.1}
\end{equation*}
$$

Since $R(W, G)$ is unique, $d_{2}-d_{1}=0$, hence,

$$
R\left(S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right], G\right)=0
$$

$(\mathrm{g}) \Rightarrow \mathbf{(h) : ~ B y ~}(\mathbf{g}), R\left(S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right], G\right)=0$, then by remark 3.4.7(ii), each corresponding $S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ has a standard representation w.r.t. G.
$\mathbf{(h)} \Rightarrow \mathbf{(d) : ~ O b v i o u s l y , ~} " f$ has a standard representation w.r.t. $G " \Rightarrow " f \in$ I "(see 3.4.2 in remark 3.4.7(ii)). We only show " $f \in I " \Rightarrow$ " f has a standard representation w.r.t. $G "$.

Now 0 has a trivial standard representation w.r.t. G. $\forall f \in I-\{0\}$, I is generated by G, thus f can be written as $f=\sum_{i=1}^{t} c_{i} l_{i} g_{i} r_{i}$, where $t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, l_{i}, r_{i} \in<X>, g_{i} \in G$. Then

$$
\begin{aligned}
\Gamma= & \left\{\max _{1 \leqslant i \leqslant t}\left\{l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}\right\} \mid f=\sum_{i=1}^{t} c_{i} l_{i} g_{i} r_{i}, t \in \mathbb{N}-\{0\},\right. \\
& \left.c_{i} \in k-\{0\}, l_{i}, r_{i} \in<X>, g_{i} \in G\right\} \\
& \neq \emptyset .
\end{aligned}
$$

Since the monomial order \leq is a well order, Γ has a least element m. This implies, there is a representation of f such that,

$$
\begin{equation*}
f=\sum_{i=1}^{t} c_{i} l_{i} g_{i} r_{i} \tag{3.6.2}
\end{equation*}
$$

$t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, l_{i}, r_{i} \in\langle X\rangle, g_{i} \in G$, and

$$
\max _{1 \leqslant i \leqslant t}\left\{l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}\right\}=m
$$

Claim: the above (3.6.2) is a standard representation of f w.r.t. G.
Proof of the claim: Obviously, $\operatorname{lm}(f) \leq m$. By the definition of standard representation, we need show $\operatorname{lm}(f)=m$. WLOG, assume

$$
l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i} \geq l_{i+1} \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot r_{i+1}, \forall i=1,2, \ldots, t-1, \text { in (3.6.2). }
$$

Let $J=\max \left\{i \mid l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}=m, 1 \leqslant i \leqslant t\right\}$, then (3.6.2) looks like

$$
\begin{equation*}
f=c_{1} l_{1} g_{1} r_{1}+\cdots+c_{J} l_{J} g_{J} r_{J}+\sum_{i=J+1}^{t} c_{i} l_{i} g_{i} r_{i} \tag{3.6.3}
\end{equation*}
$$

where

$$
m=l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}, \forall i=1,2, \ldots, J,
$$

and

$$
m>l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i} \geq l_{i+1} \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot r_{i+1}, \forall i=J+1, \ldots, t-1
$$

Let $a_{i}=l c\left(g_{i}\right), \forall i=1,2, \ldots, J$. If $J=1$ or $c_{1} a_{1}+\cdots+c_{J} a_{J} \neq 0$, since m cannot be canceled on the right side of (3.6.3)(i.e.,(3.6.2)), $\operatorname{lm}(f)$ has to be m. Then (3.6.3)(i.e.,(3.6.2)) is a standard representation of f.

Assume now that $J \geqslant 2$ and $c_{1} a_{1}+\cdots+c_{J} a_{J}=0$. Let's show this case is impossible. Notice that (3.6.3) can be rewritten as follows.

$$
\begin{aligned}
f= & c_{1} a_{1}\left(\frac{1}{a_{1}} l_{1} g_{1} r_{1}-\frac{1}{a_{2}} l_{2} g_{2} r_{2}\right)+\left(c_{1} a_{1}+c_{2} a_{2}\right)\left(\frac{1}{a_{2}} l_{2} g_{2} r_{2}-\frac{1}{a_{3}} l_{3} g_{3} r_{3}\right) \\
& +\cdots+\left(c_{1} a_{1}+\cdots+c_{J-1} a_{J-1}\right)\left(\frac{1}{a_{J-1}} l_{J-1} g_{J-1} r_{J-1}-\frac{1}{a_{J}} l_{J} g_{J} r_{J}\right) \\
& +\left(c_{1} a_{1}+\cdots+c_{J} a_{J}\right) \frac{1}{a_{J}} l_{J} g_{J} r_{J}+\sum_{i=J+1}^{t} c_{i} l_{i} g_{i} r_{i} .
\end{aligned}
$$

Since $c_{1} a_{1}+\cdots+c_{J} a_{J}=0$, we have

$$
\begin{align*}
f= & c_{1} a_{1}\left(\frac{1}{a_{1}} l_{1} g_{1} r_{1}-\frac{1}{a_{2}} l_{2} g_{2} r_{2}\right)+\left(c_{1} a_{1}+c_{2} a_{2}\right)\left(\frac{1}{a_{2}} l_{2} g_{2} r_{2}-\frac{1}{a_{3}} l_{3} g_{3} r_{3}\right) \\
& +\cdots+\left(c_{1} a_{1}+\cdots+c_{J-1} a_{J-1}\right)\left(\frac{1}{a_{J-1}} l_{J-1} g_{J-1} r_{J-1}-\frac{1}{a_{J}} l_{J} g_{J} r_{J}\right) \\
& +\sum_{i=J+1}^{t} c_{i} l_{i} g_{i} r_{i} . \tag{3.6.4}
\end{align*}
$$

Now consider

$$
\frac{1}{a_{i}} l_{i} g_{i} r_{i}-\frac{1}{a_{i+1}} l_{i+1} g_{i+1} r_{i+1}, \forall i=1,2, \ldots, J-1 .
$$

Since

$$
m=l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}=l_{i+1} \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot r_{i+1}, \forall i=1,2, \ldots, J-1,
$$

by theorem 3.5.4, we have three cases.
Case 1: $\exists w \in\left\langle X>\right.$ such that $m=l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot w \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot r_{i+1}$. Then

$$
\begin{align*}
r_{i} & =w \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot r_{i+1}, \tag{3.6.5}\\
l_{i+1} & =l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot w . \tag{3.6.6}
\end{align*}
$$

Notice that the unique forms(see (3.1.1)) of g_{i} and g_{i+1} look like:

$$
\begin{align*}
g_{i} & =a_{i} \operatorname{lm}\left(g_{i}\right)+\sum_{p=2}^{t_{1}} c_{i p} m_{i p}, \tag{3.6.7}\\
g_{i+1} & =a_{i+1} \operatorname{lm}\left(g_{i+1}\right)+\sum_{q=2}^{t_{2}} c_{(i+1) q} m_{(i+1) q}, \tag{3.6.8}
\end{align*}
$$

where $t_{1}, t_{2} \in \mathbb{N}-\{0\}, c_{i p}, c_{(i+1) q} \in k-\{0\}, m_{i p}, m_{(i+1) q} \in<X>$ and

$$
\begin{aligned}
& \operatorname{lm}\left(g_{i}\right)>m_{i p}>m_{p+1}, \forall p=2, \ldots, t_{1}-1 \\
& \operatorname{lm}\left(g_{i+1}\right)>m_{(i+1) q}>m_{(i+1)(q+1)}, \forall q=2, \ldots, t_{2}-1
\end{aligned}
$$

With (3.6.5)-(3.6.8), we have

$$
\begin{aligned}
& \frac{1}{a_{i}} l_{i} g_{i} r_{i}-\frac{1}{a_{i+1}} l_{i+1} g_{i+1} r_{i+1} \\
= & \frac{1}{a_{i} a_{i+1}}\left\{l_{i} g_{i} w a_{i+1} \operatorname{lm}\left(g_{i+1}\right) r_{i+1}-l_{i} a_{i} \operatorname{lm}\left(g_{i}\right) w g_{i+1} r_{i+1}\right. \\
& \left.+l_{i} g_{i} w g_{i+1} r_{i+1}-l_{i} g_{i} w g_{i+1} r_{i+1}\right\} \\
= & \frac{1}{a_{i} a_{i+1}}\left\{l_{i}\left[g_{i}-a_{i} \operatorname{lm}\left(g_{i}\right)\right] w g_{i+1} r_{i+1}-l_{i} g_{i} w\left[g_{i+1}-a_{i+1} l m\left(g_{i+1}\right)\right] r_{i+1}\right\} \\
= & \frac{1}{a_{i} a_{i+1}}\left\{l_{i}\left[\sum_{p=2}^{t_{1}} c_{i p} m_{i p}\right] w g_{i+1} r_{i+1}-l_{i} g_{i} w\left[\sum_{q=2}^{t_{2}} c_{(i+1) q} m_{(i+1) q}\right] r_{i+1}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
l_{i} \cdot m_{i p} \cdot w \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot r_{i+1}<l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot w \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot r_{i+1} & =m, \\
l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot w \cdot m_{(i+1) q} \cdot r_{i+1}<l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot w \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot r_{i+1} & =m,
\end{aligned}
$$

for all $p=2, \ldots, t_{1}$, and $q=2, \ldots, t_{2}$. In other words, we have rewritten

$$
\begin{equation*}
\frac{1}{a_{i}} l_{i} g_{i} r_{i}-\frac{1}{a_{i+1}} l_{i+1} g_{i+1} r_{i+1}=\sum_{j=1}^{s_{i}} c_{j} l_{j} g_{j} r_{j} \tag{3.6.9}
\end{equation*}
$$

where $s_{i} \in \mathbb{N}-\{0\}, c_{j} \in k-\{0\}, l_{j}, r_{j} \in\left\langle X>, g_{j} \in G\right.$, and

$$
\max _{1 \leqslant j \leqslant s_{i}}\left\{l_{j} \cdot \operatorname{lm}\left(g_{j}\right) \cdot r_{j}\right\}<m .
$$

