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Abstract

It is well known that biological structures such as human brains, although may

contain the same global structures, differ in shape, orientation, and fine structures

across individuals and at different times. Such variabilities during registration are

usually represented by nonrigid transformations. This research seeks to address

this issue by developing physically based models in which transformations are con-

structed to obey certain physical laws.

In this thesis, a novel registration technique is presented based on the physical

behavior of particles. Regarding the image as a particle system without mutual

interaction, we simulate the registration process by a set of free particles moving

toward the target positions under applied forces. The resulting partial differential

equations are a nonlinear hyperbolic system whose solution describes the spatial

transformation between the images to be registered. They can be numerically solved

using finite difference methods.

This technique extends existing physically based models by completely ex-

cluding mutual interaction and highly localizing image deformations. We demon-

strate its performance on a variety of images including two-dimensional and three-

dimensional, synthetic and clinical data. Deformable images are achieved with

sharper edges and clearer texture at less computational cost.

iii



Acknowledgments

First and foremost, I wish to express my heartfelt thanks to my supervisor

Justin Wan, for his constant guidance in my research field, invaluable help during

my master’s study, significant training in academic writing, and excellent teaching

in critical thinking.

My deep appreciation also goes to other members of my reading committee,

Jeff Orchard and Edward Vrscay. Their warmly encouragement, constructive com-

ments, and untiring assistance have been of great value during the preparation of

this thesis.

I am grateful to Hany Farid, who kindly provided me the experimental data

that I regard as so important.

Last, but not the least, I would like to thank my family and friends. Thanks

to my parents, my boyfriend Yue for their ceaseless love and support. Thanks to

my colleagues in Scientific Computation Group for providing a stimulating and fun

environment in which to learn and grow.

iv



Contents

1 Introduction 1

2 Image Registration Problems 4

2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Regularization Terms . . . . . . . . . . . . . . . . . . . . . . 12

3 Physically Based Models 14

3.1 Physical Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Elastic Models . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Fluid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Viscoelastic Models . . . . . . . . . . . . . . . . . . . . . . . 20

v



4 Inviscid Registration Technique 21

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Particle Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Eulerian Reference Frame . . . . . . . . . . . . . . . . . . . 23

4.2.2 Material Derivative . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Compute Velocity . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Update Displacement . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Variational Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.1 Modified Body Force . . . . . . . . . . . . . . . . . . . . . . 30

4.4.2 Kinetic Regularization Term . . . . . . . . . . . . . . . . . . 31

4.5 Regularity Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Numerical Implementation 34

5.1 2D Component Form . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Discretization in Space . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Gaussian Smoothing . . . . . . . . . . . . . . . . . . . . . . 38

5.2.3 Convective Terms . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Discretization in Time . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 Time Stepping . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Stability Conditions . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Regridding Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Multiresolution Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



6 Numerical Results 48

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 2D Patch to C Experiment . . . . . . . . . . . . . . . . . . . 50

6.2.2 2D Square to Circle Experiment . . . . . . . . . . . . . . . . 51

6.2.3 2D Segmented Brain Experiment . . . . . . . . . . . . . . . 53

6.2.4 2D Clinical Sagital Experiment . . . . . . . . . . . . . . . . 55

6.2.5 3D Segmented Coronal Experiment . . . . . . . . . . . . . . 56

6.3 Quantitative Measures . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusions 62

A Continuum Mechanics 64

A.1 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Constitutive Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



List of Figures

2.1 Four types of transformations. . . . . . . . . . . . . . . . . . . . . . 6

2.2 Point correspondence between two images of pelvic tumor. . . . . . 9

2.3 A registration example with multiple solutions. . . . . . . . . . . . 12

3.1 A registration example where elastic models would fail . . . . . . . 18

4.1 Unwanted background movement caused by fluid models . . . . . . 22

4.2 Particle framework for image registration. . . . . . . . . . . . . . . 22

4.3 Transformation in Eulerian reference frame. . . . . . . . . . . . . . 24

4.4 Particle trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Regular grid discretization. . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Linear interpolation from deformed template to template. . . . . . . 36

5.3 Gaussian distribution discretization. . . . . . . . . . . . . . . . . . . 38

5.4 Multi-level grid discretization. . . . . . . . . . . . . . . . . . . . . . 45

5.5 Two-level multiresolution scheme. . . . . . . . . . . . . . . . . . . . 46

5.6 Downsampling from fine level to coarse level. . . . . . . . . . . . . . 46

5.7 Upsampling from coarse level to fine level. . . . . . . . . . . . . . . 47

6.1 2D patch to “C” experiment . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Deformation progress from patch to “C”. . . . . . . . . . . . . . . . 50

viii



6.3 Displacement fields for 2D patch to “C” experiment . . . . . . . . . 51

6.4 2D square to circle experiment . . . . . . . . . . . . . . . . . . . . . 52

6.5 Results for 2D square to circle experiment . . . . . . . . . . . . . . 52

6.6 Displacement fields for 2D square to circle experiment . . . . . . . . 53

6.7 2D segmented brain experiment . . . . . . . . . . . . . . . . . . . . 53

6.8 Results for 2D segmented brain experiment . . . . . . . . . . . . . . 54

6.9 Edge maps for 2D segmented brain experiment . . . . . . . . . . . . 55

6.10 2D clinical sagital experiment . . . . . . . . . . . . . . . . . . . . . 56

6.11 Results for 2D clinical sagital experiment . . . . . . . . . . . . . . . 56

6.12 Results for 3D segmented coronal experiment . . . . . . . . . . . . 58

6.13 Dynamic MSD for 2D clinical sagital experiment . . . . . . . . . . . 61

ix



List of Tables

6.1 Mean of squared differences for each experiment. . . . . . . . . . . . 59

6.2 Mean of absolute differences for each experiment. . . . . . . . . . . 59

6.3 Correlation coefficient for each experiment. . . . . . . . . . . . . . . 59

6.4 Number of iterations for each experiment . . . . . . . . . . . . . . . 60

6.5 Execution times in seconds for each experiment . . . . . . . . . . . 60

x



Chapter 1

Introduction

It is very common to utilize imaging as a tool in modern medicine. The presence

of medical images provides clear, detailed visual information about a specific part

of the body that may not be externally visible. It helps doctors thoroughly study

the regions of interest and thus leads to improved medical treatment. Very often,

multiple images are acquired from various sources for clinical purpose. To easily

relate different information displayed in separate images, we geometrically align

relevant images to share a common coordinate system. This process is known as

image registration.

Considerable attention has been received on this problem over the last decades.

Contributing researchers come from different backgrounds (e.g., physicians, electri-

cal engineers, computer scientists, applied mathematicians) with distinct emphasis.

Our focus in particular is nonrigid registration, where the spatial relationship be-

tween images is not limited to rotation and translation only. For example, when

inspecting images of a soft tissue, we need to take into account its deformation effect.

The vast variabilities allowed during nonrigid registration substantially broaden its

applicability; however, it also raises major difficulties in finding image correspon-

dence. Therefore, nonrigid registration is still an active research subject which

presents unique challenges as well as interesting applications.

Numerous algorithms have been developed in this area; however, more accurate

and efficient methods are still needed. Some registration techniques parameterize
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the spatial transformation by a geometric model with low degrees of freedom. The

optimal values of the parameters are often determined by prescribed correspondence

between labeled landmarks. A simple example is the widely used affine transforma-

tion model [26] extended from rigid registration. If basis functions such as splines

[4] and wavelets [1] are introduced into geometric modeling, higher degrees of free-

dom can also be achieved. The main advantage of these techniques is that the

obtained transformations can be stated in analytical form which leads to efficient

computation. However, the limited degrees of freedom may not be adequate for

complicated registration problems. An alternative approach is to adopt physically

based models in which transformations are constructed to obey certain physical

laws. Pioneered by Bajcsy [2], elastic registration techniques model the registra-

tion process by the deformation of an elastic solid. Assuming linear elasticity, they

are restricted to small linear deformations. To overcome this drawback, fluid regis-

tration techniques [10] are proposed in which the registration process is modeled by

the flow of a viscous fluid. They can allow relatively larger deformations; however,

the inherent viscosity may introduce a smearing artifact to the deformed image.

An improvement has been made by introducing an extra elastic term to bound the

fluid viscosity, which leads to viscoelastic registration techniques [40].

To avoid blurring resulting from fluid viscosity, we propose to use an inviscid

model. Instead of regarding the image as a fluid continuum with viscous interac-

tion, we simulate the deformation process as a set of free particles moving toward

the target positions under applied forces. To observe the movement of particles,

Lagrangian reference frame is often used. But it needs to track individual particles

and is hard to apply. Assuming there are enough particles moving around, we can

fit Eulerian reference frame to the particle framework. A novel registration tech-

nique is thus developed based on the physical behavior of particles. The resulting

partial differential equations are a nonlinear hyperbolic system whose solution de-

scribes the spatial transformation between the images to be registered. They can

be numerically solved using finite difference methods.

The particle registration technique is quite simple and efficient. Since it can

be viewed as an inviscid fluid model, the smearing artifact caused by the viscous

terms is eliminated and large deformations can be accommodated. Also, because
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of its simplicity in simulation, total computational cost is decreased. Thus, the

particle registration technique can achieve a deformed image with more contrast

and sharper edges in less time. We have successfully applied the particle model to

medical image datasets yielding fast and accurate registrations.

The rest of this thesis is organized as follows. Chapter 2 contains an overview

of image registration problems. A general description is given, including differ-

ent registration classification and various medical applications. In addition, we

mathematically formulate image registration into an optimization problem where

the objective function consists of a similarity measure and a regularization term.

Chapter 3 introduces physically based models for nonrigid registration. A physical

analog is established to model the registration process by related physical principles.

The elastic models, fluid models, and viscoelastic models are described. Chapter

4 presents an inviscid registration technique expressed in a particle framework.

We derive the governing equations from particle dynamics, and interpret particle

registration into the variational form. To control the desired transformation, a

regularity constraint is imposed over the registration process. Chapter 5 discusses

numerical implementation details for solving the objective PDE system, including

discretization methods, stability conditions, regridding procedure, and multireso-

lution scheme. Chapter 6 shows experimental results on 2D and 3D, synthetic and

real datasets, with various validation techniques used to evaluate the accuracy and

efficiency. Finally, conclusions are drawn in Chapter 7, where we briefly review

the physical modeling, summarize its key features, and suggest some possible im-

provements in the future. The background knowledge of continuum mechanics is

presented in the Appendix.
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Chapter 2

Image Registration Problems

Image registration requires aligning an image pair with an optimal transformation.

It has many potential applications in the clinic, and is an often encountered problem

in various research fields. We begin the chapter with a general description of image

registration problems, the registration classification, and its medical applications.

We also present a mathematical formulation of how image registration is defined

and interpreted as an optimization problem consisting of a similarity measure and

a regularization term.

2.1 General Description

Medical images result from sensors for the purpose of visualizing a specific part of

the body that is not externally visible. To characterize the detected properties, a

certain quantity, usually intensity, must apply. The mapping of detected properties

to intensity values is determined by the physics of the particular sensor acquiring

images and the chosen imaging parameters during acquisition.

Various sensors are used to acquire medical images, consequently numerous

modalities exist nowadays. Each modality provides unique information of the

area being imaged. For example, anatomical modalities, including magnetic reso-

nance imaging (MRI), x-rays, computed tomography (CT), ultrasound, etc., pro-

vide anatomical information such as geometric shapes and relative positions of
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structures. On the other hand, functional modalities, including positron emission

tomography (PET), single photo emission computed tomography (SPECT), func-

tional magnetic resonance imaging (fMRI), etc., provide functional information

such as activity maps and dynamic regions of organs. Different sensors generally

generate different modalities, however, images of the same modality may not have

the same intensity maps due to different imaging parameters.

The problem of registration arises, for instance, when two images need to be

compared for diagnosis. It is defined as the process of finding a spatial transfor-

mation that best aligns the image pair under consideration. The inputs are two

images to be registered, the output is a spatial transformation which maps points

in one image to points in another image.

