
Efficient and Flexible Search in

Large Scale Distributed Systems

by

Reaz Ahmed

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2007

c© Reaz Ahmed, 2007

Authors Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Peer-to-peer (P2P) technology has triggered a wide range of distributed systems be-

yond simple file-sharing. Distributed XML databases, distributed computing, server-less

web publishing and networked resource/service sharing are only a few to name. Despite

of the diversity in applications, these systems share a common problem regarding search-

ing and discovery of information. This commonality stems from the transitory nodes

population and volatile information content in the participating nodes. In such dynamic

environment, users are not expected to have the exact information about the available

objects in the system. Rather queries are based on partial information, which requires

the search mechanism to be flexible. On the other hand, to scale with network size the

search mechanism is required to be bandwidth efficient.

Since the advent of P2P technology experts from industry and academia have pro-

posed a number of search techniques - none of which is able to provide satisfactory

solution to the conflicting requirements of search efficiency and flexibility. Structured

search techniques, mostly Distributed Hash Table (DHT)-based, are bandwidth efficient

while semi(un)-structured techniques are flexible. But, neither achieves both ends.

This thesis defines the Distributed Pattern Matching (DPM) problem. The DPM

problem is to discover a pattern (i.e., bit-vector) using any subset of its 1-bits, under

the assumption that the patterns are distributed across a large population of networked

nodes. Search problem in many distributed systems can be reduced to the DPM problem.

This thesis also presents two distinct search mechanisms, named Distributed Pattern

Matching System (DPMS) and Plexus, for solving the DPM problem. DPMS is a semi-

structured, hierarchical architecture aiming to discover a predefined number of matches

by visiting a small number of nodes. Plexus, on the other hand, is a structured search

mechanism based on the theory of Error Correcting Code (ECC). The design goal behind

Plexus is to discover all the matches by visiting a reasonable number of nodes.

iii

Acknowledgements

First and foremost I thank Allah, the Exalted in Might and the Wisest, for bringing me

into existence and enabling me in completing this work.

I express my warmest gratitude to my supervisor, Professor Raouf Boutaba, for sup-

porting me with a continuous stream of intellectual, moral and financial assistance. He

has always encouraged me to pursue my own ideas and provided invaluable feedback to

improve the quality of my research. I would like to extend my gratitude and acknowledge-

ments to Professor Burkhard Stiller, Professor Sagar Naik, Professor Alex Lopez-Ortiz

and Professor Srinivasan Keshav for their insightful comments and constructive criticisms

of the work.

I am truly grateful to my parents for constantly inspiring me in the quest of knowledge

and for securing a paved way for my career plans. I owe my deepest gratitude to my

beloved wife Shapla and my son Shahriar for their patience and support during the time

of hardship. Without the support and security from my family members, it would be

impossible for me to complete this work.

I thank all my teachers, especially Professor M. Kaykobad, for their inspiration, wis-

dom and endless efforts. I am thankful to my colleagues, Mustaq Ahmed and Tarique

M. Islam, for the effective discussions and reviews.

I am indebt to my home institute, Bangladesh University of Engineering and Tech-

nology (BUET), for entrusting me with the opportunity to pursue this study. I thank

the government of Canada for funding my research under the Canadian Commonwealth

Scholarship and Fellowship Plan. Last but not the least, I thank everyone who has

contributed to this thesis, directly or indirectly.

iv

Contents

1 Introduction 1

1.1 Problem Definition . 2

1.2 Motivation . 4

1.3 Contributions . 9

1.4 Thesis Organization . 14

2 Background and Related Work 16

2.1 Introduction . 16

2.2 Chapter Organization . 16

2.3 Background . 17

2.3.1 Large-scale Distributed Systems 17

2.3.2 Bloom Filters . 28

2.4 Related Work . 30

2.4.1 Peer-to-Peer Content Sharing . 30

2.4.2 Service Discovery . 37

2.4.3 Peer-to-Peer Databases . 40

2.5 Distributed Search Requirements . 44

2.6 Components of a Distributed Search System 46

2.6.1 Query Semantics . 47

v

2.6.2 Translation . 50

2.6.3 Routing . 51

2.6.4 Relation to Other Taxonomies . 53

2.7 Summary . 55

3 DPMS: Distributed Pattern Matching System 58

3.1 Introduction . 58

3.2 Chapter Organization . 59

3.3 Architectural Overview . 59

3.4 Index/Pattern Construction Process . 61

3.5 Aggregates . 62

3.6 Aggregation Process . 65

3.7 Index Distribution . 71

3.8 Topology Maintenance . 72

3.9 Query Routing . 73

3.10 Node Join . 75

3.11 Node Leave or Failure . 78

3.12 Analysis . 78

3.12.1 Query Routing Efficiency . 78

3.12.2 False Match Probability . 80

3.12.3 An Estimate of ξ . 81

3.12.4 Advertisement Overhead . 82

3.13 Experimental Evaluation . 83

3.13.1 Parameter Tuning . 85

3.13.2 Scaling Behavior . 92

3.13.3 Fault tolerance . 93

3.13.4 Indexing Hierarchy . 96

vi

3.14 Summary . 99

4 Plexus 101

4.1 Introduction . 101

4.2 Chapter Organization . 102

4.3 Preliminaries . 102

4.3.1 Linear Covering Codes . 102

4.3.2 Extended Golay Code . 103

4.4 Theoretical Model of Plexus . 104

4.4.1 Core Concept . 104

4.4.2 Computing A (P) and Q(Q) . 107

4.4.3 Routing . 111

4.5 Architecture of Plexus . 119

4.5.1 Topology . 119

4.5.2 Mapping Codewords to Superpeers 122

4.5.3 The Join Process . 123

4.5.4 Handling Peer Failure . 124

4.5.5 Analysis . 125

4.6 Experimental Evaluation . 127

4.6.1 Simulation Setup . 127

4.6.2 Impact of Query Content on Search Completeness 129

4.6.3 Scalability and Routing Efficiency 130

4.6.4 Fault Tolerance . 132

4.6.5 Effectiveness of Multicast-routing 134

4.7 Summary . 135

5 Comparative Evaluation 136

vii

5.1 Introduction . 136

5.2 Chapter Organization . 136

5.3 Simulation Setup . 137

5.3.1 P2P Simulators . 137

5.3.2 PeerSim . 140

5.3.3 Experimental Dataset . 144

5.4 Compared Search Techniques . 145

5.4.1 Flooding and Random-walk . 145

5.4.2 II/DHT . 147

5.4.3 DPMS . 148

5.4.4 Plexus . 149

5.5 Performance Metrics . 149

5.6 Simulation results . 152

5.6.1 Topology Maintenance Overhead 152

5.6.2 Advertisement Efficiency . 154

5.6.3 Search Efficiency . 155

5.6.4 Search Flexibility . 156

5.6.5 Fault Resilience . 157

5.7 Summary . 159

6 Conclusion and Future Research 160

6.1 Conclusion . 160

6.2 Future Research . 163

viii

List of Tables

2.1 Summary of Web Service discovery architectures 39

2.2 Components of selected search techniques in P2P content sharing 52

2.3 Components of selected search techniques in Service discovery 53

2.4 Components of selected search techniques in PDBS 53

2.5 Taxonomy comparison: Routing mechanism Vs. overlay architecture . . 56

2.6 Taxonomy comparison: Routing mechanism Vs. indexing mechanism . . 56

2.7 Taxonomy comparison: Indexing mechanism Vs. overlay architecture . . 56

3.1 Significance of different components of Equation (3.2) 67

3.2 Simulation parameters for DPMS . 86

3.3 Storage overhead in DPMS . 94

4.1 Distance distribution of orbits from octads and dodecads 109

5.1 Simulation parameters for comparative evaluation 146

ix

List of Figures

1.1 The Distributed Pattern Matching (DPM) problem 3

1.2 Partial keyword matching using DPM . 5

1.3 Mapping different problems to DPM framework 7

1.4 Problem with numeric distance based routing 8

2.1 Content sharing P2P architectures . 19

2.2 Service discovery: Generic architecture and steps 21

2.3 Taxonomy of the directory architectures 23

2.4 Example advertisement and query in Service Discover systems 24

2.5 Functional layers in a PDBS system . 26

2.6 Advertisement in PDBS . 27

2.7 XPath query examples . 27

2.8 Bloom filter: Construction and membership test 28

2.9 Content sharing P2P architectures . 47

3.1 DPMS architecture overview . 60

3.2 Example use of Bloom filters for keyword search 63

3.3 Index distribution architecture . 71

3.4 Advertisement overhead . 84

3.5 Parameter tuning for random dataset . 88

3.6 Parameter tuning for biased dataset . 89

x

3.7 Nature of aggregates . 91

3.8 Scaling behavior . 92

3.9 Replication and fault-resilience . 95

3.10 Replication and storage overhead . 97

3.11 Distribution of peers along the indexing hierarchy 97

3.12 Variation in index size along the indexing hierarchy 98

4.1 Relationships among the orbits of the vectors in Fn
2 w.r.t. G24 105

4.2 The core concept . 106

4.3 Bound on d(P,Q) . 108

4.4 Bound on d(P,Q) . 115

4.5 Architectural overview of Plexus. 120

4.6 Search/advertisement process in Plexus. 121

4.7 Assigning codewords to superpeers . 123

4.8 Fitness of patterns for advertisement . 128

4.9 Effect of information content of a query on search completeness. 129

4.10 Routing efficiency and scalability with network size. 131

4.11 Fault resilience in Plexus . 133

4.12 Effectiveness of multicasting in Plexus 134

5.1 Architectural components of PeerSim . 142

5.2 Topology maintenance overhead. 153

5.3 Advertisement efficiency. 154

5.4 Search efficiency. 156

5.5 Search flexibility. 157

5.6 Fault resilience. 158

xi

Chapter 1

Introduction

Efficient discovery of information based on partial knowledge is a challenging problem

faced by many large scale distributed systems, including content sharing P2P networks,

service discovery systems and distributed XML database systems. Due to the transitory

nature of peer population and volatile information content in these peers, users are not

expected to have the exact information about the available objects in the system. Rather

queries are based on partial information, which requires the search mechanism to be

flexible. On the other hand to scale with network size the search mechanism is also

required to be bandwidth efficient.

Existing search mechanisms do not provide a satisfactory solution for achieving the

conflicting goals of flexibility and efficiency. Unstructured search protocols (as adopted

in Gnutella and FastTrack) provide search flexibility but exhibit poor performance char-

acteristics. Structured search techniques (mostly Distributed Hash Table (DHT)-based),

on the other hand, can efficiently route queries but support exact-match semantic only.

The focus of this thesis is to devise efficient search techniques without sacrificing

the flexibility requirement. We provide a generic framework called Distributed Pattern

Matching (DPM) to address the search problem in large-scale, distributed environments.

The DPM framework provides a means for facilitating search flexibility. We also present

1

2 Efficient and Flexible Search in Large Scale Distributed Systems

two different search mechanisms, for achieving the efficiency requirement within DPM

framework.

The organization of the rest of this chapter is as follows. The formal definition of

the DPM problem is presented in Section 1.1, while Section 1.2 explains the motivation

behind this research work. The contributions of this thesis are listed in Section 1.3.

Finally, the organization of the thesis is outlined in Section 1.4.

1.1 Problem Definition

The generic pattern matching problem and its variants have been extensively studied in

the Computer Science literature. Given a text (or raw data) P and a pattern Q, the generic

problem of pattern matching is to locate (all) the occurrences of Q in P. The definition of

text, pattern and occurrence depends on the application domain. The text and pattern are

two dimensional arrays in Image Processing applications, strings in Text Editing systems,

trees in tree pattern matching [94], and arrays of sets in subset matching [46]. Variations

in the definition of occurrence include exact matching, parameterized matching [26],

approximate matching and matching with “don’t cares” [21].

The variant of the pattern matching problem considered in this work is closely related

to the subset matching problem [46]. In subset matching, pattern Q = {Q1, Q2 . . . Qm}
and text P = {P1, P2 . . . Pn} are collections of sets of characters drawn from some alphabet
∑

. A pattern Q occurs at text position i if the set Qj is a subset of the set Pi+j−1, for

all 1 ≤ j ≤ m.

We define the Distributed Pattern Matching (DPM) problem as a variant of the subset

matching problem with the following restrictions:

• The pattern Q has a single element in its array, i.e., m = 1 and Q = Q.

• The n elements of P are distributed across a large number of networked nodes.

Introduction 3

In many cases, bit-vectors of length |∑ | are used to present texts (i.e., Pi) and

pattern (i.e., Q), where a 1 (or 0) at the ith bit of a bit vector represents the presence (or

absence) of the ith symbol in
∑

. In the DPM formulation we assume that each element

of P (i.e., Pi) summarizes the identifying properties (e.g., keywords, service description)

of a shared object (e.g., a file or a service). One possible form of such a pattern is a

Bloom filter [30] obtained by hashing the properties associated with a shared object.

��� �������

	
���� � ��
	���� � ��

	���� ��� ��
	����� �� ��

	����� � ��
	��� ��� ��
	��� �� �

��� �� �

�����

	����� �� ��
	��� ��� ��

������

������� ���!"�#$�%

Figure 1.1: The Distributed Pattern Matching (DPM) problem. (|∑ | = 12)

Figure 1.1 presents a pictorial view of the DPM problem. Hereafter, we will use

advertised pattern or simply advertisement to refer to a Pi and search pattern or simply

query to refer to Q. Shared objects (P1−P7 in Figure 1.1) and queries (Q in Figure 1.1)

are represented as bit vectors. If the query is exactly the same as the advertisement,

then the problem can efficiently be solved using conventional DHT techniques. But, we

are interested in inexact pattern matching, where the 1-bits of a search pattern can be

any subset of an advertised pattern that it should match against. In other words, the

4 Efficient and Flexible Search in Large Scale Distributed Systems

result of a search should contain all the advertised patterns (P2 and P6 in Figure 1.1)

that constitute supersets of the search pattern (Q in Figure 1.1).

1.2 Motivation

Importance of the DPM problem

Availability and location of content on the Internet have become extremely dynamic with

the advent of P2P technology. Efficient discovery of information, based on partial infor-

mation, has become a challenging problem in such large-scale distributed environments

characterized by a transient population of networked nodes with heterogeneous capabili-

ties. Due to the dynamic nature of the content and the participating nodes, users seldom

have the exact or complete knowledge of the advertised information in the system. In-

stead, queries are often based on partial knowledge about a target advertisement. This

mandates an efficient search mechanism that is capable of resolving queries based on

partial or incomplete information about the target advertisements, and can handle the

dynamism in nodes’ and content’s availability.

Keyword search is one of the essential functionalities offered by any peer-to-peer

file-sharing system. A Centralized filesystem, as present in any traditional operating

system, permits sophisticated search operations involving wildcards and partial keywords.

Enabling existing P2P file-sharing systems with efficient wildcard search capability will

allow users to perform flexible and powerful search. Besides inexact keyword matching,

many problems, such as partial service description matching for service discovery systems,

semantic matching of schemata and data records for P2P database systems, and molecular

fingerprint matching in a distributed environment, can be mapped to the DPM problem.

As depicted in Figure 1.2, an advertisement in a P2P content sharing system consists

of a number of keywords describing the content being shared. For a file-sharing P2P

Introduction 5

system, it is unusual for a user to know the exact name of an advertised file. Instead,

queries are based on a subset of the (partial) keywords that may be present in the

advertisement. Bloom filters can be used for encoding advertised and queried keywords in

the following manner. An advertisement (or query) Bloom filter can be constructed using

the trigrams extracted from the advertised (or queried) keywords. Subset relationship

between advertised and queried trigrams will hold for advertisement and query Bloom

filters. For example, in Figure 1.2 trigrams for the first query constitute a subset of the

advertised trigrams; as a result query pattern Q1 is a subset of the advertisement pattern

P . On the other hand, trigrams from the second query do not correspond to any subset

of the advertised trigrams, and with high probability Q2 will not be a subset of P .

���� �� ��� �	
� �� ����

��������� ��� ���� �� ��� �	
�� � ��� �� ����� � ���� �����
��� ��	�	�
�

���� �� � �

!�"#�$%�& ���' (��' ���' ��' �	
' 	
�'
��' ��' ��' ��' ��' ���' ����' ��')

(��' ���' ��' ���' �	
' 	
�' ��' ��) (��' ���' ��' �

*+,��-
.%$-/01

� � 2 � 2 � 2 � � � 2 2

3�- �+,��-
.%"�%$-/01

2 � � � 2 � 2 � 2 � � �

2 � 2 2 2 � 2 2 2 � 2 24�5��-"��%�6- 78��% 9"8-���

:+���

!�"#�$%��

:+���
78��% 9"8-���;< ;=

>

Figure 1.2: Partial keyword matching using DPM

For P2P database systems, as shown in Figure 1.3, XML documents are used as

advertisements and XPath [90] is the most commonly used query language. Figure 1.3

presents an XPath query of the form /a1[b1]/a2[b2] . . . /an[bn]. Here, ai is an element in

an XML document, bi is an XPath expression relative to element ai. In this case, path

prefixes from an XML document or the XPath expression (e.g., /a1, /a1/b1, /a1/a2 . . .)

can be used as the set elements for Bloom filter construction.

6 Efficient and Flexible Search in Large Scale Distributed Systems

For most service discovery systems a service description is advertised as a set of

property-value pairs and a query for a service consists of a subset of the advertised

property-value pairs. It is evident as shown in Figure 1.3 that an efficient solution to the

DPM problem will enable us to generate satisfactory solutions to the search problem in

these three important application domains.

Problems with Existing Search Techniques

State-of-the-art solutions for subset matching ([21], [46], [47]) in centralized environment,

hold linear relationship with the number of patterns to be matched against. An equiv-

alent solution in a distributed environment, where the patterns are distributed across

networked nodes, will require the search message to be forwarded to all the nodes, i.e.,

flooding the network with search messages. This solution will certainly not scale with

network size.

Existing P2P search techniques are based on either non-structured hint-based routing

or structured Distributed Hash Table (DHT)-based routing ([105], [118], [132]). Neither

of these two paradigms can provide satisfactory solution to the DPM problem.

Over the last few years, DHT-based structured P2P systems ([132], [118], [105], [150],

etc.) have gained importance due to their efficiency in query routing and completeness in

search results. These techniques assign a portion of the key space to each peer and offer

a single functionality: given a key, find the ID of the peer responsible for that key. Keys

and IDs belong to the same space, usually 160-bit integers. A key is associated with a

data item, and is computed by hashing the data item or some of its identifying properties.

Most of these techniques take binary keys as input and apply prefix matching to route a

query to a specific node in O(log N) hops, where N is the number of peers in the overlay.

Despite their efficiency in query routing, these systems are not suitable for solving the

DPM problem. The basic idea behind DHT-techniques is to partition the key-space,

Introduction 7

��������

��	
����

����	�� �����	��	��

��������
����� ��	��

�	������	��� ����

����� ����	���

������	����� ���� �	����

��� �������
�������	�� �	�������

����	���

��� �������
�������	�� �	�������

����	���

 ���� ���� �	���� !	�� �� �����

"������ ����

������	�����

��	
����

����	��
#�������

��������
����� �	��
�$%�$& ��%��& '
 ���� 	� ���(����	��

����� ���
�)%�) * �+%�+ * '

���� ����	���
,�)& ,�),-)& ,�$,�+.'
/���� 0����

,�)1-)2 ,�+1-+2',�31-32

4567867
9:;<=6>

98<?=@8 A=B@5?8<C DED A;7;F;B8B

4567867
9:;<=6> 98<?=@8 A=B@5?8<C DED A;7;F;B8B

G:8 ADH
@56B7<I@7

Figure 1.3: Mapping different problems to DPM framework

8 Efficient and Flexible Search in Large Scale Distributed Systems

usually into non-overlapping regions, and to assign each region to a peer bearing an ID

from that region. The partitioning of key-space is based on the numeric distance among

the keys; whereas, for efficient pattern matching keys should be partitioned based on

Hamming distance. The Hamming distance between patterns X and Y (of same length)

is calculated as d(X, Y) = |X⊕Y | = no. of bits on which they disagree. As a result, these

solutions generate several independent DHT-lookups, each followed by local flooding, for

resolving a single query.

���� ����� ���� �����
���� ����� ��	
 ����	��

������

������ ������

������ �������� �� !"
#$%&'() *(+,-.)&

������

������ ������

/012�� �������� ���3"
4-%%(.5 *(+,-.)&

6���78

6���79

6���786:

6;
6< 6<6;

6:

=����=>

Figure 1.4: Problem with numeric distance based routing

For example, consider patterns P1 = 101001, P2 = 101000 and P3 = 001001, and a

query Q = 001000 matching all of these patterns (see Figure 1.4). Using numeric distance

P3 is far apart from P1 and P2. Thus a DHT-scheme will assign P3 to a peer that is far

apart (in overlay hops) from the peer responsible for P1 or P2 . This will require two

independent DHT lookups to resolve the query. On the other hand, pair-wise hamming

distance between P1, P2 and P3 is only 1 and they will be stored on the same peer with

high probability, if hamming distance based clustering is used.

Unstructured search techniques, such as Flooding [4] and Random walk [103], can be

used to solve the DPM problem, but the generated search traffic is proportional to the

number of peers in the overlay; moreover, there is no guarantee on search completeness.

Hence adopting a unstructured search technique is not a good choice for solving the DPM

Introduction 9

problem. Semi-structured search techniques [99][44] can also be used to solve the DPM

problem. Compared to unstructured techniques, semi-structured techniques generate

lower volume of search traffic. Yet, the cost of join and leave is higher in semi-structured

techniques than unstructured techniques and no guarantee on search completeness is

provided.

1.3 Contributions

This thesis focuses on the search problem in large scale distributed systems characterized

by two major properties: transient population of networked nodes and heterogeneity in

nodes’ capabilities. Flexibility in query expressiveness, efficiency in generated search traf-

fic, completeness in search results and resilience to node failures are the most important

characteristics of a search mechanism in such environments. The goal of this thesis is to

devise search mechanisms that can satisfy all of these requirements simultaneously, which

is not delivered by any of the existing search mechanisms. The major contributions of

this thesis are outlined below.

The Distributed Pattern Matching (DPM) Construct

Instead of working with a specific search problem, like keyword search or service discov-

ery, we attack the problem from a generic point of view. We abstract the search problem

in different application domains into a generic framework or problem formulation, called

DPM [14]. Among the four requirements of a search mechanism, flexibility deals with

query language semantics and the rest, i.e., efficiency, completeness, and resilience, re-

late to system performance and thus are implementation-specific. The DPM construct

encapsulates the flexibility requirement, and any solution to the DPM problem should

focus on the performance specific requirements.

To our knowledge, this is the first time the DPM problem is identified. We believe that

10 Efficient and Flexible Search in Large Scale Distributed Systems

this concept will aid in solving a number of other problems pertaining to P2P networking

research, including P2P databases, P2P semantic search and P2P information retrieval.

The Survey and The Taxonomy

Large scale distributed systems, including P2P file-sharing, service discovery and P2P

databases, share a common problem regarding search and discovery of information. This

commonality stems from transitory peer population and volatile information content

in the networked nodes. Different search techniques proposed for these domains con-

tain many similarities. However there exists no survey consolidating these independent

research activities from these important application domains. In this thesis we have pre-

sented a survey of existing search techniques in all these domains, which we believe will

help in better understanding of the problem.

In addition, we have identified the main components in existing search mechanisms

and classified them based on the characteristics of these components. The taxonomy

presented in this work is simple and generic, and encompasses the majority of search

techniques in large scale distributed systems.

Distributed Pattern Matching System (DPMS)

This thesis presents DPMS [16] (Chapter 3), for efficiently solving the DPM problem.

DPMS uses replication and aggregation for distributing patterns advertised by the peers

across the P2P overlay. In DPMS, peers collaborate to form a lattice-like indexing hier-

archy. This hierarchy is used to efficiently route queries to target peer(s).

DPMS has several properties of an unstructured P2P system. First, it supports

flexible queries involving partial and multiple keywords. Second, placement of content

or index is not controlled by the system. Third, it can exploit the heterogeneity in

peer capabilities. Unreliable and less capable peers contribute to less important parts

Introduction 11

of the indexing hierarchy, while reliable (long lived) and powerful (in terms of storage

and connection speed) peers take responsibility of more important parts of the indexing

hierarchy.

To avoid flooding and to facilitate efficient query routing, DPMS uses the indexing

hierarchy. The philosophy behind this architectural choice can be justified as follows.

The highest level of an indexing hierarchy of height O(log N
log N

) has O(log N) peers,

where N is the total number of peers in the system. Peers at any level collectively cover

all the leaf peers (hence all the advertised patterns) residing at the bottom level of the

indexing hierarchy. In other words, we can check all the patterns at the bottom level by

probing only O(log N) peers at level O(log N
log N

). This implies that we can find κ leaf

peers, containing match for a given query pattern, in

O(log N + ξκ log
N

log N
) (1.1)

probes. The O(log N) probes constitute the cost of flooding the topmost level, and

O(ξκ log N
log N

) is the cost of reaching the κ matching leaf peers along the indexing hi-

erarchy of height O(log N
log N

). The term ξ depends on the amount of “false matches”

introduced by the lossy aggregation scheme, described below.

In such a hierarchy the topmost level peers will receive high volume of queries and will

become performance bottlenecks. Moreover, fault-tolerance characteristics of the system

will be poor; failure of any peer along the indexing hierarchy will result into unreachable

leaf peers. To overcome these problems, DPMS uses peer replication at each level of the

indexing hierarchy. The number of replicated peer groups increases exponentially as we

move up along the indexing hierarchy.

With such a replication strategy, the network and storage overhead for index main-

tenance will be high. To reduce the impact of replication overhead, advertised patterns

are aggregated using a don’t care-based lossy aggregation scheme at each level of the

indexing hierarchy. The proposed aggregation scheme allows the incorporation of mul-

12 Efficient and Flexible Search in Large Scale Distributed Systems

tiple advertised patterns or aggregates in a single aggregate, while making it possible

to perform matching of a query pattern against the aggregates. This lossy aggregation

scheme introduces chances of “false matches” during the query routing process, and is

reflected by the term ξ in Equation (1.1). Simulation results indicate that aggregation

reduces storage overhead by 45− 60%, while securing query routing efficiency very close

to the ideal case, i.e., without aggregation.

Plexus

Plexus [15, 17] is one of the most important contributions of this thesis. It is a struc-

tured search technique based on the application of Error Correcting Codes (ECC) [76]

for routing in overlay networks. A structured search mechanism for efficiently solving

the DPM problem would require to partition the pattern space based on Hamming Dis-

tance. Coding theory literature investigates error correcting codes that essentially strive

to partition the pattern space.

The novelty of Plexus lies in the use of Hamming distance based routing, in contrast

to the numeric distance based routing adopted in traditional DHT-approaches. This

property makes subset matching capability intrinsic to the underlying routing mechanism.

Plexus provides an efficient mechanism for advertising a binary pattern, and discovering

it by using any subset of its 1-bits. It has a partially decentralized architecture involving

superpeers.

The routing strategy devised for Plexus is based on the Generator matrix of a linear

binary code. The routing efficiency in Plexus is provable and holds linear relationship

with the size of the code being used. The number of links maintained by each indexing

peer scales logarithmically with the number of peers. There exists multiple routing paths

between any two pair of peers. This allows improved fault resilience. The replication

strategy adopted in Plexus helps in distributing network load and improves availability.

Introduction 13

In this thesis we have implemented Plexus, using the Extended Golay code [65].

However the theoretical model presented in Chapter 4 can be used with other linear codes.

As proof of concept, we have also developed a prototype implementation of the Plexus

protocol for solving partial keyword search problem and have evaluated its performance.

As demonstrated by the simulation results, for a network of about 20000 superpeers,

Plexus needs to visit only 0.7% ∼ 1% of the superpeers to resolve a query and can discover

about 97% ∼ 99% of the advertised patterns matching the query. For achieving this level

of completeness, the query needs to contain only 33% of the trigrams from an advertised

pattern that it should match against. Plexus delivers a high level of fault-resilience by

using replication and redundant routing paths. Even with 50% failed superpeers, Plexus

can attain a high level of search completeness (about 97% ∼ 99%) by visiting only

1.4% ∼ 2% of the superpeers.

Comparative Evaluation

The DPM problem can be solved using existing structured and unstructured search tech-

niques. However, none of these techniques can simultaneously fulfill all of the four re-

quirements for a good search mechanism: namely efficiency, flexibility, completeness and

robustness. To justify this claim we have compared DPMS and Plexus against represen-

tative search techniques from both structured and un-structured paradigms. We have

compared against unstructured search techniques like Flooding and Random walk. We

have used a simple inverted indexing technique on top of Chord routing as a representa-

tive of the structured paradigm. The experimental results prove that DPMS and Plexus

exhibit better performance characteristics than other search techniques in solving the

DPM problem. This comparative evaluation provides us with a better insight of the per-

formance of different search techniques in different circumstances, e.g., growth in network

size, variation in query information content, levels of peer failure etc.

14 Efficient and Flexible Search in Large Scale Distributed Systems

1.4 Thesis Organization

The focus of this thesis is on the design and evaluation of flexible and efficient search

techniques as a solution to the DPM problem. Applicability of these techniques in P2P

keyword search has also been demonstrated. The rest of this thesis is organized as follows.

Chapter 2: Background and Related Work

This chapter is divided into three parts. First part of Chapter 2 presents a discussion of

large scale distributed systems, with a particular focus on P2P content sharing, service

discovery and P2P databases, followed by the anatomy of Bloom-filters. Second part of

this chapter provides a survey of existing approaches for distributed search, and compares

these systems against DPMS and Plexus. Finally, in the third part, we have identified the

integral components of a distributed search mechanism based on the foregoing discussion

of large-scale distributed systems. This provides a context for the discussions in the

subsequent chapters.

Chapter 3: Distributed Pattern Matching System

Chapter 3 presents the detailed design of DPMS - a semi-structured solution to the

DPM problem. We start with an overview of the indexing hierarchy, followed by the

explanation of the aggregation process. Then we focus on the routing and replication

mechanisms in DPMS. Topology maintenance protocols like handling node join and fail-

ure are also explained. This chapter also includes mathematical models for estimating

query routing efficiency, false match probability and advertisement overhead. Simulation

results describing different performance aspects of DPMS are also presented.

Introduction 15

Chapter 4: Plexus

Chapter 4 presents Plexus - a structured solution to the DPM problem. We start this

chapter with a brief introduction to linear binary codes and the extended Golay code.

Then we present the theoretical model of Plexus, where we explain the theory of applying

ECC to P2P routing. Then we explain the architecture of Plexus along with the protocols

for routing and topology maintenance. Finally, we present the simulation results obtained

from the application of Plexus to partial keyword search utilizing the extended Golay

code.

Chapter 5: Evaluation

Chapter 5 presents a comparative performance evaluation of DPMS and Plexus against

three representative search techniques from unstructured and structured paradigms.

Structured techniques cannot efficiently solve the exact DPM problem. Hence, we had to

use a DHT-application that can be mapped to the DPM construct, here partial keyword

search, to compare the performance. We adopt a simple inverted indexing technique

(i.e., 3-gram hashing and mapping to key) in conjunction with Chord as the underlying

routing mechanism. On the other hand, we used Flooding and Random-walk as repre-

sentatives for the unstructured paradigm. We present simulation results for assessing

efficiency, flexibility, completeness and robustness of the compared search techniques.

Chapter 6: Conclusion and Future Research

Concluding remarks are presented in Chapter 6. In this thesis, we presented two search

techniques: DPMS - a semi-structured search mechanism, and Plexus - a structured

search mechanism. The relative advantages and disadvantages of these two techniques

are presented in this chapter. This chapter also presents our future research goals and

possible research directions.

Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides a context for the research work presented in the subsequent chap-

ters. In particular, this chapter highlights the properties and functional behavior of the

distributed systems of interest to us. Since Bloom filter [30] is used by both DPMS

and Plexus for index construction, we have included the anatomy of Bloom filter in this

chapter. We also identify the components of a distributed search mechanism and present

a classification of different distributed search techniques.

2.2 Chapter Organization

This chapter is organized into three sections. Section 2.3 presents the characteristics

of large scale distributed systems, with a particular focus on query and advertisement

in P2P content sharing systems, service discovery systems and P2P databases systems.

This section also presents the anatomy of the Bloom filters. In Section 2.4 we present

prominent research works from the three application domains and compare these systems

against DPMS and Plexus. Section 2.5 explains the desirable properties of a distributed

16

Background and Related Work 17

search mechanism. Finally, in Section 2.6 we identify the integral components of a dis-

tributed search mechanism based on the foregoing discussion of large-scale distributed

systems and present a classification of the search techniques in these domains.

2.3 Background

2.3.1 Large-scale Distributed Systems

Networks of tens or hundreds of thousands of loosely coupled devices have become com-

mon in today’s world. The interconnection networks can exist in physical or logical

dimensions as well as wired and wireless domains. The Internet is the largest distributed

system that connects devices through TCP/IP protocol stack. On top of this network

there exists many logical overlay topologies, where networked nodes federate to achieve

a common goal. Examples of such federations include the Domain Name resolution Sys-

tem (DNS), the World Wide Web (WWW), content sharing P2P systems, world wide

service discovery systems and emerging P2P database systems. Among these systems,

the WWW and the DNS are mature enough and are characterized by relatively static

population of hosts. Content dynamism is also much lower in these two systems, com-

pared to P2P and service discovery systems. Centralized and clustered search techniques

(e.g., web crawlers and proxy caches) work well for a network of relatively stable hosts (or

web sites) or domain name resolvers. Decentralized (control) and distributed (workload)

search techniques are required for a network composed of transient populations of nodes

having intermittent connectivity and dynamically assigned IP addresses.

This thesis is devoted to the design of decentralized and distributed search techniques

for large-scale distributed systems with transient population of nodes. In the following, we

will highlight the characteristics of large scale distributed systems in three representative

domains: P2P content sharing, service discovery and P2P databases. The identifying

18 Efficient and Flexible Search in Large Scale Distributed Systems

properties of these application domains include:

Population dynamism : Transient population of nodes mandates the routing mech-

anism to be adaptive to failures. Redundant routing paths and replication can

improve availability and resilience in such environments.