Case 2: $\exists w \in\langle X\rangle$ such that $m=l_{i+1} \cdot \operatorname{lm}\left(g_{i+1}\right) \cdot w \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}$. Clearly this case is symmetric to the case 1 . With the same method, we also can rewrite

$$
\begin{equation*}
\frac{1}{a_{i}} l_{i} g_{i} r_{i}-\frac{1}{a_{i+1}} l_{i+1} g_{i+1} r_{i+1}=\sum_{j=1}^{s_{i}} c_{j} l_{j} g_{j} r_{j} \tag{3.6.10}
\end{equation*}
$$

where $s_{i} \in \mathbb{N}-\{0\}, c_{j} \in k-\{0\}, l_{j}, r_{j} \in\left\langle X>, g_{j} \in G\right.$, and

$$
\max _{1 \leqslant j \leqslant s_{i}}\left\{l_{j} \cdot \operatorname{lm}\left(g_{j}\right) \cdot r_{j}\right\}<m .
$$

Case 3: $\exists l, r \in<X>$ and $\exists\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{i}\right), \operatorname{lm}\left(g_{i+1}\right)\right)$, such that

$$
\frac{1}{a_{i}} l_{i} g_{i} r_{i}-\frac{1}{a_{i+1}} l_{i+1} g_{i+1} r_{i+1}=l \cdot S\left(g_{i}, g_{i+1}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right] \cdot r .
$$

The condition (h) says that $S\left(g_{i}, g_{i+1}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ has a standard representation w.r.t. G, as does $l \cdot S\left(g_{i}, g_{i+1}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right] \cdot r$. Hence we can rewrite

$$
\begin{equation*}
\frac{1}{a_{i}} l_{i} g_{i} r_{i}-\frac{1}{a_{i+1}} l_{i+1} g_{i+1} r_{i+1}=\sum_{j=1}^{s_{i}} c_{j} l_{j} g_{j} r_{j} \tag{3.6.11}
\end{equation*}
$$

where $s_{i} \in \mathbb{N}-\{0\}, c_{j} \in k-\{0\}, l_{j}, r_{j} \in\left\langle X>, g_{j} \in G\right.$, and

$$
\max _{1 \leqslant j \leqslant s_{i}}\left\{l_{j} \cdot \operatorname{lm}\left(g_{j}\right) \cdot r_{j}\right\}=\operatorname{lm}\left(\frac{1}{a_{i}} l_{i} g_{i} r_{i}-\frac{1}{a_{i+1}} l_{i+1} g_{i+1} r_{i+1}\right)<m
$$

With above results, let's revisit (3.6.4). For all $i=1,2, \ldots, J-1$, we can rewrite

$$
\frac{1}{a_{i}} l_{i} g_{i} r_{i}-\frac{1}{a_{i+1}} l_{i+1} g_{i+1} r_{i+1}
$$

to the form (3.6.9) or (3.6.10) or (3.6.11). For all $i=J+1, \ldots, t$, it is known

$$
l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}<m .
$$

Hence (3.6.4) can be rewritten as

$$
\begin{equation*}
f=\sum_{j=1}^{t^{\prime}} c_{j}^{\prime} l_{j}^{\prime} g_{j}^{\prime} r_{j}^{\prime} \tag{3.6.12}
\end{equation*}
$$

where $t^{\prime} \in \mathbb{N}-\{0\}, c_{j}^{\prime} \in k-\{0\}, l_{j}^{\prime}, r_{j}^{\prime} \in\left\langle X>, g_{j}^{\prime} \in G\right.$, and

$$
\max _{1 \leqslant j \leqslant t^{\prime}}\left\{l_{j}^{\prime} \cdot \operatorname{lm}\left(g_{j}^{\prime}\right) \cdot r_{j}^{\prime}\right\}=m^{\prime}<m .
$$

Obviously, $m^{\prime} \in \Gamma$, but m is the least element of Γ, it's impossible that $m^{\prime}<m$.

Therefore the case " $J \geqslant 2$ and $c_{1} a_{1}+\cdots+c_{J} a_{J}=0$ " is impossible for $(3.6 .3)($ i.e.,(3.6.2)). Then $(3.6 .3)(i . e .,(3.6 .2))$ is a standard representation of f w.r.t. G. The claim is proved, thus " $(\mathbf{h}) \Rightarrow \mathbf{(d)}$ " is proved.
$\mathbf{(d)} \Rightarrow \mathbf{(a)}: \forall f \in I$, by $(\mathbf{d}), f$ has a standard representation w.r.t. G, then $\operatorname{lm}(f)=l_{i} \cdot \operatorname{lm}\left(g_{i}\right) \cdot r_{i}$ for some $g_{i} \in G, l_{i}, r_{i} \in\langle X>$. Then $\operatorname{lm}(f) \in \operatorname{lm}(G)$, which implies $\operatorname{lm}(I) \subseteq \operatorname{lm}(G)$. It's obvious that $\operatorname{lm}(G) \subseteq \operatorname{lm}(I)$. Thus $\operatorname{lm}(I)=\operatorname{lm}(G)$.

Remark 3.6.2. As we can see, the above theorem is almost the same as its counterpart in chapter 2 . In chapter 4 , we will explain why.

3.7 Generalization of Buchberger's Algorithm

As we have pointed out, in noncommutative polynomial ring $k\langle X\rangle$, there are ideals which cannot be finitely generated. For such an ideal I, we do not
know if there is an algorithm which can find an infinite computable Gröbner basis G of I when G does exist. For a finitely generated ideal of $k<X>$, we have the following semi-decision algorithm, which is a generalization of Buchberger's algorithm and is one of the best results known so far.

Algorithm 3.7.1. (Generalized Buchberger's Algorithm Due to Mora)
$i:=1, H_{1}:=F, G_{1}:=F,(F$ is a given finite subset of $k<X>)$
(*) while $H_{i} \neq \emptyset$ do

$$
H_{i+1}:=\emptyset
$$

$$
B_{i}:=\left\{\left(f, g, L_{1}, R_{1}, L_{2}, R_{2}\right) \mid f \in G_{i}, g \in H_{i},\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in\right.
$$

$M S(\operatorname{lm}(f), \operatorname{lm}(g))\}$
(\star)while $B_{i} \neq \emptyset$ do

$$
\begin{aligned}
& \text { choose }\left(f_{1}, f_{2}, L_{1}, R_{1}, L_{2}, R_{2}\right) \in B_{i} \\
& B_{i}:=B_{i}-\left\{\left(f_{1}, f_{2}, L_{1}, R_{1}, L_{2}, R_{2}\right)\right\} \\
& f:=\frac{1}{l c\left(f_{1}\right)} L_{1} f_{1} R_{1}-\frac{1}{l c\left(f_{2}\right)} L_{2} f_{2} R_{2}
\end{aligned}
$$

do reduction algorithm 3.4.14 to compute a reduced form d of f w.r.t. $G_{i} \bigcup H_{i+1}$

$$
\begin{aligned}
& \quad \text { if } d \neq 0 \text { then } H_{i+1}:=H_{i+1} \bigcup\{d\} \\
& \quad \text { goto }(\star) \\
& G_{i+1}=G_{i} \bigcup H_{i+1} \\
& i:=i+1 \text { and goto (*) } \square
\end{aligned}
$$

In the above algorithm, we assume F is nonempty and a monomial order \leq has been defined on $\langle X\rangle$. About the above algorithm, we now make the following claims.

Claim 3.7.2. $\forall i \in \mathbb{N}-\{0\}, \forall\left(f_{1}, f_{2}\right) \in G_{i}^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in$ $M S\left(\operatorname{lm}\left(f_{1}\right), \operatorname{lm}\left(f_{2}\right)\right), S\left(f_{1}, f_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ has a standard representation w.r.t. G_{i+1}. (If the algorithm terminates at i, let $G_{j}=G_{i}, \forall j>i$.)

Proof: We prove the statement by induction on i.
Consider $i=1$. Notice that $G_{1}=H_{1}, \forall\left(f_{1}, f_{2}\right) \in G_{1} \times G_{1}=G_{1} \times$ $H_{1}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(f_{1}\right), \operatorname{lm}\left(f_{2}\right)\right)$, the algorithm reduces $f=$ $S\left(f_{1}, f_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ to a reduced form d w.r.t. $G_{1} \cup H_{2}$. If $d=0$, clearly, f has a standard representation w.r.t. $G_{2} \supseteq G_{1} \bigcup H_{2}$. If $d \neq 0$, then $d \in G_{2}$, again, f has a standard representation w.r.t. G_{2}.

Suppose the statement holds for i, let's prove that it holds for $i+1$.
If the algorithm terminates at $i+1, H_{i+1}=\emptyset$, and $G_{i+2}=G_{i+1}=G_{i}$. Then by our induction hypothesis, $\forall\left(f_{1}, f_{2}\right) \in G_{i+1}^{2}=G_{i}^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in$ $M S\left(\operatorname{lm}\left(f_{1}\right), \operatorname{lm}\left(f_{2}\right)\right), S\left(f_{1}, f_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ has a standard representation w.r.t. $G_{i+2}=G_{i+1}$. The statement is true.

If the algorithm doesn't terminate at $i+1, G_{i+1}=G_{i} \bigcup H_{i+1}$, we then have two cases.

Case 1: $\left(f_{1}, f_{2}\right) \in G_{i+1} \times H_{i+1}$. Like the case $i=1$, the algorithm will reduce $f=S\left(f_{1}, f_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ to d. Whether $d=0$ or not, the algorithm ensures f has a standard representation w.r.t. G_{i+2}.

