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Abstract

In recent years, hardware-in-the-loop (HIL) simulation has assumed a prominent role
in the vehicle development process. A physical part, which may be a prototype at any
stage of development, is tested, while the rest of the vehicle is represented by a mathemat-
ical model. Vehicle models used with hardware-in-the-loop must be capable of simulating
an event in less time than it takes the event to occur in reality. Fast simulation necessi-
tates a model that is represented by very efficient simulation code. This thesis presents
a procedure for automatically generating this simulation code, given a description of the
vehicle as input.

For this work, a symbolic formulation procedure based on linear graph theory and
the principle of orthogonality is used to generate governing equations for vehicle systems;
this procedure forms the basis of the DynaFlexPro software package. In order to generate
simulation code for vehicle dynamics studies, the DynaFlexPro component model tem-
plate was extended to include rules for calculating intermediate variables and rules for
calling external functions. These changes enabled the development of a tire component
model, known as DynaFlexPro/Tire, that adds critically important (and computationally
efficient) blocks to the overall vehicle simulation code. The combination of DynaFlexPro
and DynaFlexPro/Tire allows analysts to construct a model for any vehicle topology and
gives analysts great freedom to define how tire forces and moments will be calculated.
Simulation code describing the vehicle model is automatically generated using symbolic
computing techniques. The accuracy of the approach was validated by comparing re-
sults for DynaFlexPro vehicle models to results for equivalent models developed in a
well-established tool for vehicle dynamics simulation (MSC.ADAMS).

Two different vehicle models were constructed using DynaFlexPro and DynaFlex-
Pro/Tire: a generic 4-wheeled vehicle with independent suspension and an articulated
forestry skidder. Both models had an open-loop topology. When appropriate modeling
variables were selected, each model was described by a minimal set of ordinary differen-
tial equations (ODEs) and the simulation code generated by DynaFlexPro was capable
of being used for hardware-in-the-loop applications; the braking and handling behavior
of the example models was simulated faster than real-time on a desktop PC with a 3.2
GHz Pentium 4 processor and 1 GB of RAM. For the same vehicle models, a different
choice of modeling variables resulted in a mixed set of differential and algebraic equations
(DAEs); in that case, HIL-capable simulation code could not be consistently generated.
The approach works well for vehicle models described by ODEs, but more research is
needed into the treatment of DAEs for real-time simulation of vehicle dynamics.
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Chapter 1

Introduction

1.1 Background

Simulation has assumed a central role in modern product design and development. Design
changes can be evaluated with a computer model in a fraction of the time it would take
to construct, instrument, and test a physical prototype. The material and labor costs
associated with computer models are usually much lower than the costs associated with
physical testing.

The job of simulating an engineering system consists of three steps:

1. create an idealized model of the system

2. generate equations that describe the idealized model

3. solve the equations numerically

The first step is arguably the most important. It requires application of engineering
judgment to determine which characteristics of the system are important and which can
be neglected [41]. The important characteristics must then be represented using idealized
elements such as rigid bodies, massless springs, resistors, capacitors, etc.

The second step is the primary interest of this work. It involves the formulation of
differential and algebraic equations that describe the behavior of the idealized model, and
the arrangement of these equations in a form that can be easily and efficiently solved.

The numerical results obtained in step 3 could refer to an equilibrium solution, modal
analysis, or time-domain simulation. For mechanical systems, forward dynamics simu-
lation involves numerically integrating the governing equations to obtain the motion of
the system at discrete instances in time. Inverse dynamics simulation involves solving for
the forces and moments necessary to cause a prescribed motion. In this thesis, the term
simulation will refer to forward dynamics simulation.

One measure of the effectivenesses of a model concerns how quickly the system be-
havior can be simulated. In situations where the virtual model interacts with people or
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physical parts, results must be provided faster than real-time. That is to say, an event
must be simulated in less time than it takes the event to occur in reality. There are a
host of interesting applications for real-time simulations, particularly in the automotive
industry.

Modern vehicles have many features that require an intelligent control strategy, in-
cluding traction control, anti-lock brakes, electronic stability programs, and active sus-
pensions. Auto manufacturers must ensure high quality standards by testing the elec-
tronic control units (ECUs) before they are used in production cars. Vehicle dynamics
controllers typically operate in safety-critical conditions, at the limits of braking and cor-
nering performance, which are difficult to reproduce during driving tests. Physical tests
can be dangerous for test drivers and may destroy prototype vehicles. Hardware-in-the-
loop (HIL) testing, in which a physical ECU is married to a simulated vehicle, has become
indispensable for the development of modern vehicle dynamics controllers [12, 48].

Real-time simulations may also be performed by the controller itself, in order to define
the control logic. The dynamics of the vehicle system are non-linear, and traditional
proportional-integral-differential (PID) control schemes can only be optimized for vehicle
states close to certain reference states. On the other hand, model-based control can be
robust over a range of states, including safety-critical situations [1].

Vehicle models are used in driving simulators, which have both hardware and humans
in-the-loop. Driving simulators may be used to investigate the behavior of human drivers
under simulated conditions and to perform human factors research [22]. They are also
useful as a virtual proving ground, where the ride and handling of modeled vehicles can be
evaluated. In this case, the driving simulator is equipped with a force-feedback steering
wheel and actuators that move the simulator platform in order to allow the driver to
experience and evaluate the “feel” of driving the actual vehicle [22, 50].

Commercial software packages exist that are specifically designed for real-time sim-
ulation of vehicle dynamics. These packages are based on hard-coded equations that
describe a generic vehicle model. Analysts can specify model parameters — numeric val-
ues for lengths, masses, spring stiffnesses, etc. — but cannot change the equations in
which these parameters are used. If an analyst wishes to specify the topology — the way
components are connected to each other — for his vehicle model, he must use a more gen-
eral multibody dynamics tool to formulate equations that describe his unique topology.
The equations can be formulated numerically or symbolically.

Numeric formulations create matrix structures that describe the dynamics of the sys-
tem at a given instant in time [6, 17]. Since the numerical matrices are only valid for
a given instant, they must be reformulated at every time step during the simulation.
MSC.ADAMS R© and Altair MotionSolve R© are popular, commercially available programs
for modeling and simulating multibody systems based on numeric formulations. These
programs are not designed for real-time operation and have no provision for interfacing
with hardware [42]. They generate non-linear differential and algebraic equations (DAEs)
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that require iterative solution methods that run slowly with variable time steps. These
factors prohibit the use of numerically formulated models for real-time applications.

Symbolic formulations combine parameters and modeling variables to create a set of
equations that describe the system for all time. Although the governing equations are
symbolic in nature, numerical methods must still be employed to solve them. Symbolic
models lend themselves to real-time applications because they only need to be formulated
once, rather than at every time step during the simulation, and also because symbolic
equations can be greatly simplified [10, 14]:

• terms multiplied by 0 are automatically removed, and multiplications by 1 are ig-
nored

• trigonometric reductions, substitutions, and simplifications can be performed

• repeated terms can be identified and computed only once, rather than each time
they appear in the equations

Because symbolic models separate the formulation phase from the simulation phase,
they have the added advantage of being very flexible and portable. The equations do
not have to be solved using the same software that was used to formulate them; they
can be translated to any simulation language the analyst chooses. In contrast to numeric
formulations, symbolic formulations allow the analyst to view the governing equations in
a meaningful form, and perhaps gain insight into the system by doing so.

The major disadvantage to symbolic formulations is the tendency of the equations to
grow large and unwieldy as the system becomes more complex. For very large systems,
the memory required to manage the symbolic equations can become too great for the
hardware to handle, and the formulation must be halted. An intelligent formulation
procedure can alleviate this difficulty [14].

1.2 Research Contributions

State-of-the-art pneumatic tire models have properties that require special treatment
when including them within a larger multibody model, particularly if a symbolic formu-
lation approach is to be used. The main contribution of this research is a methodology
for including pneumatic tires as modeling components within a symbolic formulation
procedure based on linear graph theory. The linear graph formulation procedure has al-
ready been developed by McPhee and Schmitke, and currently forms the basis for the
DynaFlexPro software package [26, 46, 47]. Inclusion of a tire component model within
DynaFlexPro allows the automatic formulation of simulation code to describe any vehicle
topology.

The choice to implement the tire component model as part of DynaFlexPro provides
several advantages. The linear graph formulation procedure is equally applicable to me-
chanical, hydraulic, and electrical domains. Therefore, vehicle models that contain parts
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in different energy domains can be easily assembled [55]. A linear graph formulation also
provides the analyst with complete freedom to select the modeling variables used to de-
scribe the multibody portion of his system. Intelligent selection of modeling variables can
result in significant reduction of the number and complexity of the governing equations.

The tire component model must contain intelligent rules for controlling the size and
complexity of symbolic expressions used to calculate tire intermediate variables and must
allow the calling of external functions from the main simulation code. Once these chal-
lenges are overcome, the ultimate goal of this research — enable the automatic generation
of vehicle simulation code that is suitable for hardware-in-the-loop applications — can be
achieved.

1.3 Thesis Structure

This thesis is divided into 6 chapters. The first describes the motivation for the proposed
research and defines its goals. Chapter 2 is a review of literature pertinent to achieving the
goals laid out in Chapter 1. Specifically, it looks at different approaches for real-time sim-
ulation of vehicle dynamics, symbolic equation formulation, and coordinate selection for
multibody systems. Because the research presented in this thesis revolves around multi-
body vehicle models described by linear graphs, Chapter 2 also provides some background
and defines terminology related to multibody dynamics and linear graph theory.

Chapter 3 describes how tire model inputs are calculated based on the kinematic state
of the tire, how these inputs are used in two state-of-the-art tire models, and how forces
and moments generated by pneumatic tires may be applied to a larger multibody model.

Chapter 4 describes the proposed method for dealing with pneumatic tires in the con-
text of a symbolic formulation based on linear graph theory. A tire component model
is presented; instances of the the tire component can be used to construct vehicle mod-
els. The mechanisms by which tire components contribute to the automatic generation
of simulation code for vehicle models are discussed in Chapter 4. Symbolic computing
techniques, used for simplifying the simulation code, are also discussed.

The concepts presented in Chapter 4 were implemented as part of the DynaFlexPro
software package, which was used to generate simulation code for two example vehicles, as
described in Chapter 5. Results for cornering and braking maneuvers are verified against
results from equivalent vehicle models created in MSC.ADAMS. Simulation times for
DynaFlexPro models solved in Simulink are compared to real-time in order to assess the
suitability of the modeling approach for hardware-in-the-loop applications. The effects
of coordinate selection and symbolic expression manipulation on the efficiency of the
simulation code generated for the two example vehicles are investigated and discussed.

The thesis concludes with Chapter 8, which provides a summary of the research per-
formed and identifies potential areas for future research.
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Chapter 2

Literature Review

2.1 Multibody Dynamics

Multibody systems are comprised of mechanical bodies interconnected by kinematic joints,
springs, and dampers, which may also have applied forces, applied moments, or specified
motions between bodies. Multibody dynamics software automatically generates the gov-
erning equations for a system, given a description of its components and a description of
how the components are connected together, known as the system topology.

2.1.1 Dynamic Equations and Constraint Equations

The degrees of freedom for a mechanism may be defined as the number of inputs needed
to completely specify its motion. The pendulum in Figure 2.1 has one degree of freedom.
If the angle θ is known as a function of time, then the motion of the system would be
completely specified.

Figure 2.1: Single Pendulum

Following the notation used by Sayers, the variables chosen by the analyst to describe
the position and orientation of the system are referred to as coordinates and the variables
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chosen to represent the velocity and angular velocity of a system are referred to as gen-
eralized speeds [41, 44]. The more general term modeling variables will be used to refer
to both coordinates and generalized speeds. There will be a differential equation known
as a kinematic transform that relates the derivative of each coordinate to the general-
ized speeds; often, the generalized speeds are direct derivatives of coordinates, but this is
not always the case. Because the Newton-Euler equations that describe the dynamics of
mechanical systems are written in terms of accelerations and angular accelerations, the
derivatives of generalized speeds will appear in the dynamic equations [44, 46].

Consider the case where the motion of a single pendulum is modeled using three
coordinates: the x position of the center of mass, the y position of the center of mass, and
the angle θ. There will also be three generalized speeds. Choosing the generalized speeds
to be direct derivatives of the coordinates, they are: vx, the x component of the velocity
of the center of mass expressed in the inertial frame, vy, the y component of the velocity
of the center of mass expressed in the inertial frame, and ω, the angular velocity of the
pendulum about an axis out of the page. For this case, the dynamic equations are given
by equations (2.1)-(2.3) and the kinematic transforms are given by equations (2.4)-(2.6)

mv̇x = W + Rx (2.1)

mv̇y = Ry (2.2)
m

12
l2ω̇ = Rx

l

2
sin(θ)−Ry

l

2
cos(θ) (2.3)

ẋ = vx (2.4)

ẏ = vy (2.5)

θ̇ = ω (2.6)

where l is the length of the pendulum, which is assumed to be a uniform slender rod, m

is its mass, W is its weight, and Rx and Ry are reaction forces at the revolute joint.
If the number of coordinates chosen to model a system is greater than the number

of degrees of freedom, then the coordinates are not independent. There will be a set of
algebraic equations, referred to as constraint equations, that express the dependencies of
the chosen coordinates. Holonomic constraints involve position-level coordinates, while
non-holonomic constraints involve non-integrable relationships between generalized speeds
[17]. The problems described in this thesis only involve holonomic constraints, so the
discussion of constraints will be restricted to those of the holonomic variety.

The degrees of freedom f is related to the number of coordinates n and the number
of independent constraints m by:

f = n−m (2.7)
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For the pendulum example, there are two independent constraint equations that relate
the three chosen coordinates:

x =
l

2
cos(θ) (2.8)

y =
l

2
sin(θ) (2.9)

Equations (2.1 - 2.6) and (2.8 - 2.9) are a set of 8 equations with 8 unknowns (vx, vy,
ω, x, y, θ, Rx, and Ry). They may be solved to obtain the response of the system.

Many authors assume that generalized speeds are always direct derivatives of coor-
dinates. They do away with the kinematic transforms and write the dynamic equations
in terms of the second derivative of the coordinates [6, 14, 17]. Haug proposed a matrix
form for the governing equations of multibody systems, which is presented in equations
(2.10) and (2.11). Equation (2.10) is a general form of the dynamic equations, in which
M is a generalized mass matrix, q is a column vector containing the system coordinates,
ΦT

q λ is a column vector representing the effect of reaction forces on the system dynamics,
and Q is a column vector representing the effect of applied forces and quadratic speed
terms (centripetal, Coriolis). Equation (2.11) is a general form of the algebraic constraint
equations.

Mq̈ + ΦT
q λ = Q (2.10)

Φ = 0 (2.11)

The pendulum equations can be rearranged into Haug’s matrix form, as shown in
equations (2.12) and (2.13).

 m 0 0
0 m 0
0 0 m

12 l2




ẍ

ÿ

θ̈

+


−Rx

−Ry

−Rx
l
2 sin(θ) + Ry

l
2 cos(θ)

 =


W

0
0

 (2.12)

{
x− l

2 cos(θ)
y − l

2 sin(θ)

}
=

{
0
0

}
(2.13)

As noted by Haug, the constraint equations are usually non-linear functions of the
coordinates, q. However, once the position variables are known, the velocities and accel-
erations can be found by solving sets of linear equations [17]. Taking the time derivative
of equation (2.11) results in equation (2.14), which is linear in q̇. Differentiating again
gives equation (2.15), which is linear in q̈.

Φqq̇ = −Φt (2.14)

Φqq̈ = − (Φqq̇)q q̇− 2Φqtq̇−Φtt = γ (2.15)
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The matrix Φq that appears in the dynamic equations as well as the velocity-level and
acceleration-level constraint equations is known as the Jacobian. It is a matrix of partial
derivatives related to the column position-level constraints, Φ, and is calculated as per
equation (2.16).

Φq[i,j] =
∂Φ[i]

∂q[j]
(2.16)

The Jacobian matrix for the pendulum example is:

Φq =

[
1 0 l

2 sin(θ)
0 1 − l

2 cos(θ)

]
(2.17)

Multiplying a column vector of Lagrange multipliers, λ, by the transpose of the Jaco-
bian, ΦT

q , will yield a column vector that represents the effect that reaction forces have
on the system dynamics. This term has been pointed out in equation (2.10).

2.1.2 Modifying the Form of Equations in Preparation for Simulation

In general, the mathematical description of a multibody system is a mix of differential and
algebraic equations (DAEs). The algebraic constraint equations, Φ = 0, are usually highly
non-linear, and therefore require an iterative solution which tends to be computationally
expensive. Methods for solving sets of ordinary differential equations (ODEs) are more
efficient than methods for solving DAEs. For this reason, many authors have tried to
eliminate algebraic equations from the mathematical description of multibody systems.
One common method of accomplishing this goal is to use the acceleration form of the
constraint equations, equation (2.15), instead of the position form, equation (2.11). The
equations to be solved then become:[

M ΦT
q

Φq 0

][
q̈
λ

]
=

[
Q
γ

]
(2.18)

which contains a set of n + m differential equations involving q̈. These equations can be
integrated to obtain q̇ and q, as well as λ.

The problem with expressing the system equations in this form is that the constraint
equations are only satisfied at the acceleration level. If no corrections are made, a buildup
of integration error may cause significant violation of the position and velocity constraints
[17]. If the position constraints, Φ = 0, are not satisfied, the solution may wrongfully
indicate that bodies are floating apart when they should in fact be joined.

To keep the error in the position constraints from growing out of control, Baumgarte
constraint stabilization may be employed [4]. Adding a few extra terms to equation (2.15)
results in a differential equation which is inherently stable, implying that Φ̇ ≈ Φ ≈ 0.

Φqq̈ = γ − 2α (Φqq̇ + Φt)− β2Φ = γ′ (2.19)
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Figure 2.2: Simulation Procedure when Coordinate Partitioning is Used

To implement Baumgarte constraint stabilization, γ is replaced by γ′ in equation
(2.18). Unfortunately, there is no general and uniformly valid method of selecting para-
meters, α and β, that will result in a fast and accurate solution [17].

Some authors have tried to reduce the system equations by eliminating dependent
coordinates. It is theoretically possible to express the dynamic equations for a multibody
system as a set of f ODEs, where f is the number of degrees of freedom [14, 17]. The first
step in this process is to partition the coordinates into a column vector of f independent
coordinates u and a column vector of m dependent coordinates v.

q =

{
u
v

}
(2.20)

Fisette et al. show that dependent velocities and accelerations can be explicitly solved
for, and eliminated from the dynamic equations [14]. Substituting symbolic expressions
for these variables results in a reduced set of dynamic equations, of the form shown in
equation (2.21).

M(u,v)ü + C(u̇,u,v) = Q (2.21)

Unfortunately, since the constraint equations are non-linear at the position level, the
dependent coordinates cannot, in general, be eliminated from the dynamic equations.
Figure 2.2 depicts the simulation scheme used by Fisette et al. based on coordinate
partitioning and a reduced set of dynamic equations. An iterative Newton/Raphson
algorithm for solving algebraic constraint equations is packaged along with the reduced
set of dynamic equations inside of simulation code, which was formulated using a symbolic
multibody program. Although algebraic equations exist, and are solved iteratively at every
time step, from the point of view of the numerical integrator, the simulation code appears
to describe a set of ODEs in the independent coordinates u, and any ODE solver can be
used for their solution [14].
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If it were possible to find an analytical solution to the position-level constraint equa-
tions, then the Newton/Raphson block in Figure 2.2 could be replaced by an explicit equa-
tion for v in terms of u, resulting in a more efficient simulation procedure. Kecskemethy
and Hiller present a method for automatically recognizing cases where constraint equa-
tions can be solved analytically, and for incorporating their solution into the dynamic
equations [20]. Elmqvist et al. pre-derived the analytic solution to the constraint equa-
tions for a number of assemblies and used these assemblies as building blocks to construct
more complex topologies [12, 33].

For general topologies, outside of the exceptions pointed out by Kecskemethy and
Elmqvist, analytic solutions to position-level constraint equations cannot be obtained. For
general topologies, there are three options for dealing with algebraic constraint equations:

1. Use an ODE solver to integrate a reduced set of dynamic equations, coupled with a
Newton/Raphson algorithm to solve the position-level constraint equations numer-
ically at every time step

2. Use an ODE solver to integrate the acceleration form of the constraint equations,
which are combined with the dynamic equations, and use Baumgarte constraint sta-
bilization to prevent position-level constraint violation from growing out of control

3. Use a specialized solver capable of handling DAEs directly [9, 31]

2.1.3 Selection of Modeling Variables

It is possible to select different sets of modeling variables to describe the same multibody
system. In Section 2.1.1, the equations for a single pendulum were presented in terms of
three coordinates — x, y, and θ. An intelligent analyst would recognize that this single
degree of freedom system can be represented by a single dynamic equation, and would
select a single variable to describe its motion. If the revolute joint angle θ is chosen as
a coordinate, then the dynamic equation can be written as shown in equation (2.22) and
there will be no algebraic constraint equations. While this is a very simple example,
comparing the single equation (2.22) to the five equations (2.12)-(2.13) presented earlier
clearly shows that the choice of modeling variables can have a significant impact on both
the number of equations used to describe a system and the complexity of those equations.
Consequently, there is much literature available on the subject of coordinate selection for
multibody mechanical systems [10, 25, 29].

m

3
l2θ̈ = −mg

l

2
sin(θ) (2.22)

It is very common for numeric formulations to use absolute coordinates, meaning that
3 rotational coordinates and 3 translational coordinates are used to describe the motion
of each body. Six dynamic equations are considered for every body in the system, in
addition to numerous constraint equations enforcing joint connections between bodies.
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Solving the equations in this form requires special integrators capable of dealing with
DAEs, and involves finding not only the motion of the bodies but also the constraint
forces [49].

Joint coordinates describe the relative motion between two adjacent bodies. For open-
loop topologies, these coordinates provide a minimal set of dynamic equations — one
for each degree of freedom — and no constraint equations are needed. The one-to-one
mapping of degrees of freedom to modeling variables is lost for systems containing closed
kinematic loops. Equations expressed in terms of joint coordinates are fewer in number
than equivalent equations using absolute coordinates, but are more highly-coupled and
complex [10].

Indirect coordinates measure the relative motion between two bodies that are not
necessarily adjacent. McPhee and Redmond show that, for certain problems, indirect
coordinates can lead to simpler equations than joint coordinates [25] .

As mentioned in Section 2.1.1, generalized speeds do not have to be direct derivatives
of position-level coordinates. Mitiguy and Kane have shown that using different variables
for the orientation and angular velocity of rigid bodies can result in a significant reduction
in the complexity of the dynamic equations when compared to the more traditional case
where angular velocities are simple derivatives of orientation variables [29].

2.2 Real-Time Simulation

2.2.1 Requirements for Real-Time Simulation

Sayers outlined some basic requirements that multibody models must meet if they are
to be used for hardware-in-the-loop or human-in-the-loop applications [42]. The obvious
requirement is that models must be described by efficient sets of equations so that they
can be solved quickly using available numerical methods. Other requirements ensure
synchronization between simulated parts and physical parts.

In an HIL environment, the hardware is instrumented with sensors that collect data
at a constant sample rate. The sampling interval must be sufficiently small to capture
the behavior of the physical parts, which may be rapidly changing and unpredictable. In
order to maintain synchronization between the model and the physical parts, data must
be exchanged every time the hardware is sampled [42]. Therefore the simulation time
step is set equal to the hardware sampling interval.

The simulation must predict the state at the next time step in less time than it takes
the step to occur in reality. In Figure 2.3, the gray boxes represent the amount of CPU
time needed to advance the solution — i.e. the time when the simulation is active. In an
HIL environment, the simulation will predict the state at the next time step, then wait
for the hardware to catch up before exchanging data [42]. This is accomplished in Case
1 of Figure 2.3, where a happy face indicates a successful exchange of data between the
model and the hardware.
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Figure 2.3: Simulation Requirements for Hardware-in-the-Loop Applications

Even if the simulation is faster than real-time on average, there could be time steps
where the CPU time needed to advance the solution is greater than the length of the time
step. In a HIL environment, this means the simulation missed opportunities to interact
with the hardware, which could cause serious problems. Such a situation, depicted in
Case 2 of Figure 2.3, must be avoided.

Situations similar to Case 2 are likely to occur when equations have to be solved in an
iterative fashion, as with a Newton-Raphson algorithm. Iterative methods are required
whenever the mathematical model contains algebraic constraint equations that are to be
solved on the position-level, whenever an implicit solver is used, or whenever a variable
step size solver is used. The number of iterations needed could be small or large, depending
on the state of the system. For this reason, the CPU time needed to advance the solution
can vary greatly from time step to time step. Implicit or variables step size solvers can
only be used for real-time applications if the number of iterations performed at each time
step is limited to a fixed value [12, 13, 41, 48]

Conversely, if the mathematical model is comprised entirely of differential equations,
and an explicit, constant step size solver is used, a consistent amount of CPU time will be
spent on every time step since the same number of operations will be performed at every
time step [42]. This leads to situations similar to that depicted in Case 1 of Figure 2.3.
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The requirements of a mathematical model to be used for real-time applications, such
as hardware-in-the-loop simulation, may be summarized as follows:

• the model equations must not be too large or complicated — the available computing
resources must be able to integrate the equations faster than real-time

• the model must be expressed in a form that requires a consistent amount of com-
putations at every time step — a set of purely differential equations (ODEs) is
ideal

• the numerical solver (integrator) must use a consistent amount of computations at
every time step — an explicit, constant step size solver is ideal

The most common ODE solver for real-time applications is Euler’s method. This is the
simplest possible solver, but provides enough accuracy over the small time steps ( ≈ 1 ms)
that are typical for HIL applications [12, 40, 42, 48]. Higher-order methods can be more
accurate, but are not typically used when essential variables in the model are sampled from
hardware because measurement noise violates the assumed smooth transitions needed for
higher-order methods to work well [42, 48].