Each registration task is unique and can be described by the feature of the input

images, including dimensionality, modality, subject, and object. The dimensionality

of the given images may be two or three, which leads to two dimensional, three

dimensional, or multidimensional registration. If the images to be registered are of

the same modality, monomodal registration is performed. Otherwise, registration

between different modalities is called multimodal registration. When the image

pair involves a single patient, we call it intrasubject registration. As a counterpart,

intersubject registration is accomplished using two images of different patients.

Additionally, atlas registration takes place between patients and atlases. The object

of registration refers to the particular region of anatomy to be registered. It varies

from head, brain, to liver, vertebra.

2.1.1 Classification

Various registration methods exist, and they can be classified in different ways [23].

Here we only focus on three aspects, i.e., registration basis, domain of transforma-

tion, and transformation type.

Registration basis refers to the kind of image features used to derive the regis-

tration. Based on the nature of registration basis, we can classify registration into

landmark based and intensity based methods.
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Landmark based registration first extracts landmarks from given images, i.e.,

geometric features like points [14], curves [12], surfaces [34], objects [19], and then

computes a transformation based on these landmarks. Often, a preprocessing of

labeling and segmentation is required before registration can be performed. Al-

ternatively, intensity based registration directly exploits the image intensities to

compute the transformation (e.g., [2, 15, 33]). The main advantage is that an ex-

plicit preprocessing of the images is not required. However, it generally requires

a higher computational cost and a stronger dependence on image modality and

imaging parameters.

Domain of transformation refers to the image area on which the transformation

can be applied. Basically there are two kinds of transformation domain, global and

local. A global transformation is applicable to the whole image domain, while a

local transformation is applicable to only a subset of the image domain.

Transformation type refers to the mathematical form of the spatial mapping

used to align two images. Based on the nature of transformation, we can distinguish

registration into four classes (see Figure 2.1). Each class in the following contains

the ones before it as special cases.

Figure 2.1: Four types of transformations.

Rigid transformations only allow translation and rotation of one image with

respect to the other, and thus preserve shapes. This class of registration problems

(e.g., [29], [41]) involve computation with six degrees of freedom in three dimensions:

three rotation angles and three translation distances. Only a small fraction of
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registration problems are of this type. More often, nonrigid transformations with

much more degrees of freedom are required for medical registration [13].

Nonrigid transformations contain three subclasses: affine, projective, and curved.

Affine transformations take into account scalings and skews. They map parallel

lines onto parallel lines, but angles between lines may change. Projective transfor-

mations map lines onto lines. They preserve the straightness of lines, and hence,

planarity of surfaces. The transformations mentioned till now are linear and global

in nature, thus not being able to model local deformations. Curved transformations

provide support for local deformations. They map lines onto curves and therefore

allow local warping of image features. Many practical registration tasks require

estimation of a curved transformation between images.

2.1.2 Applications

As an often encountered problem in medical imaging, registration has evolved inde-

pendently in various clinical areas, ranging from computer aided diagnosis to image

guided surgery, each with a number of unique applications.

To track the difference of a given piece of anatomy over a period of time, as is

the case of tumor growth study, or therapy response assessment, series information

is collected using the same imaging modality at multiple times, with time scale

ranging from hours to years. Since the patient may move with respect to the

scanner, motion between images needs to be corrected before the data is analyzed.

Also the time scale may be long enough that the imaged object itself has already

changed by growth or shrinkage, and therefore deformation between images has to

be captured during the data analysis. Monomodal intrasubject registration is used

in this situation to realign each image in the series.

To characterize normal versus abnormal anatomical variations, an atlas image,

used as a common reference for comparison, is statistically created combining a col-

lection of anatomical information. Since meaningful comparison between subjects

and across populations requires the spatial normalization of the images to be com-

pared, monomodal intersubject registration is used to register individual anatomy

to the atlas. This type of registration is very useful for atlas based analysis, e.g.,
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segmentation. It can be a difficult problem when the boundaries of structures and

substructures are poorly defined, the medical image is noisy, or the spatial resolu-

tion is limited. A possible solution is first labeling (possibly by hand) the structure

of interest in the atlas, then registering the atlas to another image to be segmented.

Once the transformation has been computed, labels assigned to regions can simply

be applied to corresponding regions in the other image.

To assist diagnosis and improve treatment, complementary information of the

patient needs to be collected from different imaging modalities (most often MR,

PET, and CT). Since each image modality highlights a specific part of the body,

a step of fusion must be applied to combine multimodal images in a more mean-

ingful way so that they can provide an integrated view. In this case, multimodal

intrasubject registration is used to fuse the images into one representation, i.e., one

coordinate system. For example, radiation therapy for cancers utilizes not only

CT scans but also MR or PET data. The former is used for lesion location and

dosage calculation, while the contours of the target region are easier to be outlined

by the latter. The combination of the two, on which registration is performed, can

be assessed more easily and examined more accurately, and thus allows a better

determination of the treatment plan for diagnosticians.

When several MR images acquired on different scanners at different institutions

need to be registered, multimodal intersubject registration is applied. MR is a

special modality since differences between scanners and in acquisition parameters

can be such that the contrast characteristics between images substantially vary. So

in some sense, MR is not a single modality due to different pulse sequences used in

the imaging process.

2.2 Mathematical Formulation

In the previous sections, we have obtained an intuitive impression about medical

image registration. Now we give a formal statement of this problem in mathematics.

Mathematically, an image I may be considered as a mapping of points in the

image domain, Ω, to intensities in the intensity range I(Ω). In practice, Ω consists
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of discrete elements (2D pixels or 3D voxels), and the intensity typically ranges

from 0 to 255 for a medical image encoded at 8 bits. In this thesis, we consider Ω

as a continuous domain (a square in 2D and a cube in 3D). This will allow us to

apply physically based models (see Chapter 3). Moreover, for simplicity, we scale

I(Ω) to [0, 1]. So an image I is a 2D or 3D function:

I : Ω → [0, 1],

where Ω = [0, 1]d, d ∈ {2, 3}.
We now formally pose the image registration problem. Given two images, a

template A : ΩA → [0, 1] and a target B : ΩB → [0, 1], the purpose of registration

is to determine a spatial transformation

Φ : ΩB → ΩA,

such that corresponding points in ΩA and ΩB are mapped (see Figure 2.2, data pro-

vided courtesy of Dr. H. Farid in the Computer Science Department at Dartmouth

College). Once such transformation is obtained, we say that the template image

Figure 2.2: Point correspondence between two images of pelvic tumor.

is brought into registration with the target image. The registered image generated

from the template consequently becomes A ◦ Φ : ΩB → [0, 1].

Let x ∈ ΩB and y ∈ ΩA be a corresponding pair in the target and the template,

respectively. The difference

Φ(x)− y,
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is called the registration error. Ideally, the transformation Φ is optimal if the reg-

istration error is 0. However, in practice, y is unknown and so we cannot compute

the registration error. Let’s consider monomodal registration and assume that the

intensity values are almost the same for the corresponding points in A and B, i.e.,

A(y) ≈ B(x).

Then we can compare A(Φ(x)) and B(x) in order to quantify the quality of the

spatial transformation Φ.

The image registration problem can now be formulated as an optimization prob-

lem:

min
Φ

D(A ◦ Φ, B), (2.1)

where D is a measure of distance between the deformed template and the target.

The transformation Φ is determined by minimizing the difference of A ◦ Φ and B.

Another possible formulation is:

max
Φ

S(A ◦ Φ, B),

where S is a measure of how similar A ◦Φ and B are. In this case, Φ is determined

by maximizing the similarity between the deformed template and the target. There

are several choices for D and S and they often depend on the particular registration

problems.

2.2.1 Similarity Measures

If the assumption is made that the images to be registered have similar intensity

maps (e.g., monomodal images with identical contrast), an intuitively obvious dis-

tance measure is the L2 norm, i.e., the sum of squared differences (SSD):

SSD =

∫

Ω

(A(Φ(x))−B(x))2 dx. (2.2)

In this case, SSD will be zero when the images are correctly aligned and will increase

quadratically with the registration error. It can be shown that SSD is the optimum

measure for images differed only by Gaussian noise [36]. Although the noise present
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in medical images is not always Gaussian, SSD is commonly used because of its

relatively easy implementation.

Since SSD is highly sensitive to outliers, the sum of absolute differences (SAD)

is used as an alternative to reduce the effect of large intensity differences. It is the

L1 norm of the difference of A ◦ Φ and B, defined as

SAD =

∫

Ω

|A(Φ(x))−B(x)| dx. (2.3)

In this case, SAD will be zero when the images are correctly aligned and will increase

linearly with the registration error. To register images, SAD is minimized. The

minimum value corresponds to the smallest total difference of intensities between

the target and deformed template.

When the intensity values of corresponding points in two images are not similar,

the above measures can not be applied anymore. However, if the intensity maps

are linearly related, e.g., monomodal images with different contrast, the correlation

coefficient (CC) can be shown to be the ideal similarity measure [36]. It involves

the normalized dot product of the difference from the image mean of corresponding

intensity values:

CC =

∫
Ω
(C(x)− C̄)(B(x)− B̄) dx√∫

Ω
(C(x)− C̄)2 dx

∫
Ω
(B(x)− B̄)2 dx

.

Here C refers to the deformed template A ◦ Φ, B̄ is the mean of the target image

B over Ω, and C̄ is the mean of the deformed template C over Ω. To register

images, CC is maximized. The maximum value corresponds to the strongest linear

relationship of intensities between the target and deformed template.

We have made an assumption on the relationship between image intensity maps

for the similarity measures discussed above. If the images to be registered are

acquired from different imaging devices, it would require more complex measures

to account for the vastly different intensity maps the imaging modalities create.

Examples include partitioned intensity uniformity [39], joint entropy [3], and mu-

tual information [22, 37]. In this thesis, we will focus primarily on monomodal

registration and so we do not describe these methods here.
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2.2.2 Regularization Terms

With no prior knowledge about the desired transformation, the image registration

task formulated in (2.1) is an unconstrained optimization problem which turns out

to be ill-posed in the sense that multiple solutions could exist (see Figure 2.3).

Figure 2.3: A registration example with multiple solutions.

To restrict the solution space, regularization is often used where we specify

additional information about the solution by an extra term R(Φ), called the regu-

larization term. The purpose is to make the corresponding constraint optimization

problem a well-posed one:

min
Φ

D(A ◦ Φ, B),

subject to R(Φ) = 0.
(2.4)

To simplify notation, we write D as a function of Φ with given A,B. Therefore,

the transformation Φ is to minimize the distance measure D(Φ) while at the same

time satisfying some constraint R(Φ) = 0. Equation (2.4) can be rewritten as

min
Φ

D(Φ) + λR(Φ). (2.5)

Mathematically, λ is the Lagrange multiplier. In practice, we only treat it as a

positive parameter for simplification. The solution of (2.5) is characterized to be the
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minimizer of a linear function of the distance measure, which drives the registration

as long as the given images are not successfully aligned, and the regularization term,

which tends to stop this process when the computed transformation deviates from

the desired one.

The desired transformation of an image registration problem depends heavily

on the regularization term we impose. A number of different choices exist, each

giving the desired transformation unique properties. For example, total variation

regularization [25] is used in image denoising and deblurring which can preserve

sharp edges. However, more complex regularization terms are required for image

registration using physically based models (see Chapter 3).
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Chapter 3

Physically Based Models

The region of interest (ROI) in medical images is usually some tissue or organ,

such as brain, tumor, and ventricle. If the variation of ROI is caused by the

behavior of the corresponding biophysical structures, it is reasonable to acquire

the transformation by physically based models described in this chapter. We first

introduce the physical analog for image registration, then present required physical

principles including conservation laws and constitutive behavior, finally describe

related work in physically based registration including elastic models, fluid models,

and viscoelastic models.

