The association between two quality of life measures for first time low vision device users

by

Rana Taji

A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Vision Science

Waterloo, Ontario, Canada, 2006

©Rana Taji 2006

Author's Declaration

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research.

Signature

Abstract

Many individuals with impaired vision experience a decrease3d quality of life. Quality of life is defined as "the degree to which an individual enjoys the important possibilities of their life." Vision rehabilitation outcomes primarily focus on the functional impacts of interventions, with less attention being paid to any associated psychosocial impacts. This study examines the relationship between measures of visual function status and psychosocial status in individuals acquiring low vision assistive devices for the first time. One hundred and twenty subjects were evaluated after purchasing their first low vision device from a University-based low vision clinic. The measures used were the National Eye Institute Visual Function Questionnaire (NEI-VFQ 25) and the Psychosocial Impact of Assistive Devices Scales (PIADS). The NEI-VFQ 25 measures the status of visual function, while PIADS is a device impact measure, which explores the psychosocial impact of devices on three domains: competence, adaptability, and self-esteem. This study determines the strength of association between these two measures at initial and follow-up administrations, and between each subsequent measure as a result of the time interval between administrations, in addition to assessing whether or not a change in stability for the measures occurred over time. Modest strengths of associations were anticipated and the short time interval was not expected to be a factor in change in stability of the measures. The expectation was that subjective reports of functional changes should have a moderate correlation with psychosocial impact.

Acknowledgements

I would first like to acknowledge my supervisors, Dr. Graham Strong for all your help, support, and guidance; Dr. Jeffrey Jutai, for your vast knowledge and wonderful feedback every step of the way; Dr. Ann Plotkin, for your great input, encouragement, and vast clinical expertise. I would like to also thank the Low Vision Clinic staff for all their encouragement and support, my statistician Erin Harvey for helping me understand statistics and Erin Bloch for her help in setting up the databases. Lastly, I would like to thank all my family and friends for their support and encouragement during the best and worst of times when I thought I would never be done! Thank you all!

Dedication

I would like to dedicate this thesis to my family, my mom, dad, brother and sister, who believed in me every step of the way and had faith that I could achieve anything I wanted. I will never forget all the love and support you gave me! Thank you!

Table of	of Co	onten	ts
----------	-------	-------	----

Author's Declaration	ii
Abstract	iii
Acknowledgements	iv
Dedication	V
Table of Contents	vi
List of Tables	viii
List of Figures	ix
Chapter 1	X
Introduction	1
1.1 Low Vision	1
1.2 Hypotheses	3
1.3 Outcomes Research	4
1.4 NEI-VFQ (National Eye Institute Visual Function Questionnaire)	9
1.5 PIADS (Psychosocial Impact of Assistive Devices Scale)	
1.6 Assistive Technology Devices (ATD's)	14
1.7 PIADS and NEI-VFQ 25: A comparison	15
1.8 Research Gaps	19
1.9 Significance of Study	19
Chapter 2 Methods	
2.1 Participants	
2.2 Procedures	
2.3 Instruments	
2.4 Data Analysis	
2.4.1 Psychometric Properties of the Instruments	23
Chapter 3 Results	
3.1 Overall Sample Population	
3.1.1 Demographics	26
3.1.2 PIADSDistributions	
3.1.3 Responsiveness of the PIADS	
3.1.4 NEI-VFQ 25 Distributions	
3.1.5 Responsiveness of the NEI-VFQ 25	41
3.1.6 PIADS and NEI-VFQ 25 as a Function of Device	42
3.1.7 NEI-VFQ 25 Comparison to a Published Reference Group	42

3.1.8 PIADS Correlations with Clinical Measures: Visual Acuity and Contrast Sensitivity	44
3.1.9 Correlations between NEI-VFQ 25 and Clinical Measures of Visual Acuity and Contr	ast
Sensitivity	48
3.1.10 PIADS & NEI-VFQ 25 Within Measure Correlations at Initial and Follow Up	
Administrations	52
3.1.11 PIADS and NEI-VFQ between Measures Correlations at Initial and Follow Up	
Administrations	55
3.1.12 Relationship Changes Over Time for PIADS and NEI-VFQ 25	58
3.2 Age-related Macular Degeneration Population (ARMD)	59
3.2.1 Clinical Measures: Visual Acuity and Contrast Sensitivity	59
3.2.2 PIADS Distributions	61
3.2.3 NEI-VFQ 25 Distributions	67
3.2.4 PIADS Correlations with Clinical Measures: Visual Acuity and Contrast Sensitivity	70
3.2.5 NEI-VFQ 25 Correlations with Clinical Measures: Visual Acuity and Contrast	
Sensitivity	73
3.2.6 PIADS & NEI-VFQ 25 Within Measure Correlations at Initial and Follow Up	
Administrations	78
3.2.7 PIADS and NEI-VFQ between Measures Correlations at Initial and Follow-Up	
Administrations	81
3.2.8 Relationship Changes Over Time for PIADS and NEI-VFQ 25	85
3.3 Overall Comparison of Sample Population versus ARMD Population	86
3.4 Results Summary	87
Chapter 4 Discussion	88
4.1 Limitations	93
4.2 Research Shortcomings	93
4.3 Conclusion	93
References	95
Appendix A PIADS Questionnaire	108
Appendix B NEI-VFQ 25 Questionnaire	109
Appendix C Reliability Statistics	120
Appendix D PIADS Frequency Distributions for Overall Sample Population	123
Appendix E NEI-VFQ 25 Graphs for Subscales for Overall Sample Population	124
Appendix F Responsiveness Statistics	128
Appendix G MANOVA Results for PIADS and NEI-VFQ 25 as a Function of Device	134

Appendix H Clinical Measures, Correlations and Graphs for Overall Sample Population	.136
Appendix I Statistical Tests for Correlations of PIADS and NEI-VFQ Measures for Overall Samp	ole Population
	.147
Appendix J Change in Time for PIADS and NEI-VFQ 25 for Overall Sample Population	.151
Appendix K PIADS Frequency Distributions for ARMD Sample	.152
Appendix L NEI-VFQ 25 Frequency Distributions for ARMD Sample	.153
Appendix M Clinical Measures and Correlations for ARMD Sample Population	.154
Appendix N Statistical Tests for Correlations of PIADS and NEI-VFQ Measures for ARMD Sam	ple Population
	.155
Appendix O Relationship Change over time for PIADS and NEI-VFQ 25 for ARMD Sample	.159
Appendix P Example of 95% Confidence Intervals for Comparison of ARMD Population to Over	rall Sample
	.160

List of Tables

Table 1 NEI-VFQ 25 Subscale Scores Pre and Post Intervention ⁴⁸	11
Table 2 Example of PIADS Items 81	21
Table 3 Statistical Values for NEI-VFQ 25 in estimations of power taken from NEI VFQ-25 Sco	oring Algorithm
Table 4 Clinical Statistics for Best Corrected Visual Acuity and Contrast Sensitivity. Log Mar S	cale Used. 28
Table 5 26-Item PIADS Frequency Distributions for 1 st Administration for 120 Subjects	30
Table 6 26-Item PIADS Frequency Distributions for 2 nd Administration for 120 Subjects	30
Table 7 Responsiveness Statistics of the PIADS as a Result of Device Adoption for 120 Subject	s35
Table 8 NEI-VFQ 25 Frequency Distribution for 1 ST Administration for 120 Subjects	36
Table 9 25-Item NEI-VFQ 25 Frequency Distributions for 2 ND ADMINISTRATION FOR 120 S	SUBJECTS
	38
Table 10 Responsiveness Statistic of the NEI-VFQ 25 as a Result of Device Adoption for120 Su	ubjects 42
Table 11 Comparison of NEI-VFQ 25 Scores for Low Vision Cohort (N=120) Versus Published	l Reference
Group of Eye Disease-free Patients (N=118) for 1 ST Administration	43
Table 12 Comparison of NEI-VFQ 25 Scores for Low Vision Cohort (N=120) Versus Published	l Reference
Group of Eye Disease-free Patients (N=118) for 2 nd Administration	43
Table 13 Correlations Between PIADS Subscale and Overall Items for Initial (t_1) and Follow up	Administrations
(t2) with Best Corrected Visual Acuity Score N=116	44
Table 14 Correlations between PIADS Subscale Items for Initial (t1) and Follow up (t2) Administ	strations with
Pelli-Robson Contrast Sensitivity Test, n=119	46
Table 15 Correlations between NEI-VFQ 25 Subscale and Overall Items for Initial (t_1) and Follo	ow up (t_2) with
Best Corrected Visual Acuity Score, n=116	48
Table 16 Correlations between NEI-VFQ 25 Subscale and Overall Items for Initial (t_1) and Follo	ow up (t_2)
Administrations with Pelli-Robson Contrast Sensitivity n =119	50
Table 17 Correlation between PIADS Subscale Items at Initial and Follow up Administrations ((i.e. t_1 =Initial
t_2 =Follow up, t_2 - t_1 =2 Weeks). N=120	52
Table 18 Correlation between NEI-VFQ 25 Subscale Items at Initial and Follow up Administrat	ions (i.e.
t_1 =Initial, t_2 =Follow up, t_2 - t_1 =2 weeks) n=120	53
Table 19 Correlations between NEI-VFQ 25 Subscale Items and PIADS Subscale Items at Initia	al Administration
(i.e. t_1 =Initial) N=120. Bolded Items indicate a correlations coefficient ≥ 0.20	55
Table 20 Correlations between NEI-VFQ 25 Subscale Items and PIADS Subscale Items at Follo	ow Up
Administration (i.e. t_2 = Follow up) n=120. Bolded Items indicate a correlation coefficient ≥ 0.20)57

Table 21 Paired Samples Test assessing whether or Not the Relationship between PIADS and NEI-VFQ 25 Measures change between t_1 and t_2 . Bolded values indicated scores for t_2 are of significantly higher value. In this Table 22 Clinical Statistics for ARMD Population for Best Corrected Visual Acuity and Contrast Sensitivity. Table 23 26-Item PIADS Frequency Distributions for 1ST Administration for ARMD Population....62 Table 24 26-Item PIADS Frequency Distributions for 2ND Administration for ARMD Population...62 Table 25 25-Item NEI-VFQ 25 Frequency Distributions for 1ST Administration for ARMD Population 67 Table 26 25-Item NEI-VFQ 25 Frequency Distributions for 2ND Administration for ARMD Population 68 Table 27 Correlations between PIADS Subscale Items for Initial (t1) and Follow up (t2) Administrations with Best Corrected Visual Acuity Score, n=82 for ARMD Population......70 Table 28 Correlations between PIADS Subscale Items for Initial (t_1) and Follow up (t_2) Administrations with Table 29 Correlations between NEI-VFQ 25 Subscales and Overall Items for Initial (t_1) and Follow up (t_2) Administrations with Best Corrected Visual Acuity Score, n=82 for ARMD Population......74 Table 30 Correlations between NEI-VFO 25 Subscale Items for Initial (t₁) and Follow up (t₂) Administrations Table 31 Correlation between PIADS Subscale Items at Initial and Follow up Administrations (i.e. t₁=Initial, t₂=Follow up). n=85, ARMD Population. Time between Initial and Follow up Administration is 2 weeks. 78 Table 32 Correlation between NEI-VFQ 25 Subscale Items at Initial and Follow up Administrations (i.e. Table 33 Correlation between NEI-VFQ 25 Subscale Items and PIADS Subscale Items at Initial Administration (i.e. t_1 =initial) n=85, ARMD Population. Bolded Items Indicate a Correlation Coefficient > 0.20....82 Table 34 Correlation between NEI-VFQ 25 Subscale Items and PIADS Subscale Items at Follow up Administration (i.e. t_2 = follow-up). n=85, ARMD Population. Bolded Items Indicate a Correlation Coefficient \geq Table 35 Paired Samples Test assessing whether or not the Relationship between the PIADS and NEI-VFQ 25 measures change between t_1 and t_2 . Bolded Values indicate scores for t_2 are of Significantly Higher Value. In this

case, $\alpha = 0.05/17 = 0.003$, known as the Bonferroni correction, since 17 pairs of tests were run.......85

List of Figures

Figure 1-1 ICF Disability Model ⁹¹	17
Figure 1-2 Proposed Conceptual Model Linking Vision Impairment, Device Demand, and Qualit	y of
life	18
Figure 3-1 Distribution of Eye Conditions for 120 Subjects	26
Figure 3-2 Age and Gender Distribution for 120 Subjects	27
Figure 3-3 Device Distribution for 120 Subjects	27
Figure 3-4 Distribution of Distance Visual Acuity Data for 120 Subjects	29
Figure 3-5 Distribution of Contrast Sensitivity Data for 120 Subjects	29
Figure 3-6 PIADS Distribution at initial administration for Competence for 120 subjects	31
Figure 3-7 PIADS Distribution at follow up administration for Competence for 120 subjects	31
Figure 3-8 PIADS Distribution at initial administration for Adaptability for 120 Subjects	32
Figure 3-9 PIADS Distribution at follow up administration for Adaptability for 120 subjects	32
Figure 3-10 PIADS Distribution at initial administration for Self-esteem for 120 Subjects	33
Figure 3-11 PIADS Distribution at follow up administration for Self-esteem for 120 Subjects	33
Figure 3-12 PIADS Distribution at initial administration for overall score for 120 Subjects	34
Figure 3-13 PIADS Distribution at follow up administration for overall score for 120 subjects	34
Figure 3-14 Distribution of NEI-VFQ 25 results for overall composite score at initial administrat	tion
for 120 subjects	37
Figure 3-15 Distribution of NEI-VFQ 25 results for overall composite score at follow up	
administration for 120 subjects	37
Figure 3-16 Distribution of NEI-VFQ 25 results for Overall Health at initial and follow up	
administrations for 120 subjects	39
Figure 3-17 Distribution of NEI-VFQ 25 results for Overall Vision at initial and follow up	
administration for 120 subjects	39
Figure 3-18 Distribution of NEI-VFQ 25 results for Near Activities at initial and follow up	
administration for 120 subjects	40
Figure 3-19 Distribution of NEI-VFQ 25 results for Distance Activities at initial and follow up	
administration for 120 subjects	40
Figure 3-20 Distribution of NEI-VFQ 25 results for Peripheral Vision at initial and follow up	
administration for 120 subjects	41

Figure 3-21 Correlation between visual Acuity and overall PIADS score at initial administration. Figure 3-22 Correlation between Visual Acuity and overall PIADS score at follow up administration. Figure 3-23 Correlation between Contrast Sensitivity and overall PIADS score at initial administration. Scatter plot indicates very little correlation between PIADS and CS, n=116............47 FIGURE 3-24 Correlation between Contrast Sensitivity and overall PIADS score at follow up administration. Scatter plot indicates very little correlation between PIADS and CS, n=116......47 Figure 3-25 Correlation between Visual Acuity and overall NEI-VFQ 25 score at initial administration. Scatter plot indicates some but little correlation between NEI-VFQ 25 a nd VA, Figure 3-26 Correlation between Visual Acuity and overall NEI-VFO 25 score at follow up administration. Scatter plot indicates some but little correlation between NEI-VFQ 25 and VA, Figure 3-27 Correlation between Contrast Sensitivity and overall NEI-VFQ 25 score at initial administration. Scatter plot indicates modest correlation between NEI-VFQ 25 and CS, n=116......51 Figure 3-28 Correlation between Contrast Sensitivity and overall NEI-VFQ 25 score at follow up administration. Scatter plot indicates modest correlation between NEI-VFQ 25 and VA, n=116.....52 Figure 3-29 Correlations of PIADS overall scores for initial and follow up administrations for 120 subjects. Moderate correlations are present for PIADS between administrations during given time Figure 3-30 Correlations of NEI-VFQ 25 composite scores for initial and follow up administrations for 120 subjects. Moderate correlations are present for NEI-VFQ25 between administrations during Figure 3-31 Correlations of overall scores between PIADS and NEI-VFQ 25 at initial administration for 120 subjects. Several modest correlations are present between PIADS subscales and NEI-VFQ 25 Figure 3-32 Correlations of overall scores between PIADS and NEI-VFQ 25 at initial administration for 120 subjects. Several modest correlations are present between PIADS subscales and NEI-VFQ 25 Figure 3-35 PIADS Distribution at initial administration for Competence for ARMD Population...63

Figure 3-36 PIADS Distribution at follow up administration for Competence for ARMD population Figure 3-37 PIADS Distribution at initial administration for Adaptability for ARMD population ... 64 Figure 3-38 PIADS Distribution at follow up administration for Adaptability for ARMD population Figure 3-39 PIADS Distribution at initial administration for Self-esteem for ARMD population 65 Figure 3-40 PIADS Distribution at follow up administration for Self-esteem for ARMD population 65 Figure 3-41 PIADS Distribution at initial administration for Overall score for ARMD population.. 66 Figure 3-42 PIADS Distribution at follow up administration for Overall score for ARMD population Figure 3-43 Distribution of NEI-VFO 25 results for Overall Composite score at initial administration Figure 3-44 Distribution of NEI-VFQ 25 results for Overall Composite score at follow up Figure 3-45 Correlation between Visual Acuity and overall PIADS score at initial administration for ARMD population. Scatter plot indicates some weak correlation between PIADS and VA, n=116.71 Figure 3-46 Correlation between Visual Acuity and overall PIADS score at follow up administration for ARMD population. Scatter plot indicates some weak correlation between PIADS and VA, n=116 Figure 3-47 Correlation between Contrast Sensitivity and overall PIADS score at initial administration for ARMD population. Scatter plot indicates very little correlation between PIADS Figure 3-48 Correlation between Contrast Sensitivity and overall PIADS score at follow up administration for ARMD population. Scatter plot indicates very little correlation between PIADS Figure 3-49 Correlation between Visual Acuity and overall NEI-VFQ 25 score at initial administration for ARMD population. Scatter plot indicates very little correlation between NEI-VFQ Figure 3-50 Correlation between Visual Acuity and overall NEI-VFQ 25 score at follow up administration for ARMD population. Scatter plot indicates very little correlation between NEI-VFQ

Figure 3-51 Correlation between Contrast Sensitivity and overall NEI-VFQ 25 score at initial	
administration for ARMD population. Scatter plot indicates modest correlation between PIADS and	
CS, n=1167	7
Figure 3-52 Correlation between Contrast Sensitivity and overall NEI-VFQ 25 score at follow up	
administration for ARMD population. Scatter plot indicates modest correlation between PIADS and	
CS, n=1167	8
Figure 3-53 Correlations of PIADS overall scores for initial and follow up administrations for	
ARMD population. Moderate correlations are present for PIADS between administrations during	
given time period (2 weeks)7	9
Figure 3-54 Correlations of NEI-VFQ 25 composite scores for initial and follow up administrations	
for ARMD population. Moderate correlations are present for NEI-VFQ25 between administrations	
during given time period (2 weeks)	1
Figure 3-55 Correlations of overall scores between PIADS and NEI-VFQ 25 at initial administration	1
for ARMD population. Several modest correlations are present between PIADS subscales and NEI-	
VFQ 25 subscales and overall scores	3
Figure 3-56 Correlations of overall scores between PIADS and NEI-VFQ 25 at follow up	
administration for ARMD population. Several modest correlations are present between PIADS	
subscales and NEI-VFQ 25 subscales and overall scores	5

Chapter 1

Introduction

1.1 Low Vision

Low vision describes any condition of functional vision loss that cannot be corrected by spectacles. contact lenses, or medical interventions such as surgery¹⁻³. The International Classification of Functioning, Disability and Health (ICF), a classification of health and health related domains that describe body functions and structures, is published by the World Health Organization, which provides a useful context for understanding health outcomes. According to ICF, disorders of the eye and other organs of the visual system result in impairments in "seeing functions", which are sub classified as visual acuity function, visual field functions, and quality of vision functions⁴. Low vision may result from many different ocular and neurological disorders. Visual impairments affect about 10% of people aged 65-75, and 20% of those aged 75 or older¹. Disorders of the visual system include any diseases, injuries, or abnormal development affecting the eves or their neural connections. The ensuing visual impairments may interfere with an individual's ability to perform work and their ability to participate in activities of daily living and leisure activities¹. This deficit vision performance is described as a visual impairment ⁵. The prevalence of low vision in North America is increasing dramatically as the baby boomer population ages and becomes more vulnerable to sight-limiting conditions associated with aging. In Canada, the number people over the age of 65 are expected to increase from about 5 million people by 2021, increasing the number of visually impaired individuals¹. The most common causes of blindness in North America are agerelated macular degeneration (AMD), glaucoma, and cataracts^{1,2}. Many individuals with impaired vision fail to obtain vision rehabilitation services because they are unaware of the potential benefits or because they have difficulty locating the services they need^{1, 6}.

Vision loss is not dichotomous, but occurs as a continuum that ranges from modest low vision to total blindness ¹. While the functional consequences (disabilities) of vision loss are generally dependent on the severity of the impairment, this is not always the case ⁷. Assistive devices are available to provide functional solutions for these seeing problems.

There is a broad range of definitions for "quality of life" in the professional literature, making it a highly variable and unstable construct that is difficult to measure¹⁴. Quality of life has been defined as the 'degree to which an individual enjoys the important possibilities of their life' ^{12, 13}. It is assumed to be a complex and multidimensional construct. It is dynamic and changes over time and over a person's life. It arises from a person's interaction with their environment and is experienced differently from person to person, but has the same components for everyone ^{12, 15}.

The primary role of vision rehabilitation is to help people maximize functional independence, maintain quality of life, and adapt to the psychosocial aspects of their vision loss ^{1,2}. Low vision rehabilitation allows people with visual impairments to use their limited residual vision as optimally as possible, with the use of assistive devices and technologies, and to make adaptations to activities of daily living in order to maintain functionality and independence^{1,8}. The intention is to restore lost function and to limit or minimize any related disabilities ^{5,9}. The level of difficulty of any desired seeing task is determined by the individual's functional reserve, which is the difference between the person's seeing abilities and the seeing requirements of the seeing task ⁹. Successful low vision rehabilitation alters the impact of visual impairments on functional performance, thereby reducing the level of disability ¹⁰. Rehabilitation services are intended to achieve positive outcomes in one or more of the following domains: cognition, communication, functional independence, mobility, occupational performance, perception, physical function, psychological well being, quality of life, social skills and socialization ¹¹. Vision rehabilitation can be very successful at reducing costs and prolonging an individual's independent activity and contribution to society despite the visual impairment ¹.

Low vision rehabilitation is a very reliable and successful intervention for many young patients ⁸. However, the majority of people with low vision are elderly. It may be more difficult to counsel and rehabilitate older people because they may be more set in their ways. Many older people become fixated on finding a cure for their vision problems, and defer seeking rehabilitation solutions. There is a higher prevalence of depression in older people with age related vision loss ¹⁶. In these instances, rehabilitation must include counselor support that helps people accept and adapt to their vision loss. Successful low vision rehabilitation is often subjective and its success may be determined by whether the individual feels their assistive device has helped or not ⁸. Rehabilitation should be ongoing rather than short term since generally with the progression of a condition or disease, an individual's general health and mental status may tend to also deteriorate⁸. Repeated outcome administrations are necessary to help track such changes.

Low vision rehabilitation can only be successful if it is accessible to low vision patients. The WHO estimates that there are 140 million people worldwide with low vision, with the leading cause being Cataracts followed by Age-Related Macular Degeneration, 35 million of which require services because their vision loss is untreatable ¹⁷. Some of the issues that individuals face when attempting to access services are: lack of awareness of services, transportation, ineffective communication between patient and eye care practitioners, money, and stigma of low vision services¹⁷.

1.2 Hypotheses

The rationale for obtaining low vision devices is to restore an individual's capability to perform desired seeing tasks that are difficult or impossible due to the presence of a low vision condition. It is generally assumed that restoring an individual's lost ability to perform seeing activities of importance, such as the ability to read or watch television, will translate into a verifiable improvement in the individual's quality of life. Outcome measures have primarily focused on functional impacts of assistive technology¹⁸. Research has focused less on the psychosocial impacts of these interventions. Assuming that the measures represent different aspects of quality of life, we predict that measures using both types will be moderately correlated. We further predict that the two measures are not redundant and will collectively provide broader insights than might otherwise be captured using a single outcomes administration tool. Such outcomes research is generally concerned with verifying that interventions are causally responsible for observed changes in targeted individuals or populations and developing an improved understanding of such causal relationships¹⁹. Two administration tools were used in an attempt to unravel a moderate strength of association. The administration tools were the PIADS (Psychosocial Impact of Assistive Devices Scale) and the NEI-VFQ 25 (National Eye Institute Visual Function Questionnaire), which will described later in this review. NEI-VFQ 25 is a functional status measure in this study, whereas PIADS is measuring the change in impact.

The study aimed to answer the following questions:

1. How do each of the PIADS and NEI-VFQ 25 correlate with clinical measures (Visual acuity and contrast sensitivity)?

- 2. What are the strength of association between the PIADS measure at initial (post-adoption of device) and follow up administrations, and the NEI-VFQ 25 at initial (post-adoption of device) and follow up?
- 3. What is the strength of association between the PIADS and NEI-VFQ 25 at initial administration, and then at follow up? In other words, how does a generic impact measure like the PIADS compare with a vision-specific measure in sensitivity to self-reported functional vision?
- 4. Given the time interval (2 weeks) between initial and follow up administrations, do we expect the relationship to change over time or remain stable for the NEI-VFQ 25 and PIADS?

The goal of this project was to develop a conceptual framework for relating PIADS (impact) and NEI-VFQ 25 (functional status). The aim was to attempt to relate a functional measurement to a subjective one. NEI-VFQ 25 provided a functional outcome while PIADS rendered a subjective experience. The following has been hypothesized:

- 1. The NEI-VFQ 25 will exhibit a stronger correlation to clinical measures than the PIADS will. (i.e. correlating to VA and CS)
- 2. A modest correlation will exist between the PIADS measure at initial and follow up administration and for the NEI-VFQ 25 as well.
- 3. A modest correlation will exist between the NEI-VFQ 25 and PIADS measure at initial administration, and at follow up.

Finally, as part of a secondary hypothesis, we expected that these relationships will not change over time but rather remain stable given the short interval in which the measures are being repeated.

1.3 Outcomes Research

Outcomes research deals with the questions about which services work best, under which particular conditions, and for which kinds of service recipients²². Evaluation of measures has become increasingly important as a tool to aid decision makers concerning allocating resources within health care ²¹. There is a growing interest in using outcome measures to demonstrate the effectiveness and quality of rehabilitation interventions²³, to investigate the association between age and vision loss, and to establish the demand for low vision rehabilitative services ²⁴. The effectiveness of low vision rehabilitation is determined by the usefulness of the services rendered to service consumers with impaired vision. When the service is effective at restoring functional capability and improving quality of life, then the outcome is positive. However, it is important to recognize that improvements in functional capability do not necessarily translate to an improved quality of life. Hence, outcomes investigations cannot be restricted exclusively to functional and clinical status administrations. They

also must contemplate factors such as consumer satisfaction, value, quality, or cost ¹⁴. It is difficult to identify all of the interventions that legitimately contribute to a positive rehabilitation outcome. Even if all of these critical components could be identified, one would still need to quantify them in some way and then establish how they are integrated. This would depend on suitable measurement protocols and each intervention presents its own measurement challenges ²⁵. Nevertheless, using benchmarks and guidelines for predicting successful outcomes is usually the best method for assessing low vision outcomes. Measures of patient satisfaction, vision functioning in various activities of daily living, impacts on individual's well being, and levels of understanding about the causal eye condition are some of the strategies that are used to quantify successful outcomes ²⁶. Patient outcome criteria should also include improved understanding of emotional and psychological adjustments to vision loss, improved ability to complete independently activities of daily living, and improved knowledge about relevant resources and assistive devices ¹.

The following eight criteria have been suggested ^{27, 28} for evaluating instruments that are used to assess patient based outcome measures:

Appropriateness: Investigators consider match of an instrument to the specific purpose and question of a trial.

Reliability: Instrument is reproducible and internally consistent, degree to which a measure is free from random error.

Validity: Judging whether an instrument measures what it purports to measure.

Responsiveness: Addresses whether an instrument is sensitive to change of importance of patients.

Precision: Concerned with number and accuracy of distinctions made by an instrument.

Interpretability: How meaningful are the scores from the instrument.

Acceptability: How acceptable an instrument is for respondents to complete.

Feasibility: Extent of effort, burden and disruption to staff and clinical care arising from use of instrument.

Assessing such psychometric factors such as reliability and internal scale consistency should be taken into account for every measure. Cronbach's alpha

$$\alpha = \frac{N \cdot \bar{r}}{1 + (N-1) \cdot \bar{r}}_{29}$$

where N is the number of items and r-bar is the average inter-item correlation among the items should be used for assessing reliability of a subscale's internal consistency, where the acceptable minimum value should be >0.70, the minimum >0.6, and a poor internal consistency would be alpha <0.6 30 . Many of the times these factors are not reported on and the rationale for the use of outcomes measures is not explicitly stated 18 .

Using a standard taxonomy of interventions and treatments is important to provide clarity and proper standardization of methods to serve as a basis for measuring interventions that are used in conjunction with outcomes ²⁵. Taxonomy is a typology that brings order and rigor to the description of myriad rehabilitation interventions ²⁵. The purpose of a rehabilitation intervention taxonomy is to characterize systematically the many treatments, procedures, and interventions that are used in rehabilitation, taking into account their multidimensionality with respect to content, purpose, intensity, duration, sequence, frequency, and other characteristics²⁵. Taxonomies may help to standardize collection on treatment intervention that will elicit a comparison of results across studies and across sites, such that standardization on the input side will greatly strengthen ability to make comparisons across an even wider range of interventions and outcomes ²⁵. Thus, the need for integrated systems is crucial in outcomes research.

When describing outcomes research, authors should define their measurement constructs and domains to reflect a thorough understanding of how well their conceptual model is covered ²⁰. Measures in outcomes research that include data from both general and impaired subgroups are useful for comparison reasons. This ensures that there are benchmark standards to facilitate interpretations of scale normality, specificity, and deviance. Researchers should only use measures that are known to produce data with acceptable reliability and validity. These measures should have evidence of content, criterion, and/or construct validity ³¹. Measures should at least satisfy the minimum standards and provide information on the above items. Deciding on the measures to use is one of the problematic aspects in planning an outcomes study of most assistive technologies ²². Without standardization of measures, clinical programming would be unorganized, unclear ²⁸ and future researchers would find difficulty in tracking back records and reproducing results.

Some surveys used in outcomes research may be insensitive to differences between people ²⁰ due to either a floor or ceiling effect. The data may be skewed by grouping individuals at the minimum or maximum extremes. Floor or ceiling effects are present when 15% or more of a group of scores are

present at either extreme ²⁰. Health-related quality of life measures should not be affected by such factors as culture, social circumstance, or impairment type, unless the instrument is designed to detect differences in such measures. The measures utilized in this study, which will be described later, are unaffected by these domains. The sample population includes a variety of cultures, socio-economic backgrounds and visual impairments which may present a bias if the measures were sensitive to such factors. It is interesting to note that one study actually found that such factors influence one of the measures used in this study³². Bias is systematic variation resulting in high or low results, and both random unreliability and systematic biases need to be investigated during the development of measures and considered when being applied ²⁸. When selecting outcome measures, investigators should understand the general purpose of measures, the population that is being evaluated, the likely consequences of the administration, and any procedures that are required to improve validity and decrease error or bias ²⁸.

Outcome measures are used in clinical settings when the benefits to the client outweigh the cost of using the measure ³³. They may assist clinicians in determining client goals for rehabilitation which allows them to map out a more appropriate individual rehabilitation program than might otherwise be possible ³³. Also, knowing the goals also assists the clinician and client to select an appropriate device, including making the decision about whether to progress to a more sophisticated device ³³. Moreover, it is important to have some sort of mechanism for evaluating the success of such interventions at the conclusion of the service contact.³³. Clinicians must be aware of how to evaluate meaningful changes in quality of life, which may be accomplished by considering the characteristics of the population, psychometric properties of the quality of life questionnaire, the adequacy of administrations, power, and so forth ³⁴. This will ensure an effective strategy in obtaining the most clinically relevant and useful information. Many clinicians use evidence-based information to provide additional information about clinically relevant research ³⁵.

The order in which instruments are administered may have an effect on the quality of responses obtained. However one study looking at the effect of order of administration of health related quality of life interview instruments on responses found that the overall order did not have a large effect on the responses³⁶. Nonetheless, the order should be kept the same for all respondents to avoid introducing a bias in response into the study. The study looked at two generic health-related instruments and one vision targeted instrument. It was assumed that administering the generic instrument followed by the vision targeted instrument was logical and appropriate. Others have

reported that respondents scored lower on mental health subscales when they are asked after responding to questions about their vision loss ³⁶. Consequently, the order of surveys should be determined by the goals of the study and should remain consistent for the duration of the study.

An uncommon method used in the administration of quality of life has been co-morbidity scores. Comorbidity is total burden of illness unrelated to a patient's principal diagnosis and has been shown to be important in assessing severity of disease and the risk of mortality³⁷. Un-weighted and weighted co-morbidity indexes were created for assessing co-morbidity and visual function of the LALES (Los Angeles Latino Eye Study), in order to model the low physical function with self-reported systemic co-morbidities, and illustrate the usefulness of these scores in the analysis of quality of life in certain diseases³⁷.

Babcock et al looked at two rehabilitation outcomes measures to examine their compatibility. FAST (Functional Assessment of Self-Reliance Tasks) is a clinical rating instrument and VA-13 is a self reporting instrument³⁸. The VA-13 purports to measure functional independence while FAST measures functional ability ³⁸. FAST serves as a clinical screen, providing clinicians with the administration information required to develop both treatment and discharge plans. The study hypothesized that respondent's ratings should not be completely unrelated or different, and any inconsistencies would be explained by differences in the measurements ³⁸. Although both scales functioned consistently, they were found to be incompatible.

Another study utilized the NEI-VFQ 25 and the SF-12. This latter instrument is a generic quality of life measure derived from the SF-36, contains one or more questions to measure each of the eight health concepts on the original SF-36 measures: physical functioning, role limitations due to physical health, bodily pain, general health perceptions, vitality, social functioning, role, role limitations due to emotional problems and mental health ³⁹. The study showed that patients with worse vision had more difficulties in performing most vision dependent daily activities and had worse subscale scores than patients with less severe vision loss or those without eye diseases³⁹. The SF-12/36 measure illustrates relatively little change and appears to be a relatively limited instrument for assessing visual function ⁴⁰.

Other measures have been developed to specifically look at self-reports of visual function. The Functional Assessment Questionnaire (FAQ) was developed as a self-report of visual function and

overall well being, and the Functional Vision Performance Test (FVPT) was designed as an observer rated administration of visual performance ⁴¹. FAQ evaluated specific visual function and functional independence as perceived by patients, while the FVPT allocates an observer to measure an individual's visual performance in standardized tasks ⁴¹. The study demonstrated that the involvement of various services in vision rehabilitation would maximize the participant's level of function. An overview of low vision rehabilitation notes that several factors play a role in a successful rehabilitation service, such as low vision team, rehabilitative approach, rehabilitation, activities of daily living, travel and social or recreational activities ⁴². Other studies have also shown the importance of proactively utilizing all vision rehabilitation services in an attempt to maximize an individual's experience at providing the best ways in which to increase function.

One final study looked at the Low Vision Quality of Life Questionnaire (LVQOL) and demonstrated it to be a reliable and valid method for assessing vision specific quality of life ⁴³. It was deemed acceptable for use in a clinical setting and for effectively determining the impact of low vision rehabilitation. A distinguishable feature of this questionnaire is that it is specifically designed for low vision, which may be more suitable in assessing outcomes of low vision rehabilitation than other measures. It was also shown to be related to functional measures of vision, such as distance acuity and contrast sensitivity ⁴³. While the NEI-VFQ 25, which will be discussed next, is successful at detecting such changes, it may be interesting to compare it to the LVQOL in future research to determine which measure is more attune to low vision outcomes.

