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Abstract

The system LiHoxY1−xF4 is a nearly perfect example of a dilute, dipolar-coupled Ising
magnet and, as such, it is an ideal testing ground for many theories in statistical mechanics.
At low holmium concentration (x = 0.045) an unusual spin liquid or “anti-glass” state was
discovered in previous work [1]. This state does not exhibit a spin glass freezing transition
as is expected for a long-range interaction. Instead, it shows dynamics which are consistent
with a collection of low-frequency oscillators [2]. It was also seen to have sharp features in
its specific heat [3].

We present heat capacity measurements on three samples at and around the concen-
tration of the spin liquid state in zero magnetic field and in a temperature range from
around 50 mK to 1 K. In contrast to previous measurements, we find no sharp features
in the specific heat. The specific heat is a broad feature which is qualitatively consistent
with that of a spin glass. The residual entropy as a function of x, obtained through a
numerical integral of the data, however, is consistent with numerical simulations which
predict a disappearance of spin glass ordering below a critical concentration of dipoles [4].

Also presented here, is ac susceptibility data on an x = 0.45 sample which exhibits a
paramagnetic to ferromagnetic transition and is found to be consistent with previous work.
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Chapter 1

Introduction

Most of the exotic systems that are currently researched in condensed matter physics are
immensely complex. However, much of our theoretical understanding of these systems is
based on simple toy models like the Hubbard model or the Ising model. Typically these
are extreme simplifications of the actual physical systems that are studied experimentally,
but even then they can be very difficult or impossible to solve.

The system LiHoxY1−xF4 is a rare material which has almost as simple an underlying
Hamiltonian as the toy models used in statistical physics and is thus an ideal testing
ground for important theories in condensed matter physics. The low temperature physics
of this material is dominated by the magnetic holmium (Ho3+) ions. The crystal field
anisotropy makes these ions nearly ideal Ising moments (only spin up or down) and they
are coupled primarily by dipolar interactions. The Ho3+ ions may be diluted randomly
by non-magnetic yttrium (Y3+) ions with almost no change to the crystal structure. This
allows one to study the effects of disorder in a well controlled fashion.

In previous work, the parent compound LiHoF4 has been studied as a test of two
diverse theories. First, renormalization group theory predicts that there is an upper critical
dimension where there will be logarithmic corrections to the critical behaviour of a magnet.
For most systems this dimension d∗ is 4 or higher. For a dipolar-coupled magnet, however,
d∗ is 3 and so is accessible by experiment [5]. Second, it has also been studied as an example
of the transverse field Ising model (TFIM) which exhibits a quantum phase transition in
transverse magnetic field at zero temperature [6]. A 44% sample was studied to look at
domain wall tunneling and glassy dynamics in a ferromagnet [7, 8] and a 16.7% compound
was studied for the effects of transverse magnetic field on the spin glass state [9, 10].

Despite the apparent simplicity of this system’s underlying model, however, there have
been some surprising results. Possibly the most unusual of such effects, and the primary
motivation for this work, is the appearance of a completely different magnetic phase at low
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Ho3+ concentration (x). At x = 0.045, the system was found to have some very unusual
dynamics that are completely unlike that of a spin glass [1] and it was dubbed an “anti-
glass” state. This phase appeared to be a type of spin liquid in that it showed no indications
of a transition to long-range order and so likely has only short-range correlations. It was
also observed to exhibit nonlinear dynamics, coherent oscillations at low frequencies [2]
and sharp features in the specific heat [3]. This unusual state has been proposed as a
candidate for encoding quantum information because of its apparent macroscopic quantum
behaviour [11]. This phase of the system is at odds with the classical expectation that an
Ising magnet with long-range interactions should exhibit a transition to a broken symmetry
or to spin glass order all the way to zero concentration of magnetic moments [12].

In this work, we have studied several stoichiometries in this series, largely in the vicinity
of the 4.5% sample which was found to be so unusual. With a larger set of samples than
have previously been measured, our aim is to refine the phase diagram of this system. We
have performed ac susceptibility measurements in the ferromagnetic regime and specific
heat measurements on low concentrations in the vicinity of the unusual “anti-glass” state
at x = 0.045.

This thesis begins with a discussion of the Hamiltonian of LiHoxY1−xF4 followed by a
short overview of theory and experiments on spin glasses which are very important to the
work presented here. Theory and numerical simulations of dilute Ising moments and the
idea of a critical concentration below which spin glass order disappears are discussed in
Chapter 4. An outline of the previous measurements that have been done on this same
material and the broad spectrum of effects that have been observed are given in Chapter 5.
Chapter 6 gives some calculations of the single-ion specific heat and in Chapters 7 and 8
we present our experimental methods and results respectively for both ac susceptibility
and specific heat measurements.
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Figure 1.1: The crystal structure of LiHoF4. It is a CaWO4 lattice with space group
C

64h(I41/a) and with a = b = 5.175 Å and c = 10.75 Å [1]. The Ho3+ ions are shown in
blue, the Li+ ions in magenta and 8 of the F− ions are shown in green (with others left out
to simplify the diagram). The Ho ions may be replaced with Y ions during crystal growth
with no discernable change in the crystal structure.





Chapter 2

The Hamiltonian of LiHoxY1−xF4

The 4f -valence electrons in Ho3+ have strong spin-orbit coupling so that they prefer to be
in states of total angular momentum J = 8. This leaves 17 degenerate states for the free
ion. In the crystal structure, however, the Ho ions are surrounded by F− ions which create
an electric potential or crystal field HCF with S4 symmetry. Holmium is an isotopically
pure element with nuclear spin I = 7/2. Since the 4f -electrons are tightly bound about
the nucleus and the holmium nucleus has a large magnetic moment, there is a significant
hyperfine coupling of the form AI · J where A ' 39 mK.

There is a small nearest-neighbour exchange interaction JExJi ·Jj, but the Ho moments
are principally coupled by a long-range dipolar interaction

Dαβ
ij Jα

i Jβ
j =

µ0

4π
g2

Jµ2
B

[
Ji · Jj

r3
ij

− 3(Ji · rij)(Jj · rij)

r5
ij

]
. (2.1)

Of course, as with all magnetic systems, the application of a magnetic field is important,
contributing an energy gJµBB · J. The total magnetic Hamiltonian of LiHoxY1−xF4 is
therefore given by

H = HCF + JEx

∑

(i,j)

Ji · Jj +
∑

(i,j)

∑

αβ

Dαβ
ij Jα

i Jβ
j + A

∑
i

Ii · Ji − gJµB

∑
i

B · Ji. (2.2)

We shall now analyze each of the terms in this Hamiltonian in some detail.

2.1 Crystal Field

The crystal structure of LiHoxY1−xF4 has S4 point-group symmetry. This means that it
is invariant under a rotation of 90 degrees about the c-axis followed by reflection in the
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ab-plane. The fluoride ions which surround the Ho ions create a strong electric potential
or crystal field which interacts with the Ho3+ orbitals via Coulomb repulsion.

In rare-earth ions, the 4f -electrons are tightly bound and the spin-orbit coupling λL ·S
is typically larger than the crystal field energy. Thus the crystal field may be treated as a
perturbation in the |L, S, J,mJ〉 basis. For transition metal ions, the spin-orbit interaction
is often smaller than the crystal field so the correct basis to use is |L, S,mL,mS〉. For the
rare-earth ion Ho3+, S = 2 and L = 6 so the spin-orbit coupling gives J = 8 as the lowest
energy multiplet with 17 degenerate mJ states. Different symmetries of crystal field will
split the energies of these 17 states in different ways.

Assuming that the fluoride ions are close to point charges, the potential is given as

V (r) =
∑

i

q

|Ri − r| (2.3)

which can be expanded as

V (r, θ, φ) =
∞∑

n=0

∑
α

rnγnαZnα(θ, φ) (2.4)

where

γnα =
∑

i

4πq

(2n + 1)

Znα(θi, φi)

Rn+1
i

(2.5)

and the Znα’s are the tesseral harmonics – spherical harmonics containing sin φ or cos φ.
To get the crystal field Hamiltonian, one must sum this energy over all of the valence
electrons of the holmium (Ho3+) moments so

HCF = −e
∑

j

V (rj). (2.6)

This is best evaluated with Stevens’ operator equivalents Oα
n , defined as

∑
i

rnZnα(xi, yi, zi) ≡ cnαθn〈rn〉Oα
n . (2.7)

cnα is a constant which is part of Znα. θ2 = αJ , θ4 = βJ and θ6 = γJ are the reduced
matrix elements which depend on the angular momentum state of the ion in question. For
Ho3+, αJ = −1/(2 · 32 · 52), βJ = −1/(2 · 3 · 5 · 7 · 11 · 13) and γJ = −5/(33 · 7 · 112 · 132) [13].

The crystal field Hamiltonian can then be expressed in terms of Steven’s crystal field
operators [14] as

HCF = B0
2O

0
2 + B0

4O
0
4 + B4C

4 O4C
4 + B4S

4 O4S
4 + B0

6O
0
6 + B4C

6 O4C
6 + B4S

6 O4S
6 . (2.8)
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The Bm
l coefficients are defined as

Bα
m = −eqθnγnαcnα〈rn〉 (2.9)

These can be easily calculated except for q and the radial integral 〈rn〉 which present more
of a challenge and are often left as fitting parameters. Thus the symmetry of the potential
determines which operators are not present, but the relevant crystal field parameters must
be determined experimentally. This has been accomplished by choosing the parameters
such that the resulting energy levels match with spectroscopic data. The relevant operator
equivalents are given in terms of angular momentum operators (Jz, J+, J−, J2) by

O0
2 = 3J2

z − J2

O0
4 = 35Jz4 − 30J2J2

z + 25J2
z − 6J2 + 3J4

O4C
4 =

1

2
(J4

+ + J4
−)

O4S
4 =

i

2
(J4

+ − J4
−)

O0
6 = 231J6

z − 315J2J4
z + 735J4

z + 105J4J2
z − 525J2J2

z + 294J2
z − 5J6 + 40J4 − 60J2

O4C
6 =

1

4
(J4

+ + J4
−)(11J2

z − J2 − 38) + H.c.

O4S
6 =

1

4i
(J4

+ − J4
−)(11J2

z − J2 − 38) + H.c. (2.10)

The experimentally determined crystal field parameters are given in Table 2.1. Several
different sets of crystal field parameters have been determined from various spectroscopic
data [15, 16, 17, 18, 19]. For this work we will use those taken from Chakraborty et al. [15].
Also listed in Table 2.1 are the crystal field parameters calculated here using the positions
in Table 2.2 with the exception of q and the radial integrals. This calculation does allow
one to estimate what certain ratios of parameters should be. For example the ratio B4c

4 /B0
4

should be 7.78 if the F− ions are close to point charges. The experimentally determined
parameters do not agree with these ratios. For example, in Ref. [15] B4c

4 /B0
4 = 10.3 which

is different though at least in the same order of magnitude. This is likely because the
point-charge model is quite a large assumption – the charges on the F− ions come from the
nuclei and the surrounding electrons thus the potential is probably quite far from ∼ 1/r.

If the crystal field Hamiltonian is diagonalized on its own (treating the other terms in
the Hamiltonian as perturbations), one obtains a ground state doublet

| ↑〉 = 0.7945ei105o |7〉+ 0.6052e−i68.6o |3〉+ 0.0411e−i3.13o | − 1〉 − 0.0295| − 5〉
| ↓〉 = 0.0295ei105o |5〉+ 0.0411e−i71.8o |1〉+ 0.6052e−i6.41o | − 3〉 − 0.7945| − 7〉 (2.11)
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Parameter Ref. [15] Calculated
B0

2 −0.696 K −5.26× 10−5eq〈r2〉
B0

4 4.06× 10−3 K 9.68× 10−8eq〈r4〉
B4C

4 4.18× 10−2 K 7.53× 10−7eq〈r4〉
B4S

4 0 K −7.69× 10−7eq〈r4〉
B0

6 4.64× 10−6 K 1.42× 10−10eq〈r6〉
B4C

6 8.12× 10−4 K 1.24× 10−8eq〈r6〉
B4S

6 1.137× 10−4 K −9.82× 10−9eq〈r6〉

Table 2.1: Crystal Field parameters for LiHoxY1−xF4 determined experimentally from
spectroscopic data from Ref. [15]. Also listed are the crystal field parameters calculated
with a point-charge model using the fluoride ion positions in Table 2.2 and Figure 2.1.
The radial integrals are not easily calculable and the constant q is left as an overall fitting
parameter in units of K/mn. It is not clear why B4s

4 is missing in Ref. [15] and it may be
best to reevaluate these crystal field parameters in future work.

F− ion R θ ϕ

1 2.246 Å 67.08◦ 33.00◦

2 2.246 Å 112.92◦ 303.00◦

3 2.246 Å 67.08◦ 213.00◦

4 2.246 Å 112.92◦ 123.00◦

5 2.293 Å 142.05◦ 36.98◦

6 2.293 Å 37.95◦ 306.98◦

7 2.293 Å 142.05◦ 216.98◦

8 2.293 Å 37.95◦ 126.98◦

Table 2.2: Positions of fluoride ions surrounding the Ho (or Y) ions. This distribution of
ions has S4 symmetry and gives rise to the crystal field anisotropy of the Ho moments.
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Figure 2.1: Positions of fluoride ions in the ab-plane surrounding the Ho ions at (0, 0).
(R1, θ1, ϕ1) = (2.246 Å, 67.08◦, 33.00◦) and (R2, θ2, ϕ2) = (2.293 Å, 142.05◦, 36.98◦) taken
from Ref. [16]. The positions of all the fluoride ions are given in Table 2.2.
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with the next excited state at ∼ 11 K. Within this ground state doublet, all matrix elements
of Jx and Jy are zero, and 〈Jz〉 = ±5.15. This suggests that if the temperature is well
below 11 K, the system is a near perfect Ising model with an effective g-factor

geff ≡ 2〈Jz〉gJ = 13.8. (2.12)

2.2 Nuclear Contribution

The holmium nucleus has an especially large magnetic moment of 4.173µN . Because of
this and the fact that Ho3+ ions have 4f valence electrons which are tightly bound, the
hyperfine interaction is very important. This interaction takes the form

HHF
i = AIi · Ji (2.13)

and leads to a splitting of the electronic energy levels into 8 energies corresponding to the
mI values of the I = 7/2 nuclear spin.

Various values for A have been determined experimentally. One method used to deter-
mine this constant is electron paramagnetic (or spin) resonance (EPR/ESR). Resonances
are found when the Zeeman energy µBgJB ·J is equal to the energy of other interactions in
the system. For every crystal field level, there are therefore 8 resonances associated with
the 8 nuclear levels. The field splitting between these resonances can then give the energy
of the nuclear hyperfine interaction:

A = µBgJ∆B (2.14)

The Landé g-factor for Ho3+ is 5/4. For a free Ho3+ ion, EPR experiments find A/kB =
38.975 mK [20]. For a Ho3+ ion in the LiHoF4 lattice, EPR experiments find A/kB = 39.799
mK [21] and for dilute ions in the LiYF4 lattice, A/kB = 40.210 mK [22]. Calculations here
will use the latter value A/kB = 40.210 mK as the lattice is most similar to that studied
in this work.

Also important to consider is the nuclear quadrupole interaction with the electric field
gradient at the nucleus. This interaction is described [20] by

HQ =
Q

4I(2I − 1)

[
3I2

z − I2 +
η

2
(I2

+ + I2
−)

]
(2.15)

where

η =
Vxx − Vyy

Vzz

and Vαβ =
∂2V

∂α∂β
. (2.16)



11

Many of the parameters involved are difficult to calculate and we will just replace
them with a single experimentally-determined parameter P . The nuclear moments will be
strongly coupled to the up or down Ising spins so it is likely that the off-diagonal x and y
components will have a small effect. Thus we will assume η to be 0 as is often done [23].
The quadrupolar interaction then becomes

HQ = PI2
z (2.17)

plus a constant term. The value of P determined by EPR is only 1.7 mK [23], but since
this term is dependent on the square of Iz, it is still significant with respect to the hyperfine
interaction energy and will be just noticeable in calculations of the specific heat.

