Some Problems in General Algebra

Dejan Delié

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Pure Mathematics

Waterloo, Ontario, Canada, 1998

(©Dejan Delié 1998



ivl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre reférence
Our file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-32822-8



The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below. and give address and date.



Abstract

In the first part of the thesis we construct a finitely based variety, whose equational
theory is undecidable, yet whose word problems are recursively solvable, which
solves a problem stated by G. McNulty. The construction produces a discriminator
variety with the aforementioned properties, starting from a class of structures in
some multisorted language (which may include relations), axiomatized by a finite
set of universal sentences in the given multisorted signature.

This result also presents a common generalization of the earlier results obtained
by B. Wells and A. Mekler, E. Nelson, and S. Shelah.

In the second part of the dissertation the classification of finite graph M-algebras
which have finite equational bases is given in terms of omitted induced subgraphs.
The result is related to an earlier result obtained for finite graph algebras by K.
Baker, G. McNulty, and H. Werner.
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Introduction

In this body of work we investigate and solve two problems in general algebra.

The first problem concerns finitely axiomatizable varieties whose equational
theory is undecidable yet all of whose finitely presented algebras have solvable
word problems. This problem is intimately related to some earlier results obtained
by A. Mekler, E. Nelson, and S. Shelah, ([39]), as well as those of B. Wells ([52]).
We give an affirmative answer as to whether a variety with the properties listed
above exists, thereby resolving a problem due to G. McNulty ([37]).

The second part of the thesis is dedicated to the problem of classifying finite
graph M-algebras whose equational theory is finitely based. Qur principal result
is the characterization of such algebras in terms of the induced subgraphs of their
underlying graphs. This result presents a natural extension of a similar theorem
for finite graphs, obtained by K. Baker, G. McNulty, and H. Werner in (2].

The organization of this dissertation is as follows. Sections 1.1 and 1.2 present
a basic introduction to universal algebra and first-order logic including some basic
facts about first-order logic with several sorts of objects. The last section of Chapter
1 introduces the notion of a discriminator variety and several results are stated

including the one due to R. McKenzie concerning the reduction of the universal



theory of a discriminator variety to its equational theory.

In Chapter 2 we first introduce the notions of a finite presentation and uniform
as well as non-uniform solvability of the word problem in a variety. In Section 1.3
we explore the relationship between the solvability of word problems for a variety
and the decidability of the fragments of its elementary theory.

Chapters 3 and 4 contain the proof of the first main result of the dissertation.
In Chapter 3 we show how to construct, given a universally pseudorecursive class
of structures in a multisorted first-order language, a finitely axiomatized pseudore-
cursive equational class.

Chapter 4 gives the explicit axiomatization of such a multisorted class and
investigates some relevant properties of its finitely generated members.

Section 5.1 presents a survey of the known finite basis results for varieties of
algebras, while in Section 5.2 we turn our attention to a particular class of algebras
having a height—one meet-semilattice as a reduct, and get acquainted with some of
its basic features.

In Chapter 6, we include the second main result of the thesis, which gives the
classification of finite graph M-algebras which are finitely based. This is accom-
plished by using shift automorphism methods, developed by K. Baker, G. McNulty,
and H. Werner (Section 6.1) and the analysis of subdirectly irreducible members
of a variety generated by a finite graph M-algebra which is not inherently finitely
based (Section 6.2). To this end, we introduce the notion of definable ordered prin-
cipal congruences, after which the dichotomy between finitely based and inherently
nonfinitely based finite M-graph algebras is proven (Section 6.3).



Regarding the authorship of the material contained in this dissertation, we
would like to mention the following. The material in Chapters 1, 2, and 5, comprises
of known results due to other authors, while the results in Chapters 3, 4, and 6
are original in their entirety (to the best of our knowledge) and have not appeared
previously in the literature. Chapters 3 and 4 essentially constitute the manuscript

(12] and the material of Chapter 6 is contained in [11]



Chapter 1

Background

In this chapter we survey some of the basic notions in universal algebra and math-
ematical logic, to which we will refer freely in the rest of the dissertation.

Section 1.1. gives a brief introduction to universal algebra. The exposition in
this section is taken mainly from [9] and [54]. Our primary reference for the sub ject
is [9]. Another useful reference is [34]. Section 1.2. presents basic terminology of
first-order logic, such as the notions of a language, structure, and satisfiability.
There are several good references for this part, however, our preference is [17],
accompanied by the Chapter V of [9]. In this section, we also introduce multisorted
first-order logic, a natural extension of the first-order logic. Our exposition of
multisorted logic is based on the Chapter 5 of [21].

Finally, in Section 1.3. we discuss the notion of a discriminator variety, state
some of the basic structure results for this class of varieties, and cite a result of
R. McKenzie, which relates the theory of the universal sentences of a discriminator

variety to its equational theory.
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1.1 A brief introduction to universal algebra

Given a nonempty set A, an n-ary operation on A is any function f : A® — A;
n is said to be the arity of f. If n = 0, f is just an element of A. Thus, we can

identify O-ary operations with distinguished elements of A.

Definition 1.1 A language of algebras L is a set of function symbols, so that
each symbol f € L is assigned a nonnegative integer n. This integer is called the

arity of f, and f is said to be an n-ary function symbol.

Definition 1.2 Let £ be a language of algebras. We define an algebra A of
language L (or, of type L) to be an ordered pair (A, F) consisting of a nonempty
set A and F, a family of operations on A which is indezed by L, so that an n-
ary operation fA on A is corresponded to an n-ary function symbol f € L. We
call A the universe of A = (A, F), while the operations fA are said to be the

fundamental operations of A..

Among the algebras in the same language there are the natural notions (i.e.
analogous to the notions for groups and rings) of subalgebra, tsomorphism, homo-

morphism, homomorphic image, and direct product.

Definition 1.3 Let A be an algebra. We say that a subset B C A is a subuni-
verse of A if either B is the universe of some subalgebra B < A, or B is empty
and the language contains no (0-ary function symbols. For each X C A, there is a
smallest subuniverse of A containing X ; it is called the subuniverse generated by

X, and we denote it by SgA (X).
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If Ais a nonempty set, the set of all equivalence relations on A4, Equ (A), forms
a lattice under inclusion. The operations of this lattice are the following: the meet
of two relations is their intersection, while the join is the transitive closure of their

union. The least and the greatest elements in this lattice are
A = {{(a,a):a € A}

and

Va=A%

respectively.
Suppose § € Equ(A) and a,b € A. Then, we write a Zpif (a,b) € 6. The
relation § partitions the set A, and the f-equivalence class containing a is denoted

by a/8. The set of all §-equivalence classes of A is denoted by A/8.

Definition 1.4 Let A be an algebra and let § € Equ (A). We say that 6 is a con-

gruence of A if, every fundamental operation fA of arity n satisfies the following:

a ébl,... ,a,,%bn implies f2 (a,,... ,Gr) éfA(bl,... ,by) .

In fact, it turns out that, as in the case of groups and rings, every congruence
of an algebra is the kernel of some surjective homomorphism, and conversely.

The set of all congruences of a given algebra A forms a lattice under inclusion
whose operations coincide with those for Equ (A). This lattice is called a congruence

lattice of A, and it will be denoted by Con (A).
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If 6 is a congruence of A, there is a natural way to define the quotient algebra
A/8: the universe of this algebra is A/6, and for any function symbol f in the
language of A and a,/9,... ,a,/8 € A/8,

A% (ar/8,. .. ,an/6) = f(ay,... ,a,) /6.

Definition 1.5 An algebra A is congruence distributive if its congruence lat-
tice Con (A) is a distributive lattice. Similarly, A is said to be congruence mod-

ular if its congruence lattice satisfies Dedekind’s modular law:

z 2>z implieszA(yVz)=(zcAy)Vz.

We say that a class of algebras is congruence distributive (congruence modular) if

every algebra in the class has the corresponding property.

We also mention another property of the congruence lattice of an algebra, which,

strictly speaking, cannot be characterized via a lattice law.

Definition 1.6 We say that an algebra A is congruence permutable if, for

every pair of congruences 6;,6, € Con (A)

6,V 6; =608,

where o denotes the composition of binary relations.

It is not difficult to show that every congruence permutable algebra is congru-

ence modular as well.
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1. We say that an algebra A is a subdirect product of the family of algebras
(Ai:ie D), I#0,if

2. A < HiGIAiv and

3. For each coordinate map =; : [L;esA; = A; , m; (A) = A,.

An embedding
¢: A > ILcrA;

is said to be subdirect if #(A) is a subdirect product of (A; : i € I).
A is subdirectly irreducible if for every subdirect embedding

a:A—)ILe[A,'

there is an 2 € [ such that
mioa: A — A;

is an isomorphism. An equivalent condition is that, either |A| = 1, or the lattice
Con (A) contains a minimum congruence distinct from A 4.

It can be shown (see Thm. II.8.6 of [9]) that every algebra is a subdirect product
of a collection of subdirectly irreducible algebras, which are homomorphic images
of the original algebra.

If a variety V is such that every algebra in V is a subdirect product of finite

subdirectly irreducible algebras, we say that V is residually finite.
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An algebra A is said to be simple if

Con(A) = {AAr,VaA}.

Clearly, every simple algebra is subdirectly irreducible.

Definition 1.7 Let X be a set of distinct objects which will represent variables and
L a language of algebras, whose set of 0-ary function symbols will be denoted by C.

The set Tc (X) of terms in the language L over X is the smallest set such that

1. XUCCT:(X).
2. Ifts,... ,tn € Te(X) and f € L is of arity m, then f(ty,... ta) € Tz (X) .

The set T, (X) can be turned into an algebra T, (X) in the language £ in
the following way: for every n-ary fundamental operation f € £ and ¢;,... ¢, €
T (X),

fTC(X) (tl,... 7tn) = f(tl, ,tn).

It is a standard practice to identify ¢ with the pair t(zy,....
zn), where (z,...,z,) is an ordered list of distinct elements from X. This list
has to be such that it includes all the variables actually occurring in the term ¢.
With this convention in mind, we see that a term can be identified with many
different pairs of this kind, depending on the choice of variables in the list.

Every term ¢(z,,... ,z,) in £ defines an n-ary function ¢ on the universe of

any algebra A of type £, as follows: let @y,...,8, € A;
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1. If t is a variable z;, then

tA(al,....an)=a,-.
2. If t is of the form f (¢, (Z1,... ,Zn).... .tk (Z1,... .Tn)), where fis a k-ary
function symbol in £,
tA (ay, ... @) = fA (t‘f‘(al,... yGn),y ... ,tkA(al,... ,an)).

Such a function t* is called a term operation of A.

It can be shown that if A is an algebra and X C A, then the subuniverse of A
generated by X is

Sg* (X) = {t* (a4, ..., an) : t* is an n-ary term operation of A and

{ai,... ,a.} C X}.

If tA is an (n + k)-ary term operation of A and by,... b € A, the operation
p: A™ — A defined by

p(ai,...,a,) =tA(a1,... yGny by, .o b))

is called a polynomial operation of A. Pol, (A) will denote the set of all unary
polynomials of A.
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If A is an algebra and a,b € A, the intersection of all congruences of A which
contain the pair (a,b) is itself a congruence, called a principal congruence of A
generated by (a,b). We denote this congruence by CgA (a, b). In general, if X C A?
then Cg” (X) will denote the smallest congruence of A containing X. According

to a theorem of Mal’cev, CgA (X) is the transitive closure of the following set

{(p(2),p(u)): p€ Poli(A) and (z,u) € X or (u,z) € X},

if X # 0, while for X =0,
Cg™(0) = Aa.

If K is a class of algebras in some algebraic language £, I(K), H(K), S(K), and
P (K) denote respectively the closure of K under isomorphisms, taking homomor-
phic images, taking subalgebras, and forming direct products of algebras in K. K
is said to be a variety if it is nonempty and closed under the operators H, S, and
P. V(K) denotes the smallest variety containing K. If K is a finite set of finite
algebras, V (K) is said to be finitely generated.

Definition 1.8 We say that an algebra A is locally finite if for every finite X C

A the subuniverse Sg2 (X) is finite.

A variety V is locally finite if every member of V is locally finite.

A celebrated theorem of G. Birkhoff states that varieties are precisely those

classes of algebras which are defined by a set of identities,
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Definition 1.9 An identity in the language £ over X is an ezpression of the form

p=q,

where p,q € T (X). An algebra A in L satisfies the identity p = q if p* = ¢*. We

write this as

AkEp=4q
In other words,
AkEp=gyq,
if and only if
p*(a1,... ,a.) = q*(ay, ... yGn),

foralla,,...  a, € A.

If T is a set of identities in L and p = q an tdentity in L, we write

YEp=gq

if, for every algebra A which satisfies every identity in I,

AFp=gq

An algebra A in a class of algebras K is said to satisfy the universal mapping
property if there is a subset X C A such that, for every B € K and every map

a: X — B, there is a unique homomorphism from A to B which extends a. Every
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variety contains algebras with the universal mapping property; these algebras are
the free algebras of the variety.

If V is a nontrivial variety, there is a canonical way to produce the free algebra
over a nonempty set of a designated cardinality |X|. This algebra will be a quotient
of T, (X), and is usually denoted by Fy (X) (if |X| = n, where n < w. we also
write Fy (n)).

As mentioned before, a variety is a class of algebras defined by a set of identities.
Given a variety V in L, there is a syntactic way to describe those identities which
are satisfied by every algebra A € V. This is the driving idea behind the notion of
equational logic.

From this point on, until the end of this section, we assume that X is an infinite

set of variables which is linearly ordered.
Definition 1.10 Given a term t € T (X), the subterms of t are defined by:
1. The term t is a subterm of itself.

2. If f(t1,... ,ta) 1 a subterm of t and f € L is n-ary then each t; is a subterm
of t.

Definition 1.11 A set of identities ¥ over X is closed under replacement if, given
p=qin X and atermr € T (X), if p occurs as a subterm of r, and s is the result

of replacing that occurrence of p inr with q, then r = s is also in X.

Definition 1.12 A set T of identities over X is closed under substitution, if for
every p =q in X and every a: X — T¢(X), if every occurrence of a fized variable

z € X in p = q 1s replaced with a(z), the resulting identity is in 3.
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Definition 1.13 The deductive closure of a set ¥ of identities is the smallest

set Ded (X)) of identities in L which contains ¥ such that
1. p=p € Ded(X), for every p € T, (X).
2. Ifp=q € Ded(X) then g =p € Ded(X).
3. Ifp=q,q=r € Ded(X) thenp=r € Ded(Z).
4. Ded(X) is closed under replacement.

5. Ded(Z) is closed under substitution.

If ¥ is a set of identities over X, and p = ¢ is an identity over X, we write

Lkp=gq

and say that p = q is provaeble from ¥, if p = q € Ded (%) .
The following theorem due to G. Birkhoff is the fundamental theorem of equa-

tional logic:

Theorem 1.14 (The Completeness Theorem for Equational Logic) If £ is a set

of identities in L over X, and p = q is an identity in £ over X,

TEp=qifandonlyif SFp=gq.
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1.2 Structures, first-order logic, and multisorted
first-order logic

Definition 1.15 A language (or, a signature) L consists of a set R of relation
symbols and a set F of function symbols. To each symbol of RU F is assigned a
nonnegative integer, the arity of the symbol. If R = 0, the language is said to be

algebraic.

Hence, the notion of a language for algebras as introduced in Section 1.1 is
precisely a special case of a language.
The notion of a structure in the language £ will be a generalization of that of

an algebra:

Definition 1.16 IfL is a language, a structure A in language L is an ordered
pair A = (A, L), where A# 0 and L = RUF, so that R is a family of fundamental
relations r® on A indezed by R, and F is a family of fundamental operations fA
on A indezed by F. The arity of r® is equal to the one of the corresponding symbols

r € R and the same is true of every fundamental operation in F.

The notions of isomorphism, homomorphic image, substructure, and direct
product can be extended naturally to structures in the same language.

Given a language £ and a set of variables X, the notion of a term is defined
in the same way as for algebraic languages. We proceed to define the notion of a

first-order formula:

Definition 1.17 The atomic formulas in the language £ are ezpressions of one

of the following two forms:
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1. p=q, where p and q are terms in L.

2. r(ty,...,t,), where r is an n-ary relation symbol in R and t,... ,t, are

terms in L.

Definition 1.18 Let X be an infinite set of variables and L a language with equal-
ity. The set of first-order formulas, denoted by Form, (X), is the smallest set

of ezpressions which :

1. contains all atomic formulas in L;

2. is closed under under negations (=), conjunctions (A), disjunctions (V), im-

plications (—), and bi-implications (+);

3. 1s closed under universal (Vz) and eristential (3z) quantification for every

variable z € X.

A sentence is a formula which has no free (i.e., unquantified) variables.
If A is a structure in the language £, then any sentence ¢ in L is either true or

false in A; we write

AE¢

to denote that ¢ is true in A (we also say that A satisfies ¢). If ¢ is not neces-
sarily a sentence, but a formula whose free variables are among {z,,...,z,}, and
ai,...,6n € A, then under the assignment z; — a; the formula ¢ will be either

true or false in A. If under this assignment ¢ is true in A, we write this as

AE=d(a,...,a,).
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A formula is said to be universal if it is of the form

Vz,Vz,...VzZ:6,

where @ contains no occurrences of quantifiers. The notion of an ezistential formula
is defined analogously. Often, instead of Vz,Vz,...Vz; we write Vz,z,...zx or VZE,
and similarly for blocks of existential quantifiers.

A positive formula is one that contains no occurrences of -, —, or <. A formula

is said to be positive primitive if it is of the form

dz, ...z (LA ... A0,)

where each §; (: = 1,...m) is atomic.

Definition 1.19 A principal congruence formula in the algebraic language L

s a formula ¥ (z,y, z,u) of the form

z=t1(v1)w17"'7wk)/\
Jw, ... wg /\15i<ntg(v£,w1,... , W ) =tin1 (v;+1,w1,... , Wi ) A
tn(vylvuwlv"-7wk)=y

where {v;, v} = {z,u} for 1 <i<n, and t; (1 < j < n) are terms.

It is easy to show, using Malcev’s characterization of congruence generation

that, given an algebra A and a,b,c,d € A,

(a,b) € Cg* (c,d) if and only if A E ¥ (a,b,c,d),
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for some principal congruence formula .

We say that a variety has definable principal congruences if there is a finite
set ¥ of principal conguence formulas such that for every A in the variety and all
a,b,c,de A,

(a,b) € Cg* (c,d) if and only if, for some YEVY, AEqY(ab,ecd).

A universal Horn formula is one of the form

V... 2k (P1 A ... A dm)

where each ¢; (i =1,... ,m) is an atomic formula, or (01 A...A8,), or of the
form (6, A...A0,) — 8,,,, where every §; is atomic. It can be shown that the
truth of universal Horn formulas is inherited by substructures and direct products
of structures in the same language.

A special type of universal Horn formulas are quasi-identities. A quasi-

identity is a universal Horn formula whose quantifier-free part is of the form

(01 AN /\0,) — 0,-.(..1,

where every 0; is atomic, or, in the special case when the set {6:,...,6,} is empty,
of the form 0,,, where 6, is atomic.

For further information on first-order logic see [9] or [17].

The next concept we introduce is a generalization of a language. Namely, we

allow objects represented by variables to be of different sorts:
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Definition 1.20 A k-sorted language L consists of:

1. k disjoint infinite sets Xl(:l),.. . ,Xék), where Xg) (i=1,...,k) is the set of

variables of the i-th sort,

2. the set R of relation symbols such that, to each n-ary v € R an n-tuple

(t1,--. ,%a) i3 associated so thati,,... i, € {1,... ,k},

3. the set F of operation symbols such that, to each n-ary f € F an (n+1)-tuple

(%1, - 1in,%) 18 associated so that iy,... i,,i€ {1,... ,k}.
The notion of a term is defined as in the case of first-order logic.
Definition 1.21 Let t(z,,...,z,) be a term in the k-sorted language L.
1. Ift is a variable z; € X' (1 < j < k), its sort is defined to be j.

2. If ty,... tm are terms of sorts iy,... vim, Tespectively, and f € F is an
m-ary function symbol to which the tuple (i1,... ,%m,1) is associated, then

f(t,... ,tn) is defined to be of sort 1.

Since we treat function symbols of arity 0 as constants, this definition will still
apply once a constant symbol is introduced as an abbreviation for a function which
depends on no variables.

If t(z1,...,2,) is a term of sort ¢, along with the list of variables z,, ...z,
which contains all the variables actually occurring in ¢, such that z; € X[(;i’)

(7 =1,... ,n), we define the type of t(zy,...,z,) to be

(i1y -+ yim,i).
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Notice that the type of a term is not uniquely determined; it will depend on which
variables are listed as the variables of t. However, in general, this will not present a
problem since it will always be clear from the context what the variables occurring
in t are.

The atomic formulas of £ are of one of the following forms:

L. 7(t1,... ,t.), where r € R is n-ary, of type (i1, ... .in) and each ¢; is a term

of the sort ;.

2. t, = t,, where t; and £, are two terms of the same sort.

The set of all formulas of £ is now defined in the same way as for standard

languages.

