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Abstract 

Soft computing techniques are generally well-suited for vehicular control systems that are usually 

modeled by highly nonlinear differential equations and working in unstructured environment.  To 

demonstrate their applicability, two intelligent controllers based upon fuzzy logic theories and neural 

network paradigms are designed for performing a wall-following task and an autonomous parking 

task.  Based on performance and flexibility considerations, the two controllers are implemented onto 

a reconfigurable hardware platform, namely a Field Programmable Gate Array (FPGA).  As the 

number of comparative studies of these two embedded controllers designed for the same application 

is limited in the literature, one of the main goals of this research work has been to evaluate and 

compare the two controllers in terms of hardware resource requirements, operational speeds and 

trajectory tracking errors in following different pre-defined trajectories.  The main advantages and 

disadvantages of each of the controllers are presented and discussed in details.  Challenging issues for 

implementation of the controllers on the FPGA platform are also highlighted.  As the two controllers 

exhibit benefits and drawbacks under different circumstances, this research suggests as well a hybrid 

controller scheme as an attempt to integrate the benefits of both control units.  To evaluate its 

performance, the hybrid controller is tested on the same pre-defined trajectories and the 

corresponding results are compared to that of the fuzzy logic and the neural network based 

controllers.  For further demonstration of the capabilities of the wall-following controllers in other 

applications, the fuzzy logic and the neural network controllers are used in a parallel parking system.  

We see this work to be a stepping stone for further research work aiming at real world 

implementation of the controllers on Application Specified Integrated Circuit (ASIC) type of 

environment. 
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Chapter 1 

Introduction 

1.1 Introduction 

Modern systems are becoming increasingly more complex, making conventional control algorithms 

that utilize mathematical models insufficient.  This resulted in the evolution of soft computing 

techniques based on biological processes such as learning and evolutionary development.  Soft 

computing techniques model human intelligence, providing decisions given imprecise and uncertain 

information.  The three most commonly employed soft computing tools are fuzzy logic, neural 

networks and genetic algorithms.  Fuzzy logic reasoning is based on human experience and expert 

knowledge.  It has the ability to generate a decision given vague and imprecise information.  Neural 

network reasoning depends on the extraction of hidden relationships in given datasets.  It has the 

ability to learn from examples, drawing conclusions based on past experiences.  Genetic algorithm is 

essentially an optimization technique based on the ideas of evolution in biological development.  It 

has the ability to systematically obtain solutions in complex problems. 

 

Soft computing techniques have been ever-increasing in importance, and have wide applications in 

industries.  For example, General Electric developed smart washing machines that sense the weight of 

each load and water temperature to determine the best water level, wash time and laundry method [1].  

They are designed to minimize energy requirements and reduce the chances of wear and tear in 

clothing.  Another example is the use of artificial intelligence methodologies in rice cookers 

manufactured by Zojirushi [2].  These cookers automatically adjust the heating temperature and time 

to ensure the cooked rice has reached the desired texture.  Other applications in household appliances 

include intelligent air conditioners, cameras, dishwashers, and refrigerators.  Aside from appliances, 

soft computing methodologies are also being applied to other industries.  In the financial sector, 

Hecht-Nielsen Neurocomputer Corporation developed the Falcon software for real-time debit and 

credit card fraud detection [3].  The system learns an individual’s purchasing behavior based on 

transaction history and signals any unusual transaction, providing better security to consumers, 

merchants and financial institutions.  As it is better at predicting consumer purchasing patterns, the 

amount of unnecessary intrusions are greatly reduced.  Other examples utilizing soft computing 

technology include intelligent marketing systems in the financial sector, smart medical diagnostic 

systems in the biomedical industry, and automated anti-lock braking and cruise control systems in the 

automotive industry. 

 

1.2 Motivation 

One of the most widely researched topics in the soft computing community is autonomous vehicles.  

The term autonomous represents the elimination of human control.  Thus, autonomous vehicles 
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generally refer to vehicular systems capable of performing navigation tasks without human guidance.  

Autonomous vehicles are a promising technology with the ability for reduced traffic congestion and 

decreased accidental rates.  Common tasks which require automation include lane-following, parking, 

collision avoidance, vehicle following, traffic signal detection, and navigation at intersections.  Of 

special interest is lane-following and parallel parking, as these are frequently performed tasks that can 

be easily automated.  Their study is often generalized by investigating wall-following, due to the 

similarities amongst all three.   

 

1.2.1 Lane-following versus Wall-following 

Lane-following can be separated into two steps: lane detection and lane tracking.  The first relates to 

the accurate location of the lane boundaries while the latter deals with maintaining the vehicle within 

the lane boundaries.  This is much similar to the wall-following task in which the goal is to detect the 

distance between the vehicle and the wall and to maintain a predefined distance from the wall.  The 

main difference between the two tasks lie in the method for path detection.  Lane-following relies 

upon the detection of marked lane boundaries located on the ground while wall-following requires the 

measurement of the relative distance to a side wall.   

 

1.2.2 Parallel Parking versus Wall-following 

The similarity between parallel parking and wall-following lies in the perception mechanism.  Parallel 

parking requires the detection of other parked vehicles to determine the availability of a suitable 

parking space.  Similar to wall-following, the vehicle is also required to follow the curb during 

parking maneuvers.  However, the major differences between parallel parking and wall-following lie 

in the maneuvering algorithm and detection distance.  In wall-following, the vehicle is consistently 

moving uni-directionally (forward or backward) for an extended duration (typically for the whole 

length of the path) at a constant pre-defined distance from the wall.  In contrast, the vehicle behaves 

differently in the parallel parking task.  To perform parallel parking, the vehicle performs wall-

following as it searches for a parking space, and with the gathered data, logically decides whether any 

detected spaces are sufficient in size for the vehicle to park into.  During the parking maneuvers, the 

autonomous vehicle may spontaneously reverse its direction of travel. The switch in direction 

depends on the successful detection of a valid parking space, upon which the vehicle would reverse 

into the detected space.  Also, depending on the presence of a potential parking space, the tracking 

distance differs.  Short distance tracking is necessary when parked cars are in close proximity to the 

autonomous vehicle.  � �The vehicle follows the wall  of parked cars and the sensors would utilize 

the cars for distance measurements.  However, far distance tracking is required when a potential 

parking space is detected.  In this scenario, the vehicle must depend on the curb for distance 

measurements. Due to its applicability to lane-following and parallel parking and its ease of 

implementation, the wall-following task is chosen for study. 
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Traditionally, control of vehicular systems is realized using conventional approaches, of which the 

most well known is the Proportional-Integral-Derivative controller.  However, classical approaches 

generally require the use of complex mathematical models, making the design of controllers difficult. 

With the advancements in soft computing and computational intelligence, many designers have 

investigated the feasibility of utilizing soft computing techniques for vehicular system control 

applications.  Some focused on fuzzy logic control as it is well-suited for nonlinear and complex 

systems where human knowledge and experiences can be drawn upon.  For vehicular control, human 

expert knowledge is readily available as human operators can perform driving tasks, such as lane-

following and vehicle following, with ease. A driver will instinctively steer to adjust its heading if a 

vehicle drifts into the adjacent lane.  In the same manner, a driver will speed up or slow down 

depending on their relative distance to the vehicle ahead.  This information justifies the use of fuzzy 

logic to mimic human driving behaviors.  Aside from fuzzy logic control, engineers also investigated 

the suitability of neural network control.  Neural network control is well-suited for complex systems 

where there is an abundance of experimental data.  As human drivers can operate vehicles to perform 

driving tasks with ease, experimental data can be collected during actual driving experience, 

confirming the sutiability of neural network control.   

 

The application of fuzzy logic and neural network control units for autonomous vehicular control 

and in particular for wall-following has been widely reported in literature.  Software-based platforms 

such as microcontrollers are often utilzed for the realization of such controllers.  However, with 

growing demand for speed, implementations on hardware platforms featuring high performance are 

preferred.  Aside from standalone fuzzy logic or neural network based controllers, many researchers 

also investigate the feasibility of combining the two soft computing techniques.  However, only a few 

attempts have been made to compare the two controllers under the same environment [4, 5, 6].  In this 

research, a fuzzy logic and a neural network controller are implemented on a hardware-based 

platform, namely a Field Programmable Gate Array (FPGA), and their corresponding performance 

when presented with the same environmental settings are compared. 

 

1.3 Objectives 

The main objectives of this research work can be summarized as follows: 

• Develop an intelligent wall-following system based on fuzzy logic theories and neural 

network paradigms.   

• Realize the main control unit on a reconfigurable hardware unit (FPGA) for high 

performances. 