2.2.2 Specialized Programs for Real-Time Simulation of Vehicle

Dynamics

Programs that are designed specifically for real-time simulation of vehicle dynamics con-
tain hard-coded differential equations representing a particular vehicle topology. Some
of the most popular commercial programs are CarSim R© from Mechanical Simulation
Corporation, ADAMS/Car RealTime R© from MSC.Software, and ve-DYNA R© from Tesis
DYNAware. While the user can modify parameters such as center of gravity height
and mass/inertia properties, she cannot change the topology of the underlying model
[30, 42, 51].

The underlying topology is usually a generic four-wheeled vehicle with independent
suspension of the type described by Sayers and depicted in Figure 2.4 [43]. Lumped masses
are connected to the vehicle chassis by translational joints in parallel with springs and
dampers that represent the suspension compliance. The lumped masses are a simplified
representation of the inertia of the suspension components they replace. Each wheel is
connected to its corresponding lumped mass with a revolute joint that allows the wheel
to spin. The front wheels also have a revolute joint that allows them to steer. This
is an open-loop topology, so it is possible to describe its behavior with a set of ODEs
(no algebraic constraint equations are required). This topology provides 14 degrees of
freedom : 6 associated with the 3-dimensional motion of the vehicle body, 4 associated
with suspension deflection, and 4 associated with wheel spin. The steer angles of the front
wheels are specified functions of time, so they do not add degrees of freedom [43].
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Figure 2.4: Generic Four-Wheeled Vehicle Model with Independent Suspension

Some software providers offer two or three topologies for which simulation code has
been pre-derived. For instance, Mechanical Simulation Corporation offers a four-wheeled
topology which it calls CarSim R©, a two-wheeled topology which it calls BikeSim R©, and
a topology involving a towed trailer, which it calls TruckSim R© [27, 28]. However, it
is impossible for the analyst to investigate non-standard vehicles, such as unicycles and
three-wheeled vehicles, using these programs.

Because the same generic topology is used to represent all suspensions, the user must
specify suspension properties with a series of look-up tables rather than with joints and
link geometry [28, 30, 42, 51]. This method essentially assumes that the inertia of the
suspension members has a negligible effect on the overall vehicle dynamics, but attempts
to incorporate the significant effect that the suspension has on the orientation of the
wheel, and therefore the forces and moments generated by the tire. In order to populate
the look-up tables, the kinematics and compliance of the suspension must be determined
beforehand using a separate modeling/simulation package, or measured on a test rig.

Despite their fixed topology and reliance on look-up tables, these specialized programs
have several advantages. They come with complete graphical user interfaces and are
loaded with special features including several available tire models, driver models, and 3D
roads. CarSim, ADAMS/Car RealTime, and ve-DYNA all have provisions for exporting
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their models to Matlab/Simulink [28, 30, 51]. This is a very important feature since
much of the software and hardware necessary for hardware-in-the-loop applications is
designed to interact with Simulink models. This technology comes from companies like
Opal-RT and DSpace. It includes provisions for parallel computing (necessary for real-
time simulation of very large models), software that enforces the stop-and-wait behavior
noted in Figure 2.3, as well as interface hardware necessary for exchanging information
between the model and physical parts [48].

2.3 Symbolic Modeling of Multibody Systems

The pre-derived models discussed in the previous section are extremely efficient and suit-
able for real-time applications. However, they force the analyst to make his vehicle model
conform to a specific topology. If the analyst wants to investigate an issue that is not ad-
dressed by that topology, he must develop his own model. Deriving the system equations
by hand is time consuming and error-prone. Numeric formulations are not appropriate
for real-time applications. A symbolic formulation approach is needed that automatically
generates simulation code given a description of the vehicle as input. The following sec-
tions describe some important research in the field of symbolic modeling of multibody
systems, as well as some existing software tools.

2.3.1 ROBOTRAN

Fisette et al. developed ROBOTRAN, which automatically generates the symbolic equa-
tions of motion for any mechanical system given a description of the system as input [14].
ROBOTRAN is a standalone program written in the C language; all symbolic operators
such as addition and differentiation have been hard-coded by the developers. Mathemat-
ical models are exported in the form of Fortran, C, or Matlab routines [14].

ROBOTRAN exclusively uses joint coordinates to model multibody systems. If al-
gebraic constraints exist, then the coordinate partitioning method described in Section
2.1.2 is used to obtain a reduced set of dynamic equations. While the algebraic constraint
equations must still be solved using an iterative method within the simulation code, from
the point of view of the numerical solver the simulation code appears to represent a set
of differential equation in the independent coordinates u so any ODE solver may be used
for their solution [14].

Postiau et al. used ROBOTRAN to formulate a 3D vehicle model with multi-link
suspension at all wheels. Simulation code was exported in the C language and solved in
the Matlab/Simulink environment. A 10 second double lane change maneuver took 11
seconds to simulate on a Pentium 3 450 MHz computer [14, 37].
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2.3.2 AutoSim

In the early 1990s, researchers at the University of Michigan developed AutoSim, which
automatically formulates simulation code given a description of a mechanical system as
input. AutoSim is a standalone program written in the Lisp language. The symbolic
formulation is based on Kane’s method [21].

The user is not given the option of selecting his own modeling variables. AutoSim
primarily uses joint coordinates to describe the motion of the system, but heuristic rules
are applied to select different coordinates in certain situations. For instance, if a body is
connected to its parent by a joint that allows 3 rotational degrees of freedom, then absolute
angular coordinates will be used for that body (orientation measured with respect to the
ground frame, as opposed to a frame fixed in the parent body) [41].

An AutoSim user has the option of identifying certain state variables as “small”.
Products of small variables are dropped if they are of order 2 or higher, and trigonometric
functions of small variables are replaced with truncated Taylor series expansions [41, 44].
This mimics the way that a human analyst would formulate equations using a paper and
pencil — dropping terms he believes to be insignificant in order to simplify the equations.

AutoSim exports equations in the form of C or Fortran code. Constant terms are
computed once, before the simulation starts, instead of being recomputed at every time
step [41, 44]. This allows parameters to be left as symbols during the formulation of
simulation code (numeric values to be specified later) with no penalty on simulation time.

When the system contains closed kinematic loops, a coordinate partitioning approach
is used. The dependent speeds are integrated to give an estimate of the dependent co-
ordinates v at the next time step. These estimates are unlikely to satisfy the position
constraints exactly, so they are corrected using a modified Newton/Raphson algorithm.
An iterative method is needed to solve for dependent coordinates that satisfy the position
constraints within a certain tolerance. AutoSim specifies the number of iterations in its
Newton/Raphson algorithm to be 1 [41]. While this does not ensure that the position
constraints are exactly satisfied, it is enough to prevent constraint violations from growing
out of control and ensures that a consistent number of operations is performed at every
time step during the simulation (one of the requirements for HIL) [41].

Sayers used AutoSim to formulate a model for a generic 4-wheeled vehicle as described
in his 1996 paper [43]. This model underwent some fine-tuning by hand and was incorpo-
rated into the CarSim R© commercial software package. CarSim was used for hardware-in-
the-loop testing of a brake system electronic control unit (ECU), during which the vehicle
model ran faster than real-time on a laptop equipped with a Pentium 2 233MHz processor
[42].
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2.3.3 Modelica / Dymola

Modelica is an object-oriented language for describing multi-domain engineering systems
(i.e. systems that may contain combinations of mechanical, hydraulic, and electrical
parts). The ability to model the interactions between different energy domains is note-
worthy since modern vehicles are fitted with many electrical actuators, and are becoming
increasingly mechatronic.

The Modelica language is intended to serve as a standard format so that models arising
in different domains can be exchanged between tools and users [11]. Each component is
represented as an object, which may contain differential, algebraic, and discrete equations
as well as internal functions. In order for systems to be simulated, a Modelica translator
must be used to assemble the component equations into a meaningful form and numerically
integrate them. The most popular Modelica translator is Dymola R© from DynaSim.

Dymola users are not given the option of selecting their own modeling variables. Dy-
mola uses graph-theoretic algorithms to automatically select modeling variables, but the
literature is not clear on the extent to which graph theory is used to assemble the system
equations [12, 13]. If algebraic constraint equations are present, specialized techniques
are used for manipulating the DAEs into a form that can be solved efficiently [7, 12, 13].

Elmqvist et al. used Dymola to construct models of various vehicle topologies [12].
One of these topologies was a generic four-wheeled vehicle with independent suspension,
similar to the one described by Sayers [43], which used look-up tables to modify wheel
orientation as a function of suspension deflection. This model was exported from Dymola
in the form of C code, which was compiled on a real-time target machine using software
from Matlab and Opal-RT. The target machine had a 3 GHz Pentium 4 processor. A
double lane-change maneuver was simulated using Euler’s method and a constant step
size of 1 ms. The model easily ran in real-time, as only 0.1 ms of CPU time was needed
to advance the solution at each time step[12]. As part of the same study, a model of a
vehicle featuring MacPherson strut front suspension and trailing arm rear suspension was
created. An analytic solution to the constraint equations associated with the MacPherson
strut suspension is possible, and was easily incorporated into the model by using Dymola
assemblies [12]. This eliminated the need for algebraic constraint equations and allowed
the model to be described by a set of ODEs. The simulation code was exported in the
same manner as before, and a double lane-change maneuver was simulated. The model
ran faster than real-time, as 0.3 ms of CPU time was needed to advance the solution for
each 1 ms time step [12].

2.3.4 DynaFlexPro

McPhee and Schmitke have developed DynaFlexPro, which automatically formulates sym-
bolic equations for multi-domain engineering systems. The formulation procedure is based
on linear graph theory and the principle of orthogonality. A brief overview of linear graph
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theory is given in the next section. For more detail, the reader is referred to [26, 46, 47].
DynaFlexPro is implemented in the general-purpose computer algebra package,

Maple R©. Many of Maple’s symbolic math capabilities are used by DynaFlexPro, includ-
ing the combine() and simplify() commands for performing trigonometric reductions,
and the CodeGeneration package for optimizing procedures to eliminate unnecessary
calculations and translating simulation code to different languages. A user of DynaFlex-
Pro can inspect the system equations in the Maple environment and perform additional
operations on them using Maple commands if she sees fit. This can be quite useful for cer-
tain applications. For example, taking symbolic derivatives of the governing equations can
be beneficial for the computation of design sensitivities [36]. DynaFlexPro can generate
optimized simulation code in the Maple, Matlab, and C languages.

The linear graph formulation used by DynaFlexPro offers the analyst a great deal of
choice and flexibility in the area of coordinate selection. McPhee and Redmond show that
analysts can choose absolute, joint, or indirect coordinates by selecting an appropriate
tree for the linear graph formulation [25]. It is also possible to select a hybrid of these
coordinate types, which McPhee referred to as branch coordinates [24]. Users may choose
generalized speeds that are not direct derivatives of position coordinates by using different
unit vectors to span the position-level across space and velocity-level across space for edges
in the linear graph [46].

2.4 Linear Graph Theory

2.4.1 Basic Terminology

Graph theory represents physical systems as a collection of nodes and edges. In electrical
systems, the nodes are points where the components may be soldered to one another and
edges represent the components themselves. In mechanical systems, where orientation is
important, nodes represent reference frames, and edges represent transformations between
reference frames [46].

An edge in a linear graph has two types of variables associated with it. Across variables
represent quantities measured by a device in parallel with the edge, while through variables
represent quantities measured by a device in series with the edge [2, 47]. In this thesis,
xk is an across variable associated with edge k, and y

k
is a through variable associated

with edge k.
The energy domain in which an edge exists dictates the physical meaning of its through

and across variables, as shown in Table 2.1. In the electrical domain, through variables
are currents i and across variables are voltages e. In the mechanical translational domain,
through variables are forces ~F and across variables are positions ~r, velocities ~v, and
accelerations ~̇v. In the mechanical rotational domain, through variables are moments ~M

and across variables are angles ~θ, angular velocities ~ω, and angular accelerations ~̇ω [46].
The representation of angles as vectors follows the notation used by Schmitke [45].
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Derivative Electrical Mechanical Mechanical
Level (Translation) (Rotation)

0 ek ~rk
~θk

xk 1 ėk ~vk ~ωk

2 ~̇vk ~̇ωk

0 ik ~Fk
~Mk

y
k

1 i̇k ~Fk
~Mk

2 ~Fk
~Mk

Table 2.1: Through and Across Variables in Different Domains

3D rotations are not commutative, and therefore do not satisfy the strict mathematical
definition of a vector. However, vector notation can be used successfully in a linear graph
formulation if the order of rotations is given proper consideration. For instance, the
orientation across an edge with three rotational degrees of freedom may be written

~θedge = θ1 edgeû1 + θ2 edgeû2 + θ3 edgeû3 (2.23)

where each unit vector is a function of the previous rotations. If 313 Euler angles are used
to keep track of an edge’s rotation, then û1 describes the z direction of the edge’s start
(tail) frame, û2 describes an x axis that has been rotated an angle θ1 edge about û1, and
û3 describes a z axis that has been rotated an angle θ2 edge about û2.

McPhee and Schmitke present a component template that can be used to represent
subsystems of a larger model [46]. A linear graph component may contain more than one
edge and may span several domains. For example, the revolute joint component model
shown in Figure 2.5 contains an edge in the mechanical translational domain and two
edges in the mechanical rotational domain.

The physical nature of a component is associated with terminal equations that relate
the through and across variables of its edges [2, 46]. A terminal equation is defined
for each derivative level of each edge. In mechanical systems, this means that separate
terminal equations are used to describe the position, velocity, and acceleration behavior
associated with a particular edge. Often, higher derivative level terminal equations are
simple derivatives of lower derivative level equations, but this is not always the case [46].

As an example, terminal equations for revolute joint edges are presented in Table
2.2. The terminal equations for the translational edge ensure that the origin of the F1
frame, attached to body 1, is coincident with the origin of the F2 frame, attached to
body 2. The terminal equations for the first edge in the rotational domain state that this
edge develops no torque. In fact, the only reason edge R1 is part of the revolute joint
component is because its angular velocity, ~ωR1 is needed in the terminal equations for the
second rotational edge. The position-level terminal equation for edge R2 states that the
rotation transformation between frame F1 and F2 is the result of a single rotation about
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Figure 2.5: A Linear Graph Representation of a Revolute Joint Component

the the revolute axis û. This is also evident from the velocity-level terminal equation for
this edge. The acceleration-level equation for edge R2 must contain the cross product of
~ωR1 and ~ωR2 in order to account for gyroscopic effects.

Edge 0th Derivative Level 1st Derivative Level 2nd Derivative Level
(position) (velocity) (acceleration)

T1 ~rT1 = ~0 ~vT1 = ~0 ~̇vT1 = ~0
R1 ~MR1 = ~0 ~MR1 = ~0 ~MT1 = ~0
R2 ~θR2 = βû ~ωR2 = β̇û ~̇ωR2 = β̈û + ~ωR1 × ~ωR2

Table 2.2: Terminal Equations for Revolute Joint Component

2.4.2 Tree Selection

One of the unique aspects of linear graph theory is that it separates individual component
models, defined by terminal equations, from the topological equations that describe how
components are connected. Regardless of the nature/complexity of a system’s compo-
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Figure 2.6: A Linear Graph with Valid Tree Selection

nents, the topological equations are always linear and may be formulated in a systematic
fashion [2, 46].

An effective method for generating the topological equations begins by selecting a
system tree. A tree is a connected subgraph that includes all of the nodes in a graph
without any loops. The edges in the tree are called branches while the cotree edges (those
not in the tree) are referred to as chords [2, 46]. Figure 2.6 shows a linear graph with a
valid tree selection. Tree edges are shown in black and cotree edges are shown in gray.
Note that it is possible to select different, equally valid, trees for the same graph.

Along with the selection of a tree comes the designation of the system’s primary vari-
ables (variables that appear in the governing equations) and secondary variables (variables
that do not appear in the governing equations). Primary variables consist of branch across
variables and cotree through variables (xB, y

C
). It follows that branch through variables

and cotree across variables are secondary (y
B

, xC) [2]. Analysts choose the modeling
variables used to describe a system simply by selecting a tree for the linear graph repre-
sentation of that system [24].

2.4.3 Topological Equations

A cutset is set of edges that, when removed, divide the graph into two separate parts. A
fundamental cutset (f-cutset) consists of a single branch and a unique set of chords [2, 47].
There is one unique f-cutset for each branch in the tree. Referring to Figure 2.6, if the
edges that cross the dashed border were removed, then the nodes and edges contained
within the dashed outline would be isolated from the rest of the graph. Since the edges
crossing the dashed border consist of a single branch and two chords, they constitute an
f-cutset.

The algebraic sum of the through variables associated with cutset edges is zero. For
mechanical systems, the cutset equations correspond to dynamic equilibrium conditions,
expressed in d’Alembert form. For electrical systems, cutset equations are a way of ex-
pressing Kirchoff’s current law [2, 47]. A mathematical representation of the fundamental
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cutset equations is:

[
1 Af

] [ y
B

y
C

]
= 0 (2.24)

Here, 1 is an identity matrix, while Af is a matrix consisting of -1’s, 1’s and 0’s
indicating whether a chord is part of and negative, part of and positive, or not part of a
given fundamental cutset. For a more detailed look at formulating Af , see [24].

The cutset equations may be rearranged in order to express the (secondary) branch
through variables in terms of the (primary) chord through variables. Equation (2.25)
accomplishes the task, and is known as the chord transformations [24, 47].

y
B

= −AfyC
(2.25)

A circuit is a set of edges that form a closed loop. A fundamental circuit (f-circuit)
contains one chord and a unique set of branches. There is one f-circuit for each chord in
the cotree [2, 47]. Referring to Figure 2.6, the edges following the dotted outline form
a closed loop. Since these edges consist of a single chord and and two branches, they
constitute an f-circuit.

The algebraic sum of the across variables associated with circuit edges is zero. For
mechanical systems, circuit equations enforce vector loop closure. In electrical systems,
circuit equations correspond to Kirchoff’s voltage law [2]. A mathematical representation
of the fundamental circuit equations is:

[
Bf I

] [ xB

xC

]
= 0 (2.26)

In this case, Bf is a matrix consisting of -1’s, 1’s and 0’s indicating whether a branch
is part of and negative, part of and positive, or not part of a given fundamental circuit.
For more details on formulating Bf , see [24].

The circuit equations may be rearranged to express the (secondary) chord across
variables in terms of the (primary) branch across variables. Equation (2.27) is known as
the branch transformations [24, 47].

xC = −BfxB (2.27)

It is interesting to note that, as a consequence of the definition of f-cutsets and f-
circuits, the matrices Af and Bf are orthogonal [2, 47]:

Af = −Bf
T (2.28)
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2.4.4 Through and Across Space

An across space for an edge consists of an ordered set of unit vectors that span the space
in which the edge allows its across variable to vary. Similarly, a through space is a set
of ordered unit vectors that span the space in which the edge allows its through variable
to vary. The order of unit vectors is important for finite 3D rotations, which are non-
commutative [46]. Note that across and through spaces are generalizations of the purely
mechanical concepts of motion and reaction spaces used by McPhee [24].

Through and across spaces may be dependent on derivative level; it is possible to use
a different set of unit vectors to define the position-level across space of an edge than is
used to define the velocity-level across space. The only restriction is that the spanned
space reflect the physical nature of the component the edge is used to model [46].

The revolute joint example reinforces the concepts of through and across space. Refer-
ring to Table 2.3, the across space for the translational edge of the revolute joint compo-
nent is null, meaning that the translational across variables (~rT1, ~vT1) are not free to vary.
In fact, they are zero, as stated in Table 2.2. The through space for the translational edge
could be any three unit vectors that span a 3-dimensional space. This indicates that the
translational through variable, ~FT1, is free to vary in all directions. The first edge in the
rotational domain has a 3-dimensional across space, indicating that its across variables
(~θR1, ~ωR1) are unrestricted in the values they may assume. The through space for this
edge is null, since the through variable, ~MR1, is specified to be zero. The most interesting
edge for a revolute joint is the second edge in the rotational domain. The across space
for edge R2 is defined by the single unit vector, û since this is the only axis about which
the across variables (~θR2, ~ωR2) are free to change. The through space may consist of any
two unit vectors that span the two dimensional space which is orthogonal to û. Moments
about these axes may assume any values necessary to prohibit rotation about n̂1 and n̂1.

Edge Derivative Level Across Space Through Space
T1 0th (position) null {̂iG, ĵG, k̂G}

1st (velocity) null {̂iG, ĵG, k̂G}
R1 0th (orientation) {̂iG, ĵG, k̂G} null

1st (angular velocity) {̂iG, ĵG, k̂G} null

R2 0th (orientation) {û} {n̂1, n̂2}
1st (angular velocity) {û} {n̂1, n̂2}

Table 2.3: Through and Across Spaces for Revolute Joint Component

2.4.5 Formulation of System Equations

Combining topological equations (associated with the connectivity of nodes and edges)
with terminal equations that describe the physical behavior of individual components
yields a set of governing equations for the system. While many formulation procedures
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can be used to assemble system equations based on a linear graph, we will only concern
ourselves with an approach based on the principle of orthogonality, which is covered in
detail by Schmitke and McPhee [46, 47] and is used by the DynaFlexPro software package.
This formulation procedure is consistent across all domains, and may be used to generate
equations for 1D electrical and hydraulic systems as well as 3D mechanical systems.

A mathematical representation of the principle of orthogonality is:

edges∑
i=1

x[i] · y[i]
=

edges∑
i=1

y
[i]
· x[i] = 0 (2.29)

Equation (2.29) holds as long as the algebraic sum of across variables around any
closed loop is zero, and the algebraic sum of through variables for any cutset is zero [2].
Often, the dot product of the through and across variables has units of power or energy.
In this case, equation (2.29) simply states that the total energy in the system is conserved.

Andrews [2] and Schmitke [47] have shown that the principle of orthogonality also
holds for virtual increments of the through and across variables that are consistent with
the through and across spaces of their corresponding edge.

edges∑
i=1

δx[i] · y[i]
=

edges∑
i=1

δy
[i]
· x[i] = 0 (2.30)

Substituting the branch and chord transformations into Equation (2.30) yields:

edges∑
i=1

([
I

−Bf

]
δxB

)
[i]

· y
[i]

= 0 (2.31)

edges∑
i=1

([
−Af

I

]
δy

C

)
[i]

· x[i] = 0 (2.32)

Rearranging these, and making use of equation(2.28), we obtain:

edges∑
i=1

([
I Af

]
y

[i]

)
· δxB[i] = 0 (2.33)

edges∑
i=1

([
Bf I

]
x[i]

)
· δy

C[i]
= 0 (2.34)

The first set of equations (2.33) represents the projection of fundamental cutset equa-
tions onto the across space for edges selected into the tree [47]. For mechanical systems,
these become the dynamic equations [47]. It follows that motions consistent with the
across space of edges selected into the tree will become modeling variables. By selecting
different unit vectors to describe the position-level and velocity-level across space of an
edge selected into the tree, an analyst can force the linear graph formulation to use gen-
eralized speeds which are not direct derivatives of position-level coordinates. With this
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type of flexibility, an analyst can use velocities and angular velocities expressed in a body
fixed reference frame as generalized speeds, as recommended by Mitiguy and Kane [29],
while the position and orientation coordinates are expressed using any other unit vectors.

The second set of equations (2.34) represent the projection of fundamental circuit
equations onto the through space for edges in the cotree [47]. For mechanical systems,
these projected equations provide the mathematical constraints (if any) on the general-
ized coordinates q [24]. It follows that the reaction forces and moments used to enforce
constraints will be consistent with the through space for edges selected into the cotree.

Schmitke and McPhee organized the entire set of system equations into a form that is
valid for multi-domain systems [46], as shown in equations (2.35)-(2.37).

Mṗ + CT f = b(p,q, t) (2.35)

Φ(q, t) = 0 (2.36)

q̇ = h(p,q, t) (2.37)

Equation (2.35) contains differential equations involving the generalized speeds p and
is analogous to equation (2.10) presented by Haug [17]. The matrix M contains the
coefficients of ṗ in the system’s dynamic equations. The portion of M that corresponds
to mechanical variables may be thought of as a mass matrix, while the portion that
corresponds to electrical variables may be thought of as an inductance/capacitance matrix.
The column matrix f contains variables related to the system’s constraint equations —
either Lagrange multipliers or mechanical constraint forces — and the matrix CT gives
the coefficients of f in the dynamic equations [46]. Equation (2.36) contains algebraic
constraint equations involving the 0th derivative level modeling variables q. Equation
(2.37) describes kinematic transforms relating the derivatives of the coordinates q̇ to
generalized speeds p, coordinates q, and time.