Definition 1.22 Let L be a k-sorted language. A k-sorted structure A for L

consists of:
1. k nonempty sets A ... A®). A6) is said to be the universe of sort 7 of A,

2. a family R of relations, indexed by R, so that if r € R is n-ary of type

(ila"' 1in)’

A C A x .l x Aln)

3. a family F of mappings, indexed by F, so that if f € F is n-ary of type
(31, -+ y2n, 1),

FA L AGD 5L AGe) |y 406)
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The symbol = is interpreted as the usual equality relation between elements on
every A® (i=1,... k).

The notion of satisfiability of a sentence (formula) in a multisorted structure is
defined as in the case of first-order logic.

For more on multisorted languages and structures, see e.g. [21].

1.3 Discriminator varieties

Definition 1.23 The discriminator function on a set A is a ternary function
t: A® > A defined by

a, ifa#b,

¢, tfa=b.

t(a,b,c) =

Given an algebra A in language L, if there is a ternary term t(z,y, z) in £ which
induces the discriminator function on the universe of A, it is called a discrimi-

nator term for A.

If K is a class of algebras with a common discriminator term t(z,y,2), V(K)
is said to be a discriminator variety. Such a variety is both congruence distributive
and congruence permutable (see Thm IV.9.4 of [9]) and the class of its subdirectly
irreducible members coincides with the class of simple algebras of V (K). Some
examples of discriminator varieties include Boolean algebras, cylindric algebras of
a given finite dimension, varieties of rings generated by finitely many finite fields,

etc.
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From this point on, we user the following notation: the class of subdirectly
irreducible algebras in a variety V will be denoted by Vsr, while Vs(A) will denote
the class of subdirectly irreducible members of the variety V(A).

At this point, it is worth mentioning the following result which even though
being more general, applies to discriminator varieties; it is the well-known theorem
of Bjarni Jénsson which gives the description of the class of subdirectly irreducible

members of a congruence distributive variety:

Theorem 1.24 (B. Jonsson, [19]) Let V (K) be a congruence distributive variety.

If A is o subdirectly irreducible algebra in V (K), then

A € HSPy (K),

where Py denotes the closure under taking ultraproducts of families of algebras in

the class.

Using elementary properties of ultraproducts (see [17]), if K is a finite class of
finite algebras, i.e. if V (K) is finitely generated, and A is a subdirectly irreducible
algebra, it is easy to see that

A € HS (K).

In fact, if V (K) is a discriminator variety, we can give a reasonably nice char-
acterization of Vss(K) using Jénsson’s theorem ; namely, it can be checked that
if t(z,y,z) is a discriminator term for the class K, it will also be the discrimina-
tor term for SPy (K). However, the presence of a discriminator term implies the

simplicity of an algebra. Hence, every algebra in SPy (K) will be a simple algebra,



CHAPTER 1. BACKGROUND 23

and the class HSPy (K') will consist of SPy (K) and the one-element algebra, if it
1s not already contained in SPy (K).

Given a class of algebras K in the language £, let £, denote the language
obtained by adding a new ternary function symbol £ to £. Also, given an algebra
A in L, we define A* to be the algebra in L,, obtained by interpreting ¢ as the
discriminator function on A. The class K* in £, is defined to be

K'={A':AcKk}.

Clearly, the fact that ¢ defines the discriminator function on every algebra in
language L, can be expressed by finitely many universal sentences in L. Thus, if K
is a class of algebras axiomatized by a set of universal sentences in L, the class K
will also be such. Therefore, V (K?®) will be a discriminator variety whose class of
subdirectly irreducible algebras consists of K* plus the one-element algebra. This
provides us with a canonical way of generating discriminator varieties starting from
classes of algebras axiomatized by a set of universal sentences.

Since quasi-identities are always true in the one-element algebra and their truth
is preserved in subdirect products, the quasi-identities true in K* and V (K*) co-
incide. The reason for this is the fact that every algebra in a variety is either
a one-element algebra or a subdirect product of nontrivial subdirectly irreducible
members of the variety.

Next, we consider the connection between the universal theory and the equa-
tional theory of a discriminator variety more closely. It is straightforward to verify

that, if ¢ (z,y,2) is a term in the algebraic language £ which defines the discrimi-
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nator function in every algebra of some class K, the following identities will be true

in every algebra of K:

t(:l:,:l:,y) =y, t(z, y.z) =1z, t(zwyry) =z (1.1)
t(z,t(z,y,2),y) =y; (1.2)
t(zvyvf(zl'l"' ,Zn)) = t(z,y,f(t (zvyv zl)v"' 7t(zvyvzﬂ))) (13)

where f is an n-ary fundamental operation in L.
In [29], McKenzie proves the following theorem (Thm 1.3.):

Theorem 1.25 If K is a class of algebras in some algebraic language L, such that

some ternary term t(z,y, z) satisfies (1.1) , (1.2), (1.3) in K, the following are

true:

1. A model A of (1.1), (1.2), (1.8) is subdirectly irreducible if and only if t* is

the discriminator function on A.

2. Bvery finite model of (1.1) , (1.2), (1.8) is wsomorphic to a direct product of
subdirectly irreducible models of (1.1) , (1.2), (1.8).

3. Given any universal sentence ¢ in L, one can effectively find an identity p = q

in L, such that ¢ & VZ(p(Z) = q(z)) in every nontrivial subdirectly irreducible
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algebra in K.
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Chapter 2

The word problem and its
connections with decidability of

fragments of elementary theory

In this chapter , we introduce the notion of the word problem for a finitely presented
algebra in a variety. We give several examples of varieties of algebras which have
solvable and unsolvable word problems with a discussion of several methods for
proving that a variety has (un)solvable word problems. The notion of uniform
solvability of word problems is introduced, and the result of Mekler, Nelson, and
Shelah is quoted. The chapter ends with the discussion of the relationship between
two different levels of solvability of word problems for a variety with the decidability

of certain fragments of its elementary theory.

26
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2.1 Word problems - definitions and examples

Let £ be an algebraic language. We denote by G a set of new constant symbols
such that LN G = 0, and let £g denote the set LU G.
In what follows, we abuse the notation slightly, and make no distinction between
symbols in G and their interpretations in a structure.
Let A be an algebra in the language £ and G C A. Ag will stand for the
following expansion of A:
(A, {z:z2 € G}).

We say that an identity in a language is ground, if it contains no variables.

Definition 2.1 If R is a set of ground identities in Lg, the ordered pair
(G, R)

i3 said to be a presentation relative to Lg.

Definition 2.2 Let I be a set of identities in the language L, V the variety defined
by X, and (G, R) a presentation relative to Lg. If A is an algebra in L, we say

that it is given by the presentation (or, presented by) (G, R) relative to V,
if the following holds:

1. A is generated by G;

2. AEIUR,
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3. For every ground identity s =t in Lg,

AckEs=tifand onlyif CUR[=s=t.

If there ezist finite sets G and R such that A is given by (G, R) relative to V,

A s said to be finitely presented relative to V.

Notice that, in light of the completeness theorem for equational logic
(Theorem 1.14), if £ axiomatizes V and A is finitely presented relative to V, the

following holds for every ground identity s = ¢ in Lg,

Agl=s=tifandonlyif SURF s = ¢.

An immediate corollary of Definition 2.2 is that the algebra presented by (G, R)

relative to V' is unique, up to isomorphism.

Definition 2.3 Let ¥ be a recursive set of identities in the language L, V the
variety defined by T, and A the algebra given by a finite presentation (G, R) relative
to V. The word problem for (G, R) relative to V asks whether there ezists an

algorithm which decides, given as an input a ground wdentity s =t in Lg, whether

AG|=s=t

or not. If such an algorithm ezists, we say that (G, R) has solvable word problem

(relative to V'); otherwise, the word problem for A is said to be unsolvable.

A nonobvious, though an easy consequence of this definition is the following:
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Proposition 2.4 If (G, R,) and (G2, R;) are two finite presentations of the same
algebra A relative to the variety V' then the word problem for (G1, R1) has a solvable
word problem if and only if

(G2, R3) has a solvable word problem.

With this in view, we can relax the language and say that the word problem for
an algebra is solvable when the word problem for one of its finite presentations is.

The study of word problems for classes of algebras was given impetus by the
early works of Markov ([27]) and Post ([45]). They showed, independently from each
other, that there exists a finite semigroup presentation with unsolvable word prob-
lem. Both constructions utilize Turing machine with undecidable Halting Problem
into a finite semigroup presentation.

The following table gives a brief summary of some results showing the unsolv-

ability of word problems in certain more familiar classes (varieties) of algebras:

Variety Has an undecidable Word Problem
semigroups Post ([45]), Markov ([27))
groups Boone ([5]), Novikov ([41])
rings follows from the results of Markov and Post ([27], [45])
modular lattices Hutchinson ([18])
relation algebras Tarski ([49])

Table 2.1: Varieties with unsolvable word problems

Each of the papers in the table provides a specific finite presentation relative to
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the class in question, for which the word problem is unsolvable.

The celebrated result of Boone and Higman states that a finitely presented
group has solvable word problem if and only if it can be embedded in a finitely
generated simple group. The following analogue of their result was obtained by
Evans in [14]:

Theorem 2.5 Let V be a recursively aziomatized variety in o finite language de-
fined by a recursive set of identities in that language. A finitely presented algebra
A inV has a solvable word problem if and only if it can be embedded in a finitely

generated simple algebra.

Definition 2.6 Let V be a variety in the language L. V is said to have solvable
word problems if every finitely presented algebra in V has solvable word problem.
If there ezists a single algorithm which for every finite presentation (G, R),

relative to V', and every ground identity s = t in the language L decides whether

Ag Es=t,

we say that V has uniformly solvable word problems.

Obviously, if a variety does not have solvable word problems, the word problems
of the variety cannot be uniformly solvable.

On the other hand, if a variety has solvable word problems, it is usually so
because the word problems are uniformly solvable. For example in the cases of
Abelian groups and commutative semigroups, the question of the existence of an

algorithm which solves the word problem for every finitely presented algebra in the
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variety reduces to the question of the existence of an algorithm for finding solutions
to finite systems of linear equations over Z.

The first intricate result concerning uniform solvability of word problems was
obtained for the variety of lattices. This result was implicitly stated in [36], while
the rudiments of the proof can be traced back to [48].

Theorem 2.7 (Skolem [{8], McKinsey [36]) The variety of lattices has uniformly

solvable word problems.

The essential ingredient underlying the proof of this theorem is the following
fact, isolated and stated for the first time in a paper by A. Mal'cev ([26]); it also

appears in Evans ([13]).

Theorem 2.8 Let V be a finitely aziomatized variety in a finite language. If every
finitely presented algebra of V is residually finite, then V has uniformly solvable
word problems.

In particular, every finitely based variety in o finite language which is residually

finite has uniformly solvable word problems.

This theorem applies to a variety of cases. In particular, it applies to every

finitely generated congruence distributive variety (see [19]):

Corollary 2.9 Every finitely generated congruence distributive variety in a finite
language has uniformly solvable word problems. In particular, the varieties of
Boolean algebras and distributive lattices as well as every finitely generated dis-

criminator variety have uniformly solvable word problems.
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In his paper [13], Evans gives certain criteria for the uniform solvability of
word problems in a variety. One of them is, for instance, the finite embeddability
property for partial algebras relative to the variety. This notion is not related to
the remainder of our investigation, and the relevant notions will not be defined
here. An interested reader is referred to the original article of Evans or (8] for
more information. In fact, it turns out that the finite embeddability property for a
variety is equivalent to every finite algebra in the variety being residually finite.

As consequences of the results mentioned in the preceding paragraph, Evans
derives the uniform solvability of word problems for the varieties of lattices, loops,
quasigroups, groupoids, as well as every variety of groups generated by a finite
nilpotent group.

We still need to address the question whether every variety with solvable word
problems is such that its word problems are uniformly solvable. It might appear
that this is indeed true, in light of the results mentioned so far. However, the
negative answer to this question was provided by a deep paper due to A. Mekler,
E. Nelson,and S. Shelah ([39]). In this paper, the authors use an intricate way of
interpreting a version of a Turing machine with an undecidable Halting Problem

into an equational theory in a finite language, to prove the following:

Theorem 2.10 There ezists a finitely aziomatized equational theory in a finite
language, such that its word problems are solvable, yet there is no uniform algorithm

for the word problems of the variety.
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2.2 Interdependency between solvability of word
problems and decidability of fragments of the
elementary theory

In this section, we investigate the connections between the (uniform) solvability
of word problems of a variety and the decidability of certain fragments of the
elementary theory of the variety.

The particular relationships we will be mostly interested in are those that exist
between the solvability of word problems and the decidability of equational and

quasi-equational theories.

Definition 2.11 Let V be a variety of algebras in the language L. We denote with

Thq (V) the set of all quasi-identities true in every algebra of V.
The following theorem is stated (without a proof) in [26]:

Theorem 2.12 Let T be a set of identities in £, and V the variety defined by I.
Then, V' has uniformly solvable word problems if and only if Thq (V) is decidable.

PROOF. Suppose A € V is given by a finite presentation (G,R) and s =t is a

ground identity in Lg. Then,
YURFs=tifandonlyif ZF AR — s =1¢.

By the Lemma on constants for deductions in first-order theories (see Lemma 2.3.2

in [17]), after replacing every element of G = {91,--. ,gn} with z; (1 < ¢ < n), we
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have that the second entailment displayed above is equivalent to

T Vz;... 2, (AR(Z) = s (Z) = t(3)).

Thus, the existence of an algorithm which decides whether a given quasi-identity is
in Thq (V) or not, is equivalent to the existence of an algorithm which solves the

word problem for every finite presentation (G, R) relative to V. a

Definition 2.13 Let V be a variety of algebras in the language L. We denote with
Thqu (V) the set of all quasi-identities with at most n variables which are true in

every algebra of V.
From the proof of Theorem 2.12, it is easy to extract the following corollary:

Corollary 2.14 IfV is a variety in a finite language, then, if Thg (V) is decid-

able for every n < w, V has solvable word problems.

Finally, we would like to state a few facts about the relationship between word

problems and the decidability of the equational theory of a variety.

Definition 2.15 Let V' be a variety in the language L. The equational theory of
V, Thg,(V), is the set of all identities s =t in L, which are true in every algebra
from V.

With Thgen (V), we denote the set of all identities in at most n variables true

nV.

Clearly, the recursiveness of Thg, (V) will imply the recursiveness of Th Eqn(V),

for every n < w. The converse, however, fails. The first known example of such
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a variety was given by a student of Tarski’s. B. Wells, in his doctoral dissertation
[52].

Theorem 2.16 (Wells [52]) There ezists a finitely aziomatized equational theory
in a finite language such that the equational theory of V is undecidable, yet, for

every n < w, Thg,, (V) is decidable.

Following the terminology proposed by Tarski, we call the varieties with the
properties of Theorem 2.16 pseudorecursive.

Since Fy (n) is given by the finite presentation of the form ({z1,... ,z.},0),
where all z; are pairwise distinct, the solvability of word problems of V will imply
the decidability of Thg,, (V), for every n < w.

We can convince ourselves that the converse is false on the example of the variety
of all groups. It has an undecidable word problem, while its equational theory is
decidable (Dehn [10]).

In (37], G. McNulty stated the following problem: Is there a finitely axiomatized
equational theory in a finite language whose word problems are solvable and whose
equational theory is undecidable?

The existence of such a variety would imply Theorems 2.10 and 2.16; the first
theorem would follow since the undecidability of the equational theory will yield
the undecidability of the universal Horn theory, after which Theorem 2.12 can be
used; the result of Wells would follow by the remarks following the statement of
Theorem 2.16.

In Chapters 3 and 4, we provide the affirmative answer to this problem, by con-

structing a finitely axiomatized variety in a finite language with required properties,
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starting from a class of structures in a multisorted language.



Chapter 3

From multisorted structures to

pseudorecursive varieties

In Section 2.2, we defined a variety V to be pseudorecursive if its equational theory
is undecidable, yet, for every n < w, the theory consisting of equations involving at
most n variables which are true in V is decidable.

The existence of finitely based pseudorecursive varieties was first established
in [52], using a suitable encoding of computations of a Turing machine with an
undecidable Halting problem in the equational theory of a variety.

In the following two chapters we provide a positive answer to the problem stated
at the end of the previous chapter, i.e., we construct a finitely based variety V'
whose equational theory is undecidable, yet whose word problem is solvable. This
will subsume the main results of [39] and [52], since:

1° The theory of universal Horn sentences of V will be undecidable, which is,

according to a result of Mal’cev ([26]), equivalent to the non—existence of a uniform

37
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algorithm which would solve the word problem for any finite presentation relative
to V. Hence, the uniform word problem for V will be unsolvable, and the main
result of [39] follows.

2° On the other hand, since in V, for every n < w, the n- generated free
algebra in V is finitely presented and the solvability of the word problem for this
n-generated free algebra in V is equivalent to the decidability of the n-variable
equational theory of V, V will be pseudorecursive.

Instead of trying to encode the undecidability of the Halting problem directly
into the equations defining V, our approach will be to use a class of structures,
defined in some multisorted signature (including relations), and then to translate
different (un)decidability properties of that class into the corresponding properties
of a variety in a 1-sorted language without relation symbols.

This construction will be driven by the following version of the Halting Problem:
there is a Turing machine T such that there is no uniform algorithm to decide for
which initial configurations T eventually halts; on the other hand, for each n, the
set of initial configurations of length at most n from which T halts is decidable.
This nonuniformity for the Halting Problem is essentially what makes things work
out nicely. For more on the theory of computability and recursive functions, see
[6].

One of the main tools throughout the following few chapters will be multisorted
logic (with the identity) and we shall freely make use of standard notions and
results of it. An introduction to the basic model theory of multisorted structures

was given in Section 1.2 and the reader is invited to consult it for the sake of a
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further reference.

In order to make the exposition more readable, we have decided to deviate from
the standard practice of designating different sets of letters for the variables of
different sorts. Instead, we typically use the same letters (z,y,z, ... ) for variables
of all sorts. Since we are almost exclusively interested in sentences, we indicate the

sort of a variable by restricting the range of the quantifier in question. For example,

(Vz € 5i)¢(z)

means: “for every z of sort S;, ¢(z)”, while

(3z € Si)é(z)

should be interpreted as: “there exists z of sort S;, such that é(z) ".
Where a multisorted formula is not a sentence, we indicate explicitly the sort
of a variable, as necessary.

We abuse notation by writing

pCS;lX...XS'

= m

to mean that p is a relation symbol whose associated tupleis (zy,...,%y,). Similarly,
we write

f:S; X...XS{,‘—)S]'

to mean that f is a function symbol whose associated tuple is (7y,... %, 7).
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A brief discussion on the theory of multisorted varieties can be found in either
[50] or [35]. Actually, the techniques developed in Section 4 of this chapter were
inspired by the first part of Chapter 11 of [35], where the authors describe the cat-
egorical equivalence between the varieties of multisorted algebras and the varieties
in 1-sorted algebraic signatures.

The most important tool in our proof is McKenzie's reduction of first order logic
to equational logic using discriminator varieties, which was mentioned in Theorem
1.25.

The most exhaustive reference on algorithmic problems for varieties of algebras
is [20], where further information can be found.

Next, we adopt several notational conventions and give some definitions that
will be used in what follows.

If a is an n-tuple from, say, 4; x A; x +-- x A,, where A,, ... , A, are any sets,

the i-th component of a will sometimes be referred to as
ai € Aiy

or as
afi] € A;,

depending on which form will be more convenient in a given context.
By the universal theory of a class K in a (multisorted) signature £, we mean

the theory of all universal sentences, in prenex form, true in every structure in K,
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and it will be denoted by
Thy(K).

If K is a (multisorted) class of structures,

Thy o(K)

will denote the fragment of the universal theory of K, consisting of the sentences
from Thy(K) containing at most n variables of each sort.

Given a (multisorted) class K of algebras,

Thgea(K)

will stand for the set of equations in the signature of K, having at most n variables
of each sort which are true in every structure in K.

We say that the (multisorted) class K is universally pseudorecursive, if
Thy(K) is undecidable, while Thy,(K) is decidable, for every n < w.

Sections 3.1 to 3.5 constitute the proof of the following theorem.

Theorem 3.1 Given a universally pseudorecursive class K of multisorted struc-
tures aziomatized by a finite set ® of universal sentences in a multisorted language
L, one can construct a finitely based pseudorecursive discriminator variety V whose

word problems are solvable.



CHAPTER 3. FROM MULTISORTED STRUCTURES ... 42

3.1 From a multisorted universal class to a pseu-

dorecursive variety

The idea of the proof of Theorem 3.1 is the following:

(1)

(2)

(3)

Eliminate the relation symbols. Given a universally pseudorecursive class K
of multisorted structures in a language £, axiomatized by a finite set & of
universal sentences, construct a universally pseudorecursive multisorted class
K*, in a language £*, which does not contain relation symbols, and which is

axiomatized by a finite set of universal sentences ¥ in £*.

Eliminate the constant symbols. Given a universally pseudorecursive class
of multisorted structures in a language £ which does not contain relation
symbols, and which is axiomatized by a finite set ® of universal sentences in
L, construct a universally pseudorecursive multisorted class * in a language
L=, which does not contain either relation or constant symbols, and which is

axiomatized by a finite set ¥ of universal sentences in £*.