Content dynamism : Frequent arrival of new content, relocation (e.g., transfer) of the

existing contents and shorter uptime of peers (compared to internet hosts) are the

main causes of content dynamism in these systems. Users in these systems often do

not have the exact information (e.g., exact filename, or Service Description) about

the content they are willing to discover. Rather most of the queries are partial or

inexact, which requires the search mechanism to be flexible.

Heterogeneity : In these systems participating population of nodes display wide vari-

ation in capacity, e.g., computing power, network bandwidth and storage. This

mandates the index information and routing traffic to be distributed based on

nodes’ capacities.

The rest of this section presents the characteristics of P2P content sharing, service

discovery and P2P database systems. We also explain the nature of queries and adver-

tisements in these systems.

2.3.1.1 Peer-to-Peer Content Sharing

Content (e.g., file) sharing is the most popular P2P application. A classification of the

topologies adopted in various P2P content sharing systems can be found in [40]. In [22], a

survey and taxonomy of content sharing P2P systems are presented. All content sharing

P2P systems offer mechanisms for content lookup and for content transfer. Although

content transfer takes place between two peers, the search mechanism usually involves

intermediate entities. To facilitate effective search, an object is associated with an index

Background and Related Work 19

����

���� ����

��������

����������	��

����
����

���� ��������

����

����
����

��������

����
����

���� ��������

����

����

����
����

����

���� ������������

����

����

���� ��������

��������

����

��������

��������

����

���������������� !�"���# $�%��������������� &�������#

'�������()%��������������� *�+�,#

Figure 2.1: Content sharing P2P architectures

file that contains the name, location, and sometimes a description (or keywords) of the

content. Search for a content typically involves matching a query expression against the

index files. P2P systems differ in how this index file is distributed over the peers (ar-

chitecture) and what index scheme is used (i.e., index structure). From an architectural

point of view (see Figure 2.1), content sharing P2P systems can be centralized, decen-

tralized, or partially-decentralized [22]. Centralized P2P systems are characterized by

the existence of a central index server, whose sole task is to maintain the index files and

facilitate content search. Napster [8] belongs to this category. Centralized P2P systems

are highly effective for partial keyword search, but the index system itself becomes a

20 Efficient and Flexible Search in Large Scale Distributed Systems

bottleneck and a single point of failure. Decentralized architectures remedy this prob-

lem by having all peers index their own local content, or additionally cache the index of

their direct neighbors. Content search in this case consists in flooding the P2P network

with query messages (e.g., through TTL-limited broadcast in Gnutella [4]). A decen-

tralized P2P system such as Gnutella is highly robust, but the query routing overhead

is overwhelming in large-scale networks. Recognizing the benefit of index servers, many

popular P2P systems today use partially-decentralized architectures, where a number

of peers (called superpeers) assume the role of index servers. In systems such as KaZaA

and Morpheus, each superpeer has a set of associated peers. Each superpeer is in charge

of maintaining the index file for its peers. Content search is then conducted at the super-

peer level, where superpeers may forward query messages to each other using flooding.

The selection of superpeers is difficult in such a scheme, as it assumes that some peers in

the network have high capacity and are relatively static (i.e., available most of the time).

A newer version of Gnutella [146] also uses this approach.

The indexing scheme used by content sharing P2P systems can be categorized as

unstructured, semi-structured, or structured [22]. Unstructured P2P systems use flat

index files, where a index file has no relation to other index files. Napster, Gnutella, and

KaZaA/Morpheus [5] belong to this category. Semi-structured P2P systems, such as

Freenet [42] and JXTA [34], use a local routing table at each peer. A search is based

on filenames that are hashed to binary keys. The query is routed at each peer to the

closest matching key found on the local routing table. To prevent infinite querying,

a time-to-live (TTL) value is used. Such mechanism is effective when the content is

well replicated over many peers. However, it is virtually impossible to enforce data

consistency for file updates. Structured P2P systems are specialized in exact matching

queries using fully distributed routing structure. Examples of this approach include P2P

systems that use distributed indexing and querying schemes, such as Chord [132], CAN

Background and Related Work 21

(Content Addressable Network) [118] and Tapestry [150].

Advertisements in these systems mostly contain the filename and author-name. For

example a movie file can be advertised as “The Lord of the Rings - The Two Towers -

2002 (Extended Edition) DVDrip.avi”. For a user it is very unlikely to know the exact

name of the advertised file. Rather the user specifies some keywords that may be present

in the advertised file name. For example a typical query for the above movie would be

“Lord of the Ring Two Tower”. Note the keywords “Ring” and “Tower”; they do not

contain the “s” as contained in the advertised keywords. This mandates the support for

partial keyword matching in P2P content sharing systems.

2.3.1.2 Service Discovery

�������

�����	

����	���
����	���

����	���

�����

����� ���� �� ��������
�� !���� " ���#$��

%����

&��	'	�(����)
*��# #� ���� +

�� !���
,��� �-����

%�)�'	�(���

�������
�����	

.
/

0

1

2

3� ���$ �� !���
,��� �-����

Figure 2.2: Service discovery: Generic architecture and steps

Service discovery is an integral part of any service infrastructure. A large-scale service

infrastructure requires a service discovery system that is open, scalable, robust and effi-

22 Efficient and Flexible Search in Large Scale Distributed Systems

cient. Most of the service discovery systems rely on a three-party architecture, composed

of clients, services and directory entities. Directory entities gather advertisements from

service providers and resolve queries from clients. The generic service discovery mecha-

nism can be viewed as a five-step process (see Figure 2.2) [18]; (1) bootstrapping, where

clients and service providers attempt to initiate the discovery process via establishing

the first point of contact within the system, (2) service advertisement, where a service

provider publishes information (a Service Description containing a list of property-value

pairs) to a directory entity about the provided service (3) querying, where a client looks

for a desired service by submitting a query (usually a partial Service Description) to a

directory entity, (4) lookup, where the directory entity searches the network of directory

entities for all Service Descriptions matching the query and (5) service handle retrieval,

the final step in the discovery mechanism, where a client receives the means to access the

requested service. Some of these steps may be omitted in various discovery approaches.

Some of the discovery approaches are based on two-party (client-server) architecture

without any directory infrastructure.

Directory architectures adopted by different service discovery approaches can broadly

be classified as centralized and decentralized (see Figure 2.3) [18]. In a centralized archi-

tecture, a dedicated directory entity or registry maintains the whole directory information

(as in centralized UDDI [141]), and takes care of registering services and answering to

queries. In decentralized architectures, the directory information is stored at different

network locations. Decentralized systems can be categorized as replicated, distributed

or hybrid. In the replicated case, the entire directory information is stored at different

directory entities (as in INS [13]). In the distributed case, the directory information is

partitioned, and the partitions are either stored in dedicated directory entities (DA) (as

in SLP [70], Jini [136] and SSDS [50]) as per a three-party model or cached locally by the

service providers in the system (e.g., UPnP [106] and SLP in DA-less mode), according

Background and Related Work 23

��������� ���	�����
���

����������
������

������������

������
������

�
�

����������
�����

��������� � ��
��!"# $��#
�����

!���� ���	�
����# �!" �%� ���

�������
���

�� ����� �������

����� �� ����� ��������� &

��'��� �� ����� ��������� ��������� � ��

���(��� ���(����

!� ��

)
�

�
)

Figure 2.3: Taxonomy of the directory architectures

to a two-party model. Finally, in the hybrid case, the system stores multiple copies of

the entire directory information without assigning the entire registry to a single directory

entity (as in Twine [27]).

In large-scale networks, a centralized directory becomes a performance bottleneck and

a single point of failure. Consistency of the replicas is a major issue in the replicated archi-

tecture (like INS), since maintaining consistent replicas is usually bandwidth-consuming.

On the other hand, when the directory information is distributed, e.g., partitioned among

dedicated directory entities, the failure of one of them leads to the unavailability of part

of the directory information. The fully distributed two-party architecture attempts to

remedy all these issues, however these systems generally do not scale well, since they use

24 Efficient and Flexible Search in Large Scale Distributed Systems

multicast-like communications which are expensive in terms of bandwidth. Hybrid archi-

tectures seem to offer the best compromise between bandwidth consumption, scalability,

and fault-tolerance.

�����������	�

�����������������������
�������� !" !#$$% &'#(
)��#!��*"+,---.
����'"!'/�
�#*&/#&�"0�
0#��'� �1�" ��&#�% 23% 4.
567�8�9:;�8<=>9���?;;<�9@AB7C

DE��F

�����������������������
�������� !"&'#(
0#��'� �1�"23

Figure 2.4: Example advertisement and query in Service Discover systems

Figure 2.4 gives an example of a generic advertisement and a query in service dis-

covery systems. In these systems a service is advertised using a list of descriptive

property-value pairs, called a Service Description. A Service Description typically con-

tains service type (e.g., Service-type=service:print), service invocation information (e.g.,

URL=diamond.uwatreloo.ca/PCL8) and service capabilities (e.g., Paper-size= legal, A4,

B5). In most cases a Service Description is instantiated from a Service Schema, which

contains meta-information regarding the Service Descriptions for a given class of service

(e.g., print service or service:print). A Service Schema governs the allowable properties

and their types (e.g., string, integer, float, etc.) within the Service Descriptions of a

given class of services. In most service discovery systems it is assumed that the available

Service Schemas are globally known.

Queries in these systems (see Figure 2.4) usually contain the requested service type

and a list of required capabilities of the service (e.g., Paper-size=A4). The list of capabil-

ities provided in a query is a subset of the capabilities list provided in the advertisements

it should match against. The result of a query consists of a list of Service Descriptions

Background and Related Work 25

matching the query.

2.3.1.3 Peer-to-Peer Databases

Peer-to-peer Database Systems (PDBS) have been investigated, more recently, following

the success of P2P file-sharing. A P2P database system can be thought of as a data

sharing network built on top of a P2P overlay substrate. Search in P2P database sys-

tems demands more flexibility than that required by the P2P file-sharing systems. This

requirement stems from the existence of semantic (schema) information associated with

the shared data. Most of the research works focus on building an additional layer on top

of the existing P2P search techniques.

Though PDBSs evolved as a natural extension of Distributed Database Systems

(DDBS) [113], they have a number of properties that distinguish them from the DDBS

and traditional Database Management Systems (DBMS) [117]. Unlike DDBS, PDBS

has no central naming authority, which results into heterogenous schemas in the system.

Due to the absence of any central coordination and the large-scale evolving topology, a

peer knows about only a portion of the available schemas and data. This mandates a

mechanism (e.g., ontology) for unifying semantically close schemas. In a DDBS, arrival

or departure of nodes is performed in a controlled manner, which is not true for PDBSs.

Finally, in contrast to DDBS, a peer in a PDBS has full control over its local data.

In PDBS, semantic mapping of schema is a challenging problem. It requires inter-

operation between heterogenous data models. XML [130] is used as the defacto standard

for this purpose. A survey on the use of XML in PDBS can be found in [92]. In PDBS,

XML is used in two ways. Firstly, XML is used for representing data and data models

(i.e., schema information). Secondly, XML is used to represent semantic relationships

among heterogeneous data models at three different levels: schema level, element level

and data level. These levels of granularity also influence the indexing mechanism adopted

26 Efficient and Flexible Search in Large Scale Distributed Systems

in these systems.

����� ���� ���	�

	����� ������

��	�	��
��	�� ����

���	���

��� ������

�

�

�

�

Figure 2.5: Functional layers in a PDBS system

Figure 2.5 presents the possible functional layers in a PDBS. Each peer in the system

has its own local data model independent of the other peers’ data models. The process

of translating a local query to other peers’ data models is performed by the semantic

mapping layer at different granularities. The third layer is optional, and can maintain

indices at different granularities. Finally, the fourth layer is usually one or a combination

of the routing mechanisms present in traditional file sharing P2P systems.

Many research works on PDBS assume the existence of an underlying P2P substrate

for efficient and flexible query routing, and concentrate on higher level issues including

semantic mapping between heterogenous schemas and distributed query processing and

optimization. In this section, we will consider only those research activities on PDBS

that have focused on the issues and challenges related to the query routing mechanism.

Advertisement and query in PDBS are more complicated than that in P2P content

sharing and service discovery systems. Figure 2.6 depicts an example of an XML adver-

tisement which contains information about two books and one magazine. A tree repre-

sentation of the corresponding XML Schema [57] has been presented in Figure 2.6(b).

Analogous to Service Schema, an XML Schema contains meta-information regarding a

Background and Related Work 27

���������� �	
�� ��������
 ���
����� ��� �
����������	����

��������
�� ���!"�#��$�
�%&����'�(
�
�)���!"�#��*���%���'�(
�
��+��,�-�
���� .��
��� �%/�0�

�%������
�1� 2� ����
����345�67�%	���
�

�%���8�
����� ��� �
���
9����8��

��������
�� ���!"�#��:���%&����'�(
�
�)���!"�#��*���%���'�(
�

�%������
�	���
�;;�%	���
�

�%���8�
�#�<�= "��

�"�#��-�(
��%�(
�
�1� 2� ����
����>?5�@�%	���
�

�%(�A��
�
�%���8����
�

(a) An XML advertisement

���������

��	�
�������

 ���� ����

������

�����
����

� �����
����

�����

 ����

(b) Tree representation

Figure 2.6: Advertisement in PDBS

class of XML documents. However, the syntax used for describing XML documents and

XML Schema are standardized and widely used, compared to the variations in Service

Description and Service Schema definition syntaxes used by different service discovery

systems.

The most popular query syntax used in PDBS is XPath. Figure 2.7 presents two

examples of XPath queries based on the advertisement presented in Figure 2.6. The first

query finds all authors having at least one award. The second example finds all books

����� ����	

 ��������������

 ��������������������������������� !�

Figure 2.7: XPath query examples

28 Efficient and Flexible Search in Large Scale Distributed Systems

for which last-name of the author is Bob.

2.3.2 Bloom Filters

A Bloom filter is a space-efficient probabilistic data structure that is used to represent a

set. Bloom filters can support set membership test operations with a small probability

of false (erroneous) positives. Bloom filters and their variants are used to solve sev-

eral network problems, due to their compact representation. For network applications,

bandwidth saving achieved with Bloom-filters outweighs the drawback of false positive

in membership test. A comprehensive list of such applications can be found in [33].

� � � � � � � � � � � � � � � �

����� �����	 	�
	���������

��
�� ���

� � � � � � � � � � � � � � � ����������

�

�� �� ��

� �

 !"#!$%&'()!%)
*	+�
�����,�- � .�
/���
�����,�-0 .�
*	+� ��1��,�-2 3�

�4 5

6789 :7;
<�1��=

Figure 2.8: Bloom filter: Construction and membership test

The algorithm for Bloom filter construction is simple. A Bloom filter, is represented

as an m-bit array. ~ different hash functions (h1, h2, . . . , h~) are also required. Each of

these hash functions should return values uniformly distributed over the range of [0..m).

In an empty Bloom filter all of the m-bits are set to 0. An element (a string or keyword)

Background and Related Work 29

si of a set S, to be inserted into a Bloom filter, is hashed with the ~ hash functions and

corresponding ~-bits in the array are set to 1. To test set membership for an element,

it is hashed with the same ~ hash functions to obtain ~ array positions. If all of these

~-bits are 1, then the element is a member of the set represented by the Bloom filter with

high probability, otherwise it is not. As depicted in Figure 2.8, the possible outcomes of

the membership test operation are as follows:

1. True positive: The set contains the element and membership test operation re-

turns true.

2. True negative: The set does not contain the element and membership test oper-

ation returns false.

3. False positive: The set does not contains the element but membership test oper-

ation returns true.

It should be noted that the fourth case, i.e., the false negative, where the set

contains the element but the test membership test operation returns false, will never

occur. False positive probability, say ε, for a Bloom filter containing ω elements can be

estimated as follows:

ε =

(
1−

(
1− 1

m

)ω~
)~

here, p = 1−(1−1/m)ω~ is the probability that a particular bit is set to 1. False positives

probability is minimized when ~ = ln 2 · (m/ω). For example with m
ω

= 6 and ~ = 3 the

probability of false positives is about ε ≈ 0.06. For a well designed Bloom filter with low

false positive rate, about 33 ∼ 50% of the bits are equal to 1.

Now we focus on an important property of the Bloom filters. Let B(X) denote the

Bloom filter representation of set X. For any two sets S1 and S2 we can get

B(S1 ∪ S2) = B(S1) ∨ B(S2) (2.1)

30 Efficient and Flexible Search in Large Scale Distributed Systems

In other words, the Bloom filter obtained from the union of two sets is the same as the

bit-vector obtained from the bit-wise OR of the individual Bloom filters representing the

constituent sets. This property can be generalized for any number of sets. We will use

this property of Bloom filters for the aggregation process in DPMS.

2.4 Related Work

This section is organized into three subsections corresponding to three application do-

mains: P2P content sharing, service discovery and PDBS. We consider the research

works that focused on solving some variant of the partial matching problem that can be

mapped to the DPM construct. For example we do not consider here DHT techniques,

like Chord [132], CAN [118], Pastry [121], Kademlia [105] etc., since these techniques

focus on exact matching and hence are not related to the problem at hand. Rather we

discuss the research works like Twine [27], Squid [127], pSearch [138] which strive to

extend DHT-functionality for achieving partial matching capability.

2.4.1 Peer-to-Peer Content Sharing

2.4.1.1 Structured techniques

DHT-based Solutions

In general DHT-techniques (Chord [132], CAN [118], Tapestry [150]) are not suitable for

solving the partial keyword matching problem (and the DPM problem) mainly for two

reasons. Firstly, DHT-techniques use numeric distance based clustering of patterns which

is not suitable for pattern matching and results into multiple DHT-lookups per search

(see Section 1.2). Secondly, DHT-techniques cannot handle common keywords problem

[102] well. Popular keywords (or η-grams like ”tion” or ”ing”) can incur heavy load on

the peers responsible for these keywords (or η-grams); as a result, the distribution of load

Background and Related Work 31

will become unbalanced among the participating peers.

Inability to support partial keyword matching is considered a handicap for DHT-

techniques. In the last few years a number of research efforts have focused on extending

DHT-techniques for supporting keyword search. Most of these approaches adopted either

of the following two strategies:

• Build an additional layer on top of an existing routing mechanism, like Chord [132],

CAN [118] or Tapestry [150]. The aim is to reduce the number of DHT lookups per

search by mapping related keywords to nearby peers on the overlay. This strategy

is proposed in a number of research works including [85], [102], [127] and [138] .

• Combine structured and unstructured approaches in some hierarchical manner to

gain the benefits of both paradigms. Few research works focus on this strategy

including [59], [82] and [137].

However none of these approaches achieve satisfactory performance for all of the

design requirements described in Section 2.5.

A generic inverted index on top of a DHT-based network for solving partial-

keyword matching has been proposed in [72]. A keyword can be fragmented into η-grams,

and each η-gram can be hashed and stored at the responsible peer. This approach can

solve partial keyword matching problem in O(ω log N) time, where ω is the number of

η-grams in a query and N is the number of peers in the system. However, solving the

generic DPM problem with this approach will require O(2λ log N) time, where λ is the

number of 1 bits in a query (or advertisement) pattern.

Keyword fusion, presented in [102], is also an inverted indexing mechanism on

top of Chord. It supports keyword search only. A document advertised with keywords

{k1, k2, . . . , kt} is routed to peers responsible for keys h(k1), h(k2), . . . , h(kt), where h(·) is

the DHT hash function. To reduce the number of DHT-lookups per search, a system-wide

dictionary of common keywords is maintained. A query is routed using the most specific

32 Efficient and Flexible Search in Large Scale Distributed Systems

keyword and then filtered using the more common keywords specified in the query. In

contrast to DPMS and Plexus, advertisement and replication overhead in this system

is proportional to the number of keywords associated with the document. This fact is

also reflected in the comparative evaluation presented in Chapter 5. A similar inverted

indexing mechanism for web page indexing has been proposed in [148].

Joung et al. [85] proposed a distributed indexing scheme, build on a logical, d-

dimensional hypercube vector space over a DHT network (they used Chord for their

experiment). In this scheme each advertised object is mapped to a d-bit vector according

to its keyword set (similar to Bloom filter construction). They treat d-bit vectors as points

in d-dimensional hypercube. No restriction on the mapping of a d-dimensional point to

a 1-dimensional key space (required for Chord) has been specified. An advertisement is

registered to the peer responsible for the d-bit advertisement vector. A query vector (say

Q) is computed in the same manner as the advertisement vector. A query is routed to

the peers in the Chord ring that are responsible for a key (say Pi) that is a superset of

the query vector Q.

The work by Joung et al. [85] and the inverted indexing method presented in [102]

represent the two extremes of advertisement and query traffic trade off. In [85], an

advertisement is registered at one peer (responsible for the advertised bit vector) and

a query is routed to all possible peers that may contain a matching advertisement. In

turn, in [102] an advertisement is registered at all the peers responsible for the advertised

keywords and the query is routed to the peer responsible for the most uncommon keyword

specified in the query.

pSearch [138] utilizes Information Retrieval (IR) techniques on top of CAN (Content-

Addressable Network) for facilitating content-based full-text search. Keywords associated

with an advertised document (or query) are represented as unit vectors. IR techniques like

vector space model (VSM) and latent semantic indexing (LSI) are used to compute a unit

Background and Related Work 33

vector from the keyword list specified with a document (or query). Similarity between

a query and a document (or between two documents) is measured using the cosine (i.e.,

vector dot product) of the vector representation of the corresponding documents or query.

Semantically close documents and queries are expected to be mapped to geometrically

close point vectors in the Cartesian space. Now the semantic point vectors from LSI or

VSM are treated as geometric points in the Cartesian space of CAN. CAN partitions a

d-dimensional, conceptual, Cartesian space into zones and assigns each zone to a peer.

However this mapping technique uses the same dimensionality for LSI space and CAN.

Thus it needs to have a priori knowledge of the possible keywords (or terms) in the whole

system. In reality there can be hundreds of possible keywords, and CAN performance

degrades at higher dimensions. Moreover pSearch supports multiple keywords search

only, whereas Plexus and DPMS support multiple partial-keyword queries.

Squid [127] has been designed to support partial prefix matching and range queries

on top of DHT-based structured P2P networks. In this system Hilbert Space-filling

Curve (HSFC) [122] has been used on top of Chord. HSFC is a special type of locality

preserving hash function that can map points from a d-dimensional grid (or space) to

a 1-dimensional curve in such a way that the nearby points in d-dimensional space are

usually mapped to adjacent values on the 1-dimensional curve. Squid converts keywords

to base-26 (for alphabetical characters) numbers. A d-dimensional point is constructed

from d keywords specified in the query or advertisement. Then a d-dimensional HSFC

is used to map a d-dimensional region (i.e., set of points) specified by the query into a

set of curve segments in 1-dimension. Finally, each segment is searched using a DHT-

lookup followed by a local flooding. Squid supports partial prefix matching (e.g., queries

like compu* or net*) and multi-keyword queries; however, Squid does not have provision

for supporting true inexact matching of queries like *net*, as supported by Plexus and

DPMS. Another major problem is that the number of (partial) keywords specified in a

34 Efficient and Flexible Search in Large Scale Distributed Systems

query or advertisement is bounded by the dimensionality d of the HSFC in use.

In [82] a hybrid approach to keyword search, named MKey, has been proposed.

Architecturally there exists a DHT (here Chord) backbone. A backbone node in the

Chord ring works as a head for a cluster of nodes, organized in an unstructured fashion.

Search within a cluster is based on flooding. On the other hand, Bloom filter is used

as index in the backbone. But DHT techniques do not allow Hamming distance based

indexing as required for matching Bloom filters. For allowing pattern matching on Chord,

the following strategy is used. Nodes on the Chord ring are allowed to have an ID with at

most two 1-bits. An advertisement pattern, say 01010111, is advertised to peers 01010000,

00000110 and 00000001; i.e., DHT-keys are obtained from an advertisement pattern by

taking pairs of 1-bits in sequential order from left to right. To construct DHT-keys from

a query pattern, say 01010011, only the leftmost three 1-bits are used. In this example

the 1-bits at 2nd,4th and 7th positions. The DHT-keys are obtained by taking the 1-bit

in center position (here 4th) and another bit within the left position (here 2nd) and the

right position (here 7th). Hence for the query pattern 01010011, generated DHT-keys are

01010000, 00110000, 00011000, 00010100 and 00010010. The indexing scheme used in

this work is a good illustration of the weakness of DHT techniques in solving the DPM

problem, as explained in Section 1.2. Evidently the number of DHT-lookups per search

or advertisement depends linearly on the number of keywords and the size of the used

Bloom-filter. This can be more inefficient than simple inverted indexing mechanism for

inappropriate parameter settings. Besides, the backbone nodes may become performance

bottlenecks for the system.

Non-DHT Solutions :

There exists only a few non-DHT structured approaches to the search problem in P2P

networks. SkipNet [73] and SkipGraph [24] are prominent among them. Both of

these approaches use Skip List [115], which is a probabilistic data structure. A Skip

Background and Related Work 35

List consists of a collection of ordered linked lists arranged into levels. The lowest level

(i.e., level 0) is an ordinary, ordered linked list. The linked list in level i skips over some

elements from the linked list at level (i− 1). An element in level i linked list can appear

in level (i+1) linked list with some predefined, fixed probability, say p. Storage overhead

can be traded for search efficiency by varying p.

Search for an element say Q starts at the topmost level. Level i list is sequentially

searched until Q falls within the range specified by current element and next element in

the list. Then the search recurs to level i − 1 list from the current element until level 0

is reached.

In both SkipGraph and SkipNet, nodes responsible for the upper level elements of

the Skip List become potential hot spots and single points of failure. To avoid this

phenomena, additional lists are maintained at each level. This in turn increases the

degree of each node.

A multi-level indexing mechanism for keyword search based on SkipNet has been

proposed in [129]. However, none of these approaches can efficiently support partial

keyword search because the underlying data structure used by these techniques, i.e.,

Skip List, supports prefix matching only.

2.4.1.2 Non-structured Techniques

Unstructured systems ([4],[3]) identify objects by keywords. Advertisements and queries

are expressed in terms of the keywords associated with the shared objects. Structured

systems, on the other hand, identify objects by keys, generated by applying one-way hash

function on keywords associated with an object. Key-based query routing is much effi-

cient than keyword-based unstructured query routing. The downside of key-based query

routing is the lack of support for partial-matching semantics as discussed in the previous

section. Unstructured systems, utilizing blind search methods such as Flooding [4] and

36 Efficient and Flexible Search in Large Scale Distributed Systems

Random-walk [103], can easily be modified to support partial-matching queries, and in

general to solve the DPM problem. But, due to the lack of proper routing informa-

tion, the generated query routing traffic would be very high. Besides, there would be no

guarantee on search completeness.

Many research activities are aimed at improving the routing performance of unstruc-

tured P2P systems. Different routing hints are used in different approaches. In [39],

routing is biased by peer capacity; queries are routed to peers of higher capacity with

higher probability. In [140] and [146], peers learn from the results of previous routing

decisions and bias future query routing based on this knowledge. In [44], peers are orga-

nized based on common interest, and restricted flooding is performed in different interest

groups. Many research works ([39], [99], [146], etc.) propose storing index information

from peers within a radius of 2 or 3 hops on the overlay network. All of these techniques

reduce the volume of search traffic to some extent, but none provides guarantee on search

completeness.

Bloom filters are used by a few unstructured P2P systems for improving query rout-

ing performance. In [99] each peer stores Bloom filters from peers one or two hops away.

Three ways of aggregating Bloom-filters are also presented. Experimental results pre-

sented in [99] show that logical OR-based aggregation of Bloom filters is not suitable for

indexing information from peers more than one hop away. In [119] each peer stores a list

of Bloom filters per neighbor. The ith Bloom filter in the list of Bloom filters for neigh-

bor M summarizes the resources that are i − 1 hops away from neighbor M . A query

is forwarded to the neighbor with a matching Bloom filter at the smallest hop-distance.

This approach aims at finding the closest replica of a document with a high probability.

An approach similar to [119] has been presented in [96], which uses an exponentially

decaying Bloom filter for indexing neighbor content.

Background and Related Work 37

2.4.2 Service Discovery

Service discovery is another application area of the DPM problem. Many service discovery

systems rely on a three-party architecture, composed of clients, services and directory en-

tities. Directory entities gather advertisements from service providers and resolve queries

from clients. Major protocols for service discovery from industry, like SLP [70], Jini [136],

UPnP [106], Salutation [123], etc, assume a few directory agents, and do not provide

any efficient mechanism for locating Service Descriptions. Solutions from academia, like

Secure Service Discovery Service (SSDS) [50] and Twine [27], target Internet-scale ser-

vice discovery and face the challenge of achieving efficiency and scalability in locating

Service Descriptions based on partial information. There also exists a few discovery ar-

chitectures that address the inter-operability issue and try to achieve service discovery

capability across heterogeneous technology domains. Such approaches, including OSDA

(Open Service Discovery Architecture) [101], Meta Service Discovery [35], [20] and [93],

strive to achieve the conflicting goals of efficiency and flexibility as well. A survey of the

prominent service discovery mechanisms can be found in [18], while a survey on the nam-

ing and Service Description schemes used in service discovery techniques and in general

in distributed systems can be found in [19].

From an architectural point of view, Secure Service Discovery Service (SSDS) [50]

is the closest match to DPMS. Like DPMS, SSDS uses Bloom filters and aggregation,

and index distribution is through a hierarchy of indexing nodes. SSDS uses a tree-like

hierarchy for index distribution, in contrast to the lattice-like hierarchy used by DPMS.

Unlike DPMS, SSDS does not use any replication in the indexing hierarchy; as a result,

higher level nodes in SSDS index tree handle higher volumes of query/advertisment traffic

and the system is more sensitive to the failure of these nodes. Another major drawback of

SSDS, compared to DPMS, lies in its aggregation mechanism. SSDS uses bitwise-OR for

index aggregation. On the contrary, the don’t care based aggregation scheme, adopted

38 Efficient and Flexible Search in Large Scale Distributed Systems

in DPMS, retains unchanged bits from the constituent patterns and provides more useful

information during query routing.

Twine [27] uses a hierarchical naming scheme and relies on Chord as the underlying

routing mechanism. A resource is described using a name-tree, composed of the prop-

erties and values associated with the resource. Hierarchical relations between properties

are reflected in the tree, e.g., while describing the location of a resource, “room no.”

appears as a child of the “building” in which it resides. Twine generates a set of strands

(substrings) from the advertisement or query (which are expressed in XML format), com-

putes keys for each of these strands, and finally performs search or advertisement using

these keys. The number of DHT-lookups increases with the number of property-value

pairs in the advertisement (or query) and consequently the amount of generated traffic

becomes high. Load-balancing is another major problem in this system. Peers responsible

for small or popular strands become overloaded, and the overall performance degrades.

The stranding algorithm in Twine is designed to support partial prefix matching in a

name-tree. This problem can be easily mapped to the DPM problem. Strands of differ-

ent lengths can be hashed into a Bloom filter, which can be used as the signature of a

name-tree describing a resource.

Web Services (WS) [32] provide a standard way of interoperating between different

software applications, running on a variety of platforms and/or frameworks. Universal

Description, Discovery and Integration (UDDI) [141] is the defacto standard for WS

discovery. Many research activities are devoted to enhancing and overriding the legacy

UDDI specification thriving for efficiency, scalability and flexibility in the discovery mech-

anism. A detailed survey of such activities can be found in [61]. Table 2.1 summarizes

some of the proposed architectures for WS discovery. Among these approaches we are

interested in decentralized P2P-based architectures. Based on the use of WS ontolo-

gies, these approaches can be broadly classified as semantic-laden and semantic-free.

Background and Related Work 39

Table 2.1: Summary of Web Service discovery architectures

Centralized
Registry Authoritative, centrally controlled store of service descriptions,

e.g., UDDI registry [141]

Index Non-authoritative, centralized repository of references to service

providers; see [32] for details. Web crawlers are used for populat-

ing an index database.

Decentralized

Federation Publicly available UDDI nodes collaborate to form a federation

and act together as a large scale virtual UDDI registry [120].

P2P-based
Semantic-

laden

In [125] peers are arranged into a hypercube topol-

ogy [52] and ontology [142] is used to facilitate

efficient and semantically-enabled discovery. An

agent-based approach is proposed in [108]. It uses

DAML [36] representation for ontology and relies on

unstructured search techniques.

Semantic-

free

Both [100] and [128] use Chord overlay for index-

ing and locating service information. [100] extracts

property-value pairs from service descriptions and

uses MD5 hashing. [128] uses Hilbert Space Fill-

ing Curves for mapping similar Service Descriptions

to nearby nodes in the Chord ring. These two ap-

proaches are similar to Twine [27] and Squid [127],

respectively. In [78], another Chord based solution

has been proposed. Here, the ID-space is partitioned

in numerically ordered subspaces, and each peer in

the Chord-ring maintains links to one peer in each

subspace in addition to the regular Chord links.

40 Efficient and Flexible Search in Large Scale Distributed Systems

Semantic-laden approaches rely on WS ontology mapping techniques like OWL (Web

ontology language) [23] or DAML (DARPA Agent Markup Language) [36] for incorpo-

rating intelligence to the discovery process, i.e., for intelligently mapping conceptually

related terms in queries and advertisements. Semantic-free approaches, on the other

hand, do not utilize WS ontology mapping techniques. These techniques are closely re-

lated to the traditional service discovery approaches. A number of research work in this

category rely on locality preserving hash techniques for mapping queries to semantically

close advertisements.

All of the decentralized techniques for WS discovery are aimed at achieving flexibility

(i.e., partial matching capability) without sacrificing efficiency in the search mechanism.

The basic problem of semantic matching in a distributed environment can be mapped

to the DPM problem in different ways. For example, while generating an advertisement

pattern from a Service Description, multiple synonyms of the properties and values can

be hashed and inserted into the Bloom-filter. This will require larger Bloom-filters, yet

will enable one to discover a service by specifying any of the synonyms of a property (or

value) specified in the advertisement. It is also possible to use ontologies during Bloom

filter construction, rather than using simple synonym list. Use of Ontology can be more

efficient than synonym list if there exists a global Ontology in the system.

2.4.3 Peer-to-Peer Databases

2.4.3.1 Structured Techniques

Several research works on PDBS have adopted DHT-based and structured P2P tech-

niques, such as Chord [132], CAN [118] and Hypercube [125], for routing. A number

of these proposals, including [31], [37] and [58], rely on Chord as the underlying P2P

substrate. Hypercube topology has been used in [111].