In order to numerically solve the equations they generated, Schmitke and McPhee
replaced the algebraic constraint equations with their second derivative, giving a set of
ordinary differential equations (ODEs) which were expressed in explicit first-order form:

[
ṗ
f

]
=

[
M CT

Φqhp 0

]−1 [
b(p,q, t)
e(p,q, t)

]
(2.38)

q̇ = h(p,q, t) (2.39)

where Φq represents the Jacobian of constraints with respect to coordinates q, and hp

represents the Jacobian of the kinematic transforms with respect to the generalized speeds
p [46].

It should be noted that Schmitke and McPhee never actually performed the symbolic
matrix inverse that is implied by equation 2.38. They used a symbolic LU-factorization
approach to obtain explicit equations for ṗ and f [46]. Simulation code could then be
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assembled containing differential equations of the form ẋ = f (x), where the column
matrix of state variables x contains both the generalized speeds and the position-level
coordinates:

x =

{
p
q

}
(2.40)

Rudolf made an attempt to incorporate tire forces and moments into a linear graph
formulation of a vehicle dynamics model. His attempt failed due to equations that grew
too large for the symbolic math software to handle [39]. This issue has recently been
addressed, and an improved method for including tire forces and moments in a linear
graph formulation is presented in Chapter 4 of this thesis.
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Chapter 3

Pneumatic Tires in a Multibody

Systems Context

3.1 Overview

An automobile is controlled by forces developed in just four small patches where the tires
contact the road. The only other external forces acting on the vehicle are due to gravity
and aerodynamics, aerodynamics having a secondary influence [43].

Pneumatic tires are complicated things. The carcass is constructed from a metal belt
and polymer fibers woven at precise angles to the belt. The carcass is coated with a blend
of rubber compounds that has intricate tread patterns carved into it. Due to the number
of different materials involved, the non-linear and anisotropic nature of those materials,
and the influence of uncontrolled factors like tread wear and inflation pressure, an accurate
description of tire behavior is beyond the scope of classical mechanics and the theory of
elasticity. It is possible to model the interaction of the different materials making up
a tire using a finite element approach, but such an approach would be computationally
expensive and prohibitively slow for full vehicle simulations.

Instead of pursuing complex theoretical solutions, most analysts will rely on physical
tests to gather information about how a certain class or brand of tire behaves. A represen-
tative tire (or tires) is tested on a machine that measures force and moment components
for various wheel orientations, forward speeds, spin rates, and tire/road normal forces.
The measured data is set up in tabular form. This data may be interpolated during com-
puter simulation in order to determine the forces and moments to apply to a vehicle model.
Since the number of measured data points is likely to be in the millions, interpolating test
data directly would be extremely inefficient and lead to slow simulations.

Alternatively, mathematical functions may be used to fit curves to the measured data.
These are referred to as tire models. Tire models attempt to extract important characteris-
tics from physical tests and present them as a set of equations that have low computational
cost compared with direct interpolation of test data. Tire models are sometimes described

27



as being semi-empirical because their parameter values are obtained from test data, but
the structure of the equations often stems from a theoretical description of tire behavior
[34, 35].

Before going into any further detail on tire models, I will first present some basic
terminology. The tire axis system recommended by the International Organization for
Standardization (ISO) will be discussed and the quantities that are required as input to
most tire models will be explained. The chapter concludes with a discussion of how forces
and moments calculated by a tire model can be applied to a multibody vehicle model.

3.2 ISO Tire Axis System

The forces and moments calculated by tire models are resolved in the ISO tire axis system,
which is shown in Figure 3.1 [15]. The longitudinal force Fx and overturning moment Mx

are applied in the ISO X direction. The lateral force Fy and rolling resistance moment
My are applied in the ISO Y direction. The normal force Fz and the aligning moment Mz

are applied in the ISO Z direction. The normal force Fz is often referred to as a vertical
force [6, 15, 32]. The International Organization for Standardization does not specifically
address inclined roads, but in this thesis the ISO axis system will be applied to cases
where the road may be inclined. The ISO Z direction is taken to be normal to the road
plane (not necessarily vertical), and the term “normal force” is preferred over the term
“vertical force” to describe Fz.

Figure 3.1: ISO Tire Axis System

Expressions for the ISO unit vectors can be obtained using simple vector operations.
The ISO Z unit vector is normal to the road plane. The direction of the axis of tire
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symmetry is used to find the ISO X unit vector: ûx points forward in the direction of
wheel heading, and is perpendicular to both ûz and the axis of symmetry. The ISO Y
unit vector defines the lateral direction for the tire and is chosen to make the coordinate
system right-handed.

ûz = n̂road (3.1)

ûx =
ûSymAxis × ûz

|ûSymAxis × ûz|
(3.2)

ûy = ûz × ûx (3.3)

In addition to giving direction to the forces and moments output from tire models,
the ISO unit vectors are used in the expressions for tire model inputs.

3.3 Common Inputs to Tire Models

Most tire models require a subset of seven variables as input: normal force, inclination
angle, forward speed, spin rate, effective rolling radius, longitudinal slip, and slip angle.
These quantities depend on the position, velocity, orientation, and angular velocity of the
tire with respect to the road.

Several authors have suggested using a linear spring-damper analogy to estimate the
normal force between the tire and the road [6, 37, 43]. In equation (3.4), δ is the pen-
etration of the undeformed tire into the road plane, as shown in Figure 3.2. The max
function is used to ensure that the normal force between the tire and the road is always
compressive, and is zero when the tire leaves the ground.

Fz = max
(
kzδ + cz δ̇, 0

)
(3.4)

Equation (3.4) may be used whenever the road can be approximated, at least locally,
by a plane. If the road contains small obstacles, close to the size of the tire contact patch,
then a more in-depth analysis is required to calculate the normal force [6, 34].

Figure 3.2: Penetration of Undeformed Tire into a Planar Road
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The inclination angle γ is a measure of how much the wheel plane is tilted away from
the XZ plane shown in Figure 3.1. The inclination angle may be found from geometric
relations involving the axis of tire symmetry and the ISO unit vectors:

γ = arcsin ((ûy × ûSymAxis) · ûx) (3.5)

The tire’s forward speed is easily determined by taking the component of the tire
center velocity in the ISO X direction:

VCx = ~vC · ûx (3.6)

The angular velocity of the tire can be resolved into 3 components. The components
can be orthogonal, as in equation (3.7), or non-orthogonal, as in equation (3.8).

~ωC = ωxûx + ωz(orthogonal)ûz + ωyûy (3.7)

~ωC = ωxûx + ωz(non−orthogonal)ûz + ΩûSymAxis (3.8)

where:
ωz(non−orthogonal) = ωz(orthogonal) − Ω sin(γ) (3.9)

The component about the tire’s axis of symmetry is of special significance. In order
to obtain an expression for Ω, take the dot-product of equation (3.8) with ûSymAxis:

Ω = ~ωC · ûSymAxis − ωz(non−orthogonal) sin(γ) (3.10)

The vector operations (dot product, cross-product, etc) performed by multibody dy-
namics software are coded with the assumption that the column matrix representation of
a vector has three orthogonal components (i.e. vectors are resolved in orthogonal reference
frames) [6, 17]. Substituting equation (3.9) into equation (3.10) results in an expression
for Ω that is easier to use because it depends on quantities that are more readily available
in multibody dynamics software:

Ω =
~ωC · ûSymAxis − ωz(orthogonal) sin(γ)

cos2(γ)
(3.11)

Ω is often referred to in the literature as “spin rate” [5, 6, 43] or “speed of rotation”
[34, 35]. In a strict mathematical sense, Ω is the component of the tire’s angular velocity
about its symmetry axis. It is entirely possible to “spin” or “rotate” a tire about an axis
other than its axis of symmetry. However, for the remainder of this thesis, I will adopt
the common practice of referring to Ω as spin rate.

A free rolling wheel is defined as a loaded wheel subject to neither braking nor driving
torques [15]. Although no external torques are applied, the tire will still be subject to
its own rolling resistance and will eventually slow down. ISO defines Ω0 as the rotational
speed of a free rolling wheel at zero inclination angle and zero slip angle (slip angle will be
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Figure 3.3: Important Tire Radii

Figure 3.4: Three Methods for Estimating Effective Rolling Radius

defined later in this section). Ω0 can be determined experimentally by allowing a wheel
to roll freely and measuring its rate of rotation [15].

The effective rolling radius Reff is closely related to Ω0. It is the radius of an imaginary
rigid disk that rolls without slipping and has the same free rolling properties as the actual
tire. That is to say, Reff = VCx/Ω0, where VCx and Ω0 are measured experimentally.
Because tires are not rigid and there is always some degree of slip and distortion taking
place within the contact patch, the effective rolling radius is not equal to the actual radius
of the tire. The effective rolling radius usually lies somewhere between the unloaded radius
and loaded radius, as shown in Figure 3.3.

The effective rolling radius is dependent on normal force, and may also depend on
inclination angle and tire slip [34]. The developers of MSC.ADAMS have proposed a non-
linear formula for estimating the effective rolling radius as a function of normal load [32].
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Equation 3.13 is referred to in this thesis as the ADAMS/Pacejka method for estimating
effective rolling radius. The method was never actually published by Pacejka, but in the
ADAMS 2005 software, it is used exclusively in conjunction with Pacejka’s magic formula
tire models [32].

ρ = Ru −Rl (3.12)

Reff = Ru − ρFz0

(
D arctan

(
B

ρ

ρFz0

)
+ F

ρ

ρFz0

)
(3.13)

In equation (3.13), ρ is the tire deflection, ρFzo is the tire deflection at some nominal
vertical force, and B, D, and F are parameters that describe the tire [32]. Values of
ρFzo = 0.0231, B = 8.4, D = 0.27, F = 0.07, and a tire vertical stiffness of 210000 N/m
were used to create the plot shown in Figure 3.4. Note that the loaded radius decreases
linearly with increasing load, as predicted by the linear spring-damper analogy, while the
effective rolling radius levels off at high loads.

The ISO definition of longitudinal slip is presented in equation (3.14). It can be seen
that the longitudinal slip S is a measure of how fast the tire is spinning compared to
the free rolling condition. During braking, the wheel spins slower than the free rolling
condition and longitudinal slip is negative. During acceleration, the wheel spins faster
than the free rolling condition and longitudinal slip is positive [15].

S =
Ω− Ω0

Ω0
(3.14)

Substituting Ω0 = VCx/Reff into equation (3.14) results in another popular expression
for longitudinal slip:

S =
ΩReff − VCx

VCx
(3.15)

It should be noted that since Ω0 is only defined for a wheel rolling with zero inclination
angle, equations (3.14) and (3.15) are only valid when the inclination angle is zero.

Consider a point E, located along the vector ~rP/C a distance Reff away from the
tire center C. In practice, point E is very close to the center of tire contact P, but does
not exactly coincide with it unless Reff = Rl. The numerator of equation (3.15) gives
the negative X component of the velocity of point E. Therefore, equation (3.15) can be
rewritten as:

S =
−VEx

VCx
(3.16)

which describes the longitudinal slip of a tire with zero inclination angle. To be applicable
to inclined wheels, the expression for S must be written in terms of the velocity at point
E only. For this, it is necessary to consider an imaginary body that translates, yaws, and
tilts with the actual tire, but does not spin with it. Postiau et al. referred to such a body
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as a geometric wheel, and their terminology will be adopted here [37]. A star ∗ indicates
the velocity of a point on the geometric wheel. For a tire rolling with zero inclination
angle, VCx = V ∗

Ex. Substituting this into equation (3.16) gives the following expression
for longitudinal slip:

S =
−VEx

V ∗
Ex

(3.17)

where:

VEx =
(
~vC + ωC × ~rE/C

)
· ûx (3.18)

V ∗
Ex = VEx + ΩReff (3.19)

Equation (3.17) is recommended by Pacejka [34] as well as Blundell and Harty [6]. It
is equally valid for inclined and non-inclined tires. One small modification remains to be
made, which will allow the correct sign of longitudinal force to be calculated by a tire
model. The sign of longitudinal slip S and longitudinal force Fx should always oppose the
sign of VEx. To ensure this, V ∗

Ex is replaced with its absolute value in equation (3.17):

S =
−VEx∣∣V ∗

Ex

∣∣ (3.20)

ISO defines slip angle α as the angle from the X axis to the tangent of the trajectory
of the center of tire contact [15], displayed graphically in Figure 3.1. The center of tire
contact, P, is not a fixed point on the tire; to follow its trajectory, wheel spin motions
must be ignored, and the expression for slip angle written in terms of the velocity of point
P on a geometric wheel.

α = arctan

(
V ∗

Py∣∣V ∗
Px

∣∣
)

= arctan

(
VPy∣∣V ∗

Px

∣∣
)

(3.21)

Note that VPy = V ∗
Py because wheel spin does not affect the Y component of velocity for

point P. The absolute value of V ∗
Px is used in the denominator of the slip angle expression

in order to ensure that slip angle always has the correct sign, whether the tire is moving
forward or in reverse.

Tire forces do not develop instantly, but build as the tire rolls. Two methods are
commonly used to model dynamic lag in tire forces:

1. Use a tire model with the dynamics built-in

2. Use a steady-state tire model that takes delayed longitudinal slip and slip angle as
input

The second approach is preferable since it allows the analyst to select an appropriate tire
model for his application independent of the method used to introduce lag [35, 43].

33



The accepted approach for introducing lag in tire slip variables is to use first-order
differential equations involving a parameter called relaxation length, which is similar to
a time constant, except that it has units of length [5, 34, 43]. The equations proposed
by Bernard and Clover [5] and modified by Pacejka [34] are shown in equations (3.22) -
(3.25). Here, Blong is the longitudinal relaxation length and Blat is the lateral relaxation
length.

dq1

dt
=

−VEx

Blong
−

q1 |V ∗
Ex|

Blong
(3.22)

dq2

dt
=

VPy

Blat
−

q2 |V ∗
Px|

Blat
(3.23)

S = q1 (3.24)

α = arctan(q2) (3.25)

For steady-state conditions, the delayed slip equations (3.22) - (3.25) reduce to the
kinematic slip equations (3.20) and (3.21). The kinematic slip equations cannot be used
at zero velocity conditions (Vx = 0) because Vx appears in the denominator. The delayed
slip equations can be used at zero velocity conditions. This is an important property for
driving simulators, where the driver expects to be able to bring the vehicle to a stop, and
potentially start it again, without the simulator reporting a divide-by-zero error [5].

Bernard and Clover [5] used constant relaxation lengths in their work, but constant
relaxation lengths may not provide enough fidelity for studies in which tire transients are
very important. Pacejka presents physical test results that indicate relaxation lengths
can vary significantly with normal force Fz, longitudinal slip S, and lateral slip α [34].
The developers of MSC.ADAMS proposed a method for calculating the dependency of
relaxation lengths on normal force and inclination angle [32]. ADAMS refers to this as
the “stretched string” method of modeling tire transient behavior because its derivation
considers the behavior of a string that follows the tire circumference and is kept under a
certain pretension by a uniform radial force distribution that is comparable with inflation
pressure in real tires [34]. The ADAMS 2005 stretched string equations for relaxation
length are presented in equations (3.26 - 3.28), where Fz0 is the nominal normal force
between the tire and the road, R0 is the unloaded radius, and λσκ, λσα, λFz0 , PTx1, PTx2,
PTx3, PTy1, PTy2, and PKy3 are parameters that describe the transient behavior of the
tire, as determined from physical test.

dFz =
Fz − Fz0

Fz0
(3.26)

Blong = λσκR0
Fz

Fz0
(PTx1 + PTx2dFz) e(PTx3dFz) (3.27)

Blat = λσαPTy1Fz0 sin
(

2 arctan
(

Fz

PTy2Fz0λFz0

))
(1− PKy3 |γy|) R0λFz0 (3.28)
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It is a relatively simple matter to replace the constant relaxation lengths in equations
(3.22) and (3.23) with values that are functions of normal force and the tire’s kinematic
state, whether these values are determined using the ADAMS stretched string equations
or another method.

While the delayed slip equations may be used at low speed and zero speed conditions,
Pacejka points out that their accuracy is compromised at low speeds [34]. At small values
of V ∗

Ex and V ∗
Px, equations (3.22) and (3.23) act as integrators of VEx and VPy. This

could give rise to very large values of q1 and q2, and consequently large values of S and α.
To prevent S and α from taking on unreasonably large values, Pacejka proposed setting
dq1
dt and dq2

dt equal to zero when the forward speed was under a certain threshold and the
current magnitudes of S and α were over a certain threshold and growing. His limiting
algorithm is summarized in Figure 3.5.

if: |V ∗
Ex| < Vlow and |S| > Shigh and

(
−VEx
Blong

− S|V ∗
Ex|

Blong

)
(S) > 0

then: dq1

dt = 0
else: equation 3.22 apples

if: |V ∗
Px| < Vlow and |α| > αhigh and

(
VPy

Blat
− tan(α)|V ∗

Px|
Blat

)
(α) > 0

then: dq2

dt = 0
else: equation 3.23 apples

Figure 3.5: Pacejka’s Algorithm for Limiting Derivatives of Tire Slip States

3.4 Tire Models

A detailed discussion of tire carcass construction and the mechanisms by which stresses
develop within the tire contact patch is beyond the scope of this thesis, but is covered in
several books on the topic [6, 16, 56]. A few qualitative statements concerning tire force
and moment generation are presented below. These statements hold true for the majority
of pneumatic tires and are intended to give the reader an idea of the type of behavior
that tire models attempt to capture.

• at low slip values, longitudinal force Fx is roughly proportional to longitudinal slip
and lateral force Fy is roughly proportional to slip angle

• at high slip, lateral and longitudinal forces become saturated, their maximum values
being determined by the coefficient of friction between the tire and road

• Fx and Fy increase with increasing normal force, but the dependency is non-linear
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• a negative inclination angle tends to increase lateral force, Fy, but any non-zero
inclination angle decreases the area of the tire contact patch, and therefore has a
diminishing effect on other tire forces and moments

• in combined slip situations (both lateral and longitudinal slip are present), the value
of Fx will be lower than it would have been with pure longitudinal slip, and the value
of Fy will be lower than it would have been with pure lateral slip

• when a tire is steered, an aligning moment is produced which tends to bring the tire
back to the straight ahead position. Mz depends non-linearly on slip angle, with
longitudinal slip, normal force, and inclination angle having secondary effects

Many authors have proposed tire models for vehicle acceleration, braking, and han-
dling studies. A review of some of these models is given by Pacejka and Sharp [35], and
also by Blundell and Harty [6]. Tire models vary greatly in their complexity and the
number of parameters that must be determined from physical tests. Selecting an appro-
priate tire model is a compromise between availability of test data, accuracy of the curve
fit, and the computational cost associated with using the tire model as part of a larger
vehicle model. The optimal tire model is often not the most sophisticated one, but the
one whose degree of refinement is just enough to predict vehicle behavior to the desired
accuracy.

3.4.1 The Fiala Tire Model

The Fiala tire model requires only 6 parameters to describe a tire, as summarized in Table
3.1. These parameters are directly related to the physical properties of the tire.

D2 width of the tire (units – length)
CS longitudinal stiffness; the slope of the Fx vs. S curve at S = 0 (units – force)
Cα lateral stiffness; the slope of the Fy vs. α curve at α = 0 (units – force/radian)
Cr coefficient of rolling resistance (units – length)
µ0 peak coefficient of friction between the tire and road
µ1 sliding coefficient of friction between the tire and road

Table 3.1: Fiala Tire Model Parameters

Despite the advantage of a simple parameter set, the Fiala model has several limita-
tions:

• The model cannot accurately represent combined slip situations

• The effect of inclination angle on forces and moments is ignored

• The variation of lateral stiffness and longitudinal stiffness with normal load is not
considered
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• The force and moment curves cannot be offset from the origin (zero slip always
implies zero Fx, Fy. and Mz)

• Overturning moment is not considered

The equations for the Fiala tire model are presented below so that the reader can
understand how the tire model takes normal force (Fz) and kinematic inputs (S, α, Ω)
and returns the forces and moments at the tire contact patch.

The first step to implementing the Fiala tire model is to calculate intermediate terms
that are used repeatedly throughout the force and moment expressions. In what follows,
SLα is a the comprehensive slip ratio — a combination of longitudinal and lateral slip
parameters, µ is the current value of coefficient of friction and is somewhere between the
maximum (µ0) and minimum (µ1) values, and H is an intermediate parameter associated
with slip angle.

SLα =
√

S2 + tan2(α) (3.29)

µ = µ0 − SLα(µ0 − µ1) (3.30)

H = 1− Cα |tan(α)|
3µ |Fz|

(3.31)

The force and moment values returned by the Fiala tire model are:

Fx =

 CSS if |S| <
∣∣∣ µFz

2CS

∣∣∣
−sign(S)

(
µFz −

(
(µFz)2

4|S|CS

))
otherwise

(3.32)

Fy =

{
−µ |Fz|

(
1−H3

)
sign(α) if |α| < arctan

(∣∣∣3µFz

2α

∣∣∣)
−µ |Fz| sign(α) otherwise

(3.33)

Mx = 0 (3.34)

My =

{
CrFz if Ω < 0
−CrFz otherwise

(3.35)

Mz =

{
µFzD2 (1−H) H3sign(α) if |α| < arctan

(∣∣∣3µFz

2Cα

∣∣∣)
0 otherwise

(3.36)

Graphs showing typical outputs of the Fiala tire model are presented in Figures 3.7
- 3.9. Results for the relatively simple Fiala tire model are plotted with results from a
more complete Pacejka 2002 tire model.

Note that the Fiala model has several “if” constructs that make it impossible to
evaluate tire forces and moments unless numeric values are supplied for the tire model
inputs. For instance, there are two possible expressions for longitudinal force Fx, as shown
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in equation 3.32. The expression to be used depends on the numerical value of S. “If”
constructs are not unique to the Fiala tire model; they appear in many other popular
tire models. In a multibody dynamics context, expressions for tire forces and moments
cannot generally be evaluated during equation formulation. They must be evaluated
during simulation when (at a given time step) the numeric values for tire model inputs
are known. This is an important fact to keep in mind when assembling simulation code
for systems containing pneumatic tires — a topic that will be covered further in Chapter
4.

3.4.2 The Magic Formula Tire Model

Magic formula tire models are the most accurate and widely accepted tire models for use
in flat road handling studies [6]. They make frequent use of compound trigonometric
formulas that result in an uncanny fit to measured force and moment curves. The magic
formula tire model is undergoing continual development and several different versions
have been proposed over the years. The first version, introduced by Bakker et al. in
1986, only calculated Fx as a function of S, and Fy and Mz as a functions of α. It did
not consider rolling resistance (My), overturning moment (Mx), combined slip, or the
effects of inclination angle [3]. A more recent version, described by Pacejka in his 2002
book, calculates all of the forces and moments generated at the tire contact patch and
addresses their (non-linear) dependence on all of the tire model inputs discussed earlier
in this chapter [34].

The magic formula used to calculate longitudinal force, lateral force and aligning
moment is:

x = X + Sh (3.37)

y(x) = Dsin (C arctan (Bx− E (Bx− arctan(Bx)))) (3.38)

Y (X) = y(x) + Sv (3.39)

where Y is the quantity to be determined (one of Fx, Fy, or Mz) and X is the independent
variable of interest (S or α). Horizontal and vertical shifts are represented by Sh and Sv

respectively, and are used to account for cases where the curve does not pass through the
origin. It is well known that inclination angles cause a vertical shift of the lateral force
curve, so for Y = Fy, Sv would be a function of γ.

The other coefficients in equation (3.38) are best described with reference to Figure
3.6. D controls the peak value, C is a shape factor that controls stretching in the the x

direction, and B is referred to as a stiffness factor since it affects the slope at the origin.
The actual slope is given by BCD. E is a curvature factor that affects the position, xm,
at which the peak value occurs [6].

The main requirement for modeling tires using the magic formula is to determine
appropriate values for the coefficients Sh, Sv, B, C, D, and E for each force and mo-
ment curve given the normal force and the tire’s kinematic inputs. This process can be
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Figure 3.6: Coefficients used in the Magic Formula

extremely involved for complex tire models. The magic formula tire model described in
Pacejka’s 2002 book needs 117 parameters to describe a single tire [34]. The equations
used by Pacejka are too lengthy to present here, but some graphs are presented that show
the properties of an example tire as described by Pacejka’s model.

The Fiala tire model parameters used to create Figures 3.7 - 3.9 can be found in Table
A.7, and the Pacejka 2002 tire model parameters used to create these figures can be found
in Table A.4. The nominal condition is defined as the state in which the tire operates
at its nominal load (Fz = 5900N), at inclination angle equal to zero (γ = 0), and with
either pure longitudinal slip (α = 0) or pure lateral slip (S = 0). Any changes from the
nominal condition are indicated on the graphs. It can be seen that the Fiala model closely
matches the Pacejka 2002 model for nominal conditions. For cases involving inclination
angles, combined slip, or off-nominal normal loads, the Fiala model produces different
results than the Pacejka 2002 model. The Pacejka 2002 model can be assumed more
accurate than the Fiala model because it has a greater reliance on physical test data (117
parameters determined by test compared with 6 for the Fiala model) and also because it
has achieved more widespread acceptance in the literature.
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3.5 Applying Tire Forces and Moments to a Multibody

Model

Tire models calculate the forces and moments that act at the contact patch between the
tire and the road (point P in Figure 3.10). However, since P is not fixed to the road or
to the tire, it is inconvenient to apply fores at this point in a multibody model.