3.1 Physical Analog

In physically based models, the images to be registered are considered as continuous

entities occupying the image domain Ω ⊂ Rd (d ∈ {2, 3}). Any geometric point

in the image corresponds to a material particle in the continuum. Since intensity

information is distributed over space, each material particle is assigned an intensity

value by its original position in the image. The instantaneous state of the contin-

uum is determined by the position of its material particles. Thus, every state of

the continuum, which is associated with a configuration of the material particles,

forms a resampling of the intensity values, i.e., a different image. For example, the
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template image corresponds to the initial state of the continuum, while the target

image corresponds to the final state of the continuum.

To register two images, a body force b is applied on each material particle

to drive its movement, and therefore the continuum evolves to the desired state

of registration. The body force provides a connection between different states of

the deforming continuum and is defined by the information from the images to be

registered. It is commonly chosen to be the variation of the distance measure D(Φ)

with respect to the transformation Φ:

b =
δD(Φ)

δΦ
,

where δ is the variation operator. Here D is considered as a function of the trans-

formation Φ given the template A and target B. It will be made more precise in

Section 4.4.1.

The continuum experiences strain under applied forces. Accordingly, the dif-

ferences between images to be registered are assumed to be caused by such local

deformations. Thus, image registration is simulated as a physical deformation pro-

cess which can be characterized by the following quantities:

% : Ω× [0, T ] → R

b : Ω× [0, T ] → Rd

r : Ω× [0, T ] → Rd

u : Ω× [0, T ] → Rd

where [0, T ] is the time interval for simulation, % is the mass density distributed over

the continuum, b is the body force that drives the deformation, r is the displacement

resulted from the deformation, and u is the velocity which describes the motion of

the deformation.

3.2 Basic Principles

In general, the deformation of the continuum is governed by continuum mechanics

[32]. We only list here the relevant equations for image registration. For their

derivation and other details, we refer the readers to Appendix A.
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Continuity equation:
∂%

∂t
+∇ · (%u) = 0. (3.1)

It describes the conservation of mass.

Momentum equations:

%

(
∂u

∂t
+ u · ∇u

)
−∇ · σ − b = 0, (3.2)

where σ is the Cauchy stress tensor. They describe the conservation of momentum.

Navier-Lame equations for elastic solids:

µe∇2r + (λe + µe)∇(∇ · r) + b = %

(
∂u

∂t
+ u · ∇u

)
, (3.3)

where λe, µe are the elasticity coefficients. They are derived from the momentum

equations with σ defined by the Hooke’s law.

Navier-Stokes equations for viscous fluids:

µv∇2u + (λv + µv)∇(∇ · u) + b = %

(
∂u

∂t
+ u · ∇u

)
+∇p. (3.4)

where λv, µv are the viscosity coefficients. They are derived from the momentum

equations with σ defined by the Stokes and Newtonian fluid assumptions.

Maxwell equations for viscoelastic fluids:

µv∇2u + (λv + µv)∇(∇ · u) +∇ · ε + b = %

(
∂u

∂t
+ u · ∇u

)
+∇p. (3.5)

where ε is the extra elastic tensor. They are modified from the Navier-Stokes

equations with an additional elastic term.

3.3 Related Work

Widely used in image registration, physically based models control the registration

process such that it follows physical laws of dynamics. Thus, the regularization

term in (2.4) is typically selected to be some energy form. Since Φ is determined

by r and λ is positive, (2.4) is equivalent to

min
r

1

λ
D(r) + R(r), (3.6)
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3.3.1 Elastic Models

Broit [6] was the first to study nonrigid registration problems using elastic models.

His work was extended by Bajcsy et al. [2] and various variational forms [8, 11]

were presented later. In general, elastic models are based on linear elasticity and

describe local deformations between images to be registered. The central idea is to

consider images as isotropic elastic solids and to model the geometric differences

between images as an elastic deformation. Accordingly, the regularization term R

in (3.6) is chosen to be the elastic potential energy, defined as

R(r) =

∫

Ω

d∑
i=1

d∑
j=1

{
λe

2

∂ri

∂xi

∂rj

∂xj

+
µe

4

(
∂ri

∂xj

+
∂rj

∂xi

)2
}

dx, (3.7)

where d ∈ {2, 3} is the dimension. Initially when the displacement r is zero (i.e.,

no registration at all), the corresponding value of R(r) is the minimum zero, and

this value increases with the local deformations developed during the registration

process. Therefore, the minimization statement of elastic registration problems

involves the determination of a kinematically admissible displacement field r such

that some distance measure D(r) plus the elastic potential R(r) reaches a minimum:

min
r

1

λ
D(r) +

∫

Ω

d∑
i=1

d∑
j=1

{
λe

2

∂ri

∂xi

∂rj

∂xj

+
µe

4

(
∂ri

∂xj

+
∂rj

∂xi

)2
}

dx. (3.8)

It can be minimized by applying optimization schemes such as gradient descent.

An alternative formulation of elastic models can be made by using the equations

of motion directly. Since the registration process is simulated as an elastic solid

deforming from its natural shape (which corresponds to the template image) to the

warped shape (which corresponds to the target image), the dynamics of the system

is governed by the Navier-Lame equations given in Section 3.2. In the case of static

equilibrium, the acceleration term vanishes and (3.3) is reduced to

µe∇2r + (λe + µe)∇(∇ · r) + b = 0. (3.9)

These are the governing equations for elastic registration, which provide a different

form to achieve the desired solution. They simply tell us that the balance between
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the external force b applied to the image body and the internal force µe∇2r+(λe +

µe)∇(∇ · r) caused by the deformation r will lead to the desired static equilibrium

solution and terminate the registration process. These equations of motion are of

elliptic type and may be solved by finite difference and successive overrelaxation

(SOR) methods [30].

The equivalence between the equations of motion approach and the minimiza-

tion statement can be easily demonstrated. Using calculus of variations, one can

show that minimizing the objective functional in (3.8) simply gives rise to (3.9). In

other words, (3.9) is nothing but the Euler-Lagrange equation of (3.8).

When the image registration process is governed by elastic models, the desired

transformation has the virtue of being smooth and preserving the topology of the

image. However, elastic models are usually only used for accommodating small

deformations because the deformation energy caused by stress increases propor-

tionally with the strength of the deformation. In [10], Christensen et al. provided

a largely curved registration case where elastic models would fail (similar to Figure

3.1).

Figure 3.1: A registration example where elastic models would fail: (left) template,

(middle) target, (right) deformed template after elastic registration. You start at

the template, and try to evolve toward the target, finally get the deformed template.

3.3.2 Fluid Models

An alternative approach based on fluid dynamics has been proposed by Christensen

[9]. It models images as Newtonian fluids and simulates the deformation process by
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a viscous flow from its original configuration (which corresponds to the template)

toward the deformed configuration (which corresponds to the target).

The fluid motion is governed by the Navier-Stokes equations (3.4). For image

deformation it is often desirable to include a mass source on a local level, i.e., allow

the addition of mass (dilation) or the subtraction of mass (shrinkage) within the

control volume. Assuming a source of mass is supplied at a rate of η (negative

values correspond to a sink rather than a source) per unit volume, the conservation

of mass with a source term consequently becomes

∂%

∂t
+∇ · (%u) = η. (3.10)

Similarly, the conservation of momentum with a source term is written as

%(
∂u

∂t
+ u · ∇u) + ηu−∇ · σ − b = 0. (3.11)

Substituting the constitutive equation for Newtonian fluids (see Appendix A.2) into

(3.11), we obtain the modified Navier-Stokes equations with a mass source:

µv∇2u + (λv + µv)∇(∇ · u) + b = %(
∂u

∂t
+ u · ∇u) + ηu +∇p. (3.12)

A simplified model is obtained [20] for a very low Reynolds number flow where

the pressure gradient∇p and the inertial terms %(∂u/∂t+u·∇u)+ηu are neglected,

such that (3.12) becomes

µv∇2u + (λv + µv)∇(∇ · u) + b = 0. (3.13)

These are the governing equations for fluid registration, similar to (3.9) except that

differentiation is taken on the velocity field u rather than the displacement field r.

Hence they are solved at each time to compute instantaneous velocity u and update

current displacement r, which substantially increases the computational cost while

maintaining a continuous homeomorphic map. Again, finite difference and SOR

methods are often used.

Fluid models are more flexible and can capture large, nonlinear deformations.

At the same time the possibility for misregistration increases because of the vast

number of degrees of freedom allowed. Also, the reported computational cost can

be very expensive [5, 38].
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3.3.3 Viscoelastic Models

Since most tissues behave between elastic solids and viscous fluids [24], either an

elastic approach or a fluid approach itself may not be accurate enough for regis-

tration modeling. We have developed a combined viscoelastic approach [40] which

has the property of both elastic solids and viscous fluids to achieve better registra-

tion. The basic idea is to model images as viscoelastic fluids and to simulate the

deformation process as a flow from the template to the target.

In order to capture the elastic behavior in the transformation, we model the fluid

as a viscoelastic fluid. Again assuming very small Reynolds number, we simplify

(3.5) and the motion of a viscoelastic fluid is then governed by

µv∇2u + (λv + µv)∇(∇ · u) +∇ · ε + b = 0. (3.14)

These are the governing equations for viscoelastic registration, modified from (3.13)

by introducing an additional elastic term. They allow two images to differ by

large deformations like viscous fluid and small deformations like elastic solid. The

transformation obtained from (3.14) decreases blurring caused by the fluid terms.

A related approach was proposed by Tang et al. [31]. However, they simplified

the linear Maxwell model by direct addition of a fluid part (dashpot) and an elastic

part (spring), and solved for each part separately. However for viscoelastic mate-

rials, those two parts should be coupled together. Our model applies the coupled

constitutive law and thus obtains a more physically realistic analog for medical

imaging.
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Chapter 4

Inviscid Registration Technique

We present in this chapter an inviscid registration technique expressed in a par-

ticle framework. The motivation is to reduce the smearing artifact caused by the

viscous terms in fluid models. Under the Eulerian reference frame, we derive the

equations of motion which govern the movement of particles. The corresponding

variational form for particle registration is also given by using the kinetic energy as

the regularization term. To avoid singular mappings, we impose a positive Jacobian

requirement on the desired transformation during the particle registration process.

4.1 Motivation

Although fluid models overcome the drawback of elastic models that they only sus-

tain small deformations, the viscous terms included in the fluid equations diffuse

the desired transformation, thus naturally resulting in unwanted background move-

ment. Referring to the same registration example shown in Figure 3.1, we inspect

the fluid registration results in the following (see Figure 4.1).

This shortcoming of fluid models may affect the registration quality. To avoid

undesired background movement, we propose to use an inviscid model. Instead of

regarding the image as a fluid continuum with viscous interaction, we simulate the

deformation process as a set of free particles moving toward the target image under
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Figure 4.1: Fluid registration results for the same registration example shown be-

fore: (left) fluid deformed template, (right) diffused displacement field.

applied forces. It is similar to the case of ideal gas [20] where distances between

gas molecules are large enough that internal interaction can be safely ignored and

each molecule can be viewed as a particle. In later sections we further show that

under the continuous hypothesis this model is closely related to a special inviscid

fluid model where the pressure gradient term is dropped.

4.2 Particle Framework

A particle framework for image registration (see Figure 4.2) involves three major

parts: an image-to-particle conversion, a particle system simulation, and a particle-

to-image reversion. In this framework, the image registration process first converts

the template image into an initial particle system, then simulates the evolution of

the particle system from its initial state to the final state, and finally reverts the

final particle system to the registered image.

Figure 4.2: Particle framework for image registration.
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The image-to-particle conversion describes how to physicalize a given image to

its corresponding particle system. Assuming an infinite amount of particles dis-

tributed within the image domain, we consider the given image as a particle system

associated with a particular distribution of intensity information. Since the particle

positions are not necessarily corresponding to image pixels, the intensity informa-

tion carried on each particle is determined by linear interpolation of neighboring

intensity values.