1.4 NEI-VFQ (National Eye Institute Visual Function Questionnaire)

The NEI-VFQ 25 was created by RAND with funding support from the National Eye Institute (NEI) in order to develop a domain that would allow individuals to report on their professed visual health⁴⁴⁻⁴⁷. The NEI-VFQ 25 measures quality of life based on visual disability and how the disability affects well being and emotional responses. It is a measure of vision targeted health-related quality of life and generates a single overall visual function score that reports an individual's perception of their visual functioning^{30, 48}. The NEI-VFQ 25 consist of twenty-five items, which generates the following twelve visual subscales: overall health, overall vision, difficulty with near vision and distance activities, ocular pain, driving difficulties, limitations and peripheral vision and color vision; social functioning, role limitations, dependency and mental health symptoms related to vision^{44, 45, 46, ^{47, 49, 50}. Eleven subscales constitute independent function specific measures of visual functioning, related specific aspects of visual function ³⁰. The twelfth subscale is a single general health rating} scale, which is shown to be a very robust predictor of future health and mortality in population based studies^{44, 48}. The NEI-VFQ-25 is a short form version of the 51-item National Eye Institute Visual Function Questionnaire (NEI-VFQ), a vision specific HRQOL instrument derived from a multicondition focus group process ^{49, 51}, which has been shown to retain much of the original content of the longer questionnaire ⁴⁴. The reliability and validity of the NEI-VFQ-25 has been compared to the NEI-VFQ-51, and has been shown to maintain the same multi-dimensional content, reliability, and validity of the full length survey ^{44, 49, 51}. The shorter version was created in response to a need that would be appropriate for research and clinical settings. Studies are ongoing to assess the reliability and validity of the 25-item scale in comparison to both the 51-item and previous 96-item guestionnaire ⁴⁴. The NEI-VFQ-25 contains twelve subscales and requires approximately ten minutes to complete an interview-administered format. Topics covered include difficulties reading a newspaper, performing activities up close, or feeling like he/she accomplishes less than he/she would like to because of the vision loss. The NEI-VFQ 25 has been shown to be sensitive to any low vision cause, and thus is a clinically valid measure ^{44, 46, 50}. The measure also exhibits internal consistency and reliability which has been assessed using Cronbach's alpha^{30, 52}. Item internal consistency and item discriminate validity could not be calculated for Peripheral Vision, Color Vision, General Vision, and General Health because these subscales have only one item ³⁰, but overall evidence for validity has been examined ⁴⁴. The 25 item questionnaire was chosen in recognition that survey length plays an important role in data quality and costs. The NEI-VFQ 25 has been used in numerous studies, and is proven to be a valid and reliable questionnaire for participants with various eye conditions, and is appropriate for a broad range of individuals^{32, 36, 37, 39, 40, 46, 47, 48, 49, 51, 52, 53, 53, 54,} ^{54, 55, 55-74}. The NEI-VFQ 25 has been deemed acceptable for use in other languages^{30, 60, 66, 70, 75}, such as French, Spanish, Italian, Japanese, and Turkish. Moreover, the NEI-VFQ 25 is a responsive and evaluative measure that is able to detect meaningful changes in populations over time and across any eye condition, changes in visual acuity, in addition to changes associated with low vision rehabilitation services^{44, 46, 47, 50, 72, 75}. NEI-VFQ 25 is a useful tool in assessing whether or not improved functional performance occurs as a result of an intervention in a study, as may be noted in the studies acknowledged previously.

In previous studies, the NEI-VFQ 25 was administered pre and post intervention when horizontal rectus tenotomy was performed on patients with congenital nystagmus⁴⁸. The following study demonstrates how NEI-VFQ 25 can be used to monitor impact of intervention on a low vision population. The following data were reported:

Table 1: NEI-VFO 25 Subscale Scores Pre and Post Intervention⁴⁸

Table 3. Secondary Outcome Measure: NEI-VFQ* Change					
Patient No.	Age (yrs)	PRE- VFQ	POST- VFQ		
1	39	48 [†]	64†		
2	30	63 [†]	83†		
3	39	83†	85†		
4 [‡]	49	77†	79 [†]		
5 [‡]	39	79 [†]	95 [†]		
6	28	77†	88†		
7 [‡]	39	62†	74†		
8	20	78	71		
9‡	55	78 [†]	82†		
10 [‡]	34	81†	93†		

T 11

*National Eye Institute Visual Function Questionnaire test score before tenotomy (PRE-VFQ) and 52 weeks after tenotomy (POST-VFQ). [†]Patients who reported increased visual functioning. [‡]Congenital nystagmus plus asymmetric (a)periodic alternating nystagmus.

This illustrates that following an intervention, if the improvement is favorable, then the NEI-VFQ 25 is sensitive to the difference in change and is able to pick this up. The NEI-VFQ 25 also has been shown to be sensitive to changes in functional status and quality of life related to the provision of low vision services ⁷⁶, and scores have also been shown to change after vision rehabilitation training 24, 65, 76

The NEI-VFQ 25 also has been used to assess depression in older adults with visual impairments ⁶². Any individual who experiences an impairment resulting in a disability is likely to experience some level of depression. Scores were reported to be lower for depressed individuals than for those who were not, indicating that those who reported lower scores seemed to have more depressive symptoms than those who scores higher ⁶². Depression was associated with the specific NEI-VFO 25 subscales that are more psychosocially oriented such as role difficulties, mental health, and dependency ⁶². Based on studies reported in the literature, the NEI-VFQ 25 appears to be a valid and reliable tool for assessing health related quality of life.

1.5 PIADS (Psychosocial Impact of Assistive Devices Scale)

Quality of life is a subjective concept and should be based on a user's perception of his/her own well being, whether or not they have full or partial functional capability. The Psychosocial Impact of Assistive Devices Scale (PIADS) emerged through the development of several quality of life scales. The PIADS evolved from empirical explorations with a pleasure-arousal dominance scale, users' responses concerning how they expected devices to impact their quality of life, and the literature on personality research (which suggested the inclusion of constructs associated with perceived self-efficacy and personal control) ^{15, 77}. Day and Jutai developed PIADS as a measure that was specifically designed to assess the psychosocial impact of assistive technology, and assess the effects of a device on functional independence, well being, and quality of life^{77, 78}. The goal was to create a scale that would reliably measure perceived device impact and discriminate among device categories and user conditions in a clinically sensible way ¹⁵. The term 'psychosocial' refers to both factors within the person and factors attributable to the environment that affect the psychological adjustment of individuals who have a disability ⁷⁷. It is assumed that assistive technology should have some measurable impact on subjective perceptions of psychosocial well being and quality of life ^{3, 78}.

PIADS is a more sensitive of a scale than other measures, and is responsive to detecting clinically important change over time, sensitive to important variables such as the user's clinical condition, device stigma, and functional feature of the device^{12, 13, 15, 77, 79}. The instrument has good internal consistency, test-retest reliability, and construct validity ⁷⁷. PIADS was developed due to a need for a measure that would properly assess impact of an assistive device, since much health related quality of life measures were too medically oriented and focused more on the change in health status, rather than the impact attributable to any particular form of intervention. The scale is based on 26 items, measuring a user's perceptions on three different sub-scales: Competence, Adaptability, and Selfesteem. Competence (12 items) refers to an individual's perceived functional capability, independence, and performance^{3, 15, 77, 79-81}. Example determinants within the Competence subscale would be adequacy, efficiency, and skillfulness. Adaptability (6 items) refers to inclination or motivation to participate socially and take risks^{3, 15, 77, 79-81}. Example determinants within this subscale would be ability to participate, willingness to take chances, and ability to take advantage of opportunities. Finally, self-esteem (8 items) reflects on self confidence, self-esteem and emotional well being^{3, 15, 77, 79-81}. Example determinants within this subscale would be sense of power, happiness, and frustration. An individual can score themselves within a range of -3 to +3. A score of +1 to +3 indicates a positive impact; a score of -1 to -3 indicates a negative impact, while a score of

0 indicates no perceived impact or simply neutrality. PIADS has been used in several studies that investigate quality of life for various assistive devices, without being specifically limited to vision loss^{3, 12, 22, 77-86}, and has been proven as a reliable, sensible, valid, and responsive tool, with good clinical utility for testing psychosocial impact of assistive technology^{3, 15, 22, 81, 84}. The PIADS scale has been proven to be internally consistent using Cronbach's alpha, that items are homogenous but not redundant, and demonstrate excellent psychometric properties^{22, 79, 81}, in both English and other languages⁸⁶.

The PIADS was used to investigate changes in quality of life following small fenestra stapedotomy, a surgical procedure to improve severe conductive hearing loss. Overall, patients experienced a positive impact following device intervention. The results of this study compared favorably with other studies in which PIADS was used to validate the use of contact lenses and eyeglasses ⁸⁰. The study suggested the possibility that impact of the assistive device may in fact diminish with time ⁸². This is generally the case for any assistive device, and not just specific to hearing devices, that the effectiveness is not as dramatic as when the device is first adopted. It was also found that the psychosocial impact on users was stable over time in a study with electronic aids for daily living, and it was suggested that the reported impacts may be a blend of perceptions relating to the device and services in stroke rehabilitation illustrated a change in impact over time, rather than at first⁸³, suggesting in fact the possibility that depending on device and condition, impact and perceived effectiveness may not be apparent until captured with a repeated measure. This was also consistent with a study on hearing aids, implying that users are more likely to experience the expected benefit after a certain period of time of using the device ⁷⁹.

The research and development of the PIADS has proceeded in the best tradition of rehabilitation outcome measures, by first developing a measure that was sensitive and responsive to clinically important variations. The ability of the scale to predict abandonment and retention of assistive devices has prompted for further research in this field ¹⁵. PIADS provides clinicians with a reliable and economical method for assessing the role of psychosocial factors in retention or abandonment of an assistive device ⁸². It also may provide researchers with information that will help create better technologies and improved matches with the needs of users. It also may help predict how new assistive technologies and prototype devices will be accepted or abandoned by their users and used effectively in both short and long terms ^{11, 12}. PIADS is not a measure of quality of life, but a measure

of the impact of an assistive device on quality of life, and is able to predict continuation or discontinuation of a device based on impact ⁸⁵. It is a reliable measure that provides best results when used in conjunction with another measure ¹², such as the NEI-VFQ 25.

1.6 Assistive Technology Devices (ATD's)

An assistive device is any item, piece of equipment, or product system that is used to increase, maintain, or improve the functional capabilities of individuals with disabilities ⁸⁵. It is any device that would help an individual accomplish a task that they otherwise would not be able to. Assistive devices (ATD's) are considered essential for the health and well being of many people with sensory or physical disabilities⁸¹. They are among the most widely prescribed and recommended therapies for these individuals and they constitute a significant proportion of health and rehabilitation costs¹⁵. In reference to the significant cost and benefits associated, assistive technology research is now gaining more attention⁸⁷. The demand for assistive devices is significant and is expected to continue to grow ¹⁴. Vision devices range from basic eyeglasses, magnifiers, binoculars, and telescopes to sophisticated electro optical devices such as closed circuit television (CCTV) systems. The purpose of an assistive device is to improve function and quality of life^{13, 19, 82}. Jutai defines the role of an assistive device as one that will promote good quality of life for the user to the extent to which it makes the user feel competent, confident and inclined (or motivated) to exploit life's possibilities ¹², ^{15, 78, 82}. Reported problems adapting or using assistive devices are generally attributed to a high degree of dissatisfaction with assistive devices^{81, 82}. The increased involvement of clients in the rehabilitation process increases the likelihood of a good outcome ³³. A significant proportion of low vision devices are abandoned within four months of adoption². These cases may indicate a failure to fit the device to the individual with some expectation that the individual will eventually adapt to the device ¹⁵. When the opinion of the individual is incorporated into the selection of a device, the likelihood that they will abandon that device is decreased ⁸¹. Some major problems reported with assistive devices are inadequate performance, failure to achieve improved function, difficulty in operating device, and the high cost and maintenance of the device ^{12, 82, 85}. Overall, success is achieved with a device when an individual finds it to be beneficial and uses it to solve one or more visual problems ⁸⁸.

Assistive technology outcomes research is a systemic study of the impact of assistive technology devices on the lives of users¹⁹. Assistive technology outcomes encompass a variety of factors: facilitation of activities of daily living, changes in functional independence, user satisfaction, societal

and individual gains, and effect on participation, employment, and societal roles ⁸⁷. Psychosocial factors, such as attitudes, perceptions, and behaviors, appear to play critical roles in determination of assistive technology device outcomes ⁸⁵. Psychosocial impact describes the extent to which assistive devices affect the individual's subjective perceptions of psychological well being and quality of life ⁸⁵. It is important to use standardized instruments to properly evaluate those outcomes. This requires the use of instruments that will produce data of quality, and with verified reliability, validity, and responsiveness. Both the PIADS and NEI-VFQ 25 meet these standards.

The use of PIADS reflects an assumption that the adoption of a device will lead to an improved quality of life, which may include improvement in health, happiness and advancement of society ⁸¹. Assistive technology may have an impact on psychosocial status that is somewhat independent from the impact on vision function. It is useful in determining whether or not this is indeed the case, and if the opposite is true where users are dissatisfied and have abandoned their devices ⁸¹.

Quality of life and its component feelings of competence, self efficacy, self confidence, self esteem are all considered to be important goals of rehabilitation. One would expect that the likelihood of assistive device abandonment would increase if the device failed to enhance these feelings ⁸⁹. Accordingly, outcomes research provides a useful mechanism for identifying different ways to improve the provision of rehabilitation services and devices to individuals with low vision ¹⁴.

Some health related quality of life measures appear to be too medically oriented to focus properly on the importance of assistive technologies, which is not to promote good health and healing, but to restore functional capabilities ¹³. In these instances, the goal is to assess the impact of the device or intervention rather than just a change in health status. The PIADS is expressly designed to assess the perceived impact of an assistive device on psychosocial wellbeing, with its three subscales, Competence, Adaptability, and Self-esteem.

1.7 PIADS and NEI-VFQ 25: A comparison

The PIADS and the NEI-VFQ 25 are two measures that can be used to evaluate the impact of using an assistive device on an individual's quality of life. In this study, the NEI-VFQ 25 will look at functional status, and PIADS will explore the impact. Quality of life is defined in the NEI-VFQ 25 based on an individual's functional capabilities whereas in the PIADS it is related to the perceived impact of an assistive device, and thus the PIADS is better equipped to measure the psychosocial

impact of an assistive device. NEI-VFQ 25 is specifically geared to visual loss, whereas the PIADS may be used for any device. Research has shown that PIADS is sensitive to the use of an assistive device across various populations and that the impact is unaffected by illness and disability ^{103, 54, 90, 55}. NEI-VFQ 25 scores are generally higher for individuals with less visual disability than for individuals with greater levels of vision loss ^{44, 46, 50}. Both measures are sensitive in their own manner, but PIADS will likely be shown to be more sensitive. In general, quality of life should be consistent no matter how it is measured. However, it seems likely that it cannot be measured accurately with a single test instrument. It will be significant to examine whether or not the measures in question exhibit a modest correlation since they are both assessing different aspects quality of life. It is expected that these measures will be correlated, and some aspects of PIADS and NEI-VFQ 25 will be more correlated that others. Even though they do measure different aspects of quality of life, one can still say that they should be related.

It is important to establish a conceptual framework that explains how assistive technology impacts on quality of life and how it relates to the measures being considered. A framework also can provide a template for other models. It provides a useful perspective for all stakeholders (consumers, funders, and service providers) ⁹⁰. Models also help us understand the functional problems upon which the device type is intended to impact, critical features of the device type that are putatively responsible for those impacts, characteristics of individuals that are affected by the model, elements and contingencies in the causal chain connecting procurement of the device type with likely outcomes, and expected changes in user's status and in their environment that constitute those outcomes ⁹⁰.

The International Classification of Functioning, Disability and Health (ICF) described two conceptual models for disability:

- A medical model views disability as a feature of the person that is directly caused by the disease or health condition, and
- A social model views disability as a socially created problem and not at all an attribute of the individual ⁹¹.

Both models can be incorporated to provide completion, since neither one seems adequate on its own. Below is ICF's representation of the model of disability:

Figure 1-1 ICF Disability Model⁹¹

Health condition influences several domains, body functions and structure, activity, participation, which are all intertwined and affected by environmental and personal factors.

Disability and functioning are portrayed as outcomes of the interactions between health conditions and contextual factors, and functioning is identified at the level of the body, the whole person, or the whole person in a social context ⁹¹. This framework can be used to encourage research that promotes a common understanding among those with an interest on various perspectives in considering assistive technology device outcomes ⁹⁰. CATOR assigned priority to outcomes in five areas: effectiveness, social significance, device satisfaction, psychological functioning, and subjective well being ¹⁹. The user's perspective must be accounted for and the framework should facilitate administrations of the effect of assistive technology devices on users. Below is a conceptual framework that is proposed for the current study.

Figure 1-2 Proposed Conceptual Model Linking Vision Impairment, Device Demand, and Quality of life

A change in eye condition leads to visual impairment, causing a disability, initiating a demand for services (i.e. Assistive Device Adoption), which will aid in restoring some functional capability, leading to a verifiable improvement in quality of life.

The above model suggests that a change in eye condition, as measured by clinical measures, will likely lead to a visual impairment, thus eliciting a demand for change in function. In turn, a demand for change in function should therefore bring forth the adoption of a device to aid in restoring function, thus translating into a verifiable improvement in quality of life, which should then translate into a perceived increased in psychosocial impact. The purpose of the model is to show that although one may not necessarily be able to restore lost visual function, but by adopting a device, quality of life can be improve through restoring some functional status.

1.8 Research Gaps

There are some obvious gaps in the research literature. No large scale randomized control trial needs have been conducted to describe quality of life in all of its significant constructs: visual function, clinical measures, physical function, psychosocial function, and so forth. As well, more and better research is needed to look at the perspective of the patient and to evaluate the most effective tools to meet their rehabilitation demands. Further outcomes research is warranted as the visually impaired aging population is constantly increasing.

1.9 Significance of Study

Although it may be desirable to find a single instrument for measuring quality of life changes associated with low vision rehabilitation, the quality of life concept is much too complicated for this to be viable. This study investigated how a vision-specific measure compares with a more generic measure of quality of life. On the surface, vision-specific measures would seem to enjoy a validity advantage. Measures like the NEI-VFQ 25 appear to address the issues most relevant to successful use of low vision aids such as closed-circuit television systems (CCTV). However, the effectiveness of these devices at restoring lost functional capabilities may be poorly correlated with how well they improve psychosocial well-being. For example, an individual with more severe vision loss may derive significant functional benefit from a CCTV system that allows him/her to read independently, but the presumed impact on quality of life may be offset by less frequent visits by friends or relatives who used to drop by to read to. No single measure can successfully engage all of the issues inherent in this complex problem. Rather, each measure may have a different clinical application.

Chapter 2 Methods

2.1 Participants

One hundred and twenty adult subjects (≥18yrs) were recruited after obtaining their first ever prescribed low vision device through the Low Vision Clinic at the University of Waterloo, School of Optometry. This recruitment is related to a parent research project being funded by the Canadian Institutes of Health Research (CIHR). Recruitment was conducted sequentially from consecutive appointments at the Low Vision Clinic and therefore was not selected randomly. First, their eligibility for the study was determined. The inclusion criteria required them to be over the age of 18, a new patient to the clinic, and someone who had little or no experience with low vision aids. All other patients were considered ineligible. The age criterion was selected to ensure subjects were competent and able to give personal consent with respect to the significant time commitment required to participate in the host CIHR study. This group was selected order to track changes that occur following the first adoption of a device.

2.2 Procedures

Prospective subjects were approached on the day of their low vision administration. They were given a large print information letter that described the study being conducted, as well to receiving the information verbally. They were invited to ask questions to obtain any additional information they required. If they agreed to participate, they were asked to sign a consent form confirming their agreement. For those patients who refused to take part, their reasons were noted and recorded in a database.

After a person completed their low vision clinical administration, their file was reviewed and data collected from forms that were completed during the administration. These data include eye condition, living support, visual acuities (distance VA's, Pelli-Robson Contrast Sensitivity tests), primary and secondary chief complaints, diagnosis, and any other limitations.

Subjects were contacted approximately two weeks after their low vision appointment. The initial administration was conducted after verifying that subjects had received their low vision device and

had commenced using it. If they had not yet received their low vision devices, a subsequent contact time was arranged to ensure they were utilizing their new device before taking part in the first administration. Those who decided not to obtain a device were excluded from the study. Data collection was administered by telephone interview for both the PIADS and the NEI-VFQ 25. For the NEI-VFQ 25, standard instructions were followed and respondents were asked to answer all questions, taking into account their use of the assistive device. It has been shown that there is no statistically significant difference in results obtained from face to face and telephone interviews⁸⁹. Subjects were contacted for follow-up administration two weeks after their initial administration. The parent CIHR study continued with the follow up administrations at bi-weekly intervals for six months, followed by monthly interviews over the next six months.

The primary administration instruments were PIADS and NEI-VFQ 25. These data were recorded on data report sheets and then transferred into an SPSS database for analysis.

2.3 Instruments

The measures used were the National Eye Institute Visual Function Questionnaire (NEI-VFQ 25) and the Psychosocial Impact of Assistive Devices Scales (PIADS). Table 2 provides examples of items that are included in the 26-item PIADS measure. A copy of a complete PIADS questionnaire is included in Appendix A:

	Decreases		No Increases Change		S		
	-3	-2	-1	0	1	2	3
Embarrassment							
Self-Confidence							
Ability to Adapt to Activities of Daily Living							

Table 2	Example	e of PIADS	Items ⁸¹
---------	---------	------------	---------------------

Participants were asked to score the impact that their device has had on each item; for example if using the device has increased, decreased, or made no change in their competence. The scoring of

three of the PIADS items are reversed (confusion, frustration and embarrassment). The score for each subscale is not the total score for that subscale. Instead, the subscale score is based on the mean for all the items on that subscale. This ensures that each subscale will always have a score between - 3 and +3, thereby facilitating interpretation and comparison.

The NEI-VFQ 25 was scored according to the scoring algorithm ⁴⁵. Please see Appendix B for the complete questionnaire of the NEI-VFQ 25. NEI-VFQ-25 subscales are scored on a scale from 0 to 100, with 100 indicating the highest level of function. As specified by Mangione et al, the VFQ-25 composite score is calculated as the un-weighted average of all items excluding the general health subscale ⁴⁵. All items are scored so that a high score represents better functioning. Item responses were adjusted for directionality (high values reflect participants with good vision or health) and were transformed to a scale of 0 to 100. Adjusted items belonging to a scale were averaged together to create a single scale score ⁶⁷. The overall (composite) score is the mean of all responses to all 11 domains (excluding general health) and represents a global estimate of a patient's visual function ⁴⁸. For those individuals who do not drive it was coded as missing and they did not have the driving subscale included in their composite score. Participants were excluded from the analysis if they had stopped doing the activity for reasons other than poor eyesight.

The overall composite score of the NEI-VFQ was tabulated, in addition to an overall PIADS score of the three subscales. The composite score is best used in situations where an overall measure of vision targeted health-related quality of life is desired ⁴⁸. The NEI-VFQ-25 composite (overall) score is calculated as the un-weighted average of all items, excluding the general health subscale. The two measures were not directly comparable, since the PIADS questionnaire contains 26 items, grouped into three-subscales, and the NEI-VFQ contains 25 items, grouped into 12 subscales.

2.4 Data Analysis

Data analysis was performed using SPSS version 13.00. The sample size population was chosen at 120 subjects, and α (alpha) was set to 0.05. β will equal 1-power. With 80% power, β will equal 0.2. Failure to reject the null hypothesis will yield a type I error where the probability of error is likely in 5% of all studies. The Null Hypothesis in this case is that the means of the data sets will be equal and no significant correlation would exist. The alternative hypothesis would state that they are not equal and that a difference does exist, thus a significant correlation is present. In a paired t-test, if the 95% confidence interval does not include the null hypothesis, then we can safely reject. If p < α then we
would have sufficient evidence to reject the null hypothesis. If $p > \alpha$ then we would fail to reject the null hypothesis. The degrees of freedom would be 119 (# of pairs-1). We made the assumption that a normal distribution existed for the population. The assumption was also made that the populations have the same variance and the samples will be independent of one another. Each subject was assessed individually and unaware of the answers of other subjects. The above applied to both the PIADS and NEI-VFQ 25.

Clinical data were collected for analysis. Distance visual acuity was recorded, because it is a common reference for visual function ⁹². It is tested by clinicians by using standardized wall charts with black letters on a white background under high light levels. The visual acuity measure was converted from a decimal acuity to its log MAR equivalent. (Log minimum angle of resolution) VA = 1/MAR and Log MAR = log (1/VA). Contrast sensitivity was recorded from Pelli Robson data in clinic records.

Descriptive data for the PIADS and NEI-VFQ 25 at initial and follow up administrations are presented as medians, floor and ceiling effects, and means \pm standard deviation. Floor or ceiling effects are identified when 15% or more of scores occur at either extreme. Graphical representations of these distributions are presented.

2.4.1 Psychometric Properties of the Instruments

Psychometric properties of the PIADS and the NEI-VFQ 25 have been verified and validated in the literature. The psychometrics were examined for the sample population of this study. Internal consistency of both measures was calculated using Cronbach's alpha ²⁹. Both measures at both time instances had a Cronbach's alpha > 0.70, except the NEI-VFQ 25 at initial administration whose alpha value was 0.695, which is still deemed to be acceptable. Test-retest reliability analysis was done by calculating the inter item correlation coefficient (ICC). Responsiveness was tested by determining the effect size and conducting t-tests to see if there was a change between the two instances. When the sample size is reasonable and the t-value is greater than 1.96, the null hypothesis is rejected and one can conclude that a statistically significant change in the measure occurred over time, making the measure responsive ⁹³. A significant change in score would be evidence of responsiveness, where effect size (ES) was calculated as the mean change in scores between first and second administration, divided by the standard deviation of the scale at the first administration ⁴⁶. A large effect size indicates greater likelihood that the instrument as a whole or the various subscales

will detect progression; an effect size of 0.2 to 0.49 represents a small change, 0.5 to 0.79 a medium change, and an effect size > 0.8 indicates that the scale on average changed by 0.8 SDs, suggesting that the scale or domain is responsive⁴⁶.

Please refer to Appendices C and F for ICC matrix, reliability and effect size calculations.

Looking at the literature for the NEI-VFQ 25, an 80% power is attained when α = 0.05 and is twotailed. β will be equal to 0.2, which would mean that a type II error would occur in 20% of the studies. A two-tailed is a test that will be interpreted if the criterion for significance (alpha) falls in either direction. The following table provides us with an estimate of the sample sizes needed:

Table 3 Statistical Values for NEI-VFQ 25 in estimations of power taken from NEI VFQ-25 Scoring Algorithm 44, 45

Sample sizes needed per group to detect differences between two experimental groups for the VFQ-25, post-intervention measures only.

		Nur	nber of Point	s Difference		
Scale Name	SD	2	5	10	20	
VFQ-25:						
General Health	26.00	2650	424	106	26	
General Vision	21.00	1729	277	69	17	
Ocular Pain	17.00	1133	181	45	11	
Near Activities	29.00	3297	527	132	33	
Distance Activities	29.00	3297	527	132	33	
Social Functioning	27.00	2858	457	114	29	
Mental Health	27.00	2858	457	114	29	
Role Difficulties	29.00	3297	527	132	33	
Dependency	28.00	3073	492	123	31	
Driving	35.00	4802	768	192	48	
Color Vision	23.00	2074	332	83	21	
Peripheral Vision	27.00	2858	457	114	29	
VFQ-25 Composite	20.00	1568	251	63	16	

It is interesting to note the "number of points difference" in Table 3, which is taken from the NEI-VFQ 25 scoring manual⁴⁵. This refers to the anticipated differences in scores between groups. There is a relative difference between sample sizes need for 5 points difference and 10. In agreement with the sample size chosen, we will approximate number of points difference to be 10. This method is used when one needs to estimate statistical power in situations like this study when randomization is not possible ⁴⁴.

A MANOVA (multivariate analysis of variance) test was conducted to assess whether or not the PIADS and NEI-VFQ 25 subscales were influenced by the type of device participants had adopted.

The NEI-VFQ 25 data collected was also compared to a reference group of subjects who were eye disease-free. This reference group was obtained from prior published NEI-VFQ 25 data (NEI-VFQ 25 scoring algorithm). Participants in this reference group had no evidence of underlying eye disease except for corrected refractive error to at least 20/25 ^{44, 49, 50}. T-tests conducted allowed for a comparison of means.

A Pearson Product Moment Correlation result was used to examine the association between the clinical measurements (visual acuity and contrast sensitivity) to the measures administered (PIADS and NEI-VFQ 25), and scatter plots were constructed for visual representation. The Pearson Product Moment Correlation test was chosen because data appeared to be normally distributed. To examine the relationship between the same measures at the different time points, a Spearman Rank Correlation was used to test whether a linear relationship existed. The correlations between measures were summarized by the Spearman correlation coefficient, because many of the measures were highly skewed and/or ordinal. For the secondary hypothesis, using the paired t-test, a comparison of means was used to determine if the relationship changed or remained stable over the short interval stated.

The sample population of 120 was filtered to consider only the participants with Age Related Macular Degeneration (ARMD), and where applicable, the above analyses were repeated. This was done in an attempt to eliminate the variable of eye condition by limiting the sample to only subjects with ARMD, with the possibility that eye condition may have some influence on test scores. The mean scores of PIADS and NEI-VFQ 25 for this ARMD subpopulation fell within the 95% confidence interval of the mean scores for the overall sample population, which indicates that eye condition was not a significant complicating factor.

25

Chapter 3 Results

3.1 Overall Sample Population

3.1.1 Demographics

Subjects were 66% female with a mean age of 76 years (*Fig3-2*) and 71% had ARMD (*Fig 3-1*) as the primary diagnosis. The majority of participants were female between the ages of 76-85 (*Fig 3-3*). Devices obtained from the low vision clinic included: CCTV System (37.5%), Hand/stand magnifiers (25%), Rx Spectacle (20%), Telescope/Binoculars (7.5%), Field Enhancement Device (3.3%), Adaptive Computer Equipment (5%), and Non-Optical Device (1.7%). Refer to *Fig 3-4* for device distribution.

Figure 3-1 Distribution of Eye Conditions for 120 Subjects

The majority of subjects had ARMD, followed by retinal pathologies.

Figure 3-2 Age and Gender Distribution for 120 Subjects

Majority of Subjects were female and between the ages of 76-85 years of age.

Figure 3-3 Device Distribution for 120 Subjects

CCTV Systems were the most common adopted assistive technology device, followed by Hand/Stand Magnifiers and Rx Spectacles.

The average best corrected visual acuity was $0.78 \pm 0.32 \log$ MAR (log minimum angle of resolution), and contrast sensitivity was 1.15 log CS (log contrast sensitivity) (**Table 4**). On the logMAR scale, 0 coincides with 6/6 acuity, while 1.0 coincides with 6/60 acuity. In other words, the lower the logMAR score, the better the acuity performance. Conversely, the higher the Pell Robson score, the greater contrast sensitivity is. Both clinical measures exhibited normal distribution (*Fig 3-5 and 3-6*).

 Table 4 Clinical Statistics for Best Corrected Visual Acuity and Contrast Sensitivity. Log Mar

 Scale Used.

	DISTANCE VA	PELLI ROBSON OU
N	119	116
Mean	.778872	1.1509
Median	.802000	1.1500
Std. Deviation	.3206126	.30737
Variance	.103	.094
Skewness	496	230
Std. Error of Skewness	.222	.225
Minimum	.0000	.30
Maximum	1.5600	1.95
Percentiles 25	.602000	1.0000
50	.802000	1.1500
75	1.000000	1.3500

Figure 3-4 Distribution of Distance Visual Acuity Data for 120 Subjects

Normal Distribution exhibited for Distance Visual Acuity data, with most common VA on Log Mar scale being 1.00

PELLI ROBSON OU

Figure 3-5 Distribution of Contrast Sensitivity Data for 120 Subjects

Normal Distribution exhibited for Pelli Robson Binocular Data, with most common being 1.15

3.1.2 PIADS Distributions

The distributions for PIADS and its subscales are presented in **Tables 5 and 6** for both initial and follow up administrations. No significant floor or ceiling effects were noted. Competence exhibited the highest subscale mean $(1.16 \pm 0.77 \text{ at initial and } 1.35 \pm 0.71 \text{ at follow up})$. In every instance, there appeared to be a positive shift between initial and follow up for each subsequent subscale and the overall scores (*Figs 3-7,3-8,3-9,3-10,3-11,3-12,3-13,3-14*). The shift to the right indicates user response has improved at the follow-up administration.

Scale	Ν	Mean ± Standard Deviation	Median	Floor n (%)	Ceiling n (%)
Competence	120	1.16 ± 0.77	1.25	6(4.8%)	6(4.8%)
Adaptability	120	0.97 ± 0.74	1.00	6(4.8%)	5(4%)
Self-Esteem	120	0.81 ±0.66	0.81	9(7.2%)	2(1.6%)
Overall	120	0.98 ± 0.66	0.94	6(4.8%)	3(2.4%)
PIADS					

Table 5 26-Item PIADS Frequency Distributions for 1st Administration for 120 Subjects

Note: Floor effects were calculated for those individuals with scores less than 0, while ceiling effects were calculated for those with scores higher than 2.5

Scale	N	Mean ± Standard Deviation	Median	Floor n (%)	Ceiling n(%)
Competence	120	1.35 ± 0.71	1.25	2(1.6%)	8(6.4%)
Adaptability	120	1.10 ± 0.67	1.00	2(1.6%)	7(5.6%)
Self-Esteem	120	1.03 ± 0.63	0.87	1(0.8%)	2 (1.6)
Overall PIADS	120	1.16 ±0.60	1.12	0 (0.0%)	1(0.8%)

Table 6 26-Item PIADS Frequency Distributions for 2nd Administration for 120 Subjects

Figure 3-6 PIADS Distribution at initial administration for Competence for 120 subjects

Figure 3-7 PIADS Distribution at follow up administration for Competence for 120 subjects

Figure 3-8 PIADS Distribution at initial administration for Adaptability for 120 Subjects

Figure 3-9 PIADS Distribution at follow up administration for Adaptability for 120 subjects Data exhibited normal distribution with majority of scores being positive

Figure 3-10 PIADS Distribution at initial administration for Self-esteem for 120 Subjects

Figure 3-11 PIADS Distribution at follow up administration for Self-esteem for 120 Subjects Data exhibited normal distribution with majority of scores being positive

Figure 3-12 PIADS Distribution at initial administration for overall score for 120 Subjects Data exhibited normal distribution with majority of scores being positive

Figure 3-13 PIADS Distribution at follow up administration for overall score for 120 subjects

3.1.3 Responsiveness of the PIADS

The paired t-test was used to determine which subscales are most responsive. The overall PIADS score was responsive(able to detect change) (t=-3.42, p=0.001) with respect to device usage. The subscales of the PIADS that were most responsive to device usage were "Competence" (t=-3.12, p=0.002) and "Self-esteem" (t=-4.06, p<0.001). Using the effect size measure, the difference detected with the PIADS overall score indicated a significant increase between initial and follow up administrations following device usage (ES=0.79). The PIADS subscales also showed a moderate to large increase in scores as a result of device usage: Competence (ES=0.79), Adaptability (0.74), Self esteem (0.72). Responsiveness statistics for the PIADS can be seen in **Table 7**.

PIADS Subscales	Mean ± Standard	Mean ±	Observed t-	Effect Size
	Deviation at t ₁	Standard	value:	(ES)
		Deviation at t ₂		
Competence	1.16 ± 0.77	1.35 ± 0.71	-3.12, p=0.002	0.785
Adaptability	0.97 ± 0.74	1.10 ± 0.67	-1.92, p=0.06	0.738
Self-Esteem	0.81 ± 0.66	1.03 ± 0.63	-4.06, p<0.001	0.720
PIADS Overall	0.98 ±0.66	1.16 ± 0.60	-3.42, p=0.001	0.786

Table 7 Responsiveness Statistics of the PIADS as a Result of Device Adoption for 120 Subjects

3.1.4 NEI-VFQ 25 Distributions

The distributions for NEI-VFQ 25 and its subscales are presented in **Tables 8 and 9** for both initial and follow up administrations. Significant floor effects are present for the driving subscale in both instances (89.4% at initial and 88.5% at follow up) because most participants are ineligible for a driver's license in Ontario due to their visual impairment. General Health (19.2% t_1 , 20.8% t_2), Ocular Pain (58.3% t_1 , 50.8% t_2), Color Vision (52.9% t_1 , 52.5% t_2), and Peripheral Vision (51.7% t_1 , 48.3% t_2) NEI-VFQ 25 subscales all demonstrate ceiling effects for both the initial and follow up administrations. Comparing *Fig 3-15 and Fig 3-16*, it can be seen there is no significant change for the t-tests between scores for the NEI-VFQ 25 overall composite scores between initial and follow up administrations.