Figure 3.10: Tire Forces Applied to the
Wheel Center

Figure 3.11: Planar Disk Approximation
Used to Locate Point P

It is a common practice to apply forces and moments to the tire center (point C in
Figure 3.10) [6, 37, 43, 54]. Moving the point of force application requires the introduction
of additional moments that are dependent on the vector from the tire center to the tire
contact patch, ~rP/C :

~FC = ~FP (3.40)
~MC = ~MP + ~rP/C × ~FP (3.41)

The shape of the tire must be known in order to determine ~rP/C . Blundell and
Harty assume a toroidal tire shape in order to locate the center of the contact patch with
respect to the wheel center [6], while Postiau and Sayers both use a planar disk assumption
[37, 43]. In practice, both methods give very similar results for ~rP/C . The planar disk
approximation, depicted in Figure 3.11, was used for the present work because of its ease
of implementation.

For the same reasons that tire forces and moments are applied to point C, which is a
fixed point on the tire, they are reacted at at some point Q, which is a fixed point on the
road. In order for the imagined system shown in Figure 3.12, with reaction forces applied
to the road at point Q, to be equivalent to the actual system, with reaction forces applied
to the road at point P, extra moment terms must be introduced as described in equations
(3.42) and (3.43).
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Figure 3.12: Tire Forces Reacted at Road Reference Frame Q

~FQ = −~FP (3.42)

~MQ = − ~MP + ~rP/Q ×
(
−~FP

)
(3.43)
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Chapter 4

The Pneumatic Tire as a

DynaFlexPro Component

4.1 Overview

The three steps of the modeling and simulation process were described at the beginning
of this thesis. It is assumed that the first step, deciding how to represent an actual system
as a connection of idealized components (rigid bodies, joints, etc.) has been completed.

The second step involves generating a set of equations that describe system behavior.
In the context of this thesis, equation formulation is accomplished using linear graph
theory and the principle of orthogonality. These concepts were introduced in Chapter 2.
This chapter describes how they apply to vehicle systems containing tires.

Before moving on to the third step — solving equations numerically — the system
equations must be arranged as part of simulation code that calculates derivatives of state
variables given the current values of state variables as input. For systems containing tires,
this involves more than simply writing differential equations in first order form. Provisions
have to be made for calculating tire-specific intermediate variables and for calling exter-
nal functions. These issues are dealt with using a new DynaFlexPro component model
template; in addition to the topological and edge-level information used during the linear
graph formulation process, the tire component model can contain rules for assembling
blocks of simulation code that are not directly related to graph theory, but are essential
for simulating vehicle systems. Symbolic computing techniques are used to control the size
of tire intermediate expressions and to reduce the computational cost of the simulation
code that is generated.

4.2 Topological and Edge-Level Information

A pneumatic tire can be represented by a linear graph with two parts: one in the me-
chanical translational domain, and one in the mechanical rotational domain, as shown in
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Figure 4.1. The node labeled “Ground” represents an inertial reference frame, the node
labeled “C” represents a reference frame fixed to the tire and located at the tire center,
and the node labeled “Q” represents a reference frame attached to the road and oriented
such that the z axis is normal to the road plane. One of the main assumptions made for
this work is that the road is planar. The dotted edges are not part of the tire component
model. They represent the method used to define the kinematics of the road reference
frame with respect to the inertial frame; in practice, they may be a single edge or a col-
lection of edges. When using a tire component as part of a larger model, the kinematics
of the road reference frame must be defined in some way.

Figure 4.1: Linear Graph Representation of Tire Component Model

Edge T1 represents the mass of the tire and its weight in a local gravitational field.
Edge T2 measures the location of the road reference frame with respect to the Ground
frame. Edge T3 represents forces applied to the tire center as a result of tire/road inter-
actions.

Edge R1 represents the rotational inertia of the the tire. Edge R2 measures the
orientation of the road plane with respect to the Ground frame. Edge R3 represents
moments applied to the tire center as a result of tire/road interactions.

Recall that every edge in a linear graph component has terminal equations that relate
its through and across variables. Further insight into the physics of the tire component
model can be gained by inspecting its terminal equations, which are presented in Table
4.1.

The terminal equations for edges T1 and R1 express Newton-Euler equations for a
rigid body in D’Alembert from. Here m is the mass of the tire, J is its inertia tensor, and
~g is the local acceleration due to gravity. The rigid body assumption is valid as long as
the deformation of the tire does not significantly affect its center of mass location or its
rotational inertia.

Following common practice, tire forces and moments, which naturally occur at the
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Edge Terminal Equation
(same at all derivative levels)

T1 ~FT1 = −m~̇vT1 + m~g

T2 ~FT2 = ~0
T3 ~FT3 = ~FP

R1 ~MR1 = −J~̇ωR1 − ~ωR1 × (J~ωR1)

R2 ~MR2 = ~rQ/C ×
(

~FP

)
R3 ~MR3 = ~MP + ~rP/C × ~FP

Table 4.1: Terminal Equations for Tire Component Model

tire contact patch, are applied to the tire center. The terminal equations for edges T3
and R3 come directly from equations (3.40) and (3.41).

As discussed in Section 3.5, tire forces and moments will be reacted at point Q on the
road plane. In order to correctly represent the physics of tire/road interaction, the moment
applied to node Q must be different than the moment applied to node C. A linear graph
edge can only have one through variable associated with it per derivative level. Therefore,
edge R3 cannot adequately describe both the moment applied to the tire center and the
moment applied to the road reference frame; in this work, edge R3 represents moments
applied to the tire center. In order to ensure that the correct total moment is applied
to the road reference frame, an additional moment (~rQ/C × ~FP ) is applied via edge R2.
Consider the algebraic sum of moments applied by the tire component to node Q (not
including moments that the dotted edge might apply):

∑
~Mapplied by tire component to Q = ~MR2 − ~MR3

= ~rQ/C × ~FP −
(

~MP + ~rP/C × ~FP

)
= − ~MP +

(
~rP/C − ~rQ/C

)
×
(
−~FP

)
= − ~MP + ~rP/Q ×

(
−~FP

)
(4.1)

Equation (4.1) is equivalent to equation (3.43). Therefore, the forces and moments
listed in Table 4.1 are equivalent to the actual loading case where forces and moments act
between the tire and road at the contact point P. Instead of applying forces and moments
at point P, they are applied at the tire center C and reacted at the road reference frame
Q.

Every edge in the tire component has a full three-dimensional across space and a
null through space; all of the across variables (positions, velocities, orientations, angular
velocities) are free to assume any value, but through variables (forces and moments) are
not free to vary. If the across variables are known, then the through variables are given
by the equations laid out in Table 4.1. Although specific unit vectors are listed in Table
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Edge Derivative Level Across Space Through Space

T1
0th (position) {̂iG, ĵG, k̂G} null

1st (velocity) {̂iC , ĵC , k̂C} null

T2
0th (position) {̂iG, ĵG, k̂G} null

1st (velocity) {̂iC , ĵC , k̂C} null

T3
0th (position) {̂iG, ĵG, k̂G} null

1st (velocity) {̂iC , ĵC , k̂C} null

R1
0th (orientation) {ûEA1, ûEA2, ûEA3} null

1st (angular velocity) {̂iC , ĵC , k̂C} null

R2
0th (orientation) {ûEA1, ûEA2, ûEA3} null

1st (angular velocity) {̂iC , ĵC , k̂C} null

R3
0th (orientation) {ûEA1, ûEA2, ûEA3} null

1st (angular velocity) {̂iC , ĵC , k̂C} null

Table 4.2: Through and Across Spaces for Tire Component Model

4.2, the across space of a tire component edge could, in principle, be described by any
three unit vectors that span a three-dimensional space.

In order to generate efficient simulation code, it is generally a good idea to reduce
the number of equations that are used to describe the system by making the number of
dynamic equations as close as possible to the number of degrees of freedom. Dynamic
equations come from the projection of fundamental cutset equations onto the across space
for edges selected into the tree [46, 47]. Therefore, in order to minimize the number of
dynamic equations, the analyst should select tree edges that have a limited (or null)
across space. Because the tire component edges all have a full across space, they are poor
candidates for selection into the system tree. It is usually advisable to place all of the tire
edges in the cotree.

Using the theory presented in this section and Section 2.4, it is possible to formulate the
system equations for a vehicle containing pneumatic tires. Unfortunately, these system
equations only represent a portion of the simulation code needed for vehicle dynamics
studies. The terminal equations of the tire component are written in terms of ~rP/C , ~rQ/C ,
~FP , and ~MP . The latter two vectors can be resolved in the ISO tire axis system:

~FP = Fxûx + Fyûy + Fzûz (4.2)
~MP = Mxûx + Myûy + Mzûz (4.3)

where Fx, Fy, Mx, My, and Mz are the scalar quantities output by a tire model. These
will appear as symbols (dummy variables) in the system equations, as will the scalar
components of ~rP/C , ~rQ/C , and the ISO unit vectors ûx, ûy, ûz. Before the system
equations can be solved, we need a method of assigning values to these dummy variables
and some kind of provision for calling tire model functions.
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4.3 Extended Linear Graph Component Template

Schmitke and McPhee proposed an extended linear graph component template that is
capable of containing component-level information in addition to the more traditional
topological and edge-level information [46]. Figure 4.2 describes how information is or-
ganized within the extended linear graph component template. Items marked with an
asterisk (*) were not addressed by Schmitke and McPhee but play a major role in the
current work.

Figure 4.2: Extended Linear Graph Component Template

The connectivity of nodes and edges is considered topological information and is nec-
essary for generating system equations, as explained in Section 2.4.

Terminal equations relate the through and across variables of edges within a particular
component. There is a terminal equation, a through space, and an across space associated
with every derivative level of every edge. These pieces of information are closely tied to
individual edges and are referred to as edge-level information.

Component-level information may broadly be defined as any information that cannot
be associated with an individual edge. Schmitke and McPhee used component-level infor-
mation to support their subsystem modeling goals. They created linear graph components
that represented subsystems of large mechatronic devices; a component might represent
one leg of a 6-legged robot. They called these equivalent subsystem components or ESCs.
An ESC would typically involve only a few nodes to represent the reference frames where
the subsystem attached to its surroundings, and a bare minimum of edges that served
to connect the boundary nodes. The dynamics of subsystems were described by internal
variables and internal equations which were pre-derived and stored as component-level
information [45, 46]. This approach offered Schmitke and McPhee the following advan-
tages:

1. Large models could be broken into smaller blocks for ease of understanding.

2. Subsystem models could be retrieved from a library of ESCs. The fact that equations
governing subsystem behavior had already been formulated and stored within the
ESC reduced the time needed to formulate system-level equations [46].
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When component-level algebraic equations existed, they were simply appended to the
list of system-level algebraic equations obtained through the normal formulation procedure
(projecting f-circuit equations onto the through space of cotree edges) [45, 46]. Similarly,
when component-level differential equations existed, they were simply appended to the
list of system-level dynamic equations obtained through the normal formulation procedure
(projecting f-cutset equations onto the across space of tree edges) [45, 46]. The list of state
variables x was augmented to contain not only the generalized speeds p and position
coordinates q, but also any additional state variables introduced by the component-level
differential equations.

In this work, the equations used to introduce lag in tire slip parameters — equations
(3.22) and (3.23) — are implemented as component-level differential equations. These
equations cannot be associated with a particular edge in the tire component model, and
therefore cannot be listed as terminal equations. The state variables q1 and q2 do not
qualify as either through or across variables; they must be included as internal component-
level variables.

4.4 Structure of Simulation Code

Schmitke and McPhee concerned themselves with the formulation of system equations
using linear graph theory. The system equations could have their roots in any combination
of topological, edge-level, and component-level information and were expressed in the form
of first order differential equations to facilitate their numerical solution [46].

In the current work, the generation of simulation code involves more than writing
system equations in first order form. While still a necessary step, it is not the only step
in the process.

Figure 4.3 shows the proposed new structure for simulation code, involving three
distinct blocks :

1. Calculation of intermediate variables

2. Calls to external functions

3. System equations

The techniques for automatically generating this kind of simulation code are the core
ideas presented in this thesis. Block numbers will frequently be used to refer to certain
parts of the simulation code shown in Figure 4.3.

The rules for generating blocks 1 and 2 of the simulation code are stored as component-
level information. In the DynaFlexPro software implementation, based on the component
template shown in Figure 4.2, every component has the potential to define intermediate
variables and the ability to call external functions. While this thesis focuses on a tire
component model with vehicle applications, the concepts of intermediate variables and
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external function calls can be extended to any component that requires functions to be
evaluated at simulation time, including components that describe contact between two
parts.

External functions are written in the same language as the main simulation code. They
are called from the main simulation code, but are not part of it. External functions are
used to calculate variables that appear in the system equations, are not state variables,
and which cannot be fully evaluated during formulation. Tire model functions fit this
description perfectly. Tire model functions return Fx, Fy, Mx, My, and Mz and usually
contain “if” constructs that can only be evaluated during simulation when (at a given time
step) the numeric values for tire model inputs are known. Depending on the particular
vehicle being modeled and the goals of the simulation, an external function may be used to
return the derivatives of extra state variables used to model lag in the tire slip variables.
At first glance, there is no obvious reason to evaluate equations (3.22) - (3.23) with
an external function. However, for certain applications it may be necessary to make
the relaxation lengths Blong and Blat dependent on tire operating state or to limit the
values of dq1

dt and dq2

dt according to the rules laid out in Figure 3.5. In those cases, an
external function would be required in order to deal with the “if” constructs needed for
the calculation of dq1

dt and dq2

dt .
The use of external functions also provides the analyst with the freedom to modify

the way that tire forces and moments are calculated, or the way that lag in tire slip
parameters is modeled, without having to reformulate the system equations or rebuild
the main simulation code. Custom external functions can be written and used with an
existing model.

Intermediate variables may or may not appear directly in the system equations. For
a vehicle model, the components of the vector ~rP/C of each tire will appear in the system
equations as dummy variables. Values are assigned to these dummy variables in block
1 of the simulation code. We may classify them as intermediate variables that appear
directly in the system equations. The slip angles of each tire are intermediate variables
that do not appear in the system equations. Slip angles are calculated in block 1 of the
simulation code so that they can be passed as arguments to tire model functions in block
2 of the simulation code. That is the mechanism by which slip angles, and many other
intermediate variables, contribute to advancing the solution.

Sections 2.4 and 4.2 have covered the method by which block 3 equations are generated
symbolically. In the coming sections, the rules for generating blocks 1 and 2 of the
simulation code are discussed. These rules are stored as component-level information
within the tire component model and draw on elements of linear graph theory and symbolic
computing.
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4.5 Generating Block 1 of Simulation Code

4.5.1 Symbolic Expressions for the Kinematics of the Tire Center Frame

in Terms of Branch Across Variables

Block 1 of the simulation code must calculate tire intermediate variables in terms of state
variables, which, for mechanical systems, are across variables belonging to edges selected
into the tree. As presented in Chapter 3, the intermediate variables used as tire model
arguments depend on the position, orientation, velocity, and angular velocity of the tire
center frame C with respect to the road reference frame Q — i.e. the across variables
associated with edges T3 and R3 of the tire component. Therefore, the first step to
obtaining symbolic expressions for tire intermediates is to find symbolic expressions for
the across variables of tire edges T3 and R3 in terms of branch across variables.

Figure 4.4 shows a linear graph illustrating typical use of a tire component (all tire
component edges are placed in the cotree). The edges labeled “RoadKin” are used to
define the kinematics of the road reference frame Q with respect to the inertial Ground
frame. Edges labeled “E” might represent a suspension system for supporting the tire,
in which case nodes N1 and N2 would correspond to points (reference frames) on the
suspension parts. Because edges Tire T3 and Tire R3 are in the cotree, their across
variables will not appear in the system equations and will not be state variables for the
simulation code.

Linear graph branch transformations provide expressions for all secondary (chord)
across variables in terms of primary (branch) across variables. During formulation, this
information is used to eliminate all secondary across variables from the system equations.
For the system shown in Figure 4.4, equation (2.27) will give expressions for the across
variables of the edges Tire T3, Tire R3, and all of the other chords, in terms of the
analyst’s chosen modeling variables.

In order to use equation (2.27), there must be a chord joining the nodes of interest.
Looking ahead to computer implementation, we would like a method for generating a sym-
bolic expression, in terms of primary variables, for an across variable measured between
any two nodes in the graph, regardless of whether they are joined by a chord. Branch
transformations are based on circuit equations. Let’s take a step backward and look at
the circuit containing edges Tire T3, RoadKin T1, E T1, E T2, and E T3. This circuit
happens to be an f-circuit since it contains a single chord. At the 0th derivative level, we
have:

−~rTire T3 − ~rRoadKin T1 + ~rE T1 + ~rE T2 + ~rE T3 = 0 (4.4)

which can be solved for the displacement of node C with respect to node Q:

~rC/Q = ~rTire T3 = −~rRoadKin T1 + ~rE T1 + ~rE T2 + ~rE T3 (4.5)
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Figure 4.4: A Linear Graph with Tire Component

The displacement of node C with respect to node Q is the algebraic sum of displace-
ments for branches along the path from node Q to node C. In fact, as long as the variable
of interest is a vector or scalar, one can obtain an expression for an across variable mea-
sured between any two nodes by algebraically adding the across variables for branches
joining those two nodes. This is a general way of expressing linear graph branch trans-
formations that works whether or not there is a chord joining the nodes of interest. The
method can be applied to find the velocity (translational domain, 1st derivative level)
and angular velocity (rotational domain, 1st derivative level) between nodes C and Q in
Figure 4.4:

~vC/Q = ~vTire T3 = −~vRoadKin T1 + ~vE T1 + ~vE T2 + ~vE T3 (4.6)

~ωC/Q = ~ωTire R3 = −~ωRoadKin T1 + ~ωE R1 + ~ωE R4 (4.7)

Since finite 3D rotations are neither vectors nor scalars, the method for determining
the orientation (rotational domain, 0th derivative level across variable) between two nodes
is slightly different. In this case, multiplication of rotation matrices is performed:

RC/Q = RTire R3 = [RRoadKin T1]
T RE R1RE R4 (4.8)

In order for equations like (4.5) - (4.7) to be used in practice, all of the vectors must
be expressed in a common reference frame before they are added. This is accomplished
by multiplying a column matrix representation of each vector by an appropriate rotation
matrix. Since the rotation matrix between any two reference frames can be found using
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equations like (4.8), this is a relatively straightforward task, easily programmed into
software.

A user of DynaFlexPro can obtain symbolic expressions, in terms of the chosen mod-
eling variables, for the across variables between any two nodes in a linear graph. If the
quantity is a vector, it can be expressed in terms of components in any reference frame, as
long as the reference frame corresponds to a node in the graph. Within the tire component
model, these concepts are used to extract expressions for ~rTire T3, ~vTire T3, ~ωTire R3, and
to resolve these vectors in the road reference frame Q.

4.5.2 Tire Intermediate Variables

The tire intermediate variables used for this work are listed in Table 4.3. It is impossible
to predict a comprehensive list of intermediate variables that includes the inputs needed
for every conceivable tire model, but this list is fairly extensive and should work for the
majority of cases.

When an intermediate variable is represented by a column matrix of scalars, it contains
the components of the corresponding vector resolved in the road reference frame Q. Note
that some intermediate variables have options for which expression to use. When an
analyst decides to use a tire component in his model, he must choose between one of
three symbolic expressions for Reff and also must choose whether to calculate S and α

based on their kinematic definitions, or based on time-delayed state variables q1 and q2.
The expressions for intermediate variables toward the top of Table 4.3 depend on

rTire T3, vTire T3, and ωTire R3, which have been expressed in terms of state variables
using the general form of the linear graph branch transformations discussed in Section
4.5.1, and also on uSymAxis, which is a column matrix representation of the unit vector
that defines the axis of tire symmetry. The expressions for variables toward the end
of the list depend on the variables toward the top of the list. It is evident that certain
variables must be evaluated before others, as indicated by the pseudo-Gantt chart in Table
4.3. Longer bars do not necessarily indicate that an expression takes longer to evaluate.
They indicate an increased amount of freedom in the order of evaluation. For instance,
the expression for rQ/C can be evaluated any time since it does not depend on other
intermediate variables and no other intermediate variables depend on it. In contrast, α

must be evaluated toward the end of the list because it requires several other intermediate
expressions to be evaluated before it.

4.5.3 Evaluating Tire Intermediate Variables with Complete

Substitution

In this section, the cost of intermediate expressions related to the front left tire of a
generic 4-wheeled vehicle model will be presented in order to highlight some important
issues involved with evaluating tire intermediate variables. For more information on the
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vehicle model used for this case study, the reader is referred to Section 5.3.
We will seek a symbolic expression for each tire intermediate in terms of state variables,

beginning with rQ/C and proceeding down the ordered list toward slip angle. At each
step along the way, the expressions for previous tire intermediates are substituted into
the appropriate formula in Table 4.3 to get an expression for the next tire intermediate.
The expressions themselves are too large to present here; instead, Table 4.4 displays a
count of the additions, multiplications, divisions, and function calls (sin, cos, sqrt, etc.)
contained within each expression. These counts were obtained using Maple’s codegen:-
cost command and give a reasonable measure of the size and complexity of each symbolic
expression.

Cost of Expression
Tire Intermediate + × ÷ f

rQ/C 13 27 0 64
uz 0 0 0 0
ux 14 44 0 112
uy 15 44 0 112
γ 17 54 0 132
Rl 20 59 1 145
Fz 31 74 1 168

rP/C 128 390 3 945
Reff 41 121 2 291
rE/C 197 576 6 1383

Ω 67 166 1 430
VCx 37 78 0 186
VCy 37 78 0 186
VPx 243 672 4 1644
VPy 243 672 4 1644
VEx 335 920 8 2228
V ∗

Px 331 898 6 2219
V ∗

Ex 446 1208 11 2949
S too large to evaluate
α too large to evaluate

Table 4.4: Cost of Tire Intermediate Expressions with Complete Substitution

The symbolic expressions for intermediate variables near the top of the list have a
relatively small computational cost. However, the process of substituting every symbolic
expression into the next results in a rapid increase in the size and complexity of the tire
intermediate expressions. Toward the end of the list, the expressions get so large that the
symbolic math software (Maple, in this case) has trouble dealing with them. For example,
when Maple was asked to divide the large expression for VEx by the large expression for
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V ∗
Ex in order to obtain an expression for longitudinal slip S, the PC being used (1 GB

of RAM) ran out of available memory and Maple could not return a result. A more
intelligent way of expressing tire intermediates in terms of state variables is needed —
one which does not involve enormous expressions that exceed the limits of what modern
computers and state-of-the-art symbolic math software can handle.

4.5.4 Evaluating Tire Intermediate Variables using a Computational

Sequence

A computational sequence can be used to control the size of tire intermediate expressions.
Instead of continuously substituting large symbolic expressions in an attempt to obtain
an expression for each tire intermediate in terms of state variables, tire intermediates can
be written in terms of dummy names referring to other tire intermediates that are higher
in the list.

...
Rllhs = Rlrhs (a large symbolic expression)
...
rP/C[1]

lhs = Rllhs · sin(γlhs) · uy[1]lhs

rP/C[2]
lhs = Rllhs · sin(γlhs) · uy[2]lhs

rP/C[3]
lhs = −Rllhs · cos(γlhs)

Refflhs = 0.35145 + 0.00465789 arctan(−146.33 + 412.2Rllhs) + 0.01Rllhs

rE/C[1]
lhs = Refflhs/Rllhs · rP/C[1]

lhs

rE/C[2]
lhs = Refflhs/Rllhs · rP/C[2]

lhs

rE/C[3]
lhs = Refflhs/Rllhs · rP/C[3]

lhs

...

Figure 4.5: Portion of a Computational Sequence

Consider the portion of a computational sequence shown in Figure 4.5. Rllhs will be
calculated near the beginning of the computational sequence using the symbolic expression
Rlrhs that defines the loaded radius for a particular tire. Rlrhs is not substituted into
the expressions for tire intermediates that depend on Rl. Instead, the dummy name Rllhs

is used. At simulation time, once the numeric value of Rllhs is calculated, that number
can be used to calculate rP/C, Reff , rE/C, etc. based on relatively simple expressions. In
Figure 4.5, the ADAMS/Pacejka method of calculating Reff has been used according to
equation (3.13), with numeric parameters specified for ρ, B, D, and F .

In Figure 4.5, one multiplication and one division are used to calculate each component
of rE/C in terms of dummy variables that have been assigned earlier in the computational
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Tire Intermediate Expressions Not Substituted Cost of Expression
(left as dummy variables) + × ÷ f

rQ/C 13 27 0 64
uz 0 0 0 0
ux 14 44 0 112
uy 15 44 0 112
γ ux, uy 15 39 0 93
Rl γ 3 5 1 13
Fz Rl 11 15 0 23

rP/C uy, γ, Rl 1 5 0 3
Reff Rl 1 3 0 1
rE/C Rl, Reff , rP/C 0 3 3 0

Ω γ 32 58 1 168
VCx ux 33 46 0 97
VCy uy 33 46 0 97
VPx VCx, rP/C, ux 41 71 0 197
VPy VCy, rP/C, uy 41 71 0 197
VEx VCx, rE/C, ux 41 71 0 197
V ∗

Px VPx, Ω, Rl 1 1 0 0
V ∗

Ex VEx, Ω, Reff 1 1 0 0
S VEx , V ∗

Ex 0 0 1 1
α VPy, V ∗

Px 0 0 1 2

Table 4.5: Cost of Tire Intermediate Expressions with Delay of Substitution

sequence, for a grand total of 3 multiplications and 3 divisions used to calculate rE/C.
It would be significantly more costly to evaluate rE/C for the case where all symbolic
expressions were substituted — as listed in Table 4.4, it would take 197 additions 576
multiplications, 6 divisions and 1383 functions to do the same job that 3 multiplications
and 3 divisions do as part of a computational sequence.

