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Abstract 

In this thesis, a novel electrochemical array is reported. The array consists of two planar 

halves, each having four carbon screen-printed band electrodes (SPEs), orthogonally 

facing each other and separated by a spacer to yield 16 two-electrode electrochemical 

cells with 1 mm2 working electrode areas. The 16 counter electrodes were converted to 

Ag/AgCl by electrodeposition and anodization. These electrodes were stable for at least 

30 days with potentials under the current densities used in our experiments. The 16 

working electrodes were modified by Au electrodeposition, and were examined by 

scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).  

Immobilization strategies for biomolecules are of paramount importance for 

successful fabrication of biosensors. This thesis reports a new immobilization method 

that is based on patterned deposition of alkyl thiosulfates (Bunte salts). Monolayers 

were formed through electrochemical oxidation of Bunte salts at Au-modified 

electrodes. Single-component and mixed monolayers were investigated, where the 

mixed monolayers involved one component with a terminal carboxylic acid functional 

group to allow immobilization of biomolecules. 

Applications of the newly developed immobilization method to an enzyme-based 

biosensor and an immunosensor were investigated. Glucose and biotin were chosen as 

model analytes, respectively. Glucose oxidase (GOx) and avidin were covalently 

immobilized onto the mixed-monolayer-modified electrodes through the carboxylic 

acid groups. Under the optimized conditions for the fabrication and operation of the 



iv 

biosensors, the new electrochemical array showed linearity up to 10 mM glucose with a 

sensitivity of 4.7 nA mM-1 and a detection limit of 0.8 mM (S/N=3), and linearity up to 

12.8 µM biotin with a detection limit of 0.08 µM (S/N=3). 
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Chapter 1: Introduction 

1.1 BIOSENSORS 

1.1.1 Introduction 

Rapid, reliable, low cost, and in some cases, continuous measurement of analytes has 

been a major goal in analytical sciences. Since biosensors offer many advantages over 

conventional analytical techniques in terms of simplicity, detection limit, specificity 

and sensitivity, the development of biosensors for analytical purposes has attracted a 

great deal of interest in recent years. Biosensors have widespread applications in 

medical analysis, environmental monitoring and industrial process control.1-3  

What exactly is a biosensor? “Biosensors are devices, ideally small and portable, 

that allow the selective quantitation of chemical and biochemical analytes. They consist 

of two components: the transducer and the chemical recognition element. Chemical 

recognition is accomplished by exploiting the natural selectivity of biochemical species 

such as enzymes, antibodies, chemoreceptors, and nucleic acids. In the presence of the 

analyte, these agents, immobilized at the surface of the transducer, cause a change in a 

measurable property in the local environment near the transducer surface. The 

transducer monitors this property, and converts the chemical recognition event into a 

measurable electronic signal.”4 

The biosensor concept was initiated by Clark and Lyons in 1962 when they 

coupled the enzyme GOx to a Pt electrode.5 Since then a variety of biosensors and their 

associated techniques have been studied and developed. Today there are more than 60 
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commercial biosensors available for about 120 different analytes.6 In 1985, the world 

market for biosensors was $5 million and in 2005 it was a little over $5 billion.7  

1.1.2  Electrochemical Biosensors 

Biosensors are classified and evaluated on the basis of design and functional 

characteristics such as sensitivity, cost, selectivity, versatility, range, availability, future 

adaptability and simplicity. On these bases, electrochemical biosensors are favoured 

over optical sensors mainly because of cost and availability, while piezoelectric and 

thermal sensors are fairly poorly rated on all characteristics.8 Amperometric enzyme 

biosensors form the majority of commercial biosensor devices available today; these 

biosensors operate at a fixed potential with respect to a reference electrode, while the 

measured signal is the working electrode current generated by the oxidation or 

reduction of electroactive species at its surface. 

Immobilized antibodies can also be used as highly selective reagents in 

biosensors. Unlike the enzyme-based biosensors where either the co-substrate or the 

product of an enzyme reaction is monitored, antibody-based biosensors detect antigen 

or antibody concentration either by direct changes in the transducer output resulting 

from the binding event, or by means of indirect competitive and displacement reactions 

using optical, piezoelectric, or electrochemical techniques. Nevertheless, the majority 

of the reported antibody-based biosensors (immunosensors) makes use of irreversible 

binding chemistry; these biosensors are therefore not reusable and thus expensive. 



Depending upon the electrochemical property to be measured, electrochemical 

biosensors can be further divided into conductimetric, potentiometric and amperometric 

biosensors. 

 Conductimetric biosensors measure the changes in conductance/impedance of a 

solution as consequence of the biological component using noble metal electrodes.9 If 

the biocatalyst produces ionic products, or consumes ions, and the support solution has 

low electrical conductivity, this is often a convenient and simple technique. A 

deoxyribonucleic acid (DNA) biosensor using Faradic impedance spectroscopy based 

on use of biotinylated oligonucleotide and avidin-HRP (horseradish peroxidase) 

conjugate has been described.10  

Potentiometric biosensors measure the potential difference between the working 

electrode and a reference electrode under conditions of zero current flow.11 The 

potential generated is directly proportional to the logarithm of the concentration of an 

ion in an ideal solution. The basis of this type of biosensor is the Nernst equation, 

which relates the electrode potential (E) to the concentration of the oxidized and 

reduced species. For the reaction: , the Nernst equation can be described 

as the following, 

bBneaA ⇔+ −

)
]C[
]C[ln(

nF
RTEE b

B

a
A0 +=                                                   (1.1) 

where is the standard redox potential, R is the gas constant, T is the absolute 

temperature, F is the Faraday constant, n is the number of exchanged electrons in the 

reaction, and , 

0E

AC CB  are the concentration of oxidized and reduced species, 
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respectively. A potentiometric urease-based biosensor for detection of heavy metal ions 

has been reported recently.12
 

Amperometric biosensors measure the currents resulting from the 

electrochemical oxidation or reduction of an electroactive species under a constant 

potential applied to working electrodes. The most important of these is the glucose 

biosensor, which has been successfully commercialized for blood glucose monitoring 

in diabetics.13 Other examples of enzyme-based amperometric biosensors include the 

phenol sensors, which utilize cellobiose dehydrogenase (CDH) or glucose 

dehydrogenase (GDH);14 the lactate biosensor, which is based on lactate oxidase 

immobilized  to a conducting copolymer through glutaraldehyde;15 and the alcohol 

biosensor, which is based on peroxidase and alcohol oxidase.16 Most of the 

electrochemical immunosensors are based on enzyme-linked immunosorbent assay 

(ELISA) principles, with sensor-immobilized antibodies or antigens where the enzyme 

label such as peroxidase, alkaline phosphatase or GOx, is indicated amperometrically 

by measuring the produced iodine, p-aminophenol or hydrogen peroxide, 

respectively.17-19   

1.2 SCREEN-PRINTING TECHNOLOGY 

1.2.1 Introduction 

The technique of screen-printing (thick-film) is now well-established as a reliable 

method for the fabrication of electrochemical sensors and biosensors for biomedical, 

industrial and environmental applications.20 The potential of this method for the 

production of commercial devices is exemplified by the personal glucose biosensor 
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used widely by diabetics.13 Screen-printing technology was adapted from the 

microelectronic industry for the production of electrodes, and has advantages of design 

flexibility, process automation, good reproducibility, a wide choice of materials, and 

low cost. It has thus been sought as an alternative method for mass production of 

biosensors. 

SPEs are extremely versatile and have been reported as transducers in biosensors 

for a wide variety of applications.21 They have been used in enzyme-based biosensors 

for the detection of lactate,22  uric acid,23 urea and creatinine,24 cholesterol,25  and in 

immunosensors  for progesterone,26 ochratoxin27 and aflatoxin M1 in milk.28 Research 

is not limited to these compounds, however, and biosensors for DNA,29 pesticides,30 

trace metals,12 herbicides,31 as well as microorganisms32 have been reported. Not only 

do SPEs have the ability to determine a large variety of analytes, but they also possess 

low detection levels and good operational stability. The lowest SPE detection limit 

encountered to date has been the subfemtomolar detection of alkaline phosphatase.33 

1.2.2 Materials 

The basic steps in the screen-printing process involve screen-printing of suitable inks 

onto planar substrate materials by forcing them through a patterned stencil or mask 

followed by a proper thermal curing. The most common substrates are alumina 

ceramics and various plastic-based materials. The use of ceramics allows for the high 

curing temperatures that are needed for gold- and platinum-based inks. Plastic 

substrates are used for printing silver- or carbon-based inks, as the curing temperatures 

required are lower. Other possible substrates are nitrocellulose and fibreglass. 



 6  

A wide range of inks with different physical and chemical properties (e.g. 

viscosity, conductivity, thermal resistance, and water resistance) can be used to meet 

diversified requirements in biosensor fabrication. Commercial carbon- and metal-based 

(gold or platinum) ink formulations are commonly used for printing the working 

electrodes, whereas silver-based inks are used for obtaining the reference electrodes. 

The compositions of commercial ink formulations differ substantially, and the exact ink 

formulations are regarded by the manufacturers as proprietary information. Therefore it 

is imperative to gain knowledge into how these differences affect electrochemical 

properties (e.g. electron transfer kinetics, background current, voltammetric peak height, 

and impedance). Carbon-based inks are particularly attractive for the construction of 

biosensors due to the simple construction procedures required, the low background 

current they exhibit, the wide operating potential window, the ability for surface 

regeneration, and the low cost.34 Several studies have been carried out to assess the 

electrochemical behaviour and electroanalytical performance of different inks with 

different redox-active compounds. 

Wang et al.35 studied four different commercial carbon-based ink formulations 

(Gwent, Ercon, Acheson and Dupont) using four benchmark redox systems 

(ferrocyanide, catechol, acetaminophen and ascorbic acid). Results from this study 

showed there were substantial differences in the electrochemical behaviours of the inks 

toward different compounds. For example, cyclic voltammetry (CV) of catechol led to 

peak separations of 146 mV, 317 mV, 346 mV, and 445 mV for Gwent, Ercon, 

Acheson and Dupont inks, respectively.35 For comparison, a glassy carbon electrode 

used for CV of the same solution gave a peak separation of 70 mV. Similarly, wide-
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ranging results were seen for other redox systems tested. In addition to the different 

electrochemical reactivities of these redox systems, electroanalytical performance also 

varied depending on the electrochemical technique employed (e.g., pulse voltammetry, 

amperometry and anodic stripping voltammetry).35 

Dock and Ruzgas36 evaluated eight screen-printed carbon electrodes (SPCEs) and 

found a strong correlation between the reversibility of the ferri/ferrocyanide redox 

couple and the sensitivity for catechol at the same electrodes modified with the enzyme, 

CDH. As in the previous study, differences in the electrochemical behaviour of the inks 

were very evident. Peak separations ranged from 53 mV for a homemade carbon-based 

ink to 316 mV for an ink produced by BVT Technologies. In another interesting study, 

carbon-based inks from Asahi, Jujo and Gwent all showed similar cathodic and anodic 

peak shapes and peak separation values for hexaammineruthenium (III) and 

hexachloroiridate (IV).37 However, only the Gwent ink exhibited recognizable 

voltammetric redox peaks for other redox couples (ferricyanide, dopamine, and 

hydroquinone).37 

These studies demonstrate that electrochemical properties of SPCEs are 

dependent on ink formulations and this behaviour is similar to that of other carbon 

materials.  The most notable comparison is carbon paste (composed of graphite mixed 

with mineral oil) which is limited by the amount of carbon exposed at the electrode 

surface, and it has been shown that electron-transfer rates strongly correlate with the 

carbon loading.38 Choosing different commercial carbon-based ink formulations may 

prove beneficial in improving the electron transfer reactivity of redox-active 
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compounds. However, the selection and use of a particular product is not a simple task 

as the required composition may not be commercially available. 

1.2.3 Printing Patterns 

Various electrode patterns can be utilized, including two- or three-electrode systems, as 

well as electrochemical arrays.39 These electrodes are robust, easy to mass produce, 

inexpensive, and yield reproducible results.40, 41 

Up to now, most of the screen-printed biosensors are used for single parameter 

measurements associated with electrochemical detection.30, 42-46 Screen-printed multi-

channel arrays have the potential for monitoring several different compounds 

simultaneously. Screen-printing technology enables easy production of very flexible 

configurations of electrode-array devices that can be converted into biosensor arrays by 

modifying individual electrodes with different biological components. The multi-

dimensional response from the array is analyzed and interpreted using modern 

statistical techniques popularly known as chemometrics. The designs of such sensors 

are still the object of discussion as well. Different arrangements, i.e. linear or circular, 

maintain different dispersion of the analyte zone. Recently, a unique amperometric 

multi-enzyme biosensor, assembled on a screen-printed array for the detection of 

pesticides (organophosphates and carbamates) and phenols, has been reported (Figure 

1.1).39 The array consists of one printed Ag/AgCl reference electrode surrounded by 

eight radially distributed printed working electrodes of either carbon or platinum. The 

array is based on the combination of enzymes: acetylcholinesterase (AchE), 

butyrylcholinesterase (BchE), tyrosinase (TYR), GOx, soybean peroxidase (SBP), HRP 



and CDH. The relative standard deviation (R.S.D.) was below 7% for different enzyme 

substrates, and one assay was completed within less than 10 min. The detection limits 

for pesticides and phenols were in the nanomolar and micromolar ranges, respectively. 

 

 

Figure 1.1 The construction of the eight-electrode screen-printed array and the 

illustration of the final distribution of enzymes on the working electrodes.39 

More recently, thin film technology, based on silicon, has made advances in 

electrochemical analysis.  Thin film technology offers better spatial resolution but it is 

associated with higher equipment cost and low flexibility for chemical modifications. 

In contrast, thick film technology (screen-printing) offers striking advantages when 

smaller batches of low cost, robust chemical and biosensors have to be made with 

modest resolution (ca. 100-500 µm).20, 47-49 Therefore, the choice between thin film 

photolithography and thick film screen-printing for sensor fabrication is determined by 

cost. Thin film technology allows for sensor arrays of individually addressable 

electrodes with reduced dimensions, to probe small volumes and simultaneously 
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monitor several analytes.50 However, chemical cross-talk is of concern when 

developing microarrays. Chemical cross-talk in electrochemical sensor arrays occurs 

when diffusion layers of individual electrodes consuming analyte overlap due to their 

close proximity.50, 51 A microarray (Figure 1.2) consisting of 10 individually 

addressable electrodes in a 130 µm radius was produced to study the interaction of 

adjacent electrodes. It was shown that chemical cross-talk occurred at electrodes 

separated by less than 100 µm.51 

 

 

Figure 1.2 Microphotograph of the microsensor array. Bright dots indicated the platinum 

electrode surfaces.51 
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Researchers developing lab-on-a-chip devices have a great interest in the 

miniaturization of electrodes. The ability to obtain quantitative information based on 

redox activity coupled with the sample preparation, liquid handling and manipulation 

capability offers increased power for these devices. Consequently, SPEs have been 

applied to microscale voltammetric analysis on microfluidic chips for the detection of 

2,4,6-trinitrotoluene (TNT), catechol, hydrazine and nickel.52  

In summary, screen-printing technology has shown its great utility to biosensor 

researchers.  With the technology, biosensor design can be more flexible: disposable or 

reusable, single or multiple purposes, rectangular or circular sensing surface, mediated 

or direct electrode process. SPEs are readily modified and offer inexpensive one-time 

use. Gold and platinum modification will allow us to evaluate further possibilities with 

these devices. 

1.2.4 Gold Electrodeposition on SPCEs 

The use of different metals like gold, platinum and silver has been suggested for the 

manufacture of highly active electrodes for many electrochemical applications.52-54 

Gold has been largely employed in methodologies and techniques for investigation of 

molecular ion recognition, catalysis, electron transfer and studies of surface phenomena 

that require stable and reproducible surfaces, such as surface plasmon resonance 

(SPR),55 scanning tunneling microscopy (STM),56 quartz crystal microbalance(QCM),57 

voltammetry,58 amperometry,59 electrochemical impedance spectroscopy56 and 

molecular self-assembly.53 During the past several years, considerable attention has 

been focused on self-assembled monolayers (SAMs) prepared on gold surfaces by 
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spontaneous chemisorption of alkanethiols and disulfides, because of their stability, 

well-ordered structure, ease of preparation and flexibility in design of the tail group.60-62 

These well-defined organic films provide the possibility of immobilization of 

biomolecules. Gold surfaces modified with thiol-based compounds have a broad range 

of applications including enzyme biosensors,63 biosensors in DNA chips,64 detection 

arrays for airborne contaminants,65 and immunoassays for a biomarker (prostate-

specific antigen).66 

Screen-printed gold electrodes have already been employed for heavy metals 

detection67 and in immunosensors,68, 69 microbial biosensors,70 and DNA biosensors.71 

However, they are not practical due to high ink costs (20-25 US $/g).  In addition, gold-

based inks have a polyester base and do not produce pure gold surfaces. Therefore, 

differing electrochemical behaviour may be expected compared to pure gold electrodes.  

Currently, gold nanoparticle-based materials have attracted much attention 

because of their unique mechanical, electronic, and catalytic properties.72-75 

Nanoparticles can play an important role in immobilization of biomolecules due to their 

large specific surface area, excellent biocompatibility and good conductivity. 

Biosensors based on the immobilization of proteins on gold nanoparticles have been 

developed for the determination of hydrogen peroxide, nitrite, glucose, phenol and 

DNA.76-80 Only metallic nanostructures with uniformly functionalized surfaces could be 

used to immobilize biomolecules. Without functionalization the native metal surfaces 

are prone to nonspecific protein adsorption and degradation (oxidation and 

decomposition).81 Several procedures have been proposed and applied to the 

immobilization of metal nanoparticles, such as electrolysis deposition and monolayer 
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assistance embedding.82-85 However, it is still a challenge to control the shape, size, and 

density of nanoparticles, which are important parameters for the purpose of 

immobilizing biomolecules. 

Electroplating is a common technique employed for the development of gold 

electrodes. Tetrachloroauric acid has been used to electroplate on a glassy carbon 

electrode by applying a constant potential of -0.10 V vs. Ag/AgCl for 5 min in 0.2 M 

potassium chloride to yield gold modified surfaces.86, 87 Gold atomic absorption 

standard solution (GAA solution) has also been employed. The solution is ready to use, 

but is typically diluted. Dilution from 1005 to 50 mg/L (in 0.25 wt % HCl) has yielded 

functional gold electrodes for decentralized testing of trace lead. SPEs were gold 

modified by holding the carbon electrodes at -0.40 V for 20 min, followed by a second 

step to +0.70 V for 5 min.88, 89  

Once the carbon SPEs are modified by gold plating, they should behave as gold 

electrodes, and be readily further modified to produce SAMs. 

1.3 PATTERNING MONOLAYERS BY ELECTRODEPOSITION OF BUNTE 

SALTS 

1.3.1 Introduction 

High selectivity provided by biomolecules (antibodies, enzymes, nucleic acids) or 

biological systems (receptors, whole cells) is exploited in biosensors. Most commonly, 

the biomolecules are immobilized on, or in close proximity to, the surface of the 
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transducer. As a consequence, immobilization strategies for biomolecules are of 

paramount importance for successful fabrication of biosensors.  

Many physical and chemical methods90 for immobilizing biomolecules, like 

physical adsorption, chemical binding, entrapment, and encapsulation, have been 

developed. Some problems still exist, such as conformational change affecting the 

functional activity, adsorption with random orientation, detachment of the biological 

components and fragility of the membrane resulting in less sensitivity and short 

longevity. Thus, there is an ever-increasing demand for better assembly techniques for 

immobilization of biomolecules. 

SAMs, especially functionalized SAMs, which provide a common platform for 

immobilizing biomolecules, has received particular attention in recent years.91, 92 

Among the various SAM systems that have been studied, SAMs prepared on noble 

metal surfaces, especially on gold, by spontaneous chemisorption of alkanethiols has 

shown the greatest promise because of their advantages over other methods.60-62 One of 

the valuable benefits of the system is that it provides the potential to control the 

properties of the electrode/solution interface on a molecular scale. The system has been 

used for both immunosensors93-95 and enzyme biosensors96-100 by employing reactive 

SAMs to immobilize biomolecules. 