Many individuals reported their general health as "Good" (*Fig 3-17*). The majority also reported their perceived visual health as either "fair" or "poor" (*Fig 3-18*). The Near Activities subscale scores were mostly reported to be either "extreme" or "moderate" difficulty accomplishing tasks associated with being up close (*Fig 3-19*). The Distance Activities subscale shows neither floor nor

ceiling effects, with responses ranging from "no difficulty" to "stopped doing" (*Fig 3-20*). Peripheral vision does not appear to be a problem for the majority of the participants in the study, as can be seen in *Fig 3-21*. The subscale scores for Role Difficulties, Driving, and General Vision are the lowest while Ocular Pain, Color Vision, and Peripheral Vision are the highest. High scores indicated least difficulty while low scores indicate the most difficulty.

Scale	Ν	Mean ±	Median	Floor n (%)	Ceiling n (%)
		Standard			
		Deviation			
General Health	120	56.67 ± 28.76	50.00	4(3.3%)	23 (19.2%)
General Vision	120	45 ± 20.46	40.00	1 (0.8%)	2 (1.7%)
Ocular Pain	120	84.85 ± 22.69	100.00	2 (1.7%)	70(58.3%)
Near Activities	120	49.97 ±23.37	50.00	3 (2.5%)	2 (1.7%)
Distance Activities	120	49.34 ± 22.81	50.00	2 (1.7%)	3 (2.5%)
Social Functioning	120	63.23 ± 23.61	62.5	6 (5.0%)	18 (14.4%)
Mental Health	120	54.43 ±23.36	56.25	3 (2.5%)	4 (3.3%)
Role Difficulties	120	39.90 ±28.13	37.5	19 (15.8%)	2 (1.7%)
Dependency	120	58.75 ± 29.78	58.33	6 (5.0%)	19 (15.8%)
Driving	85	5.25 ± 17.31	0.00	76 (89.4%)	1 (1.2%)
Color Vision	120	75.63 ± 32.46	100.00	8 (6.7%)	63 (52.9%)
Peripheral	120	75.21 ± 31.34	100.00	6 (5.0%)	62 (51.7%)
Vision					
NEI-VFQ	120	56.05 ± 14.25	56.08	0 (0.00%)	0 (0.00%)
Composite					

 Table 8 NEI-VFQ 25 Frequency Distribution for 1ST Administration for 120 Subjects

Figure 3-14 Distribution of NEI-VFQ 25 results for overall composite score at initial administration for 120 subjects

Figure 3-15 Distribution of NEI-VFQ 25 results for overall composite score at follow up administration for 120 subjects

Scale	Ν	Mean ± Standard Deviation	Median	Floor n (%)	Ceiling n(%)
General Health	120	58.96 ± 27.84	50.00	6 (5.0%)	25 (20.8%)
General Vision	120	47.67 ± 17.43	40.00	0 (0.00%)	0 (0.00%)
Ocular Pain	120	82.81 ± 22.69	100.00	0 (0.00%)	61 (50.8%)
Near Activities	120	53.30 ± 23.13	50.00	1 (0.8%)	3 (2.5%)
Distance Activities	120	49.41 ± 21.79	50.00	3 (2.5%)	3 (2.5%)
Social Functioning	120	60.00 ± 24.61	62.50	0 (0.00%)	16 (13.3%)
Mental Health	120	55.47 ± 23.15	56.25	1 (0.8%)	3 (2.5%)
Role Difficulties	120	40.10 ± 28.11	37.50	18 (15.0 %)	4 (3.3%)
Dependency	120	56.88 ± 29.04	58.33	6 (5.0%)	12 (10.0%)
Driving	87	6.13 ± 18.95	0.00	77 (88.5%)	1 (1.1%)
Color Vision	120	76.91 ± 30.17	100.00	5 (4.2%)	62 (52.5%)
Peripheral Vision	120	75.21 ± 30.14	75.00	4 (3.3%)	58 (48.3%)
NEI-VFQ Composite	120	56.10 ± 13.22	56.06	0 (0.00%)	0 (0.00%)

Table 9 25-Item NEI-VFQ 25 Frequency Distributions for 2ND ADMINISTRATION FOR 120SUBJECTS

Note: Floor effects are calculated for those individuals whose score is 0, while ceiling effects are for those individuals who scored 100.

Figure 3-16 Distribution of NEI-VFQ 25 results for Overall Health at initial and follow up administrations for 120 subjects

Majority of subjects reported their professed health as "Good" at both initial and follow up administrations.

Figure 3-17 Distribution of NEI-VFQ 25 results for Overall Vision at initial and follow up administration for 120 subjects

At both initial and follow up administrations, majority of subjects reported their vision as being "fair" or "poor"

Figure 3-18 Distribution of NEI-VFQ 25 results for Near Activities at initial and follow up administration for 120 subjects

Results were distributed across but majority reported as having moderate to extreme difficulty in completing near activities

Figure 3-19 Distribution of NEI-VFQ 25 results for Distance Activities at initial and follow up administration for 120 subjects

Responses were distributed over the subscale, from "stopped doing activity" to "having no difficulty"

Figure 3-20 Distribution of NEI-VFQ 25 results for Peripheral Vision at initial and follow up administration for 120 subjects

Majority of subjects had no difficulty with activities associated with Peripheral Vision

Note: All other graphical representations for remaining subscales are located in Appendix E

3.1.5 Responsiveness of the NEI-VFQ 25

The responsiveness of the NEI-VFQ 25 was first calculated using the paired t-test. Using this method, none of the subscales or the composite score exhibited responsiveness. When using the effect size measure, all the subscales except driving, and the overall composite score showed a moderate to large effect size. They were: General Health (ES=0.84), General Vision (ES= 0.88), Ocular Pain (ES= 0.94), Near Activities (ES= 0.85), Distance Activities (ES= 0.84), Social Functioning (ES= 0.88), Mental Health (ES= 0.86), Role Difficulties (ES= 0.72), Dependency (ES=0.82), Color Vision (ES= 0.87), Peripheral Vision (ES= 0.87), and the composite score (ES= 0.95). Although effect size deems the NEI-VFQ 25 responsive for the sample population, the paired t-test indicates otherwise. **Table 10** displays all the responsiveness statistics for the NEI-VFQ 25

NEI-VFQ 25 Subscales	Mean ± Standard Deviation at t ₁	Mean ± Standard Deviation at t ₂	Observed t- value	Effect Size (ES)
General Health	56.67 ± 28.76	58.96 ± 27.84	-1.06, p=0.289	0.836
General Vision	45 ± 20.46	47.67 ± 17.43	-1.78, p=0.077	0.880
Ocular Pain	84.85 ± 22.69	82.81 ± 22.69	1.47, p=0.144	0.939
Near Activities	49.97 ±23.37	53.30 ± 23.13	-2.13, p= 0.035	0.852
Distance Activities	49.34 ± 22.81	49.41 ± 21.79	-0.06, p=0.953	0.844
Social Functioning	63.23 ± 23.61	60.00 ± 24.61	1.23, p=0.222	0.879
Mental Health	54.43 ±23.36	55.47 ± 23.15	-0.65 , p=0.518	0.856
Role Difficulties	39.90 ±28.13	40.10 ± 28.11	-0.09, p=0.928	0.719
Dependency	58.75 ± 29.78	56.88 ± 29.04	1.04, p=0.302	0.815
Driving	5.25 ± 17.31	6.13 ± 18.95	0.17, p=0.868	0.098
Color Vision	75.63 ± 32.46	76.91 ± 30.17	-0.78 , p=0.439	0.870
Peripheral Vision	75.21 ± 31.34	75.21 ± 30.14	0.00, p=1.00	0.871
NEI-VFQ Composite	56.05 ± 14.25	56.10 ± 13.22	-0.07, p=0.947	0.947

Table 10 Responsiveness Statistic of the NEI-VFQ 25 as a Result of Device Adoption for 120Subjects

3.1.6 PIADS and NEI-VFQ 25 as a Function of Device

A multivariate analysis of variance (MANOVA) revealed no differences between device choices for PIADS or NEI-VFQ 25, or for any of their respective subscales. Alpha was calculated at 0.001, since 34 analysis of variance tests were run to determine if there were any differences based on device choice, and these were adjusted by Bonferroni's method. (See Appendix G for results of MANOVA calculations).

3.1.7 NEI-VFQ 25 Comparison to a Published Reference Group

NEI-VFQ 25 subscale and overall scores were compared with those for a published reference group. Significant differences were found for most subscales at initial and follow up administrations, where the reference group was higher in most subscales (**Tables 11 and 12**). Bonferonni's method was also used here to adjust for multiple comparisons. With alpha set at 0.004, differences were found in

every subscale except for Ocular Pain at both initial and follow up administration (t=2.06878, p=0.039 at initial, t=1.61992, p = 0.106 at follow up).

Table 11 Comparison of NEI-VFQ 25 Scores for Low Vision Cohort (N=120) Versus Published
Reference Group of Eye Disease-free Patients (N=118) for 1ST Administration

NEI-VFQ-25 Scale	LV Cohort (mean ± SD)	Reference Group (mean ± SD) ^{44, 63}	LV vs. Reference (two tailed t-test)
General Health	56.67 ± 28.76	69 ± 24	T=3.59, p=0.000402
General Vision	45 ± 20.46	83 ± 14	T=16.7457, p<0.0001
Ocular Pain	84.85 ± 22.69	90 ± 15	T=2.06878, p= 0.039656
Near Activities	49.97 ±23.37	92 ± 12	T=17.4948, p<0.0001
Distance Activities	49.34 ± 22.81	94 ± 11	T=19.274, p<0.0001
Social Functioning	63.23 ± 23.61	99 ± 4	T=16.3593, p<0.0001
Mental Health	54.43 ±23.36	92 ± 12	T=16.1874, p<0.0001
Role Difficulties	39.90 ±28.13	93 ± 13	t=18.7429, p<0.0001
Dependency	58.75 ± 29.78	99 ± 4	t=14.6718, p<0.0001
Driving	5.25 ± 17.31	87 ± 16	t=37.8437, p<0.0001
Color Vision	75.63 ± 32.46	98 ± 8	t=7.32644, p<0.0001
Peripheral Vision	75.21 ± 31.34	97 ± 10	t=7.25029, p<0.0001
NEI-VFQ Composite	56.05 ± 14.25	92 ± 7	t=24.764, p<0.0001

 Table 12 Comparison of NEI-VFQ 25 Scores for Low Vision Cohort (N=120) Versus Published

 Reference Group of Eye Disease-free Patients (N=118) for 2nd Administration

SD) (two tailed t-test)

General Health	58.96 ± 27.84	69 ± 24	t=2.98142, p=0.00317
General Vision	47.67 ± 17.43	83 ± 14	t=17.2542, p<0.0001
Ocular Pain	82.81 ± 22.69	90 ± 15	t=1.61992, p = 0.10658
Near Activities	53.30 ± 23.13	92 ± 12	t=16.2401, p<0.0001
Distance Activities	49.41 ± 21.79	94 ± 11	t=19.977, p<0.0001
Social Functioning	60.00 ± 24.61	99 ± 4	t=17.1312, p<0.0001
Mental Health	55.47 ± 23.15	92 ± 12	t=15.3191, p<0.0001
Role Difficulties	40.10 ± 28.11	93 ± 13	t=18.6832, p<0.0001
Dependency	56.88 ± 29.04	99 ± 4	t=15.7374, p<0.0001
Driving	6.13 ± 18.95	87 ± 16	t=35.5941, p<0.0001
Color Vision	76.91 ± 30.17	98 ± 8	t=7.39767, p<0.0001
Peripheral Vision	75.21 ± 30.14	97 ± 10	t=7.51039, p<0.0001
NEI-VFQ Composite	56.10 ± 13.22	92 ± 7	t=26.2411, p<0.0001

3.1.8 PIADS Correlations with Clinical Measures: Visual Acuity and Contrast Sensitivity

Table 13 presents the correlations between PIADS and visual acuity. No significant correlations existed and visual acuity did not play a role in PIADS scores. *Figs 3-22 and 3-23* present a graphical representation of visual acuity versus overall PIADS score at $t_1 \& t_2$. The same was the case for PIADS correlations with contrast sensitivity (**Table 14**); with *Figs 3-24 and 3-25* as graphical representations for contrast sensitivity versus PIADS. Graphical representations of all the visual acuity and contrast sensitivity versus PIADS subscales can be found in Appendix H.

Table 13 Correlations Between PIADS Subscale and Overall Items for Initial (t1) and Followup Administrations (t2) with Best Corrected Visual Acuity Score N=116

PIADS Subscale Items with Visual Acuity scores	Correlation Coefficient*	P-value
PIADS Competence t ₁	0.196	0.033
PIADS Competence t ₂	0.067	0.467

PIADS Adaptability t ₁	0.187	0.041
PIADS Adaptability t ₂	0.032	0.730
PIADS Self-Esteem t ₁	0.152	0.098
PIADS Self Esteem t ₂	0.196	0.033
PIADS Overall t ₁	0.198	0.031
PIADS Overall t ₂	0.107	0.245

*Correlation is significant at the 0.05 level (2-tailed).

Figure 3-21 Correlation between visual Acuity and overall PIADS score at initial administration. Scatter plot indicates very little correlation between PIADS and VA, n=116

Figure 3-22 Correlation between Visual Acuity and overall PIADS score at follow up administration. Scatter plot indicates very little correlation between PIADS and VA, n=116

Table 14 Correlations between PIADS Subscale Items for Initial (t1) and Follow up (t2)Administrations with Pelli-Robson Contrast Sensitivity Test, n=119

PIADS Items with Pelli- Robson scores	Correlation Coefficient	P-value
PIADS Competence t ₁	-0.059	0.527
PIADS Competence t ₂	-0.025	0.794
PIADS Adaptability t ₁	0.023	0.810
PIADS Adaptability t ₂	0.008	0.928
PIADS Self-Esteem t ₁	-0.042	0.654
PIADS Self Esteem t ₂	-0.026	0.779
PIADS Overall t ₁	-0.029	0.759
PIADS Overall t₂	-0.016	0.867

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-23 Correlation between Contrast Sensitivity and overall PIADS score at initial administration. Scatter plot indicates very little correlation between PIADS and CS, n=116

FIGURE 3-24 Correlation between Contrast Sensitivity and overall PIADS score at follow up administration. Scatter plot indicates very little correlation between PIADS and CS, n=116

3.1.9 Correlations between NEI-VFQ 25 and Clinical Measures of Visual Acuity and Contrast Sensitivity

The NEI-VFQ 25 appears to correlate somewhat better than the PIADS with the clinical measures. **Table 15** shows that NEI-VFQ 25 subscales all show modest correlations in the areas of General Vision at t_1 (-0.218, p=0.017), Driving at t_1 (-0.292, p=0.007), Peripheral Vision at t_1 (0.240, p= 0.009), Driving at t_2 (-0.266, p=0.013), and Peripheral Vision at t_2 (0.221, p= 0.015). *Figs 3-26 and 3-27* present a graphical representation for visual acuity versus overall NEI-VFQ 25 composite scores at $t_1 \& t_2$. For contrast sensitivity **(Table 16)**, there are several more correlations, but these are also modest at best: Near Activities at t_1 (0.279, p= 0.002), Distance Activities at t_1 (0.258, p= 0.019), Color Vision at t_1 (0.297, p=0.001), NEI-VFQ 25 composite score at t_1 (0.270, p=0.003), Distance Activities at t_2 (0.260, p=0.005), Driving at t_2 (0.319, p=0.003), Color Vision at t_2 (0.277, p=0.003), and NEI-VFQ 25 composite score at t_2 (0.284, p=0.002). *Figs 3-28 and 3-29* also present a graphical representation for contrast sensitivity versus overall NEI-VFQ 25 composite scores at $t_1 \& t_2$. See Appendix H for graphical representations of all the visual acuity and contrast sensitivity versus NEI-VFQ 25 subscales.

Table 15 Correlations between NEI-VFQ 25 Subscale and Overall Items for Initial (t_1) and
Follow up (t ₂) with Best Corrected Visual Acuity Score, n=116

NEI-VFQ 25 Items with Visual Acuity scores	Correlation Coefficient	P-value
General Health t ₁	-0.136	0.140
General Vision t ₁	-0.218*	0.017
Ocular Pain t ₁	0.054	0.558
Near Activities t ₁	-0.040	0.667
Distance Activities t ₁	-0.022	0.813
Social Functioning t ₁	0.009	0.926
Mental Health t ₁	0.050	0.586
Role Difficulties t ₁	0.084	0.364
Dependency t ₁	-0.054	0.563
Driving t ₁	-0.292*	0.007
Color Vision t ₁	-0.110	0.237
Peripheral Vision t ₁	0.240*	0.009
NEI-VFQ Composite t ₁	0.009	0.924
General Health t ₂	0.010	0.916

General Vision t ₂	-0.171	0.063
Ocular Pain t ₂	0.077	0.408
Near Activities t ₂	0.025	0.786
Distance Activities t ₂	-0.055	0.554
Social Functioning t ₂	-0.131	0.154
Mental Health t ₂	0.105	0.255
Role Difficulties t ₂	-0.087	0.346
Dependency t ₂	-0.035	0.707
Driving t ₂	-0.266*	0.013
Color Vision t ₂	-0.134	0.150
Peripheral Vision t ₂	0.221*	0.015
NEI-VFQ Composite t ₂	-0.044	0.631

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-25 Correlation between Visual Acuity and overall NEI-VFQ 25 score at initial administration. Scatter plot indicates some but little correlation between NEI-VFQ 25 a nd VA, n=116

Figure 3-26 Correlation between Visual Acuity and overall NEI-VFQ 25 score at follow up administration. Scatter plot indicates some but little correlation between NEI-VFQ 25 and VA, n=116

Table 16 Correlations between NEI-VFQ 25 Subscale and Overall Items for Initial (t1) andFollow up (t2) Administrations with Pelli-Robson Contrast Sensitivity n =119

NEI –VFQ 25 Items with Pelli-Robson scores	Correlation Coefficient	P-value
General Health t ₁	0.040	0.672
General Vision t ₁	0.141	0.132
Ocular Pain t ₁	0.102	0.275
Near Activities t ₁	0.279*	0.002
Distance Activities t ₁	0.250*	0.007
Social Functioning t ₁	0.098	0.295
Mental Health t ₁	-0.025	0.789
Role Difficulties t ₁	0.052	0.579
Dependency t ₁	0.181	0.051
Driving t ₁	0.258*	0.019
Color Vision t ₁	0.297*	0.001
Peripheral Vision t ₁	0.022	0.811
NEI-VFQ Composite t ₁	0.270*	0.003

General Health t ₂	-0.002	0.981
General Vision t ₂	0.167	0.074
Ocular Pain t ₂	0.098	0.295
Near Activities t ₂	0.170	0.068
Distance Activities t ₂	0.260*	0.005
Social Functioning t ₂	0.167	0.073
Mental Health t ₂	-0.046	0.625
Role Difficulties t ₂	0.141	0.131
Dependency t ₂	0.168	0.072
Driving t ₂	0.319*	0.003
Color Vision t ₂	0.277*	0.003
Peripheral Vision t ₂	0.033	0.728
NEI-VFQ Composite t ₂	0.284*	0.002

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-27 Correlation between Contrast Sensitivity and overall NEI-VFQ 25 score at initial administration. Scatter plot indicates modest correlation between NEI-VFQ 25 and CS, n=116

Figure 3-28 Correlation between Contrast Sensitivity and overall NEI-VFQ 25 score at follow up administration. Scatter plot indicates modest correlation between NEI-VFQ 25 and VA, n=116

3.1.10 PIADS & NEI-VFQ 25 Within Measure Correlations at Initial and Follow Up Administrations

Table 17 illustrates the correlations between PIADS subscales and overall scores at initial and follow-up administrations. Moderate to high correlations are evident for all scores, thus helping to validate the stability of the relationship within the measures. A graphical representation of the overall PIADS scores at t_1 and t_2 is presented *(Fig 3-30)*. In addition, the NEI-VFQ 25 subscales and composite scores also exhibit moderate to high correlations **(Table 18)**, over the test/retest interval, which demonstrates a stable relationship within the measure. Graphical representation of composite scores between $t_1 \& t_2$ can been seen in *Fig 3-31*.

Table 17 Correlation between PIADS Subscale Items at Initial and Follow up Administrations (i.e. t_1 =Initial t_2 =Follow up, t_2 - t_1 =2 Weeks). N=120.

PIADS Subscale Items	Correlation	P-value
	Coefficient*	

PIADS Competence t ₁ with Competence t ₂	0.593	<0.001
PIADS Adaptability t ₁ with Adaptability t ₂	0.528	<0.001
PIADS Self-Esteem t ₁ with Self Esteem t ₂	0.613	<0.001
PIADS Overall t_1 with t_2	0.609	< 0.001

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is \geq 0.20.

Figure 3-29 Correlations of PIADS overall scores for initial and follow up administrations for 120 subjects. Moderate correlations are present for PIADS between administrations during given time period (2 weeks)

Table 18 Correlation between NEI-VFQ 25 Subscale Items at Initial and Follow upAdministrations (i.e. t1=Initial, t2=Follow up, t2-t1=2 weeks) n=120.

NEI-VFQ-25 Subscale Items	Correlation Coefficient	P-value
General Health t ₁ with t ₂	0.670	< 0.001
General Vision t ₁ with t ₂	0.665	<0.001
Ocular Pain t ₁ with t ₂	0.745	<0.001

Near Activities t ₁ with t ₂	0.737	< 0.001
Distance Activities t ₁ with t ₂	0.827	< 0.001
Social Functioning t ₁ with t ₂	0.482	< 0.001
Mental Health t ₁ with t ₂	0.740	< 0.001
Role Difficulties t ₁ with t ₂	0.591	< 0.001
Dependency t ₁ with t ₂	0.764	< 0.001
Driving t ₁ with t ₂	0.998	< 0.001
Color Vision t ₁ with t ₂	0.806	< 0.001
Peripheral Vision t ₁ with t ₂	0.783	<0.001
NEI-VFQ Composite t₁ with t₂	0.841	< 0.001

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-30 Correlations of NEI-VFQ 25 composite scores for initial and follow up administrations for 120 subjects. Moderate correlations are present for NEI-VFQ25 between administrations during given time period (2 weeks)

3.1.11 PIADS and NEI-VFQ between Measures Correlations at Initial and Follow Up Administrations

The correlations between PIADS and NEI-VFQ 25 were summarized for time periods, t_1 and t_2 . A Spearman correlation coefficient was used because the measures were highly skewed and or/ordinal. The correlations were significant at α = 0.05, and where the correlation coefficient was \geq 0.20. The bolded items in **Tables 19 and 20** represent those that are statistically significant. Although they are significant statistically, the value of the correlation coefficients is moderate at best. Several weak but significant correlations were found between subscale items for PIADS and NEI-VFQ 25 at initial administration:

- Vision function status in the areas of near activities (r= 0.290, p=0.001), social functioning (r= 0.211, p=0.022), overall composite score (r= 0.215, p=0.018) (as revealed by NEI-VFQ 25) and psychosocial impact on competence (as revealed by PIADS).
- Vision function status in the areas of near activities (r= 0.353, p<0.001), mental health (r= 0.240, p=0.008), overall composite score (r= 0.233, p=0.01) (as revealed by NEI-VFQ 25) are correlated with adaptability (as revealed by PIADS).</p>
- Vision function status in the areas of near activities (r= 0.208, p=0.023) (as revealed by NEI-VFQ 25) with self-esteem (as revealed by PIADS)
- The PIADS overall score correlated positively with near activities (r= 0.321, p<0.001), mental health (r= 0.200, p=0.028), role difficulties (r= 0.201, p= 0.027), and the NEI-VFQ 25 composite score (r= 0.226, p=0.013).</p>

Fig 3-32 is a plot of PIADS overall score with the NEI-VFQ 25 composite score at initial administration. For all other significant correlations, please refer to Appendix I

Table 19 Correlations between NEI-VFQ 25 Subscale Items and PIADS Subscale Items at

Initial Administration (i.e. t_1 =Initial) N=120. Bolded Items indicate a correlations coefficient \ge 0.20

	PIADS Subscales								
NEI-VFQ-	Competence		Adaptability		Self-Esteem		PIADS Composite		
25 Subscale	Correlation	p-	Correlation	p-	Correlation	p-	Correlation	p-	
Items	Coefficient	value	Coefficient	value	Coefficient	value	Coefficient	value	
General Health	0.092	0.319	0.050	0.586	0.009	0.920	0.039	0.671	
General Vision	0.057	0.539	0.143	0.119	0.165	0.072	0.138	0.132	
Ocular Pain	-0.076	0.410	-0.035	0.704	-0.072	0.437	060	0.517	
Near Activities	0.290*	0.001	0.353*	<0.0 01	0.208*	0.023	0.321*	< 0.001	
Distance Activities	0.132	0.152	0.163	0.075	0.014	0.882	0.118	0.198	

Social Functioning	0.211*	0.022	0.147	0.109	0.061	0.507	0.168	0.067
Mental Health	0.101	0.272	0.240*	0.008	0.154	0.094	0.200*	0.028
Role Difficulties	0.192	0.036	0.149	0.105	0.166	0.070	0.201*	0.027
Dependency	0.055	0.548	0.081	0.377	0.020	0.833	0.076	0.407
Driving	0.017	0.881	-0.051	0.641	-0.063	0.569	-0.035	0.750
Color Vision	0.118	0.175	-0.018	0.843	-0.081	0.384	0.011	0.903
Peripheral Vision	0.131	0.153	0.199	0.290	0.135	0.142	0.167	0.069
NEI-VFQ Composite	0.215*	0.018	0.233*	0.01	0.117	0.204	0.226*	0.013

*Correlation is significant at the 0.05 level (2-tailed).

Figure 3-31 Correlations of overall scores between PIADS and NEI-VFQ 25 at initial administration for 120 subjects. Several modest correlations are present between PIADS subscales and NEI-VFQ 25 subscales and overall scores.

• Several weak but significant correlations were found between subscale items for PIADS and NEI-VFQ 25 at follow-up administration:

- Vision function status in the areas of general health (r= 0.203, p=0.026), role difficulties (r= 0.261, p=0.004), dependency (r= 0.212, p=0.020), overall composite score (r= 0.274, p=0.002) (as revealed by NEI-VFQ 25) and psychosocial impact on competence (as revealed by PIADS).
- Vision function status in the areas of general health (r= 0.292, p=0.001), near activities (r= 0.244, p=0.007), distance activities (r= 0.259, p=0.004), mental health (r= 0.212, p=0.020), overall composite score (r= 0.271, p=0.003) (as revealed by NEI-VFQ 25) are correlated with adaptability (as revealed by PIADS).
- Vision function status in the areas of general health (r= 0.237, p=0.009) (as revealed by NEI-VFQ 25) with self-esteem (as revealed by PIADS)
- The PIADS overall score correlated positively with general health (r= 0.271, p=0.003), distance activities (r= 0.210, p=0.021), mental health (r= 0.215, p=0.018), role difficulties (r= 0.203, p=0.026), dependency (r= 0.218, p=0.017), and the NEI-VFQ 25 composite score (r= 0.281, p=0.002).

Fig 3-33 is a plot of PIADS overall score with the NEI-VFQ 25 composite score at follow up

administration. For all other significant correlations, please refer to Appendix I.

Table 20 Correlations between NEI-VFQ 25 Subscale Items and PIADS Subscale Items at

Follow Up Administration (i.e. t_2 = Follow up) n=120. Bolded Items indicate a correlation coefficient ≥ 0.20

	PIADS Subscales							
NEI-VFQ-	Competence		Adaptability		Self-Esteem		PIADS Composite	
25 Subscale	Correlation	p-	Correlation	p-	Correlation	p-	Correlation	p-
Items	Coefficient	value	Coefficient	value	Coefficient	value	Coefficient	value
General Health	0.203*	0.026	0.292*	0.001	0.237*	0.009	0.271*	0.003
General Vision	0.153	0.096	0.164	0.073	0.179	0.051	0.183	0.045
Ocular Pain	0.018	0.848	0.045	0.629	-0.063	0.493	0.000	0.98
Near Activities	0.128	0.165	0.244*	0.007	0.078	0.400	0.179	0.051
Distance Activities	0.151	0.100	0.259*	0.004	0.108	0.242	0.210*	0.021
Social Functioning	0.017	0.851	0.023	.799	-0.001	0.992	0.020	0.826
Mental Health	0.187	0.041	0.212*	0.020	0.129	0.160	0.215*	0.018
Role Difficulties	0.261*	0.004	0.161	0.079	0.081	0.381	0.203*	0.026
Dependency	0.212*	0.020	0.150	0.102	0.190	0.038	0.218*	0.017
Driving	0.078	0.473	0.086	0.430	0.031	0.778	0.071	0.515
Color Vision	0.081	0.385	0.057	0.537	0.060	0.517	0.082	0.379
Peripheral Vision	0.087	0.344	0.074	0.422	0.005	0.959	0.076	0.408

NEI-VFQ Composite	0.274*	0.002	0.271*	0.003	0.152	0.098	0.281**	0.002

*Correlation is significant at the 0.05 level (2-tailed).

Figure 3-32 Correlations of overall scores between PIADS and NEI-VFQ 25 at initial administration for 120 subjects. Several modest correlations are present between PIADS subscales and NEI-VFQ 25 subscales and overall scores.

3.1.12 Relationship Changes Over Time for PIADS and NEI-VFQ 25

Table 21 shows that a significant change occurs between times t_1 and t_2 for the PIADS subscales Competence (t=-3.121, p=0.002), Self-esteem (t= -4.059, p<0.001), and PIADS overall (t= -3.430 p= 0.001). In each instance, t_2 had a significant higher score, thus indicating that there is a positive change at the follow up administration. No Significant change was present for the Adaptability subscale of PIADS. It is interesting to note that there is a slight positive change for the NEI-VFQ 25 composite score, but it is negligible (no significant status change).
Table 21 Paired Samples Test assessing whether or Not the Relationship between PIADS and NEI-VFQ 25 Measures change between t_1 and t_2 . Bolded values indicated scores for t_2 are of significantly higher value. In this case, $\alpha = 0.05/17 = 0.003$, Known as the Bonferroni Correction, since 17 pairs of tests are run.

		Paired Differences			_			
				95% Co	nfidence			Sig.
		Std.	Std. Error	Interva	l of the			(2-
	Mean	Deviation	Mean	Diffe	rence	t	df	tailed)
				Lower	Upper			
PIADS Subscale	_							
Competence1 - PIADS	0 10206	0.67769	.06186	31555	07056	-3.121	119	.002
Subscale Competence2	0.19300							
PIADS Subscale Self-								
Esteem1 - PIADS	-	0.59037	0.05389	32546	-	-4.059	119	.000
Subscale Self-Esteem2	0.210/5				0.11204			
PIADS Adaptability 1-	-	0 71750	0.06551	-	0.0022	1 0 2 0	110	0.056
PIADS Adaptability 2	0.12639	0.71759	0.00001	0.25610	0.0032	-1.929	119	0.050
PIADSOverall1 -	470.40	0 57467	05246	20227	07550	2 420	110	004
PIADSOverall2	1/940	0.5/46/	.05246	20321	07552	-3.420	119	.001
VFQ Composite Score1 -	0.1.100	7 0 4 7 5 0	00404	-	4 00507	0.07	110	0.47
VFQ Composite Score2	04439	7.24759	.06161	1.35444	1.26567	067	119	.947

Note: Appendix J includes all paired t-test conducted

3.2 Age-related Macular Degeneration Population (ARMD)

3.2.1 Clinical Measures: Visual Acuity and Contrast Sensitivity

The ARMD sample subgroup was taken from the cohort of 120 participants of the overall sample. 71% of participants had ARMD as their reported eye condition. The average best corrected visual acuity for the ARMD sample was 0.83 ± 0.28 logMAR (compared to 0.78 ± 0.32 logMAR for overall sample), and log contrast sensitivity was 1.11 (compared to 1.15 for overall sample) (See Table 22). Each clinical measure (VA and CS) also exhibited normal distribution for the ARMD sample (*Figs 3-34& 3-35*).

		DISTANCE VA	PELLI ROBSON OU
N		84	82
Mean		.827082	1.1116
Median		.903000	1.1500
Std. Deviation		.2826708	.26878
Variance		.080	.072
Skewdness		217	589
Std. Error of Skewdness		.263	.266
Percentiles	25	.602000	1.0000
	50	.903000	1.1500
	75	1.000000	1.3000

Table 22 Clinical Statistics for ARMD Population for Best Corrected Visual Acuity andContrast Sensitivity. Log Mar Scale Used.

DISTANCE VA

Figure 3-33 Distribution of Distance Visual Acuity Data for ARMD Population

Normal Distribution exhibited for Distance Visual Acuity data, with most common VA on Log Mar scale being 1.00

PELLI ROBSON OU

Figure 3-34 Distribution of Contrast Sensitivity Data for ARMD Population

Normal Distribution exhibited for Pelli Robson Binocular Data, with most common being 1.15

3.2.2 PIADS Distributions

The distributions for PIADS and its subscales are presented in **Tables 23 and 24** for both initial and follow up administrations for the ARMD sample. No significant floor or ceiling effects were noted. Competence also exhibited the highest subscale mean $(1.11 \pm 0.72 \text{ at initial and } 1.34 \pm 0.71 \text{ at follow}$ up) for the ARMD sample as well. The same improvement in responses on the PIADS subscales and overall scores was noted at follow up administration. Every subscale had a positive shift between initial and follow up for each subsequent subscale and the overall scores (*Figs 3-36,3-37,3-38,3-39,3-40,3-41,3-42,3-43*). The shift to the right indicates user response has improved at the follow-up administration. No significant differences were noted in improvement between overall sample and the ARMD population.

Scale	Ν	Mean ± Standard Deviation	Median	Floor n (%)	Ceiling n (%)
Competence	85	1.11 ± 0.72	1.08	4(4.8%)	2(2.4%)
Adaptability	85	0.98 ± 0.74	1.00	5(5.8%)	3(3.6%)
Self-Esteem	85	0.81 ±0.64	0.88	6(7.2%)	0(0%)
Overall PIADS	85	0.97 ± 0.63	0.92	4(4.8%)	1(1.2%)

 Table 23 26-Item PIADS Frequency Distributions for 1ST Administration for ARMD

 Population

Note: Floor effects were calculated for those individuals with scores less than 0, while ceiling effects were calculated for those with scores higher than 2.5

Table 24 26-Item PIADS Frequency D	Distributions for 2 ND	Administration for ARMD
------------------------------------	-----------------------------------	-------------------------

Population

Scale	Ν	Mean ± Standard Deviation	Median	Floor n (%)	Ceiling n(%)
Competence	85	1.34 ± 0.71	1.25	1(1.2%)	3(3.6%)
Adaptability	85	1.08 ± 0.68	0.83	1(1.2%)	4(4.8%)
Self-Esteem	85	1.04 ± 0.62	1.00	6(7.2%)	0(0%)
Overall PIADS	85	1.15 ±0.60	1.11	0 (0.0%)	0(0%)

Note: Appendix K includes more detailed distributions.