The particle system simulation drives the movement of particles under physical

principles. Particles are subject to body force b, and the motion of particles is

characterized by position x, velocity u, and displacement r. To track every parti-

cle from its initial to its final position, conservation laws for mass, momentum, and

energy are adopted to govern the evolution of the desired particle system. Each

particle is identified on the basis of its final coordinates, which results in the par-

ticular choice of the Eulerian reference frame. To make this choice valid for particle

framework, we assume the total number of particles is large enough that anytime

there exists a particle passing through each observation point. This hypothesis is

similar to the continuous assumption stated in Section 3.1.

The particle-to-image reversion describes how to visualize a given particle sys-

tem to its corresponding image. Since the given particle system distributes particles

over space, the intensity information carried on each particle forms a particular dis-

tribution over the image domain, and the corresponding image is therefore created

by the intensity distribution. As there may be more than one particle within the

region of an image pixel, the intensity value of that pixel is determined by weighted

interpolation of all intensity values inside. To simplify the computation, we only

consider the intensity information carried on the particular particle located at the

center of that pixel.

4.2.1 Eulerian Reference Frame

An Eulerian reference frame is used during the image deformation process. To

observe the movement of particles, we watch a fixed observation point x in space as

time t proceeds. To make this choice of reference frame valid for particle framework,
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we assume that there are enough particles moving around. This assumption is

similar to the continuous hypothesis in continuum mechanics. Thus, all physical

properties such as density, velocity, displacement are considered as functions of

x and t. For example, r(x, t) describes the displacement of the particle passing

through position x at time t. Accordingly, a particle currently located at position

x at time t originated at position x− r(x, t).

Figure 4.3: Transformation in Eulerian reference frame.

As a consequence, the transformation Φ is applied from the deformed coordinate

system back to the original coordinate system, which has the form

Φ : x → x− r(x). (4.1)

Here x is the point in the deformed template and Φ maps it to its corresponding

point in the original template. The offset of the point from its initial position to

the final position is described by the displacement vector r(x) in Figure 4.3. It is

also used to track the deformation of the image over time. Using function notation,

(4.1) can be rewritten as

Φ = I − r,

where I is the identity function.

4.2.2 Material Derivative

From the Eulerian viewpoint, we focus on fixed positions in space at various times

and thus lose the ability to easily track the history of a specific particle. To recover
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the Lagrangian description of the motion, we need to evaluate the time derivative

following a moving particle.

Figure 4.4: Particle trajectory.

Consider a particle initially (at time 0) present in the position X and currently

(at time t) occupying the position x (see Figure 4.4). Suppose the trajectory of the

particle is described by some function Ψ(X, t), then it satisfies

X = Ψ(X, 0),

x = Ψ(X, t).

In addition, the particle displacement is given by the position change:

r = x−X,

and the particle velocity is given by the rate of position change:

u =
∂Ψ

∂t
. (4.2)

Let f be a physical property associated with the particle, e.g., position, dis-

placement, velocity. It can be represented in two different ways during the motion:

Lagrangian variables fL(X, t) or Eulerian variables fE(x, t). That is to say

fL(X, t) = fE(x, t) = fE(Ψ(X, t), t). (4.3)

Differentiating (4.3) with respect to time by applying the chain rules of calculus,

we obtain

∂fL

∂t
=

∂fE

∂t
+

∂fE

∂x1

∂Ψ1

∂t
+

∂fE

∂x2

∂Ψ2

∂t
+

∂fE

∂x3

∂Ψ3

∂t

=
∂fE

∂t
+ u1

∂fE

∂x1

+ u2
∂fE

∂x2

+ u3
∂fE

∂x3

.
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The last three additional terms are called convective terms which describe changes

due to the fact that the particle changes position. The particular combination on

the right hand side has the physical interpretation of the time derivative following a

moving particle, which is called the material derivative and often defined by symbol

d/dt or D/Dt. In vector notation, it can be written as

d

dt
=

∂

∂t
+ u · ∇. (4.4)

The first term on the right hand side is called the local rate of change, and the

second term is called the convective rate of change.

We illustrate the material derivative with one simple example. Take f to be the

position vector x, hence

dx

dt
=

∂x

∂t
+ u · ∇x

= 0 + u

= u.

This equation is consistent with our previous definition of velocity and is the Eule-

rian counterpart of (4.2).

4.3 Governing Equations

Our particle model for image registration includes the differential equations govern-

ing the dynamics of the particle system, the boundary conditions, and the initial

conditions.

The initial conditions for particle registration is naturally chosen to be

r(x, 0) = 0, u(x, 0) = 0, for any x ∈ Ω. (4.5)

To formulate the boundary conditions, we take into account the fact that the objects

to be registered usually lie at the center of the image. Therefore, it is reasonable to

assume that the image boundary, which is far away from the center, only contains

background information (usually black for medical images). Obviously, it remains
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constant and needs no registration. Hence zero Dirichlet boundary conditions are

used for the particle model which specify the boundary values as follows:

r(x, t) = 0, u(x, t) = 0, for any x ∈ ∂Ω and t ∈ [0, T ]. (4.6)

These boundary conditions set the velocity and the displacement to be zero at

the boundary. Thus, no particles can penetrate the image domain and the system

remains static along the boundary.

4.3.1 Compute Velocity

The instantaneous state of a particle is governed by Newton’s law of motion. If

we assume that there is no internal interaction between particles, the momentum

equations (3.2) can be written as

du

dt
− b = 0, (4.7)

where b is the body force applied to that particle and will be defined later by the

information from the template and the target images, u is the consequent velocity

which describes the motion of image deformation, and t is the simulation time.

The first term of (4.7) represents the force of inertia, i.e., unit mass times the

acceleration of a particle.

Expressing d/dt in terms of the material derivative (4.4), we have the follow-

ing equations which govern the dynamics of the particle system during the image

deformation process:
∂u

∂t
+ u · ∇u− b = 0. (4.8)

Physically, it means that the body force b, which acts upon the whole image domain

and drives the registration process, is balanced by the inertial force du/dt caused

by the motion of image deformation.

In contrast with the previously mentioned fluid model (see Section 3.3.2), our

particle model is free of viscosity, which can be understood either from the absence

of mutual interaction in the particle framework, or from its intimate connection

with inviscid fluid models. As the former is obvious, we illustrate the latter here.
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A fluid without viscous dissipation is called an inviscid, perfect, or nonviscous

fluid [20]. It may or may not be compressible. Referring to the Navier-Stokes

equations (3.4) for viscous fluids, “inviscid” simply means λv = µv = 0. Therefore

when modeling an inviscid fluid, internal friction is neglected and the stress tensor

σ is determined solely by the pressure:

σ = −pI. (4.9)

Substituting this stress tensor into (3.2) yields a first-order system of partial differ-

ential equations:

%(
∂u

∂t
+ u · ∇u) +∇p = b, (4.10)

which are known as the Euler equations for inviscid fluids. As a simplification of

the more realistic Navier-Stokes equations, it is commonly used in gas dynamics.

Additional information is needed by invoking the equation of state which relates

the pressure p with the density %:

p = P (%), (4.11)

where P is some algebraic function. For incompressible cases, one can take the

density % to be spatially homogenous (in particular, unity). Thus, the pressure

p is also a constant over space due to (4.11). Consequently, % and ∇p are both

neglected and (4.10) is just reduced to (4.8).

The terms dropped from (3.4) to (4.10) involve second-order derivatives that

would make the system parabolic rather than hyperbolic and lead to smooth solu-

tions for all time. Thus, (4.10) has the virtue of allowing discontinuity in solution

which turns out to be very useful for image registration problems. Generally, the

desired transformation for a registration task may not be smooth. For example,

multi-object registration with very close distances and totally different motions re-

quires the desired transformation rapidly varying over a very small common area

between the objects. Even for single object registration, the background should not

move with the object and thus the interface between the object and the background

experiences discontinuous transformation. As a special case of (4.10), (4.8) is good

at handling such situations. Therefore, we expect our particle model to be capable

of accommodating large deformations yet avoiding the blurring artifact due to fluid

viscosity.

28



4.3.2 Update Displacement

To track the movement of a particle through time, we need to find out the rela-

tionship between the velocity u and the displacement r. As illustrated in Section

4.2.2, the Eulerian description of velocity is given by

u =
dx

dt
. (4.12)

For any particle, the current position x and the displacement r are off by the initial

position X. Thus, we have

u =
dX

dt
+

dr

dt

= 0 +
dr

dt

=
dr

dt
. (4.13)

Using the expression of the material derivative (4.4), (4.13) can be rewritten as

∂r

∂t
+ u · ∇r − u = 0. (4.14)

With the computed velocity from (4.8), (4.14) is used to update the current dis-

placement. Thus, our particle model consists of solving (4.8) and (4.14). For ease

of future reference, we list them together here:

∂u(x, t)

∂t
= b(x, t)− u(x, t) · ∇u(x, t),

∂r(x, t)

∂t
= u(x, t)− u(x, t) · ∇r(x, t).

(4.15)

However, there are three unknowns: u, r, and b. To close the PDE system, we

need a definition of the body force b. This can be given by interpreting the particle

registration problem into the variational form, which will be shown in Section 4.4.1.

4.4 Variational Form

Similar to elastic registration, we can also formulate particle registration into a

minimization problem with the form (3.6). SSD is chosen to be the distance measure
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here:

D(r) =

∫

Ω

1

2
(A(x− r(x, t))−B(x))2dx. (4.16)

Instead of using the elastic potential as the regularization term in (3.8), we propose

a kinetic energy model

R(r) =

∫

Ω

1

2
u2(x, t)dx, (4.17)

where u2 = u · u. Hence at any time t during particle registration, the proposed

minimization problem is

min
r

1

λ

∫

Ω

1

2
(A(x− r(x, t))−B(x))2dx +

∫

Ω

1

2
u2(x, t)dx. (4.18)

The SSD distance measure in (4.18) drives the registration process, while the kinetic

regularization term tends to resist motion. The compromise between the two leads

to the minimal motion to register the image pair.

4.4.1 Modified Body Force

The body force b moves particles from the template A to the target B. Aforemen-

tioned in Section 3.1, it is defined as the variation of the distance measure D(Φ)

with respect to the transformation Φ :

b =
δD(Φ)

δΦ
, (4.19)

where δ is the variation operator. In the Eulerian reference frame, Φ is interpreted as

I−r where I is the identity function and r is the displacement function. Therefore,

we have
δr

δΦ
=

δ(I − Φ)

δΦ
= −1. (4.20)

Substituting (4.20) into (4.19), we obtain

b =
δD(r)

δr

δr

δΦ
= −δD(r)

δr
.

It shows that the body force b in the Eulerian reference frame is defined as the

negative variation of the distance measure D(r). Since D(r) is given by the SSD

distance measure in (4.16), a straightforward calculation shows

b(x, t) =
1

λ
(A(x− r(x, t))−B(x))∇A(x− r(x, t)). (4.21)
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There are two terms in (4.21), one is the difference term A(x− r(x, t))−B(x)

between the deformed template and the target, the other is the gradient term

∇A(x − r(x, t)) of the deformed template. For the purpose of registration, the

movement of particles should only slow down when the difference term becomes

small, which means the magnitude of b(x, t) should only be determined by the

difference term. Thus, we normalize the gradient term in the body force definition.

We choose λ = ‖∇A(x− r(x))‖/α and (4.21) becomes

b(x, t) = α(A(x− r(x, t))−B(x))
∇A(x− r(x, t))

‖∇A(x− r(x, t))‖ , (4.22)

where α is a parameter adjusting the magnitude of the body force. Since the

calculation (4.22) involves the gradient operator which is sensitive to noise in the

image, we perform Gaussian smoothing [16] on the deformed template prior to the

gradient computation. It is achieved by convolving the image intensity distribution

with the standard Gaussian distribution (which has a mean of zero and a standard

deviation of one). The smoothed image C̃ consequently becomes

C̃(x, t) = G(x) ∗ C(x, t),

where C(x, t) refers to the deformed template A(x−r(x, t)), G(x) is the standard

Gaussian distribution, and ∗ is the convolution operator. The modified body force

is finally expressed as

b(x, t) = α(C(x, t)−B(x))
∇C̃(x, t)

‖∇C̃(x, t)‖ . (4.23)

Thus equations (4.8), (4.14) and (4.23) constitute a complete PDE system. They

are our central equations and will be solved by updating r to realize the registration.