Case 2: $\left(f_{1}, f_{2}\right) \in G_{i+1} \times G_{i}$. We have two sub-cases:
Case 2-1: $\left(f_{1}, f_{2}\right) \in G_{i} \times G_{i}$. By hypothesis inductions, every S-polynomial of $\left(f_{1}, f_{2}\right)$ has a standard representation w.r.t. $G_{i+2} \supseteq G_{i+1}$.

Case 2-2: $\left(f_{1}, f_{2}\right) \in H_{i+1} \times G_{i}$. Then $\left(f_{2}, f_{1}\right)$ is in the case 1 , every Spolynomial of $\left(f_{2}, f_{1}\right)$ has a standard representation w.r.t. G_{i+2}. By remark 3.5.3(ii), so does every S-polynomial of $\left(f_{1}, f_{2}\right)$.

Hence, the statement holds for $i+1$. By induction, the statement holds for all i.

Claim 3.7.3. (i)The algorithm terminates at some $i+1, i \in \mathbb{N}-\{0\}$, if and only if, G_{i} is a finite Gröbner basis of the ideal $I=<F>$.
(ii)If the algorithm never terminates, then $\bigcup_{i=1}^{\infty} G_{i}$ is an infinite Gröbner basis of the ideal $I=<F>$.

Proof: Notice that $F=G_{1} \subseteq \ldots \subseteq G_{i} \subseteq \ldots \subseteq I=<F>$. Then

$$
<F>\subseteq \ldots \subseteq<G_{i}>\subseteq \ldots \subseteq<F>
$$

Hence, $\left\langle G_{i}\right\rangle=I=<F>, \forall i \in \mathbb{N}-\{0\}$.
(i) If the algorithm terminates at some $i+1$, then $H_{i+1}=\emptyset$, and $G_{i+1}=$ $G_{i} \bigcup H_{i+1}=G_{i}$. By claim 3.7.2, $\forall\left(f_{1}, f_{2}\right) \in G_{i}^{2}$, every S-polynomial of $\left(f_{1}, f_{2}\right)$ has a standard representation w.r.t. $G_{i+1}=G_{i}$. Since $\left.<G_{i}\right\rangle=I$, by the characterization (h), G_{i} is a Gröbner basis of I. Obviously, G_{i} is finite.

Conversely, if G_{i} is a finite Gröbner basis of the ideal I, then H_{i+1} will be empty since all $d=R\left(f, G_{i} \bigcup H_{i+1}\right)=0$. Thus the algorithm terminates at $i+1$.
(ii) If the algorithm never terminates, let $G=\bigcup_{i=1}^{\infty} G_{i}$, then $\forall\left(f_{1}, f_{2}\right) \in$ G^{2}, there is sufficient large J such that $\left(f_{1}, f_{2}\right) \in G_{J}^{2}$, then every S-polynomial of $\left(f_{1}, f_{2}\right)$ has a standard representation w.r.t. $G_{J+1} \subseteq G$. Obviously $\langle G\rangle=$ I, then by the characterization (h), G is a Gröbner basis of the ideal I. Since the algorithm never terminates, $G_{i} \subsetneq G_{i+1}, G$ must be infinite.

Claim 3.7.4. If $I=<F>$ has a finite Gröbner basis w.r.t. \leq, then the algorithm must terminate.

Proof: Let $G^{\prime}=\left\{g_{1}, g_{2}, \ldots, g_{l}\right\}$ be a finite Gröbner basis of I w.r.t. \leq. Suppose the algorithm never terminates. By claim 3.7.3(ii), $G=\bigcup_{i=1}^{\infty} G_{i}$ is an infinite Gröbner basis of I. Then $\forall j=1,2, \ldots, l, \exists J(j) \in \mathbb{N}-\{0\}$ such that $\operatorname{lm}\left(g_{j}\right) \in \operatorname{lm}\left(G_{J(j)}\right)$. Let $J=\max _{1 \leqslant j \leqslant l}\{J(j)\}$, then $\operatorname{lm}(I)=\operatorname{lm}\left(G^{\prime}\right) \subseteq$ $\operatorname{lm}\left(G_{J}\right) \subseteq \operatorname{lm}(I)$, thus $\operatorname{lm}\left(G_{J}\right)=\operatorname{lm}(I)$, i.e., G_{J} is a finite Gröbner basis of I. By claim 3.7.3(i), the algorithm terminates, a contradiction! Hence the algorithm does terminate.

Given a finitely generated ideal, if algorithm 3.7.1 terminates and produces a finite Gröbner basis of the ideal, then we can solve the ideal membership problem for the ideal by characterizations of noncommutative Gröbner bases, like we did for problem 2.5.4.

In the last part of this chapter, we show that when the ideal is finitely generated by homogenous polynomials, the ideal membership problem is still solvable even if the algorithm 3.7.1 never terminates.
Definition 3.7.5. A polynomial $f \in k<X>$ is said to be homogeneous if in the unique form (3.1.1) of f,

$$
f=\sum_{i=1}^{t} c_{i} m_{i}, \operatorname{deg}\left(m_{i}\right)=\operatorname{deg}\left(m_{j}\right) \forall 1 \leqslant i \neq j \leqslant t
$$

i.e., f is a linear combination of monomials of the same degree. If an ideal is generated by homogeneous polynomials, it is said a homogeneous ideal.

Theorem 3.7.6. Given a homogeneous ideal $I=<f_{1}, f_{2}, \ldots, f_{l}>\subseteq k<X>$, given a monomial order \leq on $\langle X\rangle$, algorithm 3.7.1 always produces a computable Gröbner basis of the ideal I. (Thus the ideal membership problem for the ideal is solvable.)
Proof: If the algorithm terminates, then by claim 3.7.3(i), it produces a finite Gröbner basis G of the ideal I. Clearly G is computable.

Next we assume the algorithm never terminates. By claim 3.7.3(ii), $G=\bigcup_{i=1}^{\infty} G_{i}$ is an infinite Gröbner basis of the ideal I. We will show that G satisfies the conditions in claim 3.4.15, i.e., "for any $D \in \mathbb{N}$, the subset $G(D)=\{g \in G \mid \operatorname{deg}(\operatorname{lm}(g)) \leqslant D\}$ is finite and every element of $G(D)$ can be calculated explicitly", thus G will be computable by the claim.

For convenience, if g is a homogeneous polynomial, we let $\operatorname{deg}(g)$ denote the degree of the leading monomial of g, i.e., $\operatorname{deg}(g)=\operatorname{deg}(\operatorname{lm}(g))$. By
computing, it's easy to see the following claim is true.
Claim 1: If f_{1}, f_{2} are homogeneous, then $f=S\left(f_{1}, f_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ is homogeneous $\forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(f_{1}\right), \operatorname{lm}\left(f_{2}\right)\right)$, and

$$
\operatorname{deg}(f)=\operatorname{deg}\left(L_{1} f_{1} R_{1}\right)=\operatorname{deg}\left(L_{2} f_{2} R_{2}\right) \geqslant \max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right)\right\} .
$$

Claim 2: If G^{\prime} is a finite set of homogeneous polynomials and f is homogeneous, then d, which is the reduced form of f w.r.t. G^{\prime} produced by reduction algorithm 3.4.14, is also homogeneous and $\operatorname{deg}(d)=\operatorname{deg}(f)$ if $d \neq 0$.

Proof of the claim 2: Notice that in reduction algorithm 3.4.14, there are totaly three types of computation, either " $f_{i+1}:=f_{i}-\frac{l c\left(f_{i}\right)}{l c\left(g_{j}\right)} l_{i} g_{j} r_{i}$ ", or " $d:=d+l t\left(f_{i}\right)$ ", or " $f_{i+1}:=f_{i}-l t\left(f_{i}\right)$ " preserves $\operatorname{deg}(f)$ and homogeneity. Hence the claim is true.

Now let's look at G_{i}, H_{i} in algorithm 3.7.1.
Claim 3: $\forall i \in \mathbb{N}-\{0\}, G_{i+1}=G_{i} \dot{\cup} H_{i+1}$ (i.e., G_{i+1} is a disjoint union of G_{i} and $\left.H_{i+1}\right)$. Moreover, $\forall d_{1} \in H_{i+1}$ and $\forall d_{2} \in H_{i}, \operatorname{lm}\left(d_{1}\right) \neq \operatorname{lm}\left(d_{2}\right)$.

Proof of the claim 3: By the algorithm, G_{i+1} is a union of G_{i} and H_{i+1}. $\forall d_{1} \in H_{i+1}$, since d_{1} is a reduced form of f w.r.t. $G_{i} \bigcup H_{i+1}$ and $d_{1} \neq 0$, clearly, d_{1} is not in G_{i}. So the union is disjoint. Also, notice that $H_{i} \subseteq G_{i}$ and obviously there is no $g \in G_{i}$ such that $\operatorname{lm}(g) \mid \operatorname{lm}\left(d_{1}\right)$, so there is no $d_{2} \in H_{i}$ with $\operatorname{lm}\left(d_{1}\right)=\operatorname{lm}\left(d_{2}\right)$. Thus the claim 3 is proved.

Applying claims 1 and 2 recursively, we can see all elements in G_{i} and H_{i} are homogeneous. Then all elements in the infinite Gröbner basis G are homogeneous. Moreover, by claim 3, we can see

$$
G=H_{1}\left(G_{1}\right) \bigcup H_{2} \bigcup \cdots \bigcup H_{i} \bigcup H_{i+1} \cdots
$$

i.e., G is a pairwise disjoint union of $H_{i}, i \in \mathbb{N}-\{0\}$. Define $D_{i}:=$ $\min \left\{\operatorname{deg}(d) \mid d \in H_{i}\right\}$.