Figure 3-35 PIADS Distribution at initial administration for Competence for ARMD Population

Data exhibited normal distribution with majority of scores being positive

Figure 3-36 PIADS Distribution at follow up administration for Competence for ARMD population

Figure 3-37 PIADS Distribution at initial administration for Adaptability for ARMD population

Data exhibited normal distribution with majority of scores being positive

Figure 3-38 PIADS Distribution at follow up administration for Adaptability for ARMD population

Figure 3-39 PIADS Distribution at initial administration for Self-esteem for ARMD population

Data exhibited normal distribution with majority of scores being positive

Figure 3-40 PIADS Distribution at follow up administration for Self-esteem for ARMD population

Figure 3-41 PIADS Distribution at initial administration for Overall score for ARMD population

Data exhibited normal distribution with majority of scores being positive

Figure 3-42 PIADS Distribution at follow up administration for Overall score for ARMD population

3.2.3 NEI-VFQ 25 Distributions

The distributions for NEI-VFQ and its subscales are presented in **Tables 25 and 26** for both initial and follow up administrations for the ARMD subgroup. For the initial and follow up administrations, significant floor effects were noted for the Driving subscale (91.5% at initial and 90.2% at follow up). The percentages were slightly higher than the overall population but this is also due to the fact most participants are ineligible to drive in Ontario based on their visual impairment. Ocular pain (63.5% t₁, 54.1% t₂), Color Vision (48.8% t₁, 47.6% t₂), and Peripheral Vision (60.0% t₁, 54.1% t₂) subscales all demonstrate ceiling effects for both the initial and follow up administrations. General Health is the only subscale that does not demonstrate ceiling effects, as is the case in the overall sample population. The subscale scores for Role Difficulties, Driving, and General Vision are the lowest while Ocular Pain, Color Vision, and Peripheral Vision are the highest, as is the case for the overall sample population as well. Comparing *Figs 3-44 and 3-45*, it can be seen there is no significant change between scores for the NEI-VFQ 25 overall composite scores between initial and follow up administrations.

Scale	Ν	Mean ± Standard Deviation	Median	Floor n (%)	Ceiling n(%)
General Health	85	52.06 ± 28.41	50.00	4(4.7%)	12(14.1%)
General Vision	85	44 ± 19.23	40.00	0(0%)	1 (1.2%)
Ocular Pain	85	86.23 ± 22.1	100.00	0 (0%)	54(63.5%)
Near Activities	85	49.07 ±22.81	50.00	1 (1.2%)	2 (2.4%)
Distance Activities	85	47.89 ± 23.35	50.00	2 (2.4%)	2 (2.4%)
Social Functioning	85	63.53 ± 32.52	62.5	6 (5.0%)	13 (15.3%)
Mental Health	85	54.48 ±25.71	56.25	2 (2.4%)	3 (3.5%)
Role Difficulties	85	39.11 ±27.47	37.5	13 (15.3%)	1 (1.2%)
Dependency	85	58.82 ± 31.03	58.33	5 (5.9%)	15 (17.6%)
Driving	59	4.16 ± 16.21	0.00	54 (91.5%)	1 (1.7%)
Color Vision	85	72.32 ± 33.39	75.00	5 (6.0%)	41 (48.8%)
Peripheral Vision	85	80.88 ± 28.78	100.00	3 (3.5%)	51 (60%)
NEI-VFQ Composite	85	56.058± 14.98	56.67	0 (0.00%)	0 (0.00%)

 Table 25
 25-Item NEI-VFQ 25 Frequency Distributions for 1ST Administration for ARMD

 Population

Scale	Ν	Mean ± Standard Deviation	Median	Floor n (%)	Ceiling n(%)
General Health	85	55.88 ± 27.72	50.00	5(5.9%)	14 (16.5%)
General Vision	85	47.06 ± 16.53	40.00	0 (0.00%)	0 (0.00%)
Ocular Pain	85	85.00 ± 21.72	100.00	0 (0.00%)	46 (54.1%)
Near Activities	85	52.11 ± 23.51	50.00	1 (1.2%)	2 (2.4%)
Distance Activities	85	47.35 ± 22.13	50.00	3 (3.5%)	2 (2.4%)
Social Functioning	85	56.03 ± 23.75	62.50	0 (0.00%)	9 (10.6%)
Mental Health	85	55.66 ± 23.58	56.25	1 (01.2%)	9 (10.6%)
Role Difficulties	85	37.06 ± 28.96	37.50	16 (18.8 %)	4 (4.7%)
Dependency	85	56.08 ± 28.89	50.00	5 (5.9%)	10 (11.8%)
Driving	61	5.33 ± 18.00	0.00	55 (90.2%)	1 (1.6%)
Color Vision	85	75.30 ± 29.43	75.00	2 (2.4%)	40 (47.6%)
Peripheral Vision	85	79.71 ± 27.68	100.00	2 (2.4%)	46 (54.1%)
NEI-VFQ Composite	85	55.50 ± 13.99	55.23	0 (0.00%)	0 (0.00%)

 Table 26 25-Item NEI-VFQ 25 Frequency Distributions for 2ND Administration for ARMD

 Population

Note: Floor effects are calculated for those individuals whose score is 0, while ceiling effects are for those individuals who scored 100. Refer to Appendix L for more detailed distributions

Figure 3-43 Distribution of NEI-VFQ 25 results for Overall Composite score at initial administration for ARMD population

Data exhibited normal distribution with majority of scores being positive

Figure 3-44 Distribution of NEI-VFQ 25 results for Overall Composite score at follow up administration for ARMD population

3.2.4 PIADS Correlations with Clinical Measures: Visual Acuity and Contrast Sensitivity

Table 27 presents the correlations between PIADS and visual acuity for the ARMD sample. Unlike the overall population, there are several weak but significant correlations and visual acuity appears to play a slight role in PIADS scores. Looking at **Table 27**, competence at t_1 (0.262, p=0.016), self esteem at t_1 (0.258, p=0.018), and PIADS overall at t_1 (0.263, p= 0.016) all presented weak but modest correlations. *Figs 3-46 and 3-47* present a graphical representation of visual acuity versus overall PIADS score at $t_1 \& t_2$.

Only one PIADS subscale correlated with contrast sensitivity (**Table 28**), Competence at t_1 (-0.229, p=0.038). No valid conclusions can be drawn about PIADS and contrast sensitivity for the ARMD sample since only one correlation existed, it was negative and modest at best. *Figs 3-48 and 3-49* are presented as graphical representations for contrast sensitivity versus PIADS. Refer to Appendix M for statistical tests of all correlations.

PIADS Subscale Items with Visual Acuity scores	Correlation Coefficient	P-value
PIADS Competence t ₁	0.262*	0.016
PIADS Competence t ₂	0.024	0.829
PIADS Adaptability t ₁	0.197	0.072
PIADS Adaptability t ₂	-0.103	0.350
PIADS Self-Esteem t ₁	0.258*	0.018
PIADS Self Esteem t ₂	0.164	0.135
PIADS Overall t ₁	0.263*	0.016
PIADS Overall t ₂	0.027	0.804

Table 27	Correlations	between PIAD	S Subscale]	Items for	Initial (t ₁) and Follo	w up (t ₂)
Administ	rations with B	est Corrected	Visual Acui	ty Score,	n=82 for	ARMD Poj	pulation

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-45 Correlation between Visual Acuity and overall PIADS score at initial administration for ARMD population. Scatter plot indicates some weak correlation between PIADS and VA, n=116

Figure 3-46 Correlation between Visual Acuity and overall PIADS score at follow up administration for ARMD population. Scatter plot indicates some weak correlation between PIADS and VA, n=116

Table 28 Correlations between PIADS Subscale Items for Initial (t1) and Follow up (t2)Administrations with Pelli-Robson Score, n=84 for ARMD Population

PIADS Items with Pelli- Robson scores	Correlation Coefficient	P-value
PIADS Competence t ₁	-0.229*	0.038
PIADS Competence t ₂	-0.041	0.712
PIADS Adaptability t ₁	-0.005	0.965
PIADS Adaptability t ₂	0.061	0.584
PIADS Self-Esteem t ₁	-0.193	0.083
PIADS Self Esteem t ₂	-0.074	0.510
PIADS Overall t ₁	-0.153	0.171
PIADS Overall t₂	-0.019	0.868

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-47 Correlation between Contrast Sensitivity and overall PIADS score at initial administration for ARMD population. Scatter plot indicates very little correlation between PIADS and CS, n=116

Figure 3-48 Correlation between Contrast Sensitivity and overall PIADS score at follow up administration for ARMD population. Scatter plot indicates very little correlation between PIADS and CS, n=116

3.2.5 NEI-VFQ 25 Correlations with Clinical Measures: Visual Acuity and Contrast Sensitivity

The overall sample for the NEI-VFQ 25 appeared to have more correlations than the ARMD sample for visual acuity. Looking at T**able 29**, General Health at t_1 (-0.262, p=0.016) and General Vision at t_1 (-0.248, p=0.023) are the only two subscales that are correlated (albeit a modest correlation). *Figs 3-50 and 3-51* present a graphical representation for visual acuity versus overall NEI-VFQ 25 composite scores at $t_1 \& t_2$. Correlations with contrast sensitivity (**Table 30**) were as follows: General Vision at t_1 (0.238, p=0.031), Ocular Pain at t_1 (0.334, 0.002), Near Activities at t_1 (0.331, p= 0.004), Distance Activities at t_1 (0.227, p=0.034), NEI-VFQ 25 composite score at t_1 (0.242, p=0.028), General Vision at t_2 (0.227, p=0.040), Ocular pain at t_2 (0.360, p=0.001), Near Activities at t_2 (0.260, p=0.019), Distance Activities at t_2 (0.305, p=0.005), Driving at t_2 (0.298, p=0.022), and NEI-VFQ composite score at t_2 (0.281, p=0.011). *Figs 3-52 and 3-53* also present a graphical representation for contrast sensitivity versus NEI-VFQ 25 composite scores at $t_1 \& t_2$ for the ARMD sample.

Table 29 Correlations between NEI-VFQ 25 Subscales and Overall Items for Initial (t1) andFollow up (t2) Administrations with Best Corrected Visual Acuity Score, n=82 for ARMDPopulation

NEI-VFQ 25 Items with Visual Acuity scores	Correlation Coefficient	P-value
General Health t ₁	-0.262*	0.016
General Vision t ₁	-0.248*	0.023
Ocular Pain t ₁	0.048	0.663
Near Activities t ₁	0.003	0.976
Distance Activities t ₁	-0.034	0.756
Social Functioning t ₁	0.043	0.696
Mental Health t ₁	0.043	0.698
Role Difficulties t ₁	0.186	0.090
Dependency t ₁	0.018	0.871
Driving t ₁	-0.196	0.136
Color Vision t ₁	-0.081	0.466
Peripheral Vision t ₁	0.164	0.135
NEI-VFQ Composite t ₁	0.049	0.660
General Health t ₂	0.000	0.997
General Vision t ₂	-0.160	0.145
Ocular Pain t ₂	-0.019	0.866
Near Activities t ₂	0.030	0.786
Distance Activities t ₂	-0.047	0.671
Social Functioning t ₂	0.007	0.952
Mental Health t ₂	-0.076	0.490
Role Difficulties t ₂	-0.055	0.621
Dependency t ₂	0.038	0.732
Driving t ₂	-0.129	0.323
Color Vision t ₂	-0.049	0.662
Peripheral Vision t ₂	0.198	0.071
NEI-VFQ Composite t ₂	0.006	0.960

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-49 Correlation between Visual Acuity and overall NEI-VFQ 25 score at initial administration for ARMD population. Scatter plot indicates very little correlation between NEI-VFQ 25 and VA, n=116

Figure 3-50 Correlation between Visual Acuity and overall NEI-VFQ 25 score at follow up administration for ARMD population. Scatter plot indicates very little correlation between NEI-VFQ 25 and VA, n=116

Table 30 Correlations between NEI-VFQ 25 Subscale Items for Initial (t1) and Follow up (t2)Administrations with Pelli-Robson Contrast Sensitivity Test, n=84 for ARMD Population

NEI –VFQ 25 Items with Pelli-Robson scores	Correlation Coefficient	P-value
General Health t ₁	0.031	0.785
General Vision t ₁	0.238*	0.031
Ocular Pain t ₁	0.334*	0.002
Near Activities t ₁	0.311*	0.004
Distance Activities t ₁	0.234*	0.034
Social Functioning t ₁	0.073	0.512
Mental Health t ₁	-0.005	0.967
Role Difficulties t ₁	-0.092	0.412
Dependency t ₁	0.117	0.295
Driving t ₁	0.197	0.137
Color Vision t ₁	0.187	0,095
Peripheral Vision t ₁	0.079	0.483

NEI-VFQ Composite t ₁	0.242*	0.028
General Health t ₂	-0.027	0.807
General Vision t ₂	0.227*	0.040
Ocular Pain t ₂	0.360*	0.001
Near Activities t ₂	0.260*	0.019
Distance Activities t ₂	0.305*	0.005
Social Functioning t ₂	0.110	0.326
Mental Health t ₂	0.024	0.829
Role Difficulties t ₂	0.074	0.510
Dependency t ₂	0.163	0.143
Driving t ₂	0.298*	0.022
Color Vision t ₂	0.056	0.620
Peripheral Vision t ₂	0.134	0.229
NEI-VFQ Composite t ₂	0.281*	0.011

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-51 Correlation between Contrast Sensitivity and overall NEI-VFQ 25 score at initial administration for ARMD population. Scatter plot indicates modest correlation between PIADS and CS, n=116

Figure 3-52 Correlation between Contrast Sensitivity and overall NEI-VFQ 25 score at follow up administration for ARMD population. Scatter plot indicates modest correlation between PIADS and CS, n=116

3.2.6 PIADS & NEI-VFQ 25 Within Measure Correlations at Initial and Follow Up Administrations

Table 31 shows the correlations between PIADS subscales and overall scores at initial and followup administrations for the ARMD population. Moderate correlations are seen for all scores, thus helping to validate the stability of the relationship within the measures. A graphical representation of the overall PIADS scores at t_1 and t_2 are presented *(Fig 3-54)* In addition, the NEI-VFQ 25 subscales and composite scores also exhibited moderate to high correlations **(Table 32)**, over the given time period, also illustrating a stable relationship within the measure. Graphical representation of composite scores between $t_1 & t_2$ can been seen in *Fig 3-55*.

Table 31 Correlation between PIADS Subscale Items at Initial and Follow up Administrations (i.e. t₁=Initial, t₂=Follow up). n=85, ARMD Population. Time between Initial and Follow up Administration is 2 weeks.

PIADS Subscale Items	Correlation Coefficient	P-value
PIADS Competence t ₁ with Competence t ₂	0.535	<0.001

PIADS Adaptability t ₁ with Adaptability t ₂	0.481	<0.001
PIADS Self-Esteem t ₁ with Self Esteem t ₂	0.610	<0.001
PIADS Overall t ₁ with t ₂	0.557	< 0.001

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-53 Correlations of PIADS overall scores for initial and follow up administrations for ARMD population. Moderate correlations are present for PIADS between administrations during given time period (2 weeks)

NEI-VFQ-25 Subscale Items	Correlation Coefficient*	P-value
General Health t ₁ with t ₂	0.608	<0.001
General Vision t ₁ with t ₂	0.724	<0.001
Ocular Pain t ₁ with t ₂	0.709	<0.001
Near Activities t ₁ with t ₂	0.744	<0.001
Distance Activities t ₁ with t ₂	0.841	<0.001
Social Functioning t ₁ with t ₂	0.435	<0.001
Mental Health t ₁ with t ₂	0.690	<0.001
Role Difficulties t ₁ with t ₂	0.569	<0.001
Dependency t ₁ with t ₂	0.729	<0.001
Driving t ₁ with t ₂	0.997	<0.001
Color Vision t ₁ with t ₂	0.802	<0.001
Peripheral Vision t ₁ with t ₂	0.760	<0.001
NEI-VFQ Composite t ₁ with t ₂	0.858	<0.001

Table 32 Correlation between NEI-VFQ 25 Subscale Items at Initial and Follow upAdministrations (i.e. t1=Initial, t2=Follow up) n=85, ARMD Population

*Correlation is significant at the 0.05 level (2-tailed), and correlation coefficient is ≥ 0.20 .

Figure 3-54 Correlations of NEI-VFQ 25 composite scores for initial and follow up administrations for ARMD population. Moderate correlations are present for NEI-VFQ25 between administrations during given time period (2 weeks)

3.2.7 PIADS and NEI-VFQ between Measures Correlations at Initial and Follow-Up Administrations

The correlations between PIADS and NEI-VFQ 25 are summarized for time periods, t_1 and t_2 for the ARMD sample in **Tables 33 and 34**. Correlations between measures were summarized by Spearman correlation coefficient, because the measures were highly skewed and/or ordinal. The correlations were significant at α = 0.05, and where the correlation was \geq 0.20. The bolded items in represent correlations that are statistically significant, but these correlations are only moderate. Several weak but significant correlations were found between subscale items for PIADS and NEI-VFQ 25 at initial administration:

Vision function status in the areas of near activities (r= 0.230, p=0.035), social functioning (r= 0.216, p=0.047), peripheral vision (r= 0.243, p=0.025) (as revealed by NEI-VFQ 25) and psychosocial impact on competence (as revealed by PIADS).

- Vision function status in the areas of near activities (r= 0.348, p<0.001), mental health (r= 0.267, p=0.014), peripheral vision (r= 0.273, p=0.011), overall composite score (r= 0.226, p=0.038) (as revealed by NEI-VFQ 25) are correlated with adaptability (as revealed by PIADS).</p>
- Vision function status in the areas of peripheral vision (r= 0.263, p=0.015) (as revealed by NEI-VFQ 25) with self-esteem (as revealed by PIADS)
- The PIADS overall score correlated positively with near activities (r=0.279, p=0.001), mental health (r=0.225, p=0.038) and peripheral vision (r=0.284, p=0.008).

Fig 3-56 is a plot of PIADS overall score with the NEI-VFQ 25 composite score at initial administration.

Table 33 Correlation between NEI-VFQ 25 Subscale Items and PIADS Subscale Items at Initial Administration (i.e. t_1 =initial) n=85, ARMD Population. Bolded Items Indicate a Correlation Coefficient ≥ 0.20

	PIADS Subscales									
NEI-VFQ-	Compete	nce	Adaptab	ility	Self-Es	teem	PIADS Co	mposite		
25 Subscale	Correlation	p-	Correlation	p-	Correlatio	p-	Correlatio	p-		
Items	Coefficient	value	Coefficient	value	n	value	n	value		
					Coefficie		Coefficie			
					nt		nt			
General	-0.028	0.797	-0.084	0.444	-0.002	0.986	-0.079	0.474		
Health										
General	-0.051	0.644	0.095	0.387	0.074	0.502	0.058	0.601		
Vision										
Ocular Pain	-0.178	0.103	-0.072	0.514	-0.139	0.206	-0.139	0.206		
Near	0.230*	0.035	0.348*	< 0.001	0.125	0.256	0.279*	0.001		
Activities										
Distance	0.078	0.477	0.195	0.074	0.002	0.984	0.110	0.314		
Activities										
Social	0.216*	0.047	0.147	0.180	0.080	0.467	0.194	0.075		
Functioning										
Mental	0.144	0.190	0.267*	0.014	0.130	0.236	0.225*	0.038		
Health										
Role	0.195	0.074	0.111	0.313	0.115	0.293	0.170	0.120		
Difficulties										
Dependency	0.016	0.882	0.005	0.966	-0.089	0.419	0.009	0.934		
Driving	-0.051	0.702	-0.015	0.908	-0.140	0.291	-0.081	0.540		
Color Vision	0.043	0.697	-0.047	0.670	-0.141	0.200	-0.039	0.724		
Peripheral Vision	0.243*	0.025	0.273*	0.011	0.263*	0.015	0.284*	0.008		

NEI-VFQ	0.177	0.105	0.226*	0.038	0.069	0.529	0.200	0.067
Composite								

*Correlation is significant at the 0.05 level (2-tailed).

Figure 3-55 Correlations of overall scores between PIADS and NEI-VFQ 25 at initial administration for ARMD population. Several modest correlations are present between PIADS subscales and NEI-VFQ 25 subscales and overall scores.

Several weak but significant correlations were found between subscale items for PIADS and NEI-VFQ 25 at follow-up administration:

- Vision function status in the areas of general health (r= 0.250, p=0.021), mental health (r= 0.229, p=0.035), role difficulties (r= 0.253, p=0.019), dependency (r= 0.302, p=0.005), overall composite score (r= 0.304, p=0.005) (as revealed by NEI-VFQ 25) and psychosocial impact on competence (as revealed by PIADS).
- Vision function status in the areas of general health (r= 0.300, p=0.005), general vision (r= 0.298, p=0.006), near activities (r= 0.311, p=0.004), distance activities (r= 0.348, p=0.001), mental health (r= 0.315, p=0.003), dependency (r= 0.290, p=0.007), overall composite score (r= 0.351, p=0.001) (as revealed by NEI-VFQ 25) are correlated with adaptability (as revealed by PIADS).

- Vision function status in the areas of general health (r= 0.336, p=0.002), general vision (r= 0.262, p=0.016), distance activities (r= 0.241, p=0.026), dependency (r= 0.261, p=0.016), overall composite score (r= 0.275, p=0.011) (as revealed by NEI-VFQ 25) with self-esteem (as revealed by PIADS)
- The PIADS overall score correlated positively with general health (r= 0.328, p=0.002), general vision (r= 0.280, p=0.009), near activities (r= 0.234, p=0.031), distance activities (r= 0.311, p=0.004), mental health (r= 0.288, p=0.007), role difficulties (r= 0.210, p=0.054), dependency (r= 0.333, p=0.002), and the NEI-VFQ 25 composite score (r= 0.359, p=0.001).

Fig 3-57 is a plot of PIADS overall score with the NEI-VFQ 25 composite score at follow up administration.

Table 34 Correlation between NEI-VFQ 25 Subscale Items and PIADS Subscale Items atFollow up Administration (i.e. t_2 = follow-up). n=85, ARMD Population. Bolded Items Indicatea Correlation Coefficient ≥ 0.20

	PIADS Subscales									
NEI-VFQ-	Competence		Adaptabi	lity	Self-Esteem		PIADS Composite			
25 Subscale	Correlation	p-	Correlation p-		Correlation p-		Correlation	p-		
Items	Coefficient	value	Coefficient	value	Coefficient	value	Coefficient	value		
General Health	0.250*	0.021	0.300*	0.005	0.336*	0.002	0.328*	0.002		
General Vision	0.204	0.061	0.298*	0.006	0.262*	0.016	0.280*	0.009		
Ocular Pain	-0.070	0.522	-0.033	0.766	-0.168	0.125	-0.106	0.334		
Near Activities	0.146	0.184	0.311*	0.004	0.170	0.119	0.234*	0.031		
Distance Activities	0.207	0.057	0.348*	0.001	0.241*	0.026	0.311*	0.004		
Social Functioning	0.049	0.658	0.090	0.411	0.119	0.280	0.095	0.385		
Mental Health	0.229*	0.035	0.315*	0.003	0.195	0.074	0.288*	0.007		
Role Difficulties	0.253*	0.019	0.168	0.123	0.143	0.192	0.210*	0.054		
Dependency	0.302*	0.005	0.290*	0.007	0.261*	0.016	0.333*	0.002		
Driving	0.175	0.178	0.178	0.171	0.075	0.566	0.169	0.194		
Color Vision	0.067	0.546	0.064	0.562	0.093	0.402	0.095	0.390		
Peripheral Vision	0.171	0.118	0.114	0.300	0.134	0.223	0.175	0.110		
NEI-VFQ Composite	0.304*	0.005	0.351*	0.001	0.275*	0.011	0.359*	0.001		

*Correlation is significant at the 0.05 level (2-tailed).

Note: Appendix N includes all detailed correlation tests conducted for both measures.

3.2.8 Relationship Changes Over Time for PIADS and NEI-VFQ 25

Table 35 illustrates a significant change is present between times t_1 and t_2 for the PIADS subscales competence (t=-2.998, p=0.004), self-esteem (t= -3.590, p= 0.001), and PIADS overall (t= -2.891, p= 0.005). In each instance, t_2 had a significant higher score, thus indicating that there was a positive change at the follow up administration. Negative values denote the follow up administration was more positive. No significant changes were present for the Adaptability subscale of PIADS or for any of the NEI-VFQ 25 subscale or composite scores.

Table 35 Paired Samples Test assessing whether or not the Relationship between the PIADS and NEI-VFQ 25 measures change between t₁ and t₂. Bolded Values indicate scores for t₂ are of

Significantly Higher Value. In this case, $\alpha = 0.05/17 = 0.003$, known as the Bonferroni correction, since 17 pairs of tests were run.

	Paired Differences							
	Mean	Std. Deviatio n	Std. Error Mean	95% Confidence Interval of the Difference		t	df	Sig. (2- tailed)
				Lower	Upper			/
PIADS Subscale Competence1 - PIADS Subscale Competence2	22647	.69634	.07553	37667	07627	2.998	84	.004
PIADS Subscale Self- Esteem1 - PIADS Subscale Self-Esteem2	22794	.58541	.06350	35421	10167	- 3.590	84	.001
PIADS Subscale Adaptability1-PIADS Subscale Adaptability2	-1.0000	0.73427	0.07964	25838	.05838	1.256	84	.213
PIADSOverall1 - PIADSOverall2	18480	.58938	.06393	31193	05768	- 2.891	84	.005
VFQ Composite Score1 - VFQ Composite Score2	.58073	7.44811	.80786	-1.02579	2.18725	.719	84	.474

Note: Refer to Appendix O for complete list of 17 paired t-tests that were conducted.

3.3 Overall Comparison of Sample Population versus ARMD Population

Comparison of the PIADS and NEI-VFQ 25 subscales and overall scores of the ARMD population to the overall sample of 120 participants revealed no significant differences. The means of the subscales and overall score fall within the 95% Confidence Intervals of the overall population means of the subscales and overall score. For the NEI-VFQ 25, no significant differences were found either, except for the General Health subscales at both the initial and follow up administrations, where the mean scores for these two were just shy of the lower bound of the 95% Confidence Interval. This may imply condition plays a role in perceived health. However the scores were just outside the interval and further investigation is required to resolve this. It is interesting to note that PIADS correlated more strongly with the clinical measures for the ARMD population, whereas there were no significant correlations present for the overall sample. In the case of the NEI-VFQ 25, the overall sample appeared to correlate better with visual acuity than the ARMD sample, but contrast sensitivity correlations were not very different between the samples.

Significant differences were not detected for the correlations for PIADS between t_1 and t_2 , as was the case for the NEI-VFQ 25 subscales and composite scores. For the correlations between measures at initial administration, no major differences were detected either as the correlations still remained

weak but modest at best for the ARMD sample like the overall population. At the follow up administration, several more correlations between PIADS and NEI-VFQ 25 were apparent for the ARMD sample than the overall population. However, all the correlations between the measures remained relatively weak, falling in the range between 0.2-0.4. When it came to assessing the relationship over time, the ARMD sample exhibited the same pattern as did the overall population, with only significant differences being noted for the competence, self-esteem, and PIADS overall scores. Overall, the ARMD population did not illustrate any distinctive difference from the overall sample population which encompassed various eye conditions.

Refer to Appendix P for results for Confidence Intervals.

3.4 Results Summary

The results of this study are consistent with our previously stated hypotheses. NEI-VFQ 25 correlated more strongly to clinical measures than the PIADS. The measures showed stability, as indicated by the moderate correlations for the time interval. PIADS was shown to be a more responsive measure, able to detect change within the 2 week time interval. Finally, modest correlations existed between the measures (PIADS and NEI-VFQ 25) at initial and follow up administrations

Chapter 4 Discussion

The ever-increasing prevalence/incidence of low vision in North America is associated with dramatic increases in the need for assistive technology device rehabilitation to meet the demands of those who wish to improve their quality of life despite functional vision loss.

Both PIADS and NEI-VFQ 25 are reliable and valid self-reported outcome measures that are relevant for low vision rehabilitation settings. The NEI-VFQ 25 is used to assess the functional vision status of vision loss on the individual's performance of activities that contribute to their quality of life. The PIADS assesses the impact of specific assistive devices on psychosocial factors that contribute to quality of life. The PIADS provides a useful administration tool because the perceived impact of assistive device interventions is measured relatively independently from the device user's functional condition.

For PIADS, there were no significant changes between the overall population and the ARMD population. The study showed PIADS as a reliable tool that is responsive in detecting change as a result of device adoption.

The NEI-VFQ 25 was originally developed to assess visual function in those with ocular disease. Establishing benchmarks standards, however, is important in comparing a diseased population to one without any ocular disease ³⁰. There is a significant difference between our low vision cohort and the reference group, which confirms that visual function does have an effect on the measures. Significant differences are present for most subscales and the NEI-VFQ 25 composite scores at initial and follow-up administration. This is consistent with other studies that have compared a diseased cohort with a reference group and found that the diseased cohort demonstrates a greater degree of self-reported visual dysfunction ^{44, 51}. It is interesting to note though that the NEI-VFQ 25 was not designed to incorporate the impact of type of correction for refractive error on functioning and well being ⁶⁸. Comparing the overall sample with a published low vision sample ⁴⁴, reveals no differences in General Health and Ocular Pain subscales. General Vision, Near Activities, Distance Activities, Peripheral Vision, Color Vision, Role Difficulties, Dependency, Social Functioning, and Mental

Health are all significantly higher at both time intervals for the study sample. Driving and Role Difficulties were the only subscales that had lower subscale scores for the study population. The higher subscale scores of the study population may be attributable to the device intervention, since the published low vision sample did not receive any form of intervention. The overall study population exhibited a ceiling effect for the General Health subscale, while the ARMD sample did not. This may suggest that persons with ARMD view their quality of life more negatively than other samples. It is interesting to note that when comparing the ARMD sample population to a published ARMD sample ⁴⁴, the only subscale with a higher score is Peripheral Vision, and Ocular Pain shows no significant difference. Even a study on patients with uveitis reported NEI-VFQ 25 scores lower than the referenced ARMD population ⁷³. Ceiling effects for both study samples were noted for the Ocular Pain, Color Vision, and Peripheral Vision subscales. ARMD is characterized by painless loss of the central field of vision, so one might expect it would have little impact on Peripheral Vision and Ocular Pain subscales. It is interesting that NEI-VFQ 25 scores for the ARMD subjects with assistive devices are lower than those of the published sample. Another study showed patients with age-related maculopathy who presented for low vision rehabilitation services have lower NEI-VFQ 25 scores than those who did not 72 . Further investigation into this matter is warranted. Mangione et al ⁴⁴ present distributions for other ocular conditions as well.

Peripheral vision does not appear to be an issue for the participants in this study. As stated previously, 71% of the study participants have ARMD, which rarely interferes with peripheral vision. At both initial and follow-up administrations, a substantial ceiling effect was noted (51.7% and 48.3% t_1 and t_2 , respectively). A study on quality of life in patients with glaucoma indicated that subjects rated peripheral vision loss as less important than other activities associated with central vision and outdoor mobility ⁷. Other studies also show that individuals are mainly concerned with central visual acuity as opposed to the cause of the loss ⁹⁴.

Moreover, the Driving subscale experienced significant floor effects for both overall and ARMD samples, at both administrations. This is likely because most subjects have quit driving and have no reasonable expectation that they will be able to resume driving due to the current vision requirements for driving in Ontario. This is noteworthy because others have reported an association between driving cessation and decreased health-related quality of life and depression ⁷².

One of the items in the distance activities subscales asks users to rate their difficulty going down steps or stairs in dim light or at night. Studies of quality of life in patients with glaucoma study found 'darkness or glare' to be the chief complaint among the study cohort ⁷. Furthermore, it was found that although glaucoma is characterized by central and peripheral vision loss, it is concerns of central vision that are most important to the patients even where the peripheral field loss is only rated as mild ⁷. With our subjects, Peripheral Vision does not appear to be the primary complaint since the distribution of scores is normal and not skewed

PIADS subscale and overall scores did not show any significant effects across device categories with the MANOVA test. These results are consistent with an investigation of the psychosocial impact of hearing aids ⁷⁸. The NEI-VFQ 25 subscales also did not show any significant effects across device categories with the MANOVA test. Since there is no gold standard for comparing vision-specific quality of life measures or even health related quality of life measures, it is important to evaluate these data alongside clinical measures such as visual acuity and contrast sensitivity ²⁴. No significant correlations are present between the PIADS subscales and overall score for visual acuity and contrast sensitivity with respect to the overall sample. This finding is consistent with the results of a study involving closed circuit television systems (CCTVs) which found no statistically significant correlations between PIADS scores and visual acuity³. The ARMD sample did have a few significant vet modest correlations between visual acuity and the PIADS subscales of Competence at t_1 (0.262, p=0.016), Self esteem at t_1 (0.258, p=0.018), and PIADS overall at t_1 (0.263, p= 0.016). These data are presented in Table 27. Only the PIADS subscale of competence at t_1 (-0.229, p=0.038) is correlated with contrast sensitivity (See Table 28). Consistent with other studies ⁶³, it is possible that a health related quality of life measure that includes emotional or psychological dimensions, such as the PIADS, might detect effects from a study population that are independent of visual acuity

Previous studies confirm the NEI-VFQ 25 to be a reliable and valid tool for clinical research seeking to assess vision related related quality of life ^{36, 54}. NEI-VFQ 25 has been shown to be sensitive to different levels of visual acuity ^{44, 47, 50, 71}. The weak correlations show that the NEI-VFQ 25 is not directly affected by the severity of a participant's eye disease, suggesting that the measure is able to provide reproducible and valid data when used across multiple eye conditions ³⁶. However, in another study it was noted that such subscales as General Health, General Vision, Near Vision, Distance Vision, and Peripheral Vision are generally worse for subjects with severe ARMD ⁸⁷. A study on the quality of life with visual acuity loss from diabetic retinopathy and age related macular

degeneration reports that the degree of visual acuity loss rather than the underlying disease causing the visual acuity loss is primarily responsible for the reduction in quality of life ⁹⁴. In an ARMD study, participants with better visual function had higher scores on all the NEI-VFQ 25 subscales, especially in the subscales of general vision, near vision, and distance vision ⁵⁹, whereas those in an age-related maculopathy study reported lower scores with greater visual acuity impairment ⁷². The clinical expectation is that there is an inverse relation between increasing severity of ARMD and visual function and quality of life ⁷⁴. The NEI-VFQ 25 has been shown to be sensitive to differences in visual acuity ⁵², and is most responsive when visual acuity loss is binocular ⁴⁶. This was also the case in another study, where strong correlations of NEI-VFQ 25 composite scores with binocular visual acuity were noted ⁴⁹. Strong associations were also reported between best-corrected visual acuity and the NEI-VFQ 25 composite and subscale scores associated with central vision in a study with people with Diabetes Mellitus 1 ⁷¹. Such data presented here and in previous studies, ⁵⁴ may provide additional insight into the application of the NEI-VFQ 25 in a clinical setting to offer information about an individual's health, and further to the objective clinical measurements that are normally conducted.

It can be seen that the NEI-VFQ 25 correlates more strongly to visual acuity and contrast sensitivity data than the PIADS. This serves as an indicator that a user's rating of a task or perceived impact cannot be accurately predicted by the type or severity of vision loss. This finding is consistent with other studies ⁷. Although the correlations are moderate, the NEI-VFQ 25 seems to be influenced by visual function as measured by acuity. It appears that visual acuity does influence some aspects of quality of life, on a more functional level. Significant associations using the NEI-VFQ 25 have been found between self-reported morbidity limitation and poor visual acuity and contrast sensitivity tests ⁹². Other studies also confirm that visual acuity is associated with decreased quality of life and that self reported decrement in quality of life was present even with modest visual loss ³². It can be assumed that the level of decrease is associated with the level of visual impairment, since the greater the visual loss, the greater decrease in quality of life. In accordance with other studies, the NEI-VFQ 25 has been shown to be sensitive to visual acuity ^{58, 67}. Weak to modest correlations of visual measures with NEI-VFQ 25 in this study may be due to the restricted range of visual function of participants, as was noted in another study ⁵⁹. The driving subscale for the overall sample experienced modest correlations with visual acuity and contrast sensitivity, whereas there were none for the ARMD sample. Other studies have shown that the driving subscale is responsive to changes in visual acuity ⁴⁷. As well, other measures such as activities of daily living scale have also been

shown to be sensitive to clinical measures ⁹⁵. It is important to assess the association between visual acuity and the measures because visual acuity is widely recognized as a major determinant in vision-related quality of life, so much so that ophthalmologists rely primarily on visual acuity to plan patient management ⁵⁹. Overall, the NEI-VFQ 25 has been shown to discriminate between different severities of vision loss ⁴⁴.