4.4.2 Kinetic Regularization Term

The kinetic regularization term (4.17) tries to minimize the kinetic energy, or equiv-

alently, the motion of deformation while registering the image pair. Therefore, un-

necessary motion not driven by the body force is removed. It is consistent with the

31



particle framework where neighborhood movement is avoided due to the absence of

mutual interaction.

It can be shown that the variation of (4.17) is just the inertial force du/dt. We

illustrate this with the 1D case. Since the integrand in (4.17) is not explicitly a

functional of the displacement function, we need to reformulate it in another way.

As stated in Section 4.3, the initial velocity is set to be zero. Thus, we have

1

2
u2(x, t) =

1

2
u2(x, t)− 1

2
u2(x, 0)

=

∫ t

0

d

(
1

2
u2

)
.

Here u and x are scaler quantities. Using the chain rule of calculus and taking into

account the identity u = dr/dt, we further obtain

1

2
u2(x, t) =

∫ u(x,t)

u(x,0)

u du

=

∫ t

0

du

dt
u dt

=

∫ r(x,t)

r(x,0)

du

dt
dr.

Therefore, (4.17) can be rewritten as

R(r) =

∫

Ω

K(r) dx, (4.24)

where the functional K(r) is given by

K(r) =

∫ r(x,t)

r(x,0)

du

dt
dr.

Taking the variation of (4.24) simply gives us

δR(r)

δr
=

∂K(r)

∂r
=

du

dt
(x, t). (4.25)

Therefore, we conclude that the variation of the kinetic regularization term is equal

to the inertial force. Using (4.25), the Euler-Lagrange equation of the minimization

problem (4.18) will give the PDE formulation (4.7).
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4.5 Regularity Constraint

In the above derivation of particle registration, no collision of particles is allowed

anytime during the image deformation process. Otherwise particles will interact

with each other, and the absence of mutual interaction no longer holds. Collision

happens when two or more particles move to an identical position in space. Math-

ematically, such situation corresponds to a singular mapping between the image

points. Thus we need to enforce a regularity constraint on the transformation to

ensure that it is regular.

To avoid collision between particles, we require the transformation to be always

one-to-one. That means, different particles will never occupy the same point and

collide with each other during the registration process. On the other hand, the

violation of this constraint indicates a singular transformation where particles may

collide with one another.

A necessary condition for a one-to-one transformation is the positive Jacobian

[7]. The Jacobian of the transformation Φ is a function J given by

J = det(∇Φ), (4.26)

where det is the determinant operator. To utilize the Jacobian in the Eulerian

reference frame, we express Φ in terms of r. Therefore, we obtain

J = det(I −∇r). (4.27)

The regularity constraint for particle registration becomes

J(x, t) > 0, for any x ∈ Ω and t ∈ [0, T ]. (4.28)

To enforce this regularity constraint, a regridding procedure is used (see Section

5.4).
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Chapter 5

Numerical Implementation

In this chapter, we present the numerical implementation of the particle model. The

objective PDE system is discretized in space and time using finite difference meth-

ods. We also impose a regridding procedure to enforce the regularity constraint,

and a multiresolution scheme to reduce the computational cost.

5.1 2D Component Form

Without loss of generality, we consider the image domain Ω to be a 2D square [0, 1]2

with x and y referring to each dimension. Consequently, any vector quantity defined

over Ω is composed of a horizontal component and a vertical component. We use

the notation (b, c) for body force, (u, v) for velocity field, and (r, s) for displacement

field. The governing equations (4.15) can now be rewritten in component form:

∂u

∂t
= b− u

∂u

∂x
− v

∂u

∂y
, (5.1)

∂v

∂t
= c− u

∂v

∂x
− v

∂v

∂y
,

∂r

∂t
= u− u

∂r

∂x
− v

∂r

∂y
,

∂s

∂t
= v − u

∂s

∂x
− v

∂s

∂y
,
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with the body force calculated by

b = α(C −B)
∂C̃
∂x√

(∂C̃
∂x

)2 + (∂C̃
∂y

)2

,

c = α(C −B)

∂C̃
∂y√

(∂C̃
∂x

)2 + (∂C̃
∂y

)2

.

Here, B is the target image, C is the deformed template, and C̃ is the smoothed

deformed template.

5.2 Discretization in Space

To observe the movement of particles through space, we discretize the image domain

[0, 1]2 into a regular grid (see Figure 5.1) with imax cells in the x direction and jmax

cells in the y direction. The size of the grid cell in each dimension is

∆x =
1

imax

, ∆y =
1

jmax

.

Numerical values of the unknowns are computed at the cell center:




xi =
∆x

2
+ i∆x, i = 0, . . . , imax − 1,

yj =
∆y

2
+ j∆y, j = 0, . . . , jmax − 1.

(5.2)

We approximate the continuous space variables such as intensity, force, velocity,

and displacement by discrete space values as follows:

Aij : the approximation of the template at (xi, yj),

Bij : the approximation of the target at (xi, yj),

Cij : the approximation of the deformed template at (xi, yj),

(bij, cij) : the approximation of the body force at (xi, yj),

(uij, vij) : the approximation of the velocity at (xi, yj),

(rij, sij) : the approximation of the displacement at (xi, yj).
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Figure 5.1: Regular grid discretization.

The boundary conditions (4.6) are thus enforced by





bij = cij = 0

uij = vij = 0

rij = sij = 0

, for i = 0, imax − 1, or j = 0, jmax − 1.

5.2.1 Linear Interpolation

In general, the regular grid imposed on the image domain is chosen to be the

pixel lattice. Each cell in the grid becomes an image pixel, and the cell center

corresponds to the pixel location. As the image deforms, the particles being tracked

at the cell centers may originate from points that do not necessarily correspond to

pixel locations (see Figure 5.2). Therefore interpolation is required to compute the

approximate intensity values at these points.

Figure 5.2: Linear interpolation from deformed template to template.
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Consider the point (xi, yj) in the deformed template C. Since it is mapped back

to the point (xi − rij, yj − sij) in the template A, we have

C(xi, yj) = A(xi − rij, yj − sij).

For an arbitrary point (x, y) in the template A, suppose it is located close to the

four cell centers (xk, yl), (xk+1, yl), (xk, yl+1), (xk+1, yl+1). Then its intensity value is

approximated by a weighted average of the four nearby intensity values:

A(x, y) ≈ (xk+1 − x)(yl+1 − y)

(xk+1 − xk)(yl+1 − yl)
A(xk, yl)

+
(xk+1 − x)(y − yl)

(xk+1 − xk)(yl+1 − yl)
A(xk, yl+1)

+
(x− xk)(yl+1 − y)

(xk+1 − xk)(yl+1 − yl)
A(xk+1, yl)

+
(x− xk)(y − yl)

(xk+1 − xk)(yl+1 − yl)
A(xk+1, yl+1).

When substituting x = xi − rij and y = yj − sij, we obtain

C(xi, yj) ≈ (xk+1 − xi + rij)(yl+1 − yj + sij)

(xk+1 − xk)(yl+1 − yl)
A(xk, yl)

+
(xk+1 − xi + rij)(yj − yl − sij)

(xk+1 − xk)(yl+1 − yl)
A(xk, yl+1)

+
(xi − xk − rij)(yl+1 − yj + sij)

(xk+1 − xk)(yl+1 − yl)
A(xk+1, yl)

+
(xi − xk − rij)(yj − yl − sij)

(xk+1 − xk)(yl+1 − yl)
A(xk+1, yl+1).

Considering (5.2), the right-hand side becomes

Cij = (k + 1− i +
rij

∆x
)(l + 1− j +

sij

∆y
)Ak,l

+(k + 1− i +
rij

∆x
)(j − l − sij

∆y
)Ak,l+1

+(i− k − rij

∆x
)(l + 1− j +

sij

∆y
)Ak+1,l

+(i− k − rij

∆x
)(j − l − sij

∆y
)Ak+1,l+1.
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5.2.2 Gaussian Smoothing

A standard Gaussian distribution in 2D has the form

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 ,

where σ is the standard deviation. This function obtains the maximum value at the

central point (0, 0), and decreases concentrically with the radius
√

x2 + y2. In the-

ory a Gaussian distribution is nonzero anywhere, however, it effectively approaches

zero at points outside three standard deviations from the center. Thus, we truncate

the Gaussian distribution to the region [−3σ, 3σ]2 and approximate its values with

a discrete Gaussian kernel.

Figure 5.3: Gaussian distribution discretization.

For image smoothing, σ is often chosen as one pixel. The corresponding Gaus-

sian kernel thus has a size of 7× 7 as follows:



0.0000 0.0002 0.0011 0.0018 0.0011 0.0002 0.0000

0.0002 0.0029 0.0131 0.0215 0.0131 0.0029 0.0002

0.0011 0.0131 0.0585 0.0965 0.0585 0.0131 0.0011

0.0018 0.0215 0.0965 0.1592 0.0965 0.0215 0.0018

0.0011 0.0131 0.0585 0.0965 0.0585 0.0131 0.0011

0.0002 0.0029 0.0131 0.0215 0.0131 0.0029 0.0002

0.0000 0.0002 0.0011 0.0018 0.0011 0.0002 0.0000




. (5.3)
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Each entry in the matrix, identified by discrete indices k = 0, . . . , 6 and l = 0, . . . , 6,

locates at the point (k − 3, l − 3). Therefore, we produce its value by

Gk,l =
1

2π
e−

(k−3)2+(l−3)2

2 .

Consequently, the smoothed deformed template C̃ is computed by the convolution

of the Gaussian kernel with the original image C:

C̃i,j =
3∑

k=−3

3∑

l=−3

Ci+k,j+lG3+k,3+l.

The 2D Gaussian smoothing shown above turns out to be linearly separable; i.e.,

it can be decomposed into two independent 1D calculations for each component.

In this case, the Gaussian kernel in (5.3) reduces to
(

0.0044 0.0540 0.2419 0.3989 0.2419 0.0540 0.0044
)

.

The smoothed deformed template is then achieved by first applying a 1D Gaussian

smoothing in the horizontal direction, then repeating the process in the vertical

direction:

Ĉij =
3∑

k=−3

Ci+k,jG3+k,

C̃ij =
3∑

l=−3

Ĉi,j+lG3+l.

This alternative approach can substantially simplify the computational complexity.

5.2.3 Convective Terms

The discretization of the convective terms needs some care. When discretizing them

by central differences, oscillations can occur if the grid spacing (∆x, ∆y) is chosen

too coarse [17]. To avoid such instability problems, we replace central differences

by upwind differences. Take ∂u/∂x in (5.1) for example, it is discretized as
[
∂u

∂x

]

i,j

=
ur − ul

∆x
(5.4)
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where [∂u/∂x]i,j represents the approximation of ∂u/∂x at (xi, yj), ur and ul are

chosen depending on the sign of the convective term. Since the coefficient for ∂u/∂x

is u, we have

ur =

{
ui,j if ui,j > 0,

ui+1,j if ui,j < 0,

and

ul =

{
ui−1,j if ui,j > 0,

ui,j if ui,j < 0.

The above finite difference formulae guarantee the selection of upstream values with

respect to the direction of particle motion. We can also rewrite (5.4) as

[
∂u

∂x

]

i,j

=
ui,j + |ui,j|

2∆x
(ui,j − ui−1,j) +

ui,j − |ui,j|
2∆x

(ui+1,j − ui,j).