Alkanethiols employed in self-assembly comprise three significant parts: the 

surface-active head group (sulfur), which binds strongly to the metal substrate (gold, 

platinum or silver), the alkyl chain, giving stability to the assembly by van der Waals 

interaction, and the ω-functionality, which is the decisive part in terms of coupling of 



biomolecules to the alkanethiol monolayer. An ideal pure monolayer is depicted in 

Figure 1.3. The alkane chains are all in the trans-conformation, tilted slightly from 

normal to the metal surface by ~20-30°, resulting in the formation of a densely packed, 

highly ordered monolayer. Through the proper selection of the terminal functional 

group, specific surface/solution interactions (chemical covalent, electrostatic, or 

hydrophobic) can be exploited to immobilize molecules at the interface. Functional 

groups such as -NH2, -OH and -COOH have been widely used. Sawaguchi et al.101 and 

Kajiya et al.96 have reported immobilizing enzymes through step-by-step reactions from 

gold electrodes modified with NH2-terminated thiols. In this system, the thiol 

monolayer was used as an anchor layer, and enzyme molecules were attached on the 

layer using glutaraldehyde as a linking agent. Willner et al.102 have described the 

covalent attachment of enzyme molecules by the use of COOH-terminated thiol 

monolayers as the anchor layers. In an amperometric sensor COOH-terminated SAM 

(HS(CH2)nCOOH with n=15 or 11) is used to immobilize cytochrome c via   

 

 

 

 

 

 

Figure 1.3 Depiction of a pure alkanethiol mononolayer. 
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carbodiimide activation.103 A glucose biosensor has been prepared by cross-linking 

GOx to a SAM from ω-hydroxyl alkanethiol by glutaric dialdehyde.99 As the densely 

packed monolayers block electrode surfaces, most applications of SAMs for the 

fabrication of enzyme electrodes utilize short chain alkanethiols where the resultant 

disordered SAM allows electrochemistry to occur at the metal below.63, 104 

Immobilization of biomolecules using alkanethiols requires functionality at the 

terminal end of the molecule, to allow a bond to be formed between the biomolecule 

and the monolayer. Grazing incidence infrared spectroscopy shows that ω-substituted 

alkanethiols also are densely packed, highly oriented and ordered. As long as the 

endgroup (-NH2 or -OH) is relatively small (< 5 Å), the orientation of the monolayer is 

not influenced.105 However, more bulky groups (COOH, ferrocene) decrease the 

density of packing and ordering. Overabundance of surface functionalities, steric 

hindrance, and less ordered monolayers can lead to denaturation and reduced activity of 

biomolecules.106, 107 One approach to overcome the problems is to dilute the functional 

groups in the monolayer by forming a so-called mixed monolayer.108, 109 Mixed 

monolayers possess various advantages over a one-component monolayer. The 

combination of various functional groups, for example, allows the control of the degree 

and distribution of hydrophilicity and charge on the monolayer surface. Using 

alkanethiols of various chain lengths adds even more versatility: long alkanethiolates, 

which may be specifically functionalized, protrude from a basis of short alkanethiolates 

in the SAM. The shorter alkanethiolates may stabilize the monolayer and function as a 

spacer between the functionalities. The functionalities can act as specific binding sites 

for biomolecules. An ideal mixed monolayer is shown in Figure 1.4. The SAM consists 



of a homogeneous mixture of the components, which is important for immobilizing 

biomolecules.  

 

 

 

 

 

 

Figure 1.4 Depiction of an ideal monolayer with two components. Functional groups 

(shaded) are exposed to a solution or gaseous phase. 

Homogenous mixed SAMs offer the possibility to ‘dilute’ ω-substituted 

alkanethiols with shorter non-substituted thiols in order to have anchor groups available 

for immobilization procedures in which steric hindrance is possibly reduced. Figure 1.5 

shows the importance of the absence of steric hindrance in binding a biomolecule 

(streptavidin) to the surface of a biotin-terminated monolayer. Furthermore, by varying 

the composition of a mixed SAM, the density of attachment points, and hence the 

surface loading of recognition molecules, can be controlled. 

At present, it is still difficult to prepare and characterize mixed SAMs with 

controlled chemical, structural, and biological properties. Coadsorption of two or more 

thiols from solution onto a surface is the method most often used for the preparation of 

mixed SAMs. However, many complex factors arise when attempting to pattern  
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Figure 1.5 Schematic representation of a SAM of thiols and the binding of streptavidin 

to them. (Top) A pure monolayer. Binding of streptadidin is severely sterically hindered. 

(Centre) A monolayer of a mixture of thiols with the same length of the alkane moiety. There 

still is steric hindrance. (Bottom) Addition of a spacer allows binding without steric 

hindrance.110  

molecules on a surface by simple solution-phase coadsorption. It is important to note 

that the relative fractional surface coverage of the molecules will not necessarily be the 

same as that of the coadsorption solution, an observation supported by contact angle, 

scanning probe microscopy and electrochemical studies.111-115 Factors that affect the 

competition for the surface include the relative solvation of the adsorbates by the 

solution, the sticking probability of each molecule, and the degree of interaction 
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between the molecules once they are adsorbed. Differing self-assembling components 

are often separated into domains (islands) once organized (Figure 1.6). 

 

 

 

 

 

Figure 1.6 Depiction of a phase-separated SAM.    

Numerous two-component SAM systems prepared from coadsorption of thiols 

have been investigated. Such systems include SAMs with short- and long-chain 

alkanethiols,113, 116, 117 molecules that differ both in chain length and functional groups 

(i.e., 3-mercaptopropanol and n-tetradecanethiol118), molecules of similar length but 

with differing terminal groups (i.e., n-hexadecanethiol and its ω-methyl ester analog,119 

n-undecanethiol and 11-mercaptoundecanoic acid120) and molecules of similar length 

but with differing, buried functional groups (i.e., 3-mercapto-N-nonylpropionamide and 

n-decanethiol115, 121). However, only adsorbates with similar molecular composition 

will not phase-segregate into discrete single-component domains (islands) (n-

decanethiol and n-dodecanethiol122). Thiols employed in mixed monolayers for the 

purpose of coupling biomolecues are usually different in chain length (in order to avoid 

steric hindrance) and functional groups. Therefore, coadsorption of thiols is not a 
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general method that allows the formation of homogenous SAMs with adsorbates of 

different molecular composition. 

  Bunte salts provide a potential alternative to the use of alkanethiols for forming 

SAMs.123-126 Bunte salts have the general formula RSSO3M, where R is either an 

aliphatic or aromatic group and M a monovalent cation. These compounds possess 

several properties that are advantageous over corresponding thiols. First, the presence 

of an ionic headgroup greatly improves their solubility in aqueous solution relative to 

those of the corresponding alkanethiols. Therefore, SAMs can be formed from Bunte 

salts in aqueous solution, instead of organic solvents such as ethanol, hexane and 

acetonitrile which have been applied to the thiol-based SAMs. Consideration of waste 

disposal issues in chemical processing suggests water as the best solvent, rather than 

organic solvents. Furthermore, a major advantage in using Bunte salts is their ease of 

synthesis compared to that of the corresponding thiols. Bunte salts can be conveniently 

obtained by the reaction of sodium thiosulfate with alkenes having terminal electron-

withdrawing groups such as –Cl or –Br (Equation 1.2).127 

NaXNaOSROSNaRX 32322 +−→+                                        (1.2)      

where RX is alkyl halide and R is either an aliphatic or aromatic group.                                                   

Bunte salts can form SAMs on metal surfaces either by chemisorption123, 125 or by 

electrochemical methods.124, 126 The following sections will give more details about 

SAMs formed by using these two techniques.  
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1.3.2 Chemisorption of Bunte Salts 

Bunte salts can form SAMs by the conventional chemisorption method. Bunte salts 

adsorb on metal surfaces in a manner similar to that reported for disulfides.123, 128 After 

diffusion of Bunte salts to the metal surface, the S-SO3 bond is cleaved, yielding an 

adsorbed thiolated species and a weakly bound sulfite species that can desorb from the 

surface or be displaced by the adsorption of alkyl thiosulfates.123-125, 129-131 At high 

coverage, the adsorption of sulfite ions would result in molecule-sized defects that are 

not likely to be completely filled by the bulky thiosulfate molecules. Therefore, SAMs 

formed from chemisorption of Bunte salts are usually less ordered compared to those 

formed from the corresponding thiols. 

Two-dimensional (2D) SAMs formed on flat gold and platinum surfaces from 

Bunte salts have been investigated.123, 131 Sodium S-dodecylthiosulfate (C12SSO3Na), 

potassium S- (2,5-dihydroxyphenyl) thiosulfate (QSSO3K), and dipotassium S, S’- (3,6-

dihydroxy-1, 2-phenylene) bisthiosulfate (Q(SSO3K)2 can form SAMs on gold through 

simple chemisorption.123 XPS shows that the resulting Au-S bond is indistinguishable 

from that formed from chemisorption of corresponding alkanethiols. However, the rate 

of adsorption of Bunte salts is slower and the maximum coverage of SAMs formed 

from Bunte salts is smaller than that achieved with corresponding thiols. Similar results 

were obtained on platinum surfaces.131 The differences in the adsorption rates and 

surface coverage between Bunte salts and thiols are attributed to the bulky thiosulfate 

headgroup. The mechanism of SAM formation from Bunte salts is described in Figure 

1.7.123 The S-SO3 bond is cleaved upon adsorption of the Bunte salt on the gold surface 



to yield adsorbed thiolated and sulfite species. Weakly bound sulfite can desorb or be 

displaced by another thiolated species. The formation of a SAM from Bunte salts can 

be tentatively presented as a successive dissociative chemisorption of thiosulfate 

molecules and desorption of the sulfite moieties. 
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Figure 1.7 Chemisorption of Bunte salts on gold and the formation of a self-assembled 

monolayer.123 

Chemisorption of Bunte salts has recently found applications in nanotechnology. 

The method produced important breakthroughs in terms of its stability to organize 
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nanoclusters at precisely controlled length scales using suitable bi-functional molecules 

with different terminal functional groups. The synthesis of monolayer-protected gold 

and silver nanoparticles has been reported.129, 130 Functionalized gold clusters are 

synthesized by means of S-dodecylthiosulfate.129 The results from NMR spectroscopy, 

XPS and Fourier transform infrared (FTIR) spectroscopy show that the resulting 

monolayer-protected clusters are indistinguishable in composition, monolayer 

architecture, and Au-S bonding from those prepared from the corresponding thiol. 

Bunte salts have also been used to form monolayers on other metal surfaces. 

Jennings et al.125 used thiosulfates to form monolayers on copper in aqueous and 

organic solvents, to provide a molecule-thick barrier against corrosion and oxidation. 

Results from infrared (IR) spectroscopy indicates that SAMs formed from Bunte salts 

on copper contain molecular-scale defects, lower adsorbate density, and more 

disordered alkyl chains than SAMs formed from alkanethiols, which is in agreement 

with results obtained using gold substrates.123 Electrochemical impedance spectroscopy 

(EIS) reveals that SAMs formed from organic solvents are less ordered than those 

formed from aqueous solution on copper. 

In summary, in terms of monolayer quality, SAMs formed from chemisorption of 

Bunte salts are not advantageous over SAMs formed from the corresponding thiols. 

1.3.3 Electrochemically-Assembled Monolayers (ECAMs) of Bunte Salts 

SAMs formed by electrochemical techniques are not new. Advances have been made 

using the electrochemical oxidation of Bunte salts on gold electrodes to control the 

formation of SAMs,132-134 and reductive desorption of monolayers from modified 



electrodes has been demonstrated.135, 136 The electrochemical oxidation of Bunte salts is 

known to produce disulfides.137 This method has recently been employed to form 

SAMs on gold.124, 126 The key advantage of this electrochemical technique over the 

conventional chemisorption of alkanethiols is that SAMs can be selectively formed 

only on electrodes with potentials high enough to oxidize the Bunte salts.124 The 

selectivity of the technique offers the potential to fabricate microelectrode arrays with 

differentiated surface chemistry, a goal of great importance in the fabrication of 

sophisticated sensor arrays. Other attractive features of this electrosynthesis of SAMs 

include: a) the control it provides over the degree of coverage; b) the short time needed 

to form SAMs; c) the ability to form SAMs easily on gold that is not freshly evaporated; 

d) the ease of preparation of Bunte salts. 

Hydroquinone-thiosulfate and naphthoquinone-thiosulfate have been deposited 

from aqueous solutions on gold electrodes by means of anodic oxidation.126 The 

monolayers are complete in about 40 s. This is significantly faster than the rate at which 

a thiol monolayer adsorbs spontaneously. The mechanism of ECAMs has been 

investigated: the electrochemical oxidation of thiosulfates produces a thioradical as the 

primary product, which dimerizes spontaneously to the disulfide and adsorbs onto the 

electrode (Equation 1.3-1.5). Self-adsorption of Bunte salts is hindered in aqueous 

solution with KCl as the supporting electrolyte.126 The mechanism of the KCl effect is 

not discussed in this work.  

−− ++→ eSOQSHQSSOH 3
*

232                                     (1.3) 
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+− ++⇔ H2e2QSQSH **
2                                             (1.4) 



QSSQQS2 * →                                                                 (1.5) 

22QSSQHHH4e4QSSQ ⇔++ +−                                   (1.6) 

Ferguson et al.124 showed that C16-thiosulfate would selectively deposit on gold 

electrodes with potentials high enough to oxidize the thiosulfate by the application of 

anodic pulses (anodic pulse deposition (APD)) from a tetrahydrofuran (THF) solution. 

Maximum coverage is achieved in less than 20 min, which is much shorter than the 

time required for thiol chemisorption. In addition, the extent of coverage can be 

controlled by adjusting the pulse number. XPS spectra of monolayers formed by the 

electrochemical oxidation of a Bunte salt and the chemisorption of the corresponding 

thiol were indistinguishable.  These authors also mentioned that SAMs can also form 

from aqueous solutions by the reduction of Bunte salts, a process known to produce 

thiols.127 No details about the reduction of Bunte salts were discussed in this study. 

In summary, ECAM of Bunte salts provides an opportunity to modify electrode 

surfaces to specific requirements. The approach is advantageous over chemisorption of 

thiols in terms of selectivity, preparation procedure, formation speed and the coverage 

control it provides. Among these advantages, the most promising is that it provides the 

possibility of depositing films selectively on structures of arbitrary shape or 

unapproachable location, such as within a fluidic microchannel. The monolayer is not 

removed locally but is rather deposited locally where anodic pulses produce the 

disulfide. Thus, contamination of different monolayers that are spatially close to each 

other is prevented. 
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1.4 OBJECTIVES 

The first objective of this project was to design and fabricate an individually 

addressable electrochemical array based on screen-printing technology. The SPCEs 

were then converted into either Ag/AgCl reference electrodes or gold electrodes by 

electrodeposition. The array of two-electrode cells has then been electrochemically 

characterized.   

The second objective of this project was to investigate single-component 

monolayers and two-component mixed monolayers formed electrochemically from 

Bunte salts, and to apply the results to the fabrication of enzyme-based biosensors and 

immunosensors. 
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Chapter 2: Fabrication and Characterization of an Individually 

Addressable Electrochemical Array 

2.1 INTRODUCTION 

2.1.1 Introduction 

The area of biosensors is driven towards development of small, hand held and battery-

operated instruments suited for on-site decentralized biomedical and industrial analysis, 

or environmental monitoring.20 An electrochemical instrument would be ideal for this 

purpose, because electrochemical instrumentation has the potential to be compact, 

inexpensive, rugged, and versatile.138 Compared to single electrodes, sensor arrays have 

the advantage of testing multiple analytes simultaneously. This is one of the reasons 

why research on electrochemical arrays has become of recent interest. The resulting 

responses from the array can be analyzed and interpreted using modern statistical 

techniques popularly known as chemometrics, hence leading to greatly improved 

chemical information.  Application examples can be found in food,139-141 

environmental39, 142 or clinical analytical chemistry,143, 144 where arrays offer 

advantages such as fast and simple measurements directly on-site without any sample 

pretreatment. 

A trend in the development of array biosensors is the movement towards 

miniaturized systems. Several advantages are obtained by microarray systems such as 

increased mass transport due to radial diffusion (resulting in a faster response at the 

transducer), reduced double-layer capacitance due to smaller electrode areas (the signal 
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to noise ratio is increased), and reduced ohmic drop.50, 145 Despite the positive 

properties attributable to microarray systems, there are situations where macroarrays 

can be more favorable. Generally, macro systems are more robust towards 

contamination (dust particles, pollutants in the matrix and impure enzymes) and 

chemical cross-talk between the sensors.146 The directed immobilization of functional 

biomolecules on individual microscopic regions is still a challenge.50 Thus, a 

macroarray system can be a better choice if the purpose is to create biosensor arrays, 

especially at the initial stages of their development. 

Screen-printing technology enables easy production of very flexible 

configurations of electrode-array devices that can be converted into biosensor arrays by 

modifying individual electrodes in the array with different biological components. 

These arrays can be disposable because they can be mass-produced at low cost. 

However, up to now, most of the SPE-based biosensors are used for single parameter 

measurements associated with electrochemical detection.30, 42-46 Recently, multi-

enzyme biosensor arrays based on screen-printing technology have been      

developed.39, 141, 142  

The procedure of screen-printing is shown in Figure 2.1. The main parts of the 

printer include a printing table with various screens, which may be fabricated of 

stainless steel mesh, nylon, or polyester, stretched taut on a supporting framework. The 

electrode pattern is photographically formed onto the mesh using a filler emulsion 

which blocks all screen areas except the actual pattern to be produced. Screen mesh 

sizes are chosen according to the ink specifications provided by the suppliers. The 

screen is positioned above the desired substrate, allowing an approximate gap of about 



0.5 mm. Once the screen has been positioned, the ink is applied to the screen surface, 

and scraped along the screen by a squeegee. The pressure under which the squeegee 

operates allows the highly viscous inks to be forced through the screen openings and 

deposited onto the substrates.  

 

Printing direction → 

Substrate 

Squeegee 

Paste
Screen 

Screen frame 

Negative pressure 
Printing table 

 

Figure 2.1 Screen-printing process. Negative pressure is generated by an air compressor. 

The design of the sensor array plays a very important role in the quality of the 

analytical information, especially when used for in vivo measurements in clinical 

analysis.147 The sensor array may be a three-electrode (working, auxiliary, and 

reference electrodes) or a two-electrode configuration (working and counter electrodes). 

Electrode arrays have been fabricated in a number of geometries. The simplest 

geometry from the standpoint of fabrication is random. Although difficult to 

 29  



characterize geometrically, random arrays are fairly simple to construct from readily 

available materials.148-150 Figure 2.2 shows an electrode array prepared by sealing 

thousands of carbon wires randomly into epoxy resin.151 Arrays of electrodes based on 

disks have also been fabricated.39, 152  
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Figure 2.2 Depiction of an electrode array prepared by sealing carbon wires randomly 

into epoxy. 

In recent years, a variety of carbon-based inks have been investigated as electrode 

materials. Such inks are composed of graphite particles, a polymeric binder (for these 

particles) and other additives for the promotion of dispersion, printing and adhesion. 

Electrodes made with carbon-based inks show relatively low background current, a 

wide operating potential window, convenient modification, renewability and low cost.34 

Electrochemical performance of a series of SPCEs has been investigated for sensors.36 

Commercially available carbon-based ink was chosen in this work to produce 

electrodes. 