The rules for generating a computational sequence that defines tire intermediates in
terms of state variables are stored as component-level information. The rules used for the
present work are summarized in Table 4.5, which shows the variables that have been left
as dummy names in expressions for tire intermediates. If a tire intermediate depends on
rTire T3, vTire T3, ωTire R3 or uSymAxis, then symbolic expressions for these variables
in terms of state variables are substituted. If a tire intermediate depends on another
tire intermediate that is higher in the list, that variable is left as a dummy name. The
only exception is the column matrix representation of the ISO Z unit vector, which is
always aligned with the z axis of the road reference frame. Substituting uz = [0, 0, 1]T

actually results in simpler expressions for the tire intermediates that depends on uz, so
this expression is always substituted.
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These rules were used to construct a computational sequence capable of calculating tire
intermediates for the generic 4-wheeled vehicle example. The cost of the expressions used
in this computational sequence are displayed in Table 4.5. Use of a computational sequence
drastically reduces the size and complexity of tire intermediate expressions compared to
the case where complete symbolic substitution is used. Table 4.4 and Table 4.5 compare
the cost of evaluating the same variables for the same vehicle, using two different methods.

The rules for generating a computational sequence used in this work and presented in
4.5 do not claim to be ideal. Other schemes for delaying the substitution of certain sym-
bolic expressions are possible. For example, rTire T3, vTire T3, ωTire R3 and uSymAxis

could have been added to the list of tire intermediate variables, and dummy names for
these variables could have been used in the expressions for tire intermediates that de-
pend on them. The ideal rules for generating an intermediate computational sequence
are dependent on the vehicle model being considered. The rules expressed in Table 4.5
are used in this thesis because they are logical, they prevent symbolic expressions for tire
intermediates from growing out of control, and they produce an effective and compact
block 1 for the simulation code of the example problems considered. This should not
deter future investigation of alternative rules for generating computational sequences for
tire intermediate variables.

4.6 Generating Block 2 of Simulation Code

Block 2 of the simulation code contains calls to external functions that return values
needed to calculate derivatives of state variables in block 3. Block 2 is the shortest block
of the simulation code, but is vital to any vehicle model because it is the block that returns
tire forces and moments.

Four pieces of information are necessary to construct block 2 of the simulation code:

1. For each component in the system, the names of external functions to be called

2. The names of intermediate variables required as arguments to each external function,
in the order in which they are expected

3. A list of numeric parameters that are required by each external function, in the
order in which they are expected

4. The names of the variables whose values are returned by each external function, in
the order in which they are returned

Figure 4.6 depicts how this information is used to generate the necessary code for
calling an external function. First the numeric parameters are assigned to elements of an
array. Then the function gets called by name, passing a list of intermediate variables and
the recently defined array of numeric parameters as arguments. The external function
returns values in array form, which are then assigned to unique variable names. Variables
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ExFunParams[1] = user-specified number
ExFunParams[2] = user-specified number
...
ExFunParams[n] = user-specified number
[ExFunValues] = ExFunName([IntVarNames],ExFunParams)
ReturnedName1 = ExFunValues[1]
ReturnedName2 = ExFunValues[2]
...
ReturnedNamen = ExFunValues[n]

Figure 4.6: Rules for Generating Block 2 of Simulation Code

with these names appear in the system equations contained in block 3 of the simulation
code.

It is instructive to consider an example involving the type of external functions used
by tire components. Imagine you have a model of a bicycle. You give the instance of
the tire component used to represent the front tire the unique name “Front”. The label
“Front” is automatically appended to the names of variables associated with this tire in
order to differentiate them from similar variables associated with the rear tire. You give
the instance of the tire component used to represent the rear tire the unique name “Rear”.
You want to calculate forces and moments generated by the front tire using a Fiala tire
model function, and forces and moments generated by the rear tire using a Pacejka 2002
tire model function. Because of your vast experience with imaginary bicycles, you know
that lag is not important for the front tire, but may be important for the rear tire. You
wish to use an external function called “StretchedString” to evaluate the derivatives of
the rear tire’s state variables. Block 2 of the simulation code for this vehicle would look
very similar to Figure 4.7.

The Fiala function requires 4 tire intermediates as input — Fz, S, α, and Ω — as well
as a list of 6 parameters describing the force and moment generating capabilities of the
front tire, which are assigned to the array TireModelParams Front. The values returned
from the Fiala function are assigned to the variables Fx Front, Fy Front, Mx Front, My Front,
and Mz Front, which appear in the system equations located in block 3 of the simulation
code.

The Pacejka 2002 tire model function requires 7 tire intermediates as input — Fz,
S, α, Ω, γ, Reff , and VCx — as well as a list of 117 parameters describing the force
and moment generating capabilities of the rear tire. The call to the Pacjeka02 function
necessary to calculate rear tire forces and moments is handled in the same manner as the
call to the Fiala function used for the front tire.

Because you have no interest in the transient behavior of the front tire, its slip angle
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Block 1
...
SFrontlhs = −VExFrontlhs/ |V ∗

ExFrontlhs|
αFrontlhs = arctan(VPyFrontlhs/ |V ∗

PxFrontlhs|)
SRearlhs = x[k]

αRearlhs = arctan(x[k+1])

Block 2

TireModelParams Front[1] = 0.16
...
TireModelParams Front[6] = 0.2

ForceValues Front = Fiala(Fz Frontlhs, SFrontlhs, αFrontlhs,ΩFrontlhs,

TireModelParams Front)

Fx Front = ForceValues Front[1]
...
Mz Front = ForceValues Front[5]

TireModelParams Rear[1] = 4850
...
TireModelParams Rear[117] = −0.24116

ForceValues Rear = Pacejka02(Fz Rearlhs, SRearlhs, αRearlhs,ΩRearlhs, γRearlhs,

Reff Rearlhs, VCxRearlhs,TireModelParams Rear)

Fx Rear = ForceValues Rear[1]
...
Mz Rear = ForceValues Rear[5]

SlipStateParams Rear[1] = 5900
...
SlipStateParams Rear[10] = −0.90729

SlipDerivatives Rear = StretchedString(Fz Rearlhs, γRearlhs, VPyRearlhs, VExRearlhs,

V ∗
PxRearlhs, V ∗

ExRearlhs,SlipStateParams Rear)

q1dotRear = SlipDerivatives Rear[1]

q2dotRear = SlipDerivatives Rear[2]

Block 3
...
ẋ[k] = q1dotRear

ẋ[k+1] = q2dotRear

Figure 4.7: Block 2 of Simulation Code for Imaginary Bicycle
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and longitudinal slip are calculated based on their kinematic definitions. The state-
ments SFrontlhs = −VExFrontlhs/ |V ∗

ExFrontlhs| and αFrontlhs = arctan(VPyFrontlhs/

|V ∗
PxFrontlhs|) will appear in the computational sequence of block 1.

Unlike the front tire, the rear tire has extra state variables associated with its transient
behavior. If q1Rear and q2Rear correspond to the the state variables x[k] and x[k+1], the
statements SRearlhs = x[k] and αRearlhs = arctan(x[k+1]) will appear in the computa-
tional sequence of block 1. The stretched string external function will be used to calculate
the derivatives of q1Rear and q2Rear in block 2 of the simulation code. This function re-
quires 6 tire intermediate variables as input — Fz, γ, VPy, VEx, V ∗

Px, and V ∗
Ex — as well

as 10 parameters describing the tire’s dynamic behavior. The statements ẋ[k] = q1dotRear

and ẋ[k+1] = q2dotRear will appear in block 3 of the simulation code.
External functions may be developed independently of the simulation code generated

by DynaFlexPro. An analyst always has the option to write his own custom tire model
function. The only requirement is that she provide DynaFlexPro with information re-
garding the name of the function to be called, the inputs required by the function, and
the values returned by the function so that block 2 of the simulation code can be properly
constructed.

Defining an external function can be time-consuming for an analyst. In addition
to offering analysts the flexibility to write their own external functions, the current ap-
proach offers the convenience of using pre-defined external functions that are stored in
a component-level library. An analyst working in an organization that frequently uses
Pacejka 2002 tire models for their simulations would appreciate having a Pacejka 2002
tire model function stored as component-level information within the DynaFlexPro tire
component model. Whenever a new vehicle model is created, she would simply spec-
ify “Pacejka 2002” as the tire model type for each instance of the tire component. She
would not need to explicitly specify which intermediate variables the tire model function
requires as input, how many numeric parameters are needed, or how many force and
moment values are returned as output. Those pieces of information would be stored as
component-level information linked to the “Pacejka 2002” tire model option. The function
definition itself could also be stored as component-level information. This is a particularly
attractive option for a package like DynaFlexPro, which is written in the Maple language.
Code that exists in the Maple language can easily be translated to C, Fortran, or Mat-
lab using Maple’s CodeGeneration package [23]. Tire model functions written in the
Maple language, and stored as component-level information within the DynaFlexPro tire
component model, can be exported to the simulation language and used along with the
main simulation code to numerically solve for the vehicle’s time domain response.

The commercial version of the DynaFlexPro tire component model, known as Dy-
naFlexPro/Tire, contains a library with three pre-defined tire model functions — the
Fiala and Pacejka 2002 tire model functions discussed in Section 3.4, and the Calspan
tire model function used for the IAVSD benchmarking study [21] — as well as a stretched
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string function for modeling transient behavior [19].

4.7 Expression Manipulation Routines

As mentioned before, the tire component model proposed in this chapter has been im-
plemented in the DynaFlexPro software, which is built on top of the symbolic math
program, Maple, and makes extensive use of Maple’s symbolic math tools. Maple offers
two commands — simplify() and combine() — for manipulating symbolic expressions
into different forms [23]. These commands apply rules (pre-defined by Maple) for sim-
plifying trigonometric functions, radicals, logarithmic functions, exponential functions,
powers, and various special functions [23]. Of these, trigonometric functions are most
common to equations describing multibody systems.

The simplify() command prefers to arrange expressions such that trigonometric func-
tions are multiplied together or raised to a power. By contrast, the combine() command
attempts to combine sums and products of trig functions into a single term [23]. Both
commands have the ability to reduce the computational cost associated with evaluating
an expression, but they also have the ability to increase the computational cost. The
utility of simplify() and combine() depends on the expression to be evaluated. For the
examples in Figure 4.8, combine() works best on expression a, and simplify() works
best on expression b.

In this thesis, the term system-level simplification refers to expression manipulation
done on the system equations, which are the basis of block 3 of the simulation code.
DynaFlexPro allows users the option of using simplify() or combine() to manipulate
the form of the dynamic equations that define the derivatives of generalized speeds p. The
user is also given the choice of using simplify() or combine() on the algebraic constraint
equations that express the dependencies of the position coordinates q. Of course, choosing
not to apply system-level simplification is also valid.

a = sin(x) cos(y) + sin(y) cos(x)

simplify(a) = sin(x) cos(y) + sin(y) cos(x)

combine(a) = sin(x + y)

b = cos5(x) + sin4(x) + 2 cos2(x)− 2 sin2(x)− cos(2x)− 2 sin2(x)− cos(2x)

simplify(b) = cos4(x) (cos(x) + 1)

combine(b) = 1
16 cos(5x) + 5

16 cos(3x) + 5
8 cos(x) + 3

8 + 1
8 cos(4x) + 1

2 cos(2x)

Figure 4.8: Maple’s Expression Manipulation Commands Applied to Trigonometric Ex-
amples
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The term component-level simplification will be used to refer to expression manipula-
tion done on the symbolic expressions for tire intermediates found in the computational
sequence that makes up block 1 of the simulation code. Here again, an analyst has the op-
tion of using the simplify() command, the combine() command, or to use no expression
manipulation at all.

4.8 Optimization of Simulation Code

When simulation code is assembled, it is in the form of a procedure that calculates deriv-
atives of state variables given their current values as input. At the heart of this procedure
is a computational sequence that may be divided into 3 blocks, as shown in Figure 4.3.
Maple’s CodeGeneration package has the ability to optimize a procedure to minimize
the computational cost associated with its evaluation. This is done by identifying repeated
terms and storing them as temporary variables so that they can be evaluated once and
used several times, as opposed to being re-evaluated every time they are needed. During
the optimization process, useless variables — variables that were assigned somewhere in
the original procedure but do not contribute to the calculation of outputs — are dropped,
since calculating them would be a waste of CPU time.

To better illustrate the concept of code optimization, consider Figure 4.9. A proce-
dure is defined that takes the variables x, y, z, and β as input and returns the value of
V ar3lhs as output. The original procedure uses a very inefficient computational sequence
to calculate V ar3lhs. There are several cos(x) and sin(y) terms repeated, resulting in
a large number of function evaluations. The variable V ar2lhs is assigned in the origi-
nal computational sequence but serves no useful purpose; it is not needed for calculating
V ar3lhs, which is the only value returned by this procedure. Calculation of V ar2lhs is
a waste of time.

In the optimized procedure, the statements necessary to calculate V ar2lhs have been
dropped. Temporary variables have been introduced for terms that appear more than
once in the expressions for V ar1lhs and V ar3lhs. For instance, cos(x) and sin(y) are
only calculated once, greatly reducing the number of function evaluations.

The principles of code optimization are extremely important for the present work.
They reduce the computational cost associated with vehicle simulation code that has
been constructed using the techniques presented earlier in this chapter, helping to make
it suitable for real-time applications. The ability to drop useless terms is important
for vehicle models containing instances of the DynaFlexPro tire component. The same
(extensive) list of tire intermediate variables is assigned during block 1 of the simulation
code every time a tire component is used. If the analyst has chosen an extremely simple
tire model — for instance, one that depends only on inclination angle γ — then many of
the tire intermediates assigned in block 1 will never be used. These useless variables will
be automatically removed by the code optimization routine.
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Original Procedure
5 additions, 6 multiplications, 3 divisions, 13 functions

proc (x, y, z, β)

V ar1lhs =
cos(x) + cos(x) sin(y) + cos2(x) + sin(y)

cos(x) sin(y)

V ar2lhs =
ln(4 tan(β)
1 + sin2(y)

V ar3lhs =
V ar1LHS cos(x)

V ar1LHS + cos(x) sin(y)

return V ar3lhs

end proc

Optimized Procedure
4 additions, 3 multiplications, 2 divisions, 2 functions

proc (x, y, z, β)

t1 = cos(x)

t2 = sin(y)

t3 = t1 · t2
t4 = t12

V ar1lhs =
t1 + t3 + t4 + t2

t3

V ar3lhs =
V ar1lhs · t1
V ar1lhs + t3

return V ar3lhs

end proc

Figure 4.9: Code Optimization Example
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Chapter 5

Vehicle Model Examples

5.1 Overview

The tire component model presented in Chapter 4 was programmed in the Maple sym-
bolic math language and became known as DynaFlexPro/Tire, an add-on package for
the DynaFlexPro multibody modeling and equation formulation tool. DynaFlexPro and
DynaFlexPro/Tire were used to generate simulation code describing the behavior of two
example vehicles — a 4-wheeled vehicle with independent suspension and an articulated
forestry skidder. A braking maneuver and a steering maneuver were investigated for each
of these vehicles.

These examples are used to validate the theory behind DynaFlexPro/Tire by testing
its accuracy versus a well-established vehicle dynamics modeling tool (MSC.ADAMS).
In addition, the example models are used to investigate options available with linear
graph theory and symbolic computing for influencing the efficiency of simulation code.
Simulation times for DynaFlexPro models being solved in the Simulink environment are
compared to real-time in order to asses the suitability of these models for hardware-in-
the-loop simulation.

5.2 Notes on Simulation Times in Simulink

For the examples in this chapter, simulation code is generated in the Maple environment
using DynaFlexPro and output from Maple in the C language. All external functions
necessary to run a particular simulation (tire model functions, functions for returning
derivatives of slip states) were also exported from Maple as C code. Using a procedure
recommended by the Mathworks, the simulation code and external functions were used
to construct a wrapper S-Function suitable for use with Matlab/Simulink and Real-Time
Workshop [52].

The ordinary Simulink environment has some computational overhead associated with
managing the interaction of model blocks with each other and with the integrator [42].
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Simulink offers an “accelerator” mode which uses Real-Time Workshop to optimize the
Simulink model for speed by compiling the code in a way that eliminates unnecessary
calls to the Simulink application program interface (API) [53]. Real-Time Workshop also
allows code to be compiled in “external” mode, meaning that the model is compiled on
a target computer which communicates to the host computer running Matlab/Simulink.
“External” mode is particularly useful for large models for which real-time simulation is
only possible using a parallel computing approach. In this case, portions of the overall
model can be solved simultaneously on different target machines [53]. There is a small
amount of overhead involved with running simulations in the Simulink environment on
a Windows computer. Even in the accelerator mode, Simulink requires a fraction of a
second to initialize a model before the simulation begins [53]. In addition, the Windows
operating system may have processes running in the background which could affect sim-
ulation time. In contrast, real-time operating systems, such as QNX, require minimal
computer resources to run (i.e. the operating system has very little “overhead”) [38].

All Simulink times reported in this thesis were obtained from models run in “acceler-
ator” mode on a PC with Windows XP operating system, 3.2GHz Pentium 4 processor,
and 1 GB of RAM. Had the simulations been run in “external” mode on a real-time target
machine, simulation times might be marginally faster.

The main goal of this work is to use linear graph theory and symbolic computing to
automatically generate vehicle simulation code that can be solved faster than real-time
and is suitable for HIL. To ensure that the simulation times reported would be relevant
for hardware-in-the-loop applications, Euler’s method was used to integrate the ODEs
describing the vehicle, and a constant step size of 1 millisecond (ms) was specified. This
solver and step size are very typical for HIL applications, as discussed in the literature
[12, 40, 42, 48]. Unless explicitly stated, all simulation times for DynaFlexPro models
solved in Simulink are associated with Euler’s method for solving ODEs and and a constant
step size of 1 ms.

For the example problems considered, the vehicle model S-Function used for the steer-
ing maneuver is identical to that used for the braking maneuver. Since an explicit constant
step size solver is used, we would not expect the simulation times to depend on the maneu-
ver being performed. However, the braking maneuver consistently takes slightly longer to
simulate. The reason has to do with the need for a torque calculator block in Simulink,
as shown in Figure 5.1. This block is needed because the torque signal applied to the
vehicle models is defined in a piecewise manner. The torque calculator block takes the
current simulation time as input and outputs the necessary torque signal, adding some
computational cost to the total simulation. The sine steer maneuver, by contrast, does
not require a torque calculator block and uses a relatively simple sine wave input to define
the steer motion and its derivatives, as shown in Figure 5.2.

For timed runs, the only outputs of the Simulink vehicle models are state variables.
The tire force and moment responses reported in this chapter were obtained from un-
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Figure 5.1: Simulink Implementation of Brake Torque

Figure 5.2: Simulink Implementation of Steering Motion

timed runs in Simulink using the identical vehicle model and solver settings as the timed
runs, but with additional code associated with defining the additional force and moment
outputs.

5.3 Generic 4-Wheeled Vehicle with Independent

Suspension

5.3.1 Description

The first example is a 14 degree of freedom 4-wheeled vehicle with independent suspension
at every corner. The topology of this vehicle was discussed in Section 2.2.2. It is redis-
played in Figure 5.3, which shows identical left and right steering motions and identical
braking torques applied to all 4 wheels. This is the case we will be investigating for our
example maneuvers.

Michael Sayers recommended this topology to engineers who want to simulate the
essential handling and braking behavior of an automobile without the monumental effort
of modeling all of the small details (bushing rates, linkage geometry, etc.) [43]. Since
then, it has become the basis for several software packages designed to do real-time vehicle
dynamics simulation, including CarSim and ADAMS/Car RealTime [28, 30, 42].

Sayers noted that it is possible to tilt the axis of the prismatic joints to account for
the fact that suspension deflection may not be in a purely vertical direction and described
a simple method for including extra roll stiffness in the model (which might be provided
via anti-roll bars on the actual vehicle). Sayers used look-up tables to provide spring and
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Figure 5.3: Generic Four-Wheeled Vehicle Model with Independent Suspension

damping forces as functions of suspension deflection and to modify the orientation of the
wheels as a function of suspension deflection [42].

For this example model, the axes of all prismatic joints are parallel with the z axis
of vehicle body’s CoM frame, the suspension does not include anti-roll bars, the spring
and damping rates are linear, and the wheel orientations are not modified as functions of
suspension deflection. The linear graph modeling method described in Chapters 2 and 4
does not prevent the inclusion of any of the complexities added by Sayers. They were left
out of this example purely in the interest of simplicity and clarity of presentation.

Tires were included in the DynaFlexPro model using 4 identical instances of the tire
component described in Chapter 4. The ADAMS/Pacejka method of evaluating effective
rolling radius was used, according to equation (3.13), with parameters found in Table
A.5. Tire transient behavior was modeled using extra state variables, as defined by
equations (3.22) -(3.25); an external function was used to calculate longitudinal and lateral
relaxation lengths as functions of normal force and inclination angle according to the
ADAMS stretched string equations (3.27) and (3.28), with parameters located in Table
A.6. A Pacejka 2002 tire model function was used to calculate the tire forces and moments.
Tire model parameters are listed in Table A.4.

All other model parameters, including masses, rotational inertias, spring and damping
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rates, as well as the geometry enforced by rigid arm components, can be found in Tables
A.1, A.2, and A.3.

The first step to generating simulation code is to represent the model as a linear graph.
The ModelBuilder graphical user interface for DynaFlexPro can be used to automatically
assemble a linear graph representation of a system model. This thesis does not discuss
the ModelBuilder user interface; linear graphs are presented directly. For a discussion of
the graphical user interface, refer to the DynaFlexPro user’s manual [19].

A linear graph representation of the generic 4-wheeled vehicle model is presented in
Figures 5.4 and 5.5. The graph looks identical at every corner, with the exception that the
front corners have extra edges for applying steering motion. For clarity of presentation,
only the left front corner is shown in detail. Note that all edges that enforce any type
of rotational constraint (this includes rigid arms, prismatic joints, revolute joints, and
motion drivers) will have two edges in the rotational domain. The second edge is the one
which defines the allowed/enforced rotational motions, while the first edge only exists to
ensure proper calculation of the second edge’s angular acceleration (refer to the revolute
joint example in Section 2.4 for more information).

The edge naming convention used for linear graphs in this chapter is as follows:

• The prefix “RA” identifies an edge as part of a rigid arm component. Rigid arms
are used to enforce a constant translation and rotation transformation between two
frames.

• The prefix “RB” identifies an edge as part of a rigid body component, which repre-
sents a body’s inertia and weight in a local gravitational field.

• The prefix “Mot” identifies an edge as part of a motion driver component. Motion
drivers are used to enforce specified time-varying translation and rotation between
two frames.

• The prefix “Rev” identifies an edge as part of a revolute joint component.

• The prefix “Pris” identifies an edge as part of a prismatic joint component.

• The middle part of the edge name contains a number identifying which corner of
the vehicle it belongs to. The front left corner is labeled 1, the front right corner is
labeled 2, the rear left corner is labeled 3, and the rear right corner is labeled 4.

• The suffix of the edge name contains either the letter T or R to indicate which
domain it belongs to (translational or rotational) as well as a number identifying
the edge’s order within a certain component.

For the generic 4-wheeled vehicle example, a single road reference frame Q is connected
to the Ground frame by a rigid arm component that enforces zero translation and rotation.
Therefore, all instances of the tire component are associated with a single road plane (they
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could have been associated with different road planes), and the road is always stationary
and aligned with the Ground frame.

The principle of orthogonality provides a dynamic equation for each across space mo-
tion allowed by edges selected into the tree. Vehicle body edges, revolute joint edges, and
prismatic joint edges are selected into both the translational and rotational tree for this
example, resulting in dynamic equations for the 3D translational and rotational motions of
the vehicle body, the extension of each prismatic joint, and the spin of each revolute joint.
This gives a total of 14 dynamic equations in terms of generalized speeds and another
14 kinematic transformation equations expressing the derivatives of position variables in
terms of generalized speeds. For this example, 8 additional differential equations (2 for
each instance of the tire component) are added in order to model tire transient behavior.
The end result is a set of 14 + 14 + 8 = 36 ordinary differential equations (ODEs) and no
algebraic equations that describes the vehicle behavior. A list of the 36 state variables,
as well as the initial conditions used for this example can be found in Table A.8.

Note that the generalized speeds associated with the vehicle body are components of
the its velocity and angular velocity expressed in the body’s center of mass (CoM) frame.
The coordinates used to track the position of the vehicle body are expressed in the Ground
frame, and the coordinates used to track the orientation of the vehicle body with respect
to the Ground frame are 321 Euler angles. These generalized speeds and coordinates were
selected by choosing the unit vectors used to span the full 3-dimensional across space for
edges RB Body T1 and RB Body R1. The unit vectors used on the 0th derivative level
(position) are different than the unit vectors used on the 1st derivative level (velocity).