• Perform a comparative study on the two intelligent controllers in terms of their hardware 

resource requirements, operational speeds and trajectory tracking errors.  Outline the major 

advantages and drawbacks in utilizing each of the two. 
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• Develop a hybrid controller with a switching mechanism to select between the fuzzy logic 

and the neural network controller under different circumstances, with the goal of attaining the 

benefits of both control units. 

• Apply the developed wall-following system experimentally in parallel parking applications. 

 

1.4 Contributions 

The main contributions of this research work can be summarized as follows: 

• The wall-following performance of a neural network controller is compared to that of a fuzzy 

logic control unit.   Major advantages and drawbacks in utilizing each of the two controllers 

are identified.  In general, hardware implementation of the fuzzy logic controller requires less 

hardware resources, with smaller rise and fall times.  Hardware implementation of the neural 

network controller provides higher bandwidth while offering smaller trajectory tracking 

errors.   

• A hybrid controller is designed to combine the benefits of the fuzzy logic and the neural 

network control units.  At each point in time, a switching mechanism selects either the fuzzy 

logic controller or the neural network controller based on the vehicle’s actual distance with 

respect to the predefined wall-following distance.  Performance evaluation of the hybrid 

controller is provided.  Overall, this controller attains the fast response of the fuzzy logic 

controller.  At the same time, it inherits the small trajectory tracking error feature of the 

neural network controller. 

• A potential application of the wall-following system is investigated.  Both the fuzzy logic and 

the neural network controller are proven successful in performing the parallel parking task. 

 

1.5 Thesis Organization 

This thesis is organized as follows: 

• Chapter 2 presents a review of some earlier attempts in the realization of autonomous wall-

following, lane-following and parallel parking systems.  Both conventional and soft 

computing approaches are presented.  In addition, prototyping platforms are investigated. 

• Chapter 3 provides background information on various topics including fuzzy logic theories, 

neural network concepts, reconfigurable hardware design and vehicular modeling.   

• Chapter 4 describes the hardware design and implementation aspect of the prototype vehicle, 

developed for testing different control units.  

• Chapter 5 provides details regarding the design and implementation of two controllers based 

on different soft computing paradigms, namely fuzzy logic and neural networks.  An 

extensive comparison of the two control units is performed.   Three metrics for their 
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evaluations include computational resource requirements, operational speeds and trajectory 

tracking errors.  Major advantages and drawbacks of each controller are identified. 

• Chapter 6 presents a hybrid controller design, with combined benefits of the fuzzy logic and 

the neural network controllers.  It also illustrates an application of the intelligent wall-

following system, in which the system is proven applicable in performing parallel parking.   

• Chapter 7 concludes the research work with suggestions for future studies. 
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Chapter 2 

Literature Review 

This chapter provides a detailed literature survey of previous works on the implementation of wall-

following, lane-following and parallel parking systems.  Both conventional and soft computing 

approaches are presented.  A review on different prototyping platforms is also given. 

 

2.1 Conventional Approaches 

Early attempts in the field of autonomous vehicular control focused on classical control techniques.  

Murray and Sastry [7] proposed the use of sinusoidal control inputs to steer nonholonomic systems, 

including vehicular systems, from an initial configuration to a final configuration.  They demonstrated 

that vehicles can follow different paths by means of sinusoidal inputs.  Based on this result, many 

later researches segmented control problems related to autonomous vehicles into two sub-problems: 

path planning and motion tracking.  The goal of the former is to plan a feasible path for realization of 

the control task while the goal of the latter is to steer the vehicle along the designed path by means of 

sinusoidal control inputs.  One example of such research is the development of the autonomous 

parallel parking system by Paromtchik and Laugier [8].  The parking system is divided into three 

steps: detection of a parking space, vehicle adjustment to starting position and parking maneuver.  In 

the last step, the vehicle iteratively plans for the next maneuver and utilizes sinusoidal control inputs 

to follow the planned trajectory for reversal into the parking space.   

 

The research of Kanayama et al. [9] took a different route, in which a state feedback controller is 

utilized to perform path tracking.  An error posture is defined as the difference between the path to be 

followed and the current posture of the vehicle.  The goal of the controller is to minimize this posture, 

ideally to zero, by modifying the steering angle according to the error configuration.  Experimental 

results illustrate the effectiveness of the proposed controller.  Egersdet et al. [10] presented a similar 

approach for performing path following.  Once again, the error posture is calculated as the difference 

between the current posture and the reference posture.  In addition, the steering angle is set to be 

proportional to the difference.  However, in this research, the desired configuration depends not only 

on the desired trajectory, but also on the current vehicle configuration.  If the difference between the 

desired and current positions exceeds a predefined limit, the reference posture will remain unchanged 

in the next time point instead of moving along the designed trajectory.  This approach is labeled as the 

virtual vehicle approach and has the ability to ensure that the path tracked by the vehicle is smooth.  

In [11] and [12], the authors employed a linear-parabolic model and a sliding mode controller for 

lane-following and trajectory tracking purposes. 
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2.2 Soft Computing Methodologies 

Conventional approaches are prone to many issues such as difficulties in modeling uncertainties in 

the real-world environment and processing of noisy sensory information.  In addition, the large 

number of nonlinearities and coupling dynamics in vehicular models complicate the design of 

classical controllers.  This encourages the application of soft computing techniques, such as fuzzy 

logic and neural networks, to algorithms utilized in autonomous vehicular systems, eliminating the 

necessity of complex mathematical models.   

 

Antonelli et al. [13] presented a fuzzy logic based controller for mobile robot lane or path tracking.  

A vision-based system is employed to extract the two input variables, curve and distance, of the 

proposed controller. Simple rules based on linguistic terms are defined to generate the linear and 

angular velocities of a vehicle for path following purposes.  Li et al. [14] designed a fuzzy controller 

for parking control of a car-like mobile robot.  The proposed controller realizes both garage parking 

and parallel parking maneuvers.  Two input variables representing the desired and the current 

orientations of the vehicle is employed for generation of the output steering angle.  To determine the 

current position and orientation, the prototype is equipped with a vision system.  Sensory information 

is sent through a wireless radio link to a host computer, in which image processing and desired 

motion signal generation is performed.  Utilizing the same wireless radio link, the vehicle receives 

and executes the motion commands.  Chao et al. [15] proposed a two-step intelligent parallel parking 

system.  In the first step, the system utilized information from an omni-directional vision system to 

generate the parallel parking trajectory.  A fuzzy logic controller is then employed to track the 

reference trajectory by controlling the steering angle of the vehicular system.  This technique is 

claimed to be advantageous due to its soft switching behavior and robust performance.  Rahman and 

Jafri [16] proposed a behaviour based navigation system with a two layered architecture.  Utilizing 

sensory information, the first layer selects one or more of the following behaviors: obstacle 

avoidance, corridor following, wall-following, target steering and emergency.  Fuzzy logic controllers 

are employed to determine the left and right wheel velocities for each selected behavior.  The wheel 

velocities are then coordinated with distance measurements collected from six ultrasonic range 

sensors.  In [17, 18, 19], the authors applied conventional fuzzy logic controllers and fuzzy gain 

scheduling controllers for wall-following, goal seeking and parallel parking purposes. 

 

Yang and Meng [20] took a different approach in solving the parking problem. They presented a 

real-time collision free motion planning algorithm using a neural network based approach. Unlike 

conventional neural network models, dynamics of each neuron is characterized by a shunting or 

additive equation derived from Hodgkin and Huxley’s [21] membrane equation.  Weights are 

predefined at the stage of neural network design, eliminating the need for a learning procedure.  The 

algorithm demonstrated effectiveness in motion planning for parallel parking maneuvers, navigations 

in a complex house-like and dynamically changing environments.  Zalama et al. [22] designed a 

neural network model for navigation. Reinforcement learning is employed in which the control 

system learns the appropriate action through a credit and punishment system that assigns rewards and 

penalties according to the correctness of the control action.  The goal is to maximize the long term 



 

  8 

reward.  Based on this technique, the control system successfully learnt collision avoidance, wall-

following and goal reaching behaviors.  Cicirelli et al. [23] targeted the wall-following behavior with 

the neural Q-learning control algorithm, which is a subset of reinforcement learning.  The Q value is 

defined as the expected return when performing a specific action at a particular state.  With this 

information, given any current state, the optimal action can be taken as that with the highest Q value.  

To learn the Q values or to perform Q-learning, feed-forward neural networks with one hidden layer 

and a single output are designed.  Rewards and penalties received after execution of each action is 

used for training of the networks.  Based on experimental data, the wall follower is proven successful 

in following the pre-defined wall layout.  In [24, 25, 26], the authors applied neural network based 

algorithms to lane-following, navigation and motion planning problems.  These methodologies are 

also applicable to wall-following and parking maneuvers. 