Reduce to a single sort. Given a universally pseudorecursive class K of mul-
tisorted structures in a language £ not containing any relation or constant
symbols and axiomatized by a finite set ¥ of universal sentences in L, con-
struct a universally pseudorecursive class of structures * in an ordinary
1-sorted algebraic language £*, such that K= is axiomatized by a finite set of

universal sentences.
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(4) Reduce to an equational class. Given a universally pseudorecursive class of
algebras K axiomatized by a finite set of universal sentences in £, the associ-
ated discriminator variety denoted V(K?!) is a finitely based pseudorecursive

variety in the language £, whose word problems are solvable.

The general method that will be used in all the steps ( 1)—(3) will depend on the
following definition:

Definition 3.2 Let £ and L™ be two multisorted languages, and T a finite set of
unwersal sentences in L=. The system of transformations (*,E) is called a -

equivalence system if it satisfies the following conditions:

1. For any structure A of signature £, A~ is a structure of signature L=, which
satisfies L. Conversely, for any structure B of signature £, satisfying T, B.

18 a structure of signature L, so that

(A"). = A,

and

(B.)" = B.

2. For any sentence ¢ in L, ¢" is a sentence in L™ constructed effectively from ¢,
and, conversely, for any sentence ¥ in L=, . is a sentence constructed effec-
tively from 1 in L, so that, for any structure A of signature L, any structure

B of signature L* satisfying ¥, and ¢,v sentences in L,L*, respectively, we
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have the following:

AkE4¢ if and only if A =47,

and

BE4vy if and only if B. = ..

Moreover, these two transformations are such that they carry universal sentences

into unwversal sentences.

Then, K~ is defined to be the class

K" = I{A-.A GK}’

where I denotes the closure of the class under isomorphisms.

Definition 3.3 Suppose that the language L is k—sorted, with the sorts Sty-..,Sk.
The transformation ¥ — ., which, given a universal sentence Y in L™, associates
to it a universal sentence . in L is said to be variable bounded if and only if
there are functions 6,,... 0 on the natural numbers such that for every formula
¥, if ¥ has at most n variables of each sort, then . has at most 6:(n) variables of

sort S;, for eachi=1,... k.

If a ¥-equivalence system (*,%) is such that its transformation function on
the sentences from £ into £* is variable-bounded, than (*,X) will be said to be
variable-bounded, as well.

In that case, the following theorem will be true:
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Theorem 3.4 If K is a universally pseudorecursive class aziomatized by a set ¢
of universal sentences, and (x, L) i3 a variable-bounded -equivalence system, then

K™ is a universally pseudorecursive class aziomatized by ®* U X, where
®" = {¢": ¢ € ®}.

PROOF. It is quite a straightforward exercise to show that K* is axiomatized by
®* U X, and that Thy(K*) is undecidable.

Let ¢ be a universal sentence in £*, which contains at most n variables of
each sort, and let 6,,... ,8; be the functions which witness variable-boundedness.
Consider

m = max{6,(n), 2(n),... ,0(n)}.

Then,
Y € Thya(K™) if and only if Y. € Thy (K).

Since Thy,m(K) is decidable, so is Thy (K*). O
This concludes our preliminary discussion on how the steps (1)—(3) will be car-
ried out. In the sequel, we shall refer to these results and confine ourselves to

defining £*, ¥ and the corresponding transformations for each particular case.

3.2 Getting rid of relations

Suppose £ is a k-sorted language with sorts Sy,...,S;. We define £* to be a

(k + 1)-sorted language whose sorts are those of L, plus a new sort Si,,, which is
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the sort of two new constant symbols 0 and 1.
Also, L* retains all function and constant symbols from £, but the relation sym-
bols of L are replaced by function symbols intended to denote their characteristic

functions, in the following way: if p is an m-ary relation symbol of L,
pC Si x e x S,
then p is replaced by an m-ary function symbol R in £*. so that
R:S5; x---x8; +— Siyy.
Let ¥ consist of the following universal sentences:

(Vz € Sepr)(z =0V =1),

0#1.

Now, given a structure A of signature £, where
A= (S{‘,... ,S,‘:‘),
define A* to be the structure of signature £, whose universe is

A‘:(SIA,... ,SkA,{Ojl})1
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and if p is an m-ary relation symbol in £, such that

pC S x---xS;

m?

define
RA": 52 x ... x S2 — {0,1}

tm

in the following way: if a; € S{}, (1<j5<<m),

R*(ay,...,6m) =1 ifandonlyif  p*(ay,...

Conversely, if B, where

B= (S].Bv 151?7{03’18})’

47

y Q).

is any structure of signature £*, which satisfies ¥, define B. to be the structure

whose universe is

B=(SB ... 8B,

and, if
R®: 8 x---x 8, {0,1},

then, for the corresponding p in £, define, for b; € Sg (1<7<m),

pP*(bi,-.. ,bm)  ifandonly if  RB(by,... bn) = 1B,

It is easily seen that, given any structure A of signature £, and any structure
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B of signature £, which satisfies I,

IR

A =(A%).,
B = (B.).

)

=(

Next, we define the corresponding transformations on the sentences in £ and
L.

Let ¢ be a sentence in £. Replace every atomic subformula of ¢ of the form

p(tl(i)s Tty tm(i))7

where

pCS; x---x5;

m

1s a relation and ¢;(Z) is a term of the sort Si;, for 1 < j < m, by
R(t1(Z),... ,tm(Z)) =1,

where R is the corresponding function symbol in £*. Denote the formula in L,

obtained from ¢ in this way, by ¢

Proposition 3.5 Let A be a structure of signature £ and ¢ a sentence in L. Then,

AE¢ if and only if AT | ¢

PROOF. If ¥(Z) is an atomic formula in £, and @ is a tuple of elements in A of the
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appropriate sorts, it is easily seen that

A = 9(a) if and only if AT | #7(a).

The proof can now be extended using induction on the complexity of ¢. a
Now, suppose 9 is a sentence in £=, which can be assumed to be in prenex

normal form. If ¢ is of the form

QZ(Vz € Skt1)d(z, 2),

where QZ is a quantifier prefix in 1, this formula will be equivalent, modulo X, to

QZ(9(2.0) A I(3.1)); (3.1)

while, if v is of the form
QZ(3z € Sk )d(Z, 2),

it will be equivalent to

Qz(9(z,0) v 9(3, 1)). (3.2)

Hence, after putting each of (3.1), (3.2) into prenex normal form, we may assume
that 1) does not contain variables of sort Si;.
Thus, the atomic subformulas of ¥ which involve terms of the sort Sk+1 are of

one of the following forms;
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(1) R(ts(Z),--. ,tm(Z)) =1,
where

R:Sy x---x8;, = Seq1,
and every ¢;(Z) is a term of the sort S;;.

(2) R(ti(Z),.-.,tm(Z)) =0,
where

R:5; x--+x8;, = Seqr,
and every ¢;(Z) is a term of the sort S;;.

(3) Ri(ti(2), ... tm(Z)) = Ra(us(2), ... ,ua(2)).

(4) 0=0
(5) 1=1
(6) 0=1.

If an atomic subformula of 9 is of one of the forms (1) or (2), we replace it by

p(t(Z), ... . tm(Z)),
ﬂp(tl(f:), cee tm(i)),

respectively, where p is the relation symbol in £ corresponding to R.

When an atomic subformula of 1 is of the form (3), we first replace it by
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(R1(tu(Z), - ,tm(£)) =0 A Rp(us(Z),...,un(3)) = 0)

V(Ri(t1(Z), ... ,tm(E) =1 A Ry(us(Z),... ,un(3)) = 1),

and then handle this formula as in the previous case.

Now, if the sentence 1 contains at least one variable, say z of sort S;, where j
can be assumed not to be equal to k + 1, according to our previous remark, and ¥
contains an atomic subformula of the form 0 = 0 or 1 = 1, replace that subformula
with z = z. If ¥ contains an atomic subformula 0 = 1, replace it with z # z.
Finally, put the quantifier (Vz € S;) in front of the formula.

If ¢ is a variable-free sentence, choose any variable z, not of the sort Sy, and
replace 0 = 0, 1 = 1, and 0 = 1, with z = z and z # z, as in the preceding
paragraph, and put the quantifier (Vz € S;) in front of the sentence.

What happens if 9 is universal? If 9 contains some variables of sort Si+1, then,

after eliminating these variables from 1, ¥ can be assumed to be of the form

ViAo A,

where 1); are universal sentences having the same quantifier prefixes, and containing
no variables of sort Si,;.

Now, after an application of the transformation described above, and after
putting the sentence obtained in this way in the prenex normal form, we obtain a

universal sentence ., having at most one variable more than the original sentence
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.

Let 1. be the formula in £ obtained from ¥ in the manner described above.

Proposition 3.6 If B is a structure of signature £ which satisfies ¥ and 9 is a

sentence in L™, then

BEY if and only if B. ..

PROOF. For each atomic formula Y(Z), having no variables of sort Si,, in L=, let
J.(Z) be the formula obtained from 9(Z) as above, and let b be a tuple of elements

of B of the appropriate sorts. Then,

B = 9(b) if and only if B. = 9.(b).

The argument can now be easily extended to all the sentences in £~ having no
variables of sort Siy;, using induction on the complexity of a formula in £~ a
Finally, observe that the effective transformation, which given a sentence ¢ in

L=, produces a sentence 9. in L, increases the number of variables by at most 1.

3.3 Elimination of constants

Throughout this section, we assume that the language £ does not include relation
symbols. Let S),... , Sk be the sorts of L.
Let L be the language with the same sorts as £, obtained from £ by replacing

all the constant symbols ¢ € £ of sort S; by the corresponding unary function
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symbols
fc : S,' —> S,'.

Let ¥ be the set of the following universal sentences in £=:

(Vz € Si)(Vy € Si)(fe(z) = fe(y)), ceL\ L

If A is a structure of signature £, let A~ be the structure with the same universe

as A, such that, for every function symbol g € £ N L*,

and for f. € L™\ L, where c is of the sort S;, let

fc:S,'—)Sg

be such that fA" has the constant value c*.
On the other hand, if B is any structure of signature £* which satisfies 3, define

B. to be the structure of signature £ whose universe is that of B and, for g€ LNLT,

g8 = gB,
while, for f. € £*\ L, the corresponding ¢ € £ will be interpreted in B. as the
constant value of fB.

It is straightforward to check that, for any structure A of signature £, and any



CHAPTER 3. FROM MULTISORTED STRUCTURES ... 54

B of signature £~ which satisfies the universal sentences in I,

and

Given a formula ¢(Z) in L, let ¢'(Z,%) be a formula obtained from ¢(z) by
replacing each occurrence of ¢ € £ of the sort S; with f.(u), where u is a variable of
the same sort which does not occur in ¢(z). We assume that a systematic effective

way to choose such variables is set up in advance. Finally, let ¢*(Z) be Vid'(z, &).

Proposition 3.7 Let A be a structure of signature £, ¢(Z) a formula in £, and @ a

tuple of elements of A of the appropriate sorts. Then, for allb, € SA,... b € SA,

A E ¢(a) if and only if A" = ¢'(a,b).

Corollary 3.8 If A is a structure of signature L, and ¢ a sentence in L, then

AE¢ if and only if A" E ¢

If ¢(Z) is a term in £* which contains an occurrence of some f, € £* \ £, and if
fe(u(Z)) is a subterm of ¢(Z), which is not nested inside any other subterm of t(z)
of the form f4(v(Z)), where f; € L\ L, then replace f.(u(Z)) by the corresponding
ce L\ L.

Now, given a formula %(Z) in £*, define %.(Z) to be the formula in £ which
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is obtained from %(Z) by transforming each term t(Z) occurring in ¥(Z) in the
above described manner, plus deleting all the quantifiers that refer to the variables
eliminated in this process.

Hence, we have the following proposition, whose proof is straightforward:

Proposition 3.9 For a structure B of signature £~ which satisfies the universal
sentences in X, a formula ¥(Z) in L*, and a tuple b of elements of B of the appro-

priate sorts,
B = 4(b) ifand only if  B. = 4.(b).

This transformation does not increase the number of the variables of any sort

in .

3.4 From the multisorted to a 1-sorted class

In this section, we make the transition from multisorted to one-sorted structures.
The standard approach of taking the disjoint union of the sorts (an early reference
is [46]) will not be used here; instead we opt for the technique developed in [35] for
classes of unary algebras, and put it in a more general setting.

Let £ be a langﬁage not containing any relation or constant symbols, whose
sorts will be denoted by S;, Ss,... ,S,.

We define the signature £* in the following way: If

f:S,' X-“XS,',‘—-)SJ’
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1s a k-ary operation symbol in £, we define f* to be a k-ary operation symbol in
L=. Besides the operation symbols f* corresponding to f € L, the language £* will
contain an n-ary function symbol d.

Let ¥ consist of the following identities in £=:

diz,z,... ,z) ==z (3.3)
d(d(z1), d(%2), . .. ,d(z,)) = d(z!,23,... ,z7) (3.4)
where Z; = (zj,... ,z.) is an n—tuple of variables in L*, and

d(£),...,d(z)) = d(zi,... ,.1:;-_1, f'(:z:%l e ,th), z;-H, .. ,Th) (3.5)

for f € L k-ary of type (S;,,..., S, S;).

Given a multisorted algebra
A=(SP,... .54

of signature £, we define an algebra A~ of signature L= in the following way:

e the universe of A" is

A A,
St x-e x SA,

e if f € L is k-ary of the type (Siyy---+S54,S;), and ay,... ,ar € A" such that

ai=(ai,....d), deS(l<r<n),
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then
(FA7 s (A7) - 47
1s defined by
(f.)A.(alv e 7ak) = (ai?a;! s 7a;—17 fA(al}x’ b 701{‘5 3 a;:'f'l’ ntt ’a:l);

e d*° is the natural n-ary decomposition operation on A", given by

d? (ay,... ,@n) = (aj,a2, ... L Gn).

It is a rather straightforward exercise to verify that, in any A~ defined in this
way, all the identities in ¥ are satisfied.

Now, given any algebra B of signature £*, which satisfies 2, we show how to
construct the corresponding B..

Since B satisfies (3.3),(3.4), d® will be the natural n-ary decomposition oper-
ation on B (see [35]). In other words, there exist B, ..., B, such that B is in a

bijective correspondence with B, x --- x B, via the bijection
t:B— By x--- x By;

and, then,

d%(by, ..., ba) = T (eB)[L, . .., o(ba)[n]).

For the sake of simplicity, we shall identify B with B; x--- X B, i.e., we assume
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that
B=BIX-'°XB,-“

and

dB(by,... ,ba) = (b[1],... . ba[n]),

for all &,,...,b, € B.
Fix some ¢; € By, ... ,c¢, € B,. The n-sorted algebra B, will have the universe

(B1,-..,Bn).
The interpretation of the k-ary function symbol f € L of the type (Siyy--- 2S5, S;)
is defined in the following way: if b, € Bi,..., bt € By, fB(by,..., be) is defined

to be the j-th component of
(f')B((cla"' 1ct'|—17b11cl'|+17'-' ,C,;), <Cly"' ’cl'q—lbe*lcig-f'l,"' scn)v"' 3

(Cl,. - vcig—lybka Cig+1y- - - 7Cn>)

It is readily seen that, for any algebra A of signature £ and any algebra B of

signature £*, satisfying %,

(A").

IR
»

and

(B.)" = B.
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For each term ¢(zy,... ,z) in £, we define the term

t(zy, ..., zk)

in L*, as follows:

59

1° If ¢(zy,... ,z¢) is a variable z;, then t*(z,,. .. ,Zk) is an (unsorted) variable

;.

2° If t(x,,... ,z¢) is of the form

Flsu(za, oo szie), - silz, ..o k),

where f € L is l-ary of type (S;,,..., S, S;), and s;_(z1, ...

sort S;,, (1 < m < 1), we define ¢t*(z,, ... ,Zk) to be

(83,0 v z)y ..y 87 (. - VZk)),

and all the variables z,,... , z; are unsorted.

If 7 is an equation in £ of the form

tl(zla'-' ’zk) = t2($17' .. 11:’:)7

,Zk) is of the

where t,, ¢, are terms, which are both of the sort S;, define 9~ to be the following

equation in L*:

d(zy1,...,z,t(z1,. .. ,Zk), 2, . ... yZT1) =
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d(:l:]_.,... 7z1’t;(zla--' 7zk)7zlv--' 121)1

where ¢] and ¢; occur as the i-th entries in the list of arguments of d.
Given a formula ¢ in £, we define ¢* to be a formula in £* obtained by replacing

every atomic subformula 1 of ¢ by ¥~ and making all variables unsorted.

Lemma 3.10 Let A be an algebra of signature L, and let aj,...,a € A*, where

a,-=(a'i,...,ai)ESﬁx---xS;‘}, (1<i<k).

Ift(zy1,... .z&) is a term of the type (Siy---284,85;) in L, then, in A~ the j—th
component of

(t)% (ay,. .. .ax)

tAal,... ,a*).

'i[ * ik

Proposition 3.11 Let A be an algebra of signature L and &(zy,...,zi) a for-
mula in L, whose variables are of the sorts Siyy... S, respectively. Let a; €

SA

U 1% ES{:, and let b,,...,b. € A" be such that

bl[il] = ay,... ,bk[ik] = G.

Then,
A = 4(ay,... ,a) if and only if  A™ | ¢7(by,...,b).

PROOF. The proof is by induction on the complexity of ¢.
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1° ¢ is an equation of the form
tl(:l:]_, ceey Ik) = tz(zl, ... ,.’Bk).

Then,

A ht?(alv--- 7ak) = t‘;(al,... ,ak)

if and only if

A = d* (by,... by, (8)2 (by,. .. Bk),br,. .. by) =

d* (bry ... by, (83)2 (Byy ..., be), by, ... L By),

where 7,13 occur as the i-th entries in the list of the arguments of d. (Here,

we have made use of the Lemma 3.10.) This is, in turn, equivalent to

A= ¢7(by, ..., be).

2° If ¢(zy, ... ,zx) is either —9(z,y,. .. yZk) or Y(z1,...,ze) A 8(zy, ... ,zi), for

some formulas ¥(zy, ... ,zi),0(z1,. .. ,zi), the claim follows immediately.

3° Assume that ¢(zy,...,z¢) is of the form

(ay € Si)¢(y7 3 S xk)-
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Then,
A (Jye S)d(y,ar,. .., a)

if and only if there exists a € SA such that

A '= 1!)((1,01, ‘e ,ak).

Choosing b € A~ to be an arbitrary n-tuple whose i-th coordinate is a, and

applying the induction hypothesis, we get

AFY(aay,...,a) fandonlyif A" (bby,...,b).

Since ¢” is
¢.(y,z11 ceey zk)a
this yields
AE(GyeShy,ar-.. a)
if and omly if

A E (3y)y(y, b, ..., bg). m]

Corollary 3.12 If A is any algebra of signature L, and & a sentence in L, then

AE¢ if and only if A = ¢

Our next task is to define the corresponding effective transformation on sen-

tences in £=. We first establish certain properties of terms in £~.
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Lemma 3.13 Let B be an algebra of signature L=, satisfying L. If t(zy,... .z¢) 1s

a term in L of the type (S;,,...,S:,S;), and by, ... by € B, then any coordinate
of
(*)B(by,..., bi)

18 equal to

B (bafia], ... , bafix]),

for some subterm s(z,,...,z:) of t.

PROOF. The proof is by induction on the complexity of ¢.
1° ¢(z1,... ,zk) is a variable z,, (1 < m < k), of sort S;_. In this case, the
claim is trivial.

2° Suppose t(zy, ... ,zi) is of the form

flsi(zr,- .. o ze), ... L Sm(z1, - - -, 21)),

where each s, (zi,...,z¢) is of the type (S, ... v S5, S5,.) (1 £ 7 < m), while f is
of the type (Sj,....S;.,S5;). Then,

(F)P(sD)B @), -, (85)B(B) =
(PO - (sDPE - 1, £2 ()P BV, - -, (s3)B BV )),

- (DP@T + 1], ()R (B)m]),

and the claim follows from the induction hypothesis applied to the elements s3(b),
ooy 8a(b). O
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Moreover, observe that, from the proof of the lemma, we have the following:
for each t(zy,... ,z) and by,... ,br € B, we can effectively recover the subterms

81,...,8, of ¢, which determine the coordinates of t*(by,... ,b) in a unique way.

Lemma 3.14 Modulo Z, every term £°(Z1,... ,Tk) in L” is equal to a term of the
form

d(ti(z1,. .. ,z&), ... to(z1,-- ., Z1)),
where d does not occur in any of t],... t5.

PROOF. The proof is by induction on the complexity of ¢.

1° If t*(zy,... ,zk) is f7(z1,-.. ,zk), then

t(zr, ... zk) = d(f(z1e ... ozk), .o, F(2, ... L TR)).

If t*(zy,... ,z&) is d(z;,,...,z;,), where {Zis--- 22} C {z1,...,2z:}, then ¢
itself will do.

2° If t*(zy,... ,z¢) is of the form

d(si(z1,... ,z), ... ySn(z1, .- k),

let

s (z1,... ,zk) =d(t;,(z1,... ,zk),- . (T, . . 2k)),

where none of ti1:--. »t,; contains d, for 1 < 7 < n. Then,
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(21, me) = dd(E 4 (E), .. 6 a(2)),. . d(tn,4(B),... £ (3)))

= d(t;1(2), £5,4(2), ... ,t5.0(5)).

