
RUMBA: Runtime Monitoring and Behavioral Analysis

Framework for Java Software Systems

by

Azin Ashkan

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c©Azin Ashkan 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A goal of runtime monitoring is to observe software execution to determine whether it

complies with its intended behavior. Monitoring allows one to analyze and recover from

detected faults, providing prevention activities against catastrophic failure. Although

runtime monitoring has been in use for so many years, there is renewed interest in its

application largely because of the increasing complexity and ubiquitous nature of software

systems.

To address such a demand for runtime monitoring and behavioral analysis of software

systems, we present RUMBA framework. It utilizes a synergy between static and dynamic

analyses to evaluate whether a program behavior complies with specified properties dur-

ing its execution. The framework is comprised of three steps, namely: i) Extracting

Architecture where reverse engineering techniques are used to extract two meta-models

of a Java system by utilizing UML-compliant and graph representations of the system

model, ii) Seeding Objectives in which information required for filtering runtime events

is obtained based on properties that are defined in OCL (Object Constraint Language)

as specifications for the behavioral analysis, and iii) Runtime Monitoring and Analysis

where behavior of the system is monitored according to the output of the previous stages,

and then is analyzed based on the objective properties. The first and the second stages

are static while the third one is dynamic.

A prototype of our framework has been developed in Java programming language.

We have performed a set of empirical studies on the proposed framework to assess the

techniques introduced in this thesis. We have also evaluated the efficiency of the RUMBA

framework in terms of processor and memory utilization for the case study applications.

iii

Acknowledgments

I would like to express my sincere gratitude to Professor Ladan Tahvildari for all her

guidance and support over these years not only as a supervisor but also as a friend. Her

advice and encouragement helped me in all the time of research and writing of this thesis.

Beside my supervisor, I would like to thank the rest of my thesis committee, Professor

Kostas Kontogiannis and Professor Paul P. Dasiewicz, for attending in my seminar and

accepting to read my thesis. Without their encouragement, questions, and insightful

comments, this thesis would not be what it is today.

Sincere appreciation goes to Professor Hausi Müller for his kind and encouraging

attitude towards me. His valuable comments improved the quality of this work.

I would also like to thank the members of Software Technologies Applied Research

Group for their valuable feedbacks about my thesis.

I hereby want to thank my dear family, specially my parents, for all they have done

for me. My love and gratitude go to my Mom for all her sacrifices in every stage of my

life, being always there for me full of knowledge, experience, and support. My love and

respect go to my Dad for all his supports and the passion of taking me to the world of

mathematics and physics when I was only a child.

Last but not least, I would like to give my deepest appreciation to my beloved husband,

Ali, whose patient love enabled me to complete this work. My love and passion for him

go far beyond the expressive power of words. I dedicate this thesis to him with love.

iv

Contents

1 Introduction 1

1.1 Problem Description . 4

1.2 Thesis Contributions . 5

1.3 Thesis Organization . 6

2 Related Works 8

2.1 Specification Language . 10

2.2 Runtime Monitor . 11

2.3 State of the Art in Software Systems Monitoring 13

2.4 Summary . 22

3 A Runtime Monitoring and Behavioral Analysis Framework 23

3.1 The RUMBA Framework . 24

3.2 Architecture Recovery . 26

3.3 Seeding Objectives . 27

3.4 Runtime Monitoring and Analysis . 29

3.5 An Example: Trading System . 30

3.6 Summary . 31

v

4 Architecture Recovery 32

4.1 Extracting Facts . 34

4.2 Modeling Source Code . 36

4.2.1 The Class Model . 36

4.2.2 The SAIG Model . 38

4.3 Summary . 43

5 Seeding Objectives 44

5.1 Adding OCL Constraints . 45

5.2 Tailoring Objectives . 47

5.3 Extracting Event Patterns . 50

5.4 Summary . 54

6 Runtime Monitoring and Analysis 55

6.1 Monitoring Process . 56

6.1.1 Observing Events . 58

6.1.2 Producing Runtime States . 60

6.2 Constraint Based Analysis . 61

6.3 Summary . 64

7 Experimental Studies 65

7.1 A Prototype for RUMBA . 66

7.2 Case Study: Rapla . 68

7.2.1 Rapla: Architecture Recovery . 69

7.2.2 Rapla: Seeding Objectives . 70

7.2.3 Rapla: Runtime Monitoring and Analysis 72

7.3 Case Study: JHotDraw . 73

vi

7.3.1 JHotDraw: Architecture Recovery 74

7.3.2 JHotDraw: Seeding Objectives . 75

7.3.3 JHotDraw: Runtime Monitoring and Analysis 77

7.4 Evaluation . 79

7.4.1 Processor Utilization . 79

7.4.2 Memory Consumption . 82

7.5 Summary . 83

8 Conclusion and Future Directions 84

8.1 Contributions . 84

8.2 Future Work . 86

8.2.1 Automatic Generation of Monitoring Scenarios 86

8.2.2 Various Objective Domains . 87

8.2.3 Steering and Diagnosis . 88

8.3 Conclusion . 89

Bibliography 90

vii

List of Figures

2.1 Runtime Monitoring Taxonomy . 9

3.1 The RUMBA Architecture . 25

4.1 Architecture Recovey . 33

4.2 A Class Model Example - The Trading System 37

4.3 XML Schema for the SAIG Model . 41

4.4 A SAIG Model Example - The Trading System 42

5.1 Seeding Objectives . 45

5.2 The Class Model of the Example Trading System with the Added OCL

Constraint . 48

5.3 XML Schema for the Objective Dependency Graph (ODG) 49

5.4 An Example of ODG - The Trading System 50

5.5 XML Schema for the Pattern of Required Events (PRE) 53

5.6 An Example of PRE - The Trading System 53

6.1 The Structure of the Runtime Monitoring 56

6.2 An Example Result of the Constraint Based Analysis for the Trading System 63

7.1 A Snapshot of the RUMBA in NetBeans 67

viii

7.2 A Snapshot of the Rapla System . 69

7.3 Part of the SAIG Model of Rapla . 70

7.4 An Example of an OCL-Based Objective and the Corresponding ODG for

Rapla . 71

7.5 Part of the PRE Corresponding to the Example Objective for Rapla . . . 72

7.6 Part of the Result of the Constraint Based Analysis for Rapla 73

7.7 A Snapshot of the JHotDraw System . 74

7.8 Part of the SAIG Model of JHotDraw . 75

7.9 An Example of an OCL-Based Objective and the Corresponding ODG for

JHotDraw . 76

7.10 Part of the PRE Corresponding to the Example Objective for JHotDraw 77

7.11 Part of the Result of the Constraint Based Analysis for JHotDraw 78

7.12 Processor Utilization for Rapla . 80

7.13 Processor Utilization for JHotDraw . 81

7.14 Memory Consumption . 82

ix

Chapter 1

Introduction

Software systems play an important role in our economy, government, and military. This

requires a constant need to understand a program’s behavior by exploring its correctness

during the runtime. Traditional methods, testing and verification [8], are not enough to

guarantee that the current execution of a running system is correct. There are possibilities

to introduce errors into an implementation of the design that has been verified. Testing

may scale well and check implementation directly, but it is mostly informal and it does not

guarantee completeness. Verification is formal and may guarantee completeness, but it

does not scale well and deals mostly with design instead of implementation. An approach

of continuously monitoring and checking a running system with respect to particular

specifications is required to use for filling the gap between these two approaches.

Runtime software monitoring has been used for profiling, performance analysis, soft-

ware optimization as well as software fault-detection, diagnosis, and recovery. Software

fault detection provides evidence whether a program behavior complies with specified

properties during program execution. Following the standard [55], software failure is a

deviation between the observed and the required behavior of a software system. A fault

1

CHAPTER 1. INTRODUCTION 2

occurs during the execution of software and results in an incorrect state that may or

may not lead to a failure. An error is a mistake made by a human that leads to a fault

that may result in a failure. Many tools have been proposed for runtime monitoring to

detect, diagnose, and recover from software faults [6, 22, 31, 37, 47, 52]. There are various

definitions for runtime software-fault monitors in the literature. The definition most in

agreement with the interpretation considered in this thesis is “A monitor is a system that

observes the behavior of a target program and determines if it is consistent with a given

specification” [20]. A monitor takes an executing software system and a specification of

software properties. It checks that the execution meets the properties, i.e., that the prop-

erties hold for the given execution. In this regard, the monitor requires an understanding

of the target system regarding the information which is going to be observed.

Program understanding has been increasingly used in software engineering tasks such

as auditing programs for security vulnerabilities and finding errors in general. Such tools

often require much more sophisticated analysis than those traditionally used in compiler

optimizations. Generally, to understand a program, three actions can be taken [18]:

reading documentation, reading source code, and running the program (e.g., watching

execution, getting trace data, examining dynamic storage, etc.). Documentation can

be excellent or it can be misleading. Studying the dynamic behavior of an executing

program can be very useful and can dramatically improve understanding by revealing

program characteristics which cannot be assimilated from reading the source code alone.

However, the source code is usually the primary source of information. There are three

approaches that can be taken into account for the program understanding:

• Static Analysis examines program code and reasons over all possible behaviors

that might arise at runtime. Compiler optimizations [15, 62] are standard static

analysis. Typically, static analysis is sound and conservative [27]. Soundness guar-

CHAPTER 1. INTRODUCTION 3

antees that the analysis result is an accurate description of the program’s behavior,

no matter on what inputs or in which environment the program is run. Conser-

vatism means reporting weaker properties than may actually be true. The weak

properties are guaranteed to be true, preserving soundness, however may not be

strong enough to be useful. Static analysis usually uses an abstracted model of a

program state. On one hand, such an abstraction may cause loosing some informa-

tion. On the other hand, it provides a model which is compact and straightforward

for manipulation.

• Dynamic Analysis operates by executing a program and observing the execu-

tions. Standard dynamic analysis includes testing and profiling [59]. Dynamic

analysis is precise because no approximation or abstraction need to be done [27].

In other words, the analysis can examine the actual and exact runtime behavior of

a program. Dynamic analysis can be as fast as program execution. Some dynamic

analyses run quite fast, but in general, obtaining accurate results entails a great deal

of computation, especially when large programs are analyzed. The disadvantage of

dynamic analysis is that its results may not be applicable for future executions.

There is no guarantee that the test suite, over which the program is run, can cover

all possible program executions.

• Hybrid Analysis is the combination of the two approaches that can be applied

to a single problem, producing results that are useful in different contexts. It

sacrifices a small amount of the soundness of static analysis and a small amount

of the accuracy of dynamic analysis. Static analysis is typically used for proofs of

correctness, type safety, or other properties. Dynamic analysis demonstrates the

presence (not the absence) of errors and increases confidence in a system. In this

way, new techniques are obtained whose properties are better-suited for particular

CHAPTER 1. INTRODUCTION 4

usage than either static or dynamic solely. The hybrid analysis replaces the (large)

gap between static and dynamic analyses with a continuum. Users would select

a particular analysis fitted to their needs. In principle, they would turn the knob

between soundness and accuracy. For instance, hybrid analyses are used for program

verification.

Most of the research works provide mechanisms utilizing only the static analysis to know

where to collect the required information in a target program for runtime monitoring.

Moreover, most of them use instrumentation and modification of the target program

which aggregates low-level monitoring information with the program code directly and

increases monitoring overhead. In this context, our goal is to develop a framework utilizing

a synergy between static and dynamic analyses without any modifications on the source

code of a target system.

1.1 Problem Description

A runtime state of a program uniquely identifies an execution trace in the system. The

execution trace of a target program P is a sequence of program states which belongs to

a set of state space SP . The state space SP is discrete and hence finite or countably

infinite. Monitoring is considered with actual transitions between states, not only the

possible ones. A monitor takes an execution trace and a property and checks whether

the execution trace meets the property. In other words, the property is verified while the

target system is executing. A property is defined according to the objective of the user who

intends to run the monitoring process on the target program. The objective is considered

as the intention to detect faults in the system or to keep track of specific resources of the

system. A property often has the form µ → α, where µ is some condition on SP , and

it identifies those states of SP in which α must hold. The set of such states is denoted

CHAPTER 1. INTRODUCTION 5

by Sα|µ where Sα|µ ⊂ SP . In any state s ∈ SP , if µ is true, then α must also be true,

which indicates that s ∈ Sα|µ. If α evaluates to be false for s, then s is a state the current

execution has reached (s 6∈ Sα|µ). This is a point where the defined property is violated

while the system runs in its environment. Such a violation is reported by the monitoring

system. Furthermore, a monitoring system may extend this capability by diagnosing

faults using the obtained information about the target program. As an example, if the

objective of the monitoring is to detect faults, a property can be defined accordingly in

which a violation means a fault. As soon as a fault is detected, the user will be provided

with appropriate information. Such an information will aid her/him in understanding the

cause of the fault to assist the system in recovering. The recovery can be done by directing

the system to a correct state (forward recovery) or by reverting to a state known to be

correct (backward recovery) [75]. At the time being, our work focuses only on monitors

that are used to detect violations or report about specific behaviors of different resources

of a system. In this way, monitoring of evolving systems to unprecedented levels can

help us to observe and possibly orchestrate their continuous evolution in a complex and

changing environment [57].

1.2 Thesis Contributions

The major contribution of the thesis is to address the problem of runtime monitoring and

behavioral analysis of Java software systems. Our framework proposes a semi-automated

process which receives the Java source code of a target program. During the execution of

the program, the framework reports whether there is any violation in the behavior of the

program with respect to the specifications of certain properties. Specifically, the major

contributions of the proposed framework are as follows:

• The framework utilizes a synergy between static and dynamic analyses to do the

CHAPTER 1. INTRODUCTION 6

runtime monitoring and analysis.

• By using the hybrid analysis, the source code of a target system is not modified

during the processes of the framework.

• Two models of a target system are created using reverse engineering techniques

through the static analysis.

• The objectives of runtime monitoring and analysis are specified utilizing Object

Constraint Language (OCL) [65, 69]. They are actually the properties defined on

the behavior of the system which are described as OCL rules.

• By using the capabilities of Java Platform Debug Architecture (JPDA) [39], we

have implemented a monitoring technique that finds the locations of the required

attributes for the analysis process.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 presents a survey on the related works. It describes four elements of

the runtime monitoring techniques, mostly focusing on two of them which are main

concerns of this thesis: the specification language and the runtime monitor. A

review of the state of the art in runtime monitoring is also presented followed by

putting this thesis in the context.

• Chapter 3 proposes a runtime monitoring framework which utilizes a synergy be-

tween static and dynamic analyses. The framework is composed of three major

stages: Architecture Recovery, Seeding Objectives, and Runtime Monitoring and

Analysis. The first and the second stages are static while the third one is dynamic.

CHAPTER 1. INTRODUCTION 7

• Chapter 4 discusses reverse engineering techniques used within the first stage of

the framework, Architecture Recovery. Two models are built for an existing object-

oriented software system in this stage: a UML-compliant model, called class model

and a graph-based model, called SAIG model.

• Chapter 5 discusses the processes within the second stage of the framework, Seeding

Objectives. In this stage, OCL-based safety properties are identified and then added

to the class model of the system. A pattern of required events is also generated to

reduce and filter event traces during the runtime monitoring.

• Chapter 6 describes the processes within the third stage of the framework, Runtime

Monitoring and Analysis. The runtime event traces of the system are generated

while no instrumentation is performed on the source code of the system. Afterwards,

the processing of the generated traces is carried out with respect to the OCL based

properties identified in the previous stage.

• Chapter 7 shows the application of the proposed framework on two open source

Java software systems. The prototype of the framework is described as well. Case

studies will be explained and the efficiency of the framework will be discussed.

• Chapter 8 presents the contributions of the thesis, and explains the potential future

research directions.

Chapter 2

Related Works

Runtime monitoring helps users of a system to detect specific anomalies which may exist

in the way that the system behaves in its environment. Delgado et al. [20] presented a

thorough survey of the current literature on runtime monitoring and identified a wide

spectrum of tools that have monitoring capabilities. We use this reference as our main

source for reviewing the major directions of runtime monitoring in literature which are

also related to the proposed framework in this thesis.

Figure 2.1 is adopted from [20] which depicts a taxonomy of runtime monitoring

systems. As the figure shows, there are four major elements used for classifying the

state of the art in monitoring approaches and techniques. The first three of them are

the most common elements of monitoring systems: the Specification Language used to

define properties as the relations within and among runtime states of a target system,

the Runtime Monitor that overseas the execution of a target program, and the Event

Handler that captures and communicates monitoring results. In addition to these three

elements, the fourth one considers the Operational Issues which mostly deal with the

external environment rather than the monitor itself.