 

The major challenges in designing effective fuzzy controllers lie in the generation of representative 

fuzzy membership functions and fuzzy if-then rules while the main issue with neural network 

controller designs is the lack of linguistic knowledge representation.   To address these issues, many 

researchers proposed the use of hybrid algorithms combining the advantages of fuzzy logic and neural 

networks.  Li et al. [27] presented a neural-fuzzy inference network to realize the wall-following task.  

In the proposed design, variables of the fuzzy system, such as fuzzy membership functions and fuzzy 

rules, are optimized online by a neural network trained from training patterns generated by human 

operators.  Simulation results illustrate the robustness of the proposed system.  Utilizing only sensory 

information, the vehicle is steered to follow different wall setups, including those that are 

significantly different from the walls used in training.  Khoshnejad and Demirli [28] suggested a 

neuro-fuzzy behavior based controller for performing parallel parking in a single reverse maneuver.  

To mimic behavior of human drivers, the membership functions are tuned by a neural network trained 

from training data acquired from experiences of human drivers.  For simulation purpose, the reference 

parallel parking trajectory is assumed to be a fifth-order polynomial.  The final vehicular system, 

incorporated with the neuro-fuzzy controller, is deemed successful as it is able to parallel park into 

spaces of various sizes.  In [29, 30, 31], the authors proposed other hybrid techniques, combining the 

theories of fuzzy logic and neural networks for realization of parking and wall-following controllers. 

 

The use of a fuzzy logic controller and a neural network controller, either separately or 

cooperatively, is widely seen in literature.  However, comparative studies on the two types of 

controllers for the same vehicular application are limited.  Nijhuis et al. [4] provided an evaluation of 

a fuzzy logic and a neural network controller for the purpose of obstacle avoidance.  The two 

controllers are compared in terms of their abilities in handling complex sensory data, requirements of 

expert knowledge, comprehensibility in knowledge representation and ease of hardware 

implementation.  It is concluded that the development phase of the neural network controller is 

simpler as the control unit can extract hidden relationships among information from different sensors, 

while the fuzzy logic controller requires explicit transformation of the data into linguistic variables.  

In terms of dependency on human knowledge, the neural network controller requires a set of 

representative training data, which determines the controller quality.  The fuzzy logic controller also 



 

  9 

requires expert knowledge for definition of linguistic variables, fuzzy rules and membership 

functions.  However, the transformation of knowledge into these parameters pose a challenge as there 

is currently no standard methodology for obtaining this transformation.  As explicit rules are 

presented in the fuzzy logic controller, it can be easily interpreted.  In comparison, representing 

knowledge in a set of mathematical equations makes the internal structure of the neural network 

controller difficult to understand.  Godjevac [5] also provided a comparative study of fuzzy logic 

control and neural network control on the obstacle avoidance application.  Similar conclusions were 

made including the difficulty in transforming expert knowledge into fuzzy logic controller parameters 

and the high comprehensibility of fuzzy logic controllers in representing knowledge as linguistic 

rules.  Other observations include the long computational time in fuzzy controllers due to the need for 

complex fuzzification and defuzzification operations and the difficulty in understanding the internal 

structure of neural network controllers as knowledge is incorporated into numerical weights.  

Almeida et al. [6] developed a simulator for comparison of the performance of different control 

strategies in performing the lane-following task. It is proposed that fuzzy controllers are easy to tune 

for performance improvements, and neural network controllers are powerful but with certain 

disadvantages such as a time consuming training phase and a computationally expensive 

implementation. The above reviewed methodologies are based on fuzzy logic and neural networks 

due to their relevance in this thesis.  However, soft computing approaches applied in autonomous 

vehicles are not limited to those studied.  Proposals related to other techniques can be found in [32, 

33, 34, 35]. 

 

2.3 Prototyping Platform 

To demonstrate feasibility, researchers often present simulation results.  However, due to various 

differences between simulated and real-world environments, prototypes are frequently developed to 

facilitate research.  Implementations of algorithms to prototypes generally make use of one of the 

following platforms: General-Purpose Processors (GPPs), Application Specified Integrated Circuits 

(ASICs) and Field Programmable Gate Arrays (FPGAs).  Characterized by flexibility, many proposed 

algorithms are implemented on software-based GPPs. Peri and Simon [36] utilized two Microchip 

PIC16F877 microcontrollers, programmed in C, for motion control of a robot along a predefined 

trajectory.  Information from various sensors is first sent to one of the two microcontrollers for 

determination of the appropriate wheel velocities based on fuzzy logic.  These signals are then 

transmitted to another microcontroller to generate the corresponding control signals for servo motor 

control.  Divelbiss and Wen [37] proposed a trajectory tracking and parallel parking algorithm for a 

car-trailer system, in which an on-board computer is utilized for motor control.  The prototype vehicle 

is equipped with seven optical encoders to determine the relative position of the vehicle and the 

trailer.  This information is sent to the on-board computer programmed in C++, which serves as the 

main control unit for the generation of steering and motion control signals.  Jiang [38] also targeted 

the parallel parking problem.  The steering and motion control mechanism is realized on a notebook 

computer attached to the prototype system.  Utilizing information from ultrasonic sensors, the 

designed autonomous vehicular system successfully parked into a small parking space.  GPPs are also 

the selected platform in [14], [17], [22] and [29]. 
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With growing demand for speed and performance, researchers also looked into hardware FPGA-

based approaches.  Compared to GPPs, FPGAs provide potentially higher performance with minimal 

sacrifice in flexibility. Kim [39] implemented a reconfigurable FPGA-based fuzzy logic controller to 

back a truck into a loading dock as quickly and precisely as possible.  Experimental results illustrate 

that the proposed implementation not only satisfies the design goal of backing into the loading dock, 

it also demonstrates the increase in performance when compared to C language based software 

control systems. Li et al. [40] used a FPGA to control the steering angle and velocity of a car-like 

robot for realization of a wall-following and parking system.  The presented hardware architecture 

utilizes six infrared sensors to detect environmental settings.  Sensory information is then passed to an 

FPGA chip, where the fuzzy logic controller is located.  Connected to the FPGA board, the servo 

motors collect and execute the motion control signals for the realization of different vehicular 

maneuvers.  Bellis et al. [41] developed a wall follower on the FPGA platform.  The main control unit 

is realized by neural networks and is implemented in hardware coding.  To ensure accuracy, a 

simulation tool is developed.  Outputs generated by the FPGA-based controller are verified against 

the simulated results.   

 

2.4 Summary 

Early attempts on realization of wall-following, lane-following and parallel parking systems make use 

of controllers that perform path planning and path tracking.  A feasible path is first designed and the 

vehicle is then controlled to steer along the planned path using sinusoidal control inputs, state 

feedback approaches or virtual vehicle techniques.  With fast development in soft computing and 

artificial intelligence, approaches based on fuzzy logic and neural network paradigms have been 

increasing in acceptance.  These methodologies eliminate the use of complex mathematical models, 

thus shortening the development time.  However, application specific comparative studies of fuzzy 

logic and neural network controllers remain limited in literature.  In terms of prototyping platform, 

earlier attempts often made use of General-Purpose Processors due to their flexibility.  However, 

some recent implementations focus on reconfigurable hardware due to its superiority in performance. 
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Chapter 3 

Background 

This chapter introduces fundamental theories of soft computing tools.  The introduction is restricted 

to the areas of fuzzy logic and neural networks due to their relevance in this research work.  

Background information on reconfigurable hardware design and conventional vehicle dynamics is 

also presented in this chapter. 

 

3.1 Basic Concepts in Soft Computing 

3.1.1 Fuzzy Logic 

Conventionally, industrial reasoning processes are based on crisp binary logic, in which variables can 

only assume one of two values: True and False.  However, human knowledge is often represented by 

qualitative and subjective variables, making direct application of human experience or knowledge 

into industrial process control difficult.  To take advantage of human reasoning for processing of 

imprecise and uncertain information, Zadeh proposed the concept of fuzzy sets and fuzzy logic to 

mimic the human decision-making process [42].  In general, instead of representing a system as a set 

of complex mathematical equations, fuzzy systems use simple empirical rules to represent input and 

output relationships.  The suitability of fuzzy control does not depend much on the number of inputs 

and outputs, but rather depends on the availability of human expert knowledge.   