Both PIADS and NEI-VFQ 25 for the overall and ARMD population exhibited significant correlations within the measures, thus illustrating the stability within the measures and that scores will be similar between administrations. The research indicates that there although there were several significant correlations between the two outcome measures, they were relatively weak to modest (range r= 0.20 to 0.353, p<0.05 at initial administration and r =0.203 to 0.292, p <0.05 at follow up administration). I was able to safely reject the null hypothesis since there was a significant difference and the p-values were less than α . However, the fact that the correlations were not strong confirms that the NEI-VFQ 25 and PIADS are relatively independent measures and are attuned to different quality of life constructs. On some level they do look at similar domains or otherwise they would not have correlated at all. Speculation into what the domains might be can simply be traced back to the subscales that had the highest correlations and were present for both initial and follow up administrations. As an example, Adaptability (PIADS) with Mental Health (NEI-VFQ 25) correlated at both time instances. What's interesting to note is that some subscales of one measure correlated with the other at the first time interval but didn't at the second. The possibility that the range of the scales is restricted warrants for suppression and the low correlations. Further research needs to be conducted to explore this relationship.

Significant change over the time period was present for some PIADS subscales but none of the NEI-VFQ 25 subscales. A change in function (NEI-VFQ 25) should not be expected between initial and follow up administrations but should only be expected to change after initial device adoption but won't continue to change afterwards. This is an implication for future research to be conducted in the administration of function change pre and post device adoption. On the other hand, perceived impact (PIADS) will change positively because suddenly an individual is able to perform activities they couldn't do before, and as a consequence, they will start to feel better and continue to feel better about themselves because it is providing a positive impact. This is consistent with the significant change that is present (**Tables 21 and 35**) with PIADS between initial and follow up administrations. As a result, it appears there is greater opportunity for detecting change through PIADS as it appears to be a more responsive scale when looking at device adoption.

4.1 Limitations

Normally, it can be assumed that we are sampling randomly from the population. However, because of the inclusion/exclusion criteria specified and the source of the sample, this was not the case. The selected population was patients of the Low Vision Clinic, which may have posed some bias. There exists other low vision populations but due to economic and cost limitations, they may not come for an evaluation which they have to pay for, or may be seeking other services, and therefore we were not accessible to these. In addition to introduction of a sample bias, we also introduced an age bias by limiting our sample to those over the age of 18. The reason for this is to obtain more precise and accurate data by ensuring a competent and mature population base.

4.2 Research Shortcomings

Since we did not randomly sample, we cannot estimate how likely our findings can be generalized to the populations with the ocular conditions of those in our study. It should be noted that this type of research makes it extremely difficult to ensure random selection due to the nature of the data collection and the need for reasonable sample sizes. In the future if the study is to be reproduced, subjects should be administered the NEI-VFQ 25 prior to device adoption and then post in order to track any robust change that the device may have made. This is currently being investigated for future research in this area.

4.3 Conclusion

The results of this study are consistent with our hypothesis that subjective reports of changes in functional status following device acquisition (NEI-VFQ 25 results) will be somewhat correlated with self- reported changes in psychosocial status (PIADS results). As was predicted, NEI-VFQ 25 correlated more strongly to clinical measures than the PIADS. The measures showed stability, as indicated by the moderate correlations for the time interval. PIADS was shown to be a more responsive measure, able to detect change within the 2 week time interval. These two instruments evaluate different but complementary aspects of quality of life. When used in tandem, it is believed

they provide much greater insight into the impact of device intervention than simply looking at changes in functional status. As well, by incorporating self reports of visual functioning and health related quality of life into clinical studies, it may be possible to demonstrate the negative effects of visual impairment on everyday activities that are not reflected in a clinical measure endpoint such as visual acuity ⁶³. Due to the dynamic nature of quality of life, these relationships are expected to change over time as people adapt to their newly acquired low vision devices. The longer term data from this prospective cohort study should provide more reliable indicators of successful device adoption.
References

- Jutai, J. Hooper, P. Strong, G. Cooper, L. Hutnik, C. Sheidow, T. Tingey, Vision rehabilitation evidence based review: Chapter 1: Terminology, demography, and epidemiology of low vision. *CNIB Baker Foundation for Vision Research*. 2005;1:1-60.
- Jutai J. Dynamic program approach of modelling assistive technology device outcomes in low vision rehabilitation. Ontario/Canada:2005.
- 3. Strong, G., Jutai, J.W., Bevers, P., Hartley, M., & Plotkin, A. The psychosocial impact of closedcircuit television (CCTV) low vision aids. *Visual Impairment Research*. 2004;5:179-190.
- 4. World Health Organization. International classification of functioning, disability and health: ICF. *Geneva, World Health Organization*. 2001.
- Massof RW. A systems model for low vision rehabilitation. II. measurement of vision disabilities. *Optom Vis Sci.* 1998;75:349-373.
- 6. Elliott DB, Strong G, Trukolo-Ilic M, Pace RJ, Plotkin A, Bevers P. A comparison of low vision clinic data with low vision survey and blindness registration information. *Optometry and vision science : official publication of the American Academy of Optometry*. 1998;75:272-278.
- Aspinall PA, Hill AR, Nelson P, et al. Quality of life in patients with glaucoma: A conjoint analysis approach. *Visual Impairment Research* [Quality of Life in Patients with Glaucoma: A Conjoint Analysis Approach]. 2005;7:13-26. Available from: http://journalsonline.tandf.co.uk/link.asp?id=v88j15x4ur1j2157. Accessed April 2005.

- Bischoff P. Long-term results of low vision rehabilitation in age-related macular degeneration. Doc Ophthalmol. 1995;89:305-311.
- 9. Massof RW, Hsu CT, Baker FH, et al. Visual disability variables. II: The difficulty of tasks for a sample of low-vision patients. *Arch Phys Med Rehabil*. 2005;86:954-967.
- Massof RW, Hsu CT, Baker FH, et al. Visual disability variables. I: The importance and difficulty of activity goals for a sample of low-vision patients. *Arch Phys Med Rehabil*. 2005;86:946-953.
- Jutai J, Ladak N, Schuller R, Naumann S, Wright V. Outcomes measurement of assistive technologies: An institutional case study. *Assistive technology : the official journal of RESNA*. 1996;8:110-120.
- Jutai J. Quality of life impact of assistive technology. *Rehabilitation & Community Care Management*. 1998;14:2-7.
- 13. Jutai J. Measuring the psychosocial impact of assistive technology. *16th Annual Conference on Technology and Persons with Disabilities*. 2001.
- DeRuyter F. Evaluating outcomes in assistive technology: Do we understand the commitment? Assist Technol. 1995;7:3-8; discussion 9-16.
- 15. Day H, Jutai J, Campbell KA. Development of a scale to measure the psychosocial impact of assistive devices: Lessons learned and the road ahead. *Disabil Rehabil*. 2002;24:31-37.

- 16. Horowitz A, Reinhardt JP, Boerner K. The effect of rehabilitation on depression among visually disabled older adults. *Aging Ment Health*. 2005;9:563-570.
- Pollard TL, Simpson JA, Lamoureux EL, Keeffe JE. Barriers to accessing low vision services. *Ophthalmic Physiol Opt.* 2003;23:321-327.
- Lenker JA, Scherer MJ, Fuhrer MJ, Jutai JW, DeRuyter F. Psychometric and administrative properties of measures used in assistive technology device outcomes research. *Assist Technol*. 2005;17:7-22.
- 19. Jutai JW, Fuhrer MJ, Demers L, Scherer MJ, DeRuyter F. Toward a taxonomy of assistive technology device outcomes. *Am J Phys Med Rehabil*. 2005;84:294-302.
- 20. Andresen EM. Criteria for assessing the tools of disability outcomes research. *Arch Phys Med Rehabil.* 2000;81:S15-20.
- 21. Espallargues M, Czoski-Murray CJ, Bansback NJ, et al. The impact of age-related macular degeneration on health status utility values. *Invest Ophthalmol Vis Sci.* 2005;46:4016-4023.
- 22. Fuhrer MJ. Assistive technology outcomes research: Challenges met and yet unmet. *Am J Phys Med Rehabil*. 2001;80:528-535.
- 23. Harper R. Measuring the outcomes of ophthalmic healthcare: Low vision rehabilitation. *Ophthalmic and Physiological Optics*. 1997;17:540-540.
- Stelmack J. Quality of life of low-vision patients and outcomes of low-vision rehabilitation.
 Optom Vis Sci. 2001;78:335-342.

- 25. Dejong G, Horn SD, Gassaway JA, Slavin MD, Dijkers MP. Toward a taxonomy of rehabilitation interventions: Using an inductive approach to examine the "black box" of rehabilitation. *Arch Phys Med Rehabil.* 2004;85:678-686.
- Hill AR, Cotton LJ. Predicting successful outcomes in the low vision management of elderly people. *Ophthalmic and Physiological Optics*. 1997;17:540-540.
- 27. Fitzpatrick R, Davey C, Buxton MJ, Jones DR. Evaluating patient-based outcome measures for use in clinical trials. *Health Technol Assess*. 1998;2:i-iv, 1-74.
- Johnston MV, Keith RA, Hinderer SR. Measurement standards for interdisciplinary medical rehabilitation. *Arch Phys Med Rehabil*. 1992;73:S3-23.
- Cronbach LE-. Coefficient alpha and the internal structure of tests. *Psychometrika*. 1951;16:297-334.
- 30. Globe D, Varma R, Azen SP, et al. Psychometric performance of the NEI VFQ-25 in visually normal latinos: The los angeles latino eye study. *Invest Ophthalmol Vis Sci.* 2003;44:1470-1478.
- Dijkers MP, Kropp GC, Esper RM, Yavuzer G, Cullen N, Bakdalieh Y. Reporting on reliability and validity of outcome measures in medical rehabilitation research. *Disabil Rehabil*. 2002;24:819-827.
- 32. Broman AT, Munoz B, Rodriguez J, et al. The impact of visual impairment and eye disease on vision-related quality. *Invest Ophthalmol Vis Sci.* 2002;43:3393-3398.

- Dillon H, So M. Incentives and obstacles to the routine use of outcomes measures by clinicians. *Ear Hear*. 2000;21:2S-6S.
- 34. Sprangers MA, Moinpour CM, Moynihan TJ, Patrick DL, Revicki DA, Clinical Significance Consensus Meeting Group. Assessing meaningful change in quality of life over time: A users' guide for clinicians. *Mayo Clin Proc.* 2002;77:561-571.
- 35. Stelmack J. Emergence of a rehabilitation medicine model for low vision service delivery, policy, and funding. *Optometry*. 2005;76:318-326.
- 36. Childs AL, Submacular Surgery Trials Research Group. Effect of order of administration of health-related quality of life interview instruments on responses. *Qual Life Res.* 2005;14:493-500.
- Globe DR, Varma R, Torres M, et al. Self-reported comorbidities and visual function in a population-based study: The los angeles latino eye study. *Arch Ophthalmol.* 2005;123:815-821.
- 38. Babcock-Parziale J, McKnight PE, Head DN. Evaluating psychometric properties of a clinical and a self-report blind rehabilitation outcome measure. *J Rehabil Res Dev.* 2005;42:487-498.
- 39. Cahill MT, Banks AD, Stinnett SS, Toth CA. Vision-related quality of life in patients with bilateral severe age-related macular degeneration. *Ophthalmology*. 2005;112:152-158.
- 40. Cahill MT, Stinnett SS, Banks AD, Freedman SF, Toth CA. Quality of life after macular translocation with 360 degrees peripheral retinectomy for age-related macular degeneration. *Ophthalmology*. 2005;112:144-151.

- 41. McCabe P, Nason F, Demers Turco P, Friedman D, Seddon JM. Evaluating the effectiveness of a vision rehabilitation intervention using an objective and subjective measure of functional performance. *Ophthalmic Epidemiol*. 2000;7:259-270.
- 42. Wilkinson ME. Low vision rehabilitation: A concise overview. *Insight*. 2003;28:111-7; quiz 118-9.
- 43. Wolffsohn JS, Cochrane AL. Design of the low vision quality-of-life questionnaire (LVQOL) and measuring the outcome of low-vision rehabilitation. *Am J Ophthalmol*. 2000;130:793-802.
- 44. Mangione CM, Lee PP, Gutierrez PR, Spritzer K, Benny S, Hays RD. Development of the 25item national eye institute visual function questionnaire. *Arch Ophthalmol*. 2001;119:1050-1058.
- 45. Mangione CM. *The National Eye Institute 25-Item Visual Function Questionnaire (VFQ-25) Scoring Algorithm.* National Eye Institute; 2000.
- 46. Lindblad AS, Clemons TE. Responsiveness of the national eye institute visual function questionnaire to progression to advanced age-related macular degeneration, vision loss, and lens opacity: AREDS report no. 14. *Arch Ophthalmol.* 2005;123:1207-1214.
- 47. The Submacular Surgery Trials Research Group,. Responsiveness of the national eye institute visual function questionnaire to changes in visual acuity: Findings in patients with subfoveal choroidal neovascularization--SST report no. 1. *Arch Ophthalmol*. 2003;121:531-539. Available from: http://archopht.ama-assn.org/cgi/content/abstract/121/4/531.
- 48. Hertle RW, Dell'Osso LF, FitzGibbon EJ, Thompson D, Yang D, Mellow SD. Horizontal rectus tenotomy in patients with congenital nystagmus: Results. *Ophthalmology*. 2003;110:2097-2105.

- 49. Ma SL, Shea JA, Galetta SL, et al. Self-reported visual dysfunction in multiple sclerosis: New data from the VFQ-25 and development of an MS-specific vision questionnaire. *Am J Ophthalmol.* 2002;133:686-692.
- 50. Mangione CM, Lee PP, Pitts J, et al. Psychometric properties of the national eye institute visual function questionnaire (NEI-VFQ). *Arch Ophthalmol*. 1998;116:1496-1504. Available from: http://archopht.ama-assn.org/cgi/content/abstract/116/11/1496.
- 51. Balcer LJ, Baier ML, Kunkle AM, et al. Self-reported visual dysfunction in multiple sclerosis: Results from the 25-item national eye institute visual function questionnaire (VFQ-25). *Mult Scler*. 2000;6:382-385.
- 52. Globe DR, Wu J, Azen SP, Varma R, Los Angeles Latino Eye Study Group. The impact of visual impairment on self-reported visual functioning in latinos: The los angeles latino eye study. *Ophthalmology*. 2004;111:1141-1149.
- 53. Clemons TE, Chew EY, Bressler SB, McBee W, for the AREDS Research Group,. National eye institute visual function questionnaire in the age-related eye disease study (AREDS): AREDS report no. 10. *Arch Ophthalmol.* 2003;121:211-217. Available from: http://archopht.ama-assn.org/cgi/content/abstract/121/2/211.
- 54. Cusick M, SanGiovanni JP, Chew EY, et al. Central visual function and the NEI-VFQ-25 near and distance activities subscale scores in people with type 1 and 2 diabetes. *Am J Ophthalmol.* 2005;139:1042-1050.
- 55. Biousse V, Tusa RJ, Russell B, et al. The use of contact lenses to treat visually symptomatic congenital nystagmus. J Neurol Neurosurg Psychiatry. 2004;75:314-316.

- 56. Massof RW. Application of stochastic measurement models to visual function rating scale questionnaires. *Ophthalmic Epidemiol*. 2005;12:103-124.
- 57. Nichols KK, Mitchell GL, Zadnik K. Performance and repeatability of the NEI-VFQ-25 in patients with dry eye. *Cornea*. 2002;21:578-583.
- 58. Burstedt MS, Monestam E, Sandgren O. Associations between specific measures of vision and vision-related quality of life in patients with bothnia dystrophy, a defined type of retinitis pigmentosa. *Retina*. 2005;25:317-323.
- 59. Maguire M, Complications of Age-Related Macular Degeneration Prevention Trial Research Group. Baseline characteristics, the 25-item national eye institute visual functioning questionnaire, and their associations in the complications of age-related macular degeneration prevention trial (CAPT). *Ophthalmology*. 2004;111:1307-1316.
- Toprak AB, Eser E, Guler C, Baser FE, Mayali H. Cross-validation of the turkish version of the 25-item national eye institute visual functioning questionnaire (NEI-VFQ 25). *Ophthalmic Epidemiol.* 2005;12:259-269.
- Vitale S, Goodman LA, Reed GF, Smith JA. Comparison of the NEI-VFQ and OSDI questionnaires in patients with sjogren's syndrome-related dry eye. *Health Qual Life Outcomes*. 2004;2:44.
- 62. Owsley C, McGwin G,Jr. Depression and the 25-item national eye institute visual function questionnaire in older adults. *Ophthalmology*. 2004;111:2259-2264.

- Mangione CM, Gutierrez PR, Lowe G, Orav EJ, Seddon JM. Influence of age-related maculopathy on visual functioning and health-related quality of life. *Am J Ophthalmol*. 1999;128:45-53.
- 64. Massof RW. Likert and guttman scaling of visual function rating scale questionnaires. *Ophthalmic Epidemiol*. 2004;11:381-399.
- 65. Stelmack JA, Stelmack TR, Massof RW. Measuring low-vision rehabilitation outcomes with the NEI VFQ-25. *Invest Ophthalmol Vis Sci*. 2002;43:2859-2868.
- 66. Suzukamo Y, Oshika T, Yuzawa M, et al. Psychometric properties of the 25-item national eye institute visual function questionnaire (NEI VFQ-25), japanese version. *Health Qual Life Outcomes*. 2005;3:65.
- 67. Broman AT, Munoz B, West SK, et al. Psychometric properties of the 25-item NEI-VFQ in a hispanic population: Proyecto VER. *Invest Ophthalmol Vis Sci.* 2001;42:606-613.
- Hays RD, Mangione CM, Ellwein L, Lindblad AS, Spritzer KL, McDonnell PJ. Psychometric properties of the national eye institute-refractive error quality of life instrument. *Ophthalmology*. 2003;110:2292-2301.
- 69. Nordmann JP, Auzanneau N, Ricard S, Berdeaux G. Vision related quality of life and topical glaucoma treatment side effects. *Health Qual Life Outcomes*. 2003;1:75.
- 70. Rossi GC, Milano G, Tinelli C. The italian version of the 25-item national eye institute visual function questionnaire: Translation, validity, and reliability. *J Glaucoma*. 2003;12:213-220.

- 71. Klein R, Moss SE, Klein BE, Gutierrez P, Mangione CM. The NEI-VFQ-25 in people with longterm type 1 diabetes mellitus: The wisconsin epidemiologic study of diabetic retinopathy. *Arch Ophthalmol.* 2001;119:733-740.
- Scilley K, DeCarlo DK, Wells J, Owsley C. Vision-specific health-related quality of life in agerelated maculopathy patients presenting for low vision services. *Ophthalmic Epidemiol*. 2004;11:131-146.
- 73. Schiffman RM, Jacobsen G, Whitcup SM. Visual functioning and general health status in patients with uveitis. *Arch Ophthalmol*. 2001;119:841-849.
- 74. Fuhs A, Dasch B, Behrens T, et al. Visual function and quality of life in patients with age-related maculopathy: Results of the munster age and retina study (MARS). *Klin Monatsbl Augenheilkd*. 2005;222:649-654.
- 75. Nordmann JP, Viala M, Sullivan K, Arnould B, Berdeaux G. Psychometric validation of the national eye institute visual function questionnaire - 25 (NEI VFQ-25) french version: In a population of patients treated for ocular hypertension and glaucoma. *Pharmacoeconomics*. 2004;22:197-206.
- 76. Scott IU, Smiddy WE, Schiffman J, Feuer WJ, Pappas CJ. Quality of life of low-vision patients and the impact of low-vision services. *Am J Ophthalmol*. 1999;128:54-62.
- 77. Jutai JD,H. Psychosocial impact of assistive devices scale (PIADS). *Technology & Disability*. 2002;14:107-111.

- 78. Saunders GHJ,J.W. Hearing specific and generic measures of the psychosocial impact of hearing aids. *Journal of the American Academy of Audiology*. 2004;15:238-248.
- 79. Jutai JS,G. Psychosocial outcomes of hearing aids. In: G.M. Craddock, L.P. McCormack, R.B. Reilly, & H.T.P. Knops (Eds.). 2003;Assistive technology – shaping the future. Amsterdam: IOS Press:510-514.
- Chandarana S, Parnes L, Agrawal S, Fung K. Quality of life following small fenestra stapedotomy. *Ann Otol Rhinol Laryngol.* 2005;114:472-477.
- Day, H. & Jutai, J. Measuring the psychosocial impact of assistive devices: The PIADS. Canadian Journal of Rehabilitation. 1996;9:159-168.
- Bay HY, Jutai J, Woolrich W, Strong G. The stability of impact of assistive devices. *Disabil Rehabil*. 2001;23:400-404.
- 83. Jutai, J. Bayley, M. Teasell, R. Hartley, M. Psychosocial impact of assistive technology devices in stroke. *In: G.M. Craddock, L.P. McCormack, R.B. Reilly, & H.T.P. Knops (Eds.).* 2003;Assistive technology – shaping the future. Amsterdam: IOS Press:814-818.
- Jutai, J. Rigby, P. Ryan, S. Stickel, S. Psychosocial impact of electronic aids to daily living. Assistive Technology. 2000;12:123-131.
- Jutai J, Day H, Woolrich W, Strong G. The predictability of retention and discontinuation of contact lenses. *Optometry*. 2003;74:299-308.

- 86. Demers L, Monette M, Descent M, Jutai J, Wolfson C. The psychosocial impact of assistive devices scale (PIADS): Translation and preliminary psychometric evaluation of a canadian-french version. *Qual Life Res.* 2002;11:583-592.
- 87. Gelderblom JG, De White LP. The assessment of assistive device technology, outcomes, effects, and costs. *Tech & Disab*. 2002;14:91-94.
- Harper R, Doorduyn K, Reeves B, Slater L. Evaluating the outcomes of low vision rehabilitation. Ophthalmic Physiol Opt. 1999;19:3-11.
- 89. Day H, Campbell KA. Is telephone assessment a valid tool in rehabilitation research and practice? *Disability and rehabilitation*. 2003;25:1126-1131.
- 90. Fuhrer MJ, Jutai JW, Scherer MJ, DeRuyter F. A framework for the conceptual modeling of assistive technology device outcomes. *Disability and rehabilitation*. 2003;25:1243-1251.
- 91. World Health Organization. Towards a common language for functioning, disability and health: ICF. *Geneva: World Health Organization*. 2002.
- West CG, Gildengorin G, Haegerstrom-Portnoy G, Schneck ME, Lott L, Brabyn JA. Is vision function related to physical functional ability in older adults? *J Am Geriatr Soc.* 2002;50:136-145.
- 93. Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for assessing responsiveness: A critical review and recommendations. *J Clin Epidemiol*. 2000;53:459-468.

- 94. Brown MM, Brown GC, Sharma S, Landy J, Bakal J. Quality of life with visual acuity loss from diabetic retinopathy and age-related macular degeneration. *Arch Ophthalmol*. 2002;120:481-484.
- 95. Haymes SA, Johnston AW, Heyes AD. Relationship between vision impairment and ability to perform activities. *Ophthalmic Physiol Opt.* 2002;22:79-91.

•

Appendix A PIADS Questionnaire

Client	Name:			🗖 ma	ale 🗆 fer	nale		
Diagna	(Last name, then fir	st name)		Data	of Dirth.			
Diagno	0818:			Date	of Birth:		Mont	h/day/year
The f	orm is being filled out at (haasa ana) 1	D hom	<u> </u>	a clinic	3 □ 01	her (de	an/day/year
Thef	orm is being filled out by (liouse one) 1		1	ithout or			ha aliant with
I ne to	orm is being lilled out by (choose one) I	$\Box $ the (inent, w		iy neip	2. L U	$2 \Box 4 b$
neip n	rom the caregiver (e.g., che	nt snowed c	or told ca	regiver	what ans	wers to	give)	$3. \Box$ the
caregi	ver on benalt of the client,	without any	directio	n from t	ne client	4. 🗆	other (d	escribe):
Each w	vord or phrase below describes	how using a	n assistiv	e device	may affec	t a user.	Some m	light seem
unusua	al but it is important that you ar	nswer every o	one of the	26 items	s. Šo, for	each wor	rd or phr	ase, put an "X"
in the a	appropriate box to show how y	ou are affecte	ed by usir	ng the				(device
name).								
	Decreases -3	3 -2	-1	0	1	2	3	Increases
1)	competence							
2)	happiness							
3)	independence							
4)	adequacy							
5)	confusion							
6)	efficiency							
7)	self-esteem							
8)	productivity							
9)	security							
10)	frustration							
11)	usefulness							
12)	self-confidence							
13)	expertise							
14)	skillfulness							
15)	well-being							
16)	capability							
17)	quality of life							
18)	performance							
19)	sense of power							
20)	sense of control							
21)	embarrassment							
22)	willingness to take chances							
23)	ability to participate							
24)	eagerness to try new things							
25)	ability to adapt to the							
	activities of daily living							
26)	ability to take advantage							Ц

of opportunities

Appendix B NEI-VFQ 25 Questionnaire

PB/IA

National Eye Institute Visual Functioning Questionnaire - 25 (VFQ-25)

version 2000

(INTERVIEWER ADMINISTERED FORMAT)

January 2000

RAND hereby grants permission to use the "National Eye Institute Visual Functioning Questionnaire 25 (VFQ-25) July 1996, in accordance with the following conditions which shall be assumed by all to have been agreed to as a consequence of accepting and using this document:

 Changes to the NEI VFQ-25 - July 1996 may be made without the written permission of RAND. However, all such changes shall be clearly identified as having been made by the recipient.

The user of this NEI VFQ-25 - July 1996 accepts full responsibility, and agrees to hold RAND harmless, for the accuracy of any translations of the NEI VFQ-25 Test Version - July 1996 into another language and for any errors, omissions, misinterpretations, or consequences thereof.

The user of this NEI VFQ-25 - July 1996 accepts full responsibility, and agrees to hold RAND harmless, for any consequences resulting from the use of the NEI VFQ-25.

4. The user of the NEI VFQ-25 - July 1996 will provide a credit line when printing and distributing this document or in publications of results or analyses based on this instrument acknowledging that it was developed at RAND under the sponsorship of the National Eye Institute.

5. No further written permission is needed for use of this NEI VFQ-25 - July 1996.

7/29/96

© R 1996

Instructions:

I'm going to read you some statements about problems which involve your vision or feelings that you have about your vision condition. After each question I will read you a list of possible answers. Please choose the response that best describes your situation.

Please answer all the questions as if you were wearing your glasses or contact lenses (if any).

Please take as much time as you need to answer each question. All your answers are confidential. In order for this survey to improve our knowledge about vision problems and how they affect your quality of life, your answers must be as accurate as possible. Remember, if you wear glasses or contact lenses for a particular activity, please answer all of the following questions as though you were wearing them.

Visual Functioning Questionnaire - 25

PART 1 - GENERAL HEALTH AND VISION

1. In general, would you say your overall health is*:

(Circle One)

READ CATEGORIES:	Excellent 1
	Very Good 2
	Good 3
	Fair 4
	Poor5

 At the present time, would you say your eyesight using both eyes (with glasses or contact lenses, if you wear them) is <u>excellent</u>, <u>good</u>, <u>fair</u>, <u>poor</u>, or <u>very poor</u> or are you <u>completely blind</u>?

(Circle One)

READ CATEGORIES:	Excellent	1
	Good	2
	Fair	3
	Poor	4
	Very Poor	5
	Completely Blind	6

^{*} Skip Question 1 when the VFQ-25 is administered at the same time as the SF-36 or RAND 36-Item Health Survey 1.0

3. How much of the time do you worry about your eyesight?

(Circle One)

READ CATEGORIES:	None of the time	1
	A little of the time	2
	Some of the time	3
	Most of the time	4
	All of the time?	5

4. How much <u>pain or discomfort</u> have you had <u>in and around your eyes</u> (for example, burning, itching, or aching)? Would you say it is:

•	•				(Circle (One)
READ C	ATEGORIE	S:	None			1
			Mild			2
			Modera	te		3
			Severe,	, or		4
			Very se	vere?		5

PART 2 - DIFFICULTY WITH ACTIVITIES

The next questions are about how much difficulty, if any, you have doing certain activities wearing your glasses or contact lenses if you use them for that activity.

 How much difficulty do you have <u>reading ordinary print in</u> <u>newspapers</u>? Would you say you have: (READ CATEGORIES AS NEEDED)

(Circi	le One)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not interested in doing this	6

6. How much difficulty do you have doing work or hobbies that require you to <u>see well up close</u>, such as cooking, sewing, fixing things around the house, or using hand tools? Would you say: (READ CATEGORIES AS NEEDED) (Circle One)

(Circ	le O	ne
No difficulty at all	1	
A little difficulty	2	
Moderate difficulty	3	
Extreme difficulty	4	
Stopped doing this because of your eyesight	5	
Stopped doing this for other reasons or not interested in doing this	6	

 Because of your eyesight, how much difficulty do you have <u>finding</u> <u>something on a crowded shelf</u>? (READ CATEGORIES AS NEEDED)

(Circl	le One)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not interested in doing this	6

8. How much difficulty do you have <u>reading street signs or the names of</u> <u>stores</u>?

(READ CATEGORIES AS NEEDED)

(Circ	le One)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not interested in doing this	6

 Because of your eyesight, how much difficulty do you have going down steps, stairs, or curbs in dim light or at night? (READ CATEGORIES AS NEEDED)

(Circl	e One)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not interested in doing this	6

 Because of your eyesight, how much difficulty do you have <u>noticing</u> <u>objects off to the side while you are walking along</u>? (READ CATEGORIES AS NEEDED)

(Circi	le One)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not interested in doing this	6

 Because of your eyesight, how much difficulty do you have <u>seeing</u> <u>how people react to things</u> you say? (READ CATEGORIES AS NEEDED)

, (Circ	le One)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not	
interested in doing this	. 6

12. Because of your eyesight, how much difficulty do you have <u>picking</u> out and matching your own clothes?

(READ CATEGORIES AS NEEDED)

(Circ	le One)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not interested in doing this	6

 Because of your eyesight, how much difficulty do you have <u>visiting</u> with people in their homes, at parties, or in restaurants? (READ CATEGORIES AS NEEDED)

(Circi	e One)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not interested in doing this	6

 Because of your eyesight, how much difficulty do you have going out to see movies, plays, or sports events? (READ CATEGORIES AS NEEDED)

(Circle One)

No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Stopped doing this because of your eyesight	5
Stopped doing this for other reasons or not interested in doing this	6

15. Now, I'd like to ask about <u>driving a car</u>. Are you <u>currently driving</u>, at least once in a while?

(Circle One)

Yes 1 Skip To Q 15c

No..... 2

15a. IF NO, ASK: Have you <u>never</u> driven a car or have you <u>given up</u> <u>driving</u>?

(Circle One)

Never drove 1 Skip To Part 3, Q 17

Gave up..... 2

15b. IF GAVE UP DRIVING: Was that <u>mainly because of your</u> <u>evesight</u>, <u>mainly for some other reason</u>, or because of <u>both your</u> <u>evesight and other reasons</u>?

(Circle One)

Mainly eyesight	1	Skip To Part 3, Q 17
Mainly other reasons	2	Skip To Part 3, Q 17
Both evesight and other reasons	3	Skip To Part 3. Q 17

15c. IF CURRENTLY DRIVING: How much difficulty do you have <u>driving during the daytime in familiar places</u>? Would you say you have:

(Circle On	e)
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4

 How much difficulty do you have <u>driving at night</u>? Would you say you have: (READ CATEGORIES AS NEEDED)

(Circle One)

No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Have you stopped doing this because of your eyesight	5
Have you stopped doing this for other reasons or are you not interested in doing this	
doing this	0

16a. How much difficulty do you have <u>driving in difficult conditions, such</u> <u>as in bad weather, during rush hour, on the freeway, or in city traffic?</u> Would you say you have: (READ CATEGORIES AS NEEDED)

(Circle (Dnel
No difficulty at all	1
A little difficulty	2
Moderate difficulty	3
Extreme difficulty	4
Have you stopped doing this because of your eyesight	5
Have you stopped doing this for other	
reasons or are you not interested in	
doing this	6

PART 3: RESPONSES TO VISION PROBLEMS

The next questions are about how things you do may be affected by your vision. For each one, I'd like you to tell me if this is true for you <u>all</u>, <u>most</u>, <u>some</u>, <u>a little</u>, or <u>none</u> of the time.

			(Circle On	e On Eac	h Line)
READ CATEGORIES:	All of the time	Most of the time	Some of the time	A little of the time	None of the time
17. <u>Do you accomplish less</u> than you would like because of your vision?	1	2	3	4	5
 Are you limited in how long you can work or do other activities because of your vision? 	1	2	3	4	5
19. How much does pain or discomfort <u>in or around</u> <u>your eyes</u> , for example, burning, itching, or aching, keep you from doing what you'd like to be doing? Would you say:	1	2	3	4	5
ar annge freue jeu euje	•	-	-	•	-

For each of the following statements, please tell me if it is <u>definitely true</u>, <u>mostly true</u>, <u>mostly false</u>, or <u>definitely false</u> for you or you are <u>not sure</u>.

		Definitely True	Mostly True	Not Sure	Mostly False	Definitely False
20.	l <u>stay home most of the ti</u> because of my eyesight	<u>me</u> 1	2	3	4	5
21.	l feel <u>frustrated</u> a lot of the time because of my eyesight	e 1	2	3	4	5
22.	I have <u>much less control</u> over what I do, because o my eyesight	f 1	2	3	4	5
23.	Because of my eyesight, I have to <u>rely too much on</u> <u>what other people tell me</u>	1	2	3	4	5
24.	l <u>need a lot of help</u> from others because of my eyesight	1	2	3	4	5
25.	I worry about <u>doing things</u> <u>that will embarrass mysel</u> <u>or others</u> , because of my evesight.	<u>s</u> f	2	3	4	5

(Circle One On Each Line)

That's the end of the interview. Thank you very much for your time and your help.

Appendix C Reliability Statistics

PIADS at Initial Assessment

Reliability Statistics

Reliability Statistics

	Cronbach's Alpha Based	
	on	
Cronbach's	Standardized	
Alpha	Items	N of Items
.891	.892	3

Inter-Item Correlation Matrix

	PIADS Subscale Competence1	PIADS Subscale Adaptability1	PIADS Subscale Self-Esteem1
PIADS Subscale Competence1	1.000	.770	.731
PIADS Subscale Adaptability1	.770	1.000	.700
PIADS Subscale Self-Esteem1	.731	.700	1.000

The covariance matrix is calculated and used in the analysis.

PIADS at Follow up Administration

Reliability Statistics

	Cronbach's Alpha Based	
	on	
Cronbach's	Standardized	
Alpha	Items	N of Items
.861	.862	3

Inter-Item Correlation Matrix

	PIADS Subscale Competence2	PIADS Subscale Adaptability2	PIADS Subscale Self-Esteem2
PIADS Subscale Competence2	1.000	.692	.771
PIADS Subscale Adaptability2	.692	1.000	.563
PIADS Subscale Self-Esteem2	.771	.563	1.000

The covariance matrix is calculated and used in the analysis.

NEI-VFQ 25 at Initial Administration

Reliability Statistics

Reliability Statistics

	Cronbach's Alpha Based	
	on	
Cronbach's	Standardized	
Alpha	Items	N of Items
.679	.695	12

	Inter-Item Correlation Matrix												
	VFQ Subscale General Health1	VFQ Subscale General Vision1	VFQ Subscale Ocular Pain1	VFQ Subscale Near Activities1	VFQ Subscale Distance Activities1	VFQ Subscale Social Functioning1	VFQ Subscale Mental Health1	VFQ Subscale Role Difficulties1	VFQ Subscale Dependency1	VFQ Subscale Driving1	VFQ Subscale Color Vision1	VFQ Subscale Peripheral Vision1	
VFQ Subscale Gener Health1	1.000	.217	.224	.052	076	163	.126	.082	018	.080	.014	054	
VFQ Subscale Gener Vision1	.217	1.000	.238	.265	.216	.055	.192	.319	.267	.260	.098	190	
VFQ Subscale Ocula Pain1	.224	.238	1.000	.201	.134	049	.070	.274	.044	012	.183	.029	
VFQ Subscale Near Activities1	.052	.265	.201	1.000	.436	.230	.352	.111	.358	.096	.170	.210	
VFQ Subscale Distance Activities1	076	.216	.134	.436	1.000	.527	.368	.303	.392	.243	.295	.099	
VFQ Subscale Social Functioning1	163	.055	049	.230	.527	1.000	.223	.205	.320	.089	.247	013	
VFQ Subscale Menta Health1	.126	.192	.070	.352	.368	.223	1.000	.373	.345	082	.150	.024	
VFQ Subscale Role Difficulties1	.082	.319	.274	.111	.303	.205	.373	1.000	.225	082	.350	102	
VFQ Subscale Dependency1	018	.267	.044	.358	.392	.320	.345	.225	1.000	.315	.319	.031	
VFQ Subscale Driving	.080	.260	012	.096	.243	.089	082	082	.315	1.000	.187	.032	
VFQ Subscale Color Vision1	.014	.098	.183	.170	.295	.247	.150	.350	.319	.187	1.000	.124	
VFQ Subscale Peripheral Vision1	054	190	.029	.210	.099	013	.024	102	.031	.032	.124	1.000	

The covariance matrix is calculated and used in the analysis.

