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Abstract 
 

Reduction of CO2 Emissions from Cement Plants 

 
Governments around the world have been pressured by society to discuss 

environmental issues, and global warming is one of the most controversial debates. The 

Kyoto Protocol is an agreement made under the United Nations Framework Convention 

on Climate Change (UNFCCC). Under Kyoto protocol some countries committed to 

reduce their Greenhouse Gas (GHG) emissions.  The Intergovernmental Panel on Climate 

Change (IPCC) has predicted global rise in temperature and carbon dioxide is a major 

greenhouse gas responsible for global warming. The cement industry contributes 

approximately five per cent of the total CO2 emitted worldwide. 

 Currently Canada sustains a very aggressive objective to reduce GHG emissions 

to support the Kyoto Protocol. It is clear that international affairs and global polices will 

affect different sectors and even though cement production and distribution is constrained 

by location and natural resource availability, the major cement producers around the 

globe will be required to meet more stringent environmental regulations.  

Kyoto presents a ‘cap and trade’ mechanism that requires countries to reduce, on 

average, 5.2 per cent below their 1990 baseline. This reduction must take place between 

2008 and 2012. Although these caps are country specific, most countries are requiring 

industries to have particular objectives for reduction. This can be seen especially in 

European countries. 

The credit trade opportunity increases the possibility for an economical 

justification of new and environmentally friendly solution for GHG emissions abatement. 

St Marys Plant, located in St Marys, Ontario, was used as a case study to evaluate 

the results of various modifications on cement plants operation that can impact on the 

plant CO2 emissions. An economic model which objective is to highlight the best 

selection strategy to reduce CO2 emissions with the least cost was developed using St 

Marys Plant data as part of this thesis. 

 St Marys Plant achieved a significant result of 23.6 per cent reduction in CO2 

emissions per tonne of cement produced. The results were achieved mainly by applying a 

progressive approach prioritising project implementation effort and feasibility.  
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St Marys main steps were 1) implementation of a more robust maintenance 

system, 2) plant optimization and Kiln expert system; 3) alternative fuels and 4) major 

equipment modifications. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iv



Acknowledgements 
 

The author wishes to acknowledge and thank his supervisors, Prof. Dr. Peter 

Douglas and Prof. Dr. Eric Croiset, for their guidance and support throughout this work. 

The author is deeply grateful to Prof. Dr. Peter Douglas, who provided the opportunity to 

work with him and gave tireless support throughout the research period. The author is 

also indebted to his readers for his stimulating suggestions, encouragement and effort in 

reviewing this thesis and presentation materials meticulously and providing valuable 

comments.  

Throughout this process I have collaborated with many colleagues from St Marys 

Cement Inc.  The author also wishes to thank Mr. Luiz Daniel and Mr. Marc Vermeire of 

St Marys Cement Inc. for all their encouragement and support throughout this work. I am 

grateful for their support and feedback over the course of my work. 

Finally, I would like to give special thanks to my beloved family for their 

continuous inspiration in pursuing my research. Without their encouragement and 

understanding it would have been impossible for me to finish this work. 

 

 v



 
Table of Contents 
 
Chapter 1: Introduction, Background and Objectives......................................................... 1 
Chapter 2: Background and Literature Survey ................................................................... 3 

2.1. Introduction.............................................................................................................. 3 
2.2 Cement Manufacturing Process ................................................................................ 3 

2.2.1 Limestone Quarrying and Crushing................................................................... 4 
2.2.2 Additives Storage Hopper.................................................................................. 5 
2.2.3 Raw Mill ............................................................................................................ 5 
2.2.4 Blending and Storage Silo ................................................................................. 5 
2.2.5 Preheater and Kiln.............................................................................................. 5 
2.2.6 Cooler................................................................................................................. 8 
2.2.7 Coal Mill ............................................................................................................ 8 
2.2.8 Cement Mill ....................................................................................................... 9 

2.3 Energy Use in the Cement Manufacturing Process .................................................. 9 
2.4 Carbon Dioxide Emissions ..................................................................................... 13 

2.4.1 Carbon Dioxide Emissions from Fuel Use ...................................................... 14 
2.4.2 Carbon Dioxide Formed by Calcination.......................................................... 14 

2.5 Alternatives and Improvements for the Clinker Production ................................... 15 
2.5.1 Maintenance..................................................................................................... 16 
2.5.2 Plant Optimization and Kiln Expert System.................................................... 17 
2.5.3 Alternative Fuel and Pyroprocessing Improvements....................................... 18 
2.5.4 Raw Materials .................................................................................................. 20 
2.5.5 Process Changes............................................................................................... 21 
2.5.6 CO2 Capture and Disposal ............................................................................... 23 

2.6 Canada’s Leading Producer .................................................................................... 25 
2.7 Chapter Summary ................................................................................................... 27 

Chapter 3: Analysis and Discussion - St Marys Cement Plant Results ............................ 28 
3.1 Introduction............................................................................................................. 28 
3.2 Maintenance System ............................................................................................... 28 
3.3 Plant Optimization and Kiln Expert System – LINKMAN.................................... 29 
3.4 Alternative Fuel and Pyroprocessing Improvements.............................................. 29 
3.5 Process Changes...................................................................................................... 33 
3.6 St Marys Overall Results ........................................................................................ 38 
3.7 Chapter Summary ................................................................................................... 41 

Chapter 4: Mathematical Model for CO2 Reduction ........................................................ 41 
4.1. Introduction............................................................................................................ 41 
4.2. Optimization Model ............................................................................................... 41 
4.3 Solution Technique ................................................................................................. 44 
4.4  St. Marys Plant Case Study.................................................................................... 45 
4.5 Chapter Summary ................................................................................................... 49 

Chapter 5: Conclusion and Recommendations ................................................................. 50 
Appendix 1........................................................................................................................ 55 

 vi



List of Tables 
 
Table 1: Sequence of Chemical and Physical Changes in the Preheater Tower and 
Kiln……………………………………………………………………………….………………..8 
Table 2: Typical Data on Energy Content and CO2 Emission for Frequent Fuels………10 
Table 3: Typical Data on Energy Content and CO2 Emission for Waste Fuels……...…..10 
Table 4: Canadian Fuel Usage Summary…………...……………………………………..11 
Table 5: U.S. Fuel Usage Summary………...…………..…………………………………….11 
Table 6: Typical Limestone Composition...……...……….…………………………………14 
Table 7: Improvements Chronology at St Marys Plant..………………….…………..…….39 
Table 8: Technologies for Efficiency Improvements………….……………........................46 
Table 9: Summary of Results for Different CO2 Reduction Target……..………….……..47 
Table 10: Cost of Production per Tonne of Cement………………………………….……..48 
 
 
List of Figures 
 
Figure 1: General Cement Process Diagram...................................................................... 4 
Figure 2: Preheater Tower and Precalciner........................................................................ 6 
Figure 3: Number of Kilns by Process in the United States .............................................. 7 
Figure 4: Primary Fuel’s Used in Canada and the United States..................................... 13 
Figure 5: Typical Cement Process Mass Balance............................................................ 15 
Figure 6: Specific Net CO2 Emissions for SLC Canadian Plants ................................... 26 
Figure 7: Percentage CO2 Emissions Relative to 1990 for Canadian Plants ................... 27 
Figure 8: Maintenance Costs for St Marys Plant ............................................................. 29 
Figure 9: Preheater Tower Sulphur Build-up .................................................................. 30 
Figure 10: Petcoke Substitution at St Marys Plant .......................................................... 31 
Figure 11: The Burner Pipe New Design: ....................................................................... 32 
Figure 12: Unitherm Burner ............................................................................................ 32 
Figure 13: Temperature Profile Different Radial Air Adjustments................................. 33 
Figure 14: Preheater Tower Pressure at St Marys Plant .................................................. 34 
Figure 15: Wet System Hoppers at St Marys Plant ......................................................... 36 
Figure 16: Planetary Coolers at St Marys Plant............................................................... 37 
Figure 17: Kiln Productivity at St Marys Plant ............................................................... 38 
Figure 18: Specific CO2 Emissions at St Marys Plant ..................................................... 39 
Figure 19: CO2 Emissions at St Marys Plant ................................................................... 40 
Figure 20: Clinker and Cement Production at St Marys Plant......................................... 40 
Figure 21: Percent Increase in Cost for Different CO2 Reduction Target ....................... 48 
 

 vii



Nomenclature 
 
AASHTO - American Association of State Highway and Transportation Officials 

C3A - tricalcium aluminate 

C4AF - tetracalcium aluminoferrite 

C3S - tricalcium silicate 

CKD - cement Kiln dust 

GHG - greenhouse gas 

LOI - loss of ignition 

SLC - St Lawrence Cement  

SMC - St Marys Cement Plant 

S/R - silica ratio  

WDF - Waste-Derived Fuel 

WRI - World Resource Institute 

WBCSD - World Business Council for Sustainable Development 

 
 
 

 viii



Chemical Symbols and Formulae 
 

Al2O3 - aluminium oxide 

C - carbon 

CaCO3 - calcium carbonate 

CaO - calcium oxide 

3CaO.SiO - tricalcium silicate 

CO - carbon monoxide 

CO2  - carbon dioxide 

3CaO.Al2O3 - tricalcium aluminate 

4CaO.Al2O3.Fe2O3  - tetracalcium aluminoferrite  

Fe2O3 - ferric oxide 

H - hydrogen 

H2 - molecular hydrogen 

H2O - water 

K2O - potassium oxide 

MgO - magnesium oxide 

MgCO3 - magnesium carbonate 

N2O - nitrous oxide 

Na2O - Sodium Oxide 

NaOH - sodium hydroxide 

NO - nitrogen oxide 

NO2 - nitrogen dioxide 

NOx - nitrogen oxides 

O2 - molecular oxygen 

S - sulphur 

SO2 - sulphur dioxide 

SOx - sulphur oxides 

 SiO2 - silicon dioxide 

 

 ix



Chapter 1: Introduction, Background and Objectives 

The rapid deterioration of global environmental conditions indicated to society the 

increasing necessity to react to and debate environmental issues. One of the most 

important and debated issues is the enhanced greenhouse effect.  The burning of fossil 

fuels releases more than six billion tonnes of carbon dioxide (CO2) into the atmosphere 

each year (The Economist, 2004). 

The cement industry plays a significant role in this scenario. Concrete is the 

world’s most important construction material, and for each tonne of Portland cement (an 

essential component of concrete) produced, approximately one tonne of CO2 is emitted to 

the atmosphere. (Natural Resources Canada Climate Change, 2006). According to the 

International Energy Authority World Energy Outlook 1995, worldwide cement 

production was responsible for seven per cent of the total CO2 emitted around the world 

(Malhotra, 1999).  Environmental polices around the world are affecting different 

industrial sectors and will inevitably affect the cement industry. During the past 10 years, 

cement industries have been challenged to reduce and effectively control CO2 emissions. 

Various international initiatives can illustrate these new circumstances: 

• the Greenhouse Gas Protocol initiative developed by World Resources,  

• World Resource Institute (WRI) and World Business Council for Sustainable 

Development (WBCSD) and 

• the Kyoto Protocol. 

Environmental issues, mainly greenhouse gas mitigation, will have an economic 

impact on the cement industry. Today, there are some economically acceptable 

alternatives for manufacturing an environmentally-friendly Portland cement, e.g. 

substitute materials and alternatives fuels. Whatever alternatives are implemented, they 

must be pragmatic. 

The possibility of making a profit with CO2 emissions is also a parameter that may 

impact the competitiveness of cement groups.  

The Kyoto Protocol opened for international support on December 11, 1997 at 

Kyoto, Japan. The main objective of the Kyoto Protocol is to stabilize the greenhouse gas 

concentrations in the atmosphere, by bringing them to a level that will not interfere with 

the climate system. The Kyoto Protocol represents an agreement between industrialized 
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countries to reduce their greenhouse gas emissions 5.2 per cent compared to 1990. 

National targets vary from eight per cent reductions for the European Union and other 

countries, to six per cent for Canada and Japan. Canada ratified the treaty on December 

17, 2002 despite considerable opposition particularly by some business groups and non-

governmental climate scientists.  In addition, there is also the fear that since U.S. 

companies will not be affected by the Kyoto Protocol, Canadian companies will be at a 

disadvantage in terms of trade.  

Since the Kyoto Protocol signing, different organizations have developed 

Measurement Protocols. These protocols have been developed by the organizations partly 

as a tool for their own GHG Emission Reduction Programs. Presently, the cement sector 

has followed the WRI and WBCSD GHG Protocol (WBCSD website December 2006). 

The objective of this study is to evaluate the impact on CO2 mitigation by different 

projects implemented at St Marys Cement Plant., located in St Marys, Ontario, Canada, 

as well as discussing future steps for CO2 emission mitigation. The next Chapter will 

discuss the cement manufacturing process, its energy use, CO2 emissions and alternatives 

to improve production. 

Chapter 3 will present the results achieved by St Marys Plant from 2000 to 2006 

including management system changes as well as major process changes. An economic 

model that determines the best selection strategy with the least cost with the objective to 

minimize the total control cost is discussed in Chapter 4. Chapter 5 concludes and put in 

to perspective the practical results from St. Marys Plant. 
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Chapter 2: Background and Literature Survey 
2.1. Introduction 

This Chapter discusses the cement manufacturing process, its energy use, CO2 

emissions and alternatives to improve production. The cement industry is a significant 

player in the greenhouse gas scenario. Concrete is one of the world’s most important 

construction material, and for each tonne of Portland cement produced, approximately 

one tonne of CO2 is emitted to the atmosphere. This scenario raises the necessity of 

practical solutions and improvements in the cement industry that could result in lower 

CO2 emission. 