Electrochemical sensors need a reference or counter electrode to define an 

accurate electrochemical potential in the electrolyte solution, and the behavior of these 
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reference or counter electrodes is of critical importance for the reliable response of the 

electrochemical cell. Ag/AgCl electrodes are of special interest for the development of 

biosensors. Although many reports of various electrochemical sensors have appeared, 

only a few have dealt with the fabrication of planar reference electrodes. Desmond et 

al.153 have developed a micropseudoreference electrode by combining silicon and 

screen-printing technology. In this work, a Ag/AgCl film was screen-printed onto a 

platinum layer deposited on an oxidized silicon substrate. The resulting Ag/AgCl 

pseudoreference electrode was manually modified by casting a resin containing 

powdered KCl and some additives required for polymerization. Another disposable 

reference electrode was developed using double matrix membrane technology.154 In 

this work, a conducting Ag/AgCl film was screen-printed on heat-sealing paper, 

covered with filter paper and laminated together with the second sheet of the heat-

sealing film. A micro-machined liquid-junction Ag/AgCl electrode, reported by Suzuki 

et al.,155 is based on thin films of silver deposited on glass wafers using 

photolithography. The AgCl layer was formed chemically using FeCl3 as an oxidant. In 

a recent report, a Ag/AgCl reference electrode was fabricated by screen-printing 

technology using a silver-silver chloride-based paste and a UV-cured protective paste. 

The electrodes obtained exhibit long operation and storage lifetimes and their potentials 

are not influenced by common components of real samples, such as chlorides as well as 

other halide anions, alkaline and heavy metal cations, complexing ligands and redox 

agents.156 

For many biosensors, carbon-based materials are the most suitable; but for an 

array of electrodes modified with different biological components, gold electrodes are 
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of interest as they are readily modified by chemisorption of thiols.60-62 Gold surfaces 

modified with thiols to produce SAMs have been employed in enzyme biosensors,96-100 

immunosensors,93-95 and DNA chips.64  Although gold-based inks are commercially 

available, and gold SPEs have been reported in many applications,67-71, 157 they are not 

cost-effective (20-25 US $/g). Therefore, gold electrodeposition has been used in the 

current work to modify SPCEs. Modification of the gold surface has allowed the 

evaluation of further possibilities with the array. 

Well-known problems with electrode arrays are electrical and chemical cross-

talk.51, 158 Electrical cross-talk can arise when independent electrode pairs are operated 

in the same solution, particularly when the potential difference between the reference 

and working electrodes is different. Further, because the individual sensing elements 

consume analyte in amperometric sensors, there is the possibility that the diffusion 

layers for adjacent sensing elements will overlap if they are in close proximity. This 

phenomenon is termed “chemical cross-talk”. The effect of interaction of adjacent 

electrode elements has been examined by Wilson et al.,51 and results have shown that 

the sensing elements must be separated by about 100 µm in order to avoid interference 

from adjacent sensors. 

In this chapter, the design, fabrication and characterization of a disposable 

electrochemical array based on screen-printing are reported. The array, shown in Figure 

2.3, consists of two halves, each having four printed carbon band electrodes, to yield an 

array of 4 × 4 individually addressable working electrodes with areas of 1 mm2. A poly 

(dimethylsiloxane) (PDMS) sheet is employed as a spacer to construct microfluidic 

channels between the two halves. Bonding pads allow for external electronic 
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connections. The array contains 16 two-electrode cells, and the design offers the 

possibility to obtain a multi-parametric biosensor. SPCEs on one half were converted to 

Ag/AgCl electrodes using electrodeposition and anodization procedures and used as 

counter electrodes, and the SPCEs on the other half were electrodeposited with gold. 

The performance of the Ag/AgCl electrodes was investigated with ferrocenecarboxylic 

acid (FCA) using CV, and the surface features of the Au-deposited electrodes were 

investigated by SEM and XPS. The resulting array was then electrochemically 

characterized, using potassium ferricyanide, for reproducibility and chemical cross-talk. 

2.1.2 Preceding Work 

SPCE-based electrochemical arrays with different geometric arrangements have been 

studied in this research group. The method for the activation of SPCEs has been 

adapted from Thomas Mann’s work.159 The electrodeposition method for gold has been 

adapted from the M.Sc. research of Gabriele Hager.160 

2.2 EXPERIMENTAL SECTION 

2.2.1 Materials and Instrumentation 

Potassium ferricyanide, FCA, potassium nitrate, silver nitrate, hydrogen 

tetrachloroaurate (III) hydrate (99.999%) and silver wire were purchased from Aldrich. 

Tris[hydroxylmethyl]aminomethane (Trizma base), tris[hydroxymethyl]aminomethane 

hydrochloride (Trizma hydrochloride) and ethylenediamine dihydrochloride were 

obtained from Sigma. BDH supplied potassium chloride, potassium cyanide, 

hydrochloric acid, sodium chloride and ammonia solution.  



 

(a) 
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 (b) 
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Figure 2.3 Schematic diagrams of (a) two halves of the screen-printed electrochemical array, 

and a PDMS spacer. Dimensions in mm; (b) the electrochemical array: the two halves are 

clamped face-to-face, with electrode bands at right angles. A PDMS spacer is used to construct 

microfluidic channels between the two halves. The thickness of the PDMS is 1 mm. 

PDMS spacer 

Electrodes on the bottom work as  
counter and reference electrodes 

Electrodes on the top work as 
working electrodes 

One of 16 electrochemical cells 
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All reagents were of analytical-reagent grade. All solutions were prepared in water 

purified by a Milli-Q water purification system; its resistivity was > 18 MΩcm.  

Electrochemical arrays were prepared using a DEK Model 248 semi-automatic 

screen printer (DEK Inc., Flemington, NJ) equipped with a vacuum tooling plate (DEK) 

to allow printing onto flexible substrate materials. Screens were designed with 

AutoCAD, manufactured by Hybrid Integrated Services (Mississauga, Ont.). Touch-

Key E82-03 graphite conductive ink was purchased from Coates Screen. Polyester D 

(250 µm) sheets were obtained from Cadillac Plastic. 

PDMS prepolymer (base) and curing agent (Sylgard® 184) were purchased from 

Dow Corning. 

 An EG & G Potentiostat/Galvanostat and a CHI650A Potentiostat were 

employed. Bioanalytical Systems supplied Ag/AgCl (3 M NaCl) reference electrodes 

and glassy carbon electrodes (3 mm diameter). 

A scanning electron microscope (LEO FESEM 1530) was used to examine the 

surface morphology of the SPCEs and gold-modified SPCEs. 

XPS analysis was performed using a multi-technique ultra-high vacuum Imaging 

XPS Microprobe system (Thermo VG Scientific ESCALab 250) equipped with a 

hemispherical analyser (of 150 mm mean radius) and amonochromatic AlKa (1486.60 

eV) X-ray source. 

A Branson 1200 ultrasonic bath was employed for cleaning the SPCEs. 
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2.2.2 Methods 

2.2.2.1 Screen-Printed Sensor Array 

The electrochemical array design used in this work is shown in Figure 2.3. Polyester 

sheets (approximately 35 cm × 35 cm) as screen-printing substrates were first cleaned 

with ethanol and pretreated at 83 °C for 1 h in a convection oven. This procedure 

cleaned the substrate sheets of any particulate matter, as well as preventing shrinkage or 

warping later in the process. The graphite conducting ink was then applied to the screen 

surface and printed onto the polyester surface. The screen-printed electrodes were cured 

immediately for 15 min at 93 °C.  

The PDMS used in the experiments is supplied in two components, a base and a 

curing agent. A 10:1 (w/w) mixture of PDMS base and curing agent was stirred 

thoroughly and then poured onto a mold (Figure 2.4), which is made of Teflon® and 

has the dimensional features of the array, and cured for 4 h at 60 °C. The liquid PDMS 

pre-polymer conforms to the shape of the mold and replicates the features of the mold 

with high fidelity. The thickness of the PDMS spacer is 1 mm. The low surface free 

energy and elasticity of PDMS allow its release from Teflon® molds without damaging 

the mold or itself. PDMS can seal to itself or to other surfaces reversibly and without 

distortion of the channels, because it is elastic. A reversible seal provided by simple van 

der Waals contact is watertight but cannot withstand pressures greater than ~ 5 psi.161 

The assembly of the electrochemical array is shown in Figure 2.3(b). The arrays 

were then sandwiched between two glass plates using clips, to provide mechanical 



stability. The PDMS spacer created the microfluidic channels between the two halves 

of the electrochemical array. 

 

 

Figure 2.4 The mold for construction of the PDMS spacer. 

2.2.2.2 Ag/AgCl Reference Electrodes 

SPCEs were pretreated by sonicating in ethanol for 2 min, rinsed with water, and wiped 

vigorously with a Kimwipe before plating. Two steps were involved in the fabrication 

of the Ag/AgCl reference electrodes. First, silver was electrodeposited. The plating 

procedure is adapted from Scharifker et al.162 The plating solution contains 0.1 M 

AgNO3, 1.0 M KNO3 and 1.0 M NH4OH. The potential was stepped from -0.4 V (1s) to 

-0.3 V (1s) for 200 cycles. Complete reflective silver coverage can be obtained with 

this method. Second, the AgCl layer was formed electrochemically in a 0.1 M KCl 

solution, by stepping the potential from 0.4 V (1s) to 0.3 V (1s) for 20 cycles. In both 

steps, silver wires were employed as auxiliary and reference electrodes. The 

performance of the Ag/AgCl reference electrodes was investigated in 0.1 mM FCA in 
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0.1 M Tris buffer (pH 7.0) using CV. These experiments used a two-electrode system: a 

glassy carbon electrode (3 mm diameter) was used as the working electrode, and the 

Ag/AgCl electrode under investigation was used as the counter electrode. 

2.2.2.3 Gold-Modified SPCEs 

The gold plating solution was prepared from two separate solutions. Solution 1 was 

prepared by combining 0.533 g HAuCl4, 4.853 g KNO3 and 0.558 g KCN in 100 mL 

water and was reduced in volume to about 50 mL by boiling. Solution 2 was prepared 

by dissolving 6.81 g NH2(CH2)2NH2·2HCl in 80 mL water, followed by pH adjustment 

to 1.00 using concentrated HCl. Solutions 1 and 2 were combined and diluted to 200 

mL. The gold concentration in the final plating solution was 7.86 × 10-3 M.  

The gold plating solution was de-aerated with pure nitrogen gas for about 30 min 

before use. The pretreatment of SPCEs was the same as that used for silver plating. 

SPCEs were activated by an electrochemical method: the potential was stepped to -2.0 

V for 60 s and +1.0 V for 60 s. Gold plating was achieved by stepping the potential 900 

times from -1.1 V (1s) to +0.8 V (0.1s) and back again.  Nitrogen over the 

electrochemical cell was used to maintain the de-aerated environment within the cell 

and to create agitation in the solution during the plating process. In the activation and 

plating steps, a commercial Ag/ AgCl electrode (3 M NaCl) and a Pt wire were used as 

the reference and auxiliary electrodes, respectively.  

This method provided a visually complete, reflective gold surface. The surface 

properties of the gold-modified SPCEs were investigated with XPS and SEM. 
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2.2.2.4 Electrochemical Behavior of the Array 

Electrode-to-electrode variability in area and surface properties in the screen-printed 

array is expected to contribute to imprecision in the final assays. Because of this, the 

reproducibility of the electrodes on the same array and different arrays was investigated 

by CV, using 1.0 mM potassium ferricyanide in 0.1 M KCl. Cyclic voltammograms 

from each individually addressable working electrode were recorded while applying a 

potential scan from +0.45 to -0.10 V at a scan rate of 20 mV/s. In these experiments, 

gold-modified SPCEs were used as the working electrodes, and home-made Ag/AgCl 

electrodes served as counter electrodes in two-electrode cells. 

2.2.2.5 Chemical Cross-Talk 

Two EG & G Potentiostats/Galvanostats were used for the investigation of chemical 

cross-talk. The entire electrochemical array was set in a Faraday cage that was earth 

grounded.   

2.3 RESULTS AND DISCUSSION 

2.3.1 Ag/AgCl Reference Electrodes 

The performance of the home-made Ag/AgCl reference electrodes was investigated in 

0.1 mM FCA by CV at a scan rate of 50 mV/s. Six electrodes were tested and Figure 

2.5 shows typical voltammograms using house-made Ag/AgCl as a counter electrode, 

and a glassy carbon electrode (Bioanalytical Systems, West Lafayette, IN, USA) as a 

working electrode. 
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Figure 2.5 Cyclic voltammograms of 0.1 mM FCA in 0.1 M Tris buffer (pH 7.0), scan 

rate 50 mV/s, 10 cycles. 

The potential of the home-made Ag/AgCl reference electrodes can be determined 

from the positions of the anodic and cathodic peaks for FCA in Figure 2.5, since a 

literature value is available for the formal potential ( ) of this species under identical 

conditions (+0.289 V vs. SCE

'0E

163): 

2
EE

E c,pa,p'0 +
=                                                                  (2.1) 
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where Ep,a is the anodic and Ep,c is the cathodic peak potential. Over ten cycles,  was 

found to be +0.238 V (± 1.3%) vs. the home-made Ag/AgCl reference electrode. Since 

the potential of the saturated calomel electrode (SCE) reference electrode is +0.241 V 

vs. normal hydrogen electrode (NHE),

'0E

164 the potential of the home-made Ag/AgCl 

reference electrode is +0.292 V vs. NHE. 



This value can be compared with the value calculated from the Nernst equation, 

with  vs. NHEV222.0E0
AgCl/Ag += 164 and [Cl-]=0.09 M: 

]Cllog[0592.0EE 0
AgCl/AgAgCl/Ag

−−=                                 (2.2) 

From Equation 2.2, the theoretical value for the potential of the home-made Ag/AgCl 

reference electrode is +0.284 V vs. NHE, which is very close to the value from the 

experiments (+0.292 V). Therefore, the behavior of home-made Ag/AgCl reference 

electrodes can be predicted by the Nernst equation. Moreover, the home-made 

Ag/AgCl as a reference electrode provides a constant, stable potential.   

The storage stability of home-made Ag/AgCl electrodes was also investigated 

with the same method described above.  was chosen to evaluate the 

stability of Ag/AgCl electrodes after they were stored dry at room temperature. Table 

2.1 summarizes the results. 

'0
)AgCl/Ag.vs(FcE

As seen in Table 2.1, home-made Ag/AgCl electrodes show good storage 

stability for at least 30 days. 
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Table 2.1 Storage stability of home-made Ag/AgCl reference electrodes. 

* 0.1 mM FCA in 0.1 M Tris buffer (pH 7.0), scan rate 50 mV/s. (n=6) 

Storage time (days) 1 2 3 15 30 

'0
)AgCl/Ag.vs(FcE (mV)*    238 ± 3 237 ± 1   237 ± 2 238 ± 2    239 ± 3 

 

2.3.2 Surface Properties of Gold-Modified SPCEs 

The surface topography of the electrodeposited gold layer is expected to play a key role 

in further modification of the electrodes. SEM images of a SPCE and a gold-modified 

SPCE are shown in Figure 2.6. The scans were performed in imaging mode and at a 

magnification of 1000×. The image of the unmodified SPCE reveals the granular 

particles (Figure 2.6(a)), and the image of the gold-modified SPCE (Figure 2.6(b)) 

indicates that gold coverage is almost complete, with some carbon particles exposed at 

the surface of the electrode. Based on the CV results obtained, these areas do not 

contribute to voltammetric signals (Figure 2.7). 

Data from XPS confirm the above results that gold coverage on the surface of 

SPCE is almost complete (Figure 2.8). Other than gold and carbon, zinc was also found 

on the surface of the electrode. Zinc exists as an impurity (0.2 ppm) in hydrogen 

tetrachloroaurate (III) hydrate. Zinc cations were reduced at the negative potential used 

during the gold-plating process. 
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(b) (a) 

Figure 2.6 SEM images of a (a) SPCE and (b) gold-modified SPCE, taken at 1000× 

magnification. 
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Figure 2.7 Cyclic voltammograms for a gold-modified SPCE (a) and SPCE (b) using 1.0 

mM K3Fe(CN)6 in 0.1 M KCl, employing commercial Ag/AgCl and Pt wire as reference 

electrode and auxiliary electrode, respectively. Geometric areas of the working electrodes are 1 

mm2, scan rate 50 mV/s. 
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Figure 2.8 X-ray photoelectron spectrum for a gold-modified SPCE (a); and a SPCE (b). 

2.3.3 Reproducibility of the Array 

The electrochemical reproducibility of the working electrode elements of the array was 

tested with a simple, well-known electroactive species, K3Fe(CN)6, using CV. The 

cyclic voltammetric experiments were conducted in a 1.0 mM K3Fe(CN)6 solution with 

0.1 M KCl as supporting electrolyte and a potential scan rate of 20 mV/s. Cyclic 

voltammograms were recorded at each electrode and Figure 2.9 shows a typical 

voltammogram. Both peak potentials and peak currents were recorded on the 16 

electrodes of 3 different arrays to evaluate reproducibility. Table 2.2 summarizes the 

results obtained. In these experiments, gold-modified SPCEs were used as working 

electrodes, and home-made Ag/AgCl electrodes worked as counter electrodes. 
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Figure 2.9 Cyclic voltammogram using 1.0 mM K3Fe(CN)6 (in 0.1 M KCl) from one of 

the individually addressable working electrodes, scan rate 20 mV/s. 

As can be seen in Table 2.2, very low variation in peak currents and potentials 

was found within a particular array. For example, R.S.D. values were 7.4%, 4.5%, 

8.9% and 7.4% for reduction potential, oxidation potential, reduction current, and 

oxidation current, respectively in array (2). Therefore, the 16 electrodes composing a 

particular array can be considered as almost identical and used interchangeably for 

further applications. 

Moreover, the array-to-array variations of the electrochemical characteristics 

were very good.  
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2.3.4    Chemical Cross-Talk 

The chemical cross-talk between adjacent sensing elements on the array were evaluated 

using 1.0 mM K3Fe(CN)6. Figure 2.10 shows a typical cyclic voltammogram from an 

individually addressable electrode. In case (a) CV was done only on one electrode (for 

example, electrode1) so that there was no interference from adjacent electrodes due to 

chemical cross-talk. In case (b) CV was done on two adjacent electrodes (for example, 

electrode 1 and electrode 2) simultaneously, and signals from electrode 1 recorded 

under this condition was used to compare with that obtained in case (a). If chemical 

cross-talk exists between adjacent electrodes, the responses from electrodes are smaller 

than those obtained from electrodes without chemical-talk. As seen in Figure 2.10, no 

significant difference was observed between these two cases. From this we concluded 

that the diffusion layers of the adjacent array electrodes did not overlap on this time 

scale and the 16 individual electrode signals can be regarded as 16 independent current 

signals at short time scales.165, 166 

2.4 CONCLUSIONS 

An individually addressable electrochemical array was designed and fabricated based 

on screen-printing. PDMS worked as a spacer and created microfluidic channels in the 

array.  The Ag/AgCl reference electrodes converted from SPCEs by electroplating and 

anodization procedures showed good storage stability. Gold modification of the SPCEs 

was achieved with hydrogen tetrachloroaurate (III) solution. The results from SEM and 

XPS indicated that coverage was almost complete, even though there were defects on 



the surface. The reproducibility of the array consisting of home-made Ag/AgCl 

reference electrodes and gold-modified working electrodes was evaluated by CV, and 

R.S.D. values were found to be below 9.0% for electrode-to-electrode variability on the 

same array and different arrays. Simultaneous multichannel measurements are feasible 

since no chemical cross-talk was observed between adjacent sensing elements on the 

array. 
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Figure 2.10 Cyclic voltammograms in 1.0 mM K3Fe(CN)6 (in 0.1 M KCl) for electrode 

1 when CV was conducted (a) only on electrode 1 and (b) on electrode 1 and the adjacent 

electrode (electrode 2) simultaneously. Scan rate 2 mV/s. Inset is the array. 
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Chapter 3: Patterned Electrodeposition of Bunte Salts  

3.1 INTRODUCTION 

The immobilization of biomolecules onto the surfaces of electrically-conducting 

materials is an active area of research useful for a range of applications including the 

construction of electrochemical biosensors. A general methodology that is currently 

being utilized for this purpose is the self-assembly of molecules on specific surfaces 

such as the chemisorption of thiols on gold. SAMs prepared with thiols are stable and 

easily prepared with virtually any desired functionality. 