XP2P, presented in [31], uses XML data model for schema representation, and pro-

Background and Related Work 41

vides support for resolving XPath [90] queries. Any XML document can be represented

as a tree, and an XPath query is used to specify a subtree using a prefix-path origi-

nating from the root of the document. For supporting partial prefix-path matching, all

possible paths, originating from the root, have to be registered with the Chord ring.

To reduce the number of paths to be hashed in the Chord ring during the advertise-

ment and query process, XP2P adopts a fingerprint construction technique presented

in [116]. In this technique, the fingerprint of a binary string A(t) = (a1, a2, . . . , am) =

a1× tm−1 +a2× tm−2 + · · ·+am is computed as f(A) = A(t) mod P (t), where P (t) is an

irreducible polynomial. A useful property of the fingerprint function, utilized by XP2P,

is that f(A¯B) = f(f(A)¯B), where ¯ is the concatenation operator.

In [58], a Chord-based framework for supporting XPath queries is presented. XPath

queries of the form /a1[b1]/a2[b2]/ . . . /an op value and queries containing relative path

operator (i.e., //) are supported. Here, ai is an element in an XML document, bi is an

XPath expression relative to element ai, op is an XPath operator like = or <, and value

is an atomic element in the XML document. The core idea is to build a distributed

catalog, where a peer in the Chord ring stores all the prefix-paths for a given element

in any XML document stored in the network. In other words, if E is an element in

some XML files, then the peer responsible for the key hash(E) stores all the absolute

paths (i.e., /a1/a2/ . . . /E) leading to E in any document stored in the network and the

contact information of the peers storing those documents. An XPath query of the form

/a1/a2/ . . . /ak//E is routed to the peer (say N) responsible for the key hash(E) and the

list of all peers containing XML documents matching the query are extracted. Finally the

query is forwarded and executed in the corresponding peers. This approach of hashing

is similar to the approach adopted in Twine [27], where paths of different lengths are

hashed and stored in the Chord network, instead of hashing individual elements along

the path.

42 Efficient and Flexible Search in Large Scale Distributed Systems

Another Chord-based framework, named RDFPeers, for distributed search on PDBS

is presented in [37]. In this work, Resource Description Framework (RDF) [97] is used as

data model. An RDF document is essentially a set of < Resource, Property, V alue >

triples presented in XML format. Each triple is stored in three peers (in the Chord ring)

responsible for the keys hash(Resource), hash(Property) and hash(V alue), respectively.

For string literals SHA1 hash function is used. For numeric values (in the value compo-

nent of a triple) locality preserving hash function is used. A query can be constructed

by specifying any of the three components in a triple. It should be noted that RDFPeers

assumes XML documents of fixed depth (i.e., 3), in contrast to variable depth XML

documents assumed in [31] and [58].

2.4.3.2 Non-structured Techniques

PeerDB [112] uses an agent-based framework on top of an unstructured P2P overlay to

achieve distributed data sharing. To accommodate heterogeneity in schema definitions

from autonomous peers in the system, PeerDB associates keywords as synonyms with

each schema and elements under that schema. These keywords are used as a means

of semantic mapping and for finding semantically similar schemas using P2P keyword

search techniques. Mobile agents are sent to appropriate peers and a query is executed

locally at the target peer, which helps in reducing the volume of network traffic.

JXTA [34] routing protocol has been used in [55] and [91]. In JXTA architecture a

loosely-consistent distributed hash table is maintained by a special set of peers called

Rendezvous peers. Each rendezvous peer maintains a list of known Rendezvous peers

and the range of keys associated with each of them. Query routing is performed based on

the local information at each Rendezvous peer. In [91], a fixed global schema has been

used, whereas existence of heterogenous schema is allowed in [55].

A hybrid technique, named Humboldt discoverer, has been presented in [75]. RDF [97]

Background and Related Work 43

has been used for describing an advertised resource. SPARQL (Simple Protocol and RDF

Query language) [114] has been used for constructing query expressions. SPARQL is a

query language for RDF documents developed by W3C. A three tier architecture has

been proposed. Regular peers providing information sources are placed at the bottom

tier of the hierarchy. These peers are clustered into groups based on the similarity of

used ontologies. A peer at the middle tier is responsible for an ontology and manages a

single cluster of regular peers (at bottom tier). Middle tier peers advertise their existence

to top level peers, which are organized in a Chord ring and are addressed by the hash of

the URIs of the ontologies. In effect, middle tier peers covering the same ontology are

grouped under the same top level peer. To resolve a query, all the required ontologies

are first determined. For a given ontology, the set of responsible middle-tier peers can be

reached through the top-tier Chord network. Finally, the query is forwarded to each of

the middle-tier peers that are responsible for the ontology.

2.4.3.3 Relation to the DPM Problem

Distributed search in PDBSs faces two new challenges, in addition to the ones present

in P2P content sharing and service discovery: continuously changing schemas in the

system and the requirement for semantic mapping. It is possible to cope with these

challenges using the DPM construct. In order to accommodate continuously changing

schemas, advertised patterns should be constructed from both the descriptive properties

and values of a shared object. Thus, schema information gets incorporated within each

advertisement. The requirement for semantic mapping can be satisfied in few ways,

including the one discussed in the last paragraph of Section 2.4.2. It is also possible to

reserve a pre-specified number of bits in the advertisement/query pattern, and use these

bits as a separate Bloom-filter for storing the ontologies used by the advertisement/query.

Query routing mechanism can use this additional information for making semantic laden

44 Efficient and Flexible Search in Large Scale Distributed Systems

decisions at each hop.

2.5 Distributed Search Requirements

Search is an essential functionality offered by any distributed system. A search mech-

anism in a distributed system can be either centralized or distributed. For Centralized

Search there exists a central core of one or more machines responsible for indexing the

contents distributed across the network and for responding to user queries. For net-

works with lesser degree of dynamism, centralized search mechanisms prove to be ade-

quate. Google [28], Yahoo [12], Alta vista [1] etc. are the living examples of centralized

search mechanisms, where a set of crawlers running on a cluster of computers index the

Webpages around the globe. Compared to the lifetime of the contents shared in P2P

networks, Webpages are long lived. Centralized search techniques do not prove to be

efficient in large scale distributed systems due to content and node dynamism (as ex-

plained in Section 2.3.1). Distributed Search mechanisms assume that both indexing

mechanism (analogous to crawlers) and indexed information are distributed across the

network. Consequently the design requirements for Distributed Search techniques are

different from that for Centralized Search techniques. In the following, we present the

most import design requirements for a Distributed Search mechanism.

Decentralization : For a Distributed Search mechanism to be successful, decentral-

ization of control and data are necessary. Decentralization of control refers to the

distribution of the index construction process among the participating nodes. There

should not be any central entity governing the index construction process in differ-

ent nodes. Unlike web search engines, the index itself should be distributed across

the participating nodes for achieving uniform load distribution and fault-resilience.

Efficiency: The search mechanism should be able to store and retrieve index infor-

Background and Related Work 45

mation without consuming significant resource: storage and bandwidth. In LSDS

advertisements are frequent due arrival of new documents and relocation of existing

documents. The large user base generates queries at a high rate. This mandates

both advertisement and search process to be bandwidth efficient.

Scalability: Efficiency of the search mechanism should not degrade with increase in

network size. In addition the number of links per node should not increase a lot

with growth in network size. Join and topology maintenance overhead depends

largely on the number of links that a node has to maintain, especially in dynamic

environments.

Flexibility: Due to content dynamism, users do not usually have the exact information

about the advertised objects. The query semantics offered by the search mechanism

should be flexible to support inexact or subset queries. The scalability and efficiency

requirements should not be sacrificed for achieving the flexibility requirement.

Search completeness: Search completeness is measured as the percentage of advertised

objects (matching the query) that were discovered by the search. Required level

of search completeness varies from application to application. A search mechanism

should have guarantee on the discovery of rare objects. In the case of popular or

highly replicated objects, only a predefined number of matches would suffice for

most cases. For specific queries, the number of matching objects would be low and

all of them should be discovered by the search. Broad queries, on the other hand,

would match a large number of advertised objects. In this case search result may

be restricted within a predefined limit to avoid high bandwidth consumption.

Fault-resilience: In LSDSs, participating nodes connect autonomously without admin-

istrative intervention. Nodes depart from the network without a priori notification.

The search mechanism is expected to advertise and discover objects in a continu-

46 Efficient and Flexible Search in Large Scale Distributed Systems

ously evolving overlay topology, resulting from the frequent arrival and failure of

nodes. In many cases index replication and pair-wise, alternate routing paths are

used to improve availability.

Load distribution: Heterogeneity in nodes’ capabilities, including processing power,

storage, bandwidth and uptime, is prominent in LSDSs. To avoid hot spots and to

ensure efficiency, the advertisement and search mechanisms should distribute rout-

ing, storage and processing loads according to the capabilities of the participating

nodes. In other words, uniform distribution of load may result into poor system

performance in a LSDS.

In addition to the above mentioned design requirements, a number of other require-

ments of secondary importance may arise in different scenarios. For example,

• autonomy of index placement and routing path selection may be required for secu-

rity and performance reasons;

• anonymity of the advertising, indexing and searching entities may be required in

censorship resistance systems;

• ranking of search results may be required for full-text search or information retrieval

systems; etc.

2.6 Components of a Distributed Search System

Based on the foregoing discussion of existing research works on distributed search in the

three studied representative domains, we can identify the following integral components

of a distributed search mechanism (see Figure 2.9).

1. Query semantics refer to the expressiveness of a query and the allowed level of

semantic heterogeneity in queried and advertised information.

Background and Related Work 47

2. Translation is a function governing the transformation of the semantic information

present in a query to a form, suitable for query routing.

3. Routing refers to the mechanism of forwarding a query to the nodes suitable for

answering the query.

In the following sections we explain each of these components in greater detail and

present the various solutions available for each of them.

�����
��������

�����
	�
�����

��������������	��
�

����������� �������

������
����� ������
!"#�$��

%&��� '(")*+,

-�+���. '(")*+,

-+*/(+�" 0�.�(.���

1*$/.(& 2�(+�(�

3.��

4��5

4��5 ��$$�+"

1*#�(#� +*���#6
7,,+(�� +*���#6
��6#���+(+*���#6

Figure 2.9: Content sharing P2P architectures

2.6.1 Query Semantics

Any visible (e.g., shared or advertised) object in a distributed system is associated with

a set of properties describing the behavioral and functional aspects of that object. Meta

information on a set of related properties associated with a class of objects is defined as

the schema for that class of objects. In a distributed search system, structure and scope

(temporal and spatial) of the available schemas influence the query language capability

and underlying routing mechanism. The rest of this section highlights two aspects of

query semantics: schema and query expressiveness.

48 Efficient and Flexible Search in Large Scale Distributed Systems

2.6.1.1 Schema

Based on the temporal and spatial scope of the schema, large scale distributed systems

can be classified as follows:

Static schema : Most of the file sharing P2P systems have been designed to share one

or more specific types of files, e.g., song, movie, software etc. For each type of file

a specific set of properties is defined that remain unchanged throughout the life

of the system. Essentially these systems have one or more static schemas that are

globally known.

Quasi-static schema : Most of the service discovery systems fall into this category.

Unlike file sharing P2P systems, service discovery systems allow dynamic creation

of schema for describing services. Each service instance is advertised as a Service

Description governed by a predefined Service Schema (or template). All schemas

in a given service discovery system have to contain a minimal set of predefined

properties to comply with the specific system under consideration. Though schema

can be created dynamically, the rate of such events is very low and the number of

available schemas in a given system is much lower than that in PDBS. Furthermore,

it is assumed that all the existing schemas in the system are globally known.

Dynamic schema : Most of the PDBSs fall into this category. In these systems het-

erogeneous schemas exist. Temporal scope of a schema is often bounded by the

lifespan of the peer advertising data with that schema. Spatial scope is local to the

originating peer and its neighbors; no global knowledge is assumed. Automating

the process of semantic mapping between similar schemas is a challenging problem

in such systems, which may require additional functionality from the underlying

routing mechanism.

Background and Related Work 49

2.6.1.2 Expressiveness

Query expressiveness refers to the capability of the query language in expressing infor-

mation retrieval requirements. Exiting research works focus on a wide variety of query

expressiveness ranging from simple keyword-based queries to complex queries, such as

LDAP filter [77] and XPath [90]. Below is a non-exhaustive list of the different levels of

query expressiveness commonly found in distributed search techniques.

Exact keyword match is the minimum level of query expressiveness supported by any

search mechanism, and is present in most of the file sharing P2P systems, especially

the ones based on DHT techniques. For this level of expressiveness, a globally

known fixed schema (with a limited number of properties) is assumed.

Partial keyword match is supported by most of the unstructured techniques as well

as some extensions of DHT techniques, such as Squid [127], Twine [27] and RDF-

Peers [37]. Two major variants in this category can be found. Some extensions

to DHT techniques support partial prefix matching and unstructured techniques

support true partial matching.

Property-value list is used by many service discovery techniques. Service Descriptions

are specified as a property-value list, and queries are specified as a subset of the

advertised property-value list. Most service discovery techniques assume a flat

list of property-value pairs and do not support wildcard-based partial matching in

property names or values.

Complex queries involve logical and relational operators (i.e., range queries), and

hierarchical relations between properties. SLP offers LDAP filter-based complex

queries. INS, Twine and most PDBSs use hierarchical data structures in advertise-

ments and allow hierarchical query expressions. Many PDBSs allow formal query

languages, such as XQuery [38], XPath [90] and SPARQL [114].

50 Efficient and Flexible Search in Large Scale Distributed Systems

2.6.2 Translation

In most distributed systems the query expression specified by a user is not used as is by

the underlying routing mechanism. Instead, the query expression goes through some kind

of transformation before it is fed to the routing process. The translation function works

as a bridge between user specified queries and the routing mechanism. The domain of

the translation function is governed by the query semantics as discussed in the previous

section. The range of the translation function, on the other hand, depends on the routing

mechanism used by the underlying overlay. Based on the particular combination of query

semantics and routing mechanism, this function can exhibit a wide variation. Based on

their range, translation functions can be broadly classified into three categories:

Flat : This type of translation functions do a very little (e.g., filtering) or no change

to the query expression and associated semantic information. Such functions are

usually used by unstructured [4] and semi-structured routing mechanisms [44], and

most of the industrial approaches to service discovery, including SLP, Jini and

UPnP.

Hash : Hashing is mostly used by structured and semi-structured search mechanisms. A

wide variety of hashing techniques ([27], [37] and [58]) have been proposed for dis-

tributed search systems. However, the major problem with this type of translation

functions is that they loose semantic information during the hash transformation

process.

Hash-summary : This type of translation enables efficient query routing while preserv-

ing query semantics. Bloom filters are the most popular means of representing hash

summaries. Hash summaries are used in a few semi-structured systems, including

DPMS [16], SSDS [50] and NSS [99].

Background and Related Work 51

2.6.3 Routing

In overlay networks, routing refers to the process of forwarding a message from a source

node to a destination node. The source and the destination nodes are usually at a number

of hops away from each other on the overlay. Routing algorithms in overlay networks can

be broadly classified into two categories: uninformed and informed. Uninformed routing

algorithms do not use the knowledge of query semantics or target node’s address in

making routing decisions at each hop. Flooding [4][88], Random walk [103] and Iterative

deepening [103][146] are the representative algorithms in this category. Such algorithms

are very inefficient in terms of the generated volume of search traffic, but the robustness is

very good in highly dynamic environments. Based on the nature of the information used

for next hop selection, Informed routing algorithms can be classified into the following

three categories:

Content-routing : Content-routing algorithms utilize the semantic information, em-

bedded in user query, for making routing decisions at each hop. Hence, the as-

sociated translation function should be from the flat category. Examples of such

routing strategy include, selective flooding ([44]) and hint based routing ([140],

[146]). Content-routing allows partial match and complex queries, but the offered

query routing efficiency is low. Moreover, there exists no guarantee on search com-

pleteness or the discovery of rare objects.

Address-routing : Address routing is adopted in DHT-based structured P2P overlays,

such as Chord [132], CAN [118], Pastry [121] and Kademlia [105]. Different hash

techniques are used to transform a query into a virtual address on the overlay, and

this address is used to route the query to a responsible node. Routing algorithms

in this category are very efficient in terms of query routing traffic, but they are not

appropriate for semantic laden search (e.g., partial matching and complex queries).

52 Efficient and Flexible Search in Large Scale Distributed Systems

Signature-routing : A number of distributed search techniques, including [99] and

[50], construct a signature (usually a Bloom filter) of the target object and routes

queries based on this signature. These techniques strive to combine the merits of

both content-routing and address-routing strategies. Signatures retain (part of or

the whole) query semantics and allow aggregation for efficient indexing. However,

search completeness and robustness are not as good as that in address-routing and

content routing, respectively.

In Table 2.2, Table 2.3 and Table 2.4 we identify the components of search mecha-

nisms from three application domains: P2P content sharing, service discovery and P2P

databases, respectively.

Table 2.2: Components of selected search techniques in P2P content sharing

P2P content sharing

Ref Name Query Translation Routing

[102] Keyword fusion Multi-keyword Inverted index Chord

[85] Joung et al. Multi-keyword Query superset Chord

[138] pSearch Full text, multi-

keyword

VSM/LSI CAN

[127] Squid Prefix match Hilbert SFC Chord

[82] MKey Subset match Query superset Chord+Flooding

[73] SkipNet Prefix match Flat Skip List

[39] GIA Partial keyword Flat Capacity bias

[140] APS Partial keyword Flat Result bias

[99] NSS Multi-keyword Bloom filter (BF) Controlled Flood

[119] PLR Multi-keyword Attenuated BF Hint bias

Background and Related Work 53

Table 2.3: Components of selected search techniques in Service discovery

Service discovery

Ref Name Query Translation Routing

[50] SSDS Subset/PV-list Bloom filter Global hierarchy

[70] SLP LDAP filter Flat Flooding

[27] Twine Subtree match Stranding + hash Chord

[100] PWSD XML path prefix Stranding + hash Chord

[128] Schmidt et al. Prefix match Hilbert SFC Chord

[125] Schlosser et al. Semantic match Ontology concept

→ d-coord.

2-tier Hypercube

Table 2.4: Components of selected search techniques in PDBS

P2P databases

Ref Name Query Translation Routing

[112] PeerDB SQL Synonym/flat Flooding

[75] Humboldt Dis-

coverer

SPARQL/RDF URI-hash+Flat DHT+Controlled

Flooding

[31] XP2P XPath(absolute) Fingerprint Chord

[58] Galanis et al. XPath(relative) XML element

hash

Chord

[37] RDFPeers Partial RDF

triple

RDF element

hash

Chord

2.6.4 Relation to Other Taxonomies

The taxonomy presented in this section is based on the routing mechanism. Two widely

used taxonomies of search techniques in content-sharing P2P systems were presented

in [22]: one based on overlay architecture and the other based on indexing mechanism.

54 Efficient and Flexible Search in Large Scale Distributed Systems

These taxonomies have been already discussed in Section 2.3.1.1, we reproduce them here

for the sake of clarity.

Based on overlay architecture, P2P systems can be classified [22] into the following

three categories:

• Centralized: In centralized architectures there exists a central server in the net-

work for indexing meta-information on advertised contents and the participating

peers in the systems. Typical example of a centralized architecture is the Napster [8]

network.

• Partially Decentralized: In partially decentralized case the overlay is composed

of two types of peers: superpeers and regular peers. Superpeers are responsible for

indexing and query routing in addition to the activities performed by the regular

peers, i.e., file transfer. Typical examples in this category include KaZaA [5] and

Morpheus [7].

• Pure Decentralized: In this category all peers have equal responsibilities, i.e.,

indexing, query routing and file transfer. Example in this category are Gnutella [4],

GIA [39] etc.

Based on the indexing mechanism and placement of indexed information P2P systems

can be classified [22] into the following three categories:

• Unstructured techniques do not build any index and use uninformed search

mechanisms, like Flooding and Random walk. Examples in this category include

Gnutella [4].

• Semi-structured techniques build index information but do not place any restric-

tion on index placement. Indexed information contains hints on possible location

of the content. Freenet [42] and DPMS fall into this category.

Background and Related Work 55

• Structured techniques rely on some index placement rule that allows one to pin-

point the peer(s) responsible for a given index. Each peer knows the exact location

of the contents it has indexed. Examples in this category include DHT techniques

(e.g., Chord [132], CAN [118], Kademlia [105], etc.), Plexus and Skipnet [73].

Finally, in this work we have classified the search mechanisms based on query routing

mechanism into three categories: content routing, signature routing and address routing.

These three taxonomies are orthogonal to each other. In Table 2.5, Table 2.6 and Ta-

ble 2.7 we categorize representative search mechanisms based on these three taxonomies.

2.7 Summary

Based on our study of distributed search techniques in large-scale distributed systems,

we found that semantic-aware flexible search is required in all three application domains

considered. Signature-routing can be a good candidate for fulfilling this requirement.

Keywords for content-sharing P2P systems, Service Descriptions for service discovery

systems and heterogeneous schema information for P2P database systems can be hashed

into Bloom-filters (see Figure 1.3). This implies that we can map these problems into

DPM. Hence, an efficient solution to the DPM problem will serve as a platform for solving

a number of related problems.

To the best of our knowledge, none of the proposed approaches in any of the three ap-

plication domains can provide a satisfactory solution to the DPM problem. Unstructured

techniques can be used to solve the DPM problem, but the generated search traffic does

not scale with network size. Extensions to structured techniques support partial prefix-

matching only and require a number of individual DHT-lookups for resolving a single

query. Semi-structured techniques, on the other hand, do not provide any guarantee on

search completeness or any bound on the search traffic.

56 Efficient and Flexible Search in Large Scale Distributed Systems

Table 2.5: Taxonomy comparison: Routing mechanism Vs. overlay architecture

Content Signature Address

Centralized Napster[8]

Partially

Decentralized

SkipNet[73],

SkipGraph[24]

Plexus, DPMS

SSDS[50]

Humboldt

Discoverer[75]

Pure

Decentralized

Gnutella[4] NSS[99], GIA[39] DHT, Freenet[42]

Table 2.6: Taxonomy comparison: Routing mechanism Vs. indexing mechanism

Content Signature Address

Unstructured Gnutella[4]

Semi-

structured

Associative[44] NSS[99], SSDS[50],

GIA[39], DPMS

FreeNet[42],

JXTA[34]

Structured SkipNet[73],

SkipGraph[24]

Plexus DHT

Table 2.7: Taxonomy Comparison: Indexing mechanism Vs. overlay architecture[22]

Centralized Partial-

decentralized

Pure-decentralized

Unstructured Napster[8] KaZaA[5] Gnutella[4]

Semi-

structured

DPMS FreeNet[42]

Structured Plexus DHT

Background and Related Work 57

In this thesis we are interested in finding efficient solutions to the DPM problem.

Besides being efficient in terms of search traffic, we want such solutions to be robust (in

the presence of churn in node population) and complete (in terms of search results).

Chapter 3

DPMS: Distributed Pattern

Matching System

3.1 Introduction

This chapter presents the detailed design of DPMS as a solution to the DPM problem.

DPMS can enable partial and multiple keyword search for P2P content sharing networks,

service discovery using partial service capability description, and XML document min-

ing using partial path prefix for PDBS. In DPMS, advertised patterns are replicated

and aggregated by the peers, organized in a lattice-like hierarchy. Replication improves

availability and resilience to peer failure, and aggregation reduces storage overhead. An

advertised pattern can be discovered using any subset of its 1-bits. Search complex-

ity in DPMS is logarithmic to the total number of peers in the system. Advertisement

overhead and guarantee on search completeness is comparable to that of DHT-based

systems. We have presented mathematical models and simulation results to demonstrate

the effectiveness of the DPMS architecture.

58

DPMS: Distributed Pattern Matching System 59

3.2 Chapter Organization

We first give an overview of the system architecture in Section 3.3. The process of obtain-

ing advertisements and queries, from keywords and service descriptions, is illustrated in

Section 3.4. Desirable properties of aggregates and the aggregation process are described

in Section 3.5 and Section 3.6, respectively. Index distribution, topology maintenance

and query routing policies are presented in Section 3.7, Section 3.8 and Section 3.9,

respectively. Section 3.10 and Section 3.11 describe peer join and failure recovery mecha-

nisms, respectively. We provide mathematical analysis for routing efficiency, false match

probability and advertisement overhead in Section 3.12. Finally, the experimental results

are presented in Section 3.13.

3.3 Architectural Overview

This section presents an overview of the DPMS architecture. In this section we will use

the terms pattern and index interchangeably, as patterns are used as indices for query

routing.

In DPMS a peer can act as a leaf peer or indexing peer. A leaf peer is at the bottom

layer of the indexing hierarchy and advertises its indices (created from the objects it is

willing to share) to other peers in the system. An indexing peer, on the other hand,

stores indices from other peers (leaf peers or indexing peers). A peer can join different

levels of the indexing hierarchy and can simultaneously act in both roles.

Figure 3.1 presents two logical views (replication tree and aggregation tree) of a single

overlay topology. Indexing peers get arranged into a lattice-like hierarchy and disseminate

index information using repeated aggregation and replication.

Index (e.g. keywords or hash keys) replication is used by many unstructured P2P

systems for improving reliability and availability. But replication incurs extra overhead

60 Efficient and Flexible Search in Large Scale Distributed Systems

in terms of storage and network bandwidth. To improve efficiency, these systems adopt

smart replication strategies [45].

DPMS uses replication trees (see Figure 3.1(a)) for disseminating patterns from a

leaf peer to a large number of indexing peers. However such a replication strategy will

generate large volume of advertisement traffic. To overcome this shortcoming, DPMS

combines replication with lossy-aggregation to minimize the volume of traffic between

peers in adjacent levels in the indexing hierarchy. As shown in Figure 3.1(b), adver-

tisements from different peers are aggregated and propagated to peers in the next level

along the aggregation tree. The amount of replication and aggregation is controlled by

two system-wide parameters, namely replication factor R and branching factor B. In

order to achieve constant volume of exchanged messages between adjacent levels, an

aggregation ratio of R : 1 is required.

�� �������	�
� ���� ����������� ��
�������� ��������� ���� � ����

�� ������	�
� ���� ������ !� �"
����������� �� �������� ���#��

����������

$�%�������� ���� &���'��� ����

(�%�")

(�%�" *

(�%�" +

(��%��

,-����� .��� !��� �� ��� / +
0��"� ����� �� ��� / *

Figure 3.1: DPMS architecture overview

Patterns advertised by a leaf peer are propagated to Rl indexing peers at level l. On

DPMS: Distributed Pattern Matching System 61

the other hand, an indexing peer at level l contains patterns from Bl leaf peers. Due to

repeated (lossy) aggregation, information content of the aggregates reduces as we move

up along the indexing hierarchy.

The indexing hierarchy has three-fold impact on system performance. Firstly, the in-

dexing hierarchy evenly distributes index information in the highest level indexing peers.

This helps in load balancing the system and improves fault tolerance. Secondly, peers

can route queries towards appropriate leaf peers without having any global knowledge of

the overlay topology. Each peer needs to know the addresses of its children, replicas and

one of its parents. Finally, the indexing hierarchy helps in minimizing query forwarding

traffic. While forwarding a query from a root peer to multiple leaf peers in the same

aggregation tree, shared path from the root peer to the common ancestor of the target

leaf peers is utilized.

3.4 Index/Pattern Construction Process

In DHT-based systems an index is obtained by applying some system-wide known hash

function to the keyword(s) related to a document. In DHT-techniques an index is used

in two ways. First, to identify a document and second, to identify the peer responsible

for that document (or a link to that document). A query consists of an index, created

by hashing the search keyword. This warrants the search index to be identical to the

advertised index. However, a peer can readily identify the responsible peer for a query,

and route the query to that peer efficiently.

In unstructured systems, on the other hand, documents are identified using associated

keywords. A query consists of one or more search keywords. Query routing is done based

on Flooding or Random walk. A peer receiving a query can return a document partially

matching the search keyword(s), in case an exact match was not found.

DPMS uses Bloom filters [30] as indices, to achieve the advantages of both structured

62 Efficient and Flexible Search in Large Scale Distributed Systems

and unstructured P2P systems, i.e., efficient routing and inexact matching. Bloom filters

are used for set membership tests. Because of their space-efficiency, Bloom filters are used

in many network applications for exchanging content summary between networked nodes

[33]. However, this space-efficiency comes at the expense of a small possibility of false

positives in the membership check operation.

Each document in a traditional file-sharing P2P system is associated with a set of

keywords. In DPMS, all the keywords associated with a document are encoded in a

single Bloom-filter. To facilitate inexact matching, each keyword is first fragmented

into η-grams (usually trigrams). These η-grams are then inserted into the Bloom filter

representing the document.

Query keywords are also fragmented into η-grams (see Figure 3.2) and encoded into

a Bloom filter. The 1-bits on a query should be a subset of any pattern that it should

match against. This kind of encoding allows us to retrieve documents, advertised with

keywords “invisible man” and “visible woman” respectively, using a query containing

partial keywords like “*visi*man*”.

For a P2P service discovery system, indices can be obtained in a similar fashion, using

property-value pairs instead of keywords. Molecular fingerprint can be used as index for

some envisioned distributed system storing molecular structure information.

3.5 Aggregates

DPMS relies on replication for disseminating pattern information along replication trees.

Replication is necessary for load-balancing and for improving fault-tolerance. The repli-

cation strategy adopted in DPMS would significantly increase network and storage over-

head. DPMS uses repeated aggregation at each level along the hierarchy to mitigate this

problem.

DPMS index distribution and query routing architecture is independent of the un-

DPMS: Distributed Pattern Matching System 63

��������� ���

���	 ���	
��	 ���	 ���	 ���	 ���	 ��

������� �����

��	 ���	 ���	 ���	 ���	 ���	 ���	 ��

���������

���������

����� ������ � ��������������������������������

���������

���������

����� ������ � ��������������������������������

���� ���

��	 ���	 ��
� ��� �

���������

����� ������ � ��������������������������������

!"
#$%��##�%&�

!"
#$%��##�%&'

()#$*

Figure 3.2: Bloom filter example of two advertisements and an inexact multi-keyword

query. 1-bits in boldface corresponds to the matching trigrams.

derlying aggregation scheme. It is possible to plug-in different aggregation schemes with

DPMS. However, all the peers in an instance of the system must use the same aggrega-

tion mechanism. An aggregation mechanism should have the following properties to be

compatible with DPMS indexing hierarchy:

• The aggregation scheme should compress index information obtained from child

peers. Lossy compression is allowed. It is preferable to have some parameter to

control the level of aggregation.

• The aggregated form should retain original pattern information (to some extent),

making it possible to perform pattern matching on the aggregates.

• Repeated aggregation should be possible, i.e., it should be possible to perform

64 Efficient and Flexible Search in Large Scale Distributed Systems

aggregation on aggregates without violating the pervious requirements.

A trivial way of pattern aggregation is to logically OR the bit sequences in two

patterns as performed in [50] and [99]. But the information loss in this aggregation scheme

is very high. More specifically, as the number of patterns contained in an aggregate

increases, the number of 1-bits increases and at some point all the bits can become one,

making the aggregate useless. Moreover, while matching a query with an aggregate, we

cannot infer that some subset of the 1-bits in the aggregate was present in one single

constituent pattern.

Considering the requirements, and the problems with bit-wise OR-based aggregation,

we suggest a don’t care based aggregation scheme. Don’t cares (X-bits) are used to

represent both 1 and 0 in the same bit position. An aggregate, say P , is defined as,

P =
{
pi| pi is ith bit of P ∧ pi ∈ {0, 1, X}

}

We will use ⊗ to denote aggregation operation. The process of obtaining the bits of

P , from two patterns (or aggregates), say A and B is as follows:

pi =

ai if ai = bi

X otherwise, i.e., ai 6= bi or ai = X or bi = X

This type of aggregates retains parts from the constituent patterns or aggregates. A

1-bit (or 0-bit) in such an aggregate indicates that all of the patterns contributing to

this aggregate had 1 (or 0) at corresponding position. However incorporating this extra

information (i.e., X’s) incurs some space overhead, which can be minimized (assuming

X’s are much higher in number than 0’s or 1’s) by compressing the aggregates using

Huffman coding or run length encoding during transmission through the network.

A disadvantage of this aggregation scheme is that it does not allow deletion of one

or more constituent patterns from an aggregate. It should also be noted that the binary

DPMS: Distributed Pattern Matching System 65

representation of three symbols (i.e., 0, 1 and X) requires 2 bits. This results into

wastage of the fourth state, which could be used for keeping track of the number of

patterns covered by the aggregate or one of the constituent patterns etc. However this

will decrease the compression ratio for the resulting aggregates. Compression ratio of a

bit-vector can be increased by increasing the percentage of 1-bits it contains. To increase

the number of 1-bits in the binary representation of an aggregate, we can encode the

three symbols as ’0’=01, ’1’=10 and ’X’=11.

3.6 Aggregation Process

An indexing peer acts as a multiplexer in the indexing hierarchy. It gathers in-lists

(lists of patterns or aggregates from the B child peers), aggregates them to another list

(referred to as out-list) of aggregates, and sends this list to each of its parents.

Construction of out-list is not trivial. We want the aggregates in out-list to have the

following two properties:

1. No aggregate in out-list should have more X’s than a predefined limit.

2. Minimum number of X’s should be introduced in the resulting aggregates.

In essence we are interested in partitioning the in-list into clusters such that the

Hamming distance between the patterns within a cluster is minimal. Each partition is

represented by an aggregate, which is obtained by applying the aggregation operation

(⊗) on the constituent patterns. Evidently the maximum Hamming distance between

any two patterns in an aggregate is less than or equal to the number of X’s in that

aggregate.

The problem of constructing the out-list from a list of patterns is essentially the

Hamming Distance Clustering (HDC) problem (or p-clustering problem). HDC can be

stated as follows:

66 Efficient and Flexible Search in Large Scale Distributed Systems

Given a positive integer p and a set S of θ binary strings si ∈ Fn
2 , where i = 1 . . . θ and

Fn
2 is the binary vector space of length n, partition S into p disjoint subsets s1, s2 . . . sp

(called p-clusters of S) so that the value of

max
1≤l≤p

max
si,sj∈Sl

d(si, sj) (3.1)

is minimized.