8

CHAPTER 2. RELATED WORKS 9

In this chapter, we focus on the two elements which are main concerns of the thesis: the

specification language and the runtime monitor. While these two categories are explained

in more detail in the rest of this chapter, we summarize for the other two categories here.

Specification
Language

Elements of
Runtime

Monitoring

Runtime
Monitor

Operational
Issues

Event
Handler

Type of
Programs

Platform
Dependencies

Level of
Maturity

Control
Level

Response
Effect

Placement Platform ImplementationInstrumentation

Abstraction
Level

Property
Type

Monitoring
Level

Language
Type

Automata

Logic

Other

Algebra

Domain

Design

Implementation

Safety

Temporal

Module

Statement

Event

Program

Manual

Automatic

None

Inline

Offline

Software

Hardware

Single
Process

Multi
Programming

Multi
Processor

General
Purpose

Domain
Specific

Category
Specific

Hardware

Operating
System

Language

Research

Production

Universal
Application

Individual
Application

No Effect

User
Control

Automated

Figure 2.1: Runtime Monitoring Taxonomy

The event handler refers to how the monitor reacts to a violation of a specification in a

particular state. Response actions can alter the application state space, report applica-

tion behavior, or start up another process. At the control-level category, monitors that

react universally to a violation are separated from those that permit the user to individ-

CHAPTER 2. RELATED WORKS 10

ually specify the actions of the monitor or the target program. Response effect reflects

the extent to which the monitor’s response to a violation can affect program behavior.

According to this category, a monitor may i) have no effect on the behavior of a target

program, ii) use the user’s interactions, or iii) be an automated system.

On the other hand, the operational issues consider a monitoring system from three

points of view: i) the type of programs targeted by the monitoring system, ii) platform

dependencies, and iii) the level of maturity of the system. A target program may be

general-purpose, domain-specific, or category-specific. Platform dependencies capture

restrictions on monitoring systems. Some monitors can only operate on certain hard-

ware, operating systems, or programs written in a specific language. Level of maturity

identifies the purpose of the development of the monitoring systems which can be research

prototypes or tools available for public.

The rest of the chapter addresses the first two categories of the taxonomy and the state

of the art in this field. Section 2.1 describes the specification language while Section 2.2

discuses issues about the runtime monitor. In Section 2.3, we review the state of the art

in software systems monitoring. Finally, Section 2.4 summarizes the material presented

in this chapter.

2.1 Specification Language

A specification language in a monitoring system is classified based on: i) the language type

that is used to define the monitored properties, ii) the abstraction level of the specification,

iii) the property type, and iv) the monitoring level. More details about each of these four

directions in the specification language are as follow:

• Language Type may be algebra, automata, logic, or other. Another orthogonal

category (other) denotes that the specification language is a functional, object-

CHAPTER 2. RELATED WORKS 11

oriented, or imperative language or it is an extension of the source language.

• Abstraction Level determines how the language provides support for specifying

properties. It can be at domain, design, or implementation levels. At the domain

level, a language expresses properties in a particular domain or supports capture

of knowledge about a specific problem domain. At the design level, the specifica-

tion concerns software design at a level that is independent of implementation. A

language that supports specification of properties about the implementation of a

program is classified in the implementation level.

• Property Type may be safety or temporal. A safety property expresses that

something (bad) never occurs. The temporal category includes properties related

to progress and bounded liveness as well as timing properties.

• Monitoring Level determines the level at which a property can be evaluated

within a program. It can be at program-level, module-level, statement-level, or

event-level. At the program-level, properties are specified on threads or on rela-

tions between threads. At the module-level, properties are specified on functions,

procedures, methods, or components, such as abstract data types or classes. Prop-

erties are specified for a particular statement at the statement-level specifications.

Event-level specifications define properties based on a state change or sequence of

state changes.

2.2 Runtime Monitor

A monitor observes and analyzes the states of a system. The monitor checks correctness

by comparing an observed state of the system with an expected state of the system.

There are various approaches for implementing monitors. Instrumentation, placement,

CHAPTER 2. RELATED WORKS 12

platform, and implementation are among the implementation strategies for a monitor,

which are elaborated furthers as follows:

• Instrumentation refers to the points in a target program at which execution of

monitoring code will be initiated. It can be manual, automatic, or none. In the

manual one, instrumentation of the target program is performed manually at the

source code level, byte code level, or any level of the intermediate code. In the

automatic instrumentation, points of instrumentation are detected automatically,

which can be achieved through dynamic analysis, static analysis, or a combination

of both. In the third category, it is not required to consider any physical point in

the program to run a monitoring code and hence no instrumentation is required.

• Placement refers to where the monitoring code executes. It can be inline in which

the monitoring code is embedded in the target code (including calls to subroutines).

On the other hand, the monitoring can be performed offline, meaning that the

monitor executes as a separate thread or process, possibly on a separate machine.

The monitor is classified as asynchronous offline in two ways: i) the application can

continue to execute without waiting for the analyzer to complete, or ii) the monitor

uses an execution trace that is analyzed after execution. If the application must

wait until the check is complete, the monitor is classified as synchronous offline.

• Platform differentiates monitors as software or hardware ones. A software moni-

tor uses code to observe and analyze the values of monitored variables. A hardware

monitor may be a microprocessor attached to a system with connectors or a hard-

ware device connected to the buses of the target system that allows it to detect

events of interest or collect relevant data.

CHAPTER 2. RELATED WORKS 13

• Implementation refers to the way a monitor can execute which can be single

process, multiprogramming, or multiprocessor. In the single process, the monitor

executes in the same process as the target program. In the multiprogramming

way, the monitor and the target program execute as separate processes or threads

on the same processor. The monitor and the target program execute on different

processors in the multiprocessor case.

2.3 State of the Art in Software Systems Monitoring

In this section, we review the state-of-the-art about existing monitoring systems from the

specification language and the monitor points of view. Afterwards, we compare specific

features of our framework with what are contributed by other systems.

• Alamo (A Lightweight Architecture for Monitoring) [41, 42] has been developed for

C and Icon programs. The Icon programming language is used to specify assertions

as the safety properties for monitoring. The Alamo monitoring architecture utilizes

CCI, a Configurable C Instrumentation tool [72], as a preprocessor. It uses parse

trees to identify monitoring points and inserts events into the source code of a target

program. There is an Execution Monitor (EM) which executes the Target Program

(TP). Then the control is returned to the EM with information in the form of an

event report. The EM can query the TP for additional information, such as the

values of program variables and keywords.

• Annalyzer [53, 54] uses ANNA (ANNotated Ada), an extension of Ada, to specify

properties as annotations. The annotations are converted into code that checks the

properties at runtime. The Annalyzer compares the runtime behavior of an appli-

cation with properties that are specified at different levels of abstraction (package,

CHAPTER 2. RELATED WORKS 14

subprogram, data structures, or statement level). A monitor is used to pinpoint and

analyze errors by using a two-dimensional pinpointing approach in which the Anna-

lyzer initially finds errors using properties specified at a higher level of abstraction.

Finally, an event handler notifies the user when a violation occurs.

• BEE++ [10] is an object-oriented application framework for the dynamic analysis

of distributed programs written in C or C++. It views the execution of a distributed

program as a stream of events. The monitor, referred as an event interpreter, sup-

ports specification of high-level events from low-level events by way of inheritance.

A sensor provides a placeholder for an event that is either user-defined or predefined

by BEE++. When a sensor is encountered, or triggered, runtime data is loaded

into the event and it is sent off to each analysis tool that has bound itself to that

sensor. The insertion of sensors in the application is the task of the programmer.

• DynaMICs (Dynamic Monitoring with Integrity Constraints) [31, 32] is a tool that

supports the elicitation of properties from domain experts, designers, and develop-

ers as well as their application to monitoring. Properties, expressed in logic, capture

relations on objects modeled by the application, design limitations, and implemen-

tation assumptions. These properties are specified as event-condition-action, where

the event defines the trigger for the check, the condition specifies the check, and

the action defines the response to a violation. The approach automatically inserts

constraint-checking and knowledge-generating codes by analysis of a program’s path

expression. The control-flow graph of the program’s intermediate code generates

the path expression. Monitoring code automatically generated from specifications

triggers the execution of monitoring code by another process or processor [71].

• Edit Automata [52] analyzes the space of security policies that can be enforced by

monitoring and modifying programs at run time. Program monitors in this system,

CHAPTER 2. RELATED WORKS 15

called edit automata, are abstract machines that examine the sequence of applica-

tion program actions and transform the sequence when it deviates from a specified

policy. It uses the general term security automaton to refer to any automaton that

is used to model a program monitor. Edit automata has a set of transformational

powers which: i) may terminate the application, thereby truncating the program

action stream, ii) may suppress undesired or dangerous actions without necessar-

ily terminating the program, and iii) may insert additional actions into the event

stream.

• Falcon [35] provides online monitoring and steering of large-scale parallel programs.

A monitoring specification consists of low-level sensor specification constructs and

higher-level view specification constructs. Using a semi IDL (Interface Description

Language) language, programmers define: i) the application-specific sensors and

probes for capturing the program and performance behaviors during runtime, and

ii) the program attributes that direct steering. Probes update program attributes

asynchronously to the program’s execution. Actuators may also execute additional

functions to ensure that modifications of program state do not violate program

correctness criteria. Monitoring is accomplished through the use of runtime libraries

for information capture, collection, filtering, and analysis.

• Jass (Java with assertions) [6] is a general-purpose monitoring approach that is

implemented for sequential, concurrent, and reactive systems written in Java. A

precomplier translates annotations to programs written in Java into pure Java code.

Compliance with the specified annotations is dynamically tested during runtime.

Trace assertions, based on the process algebra CSP (Communicating Sequential

Process), describe the observable behavior of a class and they are used to monitor

the correct invocation of a method as well as the order and timing of method

CHAPTER 2. RELATED WORKS 16

invocations. The generated code will check that the trace of the current program

execution is included in the traces of the main process; otherwise, a trace exception

is thrown that can trigger a user-defined rescue block.

• JassDA (Jass with Debug Architecture) [9] is the later version of Jass. JassDA

has been also designed to provide a trace assertion facility, but in contrast to Jass,

trace assertions are not precompiled into the source code but are checked at runtime

via the Java Platform Debug Architecture (JPDA) [39].

• JPaX (Java PathExplorer) [6, 37] is a general-purpose monitoring approach for se-

quential and concurrent Java programs. This technique facilitates logic-based mon-

itoring and error pattern analysis. Formal requirement specifications are written in

a linear temporal logic [68] or in the algebraic specification language Maude [16, 17].

JPaX instruments Java byte code to transmit a stream of relevant events to the

observation module that performs two kinds of analysis: i) logic-based monitor-

ing that checks events against high-level requirements specifications, and ii) error

pattern analysis that searches for low-level programming errors. Maude’s rewriting

engineMaude [16, 17] is used to compare the execution trace to the specifications.

Error pattern runtime analysis explores an execution trace to detect potential er-

rors, including data races and deadlocks, even if these errors do not explicitly occur

in the trace.

• JRTM (Java Runtime Timing-Constraint Monitor) [61] targets timing properties

of distributed, real-time systems written in Java. The timing properties express as-

sertions that specify the occurrences of different events in a language based on Real

Time Logic (RTL). Java programmers insert the event triggering method calls in

their Java programs where event instances occur. JRTM can detect some property

violations statically through constraint graphs. Whenever an event is triggered at

CHAPTER 2. RELATED WORKS 17

runtime, the application sends a message to the monitor reporting the occurrence

time of the event instance and the event name. The monitor keeps these event occur-

rence messages in a sorted queue with the earliest event message at the head of the

queue. The constraints are checked for violation and synchronization is enforced.

• Mac (Monitoring and Checking) [45, 46, 47, 48, 49, 70] provides a framework for

runtime monitoring of real-time systems written in Java. Requirement specifications

are written in MEDL (Meta Event Definition Language). MEDL allows the user to

define auxiliary variables which store values. Such values are used to identify events

and conditions as well as guarded statements that assign them to auxiliary variables

for encoding information on past states. A monitoring script, written by the user

in PEDL (Primitive Event Definition Language), is used to monitor objects and

methods. PEDL can look at local and global variables and can detect alias variable

names. A filter maintains a table that contains names of monitored variables and

addresses of the corresponding objects. It acts as an observer which communicates

the information that is to be checked by the runtime monitor. Monitoring points

are inserted automatically since the monitoring script specifies which information

needs to be extracted, not where in the code extraction should occur. Static analysis

is used to determine monitoring points and dynamic analysis is used to reduce

monitoring overhead without evaluating new program state.

• PMMS (Program Monitoring and Measuring System) [51] is an approach that au-

tomatically collects information about the execution characteristics of a program.

The user can specify objects and relations at the program, event, or statement-level.

PMMS accepts the original program and properties given in a formal specification

language. It installs instrumentation code in the program, determines what data

must be collected, and inserts code to collect and process that data. The imple-

CHAPTER 2. RELATED WORKS 18

mentation uses temporal dependency among events to filter out irrelevant data at

runtime and uses a main memory active database to facilitate the collection, com-

putation, and access to results. PMMS handles events by installing code that reacts

whenever relevant events occur.

• RAC (Runtime Assertion Checker for the Java Modeling Language) [11, 13] assists

in the generation of test oracles and identifies errors during testing of Java programs.

Programmers write pre and post conditions for class methods using a side-effect-

free subset of the Java Modeling Language. It is also possible to check class-level

post-state assertions such as invariants. These annotations are translated into Java

code embedded in the source code. When violations of pre or post-conditions occur,

exceptions are thrown.

• ReqMon (Requirements Monitor for executing software) [66, 67] provides a frame-

work and tool for monitoring requirements at runtime. The high-level requirements

are translated into a Unified Modeling Language (UML) design model from which

a Java program is generated. ReqMon generates a Promela model [38] from the

program source code and a monitored program event log from instrumented com-

piled Java classes. The model is checked using Spin [38] to determine if the current

execution is on a path that can lead to a requirement failure. ReqMon has been

applied to distributed web services. ReqMon automates the translation of monitor

specifications into a monitor implementation. Templates for monitor specifications

are specialized through the selection of appropriate parameters. At runtime, the

monitors track web service traffic at the transport protocol, routers, and gateways.

Integrative monitors combine information from individual monitors, and alerts are

reported.

CHAPTER 2. RELATED WORKS 19

• Sentry [14] is a monitoring approach designed for sequential and concurrent C

programs. The Sentry is an observer that is implemented as a separate process to

concurrently monitor the execution of a target program and issue a warning if it

does not behave correctly with respect to a given set of properties. The properties

are specified in a propositional calculus that is extended to include integer arith-

metic operators and relations using C syntax. Universal and existential quantifiers

are permitted, as well as summation over a fully instantiated subrange. Annotations

are written within specially formatted comments in the places where the properties

should be evaluated. The original source file with the annotations is replaced by

calls to macros. Properties observed by the global sentry are invariants that are

maintained throughout the entire program execution. The local sentry checks prop-

erties at a particular point in the execution process and runs in parallel with the

source program. The source program sends its variables to the sentry as it executes.

The global sentry continuously observes and evaluates the global properties of the

source program, waiting until a process writes new state information. The sentry

then reads new variables from their buffers, preserving mutual exclusion with the

processes, and enables the checking of any property involving those variables. After

the sentry has read the available state information from all processes, it checks the

enabled properties. Detected violations are reported by sending a signal to the pro-

gram, and the program initiates a user-defined recovery action based on the type

of fault.

• Temporal Rover [21] is a specification-based verification tool that uses Linear-

Time Temporal Logic (LTL) and Metric Temporal Logic (MTL), allowing the user

to specify future time temporal formulae as well as lower and upper bounds, and

ranges for relative-time and real-time properties. In Temporal Rover, the user de-

CHAPTER 2. RELATED WORKS 20

termines the point at which a property should be checked and inserts an annotation

of the property. The Temporal Rover parser converts an annotated program into

an identical program with the properties implemented in the source code. During

application execution, the generated code validates the executing program against

the formal specifications. Temporal Rover takes a Java, C, C++, Verilog, or VHDL

source code program as input and it enables customizable actions for the program

domain.

• TPTP (Test and Performance Tools Platform) [73] is an open source project of

the Eclipse foundation. TPTP is divided into four projects. One of them is the

monitoring tools project that addresses the monitoring and logging phases of an

application lifecycle. The monitoring tools project provides frameworks for build-

ing monitoring tools by extending the TPTP platform for collecting, analyzing,

aggregating, and visualizing data that can be captured in the log and statistical

models. The framework has the capability of collecting and analyzing system and

application resources. It provides statistical agents to monitor and collect Windows

and Linux systems, JBoss and JOnAS application server JMX data, Apache HTTP

server status data, and MySQL database table and variable data. It is also able

to instrument Java applications so they can be monitored. The log analysis tools

can correlate disparate logs from multiple points across an environment. It also

includes tools for monitoring application servers and system performance, such as

CPU and memory utilization.