The terminal functional group of a monolayer is critical for the purpose of 

immobilizing biomolecules. The evidence to date suggests that, as expected, the 

functional groups are present at the distal end of the thiol molecules,111, 167, 168 which is 

a prerequisite for immobilizing biomolecules. However, bulky functional groups 

(COOH, ferrocene) may disturb the structure of the monolayer.   

Binary mixed monolayers have been studied for the purpose of immobilizing 

biomolecules. Overabundance of surface functional groups, steric hindrance, and the 

concomitant less ordered monolayers, which lead to denaturation and reduced activity 

of biomolecules, can be avoided by controlling the surface composition and distribution 

of the adsorbates. In a binary matrix, long chain components bearing functional groups 

(e.g., -COOH) provide binding sites for biomolecules and act as a framework, 

preventing a probe molecule from penetrating through the monolayer; short chain 

components act as a template that induces defects within the framework that permit the 

penetration of redox probes.  
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Much work has been published on functionalized, alkanethiol-based mixed 

SAMs prepared by coadsorption of two or more different thiols from solution. Many 

complex factors can affect the assembly process of mixed monolayers, such as 

solvation of the adsorbates in the solution, the adhesion probability of each molecule, 

and the degree of interaction between the molecules once they are adsorbed. Mixed 

SAMs composed of short- and long-chain alkanethiols,113, 116, 117 molecules that differ 

both in chain length and functional groups,118 molecules of similar length but with 

differing terminal  groups119, 120 and molecules of similar length but with differing, 

buried functional groups,115, 121 have been investigated. However, the assembling 

components are often separated into islands if they are chemically dissimilar. 

Bunte salts provide a potential alternative to the use of alkanethiols for forming 

SAMs.123-126 The chemical169 or electrochemical  oxidation137  of Bunte salts is known 

to produce disulfides. Bunte salts can form monolayers on metal surfaces either by 

chemisorption123, 125 or by electrochemical methods.124, 126 These compounds are more 

soluble in aqueous solution than the corresponding thiols and are easily synthesized. 

They can be conveniently obtained by the reaction of sodium thiolsulfate with terminal 

alkenes having electron-withdrawing groups.127 Compared to SAMs prepared by 

chemisorption of the corresponding thiols, SAMs formed from chemisorption of Bunte 

salts have molecular-scale defects, lower adsorbate density and more disordered alkyl 

chains compared to thiol-based SAMs.123 

Some previous studies of electrochemical-assembly of Bunte salts have been 

done.124, 126 Nann et al.126 reported that hydroquinone-thiosulfate and naphthoquinone-

thiosulfate can be deposited from aqueous solutions on gold electrodes by means of 
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anodic oxidation. The monolayer was complete in about 40 s. This is much shorter than 

the time required for thiol chemisorption. Ferguson et al.124 showed that C16-thiosulfate 

can be selectively electrodeposited on gold electrodes in THF/0.1 M Bu4NBF4. 

Monolayers produced in this way are very similar to those prepared using the 

conventional adsorption of thiols or disulfides, as indicated by several methods of 

characterization including contact angle measurements, ellipsometry, and high-

resolution XPS. In particular, the XPS results for monolayers produced by both 

methods were indistinguishable. An earlier study of hexylthiosulfate and 

benzylthiosulfate at gold electrodes was carried out in two aqueous electrolytes: 0.5 M 

H2SO4 and 1 M NaHCO3.137 The most recent research studied different Bunte salts 

(CH3(CH2)nS2O3Na, n=7,9,11,13,15) dissolved in THF/0.1 M Bu4NBF4.170 The 

proposed mechanism of electrochemical-assembly of Bunte salts is summarized in 

Figure 3.1.124, 137, 170 Electrochemical oxidation of Bunte salts leads to the formation of 

an alkylsulfide radical by release of SO3;137 this radical can then combine directly with 

the gold surface, or couple to form a disulfide. Either of these pathways would be 

expected to lead to the formation of monolayers, as disulfides oxidatively add to gold 

surfaces readily.171 Finally, SO3 would be expected to react with any water in the 

solvent to form sulfate ions. 

Several advantages of the electrochemical method over conventional 

chemisorption exist: monolayers can be completed in a short time; monolayers can be 

selectively formed only on electrodes with potentials high enough to oxidize Bunte 

salts; and the coverage of monolayers can be controlled by adjusting the time for 

oxidation.124, 170 The selectivity of this method offers the potential to fabricate 



microelectrode arrays with differentiated surface chemistry, a goal of great importance 

in the fabrication of sophisticated sensor arrays. 

  

R-S-SO3
-  - e-                           R-S•    +    SO3

52 

 

 

 

Figure 3.1 Mechanism for monolayer formation by electrochemical oxidation of Bunte 

salts at a gold electrode.124, 137, 170 

The monolayers can be characterized by a variety of methods including physical 

measurements like contact angle and wettability, ellipsometry, XPS, IR, QCM, STM, 

atomic force microscopy (AFM), fluorescence spectroscopy, and SPR. Electrochemical 

techniques like CV and impedance measurements are especially useful for monitoring 

monolayer quality for biosensors. For example, although a monolayer can completely 

cover a metal surface, some ‘pinhole’ defects are always present and these allow direct 

contact of redox active molecules with the electrode surface.  

In this chapter, experiments with single- and binary-component monolayers, 

formed electrochemically from Bunte salts, are reported. The binary mixed monolayers 

were designed to contain short- and long-chain components, where the long-chain 

Gold
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H2O 
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component bears a functional group (-COOH) that can act as a binding site for 

biomolecules. The short-chain component allows electrochemistry to occur at the 

electrode surface below. The factors that affect the assembly of the monolayers, such as 

solvent, electrochemical technique employed, and concentration of Bunte salts were 

studied. The resulting single- and binary-component monolayers were 

electrochemically characterized, and their stabilities were also investigated.  

3.2 EXPERIMENTAL SECTION 

3.2.1 Materials and Instrumentation 

1-Chlorobutane (99.5%), 1-chlorohexane (99%), 1-chlorooctane (99%), 1-chlorodecane 

(98%), 11-bromoundecanoic acid (99%), potassium thiosulfate pentahydrate (99.5%), 

and ethyl alcohol were obtained from Aldrich. Chloroform was obtained from Sigma. 

Nitric acid was purchased from Fisher Scientific.  

Commercially available Revlon nail enamel (Clear 76), purchased at a local 

pharmacy, and white vinyl gloss (C99-5103-1G), supplied by Screentec, were 

employed for defining SPCE areas. 

RE 111 Rotavapor was used to evaporate solvent for synthesis of Bunte salts. 

Elemental analyses were performed by M-H-W Laboratories (Phoenix, U.S.A). 

An EG & G Potentiostat/Galvanostat and a CHI650A Potentiostat were employed. 

Bioanalytical Systems supplied Ag/AgCl (3 M NaCl) reference electrodes. 

All electrochemistry experiments were performed in a conventional three-

electrode configuration, with a platinum wire as the auxiliary electrode, and Ag/AgCl 
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(3 M NaCl) as the reference electrode. The working electrode was a bare or monolayer-

modified gold-covered SPCE (geometric area 1.0 mm2). 

3.2.2 Methods 

3.2.2.1 Preparation of Bunte Salts, CH3(CH2)n S2O3Na (n=3,5,7) and 

HOOC(CH2)10S2O3Na 

Bunte salts were prepared following a literature procedure.127, 129, 172-176 The reactions 

used 1-chlorobutane, 1-chlorohexane, 1-chlorooctane, 1-chlorodecane, and 11-

bromoundecanoic acid. For synthesis of CH3(CH2)nS2O3Na (n=3,5,7), alkyl halides 

(0.01 mol) dissolved in ethanol (total volume 15 mL) was added to a solution of sodium 

thiosulfate (0.01 mol) in 15 mL water, and the mixture was refluxed under argon for 4.5 

h. After cooling, the solvent was removed using a Rotavapor, and the crude product 

was collected and recrystallized from hot ethanol. For synthesis of 

HOOC(CH2)10S2O3Na, 11-bromoundecanoic acid (0.01 mol) dissolved in 15 mL 

ethanol was added to a sodium thiosulfate (0.01 mol) in 15 mL water, and the mixture 

was refluxed under argon until it became homogeneous (30 min). After cooling, the 

solvent was removed using a Rotavapor, and unreacted 11-bromoundecanoic acid was 

extracted from CHCl3. The crude product was recrystallized from hot ethanol. Table 

3.1 summarizes the elemental analysis results for these compounds. 

3.2.2.2 Preparation of Gold Substrate 

Gold-modified SPCEs (prepared by the method described in Section 2.2.2.3) were used 
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as the substrates for the formation of monolayers. The electrode areas were 1 mm × 1 

mm and defined using either clear nail polish or white vinyl gloss ink (depending on 

the assembly solvent). Before the assembly process, the electrode was cleaned in aqua 

regia solution containing 14% HCl and 9% HNO3 for 10 s, rinsed with water, and 

blown dry with nitrogen. 

3.2.2.3 Electrochemical-Assembly of Bunte Salts 

Solutions of Bunte salts (total concentration 2.0 mM) were deaerated with nitrogen for 

20 min before use in order to prevent etching which has been reported for gold surface 

exposed to thiosulfate solutions containing an oxidizing species.177 Potential pulses and 

CV were employed to form monolayers. After the electrochemical deposition step, 

electrodes were rinsed with the corresponding solvent and water. Monolayer formation 

was examined by CV at a scan rate of 100 mV/s in 1.0 mM K3Fe(CN)6 with 0.1 M KCl. 

Complete monolayer formation is expected to result in blocked surfaces displaying no 

Faradic signals with ferricyanide.  

3.2.2.4 Electrochemical Characterization of Monolayers 

The electrochemical responses of K3Fe(CN)6 and FCA at electrodes modified with 

binary monolayers were investigated using CV. 

Measurement of capacitance is another valuable method that can be used to 

assess the quality of molecular packing in monolayers. CV in 0.1 M KCl was 

performed to determine the capacitance values of gold-modified SPCEs before and 

after monolayer formation. The potential was scanned at 100 mV/s between -0.1 and 



+0.3 V. The double-layer capacitance of the monolayer-covered electrodes can then be 

calculated using the following equation: 178, 179 

11
cdl AiC −− ⋅υ⋅=                                                             (3.1) 
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A

2/1

where  is the double-layer capacitance, dlC ci  is the charging current, υ  is the scan rate, 

and  is the electrode surface area. The difference between the charging currents 

measured at a given potential on the anodic and cathodic segments of the 

voltammograms is equal to twice the charging current. The values reported in this work 

were measured at +0.1 V. The electroactive areas of the gold-covered SPCEs were 

determined prior to monolayer formation in 1.0 mM ferricyanide with 0.1 M KCl using 

chronoamperometry.180  Briefly, experiments were performed by stepping from +0.5 to  

-0. 1 V for 15 s. Data were plotted as  vs. , and the =0 intercept was 

determined by extrapolation of the linear regression line. The electrochemical surface 

areas (A) were calculated using the Cottrell equation as: 

ti ⋅ t t

2/1

2/12/1

FCD
tiA π⋅

=                                                                (3.2) 

where  is the current,  is the time,  is the Faraday constant, C  is the concentration 

and  the diffusion coefficient. The diffusion coefficient for K

i t F

D 3Fe(CN)6 employed for 

all data calculations was  7.6 × 10-6 cm2 s-1.181 

The electrochemical stabilities of the monolayer-modified electrodes were 

investigated as a function of electrode potential in 0.1 M H2SO4. The storage stabilities 

of monolayers were also examined under different conditions. 
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3.2.2.5 Control Experiments 

For the synthesis of C10-COOH, it is really hard to totally remove starting materials 

HOOC(CH2)10Br and NaBr, so they are  present as impurities. The existence of Br- was 

detected by silver nitrate ([Br-]<3.0%). The influence of these impurities on the 

formation of monolayers was investigated by CV using Fe(CN)6
3- and capacitance 

determined by CV in 0.1 M KCl. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Oxidation of Bunte Salts 

Initial studies of the electrochemistry of the Bunte salts were carried out using CV in 

0.2 M phosphate buffer (pH 6.0). Although acid hydrolysis can occur in aqueous 

solution, leading to the respective mercaptans, the reaction needs a few hours to occur 

under reflux conditions. Experiments in this work have been carried out at shorter times 

(less than 1 h) as well as at room temperature. Figure 3.2 shows typical cyclic 

voltammograms recorded at a gold-modified SPCE in 0.2 M phosphate buffer (pH 6.0) 

in the absence and presence of C4. The inset magnifies the data in the range of 

potentials from +0.3 to +1.2 V. 

Similar results were obtained with the other Bunte salts shown in Table 3.1. 

The oxidation wave between +0.9 to +1.0 V in Figure 3.2 represents the 

formation of gold oxide on the electrode surface.182 When the scan direction is reversed, 

there is a cathodic peak at about 0.5 V representing the reduction of gold oxide. The 

decrease in peak currents for waves characteristic of gold oxide generation and 



reduction during sweeping of the electrode potential was observed in the presence of 

C4 (Figure 3.2). The suppression of gold oxide generation and reduction resulted from 

blocking of the free gold surface, arising from the formation of monolayers. 
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Figure 3.2 Cyclic voltammograms of 0.2 M phosphate buffer (pH 6.0) (a), and 0.2 M 

phosphate buffer (pH 6.0) with 2.0 mM C4 (b). Scan rate 10 mV/s. Inset shows data in the 

range of potentials from +0.3 to +1.2 V. 

3.3.2 Electrochemical-Assembly of Bunte Salts 

3.3.2.1 Potential Pulse and CV 

Two electrochemical techniques were investigated to assess the formation of 

59 
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monolayers from Bunte salts. The first technique involved potential pulses: the 

potential was stepped from a resting value of -0.2 V vs. Ag/AgCl to a particular 

positive value in the range producing anodic current in the cyclic voltammogram 

(Figure 3.2, +0.3 to +1.2 V). The gold electrode was held at this positive potential for 

0.2 s and then stepped back to the -0.2 V resting potential for 4 s. This method is 

similar to the pulse method reported by Ferguson et al.124, 170 In their work, gold 

electrodes (prepared by thermal evaporation of gold on glass slides) were immersed 

into THF solution containing Bunte salts, and the potential was stepped from -0.9 V to 

a particular positive value vs. Ag/AgCl in the range producing an anodic current.124, 170  

To optimize the procedure for gold-modified SPCEs, this process was repeated 3 

times using a separate sample for each potential from +0.3 to +1.2 V in 0.1 V 

increments. The current-time trace obtained from C4 over first 50 cycles is shown in 

Figure 3.3. Initially large current magnitudes can be seen to decay to smaller values 

over this time period, suggesting that the reaction is occurring at a steadily diminishing 

electrode area.  

The growth of monolayers was also followed systematically, as a function of the 

pulse numbers to a given potential.  The ability of a monolayer to block electron 

transfer between the gold surface and an electron donor or acceptor in solution is a 

useful measure of its completeness.178 Therefore, the degree of completeness of each 

resulting monolayer was monitored using CV in 1.0 mM K3Fe(CN)6 with 0.1 M KCl. 

As the degree of monolayer integrity increases, the current for electron transfer will be 

largely decreased. Fe(CN)6
3- was selected as an electrochemical probe because it is a 
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Figure 3.3 Current-time curve of 0.2 M phosphate buffer (pH 6.0) containing 2.0 mM 

C4 during the first 50 pulse cycles by pulsing between -0.2 V (4s) and +0.8 V (0.1s) vs. 

Ag/AgCl. 

well-characterized one-electron outer-sphere redox couple with fast heterogeneous 

electron-transfer kinetics at gold.183-185 Figure 3.4(a) shows a cyclic voltammogram of a 

bare gold-modified SPCE. Figure 3.4(b)-(d) shows the cyclic voltammograms recorded 

on C4-covered electrodes generated with from 50, 100, and 250 pulses at +0.8 V vs. 

Ag/AgCl.  At the bare gold SPCE, the shape of the cyclic voltammogram was 

indicative of a diffusion-limited redox process (Figure 3.4(a)). The voltammograms for 

monolayer-covered electrodes were markedly different: the reduction of K3Fe(CN)6 

was inhibited by all monolayers to some extent. The initially very large voltammetric 

peaks disappeared after first 50 pulses, and complete blockage of the electrode surface 

is evident after 250 cycles. Thus, the complete monolayer can be obtained in less than 

20 min with this method. Completeness of the monolayer is defined as the absence of 
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measurable Faradic currents for the ferri/ferrocyanide redox couple, as shown in Figure 

3.4(d), which is indistinguishable from that obtained from the same electrode in the 

background solution of 0.1 M KCl (data not shown).   
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Figure 3.4 Cyclic voltammograms of 1.0 mM K3Fe(CN)6 in 0.1 M KCl recorded on a 

gold modified SPCE before (a) and after 50 (b), 100 (c) and 250 (d) potential pulse cycles 

between -0.2 V (4 s) and +0.8 V (0.2 s) in a solution of 0.2 M phosphate buffer (pH 6.0) 

containing 2.0 mM C4. Scan rate 100 mV/s.   

Control experiments were conducted with the same C4 solution, and no 

monolayer formation was detected in the absence of an electrochemical method (at 

open circuit). 

Figure 3.5 shows a plot of number of pulses (to get complete coverage) versus 

pulse potentials for SPCEs modified with C4.  As can be seen in Figure 3.5, the number 
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of pulses decreased as pulse potentials increased from +0.5 to +0.8 V, and then became 

constant. A potential (+0.5 to +0.7V) lower than +0.8 V may not provide enough 

energy for significant Bunte salts oxidation. Therefore, many more pulses were needed 

at these lower potentials to get complete coverage. At even lower potentials (+0.3 to 

+0.4 V), the monolayer only approached but did not reach completion. Potentials 

higher than +0.9 V resulted in oxidation of the gold, with concomitant disordering of 

the monolayer. The same results were obtained from C6 and C8. C10-COOH could not 

form a complete monolayer even after 600 cycles at a pulse potential of +0.8 V, which 

may result from the incorporation of the bulky –COOH groups and the concomitant 

less ordered monolayers 
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Figure 3.5 Number of pulses for formation of complete monolayers at different pulse 

potentials. The assembly solution: 2.0 mM C4 in 0.2 mM phosphate buffer (pH 6.0). Initial 

potential -0.2 V vs. Ag/AgCl held for 4s and pulse potential held for 0.2 s. 
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Table 3.2 summarizes the results obtained with C4 and other Bunte salts using 

the potential pulse method. 

The second method employed to form monolayers was CV from -1.0 to +1.0 V at 

a scan rate of 10 mV/s. This is similar to the method reported by Czerwinski et al.137 In 

their work, Bunte salts (hexyl thiosulfate and benzyl thiosulfate) undergo irreversible 

adsorption on gold and platinum disk electrodes in 0.5 M H2SO4 and 1 M NaHCO3 

solution during potential cycling in the potential region 0-1.1 V (vs. NHE). In our 

experiments, complete monolayers were obtained from different Bunte salts (C4, C6, 

and C8) after 4 cycles, in less than 15 min. Complete monolayers could not be formed 

from C10-COOH, even after 10 cycles, which may stem from the larger terminal group 

(-COOH) and the concomitant disordering of the monolayer.105 Table 3.3 summarizes 

the results of these experiments. 

 

Table 3.3 Summary of CV method for ECAM Formation. * 

Modified Electrodes Fe(CN)6
3- reduction current (µA)** 

C4 0.02 ± 0.01 

C6 0.009 ± 0.005 

C8 0.004 ± 0.002 

C10-COOH 0.39 ± 0.06 
         *-1.0 to +1.0 V vs. Ag/AgCl; scan rate 10 mV/s, 4 cycles. 
         ** Data from voltammograms of 1.0 mM K3Fe(CN)6 in 0.1 M KCl; scan rate 100 mV/s; 

current measured at +0.18 V vs. Ag/AgCl, the cathodic peak potential at a bare gold-modified 

SPCE; values are background-subtracted. Background currents are obtained in 0.1 M KCl. 
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 CV from -1.0 to +1.0 V at a scan rate of 10 mV/s with 4 full cycles was chosen 

for subsequent experiments to form monolayers. 