2.2 Cement Manufacturing Process 

Portland cement manufacturing requires a precise mix of raw materials. This mix is 

commonly called the raw mix and consists of two main natural raw materials: limestone 

(calcium carbonate-CaCO3) and argillaceous materials (alluminosilicates). The cement 

industry must therefore start by quarrying limestone and clay. 

The main objective of raw material control is to produce a Kiln feed that will allow 

the production of a quality cement clinker, while conserving as much energy as possible. 

The cement clinker (clinker) requires a defined proportion of the elements calcium, 

silicon, aluminium and iron; all these raw materials together with the fuel ash must 

combine and form the typical clinker composition: CaO= 65 ± 3%, SiO2= 21 ± 2%, 

Al2O3= 5 ± 1.5%, and FeO3 = 3 ± 1% (Bhatty 2005). 

The main process steps will be discussed next; Figure 1 shows the main unit 

operations in the cement process. 
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Figure 1: General Cement Process Diagram 

 

2.2.1 Limestone Quarrying and Crushing 

Limestone is the most suitable source of CaCO3 for cement production. Other raw 

materials are silica, alumina, and iron. Raw Feed consists basically of limestone; the 

typical limestone used in cement production has 75 to 90 per cent CaCO3. The reminder 

is magnesium carbonate (MgCO3) and impurities. 

Typically, cement plants are located close to the limestone source. The quarrying 

operations are done using the open mining process. Quarrying is done through drilling, 

blasting and using heavy earth moving equipment such as bulldozers and dump trucks. 

The quarried raw material is then transported to the cement plant using mechanical 

conveying equipment, such as conveyor belts. The main steps to produce crushed 

limestone are:  

• Overburden removal – remove soil, clay, and loose material and vegetation; 

• Blasting of the limestone deposit; 

• Transport of the blasted limestone to the Primary Crusher; and, 

• Crushing of the limestone at the Primary Crusher to reduce stone size to about 25 

cm and then through the Secondary Crusher to reduce stones to approximate size 

of 5 to 10 cm). 

The quarried limestone is normally in the form of large boulders, ranging from a 

few centimetres inches to several meters in diameter. These varying sizes of limestone 
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need to be crushed to about 4 cm in order to be used in the next step for the raw feed 

preparation. Limestone quarrying will consume approximately 85 per cent of the total 

energy used in the mining process. The other 15 per cent will be consumed by the 

crushing process and the limestone transport system composed of a sequence of conveyor 

belts and dust collectors. 

2.2.2 Additives Storage Hopper  

To achieve the required raw feed composition it is necessary to add some iron, 

bauxite, quartzite and/or silica. These materials can be stored in silos or hoppers and are 

transported using conveyor belts in conjunction with weigh-feeders. These additives 

provide the cement plant with the flexibility to correct any natural deviation in the raw 

materials composition. 

2.2.3 Raw Mill  

The raw material mix will be ground up before being sent to the process stage. 

The grinding process can be performed using either ball mills or vertical roller mills. 

During this stage, part of the excess heat from the Kiln is used to dry the raw mix. 

2.2.4 Blending and Storage Silo  

To reduce the natural chemical variation in the various raw material sources it is 

necessary to blend and homogenize the raw material efficiently. The main objective of 

this step is to minimize impacts on the efficiency of the Kiln.  

2.2.5 Preheater and Kiln 

The main step in the dry cement manufacturing process is the raw material 

burning or clinkering. This step takes place in the Preheater Tower and in the Kiln. The 

Preheater Tower is composed of a series of countercurrent flow cyclones that transfer 

heat from the Kiln to the raw materials. Some of the newest Preheater Towers have a 

section which contains a fuel combustion chamber shown in Figure 2. This section is 

commonly called precalciner due to its function. In this stage the calcination of the raw 

materials will start and CO2 will be formed. 
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The Kiln is the main piece of equipment in the cement plant and “are the world’s 

largest piece of moving industrial process equipment and one of the hottest” (Choate 

2003). The kiln is a long, horizontal, rotating, cylindrical pipe that is at least 60 m long 

and can be up to 200 m long and with diameters ranging from 3 to 9 m. Its internal 

surface is covered with refractory bricks (Duda 1977). 

 

Preheater Tower 

Precalciner 

Kiln 

 
Figure 2: Preheater Tower and Precalciner  (Votorantim 2001) 

Blended raw materials are fed in to the upper end of the Preheater Tower going all 

the way through the end of the rotary Kiln. The Kiln slowly rotates, approximately one to 

four revolutions per minute, and the raw material tumbles through increasingly hotter 

zones. At this point the sequence of chemical and physical changes will start to take place 

as the temperature increases. The flame can be fuelled by powdered materials such as 

coal, petroleum coke, or by natural gas, oil, and recycled materials. The heat will start a 

series of chemical reactions and the raw material becomes molten, and fuses together into 

modules, called clinker, are the final product from the Kiln.  The clinker is discharged 

red-hot from the end of the Kiln and conducted through different types of coolers to 

partially recover the thermal energy and lower the clinker handling temperature.  Kilns 

are classified into two groups: 

• Dry Kilns- a newer and more energy efficient process; and, 

• Wet Kilns- old technology where nearly 30 to 40 per cent of the thermal energy is 

used to evaporate the raw material moisture (Choate 2003). 
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Wet Kiln technology replaces the Dry Kiln technology. Figure 3 shows a considerable 

number of Wet Kilns replaced by Dry Kilns or decommissioned in U.S in the last 20 years. 

 

U.S. Number of Kilns by Process 
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Figure 3: Number of Kilns by Process in the United States (Sullivan 2001) 
 
 

The raw material will pass through a series of chemical reactions until the clinker 

formation. Table 1 describes the sequence of chemical and physical changes that take 

place in the Preheater tower and inside the Kiln (Choate 2003). 
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Table 1: Sequence of Chemical and Physical Changes in the Preheater Tower and 
Kiln. 

 

Temp. °C Process Description Chemical Reaction 
HEATING PROCESS 

< 200 Water evaporation - 

>500 
Decomposition of 
mineral structures and 
oxide formations  

Al2O3.Fe2O3  = Al2O3 + Fe2O3 Al2O3.SiO2   
= Al2O3 + SiO2

>800 Belite formation 

CaO + SiO2  =  CaO.SiO2 CaO.SiO2 + CaO  
=  2CaO.SiO2  

CaO + Al2O3  = CaO.Al2O3CaO.Al2O3 + 
2CaO  =  3CaO.Al2O3   (C3A) 

CaO.Al2O3 + 3CaO + Fe2O3  =  
4CaO.Al2O3.Fe2O3(C4AF)          

800-900 Limestone calcination  CaCO3 = CaO + CO2
>1260 Liquid phase formation  
≈ 1450 Aluminate formation 2CaO.SiO2 + CaO  =  3CaO.SiO 

COOLING PROCESS 
1300-240 Cooling and crystal phase 

formation - 

2.2.6 Cooler 

The clinker coming out of the Kiln is approximately 1500ºC. It is cooled in an air-

cooled cooler. Ambient air is blown into the cooler to exchange heat between the hot 

clinker and the ambient air. After cooling the clinker temperature drops to approximately 

170ºC. 

 2.2.7 Coal Mill  

The coal mill is a ball mill that uses fuel such as coal, coke or grinded pet coke. 

Inside the ball mills, various sizes of balls are used. Impact and attrition are the 

principles for grinding the raw material. Larger sized balls are utilized for impact 

grinding and the smaller balls for attrition. 
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2.2.8 Cement Mill 

The final step to produce cement is the cement grinding, where the clinker is 

ground together with additives in a cement mill. The cement mill is a horizontal metallic 

cylinder containing metallic balls. As it rotates the crushing action of the balls grinds and 

mixes the clinker and additives, forming the final product (Galvao 1996). 

2.3 Energy Use in the Cement Manufacturing Process 

 
Portland cement production is a high energy demand process. The U.S. average 

Kiln fuel energy consumption in 1973 was 7GJ/t. In the mid 1990s it was about 25 per 

cent above what the best available technology would require, which was about 3GJ/t 

(Choate 2003). 

The main reason for the energy consumption reduction is the conversion from the 

wet process to the dry process. Dry Kilns require more electricity to operate new 

equipment such as fans and blowers. However, the new dry process requires less energy 

overall.  The energy used for cement manufacturing is distributed as follows:  

• 92.7% Pyroprocessing; 

• 5.4% Finishing Grinding;  

• 1.9% Raw Grinding (Choate 2003). 

Cement Kilns use a large variety of fuel sources to provide the energy required to 

produce the high temperatures necessary for the clinker formation. Fuel is fed into the 

rotary Kiln mainly on the back end and raw material flows counter-current to a stream of 

hot gases. The energy generated by the fuel combustion will evaporate any water from 

the raw materials, calcine the limestone and finally, form the clinker. Calcination will 

take place between 700ºC and 900ºC and the clinker formation will occur at 

approximately 1500ºC. 

Carbon dioxide, formed during the pyroprocessing, is a direct consequence of the 

type of fuel used. The most common fuel sources for the cement industry are: 

• Coal; 

• Fuel oil; and, 

• Petroleum coke. 
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In addition, some cement plants use natural gas, and alternative fuels. The most 

frequently used fuels and their energy content are shown in Table 2. 

Table 2: Typical Data on Energy Content and CO  Emission for Frequent Fuel2 s (Choate 
2003). 
 

Fuel Energy content 
(MJ/kg) 

CO2 emission factor 
(kg/MJ) 

Coal 32 0.103 
Fuel oil 40 0.077 
Natural gas 36 0.056 
Petroleum coke 34 0.073 to 0.095 

 

 

 The amount of CO2 generated by waste fuel is considered to be zero as show in 

Table 3. This is based on the argument that the CO2 generated by waste fuels would be 

released into the atmosphere by natural degradation, and during the natural process the 

energy content would not be applied in any manufacturing process. In addition, by 

replacing fossil fuels with waste fuel, cement companies will avoid (by the pyroprocess) 

extra generation of CO2. At this time, no consideration is given to CO2 generated 

through transportation and the blending of waste fuel.  

Table 3: Typical Data on Energy Content and CO  Emission for Waste Fuel2 s (Choate 
2003).   

Fuel Energy content 
(MJ/kg) 

CO2 emission factor 
(kg/MJ) 

Scrap tires 21 NA 
Plastics 33 NA 
Waste oil 38 NA 
Paper residues 6 NA 
Waste solvents 18-23 NA 

An important point to be considered for any fuel used the cement industry is that 

the average calorific value for clinkerisation is about 15 MJ/kg and the minimum value 

to self-support the burner flame is 10 MJ/kg. 

Canadian fuel usage (Table 4) is still basically focused on coal with a small 

percentage of Canadian plants using waste materials (Sullivan 2001). Alternate fuels are 

used as secondary fuel source based on cost and availability.  
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Table 4: Canadian Fuel Usage Summary 
 

Type of Fuel Number 
of Plants 

Clinker 
Capacity (100 

tonnes) 

Percent of the 
Total Capacity 

PRIMARY FUEL 
Coal, Coke 6 5718 36.1% 
Coal 5 5328 33.6% 
Natural gas 2 2160 13.6% 
Coke, Waste 1 970 6.1% 
Oil, Natural Gas, 
Coke 1 929 5.9% 

Coke  1 732 4.6% 
TOTAL 16 15837 100.0% 

ALTERNATE FUEL 
Natural gas 5 3821 38.2% 
Waste 4 3463 34.6% 
Oil, Natural Gas, 
Waste 2 1989 19.9% 

Coal 1 732 7.3% 
TOTAL 12 10005 100.0% 

In addition, U.S. plants (Table 5) have a much more diversified fuel mix than 

Canadian plants. It is evident that U.S. plants are more flexible than Canadian plants in 

their use of different types of fuel and waste fuels (Figure 4). This is basically related to 

local regulations and fuel availability.  

Table 5: U.S. Fuel Usage Summary (Sullivan 2001) 
 

Type of Fuel Number of 
Plants 

Clinker 
Capacity 

(1000 
tonnes) 

Percent of 
Total 

Capacity 

PRIMARY FUEL 
Coal 64 54,539 61.1% 
Coal, Coke 15 11,217 12.6% 
Coke 7 4,831 5.4% 
Coal, Natural gas 5 6,748 7.6% 
Coal, Natural gas, Coke 3 1,709 1.9% 
Coal Oil, Coke 2 2,112 2.4% 
Coal, Natural Gas, 
Coke, Waste 2 967 1.1% 
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                                                                                                            Table 5 Continued 
Waste 2 877 1.0% 
Coal, Waste 1 2,536 2.8% 
Coal, Oil, Natural Gas 1 1004 1.1% 
Natural Gas, Coke 1 868 1.0% 
Coal, Coke, Waste 1 680 0.8% 
Coal, Natural Gas, 
Waste 1 549 0.6% 

Oil 1 402 0.5% 
Oil, Coke, waste 1 110 0.1% 
Coke  1 96 0.1% 
TOTAL 108 89,245 100.0% 

ALTERNATE FUEL 
Waste 22 19,165 25.1% 
Natural Gas 19 12,984 17.0% 
Natural Gas, Waste 17 14,695 19.2% 
Oil 10 8,698 11.4% 
Coke 9 8,163 10.7% 
Natural Gas, Coke, 
Waste 4 3,530 4.6% 

60 
Natural Gas, Coke 3 2,877 3.8% 

Oil, Waste 3 1,449 1.9% 
Coke, Waste 2 1,844 2.4% 
Oil, Natural Gas, Coke 1 1,231 1.6% 
Coal 1 565 0.7% 
Coal, Coke 1 472 0.6% 
Coal, Natural Gas, Coke 1 389 0.5% 
Coal, Natural Gas 1 308 0.4% 
TOTAL 94 76,370 100.0% 
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U.S x Canada Primary Fuel (2001)
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Figure 4: Primary Fuel’s Used in Canada and the United States 
 

2.4 Carbon Dioxide Emissions   

 The main sources of carbon dioxide in cement manufacturing are:  

• Combustion of fossil fuel and;  

• Limestone calcinations.  