Similarly, we discretize other convective terms and obtain the following discrete

space expressions:

[
∂u

∂y

]

i,j

=
vi,j + |vi,j|

2∆y
(ui,j − ui,j−1) +

vi,j − |vi,j|
2∆y

(ui,j+1 − ui,j),

[
∂v

∂x

]

i,j

=
ui,j + |ui,j|

2∆x
(vi,j − vi−1,j) +

ui,j − |ui,j|
2∆x

(vi+1,j − vi,j),

[
∂v

∂y

]

i,j

=
vi,j + |vi,j|

2∆y
(vi,j − vi,j−1) +

vi,j − |vi,j|
2∆y

(vi,j+1 − vi,j),

[
∂r

∂x

]

i,j

=
ui,j + |ui,j|

2∆x
(ri,j − ri−1,j) +

ui,j − |ui,j|
2∆x

(ri+1,j − ri,j),

[
∂r

∂y

]

i,j

=
vi,j + |vi,j|

2∆y
(ri,j − ri,j−1) +

vi,j − |vi,j|
2∆y

(ri,j+1 − ri,j),

[
∂s

∂x

]

i,j

=
ui,j + |ui,j|

2∆x
(si,j − si−1,j) +

ui,j − |ui,j|
2∆x

(si+1,j − si,j),

[
∂s

∂y

]

i,j

=
vi,j + |vi,j|

2∆y
(si,j − si,j−1) +

vi,j − |vi,j|
2∆y

(si,j+1 − si,j).
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[
∂C̃

∂x

]

i,j

=
Bi,j − Ci,j + |Bi,j − Ci,j|

2∆x
(C̃i,j − C̃i−1,j)

+
Bi,j − Ci,j − |Bi,j − Ci,j|

2∆x
(C̃i+1,j − C̃i,j),

[
∂C̃

∂y

]

i,j

=
Bi,j − Ci,j + |Bi,j − Ci,j|

2∆y
(C̃i,j − C̃i,j−1)

+
Bi,j − Ci,j − |Bi,j − Ci,j|

2∆y
(C̃i,j+1 − C̃i,j).

Since upwind differences are one-sided differences, the order of accuracy is

O(∆x, ∆y). In practice, this discretization turns out to be accurate enough for

most image registration problems. There are other discretizations available, e.g.,

Godunov’s method, total variation diminishing, if we reformulate the governing

equations in conservative forms [21].

5.3 Discretization in Time

To update the movement of particles through time, we discretize the time interval

[0, T ] into N subintervals:

0 = t0 < t1 < . . . < tn < tn+1 < . . . < tN−1 < tN = T.

The stepsize ∆t = tn+1−tn is restricted to satisfy the stability conditions (5.5). Ini-

tially with given motion, time is incremented by ∆t at each timestep n = 0, . . . , N

until the final time T is reached. Thus, the motion at timestep n is known and that

at timestep n + 1 is to be computed.

We approximate the continuous time variables such as intensity, force, velocity,

and displacement by discrete time values as follows:

Cn : the approximation of the deformed template at the timestep n,

(bn, cn) : the approximation of the body force at the timestep n,

(un, vn) : the approximation of the velocity at the timestep n,

(rn, sn) : the approximation of the displacement at the timestep n.
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The initial conditions (4.5) are then enforced by
{

r0 = s0 = 0,

u0 = v0 = 0.

5.3.1 Time Stepping

To discretize the time derivatives, we use Euler explicit method which employs

information from one timestep back. For instance, ∂u/∂t is discretized as
[
∂u

∂t

]n+1

=
un+1 − un

∆t
,

where [∂u/∂t]n+1 represents the approximation of ∂u/∂t at timestep n + 1. Mean-

time, all remaining terms in the same equation are also evaluated at the previous

timestep. Therefore, we have

un+1 = un + ∆t

(
bn − un

[
∂u

∂x

]n

− vn

[
∂u

∂y

]n)
.

Similarly, we discretize other time derivatives and obtain the following discrete time

expressions:

vn+1 = vn + ∆t

(
cn − un

[
∂v

∂x

]n

− vn

[
∂v

∂y

]n)
,

rn+1 = rn + ∆t

(
un − un

[
∂r

∂x

]n

− vn

[
∂r

∂y

]n)
,

sn+1 = un + ∆t

(
vn − un

[
∂s

∂x

]n

− vn

[
∂s

∂y

]n)
.

Combining the space discretization described in Section 5.2 gives the fully discrete

system in the following:

bn
ij = α(Cn

ij −Bij)

[
∂C̃
∂x

]n

ij√([
∂C̃
∂x

]n

ij

)2

+

([
∂C̃
∂y

]n

ij

)2
,

cn
ij = α(Cn

ij −Bij)

[
∂C̃
∂y

]n

ij√([
∂C̃
∂x

]n

ij

)2

+

([
∂C̃
∂y

]n

ij

)2
,
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un+1
ij = un

ij + ∆t

(
bn
ij − un

ij

[
∂u

∂x

]n

ij

− vn
ij

[
∂u

∂y

]n

ij

)
,

vn+1
ij = vn

ij + ∆t

(
cn
ij − un

ij

[
∂v

∂x

]n

ij

− vn
ij

[
∂v

∂y

]n

ij

)
,

rn+1
ij = rn

ij + ∆t

(
un

ij − un
ij

[
∂r

∂x

]n

ij

− vn
ij

[
∂r

∂y

]n

ij

)
,

sn+1
ij = un

ij + ∆t

(
vn

ij − sn
ij

[
∂s

∂x

]n

ij

− vn
ij

[
∂s

∂y

]n

ij

)
.

The time stepping algorithm for particle registration is summarized in Algorithm

1. Note that the regularity constraint discussed in Section 4.5 is imposed from line

10 to line 13, with the details provided later in Section 5.4. This algorithm will

stop in two situations. One is the maximum timestep is reached, the other is the

deformed template converges to the target.

Algorithm 1 : Time Stepping

01. Initialize n ← 0, (u0
i,j, v

0
i,j) ← 0, and (r0

i,j, s
0
i,j) ← 0

02. While n < N, where N is the maximum timestep

03. Generate the corresponding deformed template Cn
i,j

04. If maxi,j |Cn
i,j −Bi,j| < ω, where ω is the tolerance

05. STOP

06. EndIf

07. Calculate the applied body force (bn
i,j, c

n
i,j)

08. Compute the instantaneous velocity (un+1
i,j , vn+1

i,j )

09. Update the current displacement (rn+1
i,j , sn+1

i,j )

10. Track the resultant Jacobian Jn+1
i,j

11. If mini,j Jn+1
i,j < ς, where ς is some threshold

12. REGRID

13. EndIf

14. Choose the next stepsize ∆t

15. n ← n + 1

16. EndWhile
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5.3.2 Stability Conditions

To ensure the stability of numerical computation, we impose the Courant-Friedrichs-

Lewy (CFL) conditions [27] on the step size ∆t and the cell size ∆x ×∆y. They

read as follows:

|umax|∆t < ∆x, |vmax|∆t < ∆y.

Here |umax|, |vmax| refer to the maximum absolute values of the velocity component

in each dimension. Under such restrictions, no particles can move further than a

cell size in one timestep. In our implementation, we select an adaptive stepsize

which satisfies

∆t = γ min

(
∆x

|umax| ,
∆y

|vmax|
)

, (5.5)

where 0 < γ < 1 is a safety factor.

5.4 Regridding Procedure

We keep track of the Jacobian through time to ensure a regular transformation.

Whenever its minimum value over the grid falls below a certain threshold, a regrid-

ding procedure is performed to avoid local singularity. We stop the computation

and generate a propagated template equal to the current deformed template. The

registration process is restarted by using the propagated template as the new tem-

plate. The initial displacement is reset to zero and the velocity remains the same.

More precisely, suppose regridding is performed totally M times during the

registration process, with each time given by 0 = th0 < . . . < thm < . . . < thM
≤

T . Let {C(m) : 0 ≤ m ≤ M} represent the sequence of propagated templates

corresponding to each regridding. Every propagated template C(m) is deformed in

the subinterval [thm , thm+1 ] to achieve the next propagated template C(m+1) at time

thm+1 . Thus, we have

C(m+1)(x) = C(m)(x− r(m)(x, thm+1)), (5.6)

where r(m) is the associated displacement and satisfies

r(m)(x, thm) = 0.
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The total displacement with respect to the original template A is consequently ob-

tained by concatenating the displacements associated with each propagated tem-

plate:

r(x, T ) = r(0) ◦ · · · ◦ r(m) ◦ · · · ◦ r(M)(x, T ).

Therefore, the regridding procedure heuristically decomposes the desired transfor-

mation into a sequence of regular transformations between propagated templates.

Since the concatenation of one-to-one transformations is again one-to-one, we main-

tain the positive-Jacobian requirement during the registration process.

5.5 Multiresolution Scheme

To avoid local minimum and speed up computation, a multiresolution scheme is

devised for the registration process. The image domain is discretized into multi-

level grids with different spacings (see Figure 5.4). We first estimate the global

motion at a coarse level, then refine the results with the details provided in the

finer levels. The entire procedure is repeated until the full resolution is arrived.

Figure 5.4: Multi-level grid discretization.

In our implementation, a two-level multiresolution is used (see Figure 5.5).

However, the same idea can be applied to multiple levels. We identify the coarse

level by superscript (c) and the fine level by superscript (f). The given images are

first discretized at the fine level by a pixel lattice. Thus, each pixel forms a cell in

the fine grid. Then the grid spacing doubles on the coarse level. Accordingly, each

cell in the coarse grid is composed of four fine level pixels. The image intensity on
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Figure 5.5: Two-level multiresolution scheme.

the coarse level is obtained by the weighted average of the corresponding intensity

values on the fine level:

Figure 5.6: Downsampling from fine level to coarse level.
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This process is called downsampling. The registration is then performed on the

downsampled images A(c), B(c). The coarse deformed template C(c) and the dis-

placement field (r(c), s(c)) are upsampled to the fine level:
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Figure 5.7: Upsampling from coarse level to fine level.
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Here we use piecewise constant interpolation. We have also tried piecewise linear

interpolation and it does not show any significant benefit. The upsampled deformed

template C(f) and displacement field (r(f), s(f)) give a rough estimate of the desired

transformation. They are subsequently imposed as initial conditions to effect the

registration on the fine level.
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Chapter 6

Numerical Results

In this chapter 2D and 3D registration results are presented for a broad range of

images, including synthetic cases with known transformations and clinical data in

practice. We validate the accuracy and efficiency of our model by means of visual

inspection and quantitative measures.

6.1 Overview

Visual inspection involves representing registration in visible forms and studying

the result by human eyes. Several sets of images are generated for visual inspection.

Firstly, the resulting transformation Φ is applied to the template image A to obtain

the deformed template C. It is compared side by side with the target image B.

Secondly, a difference image C − B is formed by subtracting the target from the

deformed template. If the difference image shows only noise with no structure, the

registration is successful; otherwise the images are misregistered. In this thesis,

we also apply edge detectors [16] to compare the edge and texture features. If

the resulting edge map ∇C is not as clear and sharp as the original one ∇B,

that implies a smearing artifact is introduced during registration. Such validation

technique is also used in [35]. Finally, the resulting transformation is visualized

over the image domain with a displacement map. The translation vector at each
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discrete point describes the magnitude and direction of the transformation from

the starting position to the end position.

Quantitative measures involves statistical analysis of registration accuracy and

algorithm efficiency. To estimate the anatomical differences after registration, we

normalize SSD in (2.2) and SAD in (2.3), i.e., the mean of squared differences

(MSD) and the mean of absolute differences (MAD). MSD, MAD, as well as CC,

are invariant of the size of the image domain, and thus can be used to evaluate

the accuracy of different registrations. Besides registration accuracy, algorithm

efficiency is also a concern. Since a typical registration algorithm iteratively updates

the deformed template to search for a solution closest to the target, the number

of iterations as well as the execution times are used to quantify the computational

cost.