NEI-VFQ 25 at Follow up Administration

Reliability Statistics

Reliability Statistics

	Cronbach's Alpha Based	
	on	
Cronbach's	Standardized	
Alpha	Items	N of Items
.723	.733	12

Inter-Item Correlation Matrix

	VFQ Subscale	VFQ Subscale		VFQ Subscale								VFQ
	General	General	VFQ Subscale	Near	VFQ Distance	VFQ Social	VFQ Mental	VFQ Role	VFQ		VFQ Color	Peripheral
	Health2	Vision2	Ocular Pain2	Activities2	Activities2	Functioning2	Health2	Difficulties2	Dependency2	VFQ Driving2	Vision2	Vision2
VFQ Subscale General Health2	1.000	.243	.203	.030	.075	.157	.150	.216	.111	055	.050	051
VFQ Subscale General Vision2	.243	1.000	.198	.135	.254	.263	.351	.357	.352	.088	.115	104
VFQ Subscale Ocular Pain2	.203	.198	1.000	.012	.007	128	.088	.220	006	103	.033	.151
VFQ Subscale Near Activities2	.030	.135	.012	1.000	.436	.181	.372	.189	.396	.121	.290	.331
VFQ Distance Activities	.075	.254	.007	.436	1.000	.356	.289	.323	.458	.312	.142	.166
VFQ Social Functioning	.157	.263	128	.181	.356	1.000	.250	.399	.305	.273	.224	089
VFQ Mental Health2	.150	.351	.088	.372	.289	.250	1.000	.364	.426	.118	.131	007
VFQ Role Difficulties2	.216	.357	.220	.189	.323	.399	.364	1.000	.357	.251	.168	.052
VFQ Dependency2	.111	.352	006	.396	.458	.305	.426	.357	1.000	.301	.353	.056
VFQ Driving2	055	.088	103	.121	.312	.273	.118	.251	.301	1.000	.185	.162
VFQ Color Vision2	.050	.115	.033	.290	.142	.224	.131	.168	.353	.185	1.000	.230
VFQ Peripheral Vision2	051	104	.151	.331	.166	089	007	.052	.056	.162	.230	1.000

The covariance matrix is calculated and used in the analysis.

Appendix D

PIADS Frequency Distributions for Overall Sample Population

		PIADS Subscale Competence 1	PIADS Subscale Adaptability 1	PIADS Subscale Self- Esteem 1	PIADS Overall 1	PIADS Subscale Competence 2	PIADS Subscale Adaptability 2	PIADS Subscal e Self- Esteem 2	PIADS Overal I2
Ν		120	120	120	120	120	120	120	120
Mean		1.1611	.9764	.8146	.9840	1.3542	1.1028	1.0333	1.1634
Median		1.2500	1.0000	.8125	.9444	1.2500	1.0000	.8750	1.1181
Std. Deviation		.77354	.73948	.66441	.65886	.71075	.69686	.63340	.60271
Variance		.598	.547	.441	.434	.505	.486	.401	.363
Skewness		244	.255	.332	.112	.076	.554	.416	.323
Std. Error of Sk	ewness	.221	.221	.221	.221	.221	.221	.221	.221
Minimum		-1.33	-1.00	50	82	50	33	13	.08
Maximum		2.92	3.00	2.63	2.81	2.92	3.00	2.50	2.50
Percentiles	25	.6667	.5000	.2500	.5451	.8333	.5417	.5000	.6840
	50	1.2500	1.0000	.8125	.9444	1.2500	1.0000	.8750	1.1181
	75	1.7292	1.5000	1.2500	1.4444	1.8958	1.5000	1.5000	1.5938

Appendix E

Fig: Distribution of VFQ results for ocular pain at initial and follow-up administrations.

Fig: Distribution of VFQ results for social functioning at initial and follow-up administrations.

Fig: Distribution of VFQ results for mental health at initial and follow-up administrations.

Fig: Distribution of VFQ results for role difficulties at initial and follow-up administrations.

Fig: Distribution of VFQ results for dependency at initial and follow-up administrations.

Fig: Distribution of VFQ results for driving at initial and follow-up administrations.

Fig: Distribution of VFQ results for color vision at initial and follow-up administrations.

Appendix F Responsiveness Statistics

Note: Partial Eta Squared is value of effect size.

Within-Subjects Factors

Measure: MEASURE_1						
factor1	Dependent Variable					
1	competence					
	_1					
2	competence					
	_2					

Tests of Between-Subjects Effects

Measure: MEASURE_1

		lago				
	Type III Sum					Partial Eta
Source	of Squares	df	Mean Square	F	Sig.	Squared
Intercept	379.597	1	379.597	434.376	.000	.785
Error	103.993	119	.874			

Within-Subjects Factors

Measure: MEASURE_1

factor1	Dependent Variable
1	PIADSoverall 1
2	PIADSoverall 2

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Transionn											
Source	Type III Sum of Squares	df	Mean Square	F	Siq.	Partial Eta Squared					
Intercept	276.693	1	276.693	437.647	.000	.786					
Error	75.235	119	.632								

Within-Subjects Factors

Measure: MEASURE_1

factor1	Dependent Variable
1	self_ esteem_1
2	self_ esteem_2

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transio											
	Type III Sum					Partial Eta					
Source	of Squares	df	Mean Square	F	Sig.	Squared					
Intercep	ot 204.888	1	204.888	306.556	.000	.720					
Error	79.534	119	.668								

Within-Subjects Factors

Measure: MEASURE_1

factor1	Dependent Variable
1	adaptability_ 1
2	adaptability_ 2

Measure: MEASURE_1

Transformed Variable: Average						
	Type III Sum					Partial Eta
Source	of Squares	df	Mean Square	F	Sig.	Squared
Intercept	259.376	1	259.376	334.693	.000	.738
Error	92.221	119	.775			

Tests of Between-Subjects Effects

Within-Subjects Factors

Measure: MEASURE_1					
factor1	Dependent Variable				
1 2	vfq_ generalhealt h_1 vfq_ generalhealt h_2				

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Sour	ce	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Interd	ept	802148.438	1	802148.438	605.917	.000	.836
Error		157539.063	119	1323.858			

Within-Subjects Factors

Measure: MEASURE_1

factor1	Dependent Variable
2	vfq_ generalvisio n_1 vfq_ generalvisio n_2

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Siq.	Partial Eta Squared
Intercept	515226.667	1	515226.667	876.219	.000	.880
Error	69973.333	119	588.011			

Within-Subjects Factors

Measure: MEASURE_1

factor1	Dependent Variable
1	vfq_ ocularpain_1
2	vfq_ ocularpain_2

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	1686726.667	1	1686726.667	1845.416	.000	.939
Error	108767.083	119	914.009			

Within-Subjects Factors

Measure: MEASURE_1					
factor1	Dependent Variable				
1	vfq_ nearactivities _1				
2	vfq_ nearactivities 2				

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Transiormed Variable. Average							
	Type III Sum					Partial Eta	
Source	of Squares	df	Mean Square	F	Sig.	Squared	
Intercept	639805.845	1	639805.845	685.105	.000	.852	
Error	111131.655	119	933.879				

Within-Subjects Factors

Measure: MEASURE_1

factor1	Dependent Variable
2	vfq_ distanceactiv ities_1 vfq_ distanceactiv ities_2

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

	Type III Sum					Partial Eta	
Source	of Squares	df	Mean Square	F	Sig.	Squared	
Intercept	585093.750	1	585093.750	641.716	.000	.844	
Error	108500.000	119	911.765				
Within-Subjects Factors

Measure: MEASURE_1

factor1	Dependent Variable
1	vfq_ socialfunctio ning_1
2	vfq_ socialfunctio ning 2

Tes	sts c	of Be	twee	n-Su	bjec	ts l	Effe	cts
-----	-------	-------	------	------	------	------	------	-----

Measure: MEASURE_1

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	911125.651	1	911125.651	865.989	.000	.879
Error	125202.474	119	1052.122			

Within-Subjects Factors

Measure: MEASURE_1					
factor1	Dependent Variable				
2	vfq_ mentalhealth _1 vfq_ mentalhealth _2				

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Transionned Variable. Average								
	Type III Sum					Partial Eta		
Source	of Squares	df	Mean Square	F	Sig.	Squared		
Intercept	724625.651	1	724625.651	707.400	.000	.856		
Error	121897.786	119	1024.351					

Within-Subjects Factors

Measure: MEASUR	E	1
-----------------	---	---

factor1	Dependent Variable
2	vfq_ roledifficultie s_1 vfq_ roledifficultie s_2

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average								
	Type III Sum					Partial Eta		
Source	of Squares	df	Mean Square	F	Sig.	Squared		
Intercept	384000.000	1	384000.000	304.196	.000	.719		
Error	150218.750	119	1262.342					

Within-Subjects Factors

Measure: MEASURE_1

factor1	Dependent Variable
1	vfq_ dependency
2	_' vfq_ dependency
	2

Tests of Between-Subjects Effects

Measure: MEASURE_1

I ransforme	ed var	lable:	Avera	ige	
	_				

		Type III Sum					Partial Eta
S	Source	of Squares	df	Mean Square	F	Sig.	Squared
Ir	ntercept	802148.438	1	802148.438	522.933	.000	.815
E	Frror	182539.063	119	1533.942			

Within-Subjects Factors

Measure: MEASURE_1

٢

factor1	Dependent Variable
1	vfq_driving_1
2	vfq_driving_2

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

11ai													
		Type III Sum					Partial Eta						
Sou	irce	of Squares	df	Mean Square	F	Sig.	Squared						
Inte	rcept	4771.198	1	4771.198	8.650	.004	.098						
Erro	or	44126.372	80	551.580									

Within-Subjects Factors

Measure: MEASURE 1

factor1	Dependent Variable
1	vfq_ colorvision_ 1
2	vfq_ colorvision_ 2

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transform	Transformed Variable: Average											
	Type III Sum					Partial Eta						
Source	of Squares	df	Mean Square	F	Sig.	Squared						
Intercept	1369070.445	1	1369070.445	781.402	.000	.870						
Error	204992.055	117	1752.069									

Within-Subjects Factors

Measure: MEASURE_1

Dependent Variable
vfq_ peripheralvis ion_1 vfq_ peripheralvis

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed	Variable:	Average
-------------	-----------	---------

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	1357510.417	1	1357510.417	805.244	.000	.871
Error	200614.583	119	1685.837			

Within-Subjects Factors

Measure: MEASURE_1							
factor1	Dependent Variable						
1	vfq_ composite_1						
2	vfq_ composite_2						

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

	Type III Sum					Partial Eta					
Source	of Squares	df	Mean Square	F	Sig.	Squared					
Intercept	754713.868	1	754713.868	2147.661	.000	.947					
Error	41818.023	119	351.412								

Appendix G

MANOVA Results for PIADS and NEI-VFQ 25 as a Function of Device

Between-Subjects Factors

		N
Device Choice	Adaptive Computer Equipment	2
	CCTV System	31
	Field Enhancement Device	3
	Hand or Stand Magnifier	20
	Rx Spectacle	18
	Telescope or Binoculars	6

Source	Dependent Variable	Type III Sum	df	Mean Square	E	Sig
Corrected Model	PIADS Subscale	01 Squares	5	ividan Square	F 892	3ig. 407
	Competence1	2.012	5	.322	.002	.497
	Adaptability1	4.119	5	.824	1.821	.119
	PIADS Subscale	1.391 ^c	5	.278	.562	.729
	PIADSOverall1	2 306 ^d	5	461	1.077	380
	PIADS Subscale	2.300	5	.401	045	.500
	Competence2	2.318	5	.404	.945	.407
	Adaptability2	3.022	5	.604	1.404	.233
	PIADS Subscale	1 918 ⁹	5	384	1.033	405
	Self-Esteem2	1.510	5	.304	1.000	.405
	VFQ Subscale General	2.182	5	.430	1.290	.2/5
	Health1	4486.671	5	897.334	1.052	.394
	VFQ Subscale General Vision1	2380.502 ^j	5	476.100	1.089	.373
	VFQ Subscale Ocular	701 222 ^k	5	150 004	071	028
	Pain1	701.322	5	150.204	.211	.920
	Activities1	2424.312	5	484.862	1.056	.391
	VFQ Subscale Distance	1855 424 ^m	5	371 085	752	587
	Activities1 VEO Subscale Social		-			
	Functioning1	5063.284	5	1012.657	1.212	.312
	VFQ Subscale Mental	108.957°	5	21.791	.032	.999
	VEQ Subscale Role	p				
	Difficulties1	5852.823	5	1170.565	1.663	.154
	VFQ Subscale	6919.134 ⁹	5	1383.827	1.548	.186
	VFQ Subscale Driving1	874.515 ^r	5	174.903	.536	.749
	VFQ Subscale Color	4342.070 ⁸	5	868.414	.894	.490
	VISION1 VFQ Subscale			000.714		
	Peripheral Vision1	8281.362	5	1656.272	1.804	.122
	VFQ Composite Score1	1001.427 ^u	5	200.285	1.208	.314
	Health2	7556.116 ^v	5	1511.223	2.298	.054
	VFQ Subscale General	845 878 ^W	5	160 176	523	759
	Vision2 VEO Subscale Ocular	040.078	°	109.170	.023	./38
	Pain2	1824.352	5	364.870	.660	.655
	VFQ Subscale Near	2777.191 ⁹	5	555.438	1.266	.288
	Activities2 VEO Distance Activities2	1113 3302	5	222.666	472	796
	VFQ Social Functioning2	6084.117 ^{aa}	5	1216.823	2.184	.065
	VFQ Mental Health2	951.447 ^{bb}	5	190.289	.365	.871
	VFQ Role Difficulties2	6475.869 ^{cc}	5	1295.174	1.896	.105
	VFQ Driving2	528.798bb	5	105.760	.368	.207
	VFQ Color Vision2	4645.497e	5	929.099	.944	.458
	VFQ Peripheral Vision2	8625.112 ^{ee}	5	1725.022	1.961	.094
Intercent	PIADS Subscale	1088.491"	5	217.698	1.448	.217
interoopt	Competence1	44.541	1	44.541	75.212	.000
	PIADS Subscale Adaptability1	34.424	1	34.424	76.088	.000
	PIADS Subscale	04.440		04.440	40.007	
	Self-Esteem1	21.413		21.413	43.287	.000
	PIADSOverall1 PIADS Subscale	32.751	1	32.751	76.484	.000
	Competence2	47.350	1	47.350	96.473	.000
	PIADS Subscale	32.898	1	32.898	76.414	.000
	PIADS Subscale					
	Self-Esteem2	28.922	1	28.922	//.882	.000
	PIADSOverall2 VEO Subscale General	35.979	1	35.979	106.843	.000
	Health1	121407.794	1	121407.794	142.294	.000
	VFQ Subscale General	71421.031	1	71421.031	163.427	.000
	VISION1 VEQ Subscale Ocular					
	Pain1	213222.094	1	213222.094	369.706	.000
	VFQ Subscale Near	83258.114	1	83258.114	181.408	.000
	VFQ Subscale Distance					
	Activities1	85110.872		85110.872	1/2.544	.000
	Functioning1	143773.980	1	143773.980	172.146	.000
	VFQ Subscale Mental	96309 844	4	06300 844	142 907	000
	Health1	30303.044		30303.044	142.307	
	Difficulties1	51331.804	1	51331.804	72.941	.000
	VFQ Subscale	135207.218	1	135207.218	151.222	.000
	VEQ Subscale Driving1	1123 243	1	1123 243	3 441	068
	VFQ Subscale Color	105334 232		105334 232	201 105	.000
	Vision1	190304.202	'	190334.232	201.105	.000
	Peripheral Vision1	134806.991	1	134806.991	146.837	.000
	VFQ Composite Score1	97554.885	1	97554.885	588.494	.000
	VFQ Subscale General Health2	131877.575	1	131877.575	200.543	.000
	VFQ Subscale General					
	Vision2	82477.922		82477.922	255.007	.000
	VFQ Subscale Ocular Pain2	188662.926	1	188662.926	341.018	.000
	VFQ Subscale Near	10//20 695		104430 695	228 120	000
	Activities2	104438.085		104439.005	230.129	.000
	VFQ Social Functioning2	/9348.519 131318 384		79348.519 131318 384	168.161 235.745	.000
	VFQ Mental Health2	88080.873	1	88080.873	168.831	.000
	VFQ Role Difficulties2	50182.097	1	50182.097	73.456	.000
	VFQ Dependency2 VFQ Driving2	107897.960		107897.960	126.621	.000
	VFO Color Vision?	1020.789 101488.434		1025.789 101488.434	3.005	.003
	VFQ Peripheral Vision2	141485.023	1	141485.023	160.844	.000
devicesholes	VFQ Composte Score2	94630.333	1	94630.333	629.438	.000
Gevicechoice	Competence1	2.612	5	.522	.882	.497
I	PIADS Subscale	I	Ι.	I	I	I

Appendix H

Clinical Measures, Correlations and Graphs for Overall Sample Population

				nwor	Plane	0402		1102	mane	111/12		180 Publishe	VED Polyanda		MED Polyagela	100 Puterate	VEO Esterado	Correlations	VEC sharely	<u> </u>
		PELLI ROBSON OU	DISTANCE VA	Subscale Competence1	Subscale Adaptability1	Subscale Self-Exteem1	PIADSOv erail1	Subscale Competence2	Subscale Adaptability2	Subscale Self-Esteern2	PIADSOv erall2	General Health1	General Vision1	VFQ Subscale Ocular Pain1	Near Activities 1	Distance Activities1	Social Functioning1	Mental Health1	sie De <mark>nsities1</mark>	VF De
PELLI MUBSON UU	Sig. (2-tailed)	116	- 365" .000	-059 527	.023 .810 .116	042 .654	029 .759	025 .794 115	.008 .928 116	026 .779 116	016 .867	.040 .672 116	.141 .132	.102 275	.002	.007	295	-025 .789	.052 .579	
DISTANCE VA	Pearson Correlation Sig. (2-tailed)	- 368**	1	.196* .033	.187* .041	.152 .098	.198* .031	.067 .467	.032 .730	.195*	.107 .245	136 .140	218° .017	.054 .555	040 .667	-022 .813	.009 .925	.050 .585	.054 .354	
PIADS Subscale Competence1	N Pearson Correlation Sig. (2-tailed)	059	119	119	119	119 .731**	119 .925**	119 .586** 000	119 .407** 000	119 430** 001	119 .538** 000	119	119 .125 174	-032 726	119 .306**	119	119 .168 .057	119 .111 229	112	1
	N	116	119	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	
PIADS Subscale Adaptability1	Pearson Correlation Sig. (2-tailed)	.023	.187* .041	.770**	1	.700**	.000	.439**	.502**	.383**	.500**	.070 .447	.152	007 .939	.350**	.182* .047	.081 .381	.017	.145	
PIADS Subscale Self-Esteern1	Pearson Correlation Sig. (2-tailed)	042 .054	.152	.731**	.700**	1	.554**	.518** .000	.409**	.587** .000	.567**	.020 .829	.185° .043	015 .873	.192*	.026	.012 .899	.149 .105	.169 .055	
PI4DSOveral1	N Pearson Correlation Sig. (2-tailed)	029	119 .198* .031	120 .925** .000	120 	120 .854** .000	120	120 .567** .000	120 .485** .000	120 .509** .000	120 .588** .000	120 072 434	120 .168 .067	-020 -525	120 .316** .000	120 .149 .104	120 .100 .278	120 .174 .057	120 .192* .035	1
PIADS Subscale	N Pearson Correlation	116	119	120	120 .439**	120 .518**	120 .567**	120	120	120	120 .930**	120	120 .145	120 .045	120	120	120 010	120 .013	120	+
PIADS Subscale	Sig. (2-tailed) N Pearson Correlation	.794 116 .005	.467 119 .032	.000 120 407**	.000 120 502"	.000 120 409**	.000 120 .485**	120	.000 120	.000 120 .563"	.000 120 .855**	.248 120 285"	.114 120 276"	.626 120 .105	.394 120 .198*	.192 120 .189*	.914 120 -040	.885 120 .125	.031 120 .047	⊢
Adaptability2	Sig. (2-tailed) N	.928 116	.730	.000 120	.000 120	.000 120	.000 120	.000 120	120	.000 120	.000 120	.002 120	.002 120	250 120	.030	.039 120	.661 120	.170	.609 120	
Self-Esteem2	Sig. (2-tailed) N	025 .779 115	.190 .033 119	.000 120	.000 120	000	.000	.000	.000 120	120	.000	.797	.129	.007 .943 120	.992	.080 .387 120	052 .572 120	.500 .598 120	.140 .114 120	
PIADSOverali2	Pearson Constation Sig. (2-tailed)	016	.107	.538" .000	.500" .000	.567"	.588**	.930" .000	.855**	.870**	1	.160 .081	212* .020	.061 .510	.107 .243	.148 .107	-038 .682	.054 .560	.146	
WQ Subscale General Health1	Pearson Correlation Sig. (2-tailed)	.040	136 .140	.100 277	.070 .447	.020 .829	.072 .434	.105	.285** .002	.024 .797	.160	1	.179 .051	.134 .144	.124 .177	.029 .750	080 .382	.024 .795	.022	
WQ Subscale General Vision1	N Pearson Correlation Sin (2-balled)	116	119 - 218' 017	120	120	120	120 .168 097	120 .145 114	120 .276** 002	120 .139 129	120 .212* 020	120	120	120 236" 009	120 _244**	120 .231* .011	120 .057 .445	120 232' 011	120 209' 072	+
WQ Subscale Ocular	N Pearson Correlation	116	119	-032	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	-
VFQ Subscale Near	N Pearson Correlation	.275 116 .279**	.555 119 040	.726 120 .308**	.939 120 .350"	.873 120 .192*	.825 120 .316**	.626 120 .079	.250 120 .158*	.943 120 .001	.510 120 .107	.144 120 .124	.009 120 244**	120	.058 120 1	.121 120 .474**	.856 120 .268**	.397 120 268**	.033 120 .156	
Activities1	Sig. (2-tailed) N Research Constation	.002 115	.667 119	.001 120	.000 120	036	.000 120	394 120	.030 120	.992 120	.243 120	.177	.007 120	.058 120	120	.000 120	.003 120	.003 120	.089 120	
Activities1	Sig. (2-tailed) N	_207 _007 _116	022 .813 .119	.165° .043 120	.162" .047 120	.026 .781 120	.149 .104 120	.140 .192 120	.189* .039 120	.060 .387 120	.14d .107 120	.750		.142 .121 120	4/4** .000 120	120	.5/1** .000 120	.000 120	.000	
VFQ Subscale Social Functioning1	Pearson Correlation Sig. (2-tailed) N	.095 .295	.009 .925	.168 .067	.081 .381	.012 .899	.100 .278	010 .914	040 .661	052 .572	038 .682 120	080 .382	.067 .465	017 .856	.003	.571	1	289** .001	.302** .001	
WQ Subscale Mental Health1	Pearson Consistion Sig. (2-tailed)	025	.050	.111 .229	.217* .017	.149	.174	.013 .885	.126 .170	.000 .925	.054	.20 .024 .795	.20 232' .011	.078 .397	.268** .003	.20	.20 .289** .001	1	420** .000	1
VFQ Subscale Role Difficulties1	N Pearson Correlation Sig. (2-tailed)	116 .052 .579	119 .084 .364	120 206* .024	120 .145 .105	120 .169 .055	120 .192* .035	120 .197* .031	120 .047 .609	120 .145 .114	120 .146 .111	120 .022 .809	120 209' .022	120 .194* .033	120 .156 .089	120 .344** .000	120 .302** .001	120 .420** .000	120	t
WQ Subscale Derendency1	N Pearson Correlation	.115	-054	120	120	007	.047	120	.120	120	.101	055	120	120	120	120	120	120	120	-
WQ Subscale Driving1	N Pearson Consistion	116	- 292**	061	143	-142	120	120	120	120	120	120	120	014	120	120	120	-085	085	-
WQ Subscale Color	Sig. (2-tailed) N Pearson Correlation	.019 83 .297**	.007 85 110	.578 85 .163	.190 85 .021	.196 85 020	258 85	395 85 .056	.467 85 .042	.629 85 004	.455 85 .037	.462 85 .009	.015 85	.895 85 .153	.367 85 269**	.025 85 .329''	444 85 275"	.438 85 .158	440 85 300"	_
Vision1	Sig. (2-tailed) N	.001 115	237 118	.077 119	.820 119	825 119	.485	.544 119	.649 119	.967 119	.689 119	.455 119	207 119	.095 119	.003	.000	.002 119	.087 119	.000 119	
Peripheral Vision1	Sig. (2-tailed) N	.811 116	.009 119	.000 .300 120	.062 120	247 120	.135	439 120	309 120	-013 804 120	.543 120	.112	.036	335 120	.008 120	.092	215 120	.154 120	.543 120	
WQ Composite Score1	1 Pearson Correlation Sig. (2-tailed) N	.270** .003 116	.009 .924 119	252" .005 120	236" .009 120	.126 .171 120	.229* .012 120	.159 .083 120	203* .026 120	.080 .384 120	.169 .065 120	.030 .743 120	.387** .000 120	.345** .000 120	.580** .000 120	.684** .000 120	.582** .000 120	.574** .000 120	.597** .000 120	
WQ Subscale General Health2	Pearson Correlation Sig. (2-balled)	002 .981	.010 .916	.177 .053	.199*	.144 .115	.192*	.216* .018	.306** .001	.266** .003	.296** .001	.000	.186* .042	207* .024	.140	.193* .035	047 .613	040 .665	.147	
WQ Subscale General Vision2	N Pearson Constation Sig. (2-tailed)	.167	171 .063	120 .116 .205	.151	120 .193* .035	.167 .059	.163 .075	120 .214* .019	120 .194* .034	120 .214* .019	.182* .046	.636" .000	120 237** .009	.001	.002	120 .088 .342	120 243** .007		1
WQ Subscale Ocular Dain?	N Pearson Correlation	116	119	120	120 - 024	-103	078	120	120	120	120 .049	120	120	120	120	120	120	120	120	⊢
WQ Subscale Near	N Pearson Consistion	116	119	120	120	120	120	120	120 .220*	120	120 .178	120	120	120	120	120	120	120	120	-
WQ Distance Activities	Sig. (2-tailed) N 2 Pearson Correlation	.055 115 .260**	.785 119 055	.015 120 .124	.000 120 .172	.183 120 .065	.005 120 .135	.117 120 .144	.016 120 .242**	.251 120 .107	.051 120 .187*	.210 120 .027	.016 120 253**	.184 120 .089	.000 120 .454**	.000 120 .833**	.009 120 .454**	.005 120 .265**	.794 120 .262**	_
	Sig. (2-tailed)	.005 116	.554 119	.176	.061 120	479 120	.142 120	.116	.008 120	.246 120	.040 120	.767	.005 120	333 120	.000 120	.000 120	.000 120	.003 120	.004 120	
Vru socia runcsonin;	p2 Pearson Coneiation Sig. (2-tailed) N	.167 .073 116	131 .154 .119	.038	.135 .141 120	.138 .132 120	.061 120	.036 .695 120	.061 .376 120	.023 .802 120	.004 .561 120	.142 .121 120	.007 120	.041 .659 120	.007	.000	.000	.003 120	.000	
WQ Mental Health2	Pearson Correlation Sig. (2-tailed) N	046 .625 .116	.105 .255 .119	.056 .542 120	.126 .171 120	.123 .180 120	.110 .230 120	.221* .015 120	251" .005 120	.138 .132 120	.232* .011 120	.101 .274 120	.164 .074 120	.196* .032 120	.022 120	.535" .000	.165 .072 120	.741** .000 120	.370**	
WQ Role Diffculties2	Pearson Correlation Sig. (2-balled)	.141 .131	087 .345	.163 .076	.086 .353	.105 255	.131 .154	.003	.178	.116 .207	.214" .019	.235** .010	.149 .105	223' .014	.060 .514	.238**	.136	.002	.597**	
WQ Dependency2	N Pearson Correlation Sig. (2-tailed)	.165	035 .707	120 .125 .172	.138	120 .082 .370	.120 .128 .162	120 225' .013	.165 .071	120 203' 026	120 .223* .014	016 .863	120 206* .024	120 .031 .737	120 .340** .000	.372** .000	120 290** .001	120 .349** .000	120 .346** .000	-
VFQ Driving2	N Pearson Constation	116	- 265'	120 .014	-051	008	015	120	120	005	120	120	120	007	120	120	120	120 .035 .746	120	-
	N	84	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87	87 295**	-
WO Periphenal Vision2	Sig. (2-tailed) N Pearson Correlation	.003 114 .033	.150 117 .221'	.012 118 .108	.394 118 .145	325 118 .058	.104 118 .120	322 118 .052	.467 118 .066	.343 118 003	.342 118 .049	.373 118 099	.899 118 022	225 118 .184'	.001 118 263**	.007	.002 118 .133	.085 118 .119	.001 118 004	_
I	Sig. (2-tailed)	.728	.015	240	.11	454	.193	.502	.476	.973	.509	.254	.810	.045	.004	.017	.147	.195	.955	I
						0														
1.5000-				0		0		4 5000							o					
								1.5000	1			0								
				0	°							0 0								
				8	°	_				0	0		0 0							
◀ 1.0000-		0	0 00 0	00000 0	00000	0 00	, ,				0	° o .	008	0 0	0					
<u> </u>			00	0 0 0	00 0	0	_	≸ 1.0000	1	0	0 0 0	0000	000	0 0 0 0		°				
AN	0		8 00	000	80 8 0	0		NCE		0	000	80-	-	0.0.8	0					
DIST		0		0	0	0		STA	Ŭ	0			00	0		Ŭ				
			000 0	00 0 0	0 00			ā			000	o o	o o	0						
0.5000			0.00	აი ი ი	, 00			0.5000	1			8 0 0	o o -	0						
		0	00	20	Ŭ	0				0	0 0	0	0	0						
					R	Sq Linear = 0.0	38			0	5 0				Salineer - 0	035				
			0 0	c	0						•			0	s og Linear = 0	.030				
0.0000 -				0	0 0			0.0000	-			0	0	0						
	-2.00 -1.00		0.00	1.00	2.00	:	3.00		-1.00		0.00	1.	00	2.00		3.00				
		PIADS	Subscale	Competend	ce1						PIAD	S Subscal	e Adaptabi	lity1						

Appendix I

Statistical Tests for Correlations of PIADS and NEI-VFQ Measures for Overall Sample Population

PIADS Initial and Follow up Administration Correlations

				Correlati	ons					
			PIADS	PIADS	PIADS		PIADS	PIADS	PIADS	
			Subscale	Subscale	Subscale	PIADSOv	Subscale	Subscale	Subscale	PIADSOv
			Competence1	Adaptability1	Self-Esteem1	erall1	Competence2	Adaptability2	Self-Esteem2	erall2
Spearman's rho	PIADS Subscale	Correlation Coefficient	1.000	.757**	.705**	.916**	.593**	.435**	.452**	.564**
	Competence1	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000	.000
		Ν	120	120	120	120	120	120	120	120
	PIADS Subscale	Correlation Coefficient	.757**	1.000	.686**	.906**	.444**	.528**	.392**	.517**
	Adaptability1	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.000
		N	120	120	120	120	120	120	120	120
	PIADS Subscale	Correlation Coefficient	.705**	.686**	1.000	.869**	.508**	.422**	.613**	.572**
	Self-Esteem1	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.000
		Ν	120	120	120	120	120	120	120	120
	PIADSOverall1	Correlation Coefficient	.916**	.906**	.869**	1.000	.569**	.514**	.531**	.609**
		Sig. (2-tailed)	.000	.000	.000		.000	.000	.000	.000
		N	120	120	120	120	120	120	120	120
	PIADS Subscale	Correlation Coefficient	.593**	.444**	.508**	.569**	1.000	.713**	.764**	.933**
	Competence2	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.000
		N	120	120	120	120	120	120	120	120
	PIADS Subscale	Correlation Coefficient	.435**	.528**	.422**	.514**	.713**	1.000	.576**	.857**
	Adaptability2	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000	.000
		Ν	120	120	120	120	120	120	120	120
	PIADS Subscale	Correlation Coefficient	.452**	.392**	.613**	.531**	.764**	.576**	1.000	.866**
	Self-Esteem2	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000
		Ν	120	120	120	120	120	120	120	120
	PIADSOverall2	Correlation Coefficient	.564**	.517**	.572**	.609**	.933**	.857**	.866**	1.000
		Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	
		Ν	120	120	120	120	120	120	120	120

 $^{\star\star}\cdot$ Correlation is significant at the 0.01 level (2-tailed).