 Other sources, such as the electricity (as in the case of Ontario, where electricity 

is partly generated from fossil fuels) and mobile equipment, represent a small 

contribution to the total CO2 generated by the cement manufacturing and will therefore 

not be accounted for in the present study. Approximately, half of the CO2 emitted by the 

cement industry originates from the fuel and half from the calcinations (chemical 

reaction) that will convert raw materials into clinker. 
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 2.4.1 Carbon Dioxide Emissions from Fuel Use 

  The cement companies use different sources of fuel. The most common are coal, 

petroleum coke, fuel oil and natural gas.  

Among the elements that make up the cement kiln, fuel carbon and hydrogen are 

the elements that contribute the most energy during the combustion process. Other 

elements, such as sulphur and nitrogen oxides, are also present in the combustion process 

and not only represent a small contribution to the energy process, but also represent a 

considerable environmental concern. 

Currently, the cement industry in North America and Europe bases their fuel 

choice on three basic points: cost, product quality and environmental impact. The fuel 

that best fills these three basic requirements will be the preferred choice. It is important to 

note that factors such as the cost of a new firing system, the amount of storage and local 

fuel availability will also play a key role in the decision process. 

2.4.2 Carbon Dioxide Formed by Calcination  

A large percentage of cement plants are located close to their source of calcium 

oxide. This is an essential requirement since limestone represents about two-thirds of the 

clinker composition by mass. A typical clinker raw mix is made up of approximately 80 

per cent limestone. Table 6 shows typical limestone composition in mass per cent. 

 

Table 6: Typical Limestone Composition (Bhatty 2004) 
 

Elements, as 
oxides 

Pure 
limestone 

Intermediate 
limestone 

Siliceous 
limestone 

Cement 
rock 

SiO2 0.25 6.83 9.05 13.19 
AL2O3 0.15 2.67 1.03 4.87 
Fe2O3 0.13 1.14 0.42 1.75 
CaO 55.31 48383 48.83 41.96 
MgO 0.4 0.7 0.85 2 
SO3 0.02 0.58 0.52 0.83 
Na2O 0.03 0.09 0.11 0.36 
K2O 0.04 0.3 0.35 0.78 
Loss on Ignition, 
LOI 43.66 38.85 38.76 34.2 
Silica Ratio, S/R 0.89 1.78 6.24 1.99 
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During the clinker process limestone will suffer calcination and CO2  will be 

formed. The limestone chemical reaction can be expressed by the equation below: 

 

              CaCO3  CaO + CO2

                 1 kg           0.56 kg   + 0.44 kg 

 

The percentage of calcium oxide (CaO) in clinker is usually between 64 and 67 

per cent. The complement comprised of iron oxides, silicon oxides and aluminum oxides. 

The amount of CO2 generated by the process varies based on the specific loss of the raw 

materials (limestone) on ignition.  

 An example of mass balance for production of one tonne of cement is shown in 

Figure 5 (IEA Greenhouse Gas R&D 1999). 

 
 

 
 
 
 
 

 

 

 

1150 kg raw material 
0.94 kg air 
 

600 kg CO2
1566 kg N2 
262 kg O2 

63 kg fuel oil 
1050 kg air 
 

Figure 5: Typical Cement Process Mass Balance 

 

2.5 Alternatives and Improvements for the Clinker Production 

 GHG mitigation has now become an important factor in creating a sustainable 

cement industry. Finding alternatives through CO2 mitigation processes is paramount for 

the future of the cement industry. GHG emissions are one of the most serious 

environmental problems that will affect rich as much as poor, developed as much as 

emerging countries. Although regulated locally by different countries, the top 10 cement 

producers have their plants spread around the globe, and as part of a sustainability 

strategy, the cement industry is forced to reduce emissions.  
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 Despite a clear issue and strong arguments the current U.S. administration does 

not support the Kyoto Protocol. The U.S. position is justified due to potential negative 

impacts on the U.S. economy.  

 In addition, GHG mitigation has to overcome commercial and economical 

barriers. During the last 20 years environmental matters have had more influence in 

different global agreements; however, since solutions could result in a reduction in the 

profit margin of certain multinational corporations or adversely impact the economy of 

industrialized countries, the only possible solution is one that will offer environmental 

gains and strong business opportunities. 

 The cement industry plays an important role in supplying one of the most basic 

materials for virtually all types of infrastructure. This fact brings to the equation the 

social responsibility involving the cement producer. This social responsibility creates a 

much deeper discussion than the issues of profits and margins. 

 It is a fact that 15 to 20 per cent of the world’s population consumes large 

quantities of energy and generates huge amounts of CO2. This  high demand for energy is 

caused not only by a high standard of living, but also by challenges such as raw material 

availability, lack of environmental solutions (such as environmentally friendly power 

plants), and probable shortage of fuel.  On the other hand, approximately 80 per cent of 

the world’s population has limited economic resources to solve all serious environmental 

and social problems. These parts of the world face death, extreme poverty, increasing 

violence, and do not acknowledge environmental problems. 

 In order to achieve CO2 mitigation targets while promoting the sustainability of 

the cement industry, the following steps have been taken by different cement plants 

around the world: 

2.5.1 Maintenance  

Maintenance is one general aspect that involves not only trained personnel, but 

also the commitment of management to keep and enforce the program principles during 

the short and long term. Many maintenance programs have been launched with success. 

One of the most important parts of a maintenance system is preventive maintenance. 

Preventive maintenance can increase plant efficiency and reduce the cost of corrective 
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maintenance.  One example of results delivered by a successful maintenance system is 

energy savings. Actions such as false air survey and control of the leaking point can 

significantly increase the kiln thermo efficiency. It is estimated that a simple air leak at 

the kiln hood can contribute to a 46 kJ/kg of clinker increase on the kiln thermal 

consumption (IEA Greenhouse Gas R&D 1999). 

Other strategies to reduce energy consumption include the gradual substitution of 

old motors by high-efficiency motors and the implementation of an integrated 

management system where the daily process routine contributes directly to increase 

maintenance effectiveness. The feeders and scales performance are examples of 

equipment that have direct influence on the kiln feed quality. A developed maintenance 

plan will support the kiln feed quality reducing the deviation on the material proportions 

which directly affect the fuel consumption. 

In general, a good maintenance program will contribute to an increase in the plant 

utilization ratio reducing the numbers of start-up and kiln preheats during the year 

(Saxena 1995). Although not easily quantified, it is clear that a well structured 

maintenance program can highly contribute to emission reduction and plant performance 

improvement. 

2.5.2 Plant Optimization and Kiln Expert System 

 Plant optimization has been largely implemented in the cement industry not only 

as an action to reduce emissions, but also to promote higher kiln productivity and 

runtime. It is common knowledge in cement plants that many minor problems such as 

kiln seal leaks, cooler inefficiency, fuel atomization or fineness can compromise and 

impact plant performance. These problems alone can lead to thermal waste of up to six 

per cent. Air leaks and quality variation on the raw meal composition and fuel fineness 

have a direct relationship to the feed burnability and air flow through the kiln (Rio 

Branco 1995). 

 In addition, as part of the plant optimization the kiln expert system is an automatic 

kiln control. The expert kiln control system helps the kiln operator to maintain the kiln in 

the most stable condition possible. The expert system should minimize fuel consumption 

and maximize clinker production correcting the clinker quality as required. The main idea 
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is to make the process more consistent and reliable. For example, the operator might 

increase fan speed or reduce fuel injection based on the tower oxygen levels. It is 

estimated that the kiln expert system can reduce heat consumption by three to five per 

cent and improve refractory life by 30 to 50 per cent (Votorantim 1994)  

2.5.3 Alternative Fuel and Pyroprocessing Improvements 

 The main opportunities for improvements and reduction of emissions associated 

with the cement industry are in the pyroprocess. As discussed previously, a large part of 

energy consumption, and consequently emissions generation, takes place during the 

burning process.  It is estimated that the average pyroprocess efficiency in the U.S. is 

about 34 per cent. Opportunities for improvement can be found mainly in process 

upgrades such as replacing wet systems and upgrading preheaters and precalciners. It is 

important to recognize that new burner designs and fuel systems can also play a 

considerable part in reducing emissions. New burners and fuel systems can contribute to 

reduced emissions by improving a cement plants’ flexibility to burn alternative fuels, and 

replacing high fossil carbon fuels with low fossil carbon fuels. An example of fuel 

substitution is the use of natural gas instead of coal. Some other types of alternative fuels 

include:  

• Gaseous: refinery gases and landfill gas;  

• Liquid: mineral oils, distillation residues, hydraulic oil; and, 

• Solid: sewage sludge, plastic, tires, petroleum coke and tar. 

 Alternative fuels can contribute to the cement process not only as an alternative 

source of energy, but also as a source of raw material. Other impacts of alternative fuel 

on the plant operation are the refractory utilization rate and preheater tower pressure loss 

(Grosse 1996). The organic portion will burn and generate energy required for the 

process. The mineral part will be integrated into the process and will contribute as raw 

material. Fly-ash is a typical example of alternative raw material that will contribute not 

only as a raw material but also as an energy source. 

 During the feasibility study it is important to consider the environmental impacts 

that alternative fuels may cause. Heavy metals and sulphur dioxide emissions are some of 

adverse environmental effects that the alternative fuels can cause during the pyroprocess. 
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Petcoke Substitution 

Petcoke is residue from the crude oil refineries. Typically petcoke will present 

five to 15 per cent volatile. This characteristic will represent a low reactivity and 

consequently a low burning rate. This will require a finer grinding and burners with 

higher performance. A second characteristic of petcoke used by the cement industry is the 

high sulphur content. This substantially increases the sulphur circulation in the kiln and, 

where combined with a low burning rate, will increase sulphur build-up in the kiln and 

preheater tower (Roy 2002). The cement industry has a common objective to reduce 

production cost. One of the partial solutions to reduce cost has been the use of petcoke as 

the main fuel source. Petcoke has replaced more traditional fuels such as natural gas, coal 

and oil. The determination to use one fuel over another is usually based on the relative 

cost of each fuel per unit of heat produced. Petcoke is now 30 to 40 per cent less costly 

than coal in the Canadian market and is readily available. Some plants, mainly outside of 

North America, have operated using 100 per cent of petcoke over the past 10 years. 

Replacement of Fossil Fuel by Waste-Derived Fuel (WDF) 

 It is estimated that the use of waste-derived fuel (WDF) will increase by one per 

cent worldwide per year. The alternative implemented by some cement plants is to use 

approximately one per cent of WDF to replace fossil fuel (Kihara 1999). It is important to 

note that this mitigation is indirect, because if these waste products had not been burned 

in cement kilns, they would have been incinerated or sent to a landfill, generating further 

CO2 emissions together with the CO2 generated by the fossil fuel that was not replaced. 

This alternative has a potential to add great environmental value by solving the serious 

problem of waste disposal. Unfortunately, fossil fuel substitution by WDF is not an 

alternative supported by the general public. The public perception is that it would convert 

the cement kiln into a simple incinerator. This perception from the public pressures the 

local authorities to not consider this as a reasonable alternative to reduce fossil fuel 

consumption. 
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2.5.4 Raw Materials 

Raw Meal Burnability 

 The contribution of the raw materials burnability is difficult to measure. In 

general cement plants have targets for production improvement and profit margin when 

this alternative is considered. Raw materials fineness, composition and chemical module 

are the main improvements that must be made to achieve a constant raw material 

burnability. Such improvements could directly impact the amount of fuel used daily by 

the kiln. These improvements would also extend the refractory life cycle and reduce 

power consumption (Gouda 1977). 

Use of By-products 

 This alternative can provide a practical solution to the usage of huge amounts of 

by-products every year, such as fly ash from power plants. In some cases like fly-ash, the 

by-product can contribute to improve concrete durability. This alternative needs to be 

studied locally to determine the availability and cost. European countries have been using 

by-products in high amounts. In general, it is important to note that cement standards 

need to be reviewed to accommodate the use of by-products as alternatives in the process 

of reducing GHG emissions (Damtoft 1998). 

Replacing Raw Material Limestone by Slag 

 Blast furnace slag is a non-metallic by-product from the iron production process. 

Blast furnace slag is comprised of silicates, aluminosilicates, and calcium-alumina-

silicates. By replacing raw material limestone with slag it is possible not only to prevent 

CO2 emissions due to limestone decomposition, but also to improve raw material 

burnability. Blast furnace slag is not a new supplementary cementitious material; it has 

been used by the cement industry as a component blended in cement or as aggregate 

material in the concrete mixture for the past ten years. 

 Blast furnace slag incorporation in Portland cement is specified by AASHTO 

M302 (Collins 1994).  Typically there are three types of granulated slag cement that are 

manufactured: 
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• Portland cement as covered by AASHTO M85,  

• Portland blast furnace slag cement (blended cement type IS); and, 

• Slag cement (slag cement type S) as per AASHTO M240  

Although blast slag has great use in the cement industry, its use cannot be generalized 

worldwide, since factors such as the cost of slag and transportation are prohibitive. It is 

important to observe that only 25 per cent of the energy used to manufacture Portland 

cement is required. The use of slag has important ecological and economical benefits. For 

example, the use of slag in Europe has contributed significantly to the efforts to meet the 

Kyoto targets, and has reduced the energy and raw materials necessary in the cement 

process (Ehrenberg 2002). 