Now we formally define the out-list construction process and explain its relation to

the HDC problem.

We use P t(t ∈ {0, 1, X}) to denote a mask on aggregate P . P t has 1 in those bit

positions where P has a bit equal to the value of t. i.e.,

P t = {pt
i| pt

i corresponds to ith bit of P ∧ pt
i ∈ {0, 1}

∧pi = t ⇒ pt
i = 1}

For example, if P = 0X1X 101X, then we can compute P 1 = 0010 1010, P 0 =

1000 0100 and PX = 0101 0001

It should be noted that,

|P 1|+ |P 0|+ |PX | = K

where, |P t| = number of 1-bits in |P t|

and K = total number of bits in P

The formula for measuring similarity of two patterns/aggregates, say P and R is given

in Equation (3.2).

DPMS: Distributed Pattern Matching System 67

h(P, R) =
E + α× F + β ×G + γ ×H

|P 1|+ |P 0|+ |PX | (3.2)

where,

E = |P 0 ∧R0|+ |P 1 ∧R1|

F = |PX ∧RX |

G = |PX ⊕RX |

H = |P 0 ∧R1|+ |P 1 ∧R0|

In this equation E and F define the number of positions in the aggregate that will

remain the same as that of P (or R). While G and H give a measure of relative increase

of X-bits in the resulting aggregate. Table 3.1 summarizes the roles of the different

components in Equation (3.2).

Table 3.1: Significance of different components of Equation (3.2)

pi ri weight component term

0 0 1 E |P 0 ∧R0|
1 1 |P 1 ∧R1|
X X α F |PX ∧RX |
0 X

1 X β G |PX ⊕RX |
X 0

X 1

0 1 γ H |P 0 ∧R1|+
1 0 |P 1 ∧R0|

Values for the constants, α, β and γ depend on the nature of the patterns. If the

68 Efficient and Flexible Search in Large Scale Distributed Systems

patterns are random without any correlation then the value of α, β and γ should be

increased, which encourages the construction of aggregates with higher number of X’s.

On the other hand, if the patterns exhibit correlation or bias1, then the values of these

constants should be reduced as it would be possible to construct aggregates with lower

number of X’s.

To establish the relation between h(P,R) and d(P, R) we set α = 1 and γ = β. The

reason behind this can be deduced from Table 3.1. For aggregates P and R, the number of

positions at which they agree is (E+F) and at which they differ is (G+H) = K−(E+F).

By putting these values to Equation (3.2) we get

h(P,R) =
1

K
(K − (1− β)d(P,R)) (3.3)

Hence the equivalent of Equation (3.1) would be to maximize

min
A∈out−list

min
P,R∈A

h(P,R) (3.4)

A 2-approximation solution to the HDC problem can be found in [62]. However, we

cannot adopt this algorithm as is because of two reasons. The algorithm in [62]

1. assumes binary patterns, whereas we are using a ternary system.

2. assumes patterns in the input list; on the contrary, the in-list in our case may

contain aggregates (i.e., clusters) and/or patterns.

We have used a modified version of that algorithm as presented in Algorithm 1. It

takes three input parameters:

• In-list (Pattern[]) is an array of patterns or aggregates constructed from the B

in-lists received from the B children.

1By correlation or bias of patterns we mean that the distribution of the patterns in hamming space

is not uniform, instead patterns are clustered with non-uniform density distribution.

DPMS: Distributed Pattern Matching System 69

• Minimum non-X bits (O) is the minimum number of original (i.e., non-X) bits

an aggregate must retain after aggregation.

• Target aggregation ratio (A) is the ratio of the number of aggregates in the

out-list to the number of patterns/aggregates in the in-lists. The aim is to achieve

an aggregation ratio of A without violating the constraint imposed by O.

This algorithm starts with the initial set of patterns or aggregates as obtained from

the in-list and tries to reduce the number of clusters (i.e., aggregates) by one at each

iteration until the target aggregation level (specified by A) is reached or the restriction

on the minimum number of non-X bits imposed by O is violated. At each iteration the

aim is to find the pair of patterns or aggregates which minimizes the similarity function

h(·) in Equation (3.2) and replaces the pair with the newly computed aggregate.

Parameter O passed to Algorithm 1 controls the amplitude of loss incurred by the

aggregation process. Instead of using a fixed value for O, we varied it linearly as a

function of the level of the peer at which the algorithm is executed. A peer at level l

executes the aggregation algorithm with O = Osys
l
L
, where Osys is the system wide lower

limit for O and L is the maximum hight of the indexing hierarchy. The implication of

this design choice is two fold:

• It promotes reduced aggregation loss at lower levels of the indexing hierarchy,

though at an expense of increased size of out-list. This reduces the unwanted

search traffic generated by false matches.

• Better quality aggregates (i.e., covering larger number of patterns without intro-

ducing higher number of X’s) can be produced in higher level peers.

Computing the runtime complexity of Algorithm 1 is straight forward. Let, |inList| =
% and A′ = (1 − A). The loop in lines 10-17 will be executed A′% times. It is possible

70 Efficient and Flexible Search in Large Scale Distributed Systems

Algorithm 1 Aggregate a list of Patterns
1: Input:

2: inList : Pattern[]

3: O : Integer

4: A : Float

5: Output:

6: outList : Pattern[]

7: Global:

8: H(P,R) {see Equation (3.2)}
9: outList ← inList

10: while |outList| > A× |inList| do

11: find Pr ∈ outList and Rr ∈ outList such that

(Pr 6= Rr)∧
(|(Pr ⊗Rr)

0|+ |(Pr ⊗Rr)
1| ≥ O)∧

(H(Pr, Rr) ≥ H(P,R) ∀P,Q ∈ outList)

12: if no such Pr and Rr exists then

13: break {failed to achieve target aggregation ratio}
14: end if

15: Pnew ← Pr ⊗Rr

16: outList ← {outList− {Pr, Rr}} ∪ {Pnew}
17: end while

18: return outList

DPMS: Distributed Pattern Matching System 71

to execute line 11 in (%− i− 1) cost for the ith iteration by keeping track of the closest

aggregate for each element in out-list. Hence the complexity can be calculated as,

A′%∑
i=1

(%− i− 1) = %(A′% + 1)(1− A′

2
) = O(%2).

3.7 Index Distribution

� � � � �

����� � 	 ��
���

�
�

�
�

�
�

 ��� �� �

����� � 	 �����

� �� � � �

����� � 	 �����

��
������
�!"�# � $ % &�'���
!�"�
�!"�# & $ �

()

*+)(

(

,

�-. /00.
1����	���! 2 34#�#15
&�'���
	���! 2 3�5 6
���!	���! 2 37#85

9����:"�	���! 2 3;#<5

Figure 3.3: Index distribution architecture. All the peers interacting with peer E are

labelled. Group number is printed at the bottom right corner of each box.

An indexing peer, participating in the DPMS architecture, belongs to two sets, vertical

(i.e., level) and horizontal (i.e., group). According to the extent of aggregation, each

72 Efficient and Flexible Search in Large Scale Distributed Systems

indexing peer belongs to a level (vertical set). Peers participating at higher index levels

cover (i.e., contain index information from) a higher number of leaf peers along the

aggregation tree. But, due to increased loss from repeated aggregation the contained

information gets vaguer at higher level peers.

Indexing peers in level l arrange into Rl groups (horizontal sets), numbered from 0

to (Rl− 1) (see Figure 3.3). In the ideal case, all the indexing peers in a single group (at

any level) should collectively cover all the leaf peers in the system.

A peer at level l and group g (0 ≤ g < Rl) is responsible for transmitting its aggregate

information to R parents at level (l + 1). Each parent belongs to a different group, in

range [g ×R, (g + 1)×R), respectively.

Peers at level l and group g organize into subgroups (referred to as siblings) of size

B to forward their aggregate information to the same set of parents. Thus each group in

range [g × R, (g + 1)× R) at level (l + 1) will contain a peer replicating the same index

information. This provides redundant routing paths for query forwarding and increases

tolerance to peer failure.

3.8 Topology Maintenance

In the DPMS index distribution hierarchy, peers interact with each other in different

roles, e.g. parent, child, neighbor etc. An indexing peer, say E, at level l and group g,

maintains four separate lists for this purpose (see Figure 3.3).

1. Replica-list contains the list of peers in the adjacent groups that have common

children as that of E. This list contains (R − 1) peers, one from each group in

range [bg/Rc ×R, (bg/Rc+ 1)×R), excluding g.

2. Parent-list is the replica list obtained from one of E’s parents. E uses this list to

forward its aggregate information (out-list) to all of its parents along a replication

DPMS: Distributed Pattern Matching System 73

tree.

3. Child-list contains the list of all children and the replica list for each of them. A

peer normally communicates with the child peers only. But in case of a failure of

a child it can communicate with a replica of the failed child. This list contains B

entries corresponding to the B children of E at level (l − 1) and group g/R.

4. Neighbor-list contains a fixed number of non-sibling peers that are in the same

group (g) as peer E. This list is mostly used for maintaining connectivity in a

group, during join operation, and for flooding queries horizontally within a group

(mostly at the topmost level).

Out of these four lists a peer needs to keep track of three: child-list, parent-list and

neighbor-list. The replica-list of a peer is the parent-list of any of its children. Peers

use the Newscast protocol [143] for maintaining and updating these lists, i.e., to detect

peer failures and arrival of new peers. Flow of news packets is restricted to 2×R groups

of peers. More specifically, the news-list of a peer at level l and group g will contain

information about some peers from groups [bg/Rc × R, (bg/Rc + 1) × R) at level l and

groups [g ×R, (g + 1)×R) at level (l + 1). That is, each peer sends news packets to its

parents, neighbors and replicas, and receives news packets from its children, neighbors

and replicas.

Unlike indexing peers, a leaf peer maintains only the neighbor-list and forwards this

list to its parents. A leaf peer obtains its parent-list from one of its parents. It should

be noted that leaf peers do not have any replica-list or child-list.

3.9 Query Routing

A query can be initiated by any peer in the system. The query life-cycle can be divided

into three phases: ascending phase, blind search phase and descending phase.

74 Efficient and Flexible Search in Large Scale Distributed Systems

During the ascending phase, an initiating peer, say I, first checks its local information

to find a match. If a match is found, then the query is forwarded to the matching peer,

otherwise it is forwarded to any of its parents. The parent peer performs the same

operation. Thus the query either hits a peer with a match or it reaches a highest level

peer, without any parents. In the first case, the query enters the descending phase, and

in the later case it enters the blind search phase of query life cycle.

The Blind search phase is executed by a highest level peer, say E (without any parent

node) upon receiving a query that does not match any aggregate in its routing table. E

has no option but to blindly forward the message to some other peer in its group. As

the query traverses a peer at level l, aggregates from Rl leaf peers are being checked. If

a match is found, then the query if forwarded to the associated child peer and the query

enters into the descending phase of its life cycle. If no peer in a group at the highest level

has a match for the query pattern, then the system concludes that the search was for a

non-existent advertisement pattern, and the search process terminates.

A query enters into the descending phase when it hits a peer that has some aggregate

matching the query. The query is then forwarded to the child peer advertising the

matching aggregate. This process recurs until the query reaches the leaf peer advertising

the pattern.

Two types of complications may arise during the descending phase. Firstly, a peer

may have multiple aggregates (from different child peers) matching a query. Secondly,

a false match case may occur, i.e., a peer may receive a query (from its parent) that

does not match an aggregate in any of the in-lists. For the first case, the peer may

forward the query to multiple peers, or any one peer based on some predefined policy and

application-specific requirements. A possible scale for measuring the quality of a match

is |P 1∧Q1|+|P 0∧Q0|
K

, i.e., the proportion of exact-match of a query Q with an aggregate P .

For the second case, the search branch terminates.

DPMS: Distributed Pattern Matching System 75

Query forwarding can be done recursively, or iteratively by the initiator of the query.

The iterative method is preferred for two reasons. First, the number of simultaneous

searches can easily be controlled, especially in case of multiple matches during descending

phase. Second, search termination criteria (like maximum number of hops, or total

number of nodes probed, or total number of results etc.) can be handled more flexibly

than with the recursive approach.

It is possible to achieve proximity sensitive routing in DPMS by arranging nearby

peers in the network in the same aggregation tree. During the ascending phase of a

query, it will be forwarded to the indexing peers common to the nearby (in network

distance) leaf peers. This will automatically influence the query routing mechanism to

select the nearest leaf peer with a matching pattern. Besides, the ascending phase of a

query life cycle helps in balancing query load.

3.10 Node Join

A peer can join the system as a leaf peer or an indexing peer or both. To join as a leaf, a

peer say C, has to find a level 1 indexing peer, say P , with an empty slot in its child-list.

C joins the indexing hierarchy as a child of P . C constructs its parent list using the

replica-list of P , and starts advertising its patterns to all of its parents. If C fails to find

a level 1 peer with an empty slot, then it can either join in both level 1 and level 0 or

select a level 1 peer with smaller number of children.

To join the indexing hierarchy as an indexing peer, a peer say E has to go through

the following steps:

• Choose level and group: Peer E has to choose a level, say l, in the hierarchy.

Selection of level can be based on the node’s capacity, uptime distribution etc. Peers

with higher capacity (storage and bandwidth) and longer life-time are expected to

76 Efficient and Flexible Search in Large Scale Distributed Systems

join higher levels in the indexing hierarchy. Then peer E can choose a group g in

random such that g is in [0, Rl).

• Construct child-list: Joining Peer E has to contact a seed peer to get information

about other peers in the system. Peer E can crawl the indexing hierarchy to reach

a peer, say A, such that peer A is in level (l − 1) and in group bg/Rc, and the

parent-list of peer A contains less than R entries. Peer E can join as a parent of

peer A. Peer E has to join the group in which peer A has no parents. Peer E has

to obtain and update the replica-list of other parents of peer A. Peer E can obtain

the child-list from a parent of peer A. Peer A can have an empty parent-list during

the initialization phase of the system or after a failure of all of its parents. If peer A

returns an empty parent-list, then peer E should look for other (up to B) peers, in

the same group as that of peer A, with empty parent-list. If such peers exist then

peer E should make them its children. Peer E may fail to find a suitable child (peer

A) for two reasons (see line 7-13 in Algorithm 2): (a) if there is no peer in level

(l − 1) and group bg/Rc then peer E should try to join level (l − 1), (b) otherwise

group bg/Rc in level (l − 1) is saturated and peer E should join level (l + 1).

• Construct parent-list: To construct the parent-list peer E has to find a peer,

say T , such that peer T is in level (l+1) and in group (g×R), and T has an empty

slot in its child-list. If such a peer (T) exists then peer E constructs its parent list

using peer T and all the replicas of peer T . Otherwise, peer E will start with an

empty parent-list, and will wait for more peers to join at level (l + 1).

The psuedocode for join process for an indexing peer is given in Algorithm 2.

DPMS: Distributed Pattern Matching System 77

Algorithm 2 Join process for indexing peer E
1: Input:

2: l : Integer {Level at which to join}
3: Local:

4: g : Integer {Group at which to join}
5: g ← random number in range [0, Rl)

6: A ← a peer at < l − 1, bg/Rc > with less than R parents

7: if no such A exists then

8: if group bg/Rc is saturated then

9: join(l + 1)

10: else

11: join(l − 1)

12: end if

13: else

14: Join as a parent of A

a) E.replicaList = A.parentList

b) Add E to the replicaList of each parent of A

b) Add E to the parentList of each sibling of A and A itself.

15: T ← a peer at < (l + 1), (G×R) > with less than B children

16: if no such T exists then

17: E.parentList ← empty

18: else

19: Join as child of T

a) E.parentList ← T.replicaList

b) Add E to the childList of T and each peer in T.replicaList.

20: end if

21: end if

78 Efficient and Flexible Search in Large Scale Distributed Systems

3.11 Node Leave or Failure

In DPMS, peer departure and failure are handled in the same manner, i.e., a peer can

leave the system without any notice. The absence of an indexing peer, say E, will affect

the peers in its parent-list, child-list and replica-list. Parents and children of E can still

communicate through any of the replicas of peer E. So query routing is not hampered

until all of the replicas of a peer fail.

Failure or departure of a leaf peer has greater impact on the system. All the index

information along the replication tree, rooted at the failed leaf peer, has to be updated.

During this period (from the point of failure to the update of all indexing peers in the

replication tree) a query directed towards the failed leaf peer will be evaluated as a false

match. This will increase search overhead to some extent, as will be discussed in Sec-

tion 3.13.3. Unlike tightly coupled distributed systems, we allow temporary inconsistency

in routing tables due to peer failure. This relaxation will allow the system to efficiently

deal with intermittent connectivity of peers.

To efficiently deal with frequent join and leave of a leaf peer, indexing peers should

advertise their index information at constant intervals. Any advertisement from a child

peer should be delayed until the end of the interval. The interval length can be used

to tradeoff index update delay with network overhead due to frequent advertisements.

By increasing this interval length we can reduce network overhead due to advertisement

traffic but at the cost of increased update latency, and vice versa.

3.12 Analysis

3.12.1 Query Routing Efficiency

In this section we will provide an analytical bound on the levels of indexing hierarchy

that will allow query routing in O(log N) hops, where N is the total number of peers in

DPMS: Distributed Pattern Matching System 79

the system. For this analysis we assume a fully grown indexing hierarchy with no peers

failure. We will use B to denote branching factor, R for replication factor, and nl as the

number of peers at level l. Leaf peers reside at level 0 and the height (or maximum level)

of the indexing hierarchy is h. Assuming these definitions we can calculate the maximum

number of peers at level l as:

nl = n0

(
R

B

)l

= n0α
l (3.5)

and the total number of peers in the system as:

N =
h∑

l=0

nl = n0
1− αh+1

1− α
(3.6)

Hence the total number of leaf peers in the system,

n0 = N
1− α

1− αh+1
(3.7)

Now, the number of groups at level l is Rl. So, the average number of peers in a

group at level l, say ml, is:

ml =
nl

Rl
(3.8)

Combining Equation (3.5), Equation (3.6) and Equation (3.8), and using α = R
B

we

obtain:

ml =
N(1− α)

Bl(1− αh+1)
(3.9)

For efficient query routing we expect the number of peers in a group at level h to be

f × log N , where 0.5 ≤ f ≤ 2. Replacing mh = f × log N in Equation (3.9) we obtain:

Bh(1− αh+1) =
N(1− α)

f log N
(3.10)

For practical values of R and B, as discussed in Section 3.12.4, we can approximate

(1 − αh+1) with θ, where 0 < θ < 1. Replacing this value in Equation (3.10) we can

approximate h (for R 6= B and R > 1) as

80 Efficient and Flexible Search in Large Scale Distributed Systems

h ≈ 1

log B
× log

N(1− α)

θf log N
= O

(
log

N

log N

)
. (3.11)

Thus we claim that if we can build and maintain an indexing hierarchy of height

O
(
log N

log N

)
then we will be able to solve the DPM problem in

O

(
log N + ξκ log

N

log N

)
(3.12)

time. Here, O(log N) is the cost of flooding one of the Rh groups at level h, and

O(ξκ log N
log N

) is the cost of reaching the κ matching leaf peers along the indexing hier-

archy of height O(log N
log N

). ξ accounts for the lossy aggregation scheme. For a system

without any aggregation (i.e., information loss) the value of ξ should equal one. Sec-

tion 3.12.3 presents an estimate of ξ.

3.12.2 False Match Probability

In this section we present a mathematical model for predicting the false match probability

for the don’t care based aggregation scheme. In don’t care based aggregation scheme, we

consider an aggregate D to be a match for a query Q if the set of 1-bits in Q is a subset

of the 1-bits in D, assuming the don’t care positions in D to be 1s. This assumption

leads to the possibility of false match, where an aggregate can match a query, although

none of the constituent patterns is a match for the query. For measuring the false match

probability we will assume that the patterns (advertised by the leaf peers) are Bloom-

filters, with parameters m, ω, and ~ (see Section 2.3.2). Assuming the hash functions

are perfectly random2, the probability that a specific bit is 1, after all of the ω-elements

have been inserted into the Bloom filter, is:

p = 1−
(

1− 1

m

)~ω
(3.13)

2A hash function is perfectly random if the hashed value is uniformly distributed over the range, in

this case [0,m− 1]

DPMS: Distributed Pattern Matching System 81

The probability of false match depends on the amount of aggregation, which in turn

increases as we move up along the indexing hierarchy. We can estimate the probability

(φl) that an aggregate D (at level l) is a false match for a query Q as:

φl = (1− pτl)yl (3.14)

Here, yl is the average number of patterns contained in D, and τl = |Q1∧DX |. Hence,

pτl is the probability that all of the τl 1-bits of Q are present in a pattern contained in

D, and φl stands for the probability that none of the constituent patterns in D, has all

of the τl 1-bits of Q.

We can estimate yl as yl = 1
Al and τl as τl = τ

(
m−O

m

) (
l
h

)
. Here A and O are as defined

in Section 3.6. τ = χpm is the expected number of ones in Q, and χ is the percentage of

elements (i.e., ω) from a pattern hashed into Q. As discussed in Section 3.6,
(

m−O
m

) (
l
h

)

is the proportion of don’t care bits in an aggregate at level l, considering that the number

of don’t care bits increases linearly as we move up along the indexing hierarchy.

For bitwise-OR based aggregation scheme, we can estimate false match probability

as,

ψl = (1− pτ)yl (3.15)

Comparing Equation (3.14) and Equation (3.15), we can infer that φl < ψl as τl < τ .

3.12.3 An Estimate of ξ

The don’t care based lossy aggregation scheme introduces chances of “false matches”

during the query routing process. As introduced in Equation (3.12), ξ represents the

factor by which query routing overhead increases in presence of aggregation. This section

presents an estimate of ξ. For a system without aggregation (i.e., information loss) the

value of ξ should equal one. In presence of aggregation the value of ξ will be greater than

one. Hence an estimate of ξ can be used as a measure of the impact of aggregation on

routing efficiency.

82 Efficient and Flexible Search in Large Scale Distributed Systems

Let ν be the probability that a query will fail to match any aggregate at level l, though

it matched an aggregate at level (l + 1). Then a query will fail to match an aggregate at

level l with probability (1 − ν)h−lν and in that case (h − l) hops will be wasted. Hence

the expected number of probes in a complete descending phase (i.e., from level h to level

0) is:

ξh = h +
h−1∑

l=0

(h− l)(1− ν)h−lν

Applying equality
∑n

t=0 txt = x−(n+1)xn+1+nxn+2

(1−x)2
yields:

ξ = 1 +
1

νh

[
1− ν − (h + 1)(1− ν)h+1 + h(1− ν)h+2

]
(3.16)

An estimate of ν is, ν =
(
1− p∆τ

)y
. Here, ∆τ = τl+1 − τl = pχ(m−O)

h
and y = 1

A
. y

is the average number of aggregates from level l that are fused to form an aggregate at

level (l + 1).

3.12.4 Advertisement Overhead

In this section we compare the advertisement overhead in DPMS against that in DHT-

based systems. For DPMS, number of advertisement messages in one refresh interval is

CDPMS =
∑h−1

l=0 Rni = RN αh−1
αh+1−1

Let < be the total number of advertised patterns in the system. In DPMS < can

be computed as < = Pn0 = PN α−1
αh+1−1

. Here, P is the average number of patterns

advertised by a leaf peer.3 Now if this same number of patterns (i.e., <) are advertised

in a DHT-based system, then we can estimate the number of advertisement messages

as CDHT = < lg N = PN α−1
αh+1−1

lg N . Hence, the ratio of message count in these two

3Unlike DHT techniques, in DPMS a peer can transmit all of its indices in a single message to a

parent. Hence, the number of advertisement messages generated in DPMS does not depend on the

number of pattern being advertised.

DPMS: Distributed Pattern Matching System 83

systems is:

MC =
CDPMS

CDHT

=
R(αh − 1)

P (α− 1) lg N
(3.17)

Assuming W to be the width of a pattern, we can estimate total advertisement volume

for DHT-based systems as, VDHT = <W lg N . On the other hand, total advertisement

volume in DPMS is, VDPMS =
∑h−1

l=0 PW (BA)lnlR = <WR (RA)h−1
RA−1

. Hence, the ratio of

message volume in these two systems is,

MV =
VDPMS

VDHT

=
R

(
(RA)h − 1

)

(RA− 1) lg N
. (3.18)

In Figure 3.4(a) and Figure 3.4(b) we produce plots of MC and MV , respectively,

for varying branching factor B. For these plots we have used A = 0.6, h = 5, P = 10

and R = 2, 3. These are the parameter settings used in the experiments in Section 3.13

as well. To account for the varying number of peers in the system we have varied B

from 4 to 9, which corresponds to a population of 24, 000 to 910, 000 peers for R = 2

and 40, 000 to 1, 061, 000 thousand peers for R = 3. From Figure 3.4 we can infer that,

advertisement message count in DPMS is much lower than that in DHT-based systems.

Advertisement message volume, on the other hand, in DPMS is comparable to that of

DHT-based systems for R = 2, though it is about 4 times higher for R = 3.

3.13 Experimental Evaluation

To measure the performance of the proposed system and to validate the concepts pre-

sented in this chapter, we have developed a prototype implementation of the DPMS

protocol and run simulations with various parameter settings. This prototype implemen-

tation has been developed using Java language and is based on the PeerSim [10] simulator

framework. PeerSim is an open source P2P simulator that allows cycle driven simulation.

We shall explain various components of the PeerSim simulator in Section 5.3.2.

84 Efficient and Flexible Search in Large Scale Distributed Systems

(a) Message count

(b) Message volume

Figure 3.4: Advertisement overhead

Existence of bias (or correlation) among the advertised patterns allows a higher level

of aggregation (due to the similarity in patterns) without introducing significant number

of don’t cares. This results into better query routing performance at reduced storage

overhead, than the case with randomly generated patterns. To justify this insight, we

have conducted experiments for two cases: a) random case: patterns are randomly

DPMS: Distributed Pattern Matching System 85

generated bit strings, and b) biased case: patterns are Bloom-filters generated using

3-grams from <song title, artist> tuples. These tuples are chosen randomly from a

database of song information extracted from http://www.leoslyrics.com/, which is an

online database of more than 200,000 song lyrics. The bias is introduced from the non-

uniform frequency distribution of different 3-grams that may occur in a keyword.

A query in the random case is created by randomly taking 33% of the 1-bits from

a randomly chosen advertised pattern. While in the biased case, a query is created as

a Bloom-filter constructed from 33% of the advertised 3-grams from a randomly chosen

advertisement. Each data point presented in this chapter has been calculated as an

average of the statistical values obtained from independent simulation runs and 3000

queries per simulation run.

In Section 3.13.1, we identify the system parameters and performance metrics, and

investigate the impact of various system parameters on these performance metrics. Then

we focus on the scaling behavior of the system with network size, in Section 3.13.2.

Finally, in Section 3.13.3 we illustrate the impact of replication on the system’s resilience

to peer failure.

3.13.1 Parameter Tuning

The aggregation process introduces the possibility of trading off query routing efficiency

with index storage size at peers. A higher level of aggregation results into a lower level

of storage overhead, a higher level of information loss in the aggregates and a decrease

in query routing efficiency, and vice versa. In this section we intend to find a balance

between these two conflicting interests.

Table 3.2 summaries the system parameters and their value(s) used for parameter

tuning. The first four of these parameters define the structure of the indexing hierarchy.

Experiments in this section are dedicated to the analysis of the impact of different system

86 Efficient and Flexible Search in Large Scale Distributed Systems

parameters on query routing performance and storage overhead. Hence, we have chosen

R=1. This allows us to separate routing performance characteristics of the system from

fault-tolerance behavior.

The last three parameters in Table 3.2 influence query routing efficiency. O and A

are the parameters passed to the aggregation algorithm (see Algorithm 1). The impact

of parameter W (pattern width) on query routing performance and level of aggregation

is intuitive though not trivial. Experimental results demonstrate that, for a fixed value

of O, increase in W increases query routing accuracy while decreasing index storage

requirement at peers.

Table 3.2: System parameters and their values used for the parameter tuning experiments

Param. Value(s) Description

B 4 Branching factor

R 1 Replication factor

H 4 Maximum level

N ∼ 4000 Number of peers in the system

P 10 Number of patterns advertised by a leaf peer.

A 0.6 Target aggregation ratio

O 10, 20. . . 60 Min. number of non-X bits in an aggregate

W 80, 100. . . 200 Pattern or aggregate width (m, if Bloom fil-

ter is used)

The performance metrics analyzed in this section are list below:

• First-hit probes is the number of peers that are probed before the first match is

found.

• Avg. probes/hit is the average number of probes required for each hit. In cases

DPMS: Distributed Pattern Matching System 87

where multiple matches are present, we have traced up to 20 matches. Popular

search engines, including google, return 10 results per page by default and a very

little percentage of users browse beyond the first page of results. Thus we can

assume that 20 matches in a search result will be sufficient for most cases.

• Indexing overhead (IO) is an indicator for the extra storage space requirement

introduced by the indexing hierarchy. IO is measured as the ratio of the total

number of aggregates in the system to the total number of patterns advertised by

the leaf peers. Mathematically,

IO =
no. of aggregates (at the inexing peers)

no. of patterns (at the leaf peers)
. (3.19)

• Effectiveness of aggregation (EA) quantifies the amount of reduction in in-

dex storage requirement, achieved with the aggregation mechanism. The following

equation is used to measure this quantity:

EA = 1− no. of aggregates with aggregation

no. of aggregates without aggregation
(3.20)

Figure 3.5(a) and Figure 3.5(b) show the impact of O and W on query routing accu-

racy. In turn, Figure 3.5(c) and Figure 3.5(d) show the impact of O and W on storage

overhead. By analyzing the curves in these figures, we can infer the followings.

• Query routing accuracy increases with increase in the minimum number of non-X

bits (O) in aggregates. This effect is intuitive. With higher number of original bits

we have more information and lower probability of false matches.

• Indexing overhead increases with an increase in O. An increase in O means lower

number of don’t care bits are allowed in the aggregates, which implies less space

for aggregation. The result is a higher number of aggregates in the system. This

justifies the previous observation as well.

88 Efficient and Flexible Search in Large Scale Distributed Systems

��

��

��

��

��

��

�� �� ��� ��� ��� ��� ��� ��� ���

�	

� � � ��
� � ��
� ���

��
��
��
��
�
��
�

!�

(a) First hit probes

�

��

��

��

��

��

��

��

��

�� �� ��� ��� ��� ��� ��� ��� ���

	
��� � � ���� �� ���� ���

��
��
��
�
�
!"
#$
%

(b) Avg. probes per hit

����

����

����

����

����

�� �� ��� ��� ��� ��� ��� ��� ���
	
��� � ����� �� ���� ���

��
��
��
��
�
�!
"�
#�

(c) Indexing overhead

����

����

����

����

����

����

����

����

�� 	� ��� ��� ��� ��� �	� ��� ���

��� �� � ���� �� ���� ���

���
��
��
��
 �
!!
"#
� "
$%
%&
�%
$��

(d) Effectiveness of aggregation

���������
��	������
��
������
���������
���������
��������
���

���� �����
���� ���

Figure 3.5: Impact of O and W on network and storage overhead (random case)

DPMS: Distributed Pattern Matching System 89

�

�

��

��

��

��

��

�� �� ��� ��� ��� ��� ��� ��� ���

�	

� � � ��
� � ��
� ���

��
��
��
��
�
��
�

!�

(a) First hit probes

�

�

�

�

�

��

��

��

��

�� �� ��� ��� ��� ��� ��� ��� ���

����	
� � ��� � ��� ���

��
��
��
�
�
��
�
!"

(b) Avg. probes per hit

�

���

�

���

�

�� �� ��� ��� ��� ��� ��� ��� ���
	
��� � ����� �� ���� ���

��
��
��
��
�
�!
"�
#�

(c) Indexing overhead

�

���

���

���

���

���

���

���

�� 	� ��� ��� ��� ��� �	� ��� ���

��� �� ����� �� ���� ���

���
��
��
��
 �
!!
"#
� "
$%
%&
�%
$��

(d) Effectiveness of aggregation

���������
��	������
��
������
���������
���������
��������
���

���� �����
���� ���

Figure 3.6: Impact of O and W on network and storage overhead (biased case)

90 Efficient and Flexible Search in Large Scale Distributed Systems

• For O = W case there is no aggregation in the system and the number of false

matches is zero, which gives the best possible values for query routing metrics. For

this case, the indexing overhead is 4, while effectiveness of aggregation is 0.

• With O = 60 and W = 80, at most 20 don’t care bits are allowed in the aggregates.

With this restriction almost no aggregation takes place. This justifies the high

value of indexing overhead for O = 60 curve at W = 80 (see Figure 3.5(c)).

• Not all bits of a pattern are required for query routing with high accuracy. Query

routing accuracy is almost the same for O = 50 and O = W cases, whereas, indexing

overhead for O = 50 case is only 65% of O = W case.

• For O = 10 and O = 20 curves query routing accuracy increases with increase in

W . This is because we are using both positional value and content of each bit while

matching a query to an aggregate. When W increases, number of possible positions

of non-X bits increases, which reduces the probability of false matches. Hence, the

decrease in the number of hops.

• For a fixed value of O indexing overhead decreases with increase in pattern-width

(W). Given two random patterns, the probability that they will match on a given

number of bits increases with W . This results into higher probability of aggregation

and lower indexing overhead.

The observations presented for the random case (Figure 3.5) are equally applicable

for the biased case (Figure 3.6). In addition, we can infer the followings by comparing

these graphs.

• Query routing performance is in general better for the biased case, compared to the

random case. Especially for O = 10 and O = 20 curves it is about 3 times better,

while EA is almost identical for both cases.

DPMS: Distributed Pattern Matching System 91

• IO and EA are better for the biased case as well. For O ≥ 40 curves, EA reaches

its maximum upper limit 4 for the biased case (compare Figure 3.5(d) and Fig-

ure 3.6(d)). Which implies, higher level of aggregation is possible by reducing A,

though at the expense of reduced routing efficiency.