Runtime monitoring requires an understanding of the target system regarding the in-

formation which is going to be monitored. Several works address this problem through

static analysis. DynaMICs [31] automatically inserts monitoring-related information to a

target program by analysis of the program’s path expression. Such a path expression is

CHAPTER 2. RELATED WORKS 21

generated from the control-flow graph of the intermediate code of the program through

static analysis. Jass [6] has a precompiler to translate the monitoring information into

Java code and insert it to the target program source code. The resulted compliance with

the specified information is tested during the runtime. To the best of our knowledge,

Mac [47] is the only system that uses the benefits of combined static and dynamic anal-

yses. In this system, static analysis is used to determine monitoring points and dynamic

analysis is used to reduce monitoring overhead by not evaluating new program state. Our

work also addresses this issue using a synergy between static and dynamic analyses.

Programming analysis techniques are useful for runtime monitoring to know what to

collect and where to locate the required information in a target program. However, there

is still required to know how such information can be collected from the target program.

Generally, runtime monitoring approaches track the execution of a target program by

generating and processing execution events. Such a task is usually performed by modify-

ing the target program at the source code level prior to the compilation [6, 22, 31, 52] or

at the intermediate code level before running the program [37, 47]. This is called instru-

mentation of the target program which aggregates low-level monitoring information with

the program code directly. New techniques are needed to reduce the monitoring over-

head resulted from the instrumentation and modification of different levels of a target

program. To the best of our knowledge, the JassDA [9] framework is the only moni-

toring system that generates monitoring events at runtime without any modifications to

the target program. JassDA has become our motivation to address this issue in runtime

monitoring by utilizing reverse engineering techniques and the capabilities of JPDA [39]

so that the source code would not be modified. Following chapters will elaborate further

on our approach and its contributions.

CHAPTER 2. RELATED WORKS 22

2.4 Summary

This chapter presents a survey of related works. A taxonomy of runtime monitoring

systems, based on four elements, has been presented in this chapter. The first three

of them are the most common elements of monitoring systems: Specification Language,

Runtime Monitor, and Event Handler. In addition to these three elements, the fourth

one considers the Operational Issues rather than the monitor itself. The main goal of

the chapter is to provide a background knowledge of the existing and ongoing projects

related to this area. Moreover, we review the state of the art in this chapter and compare

specific features of our framework with what are contributed by other works.

Chapter 3

A Runtime Monitoring and

Behavioral Analysis Framework

Software engineering strives enabling the economic construction of software systems in

order to behave correctly and reliably in their environment. In other engineering disci-

plines, correctness is assured in part by a detailed monitoring of processes. In software,

we can address this issue in the behavior of programs by monitoring their execution.

Runtime software monitoring has been used for profiling, performance analysis, software

optimization as well as software fault-detection, diagnosis, and recovery. Studying the dy-

namic behavior of an executing program can be very useful and can dramatically improve

understanding by revealing program characteristics. Although this can not be assimilated

from reading the source code alone, it is usually the primary source of information.

In this thesis, we propose a framework, namely RUMBA, to address the runtime

monitoring and the behavioral analysis of Java software systems. RUMBA integrates

concepts of reverse engineering and runtime monitoring and it is a synergy between static

and dynamic analyses. It confirms whether a program behavior complies with OCL-based

23

CHAPTER 3. A RUNTIME MONITORING AND BEHAVIORAL ANALYSIS

FRAMEWORK 24

specification of certain properties during its execution. The properties are defined based

on the objectives of the user who intends to monitor the execution of a target program.

Runtime monitoring and analysis require certain information about a target system.

In our framework, such information is obtained through hybrid analysis in such a way that

does not require to modify the source code. Three key features of the RUMBA framework

are: i) the theory defined for static analysis part of RUMBA is fully extendable at different

granularity levels, for example towards monitoring information about the methods of a

system, ii) the source code of a target system is not modified, and iii) the most processes

of the framework are automated. Using the help of reverse engineering techniques through

static analysis, we can reduce the large size of runtime information in dynamic analysis.

We filter the information to what is required for the analysis.

This chapter outlines the proposed framework, while the details are discussed fur-

ther in subsequent chapters. Section 3.1 presents the architecture of the framework and

introduces the different stages of it. The two stages, performing static analysis, are de-

scribed in Sections 3.2 and 3.3 respectively. Section 3.4 presents the third stage of the

framework which performs dynamic analysis. We introduce an example target program

in Section 3.5 which will be used further in subsequent chapters to understand the details

of each process included in the framework. Finally, Section 3.6 summarizes the chapter.

3.1 The RUMBA Framework

The RUMBA framework is comprised of three stages namely: i) Architecture Recovery,

ii) Seeding Objectives, and iii) Runtime Monitoring and Analysis. The first and the second

stages are static while the third one is dynamic. Figure 3.1 illustrates the architecture of

the framework.

CHAPTER 3. A RUNTIME MONITORING AND BEHAVIORAL ANALYSIS

FRAMEWORK 25

As depicted in Figure 3.1, the main input of the RUMBA framework, which goes

into the first stage, is the source code of the target system. At this time, the framework

works for Java based systems. However, the modular architecture of RUMBA allows to

replace or equip appropriate components in the future work, in such a way that other

OO languages can be supported.

Running

System

S e e d i n g O b j e c t i v e sArchitecture Recovery

Extracting Facts

Modeling Source

Code

Facts

R u n t i m e M o n i t o r i n g

a n d A n a l y s i s

PRE

Extracting Events

Pattern

Producing Runtime

States

Observing Events

Sequence

of Events

Adding OCL

Constraints

OCL Based

Objectives

Tailoring

Objectives

Objective

Properties
Source

Code

Class

Model

Class Model

+ OCL

Current State

of the System

ODG
SAIG

Model

JDI Events

JVM

JPDA

Constraint Based

Analysis

Reports

Legend

Data Input Data Output Control Flow Data FlowProcess

Used

Technology

Figure 3.1: The RUMBA Architecture

The input of the second stage is provided based on the assumption that the user of

the framework has some information about the domain of the target system. Particular

OCL-based constrains are defined according to such information and the objectives of

the runtime monitoring and analysis. Such constraints are utilized as the main input

CHAPTER 3. A RUNTIME MONITORING AND BEHAVIORAL ANALYSIS

FRAMEWORK 26

of the stage. The structural models obtained from the first stage are also passed as the

inputs of the second one. One of the inputs of the third stage is a structural model of

the target system plus the defined objectives in OCL. As another input, a pattern of the

required information for runtime monitoring, generated in the second stage, is passed

to the third one. The output of RUMBA is actually the output of the last stage which

is a list of sucesses/failurs of each constraint per state. The output can be considered

as a repository which represents the results of analyzing some particular points of the

behavior of the target system during runtime. Further explanations about each stage of

the RUMBA framework can be found in the following subsections.

3.2 Architecture Recovery

Software architecture recovery aims at reconstructing views on the architecture as-built.

Reverse engineering techniques have claimed to offer great contributions to Architecture

recovery from legacy systems through static analysis. In the first step of our frame-

work, such techniques are used to extract a meta-model of the system by utilizing graph

representation of the system model.

We have two goals in this stage: i) modelling the structure of the system, and ii)

describing the model in two representations: a UML-compliant model and a graph based

model. Indeed, there are two main processes in this stage, extracting facts and modeling

source code, to achieve the two aforementioned goals.

The Java Compiler (JavaCC) [74] is utilized in the “extracting fact” process. JavaCC

is one of the most popular parser generators for use with Java applications. Its top-down

nature allows it to be used with a wider variety of grammars than other traditional pars-

ing tools. The JavaCC based extractor has been implemented in Java to automatically

extract the information from a target system. However, the modular architecture of the

CHAPTER 3. A RUNTIME MONITORING AND BEHAVIORAL ANALYSIS

FRAMEWORK 27

framework enables us to extend the work for future for other types of OO languages.

The “modeling source code” process utilizes graph-based structures, since graphs are

very versatile data structures and can be applied for various computer vision problems.

They are good for modeling, traversing, and transformation purposes. In our framework,

attributed graphs [26] are used to model the system structure. The graph-based structure

facilitates the extendibility of the model for future work. Such a graph based model is

then traversed in other part of the static analysis. Finally, the graph based artifacts are

exported as XML documents and transformed between different stages of the framework.

The details of the two processes involved in this stage are elaborated further in Chapter 4.

3.3 Seeding Objectives

The Object Constraint Language (OCL) [65, 69] is a formal notation for analysis and

design of OO systems. It is a subset of the industry standard Unified Modeling Language

(UML) [1] that allows software developers to write constraints and queries over object

models. A constraint can be seen as a restriction on a model or a system. OCL plays

an important role in the analysis phase of the software lifecycle as a formal language

to express constraints. It can be used for specifying constraints on a model in order to

restrict possible system states [34]. Users of UML and other languages can use OCL to

specify constraints and other expressions attached to their models.

OCL is an expression language. Therefore, an OCL expression is guaranteed to be

without side effect; it cannot change anything in the model. This means that the state

of the system will never change because of an OCL expression, even though an OCL

expression can be used to specify a state change, e.g. in a post-condition. The values

for all objects, including all links, will not be changed. Whenever an OCL expression is

evaluated, it simply delivers a value. OCL is not a programming language, so it is not

CHAPTER 3. A RUNTIME MONITORING AND BEHAVIORAL ANALYSIS

FRAMEWORK 28

possible to write program logic or flow control in OCL. It is not possible to invoke processes

or activate non-query operations within OCL. Since OCL is a modeling language in the

first place, nothing in it is promised to be directly executable. OCL is a typed language,

hence each OCL expression has a type. In a correct OCL expression, all types used must

be type conformant. For example, it is not possible to compare an Integer with a String.

Types within OCL can be in any kind of classifier within UML. As a modeling language,

all implementation issues are out of scope and cannot be expressed in OCL. Each OCL

expression is conceptually atomic and the state of the objects in the system cannot change

during the evaluation.

We use OCL in this stage of RUMBA to define particular properties as objectives

of the behavioral analysis. We consider an objective as a property that constrains the

permitted actions, and, therefore, the permitted state changes of a system [60]. A specific

set of rules can be defined to formalize our expectation about the runtime of a system

that actually determine the objectives of evaluating the behavior of the system.

The properties are particularly useful, as they allow us to create a specific set of rules.

Such rules can govern some aspects of the objects of our interest. The objects and some of

their attributes are our points of interest, since their changes determine our expectation

about the runtime of the system. However, the domain of the available information

about these objects is limited to their names and some of their attributes involved in the

definition of the OCL rules. We need more information to be able to track them and

filter the events during the runtime of a program. For that reason, information required

for filtering runtime events is also obtained in this stage.

In summary, we have two main goals in this stage: i) identifying properties as OCL

rules on the class model of the target program, and ii) extracting patterns of required

events to reduce and filter generated events during monitoring the runtime. There are

three main processes in this stage which are explained further in Chapter 5.

CHAPTER 3. A RUNTIME MONITORING AND BEHAVIORAL ANALYSIS

FRAMEWORK 29

3.4 Runtime Monitoring and Analysis

In this stage, the runtime execution of the target system is monitored according to the

output of the previous stages. Afterwards, the obtained runtime information is analyzed

and verified. The analysis is constraint based and is performed based on the the properties

defined in the second stage.

Approaches to runtime monitoring and analysis have to track the execution of a sys-

tem and therefore have to deal with generating and processing event traces. However,

these techniques are mostly applied at the code level (so-called instrumentation). Such an

instrumentation can be done either by inserting new source code prior to the compilation

or by modifying the target code, e.g. Java byte code, before running the program. Our

framework does not modify the source code. We use Java Platform Debug Architecture

(JPDA) [39] for monitoring purpose to generate event traces. JPDA is a multi-tiered

debugging architecture contained first within Sun Microsystem Java 2 SDK version 1.4.0.

It consists of a Java Virtual Machine Debug Interface (JVMDI), and a Java Debug Inter-

face (JDI), as well as a protocol, Java Debug Wire Protocol (JDWP). We have used the

JDI, which defines and requests information at the user code level, in order to implement

our monitoring component

On the other hand, a back-end analysis component carries out the processing of the

generated traces with respect to the properties. We have used an open source tool called

USE (UML-based Specification Environment) developed in Bremen University [3]. We

have adopted some parts of the source code of USE to be incorporated into our framework

as a part of the design and the implementation of the analysis component.

Totally, there are three processes included in this stage. Two of them are responsible

for monitoring the execution traces of a target program. They specify the traces of the

runtime states of the program. The third process is responsible for OCL-based constraint

CHAPTER 3. A RUNTIME MONITORING AND BEHAVIORAL ANALYSIS

FRAMEWORK 30

analysis on the generated states coming from the other two. These three processes are

elaborated further in Chapter 6.

3.5 An Example: Trading System

This section introduces a Trading system as an example to understand the details of each

process included in the framework. Sample artifacts generated from different stages of

the framework are elaborated on this simple example in subsequent chapters.

Consider a trading system with two major classes, namely Stock and Trader. In

this system, some traders instantiated from the Trader subscribe in a stock instantiated

from the Stock. The stock has some items to sell and provides traders with information

about each item, including its price, whenever it is ready for market. Each trader decides

whether she/he wants to buy the item or not, based on her/his trading policy. If yes,

she/he lets the stock know about her/his decision so that nobody else can buy that item.

We study a transaction based property in this system in subsequent chapters. Such

a property may be violated due to the interference caused by making access to critical

sections mutually exclusive [60]. It means that at least two traders are able to buy

the same item with the stock at the same time. Since there is no support to handle

transactional issues in our example system, there are states during the runtime where at

least two traders have bought the same item. This is a behavior that is unwanted and

unexpected from the user’s point of view. According to the definition of an objective,

there must be something that constrains the permitted actions of this system. It is a

constraint that must be defined to check whether the system respects the transactional

access. We define such a constraint as the objective for the behavioral analysis. Indeed,

we monitor the runtime of the system to detect the points at which there is a violation

in the behavior of the system with the specified objective.

CHAPTER 3. A RUNTIME MONITORING AND BEHAVIORAL ANALYSIS

FRAMEWORK 31

3.6 Summary

In this chapter, we have outlined the proposed framework which utilizes hybrid analysis

to confirm whether a program behavior complies with specified properties during its exe-

cution. The framework is comprised of three stages: i) Architecture Recovery, ii) Seeding

Objectives, and iii) Runtime Monitoring and Analysis. There are some processes included

in each stage of the framework which have been briefly explained in the chapter. The

role of each stage of the framework has been addressed in this chapter. In the subsequent

chapters, we will elaborate further on the processes involved in each stage. We will de-

scribe how each process works with respect to its input(s) coming from other processes

and the output(s) which will be generated.

Chapter 4

Architecture Recovery

The ability to recover up-to-date architectural information from existing software artifacts

is a key to have effective software maintenance, reengineering and reuse. This informa-

tion is beneficial to the engineer who is trying to understand a software system. An

architecture recovery system extracts facts from a system implementation, then combines

these facts into higher level of abstractions (for example, modules and subsystems). The

extracted facts may be in many forms. Researchers have extracted information about

function calls, data accesses, and file operations to help reconstruct views of an architec-

ture [28, 29, 33, 44, 56, 58, 63].

In contrast to several monitoring systems that need to do some modifications at the

source code or byte code levels [6, 22, 37, 47, 52] of their target system through the

instrumentation, we do not require any instrumentation. For achieving such a goal, our

framework needs some structural information about the target system. This information,

which is obtained through the architecture recovery in the static analysis, helps our

monitor to track the location of required information during the runtime.

Therefore, the first stage of RUMBA is the architecture recovery stage. We have two

32

CHAPTER 4. ARCHITECTURE RECOVERY 33

goals in this stage: i) modeling the structure of the system that is the target of runtime

monitoring, and ii) describing the model in two representations: a UML-compliant model

and a graph based model. To achieve these goals, as Figure 4.1 illustrates, two main

processes are performed in this stage. First, we parse the source code of the target

system to extract facts from its implementation. Then, we model the facts into the forms

which will be useful for the next stages of RUMBA. This chapter describes these two

processes: extracting facts and modeling source code. In Section 4.1, we discuss about

the fact extraction process in more details. We explain the source code modeling process

in Section 4.2 including details and examples about two generated models during the

process. Finally, Section 4.3 summarizes the chapter.