Claim 4: $D_{i} \leqslant D_{i+1}, \forall i \in \mathbb{N}-\{0\}$.
Proof of the claim 4: $\forall d \in H_{i+1}$, since d is the reduced form of f w.r.t. $G_{i} \bigcup H_{i+1}$ and $d \neq 0$, where $f=S\left(f_{1}, f_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ with $f_{1} \in G_{i}$, $f_{2} \in H_{i}$, by claims 1 and 2 ,

$$
\operatorname{deg}(d)=\operatorname{deg}(f) \geqslant \max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right)\right\} \geqslant \operatorname{deg}\left(f_{2}\right) \geqslant D_{i} .
$$

Hence, $D_{i} \leqslant D_{i+1}$.
Now let's prove G is computable. Since the algorithm 3.7.1 never terminates, $D_{i} \geqslant D_{1} \geqslant 1, \forall i \in \mathbb{N}-\{0\}$. Thus $G(0)$ is empty. Given $D \in \mathbb{N}-\{0\}$, suppose $\forall i \in \mathbb{N}-\{0\}, D_{i} \leqslant D$, then there is at least one d_{i} in H_{i} such that $\operatorname{deg}\left(d_{i}\right) \leqslant D$. By claim $3, \operatorname{lm}\left(d_{i}\right) \neq \operatorname{lm}\left(d_{j}\right)$ for all $i \neq j$, then we would have infinite different monomials with degree $\leqslant D$. This is impossible. Hence, there exists some $J \in \mathbb{N}-\{0\}$ such that $D_{J}>D$. By claim $4, D_{i}>D$ for all $i \geqslant J$. Hence, $G(D)=\{g \in G \mid \operatorname{deg}(\operatorname{lm}(g)) \leqslant D\} \subseteq \dot{\bigcup}_{i=1}^{J-1} H_{i}=G_{J-1}$. Clearly, $G(D)$ is finite and every element of $G(D)$ can be calculated explicitly by algorithm 3.7.1.
Remark 3.7.7. In practice, since we need check each D_{i}, we need modify algorithm 3.7.1 to make it pause after computing out each G_{i}. That is easy to realize and not the topic of this thesis.

Chapter 4

Diamond Lemma(s)

4.1 Newman's Diamond Lemma

Newman's diamond lemma was firstly introduced by M.H.A.Newman in [5]. Readers are referred to [6] for an introduction to the lemma in the terminology of graph theory. In this section, we will introduce the lemma in the terminology of reduction theory. Our introduction is based on [8]. We also point out that [8] actually has shown the relations between Newman's diamond lemma and commutative Gröbner bases theory.
Definition 4.1.1. We define a general reduction on a nonempty set S to be a strictly antisymmetric relation on S, i.e., a reduction on S is a subset R of $S \times S$ such that $(a, b) \in R \Rightarrow(b, a)$ not in $R, \forall(a, b) \in R$.
Notations 4.1.2. For a reduction relation R on nonempty set S, we will write:
(i) $a \rightarrow b \Leftrightarrow(a, b) \in R$.
(ii)

$$
a \xrightarrow{n} b(n \in \mathbb{N}) \Leftrightarrow\left\{\begin{array}{l}
a=b \\
\text { or } \exists a_{0}, a_{1}, \ldots, a_{n} \in S, \text { such that } \\
a=a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{n}=b
\end{array} \quad \text { when } n=0, ~ n \geqslant 1\right.
$$

(iii) $a \xrightarrow{*} b \Leftrightarrow \exists n \in \mathbb{N}, a \xrightarrow{n} b$.
(iv) $a \leftrightarrow b \Leftrightarrow a \rightarrow b \quad$ or $\quad b \rightarrow a$.
(v)
$a \stackrel{n}{\leftrightarrow} b(n \in \mathbb{N}) \Leftrightarrow\left\{\begin{array}{l}a=b \\ \text { or } \exists a_{0}, a_{1}, \ldots, a_{n} \in S, \text { such that } \\ a=a_{0} \leftrightarrow a_{1} \leftrightarrow \cdots \leftrightarrow a_{n}=b\end{array} \quad\right.$ when $n=0$,
(vi) $a \stackrel{*}{\leftrightarrow} b \Leftrightarrow \exists n \in \mathbb{N}, a \stackrel{n}{\leftrightarrow} b$.
(vii) $b \leftarrow a \rightarrow c \Leftrightarrow a \rightarrow c$ and $a \rightarrow b$. (This notation rule also applies to \xrightarrow{n} and $\xrightarrow{*}$.
(viii) $a \downarrow b \Leftrightarrow \exists c \in S$ such that $a \xrightarrow{*} c \stackrel{*}{\leftarrow} b$.

The following claim is obvious.
Claim 4.1.3. "*" $\stackrel{*}{\hookrightarrow}$ is an equivalence relation on S.
Definition 4.1.4. Let \rightarrow be a reduction defined on a nonempty set S.
(i) If there is no infinite reduction chain w.r.t. \rightarrow in S, i.e., every reduction chain in S is finite, then we say \rightarrow satisfies $D C C$.
(ii) Let S^{\prime} be a nonempty subset of S, an element $a \in S^{\prime}$ is called a minimal element of S^{\prime} w.r.t. \rightarrow if there is no $b \in S^{\prime}$ such that $a \rightarrow b$. In particular, if a is a minimal element of S, we say a is a normal form or in normal form w.r.t. \rightarrow. If $a \xrightarrow{*} b$ and b is in normal form, we say b is a normal form of a.

Lemma 4.1.5. Let \rightarrow be a reduction defined on nonempty set S. If \rightarrow satisfies $D C C$, then every element $a \in S$ has at least one normal form in S. Proof: For any $a \in S$, define $S^{\prime}(a)=\{b \in S \mid a \xrightarrow{*} b\}$, then $a \in S^{\prime}(a) \neq \emptyset$. Since \rightarrow satisfies $D C C, S^{\prime}(a)$ has a minimal element b_{0} w.r.t \rightarrow. (Otherwise, we would have an infinite reduction chain in $\left.S^{\prime}(a)\right)$. Suppose b_{0} is not minimal in S, then we would have $b_{0} \rightarrow b_{1}$. But then $a \xrightarrow{*} b_{1}$ implies $b_{1} \in S^{\prime}(a)$. Since
b_{0} is minimal in $S^{\prime}(a)$, this is impossible. Hence b_{0} is minimal in S, i.e., b_{0} is a normal form of a.

The following theorem is introduced in [8] as "Newman's lemma", which is essentially a variation of Newman's diamond lemma.
Theorem 4.1.6. Let \rightarrow be a reduction defined on nonempty set S. If \rightarrow satisfies $D C C$, then the following conditions are equivalent:
(i) Local confluence(diamond condition): $b \leftarrow a \rightarrow c \Rightarrow b \downarrow c, \forall a, b, c \in S$.
(ii) Confluence: $b \stackrel{*}{\leftarrow} a \xrightarrow{*} c \Rightarrow b \downarrow c, \forall a, b, c \in S$.
(iii)Every element in S has a unique normal form.
(iv)Church-Rosser property: $a \stackrel{*}{\leftrightarrow} b \Rightarrow a \downarrow b, \forall a, b \in S$.

Proof: see [8].
Theorem 4.1.7.(Newman's Diamond Lemma)Let \rightarrow be a reduction defined on nonempty set S. If \rightarrow satisfies two conditions (i) $D C C$ and (ii)diamond condition, then every equivalence class of $\stackrel{*}{\longleftrightarrow}$ contains a unique normal form. Proof: Let $a \stackrel{*}{\leftrightarrow} b$. By lemma 4.1.5, a has a normal form a_{0}, b has a normal form b_{0}. By (iii) in theorem 4.1.6, a_{0}, b_{0} are unique respectively of a and b. By transitivity of equivalence relation, $a_{0} \stackrel{*}{\leftrightarrow} b_{0}$. Then by (iv) in theorem 4.1.6, $a_{0} \downarrow b_{0}$, i.e., $\exists c \in S$ such that $a_{0} \xrightarrow{*} c \stackrel{*}{\leftarrow} b_{0}$. Since a_{0}, b_{0} are normal forms, $a_{0}=c=b_{0}$. Since a, b are arbitrary, every equivalence class of $\stackrel{*}{\leftrightarrow}$ contains a unique normal form.

4.2 Bergman's Diamond Lemma

In this section we still let $\langle X\rangle$ denote the free monoid generated by set X, but X is allowed to be any nonempty set. Let $k<X>$ denote the free
associative k-algebra on X, where k is allowed to be any commutative associative ring with 1 . Without causing confusion, we will still use terminologies introduced in previous chapters, such as monomials, terms, polynomials, etc. In particular, we assume all polynomials are written in the unique form, i.e., $\forall f \in k<X>-\{0\}$,

$$
f=\sum_{i=1}^{t} c_{i} m_{i}
$$

where $t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, m_{i} \in<X>$ and $m_{i} \neq m_{j} \forall 1 \leqslant i \neq j \leqslant t .0$ is the unique form of 0 .