�
���
���
���
���
���
���
���
��	
��

�

� ��� ��� ��� ��	 �
������� ��� ����� ����

�
��
��
��
 !"
#$
%&
""
'(
�
&"
)'
*'
)
+

	� ��� ��� ��� ��� �	� ��� ,-./0

(a) Random case

�
���
���
���
���
���
���
���
��	
��

�

� ��� ��� ��� ��	 �
������� � �� ����� ����

�
��
��
��
 !"
#$
%&
""
'(
�
&"
)'
*'
)
+

	� ��� ��� ��� ��� �	� ��� ,-./0

(b) Biased case

Figure 3.7: Nature of aggregates

Based on these observations we can conclude that by controlling O (i.e., the minimum

number of non-X bits) we can control the amount of aggregation, but at the expense

of increased query routing traffic. It is evident from the first hit probes and average

probes/hit curves for random and biased cases (Figure 3.5(a), Figure 3.5(b), Figure 3.6(a)

and Figure 3.6(b)), that there exists an oscillation w.r.t. the change in W . This effect

can be explained by observing the curves in Figure 3.7, which plot the achieved level

of aggregation (i.e., % of non-X bits/pattern) against the allowed maximum (i.e., O
W

)

level of aggregation. In these two diagrams the solid line is the plot of O
W

. For random

case there exists a shift at O
W

= 0.28 and for the biased case the shift (though smaller)

4 Upper limit for EA can be calculated as: EA = 1−
∑h

l=1 PAl−1Blnl∑h
l=1 PBlnl

= 1− A(Ah−1)
h(A−1) (note: leaf peer

do not aggregate)

92 Efficient and Flexible Search in Large Scale Distributed Systems

is at O
W

= 0.34. This implies that the achievable level of aggregation does not change

continuously, rather there exists two discrete levels. The X-axis in Figure 3.7 indicates

the inverse polarity of that in Figure 3.5 and Figure 3.6. Hence comparing these curves

we can conclude that the routing efficiency increases with W once we are at the lower

aggregation region i.e., O
W

< 0.28 for random case and O
W

< 0.34 for biased case. Based

on this observation we select O = 50 and W = 180 (i.e., O
W

= 0.277) for the subsequent

experiments.

3.13.2 Scaling Behavior

In this section we analyze the scaling behavior of DPMS with growth in network size.

Based on the observations presented in Section 3.13.1 we have chosen W = 180 and

O = 50 for the experiment presented in this section. The number of peers (N) in the

system has been varied from around 8, 000 to 21, 000 while keeping the number of peers

per group at the highest level of indexing hierarchy in the range of 0.6 log N and 1.5 log N .

We have used R = 1 and B = 4 to remain compatible with the experiments presented in

Section 3.13.1. The value of H was set to 5 to accommodate all the peers in the indexing

hierarchy, without violating the above mentioned constraints.

�

��

��

��

��

��

���� ����� ����� ����� ����� ����� ����� �����
�	
 	� � ��

��
�
��
��
��
��

��� ��� ��	�� ��� !	"# $%&
 ��	��'��� ��� !	"#
��� ��� ��	�� �����!# $%&
 ��	��'��� �����!#
��� ��� (�	�� ����"��!#

Figure 3.8: Scaling behavior

DPMS: Distributed Pattern Matching System 93

Figure 3.8 presents the curves for the first hit probes and the average probes/hit

metrics according to the definitions presented in Section 3.13.1. The first hit probe

includes the cost of flooding (O(log N)) the peers in a group at the highest level of the

indexing hierarchy. This justifies the gap between the first hit probes and the average

probes/hit curves. Moreover, routing efficiency for biased case is much better than that

of the random case, as already demonstrated in Section 3.13.1.

The 1st hit Probes(estimated) curve has been computed based on the following equa-

tions:

probes = f logB N + ξest ∗ hest (3.21)

hest = logB

(
1

B
+

N(B − 1)

Bf logB N

)
(3.22)

The value of ξest has been derived from Equation (3.16) using the parameter values

used in this experiment. In Equation (3.22), f logB N represents the number of highest

level peers; for this experiment f was varied from 0.6 to 1.5 based on the value of N .

Equation (3.22) has been derived from Equation (3.10) for R = 1. Clearly, the estimated

curve is close enough to the simulation results (see the curves in Figure 3.8).

This experiment also revealed that IO and EA do not depend on the number of peers

in the system. These metrics are dependent on the maximum number of levels (H), and

the replication factor (R). An increase in H (and/or R) increases IO (and decreases EA)

For this experiment neither R nor H has been varied, hence IO and EA were constant

as present in Table 3.3.

3.13.3 Fault tolerance

There exists two disadvantages of a tree-like, hierarchical indexing scheme: (a) the highest

level peers become performance bottlenecks and (b) failure of an indexing peer results in

94 Efficient and Flexible Search in Large Scale Distributed Systems

Table 3.3: Storage overhead in DPMS

IO EA

Random 4.04 0.24

Biased 3.07 0.48

unreachable leaf peers. To overcome these problems we have incorporated the concept

of replication in the DPMS indexing hierarchy. This section presents the impact of

replication on routing performance in the presence of peer failures.

For the experiments in this section we have varied R from 1 to 6 while keeping all

other parameters constant. We have used H = 4, B = 4, O = 50 and W = 180. For

these settings the number of peers in the system was varied from about 4, 000 (for R = 1

case) to 40, 500 (for R = 6 case). For each value of R we have deactivated (i.e., removed)

up to 50% of the peers from the system in 5% steps, and have executed 3000 queries

on the rest of the peers for each simulation run (i.e., at each step). The impact of bias

among patterns is orthogonal to fault-tolerance characteristics of the system, hence we

have presented only the random case in this section.

Like the previous experiments, we have used the first hit probes (Figure 3.9(c)) and the

average number of probes/hit (Figure 3.9(d)) as the metrics for measuring query routing

performance. However, for the previous experiments there were no peer failures, and so

all the actual matches to a query could be discovered. But, for the experiments in this

section this is not true anymore. Failure of indexing peers may result into unreachable leaf

peers. To measure the impact of this phenomena we have defined hit rate (Figure 3.9(a))

as the average percentage of matches that are discovered by a query. The impact of

replication on the overall storage overhead in the system is presented in Figure 3.10.

By analyzing the curves in Figure 3.9 and Figure 3.10 we can infer the followings:

DPMS: Distributed Pattern Matching System 95

�

���

���

���

���

�

� �� �� �� �� ��
	
�� � � �� ���

���
���
��
��

(a) Hit rate

�

����

�����

�����

�����

� �� �� �� �� ��
���	
� �

 � ���

��
��
��
��
��
��
��
��
��
�

(b) Number of failed peers

�
�
��
��
��
��
��
��
��

� �� �� �� �� ��
���	
 � �

 � ���

��
��
�
��
�
��
��
��

(c) First hit probes

�
�
��
��
��
��
��
��
��

� �� �� �� �� ��
���	
 � �

 � ���

��
��
��
��
��
��
��

(d) Avg. probes per hit

���

���

���

���

���

���

�	
���� ���
�����

Figure 3.9: Impact of replication and peer failure on routing performance and hit rate

96 Efficient and Flexible Search in Large Scale Distributed Systems

• Without any replication (R = 1 case) the hit rate reduces drastically with increase

in the percentage of failed peers (see Figure 3.9(a)). Failure of an indexing peer, in

this case, makes all of the leaf peers in its subtree unreachable. Routing efficiency is

also low in this case, as many probes are wasted (i.e., evaluated as false match at the

parent of a failed indexing peer) while trying to route queries toward unreachable

leaf peers.

• Routing efficiency and hit rate increases with increase in R. This increase in hit-

rate and routing efficiency (i.e., a decrease in the number of probes) diminishes

with higher values of R (e.g. R = 5 or R = 6).

• The downside of replication is the exponential increase in the indexing overhead (see

Figure 3.10(a)). However effectiveness of aggregation increases with increases in R

(see Figure 3.10(b)). Based on the equations in Section 3.12.1 and the definition of

EA (see Equation (3.20))), it can be shown that the value of EA tends to Ah−1 as

R tends to infinity. This justifies the gradual decrease in EA in Figure 3.10(b).

In the light of the experiments presented in this section we can conclude that repli-

cation is necessary for improving reliability of the proposed system. A replication factor

of 2 or 3 can satisfy the need of most applications, assuming the peer failure rate is less

than 25%.

3.13.4 Indexing Hierarchy

In this experiment we focus on two aspects of the index distribution hierarchy: peer

distribution and index distribution. We simulated a system of about 20,000 peers. In

consistence with the experiment in Section 3.13.2 we set the parameter values to H = 5,

B = 4, A = 0.6, O = 50 and W = 180.

DPMS: Distributed Pattern Matching System 97

�

��

��

��

��

���

���

���

� � � � � �

�	
���� ��� ����� ���

�
�
�
�
��
�
�
�
��
�
�
!
�
"�
#$

(a)

����

����

����

����

� � 	 � �

�� ����� ��� ������ ���

���
��
� �
��
 !
!"
�!
#�$
�%
&�
 '

(b)

Figure 3.10: Impact of replication on storage overhead

�
��

��
��
��

��
��
��

��

� � � � � �
	
�
 �

��
��
��
��
��
��
�� ���

���

���

���

���

���

Figure 3.11: Distribution of peers along the indexing hierarchy

Distribution of peers along the indexing hierarchy mostly depends on replication

factor R and branching factor B. For this experiment we varied R and recorded the

percentage of peers at different levels along the indexing hierarchy. As demonstrated in

Figure 3.11, percentage of indexing peers increases with R. We can utilize this behavior

to accommodate the relative population of indexing peers and leaf peers in accordance

with the target system.

Index size grows exponentially as we move up along the indexing hierarchy. In this

98 Efficient and Flexible Search in Large Scale Distributed Systems

�

��

���

���

���

���

���

� � � � � �

���� 	

�
�

�
��
�

�
�
��

������

������

Figure 3.12: Variation in index size along the indexing hierarchy

experiment we try to provide an estimate of the expected index size in peers at different

levels of the indexing hierarchy. Index size at an indexing peer grows linearly with the

average number of advertisements per leaf peer. Another factor influencing index size is

the achievable level of aggregation (i.e., A) which in turn depends on the nature of bias in

advertised information. Figure 3.12 presents the average index size in peers at different

levels of the indexing hierarchy. Results for both random and bias data are presented.

The investigation with Gnutella network carried out in [124], suggests that more than

75% of Gnutella peers advertise less than 100 files and more that 25% of them do not

advertise at all. Based on this observation we set the average number of advertisements

per leaf peer (i.e., P) to 100. We can infer from Figure 3.12 that the average index size

in higher level peers is lower for biased data. About 7% peers at the highest level of the

indexing hierarchy reports high index size, which is on average 179KB and 247KB for

biased and random cases, respectively. It will require about 2.9 ∼ 4.1 minutes (for biased

case and random case respectively) to refresh the index at a peer using a 1KBps stream.

Use of a compression technique can further reduce the refresh period.

DPMS: Distributed Pattern Matching System 99

3.14 Summary

In this chapter we have presented DPMS as a semi-structured solution to the DPM

problem. DPMS supports flexible queries involving partial and multiple keywords. Query

routing efficiency of DPMS is comparable to that of the structured P2P systems. For

moderately stable networks, DPMS provides guarantee on search completeness and on

the discovery of rare items. Peers in DPMS maintain constant number of links, in contrast

to O(log N) links per peer required by most DHT-based systems. DPMS can easily be

tailored to achieve context-sensitive (e.g., network proximity, user interest etc.) query

routing. Moreover, DPMS can exploit the heterogeneity in peer capabilities, and does

not place any hard restriction on document or index placement.

The main drawback of the proposed system is the storage overhead introduced by

hierarchical indexing and replication. Experimental results presented in this chapter

demonstrate the worst possible values for the storage overhead (i.e., for random case). For

most applications, there exists some bias among the advertised patterns, which can enable

higher levels of aggregation and hence lower levels of storage overhead, as demonstrated

by the results for the biased case.

Another problem in DPMS stems from leave/join of leaf peers. Leave/join of indexing

peers has local effect only. But, leave/join of a leaf peer results into cascaded updates

along its replication tree. This problem can be mitigated by using periodic and differential

updates of index information between adjacent indexing peers. This latency in update

will not hamper the normal operation of the system other than degrading query routing

performance to some extent.

Modification of data at leaf peers (e.g., change in filename, insertion of new data/file

or deletion of existing data/file) will invalidate the associated index information. This

problem persists in any structured or semi-structured system, though the effect is higher

in a hierarchical indexing system like DPMS. It has been demonstrated in [134] that in

100 Efficient and Flexible Search in Large Scale Distributed Systems

modern 2-tier Gnutella network about 36% peers do not change their shared content over

a one week interval. However, that number increases to 69%, 80% and 90% over one day,

6 hours and 2 hours intervals, respectively. Thus it is possible to reduce the effect of data

dynamism using periodic index updates.

Chapter 4

Plexus

4.1 Introduction

In this chapter we introduce a structured [22] routing mechanism, named Plexus [15, 17],

as a solution to the DPM problem. The routing algorithm in Plexus is based on the

theory of Error Correcting Codes (ECC) [76]. The novelty of the proposed approach lies

in the use of Hamming distance based routing, in contrast to the numeric distance based

routing adopted in traditional DHT-approaches. This property makes subset match-

ing capability intrinsic to the underlying routing mechanism. Plexus uses patterns (like

Bloom filters [30]) to summarize the identifying properties associated with a shared ob-

ject. It provides an efficient mechanism for advertising a binary pattern, and discovering

it by using any subset of its 1-bits. Plexus has a partially decentralized architecture

involving superpeers. The number of routing hops for resolving a query and the num-

ber of links maintained by each indexing peer scales logarithmically with the number

of peers in the system. Plexus attains better resilience to peer failure using replication

and redundant routing paths. The concepts presented in this chapter are supported with

theoretical analysis, and simulation results obtained from the application of Plexus to

partial keyword search utilizing the Extended Golay code[65].

101

102 Efficient and Flexible Search in Large Scale Distributed Systems

4.2 Chapter Organization

The rest of this chapter is organized as follows. Preliminaries on coding theory are

presented in Section 4.3. Section 4.4 explains the theoretical model of Plexus, while

Section 4.5 presents the overlay topology construction and maintenance protocols. Simu-

lation results, supporting our claims, are presented in Section 4.6. Finally, we summarize

the concepts and the findings of this chapter in Section 4.7.

4.3 Preliminaries

In this section, we explain the properties of linear codes and the Extended Golay code. We

highlight only those properties that will be required for the discussions in the subsequent

sections.

4.3.1 Linear Covering Codes

Let Fn
2 define the linear space of all n-tuples (or vectors) over the finite field F2 = {0, 1}.

A linear binary code of length n is a subspace1 C ⊂ Fn
2 . Each element in C is called a

codeword. A linear covering code is specified by using four parameters (n, k, d)f . Here, k

is the dimension of the code. This indicates that there exists a total of 2k codewords in the

code. d is the minimum Hamming distance between any two codewords and n is the length

of each codeword in bits. The covering radius f is the smallest integer such that every

vector P ∈ Fn
2 is covered by at least one Bf (ci). Here, Bf (ci) = {P ∈ Fn

2 |d(P, ci) ≤ f} is

the Hamming sphere of radius f centered at codeword ci.

From error correcting perspective, a good (n, k, d)f -code should have a small n (for

fast transmission), a large k (for increased information content), and a large d (for cor-

1V is a vector subspace over Fn
2 if V ⊂ Fn

2 and for all a, b ∈ V, a ⊕ b ∈ V . Here, ⊕ is the addition

operation defined over Fn
2

Plexus 103

recting many errors).

Since the set of codewords in C is a subspace of Fn
2 , the XOR of any two codewords,

u and v is also a codeword, i.e., ∀u, v ∈ C =⇒ u ⊕ v ∈ C. This property allows the

entire set of codewords i.e., C to be represented in terms of a minimal set of codewords,

known as a basis, containing exactly k codewords. These k codewords, g1, g2, . . . , gk, are

collated in the rows of a k×n matrix known as the generator matrix, GC, for code C. The

codewords of C can be generated by XORing any number of rows2 of GC. The generator

matrix for any linear code C can be expressed as,

GC = [IkB] = [g1g2 . . . gk]
T (4.1)

where, Ik is the k × k identity matrix, and B is a k × (n− k) matrix. The dual code C⊥

of a linear code C is defined as,

C⊥ = {x ∈ Fn
2 |x · c = 0 ∀c ∈ C} .

Here, x · c represents vector dot product over F2. A linear code is said to be self-dual,

if C⊥ = C. For any codeword c of a self-dual linear code C, c ∈ C =⇒ c̄ ∈ C, where c̄

represents the bit-wise complement of c.

4.3.2 Extended Golay Code

The extended Golay code, G24, is a (24, 12, 8)4 self-dual linear binary code. It has 4096(=

212) codewords of length 24-bits each. The minimum distance between any two codewords

is 8. The weight3 distribution of this code is 01 8759 122576 16759 241. In other words, G24

contains the all zero vector ~04 and the all one vector ~1. Exactly 759 codewords have

2Note that
∑k

i=0

(
k
i

)
= 2k.

3The number of 1-bits in a pattern (say P) is known as its weight (= |P |)
4Any linear code contains the all zero vector, ~0

104 Efficient and Flexible Search in Large Scale Distributed Systems

weight 8 (known as special octads), 2576 codewords have weight 12 (known as umbral

dodecads), and 759 codewords have weight 16 (called 16-sets).

Any vector in F24
2 can be categorized into 49 orbits w.r.t. G24 (see Figure 1. in [49]).

These orbits are denoted as Sw(0 ≤ w ≤ 24), Tw(8 ≤ w ≤ 16), Uw(6 ≤ w ≤ 18), P12 and

X12, where the subscript w denotes the weight of the vectors in that orbit. All vectors in

a given orbit exhibit identical distance properties from the codewords in G24. Figure 4.1

(a portion of Figure 1 in [49])) depicts some of these orbits. An edge between orbits

A and B indicates that a vector in orbit B can be obtained from some vector in orbit

A (and vice versa) by complementing a single bit. The minimal hamming distance of a

vector in orbit A from some vector in orbit B is essentially the length of the shortest path

from node A to node B in the graph of Figure 4.1. Orbits S8, U12 and S16 correspond to

the special octads, umbral dodecads and 16-sets, respectively.

4.4 Theoretical Model of Plexus

4.4.1 Core Concept

The originality of this work lies in the use of Hamming distance based clustering of

pattern-space, as opposed to numeric distance utilized by DHT-techniques. Yet, similar

to DHT-based systems, Plexus employs a three-party rendezvous mechanism for query

resolution, i.e., a third entity works as a mediator for query resolution between the

advertising party and the searching party.

In Plexus, advertisements and queries are routed to two different sets of peers in such

a way that the queried set of peers and the advertised set of peers have at least one peer

in common, whenever a query pattern constitute a subset of the 1-bits, as present in an

advertised pattern. As explained in Figure 4.2, we partition the entire pattern space Fn
2

into clusters and select a unique representative (cluster head) for each cluster. Let C be

Plexus 105

��

��

��

��

��

��

��

��

��

�	

��

�	

�
��
��
�

�

�
 �
 �

�	

�

�

�
�

�
�

�
�

�
� �
�
�
�

�
�

�
��
�

�
�

�
��
� �
�

�
�
�
�

�
�

��

�
	

�
�

Figure 4.1: Relationships among the orbits of the vectors in Fn
2 w.r.t. to the codewords

in G24. Circled orbits correspond to the codewords of G24.

106 Efficient and Flexible Search in Large Scale Distributed Systems

�����������	�
 � ����
 � �������������� ����
�������

Figure 4.2: The core concept

the set of these cluster heads. Now the basic concept is to map a query pattern Q to a

set of cluster heads (Q(Q) ⊂ C) and to map an advertised pattern P to another set of

cluster heads (A (P) ⊂ C), such that Q(Q) and A (P) has at least one cluster head in

common whenever the 1-bits of Q constitute a subset of the 1-bits in P . Mathematically,

Q ⊆ P =⇒ Q(Q) ∩A (P) 6= ∅ (4.2)

Clustering of pattern space has been extensively studied in Artificial Intelligence (AI)

and Coding Theory [76] literature. AI-based clustering techniques [79] require priori

knowledge of the pattern space (e.g., pattern density distribution) and training phases.

Coding theory constructs, on the other hand, assume that all the patterns are equally

likely. These techniques distinguish a set of patterns as cluster-heads (codewords), which

cover the entire (or most of the) pattern space with no (or very little) overlaps. For a

(n, k, d)f code C, a codeword ci ∈ C represents all the patterns in Bf (ci), i.e., all patterns

within the Hamming sphere of radius f with center at ci. Each peer is assigned one (or

more, as explained later) codeword (ci) and becomes responsible for all the patterns

within its Hamming sphere Bf (ci).

Plexus 107

Now the challenge is to compute A (P) and Q(Q), and to devise a mechanism for

routing within the overlay. Coding theory literature does not provide any straight forward

way to calculate A (P) and Q(Q), satisfying Equation (4.2). We present the algorithm

for computing A (P) and Q(Q) in Section 4.4.2, and the routing algorithm is presented

in Section 4.4.3

4.4.2 Computing A (P) and Q(Q)

This section presents the algorithms for computing Q(Q) and A (P). Given a code C, a

trivial way of computing A and Q is to use bounded distance decoding [135]; i.e.,

A (P) = Bs(P) ∩ C = {Y |Y ∈ C ∧ d(Y, P) ≤ s)} and

Q(Q) = Bt(Q) ∩ C = {Y |Y ∈ C ∧ d(Y,Q) ≤ t)}
(4.3)

for positive integers s and t. Now we want to compute the minimum d(P,Q) without

violating Equation (4.2). If the covering radius of C is f then the Hamming sphere

of radius f around any arbitrary point should contain at least one codeword. Hence,

according to Figure 4.3,

d(u, v) = s + t− d(P, Q) ≥ 2f

⇒ d(P,Q) ≤ s + t− 2f.
(4.4)

In other words, if we advertise to all the codewords in Bs(P) ∩ C and search all the

codewords in Bt(Q)∩C then any subset Q of P within distance d(P, Q) ≤ s+ t− 2f can

be discovered.

We define query stretch as the maximum value of d(P, Q) without violating Equa-

tion (4.2). |Q| and |A | are proportional to query stretch. In practice we can achieve

higher query stretch than Equation (4.4) while keeping |Q| and |A | within reasonable

limits. In the rest of this section we describe a method for obtaining A (P) and Q(Q)

108 Efficient and Flexible Search in Large Scale Distributed Systems

� �

�
� �

� �

Figure 4.3: Bound on d(P, Q)

for G24, with a query stretch of 11, which will allow maximum weight of an advertised

pattern (|P |) to be 14-bits and minimum weight of a query pattern (|Q|) to be 3-bits.

The discussion in the rest of this section is specific to G24. Special consideration is

required to adopt these algorithms for other linear codes.

As explained in Section 4.3.2, any pattern P of length 24 belongs to one of the 49

orbits w.r.t. G24. Any vector in a given orbit has the same distance properties as listed

in Table 4.1. In this table, the construct d : x stands for distance (d) and number of

codewords(x) at distance d. For vectors in a given orbit, we have listed only the number

of octads and dodecads within distance 5 and 6, respectively.

The number of 1-bits in a query or advertisement is restricted to the range of 3 to 14.

The reason behind this restriction can be justified by observing the following property

of Bloom filter. As discussed in Section 2.3.2, 33 ∼ 50% bits of a well-designed Bloom

filter are 1. Therefore, for a 24-bit chunk from a Bloom-filter 8 ∼ 12 bits are expected

to be 1. Queries having fewer than three 1-bits are too generic, and are likely to match

a large number of advertisements. Due to this restriction, we only need to consider the

octads and dodecads in Q and A calculation.

Most queries (involving 3 − 8 1-bits) are closer to the octads than the dodecads or

the 16-sets. This results in a bias for Q (and eventually A) to have an octad:dodecad

ratio higher than 2 : 7(≈ 759 : 2576). To reduce the effect of this bias, the codewords

Plexus 109

Table 4.1: Distance distribution of orbits from octads and dodecads
S8 U12 S8 U12

S3 5 : 21 S11 3:1,5:2 5 : 16

S4 4 : 5 T11 5 : 5 3 : 1, 5 : 15

S5 3:1,5:20 U11 1 : 1

S6 2 : 1 6 : 16 S12 4 : 1 4 : 4, 6 : 48

U6 4 : 6 6 : 18 T12 4 : 6, 6 : 40

S7 1 : 1 U12 0 : 1

U7 3:1,5:15 5 : 6 X12 4 : 3 6 : 64

S8 0 : 1 P12 2 : 1, 6 : 55

T8 2 : 1 6 : 42 S13 5 : 3 5 : 16

U8 4 : 4 4 : 2, 6 : 32 T13 5 : 1 3 : 1, 5 : 15

S9 1 : 1 U13 1 : 1

T9 3:1,5:7 5 : 14 S14 6 : 56

U9 5 : 12 3 : 1, 5 : 9 T14 4 : 4, 6 : 42

S10 2 : 1 6 : 56 U14 2 : 1, 6 : 45

T10 4 : 2 4 : 4, 6 : 42

U10 2 : 1, 6 : 45

in S16 are adopted as replicas of the octads (S8). This helps in reducing the volume of

query traffic at the octads.

Pseudocodes for finding Q and A are presented in Algorithm 3 and Algorithm 4,

respectively, in light of the preceding discussion. The algorithm for finding Q(Q) starts

with finding the set Q of the octads and dodecads that are within distance 5 and 6,

respectively, from the query pattern Q. If Q contains fewer than τ codewords, then it is

appended with the codewords that are reachable in one hop from the current members

of Q and are within distance 7 (if |Q| is odd) or 8 (if |Q| is even) from Q.

E(|A |)5 is inversely proportional to E(|Q|), which in turn is proportional to τ . Hence,

τ can be tuned to achieve a desirable ratio of search and advertisement traffic. For our

experiments, τ = 5 is used. A lower value of τ can be used if the anticipated volume of

user queries is much higher than advertisements.

The algorithm for finding A (P) has two stages. The first stage (lines 4-9) is to find set

5E(X) is the expected or average value of variable X

110 Efficient and Flexible Search in Large Scale Distributed Systems

Algorithm 3 find Q(Q)

1: Input: Q ∈ F24
2

2: External: τ controls size of Q and A

3: Returns: Q ⊂ G24

4: Q ← {Y |(Y ∈ S8 ∧ d(Y, Q) ≤ 5)
∨

(Y ∈ U12 ∧ d(Y,Q) ≤ 6)}
5: if |Q| < τ then

6: ı ← (|Q| is odd)? 7 : 8

7: Q′ ← ∅
8: for each Y ∈ Q do

9: Q′ ← Q′ ∪ {Z|Z ∈ neighbors(Y)

∧d(Z, Q) ≤ ı ∧ Z /∈ Q}
10: end for

11: Q ← Q∪Q′

12: end if

13: return Q

Plexus 111

P of Q(Q)s that will be searched by all possible Q matching the advertised pattern P .

Now the problem is to find a small (preferably minimum) set of codewords A such that

A contains at least one element from each set in P. This is essentially the minimum

hitting set problem, which in turn, is equivalent to the minimum set cover problem. To

find A , we have applied the greedy algorithm (line 10-14) based on [41].

The time complexity of computing A (P) is dominated by the loop in lines 5-8, where

we compute P. The upper bound for size of P is |P| ≤ ∑|P |
i=3

(|P |
i

)
2k. For G24 and

smaller codes we can compute A (P) in reasonable time. However for larger codes the

time complexity will be an obstacle for the implementation. This is one of the main

reasons behind selecting G24 for the implementation. With the ongoing research on list

decoding techniques ([56],[145],[151]) we can hope to see efficient algorithms for dealing

with larger codes.

Our implementation of computing A (P) takes 4.27 seconds on average on a regular

Pentium 4 1.7GHz machine. We can significantly reduce computation time by reducing

the query stretch. This will eventually result into lower hit-rate when smaller percentage

of η-grams is used for computing a query.

4.4.3 Routing

In Section 4.4.3.1 we explain the routing links for a peer and provide a bound on the

maximum number of routing hops required for reaching any peer in the overlay. In

Section 4.4.3.2 we illustrate the mechanism of applying the Generator matrix for next

hop selection while routing a message. Section 4.4.3.3 presents the special considerations

for routing using the Extended Golay code. Finally, the algorithm for multicast routing

has been presented in Section 4.4.3.4.

By “peer X” we mean a peer responsible for codeword X. In this section, a peer is

assumed to be associated with a single codeword. Section 4.5.2 presents a method for

112 Efficient and Flexible Search in Large Scale Distributed Systems

Algorithm 4 find A (P)

1: Input: P ∈ F24
2

2: Returns: A (P) ⊂ G24

3: A←{Y |(Y ∈ S8 ∧ d(Y, P) ≤ 5)
∨

(Y ∈ U12 ∧ d(Y, P) ≤ 6)}

4: P ← ∅
5: for each Q s.t. Q ∧ P = Q ∧ |Q| ≥ 3 ∧ d(P, Q) > 3 do

6: if A ∩Q(Q) = ∅ then

7: P ← P ∪ {Q(Q)}
8: end if

9: end for

{use greedy heuristic to find minimum hitting set}
10: while P not empty do

11: find Y s.t. Y is in maximum no. of sets S ∈ P

12: A ← A ∪ Y

13: P ← P − {S |S ∈ P ∧ Y ∈ S }
14: end while

15: return A

Plexus 113

assigning multiple codewords to a peer.

4.4.3.1 Routing Table

As discussed in Section 4.3.1, the codewords of a linear code (C) form a vector subspace

of Fn
2 . The basis vectors of this vector subspace are represented as the rows of the

generator matrix for the code. Consider a (n, k, d) linear code (C) with generator matrix

GC = [g1, g2, . . . , gk]
T . To route using this code, peer X has to maintain links to (k + 1)

superpeers with IDs X1, X2, . . . , Xk+1, computed as follows:

Xi =

X ⊕ gi 1 ≤ i ≤ k

X ⊕ g1 ⊕ g2 ⊕ . . .⊕ gk i = k + 1

(4.5)

Theorem 4.4.1. Suppose we are using a (n, k, d) linear code C and each superpeer is

maintaining (k + 1) routing links as specified in Equation (4.5). In such an overlay, it

is possible to route a query from any source to any destination codeword in less than or

equal to k
2

routing hops.

Proof. According to the definition of linear codes, ~0 ∈ C, the rows of GC (i.e., g1, g2 . . . gk)

form a basis for the subspace C, and C is closed under XOR operation. This implies, for

any permutation (i1, i2, . . . , ik) of (1, 2, . . . , k),

X ∈ C =⇒ Y = (X ⊕ gi1 ⊕ gi2 ⊕ . . .⊕ git) ∈ C (4.6)

for 1 ≤ t ≤ k, i.e., 2k distinct codewords of C can be generated by XORing any

combination of 1, 2, . . . , k rows of GC with X.

Suppose peer X (source) wants to route a message to peer Y (target) (see Equa-

tion (4.6)). Now, X can route the message to any of Xj = X⊕gij in one hop by using its

routing links (see Equation (4.5)). Suppose X routes to X1 = X ⊕ gi1 . X1 will evaluate

Y as Y = X1 ⊕ gi2 ⊕ . . . git . Note that Y is one hop closer to X1 than X. X1 can route

114 Efficient and Flexible Search in Large Scale Distributed Systems

the message to any of X1 ⊕ gi2 , X1 ⊕ gi3 ,. . .,X1 ⊕ git peers in one hop. In this way, the

query can be routed from X to Y in exactly t-hops.

If t ≤ k
2
, then our claim is justified. Now let t > k

2
. For this case, we can write

Y = Xk+1 ⊕ git+1 ⊕ git+2 ⊕ . . . ⊕ gik , according to the definitions of Xk+1 and Y in

Equation (4.5) and Equation (4.6), respectively. Now using the (k + 1)-th link, X can

route the message to Xk+1 in one hop, and Xk+1 can route the message to Y in (k− t−1)

hops. Hence for t > k
2

we will need at most (k − t− 1 + 1) ≤ k
2

hops.

4.4.3.2 Next Hop Selection

Given the above described routing protocol, peer X will need a way to find the rows of

GC, satisfying Equation (4.6), in order to route a message to peer Y . To deal with this

problem, the standard form of the generator matrix, GC = [Ik|B] is used in conjunction

with the following theorem.

Theorem 4.4.2. Suppose peer X wants to route to peer Y and needs to find the gij ’s

satisfying Equation (4.6). If GC is in standard form, then the first k-bits of X ⊕ Y have

1-bits in exactly {i1, i2, . . . , it} positions.

Proof. Let θ = X ⊕ Y . By using the definition of Y in Equation (4.6), we get θ =

gi1 ⊕ gi2 ⊕ . . .⊕ git . Since GC is in the standard form, only the ithj row of GC (i.e., gij) has

a 1-bit in ithj bit position for any ij ∈ {1, 2, . . . , k}. Therefore, row gij has to be present

in the linear combination of the rows of GC producing θ.

As discussed in the previous section, there exists a number of alternative paths be-

tween any source pattern X and any destination pattern Y . Let, Ψt(X) return the first

t bits of X. The number of alternate paths between X and Y , say =(X, Y), can be

calculated as follows.

=(X, Y) =

|Ψk(X⊕Y)|∏
i=1

i = (|Ψk(X ⊕ Y)|)! (4.7)

Plexus 115

� �

��
��

��

��

��

��

���
��

��

��� ��

��

��� ��
��

��

��

��

	
� ���� ����

Figure 4.4: Bound on d(P, Q)

As an illustration of Equation (4.7) we present an example in Figure 4.4. In this

example we assume that X = Y ⊕g2⊕g3⊕g5, i.e., the destination Y is 3 hops away from

the source X. In this figure we compute Xi = X⊕gi and Xij = X⊕gi⊕gj. X can route

to X2, X3 or X5, i.e., 3 possibilities. Suppose X routes to X3. X3 can route to X23 or

X35, i.e., in 2 ways. Finally the message can reach Y through X23 or X35 in 1 way. The

existence of multiple paths between any pair of codewords make the routing mechanism

in Plexus resilient to failure of intermediate nodes. This phenomena is reflected in the

experimental results presented in Section 4.6.4 and Section 5.6.5.