NEI-VFQ 25 Initial and Follow Up Administration Correlations

											Correlatio	ns					
	Q Subsca	Q Subsc	a	Q Subsca	Q Subsca	Q Subsca	Q Subsca	Q Subsca				Q Subsca	VFQ	Q Subsca	Q Subsca		Q Sub
	General	General	Q Subsca	Near	Distance	Social	Mental	Role	Q Subsca	Q Subsca	Q Subsca	Peripheral	Composite	General	General	Q Sub: ca	Nea
	Health1	Vision1	cular Pain	Activities1	Activities1	unctioning	Health1	Difficulties	ependenc	Driving1	olor Visior	Vision1	Score1	Health2	Vision2	cular P	Activiti
pearman' VFQ Subscale (Correlation (d 1.000	.186'	.092	.153	.038	049	.019	.014	050	.119	.049	088	.045	.670*	.185*	.08 2	.1
Health 1 Sig. (2-tailed) .	.042	.317	.096	.677	.595	.840	.876	.584	.280	.595	.338	.625	.000	.044	.371	.1
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12)	1
VFQ Subscale (Correlation (.186*	1.000	.228*	.271*	.216*	.125	.231*	.174	.303*	.281*	.092	170	.396*	.181'	.665*	.1:7	.2
Vision1 Sig. (2-tailed	.042		.012	.003	.018	.173	.011	.057	.001	.009	.319	.064	.000	.048	.000	.105	.0
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12)	1
VFQ Subscale (Correlation (.092	.228	1.000	.237*	.151	.089	.082	.159	.078	.033	.148	.146	.384*	.167	.229*	.74 5*	.1
Pain1 Sig. (2-tailed	.317	.012		.009	.099	.336	.370	.083	.398	.762	.108	.112	.000	.068	.012	.0()	.0
N																	
	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12 J	1
VFQ Subscale / Correlation (.153	.271	.237*	1.000	.471*	.364'	.266*	.177	.359*	.107	.271*	.243*	.585*	.146	.285*	.18 5*	.7
Activities1 Sig. (2-tailed) 096	.003	009		.000	.000	.003	.053	.000	.331	.003	007	000	.112	002	04 3	.0
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	1:1	1
VEO Subscale (Correlation (020	216	151	471*	1 000	6201	202*	200*	205*	272*	220*	170	640*	170	270*	1()	1
Activities1 Sig (2 tailed	.030	.210	.131	.4/1	1.000	.025	.252	.303	.393	.273	.325	.170	.040	.175	.270	.105	.4
N	120	.010	.055	120	120	120	120	120	120	.012	.000	120	120	120	120	.2()	.0
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	14 J	1
VFQ Subscale : Correlation C	q049	.125	.089	.364*	.629*	1.000	.294*	.372*	.338^	.083	.330^	.2391	.664^	001	.102	.1(2	.2
Functioning Sig. (2-tailed	.595	.173	.336	.000	.000		.001	.000	.000	.451	.000	.009	.000	.988	.269	.2€ Э	.0
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12)	1
VFQ Subscale / Correlation 0	d .019	.231'	.082	.266*	.292*	.294'	1.000	.414*	.413*	057	.173	.113	.561*	015	.259*	.071	.2
Health1 Sig. (2-tailed	.840	.011	.370	.003	.001	.001		.000	.000	.603	.060	.219	.000	.871	.004	.4: Э	.0
Ν	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	120	1
VFQ Subscale I Correlation (.014	.174	.159	.177	.309*	.372	.414*	1.000	.300*	072	.385*	.092	.603*	.142	.236*	.0€ 2	.0
Difficulties1 Sig. (2-tailed	.876	.057	.083	.053	.001	.000	.000		.001	.514	.000	.315	.000	.123	.009	.5(2	.7
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12.0	1
VFQ Subscale Correlation (- 050	303	078	359*	395*	338	41.3*	.300*	1.000	368*	.332*	.065	.627*	- 031	346*	.015	.3
Dependency1 Sig (2-tailed	584	001	308	000	000	000	000	001		001	000	478	000	734	000	8f 7	
N	120	120	120	120	120	120	120	120	120	0.001	110	120	100	120	120	117	.0
VEO Subscale I Correlation (120	120	120	120	070*	000	120	070	120	1 000	119	000	20.4*	024	120	14	
VFQ Subscale I Correlation C	.119	.281	.033	.107	.273	.083	057	072	.308	1.000	.139	023	.304"	.024	.107	10	.0
Sig. (2-tailed	.280	.009	.762	.331	.012	.451	.603	.514	.001		.206	.835	.005	.829	.126	.305	.8
<u>N</u>	85	85	85	85	85	85	85	85	85	85	84	85	85	85	85	85	
VFQ Subscale (Correlation (q .049	.092	.148	.271*	.329*	.330'	.173	.385*	.332*	.139	1.000	.199*	.602*	053	.151	.0€ 3	.2
Vision i Sig. (2-tailed) .595	.319	.108	.003	.000	.000	.060	.000	.000	.206	· ·	.030	.000	.569	.100	.4€)	.0
N	119	119	119	119	119	119	119	119	119	84	119	119	119	119	119	119	1
VFQ Subscale Correlation 0	088	170	.146	.243*	.178	.239	.113	.092	.065	023	.199*	1.000	.370*	023	085	.2(2*	.1
Peripheral Visio Sig. (2-tailed	.338	.064	.112	.007	.052	.009	.219	.315	.478	.835	.030		.000	.805	.357	.02 7	.0
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	120	1
VFQ Composite Correlation 0	d .045	.396'	.384*	.585*	.640*	.664'	.561*	.603*	.627*	.304*	.602*	.370*	1.000	.070	.398*	.26 5*	.4
Sig. (2-tailed) 625	000	000	000	000	.000	.000	.000	.000	.005	.000	000		450	000	0(3	.0
N	120	120	120	120	120	120	120	120	120	85	110	120	120	120	120	11.1	1
VEO Subscale (Correlation (120 670*	120	120	146	120	001	015	142	021	024	053	023	070	1 000	202*	0.2	1
Health? Sig (2 toiled	.070	. 101	.107	.140	.179	001	015	.142	031	.024	055	023	.070	1.000	.302	.0.3	.1
Sig. (2-tailed	.000	.048	.068	.112	.050	.988	.8/1	.123	./34	.829	.509	.805	.450		.001	.387	.1
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12 J	1
VFQ Subscale (Correlation C	.185*	.665	.229*	.285*	.270*	.102	.259*	.236*	.346*	.167	.151	085	.398*	.302'	1.000	.175	.2
VISIOI12 Sig. (2-tailed	.044	.000	.012	.002	.003	.269	.004	.009	.000	.126	.100	.357	.000	.001		.01 5	.0
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12)	1
VFQ Subscale (Correlation (.082	.137	.745*	.185*	.109	.102	.071	.062	.015	106	.068	.202*	.265*	.013	.175	1.0()	.1
Pain2 Sig. (2-tailed	.371 (.135	.000	.043	.238	.269	.439	.502	.867	.336	.460	.027	.003	.887	.055		.2
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	120	1
VFQ Subscale / Correlation (.146	.254	.177	.737*	.416*	.298	.260*	.032	.319*	.026	.215*	.158	.440*	.143	.237*	.113	1.0
Activities2 Sig. (2-tailed	.112	.005	.053	.000	.000	.001	.004	.731	.000	.811	.019	.085	.000	.120	.009	.22 1	
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	151	1
VFQ Distance A Correlation (d 047	250	• 092	453*	827*	481	233*	214*	201*	245*	268*	074	.516*	171	21/*	- 0(3	4
Sin (2-tailed	000	006	317	000	000	000	010	010	001	024	002	422	000	062	010	.003	
NI	120	120	120	120	120	120	120	120	120	0.024	110	120	100	120	120	11.7	.0
VEO Social EuroCorrolation (120	0401	120	040*	120	120	120	074+	120	00	200*	000	120	2001	120	44	
	1.134	.249	.030	.242	.307-	.462	.230	.371"	.380"	.220"	.320	.009	.400	.203	.214	109	.2
Sig. (2-tailed	1 .144	.006	./43	.008	.000	.000	.005	.000	.000	.043	.000	.924	.000	.026	.019	.103	
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12)	1
VEQ Mental He Correlation (.q .103	.159	.177	.212*	.305*	.180'	.740*	.380*	.355*	.074	.185*	.164	.516*	.131	.222*	£ 30.	.2
Sig. (2-tailed	.263	.082	.053	.020	.001	.049	.000	.000	.000	.504	.044	.074	.000	.155	.015	.52 3	.0
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	120	1
VFQ Role Diffic Correlation (.242*	.157	.197*	.087	.214*	.212	.279*	.591*	.201*	.171	.351*	.142	.462*	.159	.216*	.1()	.0
Sig. (2-tailed	.008	.087	.031	.345	.019	.020	.002	.000	.027	.117	.000	.121	.000	.083	.018	.27.5	.5
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	120	1
VFQ Dependen Correlation (.026	.230	.052	.340*	.366*	.296	.324*	.342*	.764*	.273*	.344*	.091	.564*	.065	.348*	.0: J	.3
Sia. (2-tailed) 778	011	576	000	000	001	000	.000	000	.011	000	326	.000	483	000	74 3	.0
N	120	120	120	120	120	120	120	120	120	85	110	120	120	120	120	151	1
VEQ Driving2 Correlation (102	274	020	12/	285*	109	002	_ 015	380*	00.0*	146	000	211*	_ 012	151	- 0. 2	0
Sin (2 toiled	.103	.2/4	.020	.124	.200	.100	.002	015			100	.000	.011	012	100	012	.0
Sig. (2-talled	/ .343 	.010	./99	.203	.007	.319	.988	.893	.000	.000	.180	.998	.003	.914	.102	.50.3	o.
N	87	87	87	87	87	87	87	87	87	81	86	8/	87	87	87	27	
VEQ Color Visic Correlation (.q .096	.010	.078	.314*	.262*	.339'	.171	.319*	.329*	.128	.806*	.221*	.531*	.022	.128	C 70.	.2
Sig. (2-tailed	.302	.918	.399	.001	.004	.000	.063	.000	.000	.246	.000	.016	.000	.815	.166	.44 🤅	.0
N	118	118	118	118	118	118	118	118	118	84	118	118	118	118	118	113	1
VFQ Peripheral Correlation 0	058	020	.256*	.258*	.229*	.226	.092	.020	.165	.121	.211*	.783*	.364*	009	087	.2: 3*	.2
Sig. (2-tailed	.529	.826	.005	.004	.012	.013	.318	.830	.072	.270	.021	.000	.000	.926	.347	.0()	.0
N	120	120	120	120	120	120	120	120	120	85	119	120	120	120	120	12.0	1
VFQ Composte Correlation 0	.134	.357	.377*	.495*	.528*	.447'	.442*	.482*	.565*	.331*	.555*	.332*	.843*	.169	.428*	.26 7*	.4
Sia. (2-tailed) 145	.000	.000	000	.000	000	000	.000	.000	.002	.000	.000	.000	065	000	.0(3	.0
N	120	120	120	120	120	120	120	120	120	.002	110	120	120	120	120	1(1)	1
14	1 120	1 120	1 120	120	1 120	120	1 120	120	1 120	1 00	1 119	120	120	1 120	1 120	1 I I J	

 N
 120

 *Correlation is significant at the 0.05 level (2-tailed).
 **Correlation is significant at the 0.01 level (2-tailed).

PIADS and NEI-VFQ at Initial Administration

Co	rr	el	a	ti	ი	n	s
		•••	•••		v		-

	PIADS	PIADS	PIADS		2 Subso	Q Subso		Q Subs	Q Subs	Q Subso	Q Subso	Q Subso				2 Subs	VFQ
	ubscal	ubscal	ubscal	ADSC	Genera	Genera	Q Subs	Near	Distanc	Social	Mental	Role	Q Subso	Q Subso	Q Subse	eripher	mpos
	npeten	aptabili	f-Estee	erall1	Health1	Vision1	ular Pa	ctivities	ctivities	nctionir	Health1	fficultie	benden	Driving	or Visio	Vision 1	Score1
Spearm PIADS Sul Correlatio	1.000	.757*	.705*	.916'	.092	.057	076	.290	* .132	.211*	.101	.192*	.055	.017	.118	.131	.215'
Competen Sig. (2-tai		.000	.000	.000	.319	.539	.410	.001	.152	.020	.272	.036	.548	.881	.202	.153	.018
<u>N</u>	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
PIADS Sul Correlatio	.757	1.000	.686*	.906'	.050	.143	035	.353	.163	.151	.240*	.149	.081	051	029	.199'	.233'
Adaptabilit Sig. (2-tai	.000		.000	.000	.586	.119	.704	.000	.075	.100	.008	.105	.377	.641	.755	.029	.010
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
PIADS Sul Correlatio	.705	* .686*	1.000	.869'	.009	.165	072	.208	* .014	.057	.154	.166	.020	063	081	.135	.117
Self-Estee Sig. (2-tai	.000	.000		.000	.920	.072	.437	.023	.882	.537	.094	.070	.833	.569	.379	.142	.204
Ν	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
PIADSOve Correlatio	.916	* .906*	.869*	.000	.039	.138	060	.321	* .118	.168	.200*	.201*	.076	035	.011	.167	.226'
Sig. (2-tai	.000	.000	.000		.671	.132	.517	.000	.198	.067	.028	.027	.407	.750	.903	.069	.013
Ν	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlation	.092	.050	.009	.039	1.000	.186*	.092	.153	.038	049	.019	.014	050	.119	.049	088	.045
Health1 Sig. (2-tai	.319	.586	.920	.671		.042	.317	.096	.677	.595	.840	.876	.584	.280	.595	.338	.625
Ν	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlation	.057	.143	.165	.138	.186*	1.000	.228'	.271	* .216'	.125	.231*	.174	.303*	.281*	.092	170	.396'
Vision1 Sig. (2-tai	.539	.119	.072	.132	.042		.012	.003	.018	.173	.011	.057	.001	.009	.319	.064	.000
Ν	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlatio	076	035	072	.060	.092	.228*	1.000	.237	* .151	.089	.082	.159	.078	.033	.148	.146	.384'
Pain1 Sig. (2-tai	.410	.704	.437	.517	.317	.012		.009	.099	.336	.370	.083	.398	.762	.108	.112	.000
Ν	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlatio	.290	* .353*	.208*	.321'	.153	.271*	.237*	1.000	.471	.364*	.266*	.177	.359*	.107	.271*	.243'	.585'
Activities1 Sig. (2-tai	.001	.000	.023	.000	.096	.003	.009		.000	.000	.003	.053	.000	.331	.003	.007	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlatio	.132	.163	.014	.118	.038	.216*	.151	.471	* 1.000	.629*	.292*	.309*	.395*	.273*	.329*	.178	.640'
Activities1 Sig. (2-tai	.152	.075	.882	.198	.677	.018	.099	.000		.000	.001	.001	.000	.012	.000	.052	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlatio	.211'	.151	.057	.168	049	.125	.089	.364	* .629	1.000	.294*	.372*	.338*	.083	.330*	.239'	.664'
Functionin Sig. (2-tai	.020	.100	.537	.067	.595	.173	.336	.000	.000		.001	.000	.000	.451	.000	.009	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlatio	.101	.240*	.154	.200*	.019	.231*	.082	.266	* .292	.294*	1.000	.414*	.413*	057	.173	.113	.561'
Health1 Sig. (2-tai	.272	.008	.094	.028	.840	.011	.370	.003	.001	.001		.000	.000	.603	.060	.219	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlatio	.192'	.149	.166	.201'	.014	.174	.159	.177	.309	.372*	.414*	1.000	.300*	072	.385*	.092	.603'
Difficulties Sig. (2-tai	.036	.105	.070	.027	.876	.057	.083	.053	.001	.000	.000		.001	.514	.000	.315	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlatio	.055	.081	.020	.076	050	.303*	.078	.359	.395	.338*	.413*	.300*	1.000	.368*	.332*	.065	.627'
Dependen Sig. (2-tai	.548	.377	.833	.407	.584	.001	.398	.000	.000	.000	.000	.001		.001	.000	.478	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Subs Correlatio	.017	051	063	.035	.119	.281*	.033	.107	.273	.083	057	072	.368*	1.000	.139	023	.304'
Sig. (2-tai	.881	.641	.569	.750	.280	.009	.762	.331	.012	.451	.603	.514	.001		.206	.835	.005
N	85	85	85	85	85	85	85	85	85	85	85	85	85	85	84	85	85
VFQ Subs Correlatio	.118	029	081	.011	.049	.092	.148	.271	* .329	.330*	.173	.385*	.332*	.139	1.000	.199'	.602'
Vision1 Sig. (2-tai	.202	.755	.379	.903	.595	.319	.108	.003	.000	.000	.060	.000	.000	.206		.030	.000
N	119	119	119	119	119	119	119	119	119	119	119	119	119	84	119	119	119
VFQ Subs Correlatio	.131	.199*	.135	.167	088	170	.146	.243	.178	.239*	.113	.092	.065	023	.199*	1.000	.370'
Peripheral Sig. (2-tai	.153	.029	.142	.069	.338	.064	.112	.007	.052	.009	.219	.315	.478	.835	.030		.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120
VFQ Comp Correlation	.215	.233*	.117	.226'	.045	.396*	.384'	.585	* .640	.664*	.561*	.603*	.627*	.304*	.602*	.370'	1.000
Sig. (2-tai	.018	.010	.204	.013	.625	.000	.000	.000	.000	.000	.000	.000	.000	.005	.000	.000	
N	120	120	120	120	120	120	120	120	120	120	120	120	120	85	119	120	120

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).

PIADS and NEI-VFQ 25 at Follow Up Administration

						Corr	elation	s									
	PIADS	PIADS	PIADS		Q Subso	Q Subso		Q Subso								VFQ	/FQ
	ubscal	ubscale	ubscal	ADSC	General	Genera	Q Subso	Near	ວ Dista	FQ Soc	iQ Men	FQ Rol	VFQ		Q Co	eripher	npos
	npeten	aptabili	f-Estee	erall2	Health2	Vision2	ular Pa	ctivities	ctivities	nctionir	Health2	ficultie	benden	Q Drivir	/ision2	/ision2	core2
Spearm PIADS Sub Correlation	1.000	.713*	.764*	.933*	.203*	.153	.018	.128	.151	.017	.187*	.261*	.212*	.078	.081	.087	.274*
Competenc Sig. (2-tail		.000	.000	.000	.026	.096	.848	.165	.100	.851	.041	.004	.020	.473	.385	.344	.002
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
PIADS Sub Correlation	.713*	1.000	.576*	.857*	.292*	.164	.045	.244*	.259'	.023	.212*	.161	.150	.086	.057	.074	.271*
Adaptability Sig. (2-tail	.000	•	.000	.000	.001	.073	.629	.007	.004	.799	.020	.079	.102	.430	.537	.422	.003
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
PIADS Sub Correlation	.764*	.576*	1.000	.866*	.237*	.179	063	.078	.108	001	.129	.081	.190*	.031	.060	.005	.152
Self-Esteen Sig. (2-tail	.000	.000		.000	.009	.051	.493	.400	.242	.992	.160	.381	.038	.778	.517	.959	.098
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
PIADSOve: Correlation	.933*	.857*	.866*	.000	.271*	.183'	.000	.179	.210'	.020	.215*	.203*	.218*	.071	.082	.076	.281*
Sig. (2-tail	.000	.000	.000		.003	.045	.998	.051	.021	.826	.018	.026	.017	.515	.379	.408	.002
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Subsc Correlation	.203*	.292*	.237*	.271*	1.000	.302*	.013	.143	.171	.203	.131	.159	.065	012	.022	009	.169
Health2 Sig. (2-tail	.026	.001	.009	.003		.001	.887	.120	.062	.026	.155	.083	.483	.914	.815	.926	.065
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Subsc Correlation	.153	.164	.179	.183*	.302*	1.000	.175	.237*	.214'	.214	.222*	.216*	.348*	.151	.128	087	.428*
Vision2 Sig. (2-tail	.096	.073	.051	.045	.001		.055	.009	.019	.019	.015	.018	.000	.162	.166	.347	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Subsc Correlation	.018	.045	063	.000	.013	.175	1.000	.113	006	139	.059	.100	.030	072	.070	.238*	.269*
Pain2 Sig. (2-tail	.848	.629	.493	.998	.887	.055		.221	.952	.130	.523	.275	.746	.509	.449	.009	.003
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Subsc Correlation	.128	.244*	.078	.179	.143	.237*	.113	1.000	.483'	.206	.221*	.058	.330*	.051	.266*	.275*	.495*
Activities2 Sig. (2-tail	.165	.007	.400	.051	.120	.009	.221		.000	.024	.015	.531	.000	.638	.004	.002	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Distar Correlation	.151	.259*	.108	.210*	.171	.214*	006	.483*	1.000	.379'	.264*	.236*	.359*	.265*	.188*	.217*	.531*
Sig. (2-tail	.100	.004	.242	.021	.062	.019	.952	.000		.000	.004	.009	.000	.013	.042	.017	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Social Correlation	.017	.023	001	.020	.203*	.214*	139	.206*	.379'	1.000	.321*	.416*	.355*	.235*	.280*	.048	.560*
Sig. (2-tail	.851	.799	.992	.826	.026	.019	.130	.024	.000		.000	.000	.000	.028	.002	.601	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Menta Correlation	.187*	.212*	.129	.215*	.131	.222*	.059	.221*	.264'	.321	1.000	.372*	.427*	.107	.118	.097	.544*
Sig. (2-tail	.041	.020	.160	.018	.155	.015	.523	.015	.004	.000		.000	.000	.324	.201	.292	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Role [Correlation	.261*	.161	.081	.203*	.159	.216'	.100	.058	.236'	.416	.372*	1.000	.295*	.214*	.249*	.138	.602*
Sig. (2-tail	.004	.079	.381	.026	.083	.018	.275	.531	.009	.000	.000		.001	.047	.007	.133	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Deper Correlation	.212*	.150	.190*	.218*	.065	.348*	.030	.330*	.359'	.355'	.427*	.295*	1.000	.307*	.343*	.125	.673*
Sig. (2-tail	.020	.102	.038	.017	.483	.000	.746	.000	.000	.000	.000	.001		.004	.000	.175	.000
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Drivin Correlation	.078	.086	.031	.071	012	.151	072	.051	.265'	.235	.107	.214*	.307*	1.000	.158	.120	.365*
Sig. (2-tail	.473	.430	.778	.515	.914	.162	.509	.638	.013	.028	.324	.047	.004		.147	.270	.001
N	87	87	87	87	87	87	87	87	87	87	87	87	87	87	86	87	87
VFQ Color Correlation	.081	.057	.060	.082	.022	.128	.070	.266*	.188'	.280	118.	.249*	.343*	.158	1.000	.207*	.567*
Sig. (2-tail	.385	.537	.517	.379	.815	.166	.449	.004	.042	.002	.201	.007	.000	.147	.	.025	.000
N	118	118	118	118	118	118	118	118	118	118	118	118	118	86	118	118	118
VFQ Peript Correlation	.087	.074	.005	.076	009	087	.238*	.275*	.217'	.048	.097	.138	.125	.120	.207*	1.000	.413*
Sig. (2-tail	.344	.422	.959	.408	.926	.347	.009	.002	.017	.601	.292	.133	.175	.270	.025	.	.000
Ν	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120
VFQ Comp Correlation	.274*	.271*	.152	.281*	.169	.428*	.269*	.495*	.531'	.560	.544*	.602*	.673*	.365*	.567*	.413*	.000
Sig. (2-tail	.002	.003	.098	.002	.065	.000	.003	.000	.000	.000	.000	.000	.000	.001	.000	.000	
N	120	120	120	120	120	120	120	120	120	120	120	120	120	87	118	120	120

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).

Appendix J

Change in Time for PIADS and NEI-VFQ 25 for Overall Sample Population

			Paire	ed Differences	3				
				Std. Error	95% Cor Interva Differ	nfidence I of the rence			
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	PIADS Subscale Competence1 - PIADS Subscale Competence2	19306	.67769	.06186	31555	07056	-3.121	119	.002
Pair 2	PIADS Subscale Adaptability1 - PIADS Subscale Adaptability2	12639	.71759	.06551	25610	.00332	-1.929	119	.056
Pair 3	PIADS Subscale Self-Esteem1 - PIADS Subscale Self-Esteem2	21875	.59037	.05389	32546	11204	-4.059	119	.000
Pair 4	PIADSOverall1 - PIADSOverall2	17940	.57467	.05246	28327	07552	-3.420	119	.001
Pair 5	VFQ Subscale General Health1 - VFQ Subscale General Health2	-2.29167	23.59404	2.15383	-6.55647	1.97314	-1.064	119	.289
Pair 6	VFQ Subscale General Vision1 - VFQ Subscale General Vision2	-2.66667	16.38473	1.49571	-5.62833	.29500	-1.783	119	.077
Pair 7	VFQ Subscale Ocular Pain1 - VFQ Subscale Ocular Pain2	2.04167	15.19821	1.38740	70553	4.78886	1.472	119	.144
Pair 8	VFQ Subscale Near Activities1 - VFQ Subscale Near Activities2	-3.33333	17.16346	1.56680	-6.43576	23091	-2.127	119	.035
Pair 9	VFQ Subscale Distance Activities1 - VFQ Distance Activities2	06944	12.90750	1.17829	-2.40257	2.26368	059	119	.953
Pair 10	VFQ Subscale Social Functioning1 - VFQ Social Functioning2	3.22917	28.82940	2.63175	-1.98196	8.44030	1.227	119	.222
Pair 11	VFQ Subscale Mental Health1 - VFQ Mental Health2	-1.04167	17.59080	1.60581	-4.22134	2.13800	649	119	.518
Pair 12	VFQ Subscale Role Difficulties1 - VFQ Role Difficulties2	20833	25.26037	2.30595	-4.77434	4.35767	090	119	.928
Pair 13	VFQ Subscale Dependency1 - VFQ Dependency2	1.87500	19.81658	1.80900	-1.70700	5.45700	1.036	119	.302
Pair 14	VFQ Subscale Driving1 - VFQ Driving2	.15432	8.34490	.92721	-1.69089	1.99953	.166	80	.868
Pair 15	VFQ Subscale Color Vision1 - VFQ Color Vision2	-1.48305	20.74787	1.91000	-5.26570	2.29960	776	117	.439
Pair 16	VFQ Subscale Peripheral Vision1 - VFQ Peripheral Vision2	.00000	20.24015	1.84766	-3.65856	3.65856	.000	119	1.000
Pair 17	VFQ Composite Score1 - VFQ Composte Score2	04439	7.24759	.66161	-1.35444	1.26567	067	119	.947

Paired Samples Test

Appendix K

PIADS Frequency Distributions for ARMD Sample

			36	ausucs					
		PIADS	PIADS	PIADS		PIADS	PIADS	PIADS	
		Subscale	Subscale	Subscale	IADSO	Subscale	Subscale	Subscale	IADSO
		mpetenc	daptability	lf-Esteen	erall1	mpetenc	daptability	lf-Esteen	erall2
N	Valid	85	85	85	85	85	85	85	85
	Missing	289	289	289	289	289	289	289	289
Mean		1.1137	.9804	.8118	.9686	1.3402	1.0804	1.0397	.1534
Median		1.0833	1.0000	.8750	.9167	1.2500	.8333	1.0000	.1111
Std. Deviatio	n	.71684	.73886	.63873	63138	.70737	.68120	.62387	59867
Variance		.514	.546	.408	.399	.500	.464	.389	.358
Skewness		.096	.453	.099	.278	.197	.679	.413	.349
Std. Error of	Skewness	.261	.261	.261	.261	.261	.261	.261	.261
Percentiles	25	.5417	.4167	.2500	.5556	.8333	.5000	.6250	.7153
	50	1.0833	1.0000	.8750	.9167	1.2500	.8333	1.0000	.1111
	75	1.5833	1.5000	1.2500	.3958	1.9167	1.5000	1.4375	.5833

Statistics

Appendix L

NEI-VFQ 25 Frequency Distributions for ARMD Sample

		1																						
						VFQ		VFQ																
	VFQ	VFQ	VFQ	VFQ	VFQ	ibsca	/FG	bsca	VFQ		VFG	VFQ	VFG	VFQ	VFQ	VFQ	VFQ							
	bsca	bsca	bsca	bsca	bsca	Socia	bsc	Role	ubsca	√FC	bsc	bsca	mp	ibsca	bsca	bsca	ibsca	VFQ	Q So	VFG	QR	VFQ	/F(;	/FG
	ener	ener	cula	Nea	stan	ctior	lent	ficult	ende	bsc	Colo	riphe	ite	ener	ener	cula	Near	stan	octior	lent	ficult	ende	rivi	colo
	ealth	ision	Pain	ivitie	tivitie	1	ealth	1	1	ivin	sior	ision	core	ealth	isior	Pain	tivitie	ivitie	2	ealth	2	2	2	sior
N	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	85	85	85	85	85	85	85	61	84
	289	289	289	289	289	289	289	289	289	315	290	289	289	289	289	289	289	289	289	289	289	289	31:	290
Mean	52.0	44.0	86.2	49.0	47.8	63.5	54.	39.1	58.8	4.1	72.	80.8	56.	55.8	47.0	85.0	52.1	47.3	56.0	55.	37.0	56.0	5.3	75.
Median	50.0	40.0	100	50.0	50.0	62.5	56.	37.5	58.3	.00	75.	100	56.	50.0	40.0	100	50.0	50.0	62.5	56.	37.5	50.0	.0)	75.
Std. Dev	28.4	19.2	22.1	22.8	23.3	32.5	25.	27.4	31.0	16.	33.	28.7	14.	27.7	16.5	21.7	23.5	22.1	23.7	23.	28.9	29.8	18.	29.
Variance	806	369	492	520	545	105	660	754	962.	262	111	828	224	768.	273	471	552	489	564.	555	838	893.	324	865
Skewnes	.234	.409	-1.5	.104	.130	1.04	21	.169	22	4.5	85	-1.4	.00	.000	.032	-1.5	.121	.124	.172	25	.456	092	3.''	·93
Std. Erro	.261	.261	.261	.26 [^]	1.261	1.261	.26	.261	.261	.31	.26	.261	.26	.261	.261	.261	.261	.26 [^]	.261	.26	.261	.261	.3)	.26
Percent	25.0	20.0	75.0	33.3	33.3	37.5	37.	12.5	33.3	.00	50.	75.0	45.	50.0	40.0	75.0	33.3	33.3	37.5	37.	12.5	33.3	.0)	50.
	50.0	40.0	100	50.0	50.0	62.5	56.	37.5	58.3	.00	75.	100	56.	50.0	40.0	100	50.0	50.0	62.5	56.	37.5	50.0	.0)	75.
	75.0	60.0	100	66.6	64.5	75.0	75.	62.5	87.5	.00	100	100	64.	75.0	60.0	100	66.6	62.5	62.5	75.	56.2	83.3	.0)	100

Statistics

Appendix M

Clinical Measures and Correlations for ARMD Sample Population

																		Correlations		
		PELLI		PIADS Subscale	PIADS Subscale	PIADS Subscale	PIADSOV	PIADS Subscale	PIADS Subscale	PIADS Subscale	PIADSOV	VFQ Subscale General	VFQ Subscale General	VFQ Subscale	VFQ Subscale Near	VFQ Subscale Distance	VFQ Subscale Social	VFQ Subscale Mental	VFQ ubscale	VFC
PELLI ROBSON OU	Pearson Correlation	ROBSON OU	DISTANCE VA 269*	Competence1 229*	Adaptability1 005	Self-Esteem1 193	erali1 153	Competence2 041	Adaptability2 .061	Self-Esteem2 074	erall2 019	Health1 .031	Vision1 .238*	Ocular Pain1 .334**	Activities1	Activities1	Functioning1 .073	Health1 005	Diffedities1	Dep
	Sig. (2-tailed)		.015	.038	.965	.083	.171	.712	.584	.510	.868	.785	.031	.002	.004	.034	.512	.967	.412	
DISTANCE VA	Pearson Correlation	269*	1	262*	.197	.258*	.263*	.024	103	.164	.027	262*	248*	.048	.003	034	.043	.043	.186	
	N	.015	84	.016 84	.072	.018	.016 84	.829 84	.350 84	.135 84	.804	.016 84	.023 84	.663	.976 84	.756 84	.696 84	.698 84	.090	
PIADS Subscale Competence1	Pearson Correlation Sig. (2-tailed)	229* 038	.262*	1	.781**	.704**	.921**	.522*	.322**	.420**	· .474** 000	007	023 832	136	.222*	.143	.148	.137	.188	
	N	82	84	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	
PIADS Subscale	Pearson Correlation	005	.197	.781**	1	.686**	.917**	.409*	.468**	.394*	.475**	048	.081	046	.333**	.219*	.089	.236*	.116	
Adaptability I	Sig. (2-tailed) N	.965	.072	.000	85	.000	.000	.000 85	.000 85	.000 85	.000	.665	.461 85	.674	.002	.044 85	.420	.030 85	.288	
PIADS Subscale Self-Esteem1	Pearson Correlation Sig. (2-tailed)	193 .083	.258*	.704**	.686** .000	1	.871**	.469*	.377**	.570**	· .526** .000	017 .875	.038	083	.102	.022	.000	.109	.089	
PIADSCherolit	N Bearnen Correlation	82	84	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	-
PIADSOverall1	Sig. (2-tailed)	153 .171	.263*	.000	.000	.000	' I	.515"	.431*	.505*	.000	027 .806	.036	097 .376	.022	.147	.091 .409	.180 .099	.147	
PIADS Subscale	N Pearson Correlation	041	.024	.522**	85	.469**	.515**	85	.671**	.799*	85 .926**	.067	.103	.000	.047	.127	075	024	.137	-
Competence2	Sig. (2-tailed) N	.712	.829	.000	.000	.000	.000	85	.000	.000	.000	.541	.348	.997	.672	.246	.497	.831 85	.212	
PIADS Subscale	Pearson Correlation	.061	103	.322**	.468**	.377**	.431**	.671*	1	.612**	.856**	.243*	.287*	.049	.201	.204	082	.163	008	
Puapiabilityz	Sig. (2-tailed) N	.584 82	.350 84	.003	.000	.000	.000	.000 85	85	.000	.000	.025	.008	.653 85	.065 85	.061 85	.455 85	.135 85	.939 85	
PIADS Subscale Self-Esteem2	Pearson Correlation Sig. (2-tailed)	074 .510	.164	.420**	.394**	.570**	.505**	.799*	.612**	1	.894**	024 .831	.121 .272	.000	.012 .912	.169	019 .860	014 .902	.109	
PIADSQuerall?	N Regreen Correlation	82	84	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	⊢
PIND3OVerail2	Sig. (2-tailed)	019	.804	.000	.000	.000	.000	.000	.000	.000	1 '	.315	.079	.867	.368	.100	067 .540	.046	.089	
VFQ Subscale General	N Pearson Correlation	.031	262*	007	048	017	027	.067	85 .243*	024	.110	85	.181	.155	.126	.003	091	.122	.000	1
Health1	Sig. (2-tailed)	.785	.016	.951	.665	.875	.806	.541	.025	.831	.315	85	.097	.156	.252	.979	.408	.265	.997	
VFQ Subscale General	Pearson Correlation	.238*	248*	023	.081	.038	.036	.103	.287**	.121	.191	.181	1	.276*	.307**	.309*	.055	.334**	.258*	
VISION	N	.031 82	.023	.832 85	.461 85	./31 85	./4/ 85	.348 85	.008	.272 85	.079	.097 85	85	.011 85	.004 85	.004 85	.616 85	.002 85	.017	
VFQ Subscale Ocular Pain1	Pearson Correlation Sig. (2-tailed)	.334**	.048	136 .216	046 .674	083 .452	097 .376	.000	.049 .653	.000 .997	.018	.155	.276*	1	.297**	.228*	032 .773	.199	.254* .019	
VEO Subecele Neer	N Regreen Correlation	82	84	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	⊢
Activities1	Sig. (2-tailed)	.004	.003	.041	.002	.353	.022	.672	.065	.912	.368	.126	.004	.006	1	.000	.047	.009	.081	
VFQ Subscale Distance	N Pearson Correlation	82 .234*	034	.143	85 _219*	.022	.147	.127	.204	.169	.186	.003	.309*	85	.465**	85	.554**	.350**	.359**	\vdash
Activities1	Sig. (2-tailed) N	.034	.756	.190	.044	.841	.178	.246	.061	.122	.088	.979	.004	.036	.000	85	.000	.001	.001	
VFQ Subscale Social	Pearson Correlation	.073	.043	.148	.089	.000	.091	075	082	019	067	091	.055	032	.216*	.554*	1	.313"	.306**	
T directoring T	N	.512	.090	.176 85	.420 85	.990	.409 85	.497 85	.400 85	.000	.540	.408	.010	.773 85	.047 85	.000	85	.004 85	.004	
VFQ Subscale Mental Health1	Pearson Correlation Sig. (2-tailed)	005 .967	.043	.137 .213	.236* .030	.109	.180	024 .831	.163 .135	014 .902	.048	.122 .265	.334*	.199	.280**	.350*	.313**	1	.473**	
VEO Subscale Role	N Regreen Correlation	82	84	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	⊢
Difficulties1	Sig. (2-tailed)	092	.090	.165	.116	.089	.147	.212	008	.320	.420	.000	.017	.019	.081	.001	.004	.000	'	
VFQ Subscale	N Pearson Correlation	.117	.018	016	046	126	066	.114	.156	.119	.146	046	.333*	85	.294**	85 .318"	.314"	.443**	.337**	\vdash
Dependency1	Sig. (2-tailed) N	.295 82	.871	.885	.678	.250	.546	.299	.154	.276	.184	.675	.002	.064	.006	.003	.003	.000	.002	
VFQ Subscale Driving1	Pearson Correlation	.197	196	139	126	234	181	.230	.210	.143	.223	.280*	.309*	.168	.136	.198	.051	.004	004	
	N	.137 58	.136	295 59	.341	.074	.1/1 59	.080	.111 59	.2/9	.089	.032	.017	.203	.304	.134	.699	.974	.9/4	
VFQ Subscale Color Vision1	Pearson Correlation Sig. (2-tailed)	.187	081 .466	.027 .807	042	122 .270	047 .668	.015 .891	.028 .802	.028 .797	.026	.030 .789	.122 .270	.242*	.197	.270* .013	.272* .012	.182	.352**	
VEO Subecele	N Regreen Correlation	81	83	84	84	84	84	84	84	84	84	84	84	84	84	84	84	84	84	⊢
Peripheral Vision1	Sig. (2-tailed)	.483	.104	.102	.045	.029	.031	.102	.115	.100	.104	015	.281	.133	.029	.144	.009	.173	.067	
VFQ Composite Score1	N Pearson Correlation	82 .242*	.049	.173	85 .208	.055	.165	.129	.194	.146	.175	.063	.452*	85 .452**	85 .561**	85 .653*	85	.632**	.644**	\vdash
	Sig. (2-tailed) N	.028	.660	.114	.056	.618	.131	.241	.074	.183	.109	.630	.000	.000	.000	.000	.000	.000	.000	
VFQ Subscale General Health?	Pearson Correlation	027	.000	.169	.153	.194	.189	.298*	.340**	.356*	.370**	.599**	.212	.246*	.207	.249*	015	.070	.139	
	oig. (z-tailed) N	.807	.997 84	.121	.161	.0/6	.083	.006 85	.uu1 85	.001	.000	.000	.051	.023 85	.us7 85	.u21 85	.891 85	.527 85	.205	
VFQ Subscale General Vision2	Pearson Correlation Sig. (2-tailed)	.227*	160 .145	.013 .902	.122 .266	.099 .367	.086 .433	.221*	.347**	.258* .017	.309**	.184 .092	.689*	1 .283** .009	.228*	.309*	.069 .528	.320**	.191 .080	1
VEQ Subscale Oculor	N Pearson Correlation	82	84	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	⊢
Pain2	Sig. (2-tailed)	.300**	019	.310	028	136	.368	016	.002	063	027	.093	.188	./43*	.274*	.244*	.004	.100	. 141	
VFQ Subscale Near	N Pearson Correlation	82 .260*	.030	.154	.341**	.123	.233*	.181	85 .290**	85 .199	85 .250*	.083	.284*	.186	85 .731**	.445*	.210	85 .262*	.127	\vdash
Activities2	Sig. (2-tailed) N	.019 82	.786 84	.158	.001 85	.261 85	.032 85	.097 85	.007 85	.068 26	.021 85	.453 85	008. جو	.089 85	.000 85	.000. 85	.053 85	.015 85	.246 85	
VFQ Distance Activities2	Pearson Correlation	.305**	047	.090	.208	.073	.140	.204	.326**	.233*	.285**	.038	.293*	.144	.477**	.840*	.450**	.262*	.287**	
	sig. (2-tailed) N	.005 82	.671 84	.414 85	.057	.506 85	.202	.061 85	.002 85	.032 85	.008 85	.727 85	.006 85	.190 85	.000 85	.000 85	.000 85	.015 85	.008 85	
VFQ Social Functioning2	2 Pearson Correlation Sig. (2-tailed)	.110	.007	.184	.145	.159	.180	.054	.146	.138 .208	.124	.130 .235	.292*	.099	.199	.368* .001	.435**	.296**	.441** .000	1
VFQ Mental Health?	N Pearson Correlation	82	84	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	\vdash
	Sig. (2-tailed)	.024	.490	.286	.085	.112	.108	.016	.002	.043	.005	.047	.004	.000	.031	.001	.125	.000	.000	
VFQ Role Difficulties2	N Pearson Correlation	.074	055	.036	.017	.048	.037	.245*	.189	.171	.227*	.232*	.180	.230*	.047	.183	.083	.290**	.567**	\vdash
	Sig. (2-tailed)	.510	.621	.740	.877 9 ^r	.664 pc	.740 85	.024 pc	.083 ac	.118 pe	.036 85	.033 9=	.100 pe	.035 se	.668 ge	.094 pc	.448 85	.007 8e	.000. =R	1
VFQ Dependency2	Pearson Correlation	.163	.038	.088	.106	.010	.078	.303*	.279**	.256*	.314**	.032	.202	.163	.291**	.324*	.274*	.301**	.367**	
	sig. (2-tailed) N	.143 82	.732 84	.425 85	.335 85	.928	.479 85	.005	.010 85	.018 85	.003 85	.772	.063 85	.137 85	.007 85	.002	.011 85	.005	.001	
VFQ Driving2	Pearson Correlation Sig. (2-tailed)	.298* .022	129 .323	011 .932	006 .963	038	020	.127 .330	.171	.069 .595	.139 .285	.227	.223	.148 .254	.191	.274*	.100 .443	.167 .198	.128 .327	1
	N	59	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	\vdash
	Sig. (2-tailed)	.620	.662	.214	.722	.950	.530	.703	.612	.374	.514	.576	.940	.095	.079	.072	.004	.042	.003	
VFQ Peripheral Vision2	N Pearson Correlation	.134	.198	.151	.189	.183	.193	.154	.098	.155	.152	041	.076	.196	.306**	.248*	.119	.252*	.269*	\vdash
1	Sig. (2-tailed)	.229	.071	.167	.083	.093	.077	.159	.372	.157	.166	.710	.489	.072	.004	.022	.280	.020	.013	1