Notice that $k<X>$ is also a k-module, we have the following definitions. Definitions 4.2.1.(i) For $k<X\rangle$, we define a reduction system S to be a set of pairs $\sigma=\left(m_{\sigma}, f_{\sigma}\right)$ where $m_{\sigma} \in\left\langle X>\right.$ and $f_{\sigma} \in k<X>$. For any $\sigma \in S$, any $l, r \in\left\langle X>\right.$, we define a reduction $R_{l \sigma r}$ by a k-module endomorphism of $k<X>$ which, given any element f of $k<X>$, sends the monomial $l m_{\sigma} r$ in f to $l f_{\sigma} r$ but fixes all other monomials.
(ii) Let $f \in k<X>$. If the coefficient of $l m_{\sigma} r$ in f is 0 , then $R_{l \sigma r}(f)=f$ and we say $R_{l \sigma r}$ is trivial on f. If every reduction under S is trivial on f, i.e., $f=0$ or no monomial in f is divisible by any $m_{\sigma}, \sigma \in S$, we say f is reduced under S or S-reduced. It's easy to see all S-reduced elements of $k<X>$ form a k-submodule, which is denoted by $k_{R}(S)$.
(iii) Let $f \in k<X>$, if there is a finite sequence of reductions $R_{1}, R_{2}, \ldots, R_{l}$ under S such that $R_{l} \ldots R_{2} R_{1}(f)=d$ and d is S-reduced, then we say d is a reduced form of f under S.
(iv) Let $f \in k<X>$, if for every infinite sequence of reductions R_{1}, R_{2}, \ldots, $\exists i \in \mathbb{N}$ such that $\forall j>i, R_{j+1}$ is trivial on $R_{j} \ldots R_{2} R_{1}(f)$, then we say f is reduction-finite. It's easy to see, all reduction-finite elements form a k submodule of $k<X>$ and if f is reduction-finite, f has a reduced form. We
call f reduction-unique if it is reduction-finite and has a unique reduced form.
The unique reduced form of f under S is denoted by $R_{S}(f)$.
Remark 4.2.2. A reduction system S actually defines a reduction relation \rightarrow on $k<X>$ by

$$
f \xrightarrow{l \sigma r} g \Leftrightarrow \sigma \in S, l, r \in<X>, R_{l \sigma r}(f)=g \text { and } R_{l \sigma r} \text { is not trivial on } f \text {. }
$$

Hence we will make use of notations 4.1.2 to simplify the following discussion.
Definitions 4.2.3. (i) A 5-tuple (σ, τ, l, m, r) with $\sigma, \tau \in S, l, m, r \in<X>-$ $\{1\}$, such that $m_{\sigma}=l m, m_{\tau}=m r$, is called an overlap ambiguity of S. If $f_{\sigma} r \downarrow l f_{\tau}$, we say the overlap ambiguity is resolvable.
(ii) A 5-tuple (σ, τ, l, m, r) with $\sigma, \tau \in S, \sigma \neq \tau, l, m, r \in\langle X\rangle$, such that $m_{\sigma}=m, m_{\tau}=l m r$, is called an inclusion ambiguity of S. If $l f_{\sigma} r \downarrow f_{\tau}$, we say the overlap ambiguity is resolvable.

Definitions 4.2.4. (Weaker Monomial Partial Order) (i) In this chapter, by a monomial partial order we mean a partial order \leq on $<X>$ such that

$$
m_{1} \leq m_{2} \Rightarrow l m_{1} r \leq l m_{2} r, \forall l, r, m_{1}, m_{2} \in<X>
$$

(ii) We say \leq satisfies $D C C$ if there is no infinite properly descending chain in $<X\rangle$ w.r.t. \leq.
(iii) Given a reduction system S, if for all $\sigma=\left(m_{\sigma}, f_{\sigma}\right) \in S, f_{\sigma}$ is a linear combination of monomials $<m_{\sigma}$, then the monomial partial order \leq is said to be compatible with S.

Definition 4.2.5. Let \leq be a monomial partial order on $\langle X\rangle$ and compatible with the reduction system S. For any $m \in\langle X\rangle$, define I_{m} to be the submodule of $k<X>$ spanned by all $l\left(m_{\sigma}-f_{\sigma}\right) r$ such that $l m_{\sigma} r<m$. For an overlap(inclusion) ambiguity (σ, τ, l, m, r), if $f_{\sigma} r-l f_{\tau} \in I_{l m r}\left(l f_{\sigma} r-f_{\tau} \in I_{l m r}\right)$, then we say the ambiguity is resolvable relative to \leq.

Lemma 4.2.6. Let \leq be a monomial partial order on $\langle X\rangle$ and compatible with the reduction system S. If \leq satisfies $D C C$ on $\langle X\rangle$, then every element of $k<X>$ is reduction-finite.
Proof: Since reduction-finite elements form a k-submodule of $k<X\rangle$, we only need show every monomial is reduction-finite. Assume that

$$
N:=\{m \in<X>\mid m \text { is not reduction-finite }\} \neq \emptyset
$$

then there is a minimal monomial m_{0} in N, since \leq satisfies $D C C$. Then there is some $R_{l \sigma r}$ which is not trivial on m_{0} such that $R_{l \sigma r}\left(m_{0}\right)=l f_{\sigma} r$. By the compatibility of \leq with S and the minimality of m_{0} in $N, l f_{\sigma} r$ is a linear combination of reduction-finite monomials $<m_{0}$. Then m_{0} must be also reduction-finite, a contradiction. Hence $N=\emptyset$, i.e., every monomial is reduction-finite.

Lemma 4.2.7.(i) $\forall f, g \in k<X>, c \in k$, if f, g are reduction-unique, so is $c f+g$. Hence reduction-unique elements also form a k-submodule of $k<X>$. Moreover, $R_{S}(c f+g)=c R_{S}(f)+R_{S}(g)$, thus we can regard R_{S} as a k-linear map from this submodule to the submodule $k_{R}(S)$ of S-reduce elements.
(ii) Let $f, g, h \in k<X>$, if for all monomials m_{f}, m_{g}, m_{h} occurring in f, g, h respectively, $m_{f} m_{g} m_{h}$ is reduction-unique, then for any finite composition of reductions, denoted by R for short, $f R(g) h$ is reduction-unique and $R_{S}(f R(g) h)=R_{S}(f g h)$.
Proof: A complete proof of (i) can be found in [3]. Here we give a complete proof of (ii).

Claim 1: $\forall m_{a}, m_{b}, m_{c} \in\langle X\rangle$, if $m_{a} m_{b} m_{c}$ is reduction-unique, then for a single reduction $R, m_{a} R\left(m_{b}\right) m_{c}$ is reduction-unique too and $R_{S}\left(m_{a} R\left(m_{b}\right) m_{c}\right)$ $=R_{S}\left(m_{a} m_{b} m_{c}\right)$.

Proof of the claim 1: Let $R=R_{l o r}$, notice that

$$
m_{a} R_{l \sigma r}\left(m_{b}\right) m_{c}=R_{m_{a} l \sigma r m_{c}}\left(m_{a} m_{b} m_{c}\right)
$$

thus $m_{a} R_{l \sigma r}\left(m_{b}\right) m_{c}$ must be reduction-finite. Moreover, suppose there is a finite composition of reductions R^{\prime} such that $R^{\prime}\left(m_{a} R_{l \sigma r}\left(m_{b}\right) m_{c}\right)$ is S-reduced, then

$$
R^{\prime}\left(m_{a} R_{l \sigma r}\left(m_{b}\right) m_{c}\right)=R^{\prime} R_{m_{a} l \sigma r m_{c}}\left(m_{a} m_{b} m_{c}\right)=R_{S}\left(m_{a} m_{b} m_{c}\right) .
$$

Hence $R^{\prime}\left(m_{a} R_{l \sigma r}\left(m_{b}\right) m_{c}\right)$ is unique and is $R_{S}\left(m_{a} m_{b} m_{c}\right)$.
The following two claims are immediate results from (i) and claim 1.
Claim 2: Let $f, g, h \in k<X>$, if for all monomials m_{f}, m_{g}, m_{h} occurring in f, g, h respectively, $m_{f} m_{g} m_{h}$ is reduction-unique, then for a single reduction R, for all monomials $m_{f}, m_{R(g)}, m_{h}$ occurring in $f, R(g), h$ respectively, $m_{f} m_{R(g)} m_{h}$ is reduction-unique.

Claim 3: Let $f, g, h \in k<X>$, if for all monomials m_{f}, m_{g}, m_{h} occurring in f, g, h respectively, $m_{f} m_{g} m_{h}$ is reduction-unique, then for a single reduction $R, f R(g) h$ is reduction-unique and $R_{S}(f R(g) h)=R_{S}(f g h)$

Now given a finite composition of reductions, by claim 2, we can apply claim 3 recursively, hence (ii) is proved.

Lemma 4.2.8. Let \leq be a monomial partial order on $\langle X\rangle$ and compatible with the reduction system S, then any resolvable ambiguity is resolvable relative to \leq.

Proof: The following fact is useful:

$$
\begin{equation*}
f \xrightarrow{l \sigma r} g \Rightarrow f-g=c l\left(m_{\sigma}-f_{\sigma}\right) r, \tag{4.2.1}
\end{equation*}
$$

where $c \in k-\{0\}, \sigma \in S$ and $l, r \in\langle X>$.

Now for a resolvable overlap ambiguity $(\sigma, \tau, l, m, r), f_{\sigma} r \downarrow l f_{\tau}$ implies

$$
\begin{aligned}
& f_{\sigma} r=f_{10} \rightarrow f_{11} \rightarrow \ldots \rightarrow f_{1 a}=f_{0} \\
& l f_{\tau}=f_{20} \rightarrow f_{21} \rightarrow \ldots \rightarrow f_{2 b}=f_{0}
\end{aligned}
$$

Hence

$$
\begin{aligned}
f_{\sigma} r-f_{0} & =\sum_{i=1}^{a} c_{i} l_{i}\left(m_{\sigma i}-f_{\sigma i}\right) r_{i}, \quad \text { and } \\
l f_{\tau}-f_{0} & =\sum_{j=1}^{b} c_{j} l_{j}\left(m_{\sigma j}-f_{\sigma j}\right) r_{j}
\end{aligned}
$$

Since $f_{\sigma} r$ and $l f_{\tau}$ are linear combinations of monomials $<m_{\sigma} r=l m r$ or $<l m_{\tau}=l m r$, each $l_{i} m_{\sigma i} r_{i}<l m r$ and each $l_{j} m_{\sigma j} r_{j}<l m r$. Hence $f_{\sigma} r-l f_{\tau} \in$ $I_{l m r}$, i.e., the ambiguity is resolvable relative to \leq.