4.4.3.3 Routing with G24

The extended Golay code, G24, (like other linear codes) can be defined using different

sets of basis vectors (i.e., generator matrices). The generator matrix used in our imple-

mentation is G24 = [I12|B12], where

116 Efficient and Flexible Search in Large Scale Distributed Systems

B12 =

1 1 0 1 0 1 0 1 0 1 0 1

1 1 1 0 1 0 1 0 1 0 1 0

0 1 1 1 0 1 1 0 1 0 0 1

1 0 1 1 1 0 0 1 0 1 1 0

0 1 0 1 1 1 0 1 1 0 1 0

1 0 1 0 1 1 1 0 0 1 0 1

0 1 1 0 0 1 1 1 0 1 1 0

1 0 0 1 1 0 1 1 1 0 0 1

0 1 1 0 1 0 0 1 1 1 0 1

1 0 0 1 0 1 1 0 1 1 1 0

0 1 0 1 1 0 1 0 0 1 1 1

1 0 1 0 0 1 0 1 1 0 1 1

(4.8)

This generator matrix has two desirable properties:

1. g1 ⊕ g2 ⊕ . . .⊕ gk = ~1

2. ∀X ∈ G24, d(X,X ⊕ gi) = |X ⊕X ⊕ gi| = 8

The first property implies that Xk+1 = X ⊕ g1 ⊕ g2 ⊕ . . . ⊕ gk = X ⊕ ~1 = X̄, and

according to Equation (4.6) Xk+1 = X̄ ∈ G24. This construct is possible because G24 is

a self-dual code. The second property ensures the minimum distance of 8 between any

peer and any of its first k-neighbors (X1, . . . , Xk). These two properties influence the

routing strategy based on G24 as follows.

In any 3-party rendezvous architecture the negotiating middle entity can become a

performance bottleneck and a single point of failure unless appropriate measures are

taken. In Plexus, replication is employed to mitigate the performance problem arising

from the failure of superpeers. The information indexed at peer Y is replicated at peer

Ȳ . The choice of Ȳ as the replica for Y can be justified as follows.

Plexus 117

• It can be proved that if GC is in standard form then Y = X ⊕ gi1 ⊕ . . . git =⇒
Ȳ = X ⊕ git+1 ⊕ . . . gik . Thus, paths from X to Y and X to Ȳ are disjoint.

This increases fault-resilience and influences uniform distribution of query traffic,

especially in cases where peer Y is holding a popular index.

• Secondly, for ensuring at most k
2

hop routing, a link to peer Xk+1 must be main-

tained. Since Xk+1 = X̄, the same link can be used for replication and routing

purposes.

• Finally, as explained in Section 4.4.2, the 759 special octads in S8 are likely to face

a higher number of advertisements and queries than the 2576 umbral dodecads in

U12. On the other hand, A and Q do not contain any codeword from S16 (the 759

special 16-sets). Since, X ∈ S8 =⇒ X̄ ∈ S16, we can shed the extra load on

X ∈ S8 by replicating to X̄ ∈ S16. Note that, X ∈ U12 =⇒ X̄ ∈ U12

4.4.3.4 Algorithm for Multicast Routing

The routing algorithm will always route to a set of target peers instead of just one peer.

A significant portion of routing hops can be reduced by utilizing the shared common

paths to different targets as we will show later in Section 4.6.5. Algorithm 5 presents a

pseudocode for multicasting a message from source peer X to a set of destination peers

Y = {Y1, Y2, . . . , Yu}.
The pseudocode presented in Algorithm 5 is a simplified version of the routing al-

gorithm used in our simulator. It should be noted that the msg parameter contains a

field named msg.hops, which is incremented at each hop. The routing of a message is

suspended if msg.hops reaches a value of k
2
+ 2. Suppose, peer Y has failed, and a query

targeted towards Y reaches one of its neighbors Yi(= Y ⊕ gi). Yi can route the query to

Ȳ in two hops as Ȳ = Ȳi ⊕ gi, and Ȳi is one hop away from Yi. The maximum length

of a path between any two peers is k
2
. Hence, in the presence of failures, a maximum of

118 Efficient and Flexible Search in Large Scale Distributed Systems

Algorithm 5 X.route(msg,Y)
1: Inputs:

msg: Message e.g., search, advertise, join, etc.

Y: {Y1, Y2, . . . , Yu} set of target peers

2: Externals:

k: Dimension of the self-dual linear code

X1, . . . , Xk+1: (k + 1) neighbors of X {see Equation (4.5)}
{update Y}

3: for each Yi ∈ Y do

4: if X = Yi ∨X = Ȳi then

5: Y ← Y − {Yi}
6: process-message(msg)

7: else if d(X, Yi) > k
2

∨

(d(X, Yi) = 1 ∧ !isAlive(Yi)) then

8: Y ← (Y − {Yi}) ∪ {Ȳi}
9: end if

10: end for

{find suitability of each neighbor as next hop}
11: R ← {T1, . . . , Tk+1| Ti ⊆ Y∧

Y ∈ Ti =⇒ Xi is alive and on X Ã Y }
{do actual routing}

12: while Y not empty do

13: find s s.t. ∀Ti ∈ R, |Ts| ≥ |Ti|
14: if no such s exists then

15: break {remaining peers in Y are not reachable}
16: end if

17: R ← R − {Ts}
18: Y ← Y − Ts

19: Xs.route(msg, Ts)

20: end while

Plexus 119

k
2

+ 2 hops will be required to reach any peer or its replica.

4.5 Architecture of Plexus

In this section we present the architecture of Plexus and explain the protocols for topology

maintenance.

4.5.1 Topology

From a functional point of view, peers in Plexus can be categorized as superpeers and leaf

peers. In addition to the functionalities (mostly file transfer) carried out by the regular

leaf peers, superpeers are responsible for indexing meta-information about the content

published by the leaf peers and other superpeers, and for routing queries based on this

information. Superpeers connect to a larger number of peers than the leaf peers, have

higher capacity (bandwidth and processing power) and longer uptime. According to the

classification presented in [22], Plexus has a partially decentralized architecture utilizing

structured search in the superpeer network.

Partially decentralized systems, utilizing superpeers, are considered more practical

solution ([144],[147]) due to their ability to accommodate peers with heterogeneous ca-

pabilities. These systems are less vulnerable to churn problem, as the oscillating popu-

lation of leaf peers are kept at the edge of the logical overlay and the superpeers provide

a relatively stable core. Superpeers population is much lower than the population of

ordinary leaf peers. For these reasons we have chosen a two tier architecture and have

considered Plexus to be the protocol for enabling structured and flexible routing within

the superpeer network.

Figure 4.5 depicts the Plexus architecture. A superpeer indexes meta-information

about the contents published by a number of other superpeers and leaf peers, and routes

120 Efficient and Flexible Search in Large Scale Distributed Systems

����� ����
������	
��� ����

����� ����
��������� ��������
������� ��������
������� ���	�
������������ ���	�

�����

�������� ��������

��������

Figure 4.5: Architectural overview of Plexus.

queries based on this indexed information. Each superpeer is assigned one or more

codewords. Due to the complexity of computing A (P) and Q(Q) we have to use small

codes (e.g., G24 ≡ (24, 12, 8)). This restricts the number of superpeers to few thousands.

On the other hand, we need about 100 ∼ 200-bits in a Bloom filter to encode about

20 ∼ 30 properties (e.g., trigrams or property-value pairs) associated with a shared

object. According to [133], the modern two-tier Gnutella network contains around a

million peers of which around 18% are superpeers. To conform to these limitations and

requirements we use a number of subnets or groups (around 6 ∼ 10) of superpeers.

Each subnet uses different parts (bits) from an advertised or queried pattern and routes

independently, as depicted in Figure 4.6 and explained in Section 4.4.3.

Figure 4.6 depicts the search/advertisement process in Plexus. In Figure 4.6, step 1

and step 2 are specific to the application under consideration, e.g., keyword search,

service discovery etc. The input to Plexus is a (r × n)-bit pattern (in this example, a

Bloom filter), representing an advertisement (or a query). Here, r is the number of

subnets in the system and n = 24 as we have used G24. The input pattern is segregated

Plexus 121

�������� ���	
�� �����
�
�� ��� ��������
��������
������� �!

"�
#��$� %�
&'�(�)'� ��
�� ��� ���*
+��

,

� - �.&
 /)��$ *
)��

0�123

4�5��5���6

�(&
 ����� �(&
 ����� �(&
 �����
78 �� 98

:::;�<�=��
>

?�=� !5@

ABCDEFGABCDEFG ABCDEFH
ABCDEFH ABCDEFI

ABCDEFI

:::

:::

7 �� 9

7J �� 9J 7 K �� 9K

��
LMNO LPNO LQ NO

RSTUV7 SW
R S TXV9 SW

Figure 4.6: Search/advertisement process in Plexus.

into r chunks (step 3) Pi (or Qi), each n bits long. In step 4 an n-bit chunk is mapped to

a set of codewords Yi (i.e., A (Pi) or Q(Qi)) and forwarded to any superpeer in subnet

i. Finally in step 5, the superpeer routes the message in O(1
2
|Yi| log2 |C|) hops to the

target superpeers in Yi within subnet i. The process of mapping patterns to codewords

(Step 4) is presented in Section 4.4.2 and the routing mechanism within a subnet (Step 5)

is presented in Section 4.4.3.

If a query/advertisement message is propagated to all of the r-subnets, then the

implied redundancy will be very high. Instead, we adopted the Voting algorithm [63].

In particular, an advertisement is propagated to b r+1
2
c subnets, and a query message is

propagated to b r
2
+1c subnets. This ensures that there exists at least one subnet receiving

an advertisement, and any query matching that advertisement. The result of a query is

computed as the union of the results obtained from each of the b r
2
+ 1c subnets. Subneti

is selected for advertisement P (or query Q) if the weight of the ith chunk i.e., |Pi| (or

122 Efficient and Flexible Search in Large Scale Distributed Systems

|Qi|) is within the query stretch as explained in Section 4.4.2.

Step 1 and Step 2 in Figure 4.6 are always executed by a leaf peer. Step 3 and

Step 4 can be executed either by a leaf peer or by a superpeer. We prefer the leaf peers

to calculate the A i and Qi, since these operations are CPU intensive. The leaf peer

can then submit a message, containing the advertisement (P) or query pattern (Q) and

the list of target codewords ({Yi}), to any known superpeer. It is the responsibility of

a superpeer to maintain extra links to other superpeers outside its own subnet and to

forward the message to appropriate subnets.

4.5.2 Mapping Codewords to Superpeers

So far we assumed that a superpeer is responsible for a unique codeword, which is not

a practical assumption. In this section, we present a way of partitioning the codeword

space, and dynamically assigning multiple codewords to a superpeer.

An (n, k, d) linear code C has k information bits and (n − k) parity check (or re-

dundant) bits. The k information bits correspond to the identity matrix (Ik) part of

the generator matrix GC, and uniquely identifies each of the 2k codewords present in C
(consider X = ~0 in Equation (4.6)). The codewords can be partitioned using a logical

binary partitioning tree with height at most k. At ith level of the tree, partitioning

takes place based on the presence (or absence) of gi (the ith row of GC) in a codeword.

Figure 4.7 presents an example. Each superpeer is assigned a leaf node in this logical

tree and takes responsibility for all the codewords having that particular combination

of gis. The routing table entries at each superpeer are set to point to the appropriate

superpeer responsible for the corresponding codeword. Figure 4.7 illustrates the routing

table entries for superpeer X = g1 ⊕ g3 ⊕ g6 ⊕ g9 with an equivalent prefix of g1ḡ2g3ḡ4.

Here, ḡi indicates the absence of the ith row i.e., gi.

In order to incorporate the concept of partitioning codeword space in Algorithm 5,

Plexus 123

�� ��

� ��

��

����

�� �� �� �� �� �� �� ��

�� �� �	 �� �� �	 �� �� �	 �� �� �	

�� �� �	 �
 �� �� �	 �

�� �� �	 �� �� �	

��
��

�	 �

����

����

���

���� ��������

Figure 4.7: Logical binary partitioning tree for assigning codewords to superpeers. The

routing table entries for peer X are also presented.

the comparison (X = Yi ∨X = Ȳi) in line 4 should be replaced with (Yi ∈ ℵ ∨ Ȳi ∈ ℵ),

where ℵ represents the set of codewords managed by peer X.

4.5.3 The Join Process

In this section we present the protocol that a superpeer has to follow in order to join a

Plexus network. The first superpeer in the system begins with a random codeword, and

all entries in its routing table point to itself. A new superpeer joins the system by taking

over a part of the codeword space from an existing peer, say X. Assume that the string

representation of X = ρ1 ·ρ2 . . . ρt ·ρt+1 . . . ρk and the prefix in peer X has t terms. Here,

ρi is gi or ḡi, based on the presence or absence of the ith row in the formation of X. Peer

X extends its prefix by one term and takes responsibility of all the codewords starting

with prefix ρ1 · ρ2 . . . ρt · ρt+1. The joining peer chooses a codeword, say Y , conforming

to prefix ρ1 · ρ2 . . . ρt · ρ̄t+1 and by selecting a random combination for the rest of the

(k − t− 1) rows from GC.

124 Efficient and Flexible Search in Large Scale Distributed Systems

Routing table entries in peer X remain unchanged, except for adding Y as Xt+1. Peer

Y can construct its routing table using the routing information from peer X. During

this process, two situations can arise. First, the length of the prefix for peer Xi can

be greater than t. In this case, Y has to lookup and contact the peer responsible for

codeword Yi(= Y ⊕ gi). Peer Y requires at most 2 hops (see Theorem 4.5.1) to reach

peer Yi via peer Xi. For the second case, the length of the prefix for peer Xi is less than

or equal to t. In this case, peer Y sets Yi = Xi and sends a join message to peer Xi. Peer

Xi handles a join message by updating its routing table entry for link Xt(= Xi⊕gt) with

the address of peer X or peer Y depending on the presence of gt in Xi.

Theorem 4.5.1. If X(= ρ1 · ρ2 . . . ρt · ρt+1 . . . ρk) with t prefix bits is split to Y (= ρ1 ·
ρ2 . . . ρt · ρt+1 . . .) and Z(= ρ1 · ρ2 . . . ρt · ρ̄t+1 . . .) then all neighbors of Y and Z will be

within 2 hops of X.

Proof. Let, Ψt(X) denotes the first t bits of X. Then Ψt+1(Y) and Ψt+1(Z) differ in

exactly one bit. Again Ψt+1(Yi) and Ψt+1(Zi) differ from Ψt+1(Xi) by at most 1 bit.

Thus Ψt+1(Yi) and Ψt+1(Zi) will differ from Ψt+1(X) by at most two bits, i.e., at most 2

hops away.

To reduce the possibility of unbalanced partitioning of the codeword space, a joining

peer should crawl the neighborhood of the seed peer, until a local minima is reached, and

join the minima. By minima we refer to a peer having a prefix of length equal to or less

than that of any of its neighbors.

4.5.4 Handling Peer Failure

The failure of a peer (say Y) does not hamper the routing process as long as its replica (Ȳ)

is alive. This way temporary failures (or disconnections) of superpeers are automatically

Plexus 125

handled. Measures adopted in Plexus to deal with permanent (long term) failures are

discussed below.

Failure of peer Y will be detected by one of its neighbors, say Yi. To avoid unbalanced

partitioning of the codeword space, Yi should crawl its neighborhood until a maxima, say

Z, is reached. By maxima, we refer to a peer having a prefix of length equal to or greater

than that of any of its neighbors. Clearly, if Z has t terms in its prefix, then Zt(= Z⊕gt)

will be a neighbor of Z having a prefix of length t. Z will reassign its portion of codewords

to Zt; replace itself with Zt from the routing tables of all of its neighbors; and finally

rejoin the system as Y . Zt has to reduce its prefix string by one, in order to accommodate

the changes. In case Zt has also failed then Z should start the recovery for Zt first. To

handle the failure of leaf peers, we adopt the hybrid (soft state/hard state) technique as

presented in [27].

A leaf peer connects to a superpeer for publishing the meta-information about its

shared content. A superpeer uses soft-state registration mechanism for tracking the

failure of a leaf-peer, and explicitly removes (i.e., hard-state) the patterns, advertised

by the failed leaf-peer, from the superpeer topology. This hybrid technique can handle

churn problem in leaf peers and reduces traffic due to periodic re-advertisement in the

superpeer network.

4.5.5 Analysis

In this section, we estimate the expected number of visited superpeers during an adver-

tisement or a search process. Let r be the number of subnets in the system. Assume

that an (n, k, d) linear code C is used. Let |A | and |Q| be the average size of A (P) and

Q(Q), respectively. Let γQ and γA stand, respectively, for the fraction of routing hops

reduced due to the presence of multicasting during search and advertisement. If N is the

total number of superpeers in the system, then the expected number of superpeers in a

126 Efficient and Flexible Search in Large Scale Distributed Systems

subnet is 2k ≈ N
r
. Now, according to Theorem 4.4.1 it will require at most k

2
≈ 1

2
log2

N
r

hops to route a message within a subnet. Consequently, considering the use of the Vot-

ing algorithm as explained earlier, the expected number of hops required for routing an

advertisement is computed to be

HA =
1

2

⌊
r + 1

2

⌋
(1− γA) |A | log2

N

r
(4.9)

Similarly, the expected number of routing hops for routing a search message can be

computed as

HQ =
1

2

⌊r

2
+ 1

⌋
(1− γQ) |Q| log2

N

r
(4.10)

For estimating |Q| we can adopt the extension of Johnson bound proposed by V.

Guruswami and M. Sudan (Theorem 1 in [69]) as follows. Assume a < n, k, d > f binary

code (C). Let δ and γ (0 < δ, γ < 1) be constants such that d = 1
2
(1− δ)n, t = 1

2
(1−γ)n

and γ >
√

δ, then it can be stated from Theorem 1 in [69] that

|Q| = |Bt(Q) ∩ C| ≤ min{n,
1− δ

γ2 − δ
} (4.11)

Estimating |A | as computed in Algorithm 4 is not a straight forward process. Rather

we can compute an upper bound. Let S be the set of all subsets (Q) of an arbitrary

pattern P such that, |Q| ≥ u, where u is the minimum allowed weight of a query pattern.

We compute |A | to be a subset of the codewords required to cover S, with a covering

radius f greater than the error correcting radius, say e = bd
2
− 1c, of the code. Hence,

the number of codewords required to cover S with error correcting radius e will be an

upper bound for |A |.
Let µ = |P ∧ C| and η = |P ∧ C| for some codeword C ∈ C. Evidently, |P | = η + µ.

We define query stretch s to be the difference between |P | and the minimum weight of a

query that we want to be discovered, i.e., s = µ + η − u. Now we can construct a query

Q from P by taking i bits from the µ 1-bits of P (where C has 1-bits) and j bits from

Plexus 127

the η 1-bits of P (where C has 0-bits) in
(

µ
i

)(
η
j

)
ways. Trivially, d(P,Q) = i + j and

d(C, Q) = w + i − j, where w = d(P, C). In order for Q to be in S, d(P,Q) ≤ s and

d(C, Q) ≤ e. Thus the total number of elements in S covered by C, say σ(S, C) can be

computed as

σ(S, C) =

1
2
(e+s−w)∑

i=0

1
2
(s−e+w)∑

j=0

(
µ

i

)(
η

j

)

We can compute |S| =
∑µ+η−u

l=1

(
µ+η

l

)
. Hence the upper bound on |A | can be com-

puted as,

|A | ≤ |S|
σ(S, C)

⇒ |A | ≤
∑µ+η−u

l=1

(
µ+η

l

)

∑1
2
(e+s−w)

i=0

∑1
2
(s−e+w)

j=0

(
µ
i

)(
η
j

)
(4.12)

For the experiments presented in this work we have used the Extended Golay code

and have set the minimum query weight u = 3 and the maximum advertisement weight

v = max{µ + η} = 14. With this wide query stretch we obtained the average value

of |A | and |Q| as 21.08 and 17.53 respectively for the dataset used in our experiments.

Our experiments with the Extended Golay code reveal that the values of γA and γQ are

proportional to |A | and |Q|, respectively. For the average sizes of |A | and |Q|, γA and

γQ are 0.78 and 0.85, respectively (see Figure 4.12).

4.6 Experimental Evaluation

In this section we evaluate the effectiveness of Plexus protocol on three aspects of a

music-sharing P2P system: routing efficiency, search completeness and fault-resilience.

4.6.1 Simulation Setup

We have simulated a growing network, where the overlay is gradually grown from an

initial set of a few superpeers. The simulator goes through a growing phase and a

128 Efficient and Flexible Search in Large Scale Distributed Systems

steady-state phase to achieve different network sizes. During the growing phase, arrival

rate is higher than departure rate (up to five times). Once a target population size is

reached the simulator turns to the steady state phase. While in steady state, arrival rate

is approximately equal to departure rate and the network size does not vary a lot over

time. During this period, advertisements and queries are performed and performance

metrics like routing efficiency, search completeness etc. are measured.

% of 1-bits per pattern

%
of

pa
tte

rn

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100
Good pattern
Overloaded
Under flow

Figure 4.8: Fitness of patterns for advertisement

As explained in Figure 4.6, problems that can be mapped to distributed subset match-

ing can be solved with Plexus. For this experiment we have applied Plexus to partial

keyword search in music-sharing P2P system. The music information used in this simu-

lation is based on the online database of more than 200,000 songs information available

at http://www.leoslyrics.com/. For a <song-title,artist> pair, we constructed a Bloom-

filter of length m(= r ∗ 24)-bits. Here, r is the number of subnets in the network. A

Bloom filter represents the set of trigrams extracted from a <song-title,artist> pair. We

have experimented with three values of r: 5, 7 and 9; since m is dependent on r, the

percentage of 1-bits in a pattern will vary if a fixed value for ~ (number of hash func-

Plexus 129

tions) is used. To find the proper value of ~ we constructed Bloom filters for different

values of r and ~. For each Bloom filter we constructed r 24-bit chunks and tested for

fitness. A chunk is considered to be fit for advertisement if it contains 6 ∼ 14 1-bits (see

Section 4.4.2), and a (r × 24)-bit pattern (i.e., Bloom filter) is considered to be fit for

advertisement if it contains at least b r+1
2
c fit chunks. Figure 4.8 plots the percentage

of fit (or good) patterns as a function of the percentage of 1-bits. It also depicts the

percentage of overflow patterns (majority of the chunks having more than 14-bits) and

underflow patterns (majority of the chunks having less than 6-bits). Based on the peak

values in the curve we have used ~ = 3, 4 and 5 for r = 5, 7 and 9, respectively.

4.6.2 Impact of Query Content on Search Completeness

% 3-gram in query

S
ea

rc
h

co
m

pl
et

en
es

s

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

SN:5
SN:7
SN:9

(a) Search completeness

% 3-gram in query

%
vi

si
te

d
pe

er
s

0 20 40 60 80
0

0.3

0.6

0.9

1.2

SN:5
SN:7
SN:9

(b) Impact on routing

Figure 4.9: Effect of information content of a query on search completeness.

Search completeness is measured as the percentage of advertised patterns (matching

the query pattern) that were discovered by the search. A query is formed as a Bloom

130 Efficient and Flexible Search in Large Scale Distributed Systems

filter consisting of β% of trigrams (randomly chosen) from a <song-title,artist> pair.

Figure 4.9(a) presents search completeness as a function of β, which is varied from 5%−
50% in 5% steps on networks of about 20,000 superpeers. For each step we performed

5000 queries. The number of 24-bit chunks having at least three 1-bits decreases as

lower percentages of trigrams are taken from the original advertisement. Hence, read

quorum for the Voting algorithm could not be met for lower values of β. This can also be

observed from Figure 4.9(b), which is a plot of the percentage of visited peers against β.

The sharp rise in the percentage of visited peers in Figure 4.9(b) justifies the increase in

search completeness around β = 30% in Figure 4.9(a). It should also be noted that the

percentage of visited peers is higher for higher values of r because the number of subnets

to be searched is proportional to r. A completeness level of around 97% is achieved for

β = 33%. Only 2% increase in search completeness is achievable for β > 33%, though at

the expense of a higher percentage of visited peers. Therefore, we have used β = 33% in

the subsequent experiments.

4.6.3 Scalability and Routing Efficiency

The impact of network size on routing efficiency and distribution of indexing load are

considered in this section. Figure 4.10(a) and Figure 4.10(b) plot the average percentage

of visited superpeers per search and advertisement, respectively, against the logarithm of

the total number of superpeers in the network. The linear decrease in the curves confirms

our assertion in Theorem 4.4.1, i.e., number of visited peers per search and advertisement

holds logarithmic relation with the total number of peers in the system. It should also be

noted that the percentage of visited peers increases with the increase in the number of

subnets (i.e., r). For networks with fixed size (say N) and varying r (say r1 and r2), ratio

of the percentage of visited peers can be calculated as H1

H2
≈ r1 log(N/r1)

r2 log N/r2
≈ r1

r2
(for small r1

and r2, see Equation (4.10)), i.e., H ∝ r. Similar results are obtained for advertisement

Plexus 131

No. of superpeers

%
vi

si
te

d
su

pe
rp

ee
rs

5000 10000 15000 20000
0

1

2

3
SN:5
SN:7
SN:9

(a) Routing efficiency (search)

No. of superpeers

%
vi

si
te

d
su

pe
rp

ee
rs

5000 10000 15000 20000

1

2

3

4

5

SN:5
SN:7
SN:9

(b) Routing efficiency (advertisement)

No. of superpeers

%
vi

si
te

d
su

pe
rp

ee
rs

5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

SN:5
SN:7
SN:9

(c) Join overhead

No. of superpeers

%
of

ke
y

5000 10000 15000 20000
0

0.04

0.08

0.12

0.16

0.2

SN:5
SN:7
SN:9

(d) Load distribution. average, 1st and 99th

percentiles

Figure 4.10: Routing efficiency and scalability with network size.

132 Efficient and Flexible Search in Large Scale Distributed Systems

traffic, as presented in Figure 4.10(b).

Figure 4.10(c) presents the percentage of visited peers for join operation as a function

of network size. As discussed in Section 4.5.3 and reflected in Figure 4.10(c), the join

process updates links only within a subnet and is thus independent of the number of

subnets in the system. A join operation may require at most O(log2 N) links (12 in this

experiment since G24 is used) to be established. This justifies the decrease of the curves

against the logarithm of network size.

Figure 4.10(d) presents the distribution of advertised patterns over the network. Av-

erage number of keys per pattern as well as 1st and 99th percentiles are presented. The

skew in indexing load is higher for smaller networks and reduces gradually as the network

size increases. Note that the average values of % key per peer in Figure 4.10(d) are very

close to the expected values = 100
N

(N is the network size) and the 99th-percentiles are

within reasonable limit.

4.6.4 Fault Tolerance

In this section, we analyze the robustness of Plexus in presence of simultaneous failures

of a large number of superpeers. We start with a steady-state network of about 20,000

superpeers and cause each peer to fail with probability p. After the failures have occurred

we perform 5000 queries and measure search completeness (Figure 4.11(a)) and the per-

centage of visited superpeers per query (Figure 4.11(b)). There were no rearrangement

in topology to redistribute the responsibility of failed peers to an existing peer. Only

the immediate neighbors of a failed peer have the knowledge of the failure. This setup

suppresses the effect of recovery mechanism and allows us to observe the effectiveness of

replication and multi-path routing in presence of simultaneous peer failures.

The number of replicas of an advertised pattern is proportional to r, thus much better

search completeness is achieved for higher values of r. Failure of a peer cannot be detected

Plexus 133

% failed superpeers

S
ea

rc
h

co
m

pl
et

en
es

s

0 10 20 30 40 500.9

0.92

0.94

0.96

0.98

1

SN:5
SN:7
SN:9

(a) Search completeness

% failed superpeers

%
vi

si
te

d
su

p
er

p
ee

rs
(a

liv
e)

0 10 20 30 40 500.4

0.8

1.2

1.6

SN:5
SN:7
SN:9

(b) Query routing traffic

Figure 4.11: Fault resilience

until reaching a neighbor of the failed peer. The percentage of visited peers increases

with % failed peers as many hops are wasted in trying to reach a failed peer and its

replica, which may also have failed. However, the good thing is that in such cases two

extra hops are required to reach the replica, as discussed in Section 4.4.3.

It can be observed from Figure 4.11(a) that search completeness is almost identical

regardless of the percentage of failed peers (up to 50%). It should be noted that the

query patterns where formed using 33% of the trigrams from existing patterns only;

lost patterns due to the failure of a superpeer where not considered. The high levels of

search completeness indicate that the superpeers remain reachable even in the presence

of a large number of failures. This is possible because of the existence of multiple paths

connecting any two superpeers within a subnet. However, this resilience to failure comes

at an expense of increased routing overhead as observed in Figure 4.11(b).

134 Efficient and Flexible Search in Large Scale Distributed Systems

4.6.5 Effectiveness of Multicast-routing

no. of destinations

%
re

d
uc

tio
n

in
ro

ut
in

g
ho

p
s

5 10 15 20 25 30 35 40 45 50

50

60

70

80

90

100 Advertisement
Query

Figure 4.12: Effectiveness of simultaneous routing to multiple targets: reduction in rout-

ing hops as a function of the number of targets.

Network distance of the codewords in A (P) and Q(Q) have significant impact on

routing efficiency. The routing algorithm described in Section 4.4.3 routes a message

to multiple targets simultaneously. This design choice saves a portion of the routing

hops that might have occurred if we had used pair-wise routing. Figure 4.12 shows the

reduction in routing hops (γ) calculated as

γ =

(
1− no. of hops with multicast routing

no. of hops for pair-wise routing

)
× 100 (4.13)

As defined in Section 4.5.5, Equation (4.13) provides an estimate of the reduction

in routing hops for a query (γQ) or an advertisement (γA). The reduction in routing

hops takes place within a subnet and hence does not depend on the number of subnets

present in the system. The bar chart in Figure 4.12 displays the average γ for groups

of 5 targets, i.e., 6 − 10, 11 − 15, etc. The denominator for Equation (4.13) has been

calculated as:
∑

Y ∈Yi
d(Ψ(X), Ψ(Y)), where X is the source peer, Ψ(X) returns the k-

bits of a codeword corresponding to the Ik part of GC, and Yi is the set of target peers

Plexus 135

calculated as A (Pi) or Q(Qi) (see Figure 4.6). By observing the high values of γ, it can

be inferred that the codewords close in Hamming distance are assigned to superpeers in

close vicinity within the overlay.

4.7 Summary

Plexus has a partially decentralized architecture utilizing structured search. To our knowl-

edge, the use of coding theoretic constructs in P2P routing is novel. As demonstrated

by the simulation results, for a network of about 20,000 superpeers, Plexus needs to visit

only 0.7% ∼ 1% of the superpeers to resolve a query and can discover about 97% ∼ 99%

of the advertisements matching the query. For achieving this level of completeness, the

query needs to contain only 33% of the trigrams from an advertisement that it should

match against. Plexus delivers a high level of fault-resilience by using replication and

redundant routing paths. Even with 50% failed superpeers, Plexus can attain a high

level of search completeness (about 97% ∼ 99%) by visiting only 1.4% ∼ 2% of the su-

perpeers. Plexus can route queries and advertisements to target peers in O(logN) hops

and by using O(logN) links.

The originality of our approach lies in the application of coding theoretic construct

for solving the subset matching problem in distributed systems. We believe that this

concept will aid in solving a number of other problems pertaining to P2P networking

research, including P2P databases, P2P semantic search and P2P information retrieval.

Chapter 5

Comparative Evaluation

5.1 Introduction

In Section 3.13 and Section 4.6 we presented experimental results for assessing the perfor-

mance of DPMS and Plexus, respectively. In this section we will compare the performance

of DPMS and Plexus against each other and three dominant P2P search techniques. As

representatives for content routing, unstructured search techniques we will use Flooding

and Random-walk. We will use a generic inverted indexing mechanism on top of Chord

as a representative for address routing, structured techniques. We have chosen the per-

formance metrics to reflect the ability of each of these techniques in fulfilling the search

requirements in LSDS as explained in Section 2.5.

5.2 Chapter Organization

In Section 5.3 we investigate existing P2P simulators and explain the components within

the PeerSim simulator. In that section we also highlight the experimental dataset. The

search techniques used for this experiment are presented in Section 5.4. The performance

metrics used for the comparison have been explained in Section 5.5. Finally in Section 5.6

136

Comparative Evaluation 137

we present the performance results and discuss our findings.

5.3 Simulation Setup

In this section we explain the simulation environment. First we focus on the available

P2P simulators in Section 5.3.1. Then we present the simulator (i.e., PeerSim) that we

have used for the simulations in Section 5.3.2. Finally in Section 5.3.3 we present the

characteristics of the dataset used in these experiments.

5.3.1 P2P Simulators

Peer-to-peer technology has been on the scene for a while. But the P2P research commu-

nity has not come to a consensus on standardizing a simulation platform for simulating

the research projects from numerous working groups. It can be observed from the sur-

vey presented in [110] that more than 90% of P2P research was tested in non-standard

or custom-made simulation environments. Yet there are a number of freely available

P2P-simulators on the Internet. Most of these simulators are still at the early stages of

implementation; it will take a while for these simulators to achieve maturity.

In this section we will focus on few P2P simulators. A comprehensive survey on P2P

simulators can be found in [110]. NS2 [9] is the defacto standard for simulating network

protocols. But an overlay simulator focuses on the application layer whereas NS2 and

other network simulators concentrate on packet-level performance metrics. Moreover, an

overlay simulator needs to simulate much larger networks compared to traditional network

simulators. The majority of overlay protocols ignore the physical network topology. In

these cases, simulating the entire TCP/IP protocol stack is not required. For this reason

most overlay simulators bypass the simulation of the underlying TCP/IP protocol stack.

Over the last few years many P2P simulators have been proposed. But most of them

138 Efficient and Flexible Search in Large Scale Distributed Systems

are aimed at simulating a specific type of P2P architecture, rather than being generic. For

example, P2PRealm [95] is focused on simulating neural network based P2P protocols,

PLP2P [74] is a packet-level simulator on top of NS2, and SimP2 [89] is designed for

simulating ad-hoc P2P networks. For our experiments we have used PeerSim, which is

described in detail in the next section. In the rest of this section we present few P2P

simulators that we considered as possible alternatives for PeerSim. We also present their

relative merits and demerits.