3.3.2.2 Effect of Solvent 

Ethanol: H2O (3:1) with total concentration of 0.1 M KCl as the assembly solvent was 

also investigated. Complete monolayers were obtained either by potential pulse or by 

CV in this solvent. Figure 3.6 shows the cyclic voltammograms of 1.0 mM K3Fe(CN)6 

recorded on C4-covered electrodes generated from ethanol/water (3:1, with 0.1 M KCl) 

and 0.2 M phosphate buffer (pH 6.0). No significant difference was observed between 

ethanol/water and 0.2 M phosphate buffer (pH 6.0). The aqueous phosphate buffer was 

chosen for further experiments. 

3.3.2.3 Effect of Bunte Salt Concentration 

The effect of the concentration of C6 in 0.2 M phosphate buffer (pH 6.0) on the quality 

of monolayers was studied using CV in 1.0 mM K3Fe(CN)6 with 0.1 M KCl at a scan 

rate of 100 mV/s. Monolayer-covered SPCEs were prepared using CV with 4 cycles at 

a scan rate of 10 mV/s in 0.2 M phosphate buffer (pH 6.0) containing C6 in the 

concentration range from 0.2 to 5.0 mM. For convenience, the reduction current of 

Fe(CN)6
3- at +0.18 V (cathodic peak potential at a bare gold-modified SPCE) was used 

for evaluation. The results are shown in Figure 3.7. It can be seen in Figure 3.7 that as 

C6 concentration increased from 0.2 to 2.0 mM, the reduction current decreased from 

about 0.46 µA to about 0.13 µA, and then became constant. The Bunte salt 

concentration used in further experiments was 2.0 mM.  
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Figure 3.6 Cyclic voltammograms of 1.0 mM K3Fe(CN)6 in 0.1 M KCl recorded on C4-

covered SPCEs generated from ethanol/water (3:1, with 0.1 M KCl) (b) and 0.2 M phosphate 

buffer (pH 6.0) (c), (a) from a bare gold SPCE. Scan rate 100 mV/s. Monolayers were formed 

using CV from -1.0 to +1.0 V at a scan rate of 10 mV/s with 4 cycles. 
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Figure 3.7 Effect of concentration of Bunte salt (C6) in the assembly solution on 

reduction current of K3Fe(CN)6 at +0.18 V. Data from CV of 1.0 mM K3Fe(CN)6 with 0.1 M 

KCl, +0.5 to -0.1 V, scan rate 100 mV/s. (n=3) 
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3.3.3 Electrochemical Responses of Redox Probes on Mixed Monolayers 

Mixed monolayers were prepared by the CV method using a total Bunte salt 

concentration of 2.0 mM in 0.2 M phosphate buffer (pH 6.0). Binary salt combinations 

of C10-COOH with C4, C6 or C8 were used with varying molar ratios in the assembly 

solution. The resulting mixed monolayers were examined by CV using FCA and 

K3Fe(CN)6. 

3.3.3.1 Electrochemical Responses of FCA on Mixed Monolayers 

The cyclic voltammograms of FCA at gold-modified SPCEs with C4/C10-COOH 

mixed monolayers are shown in Figure 3.8. The voltammograms show a clear trend 

towards decreased Faradic currents for FCA as the percent C10-COOH is increased, 

although complete blockage is not observed with 100% C10-COOH (Figure 3.8(f)). 

These results suggest that FCA readily transfers electrons to the gold surface through 

the C4 barrier, but this process is inhibited by C10-COOH. Inhibition is likely a 

consequence of both the length of C10-COOH, forcing the electron-transfer reaction to 

occur over a greater distance, and electrostatic repulsion between the negatively 

charged carboxylate groups on both the FCA and the surface-bound C10-COOH (the 

surface-bound carboxylate groups are at least partially ionized at pH 7.0.186). It should 

be emphasized that the surface molar fractions relate to assembly solution composition 

and not necessarily to the final monolayer compositions. 
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Figure 3.8 Cyclic voltammograms of 1.0 mM FCA in 0.1 M Tris buffer (pH 7.0) on (a) a 

bare gold-modified SPCE, and mixed monolayers (C4/C10-COOH) with (b) 90% C4, (c) 80% 

C4, (d) 50% C4, (e) 20% C4, and (f) 100% C10-COOH (molar percentage in the solution). 

Scan rate 100 mV/s. 
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Similar trends were observed in the systems of C6/C10-COOH and C8/C10-

COOH. The resulting mixed monolayers had improved blocking effects on FCA as the 

content of the long chain component (C10-COOH) increases. However, with the same 

percentage of C10-COOH, mixed monolayers composed of different second 

compositions (C4, C6 or C8) had different barrier effects on FCA. Results are 

compared in Figure 3.9 for monolayers composed of 10% C10-COOH and 90% C4, C6 

or C8. 
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Figure 3.9 Cyclic voltammograms of 1.0 mM FCA in 0.1 M Tris buffer (pH 7.0) on 

mixed monolayers composed of 10% C10-COOH and 90% of (a) C4, (b) C6, and (c) C8 (molar 

percentage in the solution). Scan rate 100 mV/s. 

Table 3.4 summarizes results obtained with FCA for all mixed monolayer 

systems studied. 
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As shown in Figure 3.9 and Table 3.4, the reaction of FCA on mixed monolayers 

can also be controlled by the nature of short chain components within the monolayers. 

While the composition of one component was fixed (for example, 10 % C10-COOH in 

Figure 3.9), the blocking effect increased as the chain length of the second component 

increased. 

 

Table 3.4 Mixed monolayer properties (FCA used as a voltammetric probes). * 
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*CV conditions for FCA are the same as in Figure 3.9 (n=3). 

** Measured at +0.34 V vs. Ag/AgCl, the anodic peak potential at a bare gold-modified SPCE. 

 

 

Percent of Bunte salts in solution (%) Bunte salts 

(CX) CX                      C10-COOH 
   FCA anodic current (µA)** 

C4 

90                            10 

80                            20 

50                            50 

20                            80 

  0                            100 

2.8 ± 0.3 

2.3 ± 0.2 

2.0 ± 0.2 

1.4 ± 0.1 

0.62 ± 0.07 

C6 

90                            10 

80                            20 

50                            50 

20                            80 

2.4 ± 0.3 

2.0 ± 0.2 

1.8 ± 0.2 

0.60 ± 0.07 

C8 

90                            10 

80                            20 

50                            50 

20                            80 

1.8 ± 0.2 

1.6 ± 0.2 

1.2 ± 0.1 

0.56 ± 0.08 



3.3.3.2 Electrochemical Responses of Fe(CN)6
3- on Mixed Monolayers 

Figure 3.10 and Table 3.5 present data analogous to that shown in Figure 3.8 and    
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Figure 3.10 Cyclic voltammograms of 1.0 mM K3Fe(CN)6 in 0.1 M KCl on (a) a bare 

gold-modified SPCE, and mixed monolayers (C4/C10-COOH) with (b) 90% C4, (c) 80% C4, 

(d) 50% C4, (e) 20% C4, and (f) 100% C10-COOH (molar percentage in the solution). Scan 

rate 100 mV/s. 
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Table 3.4, except that the redox probe is K3Fe(CN)6. Compared to results obtained in 

Table 3.4, the data follows the general trend discussed for FCA, but mixed monolayers 

show bigger barrier effects on K3Fe(CN)6. This is likely a result of stronger 

electrostatic repulsion between surface-bound C10-COO- groups and Fe(CN)6
3- for the 

mixed monolayer systems studied. Since Fe(CN)6
3- is more hydrophilic than FCA, it 

was not possible to observe a clear decrease in voltammetric signal with increasing 

chain length (as shown for FCA in Figure 3.9). However, both FCA and Fe(CN)6
3- 

results suggest defective monolayers when only C10-COOH is present in the assembly 

solution (Figure 3.8(f ) and 3.10(f)); the carboxylate groups (at least partially ionized at 

pH 7.0186) are bulkier than a methyl group, and likely contribute to pinhole defects. 

3.3.4 Capacitance 

3.3.4.1 Single-Component Monolayers 

Measurement of capacitance is another valuable method to assess the quality of 

molecular packing in monolayers. This method provides additional information on the 

degree of structural integrity of the monolayer. The capacitances of pure monolayer-

covered SPCEs prepared by CV from different Bunte salts are compared in Table 3.6. 

Figure 3.11 shows voltammograms for a bare gold-modified and a C4-modified SPCE 

that were used to calculate the values shown in Table 3.6. 

As compared to a bare gold-modified SPCE (Figure 3.11(a)), a monolayer-

covered SPCE exhibits markedly reduced double-layer charging currents and an almost 

potential-independent behavior (Figure 3.11(b)), which is characteristic for thin layers 

with low dielectric constant blocking electron transfer to the electrode. 



Table 3.5 Mixed monolayer properties (Fe(CN)6
3- used as a voltammetric probe).* 
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*CV conditions for Fe(CN)6
3- are the same as in Figure 3.9 (n=3). 

**Measured at +0.18 V vs. Ag/AgCl, the cathodic peak potential at a bare gold-modified SPCE. 

 

 

From Table 3.6, it is obvious that the coating of a gold electrode with a 

monolayer causes a dramatic decrease in the electrolyte/electrode capacitance. The data 

can be interpreted according to the parallel plate capacitor model, in which the 

monolayer-coated electrode is modeled as a capacitor with the gold electrode surface 

and the electrolyte solution forming the two conducting plates of the capacitor.178 In 

this case the capacitance can be described by the following equation:  

Percent of Bunte salts in solution (%) Bunte salts 

(CX)         CX                  C10-COOH 

Fe(CN)6
3- reduction current 

(µA)** 

C4 

90                      10 

80                      20 

50                      50 

20                      80 

    0                     100 

0.19 ± 0.02 

0.15 ± 0.02 

0.13 ± 0.02 

0.11 ± 0.02 

0.50 ± 0.06 

C6 

90                      10 

80                      20 

50                      50 

20                      80 

0.16 ± 0.02 

0.16 ± 0.02 

0.15 ± 0.02 

0.10 ± 0.01 

C8 

90                      10 

80                      20 

50                      50 

20                      80 

0.14 ± 0.02 

0.13 ± 0.01 

0.13 ± 0.01 

0.10 ± 0.01 



 

Table 3.6 Capacitance on bare gold-modified and monolayer-covered SPCEs measured 

in 0.1 M KCl at +0.1 V vs. Ag/AgCl with a scan rate of 100 mV/s. 

Bare gold or 

monolayer-covered electrode 
Bare gold   C4   C6  C8 C10-COOH 

Cdl  µF/cm2 * 
  140  

(± 10) 

  24  

(± 3) 

  15  

(± 2) 

  8  

(± 1)  

       46 

     (± 7) 

* n=3; electrodes areas used in this calculation are determined by chronoamperometry.  
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Figure 3.11 Cyclic voltammograms of 0.1 M KCl before (a) and after (b) 

electrochemical formation of monolayer (C4). Scan rate 100 mV/s. 
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effr0 d/C εε=                                                             (3.3) 

where  is the relative dielectric constant of the monolayer, rε 0ε is the dielectric 

constant of vacuum (permittivity of free space), and is the effective thickness of the 

monolayer. According to this model, during the linear potential scans of a CV 

experiment, the charging current is independent of potential, and inversely proportional 

to the monolayer thickness. The experimental data are in agreement with this model, 

since capacitance is nearly constant with potential and the capacitance value decreased 

as the chain length was increased from C4 to C8. 

effd

On the other hand, the C10-COOH-based monolayer exhibited a larger 

capacitance. This is consistent with FCA and Fe(CN)6
3- results (Section 3.3.3.1 and 

3.3.3.2) which suggested that the functional group (-COOH) provides electrostatic 

repulsion and steric hindrance resulting in a monolayer that has defects and is less 

compact.105 Liquid-like packing of HOOC(CH2)10SH on gold by chemisorption has 

been reported by Chidsey et al.105 The incorporation of the polar carboxylic acid group 

to the end of polymethylene chains leads to less ordered monolayers and extensive 

permeation of the monolayer by water or aqueous ions due to the steric and electrostatic 

interactions between functional groups.105  

 Moreover, these data imply that there is no multilayer formation in any 

investigated system. If multilayers were formed, capacitance values lower than 1.4 

µF/cm2 should have been obtained according to the correlation between the differential 

capacitance and the chain length of the adsorbates.187    
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Figure 3.12 shows a plot of reciprocal capacitance of the monolayer-covered 

SPCEs versus the length of the hydrocarbon (i.e., the number of methylene units, n, in 

CH3(CH2)nS2O3Na). The plot of 1/Cdl vs. n is reasonably described as a straight line 

with a slope of 0.02 cm2/µF and intercept of -0.05 cm2/µF (R2=0.95). The linear 

dependence of 1/Cdl on n deviates lightly from that of the corresponding thiols previous 

reported by Widrig et al. (slope and intercept were 0.02 and 0.28 cm2/µF, 

respectively).187 The reason for this difference is not known at present. It may result 

from the difference of the structure or packing quality of the monolayers formed by the 

electrochemical method in this work, in comparison with the chemisorption method 

used by Widrig et al.187 
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Figure 3.12 Plot of reciprocal capacitance vs. hydrocarbon chain length. Data from 

Table 3.6. 
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3.3.4.2 Binary Monolayers 

78 

d

The capacitances of mixed monolayer-covered electrodes prepared from C6/C10-

COOH with varying molar ratio in the assembly solution are shown in Figure 3.13. It 

can be seen that before approaching 50% C10-COOH, with the increase of C10-COOH 

in the solution the capacitance decreases. These results can be interpreted using the 

parallel plate capacitor model (Equation 3.3). As the content of C10-COOH increases, 

the average value is expected to increase. Therefore, the monolayer capacitance 

decreases with an increase in C10-COOH content. Above 50% C10-COOH, the 

capacitance of the mixed monolayers increases with an increase in C10-COOH content. 

This may result from the electrostatic and steric effects introduced by the functional 

group (-COOH) and the concomitant disorder of the monolayers. 

eff

The measured capacitance values of mixed monolayers composed of 10% C10-

COOH and 90% different second components are compared in Table 3.7. 

These results are consistent with Equation 3.3, since deff is expected to increase 

with the average chain length present in the mixed monolayer. As shown in Table 3.7, 

the composition of Bunte salts in the assembly solution affects the capacitance values 

of the mixed monolayers, indicating that the composition or the structure of the 

monolayers can be controlled by the composition of the assembling solution. 
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Figure 3.13 Plot of capacitance of the mixed monolayers (C6/C10-COOH) against the 

corresponding fraction of C10-COOH in the solution. Electrodes areas used in the calculation 

are determined by chronoamperometry. (n=3) 

 

Table 3.7 Capacitance on monolayer-covered SPCEs composed of 10% C10-COOH and 

90% of short chain components (C4, C6 or C8) (molar percentage in the solution) measured in 

0.1 M KCl at +0.1 V vs. Ag/AgCl with a scan rate of 100 mV/s. 

Monolayer-covered 

SPCEs 
C4/C10-COOH C6/C10-COOH C8/C10-COOH 

Cdl  µF/cm2 * 22 ± 3 14 ± 2 6 ± 1 

*n=3; electrodes areas used in this calculation are determined by chronoamperometry. 
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3.3.5 Stability 

The electrochemical stabilities of monolayer-modified electrodes were investigated in 

0.1 M H2SO4 using CV in the potential range of -1.0 to +1.2 V at a scan rate of 100 

mV/s. The cyclic voltammogram of a clean gold-modified SPCE exhibits the 

characteristic gold oxide formation at +1.0 to +1.2 V. On the return scan, an oxide 

stripping peak appears at around 0.70 V (Figure 3.13(a)). On the monolayer-covered 

electrode, the gold oxidation is not visible. Suppression of gold oxidation implies that 

water is effectively blocked from the gold surface. This fact points to a relatively strong 

bonding between the adsorbates and the gold. The monolayers were damaged when the 

potential exceeded the positive limit (+1.2 V), when the characteristic reduction peak of 

gold oxide appeared.182 The large currents observed between -0.5 to -1.0 V are due to 

the reduction of water. 

Storage stabilities of monolayer-modified electrodes were also investigated. 

Monolayer-covered electrodes were stored at 4° C in 0.2 M phosphate buffer (pH 6.0). 

After 24 h storage, no obvious deterioration of monolayer quality was detected (as 

judged by CV of 1.0 mM K3Fe(CN)6). 

3.3.6 Control Experiments 

Figure 3.15 and 3.16 show the cyclic voltammograms of Fe(CN)6
3- at a gold-modified 

SPCE before and after cycling in 0.3 mM HOOC(CH2)10Br or NaBr. No inhibition of 

Fe(CN)6
3- reaction on electrodes after cycling in HOOC(CH2)10Br or NaBr was 

observed. Therefore, neither HOOC(CH2)10Br nor NaBr can form electrochemically 

monolayers on gold-modified SPCEs. 
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Figure 3.14 Cyclic voltammograms of 0.1 M H2SO4 on a gold-modified SPCE before (a), 

and after (b) ECAM formation of C4. Scan rate 100 mV/s. Insets show data from 0 to +1.2 V 

range. 
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Figure 3.15 Cyclic voltammograms of 1.0 mM K3Fe(CN)6 in 0.1 M KCl recorded on a 

gold-modified SPCE before (a), and after (b) cycling in 0.3 mM HOOC(CH2)10Br (4 cycles 

from -1.0 to +1.0 V, 10 mV/s). Scan rate 100 mV/s. 
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Figure 3.16 Cyclic voltammograms of 1.0 mM K3Fe(CN)6 in 0.1 M KCl recorded on a 

gold-modified SPCE before (a), and after (b) cycling in 0.3 mM NaBr (4 cycles from -1.0  to 

+1.0 V, 10 mV/s). Scan rate 100 mV/s. 
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Figure 3.17 shows the cyclic voltammograms of Fe(CN)6
3- at a bare gold-

modified SPCE and a gold-modified SPCE after cycling in 2.0 mM C4 and 2.0 mM C4 

with 0.3 mM HOOC(CH2)10Br. No obvious difference was observed between 

monolayer-modified electrodes either by C4 only or by C4 and HOOC(CH2)10Br 

together. Therefore HOOC(CH2)10Br does not have any influence on the formation of 

monolayers. 

Figure 3.18 shows the cyclic voltammograms of Fe(CN)6
3- at a bare gold-

modified SPCE and a gold-modified SPCE after cycling in 2.0 mM C4 and 2.0 mM C4 

with NaBr. From Figure 3.18, it is obvious that NaBr does not have any influence on 

the formation of monolayers. 

The capacitance values of the monolayer-modified SPCEs studied above were 

also determined by CV in 0.1 M KCl. The results were summarized in Table 3.8. 

It can be seen from Table 3.8 that the results are in agreement with those obtained 

from Fe(CN)6
3-. HOOC(CH2)10Br and NaBr cannot electrochemically form monolayers 

and do not have any influence on the formation of monolayers. 

3.4 CONCLUSIONS 

Bunte salts form stable pure and binary-component monolayers on gold-modified 

SPCEs when assembled by electrochemical methods. The degree of the completeness 

of the monolayers can be controlled by pulse numbers for the potential pulse method, 

or by the number of cycles used in the CV method. 
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Figure 3.17 Cyclic voltammograms of 1.0 mM K3Fe(CN)6 in 0.1 M KCl recorded on a 

bare gold-modified SPCE (a), and gold-modified SPCEs after cycling in (b) 2.0 mM C4, (c) 2.0 

mM C4 + 0.3 mM HOOC(CH2)10Br (4 cycles from 1.0  to +1.0 V, 10 mV/s). Scan rate 100 

mV/s. 
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Figure 3.18 Cyclic voltammograms of 1.0 mM K3Fe(CN)6 in 0.1 M KCl recorded on (a) 

a bare gold-modified SPCE, and a gold-modified SPCE after cycling in (b) 2.0 mM C4, (c) 2.0 

mM C4 + 0.3 mM NaBr (4 cycles from 1.0  to +1.0 V, 10 mV/s). Scan rate 100 mV/s.