The proposed model is implemented in C and executed at a desktop PC of

P4 2.8G CPU with 1024M memory. The tunable parameters are typically set to

N = 250, α = 100, ω = 0.01, ς = 0.5, γ = 0.4. We also implement the fluid model

presented in [10] as a reference. As illustrated in Section 3.3.1, elastic models cannot

capture large variations from the template to the target. In the following, we shall

compare our model to fluid models only.

6.2 Visual Inspection

We have applied the proposed model to five experiments. The first four are two

dimensional and the last one three dimensional. We assume in all experiments

that the template and target have roughly the same grey-level values for each

constituent structure, and the objects of interest are originally overlapped in the

image pair. This requirement can be easily satisfied by a good initial alignment.

We also assume that the template and target are padded in all directions by black

background (intensity zero). This is due to the fact that the boundary conditions

of the velocity and the displacement are set to zero, i.e. the image domain along

the boundary has already been mapped. The intensity values are normalized into

the range of [0, 1] before registration is performed.

49



6.2.1 2D Patch to C Experiment

The first experiment depicts the application of our model to 2D synthetic dataset.

The purpose of this experiment is to demonstrate the ability of our model to accom-

modate large curved deformations. We created a pair of synthetic images, consisting

of a wedge-shaped template (left) and a “C”-shaped target (right), illustrated in

Figure 6.1. These images are similar to those used by [10], but the dimension here

is 64 × 64 pixels. The template was initially aligned with the target so that they

overlap.

Figure 6.1: Synthetic images of (left) template, (right) target.

Figure 6.2 shows the progress of deforming a small patch to a longer curved

“C” using the particle model. The images from left to right are the propagated

templates in a forward time series. Obviously, our model allows the patch template

to grow into the “C” target, with the upside of “C” filled by the dilation of the

patch. As a result, the image pair are matched completely.

Figure 6.2: Deformation progress from patch to “C”.

A vector map of the displacement field for the particle transformation is shown
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in Figure 6.3. Since the Eulerian reference frame provides mapping from the target

back to the template, each displacement vector finally ends on a regular grid point

but originally starts from an irregular location. Compared to the fluid transforma-

tion (right), the particle transformation is also largely curved from the small patch

to the whole “C”. However, the transformation mainly takes place at the patch,

and the displacements on the background are mostly zero. This contrasts with the

displacement field for the fluid transformation where not only foreground but also

background have nonzero displacements.
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Figure 6.3: Displacement fields for (left) particle transformation, (right) fluid trans-

formation.

6.2.2 2D Square to Circle Experiment

The second experiment illustrates how a nested region deforms from square into

circle by the particle transformation. Shown in Figure 6.4 is the square template

(left) and the circle target (right) for this experiment. Both images are of size

128× 128, with a three-layer nested region at the center. The inner, middle, outer

sizes of the nested square are 32, 52, 72 pixels, while the inner, middle, outer

diameters of the nested circle are 40, 60, 80 pixels.

Shown in Figure 6.5 are the results for the particle registration. The deformed

template (left) is a visual assessment of the registration accuracy. It matches ex-

actly with the nested shape of the circle target. The difference image between the
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template and the target (middle) is an estimation of variability before registra-

tion. It contains intensity values inside [−1, 1] with positive differences indicated

by white, negative differences indicated by black, and zero differences indicated by

grey. The difference image between the deformed template and the target (right)

is used to check the completeness of registration. It is totally grey (no differences)

and thus indicates a complete registration.

Figure 6.4: Synthetic images of (left) template, (right) target

Figure 6.5: Results of (left)deformed template, (middle)difference image between

template and target, (right)difference image between deformed template and target.

We compare the displacement fields for the particle transformation and the

fluid transformation, as shown in Figure 6.6. The particle transformation (left)

deforms the square to circle by smoothing corners and protruding sides only. It is

consistent with the fact that differences before registration are only shown in the

corner and mid-side regions. However, the fluid transformation (right) results in a

spread displacement map which is nonzero almost everywhere. This is due to the

neighborhood movement caused by fluid viscosity.
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Figure 6.6: Displacement fields of (left) particle transformation, (right) fluid trans-

formation.

6.2.3 2D Segmented Brain Experiment

The third experiment is designed to demonstrate that our model will lead to less

blurring artifact than the fluid model. The template (right) and target (left),

as illustrated in Figure 6.7, are 256 × 256, 8-bit, grey-level images of segmented

brains. These data were provided courtesy of Dr. H. Farid in the Computer Science

Department at the Dartmouth College. The skull part has been stripped and

the image pair show the brain region only. Since these images are slices through

different subjects, they exhibit obvious variation from each other in limbic system

and internal structures. Therefore an amount of nonrigid deformations are required

to register the image pair.

Figure 6.7: Segmented brains of (left) template, (right) target

53



We study the results given by the particle registration (top) and the fluid regis-

tration (bottom) in Figure 6.8. Again, three sets of images are presented for each

registration. By inspecting the deformed templates of the two registrations, we

find that the fluid model yields a deformed template with blurring in grey cere-

bral cortex and smearing on white corpus callosum, while the particle model allows

different structures to move separately and hence avoids such problems. Since the

difference image shows less structure, we conclude that the particle model achieves

a better registration (especially in the internal brain region).

Figure 6.8: Results of (top-left) particle deformed template, (top-middle) differ-

ence image before registration, (top-right) difference image after particle registra-

tion, (bottom-left) fluid deformed template, (bottom-middle) difference image be-

fore registration, (bottom-right) difference image after fluid registration.

To better illustrate that the particle model can achieve a deformed template

with sharper edges and clearer texture than the fluid model, we impose sobel edge

detector [16] on the target and two transformed templates. As shown in Figure 6.9,

the edge maps contain intensity values inside [0, 1] with sharper edges indicated

by higher brightness. Note that the edge map of the particle deformed template
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is generally brighter than that of the fluid deformed template, indicating that the

particle registration is more accurate. In addition, the small circle features inside

the cortical region are preserved during the particle registration, while the fluid

registration smears texture and blurs edges.

Figure 6.9: Edge maps of (left) target, (middle) particle deformed template, (right)

fluid deformed template.

6.2.4 2D Clinical Sagital Experiment

The fourth experiment depicts the application of our model to 2D clinical data.

The purpose of this experiment is to demonstrate the ability of our model to cap-

ture complex deformations in practice. We applied our model to clinical sagitals as

shown in Figure 6.10. The template (left) and target (right) are 256 × 256, 8-bit,

grey-level slices from an MR brain scan. These data are provided courtesy of Dr.

J. Orchard in the Computer Science Department at the University of Waterloo.

Since the two slices are through the same subject, they contain corresponding con-

stituent structures such as skull, brain, neck, and face. However, the shapes of each

constituent structure pair are quite different from each other due to that they are

taken from different positions. Consequently the image pair are very difficult to be

registered and hence require complex deformations.

The results are shown in Figure 6.11, including the deformed template (left),

the difference image between the template and the target (middle), and the dif-

ference image between the deformed template and the target (right). Notice that

the template and the target greatly differ in the lingua, frontalis, and vertebrae
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Figure 6.10: Clinical sagitals of (left) template, (right) target

regions. But after registration the differences become very small over the whole

brain indicating that the estimated nonrigid transformation is quite accurate. The

particle registration has successfully deformed the template toward the target.

Figure 6.11: Results of (left)deformed template, (middle)difference image between

template and target, (right)difference image between deformed template and target.

6.2.5 3D Segmented Coronal Experiment

The last experiment depicts the application of our model to 3D clinical data. The

purpose of this experiment is to demonstrate that our model can be successfully

extended to accommodate 3D complex deformations. The MR volumes used here

are stacks of segmented coronals through different subjects which are randomly

chosen from IBSR 1. The skull parts have been stripped and the volumes show

1Internet Brain Segmentation Repository. http://www.cma.mgh.harvard.edu/ibsr/
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the brain region only. The template and target are 8-bit, grey-level volumes with

a dimension of 256 × 256 × 63 at 1mm × 1mm × 3mm. They are symmetrically

padded by zeros to produce 256× 256× 80 full resolution. Since the borders of the

x − y planes have already been mapped, registration is performed in the central

square region only and the grid size is chosen to be 160 × 160 × 80. A two-level

multiresolution scheme is performed in this experiment to register the template to

the target. Thus, the two volumes are downsampled to the coarse level with the

grid size of 80× 80× 40.

Figure 6.12 shows the results of this experiment. Each row corresponds to a

specific coronal slice in the volume (from top to bottom slices 22, 36, 39, 54, and

60, respectively). The columns from left to right correspond to the template, the

coarse deformed template, the fine deformed template, and the target, respectively.

Notice that the shape variation is accommodated in 3D independent of the slice

orientation. This is evident that structures appear and disappear in a fixed slice.

For instance, in slice 54 the target differs from the template in two isolated parts

from the main structure. As a multiresolution scheme is used for the 3D dataset,

the fine deformed templates are obtained based on a good initial alignment given

by the coarse deformed templates. Hence they provide more details to approach

the targets and are achieved in relatively less time. In fact, the computational cost

is reduced from days (without multiresolution) to hours (with multiresolution).
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Figure 6.12: Results of (left) template, (middle-left) coarse deformed template,

(middle-right) fine deformed template, (right) target.

58



6.3 Quantitative Measures

We calculate MSD, MAD, CC for each experiment and list them in Tables 6.1 –

6.3, respectively.

Experiment No registration Particle registration Fluid registration

Patch to “C” 0.103760 0.000040 0.000271

Square to Circle 0.010309 0.000002 0.000015

Segmented Brain 0.054380 0.001808 0.002417

Clinical Sagital 0.032019 0.001181 0.001933

Segmented Coronal 0.449359 0.000413 —

Table 6.1: Mean of squared differences for each experiment.

Experiment No registration Particle registration Fluid registration

Patch to “C” 0.103760 0.001305 0.002399

Square to Circle 0.032858 0.000377 0.000735

Segmented Brain 0.090230 0.008101 0.014191

Clinical Sagital 0.100979 0.015249 0.026843

Segmented Coronal 0.047694 0.004282 —

Table 6.2: Mean of absolute differences for each experiment.

Experiment No registration Particle registration Fluid registration

Patch to “C” 0.447277 0.999882 0.998853

Square to Circle 0.940332 0.999990 0.999916

Segmented Brain 0.523169 0.983892 0.977904

Clinical Sagital 0.821038 0.992957 0.988889

Segmented Coronal 0.572913 0.989448 —

Table 6.3: Correlation coefficient for each experiment.

The first column of the above tables gives the name of the experiment described

in Section 6.2. The second column shows MSD, MAD, or CC between the template
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and the target used in the experiment. The third column shows MSD, MAD, or

CC between the deformed template and the target after the particle registration.

The last column shows MSD, MAD, or CC between the deformed template and the

target after the fluid registration. Note that the fluid registration results for the

last experiment are not provided. This is because the last experiment is 3D and

executes very slowly for the fluid registration. However, it does not affect much the

evaluation of the particle registration.

We can see that MSD and MAD after the particle registration are effectively

zero while CC after the particle registration is almost one. It demonstrates that the

particle deformed template is quite similar to the target. Comparing with the fluid

registration, the particle registration has smaller MSD, smaller MAD, and bigger

CC, which indicate a better registration quality.

Experiment Size Particle registration Fluid registration

Outer Inner

Patch to “C” 64× 64 214 174 8462

Square to Circle 128× 128 119 41 462

Segmented Brain 256× 256 98 174 4559

Clinical Sagital 256× 256 134 121 4872

Segmented Coronal 160× 160× 80 192 —

Table 6.4: Number of iterations for each experiment

Experiment Size Particle registration Fluid registration

Patch to “C” 64× 64 5 18

Square to Circle 128× 128 10 7

Segmented Brain 256× 256 34 195

Clinical Sagital 256× 256 57 193

Segmented Coronal 160× 160× 80 8238 —

Table 6.5: Execution times in seconds for each experiment

The number of iterations and the execution times for each experiment are sum-

marized in Table 6.4 and Table 6.5. The second column shows the size of the
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dataset used in the experiment. The third column shows the number of iterations

or the execution time needed for the particle registration. The last column shows

the number of iterations or the execution time needed for the fluid registration.