 

Fuzzy Sets 

The universe of discourse, defined as the largest set that one could consider in a particular problem 

domain, contains all possible elements a variable can attain.  It is impossible for a variable to assume 

a value outside of its universe of discourse.  For example, let A be a crisp set in the universe of 

discourse X, then in crisp logic, an element x inside A is defined as a member of A while an element 

outside of A is not a member of A.  An element can only be a member or a non-member of A.  An 

example of a crisp set is the choice of gear available for a five-gear manual transmission.  In 

mathematical terms, the set can be denoted as A = {P, R, 1, 2, 3, 4, 5}.  Representing human 

knowledge by crisp sets is a challenge as human experience is often descriptive.  For example, a set 

with all “high” speeds cannot be represented by a crisp set.  The term “high” is a linguistic variable 

that is qualitative, subjective and fuzzy, often termed as a fuzzy descriptor.  An individual may 

consider speeds above 80 km/h as high while others may consider speeds above 100 km/h as high.   

 

To deal with linguistic fuzzy terms in fuzzy logic, a fuzzy descriptor is characterized by a 

membership function, which maps elements from the universe of discourse to numerical values 
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between zero and one for representation of the grade of membership.  Let A be a fuzzy set in the 

universe of discourse X, then similar to crisp logic, an element with membership grade of one 

represents a member of A while an element with membership grade of zero is not a member of A.  

However, in fuzzy logic, variables can also take on a membership grade greater than 0 and less than 1 

to illustrate partial membership.  In other words, a variable can be associated to a certain degree as 

being within the set A, while also being outside the set.  In mathematical notation, a fuzzy set A can 

be represented by A = {(x, µA(x)); x∈X, µA(x)∈ [0,1]} where X is the universe of discourse with 

elements x and µA(x) is the membership function with membership grades ranging from 0 to 1. For a 

set of variables, membership functions can assume different shapes, ranging from the simplest ones 

formed by straight lines to others made up of nonlinear curves.  The most commonly employed 

membership functions are of the triangular, trapezoidal and Gaussian types [43].   

 

Fuzzy Operators 

In fuzzy logic, human expert knowledge is translated to if-then rule sets that comprise fuzzy sets and 

fuzzy operators.  For example, the following fuzzy rule consists of the AND operator and fuzzy sets 

near, fast and high. 

IF obstacle is near AND speed is fast THEN deceleration is high 

The two most commonly utilized fuzzy operators are the AND operator and the OR operator, which 

are generally referred as the T-norm operator and the S-norm operator.  The definitions of these 

operators are not unique.  With satisfaction of the corresponding boundary, monotonicity, 

commutativity and associativity conditions, any operator can be classed as a T-norm or S-norm 

operator [43].  One example of the T-norm and the S-norm operators are the minimum operator and 

the maximum operator, respectively.  Denoted as min(a,b), the minimum operator computes the lower 

membership grade of a and b for each element in the universe of discourse.  In the same manner, the 

maximum operator calculates the larger membership value of a and b and is denoted as max(a,b). 

 

Fuzzy Inference Systems 

Fuzzy inference systems consist of three major components: fuzzifier, inference engine and 

defuzzifier. Figure 1 illustrates the basic configuration of a fuzzy inference system. 



 

  13 

 

 

Figure 1: Fuzzy Inference System 

 

Fuzzifier 

Fuzzifiers transform crisp input values to membership grades in the range of 0 and 1 through the use 

of membership functions.  It is worth noting that an input can have partial memberships in more than 

one membership function, thus resulting in more than one membership value.  For example, the fuzzy 

variable speed in the universe of discourse X = [0, 220] can be described by three linguistic terms: 

low, medium and high, as shown in Figure 2.  An input of 50 km/h in this case has partial 

memberships of 0.3 and 0.7 in the membership functions of low and medium, respectively.  In other 

words, it is not fully a low speed, but not fully a medium speed either. 

 

 

Figure 2: Fuzzification on Vehicle Speed 

 

Inference Engine 

There are two essential components in the inference engine: fuzzy rule base and fuzzy reasoning 

mechanism.  The rule base consists of a set of if-then rules that incorporate human expert knowledge 
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for a particular process.  These rules include fuzzy linguistic terms commonly used by human experts.  

The number of rules in the rule base is highly dependent on the complexity of the problem at hand.  

More rules are required to derive a conclusion for a problem with higher complexity.  A set of fuzzy 

rules is essentially a collection of conditional statements in the form of: 

IF x is A THEN y is B 

where x and y are linguistic variables while A and B are linguistic values defined by the fuzzy sets in 

the universe of discourse X and Y, respectively.  For example, x and y can take on the linguistic 

variables obstacle and deceleration while A and B can be linguistic values near and high. The IF-part 

and the THEN-part of fuzzy rules are generally termed as the antecedents and the consequents, 

respectively.  Both the antecedent and the consequent of a fuzzy rule can have multiple parts.  For 

example, the following rule has two antecedent and two consequent components: 

IF obstacle is near AND speed is fast THEN deceleration is high and left steering is large 

Interpretation of the antecedent in a fuzzy rule results in a numerical value in the range of 0 to 1, 

representing the degree of truthfulness of the statement.  For rules with multiple parts in their 

antecedent, fuzzy operators are utilized to resolve the statement into a single number.  In the 

interpretation of fuzzy rules, the antecedents are first evaluated and the corresponding results are then 

applied to the consequents.   

 

The second part of the inference engine is the fuzzy reasoning mechanism that models the human 

decision-making process.  This component achieves fuzzy reasoning by applying Generalized Modus 

Ponens (GMP) to the rule base.  GMP states that given the fact “x is A’” and the rule “if x is A then y 

is B”, it can be concluded that “y is B’” [44].  In other words, given system inputs representing the 

facts in combination with the rule-base consisting of fuzzy rules, conclusions can be drawn.  

Obtaining a conclusion from the system inputs and the rule-base involve two steps: rule evaluation 

and rule output aggregation.  In the rule evaluation phase, decisions from individual rule in the rule-

base are computed.  These rule outputs are then combined to generate the final conclusion in the rule 

output aggregation phase.  To obtain a conclusion from a single rule in the rule base, evaluation of the 

antecedent is necessary. For an antecedent with a single part, the evaluation result is represented by 

the fuzzified system input.  For antecedents with more parts, fuzzy operations are applied to the 

membership values corresponding to the system inputs.  Assessment of an antecedent provides a 

single numerical value, representing the level of truthfulness of the antecedent.  This number, 

commonly termed as a weighting parameter, is utilized to adjust the membership function of the 

corresponding rule consequent for generation of the rule conclusion.  A consequent membership 

function can either be truncated or scaled by the weighting parameter.  The next step in generating the 

overall conclusion is to combine individual rule outputs.  In this step, all rule consequents are unified 

into a single fuzzy set through the fuzzy OR operator. 
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Inference Models 

There are various inference models.  The two most commonly used models are of the Mamdani [45] 

and the Sugeno [46] type.  In the first approach, consequent membership functions are fuzzy sets.  

The inference process results in a fuzzy set that requires defuzzification (a processing step required 

for obtaining a crisp output value).  Unlike the Mamdani model, consequent membership functions in 

the Sugeno model are fuzzy singletons.  These functions have membership value of 1 at a single point 

on the universe of discourse and a value of zero for all other locations.  Consequents in the Sugeno 

model are a function of its rule antecedents.  They are commonly represented by first-order or zeroth-

order equations due to simplicity and efficiency.  In zeroth-order Sugeno models, the consequent 

membership functions are basically constant values.  An example of a fuzzy rule in such inference 

system is as follows: 

IF distance is short AND speed is fast THEN deceleration is 3*speed - distance 

The rule output aggregation step in a zeroth-order Sugeno inference process combines truncated or 

scaled fuzzy singletons.  To generate a crisp overall output, the weighted average of all rule 

conclusions is computed according to the following equation. 
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where n specifies the number of fuzzy rules, ci represents the consequent of rule i, ωi is the weighting 

parameter for rule i and ĉ  is the overall crisp output. 

 

Defuzzifier 

Defuzzifiers map output values from fuzzy sets back to crisp numerical values.  In the Mamdani 

approach, a defuzzifier is required.  However, in the Sugeno Fuzzy Model, since the overall crisp 

output is determined as a weighted average of the individual rule inference, a defuzzification 

mechanism is not required.   

 

3.1.2 Neural Networks 

The human brain is essentially a highly efficient and effective information processing system, with 

the ability to make many decisions within a short timeframe. It also possesses the ability to interpret 

uncertain information.  Biologically, the brain is a massive network of nerve cells, with a large 

number of interconnections among them.  These interconnections provide humans with the ability to 

learn and to differentiate right and wrong through experience. Inspired by characteristics of the 

human brain, researchers developed artificial neural networks to resemble reasoning processes in 

these biological units.  With neurons serving as basic building blocks and large number of parallel 

interconnections linking these processing elements, artificial neural networks are capable of learning.  
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Through the learning process, neural networks can acquire not only the ability to approximate 

nonlinear functions, but also the capability to extract hidden relationships among input and output 

patterns.  Similar to fuzzy systems, neural systems do not represent system dynamics as a set of 

complicated mathematical equations, but extracts hidden relationships between inputs and outputs 

from a given set of training data.  The effectiveness and suitability of neural networks are highly 

dependent on the availability of good training data that are free of noise and well distributed over the 

spectrum of operating conditions. 