84 



85 

Table 3.8 Capacitance on bare gold-modified and monolayer-covered SPCEs measured 

in 0.1 M KCl at +0.1 V vs. Ag/AgCl with a scan rate of 100 mV/s. 

Bare gold or monolayer-covered SPCEs* Cdl  µF/cm2 ** 

Bare gold-modified SPCEs                           140 ± 10 

0.3 mM HOOC(CH2)10Br 142 ± 11 

0.3 mM NaBr                           139 ± 10 

2.0 mM C4 24 ± 3 

2.0 mM C4 + 0.3 mM HOOC(CH2)10Br 23 ± 3 

2.0 mM C4 + 0.3 mM NaBr                             25 ± 4 

*Monolayers were electrochemically formed from –1.0 to +1.0 V at a scan rate of 10 mV/s, 4 

cycles. 

**n=3; electrodes areas used in this calculation are determined by chronoamperometry. 

 

 

The double layer capacitance of a pure monolayer decreases as the chain length is 

increased. Also, the structure of the organic monolayer clearly depends on the terminal 

groups, which modify the intermolecular interactions. Incorporation of the –COOH 

functional group disturbs the order of pure monolayers. 

This research has shown that it is possible to use binary Bunte salt solutions to 

prepare functional composite monolayers. The composition of the monolayer is related 

to the ratio of the two Bunte salts in the assembling solution. The permeabilities of 

K3Fe(CN)6 and FCA on mixed monolayers are different. FCA penetrates the 

monolayers easily, but Fe(CN)6
3- does not. In addition, the access of FCA to the gold 

electrode surface can be tuned to some extent by varying the relative concentrations of 
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the two Bunte salts in the assembly solution, which offers the prospect of using this 

approach to develop highly sensitive and selective electrochemical sensors for organic 

and biological samples. Therefore, its potential applicability area in electrochemical 

analysis is believed to be wide. The following chapters discuss the applications of these 

modified electrodes to enzyme biosensors and immunosensors. 
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Chapter 4: Glucose Biosensor Based on Electrodeposition of 

Bunte Salts 

4.1 INTRODUCTION 

Biosensors are now attracting considerable attention as potential successors to a wide 

range of analytical techniques due to their unique properties of specificity. The 

immobilization of biological molecules is a crucial problem for the development of 

biosensors, as the immobilization procedure must maintain the activity of biological 

molecules in a reproducible manner. Furthermore, it is desirable that the 

immobilization process gives the biological molecules enhanced stability, is robust, is 

applicable to many different biological molecules, is chemically resistant to the 

reactants and products of the biochemical reaction and gives some control over the 

distribution and orientation of the immobilized species.  

A number of techniques for immobilizing biomolecules on various matrices, such 

as covalent linkage, encapsulation, layer-by-layer deposition, and cross-linking, have 

been developed for the fabrication of biosensing devices.188-194 Among these 

immobilization methods, the use of SAMs as anchor layers has been the subject of 

considerable research for a decade.102, 195-197 Such organic films bring the following 

advantages: (i) extremely reduced thickness, (ii) surface groups optimally positioned 

for reaction, and (iii) control in the degree of order and density of reactive groups. 

SAMs have been used for the fabrication of a variety of biosensors including 

immunosensors198 and enzyme biosensors.199 



Amperometric enzyme electrodes hold a leading position among biosensor 

systems presently available, and have already found a large commercial market.200, 201 

In particular, glucose biosensors have attracted a great deal of interest because of the 

increasing incidence of diabetes.202, 203 The enzyme, GOx, is well-known as a biological 

sensing material for the quantitative determination of β-D-glucose in solution because 

of its substrate specificity.188, 204 GOx is a diametric protein with a molecular weight of 

160 kDa and a size of ca. 8 nm × 6 nm × 5 nm.205 The general reaction mechanism for 

the GOx catalyzed glucose oxidation process is described in Figure 4.1: 

 

H2O2Glucose GOx(FAD)

GOx(FADH2) 
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Figure 4.1 The oxidation of glucose catalyzed by GOx. GOx (FAD) and GOx (FADH2) 

represent the oxidized and reduced forms of GOx, respectively. 

First generation glucose biosensors were mostly based on direct amperometric 

detection of hydrogen peroxide formed as a consequence of the enzymatic     

reaction.206, 207 

−+ ++→ e2H2OOH 222                                                                   (4.1) 

Gluconic acid O2
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Even though hydrogen peroxide detection requires no additional reagents, there are 

some disadvantages in using an oxygen-coupled biosensor for in vitro monitoring of 

glucose in whole blood and plasma: Variations in the oxygen tension of the sample may 

introduce fluctuations into the electrode response. In addition, at low oxygen tension, 

the upper limit of linearity for the current response may be reduced. Also, the relatively 

high operating potentials required to oxidize hydrogen peroxide can result in 

interference from oxidizable constituents (ascorbic acid and uric acid) in the analyzed 

samples. One viable solution to these problems has been to replace the natural electron 

acceptor for GOx (O2) by electroactive compounds that act as redox mediators, thus 

allowing work at lower potentials and reducing interference.208 Biosensors employing 

mediators are so-called second generation biosensors.209, 210 Ferrocene and its 

derivatives have proven to be particularly useful as mediators for amperometric enzyme 

electrodes.211-220 Once ferrocene is oxidized at an electrode, the resulting ferricinium 

ion diffuses to the redox centre of the enzyme, where it acts as an artificial electron 

acceptor.  

In this chapter, the application to glucose biosensors of functionalized binary 

monolayers, formed electrochemically from Bunte salts, is reported. The binary 

monolayers were mixtures of a long carboxylic acid functionalized Bunte salt (C10-

COOH) with a short alkyl functionalized derivative (C4, C6, or C8). The long chain 

component (C10-COOH) provides binding sites for enzymes, and the short chain 

component (C4, C6 or C8) allows electron transfer to the underling gold layer. The 

immobilization of GOx molecules was achieved by covalent attachment to the 

carboxylic terminated monolayers with the assistance of  N-ethyl-N'-(3-



90 

imethylaminopropyl) carbodiimide (EDC) hydrochloride and n-hydroxysuccinimide 

(NHS). FCA was chosen as a mediator. The amperometric responses of the resulting 

enzyme electrodes to glucose were measured and the effects of some variables on the 

response were investigated.  

4.2 EXPERIMENTAL SECTION 

4.2.1 Materials and Instrumentation 

Glucose oxidase (EC 1.1.3.4. type X-S, from Aspergillus niger), EDC hydrochloride, 

potassium phosphate and NHS were purchased from Sigma. Aldrich supplied 

potassium dihydrogenphosphate. D-Glucose was purchased from Sigma. A stock 

solution of 0.5 M glucose was prepared in 0.1 M Tris buffer (pH 7.0) at least 24 h prior 

to use for mutarotation to occur. The solution was stored at 4 °C. More dilute standards 

were prepared by appropriate dilution with 0.1 M Tris buffer (pH 7.0). Unless 

otherwise noted, the glucose solution was deaerated by purging with nitrogen for 30 

min before use. 

An EG & G Potentiostat/Galvanostat and a CHI650A Potentiostat were employed 

for electrochemical experiments. Bioanalytical Systems supplied Ag/AgCl (3 M NaCl) 

reference electrodes. 
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4.2.2 Methods 

4.2.2.1 Preparation of Enzyme Electrodes 

Binary monolayers (C4/C10-COOH, C6/C10-COOH, or C8/C10-COOH) with varying 

molar ratio of the two components were electrochemically formed by CV as described 

in Section 3.2.2.3. The terminal carboxylic groups of monolayers were activated by 

immersion in 0.05 M phosphate buffer (pH 5.5) containing 2 mM EDC hydrochloride 

and 5 mM NHS for 1 h at room temperature. In this step, EDC hydrochloride converts 

the carboxyl group into a reactive intermediate, which is susceptible to attack by 

amines on lysine residues of GOx, and amide bonds then form between the enzyme 

molecules and carboxyl-terminated monolayers. After the activation, the electrodes 

were rinsed with phosphate buffer and immediately placed in 0.05 M phosphate buffer 

(pH 5.5) containing 1 mg/mL GOx overnight at 4 °C. The enzyme electrodes were 

rinsed with water and used immediately. Figure 4.2 shows this activation reaction 

process.195  

4.2.2.2 Cyclic Voltammetry 

CV studies were first carried out in a conventional three-electrode configuration, with a 

GOx-modified SPCE (geometric area 1.0 mm2) as the working electrode, a platinum 

wire as the auxiliary electrode, and Ag/AgCl (3 M NaCl) reference electrode. Later 

experiments used the electrochemical array (described in Chapter 2), composed of two-

electrode cells, with a GOx-modified SPCE as the working electrode and a Ag/AgCl 

modified SPCE as the counter electrode.
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4.2.2.3 Amperometric Measurement 

The activity of immobilized GOx was tested by measuring the current response to 

glucose. In order to simplify the factors that affect the results, initial studies were 

carried out in a conventional three-electrode system consisting of a GOx-modified 

working electrode (geometric area 1.0 mm2), an auxiliary electrode of platinum wire 

and a reference electrode of Ag/AgCl (3 M NaCl). The amperometric measurements at 

a constant potential were carried out in the solution of 0.1 M Tris buffer (pH 7.0) 

containing FCA and glucose without stirring. Background current was obtained from 

0.1 M Tris buffer (pH 7.0) containing FCA. Steady-state currents from different 

concentrations of glucose were background subtracted and were then used to create 

calibration curves.  

The electrochemical array was also evaluated for the detection of glucose. 

Glucose solution was introduced into the microchannel at one end using a syringe. 

All experiments were performed at room temperature (20 ± 2 °C).  

4.3 RESULTS AND DISCUSSION 

4.3.1 Fabrication of GOx-Modified SPCEs 

Following each step of the fabrication process, electrodes were characterized by CV 

using ferricyanide and FCA as redox probes. Figure 4.3 shows cyclic voltammograms 

of a modified SPCE at different stages in 0.1 M KCl solution containing 1.0 mM 

K3Fe(CN)6 at a scan rate of 100 mV/s. Mixed monolayer was electrochemically formed 

from the assembling solution containing 90% C4 and 10% C10-COOH. At a bare gold-



modified SPCE, the characteristic and well-behaved redox response of ferricyanide was 

observed (Figure 4.3(a)). The reaction of ferricyanide was blocked by the existence of 

the mixed monolayer on the electrode surface (Figure 4.3(b)). The response of the 

electrode after the activation step with EDC hydrochloride and NHS was very similar 

to Figure 4.3(b) (data not shown), indicating that the activation step did not destroy the 

monolayer. The immobilized GOx molecules seem to impose an additional barrier to 

K3Fe(CN)6 (Figure 4.3(c)).  
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Figure 4.3 Cyclic voltammograms of 1.0 mM K3Fe(CN)6 with 0.1 M KCl on (a) a bare 

gold-modified SPCE, (b) after formation of a mixed monolayer (C4/C10-COOH with 10% 

C10-COOH in the assembling solution), and (c) after immobilization of GOx molecules. Scan 

rate 100 mV/s. 
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Figure 4.4 shows CV responses of a modified SPCE in 0.1 M Tris buffer (pH 7.0) 

containing 1.0 mM FCA at a scan rate of 100 mV/s. The characteristic and well-

behaved redox response of FCA was observed at a bare gold-modified SPCE (Figure 

4.4(a)). The monolayer had less blocking effect on FCA than on ferricyanide 

(Figure4.4(b) and Figure 4.3(b)). The explanation for this difference has been discussed 

in Chapter 3 (Section 3.3.3). The response of the electrode after the activation step with 

EDC and NHS did not change (data not shown). As with FCA, the immobilized GOx 

molecules further block the electrode surface (Figure 4.4(c)). 
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Figure 4.4 Cyclic voltammograms of 1.0 mM FCA in 0.1 M Tris buffer (pH 7.0) on (a) a 

bare gold-modified SPCE, (b) after formation of a mixed monolayer (C4/C10-COOH with 10% 

C10-COOH in the assembling solution), and (c) after immobilization of GOx molecules.  Scan 

rate 100 mV/s. 
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Comparison of Figure 4.3(c) and Figure 4.4(c) shows that FCA was less affected 

by the presence of the monolayer/immobilized GOx layer than K3Fe(CN)6. Thus, FCA 

was chosen as a mediator for the glucose biosensors.  

4.3.2  Electrocatalytic Oxidation of Glucose at GOx-Modified SPCEs  

Figure 4.5 shows cyclic voltammograms of a GOx-modified SPCE in 0.1 M Tris buffer 

(pH 7.0) containing 0.2 mM FCA in the absence and presence of 10 mM glucose. 
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Figure 4.5 Cyclic voltammograms of a GOx-modified SPCE in 0.1 M Tris buffer (pH 

7.0) containing 0.2 mM FCA before (a) and after (b) the addition of 10 mM glucose. Scan rate 

2 mV/s. The GOx-modified SPCE was prepared from a mixed monolayer composed of 

C4/C10-COOH (10% C10-COOH in the assembling solution).  
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In the absence of glucose, the characteristic and well-behaved redox response of 

FCA was observed (Figure 4.5(a)); In the presence of glucose, an electrocatalytic 

anodic current was observed, indicating that GOx molecules were immobilized on the 

surface and maintained their biological activity. In addition, the concomitant decrease 

of the reductive current is indicative of the regeneration of FCA from the ferricinium 

ion by GOx in its reduced form. This demonstrates that FCA is a very efficient 

mediator between the redox centers of GOx molecules and the electrode surfaces. 

Figure 4.6 depicts the mediation reaction. 

GOx GOx 

Glucose 

Gluconic acid 
2FCA 

2FCA+

2e

Au 

 

Figure 4.6 Electrical communication between the immobilized GOx molecules and the 

electrode surface using FCA as a mediator. FCA+ represents the oxidized form of the mediator. 

Control experiments reveal that in the absence of immobilized GOx, no 

electrocatalytic anodic currents were detected in the presence of glucose, and no 

significant oxidative current was observed in the solutions without FCA. These results 

confirm that the current is related to the enzymatic oxidation of glucose, and FCA 

facilitates electron transfer between the immobilized GOx molecules and the electrodes. 
97 
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4.3.3 Optimization  

In order to maximize the sensitivity of the glucose biosensor, the effects of applied 

potential, the concentration of the mediator, and the composition of the mixed 

monolayer, which provides the platform for the immobilization of GOx, were 

investigated.  

4.3.3.1 Effect of Applied Potential 

A glucose-dependent current is only realized when the electrode is poised sufficiently 

positive to generate the ferricinium ion from FCA. The effect of the applied potential 

on the biosensor response was studied over the potential the range of +0.25 to +0.5 V. 

The experiments were performed in 0.1 M Tris buffer (pH 7.0) containing 10 mM 

glucose and 0.2 mM FCA. As shown in Figure 4.7, the response of the biosensor 

rapidly increased as the potential increased from +0.25 to +0.45 V as the kinetics of 

FCA oxidation become diffusion-limited at more positive potential. When the potential 

was further increased to +0.5 V, the response increased slightly. Although higher 

applied potential results in a larger biosensor response, a potential of +0.45 V was 

selected as an optimum potential for all subsequent experiments because the higher 

applied potential may result in increased interference from the oxidation of other 

electroactive species that may be present in a sample, such as ascorbic acid and uric 

acid.  
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Figure 4.7 Effect of applied potential on the amperometric response of GOx-modified 

SPCEs. Current was measured in 0.1 M Tris buffer (pH 7.0) containing 10 mM glucose and 0.2 

mM FCA. GOx-modified SPCEs were prepared under the same conditions as described in 

Figure 4.5. (n=3) 

 

4.3.3.2 Effect of Mediator Concentration 

The effect of mediator concentration on the biosensor response was examined with 10 

mM glucose in 0.1 M Tris buffer (pH 7.0). As shown in Figure 4.8, the current 

increased sharply with an increase in the concentration of FCA from 0.05 to 0.2 mM, 

and then leveled off. Such behaviour is typical of mediator-based sensors.221 At low 

mediator concentration, the current response is limited by enzyme-mediator kinetics. 

When the mediator concentration is high, the current response is limited by enzyme-

substrate kinetics. Although higher mediator concentration results in a larger biosensor 

response, a concentration of 0.2 mM was selected for all further experiments because 

the higher concentration results in an increased background current. 
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Figure 4.8 Effect of the concentration of FCA on the amperometric response of GOx-

modified SPCEs. Current was measured in 0.1 M Tris buffer (pH 7.0) containing 10 mM 

glucose. Applied potential was +0.45 V. GOx-modified SPCEs were prepared under the same 

conditions as described in Figure 4.5. (n=3) 

 

4.3.3.3 Effect of the Composition of Binary Monolayers 

Binary monolayers composed of C4 and C10-COOH with varying molar ratio in the 

assembling solution were employed to study the effect of the monolayer composition 

on the response of the GOx-modified SPCEs. Calibration curves were created for these 

GOx-modified SPCEs. The sensitivity of the GOx-modified SPCEs to glucose 

(determined by linear regression over 0-10 mM glucose range) was used for evaluation. 

The results are presented in Figure 4.9. 

Similar results were obtained with binary monolayers prepared with C6/C10-

COOH (Figure 4.10) and C8/C10-COOH (Figure 4.11). 
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Figure 4.9 Effect of the composition of binary monolayers (C4/C10-COOH) on the 

amperometric response of GOx-modified SPCEs. Amperometric measurements were carried 

out in 0.1 M Tris buffer (pH 7.0) containing 0.2 mM FCA, with an applied potential of +0.45 V.   
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Figure 4.10 Effect of the composition of binary monolayers (C6/C10-COOH) on the 

amperometric response of GOx-modified SPCEs. Amperometric measurements were carried 

out in 0.1 M Tris buffer (pH 7.0) containing 0.2 mM FCA, with an applied potential of +0.45 V. 
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Figure 4.11 Effect of the composition of binary monolayers (C8/C10-COOH) on the 

amperometric response of GOx-modified SPCEs. Amperometric measurements were carried 

out in 0.1 M Tris buffer (pH 7.0) containing 0.2 mM FCA, with an applied potential of +0.45 V.

The results shown in Figures 4.9-4.11 were unexpected. Increasing the mole 

fraction of C10-COOH in the assembly solution was expected to increase the loading of 

C10-COOH on the electrode surface, and this should result in a higher density of GOx 

immobilization sites on the surface. At some critical value, the density of –COOH 

groups on the surface will equal the density of GOx molecules in a perfectly-formed, 

complete monolayer of GOx. Based on the known dimensions of GOx (its 

hydrodynamic radius is 5.24 × 10-7 cm based on its diffusion coefficient of 4.1 × 10-7 

cm2/s222 and Stokes Law8), each GOx molecule should occupy an area of about (πr2) on 

the electrode surface. If one C10-COOH group were present in this area, the mole 

percent of C10-COOH in the monolayer would be 0.26% using a total alkanethiol 
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density of 4.5 × 1014 molecules/cm2.223 Although this simple calculation explains the 

maxima in biosensor response that occur at very low C10-COOH values (Figure 4.9-

4.11), it does not explain the minima that occur around 50% C10-COOH. Possibly, the 

increase in C10-COOH from very low values causes multiple bonding to occur between 

each GOx molecule and the monolayer, resulting in distortion of the GOx tertiary 

structure, causing loss of activity. Further increases in C10-COOH, at and above about 

50%, could allow hydrogen bonding to occur between adjacent C10-COOH molecules, 

lowering the reactivity of these groups on the surface. It has been shown that 

alkanethiol monolayers formed from species containing a terminal –COOH group show 

much different acid-base properties in comparison with the same species present in 

dilute solution (pKa values are 3.68 and 4.52 for mercaptoacetate in aqueous solution 

and on the surface of a monolayer-modified electrode, respectively186). 