If t*(z4,... ,z4) is of the form

F(s1(Z), ... ,se(3)),

where f* is k-ary, using the induction hypothesis, we get

$:(2) = d(£;1(2), . .. ,t;.(2)),

where none of t;; contains d. Then,

£°(2) = f1d(E1(2), - A a(B)), - - d(5 (), - .., £5 4(2)))

= d(t;.1(5)7 A | t;,j—l(z—:)w f(t;,i(i)v ey tl‘c,i(i))’ tI,j+1(i)a R ] t;,n(i)))'

This concludes the proof of the lemma. O

Hence, we can effectively transform any equation % in £* into one both sides
of which are of the form from the statement of Lemma 3.14. So, by Lemma 3.14,
without any loss of generality, we may assume that any equation in L~ is of the
form

d(ti(z1,... ,zx), ..., th(z1,. .. ,zi))
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= d(u(z1,... ,zt),... yun(Zy, ..., zk)), (3.6)

where the terms ¢;, u} contain no occurrences of d.

Given an equation ¥ in £* of the form (3.6), define . as follows:

where 8; is constructed in the following way: let p; be the subterm of ¢;, such that,

for every b,,... ,bx € B,
t:(blv RN bk)[z] = pi(bl[ill’ s 7b’=[ik])v

where ¢; is of the type (S;,...,S;,,5;), and let ¢; be the subterm of u; with the

same property, namely
ui(br, .. Be)i] = qi(bafi], - - - . Be[dk])-
Set 6; to be equal to
p,-(z:}l, . ,:z:fb) = q,-(:z:;l e 2 5 )
Now, if ¢(zy,...,zi) is a formula in £~ let

1 1 2 2 k k
M E U L0 OTTUR LIU J Ty )
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be the formula in £, obtained by replacing all equations (atomic subformulas) v of
¢ by 9. as described above. Also, each quantifier Qz; in ¢ will be replaced by

Qz; - - zi.

Clearly, if ¢ contains m variables, ¢. will contain m - n variables.

Proposition 3.15 Suppose

BEX.
For
by = (bj,...,bB),... b = (b’l‘,... ,bﬁ)
in B, and a formula ¢(z,,... ,zx) in L, we have

B | ¢(by,...,b) if and only if B. = ¢.(b,... ,bBL,... b5 ... ).

PROOF. If ¢ is an equation in £*, the validity of the claim follows from the preceding
discussion. The only remaining case which is nontrivial is when é(zy1,... ,z¢) is of

the form

(Az)Y(z, 2y, ... ,zr).

Then,
B &= (3z)¢(z, by, ... , bi)

if and only if there exists
bo = (b?, ,bg)
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in B such that
B E¥(b,by,...,b).

Then, by the induction hypothesis,

B h‘l)b(bvbly'-' 9bk)

if and only if
B. = ¢.(8),...,02,8],... .8}, ... B LB,

but observe that

k
¢(z3,..., 22, ... VT, .., zF)

1s actually

(321 Za)Pu(zay. . Tayzh, .2k, L2k 2R). O

An immediate corollary of Proposition 3.15 is:

Corollary 3.16 For any algebra B of signature £L* and any sentence ¢ in L=,

BEé¢ if and only if  B. |= ¢..

3.5 Adding the discriminator

Let K be a class of algebras of a 1-sorted signature £ , axiomatized by a finite set

of universal sentences @ in £, which is universally pseudorecursive.
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Let K* be the class of algebras of signature £ U {t} , where ¢ is a ternary
function symbol not occurring in £, and which is axiomatized by ®U{4é.}. where 4,
is a universal sentence asserting that ¢ is interpreted by the discriminator function
in every algebra in K*. Also, for any algebra A € K, let A stand for the expansion
of A by the discriminator function on A.

Clearly, we have the following:
Proposition 3.17 K* has an undecidable universal theory.

Now, given a universal sentence ¢ in £t = £ U {t}, one can effectively construct

a universal sentence ¢. in £ with the same number of variables, so that

AE¢. ifandonlyif Al g,

where A is any algebra in K.
Here is how the construction proceeds. If ¢ contains an atomic subformula of
the form

t(317 82, 33) =3,

where sy, 33, 33, 8 are terms in £*, replace it by:

(81 =32 A383=3)V (381 # 382N 3 =3). (3.7)

Since t(s1, 32, 93) = s is equivalent to (3.7) in any model of & U {4:}, eliminating ¢
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successively in ¢, in the manner described above, one obtains ¢. such that
AlE=¢ if and only if A E ¢..

Now, it is easy to prove the following:
Proposition 3.18 Thy ,(K*) is decidable, for everyn < w.

Consider the variety V(K*). Theorem 1.25 shows that, for each universal sen-
tence ¢ in L*, one can effectively construct an identity ¢ in £, such that in every

nontrivial subdirectly irreducible algebra A in V(K?),
AE¢ ifandonlyif AfE4

Let (K*)* denote the class of nontrivial members of K*. It is easy to see that the set
Thv(K?*) is recursive with respect to Thy((K*)*) and the undecidability of Thy(K*)
will therefore imply the undecidability of Thy((K!)*). However, ‘Iheorem 1.25
shows that the undecidability of the latter is equivalent to the undecidability of the
equational theory of V(K*). The reason for this lies in the following fact:K* consists
of the subdirectly irreducible algebras in V(K*) plus the one-element algebras (in
case K has any one-element algebras). Therefore, an equation is true in V(K if
and only if it is true in K*. Hence, the undecidability of the universal theory of K¢

implies the undecidability of the equational theory of V(KY).
Theorem 3.19 V(K*) has the undecidable equational theory.

Theorem 3.20 V(Kt) is finitely based.
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PROOF. As explained in Section 1.3, the class of subdirectly irreducible members
of V(K*) consists of K* plus the one-element algebra, if not already included in Kt.
For each ¢ € ® U {4,}, let ¢’ be an identity such that

AFE¢od

for every nontrivial subdirectly irreducible algebra A which satisfies the identities
(1.1), (1.2), and (1.3) from Section 1.3. The existence of such an identity ¢’ is
guaranteed by Theorem 1.25.

Now, @’ will be the set of identities consisting of {¢': ¢ € ®} along with (1.1),
(1.2), and (1.3).

Let W be the variety defined by the set of identities ®. We need to show that

Wsr = Vi (K").

If A € Vs1(K*) is a nontrivial algebra, A € K* and

A E=duU{d}.

Since t* will be a discriminator function on A, A will satisfy the identities (1.1)-
(1.3), and this implies
AE9d.

Conversely, if A € Wgy, and A is nontrivial, A satisfies (1.1)—(1.3), and since
A is subdirectly irreducible, Theorem 1.25 yields that ¢4 will be the discriminator
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function on A. Thus,
AE9d

and we are done. a

Since Thy(K*) is decidable for every n < w, Thyg .(K*), the theory of universal
Horn sentences of Kt with at most n variables, is decidable.

We have already seen in Section 1.3 that the Thq(K?*) is precisely Thq(V(K?)),
whence Thq o(V(K*)) is decidable, for every n < w.

Corollary 2.14 states that the decidability of Thq n(V(K*)) implies the existence
of a uniform algorithm which solves the word problem for any finitely presented
algebra in V(K*) with at most n generators in its finite presentation. This yields

the following theorem:

Theorem 3.21 Every finitely presented algebra in V(K*) has a solvable word prob-

lem.

By combining all the steps so far, we complete the proof of Theorem 3.1.



Chapter 4

Definition of the class

In this chapter, our goal is to construct a class K of structures in some multisorted
language £, axiomatized by a finite set of universal sentences in £, which will have
the desired properties; namely, its universal theory will be undecidable, while the
theory consisting of the universal sentences true in K involving at most n variables
of each sort will be decidable, for every n € w.

To ensure that the universal theory of K is undecidable, we design K so as to
reflect the computations of a Turing machine with an undecidable halting problem.

On the other hand, the decidability of every (n,n,...,n)-universal theory will
follow from the fact that, given a universal sentence ¢ in £ containing at most n
variables of each sort, we can effectively check whether ¢ is false in some structure
in K by listing effectively all pairs(A, a) where A is any structure in K generated by
at most n elements of each sort and a is any (n,n,n, n)-tuple of elements belonging
to A.

In particular, if a structure is generated by at most n elements of every sort,

73
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there will be only finitely many finite components (which will be defined later) in
such a structure, and that number will be bounded by some computable function
of n. These finite components, together with their location in the structure and at
most n configurations of our Turing machine will, speaking informally, completely
determine the structure.

The version of a Turing machine that we use is such that the tape of T is semi-
infinite (to the right), and, if it happens that the machine head is scanning the
leftmost cell of the tape and the appropriate instruction directs it to the left, the
machine halts in no state.

Throughout the rest of the exposition, the machine 7' in question is assumed
to be such that its halting problem in state qo is undecidable. The version of the
Halting Problem that we have in mind, as mentioned in the mtroduction, is the
following: there is a machine T for which the set of the initial configurations which
lead to the halting state is undecidable.

By a Turing machine we mean a quintuple

T = (Q, Sv 67 9o, ql)’

where

® S =1{50,31,... ,3m,3m41} is the set of the tape symbols of T, where B = s,,,
stands for the blank symbol.

® Q=1{qo,q,--.,q.} is the set of the states of T'.

® go € Q is the unique halting state of T.
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® g1 € Q is the initial state of T.

®§:5SxQ—5xQx{L,N,R}is a partial mapping (the transition function

of T') and the intended interpretation of

d(s,q)=(s',¢"T), T e{L,N,R}

is: T, upon reading s in the scanned cell with its head in the state q, prints
s" in place of s, moves in the direction ' (L-left, N-no move, R-right), and

changes the state of its head to ¢'.

Also, the transition function § of T is assumed to satisfy the following: for every

seS

4(s,90) = (s, q0, N).

Le., once the halting state has been reached there is no further action of T'.

By a configuration we mean a finite initial portion of the tape, together with
the current position of the head and its current state (we also allow for the case
where the head is off the tape); ie. a configuration is a finite sequence from
SU(S x @), having at most one coordinate from $§ x Q. The set of all configurations
of T will be denoted by Config.

T determines a unary function T : Config — Config via its transition function
d in the following way:

1° If C € Config is of the form

C =384 -. '31','-1 (s,-,.,q) 8,'”_l BRI PN
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where s;, € S, (k=1,...,n), g€ Q and

') (sij7Q) = (3’7 qlw L) ’

then, T(C) = C’, where

'] 7 4
C'=s; ...(.9,-,‘_|.,q).s:.s;,-j+l ...8; B.

2° If C € Config is of the form
C=si -8, (85,9) ;- - %,
where s;, € S, (k=1,...,n), g€ Q and
d(si;,9) = (s, ¢, R),

then, T(C) = C’, where

4 7 /
C'= s 88, 8(84,,,9)...5:,B.

3° If C € Config is of the form

C=s ... Si;, (s,-,.,q) Sijpr -+ - Siny
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where 3;, € S, (k=1,...,n), g€ Q and

8 (si;,q) = (s',¢,N),

then, T(C) = C’, where

4° If C € Config is of the form

C = 84 .. .S;j_ls"js,'j,,.x e e84,

where s;, € S, (k=1,...,n), then, T(C) = C’, where

n

C, = 84 .- .3,-,._‘3;,.3;”1 ... 8 B.
If C € Config is of the form

C=(84,4q)85 - i,

and
J(St'l ’ Q) = (3lv q,’ L)?
then

T(C) = .9'.9,'2 e 83 B.

1]
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In particular, the action of T on a particular configuration always increases the
length of the configuration by one.

Before proceeding to the axiomatization of K, we sketch the idea of a computation
structure. These structures will be in K. They are intended to fully capture com-
putations of T. Qur axiomatization for X results from assembling finitely many
universal sentences which are true in these structures and which describe how these
structures capture computations.

Given a configuration C of T', we can associate to it the computation structure

Sc: Each horizontal line captures a particular configuration from the computation

ot---
a"]

Figure 4.1: Computation structure

of T when started on C. The computation proceeds upwards, one line at a time, in

the following manner: assume that, given a configuration

G iy Siy ~ - (84;,q) - - - 84,
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T(Cy) = C,, where C, is, say,
C,: 8iySiy ++ - (84;_,, q') s, - - 3;, B.

C, will constitute the next “level” of our structure, being immediately “above” C;.
In other words, we introduce a new relation — which will connect the encodings

of C; and C; in the following way: The intention of the arrows in the figure is

I . T (i A)ST s, L B
m ----C ] T ] ] ] E
A T . G50 s, L S
0 1 2 U j+l n n+l n+2 P

Figure 4.2: Two consecutive lines of a computation structure

to represent the binary relations — and —» on the universe of the computation
structure. The horizontal arrows in the diagram correspond to the relation —
while the vertical ones represent —.

The language £ in which configuration structures, as well as the rest of the
class K, will be defined has four sorts that will be denoted by A, P, P;, and C. The
symbols of £ will be the following:

e Function symbols
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diam : A2 5 A bord: A2 > A

h:435 A m:A—- P
fIA4—)A 7I'21A—)P2
g:A2 =5 A x:A->C

e Relation symbols
—-CAxA 1€ A x P
+CAx A C P x P,
¢ Constant symbols
oo in A s€eSinC
oo in P; (s,9) €S xQinC
00z in P, cin C
oo’ in C din C
OinC OinC
The computation structure is intended to correspond to a two-dimensional pat-
tern in the grid that is coordinatized by two linear orderings, (P, <1) and (P, <»).
7, and w; represent the projections of the “main structure part” A on the coor-
dinate axes P, and P,. The role of f.9,h,diam and bord is to build A according
to the sequence of computations of T, started on C. If, at some point, a pattern
is detected which cannot be a part of a genuine content of the tape of T, the ap-
propriate structure-building operation has the default value co. 00; and oo, are
the projections of co onto P, and P;, respectively. Finally, the role of the constant
symbols ¢ and d is to detect whether T eventually halts: if at some point, the

halting state qo is reached, the axioms force ¢ = d in Sc.
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The role of x is to assign a “label” from S U (S x Q) to each element of A, so
that this label indicates the tape/state symbol of T at the corresponding position
on the tape.

Next, we proceed to the definition of a computation structure corresponding
to a particular configuration C.

Let C € Config be of the form

841 8ig - - - (ng,q) -84,

or

84,84y - - .8;,. .o o8,

where s5;, € S (k=1,...,n) and ¢ € Q. In order to make the notation less

cumbersome, we will adopt the following way of representing C:
C=cecy...cj...cn,

where c, € SU(S x Q), (k=1,... ,n).
Given C € Config and i > 0, define C®) € Config inductively by: C© =,
and for i > 0, C6+1) = T(CW)),
Suppose
CcO = O o
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Since every action of T increases the length of a configuration by one, we can write

€9 = eI,

Now, we are ready to define the universes of a computation structure for C, one
for each of the sorts A, P;, P,, and C.

The universe for the sort of constants C will consist of the elements o0o’, 0,0, ¢,
and d, along with the elements of S U (S x Q). The way in which these elements
will interpret the symbols in C should be transparent. We also assume that all the
elements of this sort are pairwise distinct, except for, possibly, ¢ and d.

The universe for the sort P; (i = 1,2) will be the ordinal w + 1, whose maximal
element will be denoted by oo;.

Finally, the universe for the sort A will be the following set:

A={af): i<w, 0S5 < (a+1)+i}U{w},

so that the binary relations — and — on A are defined in the following way:

:z:—»yifandon.lyifz:ag-i),yzag-i“)fori<w, 0<5;7j<(n+1)+¢,

:1:—)yifandonlyifz::a?%y=aﬁ1 fori<w, 0<j<(n+1)+:1.

The operations m; (z = 1,2) and y are defined so that

m(af) = 4, w2 () =i, 71 (00) = eo1, 2 (00) = cos,
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i i i ()
X (ag)) =0 x (a:n)+1)+t') =0, x(o) =0, x (“;’)) =¢

fori<w,1<j<n+i.

The operations f, g, h, diam, and bord are defined as follows:

+1) . () (i) — (9 — ()
f(z,y,2z,u) = < a§+2 v fz=ay=a,,z2=aj5,u= a5
0o, otherwise
[ @+ £z =g g =g
9(z,y) = ¢ C(nt1)4id T =0gr)ti-1p Y T B4
o0, otherwise
\
Moy < AT Ty == o
L,Y,2)=
oo, otherwise
+1 . i i
00, otherwise
(i+1) ) ) @
bm’d(z y) = a(n+1)+(i+l)s l-f r = a(n+1)+(i_1)7y = a(n+l)+‘.,
oo, otherwise

&3

This concludes the definition of a computation structure for a given configura-

tion C. In fact, C will determine the structure completely, except for whether ¢ = d

or not. Hence, for a given C € Config, there will exist precisely two computation

structures, Sg, in which ¢ = d, and SZ&, in which ¢ # d.

We adopt the following convention: given a structure S in the language K, the
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sets of elements of S of corresponding sorts, will be denoted by AS, PIS, st, CS, and

S = (A5, P8, P§,CS).

The class K will be axiomatized by a finite list of universal sentences ® in the
language £, whose explicit statements will be deferred to the next section of this
chapter. These axioms ensure that all members of X share certain simple properties
with the computation structures. For example, some of the asserted properties of
K are the following:

1. <; linearly orders P;, with the largest element oo;.

2. m and ; coordinatize A via P, and P,. By a (horizontal) line we understand
the set of the elements of A with the same P, coordinate.

3. Every element of A is labelled, via x, by some element of S U (Sx@Q)u
{0,9, 0}, so that the first element of each line is labelled by ¢, and the last one
by ©.

4. The structure-building operations f, g, and h reflect the computations of T'.

5. diam is used to put ¢ to the first position of a line representing a configura-
tion, while bord marks the right end of a configuration by putting Q.

6. — connects vertically the lines arising from two successive configurations in
the computation of T', so that the elements labelled with ¢ are vertically aligned,
while there is no z € A which is —»-connected to an element labelled by ©.

7. oo is isolated: i.e, there is no £ € A such that either z — 0o or £ —» oo,

8. For every s € S, there is an axiom which detects whether the final state gq
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has been reached:

(Vz € A)(x(z) = (s, 90) = c = d).

4.1 The list of axioms for

1. Axioms which assert that <; is a linear ordering with the maximal element
00;:
¢ (Vz € P)(z <: z)
e (Vze R)(VyeP)z<iyAy<iz=>z=y)
e (Vze R)Vye P)VzeP)z<iyNy<iz=>z<; 2)
o (Vze P)(Vye P)(z<iy Vy<:z)

° (VZ € R)(z <; OO,')
2. Axioms which describe 7; and their relation to — and —»:

* (Vz € A)(Vy € P)(x(z) = O = m(z) <19)

* (Vz € 4)(Vy € A)(x(z) = O A my(z) = my(y) = m(y) <1 mi(z))
o (Vz € A)(Vy € A)(mi(z) = m(y) A ma(z) = ma(y) = z = y)

o (Vz € 4)(Yy € A)(x(z) = O A m(z) = m(y) = x(y) = O)

o (Vz € A)(mi(z) = 00; & z = )

e (Vz€ A)(Vy € A)(Vz € P)(z = y = m(z) <4 mi(y) A ~(mi(z) <1 z <3

T1(y)) A m2(z) = ma(y))
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o (Vz € A)(Vy € A)(Vz € P3)(z —» y = my(z) <z ma(y) A ~(m2(z) <5 2 <,
m2(y)) A mi(z) = mi(y))

e (Vz€ A) VY€ A)(Vz€ A)(Vuc Az vy Az > 2 Ay > u=z—u)

e (Vze A)Vyc A)(Vz€ A)(Vu€C A)(T 2 yAT >z Azsu=y —»u)

o (V€ A)Vyc A)(Vz€ ANVucC A)(z Sy Az uAy—u=z —»2)

e (V€ A)(VyE A)(VzE A)Vu€EA) s »zA 2> uAy »u=z—>y)

3. Axioms which describe the labelling by x and the detection of the halting

state:

e Foreachse §
(Vz € A)(x(z) = (s,90) = c = d)

e (V€ C)V{z =5:3€ SU(SxQ)U{c,doo'}} A NM{c1 # 2 :
c1, ¢z € C, except for {c;, ¢} = {c,d}})

e (Vz€ A)(V{x(z) =c:c€ SU(S xQ)U{C,0,x}})

o (Vz € A)(Yy € A)(m2(z) = m(y) A x(z) = x(y) =0 = z =y)

* (Vz € A)(x(z) = 00’ & z = )

e For (s,q),(s',¢') € S x Q:
(Vz € A)(Vy € A)(m2(z) = m2(y) A x(2) = (3,9) A x(y) = (s, ¢) = z =
y),

o (V2 € A)~(z = o0 V z — oo)

o (Vze€ A)(Vy€ A)~(z - y A x(y) = Q)
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o (Vze A)(Vy € A)~(x(z) =C A x(y) =V Az > y)
4. Axioms which describe bord operation:
o (Vz € A)(Vy € A)(z = y A x(y) = O = g(z,y) — bord(z,y) A

x(bord(z,y)) = Q)

o (Vze A)(Vy € A)(—z 5 y V x(y) # V = g(z,y) = o)
5. Axioms which describe operation g:

* (Vze A)(Vy € A)(z >y A x(y) =V A x(z) =35 (s € S) = y - g(z,y)
A x(g9(z,y)) = B)

e If T(s,q) = (¢,¢,R):
(Vz € A)(Vy € A)(z > y A x(y) = O A x(z) = (5,9) = y - g(z.y) A
x(g(z,y)) = (B,q'))

e fT(s,q) = (s',¢,L) or T(s,q) = (s',¢', N):
(Vz € A)(Vy € A)(z = y A x(y) = O A x(z) = (3,9) = y = g(z,y) A
x(g(z,y)) = B).