2.5.5 Process Changes  

Electrical Energy Savings 

 Electrical energy is used in the cement plant to drive fans, rotate the kiln and to 

move materials. In general, the power used in the kiln corresponds to 40 to 50 kWh/tonne 

clinker. Power savings from the use of high efficiency motors will vary plant by plant and 

case by case. Most of the motor substitution is done during the replacement period when 

the motor life is nearly done.  

 Another energy consumption point in the cement process is the adjustable speed 

drivers. Drivers are, in most cases, the largest power consumers in the cement process. 

Adjustable drivers can produce savings from seven to 60 per cent (Choate 2003). These 

savings will be based on the application and the load applied to the motor and the 

application in the process. 

New Preheater Tower  

The preheater tower is a vital part of the process. A group of preheater cyclones 

should not be considered as individual parts. A new preheater tower with low pressure 

drop cyclones will reduce the power consumption of the kiln fan system. It is possible to 

achieve a reduction of 0.6 to 1.1 kW/t depending on the fan efficiency.  A new 

installation can be expensive. In addition, installation and modification are site-specific, 
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which makes it difficult to point out a general return on the investment. A new cyclone 

system can increase the overall dust transport cost (Jepsen 1998). This indicates that this 

solution is recommended for dry preheater and precalciner kilns older than 15 years of 

age. 

Kiln Burner  

Burner technology has improved quickly. A number of different burners have 

improved flame control and optimized fuel usage. One of the main objectives of the new 

burner technology is to create a more stable flame independent of the fuel type. Flame 

stability is one of the most important factors in maintaining a stable kiln operation. Not 

only can it cause adverse effects such as kiln refractory damage, but it also represents a 

safety concern for the plant personnel. An unstable flame will present various ignition 

points and a variable stand-off distance from the burner tip. In general, kiln burners mix 

fuel and air by an air stream (secondary air) entrainment into the fuel, and the primary air 

impulses the fuel. This characteristic will determine the plant’s ability to control and 

stabilize the flame. 

  The air and fuel mix rate will be determined by the kiln and burner aerodynamics 

and by the relative momentum of the various jet streams (Greco 1996). The secondary air 

is limited by the cooler opening and the fuel jet then becomes constrained. If the burner 

jet momentum is lower than required for a complete mix of fuel and air, a lazy flame will 

be formed. This will result in high CO and NOx formation (Johnson 1999). On the other 

hand if the flame momentum is greater than required it can cause recirculation. The 

recirculation phenomenon occurs when the excess momentum of the fuel jet is dissipated 

and exhaust gases from further down the kiln are pulled back into the flame. The 

recirculation effect has positive effects producing a more stable flame and reducing the 

effects caused by minor process changes. This also protects refractory from the direct 

flame attack, improving the refractory life. It is important to note that an extreme high 

flame momentum and recirculation effect can be harmful to the burner process efficiency, 

reducing the combustion effectiveness.    

 

 22



2.5.6 CO2 Capture and Disposal 
 

Different methods for the capture and disposal of CO2 at the point of combustion 

have been researched and developed. Examples of possibilities are: chemical stripping, 

membrane system, cryogenic separation and physical absorption. The implementation 

cost of each one of these possibilities is highly uncertain; costs are directly related to 

technical performance, economic growth and fuel type. Moreover, the disposal solutions 

available today present a great level of doubt regarding the technical feasibility for a full-

scale implementation.  

The CO2 concentration in a cement plant is higher than in a power generation 

process. Studies have shown that the cement production process has a high quantity of 

low quality heat. This extra heat could be used in the CO2 capture process. 

(Thambimuthu 2002)  

Chemical scrubbing has been considered as a capture process. Another possibility 

for the capture process in cement production is oxyfuel combustion, but the effect of 

higher CO2 concentration in the flue gas on the clinker quality would need to be better 

assessed. In general the average cost to capture one tonne of CO2 is estimated to be 

around USD 50 (Nazmul 2006).  

The different suggested solutions for disposal are: discharge into natural gas 

reservoirs or aquifers, discharge deep into the ocean or reuse the CO2 in useful organic 

compounds. Reviewing all the solutions available today, the ocean scenario has the 

highest capacity to store CO2, and absorbs the CO2 quantities generated by the actual 

necessity of reduction (Eckaus 1997). It is expected that in the next few years, CO2 

underground storage will be a technical and economical option for CO2 disposal. 

Currently, one of the main constraints is the integral long-term immobilisation preventing 

the CO2 from migrating and leaking back into the atmosphere. This generates a demand 

for special “CO2 cement” similar to the special oil well cement. Unfortunately such 

cement does not yet exist (ZKG International 2006). Following, is a brief discussion of 

the most common CO2 capture methods. 
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Chemical Absorption: 

 The chemical stripping method is based on Henry’s Law where the absorption 

depends on the temperature and pressure of the system. Chemical absorption is mainly 

applicable for a system where the exhaust gases present low concentration of CO2 and the 

system pressure is close to atmospheric pressure. The main steps of the stripping method 

are: 

•        Absorption of CO2 by chemical solvents; and, 

•        Recovery of CO2 from chemical solvents by using low-grade heat (usually 

extracted from power plants).  

 One of the available technologies for removing CO2 from the gas stream is 

chemisorption using monoethalnolamine.  

The design and costing of CO2 capture from cement plant flue gas is similar to the design 

and costing of capturing CO2 from power plant using monoethalnolamine (Nazmul 

2006).  

 The application of this method for cement plants was considered practicable and, 

when compared with the same method application on coal and gas power plants it should 

represent a lower operation cost (Alie 2005). At the St Marys Plant the cost for this 

method is estimated to be approximately $49-$54 per tonne of CO2 captured (Nazmul 

2006). 

 

Physical Adsorption 

Physical absorption has its main application with low concentration gases and 

vapours that are retained in a surface of porous solid materials (such as activated carbon 

and zeolites). The contaminant, in this case CO2, is held on the surface of the porous 

material by (non-chemical) surface forces. The solid adsorbent material is regenerated 

using heat and the CO2 capture is complete (Cooper 2002).  

 

Membrane Systems 

These gas separation membranes are based on different physical and chemical 

interactions between the gas stream and the membrane material. Some of the membrane 

materials currently available are: porous inorganic membranes, palladium membranes, 
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polymeric membranes and zeolites. Two of the membrane types are the gas separation 

membranes and gas absorption membranes. (Nazmul 2006). 

Carbon dioxide capture by a membrane system is not a common approach in the 

research for CO2 capture generated by the cement industry. This method consists of a 

semi-porous structure, through which some chemical species permeate more easily than 

others. The main obstacle for this technology is the necessity of multiple stages or cycles, 

which directly increases energy consumption and consequently, cost. (IEA CO2 

sequestration 2006) 

Cryogenic Fractionation 

The cryogenic fraction method is based on the compression of the gas stream and 

subsequently, the gas temperature is reduced where the separation is possible by 

distillation. This method is mainly recommended in cases of high CO2 concentration 

(more than 90 per cent). As a down side, this method requires high quantities of energy to 

compress and refrigerate the gas stream. As an advantage, this method produces liquid 

CO2, which enables easy transport and storage (Thambimuthu 2002). 

2.6 Canada’s Leading Producer 
 
 St. Lawrence Cement (SLC) is the leading producer of products and services for 

the Canadian construction industry. The data presented from SLC in this report is from 

the Joliette Plant in Quebec and the Mississauga Plant in Ontario. Note that the baseline 

data includes Beauport Plant in Quebec and Northstar Plant in Newfoundland. These last 

two plants are no longer in operation. SLC’s plants in operation today have 

Environmental Management Systems that are ISO 14001 certified. The Mississauga plant 

has a production capacity of 1.45 million tones of cement per year and currently employs 

200 persons. The Joliette Plant has a production capacity of 1.1 million tones of cement 

per year, and also employs 200 persons. The company’s senior management has a strong 

commitment to reduce and report GHG emissions, and regularly publishes environmental 

performance results. The reported data are based on the World Resources Institute and 

the Cement Working Group of the World Business Council for Sustainable Development 

(WBCSD) standards for monitoring and reporting CO2 emissions from the cement sector. 
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The impressive results achieved by the SLC totalled an 18 per cent reduction in the net 

specific direct CO2 emissions from 1990 to 2003. In 1990, SLC emitted, 838 kilograms 

per tonne of cementations product from four Canadian plants, and in 2003, the net 

specific direct CO2 emissions were 638 kilograms per tonne of cementations product 

from two cement plants. The key projects reported by SLC that were responsible for 

these significant reductions are: 

• The replacement of the less energy efficient kilns at the Mississauga, Beauport 

and Northstar plants with increased dry diln capacity and increased grinding 

capacity for GranCem production; 

• Cement kiln dust elimination at the Joliette Plant; 

• Fuel substitution; replacing conventional fossil fuels with alternative fuels from 

secondary materials; and, 

• Increased use of supplementary materials. 

 The SLC has a goal to reduce the greenhouse gas emission intensity by 15 per 

cent from 2000 to 2010. This goal is based on company performance including plants in 

Canada and United States. The Canadian plant results are important in reaching this goal. 

Figure 6 and 7 show the specific net CO2 emissions at Canadian Plants and percentage 

CO2 emissions relative to 1990: a considerable reduction of more than 15 per cent since 

1990. 
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Figure 6: Specific Net CO2 Emissions for SLC Canadian Plants (St. Lawrence 
Cement Inc. 2006) 
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Figure 7: Percentage CO2 Emissions Relative to 1990 for Canadian Plants (St. 

Lawrence Cement Inc. 2006) 
 

2.7 Chapter Summary 

 In this Chapter various alternatives to reduce CO2 emissions were presented. In 

general, Cement Plants are taking these alternatives as a valid approach not only to 

reduce their environmental footprint but also to keep their competitiveness.  

Changes from wet process to dry process, alternative fuels and introduction of new raw 

materials are a natural alternative for the cement industry in North America. 

Unfortunately, at this point CO2 capture and disposal is not a practical alternative. 

The next Chapter will analyse and discuss several alternatives implemented by St. Marys 

Plant. 
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Chapter 3: Analysis and Discussion - St Marys Cement Plant Results 

3.1 Introduction 

Chapter 3 presents the many steps taken by St. Marys Plant to increase the 

equipment performance, plant management efficiency and to reduce CO2 emissions.    

“St Marys Cement Inc. is a leading manufacturer of cement and construction 

products in the United States and Canada. St Marys Cement Inc. has its headquarters in 

Toronto, Ontario, Canada, supplying cementitious materials to the Great Lakes Region 

and is also an important producer of concrete and aggregates to the Ontario market. St 

Marys Cement Inc. is a wholly-owned subsidiary of Votorantim Cimentos, an 

international cement manufacturer based in Sao Paulo, Brazil. St Marys Cement has been 

contributing to the construction industry around the Great Lakes since 1910. Today the 

company has manufacturing plants located strategically to serve the Canadian and U.S. 

markets and has docking facilities in both countries to take advantage of efficient water 

transportation. Products of St Marys Cement Inc. include cementitious materials from St 

Marys Cement, ready-mixed concrete and aggregate from St Marys CBM and logistic 

services from Hutton Transport Ltd.” (St Marys Cement Inc. website 2006). 

St Marys strategy was to apply a progressive approach prioritising project 

implementation effort and feasibility.  

St Marys main steps were the implementation of a more robust maintenance 

system, plant optimization and Kiln expert system; alternative fuels and major equipment 

modifications. These steps and corresponding results are presented below:  

3.2 Maintenance System 

 St Marys’ maintenance system has changed in the last five years with the 

implementation of the Votorantim Cimentos management philosophy. The main point 

implemented was more professional maintenance planning. A more compressive plan for 

each kind of maintenance and stops has been implemented. Maintenance cost dropped 

during the last several years through the coordination of the maintenance schedule and 

exchange of information and solutions implemented by different plants in North America 

and Brazil. Maintenance results were able to sustain continuous plant improvement and 

made it possible to meet a growing cement demand (Figure 8). This is a result of detailed 
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plan that considers the importance and the complexity of the task to be performed and the 

application of best practices and fundamentals.  
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Figure 8: Maintenance Costs for St Marys Plant 
 

3.3 Plant Optimization and Kiln Expert System – LINKMAN 

 At the St Marys plant LINKman, an expert system manufactured by ABB, was 

installed in 2002. LINKman’s main objective is to stabilize the kiln process reducing fuel 

consumption, increasing output, and producing a consistent quality. The LINKman 

system monitors the NOx, CO and O2 levels, the temperature at the bottom of the four-

stage preheater and the power required to rotate the kiln. The process is optimized by 

controlling the feed-rate to the kiln, its rotational speed, and the fuel supply. Overall, the 

plant optimization has supported different process modifications and fuel changes.  

 Research suggests (Programme IEA Greenhouse Gas R&D 1999) that gains with 

optimization of process control and management systems typically represent an emission 

reduction through energy improvements between 2.5 and five per cent. At this moment is 

not possible to point out how much is the direct contribution of the optimization system 

over the plant results. 