System equations were formulated in DynaFlexPro, specifying simplify() as the type
of expression manipulation to be performed on both the dynamic equations and the al-
gebraic constraint equations. Component-level simplification of the tire intermediate ex-
pressions was not performed.

5.3.2 Validation using ADAMS

An ADAMS model was constructed which uses all of the same vehicle parameters and
tire model details as the DynaFlexPro model, with one exception: in the ADAMS model,
a small mass and rotational inertia is assigned to knuckle parts that exist between the
front wheel steering joints and the front wheel spin joints. The symbolic formulation used
by DynaFlexPro allows joints and motion divers to be connected directly in series, but
ADAMS requires there to be a body with some inertia in between these elements.

Sine Steer Maneuver

The first maneuver involves applying an identical sine steer motion to each of the front
tires. The motion has an amplitude of 1 degree and a period of 10 seconds, as shown in
Figure 5.6. The braking torque on all 4 wheels was set to zero so that the vehicle would
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coast through the maneuver.

Figure 5.6: Steering Motion Applied to Generic 4-Wheeled Vehicle

Simulation of the DynaFlexPro model was performed in Simulink using Euler’s method
and a constant step size of 1 ms, and the ADAMS model was simulated using a GSTIFF
solver with SI2 formulation and an error tolerance of 1E-3. A convergence study was
performed and it was found that neither decreasing the step size in Simulink nor tightening
the error tolerance in ADAMS would significantly change the results.

Results for the sine steer maneuver are plotted in Figure 5.7. The sine steer motion
causes the vehicle to complete a rather wide lane change, as evident when the vehicle path
is viewed in the x-y plane. The yaw rate plotted here is the z component of the vehicle
body’s angular velocity expressed in the body’s CoM frame and the roll angle is the third
in a series of 321 Euler angles used to track the orientation of the body CoM frame with
respect to the Ground frame. Both the yaw rate and roll angle response have a sinusoidal
shape that is similar to the steering input applied.

Steering motions cause tire slip angles to develop and give rise to significant lateral
forces and aligning moments. Figure 5.7 includes a plot of Fy and Mz for the front left
tire, which shows that the method used by DynaFlexPro/Tire to calculate lateral forces
and aligning moments produces extremely similar results to the method used by ADAMS.
The Pacejka 2002 tire model used for this example includes a strong dependence of lateral
force and aligning moment on normal force. During cornering, the vehicle rolls toward
the outside of a turn, increasing the normal force on the outside tires and decreasing the
normal force on the inside tires. During the first 5 seconds of simulation, the vehicle is
turning to the left; the load on the front left tire decreases as does its capacity to generate
lateral forces and aligning moments. During the last five seconds of simulation, the vehicle
is turning to the right; the load on the front left tire increases, allowing it to generate
significantly greater lateral forces and aligning moments. This is the reason why the peak
in the Fy and Mz curves at 7.5-8 seconds is greater than the peak in the Fy and Mz curves
at 2.5-3 seconds.

Excellent agreement is observed between the ADAMS model and the DynaFlexPro
model for the sine steer maneuver, indicating that, with the options specified for the
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Figure 5.7: Response of Generic 4-Wheeled Vehicle for Sine Steer Maneuver
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generic 4-wheeled vehicle model, the implementation of the DynaFlexPro tire component
is accurate for maneuvers dominated by steering motions, lateral tire forces, and aligning
moments.

Braking Maneuver

The second maneuver involves applying an identical braking torque to all four wheels.
The brake torque starts at 0 Nm, ramps to 1000 Nm between time = 2 and time = 2.5
seconds, is held at 1000 Nm until time = 4.5 seconds, and ramps down to 0 Nm by time
= 5.0 seconds, as shown in Figure 5.8. The steering motion for both front wheels was set
to zero to indicate a driver that is attempting to hold the vehicle in a straight line.

Figure 5.8: Brake Torque Applied to Generic 4-Wheeled Vehicle

Once again, simulation was performed in Simulink using Euler’s method and a constant
step size of 1 ms, and in ADAMS using the GSTIFF solver with SI2 formulation and an
error tolerance of 1E-3.

Results for the braking maneuver are plotted in Figure 5.9. When the braking torque is
applied, longitudinal tire forces develop that cause the vehicle to slow from approximately
20 m/s to approximately 7 m/s. During the braking event, the vehicle body pitches
forward several degrees. The pitch angle reported is the second in a series of 321 Euler
angles used to track the orientation of the body CoM frame with respect to the Ground
frame.

The presence of a rolling resistance moment ensures that, when no braking torque
is applied, the steady state value of longitudinal tire forces will be negative and the
vehicle will continue to slow down. Figure 5.9 highlights the strong dependency of rolling
resistance on normal force predicted by the Pacejka 2002 tire model. When the vehicle
pitches forward, the normal force on the front tires increase, as does the magnitude of the
rolling resistance moment they produce.

Excellent agreement is observed between the ADAMS model and the DynaFlexPro
model for the braking maneuver, indicating that, with the options specified for the generic
4-wheeled vehicle model, the implementation of the DynaFlexPro tire component is ac-
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Figure 5.9: Response of Generic 4-Wheeled Vehicle for Braking Maneuver

curate for maneuvers dominated by longitudinal tire forces and rolling resistance.

5.3.3 Simulation Time in Simulink

For the generic 4-wheeled vehicle example, a 10 second sine steer maneuver was simulated
in 0.45 seconds (average of 5 runs) and a 10 second braking maneuver was simulated in
0.48 seconds (average of 5 runs). This example model can be simulated more than 20
times faster than real-time using an explicit constant step size solver, which makes it very
suitable for hardware-in-the-loop applications.

As a point of comparison, we may consider that it takes 4.33 seconds to simulate
the sine steer maneuver and 7.97 seconds to simulate the braking maneuver in ADAMS
using the GSTIFF solver with SI2 formulation and an error tolerance of 1E-3. This is
significantly slower than the DynaFlexPro models being solved in Simulink with Euler’s
method and a step size of 1 ms.

It is normal for different maneuvers to take different amounts of time to simulate in
ADAMS. GSTIFF is an implicit DAE solver. All of the solvers available in ADAMS are
either implicit, operate with variable step sizes, or both [31]. The number of iterations
required to meet the specified error tolerance and choose the next step size could vary
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considerably with the state of the vehicle, and hence with the maneuver being performed.
There is no provision for limiting the number of iterations performed at each time step,
making the ADAMS solvers inappropriate for hardware-in-the-loop simulations, as dis-
cussed in Section 2.2.1.

5.3.4 Component-Level Simplification for Tire Intermediates

As discussed in Section 4.7, expression manipulation rules can be applied to the symbolic
expressions obtained for tire intermediates. Different simplification schemes were applied
to the tire intermediates of the generic 4-wheeled vehicle model. These simplification
schemes affect the time required to generate optimized simulation code and the time
required to simulate the test maneuvers in Simulink. These effects are summarized in
Table 5.1.

The generation of simulation code involves several steps, including constructing a
computational sequence to calculate intermediate variables in terms of state variables.
Table 5.1 shows that the time necessary to generate simulation code is heavily influenced
by the type of expression manipulation routine applied to the symbolic expressions for
tire intermediates. The times listed there are each an average of 5 runs. When no
simplification is used on the tire intermediate expressions, the time to generate simulation
code is relatively low. Repeated use of Maple’s simplify() command nearly doubles the
time necessary to generate simulation code, and repeated use of Maple’s combine()
command triples it. This is to be expected since simplifying (or attempting to simplify)
symbolic expressions is a computationally intensive task.

The cost of simulation code refers to the number of additions, multiplications, divi-
sions, and function calls contained within the optimized simulation code generated by
DynaFlexPro. It may seem surprising that use of the simplify() and combine() com-
mands on tire intermediate expressions actually increases the cost of the simulation code.
However, it should be noted that the computational sequence that makes up block 1 of
the simulation code has a structure with several repeated terms (e.g. the components of
uSymAxis in Table 4.3 ) and naturally lends itself to code optimization. The simplify()
and combine() commands may reduce the complexity of individual expressions, but they
destroy the structure of the original computational sequence, making it less suitable for
code optimization. For the generic 4-wheeled vehicle model, it is better not to use Maple’s
simplification functions on the tire intermediate expressions. This conclusion is supported
by simulation times for the model obtained from Simulink. Here again, an average of 5
runs is used. The simulation times are longer when simplify() or combine() have been
used on the tire intermediate expressions.
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Intermediate Time to Cost of Simulation
Simplification Generate Sim. Code Time (s)

Type Sim. Code (s) + × ÷ f Sine Steer Braking
none 13.5 1293 1773 24 61 0.45 0.48

simplify 23.8 2365 3889 28 118 0.51 0.53
combine 40.2 2867 4539 24 192 0.59 0.63

Table 5.1: Component-Level Simplification Applied to Tire Intermediates for Generic
4-Wheeled Vehicle

5.3.5 Selecting a Tire Component Edge to the System Tree

Thus far, all of the tire component edges have been placed in the system cotree. We now
consider a different tree selection for the generic 4-wheeled vehicle model, in which edges
T1 and R1 of every tire component are selected into the system tree.

As defined in Chapter 2, a tree is a connected subgraph that includes all of the
nodes in a graph without any loops. In order to maintain a valid translational tree, the
prismatic joint edges are placed in the translational cotree, as shown in Figure 5.10, with
the consequence that motions along the prismatic joint axes will no longer be considered
as state variables. In order to maintain a valid rotational tree, the revolute joint edges
are placed in the rotational cotree, as shown in Figure 5.11, with the consequence that
revolute joint rotations will no longer be considered as state variables.

With tire component edges T1 and R1 in the tree, the position, orientation, velocity,
and angular velocity of each tire center frame with respect to the Ground frame will
be state variables. This shortens the chain of branches whose across variables must be
added to obtain symbolic expressions for ~rC/Q, ~vC/Q, ~ωC/Q, and RC/Q in terms of state
variables, as described in Section 4.5.1. Therefore, selecting tire edges into the tree should
decrease the complexity of the symbolic expressions for tire intermediates and reduce the
computational cost associated with block 1 of the simulation code.

For each tire component edge selected into the system tree, 3 new dynamic equations
will be formulated because all tire component edges have a full across space. Selecting 8
tire component edges to the tree (T1 and R1 for 4 tires) introduces 24 dynamic equations.
Adding the 6 dynamic equations related to rotational and translational motion of the
vehicle body, we arrive at a total of 30 dynamic equations used to describe the 14 degree
of freedom generic 4-wheeled vehicle model. There will be 30−14 = 16 algebraic constraint
equations necessary to enforce the dependencies of the chosen coordinates. The system is
described by a set of 30 dynamic equations and 16 algebraic equations. We should expect
the system equations (block 3 of the simulation code) to be more costly to evaluate than
the case where all tire edges were in the cotree and the dynamic equations were a minimal
set of 14 ODEs.

Several methods of solving DAEs have been presented in the literature [4, 9, 14, 17].
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Placement of Cost of Sim Code Simulation Time (s)
Tire Edges + × ÷ f Sine Steer Braking

cotree 1293 1773 24 61 0.45 0.48
tree 5644 9611 37 95 0.65 * 0.65 *

* Results have not converged with Euler’s method and a step size of 1 ms

Table 5.2: Effect of Tree Selection on Simulation Code and Simulation Times for Generic
4-Wheeled Vehicle Model

In this thesis, DAEs are converted to ODEs by differentiating the algebraic constraint
equations twice and Baumgarte constraint stabilization is used to keep position-level con-
straint violation from growing out of control (the method was described in Section 2.1.2).
For the generic 4-wheeled vehicle example, parameters α = 20 and β = 20 were chosen
for the Baumgarte constraint stabilization.

Along with a different tree selection comes a different list of state variables. With
edges T1 and R1 selected into the tree for each tire, the system equations are based on
30 generalized speeds p, 30 coordinates q, and 8 additional state variables used to model
lag in tire slip parameters, for a grand total of 68 state variables. The initial conditions
for these state variables are listed in Table A.9. They were chosen to be equivalent to the
initial conditions used for validation versus ADAMS in Section 5.3.2.

For the case where tire edges are selected into the system tree, the system equations
(block 3 of the simulation code) should be more costly to evaluate and the intermediate
computational sequence (block 1 of the simulation code) should be less costly to evaluate,
compared to the case where tire edges are selected to the cotree. Table 5.2 shows that
the increased cost of the system equations far outweighs the decreased cost of the tire
component intermediate expressions, resulting in an overall increase in the cost of the
simulation code.

Costlier simulation code results in longer simulation times for the case where tire edges
are selected into the tree. The times reported in Table 5.2 are the average of 5 Simulink
runs using Euler’s method and a fixed step size of 1 ms. These times are somewhat
misleading, however. The need for Baumgarte constraint stabilization to control the error
in the position level constraint equations results in significant stiffening of the differential
equations used to describe the system. While a step size of 1 ms is sufficient to ensure
a converged solution when simulation code is generated with tires in the cotree, it is not
sufficient to ensure a converged solution when the simulation code is generated with tire
edges in the tree. In that case, a step size of 0.02 ms was needed for convergence, as
shown in Figure 5.12, which focuses on the yaw rate response for the sine steer maneuver.

Reducing the step size to 0.02 ms resulted in a simulation time of 32.67 seconds for
the 10 second sine steer maneuver. When tires edges are selected into the system tree for
the generic 4-wheeled vehicle, Baumgarte constraint stabilization is used to handle the
resulting DAEs, and Euler’s method is used to solve the equations, the simulation code
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Figure 5.12: Yaw Rate Response of Generic 4-Wheeled Vehicle for Sine Steer Maneuver
– Simulation Code Generated with Tire Edges T1 and R1 in Tree

is not suitable for real-time applications because of the extremely small step sizes that
must be used to ensure an accurate solution.

Other methods of solving DAEs might work better for the generic 4-wheeled vehicle
model with tire tire edges are selected into the tree. The position level algebraic constraint
equations could be solved within the simulation code using a Newton/Raphson algorithm,
as was done by Fisette et al. [14]. As long as the number of iterations spent on a single
time step is not allowed to grow too large, these methods have the potential to be used for
HIL applications. In this case, block 3 of the simulation code must be modified to contain
a Newton/Raphson loop and some kind of intelligence to limit the number of iterations
performed within that loop.

The use of an implicit solver for systems containing algebraic constraints, whether the
constraints are solved on the acceleration level with Baumgarte constraint stabilization
or on the position level with a modified Newton/Raphson algorithm, should also be in-
vestigated. The number of iterations that the implicit solver uses to predict a solution at
the next time step must be limited to a fixed number if the simulation is to be used for
HIL applications where synchronization with hardware is important.

Implementation and testing of modified Newton/Raphson algorithms and modified
implicit solvers is left for future research.

84



5.3.6 The Effect of Tire Model Complexity

An analyst might question how much computational effort is needed to evaluate the main
simulation code — the bold block in Figure 4.3 — compared to the computational effort
needed to evaluate external functions. It is an important question to ask when building
vehicle models. Some tire model functions are long and complex, and their use may affect
the suitability of a vehicle model for real-time applications.

Because tire model functions frequently use “if” constructs, the cost of evaluating a tire
model function can depend on the values of the arguments being passed to it. That being
said, a reasonable cost measure can be obtained by counting the number of additions,
multiplications, divisions, and functions that are needed to evaluate a tire model function
when certain nominal arguments are passed to it (S ≈ 0, α ≈ 0, γ ≈ 0, Ω > 0, VCx > 0).
This type of cost evaluation was performed on the Fiala and Pacejka 2002 tire model
functions, with results presented in Table 5.3. The Pacejka 2002 tire model function is
much more costly to evaluate than the Fiala tire model function.

The DynaFlexPro simulation code (and corresponding Simulink S-Function) used to
describe the generic 4-wheeled vehicle were rebuilt using a Fiala tire model whose para-
meters were chosen to be equivalent to the Pacejka 2002 tire model used for validation
versus ADAMS. Parameters for the Fiala tire model can be found in Table A.7. Only
the tire model was changed. All of the other tire component options remain the same.
The ADAMS/Pacejka method of evaluating effective rolling radius is still used, as is the
the stretched string method of calculating derivatives of tire slip state variables. No
component-level simplification was used for tire intermediate expressions. All tire com-
ponent edges are in the cotree, resulting in a model described by a set of ODEs with no
algebraic constraint equations.

The Pacejka tire model requires a list of seven intermediate variables as input (Fz,
S, α, γ, Ω, Reff , and VCx), whereas the Fiala tire model needs only four (Fz, S, α, Ω).
Because the extra three intermediate variables are not needed for the Fiala tire model
function, these variables will be candidates for removal during the code optimization
process. However, as described in Section 4.5.3, the values of γ, Reff , and VCx calculated
early in block 1 are used later in block 1 to calculate S, α, Ω. Thus, even though the Fiala
tire model function takes fewer arguments than the Pacejka tire model function, all of
the same intermediate variables need to be assigned at some point in the computational
sequence that makes up block 1 of the simulation code. Therefore, we should not expect

Cost of Tire Model Function
Tire Model + × ÷ f

Pacejka 2002 84 205 23 46
Fiala 16 33 5 11

Table 5.3: Computational Cost of Tire Model Functions
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Cost of Sim. Code Simulation Time (s)
Tire Model + × ÷ f assign. Sine Steer Braking

Pacejka 2002 1293 1773 24 61 1470 0.45 0.48
Fiala 1233 1684 24 61 976 0.30 0.36

Table 5.4: Effect of Tire Model on Simulation Code and Simulation Times for Generic
4-Wheeled Vehicle

a large difference in the cost of simulation code generated using a Pacejka tire model,
versus simulation code generated for the same vehicle using a Fiala tire model. Table
5.4 confirms that the number of additions, multiplications, divisions, and function calls
present in the optimized simulation code does not change appreciably when the tire model
function is changed from Pacejka 2002 to Fiala.

Even though block 1 of the simulation code will remain relatively constant regardless
of whether a Fiala or Pacejka tire model is used, block 2 of the simulation code will be
very different. When a Pacejka 2002 tire model function is called, 117 parameters must
be assigned for each tire in the system, but when a Fiala tire model function is called,
only 6 parameters need to be assigned for each tire. Thus, the total number of assignment
statements in the simulation code will be much higher when the Pacejka 2002 tire model
is used, as shown in Table 5.4

The time to simulate the sine steer and braking maneuvers in Simulink show that using
the simpler Fiala tire model on the generic 4-wheeled vehicle results in approximately 30%
improvment in simulation time compared to when the more complex Pacejka 2002 tire
model is used. Using the Pacejka model results in a slower simulation because of the large
number of tire parameters that must be assigned in the simulation code and passed to the
tire model function, and also because of the higher computational cost of the tire model
function itself (keep in mind that the tire model function gets called 4 times every time
step — once for each tire).

The choice of tire model can have a significant effect on simulation times for a complete
vehicle model. However, computational cost is not the only factor that must be taken
into account when selecting an appropriate tire model. The tire model must be capable
of predicting tire behavior, and thus vehicle behavior, to the desired level of accuracy.
In order to better evaluate the accuracy/efficiency trade-off, simulation results for the
generic 4-wheeled vehicle with Fiala tire model were plotted with simulation results for
the same vehicle with a Pacejka 2002 tire model. Results are shown in Figures 5.13 and
5.14.

Results for the braking maneuver are insensitive to the change in tire model. Evidently,
with the tire parameters used for this example, the Pacejka tire model predicts longitudinal
forces that are very similar to the Fiala tire model. This also has much to do with the type
of maneuver being performed. The braking maneuver does not include any lateral tire
slip; it is dominated by longitudinal tire slip. As discussed in Chapter 3, the Fiala model
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Figure 5.13: Sine Steer Results for DynaFlexPro Model with Different Tire Models
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Figure 5.14: Braking Results for DynaFlexPro Model with Different Tire Models
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does not have the ability to accurately model combined slip conditions (where significant
levels of both lateral and longitudinal slip are present), while the Pacejka 2002 tire model
does have the ability to deal with combined slip. This test maneuver does not shine a
spotlight on that difference.

Results for the sine steer maneuver are slightly more sensitive to the change in tire
model. As shown in Figure 5.13, the two tire models predict different lateral forces and
aligning moments for the front left tire. For the Pacejka tire model, the calculation Fy and
Mz used is heavily influenced by normal force and inclination angle, while these factors
do not have much of an influence on the values of Fy and Mz calculated by the Fiala tire
model. However, during a cornering event, the normal force on the outside tire increases
by roughly the same amount that the normal force on the inside tire decreases, causing
opposite effects on the lateral forces and aligning moments generated by the inside and
outside tires. This is the reason why, although the values of Fy and Mz predicted for an
individual tire might be different for the Pacejka and Fiala tire models, the overall vehicle
response, as indicated by the x-y path, yaw rate, and roll angle, is quite similar.

When making the choice between a simple Fiala tire model or a more complicated
Pacejka tire model, the analyst should ask questions like “What is the maneuver being
simulated?”, “What responses are important to me?”, “Are the simulation time savings
associated with a simpler tire model worth some loss of fidelity?”, and “Do I have enough
tire data to populate a more complicated tire model, or am I restricted to a simpler one?”.
These are questions that must be addressed by an educated analyst, in a certain context,
when the specific goals of the simulation are well-defined. The purpose of this work is not
to provide modeling advice to engineers, but rather to provide them with a process for
handling pneumatic tires in a linear graph framework, implemented as a software tool that
automatically generates efficient simulation code after the engineer has decided how to
model the vehicle. From that point of view, I can only provide some indications about the
simulation time penalties associated with certain tire models, and point out the strengths
and weaknesses of each. It is left up to the analyst to make the tough modeling decisions.
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5.4 Articulated Forestry Skidder

5.4.1 Description

The second example problem involves building a DynaFlexPro model of a Timberjack
grapple skidder that was previously modeled in ADAMS as part of a stability study [18].
A top view of the vehicle topology is displayed in Figure 5.15. The vehicle body is split
into two halves connected by a revolute joint that allows articulating motion. The vehicle
steers by rotating the two halves of the body with respect to each other. There is no
suspension; the only compliance is provided by large pneumatic tires [18]. The front and
rear axles feature open differentials, which allow all tires to rotate at different speeds. For
this model, the tire spin degrees of freedom are provided by 4 revolute joints that connect
the tires to the rest of the vehicle.

The articulated forestry skidder is an excellent example of a non-standard vehicle
topology that would be impossible to model using commercial packages like CarSim and
ADAMS/Car RealTime, which have pre-defined simulation code based on a generic vehicle
topology.

Figure 5.15: Articulated Forestry Skidder

The tire component options used in DynaFlexPro are meant to mimic the tire model
used in ADAMS. The effective rolling radius is assumed equal to the loaded radius. Tire
lag is not included in this model; the slip parameters are calculated based on the purely
kinematic relationships given by equations (3.20) and (3.21). Tire forces and moments
are evaluated using the Fiala tire model function. Different Fiala parameters are specified
for the front and rear tires, as shown in Table A.13.
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All other model parameters, including masses, rotational inertias, tire stiffness, and
geometry enforced by rigid arm components can be found in Tables A.10, A.11, and A.12.

The linear graph representation of the forestry skidder is shown in Figures 5.16 and
Figures 5.17. The graph for the front half of the vehicle looks identical to the graph for
the rear half of the vehicle, with the exception that the front body is selected into the
translational and rotational trees while the rear body is not. For clarity of presentation,
only the front half of the vehicle is shown in detail. A single road reference frame Q is
connected to the Ground frame by a rigid arm component that enforces zero translation
and rotation, so the tires are associated with a road that is always stationary and aligned
with the Ground frame.

The skidder model has 10 degrees of freedom: 6 for the 3D translational and rotational
motion of the front body, and 4 for the spin of the tires. The articulating joint does not
add a degree of freedom since its motion is a known function of time that will be specified
during the simulated maneuvers. In the linear graph, the articulating joint is represented
by a motion driver component. Torque driver edges in the rotational domain allow for the
application of a braking torque to each of the 4 wheels. Selecting front body edges and
revolute joint edges into the translational and rotational trees ensures that DynaFlexPro
will use their across variables to construct the system equations. For this tree selection,
the 10 DOF vehicle will be modeled using 10 position co-ordinates and 10 generalized
speeds. The system equations will be a set of 20 first order differential equations with no
algebraic constraints.

Note that the generalized speeds associated with the front body are components of
its velocity and angular velocity expressed in the front body’s CoM frame. The coordi-
nates used to track the position of the front body are expressed in the Ground frame,
and the coordinates used to track the orientation of the front body with respect to the
Ground frame are 321 Euler angles. These generalized speeds and coordinates were se-
lected by choosing the unit vectors used to span the full 3-dimensional across space for
edges RB FBody T1 and RB FBody R1. Different unit vectors were chosen for the 0th
(position) and 1st (velocity) derivative levels.

System equations were formulated in DynaFlexPro, specifying simplify() as the type
of expression manipulation to be performed on both the dynamic equations and the al-
gebraic constraint equations. Component-level simplification of the tire intermediate ex-
pressions was not performed.

5.4.2 Validation using ADAMS

Sine Steer Maneuver

A wide lane change was simulated by specifying a sinusoidal articulating motion. The
motion had an amplitude of 5 degrees and a period of 10 seconds, as shown in Figure
5.18. The braking torque on all 4 wheels was set equal to zero so that the vehicle would
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coast through the maneuver. The initial forward speed of the front body, expressed in the
front body CoM frame, was set to 10 m/s. Initial conditions for all other state variables
are listed in Table A.14.