4.3.4 Calibration Curve 

Figure 4.12 shows the amperometric responses of a GOx-modified SPCE to glucose. It 

can be seen that an increase in glucose concentration is accompanied by an increase in 

anodic current obtained at a constant potential of +0.45 V. The steady-state current can 

be obtained within 2 min. The background-subtracted currents at different 

concentrations of glucose at 2 min were used to create calibration curves. GOx-

modified SPCEs prepared from different mixed monolayers were investigated. Results 

are shown in Figure 4.13 and Table 4.1. 

As shown in Figure 4.13 and Table 4.1, the GOx-modified SPCEs prepared from 

mixed monolayers composed of C4/C10-COOH and C6/C10-COOH gave similar 



responses, and the sensitivity values are larger than those obtained with glucose 

biosensors based on gold nanotube arrays (4.0 nA mM-1 mm-2)224 and SAMs of 

alkanethiols (4.1 nA mM-1 mm-2).225 The GOx-modified SPCE obtained from the 

monolayer of C8/C10-COOH showed lower sensitivity. The linear responses obtained 

from all three types of GOx-modified SPCEs cover the clinical region for a range of 

3.5-6.5 mM glucose.226   
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Figure 4.12 Amperometric response of a GOx-modified SPCE prepared from a mixed 

monolayer composed of C4/C10-COOH (10% C10-COOH in the assembling solution) in 0.1 M 

Tris buffer (pH 7.0) containing 0.2 mM FCA in the absence of glucose (a), and in the presence 

of 2.5 mM (b) and 5.0 mM (c) glucose. Applied potential was set at +0.45 V vs. Ag/AgCl. 
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Figure 4.13 Calibration curves for the GOx-modified SPCEs prepared from different 

mixed monolayers (10% C10-COOH in the solution). (n=3) 

Table 4.1 Data obtained from calibration curves (Figure 4.13) for the three types of 

GOx-modified SPCEs. 

GOx-modified 

SPCEs 
Sensitivity (nA mM-1)* Detection limit (mM)** 

C4/C10-COOH 5.0 0.5 

C6/C10-COOH 4.6 0.6 

C8/C10-COOH 2.8 0.8 

         *Evaluated over the 0-10 mM glucose range by linear regression. 

         **Detection limit estimated from S/N=3. Geometric area of the enzyme electrodes: 1 

mm2. 

 

For all three types of enzyme electrodes, the amperometric responses increased as 

the glucose concentration was elevated, and the current approaches a saturation value at 
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high glucose concentrations (Figure 4.13). The saturated amperometric responses at 

high glucose concentrations suggest that the active sites of the enzyme units are 

saturated at these glucose levels. This is as expected for a system following Michaelis-

Menten kinetics for an enzyme-catalyzed reaction between two substrates. The 

apparent Michaelis-Menten constant (Km), which gives an indication of the enzyme-

substrate kinetics for the enzyme electrodes, can be calculated from the Eadie-Hofstee 

plot:4  

])S/[V(KVV mmax −=                                                                             (4.2) 

where V is the rate of the enzyme reaction at any concentration of glucose, Vmax is the 

maximum rate of the enzyme reaction under saturated substrate condition, and S is the 

bulk concentration of substrate. This equation can be used with amperometric biosensor 

data by substituting I and Imax (currents) for V and Vmax. The resulting Eadie-Hofstee 

plot is shown in Figure 4.14. 

All of three plots for GOx-modified SPCEs show a linear relationship that 

conforms to the Michaelis-Menten equation. In order to obtain the most accurate values 

of Km and Imax, nonlinear regression (
]S[K

]S[VV
m

max

+
= ) was used to calculate these values. 

Km and Imax values for the three types of GOx-modified SPCEs are summarized in 

Table 4.2. 
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Figure 4.14 Eadie-Hofstee plots for three types of GOx-modified SPCEs. Data are from 

Figure 4.13. 

  The Km values of all three enzyme electrodes are smaller than those obtained at 

enzyme electrodes by covalent immobilizing GOx on ω-carboxyl-terminated thiol-

modified Pt electrode surface (21-24 mM).227 The smaller Km values mean that the 

immobilized GOx possesses a higher affinity for glucose. The Km value for the GOx-

modified SPCEs prepared from C8/C10-COOH is smaller than those from C4/C10-

COOH and C6/C10-COOH, and the reason for this difference is unknown. It may result 

from the orientation and conformation of GOx molecules on the surface. 
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Table 4.2 Kinetic parameters for the three types of GOx-modified SPCEs. * 

GOx-modified SPCEs C4/C10-COOH C6/C10-COOH C8/C10-COOH 

Imax (nA)**          145 ± 3 129 ± 4 58 ± 2 

Km (mM)** 16.7 ± 0.7  18 ± 1 10.1 ± 0.8 

R2 ** 0.999 0.997 0.993 

*Calculated from data shown in Figure 4.13 using nonlinear regression method (Prism® (3.00)). 

**The results are expressed as the mean ± standard deviation. 

***R-squared, a measure for goodness of fit. 

 

Imax reflects the loading level of active GOx molecules on the electrode surfaces. 

Imax values for GOx-modified SPCEs prepared from C4/C10-COOH and C6/C10-

COOH, 145 and 129 nA, are very close to those obtained for glucose biosensors based 

on a ω-carboxyl-terminated thiol SAM surface (150 nA mm-2).225 The maximum 

current for GOx-modified SPCEs prepared from C8/C10-COOH was only 58 nA. The 

possible explanation for this low Imax is steric hindrance, since the chain length 

difference for these two components (C8 and C10-COOH) is smaller than for the other 

two systems (C4 and C10-COOH; C6 and C10-COOH).     

4.3.5 Stability 

The storage stability of the proposed GOx-modified electrodes was examined by 

measuring currents for 5.0 mM glucose every day and keeping the electrodes at 4 °C in 

0.1 M Tris buffer (pH 7.0) when not in use. The response currents were about 50% of 
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the original value after one week for GOx-modified SPCEs prepared from C4/C10-

COOH. The GOx-modified SPCEs prepared from C6/C10-COOH and C8/C10-COOH 

showed similar storage stabilities; the response currents for these sensors were about 

70% of the original value after one week. The proposed enzyme electrodes can 

therefore be used as short-term sensors. Figure 4.15 shows the response of the GOx-

modified SPCE prepared from C6/C10-COOH to 5.0 mM glucose during one week of 

storage.  

The operational stability of these enzyme electrodes was tested by determining 

5.0 mM glucose continuously; the electrodes lost only 8.1 % (enzyme electrodes 

prepared from C4/C10-COOH) and about 5.0% (enzyme electrodes prepared from 

C6/C10-COOH and C8/C10COOH) of the initial response after 10 continuous tests in 

which 2 min measurements at +0.45 V vs. Ag/AgCl were followed by rinsing. 

4.3.6 Effect of Oxygen 

Another factor that must be considered for all sensors based on oxidase enzymes is the 

possibility of interference by oxygen. Mediator-based sensors do not require oxygen to 

operate, and oxygen electroactivity is suppressed at monolayer-coated electrodes and at 

low applied potentials H2O2 is not detected. However, oxygen can diminish sensor 

response by consuming substrate via a non-current-producing pathway, namely the 

enzyme-catalyzed reaction between oxygen and substrate.228 Figure 4.16 shows glucose 

calibration curves for the C6/C10-COOH enzyme electrode in the absence and presence 

of oxygen. As shown in Figure 4.16, some interference from oxygen was observed, 

since a current decrease occurred in the presence of oxygen. 
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Figure 4.15 Current response of the GOx-modified SPCEs prepared from C6/COOH 

(10% C10-COOH in the assembling solution) to 5.0 mM glucose in 0.1 M Tris buffer (pH 7.0) 

containing 0.2 mM FCA as a function of the storage days. (n=3) 

4.3.7 The Response of the Electrochemical Array to Glucose 

Since the applied potential may have different effects on GOx-modified SPCEs used in 

a conventional three-electrode configuration and the proposed electrochemical array 

(two electrode system, described in Chapter 2), the enzyme electrodes in these two 

systems were investigated in 0.1 M Tris buffer (pH 7.0) containing 0.2 mM FCA using 

CV. Results are shown in Figure 4.17.  
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Figure 4.16 Effect of oxygen on the amperometric responses of GOx-modified SPCEs 

prepared from mixed monolayers of C6/C10-COOH (10% C10-COOH in the solution) (a) no 

O2 present, (b) O2 present. (n=3). 
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Figure 4.17 Cyclic voltammograms of 0.1 M Tris buffer (pH 7.0) containing 0.2 mM 

FCA on a GOx-modified SPCE used in (a) a conventional three-electrode configuration and (b) 

the proposed electrochemical array. Scan rate 2 mV/s. The GOx-modified SPCE was prepared 

from a mixed monolayer composed of C6/COOH (10% C10-COOH in the assembling solution).
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As shown in Figure 4.17, the anodic peak potential in the conventional three- 

electrode configuration is about +0.38 V, while in the electrochemical array it is about 

+0.30 V. The anodic peak potential shifted negative by about 0.08 V in the array. 

Therefore, the applied potential for amperometric measurements in the electrochemical 

array was chosen as +0.37 V (+0.45 V was used with the conventional three electrode 

system). The difference is likely a result of the potential of the Ag/AgCl reference 

electrodes used in the array, since the Cl- concentration in 0.1 M Tris buffer (pH 7.0) is 

about 0.09 M, compared with the value of 3 M (NaCl) in the commercial Ag/AgCl 

reference electrodes. 

The amperometric responses of the electrochemical array to glucose at +0.37 V 

were used to create calibration curves and results are shown in Figure 4.18. The 

sensitivity obtained with the electrochemical array is 4.7 nA mM-1 with a detection 

limit of 0.8 mM (S/N=3). These values are very close to the values of 4.6 nA mM-1 and 

0.6 mM obtained with the conventional three-electrode system (Table 4.1). 
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Figure 4.18 Calibration curves for the electrochemical array. The GOx-modified SPCE 

was prepared from a mixed monolayer composed of C6/C10-COOH (10% C10-COOH in the 

assembling solution). (n=4) 

4.4 CONCLUSIONS 

The application of functionalized binary monolayers electrochemically prepared from 

Bunte salts to amperometric glucose biosensors based on GOx was investigated in this 

chapter. These monolayers allow two-dimensional reaction matrices to be created, and 

this confines the biochemical reaction to the modified electrode surface. Therefore, 

problems associated with diffusion through a three-dimensional reaction layer, namely 

irreproducibility and poor response time, are overcome, provided the monolayer-

enzyme layer, and other processing steps, can be prepared in a reproducible manner. 

The results of our study reveal GOx (used as a model enzyme) can effectively 

and reproducibly be immobilized onto binary monolayers using a carbodiimide 
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coupling agent. The sensitivities of the resulting biosensors can be tuned by adjusting 

the composition of the monolayers. Optimized conditions for the fabrication and 

operation of the biosensor have been determined. It is anticipated that this 

immobilization method will be suitable for the development of other biosensors. 
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Chapter 5: Competitive Enzyme Immunosensor for Biotin 

Based on Electrodeposition of Bunte Salts  

5.1 INTRODUCTION 

During the past few years, immunosensors have attracted growing attention due to their 

main advantages over alternative methods with respect to high sensitivity, selectivity 

and robustness.229 The extremely high selectivities and affinities of antibody molecules 

for their corresponding antigens have been widely exploited for analytical purposes in 

various fields (environment analysis,230-232 clinical diagnostics233 and the food and 

drink industries234), mainly as radio-immunoassays (RIAs) or ELISAs. However, these 

techniques require highly qualified personnel, long assay times, and often require 

sophisticated instrumentation. Thus, a wide range of immunosensors combining a 

classic ELISA format with amperometric, photometric, chromatographic and other 

detection methods has been investigated.17, 235 Of these, optical transduction methods 

are the most developed in terms of commercial applications.236 Electrochemical 

detection methods for immunoreactions have not yet been studied as much; however, 

amperometric methods appear very promising due to their main advantages of 

relatively high sensitivity, simplicity, low instrument cost and small instrument   

size.237, 238 In addition, and distinct from optical detection requirements, the tested 

samples do not need to be transparent. Therefore, electrochemical detection-based 

immunosensors are well-suited to clinical and environmental testing where cost and 

instrument portability are of major concerns, and the samples are often opaque or 

intensely colored. 
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Within the existing formats of immunosensors, the heterogeneous competitive 

type (in which either the antigen or the antibody is immobilized onto a support) is the 

most common and attractive for the determination of small molecules, allowing 

determination of analytes in the ppb- or in some cases even in the ppt- range when 

enzyme labels are used. Figure 5.1(a) illustrates the principles of competitive enzyme 

immunosensors. Enzyme-labeled antigen competes with free antigen (the analyte) for a 

fixed, insufficient quantity of immobilized antibody binding sites. Unbound free 

antigen and enzyme-labeled antigen are then rinsed from the support. The amount of 

bound enzyme-labeled antigen, which is inversely related to the concentration of free 

antigen, is determined by the supply of suitable enzyme substrates, and results in the 

type of calibration curve shown in Figure 5.1(b).  

The avidin-biotin system has been effectively employed as a convenient model 

for antibody-antigen systems to demonstrate potential immunoassay formats.233, 239 It 

has also been used as a convenient immobilization system, with surface-bound avidin 

capturing dissolved biotinylated molecules.233, 240 Avidin obtained from egg white has a 

molecular weight of 67 kDa, is a basic tetrametric glycoprotein and has four binding 

sites for biotin (vitamin H). Biotin is a small molecule (244.31 Da) and functions as a 

cofactor for many carboxylase enzymes which control the transfer reactions of carbonic 

acid, and it is related to the metabolism of carbon dioxide.241 The basis for the use of 

the avidin-biotin system as a model for immunochemical reactions is the specificity and 

the exceptionally high affinity (Ka=1015 M-1) between biotin and avidin (or its bacterial 

analogue streptavidin from Streptomyces avidinii) and the consequent stability of this 

noncovalent interaction.242 The interaction between avidin and biotin is so strong  
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Figure 5.1 Competitive enzyme immunosensor.4 Ab, antibody; Ag, antigen; E, enzyme; S, 

substrate; P: product.  

that even biotin coupled to proteins is bound by avidin.243 In addition, biotin is a small 

molecule and biotinylation does not usually alter the properties of the labeled molecules, 

e.g., enzymatic catalysis or antibody binding. Excellent sensitivity can be achieved with 

the avidin-biotin system because of the four biotin-binding sites of avidin and the 

possibility of multiple biotinyl groups on derivatized antibodies or antigens.  In many 

cases, the signal is enhanced 10-fold or more by the system.244, 245   
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Many immunosensors based on the avidin-biotin system have been reported. A 

direct and indirect competitive biotin assay was reported in literature.246 In this study, 

avidin was immobilized on an indium tin oxide electrode. In the competitive format, 

unlabeled biotin (analyte) and electroactive compound-labeled biotin (biotin was 

labeled with ruthenium tris(2,2'-bipyridine)) competed for limited avidin binding sites 

on electrodes. A detection limit of 1 ng/mL biotin was obtained, which is close to the 

sensitivity of some enzyme-labeled amperometric biosensors. 

Wright247 described a ‘homogeneous’ format enzyme channeling specific binding 

assay for biotin. The procedure involved the immobilization of avidin onto the surface 

of SPEs in which the carbon-based ink contained HRP. Competitive binding occurred 

between free biotin and glucose oxidase-labeled biotin for the limited number of 

immobilized avidin binding sites. Upon addition of glucose, the GOx label produced 

H2O2 that was detected at the underlying HRP carbon electrode. The assay showed 

greatest sensitivity over the biotin concentration range 0.07 to 2 μg/ mL. 

A disposable competitive enzyme immunosensor based on a SPCE and the 

avidin-biotin system for the detection of rabbit IgG has been reported.248 HRP and 

streptavidin were covalently bonded to a conducting polymer bearing carboxylic acid 

groups on the electrode, and biotinylated antibody was subsequently immobilized on 

the electrode surface using avidin-biotin coupling. This sensor was based on the 

competitive assay between free and labeled antigen rabbit IgG for the available binding 

sites of antibody anti-rabbit IgG. GOx was used as a label and in the presence of 

glucose, H2O2 formed by the enzymatic reaction was reduced by enzyme channeling 

via HRP bound to the electrode. The catalytic current was monitored amperometrically 
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at -0.35 V vs. Ag/AgCl and this method showed a linear range of rabbit IgG 

concentration up to 2 μg/mL with a detection limit of 0.33 μg/mL. 

Like other types of biosensors, one of the most crucial steps for the successful 

construction of immunosensors is the appropriate and reproducible coupling of the 

biocomponent to the surface of the transducer. In this chapter, the application of mixed 

monolayers to biocomponent immobilization in a model immunosensor was 

investigated. The mixed monolayer was formed electrochemically from Bunte salts and 

was composed of a mixture of a long carboxylic acid functionalized derivative (C10-

COOH) with a short methyl functionalized derivative (C6). The long chain component 

(C10-COOH) provides binding sites, and the short chain component allows electron 

transfer to the underlying gold layer. Avidin was covalently immobilized on electrodes 

through the carboxyl groups of the mixed monolayers using a carbodiimide coupling 

agent. The immunosensor was applied to the amperometric determination of biotin 

(model analyte) using competitive binding with lactoperoxidase-labeled biotin (B-

LPOD). Benzoquinone was chosen as a mediator to shuttle electrons between the 

lactoperoxidase and the electrode. The experimental parameters affecting the response 

of the immunosensor were optimized. 

5.2  EXPERIMENTAL SECTION 

5.2.1 Materials and Instrumentation 

Avidin (egg white), D-biotin, benzoquinone and B-LPOD (35 units/mg) were 

purchased from Sigma. 30% H2O2 was obtained from EM Science. 
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An EG & G Potentiostat/Galvanostat, and a CHI650A Potentiostat were 

employed. Bioanalytical Systems supplied Ag/AgCl (3 M NaCl) reference electrodes. 

5.2.2 Methods 

5.2.2.1 Preparation of Avidin-Modified Electrodes 

Binary monolayers (C6/C10-COOH with 10% C10-COOH in the assembling solution) 

were electrochemically formed by the method described in Chapter 3. The terminal 

carboxylic groups of monolayers were activated by immersion in 0.05 M phosphate 

buffer (pH 7.0) containing 2 mM EDC hydrochloride and 5 mM NHS for 1 h at room 

temperature. After the activation, the electrodes were rinsed with phosphate buffer and 

immediately placed in 0.05 M phosphate buffer (pH 8.5) containing 1/mg mL avidin 

overnight at 4 °C. By this procedure, avidin was immobilized on the mixed monolayer 

through the formation of covalent bonds with carboxyl terminal groups of the mixed 

monolayer. The avidin-modified electrodes were rinsed with water and used 

immediately. 

Control electrodes were prepared by the same procedure described above except 

that no activation step of –COOH with EDC hydrochloride and NHS, and 0.05 M 

phosphate buffer (pH 8.5) without avidin was used to incubate with activated mixed 

monolayer-modified electrodes at 4 °C overnight. Control experiments were performed 

to investigate the influence of nonspecific adsorption of B-LPOD on mixed monolayer-

coated electrodes.  
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5.2.2.2 Cyclic Voltammetry 

Modified electrodes were incubated in 0.05 M phosphate buffer (pH 7.0) containing 

200 µg/mL B-LPOD for 40 min at room temperature. They were then characterized 

with respect to their applicability for the determination of bound B-LPOD activity by 

CV in 0.1 M Tris buffer (pH 7.0) containing 500 μM H2O2 and 0.2 mM benzoquine at a 

scan rate of 2 mV/s. These experiments were carried out in a conventional three-

electrode configuration, with the resulting electrode (geometric area 1.0 mm2) as the 

working electrode, a platinum wire as the auxiliary electrode, and Ag/AgCl (3 M NaCl) 

as the reference electrode. 