 

3.4 Alternative Fuel and Pyroprocessing Improvements  

Petcoke Substitution 
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St Marys started to use petcoke as a substitute fuel in 2002. Cost was the main 

drive to substitute coal with petcoke. Today, the cost of petcoke is approximately 55 per 

cent of the cost of coal. Petcoke’s low volatile percentage represents a challenge 

regarding its burning rate. A finer grinding is required to achieve a reasonable burner 

rate. This obstacle reduces the coal mill production requiring a more specific process 

optimization on the fuel system. 

 A second obstacle presented by petcoke use is the high sulphur content. This 

increased sulphur circulation in the Kiln combined with a low burning rate, increased 

build-up in the kiln and in the preheater tower. One example of new applications used to 

overcome these difficulties is the thermo survey using an infrared camera (Figure 9). It 

has proven to be an effective technique to detect obstructions in the preheater tower. 

Figure 9 shows the heavy sulphur build up, the temperature change shows the 

sulphur condensation and the material accumulation reducing the heat exchange and gas 

flow on that specific point.  

 

 
Figure 9: Preheater Tower Sulphur Build-up 
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 St Marys achieved 100 per cent petcoke substitution in 2006. This required a great 

effort to overcome all process impacts. Figure 10 shows the petcoke substitution since 

1990 and the CO2 emissions from the fuel component. Even though petcoke has a heat 

value greater than coal, the total CO2 emissions are not directly related to the petcoke 

substitution. During this last five years, St Marys plant has suffered the consequences of 

the petcoke usage. Tower obstruction and sulphur rings in the kiln directly affected 

production and kiln run time increasing pre heating and low productivity periods. 
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Figure 10: Petcoke Substitution at St Marys Plant 
 
 
Low NOx Burner 
  

The fuel system is a key element in rotary kilns. As part of the fuel system the 

burner is fundamental to optimize the combustion of fuel in the cement kiln. Some of the 

critical considerations during the design of the burner system are safety, flexible 

operation, product quality, energy efficiency and environmental impacts. St Marys Plant 

installed a low NOx burner manufactured by Unitherm Cemcon on May 7, 2006. The new 

burner has a multifuel capacity to handle natural gas, heavy oil, pulverized coal, 

petroleum coke, and solid secondary fuel such as plastic or sewage sludge. The new 

burner should provide a complete fuel control, directional adjustability, and flame shape 
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control. This will provide the flexibility to burn multiple fuels without compromising 

environmental performance, while keeping NOx and CO2 emissions to a minimum. The 

new burner simplifies operation, during the preheating period by having a natural gas 

channel installed in the main burner. One of the most important features of this burner is 

its simplicity of operation. With more resources to set the flame shape, performance is 

optimized. As shown in Figure 11 and 12 the adjustable air channel system gives 

infinitely variable swirling positions making it possible to control the flame shape for 

different types of fuels. Figure 13 shows different temperature profiles for two different 

radial air adjustments. 

 
 

  
 

 

o  

Figure 11: The Burner Pipe New Design:        
       Figure 12: Unitherm Burner 

 
o Unitherm Cemcon Mono Airduct System (MAS) burner  
o The system is capable of injecting three separate and distinct fuels, plus air 
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Figure 13: Temperature Profile Different Radial Air Adjustments. 

                  
 

In the first month of operation the new burner produced a substantial reduction in 

NOx and CO2 formation.  

3.5 Process Changes 

Pre Heater Tower Modification  
 

At St Marys Cement the preheater tower was modified in 2002. The old tower 

consisted of two streams with four stages. The objective of all modifications made in 

2002 was to reduce the specific fuel consumption and increase the heat change and the 

cyclone efficiency. Figure 14 shows the pressure change after the project and during the 

fuel substitution process. At the same time, the pressure across the kiln system dropped 

allowing the specific energy consumption necessary to exhaust the gas from the kiln to 

drop. The reduction in pressure drop was achieved by installing larger inlet and outlet 

areas which provided more space for the gas flow in the top part of the cyclone. 
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Figure 14: Preheater Tower Pressure at St Marys Plant 

 
Wet System and Clay Mill  
 
 Within the process of preparing raw materials for cement manufacture, the 

primary components are comprised of the following approximate proportions: 

 

Limestone 73 %              Mined on site 

Flyash   11 %   By-products delivered in Wet and Dry States 

Clay     9 %   Mined on site 

Silica     6 %   By-products delivered in Wet and Dry States 

Iron     1 %    By-products delivered in Wet States 

 

 The raw materials traditionally require pre-processing that allows year round 

material handling. This is accomplished by pre grinding, drying, and pulverization into 

segregated storage silos. The flyash, Clay, Silica, and Iron inputs are processed in this 

fashion by a natural gas fired ball mill system (hence forth known as the Clay Mill).  
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 The Clay Mill system is a large consumer of both natural gas and electrical energy 

and adds substantial cost to the production of cement clinker. Environmentally, this is the 

second largest contributor to fugitive dust and GHG output at the facility. This milling 

system was a traditional fail safe method for preparing raw materials with moisture and 

variable composition from mined and outdoor storage piles year round. It was identified 

that sufficient secondary waste heat was available from the kiln line process for raw 

milling and drying of all raw material inputs in the main vertical roller mill.  

 The overall technological objective is to develop the knowledge to consistently 

input raw materials directly from the mine or outdoor storage year round, and bypass the 

Clay Mill. 

Specific objectives are: 

• Prepare and store clay from the clay mine for direct feeding via outdoor hopper; 

• Develop hopper and feeding technology to be robust for year round operation; 

• Extend the system to include by-products of wet silica, iron and flyash; and, 

• Find operating parameters that allow use of dry and wet materials in the existing 

vertical roller mill and computer blending system without affecting output, wear, 

and reliability. 

 There were a number of technological advancements that St Marys was seeking to 

achieve. Specific advancements sought were: 

• Eliminate the cost and environmental impacts of the Clay Milling System such as 

GHG emissions, NOx and CO2 directly and indirectly related to the old Clay Mill 

process; 

• Elimination of the fugitive dust generated by the old clay and silica storage piles 

using a two-dome storage building; 

• Reuse secondary process heat; 

• Monitor system performance, quality and standard deviation in raw material feed 

for the kiln system, meeting or exceeding the quality and performance standards 

for clinker and cement; and, 

• Expand the flexibility of current and future raw material used.  

 A new series of design strategies were studied so that the storage of the materials 

can be controlled and protected from the elements. The hopper system was enclosed, 
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heated and weather proofed (Figure 15). Research into material handling and systems 

design continue. The project has successfully operated through the first winter. 

 

 

St Marys Plant-Wet System hoppers 

Figure 15: Wet System Hoppers at St Marys Plant 
Grate Cooler 
 

Grate Coolers are standard technology for any new kiln. Planetary coolers are 

mainly found in kiln lines installed during the 1970s. St Marys Plant has used planetary 

coolers since 1977. One of the main issues with the planetary cooler was the excessive 

number of stops caused by cooler damage, especially at the “elbow” and transition 

sections. Figure 16 shows a thermo image of one of the coolers and the high heat load 

that was applied in that section due to the high temperature clinker flow. 
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Figure 16: Planetary Coolers at St Marys Plant 
  

Planetary coolers, when compared with the new generation of coolers (grate coolers), 

have lower energy efficiency and recovery. It is estimated that grate coolers can represent 

an energy savings (fuel consumption) of up to eight per cent (Nathan 1999). It is expected 

that the emission reduction should correspondent to the reduction in energy use. In 

addition, the lower clinker temperature at the exit of the cooler not only conducts less 

thermal losses, but also improves the clinker crystal formation. 

The larger cooler capacity will allow an increase in clinker production and 

consequently a reduction in the intensity rate of emissions. Figure 17 shows the increase 

in the daily production average after the grate cooler start up in May 2006. 
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Figure 17: Kiln Productivity at St Marys Plant 

 

As observed previously, the productivity increase should represent a direct 

emission reduction. In the St Marys case this reduction should be noted as a drop in the 

emission rate and not in the total emissions due to the substantial increase on clinker 

production.  

3.6 St Marys Overall Results  

The St Marys Plant has received numerous process modifications improvements in 

the last five years (Table 7). All these improvements (Figure 18) have reduced the 

specific net CO2 emission since 1990, with the exception of 2003-2004. During this 

period, the implementation of alternative fuels (fluid coke) resulted in the increase of 

plant shut downs. This two years represents the Plant adaptation to the implementation of 

the new fuel and burning process. Overall, the specific net CO2 emission dropped from 

876 kg CO2 per tonne of cement produced in 1990 to 670 kg of CO2 per tonne of cement 

produced in 2005. These alternatives and improvements produced a reduction of 23.55 

per cent in the specific net CO2 emissions. 
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Table 7: Improvements Chronology at St Marys Plant 
 
Date  Improvements Chronology at St Marys Plant 
2000 to 2003 Maintenance system implementation  
2002 to 2002 Pre heater Tower modification 
2002 to 2003 Linkman 
2003 to 2005 Fuel change burning over 90% fluid coke 
2005 to 2006 Clay Mill / wet system 
2006 to today New burner and grate cooler  
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Figure 18: Specific CO2 Emissions at St Marys Plant 

 

As a down side from the environmental point of view, the total CO2 emissions 

from the St Marys Plant has been practically unaffected (Figure 19) because of the 

increase in cement and clinker production (Figure 20). This is clearly explained by the 

clinker and cement production increase from 1990 to 2005. Appendix 1 shows in detail 

the production data and related CO2 emissions following the WBCSD Working Group 

Cement CO2 Emissions Inventory Protocol, in accordance with the Technical Guidance 

on Reporting Greenhouse Gas Emissions from Government of Canada.  
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Figure 19: CO2 Emissions at St Marys Plant 
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Figure 20: Clinker and Cement Production at St Marys Plant 
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3.7 Chapter Summary 

St. Marys Plant represents a unique case study were several alternatives were 

implemented during the last 6 years making possible to have a clear view of the impact of 

every solution in the same system.  

In general new technologies will produce a positive environmental impact. The 

results of new management systems and technologies implementation support the 

affirmation that a reduction on the CO2 emissions is possible and reductions over 20% 

will be an achievable reality for different cement plants. 

Chapter 4: Mathematical Model for CO2 Reduction 

4.1. Introduction 

An optimization model for the cement industry is formulated in this Chapter. This 

model will reveal that the effort necessary to implement specific solutions represent a 

considerable increase on the regular operational cost of the cement plants. The results 

produced by the model will show that the actions similar to the ones taken by St. Marys 

Plant described in Chapter 3 can produce results compatible to the theoretical findings. 

 

4.2. Optimization Model 

The mathematical model consists of an objective function to be minimized and 

equality and inequality constraints. The objective of the model is to find the best strategy 

or mix of strategies to reduce CO2 up to a certain target with minimum overall cost for 

cement production while meeting the demand.  

 

The objective function to be minimized can be written as: 

∑∑ ∑∑ ∑∑ ∑∑∑ ++++=
i f i f i e i c

icicieieifififif
r

rr ZCYCXRPCRCyrZ )/($
  (1) 
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Where: 

Z        : annualized capital and operating cost of the cement plant ($/yr) 

Cr       : cost of purchasing raw material r ($/tonne) 

Rr       : purchased amount of raw material r (tonne/yr) 

Cif      : operating cost for a unit i with fuel f ($/tonne) 

Pif       : amount produced from unit i using fuel f (tonne/yr) 

Rif      : retrofit cost for switching unit i to run with another fuel f ($/yr) 

Xif      : binary variable representing switching or not.  

Cie      : cost of applying efficiency improvement technology (e) on unit i ($/yr) 

Yie      : binary variable representing applying efficiency improvement technology 

(e) or not.  

Cic      : cost of applying CO2  capture technology (c) on unit i ($/yr) 

Zic      : binary variable representing applying CO2  capture technology (c) or not.  

 

The first term in the objective function represents the cost associated with 

purchasing the raw material. The second term takes into account the operating cost for 

different units. The cost of switching to less carbon content fuel is shown in the third 

term. The fourth term represents the cost associated with applying efficiency 

improvement technologies. The remaining term adds the cost that result from applying 

CO2  capture technology. A binary variable is defined for each CO2  mitigation option 

under study.  

 

Constraints 

The constraints for demand satisfaction, fuel selection and CO2  emissions 

reduction are given in details as follows: 

 

Demand satisfaction 

This constraint simply says that total cement produced should be greater than or 

equal to the demand. 

∑∑ ≥
i f

if demandP
                                                        (2) 
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Fuel selection  

Each unit i has to run with only one fuel f. For that reason, a binary variable is 

introduced to represent the type of fuel used in a given unit.  

∑ ∀=
f

if iX 1
              (3) 

Emission constraint  

The CO2  emitted from all units must satisfy a CO2  reduction target. Different 

technologies, e, to improve the efficiency are implemented in the mathematical model. It 

is assumed that the effect of these technologies is additive. The emission is also affected 

by applying CO2  capture technology.  

( ) 222 %111 COCOPZYeCO if
c

icic
i f e

ieieif −≤⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛
− ∑∑∑ ∑ ε

                             (4) 

Where:  

CO2if : CO2  emissions from unit i using fuel f (tonne per tonne cement produced) 

eie      : percent gain in efficiency associated with applying technology e on unit i  

Yie     : binary variable for applying efficiency improvement technology e or not  

εic      : percent CO2  capture 

Zic      : binary variable for applying CO2  capture technology c or not  

% CO2: reduction target 

CO2   : Current CO2  emissions (tonne/yr)  

 

The CO2  emissions are calculated by multiplying emission factor for a given fuel 

with fuel consumption.  