 

Processing Units - Neurons 

Neural networks are constructed from a large number of basic processing units called neurons. They 

are connected together via weighted links.  By proper adjustments of the associated weights, a neural 

network can realize diverse functionalities.  An individual neuron has a number of input links, a 

processing node and a single output channel for signal reception, computation and transmission.  Its 

output is calculated by applying the weighted sum of its inputs to a nonlinear mapping function called 

activation function.  In mathematical sense, it is characterized by the equation  
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where y represents the neuron output, f[.] is the activation function, xi is the i-th input signal to the 

neuron, ωi denotes the modifiable connection weight from xi to the neuron, and θ is a modifiable bias 

or threshold value.  Activation functions utilized in neural networks are not unique.  They can be 

linear or nonlinear.  The most common choices are linear, saturating linear, sigmoid, hyperbolic 

tangent and radial basis functions [43].   

 

Network Architecture 

A single neuron is inadequate in detecting patterns or providing generalization.  It is the interactions 

among neurons that give rise to the computing abilities of neural networks.  Neurons in neural 

networks are generally organized into layers.  Each network consists of an input layer, an output layer 

and one or more internal layers called hidden layers.  They have different roles for providing various 

functionalities.  The input layer is free of computational units.  It simply accepts input signals and re-

distributes them to neurons in the following layer.  On the other hand, the output layer is designed to 

provide the network output signal, given outputs of its previous layer.  Most traits of neural networks 

evolve from the arrangements and bonds of neurons in the hidden layers.  They provide the 

computational and learning capabilities.  Features in training datasets are often extracted in these 

layers.   

 

Neural networks can be classified by the direction of information flow.  In a feed-forward neural 

network, neurons in different layers are connected with uni-directional (forward) paths.  In other 

words, neuron outputs of one layer are connected solely to neuron inputs in the preceding layer, as 



 

  17 

shown in Figure 3 (a).  Aside from the feed-forward architecture, neurons can also be arranged in a 

recurrent manner.  Recurrent networks allow bi-directional (forward and backward) connections 

among layers.  Output connections from one layer are not limited to the inputs of the following layer; 

feedback connections are also permitted, as demonstrated in Figure 3 (b).  Feed-forward neural 

networks are commonly employed due to their simplicity and their potent capability in representing 

input-output relationships.  However, recurrent networks are also widely applied due to their 

information storage capabilities and dependencies on previous outputs or states. 

 

 

Figure 3: Two Typical Neural Networks 

 

Learning Algorithms 

The main feature of neural networks is their ability to learn.  In the learning process, weights 

connecting various neurons are constantly adjusted until the desired network output values are 

produced.  There are three main mechanisms for learning: supervised, unsupervised and reinforced.  

Supervised learning refers to learning acquired through practice.  The system in training is presented 

with a set of input-output pairs.  During training, the calculated network outputs are compared with 

the desired output values to formulate an error signal.  This signal is then utilized in the training 

algorithm to update the weights with the ultimate goal of minimizing the differences between the 

actual and the desired network outputs.  Frequently used algorithms for supervised learning include 

Back-Propagation Learning (BPL) [47] and Levenberg-Marquardt Learning [48].  Unsupervised 

learning involves learning through well-defined guidelines [43].  The network attempts to cluster 

input patterns and extract hidden features from the training set.  In this learning mechanism, neurons 

in the output layer are evaluated in performance and compared with each other based on set rules.  

Through these competitions, weights are updated to strengthen connections between input neurons 

and the winning output neuron.  Often, connections to neighboring output neurons are also 

emphasized.  Through competitions in unsupervised learning, hidden relationships within training 

sets are discovered.  Kohonen self-organizing network [49] is an example of this type of learning. In 

reinforcement learning, the network acquires the appropriate weights through a credit and punishment 

system.  Rewards and penalties are generated to strengthen or weaken a particular connection from 
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the input layer to the output layer based on the correctness of the network response.  Among all 

reinforcement learning schemes, reinforcement comparison methodology and Q-learning algorithm 

[50] are of great interest. 

 

3.2 Reconfigurable Hardware 

Conventionally, most engineering designs are realized either on standard components such as 

General-Purpose Processors (GPPs) or through application-specific parts such as Application Specific 

Integrated Circuits (ASICs).  For applications using GPPs, implementations are performed in 

software due to flexibility and short development time.  Design changes can be attained timely by 

modifying software programs.  Short development times are obtained because hardware 

configurations are unnecessary. However, these good qualities come at the expense of performance.  

Requirements for instruction interpretation and sequential execution limit processing speeds of GPPs.  

In Application Specific Integrated Circuits (ASICs), hardware is customized for a particular 

application.  Logic units are hard-wired onto silicon chips in fabrication processes, providing efficient 

use of silicon area.  In hardware design, independent control units can be executed in a parallel and 

concurrent manner, giving superior performance.  Since logic design and wiring are customized and 

fixed at fabrication time, ASIC design is time-consuming and costly.  Any changes will lead to 

additional delays and costs.  For large volume production, the use of ASICs may be justifiable.  

However, for low volume production or prototyping purposes, the inflexibility and lengthy 

development time of ASICs are unacceptable.   

 

In general, cost and speed are the most prevalent parameters in system designs.  Software designs 

feature flexibility and short development time at the expense of performance.  On the other hand, 

hardware designs lack flexibility but provide superior performance.  High performance systems are 

desired, but flexibility and minimal development time are also important as they can be translated 

directly to lower production costs.  The development of Field-Programmable Gate Arrays (FPGAs) 

provides the benefits of both platforms.  Utilizing standard components that are readily 

programmable, FPGAs are an alternative to GPPs and ASICs.  Through the use of reconfigurable 

hardware elements, the FPGA platform offers the benefits of GPPs in terms of programmability and 

adaptability along with the advantages of ASICs in terms of speed and compactness.  For large 

volume production, ASICs will always be more advantageous compared to FPGAs in terms of 

reduced chip area and increased operational speed due to the absence of programmable interconnect 

circuitries and delays.  Thus, it is a common approach for designers to build prototype systems on 

FPGAs during the development phase and later migrate to ASICs for production.  Aside from 

prototyping, an emerging area called reconfigurable or run-time reconfigurable computing makes use 

of the reconfigurable capability of FPGAs.  In these applications, components of an FPGA are 

reconfigured during run-time to realize different functionalities at different time steps. 
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3.2.1 FPGA Architecture 

A FPGA is essentially an array of functional blocks with a network of interconnects, which can be 

reconfigured at the time of use.  Different functionalities can be achieved through reconfiguring 

individual blocks and changing the interconnections among them.  The smallest logic unit in a FPGA 

is a Logic Element (LE).  A FPGA usually contains a large number of these programmable units.  For 

example, the Stratix EP1S FPGA [51] from Altera Corp. contains 79040 LEs.  A typical LE consists 

of a four-input Look-Up Table (LUT), a programmable register, a cascade chain and a carry chain, as 

illustrated in Figure 4.  The LUT is essentially a 16 by 1 memory unit, which has the ability to realize 

any function with four variables.  It is preloaded with the output values for all combinations of inputs 

of the function to be implemented.  The appropriate output value can be selected by utilizing the four 

input signals of the LUT as the address.  The LUT is generally utilized for implementation of 

combinatorial logic, providing predictable delays and area efficiency [52].  A single LE is generally 

insufficient for implementation of most hardware designs.  Thus, the output of the LUT is usually 

first fed into a programmable register, then connected to other LEs.  Depending on the application at 

hand, the register can be configured as a D flip-flop, a T flip-flop, a JK flip flop or a SR latch.  In 

addition to the flip-flop, the carry and the cascade chains are also designed to facilitate computations 

involving more than one LE.  The carry chain provides an efficient carry-forward function to the 

adjacent LEs, allowing implementation of high-speed counters and adders [53].  The cascade chain, 

on the other hand, is utilized in logical operation requiring more than four inputs provided by a single 

LUT or LE.  In this situation, adjacent LEs are utilized to compute portions of the function and the 

cascade chain is employed for connections of the intermediate values.   

 

 

Figure 4: Internal Structure of a Logic Element [51] 
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Complex functions or logic operations generally require the use of more than one LE.  For high 

performance and efficient use of silicon area, LEs are clustered into LABs.  Depending on the FPGA 

selected, the number of LEs in a single LAB varies.  For example, a LAB in the Stratix EP1S FPGA 

contains 10 LEs while that of the Flex 10K FPGA has 8 LEs.  LABs are arranged in a matrix form 

and communicate to other LABs through interconnects (or wires).  These connections can be 

categorized into two types: FastTrack and Local FastTrack [54].  The first spans the entire chip either 

horizontally or vertically, providing low-delay paths for communications among different LABs.  