6. Axioms which describe diam operation:

e (Vze A)(Vyec A)(z > yAx(z) ==z —» diam(z,y) A x(diam(z,y)) =
<)

e (Vze A)(Vye A)(~z >y V x(z) #O = diam(z,y) = oo)

7. Axioms which describe the operation f: for all 5,4, 3;,, 34, 3is,8i, €5
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o (Vz€ A)(Vy € A)(Vz € A)(Vw e A)(z »y = z > w A ((x(z) = s5,)V
(x(z) = O)) A x(y) = i, A x(2) = 81, A ((x(w) = s3,) V(x(w) = Q) =
z = f(z,4,2,w) A x(f(z.y, z.w)) = s;).

o If T(si,,q) = (s'.¢', N), or T(s;,,q) = (¢, ¢, R):
(Vz € A)(Vy € A)(Vz € A)(Vw € A)(z =y = z > w A ((x(z) = 83, )V
(x(z) = O) A x(y) = s, A x(2) = s;5 A x(w) = (s5,,9) = 2z —
f(z,y,z,w) A x(f(z,y,2,w)) = s;,).

o If T(s;,,q) = (', ¢, L):
(Vz € A)(Vy € A)(Vz € A)(VYw € A)(z -y = z = w A ((x(z) = 83, )V
(x(z) = Q) A x(y) = si; A x(2) = 855 A x(w) = (s5,,9) = z —»
f(z,y,z,w) A x(f(z,y,2,w)) = (s, 7))

o If T'(s45,q9) =(s',¢', N):
(Vz € A)(Vy € A)(Vz € A)(Vw e A)(z -y — z = w A ((x(z) = s;,)V
(x(2) = C)) A x(¥) = si; A x(2) = (855, 9) A ((x(w) = ;) V (x(w) =
D) = z = f(z,y,z,w) A x(f(z,y,2,w)) = (¢, ¢)).

o If T'(si5,q) = (8',¢', L) or T(siy,q) = (s',¢, R)
(Vz € A)(Vy € A)(Vz € A)(Vw € A)(z =y — z > w A ((x(z) = 83, )V
(x(z) = C)) A x(y) = si, A x(2) = (si5,9) N ((x(w) = ;) V (x(w) =
) =z f(z,y,z,w) A x(f(z,y,z,w)) = 5').

o If T'(si,,q) = (¢',¢', L) or T(s;,,q) = (s, ¢, N)
(Vz € A)(Vy € A)(Vz € A)(Vw € A)(z »y = z > w A ((x(z) = 83, )V
(x(z) = C)) A x(¥) = (5:3,9) A x(2) = 85, A ((x(w) = 3,) V (x(w) =

O)) =z f(zvyvz’w) A X(f(z’y’sz)) = 3:'3)-
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o If T'(si;,q) = (¢, ¢, R):

(Vz € A)(Vy € A)(Vz € A)(Vw € A)(z =y = z > w A ((x(z) = s, )V
(x(z) = ) A x(¥) = (s52,0) A x(2) = s, A ((x(w) = 55,) V (x(w) =
D) =z » f(z,y,z.w) A x(f(z.y,2,w)) = (34, ¢))-

o (Vz€ A)(Vy€ A)(Vz € A)Vw € A)(z »y = z = w A (x(z) = (s4,, )
A x(y) = s, A x(2) = si; A ((x(w) = si,) V (x(w) = Q) = 2z
f(z,y,z,w) A x(f(z,y, z,w)) = s;,)

o (Vz € A)(Vy € A)(Vz € A)(Vw € A)(all previous antecedents in this

group false = f(z,y,z,w) = o)
8. Axioms which describe operation h: for all s, ¢/, Siy, 83,84, € S

o (Vz € A)(Vy € A)(Vz € A)(z >y = z A x(z) = O A x(y) = $i; A
((x(2) = 855) V (x(2) = Q) = y = h(z,y,2) A x(h(z,y,2)) = s;,)

o If T(si5,q) = (s',¢', N) or (s', ¢, R):
(Vz € A)(Vy € A)(Vz € A)(z =y = 2z A x(z) = O A x(y) = si, A
x(2) = (8i5,9) =y —» h(z,y,2) A x(h(z,y,2)) = s;,).

o If T'(siy,q) = (s',¢', L):
(Vz € A)(Vy € A)(Vz € A)(z = y = z A x(z) = O A x(y) = i, A
x(2) = (3i5,9) = y > h(z,y,2) A x(h(z,y,2)) = (s5, 7))

o If T'(si,, q) = (¢, ¢, N):
(Vz € A)(Vy € A)(Vz € A)(z »y = z A x(z) =O A x(y) = (si,,9) A

((x(2) = 8is) V(x(2) = 9)) = y = h(z,y, 2) A x(h(z,y,2)) = (s, ))
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o If T'(si,,q9) = (s',¢/, L) or (s, ¢, R):
(Vz € A)(Vy € A)(Vz€ A)(z >y — z A x(z) = A x(y) = (si;,9) A
((x(2) = 855 V(x(2) = Q) = y - h(z,y,2) A x(h(z,y,2)) = &)

o (Vz € A)(Vy € A)(Vz € A)(all previous previous antecedents in this

group are false = h(z,y,z) = oo)

Definition 4.1 K is the class of structures in the multisorted language L azioma-

tized by the azioms listed above.

Clearly, K is a universal class which is finitely axiomatizable. For the sake of

further refernce, we denote this set of axioms ®.

4.2 Thy(K) is undecidable

In this section we prove that Thy(K) is undecidable, where K is the class of multi-

sorted structures defined in Section 4.1.

Lemma 4.2 Let K be the class of multisorted structures defined in Section 4.1.
Given C € Config, if the Turing machine T does not halt when started on C ,
then S3,S% € K.
IfC € Config is such that T halts when started on C, then S € K, while
ST ¢K.

PROOF. By inspection, for every C € Config, both Sz and Sf satisfy all axioms

from Section 4.1 , except for the following ones

(Vz € A) (x(z) = (s,90) = c = d). (4.1)
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If T halts when started on C, then, for some t,) < w,
X (a.‘(i‘)) = (3“10) ’

so S¢g will satisfy the axiom (4.1), while this will not be the case with S?.

Otherwise, if T does not halt when started on C, we will have
/()
X (aj ) # (S,QO) ’

for all 7,7 < w, since none of C® will contain (s,490). Thus, both S7 and Sf will
satisfy (4.1). a

The following lemma is obvious:
Lemma 4.3 Inany S € K,
1. (P8,<%) is a linear ordering, t = 1,2;

2. AS is coordinatized by (Pls, <5) x (P, <3), in the sense that ifa,be AS and
(3 (a), 73 (a)) = (x5 (b), 75 (b)),

then a = b.

Lemma 4.4 IfS € K and X C AS are such that X = {ao,... ,an}, where
G —+ a4 ... > Gp_1 —F Amn,

x(a0) = 0, x5(am) = 9,
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(@) eSUSxQ),1<i<m—1,

so that for at most one i such that1 <i < m —1,
S
X (a;) € S xQ,

and if S, is the substructure of S generated by X, then S; is isomorphic to a

computation structure.

PROOF. Let C be the following configuration

x(a1)...x(am-1).

We claim that S, is one of the two computation structures corresponding to C.

First, we define inductively, for ¢ > 0, the set A®): let A©® = X , and for 7 > 0,
A9 ={z€ AS: z=F(ay,... ,an), where F: A" = Ais in £ and a; € AV}

First, observe the following: if z,y € AS are such that z — y, then there is no
element z € P such that

1 (z) <1 2 <2 7Y (y),

and similarly for P, and ,.
Using induction on ¢ and the axioms for K, it is easy to see that if z,y € AW,
for some ¢z < w, then

ma(z) =72 (y).
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The axioms for the operations of the sort A show that these operations output

oo unless all arguments belong to the same A®), for some ¢ > 0. Hence.

A3 = | J A9 U {05}
i<w
This, along with the axioms for —», implies that P}' is a well-ordered set of type
w+ 1.

By inspecting the axioms for the operations f, g, h, diam,and bord, we can see
that if z € A®| then either there is y € A®~1 such that y—»z,or x(z) =90 and
for some =’ € AY) &' - z.

Thus, 77(A™") forms a finite convex subset of (PS, <3)- Another induction on 7
shows that n7(A®¥) will be a finite linear ordering, which will be an initial segment
of ¥ (AG+Y), for every i < w.

Hence, J;,, 7F(A®)) U {0051} will be a well-ordering isomorphic to (w + 1, <).

In light of the previous remarks, we can fix two isomorphisms

$1: (PP, <PY) = (w4 1,<)

$2 1 (P3',<3') = (w+1,X)

Next, we proceed to the construction of an isomorphism between SZ (or S7)
and S;. The choice between S¢ and SZ.lé will be determined by whether c =d in S,
or not. For the sake of simplicity, we assume that ¢ = d in S;, the proof for the

other case being analogous.
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Clearly, care only needs to be taken as to how this isomorphism should be
defined on the sorts A, Py, and P,.

We fix the notation from Section 4.1, and assume that the elements of the A-part
of S are

{a?:0<i<w,0<j<m+i}u{oo}.

We define the mapping
P AST o 45

in the following way: 1[J(a§-i)) = z, where ¢;(7'(z)) = j and $2(731(z)) = i. Also,
P(o0) = 0ot

Clearly, 4 will be defined for every element ay) since the corresponding z will
be the element in A®) such that ¢,(x>'(z)) = j. Also, it is immediate to verify
that v is well-defined and injective.

Now, we show that 1, together with #1' and ¢;', defines the required isomor-
phism.

The axioms for K will now imply the following:
¢(a§i)) — 1/:(05-:).1), forj=0,... m+:-1

and

P(al) = p(alf*), for j = 0,... ,m +1.

The first axiom in the sixth group shows that

 (vel?) =,
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for all 7 < w. Similarly, the first axiom in the fourth group yields
x (#(aha) = ©,

for every 7 < w.
By analysing various cases for C’,C”, and 4, and using the axioms from the

groups 4-8, one can show that if C' € Config is of the form
x (val) . x (v _).0)
and T(C') = C”, then
e = x (#(@f™) ... x (6l ann) -

The second axiom in the third group will ensure that all pairs of elements from
the constant sort other than c,d are distinct.
Thus, S; will be isomorphic to a computation structure for the configuration

C. a

Definition 4.5 Let

C = (3,‘l y ql)s,-z oS,

be an initial configuration of the Turing machine T. We define ¢, the halting

sentence corresponding to C to be:

(Vzozy - Tpy1 € A)(zg 2> 21 = -+ = T, = SRV
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X(Z:o) = O A X(zl) = (3i17QI) ARERA X(zn) = 8i, N X(zn+1) =0=c= d)

Proposition 4.6 For any initial configuration C of T, 6c € Thy(K) if and only if

T halts when started on the configuration C.

PROOF. Suppose the halting sentence is in the theory. Let S be a computation
structure for C. Clearly, the elements corresponding to C in S will fulfill the hy-

potheses of 6;. Thus,
SEc=d.

In other words, S7 & K. Thus, by Lemma 4.2, T halts when started on C.

Conversely, suppose 8¢ & Thy(K). Then, there exists a structure S € X and
elements in S which witness the failure of 8¢ in S. These elements will fulfill all
the hypotheses of ¢, yet ¢ # d in S. The selected elements will constitute a
line encoding a configuration, and according to Lemma 4.2, the substructure S
of S generated by this line will be a configuration structure, in fact one which
corresponds to C. Since c # din Sy, S; = S¢- As S, € K, it follows by Lemma 4.2
that T does not halt when started on C. a

As an immediate consequence of Proposition 4.6, we obtain

Theorem 4.7 Thy(K) is undecidable.
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4.3 The structure of (n,n,n,n)-generated struc-

tures of K

Let n > 1 and let S = (AS, PS, P$,CS) be an (n,n, n.n)-generated member of X,
where the value of n will be fixed throughout this section.
Assume S = Sg(X,Y;,Y2, Z), where

We define < to be the reflexive-transitive closure of —5 U —»S in AS.
Lemma 4.8 For every a € AS \ {005}, there ezists ¢ € X such that z < a.

PROOF. For an arbitrary subset B C AS, define

EB)y=({ye AS:y= FS(zy, ... Zm), for some z,,...,z, € B,

and some F : A™ — A in L} U B) \ {005}

Now, let
EO(X) =X,

E (X)) = B(EY(X)), for i < w.

It is easily seen that, for ¢ < 7,

E9(X) C B9(X),
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and

A\ {0} = | B9(X).

i<w
We prove the lemma by induction on 7 such that a € EWN(X).
Ifi =0, then a € E9(X) = X, so z = a would do.

Suppose that the lemma is true for every i < k and let

a € E®(X).
Then, either ¢ € E*-1)(X) and we are done, or a = FS(by,... ,b,), for some
F:A™ 5 Aand by,...,b, € E®~1 5o that, for some 7, b; —» a, or, in case when

a = bord(b,, b;), for some b,,b, € E*-1)(X),

bz — g(blbe) — a.

In any case, the induction hypothesis yields

for some z € X. a

Lemma 4.9 For every b € P?,(i = 1,2), either b € Y; or b = m;(z), for some

z € AS.

PROOF. Immediate, from the fact that the only operation which involves elements

from PP is n$ : AS — PS. a
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Let X = {z,,... ,z,}. For 1 < j < m we define

B;={a€ AS : z; 5 a}.

Then, from Lemma 4.8, we conclude that

AS\{OOS}=BIU"'UBn.

Lemma 4.10 For every j € {1,... ,n},

7(B;) = {n{(a) : a € Bj}

s well-ordered by <;, fori=1,2.

PROOF.If z,y € PS5,z #y, z <; y and there is no z € P35,z # £,z # y such that

zgiz<iyv

we write
T <;Yy.
We prove the lemma for the case i = 1, the proof for i = 2 being similar.

Let y € n¥(B;) be arbitrary. Then,

y = my(a)
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for some a € AS such that z; < a. Let
;= bo —* bl 2 —n-1 b -1 ““m bm =a,

where —,,... ,—9,€ {—+s—»s}, bi,... ,bm_y € AS. We can also assume that
bo, by, ..., b, are all distinct.

Let {c1,... a1} ={mS(b):1<i<I - 1}, so that

aaS162 <1 -.- <1 €y

If —,=—5, then

7 (br_1) <1 7 (be).

Claim: If ¢; <1 ¢41 then there exists & < [ such that ¢; = 7o (br-1) and ciyy =
Wls(bk).

Proof of the claim: Let b, and b, (1 < p,q <! — 1) be such that

i = mp(bp), cigr = 75 (by).-

It is now easy to see that, in this case, p < . We have already seen that the axioms

for K imply the following: if z —5 y then

Wls(z) <1 Wls(y)v
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and there is no z € PJ such that
T <1z <y To(y).
This shows that p < q and, since
bp pi1 bpi1 “pyz ... gy byoy g by,

where € {95, 5} (p+1 <k < q), precisely one of <, can be —5. Let r be

such that <»,.=—5. Then,
"ls(bp) = 1rls(b,.), 771S(br+1) = 7r1s(bq)

and the claim is proved.
Hence,

s
m(z5) <161 <1 --- <101 <1 Y.

Also, 73(B;) is at most countable, since AS is such. Thus, 77(B;) is either a finite

well-ordering, or a countable one isomorphic to (w, <). a
Proposition 4.11 (PS5,<;) isa well-ordering, fori=1,2.

1]

PrROOF. If S = S¢(X, 11,Y, Z), due to Lemma 4.9,
P’ =Y, Ur}(By)U---Urd(B,) U{oo5}.

k3

Clearly, each of the sets in this finite union is well-ordered, with respect to the
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restriction of <;, ¥; and {oof} being finite, and 7$(B;) by Lemma 4.10.
Since every linearly ordered set that is a finite union of well-ordered sets is itself

well-ordered, the proposition is proved. a
Thus,
(P% <) = (M +1,%).

where ); is some at most countable ordinal which is yet to be determined.

From now on, we shall assume that

PP=X+1  i=1,2.

A (horizontal) line in AS is the set of all elements with the same P,—coordinate;

1. e. if m € A;, the m-th horizontal line in A4S is

ln ={z € A5 : 75 (z) = m}.

Definition 4.12 If! is a horizontal line in AS, then its index is an ordinal m < ),
such that

l=ln={z € A5 :m(z) = m}.
Lemma 4.13 Every horizontal line in AS is finite.

PRrROOF. We use transfinite induction on the index of a line.
1° If the index m of a line is a limit ordinal or 0, then I, C X, since there is

neither an a € AS such that
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nor b, c € AS such that

b—»c— 2.

Since X is finite, then so is [;.

103

2° Now, assume that u is a successor ordinal in A;, 4 = v + 1. and consider L,

Every z € l, is either a generator in X or FS(a,,... ,a;), for some F : A* s A,

and ay,...,a; € l,. Since [, is finite (by the induction hypothesis) and L is such,

l, is finite as well. a

Definition 4.14 A configuration line in AS is a line consisting of ag, ay, . ..

am41 € AS, such that

Gg > a1 —> - — G - Gm+t1,
x*(a0) = &, x(am41) = 0,

(@) € SU(S xQ), 1<Kigm,

so that for at most one 1 < i< m,

x*(a:) € § x Q.

Definition 4.15 A non-configuration segment in AS is a sequence ag, a,, . . .

ar € AS such that

Qg — @y —> - -- = ag,

and either

(a) x5(a;) € SU(S xQ), for0 <i <k, or

+Cm,
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(6) x5(a0) = O, x5(@) € SU(S x Q), 1 <i<k, or
(c) xS(ar) = O, x5(a:) e SU(S x Q), 0K i< k—1.

Note that the axioms in ® imply that, in every line, at most one element has a

label in (S x Q).

Lemma 4.16 Non-configuration segments generate finite substructures of S whose

A-parts, omitting coS, have one of the three forms in the F' igure 4.3

PROOF. The proof follows from the axioms which determine the behaviour of

diam, f,g,h and bord. O

Lemma 4.17 Each line in AS is either:
1. A configuration line, or

2. one or more — —connected components, each of which is a nonconfiguration

segmnent.

PROOF. By Lemma 4.13, the ninth and the tenth axiom from group 3, and the first
six axioms of group 2. a

We define the binary relation ~ on AS to be the equivalence relation on AS
generated by —5 U —+5; i.e. ~ is the smallest equivalence relation on AS containing

=S U -»S,

Definition 4.18 A (—» U —»)-connected component (or, simply, (= U —»)-

component) in AS is an equivalence class of the binary relation ~, other than {coS}.
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Figure 4.3: Structures generated by non-configuration segments
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Let B be an arbitrary (— U —»)-component in AS, and let

Xg=XnB.
Let l,,,... 1., where gy < pz < --- < i, be the lines in AS in which the elements
of Xp occur. Clearly, since
| X8| < n,

where 7 is the number of elements in X, we have

Also, define

Then,
Xg=X;U---UX,.

Suppose that

IXiI=mt'7 1<1'<ks
which yields
n 2 |Xp|=my +--- +my.
Lemma 4.19 Let B be an arbitrary (— U —»)-component. Let py,... ,px, mq, ...,

my be as defined above.
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If none of
BNl,,BNl,,...,Bnl,,

are configuration lines, then

1. BNl; is not a configuration line for any j < A,.
2. BNl =0 for j < y,;.
3. |B Nl < max(0, (Zi:u.-sj m;) — (j — 1)), for all j < A; such that j > p,.

PROOF. (1) If j < u, BN, cannot be a configuration line, for, otherwise, /,, would
be contained in a computation structure generated by B N;, which is impossible.

If j > pr and BN l; is a configuration line for which J 1s minimal, we get an
immediate contradiction, since the axioms would imply that l;, where j = j' + 1,
is a configuration line as well.

(2) If z € BN, for some j < p; then, either z € Xg or z = t(ay,...,amn)
for some m-ary term ¢ and a,,... ,a,, € X. Clearly, z ¢ Xp since j < u,. Hence,
for some a;, we must have a; < z and @; would be in the same component as z,
which is B. Thus, a; € Xp, but 75(a;) < j < 1, which is impossible. Therefore,
Bnl; =0.

(3) The proof is by induction on j > ;.

If 7 = p,, the inequality is obvious, for
|1BN | =[BNl,|=|XpN byl =m,.

Suppose j is a successor ordinal and j = j’ + 1, for some <7 <A I
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BNy =0, then since B is connected, and j > j' > p1, we must have BN [; = 0.

Next, assume that BNy # 0. 5 ¢ {u,,... .4} then, by the induction

hypothesis,
D mai> (i~ m).
tpi<y’
Thus,
domiz (i —m)+1.
IS
As B Nlj is not a configuration line, and j & {u,, ... , e}, then, by Lemma 4.16,

BNyl < |BNlyj—1
S () m)—('—m)-1

Ty

(D m)—(—m)

tpi<y +1

N

On the other hand, if j = u,, for some 1 < p < k, then

IBNL| < [BOly|~1+m,

Finally, if j is a limit ordinal p; < j < A, then, BNl; = 0. For, since B is connected,
then, for some z € I; and some y € ASN B, y —» z, which would contradict the

fact that j is not a successor ordinal. a
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Definition 4.20 Let X C AS. We define the height and the width of X in the
following way:

height(X) = |xS(X)|
width(X) = |xS(X)].