Selection of CO2  capture process to be installed 

This constraint let the model select only one capture process for each unit i                       

                                     (5)  
iY

c
ic ∀≤∑ 1

Non-negativity constraints 

The amount produced must be greater than zero 

iPif ∀≥ 0               (6) 
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4.3 Solution Technique 

The pollution control model (P)  is a Mixed Integer Linear Program (MILP).  It 

differs from Linear Programs (LP) in that its variables are restricted to have values of 

either 0 or 1.   Mixed integer programming problems are combinatorial optimization 

problem that are difficult to solve.   This difficulty is due to the exponential growth of 

solution space with a linear increase in the number of variables in the model.  For 

instance, for a problem with twenty binary variables, the number of possible linear 

programs (LP) that one has to consider in an exhaustive enumeration approach is more 

than 1,000,000.  If the number of variables is 30, then the numbers of LPs that have to be 

considered would be more than one billion.   Hence, even for a small number of binary 

variables in the model, an exhaustive approach that enumerates over all possible 

combinations of assignments of control technologies to pollution sources, check if each 

combination satisfy the pollution reduction requirements, and then selects the best 

combination  in terms of total cost would be completely intractable.  Many other 

techniques have therefore been devised for the solution of these combinatorial 

optimization problems. 

The most widely used method for MILP problems is the Branch-and-Bound 

(B&B) technique (Parker and Rardin 1988, and Rardin 1998). This technique is based on 

the idea of divide and conquer. Since the original “large” problem is too difficult to be 

solved directly, it is divided (branched) into smaller and smaller sub-problems until these 

sub-problems can be conquered. The branching is done by partitioning the entire set of 

feasible solutions into smaller and smaller subsets. The conquering (fathoming) is done 

partially by bounding how good the best solution in the subset can be and then discarding 

the subset if its bound indicates that it cannot possibly contain an optimal solution for the 

original problem. The B&B algorithm starts with a feasible solution to the mixed integer 

linear program. This solution is usually obtained from a heuristic procedure and 

represents a bound on the optimal solution of the problem. Then, at each iteration of the 

algorithm three basic steps are performed: branching, bounding, and fathoming. 

The branching step fixes the value of one of the variables at zero for one subset 

and at one for the other subset. For each sub-problem, a relaxation is solved. The solution 

to the relaxation gives a bound on how good the best feasible solution of the sub-problem 
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can be. A relaxation is obtained by deleting (relaxing) some of the constraints in the 

model. The most popular relaxation for binary linear programs is to relax the binary 

restriction on the variables of the model. 

A subproblem can be conquered (fathomed), and therefore dismissed from further 

consideration, in three different ways. If its relaxation solution is worse than the current 

bound or feasible solution, if it is infeasible, or if it leads to a binary solution. In the latter 

case and if the solution is better than the current bound (incumbent solution), then it 

becomes the incumbent solution. 

Each application of the above three steps represents an iteration of the B&B 

algorithm. The algorithm terminates when there are no more sub-problems to consider. 

The incumbent solution is then taken as the optimal solution. It can be shown that when 

the B&B is applied to an MILP with partial solution branching and candidate sub-

problems (LPs) solved exactly, then the B&B stops finitely with the optimal solution 

(Parker and Rardin, 1988). 

In order to reduce the computational expense associated with the B&B technique, 

a good initial solution that can serve as an upper bound to the optimal solution is often 

supplied.  The quality of this bound has been proven to be an important factor for the 

success of the B&B algorithm (Elkamel et al. 1997).  This is so because a large number 

of the constructed sub-problems by the B&B technique can be initially fathomed.  

A rule based heuristic procedure that will give feasible solutions to the pollution 

control problem (P) can be easily formulated as a greedy heuristic.  A feasible solution is 

any solution that satisfies the model constraints.   These are respectively, the allocation 

constraints of new sources, existing sources, and the pollution required standards.  Any 

heuristic procedure must be constructed in order to satisfy the above requirements. 

 

4.4 St. Marys Plant Case Study 

The developed model will be illustrated in using St. Marys Cement case study. 

The mathematical model developed earlier is illustrated on a case study. The problem of 

reducing CO2  emissions from combustion sources within a cement plant is considered 

with three different mitigation options. The first option is applying efficiency 
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improvement technology to reduce CO2   emissions. Table 8 shows different technologies 

considered in this study. The second option for reducing CO2  emissions is by switching 

in which the unit will be switched to operate with less carbon content fuel such as natural 

gas. The third option is applying CO2 capture technologies.  

 
Table 8: Technologies for Efficiency Improvements 

Technology CO2 Emission Reduction (%)

High efficiency motors and drives 4 

Adjustable Speed Drives 5.5 

High efficiency classifiers 8.1 

Efficient grinding technologies 10.5 

Conversion from wet to dry process 50.0 

 

An existing cement plant with the following data will be under study and the aim 

is to minimize the cost of cement production with reducing CO2 emissions by a fixed 

target.  

Cement production:    712,600 tonne/yr 

Total CO2 emissions:  553,800 tonne CO2/yr 

Total annualized cost: 25 x 106 $/yr  

Three CO2 mitigation options will be considered and these are: 

Applying efficiency improvement technologies to reduce CO2 emissions shown in 

Table 8.  

Switching to less carbon content fuel such as from coal to natural gas 

Applying “end of pipe solution” CO2 capture technologies. The chemical 

absorption (MEA) process is the only considered option in this study with cost of 

50 $/tonne CO2 captured.   

The model is formulated as mixed integer nonlinear model (MINLP) and it is 

coded into GAMS (General Algebraic Modeling System).  

The CO2 mitigation options discussed earlier are incorporated into the model to select the 

least cost option to reduce CO2 emissions to a specified target. Different CO2 reduction 

target are specified. Table 9 shows the results for different CO2 reduction targets. For 1% 
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reduction target, for example, the optimizer chooses to apply the technology of high 

efficient motors and drives. The cost of production increases by about 2 %. A second 

improvement technology is applied at a reduction target of 5%. No fuel switching is 

applied up to 10 % where efficiency improvements technologies can be applied with an 

increase of about 7 % in the cost. For 20 reduction target, fuel switching, from coal to 

natural gas, is selected to be applied with only one technology for efficiency 

improvement. This technology is installation of high efficient motors and drives. The cost 

increases by about 17 %. Carbon capture technology, MEA, is selected at a higher 

reduction target such as 30 %. For 50 reduction target, the optimizer still choose to apply 

capture technology although one of the technology for efficiency improvement 

technology (switch from wet to dry process) can be selected because it can achieve the 

same reduction target.  

Table 9: Summary of Results for Different CO2 Reduction Target 
 

% CO2 reduction Cost (million $/yr) % Increase in cost 

0 25.00 0 

1 25.60 2.4 

5 25.72 2.9 

10 26.80 7.3 

20 29.35 17.4 

30 33.31 33.2 

50 38.85 55.4 

 

The optimizer did not choose to apply this efficiency improvement technology because of 

its high cost compared to capture technology.  

Figure 20 shows the increase in the production cost for each CO2 reduction target. The 

line starts to be sharply increases at reduction target ranging from 20 to 50 %. This is 

expected since the capture cost is much higher than other mitigation options.  
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Figure 21: Percent Increase in Cost for Different CO2 Reduction Target 

 

Table 10 shows the cost per tonne Portland cement produced compared to the base case.  

Table 10: Cost of Production per Tonne Cement  
 

% CO2 reduction Cost  
($/tonne cement) 

0 35.1 

1 35.9 

5 36.1 

10 37.6 

20 41.2 

30 46.7 

50 54.5 
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4.5 Chapter Summary 

Through the module results it becomes clear that future regulations related to 

overall CO2 emissions will impact in the feasibility of new abatement solutions as well as 

current cement plants profit. Reductions over 20% will represent a challenge especially in 

cases where the conversion from wet process to dry process was done over 20 years ago 

(i.e. St. Marys Plant). 
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Chapter 5: Conclusion and Recommendations 

  
At this point, it is clear that the cement industry is a key player in the sustainable 

development of different regions. Different alternatives discussed in this thesis can 

contribute to a significant progress in reducing emissions and energy waste. 

Improvements and solutions will need to be better coordinated and communicated with 

society, politicians, environmental agencies, and other institutions. 

 Public and political perception is a long way from full acceptance of the use of 

alternatives in cement production. For examples fuel substitution or the use of new raw 

materials is not widely accepted outside the cement industry. Alternative fuels are seen 

by the general public, especially in Ontario, Canada, as an incineration solution. Several 

states in the U.S. and different countries in Europe have been using tires as an alternative 

fuel source.  This has not only reduced the amount of fossil fuels required by the cement 

plants, but it has also eliminated the landfill necessity as a final destination for old tires.  

Today, a large part of the waste generated in Ontario, including tires, is shipped to 

the U.S. Tires and different alternative fuels find their final destination in U.S. cement 

kilns. The cement industry is not the final solution for waste disposal, but can clearly 

contribute to a solution.  

In addition, the different levels of development around the globe make a universal 

solution unlikely. Developed countries are accountable for a higher generation of GHG 

emissions than developing countries and this situation will remain the same for a long 

time. Emerging countries have numerous social problems that, when put in competition 

with different environmental issues such as CO2 generation, will require more immediate 

solutions. In this contest, environmental issues will have a superfluous nature. 

Solutions for the cement industry must take into consideration all impacts and 

consequences involved in the sustainable concept. A realistic approach that considers 

cost, benefit, feasibility, social contribution, and environmental burden alleviation needs 

to be applied. 

Current technological knowledge is able to achieve much better environmental 

performance. Therefore, the key point for emission reduction is not only a matter of 

technology. 
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Optimization model was developed in order to meet demand at a given CO2 

reduction target. Three mitigation options were considered. The model chose the best 

strategy or mix of strategies in order to meet a certain CO2 reduction target with the least 

cost providing that the demand and other requirements were met. The model was MINLP 

and coded in GAMS.  

Applying different efficiency improvement technologies is a good option 

especially at reduction target up to 10 %. Beyond that reduction target, fuel switching 

should be applied to achieve a reduction target such as 20 %. At reduction target higher 

than 20 %, carbon capture technology should be applied and efficiency improvement 

technologies are no more a good mitigation option. The cost of production increases 

dramatically when the reduction target is beyond 20 %. This is expected since carbon 

capture technology is the most expansive selected technology. Switching from wet to dry 

process was never chosen because of this technology is a natural option for cement plants 

to reduce cost and increase competitiveness. Actually wet system is not an option for the 

newer cement plants. The cost per tonne Portland cement produced increases from 35.1 

$/tonne to about 55 $/tonne which is about 20 $ increase for each tonne produced.  

In the specific case of the St Marys Plant, it was possible to achieve a 23.6 per 

cent reduction in CO2 emissions per tonne of cement produced (Appendix 1). 

Unfortunately, it is not reflected in the total CO2 emissions; St Marys actual CO2 total 

emission is practically at the same level that in 1990 due to the increase in cement 

production. 

In the specific case of the St Marys plant, it is suggested that they continue to 

develop partnerships with regulatory agencies to approve alternative fuels as part of the 

normal fuel supply operations. St Marys Cement Inc. should use successful cases from 

Votorantim Cement in Brazil as to gain the necessary know-how to implement 

environmentally friendly alternatives to fossil fuel as the primary source of energy. 
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Colour Codes

Subject Numbers / Values

Basic information on plant and company Values to be completed by Cement 
Company

Calculation of CO2 emissions Calculated value

Calculation of Performance indicators, Total 
absolute and specific emissions

Value calculated from another part of the 
Worksheet

Default value, to be corrected by 
Cement Company if more precise data 

are available

WBCSD Working Group Cement 
CO2 Emissions Inventory Protocol, Version 1.6 
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INFORMATION

General Plant Information 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
1 Plant
2 Company
3 Country
4 Continent
5 "Kyoto" Region (Annex 1 oder Non-Annex 1)
6 Kiln types
7 Shares owned by Company [%]

Inventory Boundaries: Coverage of Main Process Steps 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
7a Raw material supply (quarrying, mining, crushing) [yes, no or partly] "Yes" means that consumption of fuels and electric power, and associated CO2 emissions, are reported
7b Preparation of raw materials, fuels and additives [yes, no or partly] See Guide to Protocol, Annex 3, for details on the different process steps.
7c Kiln operation (pyro-processing) [yes, no or partly]
7d Cement grinding, blending [yes, no or partly]
7e On-site (internal) transport [yes, no or partly]
7f Off-site transport with company-owned fleets [yes, no or partly]
7g On-site power generation [yes, no or partly]
7h (add other process steps as appropriate) [yes, no or partly]

Clinker and Cement Production 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Clinker:

8 Clinker production [t/yr] Actual clinker production of active kilns  

9 Clinker bought [t/yr]

10 Clinker sold [t/yr]

10a Change in clinker stocks [t/yr]

11 Total clinker consumed [t/yr] =Line8 + line9 - line10 - line10a

Mineral components (MIC) used to produce blended cements (dry weight):

12 Gypsum [t/yr]

13 Limestone [t/yr]

14 Slag [t/yr] idem

15 Fly ash (for blending) [t/yr] idem

16 Puzzolana [t/yr] idem

17 Others [t/yr] idem

18 Total MIC consumed for blending [t/yr]

Mineral components (MIC) used as cement substitutes (direct additions to concrete):

19a MIC consumed for production of pure slag cement (dry weight) [t/yr]

19b Fly ash and puzzolana (direct sales, dry weight) [t/yr]

19 Total pure MIC products used as cement substitutes [t/yr]

Production totals:

20 Total Portland + Blended cements [t/yr]

21 Total cements + substitutes: Portland, Blended, Slag  [t/yr]

21a Total cementitious products [t/yr]