2.3 Dipolar Coupling

In LiHoxY1−xF4 there is a small nearest-neighbour antiferromagnetic exchange interaction

JExJi · Jj (2.18)

where JEx/kB ' 0.16 K [15]. The Ho3+ ions, however, are primarily coupled via a weak
dipolar interaction

HDipolar
ij =

∑

αβ

Dαβ
ij Jα

i Jβ
j =

µ0

4π
g2

Jµ2
B

[
Ji · Jj

r3
ij

− 3(Ji · rij)(Jj · rij)

r5
ij

]
. (2.19)

If the moments are taken to be perfect Ising moments along the z-direction then this
interaction simply becomes

HDipolar
ij =

µ0

4π
g2
effµ2

B

(
r2
ij − 3z2

ij

r5
ij

)
Sz

i S
z
j (2.20)

where the Sz
i are spin 1/2 operators. It is important to note that the dipolar interaction

is angle-dependent. If the vector connecting two spins is close to the z- or c-axis, the
interaction is ferromagnetic. If the spins are closer to within the ab-plane, however, the
interaction will be antiferromagnetic. This leads to a degree of frustration in the system.
For the nearest neighbours in this system the dipolar interaction is ferromagnetic with
an energy ENN = ±318 mK. The next nearest neighbours, on the other hand, have an
antiferromagnetic interaction of strength ENNN = ±214 mK. The nearest neighbour (NN)
and next-nearest neighbour (NNN) sites are shown on the crystal structure in Figure 1.1.
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2.4 Transverse Magnetic Field

The addition of any external magnetic field introduces a term, the Zeeman energy, to the
Hamiltonian of the form gJµBB · J. Most interesting, is the introduction of a transverse
field Bx. Such a field leads to mixing of the ground states of the crystal field via the next
excited state. Thus with increasing transverse field the Ising character of the moments is
reduced and quantum fluctuations are allowed to occur more easily.

The coupling with the next excited state can be expressed as a term ΓSx in the effective
spin-1/2 Hamiltonian where Γ is the effective transverse field (as opposed to the real
transverse field B⊥) [15]. With the addition of this term, Equation (2.20) becomes the
dipolar transverse field Ising model (TFIM):

H = J0

∑

〈ij〉

(
r2
ij − 3z2

ij

r5
ij

)
Sz

i S
z
j − Γ

∑
i

Sz
i . (2.21)

The transverse field Ising model is one of the simplest models that exhibits a quantum
phase transition. A quantum phase transition is a zero-temperature transition that occurs
as some parameter of the Hamiltonian is adjusted, be it the dilution x, pressure P or
magnetic field B. In this case the parameter which is being tuned is the transverse magnetic
field Γ. Before the introduction of Γ, the Hamiltonian was diagonal in the | ↑〉i,| ↓〉i basis.
The transverse field, however, is an off-diagonal term (Ŝz and Ŝx do not commute). This
allows tunneling events between the up and down Ising states or quantum fluctuations.

The quantum phase transition results from non-analytical behaviour of the ground
state energy at a critical value of the parameter Γ, or at Γc [24]. For very low Γ and T the
system is ordered ferromagnetically, but for very large Γ it is a quantum paramagnet as
the dipolar coupling is weak compared to the transverse field term. In the ferromagnetic
phase, the magnetization is gradually reduced by increasing Γ as quantum fluctuations
allow spins to flip. At the transition Γc, the quantum fluctuations completely destroy the
ferromagnetic order so that the magnetization is 0, just as thermal fluctuations destroy
order in a classical phase transition. For Γ > Γc the system has an exponentially decaying
correlation function 〈Sz

i S
z
j 〉 ∼ e−|xi−xj |/ξ where ξ is the correlation length. As Γ is lowered

towards Γc, this correlation length gets larger and diverges at the transition.
Quantum phase transitions in d dimensions may generally be mapped onto classical

phase transitions in d + 1 dimensions. Thus the quantum phase transition in the 3-
dimensional dipolar TFIM is equivalent to the classical phase transition in the 4-dimensional
dipolar Ising model. Experiments that studied the quantum phase transition in LiHoF4 [6]
and looked for a quantum phase transition in the Ising spin glass LiHo0.167Y0.833F4 [9, 10]
will be discussed in detail in Chapter 5.



Chapter 3

Spin Glasses

The two main ingredients for a spin glass state are frustration and randomness. Frustration
arises from competing interactions so that it is difficult to find a spin configuration with
a minimum energy. Such frustration can result from a number of different interactions
including the dipolar coupling which applies to the system being studied here. There are
many examples of frustrated spin systems which do not form spin glass states, for example
the spin ice materials Dy2Ti2O7 and Ho2Ti2O7 [25, 26]. Though there is some evidence
that the frustrated magnet Gd3Ga5O12 develops a spin glass state despite having very little
disorder [27], generally speaking spin glasses only result from a high degree of randomness
either in the position of the spins or in the strength of the interactions.

A spin glass state is characterized by a freezing of the magnetic moments into a disor-
dered state. Clearly this is analogous to a real, structural glass which is a solid (frozen)
but does not develop any crystal structure or long-range order. There is a multitude of
“glassy” systems which appear to remain disordered down to low temperatures, but one
of the important questions has long been whether these materials undergo a second-order
phase transition (glass transition) to a frozen state or whether it is a continuous freezing of
the moments. The general consensus now, is that some of these glassy systems do indeed
undergo a sharp spin glass transition at a temperature Tg [28].

3.1 Experimental Evidence

The first indication of the existence of a spin glass state was a linear specific heat mea-
sured at low temperatures in the alloys CuMn and AuFe which could not be explained
in magnitude by the conduction electrons [29]. It was realized that the specific heat was
coming from the Mn or Fe Ising moments interacting via the RKKY interaction (described

13
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Figure 3.1: (a) The specific heat of the spin glass CuMn at 1.2% Mn from Ref. [31]
and (b) the specific heat of a spin glass computed by Monte Carlo simulation [32]. (c)
Measurements of Fogle et al. [33] of the specific heat of CuMn. The lower curves, ∆C are
an anomaly at the spin glass transition temperature found from fitting spline curves to C
and taking derivatives with respect to temperature.

in Section 3.2) which is somewhat random. Anderson et al. proposed that the linear
dependence of the specific heat at low temperatures was coming from a collection of two-
level systems (TLS’s) with a distribution of energies and therefore tunneling rates [30].
Ising moments effected by a distribution of effective magnetic fields are a prime example
of two-level systems. TLS’s of a different sort are also seen in real, structural glasses.

If the specific heat is measured over a wider range of temperatures, it is seen to be
a broad feature with no sharp anomalies (see for example References [31, 34, 35] and
Figure 3.1(a)). This seemed to be a strong indicator that there was no sharp transition.
Since then, however, mean-field theories of spin glasses have predicted that the critical
exponent α is very negative, in the range -2 to -4, thus there should be next to no indication
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of a transition in the specific heat C [28]. Fogle et al. did very careful measurements of the
specific heat (shown in Figure 3.1(c)), fit spline curves and took derivatives with respect to
temperature and were able to see a slight feature in the vicinity of the spin glass freezing
transition [33].

In support of the idea that a spin glass has a sharp transition are measurements of the
susceptibility as a function of temperature. These measurements observe a fairly sharp
cusp and then a drop in the susceptibility as the local spontaneous magnetization reduces
the susceptibility (as happens in a ferromagnet for example) [36, 37]. What is unusual
about the susceptibility is that it was found to be very dependent on the frequency at
which it is measured [38]. The cusp appears at a temperature Tf (ω), and moves to lower
temperatures as the frequency is lowered as is shown in Figure 3.2(a). This cusp is also
found to be slightly rounded, even for very small excitation fields [39, 40].

The precise behaviour of Tf (ω) varies between specific spin glasses. In some cases [1],
it appears to obey an Arrhenius law

ω

ω0

= exp

[
− Ea

kBTf (ω)

]
. (3.1)

In other cases [41], if one measures to low enough frequencies, the ac susceptibility appears
to obey a Fulcher law

ω

ω0

= exp

[
− Ea

kB(Tf (ω)− T0)

]
(3.2)

with a finite dc limit of the freezing temperature as is shown in Figure 3.2(b). One may
be tempted to take T0 as the glass temperature Tg. However, to be consistent with Monte
Carlo simulations, a so-called dynamical scaling analysis should be used to determine the
spin glass freezing transition.

τ(T )

τ0

=

(
T − Tg

Tg

)−zν

(3.3)

where zν is a critical exponent. In Monte Carlo simulations zν is found to be ∼ 7.0 [32].
There are various ways that τ can be defined. For instance it can be defined as the inverse
frequency at which χ′′(ω) is a maximum or it is sometimes [1] defined as

lim
ω→0

χ′′(ω)

ωχ′(ω)
(3.4)

Spin glasses also exhibit significant remanence effects in their magnetization and sus-
ceptibility below Tg. Very different values of the static susceptibility will be measured if
the sample is field cooled or zero-field cooled even for very small magnetic fields [43]. The
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remanent magnetization is found to be time dependent so that if the field is turned off, the
magnetization will very slowly decay to 0, often with slower than exponential relaxation,
for example as MR(t) ∝ exp[−(t/τ)β] [41].

Possibly one of the most convincing arguments for the existence of a spin glass tran-
sition is the apparent divergence of the non-linear susceptibility at Tg. The non-linear
susceptibility or χnl is defined as follows. If the magnetization is measured as a function of
magnetic field, one obtains not only a linear term, but also a cubic and higher order terms:

χ = M(H)/H = χ0(T )−H2χnl(T ) +O(H4). (3.5)

Fits to M(H) give a value for χnl which has been seen in many systems (see for example
Monod and Bouchiat [44]) to diverge as

χnl(T ) ∝
(

T − Tg

Tg

)γ

(3.6)

where γ most often takes a value 3 < γ < 4 [45].
There is a large set of experimental techniques and methods of data analysis for deter-

mining spin glass freezing temperatures, only a few of which I have listed above.

3.2 Models and Order Parameters

The first spin glasses to be studied were alloys of magnetic transition metal impurities with
noble metal hosts like CuMn and AuFe [28]. In these systems, the magnetic impurities
are coupled via the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. The magnetic
impurities polarize the surrounding conduction electrons. This polarization decays as 1/r3

while oscillating about 0 at a wavevector 2kF where kF is the Fermi wavevector. Then,
nearby impurities feel the effect of this polarization, hence there is coupling between the
moments. Since the polarization is oscillating spatially, the coupling between two randomly
positioned impurities is random, and may be positive or negative, resulting in competing
interactions.

Slightly more recently, the magnet EuxSr1−xS was discovered to behave as a spin glass
for certain values of x. This material has ferromagnetic nearest neighbour exchange in-
teractions and antiferromagnetic next-nearest neighbour exchange interactions. It is a
ferromagnet for x = 1, but if the Eu moments are sufficiently diluted, there is randomness
and frustration and it becomes a spin glass. The fact that this very different type of magnet
also demonstrates spin glass behaviour indicates that there is some degree of universality
about spin glasses and that simple toy models might be used to understand them [28].
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The Edwards-Anderson (EA) model is one such toy model. It consists of a lattice of
spins Si, each of which is coupled to every other spin Sj by a random interaction strength
Jij. The distribution of coupling strengths is a Gaussian distribution, centred about 0,
with a variance σ2 = ∆ij = ∆(Ri −Rj) which is a function of the distance between the
spins [46]. Often, the moments are taken to be Ising spins so that only Sz

i enters the
Hamiltonian.

The Sherrington-Kirkpatrick (SK) model is a simplification of the EA model, where ∆ij

is no longer a function of the distance between spins. Thus, it is an infinite-range model.
A lattice is no longer necessary because we simply have N spins, each of which is coupled
randomly to every other spin [47].

In standard phase transitions, a symmetry is broken at the critical temperature. For
example in an Ising ferromagnet, above the transition temperature, the system is disordered
and the spins may orient in any direction. Below the critical temperature, however, the
spins in the system are expected to be either all up or all down. Clearly both of these states
have the same energy, but it is impossible for the entire system to switch back and forth
between them. To explain this theoretically, one starts with an infinitesimally small field
h in one of those directions which is allowed to go to zero after taking the thermodynamic
limit N →∞.

In a spin glass, things are not so simple. There is no obvious symmetry broken as the
temperature is lowered. Instead, the spins freeze into a disordered state. There may in
fact be many stable minima in the free energy surface each corresponding to a different,
disordered configuration of the moments.

There are several different order parameters which may be chosen for a spin glass.
Clearly the magnetization m is not appropriate as the spins are expected to be disordered.
The most obvious choice would be the mean square magnetization

q =
[〈Si〉2

]
av

. (3.7)

The [ ]av is an average over the disorder in the system where as the 〈 〉 is a thermal
average. q is known as the equilibrium or statistical mechanics order parameter. It is often
used in theoretical models even if it is not necessarily appropriate in experiment as it can
be very difficult, or even impossible, to obtain equilibrium data.

A more realistic order parameter is the Edwards-Anderson (EA) order parameter [46].
It is defined dynamically as

qEA = lim
t→∞

lim
N→∞

[〈Si(t0)Si(t0 + t)〉]av (3.8)

In this case, averaging over different reference times t0 can be seen as equivalent to averaging
over the disorder in the system. If the system is ergodic (accesses all states) this will be
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zero, but if it is trapped in a single phase (a local minimum of the free energy) then it
will be non-zero and there will be ‘broken ergodicity’. Only an infinite system can get
completely ‘stuck’ in such a phase – a finite system will always, eventually find its way into
the true equilibrium state [28].

Often spin glasses are described as having a very complicated free energy ‘landscape’
with many stable minima or ‘valleys’ and barriers separating those valleys. Below the
freezing transition, the barriers separating the different phases of the system may be in-
finitely high and the system cannot switch between them. If the index a is used to denote
the different valleys of the free energy landscape then

qEA =

[∑
a

Pa(m
a
i )

2

]

av

(3.9)

where Pa ∝ exp(−βFa). The equilibrium order parameter on the other hand is given as

q =




(∑
a

Pam
a
i

)2



av

(3.10)

thus there are terms coming from mixing of the valleys. In reality, neither of these order
parameters is entirely relevant. Instead, it is expected that one or the other may apply
depending on the time scales involved. If an experiment is carried out quickly, there is not
sufficient time for the system to reach equilibrium and qEA should be appropriate. But if
one waits long enough, it is expected that the system would eventually reach equilibrium
and q would be appropriate as an order parameter [28].

3.3 The Replica Method

A frequent problem in the study of spin glasses is how to average over the disorder in
the problem. This is often handled by the ‘replica method’ or ‘replica trick’ [28]. When
calculating physical quantities, one wishes to average the log of the partition function lnZ
over the disorder which is generally very difficult. The replica trick makes this easier by
the identity

lnZ = lim
n→0

Zn − 1

n
. (3.11)

Now one can start by working with n replicas of the partition function

Zn =
n∏

α=1

Z = Tr exp

(
−β

n∑
α=1

H{Sα
i }

)
(3.12)
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then averaging over the disorder

[Zn]av ≡ Tr exp(−βHeff) (3.13)

and later take the limit as n → 0 [28]. This technique is used frequently in the study of
various spin glass models. It can, however, result in some complications stemming from
the order in which various limits (N →∞, n → 0, etc.) are taken [45].

In terms of the replica method, the order parameter q can be defined as

q = lim
n→0

1

n(1− n)

∑

α 6=β

qαβ (3.14)

where
qαβ = N−1

∑
i

〈Sα
i Sβ

i 〉 = N−1
∑

i

TrSα
i Sβ

i exp(−βHeff). (3.15)

The first attempts at a mean-field theory of spin glasses used the replica method and
the SK model and assumed that the results should be ‘replica symmetric’ – in other words
that qαβ should be the same for all α and β [47]. This gave some unphysical results,
including a negative entropy [28]. It was found that one needed to break replica symmetry
in order to obtain the correct mean-field solution [48, 49]. This broken replica symmetry
is closely connected to broken ergodicity and the Edwards-Anderson order parameter [28].
This replica method will be used briefly in the next chapter to understand the effect of
dilution on dipolar-coupled Ising moments.



Chapter 4

Phase Diagram of Dilute, Ising
Moments

In this chapter, we will discuss the theoretically expected phase diagram of diluted Ising
moments. At high concentrations of magnetic moments (x) a symmetry breaking transition
is usually expected. This might be antiferromagnetic or ferromagnetic depending on the
interactions, the lattice and anisotropy in the moments.