Corollary 4.21 1. If a (= U -»)-component B contains no configuration lines,

then B is finite, and

height(B) < n, width(B) < n®.

Moreover, m1(B) and m2(B) are intervals in A\; and A; respectively (of lengths

< n? and < n, respectively).

2. If B does contain a configuration line, and j is the line number of the first

configuration line occurring in B, then

J < p +mn.
Furthermore, if
Bo={JBnl,
i<i
and
B, = J{Bnl:i>j}.
Then,

(@) 73(Bo) = [0,7] for some r < n® (an interval of length < n®), while
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73 (Bo) = (1, 5] (an interval of length < n);

(b) By U {005} is identical to the A-part of the substructure generated by

Bnl;.

PROOF. Lemma 4.19 tells us that, in the case when B contains no configuration
lines, if j > y,, then
1B O] < max(0,n — (f — ).

So, if BNI; # 0,

n—(j—m)>0

and

I <p+n.

Since p, is the line number of the first line in B,
height(B) < n.

Also, 3(B) is an interval in A,, for B is connected, and its length is equal to
height(B).
Now,

height(B) < n,
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and

width(B) < ) |BNY
< height(B) - max |B N [}

n?.

N

Again, since B is connected, n3(B) is an interval in \,, and the length of this
interval is width(B).

2. Let j be the index of the first configuration line in B. Clearly, I, is a
configuration line, for every u, j < 4 < j + w.

If I; is not preceded by any other line in B, then, in the notation of Lemma
4.19, uy = 7 and

J<m+n

will be trivially true.

Suppose j = j' + 1 (notice that this index j cannot be a limit ordinal, unless
7 = p1). Then, 7 = p, for otherwise there would be no configuration lines occurring
in B.

Thus,

|1BN | < max(0,my + ...+ mpy — (' — my)),

and, since BNy # 0,

j,—[ll <m1+...+mk-1.
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Therefore,
JSmt(mi+...+mey) < py +n.

Next, we proceed to the proof of (a). So, assume
Bo=|JBnL.
<7

As we have already seen, 75(By) is an interval in \,. Since there exists z € B N l;
such that x®(z) = ¢ and #§(z) = 0, this interval is of the form [0, 7] for some

T < Az. Now,

IBﬂl,-[ g n.

For every z € BN l;, define

C:={yeBNlk:p <i<jy<z}u{z}

and consider |75(C;)|: clearly,
2 (Ca)l < 7%,

by the same argument that was used to prove the bound for width(B ) in the first

part of the proof.
Thus,

[T (Bo)l < Y [n5(Ce)l < n%.

z€BNI;
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Since [, is the first line in B,

7"25(30) = [Wzs(lm)vﬂ’zs(lj)] = [I‘lvj]v

and the length of this interval is less than n.

For (b), notice that if BNI; is a configuration line, so is BN, for every k > j.
Consider the substructure S; < S generated by B N ;. As was proven in Section
4.1, S; will be a computation structure, and for every k (j < k < Jj +w), A%
intersects the k—th line. However, the axioms imply that if a line contains in it a

configuration line, then it cannot contain anything else. Thus, B = AS:. a

Definition 4.22 An infinite (— U —»)-component will be called standard, if its
first line (with respect to the ordering <3 ) is a configuration line. Otherwise, it will

be called a nonstandard component.

An immediate corollary of the definition above and Lemma 4.19 is the following

proposition.

Proposition 4.23 Every infinite (— U —»)-component is either standard or is a

copy of a standard component preceded by finitely many lines.

Lemma 4.24 If B is a connected (— U -»)-component, then n5(B) and 73 (B)

are subintervals of A, and A;, respectively.

PROOF. The proof follows easily from the following two facts: if z — y then

7rls(y) = 1715(1:) + 1 and wf(z) = wf(y),
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and if z — y, then

i (2) = 7(y) and 73 (y) = 75(z) +1 O

Definition 4.25 If I C A; x A;, and if B C AS\ {0%}, then we say that B is
contained in I if

{(x3(b), 73(0)) :be BYC I.

Our knowledge of (r,n,n,n)-generated structures in K can now be summarized

in the form of the following theorem:

Theorem 4.26 Suppose S is an (n,n,n,n)-generated structure in K. Let k be the
number of infinite (— U —»)-connected components in AS, and let t be the number

of finite (— U —»)-connected components. Then k +t < n, and

1. Ifk =0, then S is finite and, in fact,

IPPI<t-n®+n+1
IPP|<t-n+n+1
|AS| < t-n®+1

ICSI<ISU(S % Q)| +5

2. Ifk #0, then (replacing S with a structure 1somorphic to it)
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(1) there ezist my < n® and m, < n? such that

(P3, <5 =(w+mi+n+1,<)

(P7,<3) =(kw+my+n+1,<);

1t) there ezist i S <w,t=1,...,k ji— p; < n, such that for some
p Ji—n

enumeration By, By, ..., Br_, of the infinite (= U —)-components, the

first configuration line in B; is on line iw + Ji and B; is contained in

([0,w) x [iw + i, (2 + 1)w)) U ([0, 7% — 1] x [, 5i));

(111) Each finite (— U —»)-component is contained in

[Zi, i + 7] X [iw + 34, vw + t:,

for some z;,7;,v;, 8;. t; such that

L <w+mp+n
1‘,'<77.2
t:;<s;+n

V,'Sk

and

ifl/,' <k thent; < ju...
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Hence, a typical finitely generated structure in K can be visualized as:

nl I8 S s

Figure 4.4: Finitely generated structure in X

4.4 Thy,(K) is decidable, for every n < w

In this section, we construct an algorithm which, given a umniversal sentence 9 in
L which contains at most n variables of each sort, decides whether Y € Thy,(K)
or not. In Section 4.3, we have examined some of the most relevant features of the
class K and gotten a good grasp of those structures in X which are generated by at
most n elements of every sort. This will now be used to give a complete description

of such structures using some “finite amount of information” about the structure,
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which will depend on n. Such descriptions, along with the specification of at most
n elements of each sort in the structure given by the description, will witness the
failure of ¥ to be in Thy ,(K)

We have already seen that all finite (— U -»)-components of a structure in K
generated by at most (n,n,n,n)-elements are bounded in height and width by n
and n?, respectively. The same is true of the “non-computation parts” of infinite
components, where the bounds are given by » and n?, respectively.

Throughout this section we assume that n is a fixed nonnegative integer.

Let M be the set of all (n? x n)-matrices M = (my;), (§ =0,... ,n2 — 1,5 =
0,...,n —1) whose entries are elements of SU (S x Q)U {¢,V, &}, equipped with
two binary relations —ps and —»s defined on the entries of M which are distinct
from & so that, if

Mij =M Myrj,

then
V=i+1,j =,
and if
My —»pr My,
then

V=i =j+1

M is defined to be the set of all (n® x n)-matrices M, whose entries come from
SU(S xQ)U{$,0, M}, and the binary relations —ps and —» s are defined in the

same way as for M.
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Let L' be a two-sorted language, whose sorts are A and C , and which is defined

in the following way:

‘CI = L: \ {gly <2,1r1,7l'2, 01, 02, C, d}

Definition 4.27 Let M € M U M. We define a partial structure Sps in the
language L' in the following way:

1. The universe of the A-part of the structure is the set

where N = n? or n®, respectively.

2. The operation x is defined as:

x((2,7)) = myj,

while x(o0) = oo'.

3. The two binary relations — and — are defined as on M:

(2,7) = (&, 7') if and only if myj —p Mg,

and similarly for —».

4. Let F be an m-ary fundamental operation in L' other than X, and

(t1,91)1 - -+ (Gms Jem) € ASM.
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To show how the operation FSM is to be defined, we will demonstrate it on the
particular ezample of F = g; the definitions for other function symbols are obtained

n a similar fashion, guided by the azioms from groups 4-8.

o If it is not the case that

(ilvjl) - (i21j2)1
we define
9%%((i1, 51), (32, j2)) = o0.
o Otherwise, if
(21, 71) = (32, 72),

and X((i21j2)) 7/: o:

3% ((i1, j1), (42, J2)) = oo.

On the other hand, if x((i2,j2)) = Q, and (iz,72 + 1) € ASm,

g5 ((i1, 1), (32, J2)) = (32,52 + 1),

Whiley Zf (i21j2 + 1) ¢ ASM: QSM((ilvjl)ﬂ (i2’j2)) s undeﬁned'
o Ifoo €{ay,... ,an} C ASM  then gSM(a,,... ,Gm) = oo.

We say that M € M U M is connected if AS™ \ {00} is (— U —»)-connected

(or empty).

Definition 4.28 Let M’ consist of those matrices M € M which are connected

and such that Sy is a total L'-structure. (We allow for the empty matriz M; i.e.
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such that ASM = {c0}.) M" will consist of those connected M € M such that Sm

is not a total structure, and

(1) for some p, 0<pn—-1,

x((0,n - 1)) =0, x((p+1,mn — 1)) = O,

X((ltn— 1))1 7X((psn— 1)) € Su (S X Q)),

so that at most one of x((1,n — 1)),... yX((pyn — 1)) is in (S x Q), and

(0,n—1)—>(1,n—1)—>...—)(p,n—l)—)(p-{-l,n—l).

(2) If F is an m-ary operation symbol and

(i1, 1)s- - - s (Smy Jm) € ASM,

so that 0 < 7y,... ,tm <m — 1, then FSM((il,jl), oo s (tmy Jm)) s defined.

Intuitively, we want the matrices from M’ to represent finite components in
a structure, while M"” is intended to represent non-computation parts of infinite
components, including the first configuration line occurring in the component.

Now, suppose for the moment that S is an (n,n,n,n)-generated member of

K such that (PP, <7) and (P$,<$5) are ordinals. If B, and B, are two infinite
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(— U —»)-components of AS such that, for all z € B, and Yy € B,,

kw + 1 < 73(z) < (k + 1w,

(k+ 1w +m < 73 (y) < (k+ 2w,
where k,l,m < w, then m satisfies
0<m<n?+n,

for there are at most n finite (= U —)- components lying “between” B, and B,,
each of the height at most n, plus at most n generators of P3. For our purposes,

the bound on m can be given by 2n2, which will make it easier to work with.
Definition 4.29 A (potential) description of an L-structure consists of
(1) an integer k (0 < k < n);

(2) k configurations Cy, ... Ci, such that every C; is of the form
()cii)cg) B IvE
where r; + 2 < n.

(8) k matrices My,... , My € MY

(4) n — k matrices My,... , M, € M';
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(5) n — k ordered pairs

(z1,1m1),. .. (Taks Yn—k) € [0,aw + 0> + n + 1) x [0,kw +n? +n + 1),

where a =0 ifk =0, and a = 1 otherwise;

(6) the symbol x € {=, #}.

We write this description as

I'=(kiCy,... ,Coi My, , M My, ..., Mori; (21,81) - - s (ks Ynoi); #).

The intended meaning of I is to represent a structure with the following features:

e The structure contains at most n connected components, of which k are infi-

nite.

¢ The computation structure in the i~th infinite component is generated by a
configuration line corresponding to C;, while the finite non-computation part

of that component is given by S ;-

e The finite components of the structure are given by S M; (1 <7 <n-k)and
the coordinates of their “left-bottom” entries are determined by the pair of

coordinates (z;,y;).

There are two problems: (1) there may be no structure having these features,
or (2) there may be such a structure, but it may not be in K.
Next, we define the notion of an allowable description. The idea behind this

notion is to fully address item (1) and partially address item (2).
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Definition 4.30 A description
I=(kCy,...,C; My, ... ,Mi; My,... , Mai; (21, 91). ... (T, Yui): %)

of an L-structure is said to be K -allowable if the following requirements on I are

met:

(1) For C; and M;, if C; = Ocel) ... D0 and M; = (my;), then

_ — (3 — A0 -
mO,n-l - 07 ml,n—l - c1 yoo-. vmr.-,n—l - C|(»'~)vmr.'+1.n—1 - Oa

and

Mr;+2,n—-1 = Mri43n-1 = ... =Mp3 1 4] = &.
(2) Given M; and M;, if
F-lw+2r—n+l=y;+¢q

and

k=z;+p

for some
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then at least one of the (k,l)-th entry of M; and the (p, q)-th entry of M; is
®.

(3) For M; and M; (i # j), if

i+l =yj+g¢q

zl+k =-'Bj+P7

for some

0<lg<n—1

0<k,pg<nt-1

A

then at least one of the (k,l)-th entry of M; and the (p, q)~th entry of M; is
&

(4) Fori=1,... ,n—k,
y,ve[O,2n2—n]U[w,w+2n2—n]U...U[kw,kw+n2+n+1].

To each K-allowable description one can assign a structure in £:

Definition 4.31 If

I= (k;C]_,--- )Ck;M17'°° 1Mk;M11-" 1Mn—k;<z11yl>7"- 1<$n—k7yn—k);*>

1 a K-allowable description then S; is the structure defined in the following way:
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(1) Leta=0ifk =0, anda=11ifk > 1. Then,

(PP =(aw+n® +n+1,<)

(st',gf') =(kw+n2+n+1,<)

Also, define

o0, =aw +n® +n € P!

and

o = kw+n?+ne Pl

(2) CS consists of SU (S x Q) U {c,d, 0,0,00'} so that all of the elements are

pairwise distinct, with the possible ezception of ¢ and d. Moreover,
c=d if and only if x is =.

The constants of sort C have the obvious interpretation.

(8) Define

dj = (j — Dw + 2n®

ej = ( length of C;) + 2,

for j = 1,... k. Now, AS!' will consist of the following ordered pairs in
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Py x Pp: A U AU Az U {0}, where

n—k
Av= | H@+pu+q):p<n®—lg<n— 1,(p.q) € Sm. }.

=1

k
A= J{(dj~(n=1)+rs) i1 <n® —Ls<n—1(rs) € S },

=1

k
U{(z,y):d5<y<d5+w and 0 <z < e; + (y —d;)}.

=1

As

(4) — and — are now defined on AS' as follows:

® If (p,q),(r,s) € A, and, for some i:

(P—Zi,q—yi),(r —Zi38 _yi) € SM;,

then
(p.q) = (r,3)
if and only if
(p—ziq—y:) =a (7 — 25,8 — y3),
while

(p,q) = (r,3)

if and only if

(P—zi,q—yi) »u; (7 — 24,8 — y5).
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¢ If(p,q),(r,s) € A; and, for some j:
(p - dJ + (n - 1)7‘1) € Sﬂ:f, and (1' -dJ + (n— 1)13) € SAZ,"

then

(p.q) = (r,s)

if and only +f

(P—dj+(n—1),q) 5y, (r —dj + (n - 1),),

while

(p,q) = (r,3)

if and only if

(P—dj+(n—1),q) =y, (r—d;j + (n - 1),9).

o Finally, if (p,q),(r,s) € As, and for some j

di <q,8<dj+w,
0<p<e+(g—dj),

0<r<ej+(s—dj),
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then (p,q) — (r, ) if and only if

r=p+1 and q=s,

while (p,q) — (r,s) will be true if and only if

r=pands=q+1.

e In all other cases the relations do not hold.

(5) Given (z,y) € AS!, we define

7' ((2,9)) = z and 751((z,y)) = v.

Also,

(6) If (z,y) € A, and, for some i:

(p — ZIiq— yi)v(r — T8 — yi) € SMH

then

X*((z,y)) = x**((z,y))

128
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If (z,y) € A; and, for some j:
(p—dij+(n-1),q) € .S'A;,J_ and (r —d; + (n —1),s) € Saz;»

then

XSi((z.9) = x5 ((z,9)).

If (z,y) € As, then x57((z,y)) will be defined below (item (8)).

4

Finally, x51(c0) = oo'.

(7) Given an m-ary function symbol F, which is one of f, g, h, diam or bord, and
Y g9
(alabl)v"- v(amy bm) e AS!’

FS1((a1,b1),- . , (Gm, b)) is defined as follows:

o If(a1,b1),...,(Gm,bn) € Ay, and for some 1,
(p—=zi,q—y:), (r — i, — %) € Su,
then
F51((a1,81), .. , (@m,bm)) = FS¥i((ay—z4, b1, - - . , (Gm—2:, bn—1s))-
¢ If(a1,b1),...,(am,bm) € A; and, for some i:

(p—dj+(n—1),q) € Sg; and (r —d; + (r — 1), ) € Sy,
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then, if
blz..._—'bmzdj—l,

FS1((ay,by),... ,(Gm, bm)) will be defined below (item (8)).

Otherwise, F51((ay,b,), ... ,(Gm, bm)) is defined to be
F%((ay, by — dj+(n—1)),...,(@m,bm — dj + (r — 1))).

o If(ay,by),...,(am,bm) € Az, then Fs’((al,bl), ooy (@my by)) will be de-
fined below (item (8)).

o In all other cases, the value of FS1((ay,b,),... y(@m, b)) s defined to

be co.

(8) The definitions of x, f, g, h, diam and bord are completed by requiring that,

for each j =1,... k, the map
A%\ {oo} — AT,
where x € {=, #} is chosen as in S, given by
a¥) — (z,d; +y)
eztends to an embedding of L-structures

Sz, = Sr.
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Lemma 4.32 Recall that n is fized. Given a K-allowable description
I =(k;Cy,... ,.Ce;My,... , Mi; M,, ... s Ma ki (T, y1)s - - (ks Yok ) *)

it is decidable whether S; € K.

PROOF. All the axioms in groups 1-3 will be trivially satisfied in S 1, with the only
possible exception being the last four axioms in group 2. However, these can be

checked for the given choice of Sps, and S a; 10 at most n* steps.

e Given * in the description I, we need to verify whether c+d is consistent with

the values of y on AS!.

If there is an element (z,y) € AS’ such that (z,y) € Ay U Az and it is x-
labelled by (s, o), where go is the halting state, and * is #, the algorithm

outputs the negative answer and comes to a halt.

If the Turing machine T started on any of the inputs Cy,...,C; eventually
halts in state qo, and * is #, the algorithm outputs the negative answer and
halts. (This step is fully determined, since the set

{C: : length of C; is < n» — 2, and T started on C; halts in state d}

is finite, hence recursive.)

In all other cases, the answer is positive, and the value of * and the labelling

by x are comsistent.
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e Finally, we need an algorithm which would check whether the axioms from

groups 4-8 hold in S;.

Let ®’ denote the subset of ® consisting of the axioms from groups 4-8. First,
we remark the following:all of the axioms from &’ mention only the elements
that come from two successive lines in the coordinatization of the A-part.
Hence, if an axiom ¢ € @’ fails to be true in some L-structure S, then there

are elements a,,... ,a, € AS so that

S &= -¢(ay,... ,a,)

and
72(a:) € {Jo,jo + 1},
for some j, € P.

Thus, an axiom ¢ € ® from one of the groups 4-8 can fail to be to hold in S;

for one of the following two reasons:

(1) For some ay, ... ,a, € A, such that, for some 10,

7rzs’({a'l') R 1am}) g {i01 iO + 1}1

we have

SI I= -'¢(ala° .. 7am)1
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or (2) For some ay, ... ,an € A; such that, for some i,
7"251({a1.7 ... ,Gm}) g {i()v iO + 1}1
where io & {2n%,w +2n%, ..., (k — 1)w + 2n%} we have

Sr = —d(ay, ..., am).

The existence of an algorithm which checks whether S; € K now follows easily

from all the facts listed in the course of the proof so far. a

Definition 4.33 Let [ be a K-allowable description such that S; € K, and let
e= (ala"' 1an;b17--~ 1bn;cla'-- »cn;d11"- vdn>

be an (n,n,n,n)-tuple such that
1 ay,...,a, € AS1;
2. by,...,bp€[0,aw +n® +n +1);
3 cryens6q €[0,kw+n? + 10+ 1);
4. di, .., da €SU(SxQ)U{$,9,00,¢c,d}
then (I,€) is said to be a description of a good pair.

Intuitively, & represents the 4n-tuple of elements of S; which generates some
substructure of Sy, where b belong to the sort P53, ¢ belong to the sort Py’, and d

belong to the constant sort CS!.
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At this point, we remark that the existence of an algorithm which lists all
descriptions of good pairs (I, &) now follows easily from Lemma 4.32 and the fact
that the ranges of the components of a K-allowable description I, as well as those
of the components of &, are recursively enumerable sets.

Now we have the following proposition:

Proposition 4.34 (1) If (I,&) is the description of a good pair, then S; € K and
€ 13 an (n,n,n,n)-tuple of elements of S;.
(2) Given any (n,n,n,n)-generated structure S € K and any (n,n,n,n)-tuple

€ in S, there is a description (I, &) of a good pair and an embedding

a:(S,&) = (S e).

The final step towards the construction of the algorithm that decides the uni-

versal (n,n,n,n)-theory of K will be accomplished by the following proposition:

Proposition 4.35 There is an algorithm which, given a description of a good pair

(I,8) and a quantifier—free formula ¢(Z), determines whether

St | 4(e).