For a resolvable inclusion ambiguity, proof will be similar thus is omitted.

Example 4.2.9. The following example shows the converse of the above lemma is not true. Let

$$
S:=\left\{\sigma 1=\left(x_{2}^{4}, x_{1}^{2}\right), \sigma 2=\left(x_{2}^{2}, x_{1}\right), \sigma 3=\left(x_{1}^{2}, x_{1} x_{2}\right)\right\}
$$

be a reduction system of $k<X\rangle$, where $\langle X\rangle=\left\langle x_{1}, x_{2}\right\rangle$. \leq is the deglex with $1<x_{2}<x_{1}$. Clearly \leq is also a monomial partial order and compatible with S. Consider the overlap ambiguity ($\sigma 1, \sigma 1, x_{2}, x_{2}^{3}, x_{2}$). Since we have

$$
\begin{aligned}
f_{\sigma 1} x_{2}-x_{2} f_{\sigma 1}= & x_{1}^{2} x_{2}-x_{2} x_{1}^{2}=x_{2}\left(x_{2}^{2}-x_{1}\right) x_{1}-\left(x_{2}^{2}-x_{1}\right) x_{2} x_{1} \\
& +x_{1} x_{2}\left(x_{2}^{2}-x_{1}\right)-x_{1}\left(x_{2}^{2}-x_{1}\right) x_{2} \in I_{x_{2}^{5}}
\end{aligned}
$$

the ambiguity is resolvable relative to \leq. However, the only possible non-
trivial reduction sequences on $f_{\sigma 1} x_{2}$ and $x_{2} f_{\sigma 1}$ are as follows:

$$
\begin{aligned}
f_{\sigma 1} x_{2} & =x_{1}^{2} x_{2} \xrightarrow{\sigma 3 x_{2}} x_{1} x_{2} x_{2} \xrightarrow{x_{1} \sigma 2} x_{1}^{2} \xrightarrow{\sigma 3} x_{1} x_{2}, \\
x_{2} f_{\sigma 1} & =x_{2} x_{1}^{2} \xrightarrow{x_{2} \sigma 3} x_{2} x_{1} x_{2} .
\end{aligned}
$$

Therefore, we cannot have finite compositions of reductions such that $f_{\sigma 1} x_{2} \downarrow$ $x_{2} f_{\sigma 1}$, i.e., the ambiguity is not resolvable.

In fact the above example can be illustrated by the following figure. Notice that in order to make the ambiguity resolvable, we need $f_{\sigma 1} x_{2} \downarrow x_{2} f_{\sigma 1}$, i.e., we need two finite sequences of reductions leading from $f_{\sigma 1} x_{2}$ and $x_{2} f_{\sigma 1}$ to a common element of $k<X>$, but for the ambiguity resolvable relative to \leq, by the fact (4.2.1), we only need $f_{\sigma 1} x_{2}$ and $x_{2} f_{\sigma 1}$ are connected by finite reductions staying "below" x_{2}^{5}. Clearly the latter is a more general condition.

Theorem 4.2.10.(Bergman's Diamond Lemma) If S is a reduction system for $k\langle X\rangle, \leq$ is a monomial partial order on $\langle X\rangle$ and compatible with S,
\leq satisfies $D C C$, then the following conditions are equivalent:
(a)All ambiguities of S are resolvable;
(a')All ambiguities of S are resolvable relative to \leq;
(b)All elements of $k<X>$ are reduction-unique under S;
(c)As k-modules, $k<X>=k_{R}(S) \bigoplus I$, where I is the two-sided ideal of $k<X>$ generated by $\left\{m_{\sigma}-f_{\sigma} \mid \sigma \in S\right\}$.
Sketch of Proof: We follow the proof given by Bergman. Firstly, by lemma 4.2.6, every element of $k<X>$ is reduction-finite, thus has a reduced form. $\mathbf{(b)} \Rightarrow \mathbf{(c)}$: By lemma $4.2 .7(\mathrm{i}), R_{S}$ is a k-linear map from $k<X>$ onto $k_{R}(S)$. Hence, we only need show $\operatorname{ker}\left(R_{S}\right)=I$, i.e.,

$$
\begin{equation*}
f \in I \Leftrightarrow R_{S}(f)=0 . \tag{4.2.2}
\end{equation*}
$$

By lemma 4.2.7(i)(ii), $R_{S}\left(l\left(m_{\sigma}-f_{\sigma}\right) r\right)=R_{S}\left(l m_{\sigma} r\right)-R_{S}\left(l f_{\sigma} r\right)=0$, thus " \Rightarrow " of (4.2.2) is proved. The other direction in (4.2.2) can be proved by the fact $(4.2 .1)$. Thus $(b) \Rightarrow(c)$ is proved.
$\mathbf{(c)} \Rightarrow \mathbf{(b)}$: Let $R_{S}(f)=f_{1}$ or f_{2}, then by the fact (4.2.1), it's easy to see that $f_{1}-f_{2} \in I \bigcap k_{R}(S)=\{0\}$.
$(\mathbf{b}) \Rightarrow(\mathbf{a})$: Given any overlap or inclusion ambiguity, by (b) we will have

$$
f_{\sigma} r \xrightarrow{*} R_{S}(l m r) \stackrel{*}{\leftarrow} l f_{\tau} \quad \text { or } \quad l f_{\sigma} r \xrightarrow{*} R_{S}(l m r) \stackrel{*}{\leftarrow} f_{\tau},
$$

thus the ambiguity is resolvable.
$\mathbf{(a)} \Rightarrow\left(\mathbf{a}^{\prime}\right)$: Use lemma 4.2.8.
$\left(\mathbf{a}^{\prime}\right) \Rightarrow(\mathbf{b})$: By lemma 4.2.7(i), it's sufficient to show all monomials are reduction-unique. Assume that

$$
N:=\{m \in\langle X>| m \text { is not reduction-unique }\} \neq \emptyset
$$

then there is a minimal monomial m_{0} in N, since \leq satisfies $D C C$. If for any σ, τ in $S, l_{1}, r_{1}, l_{2}, r_{2}$ in $\left\langle X>\right.$ such that $m_{0}=l_{1} m_{\sigma} r_{1}=l_{2} m_{\tau} r_{2}$ and $R_{l_{1} \sigma r_{1}}\left(m_{0}\right) \neq R_{l_{2} \tau r_{2}}\left(m_{0}\right)$, we still have

$$
\begin{equation*}
R_{S}\left(R_{l_{1} \sigma r_{1}}\left(m_{0}\right)\right)=R_{S}\left(R_{l_{2} \tau r_{2}}\left(m_{0}\right)\right) \tag{4.2.3}
\end{equation*}
$$

then m_{0} would be reduction-unique which leads to a contradiction.
To prove (4.2.3), we assume without loss of generality that $\operatorname{deg}\left(l_{1}\right) \leqslant$ $\operatorname{deg}\left(l_{2}\right)$, then we have three cases for $m_{0}=l_{1} m_{\sigma} r_{1}=l_{2} m_{\tau} r_{2}$,

Case 1: $\exists w \in\langle X\rangle$ such that $m_{0}=l_{1} m_{\sigma} w m_{\tau} r_{2}$. Then (4.2.3) can be proved by lemma 4.2.7(ii).

Case 2: \exists an overlap ambiguity (σ, τ, l, m, r) such that $m_{0}=l_{1} l m r r_{2}$. Then by (a'), we can show

$$
f=R_{l_{1} \sigma r_{1}}\left(m_{0}\right)-R_{l_{2} \tau r_{2}}\left(m_{0}\right) \in I_{m_{0}} \quad \text { and } \quad R_{S}(f)=0,
$$

hence (4.2.3) is proved.
Case 3: The ambiguity is an inclusion ambiguity. The discussion is similar to the case 2 .

Remark 4.2.11. Comparing with Newman's diamond lemma, the strengthening of Bergman's diamond lemma lies in two aspects.
(i) We don't need verify $D C C$ or diamond condition for all elements in $k<X>$. Instead, we only need $D C C$ of a monomial partial order and the diamond condition on "minimal nontrivial ambiguously reducible monomials".
(ii) From the discussion in the example 4.2.9, we can see the condition (a') in Bergman's diamond lemma is a further improvement of the diamond condition.

4.3 Relations between Gröbner Bases and Diamond Lemma(s)

Firstly, we give a brief comment on the relation between Gröbner bases theory and Newman's diamond lemma.
T. Becker and V. Weispfenning have combined general reduction theory and Newman's diamond lemma in their introduction of commutative Gröbner bases theory [8]. The techniques used there are actually applicable to both commutative and noncommutative Gröbner bases theory.

1. We need to define polynomial reductions more carefully by requiring all polynomials given in the unique forms(see (2.1.1)(3.1.1)), then it's easy to see, w.r.t. a given set G and a given monomial order, the new definition of polynomial reductions does define a strictly antisymmetric (reduction) relation on $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ or $\left.k<X\right\rangle$, denoted by \xrightarrow{G}.
2. To apply Newman's diamond lemma, we need some techniques to deduce the $D C C$ of the reductions from the $D C C$ of the monomial order. We can apply Bergman's technique which regards a reduction as an endomorphism and then proves every element is reduction-finite(see lemma 4.2.6). Or, we can extend the monomial order to a partial order or a quasi-order \preceq on all polynomials(see [8]) such that \preceq satisfies $D C C$ and

$$
f \xrightarrow{g} h \Rightarrow f \succ h, \quad \forall f, g, h \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]-\{0\}(\text { or } k<X>-\{0\}),
$$

then we have $D C C$ on all reductions.
3. After the above preparations have been done, we can apply Newman's diamond lemma and get some new characterizations of Gröbner bases. The following result is for noncommutative Gröbner bases. For commutative Gröbner bases, see [8].