In some cases, at lower concentrations, the system can become a spin glass. In short
range systems there is a percolation threshold xc below which point there is no longer
any finite ordering transition temperature. In long-range systems, however, there cannot
be a percolation threshold. It has long been thought, therefore, that there should be no
critical concentration below which the ordering transition disappears in a dipolar-coupled
system [12]. As will be discussed in detail in Section 5.4, the system LiHoxY1−xF4 has been
seen to have a lack of ordering transition below a certain concentration x. Recent Monte
Carlo experiments also suggest that there is no spin glass transition below a certain value
of x in dipolar-coupled Ising systems [4].

4.1 Percolation Threshold

If one starts with an empty lattice (x = 0) and gradually increases x, one expects that
the mean size of clusters (within which all ions are connected by short-range interactions)
to increase. In an infinite system there is a point xc at which the mean cluster size will
diverge. This point is known as the percolation threshold. Formally, xc is defined as the
largest value of x for which any given site definitely (with probability 1) belongs to only a
finite cluster. For x > xc there is a non-zero probability P (x) that a given ion belongs to

21
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a cluster of unbounded size.
The term ‘percolation’ comes from fluid flowing through a porous material. If the

density of the material is sufficient, the spaces or pores will all be isolated from one another
and liquid will not be able to flow. There can be a critical density, however, below which
there is a cluster of connected pores the size of the system itself. At this point, a liquid
would be able to percolate through the material.

The percolation problem may be formulated as a site-dilution problem (removing ions)
or as a bond-dilution problem (removing interactions between moments) giving different
results [50]. Various lattices and types of interactions yield different percolation thresholds.
For the site-diluted problem on the triangular lattice with nearest neighbours only, xc =
0.5 [50]. This is one of the few cases that can be calculated exactly but there are numerical
methods which are expected to be close to the exact value. For a square lattice, for example,
xc = 0.59± 0.01 (according to calculations) [50].

In 3-dimensional lattices the percolation threshold is generally lower. For example the
simple cubic lattice has xc ' 0.307, the body-centred cubic lattice has xc ' 0.243 and
the face-centred cubic lattice has xc ' 0.195 (all for nearest neighbours only). Including
further neighbour interactions also reduces xc as much fewer filled sites are required to
form an infinite percolating cluster.

Now we must ask how the dilution can theoretically effect the magnetic ordering of
a given sample. A transition depends on the limit of infinite cluster size. This way the
energetically equivalent ground states (〈m〉 = ±1 in a ferromagnet) are separated by an
energy barrier of infinite size and an infinitesimally small magnetic field h will push the
system into one or the other. If there are many clusters of finite size in the system, however,
the energy barriers will not be infinite in the thermodynamic limit and there will be no
symmetry-breaking transition [50]. Thus for Ising moments in 2 or higher dimensions,
there will be a transition for x > xc but there will be no transition for x < xc.

It is also expected that there will be a change in critical behaviour as a function of the
concentration of magnetic moments in the system above xc [51]. In fact the dilution can
completely alter the type of transition, resulting in a spin glass state [52].

4.2 Dilute, Dipolar-Coupled Moments

For a long-range interaction such as the dipole interaction, there should not be any finite
concentration of moments at which there are decoupled clusters, thus there is no percolation
threshold. In this section we will discuss the mean-field theory of Stephen and Aharony [12].
This provides us with some expectation of what the transition temperature will be as a
function of the concentration of moments in a dipolar-coupled Ising magnet.
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To study this system, we start with n replicas of the Ising model averaged over the bond
distribution (which in this case is Jij with probability x and 0 with probability 1− x).

[Zn]av = Tr
∏
ij

[
1 + ν exp

(
βJij

n∑
α=1

Sα
i Sα

j

)]
≡ Tr exp(−βHeff) (4.1)

where ν = x/(1 − x) [51]. The effective Hamiltonian can be written as an expansion in
higher-order spin interactions between the different replica indices.

Heff =
∑
ij

n∑

l=1

K l
ijQ

l
ij (4.2)

where

Q1
ij =

n∑
α=1

Sα
i Sα

j , Q2
ij =

∑

α<β

Sα
i Sα

j Sβ
i Sβ

j , etc. (4.3)

The K l
ij’s are expansion coefficients which depend on x, T and the Jij’s.

Thus the effective Hamiltonian contains the competing order parameters: µα
i = 〈Sα

i 〉,
µαβ

i = 〈Sα
i Sβ

i 〉, etc. whose Fourier transforms are σα
q , σαβ

q , etc. The first of such order
parameters µα

i is simply the magnetization mi and is thus the order parameter appropriate
for a ferromagnet. The next µαβ

i = qαβ
i is a candidate for the spin glass order parameter.

Fourier transforming the effective Hamiltonian gives

Heff = −1

2

∑

l

∑
q

(K̂ l
q − 1)|σα1...αl

q |2 +O(σ3) (4.4)

The critical temperature at which ordering will take place is found by

rl = 1− K̂ l
0 = 0 (4.5)

To leading order,
K l

ij ' x[tanh(βJij)]
l. (4.6)

Thus for the ferromagnetic order parameter µα
i , the transition line will be given approxi-

mately by

r1 = 1− x
∑

j

tanh(βJij) = 0 (4.7)

If the expansion is carried out more rigorously, however,

r1 = 1− xβϕ′ (4.8)
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where

ϕ′ = ϕ +
kBT

J0

∑
j

[
tanh

(
Jij

kBT

)
− Jij

kBT

]
(4.9)

and where J0ϕ is the low-momentum limit of the Fourier transform of the dipolar inter-
action [53]. The quantity ϕ depends on the lattice involved and was calculated for the
LiHoxY1−xF4 lattice by Fujiki et al. [54]. At high concentrations r1 < r2 and the system
will order ferromagnetically at transition temperatures which approach a straight line given
by kBTC(x) ∝ x

∑
j Jij.

In some cases ϕ′ can be quite small. Then it is possible that r2 < r1 at lower concen-
trations (x) [12]. This would imply that the order parameter µαβ

i would order first and the
ferromagnetic order would be replaced by spin glass order at a temperature Tg found by

r2 = 1− x
∑

j

[tanh(βJij)]
2 = 0. (4.10)

This appears to be the case for the LiHoxY1−xF4 below x ' 0.25 both in the calculation
(see Figure 4.1) and in experiment [1]. In either case, a percolation threshold xC is not
expected for this model as TC(x) only goes to zero as x → 0 [12].

4.3 Monte-Carlo Simulations

The very recent work of Snider and Yu [4] suggests that there is a lack of ordering at low
concentrations of Ising dipoles. They performed Wang-Landau Monte Carlo simulations
of dilute Ising spins on a simple-cubic lattice for various concentrations x and system sizes
N = L3. A generalized Edwards-Anderson order parameter q is defined as the overlap of
the state of the system Ss

i with a common low-energy state Sg
i . They start with an initial

guess and then proceed with a random walk in configuration space. While this is done, the
energy E of the system and the order parameter q are tallied. If enough parameter space
is visited, the density of states n(E) and probability of occupation of the order parameter
and energy F (q, E) may be evaluated. Then for a given temperature T

P (q) ∝
∑

E

n(E)F (q, E)e−E/kBT . (4.11)

It is the evolution of the shape of P (q) as a function of temperature which is used
to determine whether the system is ordering as a spin glass or not. It is expected, for a
spin glass, that P (q) should be Gaussian in q at high temperatures and below the freezing
temperature it should be bimodal at q = ±1. The freezing temperature, for a given system
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i from Equation (4.7) and the dashed blue line is
for the spin glass order parameter µαβ

i given by Equation (4.10). The interactions in the
system have been scaled to give Tc(x = 1) = 1.53 K.
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size, can be defined as some point in between these two extremes where P (q) is flattest.
This results in a freezing temperature Tf which is decreasing with system size. Thus in
some sense, the system size is analogous to the time scale in a physical measurement. For
x = 0.045, x = 0.12 and x = 0.20, this freezing temperature seems to extrapolate to 0
in the limit of infinite system size, indicating that there is no finite spin glass transition
temperature.

Snider and Yu also calculate the entropy of the systems as a function of temperature.
It is a smooth function which indicates a broad, smooth bump in the specific heat. At
a critical concentration of moments xc = 0.2, there is no residual entropy, but at lower
concentrations S0 becomes noticeable with it reaching around 8 × 10−3kB per particle
at 4.5% (see Figure 4.2). This residual entropy would seem to result from a flat energy
landscape with many accessible and nearly degenerate ground states. In a spin glass, the
energy barriers should be higher, so the spins are frozen into one of the deep valleys of
free energy. The explanation given in this work is that for site-diluted dipolar systems
the nearest neighbours are very often unoccupied and the energy is dominated by weaker
forces from distant dipoles [4].

It is clear from previous experimental work that a 20% Ho sample should still be a spin
glass (or even a ferromagnet) as 16.7% Ho shows all the behaviour expected of a spin glass.
This simulation, however, was carried out on a simple-cubic lattice. It is possible that the
tetragonal lattice and other components of the Hamiltonian of LiHoxY1−xF4 would have
the effect of shifting this critical concentration to a point between 4.5% and 16.7%.

4.4 Experimental Examples

One of the ‘classical’ spin glasses which shows a percolation threshold is the material
EuxSr1−xS. It is a short-range magnet (nearest and next nearest neighbour exchange inter-
actions) which is a spin glass in a range of concentrations from x = 0.5 down to xc = 0.13.
The point xc = 0.13 is at the percolation threshold of the EuxSr1−xS lattice with near-
est and next nearest interactions. For concentrations below xc, the material behaves as
a ‘super-paramagnet’. The super-paramagnet still shows a strongly frequency-dependent
susceptibility (i.e. glassy relaxation) so is not a paramagnet, but it does not have a well-
defined spin glass transition temperature. In fact there is even a maximum in the ac
susceptibility and it was initially thought that this region was still a spin glass [55]. How-
ever, it was found that if a dc measurement is done, the glass freezing transition drops to
zero at xc = 0.13 [56]. Much of the physics in EuxSr1−xS below xC is dominated by the
dipolar interaction which is much smaller than the exchange interactions [55]. Two dis-
tinct rounded cusps are seen in the susceptibility as a function of temperature. It has been
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Figure 4.2: Results from the Monte Carlo simulations of Snider and Yu showing the entropy
as a function of temperature for several stoichiometries and the residual entropy as a
function of concentration in the inset [4].

suggested that there is still a spin glass transition below xc, but it will be at much lower
temperatures because of the weakness of the dipolar coupling [57]. However, the magnetic
moment of Eu2+ is 5.25µB (close to that of Ho3+ in the LiYF4 lattice, but isotropic) and
yet a spin glass transition temperature is not seen as low as 7 mK [55]. The phase diagram
of EuxSr1−xS is shown in Figure 4.3.

The RKKY spin glasses like CuMn, AuFe, PtMn, PdFe, etc. are not found to exhibit
a percolation threshold. For very small concentrations of the magnetic impurities, a spin
glass state is still observed though the transition temperature tends to be very low [59].
This is expected because the interactions in these materials fall off as 1/r3 and so are
long-range in nature.

The material LiTbxY1−xF4 is very similar to LiHoxY1−xF4 in that it is also a diluted
dipolar-coupled system. The Tb3+ ions, however, are not Ising moments – the ground state
doublet is split in energy. This system is also ferromagnetic at x = 1 and the TC is lowered
as x is lowered. It has not been shown to become a spin glass at any point, however, and
it does have a critical concentration of Tb3+ ions xC ' 0.12 at which point the Tc drops
to zero [60]. A mean-field model of a such a singlet-singlet system is able to describe the
phase diagram of the system adequately [61] and it is not expected to behave according to
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taken from References [58, 56]. The square symbols are spin glass freezing transitions ob-
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transition temperatures found from the position of the cusp in susceptibility.

the theory outlined in Section 4.2.
As was discussed above, dilute dipolar-coupled Ising spins cannot have a percolation

threshold and were therefore, for some time, expected to have a finite transition temper-
ature for all x. The material studied here, LiHoxY1−xF4, however, has been observed to
drastically change its magnetic behaviour at x = 0.045 despite being dominated by long-
range dipolar couplings [1, 2, 3, 62]. This surprising behaviour will be explained in more
detail in Section 5.4. Also, as was discussed above, the Monte Carlo simulations of Snider
and Yu [4] support the idea that a dipolar-coupled Ising magnet still does have a critical
dilution where spin glass ordering ceases to exist at a finite temperature.



Chapter 5

Previous Work on LiHoxY1−xF4

In the parent compound, LiHoF4, the ferromagnetic interactions dominate and the mo-
ments order ferromagnetically at 1.53 K [6]. As one reduces the concentration of the
holmium ions (x), TC is lowered. Materials with x = 0.67, x = 0.44 [1] and x = 0.30 [63]
have been studied previously and have paramagnetic to ferromagnetic transitions at 0.98 K,
0.68 K and 0.36 K respectively.

When the moments are sufficiently diluted, frustration due to competing ferromagnetic
and antiferromagnetic interactions becomes important. Randomness and frustration are
the two main ingredients required for a spin glass (SG) state which has been observed at
x = 0.167 [1, 9, 10].

At even lower dilution, x = 0.045, some very unexpected behaviour has been observed
in previous experiments which is the primary motivation for this work and will be discussed
in detail in Section 5.4. A current phase diagram of LiHoxY1−xF4 is shown in Figure 5.1.

5.1 Parent Compound

Pure LiHoF4 is an excellent example of a dipolar-coupled Ising magnet with a transition
temperature of 1.53 K. Renormalization group theory finds that the upper critical dimen-
sion of a dipolar-coupled system is d∗ = 3 instead of the usual 4, so that the critical
behavior at the transition is expected to have logarithmic corrections χ ∼ t−1| ln t|1/3 to
mean-field critical behaviour χ ∼ t−1 [53]. For higher dimensions above the upper critical
dimension, the usual mean-field exponents are expected to apply. LiHoF4 and the related
compound LiTbF4 have been studied in various ways as a test for the predicted correc-
tions, in some cases successfully [5, 64]. Dipolar-coupled Ising magnets are one of the few
examples of systems where the upper critical dimension is accessible. With short range
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interactions, for example, d∗ = 4 which is clearly not physical. In measuring the magneti-
zation or susceptibility, however, it is found to be very difficult to discern the logarithmic
corrections from the ordinary power-law behaviour [65]. This is an experimental issue and
the corrections are much more obvious in Monte Carlo simulations [66].

More recently, this material has been studied as an example of the transverse field Ising
model (TFIM) whose effective Hamiltonian is given by

H =
∑
ij

JijS
z
i S

z
j − Γ

∑
i

Sx
i . (5.1)

A field applied perpendicular to the c-axis (easy axis) introduces coupling between the
ground state Ising doublet and the next nearest excited state and creates a splitting Γ in
the ground state energy. This coupling leads to quantum fluctuations which eventually
destroy the ferromagnetic order. Even at close to zero temperature, there is a transition
or quantum critical point at H⊥ = 4.9 T [6].

The critical behaviour of the material in transverse field was studied by Bitko et al. [6]
by measuring the ac susceptibility of the material using a conventional susceptometer. In
zero field, χ′(T ) is found to diverge with the power law t−γ where γ = 1. In other words,
it is very close to mean field theory as was seen previously [65]. At constant temperature,
χ′(H⊥) also shows a sharp cusp at the transition from ferromagnet to paramagnet. At
all temperatures studied, the critical behaviour is χ ∼ h−γ where γ = 1 and h = (H⊥ −
HC
⊥ )/HC

⊥ . There are no signs of logarithmic corrections in the quantum critical behaviour
thus the d = 3 quantum transition appears to behave as a d = 4 classical transition. This
is expected theoretically since quantum phase transitions can be mapped onto classical
phase transitions in 1 higher dimension [67, 24].

This method also allows one to map out a (T, H⊥) phase diagram of the material which
is shown in Figure 5.2. Bitko et al. present a theoretical phase diagram generated by
solving the mean-field Hamiltonian

HMF = HCF + AI · J− gJµBB⊥Jx − 2J0〈Jz〉Jz (5.2)

self-consistently. This phase diagram is found to fit the data well if J0 is used as a fitting
parameter. The nuclear hyperfine interaction is found to be fundamental to the low-
temperature physics of this system near the quantum critical point.

Chakraborty et al. [15] are more rigorous in their treatment of the phase diagram. They
develop the effective spin-1/2 Hamiltonian from the crystal field energies and then develop
a mean-field theory and quantum Monte-Carlo simulations. Without leaving any fitting
parameters, they reproduce qualitative features of the experiment but see less quantitative
agreement as the critical field is much higher in experiment than in theory.
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5.2 Glassy Ferromagnet

Initially, dilution of the Ho moments simply seems to lower the TC of the system. At x =
0.44, this material is found to be a ferromagnet with a sharp cusp in the ac susceptibility
at 0.68 K [1]. In zero field, but at lower temperatures (∼ 0.1 K) there is a peak in χ′′

which may indicate some reentrant behaviour where degrees of freedom not locked away
in ferromagnetic order freeze as a spin glass [68].