Dust Production 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
22 Bypass dust discarded [t/yr]
23 CKD sold or discarded [t/yr] idem
24 Calcination rate of CKD [%]

Kiln Fuel Consumption (Aggregate) 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
25 Total heat consumption of kilns [TJ/yr]
26 Fossil fuels [TJ/yr]
27 Alternative fuels (fossil-based, non-biomass) [TJ/yr]
28 Biomass fuels [TJ/yr]
29 Waste water [t/yr]

Non-Kiln Fuel Consumption 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
30 Equipment and on-site vehicles [TJ/yr]

31a Room heating / cooling [TJ/yr]
31b Drying of raw materials [TJ/yr]
31c On-site power generation [TJ/yr]
32 Total non-kiln fuel consumption [TJ/yr]

Power Consumption 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
33a from on-site power generation [MWh/yr]

33b CO2 per power unit produced on-site [kg CO2/MWh]

33c from external power generation [MWh/yr]
33d CO2 per power unit produced externally [kg CO2/MWh]

33 Total plant power consumption [MWh/yr]

Waste Heat Exports 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
34 Waste heat supplied to external consumers [GJ/yr]

CO2 EMISSIONS 

Direct CO2 Emissions
CO2 from Raw Materials 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

35 Calcination emission factor, corrected for CaO- and MgO imports [kg CO2/ t cli]

36 CO2 from raw meal converted to clinker [t CO2/yr]

37 CO2 from bypass dust discarded [t CO2/yr]

38 CO2 from CKD sold or discarded [t CO2/yr]

39 Total CO2 from raw materials [t CO2/yr] =SUM (line36:line38)

CO2 from Kiln Fuels 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
40 CO2 from conventional fossil fuels [t CO2/yr] Sum of CO2 emissions from conventional fossil fuels,  = line211  
41 CO2 from alternative fossil fuels (fossil wastes) [t CO2/yr] Sum of net CO2 emissions from fossil-based alternative fuels,  = line218   
43 Total CO2 from fossil-based kiln fuels [t CO2/yr] =SUM (line40:line41)

CO2 from Non-Kiln Fuels 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
44 CO2 from equipment and on-site vehicles [t CO2/yr] Sum of CO2 emissions from equipment and on-site vehicles;  =line331

45a CO2 from room heating / cooling [t CO2/yr] Sum of CO2 emissions from room heating and cooling;  =line332
45b CO2 from drying of raw materials [t CO2/yr] Sum of CO2 emissions from drying of raw materials;  =line333
45c CO2 from on-site power generation [t CO2/yr] Sum of CO2 emissions from on-site power generation (excl. biomass CO2);  =line334
46 Total CO2 from non-kiln fuels [t CO2/yr] =SUM (line44:line45c)

Total Direct CO2 Emissions 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
48 Total direct CO2: all sources [t CO2/yr] = line39 + line43 + line46

Calculated from the calcination emission factor and the clinker production;
=(line35 / 1000) * line8  
Calculated from the calcination emission factor and the amount of bypass dust landfilled (assumed fully calcined);
=(line35 / 1000) * line22
Calculated from the calcination emission factor, the amount of CKD sold or discarded and the calcination rate of CKD; 
=line23 * non-linear function of lines 35 and 24; see Inventory Guide for details  

Waste heat exported to third parties

Consumption of power produced on site (= from autoproduction)  

Default set equal to 525 kg CO2/ t clinker. To be replaced with more precise data by Company if available (see auxiliary sheet 
"Calcination CO2")  

Calculated based on CO2 from on-site power generation and amount of power produced on-site;    
= line45c / line33a * 1000  
Consumption of grid power  
Specific CO2 emission per unit grid power, to be obtained from power supplier or national authorities  

=(line33a + line33c)  

Fuel used for office heating;  =line322
Fuel used for drying of raw materials;  =line 323

=SUM (line30:line31c)
Fuel used for power generation on site (autoproduction);  =line324

Default = 100%

Sum of conventional fossil, fossil-based alternative and biomass fuels;   =SUM (line26:28)

Fuel used for quarry equipment and vehicles for internal transport;  =line321

Calculated based on consumption of individual fuels and their net calorific values;   = line161   
Calculated based on consumption of individual fuels and their net calorific values;   = line168   
Calculated based on consumption of individual fuels and their net calorific values;   = line175   
Liquid waste with lower heating value < 7 GJ/t; for info only;  = line121

Total cement produced (all types together except pure slag cement and direct fly ash sales); 
= line11 + line18
= Total cements produced, exclusive clinker sold to third parties 
= Portland + Blended + Slag cements incl. direct fly ash sales;      = line11 + line18 + line19
= Total clinker produced plus MIC consumed for blending or production  of cement substitutes; 
=line8 + line18 + line19

Only dust which leaves the kiln system (e.g., landfilling)

WBCSD Working Group Cement 
CO2 Emissions Inventory Protocol, Version 1.6 Plant Level - Comments

Amount of clinker purchased from other companies (internal or external  Group). Does not include clinker purchased from another 
plant within the same Company.          
Amount of clinker sold to other companies (internal or external  Group). Does not include clinker dispatched to another plant within the 
same Company.          

Amount of clinker added to stocks (positive sign) or taken from stocks (negative sign).

Only mineral components used for portland cement and blended cement, excl. MIC used for slag cement production

idem

This is pure ground slag cement, containing no clinker          

This is pure fly ash and puzzolana, sold directly to consumers for production of concrete  

=SUM (line12:line17)

=SUM (line19a:line19b)
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Indirect CO2 Emissions (Main Sources) 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
49a CO2 from external power generation [t CO2/yr] =line33c * line33d / 1000  
49b CO2 from purchased clinker  [t CO2/yr] Calculated by multiplying bought clinker by the specific direct emission per t of clinker of this plant;  =line9 * line60 / 1000
49c Total indirect CO2 (main sources) [t CO2/yr] = SUM (line49a:line49b)

Direct CO2 from Biomass Fuels (Memo Item) 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
50 CO2 from combustion of biomass fuels (kiln and non-kiln) [t CO2/yr] Direct CO2 emissions from combustion of kiln and non-kiln biomass fuels;  =line225 + line334e

PERFORMANCE INDICATORS

Gross CO2 Emissions (= total direct CO2; all sources) 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

59 Absolute gross CO2 [t CO2/yr]

59a calcination component [t CO2/yr]

59b fuel component [t CO2/yr]

60 Specific gross CO2 per tonne of clinker produced [kg CO2/t cli]

62 tonne of cementitious product [kg CO2/t cem prod]

62a calcination component [kg CO2/t cem prod]

62b fuel component [kg CO2/ cem prod]

Credits for Indirect GHG Savings 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
65a Credits for indirect savings through alternative fuels (waste fuels) [t CO2/yr] Default = CO2 emissions from alternative fossil fuel combustion,     =line41
65b Source of credits [--] Specify source of credits (e.g., based on national agreement, default assumption, etc.). Provide supporting data as appropriate.

Net CO2 Emissions (= gross CO2 minus credits for indirect savings) 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

71 Absolute net CO2 [t CO2/yr]

71a calcination component [t CO2/yr]

71b fuel component [t CO2/yr]

73 Specific net CO2 per tonne of clinker produced [kg CO2/t cli]

74 tonne of cementitious product [kg CO2/t cem prod]

74a calcination component [kg CO2/ cem prod]

74b fuel component [kg CO2/ cem prod]

77 Improvement rate  -  net CO2 per tonne of cementitious product [% relative to base yr]  Reduction of specific emissions relative to base year (default 1990),  =(line74 yr n - line74 yr 1990) / line74 yr 1990 * 100
78 calcination component [% relative to base yr]  Reduction of specific emissions relative to base year (default 1990),  =(line74a yr n - line74a yr 1990) / line74a yr 1990 * 100
79 fuel component (fossil-based) [% relative to base yr]  Reduction of specific emissions relative to base year (default 1990),  =(line74b yr n - line74b yr 1990) / line74b yr 1990 * 100

Specific CO2 from Indirect and Biomass Sources 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
82 Specific indirect CO2 (power generation and clinker purchased) [t CO2/t cem prod] =line49c / line21a
83 Specific CO2 from biomass fuels (Memo Item) [t CO2/t cem prod] =line50 / line21a  

General Performance Indicators 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

91 Net clinker sales / net clinker consumption [%]

92 Clinker/cement factor in cements [%]

93 Specific heat consumption of clinker production [MJ/t cli]

94 Fossil fuel rate [%]

95 Alternative fossil fuel rate (fossil wastes) [%]

96 Biomass fuel rate [%]

97 Specific power consumption [kWh/t cement]

KILN FUELS - DETAILED INFORMATION

Kiln Fuel Consumption in tonnes per year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
101 Fossil fuels
102 coal + anthracite + waste coal + coal/petcoke [t/yr]
103 petrol coke [t/yr]
104 (ultra) heavy fuel [t/yr]
105 diesel oil [t/yr]
106 natural gas [t/yr]
107 shale [t/yr]
108 Alternative fossil fuels (fossil wastes)
109 waste oil [t/yr]
110 tyres [t/yr]
111 plastics [t/yr]
112 solvents [t/yr]
113 impregnated saw dust [t/yr]
114 other fossil based wastes [t/yr]
115 Biomass fuels
116 dried sewage sludge [t/yr]
117 wood, non impregnated saw dust [t/yr]
118 paper, carton [t/yr]
119 animal meal [t/yr]
120 agricultural, organic, diaper waste, charcoal [t/yr]

121 Waste water [t/yr]

Fuel Heating Values and CO2 Emission Factors 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
130 kg CO2/GJ fuel name
131 Fossil fuels
132 96 coal + anthracite + waste coal + coal/petcoke [GJ/t]
133 100 petrol coke [GJ/t]
134 77.4 (ultra) heavy fuel [GJ/t]
135 74.1 diesel oil [GJ/t]
136 56.1 natural gas [GJ/t]
137 107 shale [GJ/t]
138 Alternative fossil fuels (fossil wastes)
139 80 waste oil [GJ/t]
140 85 waste tyres [GJ/t]
141 75 plastics [GJ/t]
142 75 solvents [GJ/t]
143 75 impregnated saw dust [GJ/t]
144 80 other fossil based wastes [GJ/t]
145 Biomass fuels
146 110 sewage sludge [GJ/t]
147 110 wood, non impregnated saw dust [GJ/t]
148 110 paper, carton [GJ/t]
149 110 animal meal [GJ/t]
150 110 agricultural, organic, diaper waste, charcoal [GJ/t]
151 Waste water [GJ/t] As a default, the heating value of wastewater is set equal to zero.

Kiln Fuel Consumption in terajoules (TJ) per year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
161 Fossil fuels [TJ/yr] This is the sum of the individual fossil fuels. This result is registered in line 26 above
162 coal + anthracite + waste coal + coal/petcoke [TJ/yr]
163 petrol coke [TJ/yr]
164 (ultra) heavy fuel [TJ/yr]
165 diesel oil [TJ/yr]

Net emissions from kiln and non-kiln fuels, divided by own production of cementitious products;
=line71b / line21a

This table lists the consumption of fossil fuels in tonnes per year. Some fuel types are clustered for reasons of simplicity, but may be 
unclustered as appropriate

This table lists the consumption of fossil-based AFR in tonnes per year. Some fuel types are clustered for reasons of simplicity, but 
may be unclustered as appropriate

This table lists the consumption of biomass or renewable AFR in tonnes per year. Some fuel types are clustered for reasons of 
simplicity, but may be unclustered as appropriate

Direct emissions from kiln fuels and non-kiln fuels minus indirect GHG savings through alternative fossil fuels (AFR);
=line59b - line65a
Net emissions from raw material calcination, kiln fuels and non-kiln fuels, divided by own clinker production;
=line71 / line8

Average lower heating value of fuels

Energy consumption calculated from kiln fuel consumption and lower heating values.