Extracting Facts

Modeling So urce Code

Interpreter

Modeler

JavaCC

Grammar

Source

Code

Class

Model

SAIG

Model

<generates>

FactsLegend

Module

Process

Data Flow

Control Flow

Data Input

Java Compiler Compiler
(JavaCC)

Figure 4.1: Architecture Recovey

CHAPTER 4. ARCHITECTURE RECOVERY 34

4.1 Extracting Facts

The fact extraction is an automated process which extracts facts from the source code of

a target system. One group of the facts that we extract from a target system are classes of

the system, their attributes, and data type of each attribute. The following terminology

can formulate our desired notation for these facts:

Terminology 4.1 Consider set of all languages in the world as L and set of all data

types of these languages as TL. An object-oriented software system S is implemented in

a language l, where l ∈ L. We denote any class type and class attribute of the language

l with ct and ca classifiers respectively. Tl is the set of all data types of l where Tl ⊂ TL.

For example, TJava = {int, short, long, double, float, boolean, byte, char, string}.

The other group of facts extracted from the system is a set of relations. Our interested

relations can be classified in three forms: i) a class has a relationship with the attribute

that it owns, ii) an attribute has a relation with its data type, and iii) a class may have

a relation with another class. For the third one, we consider the association relationship

according to the UML 2.0 specification [1]. UML specifies that the association between

two classes represents the ability of an instance of the first class to send a message to

an instance of the second one. This is typically implemented with a pointer or reference

instance variable, a method parameter, or a creation of a local variable. We formalize

the three types of relations as follows:

Definition 4.1 A set of relations R over the system S in the language l is defined on a

set D, where D = {ct, ca} ∪ Tl.

Considering ti is a data type of language l where ti ∈ Tl and i ∈ {1, ..., |Tl|}, R includes:

• has-attr: the attribute ownership of a class. It is denoted as ct has-attr ca

CHAPTER 4. ARCHITECTURE RECOVERY 35

• has-type: the relation between a data type and an attribute defined over that type.

It is denoted as ca has-type tl

• depends-on: the association relation between any two class entities of S. It is

denoted as ct depends-on ct

Extracting facts can be facilitated with the help of reverse engineering techniques and

tools. Source code parsers have been used for several years. The best known of them

are Yacc [76] and Lex [50] from the Unix domain or their GNU version, Bison [7] and

Flex [30]. Lex is a lexical analyzer generator and Yacc is a parser generator. In combina-

tion, they can be used as the front end of a language translator. Lex program recognizes

regular expressions and yacc generates parsers that accept a large class of context-free

grammars [19]. Our automated fact extraction process uses JavaCC [74] to extract re-

quired facts. JavaCC is one of the most popular parser generators for use with Java

applications. It generates top-down, recursive descent parsers. The top-down nature of

JavaCC allows it to be used with a wider variety of grammars than other traditional

tools, such as Yacc and Lex. Another difference between JavaCC and Yacc/Lex is that

JavaCC contains all parsing information in one file. The convention is to name this file

with a .jj extension.

Our target systems are limited to the Java based systems in the current version of

the RUMBA framework. Therefore, our automated fact extraction process uses JavaCC

and extracts required facts from a Java based system. However, as mentioned before,

the modular architecture of RUMBA makes it possible to extend the work for future and

work with other types of OO languages.

In a nutshell, the target Java program is parsed in the first process of the architecture

recovery to extract information about its classes (and the packages which contains them),

attributes, data types, and relations as described earlier. These facts are essential for

CHAPTER 4. ARCHITECTURE RECOVERY 36

representing the system as two models in the next process of the architecture recovery

stage.

4.2 Modeling Source Code

The source code modeling process forms the extracted facts from the previous process into

two models: a UML-compliant model and a graph based model of the system structure.

The following sections elaborate further on these two models.

4.2.1 The Class Model

The UML-compliant model is used later for the analysis part of the RUMBA framework.

The specification of this model is based on the USE specification [3]. USE (UML-Based

Specification Environment) is a tool for the specification of information systems. We

have adopted some parts of the source code of this tool to be incorporated into RUMBA

as the analysis component which will be discussed further in later chapters. The USE

specification language is based on UML and OCL. It contains a textual description of a

model using features found in UML class diagrams (classes, relations, etc).

From now on, we call the UML-compliant model as Class Model of the system. Ex-

pressions written in the Object Constraint Language (OCL) are used to specify additional

integrity constraints on the class model. This model is generated automatically during

the modeling process. Later, the OCL based rules are added to it as the objectives of

the runtime analysis. For each snapshot of the runtime traces of the system, the OCL

constraints are automatically checked on this model.

The class model has three major sections:

• Classes Section lists the classes of the system. Each subsection includes name of

a class and its attributes names followed by the data type of each attribute.

CHAPTER 4. ARCHITECTURE RECOVERY 37

• Associations Section lists the association relations which exist among the classes.

Each subsection specifies a name to an association and contains the name of two

involved classes and the degree in which they depend on each other.

• Constraints Section lists the OCL based constraints on the class model. This

section is not generated during the modeling process. It is later added to the class

model in subsequent stages of the framework.

model Trading

-- classes

class Trader

attributes

 name: String

 itemID: Integer

 basePrice: Integer

 tradePrice: Integer

end

class Stock

attributes

 name: String

 item: Integer

 currentPrice: Integer

end

-- associations

association depend_1 between

 Trader[0..*]

 Stock[1]

end

-- constraints

-- will be added later in

-- subsequent stages

Figure 4.2: A Class Model Example - The Trading System

As an example, the class model resulted from the source code modeling process on our

CHAPTER 4. ARCHITECTURE RECOVERY 38

example trading system is depicted in Figure 4.2 in USE specification.

4.2.2 The SAIG Model

The source code modeling process also generates another model of the system automati-

cally. This model is graph based and is called SAIG (Schema Attributed Instance Graph)

of the system. This graph is our extension to the attributed graphs [26]. We export the

SAIG as XML documents that can be easily queried and traversed in subsequent stages.

Before going into more details, formal definitions of the attributed graphs and related

concepts need to be given.

Definition 4.2 An Attributed Graph is a directed graph AG(V, E) in which:

• V = Vm ∪ Vd that Vm and Vd are called main and data nodes respectively

• E = El ∪ Ea that El and Ea are called link and attribute edges respectively such

that:

? El = {(u, v) | u, v ∈ Vm}

? Ea = {(u, v) | (u ∈ Vm) ∧ (v ∈ Vd)}

Attributed graphs can be categorized at two levels:

• Abstract Level for modelling a schema or class diagram which is called Attributed

Abstract Graph (AAG)

• Instance Level for modelling an individual system structure which is called At-

tributed Instance Graph (AIG)

Definition 4.3 An Attributed Abstract Graph AAG = 〈AG,TL〉 is an AG over the

set of data types TL such that: Vd ⊆ TL.

CHAPTER 4. ARCHITECTURE RECOVERY 39

The AAG is in generic format. We can define such a graph in a less abstract way for a

specific langauge l. The resulted graph is called Schema Attributed Abstract Graph. It

is abstract, since no individual system is still considered in this representation. In other

words, there is no mapping through any morphism functions(s) that can instantiate the

graph for representing an individual system.

Definition 4.4 A Schema Attributed Abstract Graph of a language l, namely

SAAG(V, E), is an AAG = 〈AG,Tl〉 where the following characteristics are hold:

• Vm = {ct, ca}

• Vd = Tl

• El = {(ct, v) | [(ct depends-on v) iff (v = ct)] ∨ [(ct has-attr v) iff (v = ca)]}

• Ea = {(ca, t) | (t ∈ Tl) ∧ (ca has-type t)}

As mentioned before, SAAG in actually an AAG, but in a less abstract form over a specific

language l. The graph, which is obtained based on the AAG through two morphism

functions, is called Attributed Instance Graph (AIG). In other words, AIG is instantiated

from AAG to model an individual system.

Definition 4.5 An Attributed Instance Graph AIG = 〈AG,µV , µE〉 over AAG is an

AG (over the same TL as AAG) equipped with a pair of morphism functions µV : V AG →
V AAG and µE : EAG → EAAG.

We need the SAAG and AIG to define our primary graph which is called Schema At-

tributed Instance Graph (SAIG). This graph is instantiated in the least abstraction level

CHAPTER 4. ARCHITECTURE RECOVERY 40

than the previous ones and is instantiated from SAAG. It is used for modeling the struc-

ture of an individual system S implemented in a specific language l. The formal definition

of SAIG is as follows:

Definition 4.6 A Schema Attributed Instance Graph of the system S, namely

SAIG(V, E), is defined over the SAAG where S is implemented in the same language l.

The SAIG(V, E) is an AIG = 〈AG,µV , µE〉, where:

• Vm is the set of all classes or the attributes of the classes

• Vd ⊆ Vd
SAAG

• El ⊆ El
SAAG

• Ea ⊆ Ea
SAAG

• We know that for an AG(V, E), V = Vm ∪ Vd and E = El ∪Ea. While any SAIG

is considered as AG, morphism functions µV and µE can be defined as follows:

? ∀ v ∈ V :

¦ if v ∈ Vm and v is a class of the system S, then µV (v) = ct where ct ∈
V SAAG

¦ if v ∈ Vm and v is a class attribute of the system S, then µV (v) = ca where

ca ∈ V SAAG

¦ if v ∈ Vd, then µV (v) = v where Vd ⊆ Vd
SAAG and v ∈ V SAAG

? ∀ e ∈ E : µE(e) = e where E ⊆ ESAAG and e ∈ ESAAG

We export the SAIG of the target system as an XML document to be used as the input

for other process of RUMBA. The XML schema for this graph is depicted in Figure 4.3.

The XML schema shows that three types of information are captured in the SAIG:

CHAPTER 4. ARCHITECTURE RECOVERY 41

Figure 4.3: XML Schema for the SAIG Model

• Class Details Field , namely class-details, records the name of each class of the

given system and the package in which the class is located. They are denoted by

className and classPackage respectively in the schema. There are also some other

fields contained by this one which are explained in below.

• Dependency Field , namely depends-on, is contained by the class-details field. It

records all classes of the system with which the corresponding class has association

relation followed by the package in which they are located. The name and package

of such classes are denoted by className and classPackage respectively.

• Attribute Ownership Field , namely has-attr, is contained by class-details field.

It records all the attributes of the corresponding class followed by the type of that

attribute. The name and the type of such attribute are denoted by attrName and

has-type respectively.

An example of the SAIG model resulted from the modeling process is depicted in Fig-

ure 4.4. This SAIG corresponds to our example Trading system.

CHAPTER 4. ARCHITECTURE RECOVERY 42

<SAIG>

 <class-details>

<className>Trader</className>

 <classPackage>org.atrade</classPackage>

 <depends-on>

<className>Stock</className>

<classPackage>org.atrade</classPackage>

 </depends-on>

 <has-attr>

<attrName>name</attrName>

<has-type>String</has-type>

 </has-attr>

<has-attr>

<attrName>itemID</attrName>

<has-type>int</has-type>

 </has-attr>

 <has-attr>

<attrName>basePrice</attrName>

<has-type>int</has-type>

 </has-attr>

<has-attr>

<attrName>tradePrice</attrName>

<has-type>int</has-type>

 </has-attr>

</class-details>

 <class-details>

 <className>Stock</className>

 <classPackage>org.atrade</classPackage>

 <has-attr>

<attrName>name</attrName>

<has-type>String</has-type>

 </has-attr>

 <has-attr>

<attrName>item</attrName>

<has-type>int</has-type>

 </has-attr>

 <has-attr>

<attrName>currentPrice</attrName>

<has-type>int</has-type>

 </has-attr>

 </class-details>

</SAIG>

Figure 4.4: A SAIG Model Example - The Trading System

CHAPTER 4. ARCHITECTURE RECOVERY 43

It is worth mentioning that, by modeling the SAIG of a system, we are actually able

to keep track of the location (package) of each class of the system. We also record the

location (class) of the attributes of each object in the system. This information is useful

since our objective constraints are constructed based upon the attributes of the runtime

objects of the system and their dependencies. We can not track the location of those

attributes unless we instrument specific parts of the code. However, using the SAIG that

records the structural information of the system, we can avoid such an instrumentation.

More details about the benefits of SAIG and the algorithm through which we map our

objectives over this model are further discussed in Chapter 5.

4.3 Summary

We have discussed the fact extraction and source code modeling processes which are

contained in the architecture recovery stage of the RUMBA framework. The first process

automatically extracts facts from the source code of a target system in the forms of classes,

their attributes, data type of each attribute, and some relations (attributes ownership

of classes, relation of an attribute with its corresponding data type, and association

relations among classes). The modeling process automatically generates two models from

the extracted facts: a UML-compliant model, called the class model, and a graph based

model of the system structure, called the SAIG model. Next stage of the framework will

use these two models for different purposes which will be explained further in the next

chapter.

Chapter 5

Seeding Objectives

In this stage of the RUMBA framework, there are two models available from the previous

stage. The first one, the class model is updated by adding the OCL constraints to it.

The second one, the SAIG model, is not modified but is used to track the locations of

those attributes which are involved in the OCL constraints. Based on this tracking, a

pattern of all required attributes for runtime monitoring is generated. This pattern is

called Pattern of Required Events (PRE).

Therefore, we have two goals in this stage: i) identifying objective properties as OCL

rules on the class model of the system, and ii) extracting pattern of required events to

reduce and filter generated events during monitoring the runtime. To address these goals,

three main processes are performed in this stage as shown in Figure 5.1. First, we identify

some OCL-based constraints as specifications for the behavioral analysis and add them to

the class model of the system. Then, a dependency graph, namely Objective Dependency

Graph (ODG), is obtained from tailoring the OCL-based properties. Finally, a pattern

of required events for runtime monitoring is generated by traversing through the SAIG

model of the system based on the ODG.

44

CHAPTER 5. SEEDING OBJECTIVES 45

The three aforementioned processes of this stage are described through Sections 5.1,

5.2, and 5.3 respectively. Afterwards, Section 5.4 summarizes the chapter.

 Tailoring Objectives

 Extracting E vent Patterns

Adding OCL Constraints

Objective Dependency
Graph Generator

Pattern Extractor

Safety
Properties

PRE

SAIG Model

from the

Previous Stage

ODG

Legend

Module

Process

Data Flow

Control Flow

Identifying OCL-Based
Rules

Updating Class Model with
OCL Rules

OCL Rules

OCL-Based

Objectives

Data Input

Class Model

from the

Previous Stage Class Model

+ OCL

Figure 5.1: Seeding Objectives

5.1 Adding OCL Constraints

At this stage, the objectives of the behavioral analysis are specified. They are certain

properties on the behavior of the system which are described as OCL rules and added to

the class model. This process is performed manually. User has to have some knowledge

about the domain of the target system. Based on this information, the behavioral ex-

pectation of the system will be defined as OCL rules. Such rules are defined on the class

model of the system based on its class objects and their attributes.

We use an example to explain the usage of OCL in identifying the properties. Back

CHAPTER 5. SEEDING OBJECTIVES 46

to our example Trading system from the previous chapters, we know from our knowledge

about the system that there are some traders subscribed in a stock. These traders are in

trade with the stock on some items offered by the stock. What happens if at a particular

time, two traders trade the same item with the stock? This means that, there are states

during the runtime where at least two traders have bought the same item due to a

transactional problem. This is a behavior that is unwanted and unexpected from the user

point of view. The reason for such a transactional problem is the interference caused

by making access to critical sections mutually exclusive [60]. In other words, according

to the definition of an objective, there must be something that constrains the permitted

actions of this system. It is a constraint that must be defined to check whether the

system respects the transactional access or not. We define such an objective using OCL

as follows:

Whatever we write as OCL constraints will be checked on the sequence of states

coming from the runtime monitoring of the system. Anytime a new item is traded, the

monitor will generate the corresponding state trace for that change. Therefore, we check

if there exists any two traders which have the same itemID. It means that, they have

bought same item from the stock which is not allowed according to our expectation from

the behavior of the system. Such a constraint in OCL will be as shown in below:

context Trader inv Transaction:

Trader.allInstances → forAll (t1, t2: Trader | (t1 <> t2)

implies (t1.itemID <> t2.itemID)

The constraint indicates that for every two traders in the system, they are not allowed

to buy the same item. However, this constraint has a problem. When at the first time

it becomes false, it will stay false for the rest of the states. We have to include timing

CHAPTER 5. SEEDING OBJECTIVES 47

in this rule. Here, our clocking system helps to keep track of the latest changes in the

traders’ attributes. The variable myClock is a time stamp which we can add to each class

object during the monitoring process. When the status of an object changes, i.e. the

value of any of its attributes is updated, this time stamp will be updated (increased by

one) and assigned to the recent change of that object. When such a change is specified

as the current state of the system, the myClock time stamp has the greatest value among

time stamps of other states. It means that this state shows the recent change to the

corresponding object.