If a transverse field is applied, the system becomes much more complicated. There
is a region where glassy dynamics are observed from the frequency response of the ac
susceptibility [7, 69]. The system’s behaviour shows a dependence on the way in which it is
cooled. If it is cooled in a high transverse field where there are strong quantum fluctuations
and the field is then turned off, the system is “annealed” quantum mechanically. If the
system is cooled in zero field, on the other hand, the system is annealed classically. As a
glassy system, it can be thought of as having a very complex free energy surface. Classically
it must be thermally excited out of valleys in this free energy surface in order to find its
ground state. Quantum mechanically, it can tunnel through barriers resulting in a very
different end state. A proposed (H⊥, T ) phase diagram is shown in Figure 5.2 [7, 69].

In a later reference [8], the primary conclusion is that the glassy dynamics stem from
domain-wall tunneling. The ferromagnetic domain walls can be thought of as particles
sitting in a potential energy surface. The transverse field tunes the mass of this particle
and allows it to tunnel between minima in the potential energy surface. In zero field,
thermal excitations are required to move the domain walls.

5.3 Spin Glass Phase

An x = 0.167 sample from this series was also studied by Wu et al. [9, 10]. These works
are the first tests of the effect of quantum fluctuations (from transverse field) on a spin
glass state. In zero field [1], this sample has been observed to behave essentially just as a
spin glass is expected to behave.

The frequency-dependent ac susceptibility was measured in this sample for many fre-
quencies and temperatures [1]. At a given frequency χ′(T ) shows a rounded cusp at the
temperature Tf (ω) which moves to lower temperatures as the measurement frequency is
lowered. This cusp obeyed an Arhenius law over the temperature range studied.

The absorption spectrum χ′′(ω) is a broad curve (several decades wide) which is well
fit by a distribution of energy barriers to relaxation. As the temperature is reduced, the
spectrum shifts to lower frequency and the distribution of energy barriers becomes wider.
A plot of this data is shown in Figure 5.3(a) from Ref. [1]. This is typical of other glasses
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and the dielectric susceptibility of structural glasses [70, 42].
The specific heat was also measured and after subtraction of the large nuclear compo-

nent (which will be discussed in Section 6.1), was found to be a broad curve also typical
of spin glasses (shown in Figure 8.7).

This material appeared to go through a spin glass transition in transverse field H⊥ as
well. The transverse field allows quantum fluctuations to occur (as in the pure material),
opening up new routes to relaxation and preventing the spins from freezing. This apparent
transition in H⊥ has been measured in two ways: with the frequency dependence of χ′′ [9]
and with the non-linear susceptibility χnl [10].

Above the spin glass transition Tg, the effect of a transverse field is simply to narrow
the absorption spectrum χ′′(ω) and to shift fpeak to higher frequencies as the quantum
fluctuations allow the moments to relax more easily. Below Tg, as H⊥ is lowered, the low
frequency behaviour of χ′′(f) ∼ fα is altered with α becoming smaller and eventually
reaching 0. Theories have suggested that the spin glass state should be characterized by
α = 0 [71] and other experiments (on EuxSr1−xS) have found a very small value < 0.1 for
α in the spin glass regime [42]. Thus the point (H⊥, T ) at which α ' 0 is taken as the spin
glass transition (Hc, Tg) [9].

Applying a larger, oscillating longitudinal field h (1.5 Hz and up to 150 Oe in this
case), one can observer the field dependence of the susceptibility χtot(h) = ∂M(h)/∂h. In
a Taylor series expansion χtot = χ1− 3χnlh

2 + . . .. Thus a quadratic fit to χtot(h) will give
the quantity χnl which is directly related to the spin glass susceptibility χSG.

In this system, χnl(H⊥, T ) is found to be a maximum at the transition [10] which is
found to be roughly at the same point as was seen using χ′′ [9]. As one moves to lower
temperatures, the peak in χnl becomes much smaller and very rounded. Extrapolating
these measurements to zero temperature gives a critical field Hc ' 1.2 T which is equivalent
to a ground state energy splitting of Γc ' 1.0 K. At zero transverse field, the spin glass
temperature is Tg ' 0.13 K, thus the thermal fluctuations seem to destroy the spin glass
order much more easily than quantum fluctuations.

Recent theoretical work on this system has demonstrated the importance of random
fields generated by the external transverse magnetic field [72, 73, 74, 75]. It is found that
for any finite transverse field, there is no spin glass transition. Instead there are spin
glass ordered domains with a correlation length that decreases with increasing transverse
field [73]. There does remain a crossover transverse field where the spin-glass order of the
domains is destroyed. A mean-field theory incorporating random transverse fields gener-
ated by transverse terms in the dipolar and hyperfine interactions was able to reproduce
the experimental phase diagram [72]. The smearing of the peak in χnl at the crossover in
larger transverse fields is explained with the random field Ising model and is reproduced
numerically [74]. Thus at zero temperature and finite transverse magnetic field, there is
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no quantum criticality as a result of the random fields induced in the system.

5.4 Spin Liquid, “Anti-glass” Phase

As was discussed in Section 4.2, for many years it has been thought that random Ising
moments coupled by a long-range interaction should not have a percolation threshold [12].
In other words, there should always be some finite temperature at which there is either
a symmetry-breaking transition or a spin glass transition for any concentration x. The
transition temperature can drop smoothly with decreasing x, but it cannot suddenly drop
to 0 at some non-zero x.

The 4.5% sample, measured by Reich et al. and Ghosh et al. seems to suggest otherwise,
as its dynamics are entirely different from the 16.7% sample and what is expected for a
spin glass [62, 1, 2]. The primary motivation for the work in this thesis is the goal of
eventually understanding the very unusual effects observed in this 4.5% material.

5.4.1 Dynamics

Obtaining equilibrium data on spin glasses can be very challenging in that it requires
extremely long times and slow cooling. For the 16.7% sample Reich, et al. found that
even with a cooling rate of 10 mK per hour equilibrium data was not obtained and the
susceptibility was different when warming and cooling. They did find this to be a slow
enough cooling rate in order to get equilibrium data for the 4.5% sample however, thus it
has somehow a faster response to temperature changes [1].

As with the 16.7% sample discussed above, the susceptibility of the 4.5% sample showed
a round cusp in χ′(T ) at Tp which was very sensitive to the measurement frequency f ,
moving to lower temperatures as f was lowered in keeping with an Arhenius law.

The main difference in the two samples comes from measurements of χ′′(ω) at a given
temperature. At higher temperatures (∼ 300 mK for example) the absorption spectrum
is broad like that of the spin glass. But on cooling, instead of widening, the absorption
spectrum narrows [62]. The high frequency tail does not change remarkably, but the
low frequency behaviour is altered significantly. At first, limω→0 χ′′(ω) = ωα where α is
decreasing with increasing temperature in contrast to the 16.7% sample where it was found
to increase with T [1].

Below 120 mK, a power law is no longer adequate because it appears that there is
the formation of a gap in the spectrum up to a frequency of 0.1 Hz at 50 mK and up
to 1 Hz at 120 mK [2]. This is shown in Figure 5.3(b). At these temperatures, the
absorption spectrum is narrower than the absorption spectrum that one would expect for
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Figure 5.3: The absorption spectra, χ′′(f), of the spin glass (16.7% Ho) from Reich et al. [1]
and the “anti-glass” (4.5% Ho) from Ghosh et al. [2] at several temperatures. The spin
glass shows a spectrum that broadens with decreasing temperature where the “anti-glass”
exhibits a spectrum that narrows with decreasing temperature. Below 120 mK the 4.5%
sample also forms a gap where there is no absorption at low frequency.

a single energy barrier to relaxation. This suggests that, instead, the susceptibility must
be originating from a collection of oscillators [2]. The material also begins to deviate from
the Arhenius law mentioned above at around 120 mK.

Taking the dc limit χdc = limω→0 χ′(ω), it was found that it looks Curie-Weiss-like
(χdc ∼ 1/(T −Θ)) [1]. Measurements over a larger temperature range, however, show that
there is better agreement with the power law χdc ∼ T−a where a = 0.75 [3].

5.4.2 Coherent Oscillations, Hole Burning

Measuring the magnetization as a function of field for an oscillating field of several Gauss
gives a Brillouin function M = NgµBs tanh(ngµBsh/kBT ) with n ' 260. This suggests
that the system consists of ferromagnetic clusters of several hundred moments with charac-
teristic oscillation frequencies [2]. A longitudinal field of only about 0.5 Oe is sufficient to
saturate the response at a given frequency. It seems that there is a relatively small number
of moments that behave with that characteristic frequency so very little field is required
to saturate the signal at that frequency.

The application of an oscillating transverse field seems also to be able to saturate the
moments with a characteristic frequency as they are able to burn holes in the spectrum [2].
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An oscillating transverse pump field h⊥ was applied to the sample at a frequency f0. A
much smaller, longitudinal probe field h‖ was swept in frequency and the magnetization
was measured. The transverse field seems to effect the resulting spectrum in two ways: it
shifts the spectrum to a higher frequency (as a dc transverse field did in the 16.7% sample
by adding quantum routes to relaxation) and it burns a sharp hole into the spectrum at
the frequency f0.

Finally, if the pump field h⊥ is oscillated at a frequency of 5 Hz for about 600 s and
then stopped, oscillations in the sample’s magnetization will persist for 4 to 10 seconds
afterwards [2]. These effects are all highly unusual for a glassy magnetic system. They
seem to point to a system that has coherent excitations, like spin waves or spinons which
one expects to find in spin liquid models. Here, these excitations have characteristic fre-
quencies that are several Hz where spin wave excitations are probed by neutron scattering
experiments at frequencies of THz.

5.4.3 Specific Heat

Previous measurements of the specific heat of the same x = 0.045 sample in zero field also
found some very unusual results. After subtracting a nuclear contribution to the specific
heat, Ghosh et al. found a very small electronic contribution with two sharp peaks at 110
mK and 300 mK [3]. The specific heat is “small” in that very little (only about 15%) of
the expected total entropy R ln 2 in the system is released if one does a numerical integral
of C/T over the temperature range studied. That would imply that there is an enormous
residual entropy in the system.

A numerical simulation (a pairwise decimation procedure) was performed which resulted
in a qualitatively similar specific heat. It was also able to reproduce the power law for the
dc susceptibility T−α where α = 0.75 [3]. The energies of a pair of spins were calculated
using an anisotropic g-factor matrix where g⊥ = gx = gy = 0.74 and gz = g‖ = 13.8. Using
this model, there are entangled eigenstates resulting from off-diagonal matrix elements of
the Hamiltonian. The same numerical simulation performed without the entangled states
gave sharp features but at incorrect temperatures.

5.4.4 Other Experiments

Thermal conductivity measurements of a very similar stoichiometry (4.0% Ho) did not
reveal any sharp features like those found in the heat capacity at 110 mK and 300 mK [76].
The measured thermal conductivity was found to be largely consistent with single-ion
calculations. One might expect thermal conductivity measurements to show those same
features as it is a quantity closely related to the specific heat. This would be especially
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true if the features are indicative of excitations which are delocalized (like spin waves for
example).

Recent µSR experiments on a 4.5% sample do seem to indicate that there are dynamics
in the system which persist down to very low temperatures [77]. The frequency range
probed by µSR, however, is in the MHz which is much higher than the frequency range in
which the “anti-glass” physics have been observed.



Chapter 6

Single-Ion Specific Heat

6.1 Ising model with Nuclear Component

As was discussed in section 2.1, if the crystal field Hamiltonian is diagonalized by itself,
the result is a ground state Ising doublet. The simplest specific heat model, then, involves
treating the nuclear contribution to the Hamiltonian, AI · J as a perturbation.

Because only Jz has matrix elements in the ground state, the transverse components Ix

and Iy are irrelevant and we only require the longitudinal nuclear spin Iz. Thus the nuclear
hyperfine interaction simply splits the ground state into 8 energy levels corresponding to
mI = −7/2 . . . 7/2. Because of this large number of degrees of freedom, the specific heat
from this nuclear contribution is quite large and can be written as

CNuclear

R
=

(∑
m xme−xm

∑
m e−xm

)2

−
∑

m x2
me−xm

∑
m e−xm

, (6.1)

where

xm =
1

kBT

(
Ageff

2gJ

mI + Pm2
I

)
=

1

kBT
(A‖mI + Pm2

I) (6.2)

The result is a broad feature centred at around 200 mK shown as the dashed black
line in Figure 6.1. This form was used successfully by Mennenga et al. [23] to fit heat
capacity data on LiHoF4 below the transition temperature. Their best fit gave the values
A‖ = 0.420(10) K and P = 0.002(1) K.

In the dilute cases, the Curie temperature xTc(x = 1) has a similar energy scale to the
nuclear hyperfine interaction, thus one would expect the heat capacities due to the coupling
between moments to overlap the nuclear heat capacity. In fact they are not separable since
the nuclear energy levels can lead to mixing with the next excited energy level thereby
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Figure 6.1: Calculations of the non-interacting specific heat over the relevant temperature
range (a) and over a larger temperature range (b). The calculation done using only hyper-
fine energy levels is shown as the dashed black line and the full calculation using crystal
field and hyperfine Hamiltonians is shown as the blue, solid curve. The phonon contribu-
tion for the 2% sample is shown in red. The phonon contribution for higher concentrations
(x) is smaller per mole of holmium.

taking away from the Ising character of the moments [72]. The Hamiltonian is then not
diagonal in the Jz basis and the specific heats cannot simply be added together. If it is
assumed that the moments are perfect Ising moments, then the specific heat can be written
as the sum of a nuclear contribution CNuclear and an electronic contribution ∆C.

6.2 Full Diagonalization

A more careful calculation of the single-ion (non-interacting) specific heat requires a diag-
onalization of the non-interacting Hamiltonian

HSI = HCF +HHF +HQ (6.3)

consisting of the crystal field, hyperfine and nuclear quadrupole Hamiltonians. There are
17 electronic angular momentum states (J) and 8 nuclear spin states (I) leading to a
136× 136 matrix for the Hamiltonian which is not diagonal in Jz or Iz.

Here we have used A/kB = 40.21 mK which was determined by EPR experiments on
LiHo0.02Y0.98F4 [22]. The nuclear quadrupole factor P/kB has not been determined for
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Ho3+ in the YLF lattice, but it has been measured to be 1.7 mK with EPR on free Ho3+

ions [20]. The crystal field parameters (the Bm
l ’s) have been taken from Chakraborty et

al. [15] which were obtained by fitting to spectroscopic data.
The resulting specific heat CSI is quite similar to CNuclear from equation 6.1, but is

smaller by about 4% at some parts in the curve. Both curves are shown in Figure 6.1(a).
At higher temperatures the effect of larger crystal field energies is seen as in Figure 6.1(b).

6.3 Effect of Strain on Specific Heat

Holmium ions are non-Kramers ions so are not guaranteed to have a doublet ground state.
It is the symmetry of the crystal structure which leads to a degenerate doublet in this case.
Altering the symmetry of the crystal field, however, can lead to a splitting of that doublet.
Such a energy splitting can be shown to cause a significant change in the single-ion specific
heat and could also profoundly effect all of the low-temperature physics in this system.

An effect of certain kinds of strain in the crystal lattice can be to introduce an O2
2 term

(i.e. finite B2
2) into the crystal field, destroying the S4 symmetry. Without such a strain

there are still pairs of doublets corresponding to different nuclear energy levels, but with
such a strain, these doublets are split into distinct energy levels. Since the specific heat
at low temperatures is dominated by these nuclear energy levels, the effect can be quite
noticeable. Note that a change in the other crystal field parameters such as B0

4 , B4c
4 , etc.

would not alter the symmetry and would not split the doublets thus the effects would be
much smaller.