They also carry signals to and from the device’s Input/Output pins.  The number of FastTrack in a 

FPGA is generally limited as they are relatively expensive in terms of device area.  Instead of 

spanning the entire chip, Local FastTracks are limited only to LEs in the same LAB.  They provide 

high-speed communication for inter-LAB LEs.  Aside from LABs, FPGAs also provide special 

purpose blocks dedicated for memory storage (RAM), arithmetic multiplication and addition 

operations (DSP), and communications with other peripheral devices (IOE).  These blocks are often 

optimized for specific tasks.  Figure 5 illustrates the architecture of a FPGA in the Altera Stratix 

family, with indications of the location of LABs, RAM blocks, DSP blocks and IOEs. 

 

 

Figure 5: Stratix FPGA [51] 
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3.2.2 FPGA Design Flow 

FPGA design flow starts with the design entry stage and ends with programming onto the target 

hardware unit.  It involves five main steps and two optional steps (shown in solid and dotted blocks, 

respectively), as illustrated in Figure 6.  The first step in the design flow is to specify the design.  

Traditionally, this is performed by drawing each hardware component in a design tool to form 

schematic diagrams.  These diagrams represent hardware components and interconnects as blocks and 

line segments, making connections among hardware units easy to comprehend.  However, with 

systems of increasing size and complexity, this approach is becoming too time-consuming and 

inefficient.  Similar to the association of high-level programming language C to software design, 

Hardware Description Languages (HDLs) are widely adopted as a means for description of hardware 

designs.  The most commonly used HDLs are Very High Speed Integrated Circuit Hardware 

Description Language (VHDL) and Verilog HDL.  These languages provide high portability, 

allowing identical design interpretation from different design tools.  They also reduce the overall 

development time and costs.  Performance of a specific design in different hardware technologies can 

be easily evaluated.  HDLs differ from conventional programming languages, in which they realize 

concurrent statements instead of sequential statements; since digital hardware is parallel in nature, the 

use of sequential logic is inappropriate.  For systems requiring the integration of a large number of 

complex components, a combination of HDL coding and schematic diagrams is often used.  Note that 

most development tools have the ability to translate schematic diagrams into HDL coding during 

compilation to avoid compatibility issues.   

 

 

Figure 6: FPGA Design Flow 

 

Once the design is created, it is ready for compilation by the selected Computer Aided Design 

(CAD) tool.  The compilation process generally involves the following steps: analysis and synthesis, 

place and route, and timing analysis.  However, this may differ somewhat from one CAD tool to 

another.  In the analysis and synthesis stage, the design is first analyzed such that all descriptions, 

either in HDLs or in schematic diagrams, are translated into a uniform format.  The translated design 

is then turned into a generic hardware format, such as a set of Boolean expressions or a netlist, early 

in the synthesis stage [54].  A netlist is simply a list that marks the gate-level representation of the 

design, illustrating basic components such as logic gates and flip flops.  The next step is to optimize 

the design given a set of Boolean expressions or a netlist.  The goal of this step is to remove 

redundant logic expressions and to minimize the number of logic gates required.  With an optimized 
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design, the CAD tool then matches the logic gates to LEs of the FPGA.  The place and route phase 

maps different components and interconnections into specific locations on the FPGA.  This step is 

usually technology dependent with different routings and placements according to the layout of the 

FPGA.  The output of this step is a bit stream file, which can be downloaded onto the target device.  

Prior to programming the target FPGA device, satisfaction of the performance constraints is verified 

in the timing analysis stage. The critical path, defined as the slowest path on the FPGA between two 

flip flops or a flip flop and an input-output pin, is calculated to determine the maximum clock speed.  

Other timing related factors, such as worst-case delays, setup and hold times, are also computed to 

ensure various timing requirements are met.  The last step in the design flow involves programming 

the target FPGA device.  In this stage, internal structure of the FPGA is reconfigured.  LEs along with 

their corresponding interconnects are configured for realization of different functionalities. 

 

Design verification is an important part of digital design.  Most CAD tools provide users with two 

methodologies to simulate their designs: functional simulation and timing simulation.  Functional 

simulation is generally performed following the design entry step to eliminate syntax errors and to 

ensure the correctness of logic flow.  During this simulation process, a test-bench consisting of a set 

of stimuli is tested on the design.  The simulated outputs are then compared to the desired output for 

detection of logical errors.  Functional simulation is designed to verify behavior of a hardware design, 

with no considerations on gate and wire delays.  Unlike functional simulations, timing simulations 

account for propagation delays of logic components and their associated interconnects.  It is generally 

performed prior to target device programming to ensure correct responses will result when the 

compiled design is mapped on the FPGA unit.  By applying test patterns to the inputs and comparing 

the simulated outputs to the desired results, any timing violation becomes evident.  As timing 

simulation makes use of the routed and placed design, its results are dependent on the target device.  

Note that due to the additional timing considerations, it is possible to have the functional simulation 

behavior differ from that of the timing simulation.  If this occurs, design modifications are required.  

 

3.2.3 Intellectual Property (IP) Cores 

To shorten development time, many FPGA design tools provide users with a set of pre-designed 

hardware components, termed intellectual property (IP) cores.  IP cores are generally complex in 

design, but serve a wide variety of applications [55].  For example, NIOS II [56] and FFT [57] are 

two IP cores offered by Altera Corp. for realization of an embedded microprocessor and a digital 

signal processor, respectively.  Ideally, IP cores should be portable for use in different design tools.  

However, they are often optimized for performance and cost for only a limited number of FPGAs.  IP 

cores are generally available in one of the following three forms: hard, firm and soft.  Hard cores are 

optimized in performance, area and size.  They are mapped to a specific process technology and 

provided to users in a fully placed and routed format [55].  In terms of flexibility and portability, hard 

cores are inferior to firm and soft cores as their layouts are fixed.  Similar to hard cores, firm cores are 

also optimized in performance and area.  However, they offer the flexibility of being reconfigurable 

to various applications as they are often presented in the form of synthesized code or a netlist of 
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generic library elements.  Soft cores are the most flexible form of all three.  They are either described 

by HDL code or exist as a netlist of logic gates and associated interconnects.  Functionalities and 

implementations of soft cores can be modified easily according to the application at hand.  In this 

thesis, a soft microprocessor core, NIOS II, is utilized for validating the hardware based fuzzy logic 

and neural network controllers. 

 

3.3 Vehicular Model 

Dynamics of vehicular systems are highly complex and nonlinear in nature.  According to Alonso 

[58], one of the most commonly used vehicle model assumes fourteen degrees of freedom, with six 

allocated for translation and rotation of suspended mass, four for vertical movement of non-

suspended mass and the remaining four accounted for dynamics in wheels rotation.  Some common 

parameters in vehicular control includes the front and rear longitudinal forces, the linear and angular 

velocities and the position of the vehicle’s center of mass with respect to the front and rear axles.  

Many researches are based on a simplified vehicular model, governed by the following set of 

equations: 

)cos( φθ += vx f
&         (3) 

)sin( φθ += vy f
&         (4) 

φθ coscosvxr =&         (5) 

φθ cossinvyr =&         (6) 

l

v φ
θ

sin
=&           (7) 

where xr and yr represent the position of the rear wheels, xf and yf represent the position of the front 

wheels, θ represents the angle between the x-axis and the car wheel base line, v represents the 

velocity of the car, and φ represents the steering angle of the car.  However, this model is often over-

simplified as it has no considerations on surface friction, tire conditions and wear and tear in other 

mechanical components.  Also, each pair of wheels is modeled as a single wheel located at the 

midpoint of both front and back axles.  Although the above is a simplified model, the high 

nonlinearity and complexity in vehicle dynamics is still apparent.  As an attempt to illustrate the high 

level of coupling dynamics in actual vehicles, the Longitudinal Vehicle Dynamics Model [59] by 

Mathworks Inc. is presented.  In this model, the forward and backward motion of a vehicle, with two-

axle and four equally sized wheels, along its longitudinal axis is modeled with the following set of 

equations: 

βsinmgFFVm dxx −+=&        (8) 

xrxfx FFF +=          (9) 
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where g represents the gravitational acceleration of -9.81 m/s
2
, m is the mass of the vehicle, A is the 

effective frontal vehicle cross-sectional area, h is the height of the vehicle’s center of gravity above 

the ground, a and b are the distances of the front and the rear axles from the vertical projection point 

of the vehicle’s center of gravity onto the axle-ground plane, Cd is the aerodynamic drag coefficient, ρ 

is the mass density of air of 1.2 kg/m
3
, |Fd| is the aerodynamic drag force, Fxf and Fxr are the 

longitudinal forces on the vehicle at the front and rear wheel ground contact points, β is the 

inclination of the vehicle, Fzf and Fzr are the vertical load forces on the vehicle at the front and rear 

ground contact points and Vx is the longitudinal vehicle velocity.  In this model, both friction and 

wind resistance are accounted for, showing that changes in these variables have an effect on the 

longitudinal velocity of the vehicle, effectively modifying the overall velocity of the vehicle in the 

previous model.  It is important to note from this model that the dynamics of vehicular systems are 

highly coupled and nonlinear.  A single variable, such as the longitudinal velocity, is dependent on a 

number of different parameters.  This makes soft computing control methodologies more attractive in 

vehicular control compared to their classical counterparts.   