PlanetSim [60] is a discrete-event simulator for overlay networks, written in Java.

Architecturally PlanetSim is composed of three layers:

• Network layer models the overlay topology and network characteristics e.g., prox-

imity, failure etc.

• Overlay layer provides abstract classes that can be extended for defining overlay

routing protocols like Chord, CAN etc.

• Application layer provides API (Application Programming Interface) for imple-

menting services like file-sharing, keyword search etc. on top of the overlay routing

mechanism.

Each of these layers expose Common API [51] routines, proposed for standardizing

the structured P2P networks. For our implementation this simulator has two major

drawbacks:

• PlanetSim is focused on structured P2P networks. The source package is shipped

with Chord and Symphony [104] implementations only.

• Mechanisms for gathering statistics from the simulation runs are limited and pre-

mature in PlanetSim.

Comparative Evaluation 139

GPS [149] is a discrete event driven, message-level, P2P simulator. It has a built-in

implementation of the BitTorrent [43] protocol and it has provision for implementing

structured and unstructured search techniques. Unlike other simulators GPS models

file transfer mechanism, which is the main focus of BitTorrent architecture. The main

disadvantages with this simulator are as follows:

• The simulator offers limited functionality for implementing protocols other than

BitTorrent.

• The API documentation is not comprehensive.

P2PSim [64] is multi-threaded P2P simulator developed at MIT (Massachusetts In-

stitute of Technology). P2PSim has been designed to simulate structured P2P networks

only. A number of structured routing protocols including Chord, Accordion [98], Ko-

orde [86], Kelips [68], Tapestry [150], and Kademlia [105] have been implemented in this

simulator. Yet the lack of support for simulating unstructured or semi-structured P2P

routing protocols, makes it unusable for our purpose.

3LS [139] is 3 layer P2P simulator. Similar to PlanetSim, it has Network layer, Overlay

layer and User layer. The network layer maintains a two dimensional matrix for storing

the distance between any two node. The overlay layer is responsible for the protocol

being simulated, while the user layer defines an input interface for the user. The major

drawback of 3LS is scalability: memory overhead incurred by the Network layer and the

GUI (Graphical User Interface) is too high, which restricts the simulated network’s size

to a couple of thousand peers on a regular machine.

Query-Cycle Simulator [126] focuses on unstructured routing mechanisms. A sim-

ulation run is designed to be a collection of Query-Cycles. A Query-Cycle comprises the

following steps: (a) a peer initiates a query, (b) the overlay network routes the query to

140 Efficient and Flexible Search in Large Scale Distributed Systems

the peer(s) that can respond to the query, (c) the target peer(s) returns results to the peer

that initiated the query, and (d) the actual file-transfer is completed. Multiple queries

can be executed in parallel. The simulator has built-in models for content-distribution,

peer behavior, and network topology based on the studies conducted on Gnutella net-

work. The drawback of this simulator lies in its inability to incorporate structured P2P

networks.

NeuroGrid [84] is a discrete-event P2P simulator primarily designed for evaluat-

ing unstructured search techniques. The distribution is packaged with Freenet [42],

Gnutella [4] and Neurogrid [83] protocols. Only the overlay layer can be simulated

with this simulator. It assumes a graph topology as input to the simulator. The current

implementation does not provide support for simulating churn. Statistics information is

available for a set of predefined variables and additional coding is required to incorporate

new statistics.

5.3.2 PeerSim

We have used PeerSim for our experiments. PeerSim is an open source, general purpose

P2P simulator, written in Java. It offers both cycle-driven simulation and discrete-event

simulation using separate simulation engines. It has been designed to be scalable and

dynamic for simulating large P2P networks. Both structured and unstructured P2P net-

works can be simulated using PeerSim. Like other P2P simulators it does not consider

the underlying network communication stack for monitoring network layer performance,

rather the focus is on the overlay layer. It is possible to extend the simulator to incor-

porate network layer characteristics.

Comparative Evaluation 141

Implemented Protocols

Initially PeerSim was developed as a part of the BISON project [2]. There exists a

number of protocols implemented in PeerSim, including:

• Overstat [81]: an aggregation tool for providing statistical information, such as

average load in a distributed system.

• SG-1 [109]: a protocol for constructing and maintaining superpeer based topolo-

gies.

• T-Man [80]: a network topology generator that allows a wide range of network

topologies to be generated.

• SCALER [71]: a protocol for generating artificial social networks over P2P overlay.

In addition a number of recent research works including [66, 25, 48, 67] have used

PeerSim as their simulation platform.

Advantages of Using PeerSim

The most attractive properties of PeerSim are given below:

• Simplicity: It defines a handful of Java interfaces through which user defined

java-components can be plugged into the simulator.

• Extendability: These java-components can be used for defining and monitoring

overlay topology, routing mechanism, join/leave protocol, replication strategy etc.

The use of Java component based architecture makes it possible to replace most of

the predefined simulator components with user-defined components.

• Configurability: The simulator dynamically loads java-components, specified in

a configuration file, at startup. This allows different types of simulations to be

142 Efficient and Flexible Search in Large Scale Distributed Systems

performed without recompiling the code. The configuration file is a simple ASCII

file containing key-value pairs.

• Support: The distribution is accompanied with a number of reusable components

for topology generation, modelling churn and network growth, etc. The number

of available components is growing rapidly with the contributions from various re-

search groups. These contributions are regularly posted at the PeerSim homepage.

PeerSim Architecture

���������� 	�
��� �������������� �� �������������

���� �!"!#!$%

���� &�'()�)

!*&+, -./+%0�)�

!*&+, �!"!0�)�

1%� 23.+�

45676896:;<= >?=;<@;<= AB58C6D=

E/�F!+G

E!1/HI E!1/HJ KK E!1/H�
L+!�!HI L+!�!HI L+!�!HIKK

L+!�!HJ L+!�!HJ L+!�!HJKK

L+!�!HG L+!�!HG L+!�!HGKK
KK KK KK

M�������N���O
M�������N��P��

M�������N��������

1%� 1!Q./+%

Figure 5.1: Architectural components of PeerSim

Figure 5.1 presents the components in PeerSim architecture and logical implementa-

tion of these components in our simulation study. Each of these components is specified

using a configuration file, and loaded and configured in runtime by the simulation engine.

Comparative Evaluation 143

We have used the cycle-driven simulation engine. Functionality and purpose of each of

these components and the example implementations are given below.

• Simulation engine wraps the core scheduling mechanism and initiates the loading

of the configuration file and the components specified therein. Separate engines are

provided for event-driven and cycle-driven simulations.

• Observer components have a global view of the network and are designed to

gather statistical information regarding system performance. Any number of Ob-

server objects can be defined. In Figure 5.1 two observer objects have been de-

fined: obsrv.queryStat is for gathering statistics on query routing performance and

obsrv.topoStat is defined for gathering topology specific statistics like average node

degree, percentage of failed peers etc.

• Dynamics components, like Observers, have a global view of the network and are

used for introducing dynamism in overlay topology. There is no limit on the number

of Dynamics object that can be used in a simulation. In the example of Figure 5.1,

two Dynamics objects have been defined: dyn.churn is used for simulating random

arrival and failure of peers at a certain rate, and dyn.doQuery is used to initiate

queries during the simulation process.

• Initializer is a special type of Dynamics component that is executed only at the

beginning of the simulation. We have used two initializer objects for the simulation

process: (a) init.topology has been used for initializing overlay topology and (b)

init.simData has been used for initializing advertisement and query data like the

source peer, start time, keyword list etc.

• Network is one of the core components of the simulator and is responsible for

managing the list of all Nodes in the system. The Network object may have any

number of Node objects.

144 Efficient and Flexible Search in Large Scale Distributed Systems

• Node is the wrapper for a peer functionality and its interaction with other peers

in the network. Each node contains a set of protocols that are invoked by the sim-

ulation engine at each cycle. A Node instance may contain any number of Protocol

instances. In addition, our implementation of the Node interface contains incom-

ing messages queue, advertisement storage and seen messages filter for blocking

recursive loops.

• Protocol interface defines the point of invocation for the simulation engine. A

developer have to write code for this interface for simulating various routing or

application level functionality. Each protocol instance uses the local knowledge

(or view) available to the peer. As shown in Figure 5.1, we used protocol.link as

a container for the overlay connectivity (i.e., neighborhood view). protocol.route

is the routing mechanism specific to the search technique being examined (e.g.,

Chord, Flooding etc.). protocol.recovery is for the implementation of a recovery

mechanism local to the peer.

5.3.3 Experimental Dataset

The dataset used for this experiment is the same as the one used in Section 3.13 and

Section 4.6. Here we present detailed statistics regarding the dataset.

It has been measured in [133] and [134] that at least 66-70% of the content in the

modern Gnutella network are music files. It has been identified in [107] and [131] that

majority of P2P queries are for audio files. Hence we have used the database of song

information for this experiment. We compiled this dataset by crawling the webpages at

http://www.leoslyrics.com/ [6], which is an online database of over 200,000 song lyrics.

We created the crawler using simple AWK-scripts and the GNU WGET utility [11]. We

extracted the song-title and artist-name information from the crawled pages and created

the database as a list of tuples. Album and genre information were deliberately ignored

Comparative Evaluation 145

because of two reasons: (a) in many cases these two pieces of information are missing and

(b) the possible values of these two fields are much smaller than the song title or author

fields. The later would introduce additional bias to the resulting Bloom filters. The effect

would be better aggregation level for DPMS and improved routing performance.

For enabling subset matching on DPMS, Plexus and Chord we have used 3-grams

collected from each <songtitle, artist> tuple. Performance of these systems are related

to the average number of 3-grams generated from the <songtitle, artist> tuples. The

average number of 3-grams per pair was found to be 29.37 for the experimental dataset.

5.4 Compared Search Techniques

The search techniques considered for this comparative evaluation are as follows:

1. Flooding

2. Random-walk

3. II/DHT (Inverted Indexing over Chord routing)

4. DPMS

5. Plexus

Table 5.1 enumerates the system specific parameters for each of these search tech-

niques and the values used in this experiment. In the following sections we explain each

of these parameters along with the associated search technique.

5.4.1 Flooding and Random-walk

Unstructured search techniques like Flooding and Random-walk do not place any re-

striction on the underlying network topology. For these two cases we have adopted the

146 Efficient and Flexible Search in Large Scale Distributed Systems

Table 5.1: Simulation parameters for comparative evaluation

Param Value Description

Flooding

α 15 Topology parameter controlling node density

∆ 12 Topology parameter for average node degree

RF 120 Average replica per advertisement

TTLF 4 Time to live

Random-walk

α 15 Topology parameter controlling node density

∆ 12 Topology parameter for average node degree

RR 120 Average replica per advertisement

TTLR 10 Time to live

WR 15 Number of walkers

II/DHT
RC 4 Replica per key

X Chord DHT routing protocol

DPMS

H 5 Height of indexing hierarchy

RD 2 Recursive replication factor

B 4-6 Branching factor

A 0.6 Aggregation ratio

O 50 Minimum number of non-X bits

W 180 Pattern width

~D 3 No. of hash functions in Bloom filter

Plexus
r 7 Number of subnets

~P 3 No. of hash functions in Bloom filter

u 3 Minimum query weight per chunk

v 14 Maximum advertisement weight per chunk

Comparative Evaluation 147

network model proposed in [53], which is used for constructing power-law networks [54],

mimicking the characteristics of the contemporary P2P topologies on the Internet. This

topology generator comes with the PeerSim distribution package. Parameters α and ∆

in Table 5.1 are used by the topology generator routine. We have chosen the values of

these two parameters based on the observations in [53] and [54].

Search completeness in unstructured techniques depends heavily on the popularity

of the content being searched. For these techniques the probability of discovering a

popular (hence highly replicated) object is higher than an unpopular item. In [131],

it has been shown that object popularity follows a Zipf-like distribution in Gnutella

networks. But in [45] it has been shown that both uniform and proportional (to query

popularity) replication strategies are equivalent in terms of search completeness. So we

have used uniform replication for Flooding and Random-walk techniques. Based on the

observations in [29] we have used an average replication factor (RF and RR) of 120 per

advertisement.

The Time-to-live parameter (TTLF and TTLR) can be used to trade of search traffic

with search completeness. Search completeness increases with the increase in TTL but

at the expense of increased search traffic, and vice versa. However, the effect of TTLF is

much higher in Flooding than that in Random-walk (i.e., TTLR).

5.4.2 II/DHT

The DPM problem can be solved using content routing and signature routing techniques.

Plexus, on the other hand, is the only known address routing technique that can solve

the DPM problem. Thus, it is not possible to compare Plexus with other structured tech-

niques if we try to solve the DPM problem. Instead, we have compared the performance

of different search techniques w.r.t. an application of the DPM problem; here partial

keyword matching.

148 Efficient and Flexible Search in Large Scale Distributed Systems

We have used Chord as a representative for the DHT routing protocols. To enable

partial keyword matching on top of Chord we adopted the simple inverted indexing strat-

egy as used in [72] (for partial keyword matching), [102] (for multiple keyword matching)

and [27] (for partial service description matching). In brief, each keyword is broken into

3-grams, which are then hashed and routed to the set of responsible peers. The gen-

erated volume of advertisement traffic is pretty high for the simple inverted indexing

mechanism. There exists few proposals for reducing advertisement traffic by adopting

specialized hash functions like Locality Preserving Hashing (LPH) as used in Squid [127]

and Fingerprint function as used in [31]. These optimizations support prefix matching

only but we are interested here in partial (or infix) matching.

For improving fault resilience the advertisement is replicated at (RC) peers along the

Chord ring following the responsible peer. The value of RC has been chosen based on

the suggestions in [27].

5.4.3 DPMS

As presented in Chapter 3, DPMS [16] uses a hierarchical topology and indexing struc-

ture. Lossy aggregation is used for controlling the index volume at higher level peers. Re-

cursive replication along the indexing hierarchy is adopted for increasing fault-resilience

and load distribution.

In this experiment we have an indexing hierarchy of 5 indexing levels. Based on the

discussion in Section 3.13.3 we have set the recursive replication factor (RD) to 2. The

allowed range for branching factor (B) has been set to 4− 6. The values of aggregation

ratio A, pattern width (W) and number of hash function ~D are according to the findings

from our previous experimentation with DPMS, as presented in Section 3.13.

Comparative Evaluation 149

5.4.4 Plexus

Plexus is the only structured search technique that uses signature routing and can ef-

ficiently solve the DPM problem. For this experiment we have selected the parameter

values based on our previous experiments with Plexus in Section 4.6. For this experiment

we have used a Plexus network with r = 7 subnets and ~P = 3 hash functions based

on the curve in Figure 4.8. The query stretch s = v − u has been set according to the

discussion in Section 4.4.2.

5.5 Performance Metrics

Topology Maintenance Overhead

Topology maintenance overhead largely determines the level of peer dynamism that a

search technique can bear. In general this overhead is larger in structured techniques

than unstructured or semi-structured cases. This causes structured techniques to be

more sensitive to churn in network.

As a measure of topology maintenance overhead we will look into two metrics:

• Average degree is the average number of links maintained by a peer. Topol-

ogy maintenance overhead is directly proportional to this metric, especially for

structured techniques that require a peer to connect to distinguished peers on the

overlay.

• Join overhead is measured as the percentage of peers that a joining peer has

to communicate for setting up its own routing table and the routing tables of its

neighbors on the overlay. This metric should be small, otherwise the system will

become unstable in presence of churn.

150 Efficient and Flexible Search in Large Scale Distributed Systems

Advertisement Efficiency

In order to handle content dynamism, the advertisement or index registration process

should be efficient in terms of storage and network usage. We can have an estimate of

storage and network overhead using the following two metrics, respectively.

• Replication factor is defined to be the percentage of peers containing a given

advertisement (i.e., index or content). Update propagation traffic is proportional

to average replication factor.

• Advertisement traffic is measured as the percentage of peers that had to be

visited for registering an advertisement. We used percentage of visited peer in-

stead of number of hops or number of messages, because the later two metrics

are implementation dependent, i.e., can be optimized using smart implementation

techniques.

Search Efficiency

Search efficiency deals with two questions: (a) what percentage of matches are discov-

ered by a search? and (b) how much bandwidth is consumed by the search? In most

systems search efficiency is more important than advertisement efficiency, as more search

is performed than advertisements. As a measure of search efficiency we will investigate

the following two quantities:

• Search completeness answers the first question: what percentage of matches are

discovered by a search? We measure this quantity as the expected ratio of discov-

ered, distinct advertisements matching the query to the total number of distinct

matching advertisements available in the system. We do not consider the replicas

of an advertisement in this measure and this is the norm adopted for unstructured

Comparative Evaluation 151

techniques. Mathematically,

Search completeness = E

(
no. of discovered distinctmatches

available matches (distinct)
× 100

)

• Search traffic answers the second question: how much bandwidth is consumed by

the search? Similar to the measurement of advertisement traffic, search traffic is

measured as the percentage of peers that had to be visited for satisfying the search.

Evidently, a good search mechanism should incur low overhead on the network and

should discover all of the matching advertisements.

Search Flexibility

One of the major targets of DPMS and Plexus is to discover advertisements using only

partial information. Search flexibility refers to the ability of a search system to discover

matching advertisements using partial information. Similar to the measure of search

efficiency, we use search completeness and search traffic to measure search flexibility.

However, for search efficiency we measured these two quantities for various network

sizes. On the contrary, for assessing search flexibility we take a network of a fixed size

and measure these two quantities for different levels of information content in the query

string.

Fault Resilience

Churn or peer dynamism is common in any LSDS. The ability of a search technique to

cope up with churn largely depends on the recovery mechanism, which in turn is imple-

mentation dependent, e.g., keep alive message exchange rate, keeping tract of alternate

neighbors etc. But any search technique in LSDS is expected to perform smoothly in

presence of peer failures. As new peers join the system routing tables of the existing

152 Efficient and Flexible Search in Large Scale Distributed Systems

peers are updated overtime by the recovery mechanism. But we want to measure search

efficiency in presence of failure and before any recovery has taken place. For this pur-

pose we simultaneously make the peers to fail with certain probability and measure the

search efficiency. Even in the presence of failures, a good search technique is expected

to return complete search results (i.e., discover all matching advertisements available in

the system), while the search traffic should not increase significantly.

5.6 Simulation results

The rest of the section presents relative performance of the five search techniques w.r.t.

the performance metrics presented in Section 5.5.

5.6.1 Topology Maintenance Overhead

Topology maintenance overhead is dependent on the average degree of the peers. Topol-

ogy maintenance overhead is usually lesser for a smaller value of average node degree.

Order of node degree in Plexus is O(lg N
r

+ r) and for Chord it is O(lg N). For Flooding

and Random walk we have used the internet topology generation model, in which the

average degree is governed by topology parameter ∆. Finally, in DPMS node degree is

(B + RD + ϑ), where ϑ is the cardinality of neighborhood-list used by the Newscast pro-

tocol [143]. As reflected in Figure 5.2(a), the average degree depends on network size for

Plexus and DHT-technique, whereas it is constant for unstructured or semi-structured

techniques.

Minimizing peer join overhead is crucial for handling peer dynamism in large scale

distributed systems. It is mostly governed by the protocol used to define the logical

overlay topology. Join overhead is minimum for unstructured systems, as in this case the

only rule for join protocol is to keep the degree below a maximum value. In Plexus, a

Comparative Evaluation 153

No. of peers

D
eg

re
e

5000 10000 15000 20000

12

13

14

15

16

17

Plexus
DPMS
Flood
R-walk
II/DHT

(a) Average degree

No. of peers
%

vi
si

te
d

pe
er

s
5000 10000 15000 20000

0

2

4

Plexus
DPMS
Flood
R-Walk
II/DHT

(b) Join overhead

Figure 5.2: Topology maintenance overhead.

joining peer has to locate O(lg N
r
) neighbors, all of which are located within two hops of

the seed peer (see Theorem 4.5.1), while the r external links can be obtained from the

seed and the neighbors. In essence, the effect of joining is localized in Plexus and therefore

the low overhead. The higher overhead of peer join in DPMS results from the strict rules

of connectivity within the indexing hierarchy. Chord, and in general DHT-techniques,

exhibit higher join overhead because of the global impact of initialized routing links. In

Chord, the joining peer becomes a predecessor of the seed peer. The joining peer cannot

benefit from the seed peer’s routing table because of the unidirectional nature of Chord

routing (see [87]). In summary, the average degree in Plexus is close to that in DHT-

techniques though the join overhead is much less. DPMS has low average degree and

join overhead is moderate.

154 Efficient and Flexible Search in Large Scale Distributed Systems

5.6.2 Advertisement Efficiency

Replication is used by search techniques for different purposes. Unstructured and semi-

structured techniques use content replication for improving availability, structured tech-

niques use index replication for improving fault-resilience, and extensions on DHT-

techniques (like Twine [27] and Squid [127]) use index replication for achieving search

completeness.

No. of peers

%
pe

er
w

ith
re

pl
ic

a

5000 10000 15000 20000
0

2

4

Plexus
DPMS
Flood
R-Walk
II/DHT

(a) Replication factor

No. of peers

%
vi

si
te

d
p

ee
rs

5000 10000 15000 20000
0

4

8 Plexus
DPMS
II/DHT

(b) Advertisement traffic

Figure 5.3: Advertisement efficiency.

Figure 5.3(a) presents the average replication factor. In Plexus, the expected number

of replica for some advertisement, say P , can be calculated as |A (P)|b r+1
2
c. Here, |A (P)|

depends on the Error Correcting Code (ECC) in use and query stretch. In DPMS, the

replication factor depends on H and RD (see Table 5.1), and not on network size. It

can be calculated as
∑H−1

i=1 Ri
D. For Flooding and Random-walk we have used uniform

replication with an average of 120. In Chord, replication overhead depends on RC and the

average number of 3-grams per advertisement, which is 29.37 for the experimental dataset.

Comparative Evaluation 155

Though DPMS exhibits lower level of replication factor than Plexus, the index update

cost is higher in DPMS because the aggregation algorithm does not allow incremental

updates.

Figure 5.3(b) plots the average advertisement traffic. Advertisement traffic for Flood-

ing and Random walk have not been presented, as in these two cases there exists no ex-

plicit advertisements; rather, content information is propagated as a result of the search

process. For these two cases, we assume that the content information is well replicated

before the search process begins. Advertisement traffic is low in DPMS because it uses

bulk advertisement. II/DHT requires many independent DHT lookups to register the

3-grams with the Chord ring. Plexus, on the contrary, exploits multicast routing and

the presence of closeness (in hamming distance) within the target codewords to reduce

advertisement traffic.

5.6.3 Search Efficiency

In this experiment we simulated networks of different sizes and measured two aspects

of search efficiency : search completeness (Figure 5.4(a)) and generated traffic (Fig-

ure 5.4(b)). A query has been constructed using a random 35% 3-gram from a randomly

chosen advertisement. Flooding and Random-walk yields the two extremes in terms of

search traffic. In spite of visiting a large percentage of peers, search completeness in

Flooding is low. On the other extreme, Random-walk generates the least traffic and

lowest level of search completeness.

Unlike structured techniques DPMS does not assign indexes to peers. Advertisements

matching a given query cannot be found in any predefined (or computable) set of peers,

rather a user has to search additional peers for discovering each match. In the experiment

with DPMS we have stopped searching after 20 matches were found. Better search

completeness is achievable by increasing this termination criteria (above 20), though at

156 Efficient and Flexible Search in Large Scale Distributed Systems

No. of peers

S
ea

rc
h

co
m

pl
et

en
es

s

5000 10000 15000 20000
20

40

60

80

100

Plexus
DPMS
Flood
R-walk
II/DHT

(a) Search completeness

No. of peers
%

vi
si

te
d

pe
er

s
5000 10000 15000 20000

0

2

4

6

8

Plexus
DPMS
Flood
R-Walk
II/DHT

(b) Query traffic

Figure 5.4: Search efficiency.

the expense of additional search traffic.

Search traffic is almost half in Plexus than that in II/DHT; yet search completeness

in these two systems is almost identical. On the other hand, Plexus and DPMS generate

similar search traffic, yet Plexus provides higher level of search completeness.

5.6.4 Search Flexibility

For this experiment we consider overlays of about 20,000 peers and vary the percentage

of 3-grams (PNG) from the advertisements used for constructing the queries.

For Flooding and Random-walk, search traffic and completeness are invariant to the

change in PNG. In the case of DPMS, we used an iterative search method and stopped

after 20 matches were found. However at low PNG, the number of matching advertise-

ments is more than 20, which results in low completeness levels. On the other hand,

false-match probability is higher at low PNG levels, which explains the higher search

Comparative Evaluation 157

% 3-gram in query

S
ea

rc
h

co
m

pl
et

en
es

s

0 25 50 75 100
20

30

40

50

60

70

80

90

100

Plexus
DPMS
Flood
R-walk
II/DHT

(a) Search completeness

% 3-gram in query
%

vi
si

te
d

pe
er

s
25 50 75 100

0

2

Plexus
DPMS
Flood
R-Walk
II/DHT

(b) Search traffic

Figure 5.5: Search flexibility.

traffic in DPMS for low PNG levels.

In Plexus, many read quorum could not be satisfied at low PNG as there were too few

bits per chunk. This results into lower search completeness and search traffic in Plexus

for PNG < 25%. On the contrary, II/DHT produces almost complete (99.8%) search

results for all PNG levels, though search traffic increases linearly with PNG. In contrast,

search traffic for Plexus is almost constant for PNG > 40%.

5.6.5 Fault Resilience

For this experiment PNG = 35% is used for constructing queries from the available

advertisements. We started with overlays of about 20,000 peers and gradually caused

randomly chosen peers to fail in 5% steps.

In all techniques, except for Plexus, search completeness falls with increase in the

percentage of failed peers (PFP) (Figure 5.6(a)). The fall is sharpest for II/DHT because

158 Efficient and Flexible Search in Large Scale Distributed Systems

% failed superpeers

S
ea

rc
h

co
m

pl
et

en
es

s

0 10 20 30 40 500

20

40

60

80

100

Plexus
DPMS
Flood
R-walk
II/DHT

(a) Search completeness

% failed superpeers

%
vi

si
te

d
su

pe
rp

ee
rs

(a
liv

e)
0 10 20 30 40 500

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6 Plexus
DPMS
Flood
R-walk
II/DHT

(b) Search traffic

Figure 5.6: Fault resilience.

of its unidirectional routing table and lack of alternate routing paths. On the contrary,

the use of multi-path routing and replication allows Plexus to achieve an almost constant

level of search completeness regardless of the failure rate, though at the expense of higher

search traffic.

For Plexus and DPMS, search traffic increases with PFP (Figure 5.6(b)), because

these two techniques adopt alternate routing paths to reach the target peer(s) in presence

of failures. On the other hand, search traffic decreases with the increase in PFP for

II/DHT and Flooding because in these two cases the effective search tree gets pruned as

more peers fail. This results into decreased search completeness. Finally for Random-

walk, search traffic is independent of PFP as a walker is not aborted before TTL expires

unless all the neighbors of an intermediate peer along the walker have failed.

Comparative Evaluation 159

5.7 Summary

In this section we have presented a comparative evaluation of Plexus and DPMS, against

each other and representative search mechanisms from structured and unstructured

paradigms. Based on the experimental results presented in this section, we can infer

the followings:

• Unstructured techniques have low topology maintenance overhead but advertise-

ment and search efficiencies are not good.

• Average degree in Plexus is close to II/DHT, yet the join overhead in Plexus is

much lower and close to the unstructured cases. DPMS has low average degree and

join overhead is moderate in DPMS.

• II/DHT exhibits the highest level of search completeness and flexibility. Plexus,

on the other hand, exhibits almost identical level of completeness and flexibility

as II/DHT when more than 30% of advertised information is present in the query.

However, advertisement and query traffic in Plexus and DPMS is about 50% of

that in II/DHT.

• Plexus proves to be the most resilient solution to peer failures. Unlike other tech-

niques, it can maintain a high level of search completeness even in the presence of

a large number of simultaneous failures. DPMS proves to be the second candidate

in this regard.

Besides evaluating the performance of the studied systems, this section presented a

brief survey of existing P2P simulators and discussed the rational behind using PeerSim

for our experiments.

Chapter 6

Conclusion and Future Research

6.1 Conclusion

This thesis has focused on the search problem in Large Scale Distribute Systems, includ-

ing P2P content-sharing, service discovery and P2P databases. A search mechanism in

such environments needs to be flexible in query expressiveness, efficient on bandwidth

and storage usage, and resilient to failures.

Instead of addressing the search problem in the above three domains independently,

we have defined a common ground: the Distributed Pattern Matching (DPM) problem.

Search problem in these three representative application domains can be mapped to the

DPM framework. Therefore we argue that if the DPM problem can be solved efficiently

then the search problem in these three important application domains can be solved

efficiently.

As a solution to the DPM problem we presented two distributed search mechanisms:

DPMS (Distributed Pattern Matching System) and Plexus. Both of these techniques

solve the DPM problem, i.e., allow a user to discover an advertised bit-vector using some

subset of its 1-bits. In spite of solving the same problem, DPMS and Plexus utilized

completely different indexing and routing mechanisms - each having its own strengths

160

Conclusion and Future Research 161

and weaknesses.

For DPMS we adopted a semi-structured routing mechanism. The core idea be-

hind DPMS architecture was the following observation: an indexing hierarchy of height

O
(
log N

log N

)
has O(logN) elements in the topmost level. In DPMS we organized the in-

dexing peers in a lattice-like hierarchy and used restricted flooding within O(logN) peers

at the topmost level. Here, N is the total number of peers in the system. To avoid hot

spots and to ensure load balancing, we used recursive replication of indexing peers along

the indexing hierarchy. In addition, we utilized a don’t care based aggregation scheme

to reduce the volume of indexed information at each peer. Query routing efficiency of

DPMS was found to be comparable to that of structured P2P systems. For moderately

stable networks, we were able to discover all the matching advertisements (up to a target

maximum) regardless of the replication level.

For Plexus we have adopted a structured routing mechanism based on Coding Theory

construct. To our knowledge, the use of Coding Theoretic constructs in P2P routing is

novel. In contrast to the numeric distance based routing adopted in traditional DHT-

approaches, we used Hamming distance based routing in Plexus. This property makes

subset matching capability intrinsic to the underlying routing mechanism. The number

of routing hops and the number of links maintained by each indexing peer were found

to scale logarithmically with the number of peers in the network. As demonstrated by

the simulation results on a network of about 20,000 superpeers, Plexus needed to visit

only 0.7% ∼ 1% of the superpeers to resolve a query and discovered about 97% ∼ 99% of

the advertised patterns matching the query. For achieving this level of completeness, the

query needed to contain only 33% of the trigrams from an advertisement that it should

match against. Plexus was able to deliver a high level of fault-resilience by utilizing repli-

cation and redundant routing paths. Even with 50% failed superpeers, Plexus attained

a high level of search completeness (about 97% ∼ 99%) by visiting only 1.4% ∼ 2% of

162 Efficient and Flexible Search in Large Scale Distributed Systems

the superpeers.

We have also presented a proof-of-concept, using prototypes of the DPMS and Plexus

protocols, and compared them against representative search techniques from unstruc-

tured and structured domains. Experimental results, presented in Chapter 5, reflects the

effectiveness of DPMS and Plexus in solving the DPM problem without compromising

advertisement or search efficiency. The comparative merits and demerits of DPMS and

Plexus can be summarized as follows.

• DPMS requires O
(
log N

log N

)
additional hops for finding each match, after a group

of O(log N) peers at the topmost level has been flooded. On the contrary, Plexus

can discover all the matches by searching a limited number of superpeers, scaling

logarithmically with network size.

• Plexus requires that the percentage of 1-bits in a pattern to be within a certain

limit as determined by the query stretch. For DPMS there exists no such bound.

Yet this bound on Plexus seems to be practical for most cases. An advertisement

with too many 1-bits will match almost all queries, while a query with too few

1-bits will match a large number of advertisements.

• Use of alternate routing paths is common to both DPMS and Plexus. However

the number of alternate routing paths is much higher in Plexus than DPMS, which

makes Plexus more resilient to failures than DPMS.

• Though DPMS exhibits lower level of replication factor than Plexus, the index

update cost is higher in DPMS because the aggregation algorithm does not allow

incremental updates.

• Peers in DPMS maintain a constant number of links, in contrast to O(log N) links

per peer required by Plexus.

Conclusion and Future Research 163

In summary, DPMS is appropriate for systems with relatively slow content update

rate and requiring a predefined fixed number of search results. On the other hand, Plexus

is suitable for the scenarios where search results should be complete, and peer and content

dynamism are high.

Another contribution of this thesis is the survey and the taxonomy presented in

Chapter 2. We have identified the main components involved in existing distributed

search mechanisms from the three important application domains and have classified

these search techniques based on the characteristics of these components. The taxonomy

presented in this work is simple and generic, and encompasses the majority of search

techniques in large scale distributed systems.

Taken collectively, our contributions increase our understanding of the search issues

in large scale distributed systems and provide a common ground for future research on

distributed search in three important application domains: P2P content-sharing, service

discovery and P2P databases.

6.2 Future Research

There are several possible avenues for future research. In the following, we will discuss

some of the most important ones:

Similarity Search

Although we have focused on subset matching in this work, DPMS and Plexus can easily

be tailored to support similarity (or edit distance) matching. Possible applications of

similarity search include phonetic search and semantic-laden search (as in Web Service

discovery). In order to enable similarity search using DPMS we need to change the

function that compares a query to an advertisement during the search process as follows:

instead of forwarding queries based on strict subset match, we need to forward queries

164 Efficient and Flexible Search in Large Scale Distributed Systems

based on some predefined threshold on hamming distance. While in the case of Plexus, we

need to adjust the A (·) and Q(·) computation algorithms so that additional codewords

are included to cover the supersets of advertised and queried patterns.

AI clustering

Clustering of pattern space has been extensively studied in Artificial Intelligence (AI) and

Coding Theory literature. AI-based clustering techniques [79] require a priori knowledge

of the pattern space (e.g., pattern density distribution) and training phases. Coding

theory constructs, on the other hand, assume that all the patterns are equally likely,

i.e., uniformly distributed over the pattern space. A possible extension of Plexus is to

investigate AI-based clustering techniques instead of using Coding Theoretic construct.