In order to model the possible effect of strain, we have applied a random degree of
asymmetry to the different sites on the lattice. The specific heat for an ion with B2

2 = y
contributes a specific heat Ci(T, y). Then the total specific heat is given by the integral

C(T ) =

∫ ∞

−∞
Ci(T, y)ρ(y)dy (6.4)

where ρ(y) is a Gaussian distribution centred about 0 with a width of σ. The resulting
specific heat is shown in Figure 6.2 for several different values of σ. Of course to do this
numerically, the integral must be transformed into a summation and for this calculation
100 intervals over a range of ±3σ were summed. The effect of the lattice distortion is
to split the ground state doublet and therefore push some of the specific heat to lower
temperatures and some towards higher temperatures. This leads to a drop in specific heat
in the centre of the curve at around 200 to 300 mK.

To arbitrarily choose a value in K for the parameter B2
2 is not sufficient to prove that

this is a plausible effect. It is necessary to simulate some sort of quantitative distortion of
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the crystal lattice and its effect on the crystal field. In fact a uniform stretching of a given
unit cell will not alter the symmetry of the crystal field and so will not contribute a B2

2

term. A gradient in the crystal strain however, will result in some asymmetry.
We have used a simple model here where adjacent unit cells differ in width by an

amount ∆ and the stretching is gradual across the cells. The ideal position of the fluoride
ions is (x0

i , y
0
i , z

0
i ) and these are translated to give the new positions of the fluoride ions:

(x0
i , y

0
i , z

0
i ) → (x0

i [1 + ∆(x0
i + a)], y0

i , z
0
i ). (6.5)

This means that a unit cell to the left of a holmium ion has a width (along the x-direction)
of a, as usual, but the unit cell to the right of the holmium ion will have a width of
a(1 + 2∆a).

Once the new fluoride ion positions are calculated, one can calculate the crystal field
parameters with the exception of two values: the effective charge q of the fluoride ions
(which is simply an overall constant in front of the crystal field Hamiltonian) and the
radial integrals 〈rn〉 which are nearly impossible to calculate. Fortunately, the same values
are used in the crystal field parameters for an unstressed crystal which were adjusted to
fit experimental data. So calculating the Bm

n ’s for an ideal positioning of the fluoride ions,
solving for q〈r2〉 and then putting that into the calculation of the distorted crystal field
gives a quantitative value for B2

2 with a certain amount of distortion in the crystal lattice.
The result of this calculation is that a change in the lattice parameter between adjacent

unit cells of about 0.2 Å gives ∆ = 3.73× 10−3 Å
−1

and a B2
2 ' 110 mK which is sufficient

to create a noticeable change in the non-interacting specific heat.
This is a very simple model to get a rough idea of how much distortion is required to

create an asymmetry with a relevant energy scale. The details of how crystal strain would
occur in the crystal and how it would distort the fluoride ion positions are much more
complex and are not known at this time. The quality of the crystals studied here was
measured to be very high with X-ray diffraction as will be discussed later in section 7.1.
Likely there is not sufficient crystal strain in the samples to create a noticeable change in
the specific heat as a 0.2 Å change from one cell to another is very significant and would
imply very low crystal quality. Nonetheless, this is an unlikely but possible explanation for
discrepancies between our results and previous results which will be discussed in Chapter 8.

6.4 Phonon Specific Heat

The specific heat for the pure material was measured by Mennenga et al. up to around
10 K so they were able to look for a T 3 term coming from phonons in the sample [23].
They found Cphonon = bT 3 where b = 5.66 × 10−4 J/(K4 mol Ho). Our measurements are
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Figure 6.2: The non-interacting (single-ion) specific heat plotted for different amounts of
crystal strain (different values of σ).

at much lower temperatures where this would be a very insignificant contribution except
for the fact that we are dividing by the number of moles of Ho.

The phonon specific heat should be approximately proportional to the mass of the ions
involved. Thus a lattice of entirely Y ions would have roughly half the heat capacity of a
lattice of Ho ions (since Y is approximately half the mass of Ho). But if we then divide by
the amount of Ho in the system, the specific heat (in units of J/K mol Ho) will be much
more significant in a lattice consisting mostly of yttrium. We can estimate the phonon
contribution for a material of concentration x to be

Cphonon =

[
xmHo + (1− x)mY

xmHo

]
bT 3 (J/K mol Ho). (6.6)

For low x, the phonon contribution is still small but not completely insignificant in this
temperature range. This contribution to the specific heat of the 1.8% sample is shown as
the red curve in Figure 6.1.





Chapter 7

Experiment

7.1 Samples

Samples of Ho:YLF were obtained commercially1, available as high quality single crystals
for laser applications. The following stoichiometries have been purchased: 2.0%, 4.5%,
8.0%, 12%, 25%, 45% and 100% Ho concentration. They were grown using the Bridgman
crystal growth technique. This technique involves gradually moving an ampoule containing
the melt of ingredients through a temperature gradient so that the melt gradually solidifies
as a single crystal at one end of the ampoule. A small piece of single crystal is used to
seed the growth at the cold end of the ampoule. In the case of this material, the crystal
growth must be done in a hydrogen fluoride (HF) atmosphere. Cylindrical crystals on the
order of 1 cm in length and 1 cm in diameter were obtained.

Some rare earths are not as miscible with Y in the R:YLF (where R is the rare earth
ion) and form stoichiometric gradients from hot to cold in the Bridgman furnace. Ho,
however, is very similar to Y in ionic radius and is expected to randomly replace Y in the
YLF lattice with very little change to the lattice [1].

During crystal growth, the amount of material lost to evaporation was monitored and no
significant amount was observed. The precision of the stoichiometry of the crystals should
therefore be quite high. Nonetheless, as will be discussed later in Section 8.2.1, a portion
of the 2% sample was found to be closer to 1.8% from measurements of its specific heat.
Chemical analysis was performed using both EDS (Energy Dispersive Spectroscopy) with
an EDAX Pegasus 1200 on a LEO 1530 SEM and ICP-MS (Inductively Coupled Plasma
Mass Spectrometry)2. Both analysis techniques confirmed the stoichiometry of the crystals

1Crystals were purchased from TYDEX J.S.Co., St. Petersburg, Russia
2ICP-MS measurements were conducted by ActLabs, Ancaster, ON
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to be roughly correct, but the systematic errors in the measurement were high and so did
not provide as accurate a measure of the stoichiometry as our specific heat measurement.
For example, in the EDS measurement, the angle at which the sample surface was oriented
was found to change our measurement of the the concentration x by as much as ±0.005.
This was likely due to differential absorption of the electron beam.

Alignment of the crystals was accomplished by two different methods. As large, cylin-
drical samples, orientation is easily accomplished optically as the materials are optically
active and the c-axis is the birefringent axis. Thus if the sample is placed between crossed
polarizers, the orientational dependence of the transmission can be used to find the c-axis.
Of course refraction and reflection at crystal surfaces influences the transmission as well
so this method is not so easily accomplished with smaller, cut pieces of crystal. For that,
X-ray Laue patterns were used to orient the crystals. Alignment was only necessary for the
susceptibility measurements in this work as the specific heat measurements were performed
in zero magnetic field.

The crystal quality has been measured using an X-ray diffraction rocking curve to mea-
sure the width of the Bragg peak3. The (2, 2, 0) and (4, 4, 0) peaks of the 8.0% sample
were measured and were found to be narrower than instrument resolution which was lim-
ited to ' 0.03◦. This indicates a very small mosaicity and thus the samples are of very
high structural quality. The (2, 2, 0) peak is shown in Figure 7.1. More detailed sample
characterization is in progress.

7.2 Low Temperature Apparatus

Two cryostats have been used for the measurements in this thesis. Susceptibility measure-
ments were performed on a Janis 3He Cryostat and heat capacity experiments were done
on a S.H.E. Dilution Refrigerator.

7.2.1 3He Cryostat

The 3He fridge, as its name implies, uses the lighter, rarer isotope of helium to cool. The
fridge is inside of a vacuum can which is immersed in liquid 4He. The 3He pot is connected
by a stainless steel tube, through a 1K pot, to a charcoal adsorption pump and to an
external storage bottle. Initially the charcoal is heated to above 40 K to evaporate the 3He
which condenses on the 1K pot and drips into the 3He pot. Once the condensation is com-
plete, the charcoal is cooled and acts as a pump, cooling the fridge to a base temperature
of under 250 mK.

3Measurements were done by Stefan Kycia and Ariel Gomez at the University of Guelph
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Figure 7.1: The (2, 2, 0) Bragg peak of the 8% Ho:YLF sample studied here. The width of
the peak is less than 0.03 degrees (instrument resolution) which indicates very high sample
quality.

This is a “one-shot” process – when the 3He as all pumped out of the pot, the fridge
no longer has any cooling power so warms up and must be refilled. The cryostat is able
to stay cold for roughly 20 hours depending on how much heat is put into the system.
Temperature control is accomplished by connecting a stage (which holds a thermometer,
heater and experiments) to the 3He pot with copper wire and applying heat with the heater
to bring its temperature above the base temperature of the fridge.

7.2.2 3He/4He Dilution Refrigerator

A dilution refrigerator operates in a very different way. It is also immersed in liquid helium
and precooled with a 1K pot, but below that is the dilution unit which operates with a
mixture of 3He and 4He. When a mixture of the two isotopes of helium is cooled to
below 870 mK, it will separate into two phases: a dilute phase consisting primarily of 4He
and a concentrated phase consisting of mostly 3He. As T → 0, the concentrated phase
approaches 100% 3He. The dilute phase, on the other hand, approaches a mixture of 6.5%
3He in 4He [78]. The mixing of liquid 3He into liquid 4He is a first-order phase transition
with an enthalpy of mixing.

The lighter, concentrated phase naturally floats on top of the dilute phase and during
ideal operation, the boundary between the two phases is situated in the middle of the
mixing chamber of the fridge. 3He is pumped out of the dilute phase through the “still”
and is then returned to the top of the mixing chamber via an impedance. In between the



48

mixing chamber and still, the incoming and outgoing mixtures are passed through heat
exchangers so that the returned 3He is precooled as much as possible. As 3He is pumped
out of the dilute phase in the still, 3He enters from the concentrated phase in the mixing
chamber such that the concentration stays constant. This results in warming in the still,
but cooling in the mixing chamber. To increase the cooling power, the still may be heated
to increase the evaporation of 3He and therefore the circulation rate of the fridge.

This particular dilution refrigerator can reach a base temperature of just under 15 mK
with an optimal circulation rate of about 50 µmol/sec.

7.3 Conventional Susceptometer

A conventional susceptometer (as opposed to a SQUID susceptometer) depends on mag-
netic induction to detect the susceptibility of a material. It typically consists of a primary
or excitation coil which is used to generate an oscillating magnetic field Beiωt. Inside the
primary is the secondary or pick-up coil. The changing magnetic field will generate a volt-
age in the secondary coil which is proportional to the derivative of the magnetic flux with
respect to time ∂Φ/∂t. The resulting signal therefore is proportional to the frequency of
the oscillating field ω.

Typically, the secondary is wound in a configuration known as a gradiometer. A 1st
order gradiometer consists of two counter-wound coils such that a spatially homogeneous
field will not generate any net signal. If a magnetic sample is placed inside one of those
coils, however, the balance of the gradiometer will be altered by the sample’s susceptibility
and an oscillating voltage will be measured:

E(t) ∝ iωχ(ω)Beiωt = ω(iχ′ − χ′′)Beiωt. (7.1)

Thus the component of the signal which is in phase with the excitation is the absorption of
the sample χ′′(ω) whereas the out-of-phase component is the real part of the susceptibility
χ′(ω).

A 2nd order gradiometer may also be employed to improve noise cancelation and to
reduce the offset due to an imperfectly balanced gradiometer. In this configuration, three
coils are used with centre coil wound opposite to the two end coils. The number of turns
in each of the coils is chosen such that this gradiometer will cancel both a homogenous
field and a field gradient. The sample is then placed inside the middle coil. Higher order
gradiometers are also possible.

Here we have employed an excitation coil with a diameter of 1.7 cm, a length of 9.5 cm
and 830 turns of 75 µm diameter NbTi (superconducting) wire. The secondary was a first-
order gradiometer. The two secondary coils were 0.85 cm in diameter and 1.9 cm long with



49

4 K Flange

1 K Pot

Heat Sinks

Still

Mixing Chamber

Liquid He Bath

Dewar Jacket

Heat Capacity Experiment

µ-Metal Shields

Pb Shield

300 K

4.2 K

~ 1 K

> 13 mK

Figure 7.2: Schematic diagram of the cryogenic system used for heat capacity measure-
ments. White space is evacuated for thermal isolation, blue is the bath of liquid helium.
The heat capacity cell is contained inside of a copper radiation shield which is thermally
connected to the mixing chamber of the fridge and can therefore be cooled to as low as 15
mK.
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Sample

Secondary (Gradiometer)

Primary Excitation Coil

Figure 7.3: A diagram of the conventional susceptometer used for ac susceptibility mea-
surements of 45% Ho:YLF. The excitation coil surrounds the secondary gradiometer which
contains the sample. The sample is heat sunk to the cryostat with a bundle of copper wire.

800 turns of copper wire4. The coils were separated by 3.8 cm. A sample of LiHo0.45Y0.55F4

was fixed to one end of a bundle of thin insulated copper wires with GE varnish. The other
end of the copper wire was heat sunk to the stage of the 3He cryostat. A bundle of isolated
wires was used instead of one thick wire in order to reduce the heating from magnetic eddy
currents. The sample was needle-shaped with the long direction parallel to the c-axis so
as to reduce demagnetization effects. An SR830 Lock-in amplifier was used to apply the
oscillating current and measure the resulting signal as the temperature of the sample was
changed. A frequency of 1 kHz was used for these measurements.

7.4 Heat Capacity Measurements

There are three main approaches to the measurement of heat capacity:

1. The quasi-adiabatic method. In this measurement, a heat pulse Q is applied and the
rise in temperature ∆T of the sample is measured. It would be difficult to create a
completely adiabatic heat pulse as the sample must in some way be connected to the
dilution fridge in order to get cold in the first place. Thus in this experiment one
must account for the heat lost during the heat pulse.

2. The relaxation method. The relaxation method involves observation of the time
constant of relaxation of the sample’s temperature towards the temperature of a

4The susceptometer used for these measurements was constructed largley by Lauren Lettress
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thermal bath (the cryostat). If the sample has a heat capacity C and the thermal
conductance of the link between sample and cryostat K = κA/L is well known then
measuring the time constant of relaxation τ = C/K will give one the heat capacity
of the sample.

3. The ac method. This method involves the application of a variable, oscillating heat
Q̇(t) and the observation of temperature as a function of time T (t). This is analogous
to the application of an ac current to a RC-circuit and measurement of the voltage.
The out-of-phase component of the oscillating temperature will be related to the heat
capacity of the sample.

Measurements for this work were done using the quasi-adiabatic method. This method
was chosen so that time constants within the sample (due to poor thermal conductivity,
spin-lattice relaxation, etc.) would not interfere with the heat capacity measurement. In
real structural glasses the heat capacity can have a slow relaxation [79] and indeed in these
samples we have observed some unusual non-equilibrium effects with time constants of
several minutes which will be discussed later in further detail. Poor thermal conductivity
within the sample can also lead to a slow response. These time constants can be measured
and separated out if one is using a long enough time constant of relaxation as is preferable
in the quasi-adiabatic method. In the other heat capacity experimental methods one needs
to wait at least one time constant for every data point, so use of a very long time constant
would be extremely time consuming.

7.4.1 Physical Apparatus

In designing the experimental apparatus for these measurements, very close attention was
paid to the thermal conductivity and heat capacity of various components of the apparatus
to eliminate potential heat leaks and other sources of error. Unlike in most heat capacity
experiments, no substrate was used – all components were fixed directly to the sample
itself which was floating on very thin nylon threads. If the thermal conductivity between a
sample and the substrate is poor then there can be errors in the temperature measurement.
Additionally, a substrate can add a significant addendum which then needs to be measured
and subtracted from the data.

The thermometers were RuO2 resistors (1 kΩ resistance at room temperature) with
thinned alumina substrates. Heaters were 10 kΩ metal-film resistors (also with their sub-
strates polished away as much as possible to improve thermal contact and reduce heat
capacity). Resistors were glued to the sample with GE varnish. Leads to the thermome-
ters and heaters were 6 µm NbTi, superconducting wires, each about 0.5 cm in length.
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These were made by dissolving the copper-nickel cladding of multifilamentary NbTi mag-
net wires in nitric acid. The leads were attached on either end with silver epoxy. These
leads were chosen to keep their thermal conductivity extremely low. The thermal conduc-
tivity of the electrons in a superconductor drops out exponentially below TC (∼ 10 K for
NbTi) as the superconducting electrons do not conduct heat. The fact that the wires are
made from a disordered alloy means that the RRR of the metal is poor (often ∼ 1 for
NbTi) so the remaining normal electrons also conduct less heat than in a clean metal (like
pure Nb for example). Additionally, they have an extremely small diameter which greatly
increases their thermal resistance.