Therefore, the Transaction objective will check the itemID value of the last updated

trader object with all the previous traders in the system. In this way, myClock of such

a trader must be greater than all other traders. Moreover, its itemID attribute must be

different from all other traders in the system. Otherwise, such a trader has bought an

item which is the same as at least one of the other traders in the system, and that is

a conflict with our objective. Therefore, the above OCL rule is corrected and added to

the class model of the trading system. The updated class model of the trading system

resulted from this process is depicted in Figure 5.2 in USE specification. Generally, after

identifying OCL constraints, we add them to the class model of the system generated

from the architecture recovery stage of RUMBA.

5.2 Tailoring Objectives

The OCL-based objective, identified in the previous process, are checked at this point to

extract class objects and attributes on which they depend. The extracted information

is represented in a simple dependency graph called the Objective Dependency Graph

(ODG). We export the ODG of the target system as an XML document to be used as

the input for other processes of RUMBA. This graph records the names of classes and

CHAPTER 5. SEEDING OBJECTIVES 48

model Trading

-- classes

class Trader

attributes

 name: String

 itemID: Integer

 basePrice: Integer

 tradePrice: Integer

 myClock: Integer

end

class Stock

attributes

 name: String

 item: Integer

 currentPrice: Integer

 myClock: Integer

end

-- associations

association depend_1 between

 Trader[0..*]

 Stock[1]

end

-- constraints

context Trader

inv Transaction:

 Trader.allInstances->exists (

 t1: Trader | (

 Trader.allInstances->

forAll(t2 : Trader |

 (t1 <> t2) implies (

 (t1.myClock > t2.myClock)

 and

 (t1.itemID <> t2.itemID)

))

)

)

Figure 5.2: The Class Model of the Example Trading System with the Added OCL
Constraint

CHAPTER 5. SEEDING OBJECTIVES 49

attributes of the system that particular properties depend on. The XML schema for this

graph is depicted in Figure 5.3. The XML schema shows that three types of information

are recorded in the ODG:

Figure 5.3: XML Schema for the Objective Dependency Graph (ODG)

• Objective Field , namely objective, records the name of each objective (OCL-

based property) added to the class model of the system. The name of this objective

is denoted by name in the schema. There are also some other fields contained by

this one which are explained in below.

• Class Field , namely class, is contained by the objective field. It records the name

of the class of the system on whose context the corresponding objective is defined.

• Dependencies Field , namely dependencies, is contained by the objective field. It

records names of attributes of the context class on which the corresponding objective

depends.

CHAPTER 5. SEEDING OBJECTIVES 50

An example of the ODG resulted from the tailoring process is depicted in Figure 5.4.

This ODG corresponds to our example Trading system. As shown in the figure, the

so-added myClock attribute of Trader is not recorded in this graph. Because, it is not

the actual attribute of this class. Our framework add this attribute to all the classes in

the class model of the target system. It also keeps track of the value of myClock for all

the runtime objects of the classes recorded in ODG (here the Trader). Therefore, there is

no need to record this attribute which will be monitored by default during the runtime.

<ODG>

 <objective>

<name>Transaction</name>

<class>Trader</class>

 <dependencies>

<name>itemID</name>

 </dependencies>

 </objective>

</ODG>

</SAIG>

Figure 5.4: An Example of ODG - The Trading System

The only information recorded in the ODG is name based information. We need to have

more information about the location and type of its entities in the structure of the system

to be able to track their locations and values during the runtime. In this regard, we have

formed this graph in the same format as the SAIG, because in the next process, PRE

will be obtained as a result of traversing these two graphs.

5.3 Extracting Event Patterns

Once the ODG is constructed, a model of required attributes for dynamic analysis is

available. It is still required to populate the model on the structure of the system to

construct another model called the Pattern of Required Events (PRE). The static analysis

CHAPTER 5. SEEDING OBJECTIVES 51

creates the PRE while it is utilized by dynamic analysis. It helps to filter generated event

traces during monitoring the runtime and reduce them to what is needed by the analysis

component.

Before presenting the algorithm through which the PRE is generated, we need to give

a formal definition for Adjacency Function of a directed graph. This concept is used in

the algorithm.

Definition 5.1 An Adjacency Function of a directed graph G(V,E), namely AdjG :

V → P (V), returns the set of out-edge nodes for each node of G where P (V) or 2V ,

namely power set of V , is the set of all subsets of V .

Algorithm 5.1: Extracting Event Patterns
1 Input: SAIG , AdjSAIG, and ODG of an OO system S

2 Output: PRE to monitor the behavior of S

3 PRE ← Ø
4 foreach v ∈ V SAIG do
5 flag2V isitingNode(v) ← false

6 while (∃u ∈ Vm
SAIG) & (∼ flag2V isitingNode(u)) do

7 traverse(u)

8 Procedure traverse(v)
begin

9 flag2V isitingNode(v) ← true
10 if v ∈ V ODG then
11 foreach v′ ∈ AdjSAIG(v) do
12 if ∼ flag2V isitingNode(v′) then
13 if v′ ∈ Vd

SAIG then
14 PRE ← PRE ∪ {(v, v′)}
15 flag2V isitingNode(v′) ← true
16 else
17 if v′ ∈ V ODG then
18 PRE ← PRE ∪ {(v, v′)}
19 traverse(v′)
20 else
21 flag2V isitingNode(v′) ← true

end

CHAPTER 5. SEEDING OBJECTIVES 52

Algorithm 5.1 describes the process through which PRE is generated from traversing the

SAIG and the ODG. In this algorithm, SAIG is traversed in depth-first order based on

the ODG to build the attributes of the PRE. For each common node v between the ODG

and the SAIG (line 10), any out-edge neighbor (v′) of v in the SAIG, that has not been

traversed yet (lines 12), will be considered for further traverse. If v′ is a data node, its

relation with v (including the two nodes) is added to the PRE (line14) in order to record

the information about the data type of v. If v′ is a main node included by the ODG, its

information is added to the PRE (lines 16 to 18). Also, v′ is traversed further (line 19)

to obtain its dependencies information. Because, according to the ODG, the definitions

of some objectives depend on the entity (class type or class attribute) corresponding to

this node. Finally, if v′, as a main node, is not included by the ODG (line 20), there is

no need to traverse it to obtain more details. Therefore, the flag2V isitingNode for this

node is set as true. The PRE is exported as an XML document to be used as the input

for the runtime monitoring component. The XML schema for this graph is depicted in

Figure 5.5.

The XML schema shows that two types of information are captured in the PRE:

• Class Information Field , namely className, records the information about each

class of the system which is point of our interest for monitoring. The name of such

a class and the package in which it is located are denoted by name and package

respectively in the schema. There is also a classAttr field contained by this one

which is explained in below.

• Class Attribute Field , namely classAttr, is contained by the className field. It

records those attributes of the corresponding class which are points of interest for

monitoring. The name and the type of such attributes are denoted by name and

type respectively.

CHAPTER 5. SEEDING OBJECTIVES 53

Figure 5.5: XML Schema for the Pattern of Required Events (PRE)

An example of the PRE resulted from applying Algorithm 5.1 on our example SAIG and

ODG from the trading system is depicted in Figure 5.6. According to the PRE, during

the runtime, we need to monitor any object instantiated from the Trader class located in

the org.atrade package. We also need to monitor any changes in the value of the ietmID

attribute of this class with the type integer.

<PRE>

 <className>

 <name>Trader</name>

 <package>org.atrade</package>

 <classAttr>

 <name>itemID</name>

 <type>int</type>

 </classAttr>

 </className>

</PRE>

Figure 5.6: An Example of PRE - The Trading System

CHAPTER 5. SEEDING OBJECTIVES 54

5.4 Summary

We have discussed about the three main processes involved in the second stage of the

RUMBA framework, Seeding Objectives. First, objectives are defined in OCL (Object

Constraint Language) as specifications for the behavioral analysis. They are added to

the class model of the system. Second, the identified OCL-based properties are tailored to

extract their dependencies to the classes and attributes of the target system. The resulted

artifact is the ODG of the properties. Third, information required for filtering runtime

events is obtained. This process is done by traversing through the SAIG of the system

based on the obtained ODG from the previous process. Next stage of the RUMBA will

use the PRE and the class model to respectively do the monitoring and the analysis on

the behavior of the target system based upon them.

Chapter 6

Runtime Monitoring and Analysis

There is renewed interest in the field of dynamic software fault-monitoring largely be-

cause software systems are becoming more difficult to verify due to increases in size and

complexity. Runtime monitoring is a lightweight formal technique that checks only the

current execution of a target program against the specification. It does not consider the

possible transitions of the runtime states, however only the actual transitions are counted

into the account. Many tools have been proposed for runtime monitoring with the pur-

pose of detecting, diagnosing, and recovering from software faults. However, most of

them address this issue by modifying their target program utilizing the instrumentation

techniques.

In this stage of RUMBA, as depicted in Figure 6.1, the runtime monitoring and

analysis of the behavior of a target system is performed dynamically while no modification

of the target program is required. There are three processes in this stage. Two of

them, Observing Events and Producing Runtime States, are responsible for monitoring.

Afterwards, the third one, Constraint Based Analysis, carries out the processing of the

generated traces with respect to the objective properties identified in the previous stage.

55

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 56

The monitoring technique and the two processes responsible for monitoring are de-

scribed in Section 6.1. In Section 6.2, we discuss about the process of constraint based

analysis. Finally, Section 6.3 summarizes the chapter.

Runtime Monitoring & Analysis

JVMDI

Back-end

J
D

W
P

Front-end

Observing Events

Running Program

JVM

JDI

Current State

of the System

Sequence

of Events

Producing
Runtime States

Legend

Module

JPDA

Components

Used

Technology

Communication

channel

Data Flow

Control Flow

Process

Constraint
Based Analysis Reports

JDI Events

PRE from

the Previous

Stage

Class Model + OCL

From the Previous Stage

Data Output

Figure 6.1: The Structure of the Runtime Monitoring

6.1 Monitoring Process

To avoid any modifications in a target program for the runtime monitoring, it is desirable

to monitor a program by listening to the runtime events of the program dynamically.

One way is to invoke a system from another program and listen to all the event traces

during the runtime. In such a case, the target program is being debugged by a part of

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 57

the monitor. We also need a means of filtering traces and events so that only required

properties would be monitored. Required properties and attributes can be constructed

statically, and events which match with those properties will be chosen during the runtime.

JPDA (Java Platform Debugging Architecture) [39] is a multi-tiered debugging ar-

chitecture deployed first within Sun Microsystems Java 2 SDK 1.4.0. It consists of two

interfaces (JVMDI and JDI), a protocol (JDWP), and two software components which

tie them together (back-end and front-end). Figure 6.1 illustrates how we utilize JPDA

for monitoring a target Java system. As shown in the figure, JVMDI (Java Virtual Ma-

chine Debug Interface) comes between the JVM and the back-end program. It describes

the requests to the JVM for information (e.g., current stack frame), actions (e.g., set-

ting a breakpoint), and notification (e.g., when a breakpoint has been hit). The JDWP

(Java Debug Wired Protocol) defines the format of information and requests transferred

between the target program and the front-end, which implements JDI (Java Debug Inter-

face). The back-end receives JDWP packets from the front-end, and executes the com-

mands received over the JDWP. Results are returned back to the front-end via JDWP.

The JDI provides a pure Java programming language interface to access and control

the state of a virtual machine. It is implemented by the front-end while a debugger-like

application (IDE, debugger, tracer, monitoring tool like in our case, and so on) is the

client. The JDI defines information and requests at the user code level. It provides

introspective access to a running virtual machine’s state, class, array, interface, primi-

tive types, and instances of those types. It also provides explicit control over a virtual

machine’s execution.

Utilizing JDI capabilities, two processes, Observing Events and Producing Runtime

States, are responsible for runtime monitoring. The runtime event traces of a target

system are generated within these processes while no instrumentation is performed on

the source code of the system.

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 58

6.1.1 Observing Events

This process is a Java based program that has been implemented using the JDI specifi-

cations. It invokes the main class of a target Java program that has been passed to it.

This process helps us to generate a trace of the program’s execution by listening to the

VM (Virtual Machine) events and making access to its dynamic information.

An event is considered as an occurrence in the target VM that is of interest to this

process. The event can be in different types. When a specific type of event occurs, an

instance of Event as a component of an event set is enqueued in the virtual machine’s

event queue. Our interested types of events which are captured by this process using the

JDI capabilities are as follows:

• VM Start Event : It notifies about the initialization of the target VM. This event

is received before the main thread is started and before any application code has

been executed.

• Step Event : It notifies about completing a step in the target VM. The step event

is generated immediately before the code at its location is executed; thus, if the

step is entering a new method the location of the event is the first instruction of

the method. When a step leaves a method, the location of the event will be the

first instruction after the call in the calling method.

• Method Entry Event : It notifies about a method invocation in the target VM.

This event occurs after entering into the invoked method and before executing any

code. Method entry events are generated for both native and non-native methods.

• Method Exit Event : It notifies about a method return in the target VM. This

event is generated after all code in the method has executed, but the location of this

event is the last executed location in the method. Method exit events are generated

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 59

for both native and non-native methods. Method exit events are not generated if

the method terminates with a thrown exception.

• Class Preparation Event : It notifies about a class preparation in the target VM.

Class preparation involves creating the attributes (class variables and constants) for

a class or interface and initializing such attributes to the standard default values.

This does not require the execution of any Java code; explicit initializers for at-

tributes are executed as part of initialization, not preparation. Class prepare events

are not generated for primitive classes (for example, java.lang.Integer.TYPE).

• Field Modification Event : It notifies about the modification of a class attribute

in the target VM.

For the time being, we do not do any action upon receiving method entry and exit events.

The current version of the RUMBA framework monitors the values of attributes and the

local variables of primitive types. The reason is that the state of a program is ultimately

contained in the attributes and variables of primitive types. As a future direction, the

theory of the SAIG model can be extended to define and model a method as an entity

of a target system. In such a case, specific actions can be done regarding monitoring the

method invocations and exits and also analyzing the behavior of the system based on the

methods behavior.

When a new event arrives, it will be checked to determine its type. It will be then

dispatched to the corresponding handler to perform certain procedures based on its con-

tents. The PRE from the previous stage is utilized by this process to filter monitored

event traces. Therefore, only those event traces, which match with the specifications of

the PRE, are passed to the next process. As an example on our Trading system, the

information included by the PRE, depicted in Figure 5.6, directs this process of RUMBA

to read the contents of any Class Preparation Event regarding loading a new Trader class

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 60

object. The itemID attribute of this class object will be monitored to check whether its

value changes during the runtime. If it changes, a Field Modification Event will be trig-

gered for this attribute. The recent updated value will be obtained based on the contents

of such an event to create a snapshot of the system state according to the recent change.

6.1.2 Producing Runtime States

This process receives the runtime information from the previous process. It will form the

information as a sequence of system states for the analysis component. As mentioned

before, the analysis component uses part of the USE tool [3] to perform constraint based

analysis on the class model of the system. The set of data which are analyzed over this

model are the sequence of runtime states of the system. Therefore, in this process, the

sequence of generated traces is formed in the USE specification format which is acceptable

by the analysis component. Each event represents a state of the system at the time that

it was extracted from the running program. To specify the events information into the

USE format, some commands are used. Three types of commands that we use are as

follows:

• create command specifies a new created object of the system. The content of a

class preparation event contains the name of the new object and its class type. The

format of the create command is as follows:

¦ !create [objectname] : [classname]

For example, when a new object of the Trader class is created and loaded into the

Trading system, the state that shows this change in the system would be as follows:

¦ !create trader1 : Trader

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 61

• insert command specifies that there is an association dependency between two

class objects of the system. The format of the insert command is as follows:

¦ !insert ([first object name], [second object name]) into [dependency name]

The dependency name is according to the static model of the system (class model)

from the architecture recovery stage of the framework. As an example, when a

new trader object is created during the runtime, it subscribes in a stock. This

dependency is shown as follows:

¦ !insert (trader1, mainstock) into dependency1

• set command specifies the changes to the value of the class attributes. The format

of the set command is as follows:

¦ !set [object name].[attribute name] := [value]

value has to match with the data type of the attribute according to the static

information (from PRE). As an example, the state indicating a change in the

itemID of a trader object is specified as follows:

¦ !set trader1.itemdID := 10

In a nutshell, a sequence of system states are generated in this process and specified in the

USE format using the aforementioned commands. The sequence is given to the analysis

process to perform constraint based analysis on the class model of the target system.