 

3.4 Summary 

Classical control techniques require the use of analytical models.  The development of an effective 

classical controller for industrial processes with nonlinear characteristics often poses a challenge.  In 

addition, the incorporation of human expertise and experience into these systems is difficult to 

achieve.  This chapter presents the basic phenomenon of two widely applied soft computing 

techniques, fuzzy logic and neural networks.  They are based on human reasoning and learning 

paradigms, eliminating the need for complex mathematical models.  To demonstrate the suitability of 

soft computing models in vehicular control problem, this chapter provides a brief discussion of 

conventional vehicular dynamics and modeling.  The high level of nonlinearity and coupling among 

different parameters are demonstrated.  For design of a vehicular prototyping system, this chapter also 

provides an introduction on reconfigurable hardware.  The internal structure of a FPGA is given along 

with the steps involved with implementing a design onto a FPGA. 
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Chapter 4 

Experimental Setup 

To facilitate research, a prototype vehicle with two different modes of operation is developed.  It can 

either be controlled by a human operator through a customized control pad or navigated 

autonomously based on the selected intelligent controller.  In brief, the prototype vehicle is made up 

of the following components: a main chassis, a sensory system, a control pad, a control unit, a 

locomotion mechanism and a steering control mechanism.  These components provide different 

functionalities.  For example, the sensory system percepts and gathers environmental information, the 

control unit hosts the reasoning mechanism for generation of motion and steering commands, and the 

locomotion and steering mechanism execute the control instructions.  This chapter focuses on the 

development of the prototype vehicle.  Hardware design considerations are provided. 

 

4.1 Prototype Architecture 

The prototype vehicle is built upon a commercial radio control racing car package, Subaru Impreza 

WRC 2004, manufactured by Tamiya Inc.  The physical dimensions of the chassis are 441 mm x 185 

mm x 137 mm (Length x Width x Height), approximately one-tenth of that of an actual vehicle.  

Aside from the main chassis with wheels and tires, the commercial car package also includes the 

following parts: bumpers, suspensions, a gearbox, a speed controller, a DC motor and a steering unit.  

Most hardware components utilized in the prototype system is included in the package, with the 

exception of the sensory system, the control pad and the FPGA-based control unit.  Figure 7 presents 

the overall architecture of the prototype system.  The control pad and the sensory system provide 

inputs to the control unit, which in turn generates steering and locomotion commands for control of 

the vehicular system. 

 

 

Figure 7: Overall Architecture of the Prototype Vehicle 
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4.2 Sensory System 

Perception is a prevalent component in the design of vehicular systems.  Human operators base their 

driving decisions on their vision while autonomous vehicular systems depend on their sensing units.  

To obtain information of the surrounding environment, autonomous systems are often mounted with 

various types of exteroceptive sensors.  The most common type of these sensors is range sensors, 

which have the ability to measure the relative distances between the vehicle and the objects in its 

vicinity.  Three types of range sensors are considered in this research work.  They are the sonar, the 

laser and the infrared sensors.  Sonar sensors, characterized by their low costs, were widely adopted 

in the past.  In sonar sensors, sound waves are transmitted and the time taken for the wave packet to 

reflect and return to the receiver is measured.  They are based on the time-of-flight principle in which 

the relationship d = ct is used to estimate the distance measurement, where d represents the distance 

traveled by the wave or two times the distance between the vehicle and the object, c is the constant 

speed of the wave propagation and t is the time-of-flight measurement.  Since sound wave 

measurements are easily affected by interferences and reflections, the uses of sonar sensors have 

decreased in popularity.  Laser rangefinders, on the other hand, have attracted much attention in 

recent years.  Also based on the time-of-flight principle, laser rangefinders utilize laser light instead 

of sound waves to acquire range measurements.  Due to the high traveling speed of light and the 

coherency of laser beams, this type of rangefinder is characterized by high bandwidth and high 

accuracy.  The main drawbacks in these sensors lie in their heavy weights and high costs.  They are 

generally unsuitable for small mobile applications.  For low budget range measurements, infrared 

sensors are highly valued.  Instead of measuring the time, the operations of infrared sensors are based 

on geometric properties.  Known light patterns are projected to the environment and the 

corresponding reflections are captured for geometric calculations.  Resolutions of infrared sensors are 

inversely proportional to distance.  In addition, their operating ranges are limited by geometry.  

Nevertheless, they usually provide a wide enough range of distances for common range-finding 

applications.   

 

4.2.1 Infrared Sensors 

Considering issues such as cost and bandwidth requirements, infrared sensors are deemed as the most 

appropriate sensor type for the current application.  Three widely used infrared sensors are GP2D120 

[60], GP2D12 [61], and GP2Y0A02YK manufactured by Sharp Corp.  They differ in detection range, 

as shown in Table 1.  Together, they cover most detection distances required in small scale vehicular 

prototyping systems.  For variable range measurements, the prototype is equipped with four short-

range GP2D120 and two mid-range GP2D12 sensors.  Their corresponding positions are presented in 

Figure 8, where DF and DR represent the range measurements from the front and the rear short-range 

sensors, DSFM and DSBM are the distance measurements from the side front and the side back mid-

range sensors while DSFS and DSBS correspond to the relative distances from the side front and the 

side back short-range sensors to the surrounding environment.  The front and rear sensing units are 
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equipped mainly for obstacle avoidance purpose.  In unforeseen circumstances, in which an obstacle 

is in the path of the vehicle, the front and back sensors will prevent the vehicle from crashing, while 

traveling either in the forward or the reverse mode.  The side sensors, which are mainly for wall-

following purpose, are placed relatively close to the front and the back on one side of the vehicle to 

ensure that both the orientation of the car with respect to the wall and the relative distance between 

the vehicle and the wall can be accurately determined.  Note that if the side sensors are placed too 

close together, information near the front and the rear of the car would be outside of the sensors’ 

detection zones and will not be taken into account.   

 

Table 1: Detection Range for Three Infrared Range Sensors 

Model 
Detection Range 

(cm) 

GP2D120 4 – 30 

GP2D12 10 – 80 

GP2Y0A02YK 20 – 150 

 

 

D
S
B
S

D
S
F
M

D
S
F
S

D
S
B
M

 

Figure 8: Sensors Configuration 

 

The range sensors equipped on the prototype represent detected distances as analog voltages.  

These voltage-distance relationships are nonlinear in nature, and vary from one sensor to another.  

Figure 9 illustrates two voltage-distance characteristic curves for GP2D120 and GP2D12, 

respectively.  It can be seen that when the sensors are utilized within the reliable detection ranges, the 

output signals are inversely proportional to the distance measurements.  Also, as an example of how 

much variance the output voltage value of two different sensors can be, a distance of 20 cm is 

represented as a voltage of approximately +0.7V and +1.4V by GP2D120 and GP2D12, respectively.  

Since outputs of the range sensors are of the analog type, an Analog-to-Digital Converter (ADC) 
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component is necessary to convert sensory information into digital format for further processing by 

the main control unit realized on a FPGA board. 

 

 

Figure 9: Infrared Sensor Voltage-Distance Mappings [60]-[61] 

 

4.2.2 Analog-to-Digital Converter 

To digitize the sensory signals, a 10-bit resolution high-speed parallel output ADC, ADC10461 from 

National Semiconductor, is chosen after considering its benefits in resolution, bandwidth and cost.  At 

an operating voltage of 5V, ADC10461 transforms analog input signals into 10-bit digital output 

signals. Figure 10 presents the schematic design of the selected ADC.  VIN represents the analog input 

channel of the ADC while DB0 to DB9 represent the digital output channels.  /S/H represents the 

sample/hold control input, controlled by the main control unit.  The analog input signal is sampled 

and the conversion process is initiated when this pin is set to the low state.  /RD represents the active 

low read control input, also controlled by the main control unit.  The output channel assumes the 

converted digital signal when this pin is set low.  /INT is the active low interrupt output.  It assumes a 

low value at the end of each conversion and returns to a high state following the rising edge of /RD.  