The weak thermal link from the sample to the mixing chamber of the dilution fridge
was made from a short length of Manganin wire which was also fixed on either end with
silver epoxy. This weak link was chosen to have a thermal conductance KWL such that
the time constant of relaxation τ = C/KWL would be longer than an hour over most of
the temperature range studied. Since κ ∼ T and C varies significantly, the time constant
is fairly different in different temperature ranges. At low temperature the heat capacity is
dropping out quite quickly, but Kapitza thermal boundary resistances between conductor
and insulator (κ ∼ T 3) become important so the time constant remains quite long.

Thermal conductances and heat capacities for various components are given in Ta-
ble 7.1. These parameters were calculated or measured in various ways. For example,
the heat capacity of the heater and thermometer were estimated based on the size of the
alumina substrate and metal pads. The thermal link between thermometer and sample, on
the other hand, was determined by applying a large enough excitation to the thermome-
ter to cause heating and measuring the time constant of relaxation of the thermometer’s
temperature with respect to the sample temperature. The heater was assumed to be very
similar to the thermometer in terms of heat capacity and thermal conductivity.

7.4.2 Experimental Procedure

Heat capacity data is obtained by applying heat pulses of a known size via the heater
and observing the change in temperature of the sample. A voltage is applied across a
large current limiting resistor (typically ∼ 1 MΩ) in line with the heater with an analog
output channel of a National Instruments DAQ-card. This heat “pulse” is usually 1 to
2 minutes in length. This length is chosen so that a reasonably small power is applied
and the superconducting leads are not driven normal. Measuring the voltage across the
heater during the heat pulse shows that the leads do in fact remain superconducting.
The thermal conductivity may still vary significantly at different temperatures even while
superconducting, but in the temperature range studied, should remain very low. The
thermometer resistance is measured with a Linear Research LR700 ac resistance bridge.



53

(a) (b)

Heater

Thermometer

Manganin Link

NbTi Wires
Nylon

Sample

Dilution Refrigerator

Sample

TQ

K
HS K

TS

K
WL

K
NbTi

K
NbTi

Figure 7.4: (a) Diagram of physical apparatus used for the measurement of specific heat.
(b) A simple picture of the heat capacities and thermal links in the system.

To get an accurate measure of the temperature, fits are done to the data before and
after the pulse. Since the time constants employed here are very long, linear fits are usually
sufficient. At higher temperatures, where the time constant is becoming shorter, quadratic
or exponential fits are employed.

During a heat pulse, some of the energy will be lost through the weak link and this
must be accounted for when calculating the heat capacity. Suppose that the fit before the
heat pulse gives T (t) = a0 + b0t and the fit after the heat pulse gives T (t) = a1 + b1t. This
means that, by Newton’s law of cooling, the rate of loss of heat through the weak link is
b0C before the pulse and b1C after the pulse. To first order, the rate of heat loss during
the pulse will be the average of these. Thus the total heat lost during the pulse will be
Qlost = C∆t(b0 + b1)/2. The temperature change from the start of the pulse to the end of
the pulse will therefore be

∆T = Qheater/C −∆t(b0 + b1)/2. (7.2)

Solving for C, we get that C = Qheater/∆Teff where Teff is obtained by extrapolating the
fits to the midpoint of the heat pulse. An example of a heat pulse and the corresponding
linear fits is shown in Figure 7.5. This will be very close to correct provided the time
constant is long and linear fits are reasonable. At higher temperatures this is not as good
an approximation so it is desirable to reduce the length of the heat pulse.
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Figure 7.5: An example of temperature data vs. time before and after a heat pulse. The
solid red lines are fits to the data done in order to evaluate the temperature change induced
by the pulse.

7.4.3 Thermometry

The largest obstacle to good heat capacity data at low temperature is good thermometry.
There are several types of thermometers available, none of which is able to easily cover
the range of temperatures studied here. Our temperature calibration must therefore come
from a patchwork of various thermometry techniques.

A CMN thermometer uses the susceptibility of the paramagnetic salt Ce2Mg3(NO3)12 ·
24H2O which obeys a Curie-Weiss law χ ∼ 1/(T − Θ) and may be used from ∼ 200 mK
down to ∼ 5 mK. Since CMN is a paramagnetic insulator, it does not dissipate any heat
giving it an advantage over resistive thermometers. We have used a SQUID magnetometer
to measure the susceptibility of CMN thermally linked to the fridge with silver foil in order
to calibrate more convenient resistive thermometers5.

Another thermometer employed in this work is the nuclear orientation (NO) thermome-
ter. This thermometer consists of a single crystal of radioactive 60Co. At low temperatures,
the electronic moments of Co are ferromagnetically ordered along the c-axis of the crys-
tal. It is energetically favourable for the nuclear moments to align themselves with the
electronic moments, but the interaction is weak enough that it has no noticeable effect
until around 50 mK. One of the decay paths of 60Co involves the emission of a gamma ray
which is emitted preferentially perpendicular to the spin of the nuclear moment. Thus at
high temperature, the emission of gamma rays is largely isotropic, but below 50 mK, fewer

5CMN sample was grown and prepared by Krizsanta Greco
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gamma rays are emitted along the c-axis of the crystal. Nuclear orientation thermometry
involves the detection of these emitted gamma rays at room temperature once they have
penetrated the dewar. This means that no leads (potential heat leaks) are required for
this type of thermometry. The main disadvantage of this thermometer is the long time
required to obtain sufficient counts at a given temperature.

From about 75 mK up to several K, a germanium resistance thermometer (GRT) pur-
chased from LakeShore Cyrogenics is trusted to give a good measure of the temperature.
These thermometers consist of a carefully stress-relieved Ge crystal suspended inside a
canister of 3He exchange gas and are very stable with respect to thermal cycling. A dis-
advantage of GRT’s is their complicated temperature dependence which is often fit with
splines. For temperatures below 75 mK, the GRT’s temperature behaviour was calibrated
to the CMN thermometer and nuclear orientation thermometer on one cooldown of the
cryostat.

The thermometers used for measuring the sample temperature were 1 kΩ RuO2 chip
resistors chosen for their small size and sharp temperature dependence. The resistance is
often given [78], approximately, by the formula

ln R = a + bT−α. (7.3)

In practice, the exponent α varies from one batch of resistors to another, and the exact
resistance is a more complex function of temperature. Often the formula

ln T =
3∑

n=0

αn(ln R)n (7.4)

is used to fit a temperature calibration and that equation has been used for these measure-
ments.

7.4.4 Modeling the Experiment

A heat capacity experiment can be modeled reasonably accurately using Newton’s law of
cooling to generate a set of differential equations. This is equivalent to a circuit diagram,
shown in Figure 7.6, where thermal resistances are replaced by resistors, heat capacities are
replaced by capacitors and heaters are replaced by current supplies. Voltage in the circuit
analogy is equivalent to temperature in the actual experiment and current corresponds to
heat flow.

In our apparatus one obtains a system of three differential equations:

γ
∂TH

∂t
= Q̇− (KL + KA)TH + KAT (7.5)
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Component Thermal Conductance Heat Capacity
Sample > 0.01 W/K 4.9× 10−4 J/K
Weak link (Manganin) 1.36× 10−7 W/K < 7× 10−8 J/K
Thermometer (alumina substrate) > 5× 10−8 W/K 1.6× 10−7 J/K
Heater (alumina substrate) > 5× 10−8 W/K 1.6× 10−7 J/K
Electrical leads (NbTi) < 3× 10−11 W/K Negligible
Nylon threads 8× 10−9 W/K Negligible

Table 7.1: Table of typical thermal conductivities and heat capacities for various com-
ponents of a heat capacity experiment at 100 mK. The values for the sample and weak
link here are specific to the 4.5% sample, but similar values apply to the 1.8% and 8%
samples as well. The values given here are the worst-case scenario, so actual experimental
errors should be equal to or smaller than the errors calculated in this section. The thermal
conductivity of LiHo0.04Y0.96F4 was measured by Nikkel et al. [76]. Other calculations were
made using data from Ref. [78].

C
∂T

∂t
= KATH − (KW + 2KA)T + KATT (7.6)

γ
∂TT

∂t
= −(KA + KL)TT + KAT (7.7)

where γ is the heat capacity of the heater and thermometer. The temperatures TH , TT and
T are the temperatures of the heater, thermometer and sample respectively. This equation
can be written more succinctly as a vector equation:

∂T

∂t
= AT + B (7.8)

Making a unitary transformation, we obtain

∂T′

∂t
=

∂

∂t
U−1T = (U−1AU)(U−1T) + U−1B = A′T′ + B′ (7.9)

where A′ is the diagonal matrix of A. The solution to the system of differential equations
is then

T ′
i =

(
T ′

i0 +
B′

i

A′
ii

)
exp (−A′

iit)−
B′

i

A′
ii

(7.10)

Using the thermal conductivities and heat capacities listed in Table 7.1 and Equa-
tion (7.10), a heat pulse can be simulated. The results of such a simulation are shown in
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Figure 7.6: The equivalent circuit diagram to our heat capacity apparatus. Resistors
correspond to thermal resistances (conductances), capacitors correspond to heat capacities
and the current supply is equivalent to the power applied through the heater.

Figure 7.7. We have deliberately simulated a heat pulse at very low temperatures where
problems of thermometer decoupling, etc. are most likely. The simulation shows that our
measurement of the temperature is roughly 0.03% off from the sample’s temperature even
at the lowest, most challenging temperatures. The extrapolation to the midpoint of the
pulse then results in a 0.2% error in the measurement of ∆T .

7.4.5 Simulation with a Substrate

In a more conventional measurement where the sample, weak link, thermometer and heater
are attached to a substrate, the following equations are appropriate:

γ
dTH

dt
= Q̇− (KL + KA)TH + KATS (7.11)

CS
dTS

dt
= KATH − (KSS + KWL + 2KA)TS + KSST + KATT (7.12)

γ
dTT

dt
= KATS − (KA + KL)TT (7.13)

C
dT

dt
= KSSTS −KSST (7.14)
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Figure 7.7: (a) A simulation of a heat pulse in our apparatus using equation (7.10). The
difference from the fridge temperature ∆T is shown on the y-axis as a function of time. The
heat pulse was 120 s long and the magnitude was chosen to give a 5 mK temperature step.
Parameters were selected to give a worst-case scenario. Even then, the measurement of the
temperature is within 0.03% of the correct sample temperature and the extrapolation to
the mid-point of the heat pulse results in only 0.2% error. The error in the extrapolation is
largely due to heat lost during the pulse through the heater leads as the heater gets quite
hot (∼ 180 mK). In practice, the rise in temperature of the heater will make the thermal
conductivity of the alumina much better while the NbTi leads will still be poor thermal
conductors as they are well below their transition temperature, thus we expect this error
to be even smaller still. (b) A simulation of a heat pulse using a configuration with a
substrate. A significant overestimate of the sample’s heat capacity results.
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where T, C refer to the sample, TS, CS refer to the substrate and KSS refers to the con-
nection from sample to substrate. The thermal conductances KTS, KHS and KWL are all
taken as connected to the substrate, though it is not expected that these values would be
much different from when they were connected to the sample.

Without details of the components used in a certain heat capacity measurement it is
impossible to choose exact values for CS and KSS. We can, however, make some crude
estimates. The addendum due to the substrate will generally be under 1% of the sample’s
heat capacity thus we will choose CS = 0.01C. Samples in our experiments are often
platelets with an area roughly 10 times the area of the thermometer chips. Assuming that
the conductance from the thermometer to the sample is dominated by a Kapitza boundary
resistance, it would be safe to say that KSS ' 10KA. Then we can run a similar simulation
to that employed in Section 7.4.4, though in this case it will be a set of 4 differential
equations.

The result is a serious deviation of the substrate temperature from the sample tem-
perature. During the heat pulse, the substrate is hotter than the sample as heat tends
to flow slowly into the sample and is able to flow quickly out of the substrate into the
dilution fridge. Once the heat pulse ends, the heat is flowing from sample to substrate and
then through the weak link, so the substrate temperature quickly moves to sit between
the sample and the fridge temperatures. The result is a significant underestimation of the
sample temperature well after the heat pulse. This of course leads to an overestimation of
the specific heat of the sample.

In a slightly different configuration where the weak link is connected to the sample
instead of the substrate, the opposite occurs: the substrate temperature is above the sample
temperature after the heat pulse. In this case, however, the temperature difference is very
small since the substrate has a small heat capacity and quickly approaches something close
to the sample temperature.

7.4.6 Error Analysis

The dominant source of error in specific heat measurements is in the measurement of
temperature. The change in temperature ∆T is often of the order of 5 mK. Thus even
a 1 mK error in ∆T could result in a very large error in the heat capacity. The error
in the heat capacity measurement mostly comes from the derivative of the error of the
temperature calibration. If the temperature before the pulse T0 and the temperature after
the pulse T1 are incorrect by the same amount, there will be no error in the specific heat
axis. The error arises from T0 and T1 being off by different amounts or even off by different
directions. In other words, the error on the absolute temperature T may be large, but the
error on ∆T will be much smaller keeping the error on C in check.



60

This means that the temperature calibration of the thermometer must be done very
carefully. Using a high-order fit, will give good agreement between calibration data and the
fit, but will have a steeper derivative in some places to account for scatter in the calibration
points. This will significantly distort the specific heat. Thus a reasonably smooth fit must
be employed as in Equation (7.4).

We have estimated the maximum likely systematic error in the heat capacity mea-
surement from the residuals after the fit to calibration data. The error in the measured
temperature step σ∆T is given roughly by the derivative of the error in the temperature
measurement times the width of the temperatures step, so

σ∆T =
∂σT

∂T
∆T ≡ b∆T (7.15)

where dσT /dT is estimated from the maximum slope of the residuals. Then the error in
the heat capacity measurement will be

σC =
∂C

∂(∆T )
σ∆T =

Q̇

(∆T )2
b∆T = bC. (7.16)

The resulting error is less than 1.2% above 130 mK, about 2.5% at 100 mK and as much
as 10% below 80 mK. Estimated error bars are shown in Figure 8.8.

There are several reasons for such a large error at the lowest temperatures. Self heating
can cause thermometers to read inconsistently as the noise environment of the system
changes. The temperature calibration around 50 mK must be obtained from the overlap
of several thermometry techniques: a commercially calibrated GRT, a CMN susceptibility
thermometer and a 60Co nuclear orientation thermometer. Joining the calibrations from
different thermometers and different temperature ranges is quite challenging. The error in
the calibration fit is also intrinsically larger as one moves closer to the edges of the data
being fit. Finally, the sample is cooling very slowly at this point, so it can be difficult to
determine the point at which the temperature has reached equilibrium with the cryostat’s
temperature.

If there is significant self-heating in the resistance thermometers, as there often is at very
low temperatures, the temperature measurement can significantly effected. It is common
for resistors to self-heat by about 5 mK at a temperature of 50 mK. Thus if the sample
were at 50 mK, the thermometer would read 55 mK. This error is expected to drop off as
T−3 since the thermal conductivity of insulators is proportional to T 3. Note that if the
self-heating is consistent from one cool-down to the next, the thermometer calibration will
take care of it. The noise environment is likely, however, to change from day to day.

A gradual temperature shift does not strongly effect the total specific heat data. How-
ever, when we wish to subtract a calculated, non-interacting component to the specific
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heat, the result will be very strongly effected by errors in the temperature measurement.
Such an effect is also shown in Figure 8.8.

In addition to the systematic error discussed above, there is also a Gaussian scatter
to the data. This is attributed largely to the fitting of data before and after the heat
pulse which has scatter due to the noise of the resistance measurement. The error on the
extrapolation to the midpoint of the pulse is given by the following equation:

σ2
T̂ (t∗) =

[∑
i

(Ti − T̂ (ti))
2

n− 2

][
1

n
+

n(t∗ − t̄)2

n
∑

i t
2
i − (

∑
i ti)

2

]
. (7.17)

Here the n points we are sampling are (ti, Ti), T̂ (t) is the estimated temperature at a given
point time t (from the linear fit), t∗ is the midpoint of the heat pulse to which we are
extrapolating and t̄ is the average time (and also the midpoint of the fit in this case) [80].
The Gaussian error, calculated in this way, is enough to account for the scatter seen in
the plots of C(T ). This scatter could be reduced by lowering the noise in the resistance
measurement, integrating longer and possibly by improving the stability of the cryostat
temperature control.