6.2 Constraint Based Analysis

This process performs OCL-based constraint analysis on the generated states from the

monitoring part. Part of the USE tool has been used in this stage of RUMBA. The two

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 62

main components of this tool are an animator for simulating UML models and an OCL

interpreter for constraint checking. We have incorporated the later one into the RUMBA

framework to perform the analysis process. System states are snapshots of a running

system which are fed to the analysis process. We get the real data coming from the

monitoring component to make the snapshots of the running system.

During the running time of the RUMBA framework, the analysis process runs with the

specifications in terms of the class model with the OCL-based objectives. Hence, the first

part of the specifications contains a textual description (classes, associations, attributes,

and constraints) as the class model of the system. The second part is represented through

OCL constraints added to the class model, which can be evaluated and appraised during

the analysis.

The analysis process starts with an empty system state where no objects and associ-

ation links exist. Once the class model has been loaded to the process, we need to create

objects and initialize the attributes. The next step consists of establishing the associations

between objects. The monitoring component provides this information for the analysis

part in terms of the snapshots of the system states defined using the aforementioned

commands set from the previous process.

Each time a change occurs in the system, the monitor generates a new snapshot

of the system state and gives it to the analysis part. An automatic checking of the

specified rules will be carried out on the new generated state. For example, when a new

object is introduced, it is checked whether it fulfils the specification of the model and

the constraints. The analysis is constraint based as the OCL rules are evaluated on the

states. Either a constraint fails or succeeds for a system state, there will be a report for

it as the result of the analysis on that state.

Part of the reports of the constraint based analysis during the runtime monitoring of

the Trading system is depicted in Figure 6.2. Suppose that there are 4 traders instantiated

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 63

in our trading system to trade with a stock. There are 100 items (distinguished by their

item number) available for sale in the stock.

--

 State: !create trader57 : Trader

 State: !set trader57.myClock := 0

 Checking Objective Transaction: OK.

--

 State: !create trader58 : Trader

 State: !set trader58.myClock := 1

 Checking Objective Transaction: OK.

--

 State: !create trader59 : Trader

 State: !set trader59.myClock := 2

 Checking Objective Transaction: OK.

--

 State: !create trader60 : Trader

 State: !set trader60.myClock := 3

 Checking Objective Transaction: OK.

--

.

.

.

--

 State: !set trader58.itemID := 11

 State: !set trader58.myClock := 18

 Checking Objective Transaction: OK.

--

 State: !set trader59.itemID := 11

 State: !set trader59.myClock := 19

 Checking Objective Transaction: FAILED.

--

--

 State: !set trader58.itemID := 12

 State: !set trader58.myClock := 20

 Checking Objective Transaction: OK.

--

 State: !set trader60.itemID := 12

 State: !set trader60.myClock := 21

 Checking Objective Transaction: FAILED.

--

.

.

.

--

 State: !set trader58.itemID := 30

 State: !set trader58.myClock := 61

 Checking Objective Transaction: OK.

--

 State: !set trader57.itemID := 30

 State: !set trader57.myClock := 62

 Checking Objective Transaction: FAILED.

--

 State: !set trader59.itemID := 30

 State: !set trader59.myClock := 63

 Checking Objective Transaction: FAILED.

--

.

.

.

Figure 6.2: An Example Result of the Constraint Based Analysis for the Trading System

As mentioned before, as an objective of monitoring, we want to check whether there

are any two traders which buy the same items from the stock. Such an objective has

been defined as an OCL constraint, namely Transaction, in Sections 5.1. As Figure 6.2

illustrates, at the beginning (point with time stamps 0, 1, 2, and 3) the four trading

objects are created and checked against the specification. The result at these points is

OK for the Transaction objective. A little bit later, at point 18 where trader58 buys

item number 11, the objective is still reported as OK, since no body has bought this

item so far. However, at point 19, trader59 results in a conflict with the Transaction

CHAPTER 6. RUNTIME MONITORING AND ANALYSIS 64

objective because of buying the same item as trader58. A similar scenario happens for

trader58 and trader60 at points 20 and 21 because of buying the same item (number 12).

Furthermore, there are reports of conflicts at points 62 and 63, because trader57 and

trader59 have bought the same item as trader58 at the corresponding points of time.

6.3 Summary

In this chapter, we have discussed about the three main processes involved in the third

stage of the RUMBA framework, Runtime Monitoring and Analysis. Two of them, Ob-

serving Events and Producing Runtime States, are responsible for monitoring. Using the

JDI capabilities (included in JPDA), the main class of a target Java system is invoked so

that the system starts running while the monitor is making access to its dynamic informa-

tion. The runtime event traces of the system are generated within these processes while

no instrumentation is performed on the source code of the system. Afterwards, the third

process of this stage, Constraint Based Analysis, carries out the processing of the gener-

ated traces with respect to the OCL based objectives identified in the previous stage. If a

constraint fails for a system state, there will be a report for that indicating the state and

the specific property corresponding to the constraint. We will show the effectiveness of

RUMBA in this regard by applying the aforementioned three stages on two open source

Java software systems in the next chapter. We will also evaluate the efficiency of our

framework on the two systems in terms of processor and memory utilization.

Chapter 7

Experimental Studies

In this chapter, we perform a set of empirical studies on the proposed RUMBA framework

to assess the techniques introduced in this thesis. The proposed framework has been

implemented in a prototype that aims to assess the behavior of a given Java software

system with respect to particular specifications. We have applied the preliminary version

of RUMBA on a small Java based trading system in our previous work [4]. At that time,

we checked two properties; a transaction-based property and a boundary-based one.

At the time being, that RUMBA has been fully developed as a semi-automated pro-

cess, we have applied it on two open source Java software systems. One of them is a

resource management system, namely Rapla, while the other one is a GUI framework

for technical and structured graphics, namely JHotDraw. The purpose of the empirical

study in this chapter is to test the effectiveness of the proposed RUMBA framework. We

also evaluate the efficiency of our runtime monitoring technique in this chapter.

We outline the implementation of the prototype for the RUMBA framework in Sec-

tion 7.1. We empirically evaluate the usefulness and the correctness of the framework on

two Java based case study systems in Sections 7.2 and 7.3. Section 7.2 includes informa-

65

CHAPTER 7. EXPERIMENTAL STUDIES 66

tion about a resource management case study system, Rapla, while Section 7.3 discusses

about a GUI based case study application, JHotDraw. In Section 7.4, we evaluate the

efficiency of our framework on the two case studies in terms of processor and memory

utilization. Finally, we summarize this chapter in Section 7.5.

7.1 A Prototype for RUMBA

A prototype has been developed in Java programming language on the Windows XP

platform to implement the RUMBA framework in a semi-automated manner. The pro-

totype provides functionality for: i) recovering the required structural information of a

target system, ii) modeling the structural information utilizing graph theory concepts,

iii) defining the objectives of the behavioral analysis in OCL specifications, iv) extracting

and modeling the required information for runtime monitoring based on the structural

information and OCL specifications, v) monitoring the runtime of the system with re-

spect to the model of the required information, and vi) evaluating the system behavior

at runtime with respect to the predefined objectives.

The prototype consists of two Java based applications. These applications construct

the automated parts of the framework. There is still required to manually define the

OCL based objectives and create the ODG based on them. The ODG is represented as

an XML document ready to be used as an input for one of the applications. The two

applications are as follows:

• The first application has been developed in Eclipse 3.1 [24] using JDK 1.5.0 and

JavaCC plugin [40]. It receives the source code of a Java based system and performs

the first stage of RUMBA fully automated. Two structural models of the system,

class model and SAIG model, are generated by this application. The class model is

in the format of USE and therefore it is generated as a “.use” document. The SAIG

CHAPTER 7. EXPERIMENTAL STUDIES 67

model is an XML document containing the graph representation of the SAIG.

Figure 7.1: A Snapshot of the RUMBA in NetBeans

• The second application has been developed in NetBeans 5.0 [64] environment using

JDK 1.5.0 and JPDA [39] capabilities. A snapshot of its GUI is depicted in Fig-

ure 7.1. This application receives four inputs: iii) the name of the class model of

the target Java based system, ii) the classpath of the system, iii) the required input

arguments for running the target system, if there exists any, and iv) the OCL-based

specifications of the objectives. Moreover, the application receives the “saig.xml”

and “odg.xml” from the classpath as the SAIG and ODG models respectively.

There are five initialization tasks performed as soon as the application runs: i) the

ODG and SAIG models are imported from their corresponding XML documents to

CHAPTER 7. EXPERIMENTAL STUDIES 68

appropriate dynamic data structures, ii) the PRE is generated based on the SAIG

and ODG using the algorithm presented in Chapter 5, iii) the OCL interpreter of

the USE tool is invoked in a separate thread (as the analysis process) by giving

the class model of the system to it, iv) a buffer is created for the communication

of the monitoring process and analysis process, and v) the main class of the tar-

get system is invoked by passing the appropriate arguments to it. Afterwards, the

target program starts running in the same way as it runs as a stand-alone applica-

tion. However, in this way, it is being monitored by the monitoring process of our

application. Each time an interesting change (according to the PRE) occurs in the

system, the monitor generates a new snapshot of the system state and gives it to

the analyzer via the communication buffer. An automatic checking of the specified

rules will be carried out on the new state.

It is worth mentioning that, the analysis process runs online with the monitor in the

above scenario. It is also possible to run it in an offline manner. In other words, instead

of transferring the sequence of generated traces to the communication buffer, they will be

stored in a repository during the monitoring process. The class model and the repository

of the traces can be given to the analyzer in a later time so that the OCL based checking

would be done on the traces.

7.2 Case Study: Rapla

Rapla [2] is a resource management system, written in Java. It has been developed at the

University of Bonn in Germany. Rapla allows coordination between the lectures and the

administration. It offers multiple ways to view the available resources and schedule the

events. A snapshot of the Rapla GUI is depicted in Figure 7.1. Rapla started as a simple

room booking software, but in the last five years it evolved into a configurable framework

CHAPTER 7. EXPERIMENTAL STUDIES 69

for event and resource-management.

Figure 7.2: A Snapshot of the Rapla System

In this section, we apply the processes of RUMBA on Rapla to empirically evaluate the

usefulness of the framework. The version we worked on is 0.12.4 that has 65K lines

of code. It consists of 438 Java source files that defines 467 classes and 101 interfaces

distributed in 43 packages.

7.2.1 Rapla: Architecture Recovery

To extract the class model and the SAIG model, we applied the architecture recovery

of the framework on Rapla. As mentioned before, this stage of the framework has been

developed in Eclipse 3.1 using JavaCC 1.5. This Java based application which includes

CHAPTER 7. EXPERIMENTAL STUDIES 70

our parser and modeler, has been run to build the system architectural models that are

represented by the class and SAIG models.

As mentioned before, the class model has been represented in USE format while we

exported the SAIG model as an XML document. The information in SAIG is included

by the predefined XML tags. Just to present a view of the Rapla’s SAIG model, a small

part of its XML document is depicted in Figure 7.3.

 .

 .

 .

<class-details>

 <className>PeriodImpl</className>

<classPackage>org.rapla.entities.impl</classPackage>

 <depends-on>

 <className>Calendar</className>

 </depends-on>

 <has-attr>

 <attrName>serialVersionUID</attrName>

 <has-type>long</has-type>

 </has-attr>

 <has-attr>

 <attrName>name</attrName>

 <has-type>String</has-type>

 </has-attr>
 .

 .

 .

</class-details>
 .

 .

 .

Figure 7.3: Part of the SAIG Model of Rapla

7.2.2 Rapla: Seeding Objectives

In the second stage, Rapla 0.12.4 was manipulated to find out if there is any conceptual

anomaly in the system that can be used as a basis to check the validity of RUMBA. We

found that there is a conceptual anomaly in the way that a period of time is created

in the system. A period of time can be defined and added to the system by assigning

a start time and an end time to it, plus assigning a name to the period. However, it

is possible to define more than one period with the same name. Hence, whenever an

CHAPTER 7. EXPERIMENTAL STUDIES 71

event is scheduled for a period of time, there is an ambiguity in the periods selection.

Because, there is a list of various periods available for scheduling, possibly with the same

name. In this regard, we defined an OCL-based objective, so-called NameConflict, on

the context of “Period” class of Rapla. This objective defines a property on a class,

namely “PeriodImpl”, which implements a period in the system. This objective and its

corresponding ODG are depicted in Figure 7.4.

context PeriodImpl

inv NameConflict:

 PeriodImpl.allInstances->exists (

 p1:PeriodImpl | (

 PeriodImpl.allInstances->

forAll(p2 : PeriodImpl |

 (p1 <> p2) implies (

 (p1.myClock > p2.myClock)

and

 (p1.name <> p2.name)

))

)

)

(a) The OCL Constraint

<objective>

<name>NameConflict</name>

<class>PeriodImpl</class>

<dependencies>

<name>name</name>

 </dependencies>

</objective>

(b) The Corresponding ODG

Figure 7.4: An Example of an OCL-Based Objective and the Corresponding ODG for
Rapla

The NameConflict objective will check any period, p1, recently created and added to the

system and will compare it with other periods in the system. If the assigned name to p1

is same as the name of any other period object in the system, like p2, the NameConflict

CHAPTER 7. EXPERIMENTAL STUDIES 72

will be reported as Failed for this recent state. Otherwise, it will be reported as OK.

After the ODG is constructed, Pattern Extractor, another Java based application, utilizes

algorithm 5.1, as discussed in Section 5.3, to generate the Pattern of Required Events

(PRE) based on the SAIG and the ODG. A part of PRE, corresponding to the required

information for the predefined OCL-based objective, is depicted in Figure 7.5. According

to the PRE, during the runtime, we need to monitor any object instantiated from the

PeriodImpl class located in the org.rapla.entities.imple package. We also need to monitor

any changes in the value of the name attribute of this class with the type String.

<classInfo>

<name>PeriodImpl</name>

<package>org.rapla.entities.impl</package>

 <classAttr>

<name>name</name>

<type>String</type>

 </classAttr>

</classInfo>

Figure 7.5: Part of the PRE Corresponding to the Example Objective for Rapla

7.2.3 Rapla: Runtime Monitoring and Analysis

Finally, we give the produced PRE and the path of Rapla source code to the monitoring

component. As mentioned before, this component has been developed within a Java

program in NetBeans 5.0 using JPDA 5.0 [39]. It invokes the main class of the Rapla

and generates event traces from the system based on the PRE. Any event regarding the

creation of an instance of the PeriodImpl class and any event about updating the value of

the name attribute of this class object, creates a snapshot of the system state. Produced

states are given to the next process which performs the constraint based analysis on

them. Part of the reports of the constraint based analysis during the runtime monitoring

of Rapla is depicted in Figure 7.6.

CHAPTER 7. EXPERIMENTAL STUDIES 73

 State: !create periodimpl1786 : PeriodImpl

 State: !set periodimpl1786.name := 'p24'

 State: !set periodimpl1786.myClock := 481

 Checking Objective NameConflict: OK.

 State: !create periodimpl1794 : PeriodImpl

 State: !set periodimpl1794.name := 'p24'

 State: !set periodimpl1794.myClock := 490

 Checking Objective NameConflict: FAILED.

 State: !create periodimpl1805 : PeriodImpl

 State: !set periodimpl1805.name := 'p25'

 State: !set periodimpl1805.myClock := 492

 Checking Objective NameConflict: OK.

Figure 7.6: Part of the Result of the Constraint Based Analysis for Rapla

As Figure 7.6 illustrates, at the point with a time stamp of 481, a new period object is

created, namely p24. It does not cause any conflict, since there is no period in the system

with name p24. However, at the point of time with the time stamp 490, NameConflict

raises a failure, because the new created period object has the same name as the previous

one. Furthermore, at the point with the time stamp 492, the current state is reported as

an OK state with respect to the NameConflict objective. Because, no period with the

name p25 exists in the system, and it does not cause any conflict.

7.3 Case Study: JHotDraw

JHotDraw [43] is a Java GUI framework for technical and structured graphics. It defines

a basic skeleton for a GUI-based editor with tools in a tool palette, different views, user-

defined graphical figures, and support for saving, loading, and printing drawings. The

framework can be customized using inheritance and combining components. Besides the

main drawing window, JHotDraw offers little support for different kinds of windows, such

as text editors. With some knowledge of JHotDraw’s structure, it can be extended to

CHAPTER 7. EXPERIMENTAL STUDIES 74

include missing functionalities.

Figure 7.7: A Snapshot of the JHotDraw System

In this section, we apply the processes of RUMBA on JHotDraw to empirically evaluate

the correctness of the framework. The version we worked on is 5.3 that has 14K lines

of code. It consists of 195 Java source files that defines 208 classes and 33 interfaces

distributed in 11 packages. We consider a sample application included in this version,

namely Java Draw Application. A snapshot of its GUI is depicted in Figure 7.7. This

application represents various standard tools and figures provided with JHotDraw. We

monitor the behavior of this application in our experiment.