Figure 5.18: Articulating Motion Applied to Forestry Skidder Model

As with previous examples, simulation code was exported from DynaFlexPro in the
C language and solved in Simulink’s “accelerator” mode using the Euler solver and a
constant step size of 1 ms. The ADAMS model was solved using the GSTIFF solver with
an SI2 formulation and an error tolerance of 1E-3. A convergence study confirmed that
neither decreasing the step size in Simulink nor tightening the error tolerance in ADAMS
would significantly change the results.

Results for the sine steer maneuver are plotted in Figure 5.19. The vehicle completes
a lane change, as evident when the path of the front body CoM is viewed in the x-y plane.
The yaw rate and roll angle plots have a sinusoidal shape similar to the articulating
motion that was applied. The articulating motion gives rise to lateral tire slip, and
therefore significant lateral forces and aligning moments. Figure 5.19 includes a plot of
Fy and Mz for the front left tire, which shows that the method used by DynaFlexPro/Tire
to calculate lateral forces and aligning moments produces extremely similar results to the
method used by ADAMS.

Excellent agreement is observed between the ADAMS and DynaFlexPro models, indi-
cating that, with the tire options specified for the forestry skidder model, the DynaFlexPro
tire component behaves accurately for maneuvers dominated by steering motions, lateral
tire forces, and aligning moments.

Braking Maneuver

A braking maneuver was simulated by applying an identical torque to all four wheels.
The brake torque starts at 0 Nm, ramps to 20000 Nm between time = 2.0 seconds and
time = 2.5 seconds, is held at 20000 Nm until time = 3.5 seconds, and ramps down to 0
Nm by time = 4.0 seconds, as shown in Figure 5.20. The articulating motion was held
constant at zero degrees in an attempt to force the vehicle to move forward in a straight
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Figure 5.19: Response of Articulated Forestry Skidder for Sine Steer Maneuver
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Figure 5.20: Brake Torque Applied to Articulated Forestry Skidder Model

Figure 5.21: Response of Articulated Forestry Skidder for Braking Maneuver
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line. Initial conditions for state variables are listed in Table A.15.
Simulation of the DynaFlexPro model was performed in Simulink using Euler’s method

and a constant step size of 1 ms and the ADAMS model was simulated using the GSTIFF
solver with SI2 formulation and an error tolerance of 1E-3.

Results for the braking maneuver are plotted in Figure 5.21. When the braking torque
is applied, longitudinal tire forces develop that cause the vehicle to slow from its initial
speed of 10 m/s to a final speed of approximately 2 m/s. During braking, the front body
pitches forward approximately 1.5 degrees as the load on the front tires increases and the
load on the rear tires decreases. After braking, the front body eventually settles to its
initial pitch angle of 0 degrees. There is considerable pitch oscillation because the vehicle
model does not have a suspension system capable of damping out these motions.

The Fiala model rolling resistance coefficient was specified to be zero for the tires on
the articulated forestry skidder model. Therefore, the rolling resistance moment predicted
by the Fiala tire model is zero, as shown in Figure 5.21. As a consequence, the longitudinal
force settles to zero when the braking moment is released, and the vehicle does not continue
to slow down.

Once again, there is excellent agreement between the ADAMS model and the Dy-
naFlexPro model, indicating that for the tire options used with the forestry skidder ex-
ample, the DynaFlexPro tire component model is accurate for maneuvers dominated by
longitudinal tire forces.

5.4.3 Simulation Time in Simulink

For the articulated forestry skidder model, the 10 second steering maneuver was simulated
in 0.31 seconds and the 10 second braking maneuver was simulated in 0.32 seconds. Both
times are an average of 5 runs in Simulink’s “accelerator” mode. The forestry skidder
model can be simulated over 30 times faster than real-time on a desktop PC, using a
constant step size explicit solver. It more than meets the requirements for hardware-in-
the-loop applications.

As a point of comparison, it took 1.31 seconds to simulate the sine steer maneuver and
1.27 seconds to simulate the braking maneuver in ADAMS using the GSTIFF with SI2
formulation. This is significantly slower than the DynaFlexPro-generated model being
solved in Simulink using Euler’s method. However, comparison of ADAMS solution times
to Simulink solution times should be done with reservation because the nature of the
solvers is so different.

5.4.4 Component-Level Simplification for Tire Intermediates

As with the previous example, different simplification schemes were investigated for tire
intermediate variable symbolic expressions. The effects are summarized in Table 5.5. The
same trends that were identified for the generic 4-wheeled vehicle with independent sus-

97



Intermediate Time to Cost of Simulation
Simplification Generate Sim. Code Time (s)

Type Sim. Code (s) + × ÷ f Sine Steer Braking
none 11.4 1457 2282 16 49 0.31 0.32

simplify 19.6 2445 4484 20 118 0.36 0.37
combine 37.2 3303 5803 16 198 0.44 0.46

Table 5.5: Component-Level Simplification Applied to Tire Intermediates for Articulated
Forestry Skidder

pension can be identified for the articulated forestry skidder. Using Maple’s simplify()
command or combine() command on the symbolic expressions for tire intermediates in-
creases the time necessary to generate simulation code, only serves to make the simulation
code more computationally expensive, and results in slower simulation times. For both of
the example problems considered, it is best not to use Maple’s expression manipulation
commands on tire intermediate expressions.

5.4.5 Selecting a Tire Component Edge to the System Tree

The normal use of the linear graph tire component involves placing all tire component
edges in the cotree. As we did with the previous example, we will investigate the effects
of placing edges T1 and R1 for each tire in the system tree of the articulated forestry
skidder model. In order to maintain a valid tree selection, all revolute joint edges were
moved to the cotree, as shown in Figure 5.22 and 5.23. As a result, the revolute joint
rotations will no longer be considered as state variables.

With tire component edges T1 and R1 in the tree, the position, orientation, velocity,
and angular velocity of each tire center frame with respect to the Ground frame will be
state variables and 24 dynamic equations related to the tires will be formulated. Adding
the 6 dynamic equations related to rotational and translational motion of the front half
of the body, we arrive at a total of 30 dynamic equations used to describe the 10 degree of
freedom forestry skidder model. There will be 30−10 = 20 algebraic constraint equations
necessary to enforce the dependencies of the chosen coordinates. The system is described
by a set of 30 dynamic equations and 20 algebraic constraint equations. We should expect
the system equations (block 3 of the simulation code) to be more costly to evaluate than
the case where all tire edges were in the cotree and the dynamic equations were a minimal
set of 10 ODEs.

As with the generic 4-wheeled vehicle example, algebraic constraint equations were
differentiated twice, combined with the dynamic equations, and Baumgarte constraint
stabilization used to keep position-level constraint violation from growing out of control.
Parameters of α = 20 and β = 20 were chosen for the Baumgarte constraint stabilization.

With edges T1 and R1 selected into the tree for each tire, the system equations are
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Cost of Simulation
Placement of Sim. Code Time (s)
Tire Edges + × ÷ f Sine Steer Braking

cotree 1457 2282 16 49 0.31 0.32
tree 6765 8705 36 95 0.51 0.54

Table 5.6: Effect of Tree Selection on Simulation Code and Simulation Times for Articu-
lated Forestry Skidder Model

based on 30 generalized speeds p and 30 coordinates q for a total of 60 state variables.
The initial conditions for these state variables were chosen to be equivalent to the initial
conditions used for validation versus ADAMS in Section 5.4.2. The initial conditions
used for the sine steer and braking maneuvers are listed in Table A.16 and Table A.17,
respectively.

Having a tire edge in the tree shortens the chain of branches whose across variables
must be added to obtain symbolic expressions for ~rC/Q, ~vC/Q, ~ωC/Q, and RC/Q in terms
of state variables, and should reduce the computational cost associated with block 1 of the
simulation code. However, it also increases the number of dynamic equations associated
with block 3 of the simulation code. Table 5.6 shows that the increased cost of the system
equations far outweighs the decreased cost of the tire component intermediate variables
for the articulated forestry skidder. Overall, the simulation code is more costly when tire
edges are placed in the tree, which results in longer simulation times.

Recall that when tire edges were selected into the tree of the generic 4-wheeled vehi-
cle model and Baumgarte constraint stabilization was employed to handle the algebraic
constraints, the step size for the Euler solver had to be significantly reduced to obtain
a converged solution. However, when the same process was employed with the forestry
skidder model, a converged solution was obtained with Euler’s method and a constant
step size of 1 ms. Results for the braking and steering maneuver look identical to those
presented in Figures 5.19 and 5.21. Although the solution is slower when tire edges have
been placed in the tree, the simulation code for the forestry skidder is still suitable for
real-time applications and hardware-in-the-loop.

The suitability of Baumgarte constraint stabilization coupled with an explicit fixed
step solver for simulating vehicle models with algebraic constraints is highly dependent on
the details of the vehicle model and tire model. For some models with algebraic constraints
(like the forestry skidder with tire edges in the tree), the process can result in faster
than real-time simulations with a converged solution. For other models with algebraic
constraints (like the generic 4-wheeled vehicle with tire edges in the tree) the required step
sizes are prohibitively small for real-time simulation. Future research should be done to
determine a method for handling algebraic constraint equations that consistently enables
real-time simulation for a wide variety of vehicle models.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

A tire component model was developed that allows the inclusion of pneumatic tires as
part of a larger multibody, multi-domain model, whose governing equations can be au-
tomatically formulated using a procedure based on linear graph theory. New types of
component-level information were introduced, including rules for generating an interme-
diate computational sequence and rules for calling external functions from within the
main simulation code. These rules help to automate the process of generating efficient
simulation code for vehicle models containing tires, and draw on elements of linear graph
theory and symbolic computing.

The approach offers analysts a unique set of advantages:

• The DynaFlexPro tire component is designed to work within a formulation pro-
cedure based on linear graph theory and the principle of orthogonality, a method
that applies equally to mechanical, hydraulic, and electrical domains. Vogt et al.
have recently used the DynaFlexPro and DynaFlexPro/Tire to build a mechatronic
vehicle model [55].

• In contrast to specialized programs for real-time simulation of vehicle dynamics
that use hard-coded equations representing a generic model topology, the approach
presented in this thesis allows the automatic generation of efficient simulation code
describing any model topology.

• The linear graph formulation procedure offers the analyst complete freedom to select
the modeling variables used to describe the multibody portion of his vehicle model,
simply by selecting a system tree and specifying the unit vectors used to span the
across space of tree edges.

• DynaFlexPro and DynaFlexPro/Tire are built on top of the general purpose sym-
bolic math tool, Maple, which allows engineers to view system equations in a mean-
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ingful form and perform additional operations on them if they see fit. All of Maple’s
functionality is available to them.

• Several tire component options are available which allow analysts to choose the
expression used to estimate effective rolling radius, whether or not to introduce
differential equations for tire transient behavior, and which tire model function to
use. All of these decisions can be made independently.

• The method of constructing vehicle simulation code allows analysts the flexibility
to define their own external functions for use with instances of the tire component.
This enables research to be conducted into new tire models or new ways of evaluating
derivatives of tire slip state variables; engineers are not restrained to a finite list of
available functions.

DynaFlexPro and DynaFlexPro/Tire were used to generate simulation code for a
generic 4-wheeled vehicle with independent suspension and an articulated forestry skid-
der; both vehicle models have an open-loop topology, which allowed formulation of their
governing equations as a set of ODEs. Validation of the DynaFlexPro generated vehicle
models against equivalent models built in MSC.ADAMS demonstrated the accuracy of
the tire component model and its software implementation.

For the example models considered, with a tree selection (choice of modeling variables)
that results in a minimal set of ODEs with no algebraic constraints, the simulation code
generated is suitable for real-time applications and hardware-in-the-loop. The simulation
code was exported in the C language and solved in Simulink, where vehicle behavior was
simulated 20-30 times faster than real-time using a constant step size explicit solver on a
PC with a 3.2 GHz Pentium 4 processor and 1GB of RAM.

With a tree selection that included tire component edges, and which resulted in the
formulation of system equations in terms of both differential and algebraic equations, the
picture was less clear. The algebraic constraint equations were dealt with by differen-
tiating them twice and using Baumgarte constraint stabilization to control the error in
the position-level constraints. This technique worked well for the forestry skidder model,
which displayed a converged solution when solved using Euler’s method and a step size of
1 ms, and could be solved faster than real-time in Simulink. The technique did not work
as well for the generic 4-wheeled vehicle model. With tire edges selected into the tree and
Baumgarte constraint stabilization used to handle the algebraic constraint equations, a
step size of 0.02 ms was required to ensure a converged solution, and the generic 4-wheeled
vehicle model could not be solved faster than real-time on a PC with a 3.2 GHz Pentium
4 processor and 1GB of RAM.
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6.2 Recommendations for Future Research

One of the main accomplishments of this work was the implementation of a method for
controlling the size of tire intermediate expressions. Within the computational sequence
used to evaluate tire intermediates, the substitution of certain expressions was delayed
and dummy names used in their place. The rules that define which symbolic expressions
get substituted, and which are left as dummy names, work well for the example problems
considered in this thesis but may not be optimal for all conceivable vehicle models. Future
research should be performed using different rules for constructing a tire intermediate
computational sequence, applied to many different vehicle models, in order to identify
how and under what conditions the computational effort associated with calculating tire
intermediate variables can be reduced.

The results presented in this thesis are inconclusive about the suitability of vehicle
models described by DAEs for real-time applications. In the current version of DynaFlex-
Pro, algebraic constraint equations can only be solved on the acceleration level. Work
should be done to allow the inclusion of a modified Newton/Raphson algorithm within the
simulation code that is generated by DynaFlexPro. This would allow algebraic equations
to be solved on the position level, and has the potential to be used for hardware-in-the-loop
applications, as long as the number of iterations used by the Newton/Raphson algorithm
at each time step is limited to a fixed value.

A constant step size explicit solver (Euler’s method) was used to simulate the behavior
of example vehicle models. Implicit solvers perform better than explicit solvers for stiff
ODEs, like the ones obtained when acceleration-level constraint equations are combined
with the dynamic equations. If implicit solvers are to be used for hardware-in-the-loop
applications, the number of iterations performed by the solver at each time step must
be limited to a fixed value. Modified implicit solvers should be developed and used in
conjunction with DynaFlexPro-generated vehicle models in the future.

The importance of investigating modified Newton/Raphson methods for solving alge-
braic constraint equations and modified implicit solvers for solving stiff sets of differential
equations increases when closed-loop vehicle topologies are considered, for which algebraic
constraint equations are unavoidable. The use of specialized DAE solvers might also be
investigated, as long as the number of iterations performed by the solver can be limited
for HIL applications.

Another area of research involves the choice of modeling variables used to describe
vehicle systems containing tires. Selecting a tire edge into the system tree shortens the
chain of branches whose across variables must be added in order to obtain expressions
for the kinematics of the tire in terms of the chosen modeling variables. Placing a tire
edge in the tree was not advantageous for the open-loop vehicle topologies examined in
this thesis because this type of tree selection forced the formulation of system equations
as DAEs, when a set of ODEs would have been more efficient. For certain closed loop
topologies, where a set of DAEs is unavoidable, the advantages of placing tire component

104



edges in the tree may outweigh the disadvantages.
Thus far, the linear graph tire component has been applied to models involving sta-

tionary roads, but the method it is equally applicable to models involving moving road
planes (for example, a four-post shaker). Models involving moving roads should be built
and tested to ensure robustness of the method.

A main limitation of the current tire component model is its restriction to planar
roads. The possibility of extending the theory presented in this thesis to 3D roads should
be investigated, including the possibility of incorporating tire models that are specifically
designed for predicting vehicle response over rough terrain, such as the Flexible Ring Tire
Model (FTire) [8].
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Appendix A

Model Parameters and Initial

Conditions

A.1 Generic 4-Wheeled Vehicle with Independent

Suspension

For definition of the x, y, and z directions, refer to Figure 5.3. All body-fixed reference
frames are initially aligned with the inertial (Ground) reference frame.

Mass Rotational Inertia (kg ·m2)
Body (kg) Ixx Iyy Izz Ixy Ixz Iyz
Vehicle Body 2077 330 1925 1925 0 110 0
Lumped Mass * 10 1.0 0.5 1.0 0 0 0
Tires * 28 0.78 1.56 0.78 0 0 0
Front Knuckles ** 0 0 0 0 0 0 0
* same at every corner
** only present in ADAMS model

Table A.1: Inertia Properties for Generic 4-Wheeled Vehicle

Spring/Damper Stiffness(N
m) Free Length(m) Damping(N ·s

m )
Front Corner * 48289 0.674 3075
Rear Corner * 30518 0.72 2331

Tires ** 3.04E5 0.355 500
* same left to right
** same at every corner

Table A.2: Spring/Damper Properties for Generic 4-Wheeled Vehicle
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Translation(m) Rotation(rad)
Rigid Arm x y z θ1 θ2 θ3

BodyCOM to FLcorner 1.353 0.76 0.0 0.0 0.0 0.0
BodyCOM to FRcorner 1.353 −0.76 0.0 0.0 0.0 0.0
BodyCOM to RLcorner −1.487 0.795 0.0 0.0 0.0 0.0
BodyCOM to RRcorner −1.487 −0.795 0.0 0.0 0.0 0.0

Ground to Road Frame Q 0.0 0.0 0.0 0.0 0.0 0.0

Table A.3: Enforced Geometry for Generic 4-Wheeled Vehicle

Parameter Value Description
Fz0 4850 Nominal normal force
R0 0.344 Unloaded radius
V 0 16.6 Reference Velocity

LFz0 1 Scale factor of nominal load
LCx 1 Scale factor of Fx shape factor
Lµx 1 Scale factor of Fx peak friction coefficient
LEx 1 Scale factor of Fx curvature factor
LKx 1 Scale factor of Fx slip stiffness
LHx 1 Scale factor of Fx horizontal shift
LV x 1 Scale factor of Fx vertical shift
Lγx 1 Scale factor of camber for Fx

LCy 1 Scale factor of Mz shape factor
Lµy 1 Scale factor of Mz peak friction coefficient
LEy 1 Scale factor of Mz curvature factor
LKy 1 Scale factor of Mz cornering stiffness
LHy 1 Scale factor of Mz horizontal shift
LV y 1 Scale factor of Mz vertical shift
Lγy 1 Scale factor of camber for Mz

Ltrail 1 Scale factor of peak pneumatic trail
Lres 1 Scale factor for offset of residual residual torque
Lγz 1 Scale factor of camber for Mz

LXα 1 Scale factor of slip angle influence on Fx

LY κ 1 Scale factor of longitudinal slip influence on Mz

LV yκ 1 Scale factor of longitudinal slip influence on Mz

LS 1 Scale factor of moment arm of Fx about vertical axis
LMx 1 Scale factor of overturning couple

LV Mx 1 Scale factor of Mx vertical shift
Table A.4: Pacejka 2002 Tire Model Parameters for Generic 4-Wheeled Vehicle

continued on next page

107



continued from previous page
Parameter Value Description

LMy 1 Scale factor of rolling resistance torque
PCx1 1.6411 Shape factor for longitudinal force
PDx1 1.1739 Longitudinal friction, µx, at Fz0 and zero inclination
PDx2 −0.16395 Variation of friction, µx, with load
PDx3 5.0 Variation of friction, µx, with inclination
PEx1 0.46403 Longitudinal curvature EFx at Fz0
PEx2 0.25022 Variation of curvature EFx with load
PEx3 0.067842 Variation of curvature EFx with load squared
PEx4 −3.7604E − 5 Brake/drive asymmetry factor for EFz

PKx1 22.303 Longitudinal slip stiffness Kfx
Fz at Fz0

PKx2 0.48896 Variation of slip stiffness Kfx
Fz with load

PKx3 0.21253 Exponent in slip stiffness Kfx
Fz with load

PHx1 0.0012297 Horizontal shift of longitudinal slip at Fz0
PHx2 0.0004318 Variation of horizontal shift with load
PV x1 −8.8098E − 6 Vertical shift at Fz0
PV x2 1.862E − 5 Variation of vertical shift with load
RBx1 13.276 Slope factor for combined slip Fx reduction
RBx2 −13.778 Variation of slope Fx reduction with longitudinal slip
RCx1 1.2568 Shape factor for combined slip Fx reduction
REx1 0.65225 Curvature factor for combined slip Fx reduction
REx2 −0.24948 Variation of curvature factor with load
RHx1 0.0050722 Shift factor for combined slip Fx reduction
QSx1 0.0 Vertical force induced overturning moment
QSx2 0.0 Camber induced overturning couple
QSx3 0.0 Aligning moment induced overturning couple
PCy1 1.3507 Shape factor for pure lateral force
PDy1 1.0489 Lateral peak friction, µy

PDy2 −0.18033 Variation of µy with load
PDy3 −2.8821 Variation of µy with inclination squared
PEy1 −0.0074722 Lateral force curvature factor at Fz0
PEy2 −0.0063208 Variation of curvature with load
PEy3 −9.9935 Dependency of curvature on the sign of slip angle
PEy4 −760.14 Variation of curvature with camber
PKy1 −21.92 Maximum value of cornering stiffness KMz

Fznom

PKy2 2.0012 Load for max cornering stiffness
PKy3 −0.024778 Variation of KMz with camber
Table A.4: Pacejka 2002 Tire Model Parameters for Generic 4-Wheeled Vehicle

continued on next page
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continued from previous page
Parameter Value Description

PHy1 0.0026747 Horizontal shift of lateral force at Fz0
PHy2 8.9094E − 5 Variation of horizontal shift with load
PHy3 0.031415 Variation of horizontal shift with camber
PV y1 0.037318 Vertical shift Svy

Fz at Fz0
PV y2 −0.010049 Variation of vertical shift with load
PV y3 −0.32931 Variation of vertical shift with camber
PV y4 −0.69553 Variation of vertical shift with camber and load
RBy1 7.1433 Slope factor for combined slip Mz reduction
RBy2 9.1916 Variation of slope factor with slip angle
RBy3 −0.027856 shift term for alpha in slope factor
RCy1 1.0719 Shape factor for combined slip Mz reduction
REy1 −0.27572 Curvature factor for combined slip Mz reduction
REy2 0.32802 Variation of curvature factor with load
RHy1 5.7448E − 6 Shift factor for combined slip Mz reduction
RHy2 −3.1368E − 5 Variation of shift factor with load
RV y1 −0.027825 longitudinal slip induced side forces at Fz0
RV y2 0.053604 Variation of vertical shift with load
RV y3 −0.27568 Variation of vertical shift with camber
RV y4 12.12 Variation of vertical shift with slip angle
RV y5 1.9 Variation of vertical shift with longitudinal slip
RV y6 −10.704 Variation of vertical shift with arctan(S)
QSy1 0.01 rolling resistance torque coefficient
QSy2 0.0 rolling resistance influenced by Fx

QSy3 0.0 rolling resistance influenced by VCx

QSy4 0.0 rolling resistance influenced by V 4
Cx

QBz1 10.904 Pneumatic trail slope factor, Bt, at Fz0
QBz2 −1.8412 Variation of Bt with load
QBz3 −0.52041 Variation of Bt with load squared
QBz4 0.039211 Variation of Bt with camber
QBz5 0.41511 Variation of Bt with absolute camber
QBz9 8.9846 Slope factor for residual torque Br

QBz10 0.0 Slope factor for residual torque Br

QCz1 1.2136 Shape factor for pneumatic trail
QDz1 0.093509 Controls Peak pneumatic trail, Dt

QDz2 −0.0092183 Variation of peak Dt with load
QDz3 −0.057061 Variation of peak Dt with camber
Table A.4: Pacejka 2002 Tire Model Parameters for Generic 4-Wheeled Vehicle

continued on next page
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continued from previous page
Parameter Value Description

QDz4 0.73954 Variation of peak Dt with camber squared
QDz6 −0.0067783 Controls peak residual torque, Dr

QDz7 0.0052254 Variation of peak Dr with load
QDz8 −0.18175 Variation of peak Dr with camber
QDz9 0.029952 Variation of peak Dr with camber and load
QEz1 −1.5697 Pneumatic trail curvature at Fz0
QEz2 0.33394 Variation of trail curvature with load
QEz3 0.0 Variation of trail curvature with load squared
QEz4 0.26711 Variation of trail curvature with sign of α

QEz5 −3.594 Variation of trail curvature with γ and sign of α

QHz1 0.0047326 Pneumatic trail horizontal shift at Fz0
QHz2 0.0026687 Variation of trail horizontal shift with load
QHz3 0.11998 Variation of trail horizontal shift with γ

QHz4 0.059083 Variation of trail horizontal shift with γ and load
SSz1 0.033372 Nominal value of S

R0 : effect of Fx on Mz

SSz2 0.0043624 Variation of S with Mz

SSz3 0.56742 Variation of S with camber
SSz4 −0.24116 Variation of S with load and camber

Table A.4: Pacejka 2002 Tire Model Parameters for Generic 4-Wheeled Vehicle
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Parameter Value Description
Fz0 5900 Nominal normal force

BReff 8 Low load stiffness parameter
DReff 0.24 Peak Value of Reff

FReff 0.01 High load stiffness parameter

Table A.5: Parameters for Calculating Effective Rolling Radius

Parameter Value Description
Fz0 4850 Nominal Normal Force
R0 0.344 Unloaded Radius
LSκ 1.0 Scale Factor for Blong