Measurement of the mass of the sample was done with a very high precision balance,
thus this error is insignificant relative to the other errors in the system.





Chapter 8

Results and Discussion

8.1 AC Susceptibility of 45% sample

The ac susceptibility of LiHo0.45Y0.55F4 at 1 kHz as a function of temperature is shown
in Figure 8.1. There is a cusp found in χ′(T ) at a temperature of 0.68 K. This cusp is
sharp in the temperature resolution studied here and its position was not found to shift
in temperature when the measurement frequency was changed to 50 Hz. Thus it most
likely signals a transition from paramagnet to ferromagnet. If it were a spin glass, the
peak position would depend on the measuring frequency and the cusp would be rounded.
No attempt was made to carefully study the frequency-dependence of the susceptibility
or extract critical exponents from the data. Above the transition, the real part of the
susceptibility can be fit by a Curie-Weiss law:

χ′(T ) =
C

T −Θ
(8.1)

with Θ = 0.47 K. However, demagnetizing effects and an offset in the signal make a good
fit to the data difficult and this may explain why the parameter Θ does not match with Tc.
Additionally, the range over which the fit is done is only a third of a decade in temperature
which is generally not adequate for a good fit of this sort. If this were an antiferromagnetic
transition, one would expect a negative Θ.

Nonetheless, the transition temperature of 0.68 ± 0.01 K agrees well with previous
measurements of a 44% Ho sample which also exhibited a transition at 0.68 K. This mea-
surement is thus consistent with the proposed phase diagram shown in Figure 5.1. We
have not performed measurements on this material to a low enough temperature or high
enough magnetic fields to observe the glassy effects that were previously seen [7, 8].
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Figure 8.1: The complex ac susceptibility of LiHo0.45Y0.55F4 as a function of temperature,
measured at 1 kHz. The solid, blue line is a fit of the form χ′(T ) = C/(T − Θ) with
Θ = 470 mK.

8.2 Specific Heat at Low Concentration

The measured heat capacity of LiHoxY1−xF4 is dominated by the broad nuclear hyperfine
contribution which was calculated in Section 6.2. There is an additional contribution from
the electronic interactions on top of this. The total specific heat is shown in Figure 8.2 for
x = 0.018, x = 0.045 and x = 0.080 from ∼ 75 mK up to 0.8 K. The curves are very close
for much of the temperature range studied. The difference comes largely at the peak of
the curve where the specific heat is smaller with lower x.

8.2.1 Subtraction of the Nuclear Contribution

In order to more closely observe the effect of the dipolar interactions on the specific heat,
we have subtracted away the single-ion (non-interacting) specific heat CSI which was cal-
culated in Section 6.2 leaving a smaller component ∆C. If the system is assumed to be
a perfect Ising model, this subtraction is completely justified as transverse components
of the hyperfine and dipolar interactions are not important. In practice, however, the
transverse parts of the Hamiltonian are important and the interacting and non-interacting
specific heat are directly connected and cannot be separated. We will, nevertheless, present
the subtracted data in the hope that it is still largely indicative of the behaviour of the
electronic moments in the system and to check for consistency with previous publications
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x = 0.018,x = 0.045 and x = 0.080. The solid curve is the non-interacting specific heat
calculated in Section 6.2.
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where such a subtraction was also done [1, 3].
The remaining specific heat ∆C is, for all three samples, a broad peak which is shown in

Figure 8.3. The crystal grower supplied us with nominally 2%, 4.5% and 8% Ho samples,
but the magnitude of the 2% sample was found to be under the curve CSI at higher
temperatures ∼ 0.8 K. At these temperatures, well above the interaction strengths in the
system, the specific heat ∆C should go as T−2. Thus we found that the 2% sample is likely
actually 1.8% holmium. Such a small discrepancy in the stoichiometry is quite difficult
to resolve using standard chemical analysis techniques, but since we are dividing by the
concentration in the specific heat results, it becomes very important. The 4.5% and 8.0%
samples were found, by this analysis, to have the same stoichiometry that was quoted by
the crystal provider.

With decreasing concentration x the height of this curve is reduced. The peak position
Tpeak is largely independent of x however. There is some variation in Tpeak but the noise
in the measurement (amplified by the subtraction of the single-ion specific heat) makes
it difficult to determine exactly. Certainly it does not appear to scale with x as does the
peak height.

The broad features observed are somewhat consistent with a spin glass state (which
is what was classically expected for this range of stoichiometry). In a spin glass, the
critical exponent α is often quite negative (in the range −2 to −4) so there is no sharp
feature observed in the specific heat at the spin glass transition [28]. Instead, the specific
heat is more indicative of excitations above the ground state of the system. This can be
understood with the many valley picture of a spin glass where the system is resting in a
local minimum of a very complicated free energy surface (sketched in Figure 8.4). In each
of these local minima there may be a ground state as well as excited states which may
be occupied more often as the temperature is raised. The simplest model for the specific
heat is based on the idea of many nearly-degenerate ground states and also many nearly-
degenerate excited states. These excited energy states all have an energy of roughly E1

and will have a degeneracy n with respect to the, already large, ground state degeneracy.
Then the specific heat is given by

∆C = C0
n(E1/kBT )2e−E1/kBT

(1− ne−E1/kBT )2
. (8.2)

This form of the specific heat has been used to fit the data in Figure 8.3 with reasonably
good agreement. The fitting parameters are given in Table 8.1. There is no noticeable trend
in the parameters C0,E1 and n as a function of x. This is likely because the uncertainty
on these parameters is quite large – a 2-parameter fit is not adequate to fit the data, but 3
parameters are too many. It is more informative to parameterize the curves by their width
and position in temperature.
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Figure 8.3: The specific heat of LiHoxY1−xF4 for x = 0.018, 0.045 and 0.080 after subtrac-
tion of the calculated single-ion specific heat (shown as the solid curve in Figure 8.2). The
solid lines are fits of the form of Equation (8.2). The resulting fit parameters are shown in
Table 8.1.
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Figure 8.4: A sketch of the complicated free energy landscape of a spin glass which contains
many mountains and valleys. The specific heat comes largely from the excited states within
one of these valleys.

Parameter 1.8% sample 4.5% sample 8.0% sample 16.7% sample [1]
C0 (J/K mol Ho) 4.06 3.45 7.31 2.85
E1/kB (K) 0.26 0.32 0.29 0.46
n 0.85 1.43 0.86 1.89
Tpeak (K) 0.11 0.13 0.12 0.17
FWHM/Tpeak 1.7 1.6 1.7 1.5
S0/R 0.31 0.21 0.00 0.18

Table 8.1: Fitting parameters used for the subtracted specific heat ∆C as well as the
residual entropy and other parameters. Parameters for a 16.7% sample measured by Reich
et al. [1] are also included.
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8.2.2 Entropy

The thermodynamic identity

S(T ) =

∫ ∞

0

C(T )

T
dT =

∫ ∞

−∞
C(T )d(ln T ) (8.3)

may be used to obtain the entropy that has been released from the system at a given
temperature. The total, high-temperature entropy of an Ising system is R ln 2. One would
typically expect to obtain this amount of entropy in numerically integrating C/T , but in
frustrated magnetic systems there is often a large number of degenerate ground states and
so a residual entropy S0 may be observed at zero T .

Our measurements obviously cannot extend to zero temperature, so we should not
expect to pick up all of the entropy in the system. Typically in spin glasses, the specific
heat is seen to behave linearly in temperature below the maximum in the curve [31, 81]
in keeping with Anderson’s two-level system (TLS) argument [30]. Thus we have done a
linear extrapolation to zero temperature before numerically integrating. The extrapolation
was done by taking the fits of Equation (8.2) to the data and connecting the fits to a linear
term at low temperature such that the resulting curves are smooth. These curves are
shown as the solid lines in Figure 8.5, extended to zero temperature. The integral was
done numerically over the data and at lower temperatures, the extrapolated linear term
becomes a linear part of the entropy as well.

The results of the numerical integral are shown in Figure 8.6. The data has been shifted
so that it tends towards R ln 2 at the high temperatures. The residual entropy as a function
of concentration S0(x) is shown in the inset of Figure 8.6. With decreasing x, the residual
entropy in the system is found to get larger, suggesting that there is a larger number of
degenerate ground states. With the linear assumption, the 8% sample has essentially zero
residual entropy. The 4.5% sample has a residual entropy of 0.21R which is quite close
to 0.199R which is the amount of residual entropy predicted for the SK model of a spin
glass [82] and so is not a surprising amount of residual entropy to be found in a glassy
system. The 1.8% sample is found to have a larger residual entropy per mole of Ho at
0.31R.

Snider et al. [4] have performed Monte-Carlo simulations on the dilute, dipolar-coupled
Ising model on a simple cubic lattice and they have found a concentration xc ' 0.20 at
which point the spin glass ordering ceases in conjunction with the residual entropy dropping
to zero. Below this point, the system is a spin liquid and the residual entropy increases
with decreasing concentration. The Monte Carlo data is shown in Figure 4.2. Our entropy
data seems to be consistent with this picture with two discrepancies. First, our residual
entropy is much larger than predicted by the numerical simulations: for the x = 0.045



70

sample Snider et al. predict S0 ' 0.067 J / K mol Ho where we have measured (assuming
a linear behaviour at low T ) S0 ' 1.7 J/K mol Ho. Second,the point at which S0 = 0
is closer to x = 0.080 where the Monte Carlo simulations find S0 = 0 at x ' 0.2. The
simulations, however, were not performed on the same crystal lattice as LiHoxY1−xF4 and
terms in the Hamiltonian that would detract from the Ising character of the system (such
as the nuclear hyperfine interaction) were not taken into account. It is possible that there
is much more frustration in the real lattice than in a simple cubic lattice leading to a higher
ground state entropy. However, typically such residual entropy requires many degenerate
ground states which result from increased symmetry rather than more complexity in the
system. The nuclear moments which were ignored in the simulation and possess many
degrees of freedom, could also hold much of that residual entropy observed in experiment.

10
−1

10
0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x = 0.018

x = 0.045

x = 0.080

Temperature (K)

S
p

ec
if

ic
 H

ea
t 

(J
 /

 K
 m

o
l 

H
o

)

Figure 8.5: The subtracted specific heat (open symbols) with fit and linear extrapolation
to 0 temperature (solid lines) for three values of x. Here we plot the temperature on a log
scale so the shaded area under the curves is proportional to the entropy in the system.
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Figure 8.6: The entropy in the system as a function of temperature. The high temperature
entropy is shifted to match with R ln 2. The entropy at 0 K is therefore the residual entropy
in the system S0 assuming a linear temperature dependence of the specific heat below the
maximum. The inset shows the residual entropy as a function of Ho concentration (x). The
solid, black line is a guide to the eye. The residual entropy of a 16.7% sample measured
by Reich et al. [1] is the open square.
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8.2.3 Comparison with Previous Measurements

As can be seen in Figure 8.7, our specific heat measurement of LiHo0.045Y0.955F4 differs
significantly from a previous measurement of the same stoichiometry shown as the open,
black squares [1, 3]. The two data sets agree in a range of temperatures from ∼ 300
mK to ∼ 800 mK, but below and above that range, there is a very large discrepancy.
The previous measurement drops away quickly at 300 mK resulting in a sharp feature.
There is another peak seen at around 110 mK. Our measurement, on the other hand,
shows no sharp peaks, but instead shows a broad feature which is more consistent with
a spin glass. Above 800 mK, the previous measurement shows an increase in the heat
capacity which cannot be explained by phonons or higher crystal field energy levels. In
our measurement, in this range, the specific heat is decaying roughly as T−2 as would be
expected in a temperature range well above the scale of the interactions in the system.
Thermal conductivity measurements of a 4% sample also did not show any sharp features
at 110 and 300 mK [76].

The very small heat capacity of the previous measurement implies that there is very
little entropy released – only about 15% of the total expected entropy of an Ising system
(R ln 2). Our measurement accounts for a much more reasonable amount of entropy –
roughly 43% over the temperature range studied or 70% if the specific heat is extrapolated
linearly to zero temperature. As stated previously, in our measurement this leaves a residual
entropy of 0.21R which is very reasonable as it is close to what is expected for certain spin
glass models [82].

The reason for the discrepancy between data sets is not known at this time, though we
may propose several possible explanations. First of all, one might think that an error in
the stoichiometry of the sample could lead to a miscalculation of the specific heat and after
subtracting the nuclear term, this could lead to a very unusual shape of curve. However,
the fact that the data sets agree between 300 mK and 800 mK would suggest that the
stoichiometries of the two samples are the same and likely both correct at 4.5% holmium.

Sample quality could alter the form of the specific heat in two principal ways. The first
way in which the sample quality could adversely effect the specific heat is through crystal
strain. If there is significant distortion of the crystal lattice, the crystal field surrounding
the Ho3+ ions would be altered. As is demonstrated in Section 6.3, a gradient in the crystal
strain would lead to a drop in the non-interacting specific heat between 100 mK and 600
mK and a rise in the specific heat above 600 mK. It is possible that such a sample quality
problem could explain the anomalously low specific heat measured by Ghosh et al. [3].

The simulations done in Section 6.3 using a Gaussian distribution of B2
2 crystal field

parameters are not able to generate the sharp features that were observed previously,
but it might still be possible using a more complicated distribution of lattice distortions
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Figure 8.7: Comparison of the subtracted specific heat data from this work and from
previous measurements. The open, black squares are from an x = 0.045 sample measured
by Ghosh et al. [3] and the open, gold circles are from an x = 0.167, spin glass sample
measured by Reich et al. [1].
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and including the effects of strain on higher-order crystal field parameters. But if one
simply looks at the magnitude of effect required, a change in the lattice parameter of 0.2
Å between adjacent unit cells could be sufficient. This corresponds to a very large amount
of strain and therefore very bad sample quality and thus seems unlikely. If crystal strain
is the answer to this difference, our samples must be of higher quality as the existence of a
large amount of strain in our samples would imply that the interacting part of the specific
heat ∆C would be larger. This would likely mean that the total entropy in our system is
larger than R ln 2 which is not physically possible. Additionally, X-ray experiments on our
samples have demonstrated that the sample quality is extremely high and surely would
not contain enough distortion to cause any noticeable change in the specific heat.

The second way in which sample quality could effect this measurement, or all the
exciting physics in this system for that matter, is in the distribution of Ho3+ moments. It
is not so clear how this would effect the specific heat, but it is probable that clustering of
the Ho3+ ions, rather than the expected random distribution, could significantly alter the
magnetic order and therefore the specific heat in the system. It is possible that largely
isolated clusters of Ho moments could develop order at a specific temperature in conjunction
with the peaks in ∆C observed by Ghosh et al. [3]. The remainder of the moments would
then, in some sense, be much more dilute and would not tend to exhibit any collective
behaviour until much lower temperatures. The model presented by Ghosh et al. [3], which
reproduced their experiment to some degree, is largely concerned with the more energetic
interactions of nearby moments and does not emphasize the long-range nature of the dipolar
interaction. Such a picture would be more consistent with physical clustering of the spins.
This might also account for their observation of coherent oscillations of clusters of ∼ 260
Ho3+ ions [2].

A final possible explanation for the discrepancy is simply an error in experiment. We
have been extremely careful in analyzing our experimental apparatus and accounting for
all the heat flow in the system. As such, we are confident that our results are correct to
within a much smaller error than would be required to reproduce the data of Ghosh et
al. [3]. Additionally, the chances of error in our experiment smoothing out sharp peaks at
110 and 300 mK is very small. Calibration errors, for example, can alter the specific heat
by a certain amount, but one would not expect these errors to, by chance, line up perfectly
with and counteract the peaks in the conflicting data set. Also important to note is the
fact that our data from three different concentrations are similar and show a consistent
trend. The opposing data were obtained via a similar experimental technique, though all
components were fixed to a substrate. As was discussed in Section 7.4.5, a substrate can
lead to an overestimate of the heat capacity of the sample – not the other way around.
Significant decoupling of the thermometer from the substrate, on the other hand, could
lead to an overestimation of the temperature change ∆T and thus an underestimation of
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C. It is difficult, nonetheless, to see how such a decoupling could lead to the sharp peaks
seen in their data [3].