7.3.1 JHotDraw: Architecture Recovery

Similar to what we did for the previous case study application, our Java based parser and

modeler have been run on the source code of JHotDraw to build the system architectural

CHAPTER 7. EXPERIMENTAL STUDIES 75

models in the architecture recovery stage. The results are the class model and the SAIG

model of JHotDraw. Just to present a view of the SAIG model of JHotDraw, a small

part of its XML document is depicted in Figure 7.8.

 .

 .

 .

<class-details>

 <className>DrawApplication</className>

<classPackage>CH.ifa.draw.application</classPackage>

 <depends-on>

 <className>Tool</className>
 .

 .

 .

 </depends-on>

 <has-attr>

 <attrName>fTool</attrName>

 <has-type>Tool</has-type>

 </has-attr>

 <has-attr>

 <attrName>loadName</attrName>

 <has-type>String</has-type>

 </has-attr>
 .

 .

 .

</class-details>
 .

 .

 .

Figure 7.8: Part of the SAIG Model of JHotDraw

7.3.2 JHotDraw: Seeding Objectives

In the second stage, Java Draw Application in JHotDraw 5.3 was manipulated to find

out if there is any interesting point for dynamically monitoring the application. We

realized that there is a class in the system, namely DrawApplication, that is responsible

for storing or loading the graphic files into or from the memory. We intended to monitor

the behavior of the application regarding the file transactions through this class and its

attributes. It is worth mentioning that such an objective works not only for this specific

application but also for many other domains. For example, a system administrator may

CHAPTER 7. EXPERIMENTAL STUDIES 76

use such an objective for a daily control on the transactions of different resources of a

system to find out the resources (in this case, files) which are more often used. Such

resources may obtain higher severity for administration and back-up services than others

with less demands.

context DrawApplication

inv ActivityReport:

 DrawApplication.allInstances->exists (

 d1: DrawApplication |

 (DrawApplication.allInstances->forAll (

d2: DrawApplication |

 (d1 <> d2) implies (d1.myClock > d2.myClock)

)

) and

(DrawApplication.allInstances->select (

 d3: DrawApplication |

d3.loadName = d1.loadName)->size() >

(DrawApplication.allInstances->size()/3)

)

)

 (a) The OCL Constraint

<objective>

<name>NameConflict</name>

<class>PeriodImpl</class>

<dependencies>

<name>name</name>

 </dependencies>

</objective>

 (b) The Corresponding ODG

Figure 7.9: An Example of an OCL-Based Objective and the Corresponding ODG for
JHotDraw

The ActivityReport OCL constraint is defined at this stage to address the aforementioned

objective. It is defined on the context of “DrawApplication” class of Java Draw Applica-

tion. This objective and its corresponding ODG are depicted in Figure 7.9. It evaluates

the access rate of different graphic files during an execution of the system. At each point

of a time that a file is accessed, the ActivityReport is checked to find out whether the

demands for the specific file have been more than a particular percentage of the whole

accesses in the system so far. As an example, Figure 7.9 illustrates the OCL-based defini-

tion of the ActivityReport objective considering the accessing threshold as 33%. In other

words, the ActivityReport objective will check any recent demand for a file regarding the

number of times that the specific file has been accessed so far including the recent one.

If this number is more than 33% of the whole file accesses in the system, the result of

CHAPTER 7. EXPERIMENTAL STUDIES 77

check will be reported as OK. Otherwise, it will be reported as Failed, meaning that the

demands for the file have been ignorable so far (according to the 33% policy).

<classInfo>

<name>DrawApplication</name>

<package>CH.ifa.draw.application</package>

 <classAttr>

<name>loadName</name>

<type>String</type>

 </classAttr>

</classInfo>

Figure 7.10: Part of the PRE Corresponding to the Example Objective for JHotDraw

After the ODG is constructed, the Pattern Extractor of RUMBA, utilizes algorithm 5.1,

as discussed in Section 5.3, to generate the Pattern of Required Events (PRE) based on

the SAIG and the ODG. A part of PRE, corresponding to the required information for

the ActivityReport objective, is depicted in Figure 7.10. According to the PRE, during

the runtime, we need to monitor any object instantiated from the DrawApplication class

located in the CH.ifa.draw.application package. We also need to monitor any changes in

the value of the loadName attribute of this class with the type String that records the

name of any accessed file.

7.3.3 JHotDraw: Runtime Monitoring and Analysis

Similar to what we did for Rapla, we give the produced PRE and the path of JHotDraw

source code to the monitoring component. It invokes the main class of the Java Draw

Application in JHotDraw and generates event traces from the system based on the PRE.

Any event regarding the creation of an instance of the DrawApplication class and any

event about updating the value of the loadName attribute of this class object, creates

a snapshot of the system state. Because, the name of each graphic file is recorded by

loadName in DrawApplication class. Produced states are given to the next process which

CHAPTER 7. EXPERIMENTAL STUDIES 78

performs the constraint based analysis on them. Part of the reports of the constraint

based analysis during the runtime monitoring of Java Draw Application is depicted in

Figure 7.11.

State: !create drawapplication579 : DrawApplication

State: !set drawapplication579.loadName := ‘a01.draw'

State: !set drawapplication579.myClock := 0

Checking Objective ActivityReport: OK.

State: !create drawapplication1752 : DrawApplication

State: !set drawapplication1752.loadName := ‘a02.draw'

State: !set drawapplication1752.myClock := 1

Checking Objective ActivityReport: OK.

State: !create drawapplication2440 : DrawApplication

State: !set drawapplication2440.loadName := ‘a01.draw'

State: !set drawapplication2440.myClock := 2

Checking Objective ActivityReport: OK.

State: !create drawapplication1841 : DrawApplication

State: !set drawapplication1841.loadName := ‘d21.draw'

State: !set drawapplication1841.myClock := 3

Checking Objective ActivityReport: FAILED.

State: !create drawapplication2090 : DrawApplication

State: !set drawapplication2090.loadName := ‘w5.draw'

State: !set drawapplication2090.myClock := 4

Checking Objective ActivityReport: FAILED.

State: !create drawapplication1845 : DrawApplication

State: !set drawapplication1845.loadName := ‘a01.draw'

State: !set drawapplication1845.myClock := 5

Checking Objective ActivityReport: OK.

State: !create drawapplication1388 : DrawApplication

State: !set drawapplication1388.loadName := ‘a02.draw'

State: !set drawapplication1388.myClock := 6

Checking Objective ActivityReport: FAILED.

.

.

.

.

Figure 7.11: Part of the Result of the Constraint Based Analysis for JHotDraw

As Figure 7.11 illustrates, at the points with the time stamps of 0, 2, and 5, the Activ-

ityReport reports OK, meaning that file “a01.draw” is detected as a highly accessed file

so far. Because the number of accesses to this file is correspondingly 1 out of 1, 2 out

of 3, and 3 out of 6 at the mentioned points of time. It is obvious that for all of them,

the access number is more than 33% (the policy of the objective). On the other hand,

for file “a02.draw”, the report is OK at time 1 because it has been accessed once out

of 2 times up to that point. However, the ActivityReport reports Failed at time 6 for

the same file, since it has been accessed 2 times out of 7 which is less than 33%. If an

administrator has access to such an information as a result of a daily monitoring of the

target system, she/he can detect high demanding files and provide appropriate action on

them accordingly.

CHAPTER 7. EXPERIMENTAL STUDIES 79

7.4 Evaluation

The monitoring process of the RUMBA framework invokes the main class of the target

program and listens to all event traces during the runtime. Therefore, the evaluation

criteria need to address performance. We study this issue in terms of processor utilization

and memory consumption in the system. The evaluation was carried on a Windows

desktop with Intel Pentium IV CPU 3.4GHz, with 2GB memory.

7.4.1 Processor Utilization

The processor utilization indicates to what extent the CPU of a computer is occupied

with the process of a running application. We compare the processor utilization while

the case study applications are running in two different scenarios: i) without monitoring,

ii) with monitoring. Figure 7.12 illustrates the processor utilization for Rapla in the two

scenarios. For both, we consider a period of 100 seconds monitoring of the system with

the same set of interactions during this period. After that time, we stop the monitoring

to show a snapshot of changes from the beginning to the end of a monitoring process. A

longer period does not change the performance results, because as the systems passes its

initialization loads after the first few seconds, it gets stable for the rest of the time. We

further elaborate on this issues in the rest of this chapter.

The first graph of Figure 7.12 illustrates the percentage of CPU utilization for the

execution period of Rapla with our monitoring framework. On the other hand, in the

second graph, the same trend is shown but for the regular execution of the Rapla without

monitoring. It is obvious that there is almost a constant increase in CPU utilization,

about 30%, in the first graph against the second one. The reason behind such an increase

is that our monitoring technique hooks into the JVM and listens to all event traces during

the runtime. Hence, no matter what the running application would be, there is an expense

CHAPTER 7. EXPERIMENTAL STUDIES 80

(a) With Monitoring (b) Without Monitoring

Figure 7.12: Processor Utilization for Rapla

for such a hooking. This increase is about 24% for JHotDraw application according to

the corresponding graphs in Figure 7.13. We believe in a decrease in this expense for

our future case study applications which will be from different domains. Because, both

of the current applications are heavily user interactive systems. In such systems, there

are too many events generated because of the interaction of a user with the system GUI.

Therefore, our monitor collects such events at the first glance, but they will be ignored

after the monitor finds them unnecessary for the analysis.

In addition to the above expense, there is another one which we call it processing load

resulted from our monitoring. Back to Figure 7.12 for Rapla, there are a bunch of ripples

in both graphs. There are actually the major processing periods of the running system.

The peaks are mainly because of an access to the IO, a major computation load, and

etc. We can compare the maximum length of these ripples in both graphs. It can be

computed based on the distance of the two dashed lines in each graph. The distance is

about 30% and 25% for graphs a and b from Figure 7.12 respectively. We find this 5%

increase in graph a in comparison to graph b reasonable and because of the processing

CHAPTER 7. EXPERIMENTAL STUDIES 81

(a) With Monitoring (b) Without Monitoring

Figure 7.13: Processor Utilization for JHotDraw

load of our monitoring and analysis processes. The PRE is utilized by the monitor to

filter the event traces. Those event traces, which match with the specifications of the

PRE, are passed to the analysis process. Moreover, the analysis needs to be done on the

passed data. The maximum length of the ripples for JHotDraw is about 31% and 23%

for graphs a and b respectively in Figure 7.13. Thus, the processing load for JHotDraw is

8%. Our justification for a more load increase in JHotDraw than Rapla is that the type

of property that we monitor and analyze in JHotDraw is different from the one in Rapla.

For JHhotDraw, we monitor the IO accesses to the graphic resources and do the analysis

based on the changes in such resources.

It is worth mentioning that in both systems, there is a considerable amount of CPU

utilization at the beginning of the execution period. This is reasonable, since any appli-

cation requires a specific amount of initialization load when it starts running. However,

this amount is higher for both systems in case that they are running under the monitoring

framework. This is also reasonable, because at the beginning, our monitor needs to do

some extra initialization works which obviously require utilizing more CPU power.

CHAPTER 7. EXPERIMENTAL STUDIES 82

7.4.2 Memory Consumption

To evaluate our framework in terms of memory consumption, we study the increase in

memory usage while the case study applications are running under monitoring in contrast

to the situation where no monitoring is done. Figure 7.14 illustrates the memory con-

sumption in our computer while Rapla and JHotDraw were running in the two scenarios.

Similar to processor utilization evaluation process, we consider a period of 100 seconds

monitoring of the system with the same set of interactions during this period.

(a) Rapla (b) JHotDraw

Figure 7.14: Memory Consumption

In average, during a regular execution of Rapla, 29.368% of memory is in use, while

it is 30.146% under monitoring. For JHotDraw, in average 24.145% memory is in use

during a regular execution while it is 24.330% when the application is monitored. It is

obvious that the difference of memory usage for both applications in the two scenarios

is not significant. The reason is that our monitoring technique does not consider any

unnecessary event. As soon as an event does not match with the PRE specification, it

will be ignored and the memory for such an event will be deallocated.

CHAPTER 7. EXPERIMENTAL STUDIES 83

7.5 Summary

In this chapter, we have outlined the implementation of the prototype for the RUMBA

framework. Afterwards, we explained about two case studies application used for evalu-

ating the effectiveness of our framework in runtime monitoring and behavioral analysis.

In both case studies, the specified properties have been monitored and the objective

changes have been reported correctly according to our expectation from the behavior of

the systems. We have also evaluated the efficiency of the RUMBA framework in terms

of processor and memory utilization for the two case study applications. We found that

there is a constant load in processor utilization, specially due to the nature of the moni-

toring technique. There has been also a processing load for both applications due to our

monitoring and analysis processes. In both case studies, we found that the increase of

memory usage for monitoring is not significant.

Chapter 8

Conclusion and Future Directions

In this chapter, we summarize the findings of the thesis and outline future research

directions that may arise from this research. In Section 8.1, we present the contributions

of the thesis, and in Section 8.2, we discuss some potential future work to be extended

from this research. Finally, we make some concluding remarks of the work in Section 8.3.

8.1 Contributions

The major contribution of the framework proposed in this thesis is that, it addresses

the problem of runtime monitoring and behavioral analysis of Java software systems.

Specifically, the principle contributions of this thesis were stated in Chapter 1. Based on

the material already presented, we discuss them in more details as follows:

• The framework utilizes a synergy between static and dynamic analyses to do the

runtime monitoring and analysis. By utilizing a synergy between these two ap-

proaches, our framework obtains an understanding of the target system to find out

where to locate and monitor the required information in the system. Such a hybrid

84

CHAPTER 8. CONCLUSION AND FUTURE DIRECTIONS 85

technique reduces the monitoring overhead that could be resulted from the instru-

mentation and modification of different levels of a target program. Because, the

information obtained from the static analysis helps the technique used in dynamic

analysis to consider only those VM (Virtual Machine) events which contain the

required information.

• Two models of a target system are created using reverse engineering techniques in

the static analysis. There is a UML-compliant model, class model, which is used

later by the analysis part of the framework. The specification for the constraint-

based analysis is added to this model. There is also a graph based model, SAIG

model, generated from the target system which is exported as XML documents

and transformed between different stages of the framework. We can not track the

location of runtime objects and attributes unless we instrument specific parts of the

code. By using the SAIG that records the structural information of the system, we

can avoid such an instrumentation

• Object Constraint Language (OCL) is utilized to specify the objectives of the be-

havioral analysis in our framework. They are certain properties on the behavior

of the system which can be described as OCL rules. These OCL rules are without

side effect since the OCL is an expression language. We add them to the specific

locations in the class model, and they cannot change anything in the model. This

means that the state of the system will never change because of an OCL expression.

All values for all objects, including all links, will not change. Whenever an OCL

expression is evaluated, it simply delivers a value.

• By using the capabilities of Java Platform Debug Architecture (JPDA) [39], we

have implemented a monitoring technique that finds the locations of the required

attributes according to the PRE (Pattern of Required Events) model. It invokes

CHAPTER 8. CONCLUSION AND FUTURE DIRECTIONS 86

the main class of a target Java program that has been passed to it. It generates a

trace of the program’s execution by listening to the VM events and making access

to its dynamic information.

• We have adopted an OCL based analysis environment to our system, called USE [3].

This tool has an OCL interpreter for constraint checking. We have incorporated

the COL interpreter of USE into the RUMBA framework to perform the analysis

process. It helps us to do a constraint based analysis on the class model of the

target system based on the generated event traces from the monitoring part of our

framework. Either a constraint fails or succeeds for a system state, there will be a

report for it as the result of the analysis on that state.

8.2 Future Work

Our current research focuses mostly on the automated monitoring and tracking of the

dynamic information at runtime based on the extracted static information. We believe

that some potential extensions can be made on some aspects of the RUMBA framework.

The framework can be extended to:

• Work as a fully automated process.

• Provide various domains of objectives for monitoring.

• Provide appropriate actions regarding the monitored behaviors.

Such future directions are listed in more details in this section.

8.2.1 Automatic Generation of Monitoring Scenarios

As mentioned before, the objectives of the behavioral analysis in RUMBA are defined and

specified manually. User has to have some knowledge about the domain of the target sys-

CHAPTER 8. CONCLUSION AND FUTURE DIRECTIONS 87

tem. Based on this information, the behavioral expectation of the system will be defined

as OCL rules. This approach is applicable for specific types of monitoring like the one we

did for Rapla and JHotDraw application. In such cases, the user is interested in moni-

toring particular objects and resources of a system. Hence, she/he defines the objectives

as specific OCL rules in the context of those objects and resources. However, when the

intention of the monitoring is to check the behavioral correctness of a system in general,

it is less expensive and more reliable to do it automatically. In other words, objective

scenarios can be constructed automatically from system requirements. In this regard,

Automatic Test Case Generation techniques [25] may be useful to extend the RUMBA’s

capabilities by generating the specifications (monitoring objectives) automatically.