PROOF. The description I for S; provides us with the specification of S;, with one
possible difficulty: the code for S; specifies only the initial line of the standard part
of an infinite (— U -»)-component in AS’. In order to check the nonvalidity of a

given quantifier—free formula ¢ in S; when the variables of ¢ are substituted with
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the corresponding entries from &, we must be able to recover a “sufficiently large”

standard part of any infinite (— U —»)-component.
Let C; be the i-th configuration in the K-allowable description [ defining S;.

Suppose that
Ci=%0c...a0,

where ¢; € SU (S x Q). Consider the elements Po,P1,--- ,Pk+1 € Az such that
Po = pr = - = Dk = Pk41,
X31(po) = O, x5!(p;) = ¢;(1 < § < k) x5 (prs1) = ©,

mi(po) = 0,... , 7 (pryy) =k +1,

“zS’(PO) == Wf'(PkH) = (i — 1)w + 2n2.

Set
B — (A(O), _,(0)’ _,,(0))’

where

A = {(2:,', XSI(pi)vwls'(pi)v Wf'(p;)) 0<isk+ 1}7

-0 = {(Pi, pjs1) : 0 < j < k}

-0 =g
Given B(™ = (A" _;(n) -} we define B+ in the following way

B(n+1) — (A(n+1)’_>(n+1),_»(n+l))’
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where

AP = AU {(FSH (21, .. 2m), X3 1(FSH(z1, ..., 2m)), 73 (25) (or ! (zr) + 1

when F = bord), 13" (zp) + 1) | F: A™ 5 A, z1,... 2 € A™},

(

z;, F = diam,

zFr =S z,, F =g, hor bord,

23, F = f’
and
= =50 G{(a,b) € (A™D\ A 23(b) = 25(a) + 1),
) =, f(a,b) € A™ x A . 1S(g) = 77 (b)}.
Then,

SgS'(POa--- , Pk + 1) = U B(n)’

n<w

and a “sufficiently large” part of B can be effectively recovered by constructing
B™, n < w. Let d be the maximal number of occurrences of function symbols
f,9,h,diam, or bord appearing in a single term in @¢. Let y(® be the number

defined in the following way: if

bi = (ksw + 2n?) + b,
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where 0 < k < n, 0 < ¥ < w, let

¥ = max(¥;: 1 <i < n).

(Here, b; are the coordinates, which are included in the description of &.)

Then in order to be able to test whether the given elements satisfy the quantifier—
free part of an axiom from ®, we need to reconstruct the first y(® + 4+ 1 lines in
each of the computation substructures of the structure. Hence, only a finite portion
of the structure, whose size can be bounded by a recursive function of n, needs to
be inspected. d

Hence, we have the following theorem:
Theorem 4.36 Thy,(K) is decidable, for every n < w.

PROOF. First, we prove the following: given a quantifier-free formula ¢(Z) with at
most n variables of each sort, if, for some (n,n,n,n)-generated structure S € K

and an (n,n,n,n)-tuple & in S,

S E ~¢(&)

then, for some description (I,&) of a good pair,

S1 E —¢(8).

We use Proposition 12(2); namely, if such a structure S € K and (n,n,n,n)-tuple
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€ exist, then there is a description (I, &) of a good pair and an embedding

a:(S,&) = (S, e).

Since o preserves the non-validity of quantifier-free formulas in a language extended
by constants, the claim has been proved.

Next, we focus our attention on the construction of an algorithm which decides
Thya(K). The algorithm will be the following one:

1. Procedure P, lists all universal sentences in £ which contain at most n vari-
ables of each sort and which are in the universal theory of . Such a procedure must
exist since Thy(K) is finitely axiomatizable and, hence, recursively enumerable.

2. Procedure P, lists all good pairs (I, &) and, for a given VZ¢(Z), checks whether

SI '= _'¢(é)a

and if this happens to be the case lists the code for (I,&). The existence of P,
follows from the following facts: by Lemma 15 and the remark following Definition
46, there exists a procedure which lists all descriptions of good pairs. Now, after
such a pair has been generated, use the algorithm whose existence is asserted by

Proposition 13 to check whether

S = ~é(8).

Now, the algorithm proceeds in the following manner: list alternately outputs

of P, and P,; if, at some point, VZ#(Z) appears in the list produced by P, the
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algorithm outputs
“VZ$(Z) € Thy.(K)”

and halts. If the second procedure P, at some point outputs any description (I, )

of a good pair, the output of the algorithm will be

VEG(Z) & Thva(K)

and the algorithm will halt.

We need to prove that the algorithm constructed in this way is correct. If

VZ$(Z) € Thy.(K),

P, will eventually list VZ#(Z). On the other hand, if

Vig(z) € Thy..(K),

then, for some (n,n,n,n)-generated S € X and its generators &',

S £ -4(2).

However, by the claim made at the beginning of the proof, there is a description of
a good pair (I, &) such that
S1 FE ~¢(&).

Thus, (I,&) will appear in the list generated by P,. Thus, the algorithm always
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terminates and gives the correct answer.

Therefore, Thy o(K) is decidable, for every n < w. a



Chapter 5

Some finite basis results and

M-algebras

In this chapter, we introduce the notion of a finitely based variety and survey some
of the most relevant results in the literature. The notion of an inherently nonfinitely
based algebra is introduced, along with the definition of a graph algebra. We also
quote the result of Baker, McNulty, and Werner which characterizes the dichotomy
between finitely based and inherently nonfinitely based graph algebras in terms of
the induced subgraphs of the correspending underlying graph.

In the second part of the chapter we introduce the notion of an M-algebra.
The basic properties of M-algebras are listed and the description of subdirectly

irreducibles in a variety generated by an M-algebra is given.

141
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5.1 Finitely based varieties and inherently non-
finitely based algebras

Definition 5.1 Let V be a variety. We say that V is finitely based, if there
ezists a finite subset ¥ of Thg, (V) such that

S | Thg, (V).

IfV =V (A), and V is finitely based, the algebra A is said to be finitely based.

The notion of finite bases for equationally defined classes of algebras was first
studied by G. Birkhoff ([4]). The first remarkable result in this area was proved in
1951 by R.Lyndon.

Theorem 5.2 (Lyndon [24]) Every two-element algebra in a finite language is
finitely based.

As will be mentioned later, two is the best possible bound for this type of result.
Namely, as we will see later, there are three-element algebras in a finite language
which fail to be finitely based in a very strong sense.

Further attempts were made to establish finite basis results for other relatively

well-understood classes of algebras. Here we list some of them:
Theorem 5.3 1. (Oates, Powell [{2]) Every finite group is finitely based.
2. (Perkins [{3]) Every commautative semigroup is finitely based.

8. (McKenzie [28]) Every finite lattice is finitely based.
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4. (Kruse [22], Lvov [28]) Every finite ring is finitely based.

Apart from these sporadic results it seemed natural to ask whether a similar
result could be established for broader classes of varieties, in particular, within the
classes of congruence permutable or congruence distributive varieties. The first
significant step in that direction which put the question of finite bases for varieties

in a broader perspective was the well-known theorem of K. Baker:

Theorem 5.4 (Baker [1]) Every finite algebra belonging to a congruence distribu-

tive variety in a finite language is finitely based.

The theorem of Baker clearly implies Theorem 5.3 (3), as well as analogous
results for relation algebras, cylindric algebras, Heyting algebras, etc.

An immediate corollary of Jénsson’s theorem (Theorem 1.24) is that every
finitely generated congruence distributive variety contains only finitely many subdi-
rectly irreducibles, all of which are finite. It points to the direction of investigation
of the possible relationship between the property of a variety being finitely based

and the diversity of the class of its subdirectly irreducibles.

Definition 5.5 LetV be a variety. V is said to be residually less than k, where

K 18 a cardinal, if, for every subdirectly irreducible A € V,

|A] < &.

If such k does not ezist, we say that V is restdually large. Otherwise, V is
residually small. If all subdirectly irreducibles in V are finite, V is residually

finite.
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Another breakthrough was accomplished by a deep result of R. McKenzie.
McKenzie proved a generalization of Baker’s theorem for congruence modular va-

rieties, under the additional assumption that the variety is residually small.

Theorem 5.6 (McKenzie [31]) Every finite algebra in o finite language which be-

longs to a residually small congruence modular variety is finitely based.

The proof of Theorem 5.6 makes extensive use of the commutator theory for
congruence modular varieties developed by R. Freese and McKenzie in [16].

It is worth mentioning at this point that the assumption of residual smallness
in the statement of Theorem 5.6 cannot be dropped. Polin ([44]) gives an example
of a nonfinitely based finite bilinear algebra. Other examples were given by M.
Vaughan-Lee ([51]), R. Bryant ([7]), et al.

Recently, R. Willard proved the following theorem which generalizes Baker’s

result for finitely generated congruence—distributive varieties:

Theorem 5.7 (/53]) Every congruence meet-semidistributive variety in a finite

language which is residually less than n, for some n < w, is finitely based.
The results of Baker and McKenzie prompt the following question:

Problem 1 s every residually finite finitely generated variety in a finite language

finitely based?

This question is usually attributed in the literature to B. Jonsson, although

there is evidence that it was first stated in the doctoral dissertation of R. Park.
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On the other side of the spectrum of finite algebras from those that are finitely
based, are the algebras which are nonfinitely based in a rather strong manner. These

are the algebras which do not belong to any locally finite finitely based variety.

Definition 5.8 A finite algebra A with finitely many fundamental operations is
said to be inherently nonfinitely based if A does not belong to any locally finite

finitely based variety.

Clearly, any finite algebra which is inherently nonfinitely based is nonfinitely
based.

The first known example of an inherently nonfinitely based finite algebra was
given by Murskii in [40]. He constructed a three-element algebra in the language

of a single binary operation which was inherently nonfinitely based.

Example 5.9 (Murskii’s groupoid)

0 a b
0(0 0 O
al0 0 a
bl0 b b

Table 5.1: Murskii’s groupoid

In [31], McKenzie proves that a residually small congruence modular variety
does not contain an inherently nonfinitely based algebra.
A particularly abundant source of inherently nonfinitely based algebras is the
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class of graph algebras.

Definition 5.10 Let G = (V,E) be a graph, where V is the set of vertices of G
and E is the set of undirected edges of G. Let A = V U {0}, where 0 ¢ V, and
define the binary operation o on A by

a, if (a,b)€E

aob=
0, otherwise

The algebra A =(A, o) is called the graph algebra of G.

Most often the difference between G and A will be blurred, and we will identify
a graph algebra with its underlying graph. We also assume that graphs are allowed
to contain loops.

The notion of a graph algebra was first introduced and studied by C. Shallon
in [47].

It turns out that the groupoid of Murskii is a graph algebra; its underlying

O

b

graph is

-]

Figure 5.1: Underlying graph of Murskii ’s groupoid

McNulty and Shallon in [38] study inherently nonfinitely based algebras, and,

in particular, those that carry the structure of a graph algebra.
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The graph algebras which are finitely based were classified by Baker, McNulty,
and Werner in {2]. The classification is given in terms of induced subgraphs of the

underlying graph of the algebra.

Theorem 5.11 (Baker, McNulty, Werner [3] ) A graph G has a finitely based
graph algebra if and only if G has no induced subgraph isomorphic to one of the

four graphs listed below.
M L
’ T

Ly —
Py

Figure 5.2: Prohibited subgraphs

Moreover, every nonfinitely based graph algebra is inherently nonfinitely based.

Theorem 5.11 will be used as a template upon which the results of Chapter 6
will be based. We shall show that the analogous graph-theoretic characterization
holds for graph M-algebras.

Finally, in closing this section, we would like to mention a result which relates

the finite basis property to the one of having definable principal congruences.

Theorem 5.12 (McKenzie [30]) If V is a locally finite variety in a finite language

which is residually less than n, for some n < w, and which has definable principal
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congruences, then it is finitely based.

In the following chapter, we introduce a weakening of the concept of definability
of principal congruences and use it to develop an analogue of Theorem 5.12 for graph
M-algebras.

5.2 M-algebras: basic properties and subdirectly
irreducible M-algebras

Definition 5.13 An M-algebra is an algebra A whose type includes a binary

meet-semilattice operation A and a constant 0, such that

1. (A, A) is a height-1 meet-semilattice with least element 0.

2. 0 is an absorbing element; that is, if f is an n-ary fundamental operation of

A and 0 € {ay,... ,a,}, then f(a;,...,a,) =0.

In recent years M-algebras have drawn considerable interest on the part of gen-
eral algebraists. The reason for this lies in the fact that expansions of these algebras
were cleverly used by R. McKenzie to refute some of long-standing conjectures in
universal algebra, such as the Quackenbush’s conjecture, as well as answer Tarski’s
Finite Basis Problem. (see e.g. [32], [33]).

The varieties generated by M-algebras display a rather agreeable behaviour: the
class Vsr (A), for an M-algebra A, can be described in a uniform way.

Our exposition will follow closely the one given in [55], which is also our main

reference for this section.
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Definition 5.14 Let A be an M-algebra, and let U = A\ {0}. We define the
binary relation > on U in the following way: a >> b if and only if f (a;,... ,a,) =
b, for some n-ary fundamental operation f of A and ay,... ,a, € U, such that

a € {a,...,a}.

Clearly, the relation > is reflexive on U. The transitive closure of >> will be

denoted by >. Then, >> is a preorder on U.

The following proposition characterizes subdirectly irreducible M-algebras in

terms of the relation >3>>:
Proposition 5.15 Let A be an M-algebra with U = A \ {0}.

1. A is subdirectly irreducible if and only if there ezists b € U such that every
a € U satisfies a >> b. If A is subdirectly irreducible, the monolith of A is

the following congruence

p=04U(XU{0})?,

where X = {a € U : b >> a}.

2. A 1is simple if and only if A is subdirectly irreducible and the relation >> is

symmetric.

For the proof, see [55], Lemma 1.1.
In what follows, we fix the notation from the statement of Proposition 5.15 and

the paragraphs preceding it.
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Consider an arbitrary power A of A, where I # @. The reduct (A A) of Af
to the language {A} is a meet-semilattice whose smallest element is the constant
I-sequence 0.

It is easy to see now that the I-sequences in U are precisely the maximal
elements of (AI, /\). If B < A!, we can define the binary relation > on B\ {ﬁ} in
the same way as it was done for A. The definition of >> extends now naturally to
B\ {}.

Let B(U) = BNU'. Then,if g€ B(U) and f >> g, it implies f € B (U), as
well.

If p is an arbitrary element of B (U), we define

B,={feB(U):f> p}.

B (p) is now defined to be the algebra in the language of A, whose universe is

the set B, U {ﬁ}, and whose fundamental operations are given by:

B . B
B0 (hy gy T Bresha) EfE (e k) € By

0 otherwise

The A-reduct of the algebra B (p) is a meet-semilattice of height one, and 0 is
an absorbing element for every fundamental operation of B (p). Thus, B(p) is an
M-algebra. Also, > and > will be the restrictions to By of the corresponding
relations defined on B \ {0} .

The following theorem gives an explicit description of subdirectly irreducible
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members of a variety generated by an M-algebra.
Theorem 5.16 (Willard [55]) Let A be an M-algebra.
1. IfB< AT (I #0) and p € B(U), then B (p) is in Vgr (A).

2. Conversely, if A is finite, then every member of Vsi(A) is isomorphic to

B (p) for some such B and p.

We finish this section by giving a brief discussion of the relationship between
residual smallness for a variety generated by a finite M-algebra and its being finitely
based.

Definition 5.17 Let A be an M-algebra. We say that A commutes with A if

fla, .. @n) A f(by,... .ba) = f(ay Aby,... an AB,)

for every n-ary fundamental operation of A (n > 0) and alla;,b; € A(i=1,...,n).
The following two results are taken from [56].

Theorem 5.18 Let A be a finite M-algebra. Then, V (A) is residually small if

and only if A commautes with A.

Theorem 5.19 If A is a finite M-algebra such that V (A) is residually small, then
A is finitely based.

The converse of Theorem 5.19 is false:
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Example 5.20 Let A be the algebra in the language {A,*,0} whose universe is
A = {0,a,b}, and A, x are binary operations. The A-reduct of A is a height-one

semalattice with 0 as the smallest element, while * is given by:

*10 a b
0j0 0 O
al0 a a
b0 a b

Table 5.2: The *-reduct of a residually large finitely based

M-algebra

It is easily seen that * does not commute with A, since

a=(axa)A(axb)#(aia)x(anbd)=0,

and V (A) is residually large. However, one can show that the identities of A are

finitely based.



Chapter 6

Finitely based graph M-algebras

In this chapter the notion of a graph M-algebra is introduced. Next, we characterize
those graph M-algebras whose equational theory is inherently nonfinitely based in
terms of induced subgraphs of their underlying graphs. It turns out that this classi-
fication is analogous to the one given in (3] for graph algebras. We prove that every
graph M-algebra which omits certain finite graphs as induced subgraphs is finitely
based. To this end, the notion of definability of ordered principal congruences is
introduced and it is shown that this property in conjunction with the definability
of the class of subdirectly irreducibles in the variety implies finite axiomatizability
of the variety.

The following definition plays the crucial role in our further exposition:

Definition 6.1 Suppose G = (G,0,0) is ¢ graph algebra. We define the graph
M-algebra G*", corresponding to G, to be the M-algebra in the language {o,A,0}
which is an ezpansion of G and whose smallest element under the semilattice or-

dering is 0, the absorbing element for the multiplication in G.

153
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6.1 Varieties which are inherently nonfinitely based

In this section we prove that if a finite graph contains a subgraph isomorphic to
one of the four graphs which will be introduced below, its corresponding graph
M-algebra will generate an inherently nonfinitely based variety. In fact, as we shall
see later in this chapter, these are precisely those varieties generated by a finite
graph M-algebra which are nonfinitely based.

The main result of [3] (Theorem 5.11) states the following:

A graph G has a finitely based graph algebra if and only if G has no induced

subgraph isomorphic to one of the four graphs listed below.
M L, ' .
T

—eo—0o— o
P,

Figure 6.1: Prohibited subgraphs

Moreover, every nonfinitely based graph algebra is inherently nonfinitely based.
Now we give some definitions which are necessary in order to state one of the

main tools used in the proof of Theorem 5.11.

Definition 6.2 An element oo of an algebra A is absorbing if every fundamental

operation applied to an n-tuple of elements of A containing oo has the value oco.
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We say that an element of A is proper if it is distinct from oo.
Ifa € AZ and i € Z, we denote by o' the Z-sequence obtained from a in the

following way:

o (n) = a(n +1).

Now we are ready to state the theorem which is the crux of the proof of Theorem

9.11.

Theorem 6.3 (Baker, McNulty, Werner [2]) Let A be a finite algebra of finite
type, with an absorbing element co. Suppose that a Z-sequence a of proper elements

of A can be found with the following properties:

(a) in AZ, any fundamental operation f applied to translates of a is either a

translate of a or a sequence containing co;

(b) there are only finitely many equations f(al™), . .. yalin)) = a9 yhere fisan

n-ary fundamental operation and some argument is a itself:

(c) there is at least one equation f(a(™) ... al")) = o) where some argument

s a itself, in a variable on which f depends.
Then A is inherently nonfinitely based.

As mentioned at the beginning of the section, it turns out that the situation is
the same for the finitely generated varieties of graph M-algebras. The main result

of this section can be stated as follows:
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Theorem 6.4 If G" is a graph M-algebra whose underlying graph G contains one

of the four graphs listed above as a subgraph, G" is tnherently nonfinitely based.
The following three lemmas comprise the proof of our theorem:

Lemma 6.5 If the underlying graph of a graph M-algebra A contains a connected
component which is neither a complete looped graph nor a complete bipartite graph.

then it contains one of the four graphs M, L,, T, P4 as an induced subgraph.

PROOF. Let C be a connected component of the underlying graph of A, which is
neither a complete looped graph nor a complete bipartite graph.

If C is a bipartite graph which is not complete, then it is immediate that C
contains P4 as an induced subgraph.

If C is not a bipartite graph and contains no loops then C' must contain an odd
length cycle. From this, it is easy to conclude that either T or P, will be contained
in C.

Finally, suppose C contains loops and C is not complete. If there is a vertex
without a loop, M must be an induced subgraph of C; otherwise, all the vertices
are looped and there is a pair of vertices with no edge connecting them. However.
these two vertices must be connected by some path of length n. Choose this pair
of vertices so that n is minimal. Now, it is an easy exercise to verify that L; will

be an induced subgraph of the underlying graph of A. a

Lemma 6.6 If H is an induced subgraph of a graph G, then H” is a subalgebra of
G".

ProOOF. Trivial. O
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Lemma 6.7 M", L3, T", P} generate inherently nonfinitely based varieties.

PROOF. It is proved in the examples 4.2-4.6 of [2] that the graph algebras cor-
responding to these four graphs are inherently nonfinitely based. The authors
exhibit a specific Z-sequence a for each of them which witnesses the conditions
of Theorem 6.3. Let G” be the graph M-algebra corresponding to G, where
G € {M,L;, T,P,}, and let o be the corresponding Z-sequence for G. Now,
we need to check that the conditions of Theorem 6.3 are met after augmenting
the language with A, with the same o witnessing them. However, this follows al-
most immediately from the fact that A induces the height-1 semilattice ordering of

G. O

6.2 The structure of V (A) when A is not inher-
ently nonfinitely based

From this point on, we are primarily interested in those finite graph M-algebras
which omit every one of the four graphs M, Ls, T,and P4 as induced subgraphs. We

prove that, in this case, the class of subdirectly irreducibles is first-order definable.