Indeed, if the pattern density distribution is non-uniform over the pattern space, AI-based

clustering techniques may yield a better routing performance.

Coding Theoretic Extensions

A major reason behind selecting the Extended Golay code for our implementation of

Plexus is the code size. The proposed algorithm for finding Q(Q) requires to find all

codewords within a specified distance from a given 24-bit vector. We had to use linear

search for this step, as no efficient algorithm for this task is known. Use of linear search

is not feasible with larger codes with hundreds of thousands of codewords. Similarly,

finding A (P) for some advertised bit-vector P requires to compute Q(·) for each subset

of P . It may be possible to avoid groups of subsets by using the intersection property of

a codeword and a subset, as explained in Equation (4.4). This is clearly an interesting

issue that we will further investigate.

Conclusion and Future Research 165

Alternate For Voting Algorithm

Use of the Voting algorithm in Plexus is suitable for systems with a small number of

subnets. With a larger number of subnets in the system, the replication overhead will be

high. Through careful observation, it can be realized that selecting appropriate subnets

for advertisements and queries is essentially the same problem as that of finding A (P)

and Q(Q) satisfying (4.2). Hence, with larger number of subnets we can reduce the

number of selected subnets by using some linear code with large distance, e.g., 1st order

Reed-Muller codes. We intend to investigate this possibility as a future extension of this

work.

Self-tuning in DPMS

The experimental results in Section 3.13.1 suggests that system specific tuning is required

for the following three parameters: pattern width W , minimum number of non-X bits

O and aggregation ratio A. The characteristic function presented in Figure 3.7 provides

a guideline for selecting the ratio of O
W

for a given value of A. Routing and indexing

efficiency in DPMS can be tuned by dynamically adjusting the values of O and A. Further

investigation is required for finding self-tuning capabilities in DPMS. Another possible

optimization in DPMS is to introduce a collaboration mechanism among the leaf peers

based on common interest. Patterns advertised by peers in same interest group are

expected to have smaller hamming distance. This will increase aggregation rate without

degrading the quality of aggregates. Investigating these self-tuning and self-optimization

aspects of DPMS seems to be an interesting avenue for future research.

Applications of DPM

In this thesis we have presented two generic search techniques: DPMS and Plexus. In

the experiments we have investigated the applicability of these two search techniques to

166 Efficient and Flexible Search in Large Scale Distributed Systems

partial keyword search in content-sharing P2P networks. As discussed previously, these

techniques can be applied to service discovery and P2P database domains. Detailed

investigation and experimentation are however needed. As a future extension of this work

we intend to apply these search techniques in other application domains than content-

sharing P2P networks and to perform detailed performance studies.

The originality of this work lies in the formulation of the DPM construct and devel-

opment of the DPMS and Plexus routing mechanisms for solving the subset matching

problem in distributed environments. We believe that these concepts will aid in solving a

number of other problems pertaining to P2P networking research, as well as, distributed

databases, ontology-based semantic search and distributed information retrieval.

Bibliography

[1] Alta Vista website, http://www.altavista.digital.com/cgi-bin/query?pg=h. 44

[2] The BISON Project homepage, http://www.cs.unibo.it/bison/. 141

[3] The FastTrack Peer-to-Peer technology, http://www.fasttrack.nu/. 35

[4] The Gnutella website, http://www.gnutella.com. 8, 20, 35, 50, 51, 54, 56, 140

[5] The KaZaA website, http://www.kazaa.com/. 20, 54, 56

[6] Leo’s lyrics database: http://www.leoslyrics.com/. 144

[7] The Morpheus website, http://morpheus.com/. 54

[8] The Napster website, http://www.napster.com/. 19, 54, 56

[9] The network simulator ns2. http://www.isi.edu/nsnam/ns/. 137

[10] Peersim Peer-to-Peer simulator, http://peersim.sourceforge.net/. 83

[11] Wget’s website: http://www.leoslyrics.com/. 144

[12] Yahoo website, http://www.yahoo.com/docs/info/faq.html. 44

[13] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The Design and

Implementation of an Intentional Naming System. In Symposium on Operating

Systems Principles, pages 186–201, 1999. 22

167

168 Efficient and Flexible Search in Large Scale Distributed Systems

[14] R. Ahmed and R. Boutaba. Distributed pattern matching for P2P systems. In Pro-

ceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS),

May 2006. 9

[15] R. Ahmed and R. Boutaba. A scalable Peer-to-Peer protocol enabling efficient

and flexible search. Technical Report CS-2006-05, David R. Cheriton School of

Computer Science, University of Waterloo, May 2006. 12, 101

[16] R. Ahmed and R. Boutaba. Distributed pattern matching: A key to flexible and

efficient P2P search. IEEE Journal on Selected Areas in Communications (JSAC),

25(1):73–83, January 2007. 10, 50, 148

[17] R. Ahmed and R. Boutaba. Plexus: A scalable Peer-to-Peer protocol enabling

efficient subset search. Manuscript submitted to IEEE/ACM Transaction on Net-

working (TON), February 2007. 12, 101

[18] R. Ahmed, R. Boutaba, F. Cuervo, Y. Iraqi, T. Li, N. Limam, J. Xiao, and

J. Ziembicki. Service discovery protocols: A comparative study. In Proceeding

of the IFIP/IEEE International Symposium on Integrated Network Management

(IM) Application Sessions, Nice, France, May 2005. 22, 37

[19] R. Ahmed, R. Boutaba, F. Cuervo, Y. Iraqi, T. Li, N. Limam, J. Xiao, and J. Ziem-

bicki. Service naming in large-scale and multi-domain networks. IEEE Communi-

cations Surveys & Tutorials, 7(3):38–54, Third Quarter 2005. 37

[20] J. Allard, V. Chinta, S. Gundala, and G. G. Richard-III. Jini meets UPnP: An

architecture for Jini/UPnP interoperability. In Proceedings of Symposium on Ap-

plications and the Internet (SAINT), page 268, Washington, DC, USA, 2003. IEEE

Computer Society. 37

Conclusion and Future Research 169

[21] A. Amir, E. Porat, and M. Lewenstein. Approximate subset matching with don’t

cares. In Proceedings of Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 305–306, 2001. 2, 6

[22] S. Androutsellis-Theotokis and D. Spinellis. A survey of Peer-to-Peer content dis-

tribution technologies. ACM Computing Surveys, 45(2):195–205, December 2004.

18, 19, 20, 53, 54, 56, 101, 119

[23] G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. Handbook on

Ontologies in Information Systems, pages 76–92, 2003. 40

[24] J. Aspnes and G. Shah. Skip graphs. In Proceedings of Annual ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), pages 384–393, 2003. 34, 56

[25] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro, F. Ducatelle, L. M. Gam-

bardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor, and T. Urnes.

Design patterns from biology for distributed computing. ACM Transactions on

Autonomous and Adaptive Systems, 1(1):26–66, September 2006. 141

[26] B. S. Baker. A theory of parameterized pattern matching: algorithms and applica-

tions. In Proceedings of ACM Symposium on Theory of Computing (STOC), pages

71–80, 1993. 2

[27] M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine: A scalable Peer-to-

Peer architecture for intentional resource discovery. In Proceedings of International

Conference on Pervasive Computing, pages 195–210. Springer-Verlag, 2002. 23, 30,

37, 38, 39, 41, 49, 50, 53, 125, 148, 154

[28] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The Google cluster

architecture. IEEE Micro, 23(2):22–28, April 2003. 44

170 Efficient and Flexible Search in Large Scale Distributed Systems

[29] R. Bhagwan, D. Moore, S. Savage, and G. Voelker. Replication strategies for highly

available Peer-to-Peer storage. In Proceedings of Future directions in Distributed

Computing (FuDiCo), June 2002. 147

[30] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commu-

nications of ACM, 13(7):422–426, 1970. 3, 16, 61, 101

[31] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath lookup queries in

P2P networks. In Proceedings of the ACM international workshop on Web infor-

mation and data management (WIDM), pages 48–55, New York, NY, USA, 2004.

ACM Press. 40, 42, 53, 148

[32] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Fer-

ris, and D. Orchard. Web Service Architecture, 2004. [Online]. Available.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/. 38, 39

[33] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey.

Internet Mathematics, 1(4):485–509, 2003. 28, 62

[34] D. Brookshier, D. Govoni, and N. Krishnan. JXTA: Java P2P Programming.

SAMS, 2002. 20, 42, 56

[35] J. Buford, A. Brown, and M. Kolberg. Meta service discovery. In Proceedings

of IEEE International Conference on Pervasive Computing and Communications

(PerCom), March 2006. 37

[36] M. H. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. V. McDermott, S. A.

McIlraith, S. Narayanan, M. Paolucci, T. R. Payne, and K. P. Sycara. DAML-

S: Web Service description for the semantic web. In Proceedings of International

Semantic Web Conference on The Semantic Web (ISWC), pages 348–363, London,

UK, 2002. Springer-Verlag. 39, 40

Conclusion and Future Research 171

[37] M. Cai and M. Frank. RDFPeers: a scalable distributed RDF repository based on

a structured Peer-to-Peer network. In International World Wide Web Conference

(WWW), 2004. 40, 42, 49, 50, 53

[38] D. Chamberlin, J. Siméon, S. Boag, D. Florescu, M. F. Fernández, and J. Robie.

XQuery 1.0: An XML query language. W3C recommendation, W3C, Jan. 2007.

http://www.w3.org/TR/2007/REC-xquery-20070123/. 49

[39] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making

Gnutella-like P2P systems scalable. In Proceedings of ACM SIGCOMM, pages

407–418, 2003. 36, 52, 54, 56

[40] D. Choon-Hoong, S. Nutanong, and R. Buyya. Peer-to-Peer Computing: Evolution

of a Disruptive Technology, chapter 2–Peer-to-Peer Networks for Content Sharing,

pages 28–65. Idea Group Inc., 2005. 18

[41] V. Chvátal. A greedy heuristic for the set covering problem. Mathematics of

Operations Research, 4:233–235, 1979. 111

[42] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anony-

mous information storage and retrieval system. Lecture Notes in Computer Science

(LNCS), 2009:46–66, 2001. 20, 54, 56, 140

[43] B. Cohen. Bittorrent protocol specification.

http://www.bitconjurer.org/BitTorrent/protocol.html, February 2005. 139

[44] E. Cohen, A. Fiat, and H. Kaplan. Associative search in Peer-to-Peer networks:

Harnessing latent semantics. In Proceedings of IEEE INFOCOM, 2003. 9, 36, 50,

51, 56

[45] E. Cohen and S. Shenker. Replication strategies in unstructured Peer-to-Peer net-

works. In Proceedings of ACM SIGCOMM, pages 177–190, 2002. 60, 147

172 Efficient and Flexible Search in Large Scale Distributed Systems

[46] R. Cole and R. Harihan. Tree pattern matching and subset matching in randomized

o(n log3 m) time. In Proceedings of ACM Symposium on Theory of Computing

(STOC), pages 66–75, 1997. 2, 6

[47] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching in

deterministic o(n log3 n)-time. In Proceedings of Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 245–254, Philadelphia, PA, USA, 1999.

Society for Industrial and Applied Mathematics. 6

[48] C. Comito, S. Patarin, and D. Talia. A semantic overlay network for P2P schema-

based data integration. In IEEE Symposium on Computers and Communications

(ISCC), pages 88–94, Los Alamitos, CA, USA, 2006. IEEE Computer Society. 141

[49] J. Conway and N. Sloane. Orbit and coset analysis of the Golay and related codes.

IEEE Transactions on Information Theory, 36(5):1038–1050, September 1990. 104

[50] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz. An

Architecture for a Secure Service Discovery Service. In Proceedings of Interna-

tional Conference on Mobile Computing and Networking (MOBICOM), pages 24–

35, 1999. 22, 37, 50, 52, 53, 56, 64

[51] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common

API for structured Peer-to-Peer overlays. In Proceedings of International Workshop

on Peer-to-Peer Systems (IPTPS), volume 58, Berkeley, CA, February 2003. 138

[52] S. Decker, M. Schlosser, M. Sintek, and W. Nejdl. Hypercup - hypercubes, ontolo-

gies and efficient search on P2P networks. In International Workshop on Agents

and Peer-to-Peer Computing, July 2002. 39

[53] A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou. Heuristically optimized

trade-offs: A new paradigm for power laws in the Internet. In Proceedings of

Conclusion and Future Research 173

International Colloquium on Automata, Languages and Programming (ICLAP),

pages 110–122, London, UK, 2002. Springer-Verlag. 147

[54] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the

Internet topology. In Proceedings of ACM SIGCOMM, pages 251–262, New York,

NY, USA, 1999. ACM Press. 147

[55] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. The coDB robust Peer-to-

Peer database system. In Proceedings of Workshop on Semantics in Peer-to-Peer

and Grid Computing at the International World Wide Web Conference (WWW),

May 2004. 42

[56] J. Freudenberger and V. Zyablov. On the complexity of suboptimal decoding for

list and decision feedback schemes. Discrete Applied Mathematics, 154(2):294–304,

2006. 111

[57] M. Fuchs, P. Wadler, J. Robie, and A. Brown. XML schema: Formal descrip-

tion. W3C working draft, W3C, Sept. 2001. http://www.w3.org/TR/2001/WD-

xmlschema-formal-20010925/. 26

[58] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating data sources in large

distributed systems. In Proceedings of the VLDB Conference,, 2003. 40, 41, 42, 50,

53

[59] P. Ganesan, Q. Sun, and H. Garcia-Molina. Adlib: A self-tuning index for dynamic

Peer-to-Peer systems. In Proceedings of the International Conference on Data En-

gineering (ICDE), pages 256–257, Los Alamitos, CA, USA, 2005. IEEE Computer

Society. 31

174 Efficient and Flexible Search in Large Scale Distributed Systems

[60] P. Garcia, C. Pairot, R. Mondejar, J. Pujol, H. Tejedor, and R. Rallo. PlanetSim:

A new overlay network simulation framework. Lecture Notes in Computer Science

(LNCS) Software Engineering and Middleware, 3437:123–136, 2005. 138

[61] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis. Web service discov-

ery mechanisms: Looking for a needle in a haystack? In International Workshop

on Web Engineering, 2004. 38

[62] L. Gasieniec, J. Jansson, and A. Lingas. Approximation algorithms for hamming

clustering problems. Journal of Discrete Algorithms, 2(2):289–301, 2004. 68

[63] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the seventh

Symposium on Operating Systems Principles, pages 150–162, 1979. 121

[64] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling. P2Psim version 0.3

(MIT IRIS project). http://pdos.csail.mit.edu/p2psim/, April 2005. 139

[65] M. J. E. Golay. Notes on digital coding. In Proceedings of the IEEE, volume 37,

1949. 13, 101

[66] A. Grizard, L. Vercouter, T. Stratulat, and G. Muller. A Peer-to-Peer normative

system to achieve social order. In AAMAS06 Workshop on Coordination, Organi-

zation, Institutions and Norms in agent systems (COIN), Hakodate, Japan, May

2006. 141

[67] D. Guo, H. Chen, C. Xie, H. Lei, T. Chen, and X. Luo. Decentralized grid resource

locating protocol based on grid resource space model. In Lecture Notes in Computer

Science (LNCS), volume 3795, pages 621–632,. Springer-Verlag, 2005. 141

[68] I. Gupta, K. P. Birman, P. Linga, A. J. Demers, and R. van Renesse. Kelips:

Building an efficient and stable P2P DHT through increased memory and back-

Conclusion and Future Research 175

ground overhead. In Proceedings of International Workshop on Peer-to-Peer Sys-

tems (IPTPS), pages 160–169, 2003. 139

[69] V. Guruswami and M. Sudan. Extensions to the johnson bound. Manuscript, 2001.

126

[70] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol (SLP),

version 2. Technical report, IETF, RFC2608, http://www.ietf.org/rfc/rfc2608.txt,

June 1999. 22, 37, 53

[71] D. Hales and S. Arteconi. SCALER: A self-organizing protocol for coordination in

Peer-to-Peer networks. IEEE Intelligent Systems, 21(2):29–35, 2006. 141

[72] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica.

Complex queries in DHT-based Peer-to-Peer networks. In Proceedings of Inter-

national Workshop on Peer-to-Peer Systems (IPTPS), pages 242–259, 2002. 31,

148

[73] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A

scalable overlay network with practical locality properties. In Proceedings of the

USENIX Symposium on Internet Technologies and Systems (USITS), March 2003.

34, 52, 55, 56

[74] Q. He, M. Ammar, G. Riley, H. Raj, and R. Fujimoto. Mapping peer behavior

to packet-level details: a framework for packet-level simulation of Peer-to-Peer

systems. In Proceedings of International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS), pages 71–

78, October 2003. 138

176 Efficient and Flexible Search in Large Scale Distributed Systems

[75] S. Herschel and R. Heese. Humboldt Discoverer: A semantic P2P index for PDMS.

In Proceedings of the International Workshop Data Integration and the Semantic

Web (DISWeb’05), June 2005. 42, 53, 56

[76] D. G. Hoffman, Wal, D. A. Leonard, C. C. Lidner, K. T. Phelps, and C. A. Rodger.

Coding Theory: The Essentials. Marcel Dekker, Inc., New York, NY, USA, 1991.

12, 101, 106

[77] T. Howes. The string representation of ldap search filters, 1997. 49

[78] H. Hu and A. Seneviratne. Autonomic Peer-to-Peer service directory. IEICE/IEEE

Joint Special Section on Autonomous Decentralized Systems, E88-D(12):2630–2639,

December 2005. 39

[79] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing

Surveys, 31(3):264–323, September 1999. 106, 164

[80] M. Jelasity and O. Babaoglu. T-Man: Fast gossip-based construction of

large-scale overlay topologies. Technical Report UBLCS-2004-7, University

of Bologna, Department of Computer Science, Bologna, Italy, May 2004.

http://www.cs.unibo.it/techreports/2004/2004-07.pdf. 141

[81] M. Jelasity and A. Montresor. Epidemic-style proactive aggregation in large overlay

networks. In Proceedings of International Conference on Distributed Computing

Systems (ICDCS), pages 102–109, Tokyo, Japan, March 2004. IEEE Computer

Society. 141

[82] X. Jin, W.-P. K. Yiu, and S.-H. Chan. Supporting multiple-keyword search in

a hybrid structured Peer-to-Peer network. In Proceedings of IEEE International

Conference on Communications (ICC), pages 42–47, Istanbul, June 2006. 31, 34,

52

Conclusion and Future Research 177

[83] S. Joseph. Neurogrid: Semantically routing queries in Peer-to-Peer networks. In

Lecture Notes in Computer Science (LNCS): Revised Papers from the NETWORK-

ING 2002 Workshops on Web Engineering and Peer-to-Peer Computing, pages

202–214, London, UK, 2002. Springer-Verlag. 140

[84] S. Joseph. An extendible open source P2P simulator. P2PJournal, pages 1–15,

November 2003. 140

[85] Y. Joung, L. Yang, and C. Fang. Keyword search in DHT-based Peer-to-Peer

networks. IEEE Journal on Selected Areas in Communications (JSAC), 25(1):46–

61, January 2007. 31, 32, 52

[86] M. F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal distributed

hash table. In Proceedings of International Workshop on Peer-to-Peer Systems

(IPTPS), pages 98–107, 2003. 139

[87] X. Kaiping, H. Peilin, and L. Jinsheng. FS-Chord: A new P2P model with frac-

tional steps joining. In Advanced International Conference on Telecommunica-

tions and International Conference on Internet and Web Applications and Services

(AICT/ICIW), 2006. 153

[88] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local search mechanism

for Peer-to-Peer networks. In Conference on Information and Knowledge Manage-

ment (CIKM), 2002. 51

[89] K. Kant and R. Iyer. Modeling and simulation of Adhoc/P2P resource sharing

networks. In Proceedings of TOOLS, November 2003. 138

[90] M. Kay, M. F. Fernández, S. Boag, D. Chamberlin, A. Berglund, J. Siméon, and

J. Robie. XML path language (XPath) 2.0. W3C recommendation, W3C, Jan.

2007. http://www.w3.org/TR/2007/REC-xpath20-20070123/. 5, 41, 49

178 Efficient and Flexible Search in Large Scale Distributed Systems

[91] J. Kim and G. Fox. A hybrid keyword search across Peer-to-Peer federated

databases. In Proceedings of East-European Conference on Advances in Databases

and Information Systems (ADBIS), September 2004. 42

[92] G. Koloniari and E. Pitoura. Peer-to-Peer management of XML data: issues and

research challenges. ACM SIGMOD Record, 34(2):6–17, 2005. 25

[93] T. Koponen and T. Virtanen. A service discovery: a service broker approach. In

Proceedings of Hawaii International Conference on System Sciences, January 2004.

37

[94] S. R. Kosaraju. Efficient tree pattern matching. In Proceedings of the 30th IEEE

Symposium on the Foundations of Computer Science (FOCS), pages 178–183, 1989.

2

[95] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori. P2PRealm Peer-

to-Peer Network Simulator. In Proceedings of Intenational Workshop on Computer-

Aided Modeling, Analysis and Design of Communication Links and Networks, pages

93–99, June 2006. 138

[96] A. Kumar, J. Xu, and E. W. Zegura. Efficient and scalable query routing for

unstructured peer-to-peer networks. In Proceedings of IEEE INFOCOM, 2005. 36

[97] O. Lassila and R. R. Swick. Resource description framework (RDF)

model and syntax specification. supersed work, W3C, Feb. 1999.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222. 42

[98] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient manage-

ment of DHT routing tables. In Proceedings of USENIX Symposium on Networked

Systems Design and Implementation (NSDI), Boston, Massachusetts, May 2005.

139

Conclusion and Future Research 179

[99] M. Li, W. Lee, and A. Sivasubramaniam. Neighborhood signatures for searching

P2P networks. In Proceedings of Seventh International Database Engineering and

Applications Symposium (IDEAS), pages 149–159, 2003. 9, 36, 50, 52, 56, 64

[100] Y. Li, F. Zou, Z. Wu, and F. Ma. PWSD: A scalable web service discovery ar-

chitecture based on Peer-to-Peer overlay network. In Proceedings APWeb, Lecture

Notes Computer Science (LNCS), volume 3007, 2004. 39, 53

[101] N. Limam, J. Ziembicki, R. Ahmed, Y. Iraqi, D. T. Li, R. Boutaba, and F. Cuervo.

OSDA: Open service discovery architecture for efficient cross-domain service provi-

sioning. International Computer Communications Journal (COMCOM) Special Is-

sue on Emerging Middleware for Next Generation Networks, 30(3):546–563, Febru-

ary 2007. 37

[102] L. Liu, K. D. Ryu, and K. Lee. Supporting efficient keyword-based file search in

Peer-to-Peer file sharing systems. In Proceedings of GLOBECOM, 2004. 30, 31,

32, 52, 148

[103] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in un-

structured Peer-to-Peer networks. In Proceedings of the International Conference

on Supercomputing (ICS), 2002. 8, 36, 51

[104] G. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a small

world. In Proceedings of USENIX Symposium on Internet Technologies and Systems

(USITS), pages 127–140, March 2003. 138

[105] P. Maymounkov and D. Mazireres. Kademlia: A Peer-to-Peer information system

based on the XOR metric. In Proceedings of International Workshop on Peer-to-

Peer Systems (IPTPS), pages 53–65. Springer-Verlag, March 2002. 6, 30, 51, 55,

139

180 Efficient and Flexible Search in Large Scale Distributed Systems

[106] B. A. Miller, T. Nixon, C. Tai, and M. D. Wood. Home networking with Universal

Plug and Play. IEEE Communications Magazine, pages 104–109, December 2001.

22, 37

[107] J. Miller. Characterization of data on the Gnutella Peer-to-Peer network. In IEEE

Consumer Communications and Networking Conference (CCNC), pages 489– 494,

Las Vegas Nevada, USA, January 2004. 144

[108] M. Montebello and C. Abela. DAML enabled web service and agents in semantic

web. In Workshop on Web, Web Services and Database Systems, Lecture Notes

Ccomputer Science (LNCS), 2003. 39

[109] A. Montresor. A robust protocol for building superpeer overlay topologies. In

Proceedings of International Conference on Peer-to-Peer Computing (P2P), Zurich,

Switzerland, August 2004. 141

[110] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. A survey of Peer-to-Peer

network simulators. In Proceedings of The Seventh Annual Postgraduate Symposium

(PGNET), Liverpool, UK, June 2006. 137

[111] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and

A. Loser. Super-peer-based routing strategies for RDF-based Peer-to-Peer net-

works. Journal of Web Semantics, 1(2):177–186, February 2004. 40

[112] W. S. Ng, B. C. Ooi, K. L. Tan, and A. Zhou. PeerDB: A P2P-based System for

Distributed Data Sharing. In Proceedings of the International Conference on Data

Engineering (ICDE), pages 633–644, 2003. 42, 53

[113] M. T. Ozsu and P. Valduriez. Principles of distributed database systems. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1991. 25

Conclusion and Future Research 181

[114] E. Prud’Hommeaux and A. Seaborne. SPARQL query language for RDF. Work-

ing Draft WD-rdf-sparql-query-20061004, World Wide Web Consortium (W3C),

October 2006. 43, 49

[115] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications

of the ACM, 33(6):668–676, 1990. 34

[116] M. Rabin. Fingerprinting by random polynomials. Technical report, CRCT TR-

15-81, Harvard University, 1981. 41

[117] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill

Professional, 2002. 25

[118] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable

content-addressable network. In Proceedings of ACM SIGCOMM, pages 161–172,

2001. 6, 21, 30, 31, 40, 51, 55

[119] S. Rhea and J. Kubiatowicz. Probabilistic location and routing. In Proceedings of

IEEE INFOCOM, 2002. 36, 52

[120] P. Rompothong and T. Senivongse. A query federation of UDDI registries. In

Proceedings of International Symposium on Information and Communication Tech-

nologies (ISICT), pages 578–583, 2003. 39

[121] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and

routing for large-scale Peer-to-Peer systems. In Proceedings of IFIP/ACM Inter-

national Conference on Distributed Systems Platforms (Middleware), Heidelberg,

Germany, November 2001. 30, 51

[122] H. Sagan. Space-filling curves. Springer-Verlag, 1994. 33

182 Efficient and Flexible Search in Large Scale Distributed Systems

[123] Salutation Consortium. Salutation architecture specification version 2.0c.

http://www.salutation.org, June 1999. 37

[124] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of Peer-to-

Peer file sharing systems. In Multimedia Computing and Networking (MMCN),

2002. 98

[125] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. A scalable and ontology-based

P2P infrastructure for semantic web services. In Proceedings of International Con-

ference on Peer-to-Peer Computing (P2P), September 2002. 39, 40, 53

[126] M. T. Schlosser, T. E. Condie, and S. D. Kamvar. Simulating a file-sharing P2P

network. In Workshop on Semantics in P2P and Grid Computing, December 2002.

139

[127] C. Schmidt and M. Parashar. Enabling flexible queries with guarantees in P2P

systems. IEEE Internet Computing, 8(3):19–26, June 2004. 30, 31, 33, 39, 49, 52,

148, 154

[128] C. Schmidt and M. Parashar. Peer-to-Peer approach to web service discovery. In

WWW: Internet and web information systems, volume 7, pages 211–229, 2004. 39,

53

[129] S. Shi, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen. Making Peer-to-Peer keyword

searching feasible using multi-level partitioning. In Proceedings of International

Workshop on Peer-to-Peer Systems (IPTPS), pages 151–161. Springer, 2004. 35

[130] C. M. Sperberg-McQueen, T. Bray, E. Maler, J. Paoli, and F. Yergeau. Extensible

markup language (XML) 1.0 (fourth edition). W3C recommendation, W3C, Aug.

2006. http://www.w3.org/TR/2006/REC-xml-20060816. 25

Conclusion and Future Research 183

[131] K. Sripanidkulchai. The popularity of Gnutella queries and its implications on

scalability. OReillys www.openp2p.com, February 2001. 144, 147

[132] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,

and H. Balakrishnan. Chord: a scalable Peer-to-Peer lookup protocol for Internet

applications. IEEE/ACM Transaction on Networking (TON), 11(1):17–32, 2003.

6, 20, 30, 31, 40, 51, 55

[133] D. Stutzbach and R. Rejaie. Characterizing unstructured overlay topologies in

modern P2P file-sharing systems. In Internet Measurement Conference, October

2005. 120, 144

[134] D. Stutzbach, S. Zhao, and R. Rejaie. Characterizing files in the modern Gnutella

network. Multimedia Systems Journal (To appear), 2007. Technical Report CIS-

TR-06-09, University of Oregon, http://mirage.cs.uoregon.edu/pub/stutzbach-

2006-msj.pdf. 99, 144

[135] M. Sudan. List decoding: Algorithms and applications. Lecture Notes in Computer

Science (LNCS)on the Proceedings of the International Conference IFIP Theoretical

Computer Science (TCS), 1872:25–41, August 2000. 107

[136] Sun Microsystems. Jini Technology Core Platform Specification, October 2000.

[Online]. Available. http://www.sun.com/jini/specs/. 22, 37

[137] C. Tang and S. Dwarkadas. Hybrid global-local indexing for efficient Peer-to-Peer

information retrieval. In Proceedings of the Symposium on Networked Systems

Design and Implementation (NSDI), June 2004. 31

[138] C. Tang, Z. Xu, and M. Mahalingam. pSearch: information retrieval in structured

overlays. ACM SIGCOMM Computer Communication Review, 33(1):89–94, 2003.

30, 31, 32, 52

184 Efficient and Flexible Search in Large Scale Distributed Systems

[139] N. S. Ting and R. Deters. 3LS - a Peer-to-Peer network simulator. In Proceed-

ings of International Conference on Peer-to-Peer Computing (P2P), pages 212–213,

September 2003. 139

[140] D. Tsoumakos and N. Roussopoulos. Adaptive probabilistic search for Peer-to-Peer

networks. In Proceedings of International Conference on Peer-to-Peer Computing

(P2P), 2003. 36, 51, 52

[141] UDDI Consortium. UDDI Technical White Paper, 2002. [Online]. Available.

http://www.uddi.org/ pubs/Iru UDDI Technical White Paper.pdf. 22, 38, 39

[142] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications.

Knowledge Sharing and Review, 11(2), 1996. 39

[143] S. Voulgaris, M. Jelasity, and M. van Steen. A robust and scalable Peer-to-Peer

gossiping protocol. In Proceedings of International Workshop on Agents and Peer-

to-Peer Computing (AP2PC), 2003. 73, 152

[144] L. Xiao, Z. Zhuang, and Y. Liu. Dynamic layer management in superpeer architec-

tures. IEEE Transactions on Parallel and Distributed Systems, 16(11):1078–1091,

November 2005. 119

[145] H. Yagi, T. Matsushima, and S. Hirasawa. A heuristic search method with the

reduced list of test error patterns for maximum likelihood decoding. IEICE Trans-

actions on Fundamentals of Electronics, Communications and Computer Sciences,

E88-A(10):2721–2733, 2005. 111

[146] B. Yang and H. Garcia-Molina. Improving search in Peer-to-Peer networks. In Pro-

ceedings of International Conference on Distributed Computing Systems (ICDCS),

2002. 20, 36, 51

Conclusion and Future Research 185

[147] B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proceedings

of the International Conference on Data Engineering (ICDE), pages 49–60, Los

Alamitos, CA, USA, 2003. IEEE Computer Society. 119

[148] K.-H. Yang and J.-M. Ho. Proof: A DHT-based Peer-to-Peer search engine. In

IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006), pages

702–708, December 2006. 32

[149] W. Yang and N. Abu-Ghazaleh. GPS: a general Peer-to-Peer simulator and its

use for modeling BitTorrent. In Proceedings of International Symposium on Model-

ing, Analysis, and Simulation of Computer and Telecommunication Systems (MAS-

COTS), pages 425–432, September 2005. 139

[150] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry:

A resilient global-scale overlay for service deployment. IEEE Journal on Selected

Areas in Communications (JSAC), 22(1):41–53, January 2004. 6, 21, 30, 31, 139

[151] M. Zimand. A list-decodable code with local encoding and decoding. In Pro-

ceedings of Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing and ACIS International Workshop on Self-Assembling

Wireless Networks (SNPD/SAWN), pages 232–237, Washington, DC, USA, 2005.

IEEE Computer Society. 111

	Introduction
	Problem Definition
	Motivation
	Contributions
	Thesis Organization

	Background and Related Work
	Introduction
	Chapter Organization
	Background
	Large-scale Distributed Systems
	Bloom Filters

	Related Work
	Peer-to-Peer Content Sharing
	Service Discovery
	Peer-to-Peer Databases

	Distributed Search Requirements
	Components of a Distributed Search System
	Query Semantics
	Translation
	Routing
	Relation to Other Taxonomies

	Summary

	DPMS: Distributed Pattern Matching System
	Introduction
	Chapter Organization
	Architectural Overview
	Index/Pattern Construction Process
	Aggregates
	Aggregation Process
	Index Distribution
	Topology Maintenance
	Query Routing
	Node Join
	Node Leave or Failure
	Analysis
	Query Routing Efficiency
	False Match Probability
	An Estimate of
	Advertisement Overhead

	Experimental Evaluation
	Parameter Tuning
	Scaling Behavior
	Fault tolerance
	Indexing Hierarchy

	Summary

	Plexus
	Introduction
	Chapter Organization
	Preliminaries
	Linear Covering Codes
	Extended Golay Code

	Theoretical Model of Plexus
	Core Concept
	Computing A(P) and Q(Q)
	Routing

	Architecture of Plexus
	Topology
	Mapping Codewords to Superpeers
	The Join Process
	Handling Peer Failure
	Analysis

	Experimental Evaluation
	Simulation Setup
	Impact of Query Content on Search Completeness
	Scalability and Routing Efficiency
	Fault Tolerance
	Effectiveness of Multicast-routing

	Summary

	Comparative Evaluation
	Introduction
	Chapter Organization
	Simulation Setup
	P2P Simulators
	PeerSim
	Experimental Dataset

	Compared Search Techniques
	Flooding and Random-walk
	II/DHT
	DPMS
	Plexus

	Performance Metrics
	Simulation results
	Topology Maintenance Overhead
	Advertisement Efficiency
	Search Efficiency
	Search Flexibility
	Fault Resilience

	Summary

	Conclusion and Future Research
	Conclusion
	Future Research