Theorem 4.3.1. Given $G \subseteq k<X\rangle$, let \leq be a monomial order on $\langle X\rangle$, let \xrightarrow{G} denote the polynomial reduction modulo G w.r.t. \leq. The following conditions are equivalent:
(1) \xrightarrow{G} satisfies local confluence condition(diamond condition);
(2) \xrightarrow{G} satisfies confluence condition;
(3) Every element in $k<X>$ has a unique reduced form w.r.t. G;
(4) \xrightarrow{G} satisfies Church-Rosser property.

Proof: See theorem 4.1.6(a variation of Newman's diamond lemma).
Clearly, the above (3) is the characterization (e) in theorem 3.6.1. But notice that in the proof $(\mathbf{e}) \Rightarrow(\mathrm{g})$ in theorem 3.6.1, we did selective polynomial reductions when reducing $h_{2}-h_{1}$. That is allowed there but not allowed by our new definition of polynomial reductions, since the new definition requires us to do coalescence and cancellation of terms to get unique forms of related polynomials before each reduction. However, even under the new definition, we will show that all the conditions in theorem 3.6.1 are still equivalent(see theorem 4.3.4 and remark 4.3.5(i)). Therefore, the above $(1)(2)(3)(4)$ are indeed equivalent to characterizations (a)-(h) in theorem 3.6.1 and are new characterizations of noncommutative Gröbner bases.

From the above, we can see, among the characterizations (a)-(h) in theorem 3.6.1, only (e) is obviously contained in Newman's diamond lemma. Next let's turn to Bergman's diamond lemma. We will see that most important characterizations in theorem 3.6.1 are contained in Bergman's diamond lemma.

Let $k<X>$ denote the general noncommutative polynomial ring, where k is a field and $<X>$ is a free monoid generated by $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. To apply Bergman's diamond lemma, we assume all polynomials are given
in the unique forms. Let \leq be a monomial order on $\langle X\rangle$. Let $G \subseteq k<X\rangle$. Notice that: if G is a Gröbner basis in $k<X>$ w.r.t. \leq, then so is $G^{\prime}=$ $\left\{\left.\frac{1}{l c(g)} g \right\rvert\, g \in G\right\}$. Hence, without loss of generality, we assume all g in G is monic, i.e., $l c(g)=1, \forall g \in G$. Define a reduction system S w.r.t. \leq and G,

$$
S:=\left\{\sigma=\left(m_{\sigma}=\operatorname{lm}(g), f_{\sigma}=\operatorname{lm}(g)-g\right) \mid g \in G\right\} .
$$

Clearly \leq is compatible with S and each polynomial reduction modulo G corresponds to a Bergman's "endomorphism" reduction under S. This implies that we may translate definitions and results in section 4.2 to our discussion here. In fact, most translations are obvious. For example, " S reduced" is equivalent to "reduced w.r.t. G ", $k_{R}(S)=k_{R}(G)$ and $R_{S}(f)=$ $R(f, G)$. In particular, let's see the correspondence between ambiguities and S-polynomials.

Correspondence Between Ambiguities and S-polynomials

Given an S-polynomial of $\left(g_{1}, g_{2}\right) \in G^{2}$,

$$
S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]=L_{1} g_{1} R_{1}-L_{2} g_{2} R_{2}
$$

where $\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S(\operatorname{lm}(f), \operatorname{lm}(g))$.
Case 1: $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)=\left(1, R_{1}, L_{2}, 1\right), \exists w \neq 1$ such that $w R_{1}=\operatorname{lm}\left(g_{2}\right)$ and $L_{2} w=\operatorname{lm}\left(g_{1}\right)$. This corresponds to an overlap ambiguity $\left(\sigma, \tau, L_{2}, w, R_{1}\right)$ such that $m_{\sigma}=\operatorname{lm}\left(g_{1}\right), m_{\tau}=\operatorname{lm}\left(g_{2}\right)$. Notice that

$$
f_{\sigma} r-l f_{\tau}=-S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right] .
$$

Case 2: $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)=\left(L_{1}, 1,1, R_{2}\right), \exists w \neq 1$ such that $w R_{2}=\operatorname{lm}\left(g_{1}\right)$ and $L_{1} w=\operatorname{lm}\left(g_{2}\right)$. This corresponds to an overlap ambiguity $\left(\sigma, \tau, L_{1}, w, R_{2}\right)$ such that $m_{\sigma}=\operatorname{lm}\left(g_{2}\right), m_{\tau}=\operatorname{lm}\left(g_{1}\right)$. Notice that

$$
f_{\sigma} r-l f_{\tau}=S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right] .
$$

Case 3: $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)=\left(1,1, L_{2}, R_{2}\right), \operatorname{lm}\left(g_{1}\right)=L_{2} \operatorname{lm}\left(g_{2}\right) R_{2}$. This corresponds to an inclusion ambiguity $\left(\sigma, \tau, L_{2}, \operatorname{lm}\left(g_{2}\right), R_{2}\right)$ such that $m_{\sigma}=$ $\operatorname{lm}\left(g_{2}\right), m_{\tau}=\operatorname{lm}\left(g_{1}\right)$. Notice that

$$
l f_{\sigma} r-f_{\tau}=S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]
$$

Case 4: $\left(L_{1}, R_{1}, L_{2}, R_{2}\right)=\left(L_{1}, R_{1}, 1,1\right), \operatorname{lm}\left(g_{2}\right)=L_{1} \operatorname{lm}\left(g_{1}\right) R_{1} . \quad$ This corresponds to an inclusion ambiguity $\left(\sigma, \tau, L_{1}, \operatorname{lm}\left(g_{1}\right), R_{1}\right)$ such that $m_{\sigma}=$ $\operatorname{lm}\left(g_{1}\right), m_{\tau}=\operatorname{lm}\left(g_{2}\right)$. Notice that

$$
l f_{\sigma} r-f_{\tau}=-S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right] .
$$

Conversely, given an overlap ambiguity (σ, τ, l, m, r), by the definition of $S, \exists g_{1}, g_{2} \in G$ such that $m_{\sigma}=\operatorname{lm}\left(g_{1}\right)=\operatorname{lm}, m_{\tau}=\operatorname{lm}\left(g_{2}\right)=m r$. Then $(1, r, l, 1) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$ and notice that

$$
f_{\sigma} r-l f_{\tau}=-S\left(g_{1}, g_{2}\right)[1, r, l, 1] .
$$

Given an inclusion ambiguity $(\sigma, \tau, l, m, r), \exists g_{1}, g_{2} \in G$ such that $m_{\sigma}=$ $\operatorname{lm}\left(g_{1}\right)=m, m_{\tau}=\operatorname{lm}\left(g_{2}\right)=l m r$. Then $(l, r, 1,1) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$ and notice that

$$
l f_{\sigma} r-f_{\tau}=-S\left(g_{1}, g_{2}\right)[l, r, 1,1] .
$$

Although the above correspondences are not required to be one-to-one, they are sufficient for us to deduce the following equivalence.

Claim 4.3.2.(i) All ambiguities of S are resolvable. \Leftrightarrow

$$
\begin{array}{r}
\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right), \\
L_{1}\left(\operatorname{lm}\left(g_{1}\right)-g_{1}\right) R_{1} \downarrow L_{2}\left(\operatorname{lm}\left(g_{2}\right)-g_{2}\right) R_{2} .
\end{array}
$$

(ii) All ambiguities of S are resolvable relative to $\leq . \Leftrightarrow$

$$
\begin{array}{r}
\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right), \\
S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]=\sum_{i=1}^{t} c_{i} l_{i} g_{i} r_{i} \quad \text { and } \\
\max _{1 \leqslant i \leqslant t}\left\{l_{i} \operatorname{lm}\left(g_{i}\right) r_{i}\right\}<L_{1} \operatorname{lm}\left(g_{1}\right) R_{1}=L_{2} \operatorname{lm}\left(g_{2}\right) R_{i},
\end{array}
$$

where $t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, l_{i}, r_{i} \in\langle X\rangle, g_{i} \in G$ and not necessarily pairwise distinct $\forall i, 1 \leqslant i \leqslant t$.

With the above results, we can translate Bergman's diamond lemma as follows.

Theorem 4.3.3. Given $G \subseteq k<X>$, let $I=\langle G\rangle$ be the ideal generated by G, let \leq be a monomial order on $\langle X\rangle$. The following conditions are equivalent:
(1) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$,

$$
L_{1}\left(\operatorname{lm}\left(g_{1}\right)-g_{1}\right) R_{1} \downarrow L_{2}\left(\operatorname{lm}\left(g_{2}\right)-g_{2}\right) R_{2} .
$$

(2) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$,

$$
\begin{array}{r}
S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]=\sum_{i=1}^{t} c_{i} l_{i} g_{i} r_{i} \quad \text { and } \\
\max _{1 \leqslant i \leqslant t}\left\{l_{i} \operatorname{lm}\left(g_{i}\right) r_{i}\right\}<L_{1} \operatorname{lm}\left(g_{1}\right) R_{1}=L_{2} \operatorname{lm}\left(g_{2}\right) R_{i},
\end{array}
$$

where $t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, l_{i}, r_{i} \in\langle X\rangle, g_{i} \in G$ and not necessarily pairwise distinct $\forall i, 1 \leqslant i \leqslant t$.
(3) $\forall f \in k<X>$, the reduced form of f w.r.t. G is unique;
(4) As k-vector spaces, $k<X>=k_{R}(G) \bigoplus I$.

Proof: By the above discussion, the proof of Bergman's diamond lemma has actually shown that $(3) \Rightarrow(4) \Rightarrow(3)$ and $(3) \Rightarrow(1) \Rightarrow(2) \Rightarrow(3)$.