8.2.2 Various Objective Domains

The current version of RUMBA can define specific types of objectives and is able to mon-

itor corresponding properties. They are mostly invariants, properties that check values

and boundaries of variables, and properties that generally deal with resource changes.

Such types of properties are classified as safety properties according to [20]. There is also

another type of property so-called temporal. It includes properties such as progress and

bounded liveness as well as timing properties. However, this category is not a disjoint

set with safety. For example, deadlock-freeness could be classified as a safety property

indicating that a system can never be in a situation in which no progress is possible.

Various types of properties can be studied to expand the domain of monitoring objec-

tives as future extensions to RUMBA. However, this depends on expressiveness of OCL

that how much it is able to define different types of properties. One way to find out

more about this issue is to apply RUMBA on other open source systems, possibly from

different domains. Such a broad domain can help us to provide a concrete evaluation

from comparing the obtained results from various case studies.

CHAPTER 8. CONCLUSION AND FUTURE DIRECTIONS 88

8.2.3 Steering and Diagnosis

The intent of program steering can be illustrated with the following quote from [5]:

“Scientists not only want to analyze data that results from super-computations, they also

want to interpret what is happening to the data during super-computations. Researchers

want to steer calculations in close-to-real-time; they want to be able to change parame-

ters, resolution or representation, and see the effects . They want to drive the scientific

discovery process; they want to interact with their data.”

In [36], the authors refer to the above statement and define program steering as the

capacity to control the execution of long-running, resource-intensive programs. Such

execution control includes modifying program state, managing data output, starting and

stalling program execution, altering resource allocations, etc . Dynamic program steering

consists of two separable tasks: i) monitoring program or system state (monitoring), and

then ii) enacting program changes made in response to observed state changes (steering).

Steering can be considered as the process of predicting the occurrence of violations

and preventing them by controlling a system execution [23, 70]. It can also be considered

as the process of correcting the execution of a target program when requirements are

violated [12]. What we consider as a possible future extension to RUMBA is the second

type of steering, where a monitoring tool can assure correctness during program execution.

To do so, specific handlers are required to not only report errors or throw exceptions, but

also execute appropriate actions, e.g. resetting states or rebooting the system.

At the time being, the analysis component of RUMBA detects if there is any conflict

with a property or reports about specific changes in the behavior of resources of a system.

It can be extended to diagnose/control the reported conflicts/specific changes (forward

recovery) or revert the system to a state known to be correct (backward recovery) [75].

It is obvious that such a recovery may not be feasible for all types of conflicts. This is an

CHAPTER 8. CONCLUSION AND FUTURE DIRECTIONS 89

important issue which needs further study to categorize specific types of properties based

on which the execution of a target system can be monitored and steered if necessary.

8.3 Conclusion

In this thesis, we have presented the RUMBA framework which addresses the demand of

runtime monitoring and behavioral analysis for Java software systems. We discuss how

RUMBA can facilitate the process of program comprehension from the behavioral point

of view. It utilizes a synergy between static and dynamic analyses to confirm whether a

program behavior complies with specified properties.

Three key features of the RUMBA framework are: i) the theory defined for static

analysis part of RUMBA is fully extendable at different granularity levels, for example

towards monitoring information about the methods of a system, ii) the source code of a

target system is not modified, and iii) the most processes of the framework are automated.

Using the help of reverse engineering techniques through static analysis (generating the

Pattern of Required Events (PRE)), we have reduced the large size of runtime information

in dynamic analysis. We have filtered the information to what is required for the analysis.

We have evaluated the effectiveness of RUMBA on two open source applications. The

reports of the objectives along the runtime states have been according to our expectation

from the behavior of the applications. The efficiency of the framework has been studied in

terms of processor and memory utilization. We have found that there is a constant load

in processor utilization, specially due to the nature of the monitoring technique. There

has been also a processing load for both applications due to our monitoring and analysis

processes. In both case studies, we have found that the increase of memory usage for

monitoring is not significant. As a future work, RUMBA can be applied on more case

studies from various domains to check different types of objectives on such systems.

Bibliography

[1] UML 2.0 Superstructure Specification. Object Management Group, Framingham,

Massachusetts, USA, 2004.

[2] A resource management system (Rapla), 2007. http://rapla.sourceforge.net/.

[3] A UML-Based Specification Environment (USE), 2007.

http://www.db.informatik.uni-bremen.de/projects/USE/.

[4] A. Ashkan and L. Tahvildari. A hybrid analysis framework to evaluate runtime be-

havior of OO systems. In Proceedings of the 2nd International Workshop on Program

Comprehension through Dynamic Analysis, pages 1–5, 2006.

[5] M. D. Brown B. H. McCormick, T. A. DeFanti. Visualization in scientific computing.

ACM SIGGRAPH Computer Graphics, 21(6):entire issue, 1987.

[6] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass-Java with assertions.

Electronic Notes in Theoretical Computer Science, 55(2):1–15, 2001.

[7] Bison, the YACC-compatible parser generator, 2007.

http://dinosaur.compilertools.net/#bison.

[8] J. S. Bradbury, J. R. Cordy, and J. Dingel. An empirical framework for comparing

effectiveness of testing and property-based formal analysis. In Proceedings of the

90

BIBLIOGRAPHY 91

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and

Engineering, pages 2–5, 2005.

[9] M. Brorkens and M. Moller. JassDA trace assertions, runtime checking the dynamic

of Java programs. In Proceedings of the International Conference on Testing of

Communicating Systems, pages 39–48, 2002.

[10] B. Bruegge, T. Gottschalk, and B. Luo. A framework for dynamic program analyz-

ers. In Proceedings of the 8th Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 65–82, 1993.

[11] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. Ru. M.

Leino, and E. Poll. An overview of JML tools and applications. Software Tools for

Technology Transfer, 7(3):212–232, 2005.

[12] F. Chen and G. Rosu. Java-MOP: A monitoring oriented programming environment

for java. In Proceedings of the 11th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 546–550, 2005.

[13] Y. Cheon. A runtime assertion checker for the Java modeling language. Technical

Report 03-09, Department of Computer Science, Iowa State University, 2003.

[14] S. Chodrow and M. Gouda. Implementation of the Sentry system. Software Practice

and Experience, 25(4):373–387, 1995.

[15] A. G. M. Cilio and H. Corporaal. Global program optimization: register allocation

of static scalar objects. In Proceedings of 5th Annual Conference of the Advanced

School for Computing and Imaging, pages 52–57, 1999.

[16] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. Que-

BIBLIOGRAPHY 92

sada. Using Maude. In Proceedings of the 3rd International Conferenece on Funda-

mental Approaches to Software Engineering, pages 371–374, 2000.

[17] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. Electronic

Notes in Theoretical Computer Science, 4(1):65–89, 1996.

[18] T. A. Corbi. Program understanding: challenge for the 1990s. IBM Systems Journal,

18(2):294–306, 1989.

[19] J. Dassow. On contextual grammar forms. International Journal of Computer Math-

ematics, 17(1):37–52, 1985.

[20] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime software-

fault monitoring tools. IEEE Transactions on Software Engineering, 30(2):859–872,

2004.

[21] D. Drusinsky. The Temporal Rover and the ATG Rover. In Proceedings of the 7th

International SPIN Workshop, pages 323–330, 2000.

[22] D. Drusinsky. Monitoring temporal rules combined with time series. In Proceedings

of Computer Aided Verification Conference, pages 114–117, 2003.

[23] A. Easwaran, S. Kannan, and O. Sokolsky. Steering of discrete event systems: control

theory approach. Electronic Notes in Theoretical Computer Science, 144(4):21–39,

2006.

[24] Eclipse - An open development platform, 2007. http://www.eclipse.org/.

[25] J. Edvardsson. A survey on automatic test data generation. In Proceedings of the 2nd

Conference on Computer Science and Engineering in Linkping, pages 21–28, 1999.

BIBLIOGRAPHY 93

[26] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed

graph transformation. In Proceedings of the 2nd International Conference on Graph

Transformation, pages 161–177, 2004.

[27] M. D. Ernst. Static and dynamic analysis: synergy and duality. In Proceedings of

the ICSE Workshop on Dynamic Analysis, pages 24–27, 2003.

[28] R. Ferenc, I. Siket, and T. Gyimothy. Extracting facts from open source software. In

Proceedings of the 20th IEEE International Conferenece on Software Maintenance,

pages 60–69, 2004.

[29] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. A. Müller, J. My-

lopoulos, S. G. Perelgut, M. Stanley, and K. Wong. The software bookshelf. IBM

Systems Journal, 36(4):564–593, 1997.

[30] Flex, a fast scanner generator, 2007. http://dinosaur.compilertools.net/#flex.

[31] A. Q. Gates, S. Roach, O. Mondragon, and N. Delgado. DynaMICs: comprehensive

support for runtime monitoring. Electronic Notes in Theoretical Computer Science,

55(2):1–17, 2001.

[32] A. Q. Gates and P. Teller. An integrated design of a dynamic software-fault moni-

toring system. Integrated Design and Process Science, 14(3):63–78, 2000.

[33] J. Girard and R. Koschke. Finding components in a hierarchy of modules: a step

towards architectural understanding. In Proceedings of the 13th International Con-

ference on Software Maintenance, pages 58–65, 1997.

[34] M. Gogolla and M. Richters. On constraints and queries in UML. In Proceedings of

the UML Workshop, pages 109–121, 1997.

BIBLIOGRAPHY 94

[35] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, and J. Vetter. Falcon:

onine monitoring and steering of large-scale parallel programs. Technical Report

GIT-CC-94-21, College of Computing, Georgia Institute of Technology, 1994.

[36] W. Gu, J. Vetter, and K. Schwan. An annotated bibliography of interactive program

steering. ACM SIGPLAN Notices, 29(9):140–148, 1994.

[37] Klaus Havelund and Grigore Rosu. Monitoring Java programs with Java PathEx-

plorer. Electronic Notes in Theoretical Computer Science, 55(2):97–114, 2001.

[38] G. J. Holzmann. The model checker Spin. IEEE Transactions on Software Engi-

neering, 23(5):279–295, 1997.

[39] Java Platform Debugger Architecture (JPDA), 2007.

http://java.sun.com/products/jpda/.

[40] JavaCC Eclipse plug-in for Eclipse 3.1 - 3.2, 2007. http://eclipse-

javacc.sourceforge.net/.

[41] C. L. Jeffery. Program monitoring and visualization: An exploratory approach.

Springer-Verlag, 1999.

[42] C. L. Jeffery, K. Templer W. Zhou, and M. Brazell. A lightweight architecture for

program execution monitoring. In Proceedings of the ACM SIGPLAN/SIGSOFT

Workshop Program Analysis for Software Tools and Engineering, pages 67–74, 1998.

[43] JHotDraw as open source project, 2007. http://www.jhotdraw.org/.

[44] R. Kazman and S. J. Carriere. View extraction and view fusion in architectural

understanding. In Proceedings of the 5th International Conference on Software Reuse,

pages 290–299, 1998.

BIBLIOGRAPHY 95

[45] M. Kim and M. Viswanathan. MaC: A framework for runtime correctness assurance

of realime systems. Technical Report MS-CIS-98-37, Deptartment of Computer and

Information Sciences, University of Pennsylvania, 1998.

[46] M. Kim and M. Viswanathan. Formally specified monitoring of temporal properties.

In Proceedings of the European Confernece on Realtime Systems, pages 114–122,

1999.

[47] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. V. Sokolsky. Java-MaC: A

runtime assurance approach for Java programs. Journal of Formal Methods in System

Design, 24(2):129–155, 2004.

[48] I. Lee and H. Ben-Abdallah. A monitoring and checking framework for runtime

correctness assurance. In Proceedings of the Korea-U.S. Technical Conference on

Strategic Technologies, 1998.

[49] I. Lee and M. Kim. Runtime assurance based on formal specifications. In Proceedings

of the International Conference on Parallel and Distributed Processing Techniques

and Applications, pages 279–287, 1999.

[50] Lex, A lexical analyzer generator, 2007. http://dinosaur.compilertools.net/#lex.

[51] Y. Liao and D. Cohen. A specificational approach to high level program monitoring

and measuring. IEEE Transactions on Software Engineering, 18(11):969–978, 1992.

[52] J. Ligatti, L. Bauer, and D. Walker. Edit Automata: enforcement mechanisms for

runtime security policies. International Journal of Information Security, 4(1-2):2–16,

2005.

[53] D. Luckham and F. W. Von Henke. An overview of Anna specification language for

Ada. IEEE Software, 2(2):9–23, 1985.

BIBLIOGRAPHY 96

[54] D. Luckham, S. Sankar, and S. Takahashi. Two-dimensional pinpointing: debugging

with formal specifications. IEEE Software, 8(1):74–84, 1991.

[55] M. R. Lyu. Handbook of Software Reliability Engineering. IEEE Computer Society

Press and McGraw-Hill, 1996.

[56] S. Mancoridis, B. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering tool

for the recovery and maintenance of software system structures. In Proceedings of

the 15th International Conference on Software Maintenance, pages 50–62, 1999.

[57] H. A. Müller. Bits of history, challenges for the future and autonomic computing

technology. In Proceedings of the 13th IEEE Working Conference on Reverse Engi-

neering, pages 9–18, 2006.

[58] H. A. Müller, M. A. Orgun, Scott R. Tilley, and James S. Uhl. A reverse engineering

approach to subsystem structure identification. Journal of Software Maintenance:

Research and Practice, 5(4):181–204, 1993.

[59] A. M. Memon. Employing user profiles to test a new version of a GUI component in

its context of use. Software Quality Journal, 14(4):359–377, 2006.

[60] J. Misra. A logic for concurrent programming: Safety. Journal of Computer and

Software Engineering, 3(2):239–272, 1995.

[61] A. Mok and G. Liu. Efficient runtime monitoring of timing constraints. In Proceedings

of the 3rd IEEE Realtime Technology and Applications Symposium, pages 252–262,

1997.

[62] R. Morgan. Building an Optimizing Compiler. Butterworth-Heinemann, Boston,

Massachusetts, 1998.

BIBLIOGRAPHY 97

[63] G. C. Murphy, D. Notkin, and Kevin Sullivan. Software refexion models: bridging the

gap between source and high-level models. In Proceedings of the 3rd ACM SIGSOFT

Symposium on the Foundations of Software Engineering, pages 18–28, 1995.

[64] NetBeans IDE, 2007. http://www.netbeans.org/.

[65] OCL Center, 2007. http://www.klasse.nl/ocl/.

[66] W.N. Robinson. Monitoring software requirements using instrumented code. In

Proceedings of the Hawaii International Conference on System Sciences, pages 276–

287, 2002.

[67] W.N. Robinson. Monitoring web service requirements. In Proceedings of the 12th

IEEE International Conference on Requirements Engineering, pages 65–74, 2003.

[68] G. Rosu and K. Havelund. Synthesizing dynamic programming algorithms from

linear temporal logic formulae. Technical Report TR 01-15, RIACS, 2001.

[69] Bernd B. Schmid, T. Clark, and J. Warmer. Object Modeling With the OCL: the

Rationale Behind the Object Constraint Language. Springer, 2002.

[70] O. Sokolsky, S. Kannan, and M. Viswanathan. Steering of realtime systems based

on monitoring and checking. In Proceedings of the 5th International Workshop on

Object-Oriented Realtime Dependable Systems, pages 11–18, 1999.

[71] P. Teller, M. Maxwell, and A. Q. Gates. Towards the design of a snoopy coprocessor

for dynamic software-fault detection. In Proceedings of the 18th IEEE International

Performance, Computing, and Commuunication Conference, pages 310–317, 1999.

[72] K. Templer and C. Jeffery. A configurable automatic instrumentation tool for ANSI

C. In Proceedings of the 13th IEEE International Conference on Automated Software

Engineering, pages 249–258, 1998.

BIBLIOGRAPHY 98

[73] The Eclipse Test and Performance Tools Platform (TPTP) Project, 2007.

http://www.eclipse.org/tptp/.

[74] The Java parser generator, 2007. https://javacc.dev.java.net.

[75] J. M. Voas. Building software recovery assertions from a fault injection-based prop-

agation analysis. In Proceedings of the 21st International Computer Software and

Applications Conference, pages 505–510, 1997.

[76] Yacc, Yet another compiler-compiler, 2007. http://dinosaur.compilertools.net/#yacc.