In order to investigate the effect of applied potential on the resulting electrodes in 

a conventional three-electrode system and the proposed electrochemical array (two-

electrode system, described in Chapter 2), CV experiments were also carried out in 

these two systems. An avidin-modified, monolayer-coated, gold-modified SPCE that 

had been incubated with B-LPOD was used as the working electrode in both systems. 

The home-made Ag/AgCl electrodes served as the counter electrode in the array. 

5.2.2.3 Biotin Immunosensor 

Biotin was determined using the competitive approach, i.e. free biotin competed with 

the B-LPOD for the limited avidin binding sites on the electrodes.  

B-LPOD was mixed with free biotin standard solutions, and final concentration 

was over the range 0-200 μg/mL in 0.05 M phosphate buffer (pH 7.0). Avidin-modified 

electrodes were incubated in these solutions at room temperature. The unbound biotin 
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and B-LPOD were then removed by washing with water. The activity of the bound B-

LPOD was measured using the amperometric technique with H2O2 as the substrate.  

 The experimental parameters affecting the response of the assay, such as applied 

potential, concentration of the mediator, concentration of H2O2, incubation time and B-

LPOD concentration, were optimized. Optimization was carried out in a conventional 

three-electrode cell, with a modified SPCE (geometric area 1.0 mm2) as the working 

electrode, a platinum wire as the auxiliary electrode, and Ag/AgCl (3 M NaCl) as the 

reference electrode. 

The response of the proposed electrochemical array to biotin was also 

investigated. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Electrochemical Characterization of the Immunosensor Using CV 

The detection principle of the proposed assay is shown in Figure 5.2. 
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Figure 5.2 Detection principle for the proposed immunosensor for biotin: Av, avidin; B: 

biotin; B-LPOD, lactoperoxidase-labeled biotin; Q: benzoquinone; H2Q: hydroquinone. 

The applicability of the avidin-modified electrode to the electrochemical 

determination of bound B-LPOD activity is shown Figure 5.3. A large catalytic wave 

appeared at negative applied potentials with an obvious increase in the reduction 

current in the presence of benzoquinone and H2O2 (Figure 5.3(c)), which demonstrates 

that benzoquinone can shuttle electrons from the redox center of bound B-LPOD to the 

electrode. Therefore, benzoquinone can be used as a mediator for determination of the 

activity of bound B-LPOD. 

Both benzoquinone and hydrogen peroxide can be reduced electrochemically. 

The cyclic voltammogram of the B-LPOD-modified electrode in blank 0.1 M Tris 

buffer pH 7.0 (data not shown) is very similar to that of the electrode in the presence of 

500 µM H2O2 (Figure 5.3(a)). Therefore, no interference from H2O2 was observed 

within this potential range. Benzoquinone is selectively reduced even in the presence of 

an excess of hydrogen peroxide. 
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Figure 5.3 Cyclic voltammograms of avidin-modified electrodes after incubation with 

200 μg/mL B-LPOD for 40 min in 0.1 M Tris buffer (pH 7.0) containing (a) 500 μM H2O2, (b) 

0.2 mM benzoquinone, (c) 500 μM H2O2 and 0.2 mM benzoquinone. Scan rate 2 mV/s. 

5.3.2 Amperometric Measurement of Bound B-LPOD Activity 

Optimization was done with the avidin-modified electrode after incubation with 200 

μg/mL B-LPOD solution for 40 min (the concentration of free biotin was set at zero in 

this study). The activity of the bound B-LPOD was measured using amperometry. The 

parameters affecting the response of the amperometric sensor (applied potential and the 

concentration of benzoquinone) were optimized. 

5.3.2.1 Effect of Applied Potential 

A hydrogen peroxide-dependent current is only realized when the electrode is poised 

sufficiently negative with regard to the formal potential for benzoquinone to generate 
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the reduced form hydroquinone, which reacts with H2O2 catalyzed by B-LPOD to 

regenerate benzoquinone as shown in Figure 5.2. The effect of the applied potential on 

the immunosensor response was investigated over the potential range of -0.05 to -0.3 V. 

The experiments were performed in 0.1 M Tris buffer (pH 7.0) containing 500 µM 

H2O2 and 0.2 mM benzoquinone. As shown in Figure 5.4, the response of the 

immunosensor started at -0.1 V and increased steadily as the applied potential was 

decreased from -0.1 to -0.3 V since benzoquinone is easily reduced at more negative 

potentials. Although the more negative potential results in higher immunosensor 

response, it may also result in increased interference from the reduction of other 

electroactive species in the sample. The electrode potential was selected as -0.25 V vs. 

Ag/AgCl for all subsequent experiments, because at this potential substantial 

electrocatalytic current was obtained.  
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Figure 5.4 Effect of applied potential at B-LPOD-modified electrode to 500 μM H2O2 in 

0.1 M Tris buffer (pH 7.0) containing 0.2 mM benzoquinone. (n=3)  

5.3.2.2 Effect of Concentration of Mediator 

The effect of benzoquinone concentration on the avidin-modified electrode response 

after incubation with 200 μg/mL B-LPOD for 40 min was also studied in the presence 

of 500 μM H2O2 in 0.1 M Tris buffer (pH 7.0) (Figure 5.5). The response of the B-

LPOD-coated electrode increased sharply with the increase of the concentration of 

benzoquinone from 0.05 to 0.2 mM and then leveled off. Such behaviour is typical of a 

mediator-based sensor.221 At low mediator concentration, the current response is 

limited by enzyme-mediator kinetics. When the mediator concentration is high, the 

current response is limited by enzyme-substrate kinetics. However, a higher 

concentration of benzoquinone produced a higher background current. Thus, the 

concentration of benzoquinone was fixed at 0.2 mM for all further experiments. 
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Figure 5.5 Effect of concentration of benzoquinone to 500 μM H2O2 in 0.1 M Tris 

buffer (pH 7.0). Potential was held at -0.25 V vs. Ag/AgCl (n=3) 

5.3.2.3 Calibration Curve for H2O2 

Figure 5.6 displays the amperometric current response of the immunosensor for various 

concentrations of H2O2 under the optimized experimental conditions. It can be seen that 

an increase in H2O2 concentration is accompanied by an increase in reduction currents 

obtained at a constant applied potential of -0.25 V. The steady-state current is obtained 

within 2 min. The background-subtracted currents at different concentrations of H2O2 at 

2 min were used to create calibration curves. Background current was obtained in 0.1 

M Tris buffer (pH 7.0) containing 0.2 mM benzoquinone. Figure 5.7 illustrates the 

calibration plot for the immunosensor as a function of H2O2 concentration.  
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Figure 5.6 Amperometric response of the avidin-modified electrodes after incubation 

with 200 μg/mL B-LPOD for 40 min toward H2O2. (a) 0.1 M Tris buffer pH 7.0 containing 0.2 

mM benzoquinone; (b) (a) + 62.5 μM H2O2; (c) (a) + 500 μM H2O2. 

As can be seen in Figure 5.7, the current reaches a plateau at a H2O2 

concentration around 750 μM. At 500 μM H2O2 concentration, the current is close to its 

maximum, suggesting saturation with H2O2. Therefore, the concentration of H2O2 was 

set at 500 μM for all the subsequent experiments. 
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Figure 5.7 Calibration curve for the avidin-modified electrodes after incubation with 200 

μg/mL B-LPOD toward H2O2. (n=3) 

5.3.3 Biotin Immunosensor 

5.3.3.1 Optimization of Analytical Conditions 

The strategy for the competitive ELISA method for the determination of biotin 

concentration is based on competition between B-LPOD (in excess) and free biotin in 

solution. The activity of bound B-LPOD is assayed and correlated with biotin 

concentration. Accurate measurement of biotin concentration depends on the 

optimization of incubation time and B-LPOD concentration for the competition 

reaction.  

The influence of incubation time (when the avidin-biotin reaction occurs) on 

response signal is shown in Figure 5.8. Avidin-modified electrodes were incubated with 
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200 μg/mL B-LPOD to study this effect. As shown in Figure 5.8, the current increased 

with incubation time rapidly up to 40 min and after that the variation slowed, 

suggesting that the reaction was complete at about 40 min. Therefore, 40 min was 

chosen for the subsequent study to evaluate the analytical performance of the 

immunosensor. 
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Figure 5.8 Effect of B-LPOD incubation time. Amperometric experiments were carried 

out in 0.1 M Tris buffer (pH 7.0) containing 0.2 mM benzoquinone and 500 µM H2O2. (n=3) 

The concentration of B-LPOD conjugate was optimized in the absence of free 

biotin, because the response of the immunosensor depends on the concentration of 

conjugate bound to the surface of the sensor, which in turn is related to the 

concentration of conjugate and free biotin in the incubation solution. The results are 

shown in Figure 5.9. At around 75 μg/mL B-LPOD, the current reaches a plateau. At 
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50 μg/mL B-LPOD, the current is close to its maximum, suggesting saturation of all the 

available avidin binding sites. Therefore, 50 μg/mL of B-LPOD was chosen for all 

further competitive reactions. 
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Figure 5.9 Effect of concentration of B-LPOD on the response of the immunosensor. 

(n=3) 

5.3.3.2 Immunosensor Response to Biotin 

The performance of the proposed immunsensor was evaluated for biotin quantitation. 

The incubation solution contained a fixed amount of B-LPOD (50 μg/mL) and various 

concentrations of free biotin. Results under the optimal conditions described above are 

shown in Figure 5.10 and Figure 5.11.  
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Figure 5.10 Response of the immunosensor to biotin using the optimized parameters. 

(n=3) 

As shown in Figure 5.10, the response of the immunosensor decreases as the 

concentration of free biotin in solution is increased, and this is attributed to the 

competition between free biotin and B-LPOD for limited avidin binding sites on the 

electrode. The higher the concentration of free biotin present in solution, the lower is 

the amount of B-LPOD immobilized on the electrode surface. The maximum current 

represents zero concentration of free biotin.  
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Figure 5.11 Calibration plot for the biotin sensor (data from Figure 5.10). 

The immunosensor showed good linearity for biotin concentrations up to 3.125 

μg/mL (R2=0.970, Figure 5.11). The detection limit is 0.02 μg/mL (S/N=3). Each point 

shown in Figure 5.10 and Figure 5.11 represents the mean of three measurements using 

a new avidin-modified electrode, and R.S.D. was less than 12%. 

5.3.3.3 Nonspecific Binding 

Nonspecific binding of B-LPOD may interfere with specific competition between B-

LPOD and free biotin for avidin sites on the electrode. The amperometric response of 

control electrodes (without immobilization of avidin), after incubation with 50 μg/mL 

B-LPOD for 40 min at room temperature, was measured in the presence of 500 μM 

H2O2 and 0.2 mM benzoquinone. These experiments were designed to demonstrate the 

maximum level of nonspecific binding of the enzyme conjugate (B-LPOD) to 
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monolayer-modified electrodes. The current values were about 5.6% of the signal from 

avidin-modified electrodes. Thus nonspecific binding of B-LPOD to the monolayer-

modified electrode is low enough to be considered insignificant. 

5.3.4 The Response of the Electrochemical Array to Biotin 

Figure 5.12 shows cyclic voltammograms of 0.2 mM benzoquinone in a conventional 

three-electrode system and in the proposed electrochemical array. In both systems, the 

working electrode is a gold-modified SPCE (geometric area 1.0 mm2). A platinum wire 

and Ag/AgCl (3 M NaCl) were used as the auxiliary electrode and reference electrode 

in the three-electrode system; the home-made Ag/AgCl modified SPCE served as the 

counter electrode in the array. 

As shown in Figure 5.12, the reduction peak potential in the conventional three-

electrode configuration is about -0.12 V, while in the electrochemical array it is -0.2 V. 

The reduction peak shifted toward negative potential by about 0.08 V in the array. 

Therefore, the applied potential for amperometric measurements in the electrochemical 

array was chosen as -0.33 V (-0.25 V was used in the conventional three-electrode 

system). The amperometric response of the electrochemical array to biotin at -0.33 V is 

shown in Figure 5.13 and Figure 5.14. The results are very similar to those obtained in 

the three-electrode system. The array shows good linearity with biotin concentration up 

to 3.125 μg/mL (R2=0.985). The detection limit is 0.02 μg/mL (corresponding to a 

molar concentration of 0.08 µM, S/N=3). This detection limit can be compared to 

values of 0.07 and 0.33 µg/mL obtained by other groups using the avidin-biotin 

reaction as a model for immunosensor development.247, 248 The detection limit in the 



nano-range was obtained using alkaline phosphatase as a label and amperometric 

transduction (1 nM).18 

  

-0.4-0.20.00.20.40.60.8
-0.5

0.0

0.5

1.0

1.5
a
b

Potential /V

C
ur

re
nt

 /μ
A

 

Figure 5.12 Cyclic voltammograms of 0.1 M Tris buffer (pH 7.0) containing 0.2 mM 

benzoquinone on a SPCE employed in (a) conventional three electrode configuration (b) the 

electrochemical array. Scan rate 100 mV/s. 
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Figure 5.13 Response of the electrochemical array to biotin. (n=4) 
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Figure 5.14 Calibration plot for biotin with the electrochemical array (data from Figure 

5.13). 
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5.4 CONCLUSIONS 

The application of the newly developed mixed-monolayer immobilization technique to 

a model immunosensor has been investigated in this chapter. The model immunosensor 

is based on the avidin-biotin system. Avidin was covalently immobilized on the surface 

of electrodes through the terminal carboxyl groups contained in the mixed monolayer. 

The model immunosensor shows good linearity for biotin up to 3.125 μg/mL (12.8  µM) 

with a detection limit of 0.02 μg/mL (0.08 µM, S/N=3) and R.S.D. less than 12%. This 

detection limit is comparable to those achieved using other reported enzyme-labeled 

electrochemical immunoassays.19, 47, 249 



138 

Chapter 6: Summary and Suggestions for Further Research 

The development of screen-printing technology has enabled easy production of very 

flexible configurations for electrode-array devices. One of the crucial problems for the 

successful fabrication of biosensors is the immobilization of biomolecules. SAMs, 

especially functionalized monolayers, have been applied to the immobilization of 

biological components. Bunte salts provide a potential alternative to the use of 

alkanethiols for forming SAMs. Electrochemical-assembly of Bunte salts is 

advantageous over chemisorption of thiols in terms of selectivity, preparation 

procedure, formation speed and the coverage control it provides. Among these 

advantages, the most promising is that it allows the selective deposition of films on 

structures of arbitrary shape or location, such as within a fluidic microchannel. 

In this work, an individually addressable electrochemical array was designed and 

fabricated based on screen-printing. The electrodes were screen-printed with carbon-

based ink, and then were modified by gold electrodeposition or silver electrodeposition, 

and converted into Ag/AgCl electrodes. The home-made Ag/AgCl counter electrodes 

showed good storage stability. Results from SEM and XPS indicated that the surface of 

SPCEs was not complete covered by gold, and there were carbon particles exposed on 

the surface. The reproducibility of the electrochemical array was evaluated by CV, and 

R.S.D. values were found to be below 9.0% for electrode-to-electrode variability on the 

same array and different arrays. Simultaneous multichannel measurements are feasible 

since no chemical cross-talk was observed between adjacent sensing elements on the 

array. 
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The immobilization of biomolecules onto surfaces of electrically-conducting 

materials is an active area of research useful for a range of applications involving the 

construction of electrochemical biosensors. A general methodology that is currently 

being utilized for this purpose is the self-assembly of various functional groups onto 

specific surfaces. In this work, single- and binary-component monolayers formed 

electrochemically from Bunte salts were investigated. Results showed that stable 

single- and binary-component monolayers were formed with this method, and the 

degree of completeness of monolayers could be controlled by adjusting the time for 

oxidation of Bunte salts. The double layer capacitance for a single-component 

monolayer decreased as the alkyl chain length of the Bunte salt was increased. 

Incorporation of –COOH functional groups caused a relatively large capacitance, which 

was attributed to the less ordered monolayers resulting from –COOH groups. 

The composition of mixed monolayers could be controlled by adjusting the 

composition of the assembling solution. The permeability of mixed monolayers 

towards K3Fe(CN)6 and FCA was different. FCA molecules were less blocked by 

mixed monolayers. This phenomenon may result from the difference in the nature of 

interactions between the probe molecules and the short chain adsorbates in the 

monolayers. In addition, the access of FCA to the gold electrode surface could be tuned 

to some extent by varying the relative concentrations of the two Bunte salts in the 

assembly solution, which offers the prospect of developing highly sensitive and 

selective electrochemical sensors for organic and biological samples.  

Monolayers can be characterized by a wide variety of methods. In this project, 

only electrochemical methods were used. However, direct information about the 
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structure and composition of the monolayers is not available from electrochemical 

methods. I suggest that the single- and binary-component monolayers obtained from 

Bunte salts be further characterized by other methods, such as AFM, STM, 

ellipsometry, IR spectroscopy and XPS. 

 Electrochemical-assembly of monolayers from Bunte salts has not yet been 

reported for the immobilization of biomolecules. Original research reported in this 

thesis involved the application of this method to an enzyme biosensor and a model 

immunosensor.  

GOx was chosen as a model enzyme since it has been well studied and is 

important for the detection of glucose. A functionalized binary monolayer was designed 

using a mixture of a long, carboxylic acid functionalized derivative (C10-COOH), and 

a shorter methyl functionalized derivative (C4, C6, or C8). The long chain component 

provides binding sites for the enzyme, and the short chain component allows electron 

transfer to the underlying gold layer. GOx molecules were covalently immobilized onto 

the carboxyl-terminated monolayers using EDC and NHS. FCA was chosen as a 

mediator. The resulting enzyme electrodes under optimized fabrication and operation 

conditions showed a linear range up to 10 mM glucose with a sensitivity of 4.6           

nA mM-1 (in the conventional three-electrode system) and 4.7 nA mM-1 (in the 

electrochemical array). The detection limits for glucose in these two systems were 0.6 

and 0.8 mM, respectively. Km obtained under the optimized conditions was 18 mM. 

In this application, the selectivity of the resulting glucose biosensor was not 

investigated. I suggest that this glucose biosensor be further developed to examine real 
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samples. The storage stability of the glucose biosensor needs to be improved if it is to 

be employed as a long-term sensor. Cross-linking GOx molecules immobilized on the 

electrode surface may improve the stability with loss of some GOx activity. 

The application of the new immobilization method to a model immunosensor was 

also studied. A competitive enzyme immunosensor based on avidin-biotin was 

designed. The immobilization of avidin was achieved by covalent attachment to 

carboxyl-terminated mixed monolayers on the electrodes using EDC and NHS. Biotin 

was determined using the competitive approach, i.e. free biotin competed with the B-

LPOD for limited avidin binding sites on the electrodes. The model immunosensor 

showed good linearity with biotin concentrations up to 3.125 μg/mL with a detection 

limit of 0.02 μg/mL (S/N=3) and R.S.D. less than 12%. These values are comparable to 

other reported enzyme-labeled electrochemical immunosensors.  

   The format of the model immunosensor can be employed for the detection of 

other analytes (antigens). Biotinylated antibody can be immobilized onto electrode 

surfaces using avidin-biotin coupling. Free antigen and labeled antigen would compete 

for the limited binding sites of avidin. 

In addition, the avidin-biotin system can be employed for the immobilization of 

other biological components. Excellent sensitivities and low detection limits are 

expected because of the four biotin-binding sites of avidin. If biotinylated GOx were 

immobilized on avidin-modified electrodes, the resulting electrodes could be used for 

the detection of glucose. Since biotinylation does not usually alter the properties of 

biomolecules, in principle, any enzyme could be immobilized on avidin-modified 
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electrodes. Therefore, the immobilization method based on electrochemical-assembly 

of Bunte salts and avidin-biotin system is very promising. 

   In summary, electrochemical-assembly of Bunte salts provides a platform for 

immobilizing biological components. On the basis of the simplicity of the fabrication of 

functionalized monolayers by this method, the potential application of this method to 

biosensors is believed to be wide. 
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