8.2.4 Comparison with Spin Glass Literature

As was mentioned previously, our measurements of the specific heat are somewhat consis-
tent with the specific heat of a spin glass largely because it shows a broad maximum with
no sharp peaks. The data taken on these three samples looks qualitatively much more like
the specific heat measured for an x = 0.167 sample [1] which is also shown in Figure 8.7 as
the open, gold circles than a previous measurement of an x = 0.045 sample [3]. The 16.7%
sample was studied with ac susceptibility and nonlinear susceptibility and was shown con-
clusively to be a spin glass [1, 9, 10] with an ordering temperature of around 0.13 K. It
shows a maximum in its specific heat at about 0.17 K.

An effective way of parameterizing the width of the feature is to take the full width at
half maximum (FWHM) divided by the peak temperature Tpeak. This parameter is listed
in Table 8.1 for these three samples and the 16.7% which was previously measured. In our
measurements it generally has a value around 1.7 and in the 16.7% sample it is roughly
1.5. This parameter was found to be approximately 1.2 in the metallic spin glass AuFe [81]
and approximately 1.5 for the insulting spin glass EuxSr1−xS [83]. Thus our specific heat
curves appear to be even slightly broader than is conventionally seen in spin glasses.

A general rule of thumb is that the peak in ∆C of spin glasses is found to be roughly
20% higher than the spin glass transition temperature [45]. This also seems to apply,
roughly, to 16.7% Ho:YLF [1, 9, 10]. In our measurements, the peak temperature is very
similar for all three samples, from 0.11 K to 0.13 K. The 20% rule would therefore imply
spin glass transitions of 98 mK to 108 mK. Thus the spin glass transition would seem not to
scale significantly with the concentration x. From the theory of Stephen and Aharony [12]
however, one would expect the spin glass transition temperature to vary roughly linearly
with x in this regime. This rule of thumb may not be entirely valid, however, as the spin
glass transition temperatures to which Tpeak was compared, were simply obtained from the
cusp in a ‘low’ frequency measurement rather than through a more elaborate dynamical
scaling analysis [45].

Another trend, previously observed in spin glasses [84] is that the specific heat for
different concentrations observes the following law

∆C(T, h, x)

x
= f

(
T

x
,
h

x

)
. (8.4)

Though the magnitudes of the specific heat (normalized by x) for these three samples are
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similar, the temperature dependence does not at all scale with x and this law does not
hold here.

Thus there are significant differences between these measurements and those of classic
spin glasses. The fact that our measured specific heat is a broad feature is not enough to say
that it is a spin glass and not an ‘anti-glass’ or spin liquid. The specific heat of EuxSr1−xS
below the percolation threshold in the super-paramagnetic regime is also a broad feature
despite not being a spin glass [85].

Possibly, the most important indication of a spin glass state in the heat capacity is a
linear behaviour at low temperature. Thus far, we have only presented higher temperature
data where such a trend could not be observed, but in the next section some tentative low
temperature behaviour will be discussed.

8.2.5 Low Temperature Limit

The initial discovery of spin glasses stemmed from the observation of an anomalous linear
specific heat at low temperatures in alloys such as CuMn. As was discussed in Section 3.1,
the explanation for this behaviour, proposed by Anderson [30], is based on a collection
of two level systems (TLS’s) with a distribution of energies and therefore tunneling rates.
This is a phenomenological explanation for the linear specific heat and other theories
predict different low temperature limits [86]. Nevertheless, most measurements of the
specific heat of spin glasses have seen a largely linear specific heat with some higher order
corrections [31, 34, 83]. Careful measurements of CuMn show that ∆C is not in fact linear
at low temperatures [87]. There is a range where the specific heat is a straight line as a
function of temperature, but at lower temperatures (around 1 K) it begins to deviate from
that line and appears to approach zero quadratically.

Our low-temperature data is limited at this point in time and obtaining good ther-
mometer calibrations below 100 mK can be very difficult because of self-heating and other
factors which were discussed in Section 7.4.6. Some results for the specific heat below the
maximum are shown in Figure 8.8. The linear extrapolations used for the entropy calcula-
tion are shown as the dashed lines and are reasonably good fits to the data above 60 mK.
It is impossible given the error in the measurement, at this time, to conclude whether the
low-temperature behaviour is linear or steeper than linear. Though the data sit below the
linear extrapolations at lower temperatures, a not unlikely 5 mK self-heating at 50 mK
could lead to an almost perfect linear behaviour (open symbols). Note that the thermal
conductivity of the alumina thermometer substrate and the conductivity of the boundary
between solids will increase as T 3 [78]. The heat load should be roughly independent of
temperature so this means that above ∼ 75 mK there will be an insignificant change in
temperature caused by self-heating.
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Figure 8.8: A log-log plot showing the low-temperature behaviour of the specific heat for
the 1.8% and 8.0% samples (filled symbols). The dashed lines are the linear extrapolation
used for the entropy integral. The data is seen to deviate from the linear extrapolation
at low T , but the estimated systematic error is quite large at this point (as shown by the
vertical lines). If there is 5 mK of self-heating at 50 mK (as is discussed in Section 7.4.6)
then the open symbols apply. Thus if there is significant self-heating in the system the
low-temperature behaviour can significantly skewed.
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It may be possible that this low concentration regime, in which the “anti-glass” physics
are observed, may not display the linear ∆C(T ) which is expected for spin glasses. In
the material EuxSr1−xS, for concentrations below the percolation threshold xC ' 0.13 in
the super-paramagnetic regime, the specific heat is still a broad feature but it has an
exponential rise at low temperatures instead of the linear specific heat seen above the
percolation threshold [85]. It is also interesting to note that in structural glasses doped
with rare-earth ions, magnetic tunneling states (which are the quantities expected to give
rise to the linear specific heat) were found with Dy ions (Kramers ions) but not with Ho
ions (non-Kramers ions) [88]. Thus it may be possible that even in the spin glass regime
of LiHoxY1−xF4, a linear specific heat may not be observed.

It would be valuable to continue a more careful study of the low-T specific heat of
these samples and of samples that are clearly in the spin glass regime. It is, however,
an extremely challenging measurement. Even without any errors in calibration or due to
self-heating, it is difficult to be certain of the exact form of the non-interacting specific heat
which must be subtracted. It may be necessary to go to much lower temperatures where
the nuclear component is much less significant in order to make such a determination.

8.3 Thermal Relaxation at Low Temperatures

During heat capacity measurements, some unusual behaviour of the sample temperature
was noticed. At low temperatures (below 100 mK), while heat is being applied through
the heater, the thermometer temperature gets quite high. When the heater is switched off,
the thermometer temperature shows several distinct time constants of relaxation. There
is the very long time constant τWL = C/KWL of more than an hour which is chosen when
designing the apparatus. This time constant is so long that this part of the temperature
relaxation appears linear over the period of time that is measured. There are some fairly
quick time constants which likely come from a time constant inherent in the thermometer
and/or reduced thermal conductivity of the sample at low temperatures. There is, however,
a much more interesting and abnormally long temperature relaxation observed at these
temperatures.

At the start of the heat pulse the thermometer rises much higher than would be expected
given the sample’s heat capacity and after the heater is shut off, appears to fall over a period
of several minutes to what would normally be considered the sample temperature. This is
shown in the inset of Figure 8.10. If we were employing a substrate in our measurement this
effect would be expected due to decoupling of the substrate from the sample. However, we
are not using a substrate and this effect cannot come from decoupling of the thermometer
from the sample.
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Figure 8.9: A schematic diagram of the various heat capacities and thermal connections
in the system. The connections between the nuclear moments and the phonons or the
nuclear moments and the electrons are proposed as the cause of the slow thermal relaxation
observed in experiment. The boxes labeled Q̇ and T are the heater and thermometer
respectively. The details of how the various components are connected is not known at
this time.

The only explanation is that it comes from slow relaxation within the sample. A likely
mechanism for this relaxation is from the thermal connections between different contri-
butions to the heat capacity of the sample. The sample’s specific heat consists of several
distinct parts: the nuclear specific heat CN , the electronic specific heat from the interactions
between moments CE and the phonon or lattice specific heat CP . Since the sample is an
insulator, the only mechanism of sharing heat between it and the thermometer is through
phonons. Thus the thermometer measures the temperature of the phonons TP and not
the temperature of the nuclear moments TN or electronic moments TE. Most likely, there
is a long spin-lattice relaxation between the phonons (which have a relatively small heat
capacity) and the nuclear moments (which have most of the heat capacity in the system).
Such a slow spin-lattice relaxation has been observed in specific heat measurements in
other systems [89]. During the heat pulse, there is a temperature difference between the
lattice and the nuclear moments. After the heating is shut off, the temperatures slowly
equilibrate. It is difficult to say how the electronic moments should be thermally connected
in this system. They are strongly coupled to the nuclear moments through the hyperfine
interaction and are likely coupled to the lattice via the crystal field energy. A diagram of
the relevant heat capacities and thermal links is shown in Figure 8.9.

Below about 80 mK, this effect is very significant and was observed in the x = 0.018
and x = 0.080 samples (there is a lack of low temperature data for the x = 0.045 sample).
The temperature relaxations for the x = 0.018 sample are plotted in Figure 8.10. The
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effect becomes more difficult to discern above 80 mK, though there are some indications
that it is still happening up to about 110 mK in all three samples.

We have described these temperature relaxations by their time constant, but in fact
they are not well fit by an exponential function. The drop in temperature is too steep near
the beginning and too shallow later on in time for it to be described by one exponential
time constant. Multiple time constants of relaxation yield better fits, as do stretched
exponentials of the form

T (t) ∝ exp[−(t/τ)β] (8.5)

with β ∼ 0.75.
The effect seems to disappear rather quickly around 80 mK which implies that the

thermal connection KNP is strongly temperature dependent. This could also explain the
need for a stretched exponential to fit the temperature relaxation as a simple exponential
decay requires C/κ = τ to be fairly temperature independent.

For some pulses, at different temperatures, but with the same power Q̇, the temperature
rise during the pulse is actually larger at lower temperatures. Better controlled experiments
must be performed in this temperature range in order to understand the dependence of
this effect on the heater power, sample temperature, waiting time between pulse, etc.

One alternative explanation for this long temperature relaxation could come from the
glassy state of the electronic moments. In true, structural glasses, a frequency-dependent
specific heat has been observed [79]. Their experiments are done using an ac heat capacity
measurement where the heater power is oscillated at a frequency f and the amplitude
and phase of the sample’s temperature oscillations is measured. As with ac susceptibility,
this gives an in-phase component C ′(f, T ) and an out-of-phase component C ′′(f, T ). The
results have a frequency dependence very similar to that seen in the ac susceptibility of
spin glasses or the dielectric susceptibility of structural glasses. The peak position of the
out-of-phase component fp(T ) was found to obey a Fulcher law (see Section 3.1). The
shape of the curve of C ′′(f) was fit well by the William-Watts distribution which is the
Fourier transform of the stretched exponential given in equation (8.5) with β ' 0.65. This
is close to β ' 0.75 which was obtained in fits of our temperature relaxation data to a
stretched exponential.

Reich et al. also observed a slower than exponential temperature relaxation in a 4.5%
sample below 100 mK [1]. Their analysis of this relaxation, however, was done on a
comparable time scale to the characteristic time constant of the weak link in their specific
heat measurement. They did observe a smaller, quicker temperature relaxation just after
a heat pulse in a window of around 100 s. This is more likely to be the same effect that we
have observed, though their use of a substrate likely makes it a much smaller temperature
change. They attributed this to decoupling of the thermometer from the sample.



81

0 50 100 150 200 250 300 350 400

0

1

2

3

4

5

6

7

8

9

10

53 mK

56 mK

60 mK

63 mK

68 mK

72 mK

76 mK

Time (s)

∆
T

 (
m

K
)

x = 0.018

0 200 400 600
65

70

75

80

85

T
 (

m
K

)

t (s)

Figure 8.10: The slow thermal relaxation of the x = 0.018 sample plotted for different final
temperatures. The approximately linear decay due to the long time constant of the weak
link has been subtracted away. The resulting form is not well fit by an ordinary exponential.
Using two different time constants or a stretched exponential form exp

[−(t/τ)β
]

give
better results, but still do not adequately fit the data. The inset shows a heat pulse at low
temperatures – the slow thermal relaxation is seen on the rise at the beginning of the heat
pulse as well as on the fall after the heat pulse.





Chapter 9

Conclusion

We have very carefully measured the specific heat of several samples from the series
LiHoxY1−xF4. More specifically, we have studied 1.8%, 4.5% and 8.0% holmium concen-
trations which are at and around the concentration at which previous work has observed a
very unexpected and exciting spin liquid or “anti-glass” state [1, 2]. Most importantly, our
measurements have not reproduced the sharp features in specific heat that were observed
previously [3].

Instead, after subtraction of a calculated non-interacting specific heat, we observe a
broad maximum in all three samples studied. This feature is in some ways consistent
with a spin glass and other ways not. A spin glass is expected to be a broad feature
with no pronounced anomalies at the freezing transition and a roughly linear specific heat
below the maximum. The measured specific heat is indeed broad with no sharp peaks.
The low temperature behaviour seems to be steeper than linear, but the error bars on
our measurement in that regime are currently too large to conclusively rule out a linear
temperature dependence. The position of the maximum in the specific heat Tpeak does not
scale with x and is nearly equal for the three concentrations studied, contrary to what one
would expect for a spin glass.

If we numerically integrate ∆C/T (after assuming a linear temperature dependence
below the maximum) we can extract the residual entropy S0. This quantity is found to
be close to zero for the 8.0% compound and increases with decreasing concentration. This
is consistent with recent Monte Carlo simulations [4] of dipolar-coupled Ising moments
which find no spin glass ordering below a certain concentration xc despite the previous
expectation that there should be no percolation threshold [12]. These simulations also
predict a smooth ‘bump’ in the specific heat, even in the spin liquid state.

Based on the data and the numerical simulations, we suggest that it is indeed possible
that there is a spin liquid state below a certain concentration xc and that this critical
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concentration is near x = 0.080. If it exists, however, this spin liquid state does not
express itself as sharp features in the specific heat as was observed previously. We have
been extremely careful in ruling out experimental errors and our samples have been found
to be very high quality. Our results are also much more plausible as we observe the release
of 70 to 100% of the total entropy in the system (leaving a residual entropy which is close
to what has been theoretically calculated for spin glasses) where previous measurements
only picked up 15% of R ln 2. As was discussed in Section 6.3, poor sample quality could
lead to a lowering of the non-interacting specific heat which would be seen as an apparent
dip in ∆C.

Also in these three samples of low holmium concentration, we have observed a slow
relaxation of the sample temperature at temperatures below around 80 mK. This effect
cannot be fit with a single time constant of relaxation, but is better approximated by a
stretched exponential. Possible explanations are a slow spin-lattice relaxation or an effect
due to relaxation of the glassy state of the material. The latter is supported by the slower
than exponential relaxation which has been observed in structural glasses [79].

In this work, we have also measured the ac susceptibility as a function of temperature
of a 45% Ho sample and find that it exhibits a paramagnetic to ferromagnetic transition
at 0.68 K in keeping with previous measurements [1].

9.1 Future Work

The specific heat measurements on these samples are not conclusive about the nature of
this low concentration regime. The true test for the existence of the “anti-glass” state must
be the frequency-dependent ac susceptibility of the samples. We have built a very sensitive
SQUID magnetometer which is capable of dc measurements and ac measurements with a
flat frequency response below 10 kHz. Measuring χ′′(f) on these three samples as well as
12% and 25% Ho samples will hopefully give a clear picture of the existence and range of
the spin liquid state.

It would also be interesting to further explore the specific heat and slow thermal re-
laxation of these samples. More in depth measurements at lower temperatures could be
performed in order to determine exactly the low-temperature behaviour. A change from
linear to some other temperature dependence might signal a change from spin glass to
“anti-glass” for example. Better controlled experiments to observe the thermal relaxation
should also be performed as we have too small a data set currently in order to make strong
conclusions about the origin of this effect.
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[85] H. v. Löhneysen, Phys. Rev. B 22, 273 (1980).

[86] G. Schehr, Phys. Rev. B 71, 184204 (2005).

[87] D. L. Martin, Physical Review B 20, 368 (1979).

[88] N. Vernier and G. Bellessa, Phys. Rev. Lett. 71, 4063 (1993).

[89] M. Evangelisti, F. Luis, F. L. Mettes, R. Sessoli, and L. J. de Jongh, Phys. Rev. Lett.
95, 227206 (2005).