Again, the fluid registration results for the last experiment are not provided since

it is expected to run for more than a day.

Note that there are two loops of iterations in the fluid registration, outer it-

erations for maximum timestep and inner iterations for SOR convergence. Each

outer iteration involves much more work (tens of inner iterations) than the particle

iteration. Thus, the particle registration generally needs a far smaller number of

operations and takes less execution times.

To further study the registration process, we keep track of the dynamic MSD for

the 2D clinical sagital experiment. Two curves are shown in Figure 6.13, describing

the particle registration process (solid line) and the fluid registration process (dotted

line), respectively. We can see that the dynamic MSD descends rapidly in the first

few seconds during the particle registration process.
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Figure 6.13: Dynamic MSD for 2D clinical sagital experiment during (solid line)

particle registration process, (dotted line) fluid registration process.
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Chapter 7

Conclusions

Extending existing physically based models, this thesis presents a novel registration

technique based on the physical behavior of particles. The central idea is to simulate

the registration process as a particle system evolving under applied forces from its

initial state (template image) to the final state (target image). As an inviscid model

designed for nonrigid registration problems, it is similar to the framework of gas

dynamics where distances between gas molecules are large enough that internal

friction can be neglected and each molecule is viewed as a free particle. The key

features of our model include:

• Not only small linear deformations, but also large nonlinear deformations can

be accommodated. Thus, the range of applications is very broad.

• Without mutual interaction, one part of the image moving will not affect other

parts. Therefore, the obtained transformation is highly localized such that

neighborhood movement is avoided and only motion of objects is captured.

• Due to the absence of fluid viscosity, the blurring effect caused by the viscous

terms is eliminated.

• It is very simple to implement and fast to execute.

We have demonstrated the performance of our model on a variety of images includ-

ing two-dimensional and three-dimensional, synthetic and clinical data. Deformed
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images are achieved with sharper edges and clearer texture at less computational

cost.

Future efforts will be made in the following aspects. More complicated simula-

tion frameworks can be explored where mutual interaction is added to the particle

system. By adjusting the specific form of mutual interaction, the corresponding

transformation will possess some global property as well as maintaining certain

localization. Also, a mass source can be introduced into physical modeling. The

registration process will then take into account a mass equation which controls the

shrinkage or dilation of objects. Besides, the particle registration can be performed

by minimizing the associated variational form. The current implementation is to

solve the Euler-Lagrangian equation whose solution corresponds to a local mini-

mum. Alternatively, one may consider directly applying optimization schemes to

the objective functional.
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Appendix A

Continuum Mechanics

This appendix reviews some of the fundamental results in continuum mechanics.

The conservation laws for mass and momentum are derived, and the constitutive

behavior for different materials are presented. We also formulate the governing

equations for linear elastic solids, Newtonian fluids, and linear viscoelastic fluids.

A.1 Conservation Laws

The continuum is a closed system in the sense that no material particles penetrate

across its boundaries. It is generally assumed that at any time t an arbitrary region

Ωt (in particular, an arbitrary small one) can be selected inside the continuum such

that within the region mass, momentum are conserved. Thus, conservation laws

can be applied on the control volume Ωt.

Conservation of Mass

The mass of a continuum occupying a domain is determined by the integral

of the density over the domain. Since a constant amount of material particles

occupying the control volume Ωt, we must have for all t ≥ 0, the rate of change in

the mass of a control volume is zero. This is written as

d

dt

∫

Ωt

% dx = 0, (A.1)
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where % is the mass density distributed over the substance.

Since the surface of the control volume is moving at local velocities, we use the

Reynolds transport theorem [20] to move the time differentiation inside the integral.

Thus (A.1) becomes ∫

Ωt

∂%

∂t
dx +

∫

∂Ωt

%u · n dx = 0, (A.2)

where n is the outward unit normal from ∂Ω. The first term of (A.2) describes

the rate of mass change inside the volume Ω, while the second term describes the

rate of mass flux across the surface ∂Ω. Applying the divergence theorem [7] to the

second term yields ∫

Ωt

{
∂%

∂t
+∇ · (%u)

}
dx = 0,

Noting that the volume integral is arbitrary, this implies that the integral itself

vanishes. Hence we obtain the differential form of the mass conservation

∂%

∂t
+∇ · (%u) = 0. (A.3)

This is called the continuity equation.

Conservation of Momentum

The momentum of a continuum occupying a domain is computed by integrat-

ing the product of the density with corresponding velocity over the domain. By

Newton’s second law, we must have for all t ≥ 0, the rate of change in the linear

momentum of a control volume is equal to the sum of the forces acting on the

control volume. This is expressed as

d

dt

∫

Ωt

%u dx =
∑

acting forces on Ωt. (A.4)

Two types of forces may be distinguished: body forces, which act upon all material

particles within the control volume, and surface forces, which act on the boundary

surface of the control volume. We let b stand for a body force per unit volume, and
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s stand for a surface force per unit area. The resultant force on the control volume

consists of the two integrals

∑
acting forces on Ωt =

∫

Ωt

b dx +

∫

∂Ωt

s dx. (A.5)

As we know, the surface force s is related to the Cauchy stress tensor σ induced

within the volume by s = σ · n. Using this and the divergence theorem to (A.5),

together with (A.4), gives

d

dt

∫

Ωt

%u dx =

∫

Ωt

(b +∇ · σ) dx. (A.6)

We now apply the Reynolds transport theorem and the divergence theorem

componentwise to the left of (A.6). In each dimension this process is similar to what

we did for the continuity equation, and the result has the following dimensionless

form
d

dt

∫

Ωt

%u dx =

∫

Ωt

(
∂%u

∂t
+ %u · ∇u + u∇ · %u

)
dx. (A.7)

The term on the left of (A.7) describes the time rate of change in the linear mo-

mentum of the control volume Ωt. It is equal to the rate of momentum change

inside the volume Ωt (the first term on the right) plus the rate of momentum flux

carried by mass transport across the surface ∂Ωt (the other terms on the right).

Rearranging (A.7) using the product rule [7] such that (A.3) can be applied, we

obtain
d

dt

∫

Ωt

%u dx =

∫

Ωt

%

(
∂u

∂t
+ u · ∇u

)
dx. (A.8)

Substituting (A.8) into (A.6) yields

∫

Ωt

%

(
∂u

∂t
+ u · ∇u

)
dx =

∫

Ωt

(b +∇ · σ) dx. (A.9)

Since (A.9) is valid for all choices of control volumes, the differential form of the

momentum conservation thus reads

%

(
∂u

∂t
+ u · ∇u

)
−∇ · σ − b = 0. (A.10)
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These are called the momentum equations. They provide the relationship between

the applied body forces and the resulting material deformation. The nature of

these equations depends heavily on the model used for the stress tensor σ, which

is discussed later.

A.2 Constitutive Behavior

In order to complete the PDE formulation, we need to specify the constitutive

behavior of the material, i.e., a constitutive equation. The constitutive equation

connects applied stresses (forces) to resulting strains (deformations). In this sec-

tion, we describe the constitutive equations for elastic solids, viscous fluids, and

viscoelastic fluids.

Elastic Solid

Characterized by resistance to deformation and to changes of volume in a solid,

stress is a function of strain. The constitutive relation for linear elastic solids is

called the Hooke’s law. It states that the amount by which a material body is

deformed (i.e., the strain) is linearly related to the force causing the deformation

(i.e., the stress). For homogeneous isotropic materials, the linear relation between

the stress and the strain reduces to the following

σ = λetr(ε)I + 2µeε, (A.11)

where λe, µe > 0 are the Lame’s elastic constants which describe the material

properties, ε is the strain tensor, I is the unit tensor, and tr is the trace operator.

Assuming small deformations, which is the case of linear elasticity, ε can be given

by the Cauchy strain tensor which is defined as

ε =
1

2

(∇r + (∇r)T
)
. (A.12)

Here r represents the displacement field of the body’s configuration (i.e., the differ-

ence between the body’s configuration and its natural state). Substituting (A.11)
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and (A.12) into (A.10), we obtain

µe∇2r + (λe + µe)∇(∇ · r) + b = %

(
∂u

∂t
+ u · ∇u

)
.

They are known as the Navier-Lame equations for elastic solids.

Viscous Fluid

The modeling of fluids separates the Cauchy stress tensor into two contributions:

σ = τ − pI, (A.13)

where p is the isotropic pressure and τ is the extra stress tensor representing the

forces which the material develops in response to being deformed. Substituting

(A.13) into (A.10) results in

∇ · τ + b = %

(
∂u

∂t
+ u · ∇u

)
+∇p. (A.14)

The first term on the right of (A.14) represents the force of inertia, i.e., the density

times the acceleration of a fluid particle. To complete the mathematical formula-

tion, we need a constitutive law relating τ to the motion.

The constitutive relation for a Newtonian fluid [17] obeys the Stokes assumption.

As an alternative to Hooke’s law used in linear elasticity, it has the property that

the extra stress is linear proportional to the rate of strain. Thus τ is given by

τ = λvtr(δ)I + 2µvδ, (A.15)

where λv, µv are the thermodynamic material constants which describe the fluid

viscosity, and δ is the rate of deformation tensor given by the time derivative of

(A.12):

δ =
1

2

(∇u + (∇u)T
)
. (A.16)

In contrast with solids which memorize the deformation history, the extra stress

within the deformed configuration of fluids is allowed to relax with time.
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Substituting (A.15) and (A.16) into (A.14) yields a second-order system of par-

tial differential equations

µv∇2u + (λv + µv)∇(∇ · u) + b = %

(
∂u

∂t
+ u · ∇u

)
+∇p.

They are known as the Navier-Stokes equations for viscous fluids. We define a

dimensionless quantity called the Reynolds number:

Re =
%∞u∞L

µv

, (A.17)

where %∞, u∞, L are the characteristic values of density, velocity, and length, re-

spectively. The Reynolds number represents the relative magnitude of inertial and

viscous forces. For Re ≈ 0 the inertial forces are negligible against the viscous

forces (highly viscous fluid), whereas for Re very large the viscous forces can be

neglected (inviscid fluid).

Viscoelastic Fluid

In viscoelastic fluids, the stress depends not only on the current motion of the

fluid, but also on the history of the motion. If we assume that this dependence is

linear, the extra stress tensor given by the Maxwell theory of linear viscoelasticity

satisfies

τ t + βτ = λvtr(δ)I + 2µvδ, (A.18)

where β is a parameter. The quantity 1
β

has the dimension of time and is known as

the relaxation time [28]. It is, roughly speaking, a measure of the time for which the

fluid remembers the flow history. The competition between the relaxation time and

other time scales relevant to the flow determines the behavior of the viscoelastic

fluid. If the flow is on a time scale long enough that it quickly loses its memory,

the fluid will behave like a Newtonian fluid. On the other hand, when the flow is

on a very short time scale with respect to the relaxation time, the memory effect

becomes important and the fluid will behave like an elastic solid.

The equations (A.10) and (A.18) for a viscoelastic fluid are coupled together, we

have to reformulate the mixed system in a way that tries to separate motion from
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constitutive law. Thus, we split the extra stress tensor into an ordinary Newtonian

part plus an unknown elastic part:

τ = λvtr(δ)I + 2µvδ + ε. (A.19)

This is known as the elastic-viscous stress splitting (EVSS) method [18]. Substi-

tuting (A.19) into (A.10), we obtain the Maxwell equations for viscoelastic fluids

µv∇2u + (λv + µv)∇(∇ · u) +∇ · ε + b = %

(
∂u

∂t
+ u · ∇u

)
+∇p.

They are an extension to the Newtonian fluid case where ε = 0 and the momentum

equations assume the usual Navier-Stokes form.
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