Appendix N

Statistical Tests for Correlations of PIADS and NEI-VFQ Measures for ARMD Sample Population

PIADS Correlations at Initial and Follow up Administrations

				Correlat	ions					
			PIADS	PIADS	PIADS		PIADS	PIADS	PIADS	
			Subscale	Subscale	Subscale	PIADSOv	Subscale	Subscale	Subscale	PIADSOv
			Competence1	Adaptability1	Self-Esteem1	erall1	Competence2	Adaptability2	Self-Esteem2	erall2
Spearman's rho	PIADS Subscale	Correlation Coefficier	1.000	.753**	.679**	.911**	.535**	.330**	.430**	.492**
	Competence1	Sig. (2-tailed)		.000	.000	.000	.000	.002	.000	.000
		N	85	85	85	85	85	85	85	85
	PIADS Subscale	Correlation Coefficier	.753**	1.000	.642**	.903**	.381**	.481**	.377**	.470**
	Adaptability1	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.000
		N	85	85	85	85	85	85	85	85
	PIADS Subscale	Correlation Coefficier	.679**	.642**	1.000	.843**	.473**	.406**	.610**	.550**
	Self-Esteem1	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.000
		N	85	85	85	85	85	85	85	85
	PIADSOverall1	Correlation Coefficier	.911**	.903**	.843**	1.000	.508**	.448**	.520**	.557**
		Sig. (2-tailed)	.000	.000	.000		.000	.000	.000	.000
		N	85	85	85	85	85	85	85	85
	PIADS Subscale	Correlation Coefficier	.535**	.381**	.473**	.508**	1.000	.681**	.767**	.917**
	Competence2	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.000
		Ν	85	85	85	85	85	85	85	85
	PIADS Subscale	Correlation Coefficier	.330**	.481**	.406**	.448**	.681**	1.000	.616**	.856**
	Adaptability2	Sig. (2-tailed)	.002	.000	.000	.000	.000		.000	.000
		N	85	85	85	85	85	85	85	85
	PIADS Subscale	Correlation Coefficier	.430**	.377**	.610**	.520**	.767**	.616**	1.000	.883**
	Self-Esteem2	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000
		N	85	85	85	85	85	85	85	85
	PIADSOverall2	Correlation Coefficier	.492**	.470**	.550**	.557**	.917**	.856**	.883**	1.000
		Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	
		Ν	85	85	85	85	85	85	85	85

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations																	
	FQ Subsca	FQ Subsca		FQ Subsca	FQ Subsca	FQ Subsca	FQ Subsca	FQ Subsca				FQ Subsca	VFQ	FQ Subsca	FQ Subsca		FQ Sub
	General Health1	General Vision1	FQ Subsca Dcular Pain	Near Activities1	Distance Activities1	Social	Mental Health1	Role Difficulties1	FQ Subsca ependency	FQ Subsca Driving1	FQ Subsca olor Vision	Peripheral Vision1	Composite Score1	General Health2	General Vision2	FQ Sub: :a Dcular P <mark>P</mark> n:	Activitie
n's VFQ Subscale G Correlation Co	e 1.000	.215*	.104	.158	.013	077	.114	003	041	.318*	.002	038	.080	.608*	.190	.0! 1	.0
N N	. 85	.048	.345	.149	.905	.482	.300	.980	.707	.014	.986	.728	.469	.000	.081	.612	.4
VFQ Subscale G Correlation Co	e .215*	1.000	.256*	.308*	.255*	.120	.339*	.225*	.324*	.283*	.119	087	.460*	.215*	.724*	.2()	.2
Vision1 Sig. (2-tailed)	.048		.018	.004	.018	.275	.001	.038	.002	.030	.283	.428	.000	.048	.000	.067	.0
VEQ Subscale Or Correlation Co	85 e 104	85 256*	85	85 370*	85 234*	85	204	85 221*	85	59 165	84 222*	85	85 511*	85	85 255*	7()*	2
Pain1 Sig. (2-tailed)	.345	.018		.000	.031	.418	.061	.042	.075	.213	.042	.136	.000	.099	.018	.0()	.0
Ν	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	15	
VFQ Subscale Ne Correlation Co	e .158	.308*	.370*	1.000	.462*	.302*	.285*	.218*	.293*	.146	.209	.262*	.574*	.206	.236*	.3: 1*	.7
Activities1 Sig. (2-tailed)	.149	.004	.000		.000	.005	.008	.045	.006	.269	.056	.015	.000	.058	.030	.0()	.0
N VEO Subscalo Di Corrolation Co	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	15	
Activities1 Sig. (2-tailed)	.905	.255	.234	.462	1.000	.000	.003	.002	.002	.190	.250	.223	.000	.236	.303	.0(3	.4
N	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	15	
VFQ Subscale Sc Correlation Co Functioning1 Sig (2-tailed)	e077	.120	.089	.302*	.614*	1.000	.332*	.388*	.330*	.015	.309*	.260*	.639*	.033	.085	.1! 7	.2
N	85	.275	.410	85	85	85	85	85	85	.911	.004	85	85	.703	.436	15	.0
VFQ Subscale M Correlation Co	e .114	.339*	.204	.285*	.319*	.332*	1.000	.465*	.436*	.108	.203	.169	.622*	.098	.338*	.115	.2
N Sig. (2-tailed)	.300	.001	.061	.008	.003	.002		.000	.000	.415	.064 84	.122	.000	.371	.002 85	.01	0.
VFQ Subscale R(Correlation Co	e003	.225*	.221*	.218*	.329*	.388*	.465*	1.000	.330*	.004	.377*	.267*	.648*	.154	.198	.01 3	.1
Difficulties1 Sig. (2-tailed)	.980	.038	.042	.045	.002	.000	.000		.002	.973	.000	.013	.000	.160	.070	.415	.2
VEQ Subscale Correlation Co	85 e - 041	85 324*	85	85 293*	85	85	85 436*	85	85	59 399*	84 340*	85	85 630*	- 012	85 345*	11 1	2
Dependency1 Sig. (2-tailed)	.707	.002	.075	.006	.002	.002	.000	.002		.002	.002	.397	.000	.917	.001	.013	.0
N	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	15	
VFQ Subscale Dr Correlation Co Sig. (2-tailed)	e .318" 014	.283*	.165	.146	.190	.015	.108	.004	.399*	1.000	.168	.072	.344*	.076	.298*	.013	.1
N N	59	59	59	59	59	59	59	59	59	59	58	59	59	59	59	()	
VFQ Subscale Cr Correlation Co	e .002	.119	.222*	.209	.256*	.309*	.203	.377*	.340*	.168	1.000	.229*	.585*	073	.118	.15	.2
N Sig. (2-tailed)	.986	.283	.042	.056	.019	.004	.064	.000	.002	.208	84	.036	.000	.507	.286	.015	0.
VFQ Subscale Correlation Co	e038	087	.163	.262*	.223*	.260*	.169	.267*	.093	.072	.229*	1.000	.412*	.092	041	.2:)*	.1
Peripheral Vision' Sig. (2-tailed)	.728	.428	.136	.015	.040	.016	.122	.013	.397	.587	.036		.000	.405	.709	.0' 7	.2
VFQ Composite (Correlation Co	e 080	85 460*	85	.574*	.597*	85 639	622*	648*	630*	.344*	.585*	412*	1.000	.145	430*	4; 3*	4
Sig. (2-tailed)	.469	.000	.000	.000	.000	.000	.000	.000	.000	.008	.000	.000		.185	.000	.0()	.0
N VEQ.0.1 and a Quantitation Qu	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	15	<u> </u>
Health2 Sig. (2-tailed)	e .608	.215*	.180	.206	.238*	.033	.098	.154	012	.076	073	.092	.145	1.000	.345*	0-)	.1
N	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	15	
VFQ Subscale Gr Correlation Co Vision2	e .190	.724*	.255*	.236*	.303*	.085	.338*	.198	.345*	.298*	.118	041	.430*	.345*	1.000	.2: 1*	.2
N N	85	.000	.018	85	.005	.436	85	.070	85	.022	.200	.709	.000	.001	85	.012	0.
VFQ Subscale Or Correlation Co	e .054	.200	.709*	.374*	.231*	.157	.185	.088	.181	.078	.195	.259*	.429*	040	.221*	1.0()	.1
Pain2 Sig. (2-tailed)	.622	.067	.000	.000	.033	.152	.091	.425	.098	.556	.075	.017	.000	.717	.042		0.
VFQ Subscale Ne Correlation Co	e .081	.295*	.235*	.744*	.420*	.262*	.271*	.135	.297*	.128	.204	.133	.462*	.135	.252*	.11	1.0
Activities2 Sig. (2-tailed)	.460	.006	.030	.000	.000	.015	.012	.217	.006	.335	.063	.224	.000	.217	.020	.01.5	
VFQ Distance Ac Correlation Cr	85 e 056	85 261*	85	85 471*	85 841*	85 478*	85	250*	85	59 229	84 226*	85	85 500*	85	85 243*	15	4
Sig. (2-tailed)	.608	.016	.196	.000	.000	.000	.033	.021	.024	.081	.038	.261	.000	.039	.025	.6! 2	0.
N NEO Osciel Esta Contra Esta	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	15	<u> </u>
VEQ Social Func Correlation Co Sig. (2-tailed)	e .128 243	.280*	.076 489	.181	.310*	.435	.287* 008	.419*	.356*	.245	.325* 003	.115	.503*	.208	.245* 024	0-5 6/1	.1 2
N	85	85	85	85	85	.000	85	85	85	59	.003	85	85	85	85	15	
VFQ Mental Heat Correlation Co	e .231*	.314*	.351*	.239*	.311*	.129	.690*	.399*	.390*	.349*	.206	.210	.563*	.308*	.359*	.1(3	.2
Sig. (2-tailed) N	.033	.003	.001	.028	.004	.238	.000	.000	.000	.007	.060 84	.054	.000	.004	.001	.143 15	0.
VFQ Role Difficul Correlation Co	e .251*	.206	.204	.077	.157	.152	.302*	.569*	.216*	.293*	.278*	.312*	.458*	.134	.230*	.1: 3	0
Sig. (2-tailed)	.020	.058	.061	.484	.152	.164	.005	.000	.047	.024	.011	.004	.000	.222	.035	.2(3	.9
VFQ Dependence Correlation Cr	e 034	85 252*	85	85	85	267	85	85	85	59	84 355*	193	85 580*	85	85 348*	2(1	3
Sig. (2-tailed)	.755	.020	.163	.005	.003	.013	.009	.001	.000	.010	.001	.077	.000	.328	.001	.0(5	.0
N	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	1 5	
VFQ Driving2 Correlation Co Sig. (2-tailed)	e .280*	.283*	.147	.163	.227	.070 592	.179	.085	.408*	.997*	.180	.100 442	.363*	.018 880	.238	.1.1	.1 2
N	61	61	61	61	61	61	61	61	61	56	60	61	61	61	61		
VFQ Color Vision Correlation Co	e .056	.020	.123	.233*	.200	.363*	.246*	.344*	.329*	.083	.802*	.270*	.534*	.004	.058	.165	.2
Sig. (2-tailed) N	.615	.855 84	.263 84	.033 84	.069	.001 84	.024 84	.001 84	.002	.533	.000 84	.013 84	.000 84	.969 84	.603 84	.1:3 + t	0.
VFQ Peripheral V Correlation Co	e033	.058	.247*	.278*	.273*	.231	.221*	.264*	.221*	.184	.254*	.760*	.439*	.092	.006	.24 3*	.2
Sig. (2-tailed)	.765	.597	.023	.010	.011	.034	.042	.015	.042	.164	.019	.000	.000	.400	.960	.0; 2	.0
VEQ Composte S Correlation Co	85 e 137	85 410*	85	85 456*	85 479*	304*	85	85	85	59 424*	84 530*	85 404*	858*	85	85 477*	31 7*	A
Sig. (2-tailed)	.211	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.070	.000	.0()	.0
N	85	85	85	85	85	85	85	85	85	59	84	85	85	85	85	15	l i

* Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed).

PIADS and NEI-VFQ 25 at Initial Administration

Correlations

	PIADS	ΡΙΔΟS	ριαης								Subs						VEO
	Subscal	eubscal	ubscale	ADSC	General	General	Q Subso	Near	Distance	Social	Mental	Role	Q Subso	Q Subs	Q Subs	eripher	mposi
	npeten	aptabili	f-Estee	erall1	Health1	Vision1	ular Pa	ictivities	ctivities	nctionin	Health1	fficulties	penden	Driving1	llor Visio	Vision1	Score1
Spearm PIADS Sub Correlation	1.000	.753*	.679*	.911'	028	051	178	.230*	.078	.216*	.144	.195	.016	051	.043	.243'	.177
Competenc Sig. (2-tail	¢.	.000	.000	.000	.797	.644	.103	.035	.477	.047	.190	.074	.882	.702	.697	.025	.105
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
PIADS Sub Correlation	.753	1.000	.642*	.903'	084	.095	072	.348'	.195	.180	.267*	.111	.005	015	047	.273'	.226
Adaptability Sig. (2-tail	.000		.000	.000	.444	.387	.514	.001	.074	.098	.014	.313	.966	.908	.670	.011	.038
Ν	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
PIADS Sub Correlation	.679	.642*	1.000	.843'	002	.074	139	.125	.002	.080	.130	.115	089	140	141	.263'	.069
Self-Esteer Sig. (2-tail	.000	.000		.000	.986	.502	.206	.256	.984	.467	.236	.293	.419	.291	.200	.015	.529
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
PIADSOve Correlation	911	903*	843*	000	- 079	058	- 139	279*	110	194	225	170	009	- 081	- 039	284'	200
Sig. (2-tail	.000	.000	.000		.474	.601	.206	.010	.314	.075	.038	.120	.934	.540	.724	.008	.067
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
VEO Subsc Correlation	- 028	- 084	- 002	- 079	1 000	215*	104	158	013	- 077	114	- 003	- 041	318'	002	- 038	080
Health1 Sig (2-tail	797	444	986	474	1.000	.210	345	149	905	482	300	080	707	014	986	728	469
N	0.131		.300			.040	.040	.143	.303	.402	.500	.300	.101	.014	.300	.720	.403
VEO Subsc Correlation	051	005	074	059	215*	1 000	2567	200	255	120	220	225	224*	202	110	097	460
Vision1 Sig (2-tail	051	.095	.074	.000	.215	1.000	.200	.308	.255	.120	.339	.225	.324	.203	.119	007	.400
N	0.044	.307	.502	.001	.040		.010	.004	.010	.215	.001	.030	.002	.030	.203	.420	.000
	00	070	420	420	104	00	00	00	00	000	00	00	00	105	04	00	CO
Pain1 Sig (2 toil	1/8	072	139	139	.104	.250	1.000	.370	.234	.089	.204	.221	.194	. 105	.222	.103	.511
Sig. (2-tall	103	.514	.206	.206	.345	.018		.000	.031	.418	.001	.042	.075	.213	.042	.130	.000
	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
	.230	.348	.125	.279	.158	.308^	.370	1.000	.462	.302^	.285	.218	.293^	.146	.209	.262	.574
Activities 1 Sig. (2-tail	.035	.001	.256	.010	.149	.004	.000		.000	.005	.008	.045	.006	.269	.056	.015	.000
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
VFQ Subsc Correlation	078	.195	.002	.110	.013	.255*	.234'	.462'	1.000	.614*	.319'	.329'	.329*	.190	.256	.223'	.597'
Activities 1 Sig. (2-tail	e .477	.074	.984	.314	.905	.018	.031	.000		.000	.003	.002	.002	.149	.019	.040	.000
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
VFQ Subsc Correlation	1 .216'	.180	.080	.194	077	.120	.089	.302'	.614'	1.000	.332'	.388'	.330*	.015	.309	.260'	.639'
Functioning Sig. (2-tail	¢ .047	.098	.467	.075	.482	.275	.418	.005	.000	· ·	.002	.000	.002	.911	.004	.016	.000
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
VFQ Subsc Correlation	1.144	.267*	.130	.225'	.114	.339*	.204	.285'	.319'	.332*	1.000	.465'	.436*	.108	.203	.169	.622'
Health I Sig. (2-tail	¢ .190	.014	.236	.038	.300	.001	.061	.008	.003	.002		.000	.000	.415	.064	.122	.000
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
VFQ Subsc Correlation	1.195	.111	.115	.170	003	.225*	.221'	.218'	.329'	.388*	.465'	1.000	.330*	.004	.377	· .267'	.648'
Difficulties1 Sig. (2-tail	.074	.313	.293	.120	.980	.038	.042	.045	.002	.000	.000		.002	.973	.000	.013	.000
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
VFQ Subsc Correlation	.016	.005	089	.009	041	.324*	.194	.293'	.329'	.330*	.436'	.330'	1.000	.399'	.340	.093	.630'
Dependent Sig. (2-tail	.882	.966	.419	.934	.707	.002	.075	.006	.002	.002	.000	.002	.	.002	.002	.397	.000
N	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
VFQ Subsc Correlation	051	015	140	081	.318*	.283*	.165	.146	.190	.015	.108	.004	.399*	1.000	.168	.072	.344'
Sig. (2-tail	.702	.908	.291	.540	.014	.030	.213	.269	.149	.911	.415	.973	.002		.208	.587	.008
N	59	59	59	59	59	59	59	59	59	59	59	59	59	59	58	59	59
VFQ Subsc Correlation	.043	047	141	039	.002	.119	.222'	.209	.256'	.309*	.203	.377'	.340*	.168	1.000	.229'	.585'
Vision1 Sig. (2-tail	.697	.670	.200	.724	.986	.283	.042	.056	.019	.004	.064	.000	.002	.208		.036	.000
Ν	84	84	84	84	84	84	84	84	84	84	84	84	84	58	84	84	84
VFQ Subsc Correlation	.243	.273*	.263*	.284'	038	087	.163	.262'	.223'	.260*	.169	.267*	.093	.072	.229	1.000	.412
Peripheral 'Sig. (2-tail	.025	.011	.015	.008	.728	.428	.136	.015	.040	.016	.122	.013	.397	.587	.036		.000
Ν	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85
VFQ Comp Correlation	.177	.226*	.069	.200	.080	.460*	.511'	.574'	.597*	.639*	.622	.648'	.630*	.344'	.585	.412'	1.000
Sig. (2-tail	.105	.038	.529	.067	.469	.000	.000	.000	.000	.000	.000	.000	.000	.008	.000	.000	
Ν	85	85	85	85	85	85	85	85	85	85	85	85	85	59	84	85	85

**Correlation is significant at the 0.01 level (2-tailed).

 $^{\ast}\mbox{Correlation}$ is significant at the 0.05 level (2-tailed).

PIADS and NEI-VFQ 25 at Follow up Administration

Correlations																		
		PIADS	PIADS	PIADS		Q Subso	Q Subso		Q Subso								VFQ	√FQ
		Subscale	Subscale	Subscale	ADSC	General	Genera	Q Subsc	Near	Q Distar	FQ Soci	Q Men	FQ Rol	VFQ		Q Col	eriphera	c npos
		mpeten	aptabilit	If-Estee	erall2	Health2	Vision2	ular Pai	ctivities	ctivities	nctionin	Health2	fficultie	pendenc	Q Drivir	/ision2	Vision2	Core2
Spearma	PIADS Subs Correlation	1.000	.681*	.767*	.917*	.250*	.204	070	.146	.207	.049	.229'	.253*	.302*	.175	.067	.171	.304*
	Competence Sig. (2-taile		.000	.000	.000	.021	.061	.522	.184	.057	.658	.035	.019	.005	.178	.546	.118	.005
	Ν	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	PIADS Subs Correlation	.681'	1.000	.616*	.856*	.300*	.298	033	.311'	.348*	.090	.315'	.168	.290*	.178	.064	.114	.351'
	Adaptability' Sig. (2-taile	.000		.000	.000	.005	.006	.766	.004	.001	.411	.003	.123	.007	.171	.562	.300	.001
	Ν	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	PIADS Subs Correlation	.767*	.616*	1.000	.883*	.336*	.262	168	.170	.241*	.119	.195	.143	.261*	.075	.093	.134	.275'
	Self-Esteem Sig. (2-taile	.000	.000		.000	.002	.016	.125	.119	.026	.280	.074	.192	.016	.566	.402	.223	.011
	N															~ ~ ~		
		85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	PIADSOver: Correlation	.917'	.856*	.883*	1.000	.328*	.280	106	.234'	.311*	.095	.288'	.210	.333*	.169	.095	.175	.359'
	Sig. (2-taile	.000	.000	.000		.002	.009	.334	.031	.004	.385	.007	.054	.002	.194	.390	.110	.001
	N	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	VFQ Subsca Correlation	.250'	.300*	.336*	.328*	1.000	.345	040	.135	.224*	.208	.308	.134	.107	.018	.004	.092	.197
	Health2 Sig. (2-taile	.021	.005	.002	.002		.001	.717	.217	.039	.056	.004	.222	.328	.889	.969	.400	.070
	N	85	85	85	85	85	85	85	85	85	85	85	85	85	61	.000	85	85
	VEQ Subsca Correlation	204	208*	262*	280*	345*	1 000	221*	252	243*	245	350	230*	348*	238	058	006	477
	Vision2 Sig (2-taile	.204	.200	016	.200	001	1.000	042	020	025	024	001	.200	001	.200	.000	000	
	N	.001	.000	.010	.005	.001		.042	.020	.020	.024	.001	.000	.001	.000	.000	.500	.000
-	VEO Subser Correlation	070	00	169	106	040	200	1 000	104	050	045	150	100	201	114	165	240*	207
	Pain? Sig (2 toile	070	033	100	100	040	.221	1.000	.194	.050	045	. 100	.123	.201	.114	.100	.240	.307
	Sig. (2-taile	.522	./00	.125	.334	./1/	.042		.075	.052	.081	. 148	.203	.065	.384	.133	.022	.000
		85	85	85	85	85	85	85	85	85	85	85	85	85	101	84	85	85
	Activities? Circ (2 toile	.146	.311	.170	.234"	.135	.252	.194	1.000	.476*	.135	.256	002	.338"	.164	.278"	.210	.454*
	Activitiesz Sig. (2-talle	.184	.004	.119	.031	.217	.020	.075		.000	.218	.018	.982	.002	.207	.011	.054	.000
	N	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	VFQ Distanc Correlation	.207	.348*	.241*	.311*	.224*	.243	.050	.476'	1.000	.308'	.285'	.178	.350*	.277'	.161	.255*	.479*
	Sig. (2-taile	.057	.001	.026	.004	.039	.025	.652	.000	· ·	.004	.008	.103	.001	.031	.144	.019	.000
	N	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	VFQ Social Correlation	.049	.090	.119	.095	.208	.245'	045	.135	.308*	1.000	.347'	.447*	.275*	.279'	.307*	.143	.551'
	Sig. (2-taile	.658	.411	.280	.385	.056	.024	.681	.218	.004		.001	.000	.011	.029	.005	.192	.000
	N	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	VFQ Mental Correlation	.229'	.315*	.195	.288*	.308*	.359'	.158	.256'	.285*	.347'	1.000	.427*	.429*	.365'	.216*	.234*	.638'
	Sig. (2-taile	.035	.003	.074	.007	.004	.001	.148	.018	.008	.001		.000	.000	.004	.048	.031	.000
	Ν	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	VFQ Role D Correlation	.253'	.168	.143	.210	.134	.230'	.123	002	.178	.447'	· .427'	1.000	.312*	.346'	.215*	.277*	.610'
	Sig. (2-taile	.019	.123	.192	.054	.222	.035	.263	.982	.103	.000	.000		.004	.006	.050	.010	.000
	Ν	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	VFQ Depen Correlation	.302'	.290*	.261*	.333*	.107	.348	.201	.338	.350*	.275'	.429'	.312*	1.000	.374'	.375*	.211	.707*
	Sig. (2-taile	.005	.007	.016	.002	.328	.001	.065	.002	.001	.011	.000	.004		.003	.000	.052	.000
	N	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
	VFQ Driving Correlation	.175	.178	.075	.169	.018	.238	.114	.164	.277*	.279	.365'	.346*	.374*	1.000	.123	.191	.462*
	Sig. (2-taile	.178	.171	.566	.194	.889	.065	.384	.207	.031	.029	.004	.006	.003		.348	.140	.000
	N	61	61	61	61	61	61	61	61	61	61	61	61	61	61	60	61	61
	VEQ Color \ Correlation	067	064	093	095	004	058	165	278	161	307	216	215*	375*	123	1 000	223*	569'
	Sig (2-taile	546	562	402	300	060	603	133	.270	144	005	048	.210	000	3/18	1.000	041	.000
	N	.040	.302	.402	.030	.303	.005	.100	.011	. 144	.005	.040	.030	.000	.0+0	84	.041	.000
	VEO Perinh: Correlation	174	114	124	175	002	004	240*	210	255*	142	224	04	211	101	222*	1 000	4617
	Cia /2 toila	.171	200	. 134	110	.092	.000	.240	.210	.200	. 143	.204	.211	.211	.191	.223	1.000	.401
	Siy. (2-talle	.118	.300	.223		.400	.900	.022	.054	.019	. 192	.031	.010	.052	. 140	.041		.000
		85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85
		.304'	.351*	.2/5*	.359*	.197	.4/7	.38/*	.454'	.479*	.551'	.638'	.610*	./0/*	.462'	.569*	.461*	1.000
	Sig. (2-taile	.005	.001	.011	.001	.070	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	· ·
	N	85	85	85	85	85	85	85	85	85	85	85	85	85	61	84	85	85

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).

Appendix O

Relationship Change over time for PIADS and NEI-VFQ 25 for ARMD Sample

		Paired Differences							
				Std Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	PIADS Subscale Competence1 - PIADS Subscale Competence2	22647	.69634	.07553	37667	07627	-2.998	84	.004
Pair 2	PIADS Subscale Adaptability1 - PIADS Subscale Adaptability2	10000	.73427	.07964	25838	.05838	-1.256	84	.213
Pair 3	PIADS Subscale Self-Esteem1 - PIADS Subscale Self-Esteem2	22794	.58541	.06350	35421	10167	-3.590	84	.001
Pair 4	PIADSOverall1 - PIADSOverall2	18480	.58938	.06393	31193	05768	-2.891	84	.005
Pair 5	VFQ Subscale General Health1 - VFQ Subscale General Health2	-3.82353	25.15011	2.72791	-9.24828	1.60122	-1.402	84	.165
Pair 6	VFQ Subscale General Vision1 - VFQ Subscale General Vision2	-3.05882	14.31146	1.55230	-6.14573	.02809	-1.971	84	.052
Pair 7	VFQ Subscale Ocular Pain1 - VFQ Subscale Ocular Pain2	1.23529	15.74359	1.70763	-2.16052	4.63111	.723	84	.471
Pair 8	VFQ Subscale Near Activities1 - VFQ Subscale Near Activities2	-3.03922	17.00291	1.84422	-6.70666	.62823	-1.648	84	.103
Pair 9	VFQ Subscale Distance Activities1 - VFQ Distance Activities2	.53922	12.91936	1.40130	-2.24743	3.32586	.385	84	.701
Pair 10	VFQ Subscale Social Functioning1 - VFQ Social Functioning2	7.50000	30.81241	3.34208	.85392	14.14608	2.244	84	.027
Pair 11	VFQ Subscale Mental Health1 - VFQ Mental Health2	-1.17647	19.32391	2.09597	-5.34454	2.99160	561	84	.576
Pair 12	VFQ Subscale Role Difficulties1 - VFQ Role Difficulties2	2.05882	26.29440	2.85203	-3.61275	7.73039	.722	84	.472
Pair 13	VFQ Subscale Dependency1 - VFQ Dependency2	2.74510	21.76064	2.36027	-1.94856	7.43876	1.163	84	.248
Pair 14	VFQ Subscale Color Vision1 - VFQ Color Vision2	-2.97619	21.74772	2.37287	-7.69573	1.74335	-1.254	83	.213
Pair 15	VFQ Subscale Peripheral Vision1 - VFQ Peripheral Vision2	1.17647	18.05493	1.95833	-2.71789	5.07083	.601	84	.550
Pair 16	VFQ Composite Score1 - VFQ Composte Score2	.58073	7.44811	.80786	-1.02579	2.18725	.719	84	.474
Pair 17	VFQ Subscale Driving1 - VFQ Driving2	.37202	9.74021	1.30159	-2.23642	2.98047	.286	55	.776

Paired Samples Test

Appendix P

Example of 95% Confidence Intervals for Comparison of ARMD Population to Overall Sample

	Descriptive	s		
			Statistic	Std. Error
PIADS Subscale	Mean		1 1615	08572
Competence1	REK Confidence	Lower Bound		
	Interval for Mann	Lower bound	.9906	
	Interval for mean	Upper Bound	1.3321	
	5% Trimmed Mean		1.1551	
	Median		1.0833	
	Variance		.588	
	Std. Deviation		76667	
	Maimum		.10001	
			67	
	Maximum		2.92	
	Range		3.58	
	Interquartile Range		1.00	
	Skewness		034	269
	Kutala		.034	.208
	Kurtosis		385	.532
PIADS Subscale	Mean		.9708	.07713
Adaptability1	95% Confidence	Lower Bound	.8173	
	Interval for Mean	Upper Bound		
			1.1244	
	5% Trimmed Mean		0527	
	Madaa		.8037	
	Median		.9167	
	Variance		.476	
	Std. Deviation		.68988	
	Minimum		33	
	Maximum		3.00	
	Bango		0.00	
	Raige		3.33	
	Interquartile Range		1.00	
	Skewness		.362	.269
	Kurtosis		156	.532
PIADS Subscale	Mean		8063	07754
Self-Esteem1	95% Confidence	Lower Bound	6519	
	Interval for Mean	Linner Bound		
		obbei ponin	.9606	
	5% Inmmed Mean		.7795	
	Median		.7500	
	Variance		.481	
	Std. Deviation		60352	
	Minimum		.0502	
	Movieum		30	
	Maximum Deserv		2.63	
	Range		3.13	
	Interquartile Range		1.00	
	Skewness		.468	.269
	Kurtosis		- 201	532
PIADSOurcell1	Mose		0705	07224
FIADSOVERAIL	Wealth Cardidatas	Laware Davies	.9795	.01334
	95% Conlidence	Lower Bound	.8335	
	Interval for Mean	Upper Bound	1 1255	
	5% Trimmed Mean		.9645	
	Median		9167	
	Variance		430	
	Old Deviation			
	Std. Deviation		.00097	
	Minimum		22	
	Maximum		2.81	
	Range		3.03	
	Internuartile Panne		0.00	
	Oliverana		.50	
	Skewiless		.302	.269
	Kurtosis		335	.532
PIADS Subscale	Mean		1.3052	.07819
Competence2	95% Confidence	Lower Bound	1.1496	
	Interval for Mean	Upper Bound		
			1.4608	
	5% Trimmed Mean		1 3113	
	Modian		4.0500	
	Mcduli		1.2300	
	vanance		.489	
	Std. Deviation		.69935	
	Minimum		50	
	Maximum		2.83	
	Range		3 33	
	Interruptile Range		0.00	
	Olavaran		.92	
	Unew lead		.055	.269
	KUITOSIS		350	.532
PIADS Subscale	Mean		1.0729	.07429
Adaptability2	95% Confidence	Lower Bound	.9250	
	Interval for Mean	Upper Bound		
			1.2208	
	5% Trimmed Mean		1,0463	
	Median		9167	
	Variance			
	Std Deviation		.442	
	Stu. Deviauon		.66447	
	Minimum		33	
	Maximum		2.67	
	Range		3.00	
	Internuartile Ranne		1.00	
	Skownoso		1.00	000
	Skewiless		.040	.269
	Kurtosis		151	.532
PIADS Subscale	Mean		.9828	.06820
Self-Esteem2	95% Confidence	Lower Bound	.8471	
	Interval for Mean	Upper Bound	1 1100	
			1.1100	
	5% Trimmed Mean		.9705	
	Median		8125	
	Variance		.0120	
	Old Deviation		.3/2	
	Stu. Deviation		.61002	
	Minimum		13	
	Maximum		2.25	
	Range		2.38	
	Interguartile Range		97	
	Skewness		502	260
	Kurtoele			.239
04000	Name and American Ameri American American Americ		798	.532
PIADSOveraliz	Mean		1.1203	.06548
	95% Confidence	Lower Bound	.9900	
	Interval for Mean	Upper Bound	4.0555	
			1.2507	
	5% Trimmed Mean		1 1008	l i i i i i i i i i i i i i i i i i i i
	Median		1 0972	1
	Variance		1.08/2	
	And the local		.343	
	Sta. Deviation		.58571	
	Minimum		.08	
	Maximum		2.35	