Definition 6.8 Let k,A > 1 be any cardinals. K° will denote the complete looped
graph on k vertices, while K, » denotes the complete bipartite graph with no loops

whose blocks are of size k and A, respectively.

Let A be a finite graph M-algebra with the aforementioned property.
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Proposition 6.9 In V (A), every subdirectly irreducible algebra is a simple graph

M-algebra whose underlying graph is connected.

PROOF. Let B € V51 (A). According to the description of subdirectly irreducibles
in varieties generated by a single M-algebra (see Theorem 5.16), it is easy to see
that M is a graph M-algebra and the underlying graph of B has to be connected.
In fact, this is proved in [55].

The fact that B is simple follows from Lemma 1.1 (2) of [55]. a

Proposition 6.10 If A omits every one of M, Ls, T,and P4 as an induced sub-

graph, then the same is true of every B € Vg (A).

PROOF. We use the description of subdirectly irreducibles in a variety generated
by a finite M-algebra, as given in Theorem 5.16.
Assume B € V5r(A). Let A* and B+ denote the underlying graphs of nonzero

elements of A and B, respectively. We claim that for some set | ,

Bt < (A+)I.

as graphs.
Let B = B,(p) as in the statement of Theorem 5.16, where B, < A!, for some

I and some p € B,(U). The choice of I is now obvious, and

B* = Bi(p) \ {0}

We need to show that, if b,c € B;(p) \ {0} are such that bo ¢ # 0 in A, then

(bo c)(2) is in the same connected component with p(2), for every i € I. However,
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this follows immediately from the fact that B, (p) is >>—connected and (boc)(z) # 0,

forallz € I.
If B contains an induced subgraph isomorphic to M, it is easily seen that the

same is true of A.

Now, if B contains an induced subgraph isomorphic to Ls, where a, b, c € (AT,

29«

Figure 6.2: L,
pick 29 € I such that
a(ig) 0 c(ig) = 0.

Then, b(io) & {a(io),c(i0)}, and a(0),b(i0),c (i) induce a subgraph in A* iso-

morphic to Ls.

Suppose B* contains a copy of T, where a,b,c € (A*)!. Now choose i € I so

Figure 6.3: T
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that

a(ig)oa(ig) =0

in A*. By analysing different cases we arrive at the conclusion that either a copy
of T or one of M will be present in A*t.

Finally, if B* contains a copy of Py, where a,b,c,d € (A*), pick a coordinate

. .- —e- -9
a b c d
Figure 6.4: P,

10 € I for which

a (i) o d(i9) = 0.

Then, the possibilities that a(io) = c(ig) or that b (i) = d (i) can be ruled out
immediately. If a (i0) = b (40) or c(i0) = d(%0) or b(ip) = c (i), A* will contain M
as an induced subgraph. In the case when all four of a (i), (i), c (o), and d (o)
are distinct, A* will contain P4 as an induced subgraph. a

Thus, if B is a subdirectly irreducible member of V (A), B can belong only to

one of the following classes of graph M-algebras:
1. (K°)", where x > 1.

2. (Kca)", where s, > 1.
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3. a graph M-algebra whose underlying graph consists of a single vertex without

a loop,
4. a trivial algebra whose only element is 0.

However, the presence of B of type (1) or (2) in Vs;(A) where &, A > 2 will
be sufficient to describe “almost all” algebras in Vi (A). Namely, we have the

following proposition.

Proposition 6.11 (a) If £ > 2, V ((K°)")contains every (Kg)A, where u > 1.
(6) If & > 2, V ((Kx,1)")contains every (K, )", where up > 1.
(c) If £, X > 2, V ((Kx2)")contains every (K, ,)", where p,v > 1.

PROOF. (a) Let a,b be two distinct elements of (K°)*. Now, define c(?) (0<i< )

to be the p-sequence of elements from (K?°)". so that

@m=4 =
b, i<j
Let A be the subalgebra of ((K2)")" generated by ) (0 <i < #), and let 4 be
the smallest congruence of A which identifies all u-sequences in A which contain a
O-entry. The reader can check that A/f will be a graph M-algebra isomorphic to
(K2)".

The proof of (b) is a slight modification of a more general proof for (c), and is
therefore omitted.

(c) Let a,b be two distinct elements of one of the two bipartite blocks of K,

and c,d two distinct elements of the other block. Let ¢ = max(u, v). Define )
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(0 < i< p), a &-sequence of elements from K ,, and FO(0<i<v),at-sequence

of elements from K, , as follows:
. a, <1
e (7) = I 7 ,

06 = ¢ 707
d, i<j

Let A be the subalgebra of ((K,)")* gemerated by e (0<i < y) and F0
(0 <i<wv). Again, let 6 be the congruence of A obtained by identifying all &-
sequences containing 0. Then, A/f will be a graph M-algebra isomorphic to
(Ku)". O

As an immediate consequence of the proposition, we get:

Corollary 6.12 If A is a finite graph M-algebra which omits M, Ls, T,and P, ,

Vsr (A) can be defined by a single first-order sentence.

6.3 Definable ordered principal congruences and
finite basis

In this section we proceed with the proof of the finite basis theorem for the finitely
generated varieties of graph M-algebras in which the generating algebra omits as
induced subgraphs M, L3, T, and P,. We have already established the fact that in

such finitely generated varieties, the class of subdirectly irreducibles is first-order
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definable. The next step would be to prove the DPC property for the variety.
Instead, we prove a seemingly weaker property, which will turn out to be sufficient
for the case of graph M-algebras. Moreover, this property, DOPC, which is to
be defined, will first be established for the class of subdirectly irreducibles in the
variety; after that, the property will be lifted to every member of the variety (as it

will turn out to be expressible by a collection of quasi-identities).

Definition 6.13 Let V be a variety such that there is a binary term operation in
the language of V' which induces a meet-semilattice operation in every algebra of V.
We say that V' has DOPC (or definable ordered principal congruences) if
there are finitely many principal congruence formulas which define the congruences

of the form Cg*(a,b), where b < a, in every A€ V.
Obviously, DPC implies implies DOPC.

Proposition 6.14 Let V be a variety which has a binary term operation A which

i3 a semalattice operation in every member of V. Suppose Vs is first-order definable

and V has DOPC. Then, V is finitely based.

PROOF. Note, first, that if W is any variety in the language of V in which A is
a meet-semilattice operation and A € W, any nontrivial principal congruence of
A contains a pair (a,b) such that b < a. Next, if the congruences of the form
Cg*(a,b), where b < a are definable in V' by a disjunction of principal congruence

formulas ¥, we can write down a sentence &, such that, for every such variety W,

Wk 8,
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if and only if
Vzu (u < z = “{(z,y) : ¥(z.y,2,u)} is Cg™(z,u)")

holds in every A € W. Since the class of subdirectly irreducibles of V is first-order

definable, there is a sentence © such that, if A is any algebra in the language of V,
AI:@ifandonlyifAEVsz.

Let ®; be a sentence asserting that the A-reduct of an algebra is a semilattice.

Now, define ®; to be the sentence
@ AP A [Tzy(z # yAVzu(z < u — ¥(z,y,z,u))) - O].
Let ¥ be the set of identities defining V. By the note at the beginning of the proof,
2 E é,,
by compactness, there exists a finite subset ¥’ of & such that
¥ E @,

If B is any subdirectly irreducible algebra in the language of Vwhich satisfies &', it
will also satisfy @3, and thus, it will be isomorphic to some subdirectly irreducible
member of V. Hence, ¥’ will be a finite equational basis for V. a
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In fact, Keith Kearnes proved that if a variety has DOPC then it has DPC as
well. The following argument is due to Kearnes, and we include it here with his

kind permission:

Proposition 6.15 LetV be a variety with a binary term meet-semilattice operation

A. If V has DOPC then V has DPC.

PROOF. Let @ be the collection of principal congruence formulas which witnesses

the fact that V' has DOPC. Let A € V and a,b,¢,d € A so that

(c,d) € Cg*(a,b).

Define § = Cg*(a A b,b) and let

B=A/0cV.

Clearly,

(c/6,d/8) € Cg® (a/6,b/6),

since, in A, § C Cg*(a,b).
Since V has DOPC, there exists a principal congruence formula ¢ € @ suchthat

B = ¢(c/8,d/8,a/8,b/8).
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Then, for some (m + 1)-ary terms ti(z,9),--. ,ta(z,§), where § is an m-tuple of

variables,

B3y [0/9 =ti(e1/0,5) A N t(£i/0.9) = tirr(eis1/6.5) A ta(fo/6.§) = d/6

1<i<n

where
{ei, fi} = {a,b}
for 1 <7 < n. Thus,

« <C, tl(elv g)) € 6” A AlSi(n ¥ <ti(.fl'1 g)vtﬂ-l(ei'{-lv g)) € 6”
A “(ta(far§),d)y € 67

AE3g (6.1)

Hence, there are some principal congruence formulas vy, ... , ¥, € & so that

Yo (c.ti(er,7),a A b,bA D)
AE3| A /\15;<,. ¥i (L(fi, §)s tivr(€ivr, 7),a A BB A b)
A Yn (ta(fr,7),d,a Ab,bA D)

Therefore,

Yo (¢, t1(er,§),a A 2,b A zZ)A
A =3z /\15i<n i (Li(fir ) tivr(€ien, §),a A 2, B A z) |, (6.2)

/\¢n(t,,(f,,,g),d,a/\z,b/\z) |
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and clearly, this last formula is equivalent to a principal congruence formula. Hence,

(c,d) € Cg*(a,b)

can be witnessed by a principal congruence formula of the form (6.2). From the
course of the proof, it is obvious that there are only finitely many such formulas,
which entails the definability of principal congruences of V. a

Thus, V has DOPC if and only if it has DPC. Thus Proposition 6.15 is implied
by the known one that if a variety has definable principal congruences and its
class of subdirectly irreducibles is first-order definable, then its equational theory
is finitely axiomatizable.

However, in our case trying to prove that the variety has definable ordered
principal congruences can considerably simplify the task of being able to list prin-
cipal congruence formulas witnessing the property, since, as can be inferred from
the proof of the proposition, in general, the number of principal congruence for-
mulas witnessing DPC will be an exponential function of the number of principal

congruence formulas witnessing DOPC.

Lemma 6.16 LetV be a variety generated by a finite M-algebra and let s(z, ), t(z, w)

be two terms in which = occurs ezplicitly. Then,

V EVzuti(u < z - ({s(z,3), s(u,3)} N {t(z,@), t(u, d)} # 0 = s(u,?) = t(u,d))).
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PROOF. First of all, every subdirectly irreducible member of a variety generated
by a finite M-algebra is itself an M-algebra (see e.g. (65]). Also, if p(z) is a unary
polynomial of B € V, built from a term in which z occurs explicitly, then p(0) = 0,
since 0 is an absorbing element for any algebra of V. Using these two facts it is
straightforward to prove the validity of the sentence in every subdirectly irreducible
algebra of V.

The condition

{s(z,7),s(u,5)} N {t(z, @), t(u,m)} #0

is equivalent to the following formula

3(z,9) = s(z,W) V s(z,7) = t(u,®) V s(u,d) = t(z,w) V s(u,?) = t(u,w).

Hence, the original formula is equivalent to a conjunction of four universal Horn

sentences, and, since it is true in every member of Vsr, it will be true in every
algebra of V. O

Fix a finite M-algebra A and consider the quantifier-free formulas of the forms
(0) z=y
(1) z=3s(z,2) ANy =s(z,u)
(2) =z =s(y,u) Ay=s(y,2)

(3) z=s(z,z2) Ny=t(y,z) A s(z,u) = t(y,u)
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where s and ¢t are terms which may contain additional parameters and in which z
(resp. u) occurs explicitly. We also allow for the possibility that z (resp. y) does
not occur in s (resp. t).

Let @ (z,y,2,u) = {¢i(z,y,2,u) : 1 < w} be the collection of all principal con-
gruence formulas whose quantifier-free parts are of the forms (1)-(3). Also.

i (z,y, z,u,?) will denote the quantifier-free part of ¢; (z, y, z,u).

Lemma 6.17 Let A be a finite M-algebra and o; (z,v, z, u,?) and 0; (z,y, z.u, D)

be such that

¢i(z,y,z,u) = Ivo; (z,y,2,u,?),

¢j (.’B, Y, z, u) = 3‘!1_]0',' (.’B, ,2,u, ﬁj)

are both in @ (z,y,z,u). Then there is oy (z.y, 2, u, v, W) such that, for every B €
Vsi(A), and all a,b,c,d,e € B,

BEb<a— Vow(o;(c,d,a,b,v) A o;j(d,e,a,b,w) — o (c,e,a,b,v,w))

PROOF. The proof breaks into 16 cases, depending on the types of o; and o;. If the
type of either formula is (0), the choice for oy is obvious.

Now, suppose that both o; and o; are of type (1); that is, we have

c = 3(c,a,f), d=3(cab7f)7

d = d(d,a,f), e=s'(db,f)
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where B € V51 (A), a,b,¢c,d,e € B, b < a, f and f are tuples of elements of B,

while s and s’ are terms. Using Lemma 6.16, we get

e =s'(d,b f) = s(c,b, f),

SO gy can be chosen to be:

z =3(z,2) A y=3s(z,u).

Next, suppose o; is of the type (1) while a; is of the type (2). Again, suppose
B € Vs;(A), a,b,c,dje € B, b< a, f and f* are tuples of elements of B, while s

and s’ are terms. Then,

c = s(c,a,f), d=8(C,b,f),

d = s'(e,b, f), e =5'(e,a, f).

Thus, we have ;. of type (3):

z=3(z,2,9) A y=5(y,z,®) A s(z,u,3) = s (y,u, ).

In the next case, suppose o; is of type (1), and a; is of type (3). As before, we

assume that B € V57 (A), a,b,¢c,d,e€ B, b < a, f and f are tuples of elements of
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B, while s, s’ , and s” are terms. so that
b2 ki Y

¢ = s(ca f), d=s(cb, ),

d = §(d,a,f), e=s"(e,a f), d,b, ) = d"(e,b, ).
Using Lemma 6.16, we get
d = s(c,b, f) = §'(d,b, f') = s"(e, b, ).
Hence, we have oy of type (3):
z=3(z,2,9) A y=3"(y,z2,®) A s(z,u,3) = s(y, u, D).

The other six cases can be handled in a similar fashion. The following table

shows how o} depends on o; and g;:

(1) (2) (3)
1)@ 3 @
(2) 1 (0) (2) (2
G) @M ) 3)

Table 6.1: Dependence of o4 on o; and g;

a

We are in the position to prove the following theorem.
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Theorem 6.18 The collection &(z,y,z,u) of principal congruence formulas de-

fines ordered principal congruences in V (A), for every finite M-algebra A.

PROOF. First, we claim that & (z,y, z,u) defines ordered principal congruences in
Vsr(A). Let B € V57 (A), a,b € B, such that b < a, and let p(a,b) be the binary
relation on B defined by:

(¢,d) € p(a,b) if and only if B |= ¢;(c,d, a,b),

for some ¢; € .

Obviously, p(a, b) is reflexive, symmetric, and compatible with all fundamental
operations of B. By the preceding lemma, it is transitive. Obviously, Cg® (a, d) is
contained in p(a, b), since if p(z) is a unary polynomial of B, (p(a),p(b)) € p(a.b),
and the latter equivalence relation is transitive. Conversely, p(a,b) C Cg® (a,b),
for if B |= ¢;(c,d,a,b), where ¢; € &, then, either there is p(z) € Pol, (B) such

that

{c! d} = {p(a),p(b)} )

or there are two unary polynomials p and g, and e € B, so that

{C, e} = {p(a),p(b)} and {evd} = {Q(a)’ q(b)}

Thus, ® defines ordered principal congruences in Vs;.
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To see that the same holds for the whole variety V, observe that, in light of
Lemma 6.17, it is possible to write down a collection of universal Horn formulas
which express transitivity of the binary relation p(a,b) defined as above, for every
algebra B € V, and all a,b € V such that b < a. All other properties (reflexivity,
symmetry, and compatibility) will lift automatically from the class of subdirectly
irreducibles to the whole of V. a

In order to show that every variety generated by a finite graph M-algebra which
omits the four graphs must be finitely based, we show that the number of the
parameters required in the definition of quantifier-free formulas oi(z,y,2,u,7) can
be bounded. The number of such formulas will then be essentially finite, since the
language in question is finite, and ® can be reduced to a finite subset ®’ C &, which
will define ordered principal congruences in V.

Let L’ be the restriction of the language of graph M-algebra language [ =
{o, A, 0} to the language of graph algebras.

We show first that, for every finite graph M-algebra A which omits M, L, T,

and Py , the unary L’-polynomials depend on at most two parameters from A.

Lemma 6.19 Let A be a graph M-algebra which omits M, L;, T, and Py, and let
V =V (A). Then, for every (n + 1)-ary term s(z,u) in L', where n > 2, there
ezists a ternary L'-term p, (z,y, z) and two (n + 1)-ary terms t, (z,%) and t; (z,a)

such that

V=s(z,%) =p, (z,t (z,%) , ¢, (z,%)).
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PROOF. At this point, we are using the remarks made immediately after the proof
of Proposition 6.10. The following identities are true in every subdirectly irreducible

algebra in V' (and, thus, in V):

(zoy)oz = (zoz)oy
(zo(yoz))ou = (zou)o(yoz)
((zoy)oz)ou = ((zou)oy)oz
((zoy)oz)ou = (zoy)o(uo(zoz))

Using these identities, it follows, by induction on the number of occurrences of the
operation symbol o in a (n+1)—term s(z, @), where n > 3, that the term Ps (z,y, 2)

can be chosen to be one of these:

z,Y, oy, yozx, zo(yoz), zo(zoy), (yoz)oz, (zoy)oz,

while the two (n + 1)-ary terms ¢, (z, %) and ¢, (z,%) will depend on s(z, ). a

Lemma 6.20 Let t(z,u) be an (n + 1)-ary term in the language of graph M-
algebras in which = occurs ezplicitly. Then, there is an (m + 1)-ary term t' (z, )

in L' in which z occurs ezplicitly, where m <n and ¥ is a sub-tuple of @, such that

VEt(z,z) <t(z,d)

The proof of this lemma is by induction on the complexity of the term ¢ (z, @),

and will be left to the reader.
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Now that we have a bound on the number of parameters for L’-polynomials, we

can establish a similar bound for all L-polynomials:

Lemma 6.21 Let A be a graph M-algebra, which omits M, Ls, T, and Py, and
let V =V (A). Then, for every (n + 1)-ary term s(z, @) in L, where n > 3, there
erists a 4-ary L-term p, (z,y,z,w) and three (n + 1)-ary terms t, (z, )., (z, @)

and t3(z,%) such that

V Es(z,@) =p, (z,t: (z,4), b2 (2, @), t5 (z, 7)) .

PROOF. Let s(z,%) be an (n + 1)-ary term in L, where n > 3. By the Lemma 6.19,
there is an L’-term s’, which can be assumed to contain the same variables as s,

such that

s(z,2) = s(z,a) A §'(z,4).

By Lemma 6.19, one can find a ternary term Ps (2,9, 2), and two (n + 1)-ary terms

t1 (z,%) and ¢ (z, ), so that

VE 3'(;1;,17,) =Ds (z7t,1 (z, %) vt,z (:c,‘ii,)) :

Then, for the 4-ary term p, (z,y, z, w) we can choose

w Apl’ (zayvz) ’
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and for the terms ¢, (z,%),¢; (z,%) and 3 (z, @),

tl (1:,17.) = tll (z,ﬁ),
ta(z,u) = t;(z,a),
ts(z,2) = s(z,4).

In that case,
Ve s(z,) = s(z,8) A s'(z, @) = s(z, @) A py (z,8 (z,2),t; (z,3)).

a

As an immediate corollary of Lemma 6.21, we deduce the following proposition.

Proposition 6.22 There is a finite subset &' (z,y,2,u) C ®(z,y, z,u), so that for

every finite graph M-algebra A, which omits M, Ly, T, and Py,

V(A) =Vzyzu (V ¥ (z,y,2,u) V ®(z,y, z, u)) .

In particular, V (A) has DOPC.
This completes the proof of the main result of this section:

Theorem 6.23 If A is a finite graph M-algebra, which omits M, L;, T, and Py,

then A has a finitely aziomatizable equational theory.



Open problems

In conclusion, we state the following list of some problems arising from the thesis.

1. Does there exist a variety of unary algebras in a finite language whose equa-
tional theory is finitely axiomatizable and undecidable, yet whose word problems
are unsolvable?

2. Do there exist finitely axiomatizable equational theories of groups or rings
which are undecidable, yet whose word problems are solvable?

3. Does there exist a finitely axiomatizable decidable equational theory such
that the theory of quasi-identities based on it is pseudorecursive?

4. Which finite M-algebras have finitely based equational theory? Does there
exist a characterization of such algebras in terms of prohibited “configurations” of
a combinatorial nature, which distinguish between finitely based and nonfinitely
based ones?

9. Is every nonfinitely based finite M-algebra inherently nonfinitely based?

6. Which (finite) M-algebras have DPC?

177
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