Net emissions from raw material calcination, kiln fuels and non-kiln fuels, divided by own production of cementitious products;   
=line71 / line21a
Direct emissions from raw material calcination, divided by own production of cementitious products;
=line71a / line21a

This line gives the consumption of wastewater 

Average lower heating value of fuels

Direct emissions from raw material calcination;
=line39
Direct emissions from kiln fuels and non-kiln fuels;  
=line43 + line46
Total direct emissions, divided by own clinker production;
=line59 / line8
Total direct emissions, divided by own production of cementitious products (excluding bought clinker in cement);
=line59 / line21a
Direct emissions from raw material calcination, divided by own production of cementitious products;
=line59a / line21a
Direct emissions from kiln fuels and non-kiln fuels, divided by own production of cementitious products;
=line59b / line21a

Total direct emissions from raw material calcination, kiln fuels and non-kiln fuels, minus indirect GHG savings through alternative 
fossil fuels (AFR);  =line59 - line65a
Direct emissions from raw material calcination;
=line59a

Clinker/cement factor in cements (exclusive clinker sold) = Total clinker consumed divided by the total of cements produced;
=line11 / line21 * 100

Average lower heating value of fuels

Fossil fuel consumption divided by the total heat consumption of kilns;
=line26 / line25 * 100
Alternative fossil fuel consumption divided by the total heat consumption of kilns;
=line27 / line25 * 100
Biomass fuel consumption divided by the total heat consumption of kilns;
=line28 / line25 * 100

Total heat consumption of kilns divided by the clinker production;
=line25 * 10^6 / line8

Total plant power consumption divided by total cements produced;
=line33 * 1000 / line21

Total direct emissions from raw material calcination, kiln fuels and non-kiln fuels;
=line39 + line43 + line46

percentage of direct clinker sales versus clinker consumed to produce cement;  
=(line10 - line9) / line11 * 100
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166 natural gas [TJ/yr]
167 shale [TJ/yr]
168 Alternative fossil fuels (fossil wastes) [TJ/yr] This is the sum of the individual AFR fuels. This result is registered in line 27 above  
169 waste oil [TJ/yr]
170 waste tyres [TJ/yr]
171 plastics [TJ/yr]
172 solvents [TJ/yr]
173 impregnated saw dust [TJ/yr]
174 other fossil based wastes [TJ/yr]
175 Biomass fuels [TJ/yr] This is the sum of the individual biomass fuels. This result is registered in line 28 above  
176 sewage sludge [TJ/yr]
177 wood, non impregnated saw dust [TJ/yr]
178 paper, carton [TJ/yr]
179 animal meal [TJ/yr]
180 agricultural, organic, diaper waste, charcoal [TJ/yr]
181 Waste water [TJ/yr] Energy supplied through wastewater (default = zero)

CO2 Emissions from Kiln Fuels 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
211 Fossil fuels - total emissions [t CO2/yr] This is the sum of the individual fossil fuels. This result is registered in line 40 above  
212 coal + anthracite + waste coal + coal/petcoke [t CO2/yr]
213 petrol coke [t CO2/yr]
214 (ultra) heavy fuel [t CO2/yr]
215 diesel oil [t CO2/yr]
216 natural gas [t CO2/yr]
217 shale [t CO2/yr]
218 Alternative fossil fuels - total emissions [t CO2/yr] This is the sum of the individual AFR fuels. This result is registered in line 41 above  
219 waste oil [t CO2/yr]
220 waste tyres [t CO2/yr]
221 plastics [t CO2/yr]
222 solvents [t CO2/yr]
223 impregnated saw dust [t CO2/yr]
224 other fossil based wastes [t CO2/yr]
225 Biomass fuels - total emissions [t CO2/yr] This is the sum of the individual biomass fuels. This result is registered in line 50 above  
226 sewage sludge [t CO2/yr]
227 wood, non impregnated saw dust [t CO2/yr]
228 paper, carton [t CO2/yr]
229 animal meal [t CO2/yr]
230 agricultural, organic, diaper waste, charcoal [t CO2/yr]
231 Waste water [t CO2/yr]

NON-KILN FUELS - DETAILED INFORMATION

Non-Kiln Fuel Consumption in tonnes per year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
301 Equipment and On-Site Vehicles
301a diesel oil [t/yr]
301b gasoline [t/yr]
302 Room Heating and Cooling
302a diesel oil [t/yr]
302b natural gas [t/yr]
303 Drying of raw materials
303a coal + anthracite + waste coal + coal/petcoke [t/yr]
303b petrol coke [t/yr]
303c (ultra) heavy fuel [t/yr]
303d diesel oil [t/yr]
303e natural gas [t/yr]
303f shale [t/yr]
304 On-site power generation
304a coal + anthracite + waste coal + coal/petcoke [t/yr]
304b (ultra) heavy fuel [t/yr]
304c diesel oil [t/yr]
304d natural gas [t/yr]
304e biomass fuels [t/yr]

Fuel Heating Values and CO2 Emission Factors 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
310 kg CO2/GJ fuel name
311 Equipment and On-Site Vehicles
311a 74.1 diesel oil [GJ/t]
311b 69.2 gasoline [GJ/t]
312 Room Heating and Cooling
312a 74.1 diesel oil [GJ/t]
312b 56.1 natural gas [GJ/t]
313 Drying of raw materials
313a 96 coal + anthracite + waste coal + coal/petcoke [GJ/t]
313b 100 petrol coke [GJ/t]
313c 77.4 (ultra) heavy fuel [GJ/t]
313d 74.1 diesel oil [GJ/t]
313e 56.1 natural gas [GJ/t]
313f 107 shale [GJ/t]
314 On-site power generation
314a 96 coal + anthracite + waste coal + coal/petcoke [GJ/t]
314b 77.4 (ultra) heavy fuel [GJ/t]
314c 74.1 diesel oil [GJ/t]
314d 56.1 natural gas [GJ/t]
314e 110 biomass fuels [GJ/t]

Non-Kiln Fuel Consumption in terajoules (TJ) per year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
321 Equipment and On-Site Vehicles [TJ/yr] This is the sum of equipment and on-site vehicles. The result is registered in line 30 above
321a diesel oil [TJ/yr]
321b gasoline [TJ/yr]
322 Room Heating and Cooling [TJ/yr] This is the sum of room heating and cooling. The result is registered in line 31a above
322a diesel oil [TJ/yr]
322b natural gas [TJ/yr]
323 Drying of raw materials [TJ/yr] This is the sum of drying of raw materials. The result is registered in line 31b above
323a coal + anthracite + waste coal + coal/petcoke [TJ/yr]
323b petrol coke [TJ/yr]
323c (ultra) heavy fuel [TJ/yr]
323d diesel oil [TJ/yr]
323e natural gas [TJ/yr]
323f shale [TJ/yr]
324 On-site power generation [TJ/yr] This is the sum of on-site power generation. The result is registered in line 31c above
324a coal + anthracite + waste coal + coal/petcoke [TJ/yr]
324b (ultra) heavy fuel [TJ/yr]
324c diesel oil [TJ/yr]
324d natural gas [TJ/yr]
324e biomass fuels [TJ/yr]

CO2 Emissions from Non-Kiln fuels 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
331 Equipment and On-Site Vehicles [t CO2/yr] This is the sum of equipment and on-site vehicles. The result is registered in line 44 above
331a diesel oil [t CO2/yr]
331b gasoline [t CO2/yr]
332 Room Heating and Cooling [t CO2/yr] This is the sum of room heating and cooling. The result is registered in line 45a above
332a diesel oil [t CO2/yr]
332b natural gas [t CO2/yr]
333 Drying of raw materials [t CO2/yr] This is the sum of drying of raw materials. The result is registered in line 45b above
333a coal + anthracite + waste coal + coal/petcoke [t CO2/yr]
333b petrol coke [t CO2/yr]
333c (ultra) heavy fuel [t CO2/yr]
333d diesel oil [t CO2/yr]
333e natural gas [t CO2/yr]
333f shale [t CO2/yr]
334 On-site power generation (excl. biomass fuels) [t CO2/yr] This is the sum of on-site power generation (excluding CO2 from biomass fuels). The result is registered in line 45c above
334a coal + anthracite + waste coal + coal/petcoke [t CO2/yr]
334b (ultra) heavy fuel [t CO2/yr]
334c diesel oil [t CO2/yr]
334d natural gas [t CO2/yr]
334e biomass fuels (memo item) [t CO2/yr]

This table calculates CO2 emissions by multiplying the energy consumption (in TJ/year, lines 161 ff) with the appropriate emission 
factors (given in lines 131ff)

This table calculates CO2 emissions by multiplying the energy consumption (in TJ/year, lines 168 ff) with the appropriate emission 
factors (given in lines 138ff) 

This table calculates CO2 emissions by multiplying the energy consumption (in TJ/year, lines 175 ff) with the appropriate emission 
factors (given in lines 145ff)

Energy consumption calculated from kiln fuel consumption and lower heating values.

Energy consumption calculated from kiln fuel consumption and lower heating values.

This table calculates CO2 emissions by multiplying the energy consumption (in TJ/year, lines 324 ff) with the appropriate emission 
factors (given in lines 314 ff)

CO2 from biomass fuels is registered as a memo item in line 50 above

Average lower heating value of fuels

This table calculates CO2 emissions by multiplying the energy consumption (in TJ/year, lines 323 ff) with the appropriate emission 
factors (given in lines 313 ff)

Energy consumption calculated from non-kiln fuel consumption and lower heating values

This table lists the consumption of fuels used by equipment and on-site vehicles in tonnes per year. Some fuel types are clustered for 
reasons of simplicity, but may be unclustered as appropriate

This table lists the consumption of fuels used for room heating and cooling in tonnes per year. Some fuel types are clustered for 
reasons of simplicity, but may be unclustered as appropriate

Average lower heating value of fuels

Average lower heating value of fuels

This table lists the consumption of fuels used for drying of raw materials in tonnes per year. Some fuel types are clustered for reasons 
of simplicity, but may be unclustered as appropriate

This table lists the consumption of fuels used on-site power generation in tonnes per year. Some fuel types are clustered for reasons 
of simplicity, but may be unclustered as appropriate

Average lower heating value of fuels

Energy consumption calculated from non-kiln fuel consumption and lower heating values

This table calculates CO2 emissions by multiplying the energy consumption (in TJ/year, lines 321 ff) with the appropriate emission 
factors (given in lines 311 ff)

This table calculates CO2 emissions by multiplying the energy consumption (in TJ/year, lines 322 ff) with the appropriate emission 
factors (given in lines 312 ff)

Energy consumption calculated from non-kiln fuel consumption and lower heating values

Energy consumption calculated from non-kiln fuel consumption and lower heating values
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INFORMATION

PERFORMANCE INDICATORS

Gross CO2 Emissions (= total direct CO2; all sources) 1990 2000 2002 2003 2004
59 Absolute gross CO2 [t CO2/yr] 539,432 652,886 543,478 496,220 553,781
59a calcination component [t CO2/yr] 314,823 383,259 331,577 301,484 338,040
59b fuel component [t CO2/yr] 224,609 269,627 211,901 194,736 215,741
60 Specific gross CO2 per tonne of clinker produced [kg CO2/t cli] 914 915 886 874 870
62 tonne of cementitious product [kg CO2/t cem prod] 876 844 777 760 777
62a calcination component [kg CO2/t cem prod] 511 496 474 462 474
62b fuel component [kg CO2/ cem prod] 365 349 303 298 303

Credits for Indirect GHG Savings 1990 2000 2002 2003 2004
65a Credits for indirect savings through alternative fuels (waste fuels) [t CO2/yr] 0 53,168 30,537 19,282 22,426
65b Source of credits [--]

Net CO2 Emissions (= gross CO2 minus credits for indirect savings) 1990 2000 2002 2003 2004
71 Absolute net CO2 [t CO2/yr] 539,432 599,718 512,941 476,939 531,355
71a calcination component [t CO2/yr] 314,823 383,259 331,577 301,484 338,040
71b fuel component [t CO2/yr] 224,609 216,459 181,364 175,454 193,315
73 Specific net CO2 per tonne of clinker produced [kg CO2/t cli] 914 841 836 840 834
74 tonne of cementitious product [kg CO2/t cem prod] 876 776 733 731 746
74a calcination component [kg CO2/ cem prod] 511 496 474 462 474
74b fuel component [kg CO2/ cem prod] 365 280 259 269 271

77 Improvement rate  -  net CO2 per tonne of cementitious product [% relative to base yr] 0.0 -11.4 -16.3 -16.6 -14.9
78 calcination component [% relative to base yr] 0.0 -3.0 -7.3 -9.6 -7.2
79 fuel component (fossil-based) [% relative to base yr] 0.0 -23.2 -28.9 -26.3 -25.6

Specific CO2 from Indirect and Biomass Sources 1990 2000 2002 2003 2004
82 Specific indirect CO2 (power generation and clinker purchased) [kg CO2/t cem prod] 28 33 34 36 35
83 Specific CO2 from biomass fuels (Memo Item) [kg CO2/t cem prod] 0 0 0 0 0

General Performance Indicators 1990 2000 2002 2003 2004
91 Net clinker sales / net clinker consumption [%] 44.3 22.8 13.3 8.0 15.5
92 Clinker/cement factor in cements [%] 94.2 90.7 86.2 86.3 87.5

93 Specific heat consumption of clinker production [MJ/t cli] 3,770 3,952 3,543 3,480 3,412
94 Fossil fuel rate [%] 100.0 76.4 82.4 87.8 87.1
95 Alternative fossil fuel rate (fossil wastes) [%] 0.0 23.6 17.6 12.2 12.9
96 Biomass fuel rate [%] 0.0 0.0 0.0 0.0 0.0

97 Specific power consumption [kWh/t cement] 195.0 142.7 147.5 144.8 155.3

WBCSD Working Group Cement 
CO2 Emissions Inventory Protocol, Version 1.6 St. Marys Plant
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Default CO2 Emission Factors for Fuels

Type Category
IPCC default
kg CO2/GJ

WGC default
kg CO2/GJ Comments

Fossil fuels
1 96 IPCC defaults are: 94.6 for coking coal and other bituminous coal, 96.1 for sub-bituminous coal, and 98.4 for anthracite
2 100
3 77.4
4 74.1
5 56.1
6 107
7 69.2

Alternative fossil fuels
8 80  best estimate; water content can have  relevant influence
9 85  best estimate
10 75  best estimate
11 75  best estimate
12 75  best estimate
13 80  best estimate

Biomass fuels
14 110 = IPCC default for biomass fuels
15 110 idem
16 110 idem
17 110 idem
18 110 idem

IPCC defaults from: IPCC Guidelines for National Greenhouse Gas Inventories, Vol. III 
(Reference Manual), p. 1.13

Fuels have been clustered for simplicity.

WBCSD Working Group Cement 
CO2 Emissions Inventory Protocol, Version 1.6

coal + anthracite + waste coal + coal/petcoke mix
petrol coke
(ultra) heavy fuel
diesel oil
natural gas 
shale
gasoline

waste oil
tyres 
plastics
solvents

paper, carton
animal meal
agricultural, organic, diaper waste, charcoal

impregnated saw dust
other fossil based wastes

dried sewage sludge
wood, non impregnated saw dust
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