Moreover, in the proof of Bergman's diamond lemma, (b) \Rightarrow (c) contains the following condition(see (4.2.2)).
(5) $f \in I \Leftrightarrow R(f, G)=0$.

By the proof there, we can see $(3) \Rightarrow(5) \Rightarrow(4) \Rightarrow(3)$.
Notice that all S-polynomials are in the ideal I, hence (5) implies the following condition.
(6) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$,

$$
R\left(S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right], G\right)=0
$$

From (6), it's easy to deduce a condition about standard representations.
(7) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$, $S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ has a standard representation w.r.t. G.

Notice that (7) actually is a strengthening of (2), so (7) implies (2) obviously. Therefore we have a cycle $(3) \Rightarrow(5) \Rightarrow(6) \Rightarrow(7) \Rightarrow(2) \Rightarrow(3)$.

So far, most important characterizations of noncommutative Gröbner bases have been deduced from Bergman's diamond lemma.

At last, we conclude our discussion by listing all characterizations we have found for noncommutative Gröbner bases and summarize the proof based on diamond lemmas.

Theorem 4.3.4. Assume (\star) all polynomials of $k<X>$ are given in the unique forms (3.1.1). Given $G \subseteq k<X>$, let $I=\langle G>$ be the ideal generated by G, let \leq be a monomial order on $\langle X\rangle$, let \xrightarrow{G} denote the polynomial reduction modulo G w.r.t. \leq. The following conditions are equivalent:
(1) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$,

$$
L_{1}\left(\operatorname{lm}\left(g_{1}\right)-g_{1}\right) R_{1} \downarrow L_{2}\left(\operatorname{lm}\left(g_{2}\right)-g_{2}\right) R_{2} .
$$

(2) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$,

$$
\begin{array}{r}
S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]=\sum_{i=1}^{t} c_{i} l_{i} g_{i} r_{i} \quad \text { and } \\
\max _{1 \leqslant i \leqslant t}\left\{l_{i} \operatorname{lm}\left(g_{i}\right) r_{i}\right\}<L_{1} \operatorname{lm}\left(g_{1}\right) R_{1}=L_{2} \operatorname{lm}\left(g_{2}\right) R_{i},
\end{array}
$$

where $t \in \mathbb{N}-\{0\}, c_{i} \in k-\{0\}, l_{i}, r_{i} \in\langle X\rangle, g_{i} \in G$ and not necessarily pairwise distinct $\forall i, 1 \leqslant i \leqslant t$.
(3) $\forall f \in k<X>$, the reduced form of f w.r.t. G is unique.
(4) As k-vector spaces, $k<X>=k_{R}(G) \bigoplus I$.
(5) $f \in I \Leftrightarrow R(f, G)=0$.
(6) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$,

$$
R\left(S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right], G\right)=0
$$

(7) $\forall\left(g_{1}, g_{2}\right) \in G^{2}, \forall\left(L_{1}, R_{1}, L_{2}, R_{2}\right) \in M S\left(\operatorname{lm}\left(g_{1}\right), \operatorname{lm}\left(g_{2}\right)\right)$, $S\left(g_{1}, g_{2}\right)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$ has a standard representation w.r.t. G.
(8) \xrightarrow{G} satisfies local confluence condition(diamond condition).
(9) \xrightarrow{G} satisfies confluence condition.
(10) \xrightarrow{G} satisfies Church-Rosser property.
(11) $\operatorname{lm}(G)=\operatorname{lm}(I)$.
(12) $\forall f \in I-\{0\}, \exists g \in G$ such that $\operatorname{lm}(g) \mid \operatorname{lm}(f)$.
(13) $f \in I \Leftrightarrow f$ has a standard representation w.r.t. G.

Proof: From Bergman's diamond lemma, we have deduced

$$
\begin{aligned}
(3) & \Rightarrow(5) \Rightarrow(4) \Rightarrow(3), \\
(3) & \Rightarrow(1) \Rightarrow(2) \Rightarrow(3) \quad \text { and } \\
(3) \Rightarrow(5) \Rightarrow(6) & \Rightarrow(7) \Rightarrow(2) \Rightarrow(3)
\end{aligned}
$$

Hence $(1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \Leftrightarrow(7)$.

Newman's diamond lemma ensures $(3) \Leftrightarrow(8) \Leftrightarrow(9) \Leftrightarrow(10)$.
The proofs in theorem 3.6 .1 for $(\mathbf{1 1}) \Rightarrow(\mathbf{1 2)} \Rightarrow \mathbf{(5)}$ and $(\mathbf{1 3)} \Rightarrow \mathbf{(1 1)}$ are still effective under the assumption (\star). It's obvious that $(5) \Rightarrow(13)$. Hence, $(11) \Leftrightarrow(12) \Leftrightarrow(5) \Leftrightarrow(13) \Leftrightarrow(11)$.

To sum up, all the conditions are equivalent.
Remarks 4.3 .5 . (i) The above theorem contains all characterizations in theorem 3.6.1. This implies that theorem 3.6.1 is still true under the assumption (\star). In other word, the assumption (\star) has no effect on the characterizations of Gröbner bases.
(ii) Newman's diamond lemma and Bergman's diamond lemma actually form a common theoretical foundation of characterizations of both commutative and noncommutative Gröbner bases. This explains why theorem 2.4.2 and theorem 3.6.1 are almost the same.

Bibliography

[1] A.Kandri-Rody and V.Weispfenning. Non-commutative Gröbner bases in Algebras of Solvable Type. J.Symbolic Computation, 9:1-26, 1990.
[2] B.Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Univ. of Innsbruck Math.Inst., PhD thesis, 1965.
[3] G.M.Bergman. The Diamond Lemma for Ring Theory. Adv.Math, 29:178-218, 1978.
[4] H.Li. Noncommutative Gröbner bases and filtered-graded transfer. Springer, Berlin,New York, 2002.
[5] M.H.A.Newman. On Theories with a Combinatorial Definition of "Equivalence". Annals of Math., 43:223-243, 1942.
[6] P.M.Cohn. Algebra Volume 3. J.Wiley, Chichester,Toronto, second edition, 1991.
[7] R.Fröberg. Introduction to Gröbner Bases. John Wiley and Sons, Chichester,New York, 1997.
[8] T.Becker and V.Weispfenning. Gröbner bases: a computational approach to commutative algebra. Springer-Verlag, New York, 1991.
[9] T.Mora. Gröbner bases for non-commutative polynomial rings. AAECC3,Springer LNCS, 229:353-362, 1986.
[10] T.Mora. An introduction to commutative and noncommutative Gröbner bases. Theoretical Computer Science, 134:131-173, 1994.
[11] T.W.Hungerford. Algebra. Springer-Verlag, New York, 1980.
[12] W.W.Adams and P.Loustaunau. An introduction to Gröbner bases. AMS, Providence,R.I., 1994.

List of Notations

\mathbb{N}	set of natural numbers including 0, page 4
$k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$	commutative polynomial ring, page 4
M_{n} or M	set of commutative monomials, page 4
$<X_{n}>$ or $<X>$	set of noncommutative monomials(free monoid), page 19, page 56
$k<X_{n}>$ or $k<X>$	noncommutative polynomial ring(free algebra) page 20, page 56
$<X>^{2}$	set of ordered pairs of elements in $<X>$, page 37
$<X>^{4}$	set of ordered 4-tuples of elements in $<X>$, page 37
$<G>$	set of ordered pairs of elements in set S, page 5
$S \times S$	lexicographical order, page 6, page 21

$\operatorname{deg}(\mathrm{m})$	degree of monomial m, page 4, page 20
$\operatorname{deg}(\mathrm{g})$	degree of leading monomial of g, page 51
$l t(f)$	leading term of f, page 7, page 22
$\operatorname{lm}(f)$	leading monomial of f, page 7, page 22
$l c(f)$	leading coefficient of f, page 7, page 22
$l m(G)$	leading monomial ideal of set G, page 7, page 22
$M(G)$	set of all monomials in $\operatorname{lm}(G)$, page 12, page 31
$k_{R}(G)$	set of all reduced polynomials w.r.t. G, page 12, page 31
$f \xrightarrow{g} h$	f reduces to h modulo g, page 11, page 31
$f \xrightarrow{G} h_{t}$	f reduces to h_{t} modulo G, page 12, page 31
$R(f, G)$	unique reduced form of f w.r.t. G, page 12, page 31
$l c m\left(m_{1}, m_{2}\right)$	least common multiple, page 15
$S(f, g)$	S-polynomial of f and g, page 15
$T\left(m_{1}, m_{2}\right)$	set of 4-tuples $\left(l_{1}, r_{1}, l_{2}, r_{2}\right) \in\langle X\rangle^{4}$ satisfying $l_{1} m_{1} r_{1}=l_{2} m_{2} r_{2}$, page 37
$M S\left(m_{1}, m_{2}\right)$	set of matches of m_{1} and m_{2}, page 38
$S(f, g)\left[L_{1}, R_{1}, L_{2}, R_{2}\right]$	noncommutative S-polynomial of f and g, page 39

\dot{U}	disjoint union, page 52
$a \downarrow b, a \stackrel{*}{\leftrightarrow} b$, etc.	page 55
$R_{l \sigma r}$	endomorphism reduction, page 57
$k_{R}(S)$	set of all S-reduced elements, page 57
$R_{S}(f)$	unique reduced form of f under S, page 58
$f \xrightarrow{l \sigma r} g$	$R_{l \sigma r}(f)=g$, page 58
(σ, τ, l, m, r)	overlap or inclusion ambiguity of S, page 58
I_{m}	polynomial reduction modulo G, page 65, G
$D C C$	descending chain condition, page 5, page 55
$A C C$	ascending chain condition, page 8, page 23

[^0]: ${ }^{1}$ There are different generalizations of Gröbner bases theory to noncommutative areas. See [1] and "introduction" in [4].