LSα 1.0 Scale Factor for Blat

PTx1 2.3657 Blong at Nominal Load
PTx2 1.4112 Variation of Blong with Load
PTx3 0.56626 Variation of Blong with Exponent of Load
PTy1 2.1439 Peak Value of Blat

PTy2 1.9829 Value of Fz/Fz0 at which Blat is Extreme
PKy3 −0.90729 Variation of Blat with Inclination

Table A.6: Parameters for Stretched String Method of Calculating Relaxation Lengths

Parameter Value Description
D2 0.16 Width of Tire (m)
CS 115000 Longitudinal Stiffness (N)
Cα 117000 Lateral Stiffness (N/rad)
Cr 0.01 Coefficient of Rolling Resistance (m)
µ0 1.22 Peak Coefficient of Friction
µ1 0.2 Sliding Coefficient of Friction

Table A.7: Fiala Tire Model Parameters for Generic 4-Wheeled Vehicle — Roughly Equiv-
alent to Pacejka Parameters Presented in Table A.4
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State Initial
Variable Condition Description
vx (t) 20.0 X Component of Vehicle Body Velocity 1

vy (t) 0.0 Y Component of Vehicle Body Velocity 1

vz (t) 0.0 Z Component of Vehicle Body Velocity 1

ω1 (t) 0.0 X Component of Vehicle Body Angular Velocity 1

ω2 (t) 0.0 Y Component of Vehicle Body Angular Velocity 1

ω3 (t) 0.0 Z Component of Vehicle Body Angular Velocity 1

d
dts1 (t) 0.0 Rate of FL Suspension Extension 2

d
dts2 (t) 0.0 Rate of FR Suspension Extension 2

d
dts3 (t) 0.0 Rate of RL Suspension Extension 2

d
dts4 (t) 0.0 Rate of RR Suspension Deflection 2

d
dtphi1 (t) 57.45475438 Spin Rate of FL Tire 3

d
dtphi2 (t) 57.45475438 Spin Rate of FR Tire 3

d
dtphi3 (t) 57.43825388 Spin Rate of RL Tire 3

d
dtphi4 (t) 57.43825388 Spin Rate of RR Tire 3

x (t) 0.0 X Position of Vehicle Body COM 4

y (t) 0.0 Y Position of Vehicle Body COM 4

z (t) 0.8995 Z Position of Vehicle Body COM 4

yaw (t) 0.0 First 321 Euler Angle 5

pitch (t) 0.0 Second 321 Euler Angle 5

roll (t) 0.0 Third 321 Euler Angle 5

s1 (t) 0.5632 Position of FL Suspension Lumped Mass 2

s2 (t) 0.5632 Position of FR Suspension Lumped Mass 2

s3 (t) 0.5617 Position of RL Suspension Lumped Mass 2

s4 (t) 0.5617 Position of RR Suspension Lumped Mass 2

phi1 (t) 0.0 Rotation Angle of FL tire 3

phi2 (t) 0.0 Rotation Angle of FR tire 3

phi3 (t) 0.0 Rotation Angle of RL tire 3

phi4 (t) 0.0 Rotation Angle of RR tire 3

q1Tire1 (t) 0.0 Delayed Longitudinal Slip for FL Tire
q2Tire1 (t) 0.0 Tangent of Delayed Slip Angle for FL Tire
q1Tire2 (t) 0.0 Delayed Longitudinal Slip for FR Tire

Table A.8: Initial Conditions for Generic 4-Wheeled Vehicle with Tire Edges in Cotree

continued on next page

1expressed in BodyCoM frame
2along prismatic joint axis
3along revolute joint axis
4expressed in Ground frame
5used to track orientation of BodyCoM frame with respect to Ground frame
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continued from previous page
State Initial

Variable Condition Description
q2Tire2 (t) 0.0 Tangent of Delayed Slip Angle for FR Tire
q1Tire3 (t) 0.0 Delayed Longitudinal Slip for RL Tire
q2Tire3 (t) 0.0 Tangent of Delayed Slip Angle for RL Tire
q1Tire4 (t) 0.0 Delayed Longitudinal Slip for RR Tire
q2Tire4 (t) 0.0 Tangent of Delayed Slip Angle for RR Tire

Table A.8: Initial Conditions for Generic 4-Wheeled Vehicle with Tire Edges in Cotree

State Initial
Variable Condition Description
vx (t) 20.0 X Component of Vehicle Body Velocity 1

vy (t) 0.0 Y Component of Vehicle Body Velocity 1

vz (t) 0.0 Z Component of Vehicle Body Velocity 1

ω1 (t) 0.0 X Component of Vehicle Body Angular Velocity 1

ω2 (t) 0.0 Y Component of Vehicle Body Angular Velocity 1

ω3 (t) 0.0 Z Component of Vehicle Body Angular Velocity 1

d
dtxT ire1 (t) 20.0 FL Tire X Velocity 2

d
dtyT ire1 (t) 0.0 FL Tire Y Velocity 2

d
dtzT ire1 (t) 0.0 FL Tire Z Velocity 2

ωxTire1 (t) 0.0 X Component of FL Tire Angular Velocity 3

ωyT ire1 (t) 57.455 Y Component of FL Tire Angular Velocity 3

ωzT ire1 (t) 0.0 Z Component of FL Tire Angular Velocity 3

d
dtxT ire2 (t) 20.0 FR Tire X Velocity 2

d
dtyT ire2 (t) 0.0 FR Tire Y Velocity 2

d
dtzT ire2 (t) 0.0 FR Tire Z Velocity 2

ωxTire2 (t) 0.0 X Component of FR Tire Angular Velocity 3

ωyT ire2 (t) 57.455 Y Component of FR Tire Angular Velocity 3

ωzT ire2 (t) 0.0 Z Component of FR Tire Angular Velocity 3

d
dtxT ire3 (t) 20.0 RL Tire X Velocity 2

d
dtyT ire3 (t) 0.0 RL Tire Y Velocity 2

d
dtzT ire3 (t) 0.0 RL Tire Z Velocity 2

Table A.9: Initial Conditions for Generic 4-Wheeled Vehicle with Tire Edges in Tree

continued on next page
1expressed in BodyCoM frame
2expressed in Ground frame
3expressed in TireCoM frame

113



continued from previous page
State Initial

Variable Condition Description
ωxTire3 (t) 0.0 X Component of RL Tire Angular Velocity 3

ωyT ire3 (t) 57.438 Y Component of RL Tire Angular Velocity 3

ωzT ire3 (t) 0.0 Z Component of RL Tire Angular Velocity 3

d
dtxT ire4 (t) 20.0 RR Tire X Velocity 2

d
dtyT ire4 (t) 0.0 RR Tire Y Velocity 2

d
dtzT ire4 (t) 0.0 RR Tire Z Velocity 2

ωxTire4 (t) 0.0 X Component of RR Tire Angular Velocity 3

ωyT ire4 (t) 57.438 Y Component of RR Tire Angular Velocity 3

ωzT ire4 (t) 0.0 Z Component of RR Tire Angular Velocity 3

x (t) 0.0 X Position of Vehicle Body COM 2

y (t) 0.0 Y Position of Vehicle Body COM 2

z (t) 0.8995 Z Position of Vehicle Body COM 2

yaw (t) 0.0 First 321 Euler Angle 4

pitch (t) 0.0 Second 321 Euler Angle 4

roll (t) 0.0 Third 321 Euler Angle 4

xT ire1 (t) 1.353 X Position of FL Tire COM 2

yT ire1 (t) 0.76 Y Position of FL Tire COM 2

zT ire1 (t) 0.3363 Z Position of FL Tire COM 2

yawTire1 (t) 0.0 First 312 Euler Angle 5

tiltT ire1 (t) 0.0 Second 312 Euler Angle 5

spinT ire1 (t) 0.0 Third 312 Euler Angle 5

xT ire2 (t) 1.353 X Position of FR Tire COM 2

yT ire2 (t) −0.76 Y Position of FR Tire COM 2

zT ire2 (t) 0.3363 Z Position of FR Tire COM 2

yawTire2 (t) 0.0 First 312 Euler Angle 5

tiltT ire2 (t) 0.0 Second 312 Euler Angle 5

spinT ire2 (t) 0.0 Third 312 Euler Angle 5

xT ire3 (t) −1.487 X Position of RL Tire COM 2

yT ire3 (t) 0.795 Y Position of RL Tire COM 2

zT ire3 (t) 0.3378 Z Position of RL Tire COM 2

yawTire3 (t) 0.0 First 312 Euler Angle 5

Table A.9: Initial Conditions for Generic 4-Wheeled Vehicle with Tire Edges in Tree

continued on next page

2expressed in Ground frame
3expressed in TireCoM frame
4used to track orientation of BodyCoM frame with respect to Ground frame
5used to track orientation of tire center frame with respect to Ground frame
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continued from previous page
State Initial

Variable Condition Description
tiltT ire3 (t) 0.0 Second 312 Euler Angle 5

spinT ire3 (t) 0.0 Third 312 Euler Angle 5

xT ire4 (t) −1.487 X Position of RR Tire COM 2

yT ire4 (t) −0.795 Y Position of RR Tire COM 2

zT ire4 (t) 0.3378 Z Position of RR Tire COM 2

yawTire4 (t) 0.0 First 312 Euler Angle 5

tiltT ire4 (t) 0.0 Second 312 Euler Angle 5

spinT ire4 (t) 0.0 Third 312 Euler Angle 5

q1Tire1 (t) 0.0 Delayed Longitudinal Slip for FL Tire
q2Tire1 (t) 0.0 Tangent of Delayed Slip Angle for FL Tire
q1Tire2 (t) 0.0 Delayed Longitudinal Slip for FR Tire
q2Tire2 (t) 0.0 Tangent of Delayed Slip Angle for FR Tire
q1Tire3 (t) 0.0 Delayed Longitudinal Slip for RL Tire
q2Tire3 (t) 0.0 Tangent of Delayed Slip Angle for RL Tire
q1Tire4 (t) 0.0 Delayed Longitudinal Slip for RR Tire
q2Tire4 (t) 0.0 Tangent of Delayed Slip Angle for RR Tire

Table A.9: Initial Conditions for Generic 4-Wheeled Vehicle with Tire Edges in Tree

2expressed in Ground frame
5used to track orientation of tire center frame with respect to Ground frame
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A.2 Articulated Forestry Skidder

For definition of the x, y, and z directions, refer to Figure 5.15. All body-fixed reference
frames are initially aligned with the inertial (Ground) reference frame.

Mass Rotational Inertia about COM(kg ·m2)
Body (kg) Ixx Iyy Izz Ixy Ixz Iyz
Front Body 7280 7280 7280 7280 0 0 0
Rear Body 7280 7280 7280 7280 0 0 0
Tires * 557 112.5 225 112.5 0 0 0
* same at every corner

Table A.10: Inertia Properties for Forestry Skidder

Spring/Damper Stiffness (N
m) Free Length (m) Damping (N ·s

m )
Tires * 5.0E5 0.940 5.0E3

* same at every corner

Table A.11: Spring/Damper Properties for Forestry Skidder

Translation(m) Rotation(rad)
Rigid Arm x y z θ1 θ2 θ3

FrontBodyCOM to Articulating Joint −1.227 0.0 −0.3861 0.0 0.0 0.0
FrontBodyCOM to FLcorner 0.5 1.2275 −0.5461 0.0 0.0 0.0
FrontBodyCOM to FRcorner 0.5 −1.2275 −0.5461 0.0 0.0 0.0

RearBodyCOM to Articulating Joint 1.227 0.0 −0.3861 0.0 0.0 0.0
RearBodyCOM to FRcorner −0.5 1.2275 −0.5461 0.0 0.0 0.0
RearBodyCOM to FRcorner −0.5 −1.2275 −0.5461 0.0 0.0 0.0
Ground to Road Frame Q 0.0 0.0 0.0 0.0 0.0 0.0

Table A.12: Enforced Geometry for Forestry Skidder

Parameter Front Tires Rear Tires Description
D2 0.775 0.775 Width of Tire (m)
CS 153890 238220 Longitudinal Stiffness (N)
Cα 153890 238220 Lateral Stiffness (N/rad)
Cr 0.00 0.00 Coefficient of Rolling Resistance (m)
µ0 1.0 1.0 Peak Coefficient of Friction
µ1 1.0 1.0 Sliding Coefficient of Friction

Table A.13: Fiala Tire Model Parameters for Forestry Skidder
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State Initial
Variable Condition Description
vx (t) 10.0 X Component of Front Body Velocity 1

vy (t) 0.0 Y Component of Front Body Velocity 1

vz (t) 0.0 Z Component of Front Body Velocity 1

ω1 (t) 0.0 X Component of Front Body Angular Velocity 1

ω2 (t) 0.0 Y Component of Front Body Angular Velocity 1

ω3 (t) 0.0235 Z Component of Front Body Angular Velocity 1

d
dtphi1 (t) 11.659428 Spin Rate of FL Tire 2

d
dtphi2 (t) 11.659428 Spin Rate of FR Tire 2

d
dtphi3 (t) 11.659428 Spin Rate of RL Tire 2

d
dtphi4 (t) 11.659428 Spin Rate of RR Tire 2

x (t) 0.0 X Position of Front Body COM 3

y (t) 0.0 Y Position of Front Body COM 3

z (t) 1.403775 Z Position of Front Body COM 3

yaw (t) 0.0 First 321 Euler Angle 4

pitch (t) 0.0 Second 321 Euler Angle 4

roll (t) 0.0 Third 321 Euler Angle 4

phi1 (t) 0.0 Rotation Angle of FL tire 2

phi2 (t) 0.0 Rotation Angle of FR tire 2

phi3 (t) 0.0 Rotation Angle of RL tire 2

phi4 (t) 0.0 Rotation Angle of RR tire 2

Table A.14: Initial Conditions for Forestry Skidder — Sine Steer Event, Tire Edges in
Cotree

1expressed in front body CoM frame
2along revolute joint axis
3expressed in Ground frame
4used to track orientation of front body CoM frame with respect to Ground frame
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State Initial
Variable Condition Description
vx (t) 10.0 X Component of Front Body Velocity 1

vy (t) 0.0 Y Component of Front Body Velocity 1

vz (t) 0.0 Z Component of Front Body Velocity 1

ω1 (t) 0.0 X Component of Front Body Angular Velocity 1

ω2 (t) 0.0 Y Component of Front Body Angular Velocity 1

ω3 (t) 0.0 Z Component of Front Body Angular Velocity 1

d
dtphi1 (t) 11.659428 Spin Rate of FL Tire 2

d
dtphi2 (t) 11.659428 Spin Rate of FR Tire 2

d
dtphi3 (t) 11.659428 Spin Rate of RL Tire 2

d
dtphi4 (t) 11.659428 Spin Rate of RR Tire 2

x (t) 0.0 X Position of Front Body COM 3

y (t) 0.0 Y Position of Front Body COM 3

z (t) 1.403775 Z Position of Front Body COM 3

yaw (t) 0.0 First 321 Euler Angle 4

pitch (t) 0.0 Second 321 Euler Angle 4

roll (t) 0.0 Third 321 Euler Angle 4

phi1 (t) 0.0 Rotation Angle of FL tire 2

phi2 (t) 0.0 Rotation Angle of FR tire 2

phi3 (t) 0.0 Rotation Angle of RL tire 2

phi4 (t) 0.0 Rotation Angle of RR tire 2

Table A.15: Initial Conditions for Forestry Skidder — Braking Event, Tire Edges in Cotree

1expressed in front body CoM frame
2along revolute joint axis
3expressed in Ground frame
4used to track orientation of front body CoM frame with respect to Ground frame
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State Initial
Variable Condition Description
vx (t) 10.0 X Component of Front Body Velocity 1

vy (t) 0.0 Y Component of Front Body Velocity 1

vz (t) 0.0 Z Component of Front Body Velocity 1

ω1 (t) 0.0 X Component of Front Body Angular Velocity 1

ω2 (t) 0.0 Y Component of Front Body Angular Velocity 1

ω3 (t) 0.0235 Z Component of Front Body Angular Velocity 1

d
dtxT ire1 (t) 9.9711 FL Tire X Velocity 2

d
dtyT ire1 (t) 0.0118 FL Tire Y Velocity 2

d
dtzT ire1 (t) 0.0 FL Tire Z Velocity 2

ωxTire1 (t) 0.0 X Component of FL Tire Angular Velocity 3

ωyT ire1 (t) 11.6594 Y Component of FL Tire Angular Velocity 3

ωzT ire1 (t) 0.0 Z Component of FL Tire Angular Velocity 3

d
dtxT ire2 (t) 10.289 FR Tire X Velocity 2

d
dtyT ire2 (t) 0.0118 FR Tire Y Velocity 2

d
dtzT ire2 (t) 0.0 FR Tire Z Velocity 2

ωxTire2 (t) 0.0 X Component of FR Tire Angular Velocity 3

ωyT ire2 (t) 11.6594 Y Component of FR Tire Angular Velocity 3

ωzT ire2 (t) 0.0 Z Component of FR Tire Angular Velocity 3

d
dtxT ire3 (t) 10.384 RL Tire X Velocity 2

d
dtyT ire3 (t) 0.0 RL Tire Y Velocity 2

d
dtzT ire3 (t) 0.0 RL Tire Z Velocity 2

ωxTire3 (t) 0.0 X Component of RL Tire Angular Velocity 3

ωyT ire3 (t) 11.6594 Y Component of RL Tire Angular Velocity 3

ωzT ire3 (t) 0.0 Z Component of RL Tire Angular Velocity 3

d
dtxT ire4 (t) 9.9616 RR Tire X Velocity 2

d
dtyT ire4 (t) 0.0252 RR Tire Y Velocity 2

d
dtzT ire4 (t) 0.0 RR Tire Z Velocity 2

ωxTire4 (t) 0.0 X Component of RR Tire Angular Velocity 3

ωyT ire4 (t) 11.6594 Y Component of RR Tire Angular Velocity 3

ωzT ire4 (t) 0.0 Z Component of RR Tire Angular Velocity 3

x (t) 0.0 X Position of Front Body COM 2

y (t) 0.0 Y Position of Front Body COM 2

z (t) 1.4038 Z Position of Front Body COM 2

Table A.16: Initial Conditions for Forestry Skidder — Sine Steer Event, Tire Edge in Tree

continued on next page

1expressed in front body CoM frame
2expressed in Ground frame
3expressed in tire CoM frame
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continued from previous page
State Initial

Variable Condition Description
yaw (t) 0.0 First 321 Euler Angle 4

pitch (t) 0.0 Second 321 Euler Angle 4

roll (t) 0.0 Third 321 Euler Angle 4

xT ire1 (t) 0.5 X Position of FR Tire COM 2

yT ire1 (t) 1.2275 Y Position of FR Tire COM 2

zT ire1 (t) 0.8577 Z Position of FR Tire COM 2

yawTire1 (t) 0.0 First 312 Euler Angle 5

tiltT ire1 (t) 0.0 Second 312 Euler Angle 5

spinT ire1 (t) 0.0 Third 312 Euler Angle 5

xT ire2 (t) 0.5 X Position of FR Tire COM 2

yT ire2 (t) −1.2275 Y Position of FR Tire COM 2

zT ire2 (t) 0.8577 Z Position of FR Tire COM 2

yawTire2 (t) 0.0 First 312 Euler Angle 5

tiltT ire2 (t) 0.0 Second 312 Euler Angle 5

spinT ire2 (t) 0.0 Third 312 Euler Angle 5

xT ire3 (t) −2.954 X Position of RL Tire COM 2

yT ire3 (t) 1.2275 Y Position of RL Tire COM 2

zT ire3 (t) 0.8577 Z Position of RL Tire COM 2

yawTire3 (t) 0.0 First 312 Euler Angle 5

tiltT ire3 (t) 0.0 Second 312 Euler Angle 5

spinT ire3 (t) 0.0 Third 312 Euler Angle 5

xT ire4 (t) −2.954 X Position of RR Tire COM 2

yT ire4 (t) −1.2275 Y Position of RR Tire COM 2

zT ire4 (t) 0.8577 Z Position of RR Tire COM 2

yawTire4 (t) 0.0 First 312 Euler Angle 5

tiltT ire4 (t) 0.0 Second 312 Euler Angle 5

spinT ire4 (t) 0.0 Third 312 Euler Angle 5

Table A.16: Initial Conditions for Forestry Skidder — Sine Steer Event, Tire Edge in Tree

4used to track orientation of front body CoM frame with respect to Ground frame
2expressed in Ground frame
5used to track orientation of tire CoM frame with respect to Ground frame
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State Initial
Variable Condition Description
vx (t) 10.0 X Component of Front Body Velocity 1

vy (t) 0.0 Y Component of Front Body Velocity 1

vz (t) 0.0 Z Component of Front Body Velocity 1

ω1 (t) 0.0 X Component of Front Body Angular Velocity 1

ω2 (t) 0.0 Y Component of Front Body Angular Velocity 1

ω3 (t) 0.0 Z Component of Front Body Angular Velocity 1

d
dtxT ire1 (t) 10.0 FL Tire X Velocity 2

d
dtyT ire1 (t) 0.0 FL Tire Y Velocity 2

d
dtzT ire1 (t) 0.0 FL Tire Z Velocity 2

ωxTire1 (t) 0.0 X Component of FL Tire Angular Velocity 3

ωyT ire1 (t) 11.6594 Y Component of FL Tire Angular Velocity 3

ωzT ire1 (t) 0.0 Z Component of FL Tire Angular Velocity 3

d
dtxT ire2 (t) 10.0 FR Tire X Velocity 2

d
dtyT ire2 (t) 0.0 FR Tire Y Velocity 2

d
dtzT ire2 (t) 0.0 FR Tire Z Velocity 2

ωxTire2 (t) 0.0 X Component of FR Tire Angular Velocity 3

ωyT ire2 (t) 11.6594 Y Component of FR Tire Angular Velocity 3

ωzT ire2 (t) 0.0 Z Component of FR Tire Angular Velocity 3

d
dtxT ire3 (t) 10.0 RL Tire X Velocity 2

d
dtyT ire3 (t) 0.0 RL Tire Y Velocity 2

d
dtzT ire3 (t) 0.0 RL Tire Z Velocity 2

ωxTire3 (t) 0.0 X Component of RL Tire Angular Velocity 3

ωyT ire3 (t) 11.6594 Y Component of RL Tire Angular Velocity 3

ωzT ire3 (t) 0.0 Z Component of RL Tire Angular Velocity 3

d
dtxT ire4 (t) 10.0 RR Tire X Velocity 2

d
dtyT ire4 (t) 0.0 RR Tire Y Velocity 2

d
dtzT ire4 (t) 0.0 RR Tire Z Velocity 2

ωxTire4 (t) 0.0 X Component of RR Tire Angular Velocity 3

ωyT ire4 (t) 11.6594 Y Component of RR Tire Angular Velocity 3

ωzT ire4 (t) 0.0 Z Component of RR Tire Angular Velocity 3

x (t) 0.0 X Position of Front Body COM 2

y (t) 0.0 Y Position of Front Body COM 2

z (t) 1.4038 Z Position of Front Body COM 2

Table A.17: Initial Conditions for Forestry Skidder — Braking Event, Tire Edge in Tree

continued on next page

1expressed in front body CoM frame
2expressed in Ground frame
3expressed in tire CoM frame
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continued from previous page
State Initial

Variable Condition Description
yaw (t) 0.0 First 321 Euler Angle 4

pitch (t) 0.0 Second 321 Euler Angle 4

roll (t) 0.0 Third 321 Euler Angle 4

xT ire1 (t) 0.5 X Position of FR Tire COM 2

yT ire1 (t) 1.2275 Y Position of FR Tire COM 2

zT ire1 (t) 0.8577 Z Position of FR Tire COM 2

yawTire1 (t) 0.0 First 312 Euler Angle 5

tiltT ire1 (t) 0.0 Second 312 Euler Angle 5

spinT ire1 (t) 0.0 Third 312 Euler Angle 5

xT ire2 (t) 0.5 X Position of FR Tire COM 2

yT ire2 (t) −1.2275 Y Position of FR Tire COM 2

zT ire2 (t) 0.8577 Z Position of FR Tire COM 2

yawTire2 (t) 0.0 First 312 Euler Angle 5

tiltT ire2 (t) 0.0 Second 312 Euler Angle 5

spinT ire2 (t) 0.0 Third 312 Euler Angle 5

xT ire3 (t) −2.954 X Position of RL Tire COM 2

yT ire3 (t) 1.2275 Y Position of RL Tire COM 2

zT ire3 (t) 0.8577 Z Position of RL Tire COM 2

yawTire3 (t) 0.0 First 312 Euler Angle 5

tiltT ire3 (t) 0.0 Second 312 Euler Angle 5

spinT ire3 (t) 0.0 Third 312 Euler Angle 5

xT ire4 (t) −2.954 X Position of RR Tire COM 2

yT ire4 (t) −1.2275 Y Position of RR Tire COM 2

zT ire4 (t) 0.8577 Z Position of RR Tire COM 2

yawTire4 (t) 0.0 First 312 Euler Angle 5

tiltT ire4 (t) 0.0 Second 312 Euler Angle 5

spinT ire4 (t) 0.0 Third 312 Euler Angle 5

Table A.17: Initial Conditions for Forestry Skidder — Braking Event, Tire Edge in Tree

4used to track orientation of front body CoM frame with respect to Ground frame
2expressed in Ground frame
5used to track orientation of tire CoM frame with respect to Ground frame
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