For other pin configurations, refer to the datasheet of ADC10461 [62].  Ideally, the output pins of the 

sensors are connected to the input channel of the ADC.  The ADC then quantifies the sensor values 

and outputs the corresponding digitized sensory data to the control unit.  However, due to the limited 

number of input channels in the selected ADC, VIN is connected to the output of a multiplexer unit 

instead.  In this case, the six sensor outputs are connected to the input channels of the multiplexer 

unit.  
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Figure 10: ADC10461 Schematic Diagram 

 

4.2.3 Multiplexer 

A multiplexer contains several input channels and a single output channel.  It allows the selection of 

information from a particular input channel for the output channel.  The selection process depends 

upon the values of the control pins.  For example, in a multiplexer that allows for the selection of the 

front sensor output or the rear sensor output, both the front and the rear sensor signals are connected 

to the multiplexer inputs.  The control bit is assigned a value of 1 for the front sensor and 0 for the 

rear sensor such that when one of the two possible values is chosen, the corresponding output is 

chosen for the multiplexer.  With six sensory outputs but only one ADC input channel, multiplexer 

circuitries are required to successively multiplex data from each sensor to the input of the ADC.  An 

8-channel analog multiplexer, MC14051B, is chosen to perform the task.  Figure 11 illustrates the 

schematic design of the multiplexer.  X0 to X7 represent the eight analog input channels and X 

carries the output signal.  Pins A, B and C are utilized for input channel selection, with the available 

choices summarized in Table 2.  For other pin configurations, refer to the datasheet of MC14051B 

[63].  With this multiplexing unit, the six sensory data can be digitized one at a time by the ADC.  To 

multiplex the input channels successively, signals A to C are controlled directly by the main control 

unit of the system. 
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Figure 11: MC14051B Schematic Diagram 

 

Table 2: Truth Table for Multiplexer MC14051B 

C B A Selected Output 

0 0 0 X0 

0 0 1 X1 

0 1 0 X2 

0 1 1 X3 

1 0 0 X4 

1 0 1 X5 

1 1 0 X6 

1 1 1 X7 

 

4.3 Control System 

4.3.1 Control Pad 

To facilitate in the manual control mode of operation, the prototype system is equipped with a 

customized control pad.  It is composed of several push-button switches and resistors.  The switches 

are of the normally open type, in which the two mechanical contacts on the switches touch to form a 

circuit when pressed and separate to break the circuit when the button is released.  Steering 

commands can be inputted through action buttons on the control pad, which outputs directly to the 

main control unit.  The control pad contains three switches, individually controlling three output 

channels: S, L and R.  The S channel controls a status bit, allowing an initialization signal to be sent 

to the main control unit when pressed.  The L and R buttons are utilized for manual steering control, 
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in which the L button corresponds to leftward steering while the R button represents steering to the 

right. 

 

4.3.2 Control Unit 

The main control unit is realized on the Altera Stratix EP1S10 FPGA development board.  The board 

hosts a FPGA with 426 input-output pins, 79040 LEs, 920448 RAM bits and 6 DSP blocks [64].  It is 

well-suited for applications requiring low power consumption and high performance. With sufficient 

circuitries, the FPGA board has the ability to simultaneously interact with different peripherals and 

perform several tasks.  Figure 12 presents the schematic diagram of the main control unit.  This 

component serves as the “brain” of the autonomous system.  Not only does it interpret coded sensory 

information from the ADC into corresponding steering and locomotion control signals, it also 

interacts and controls other components such as the multiplexer, LED display and push-button 

switches.   

 

 

Figure 12: Schematic Diagram of the Main Control Unit 

 

The main control unit is composed of three major components: adc_ctrl, central controller and 

intelligent controller.  The adc_ctrl unit determines the control signals of the ADC.  It manipulates the 

sample/hold (/S/H) and the read (/RD) signals for collection of correct digital information.  It also 

determines the timing and sequence of the sensor selection process in the multiplexer to successively 
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gather sensory data from the six infrared sensors.  The central controller keeps track of the internal 

state of the control system.  It analyzes data from various sensors for obstacle avoidance purposes.  At 

the same time, it also computes and provides the intelligent controller with the appropriate input 

signals.  Several push-button switches are connected directly through the control pad to this controller 

for initiation and debugging purposes. Steering control signals are generated by the intelligent 

controller, which receives its inputs from the central controller.  Reasoning in the intelligent 

controller can be based on fuzzy logic, neural network or other control paradigms.  Note that to utilize 

different control algorithms or to perform different tasks with the same control technique, only the 

central controller and the intelligent controller require modification. 

 

4.4 Actuation Mechanism 

Actuation refers to the process of transforming an input signal into motion.  The main goal of an 

actuator is to realize commands generated from the control unit.  Specifically, the steering angle and 

the movement direction (forward or backward) are to be controlled.  Commonly used actuators 

include standard DC motors and servos.  The control concept of standard DC motors is simple.  By 

applying a voltage on the terminals of these motors, rotations are initiated.  The application of 

different DC power to the terminals varies the rotational speeds and the directions.  In general, 

applying higher power to the motor units produce higher speeds, while switching the polarities of the 

motor terminals reverses the rotational direction.  A variation of standard DC motors is servos.  A 

servo is a small device that incorporates a DC motor, a gear train, a potentiometer, an Integrated 

Circuit and an output shaft.  Unlike DC motors, input signals to a servo are translated to angular 

position instead of rotational velocity.  Also, continuous rotations are not attainable in servos as they 

can only rotate a maximum of approximately 120
o
 in each direction from its neutral (0

o
) position [65].  

Since DC motors can revolve freely in both counterclockwise and clockwise directions with variable 

speeds, it is well-suited for the realization of motion control of vehicular systems.  Changes in 

rotational velocity of the motor are translated directly to changes in wheel velocity, and 

correspondingly the velocity of the vehicle is altered.  Servos, on the other hand, are more appropriate 

for the realization of steering control of vehicular systems.  With limitations on their angular 

positions, servos closely emulate the constraints on steering angles.  In driving systems, drivers can 

only steer a certain amount to the left or right direction from the middle position.  Due to their 

appropriateness, a DC motor and a servo are utilized to realize the locomotion and the steering 

commands from the main control unit. 

 

4.4.1 Steering Mechanism 

For steering control, the servo provided in the model car package is adopted.  Three wires can be seen 

outside of the servo case.  They correspond to the power line, the ground line and the control input 

line.  To position the shaft of the servo at a specific angular position, coded signals are sent directly to 

the control input line.  Each coded signal represents a unique angular position.  Figure 13 illustrates 
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three sample steering control signals for the built-in servo, which has the same characteristics as most 

servos with a servo period of 20 ms.  To maintain the shaft at its neutral position (0
o
), a coded signal 

with a pulse width of approximately 1.67 ms has to be sent to the servo in every servo period.  Any 

alteration to the pulse width changes the angular position of the shaft.  A pulse width less than 1.67 

ms moves the servo shaft towards its leftmost position while a pulse width of more than 1.67 ms 

rotates the servo shaft towards its rightmost position.  To closely emulate a vehicular system, the 

steering pulse width is limited to the range of 1.19 ms to 2.10 ms, representing steering angles in the 

range of -30
o
 to +30

o
.   

 

0o

+30
o

-30o

Period 20 ms

Pulse Width 1.19 ms

Pulse Width 1.67 ms

Pulse Width 2.10 ms

 

Figure 13: Three Steering Control Signals 

 

This method of servo shaft control based on the duration of the applied pulse is called Pulse Width 

Modulation (PWM).  PWM eliminates the need for Digital-to-Analog converters.  In addition, by 

employing digital signal, noise effects are minimized since relatively few interference sources are 

able to alter a logic-1 to a logic-0 value and vice versa.  Also, with digital control, power consumption 

can be reduced significantly.  Utilizing the whole possible range of PWM signals is unnecessary and 

computationally demanding.  Thus, for ease of implementation and to conserve computational 

resources, only fifteen different signals are used.  Their pulse widths, steering output representation 

and correspondences to actual steering angles are given in Table 3.  To perform a left turn of 15
o
, the 

controller interprets from the sensory information that a 15
o
 left turn is necessary.  It then sends a 

steering output value of 10 to the PWM signal generator block that resides in the FPGA board, which 

in turn outputs a pulse width of 1.51 ms. 
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Table 3: PWM Pulse Widths, Steering Outputs and Actual Steering Angles 

Pulse Width  

(ms) 
Steering Output 

Steering Angle 

(+ = Left, - = Right) 

1.1900 14 30 

1.2700 13 28 

1.3500 12 26 

1.4300 11 24 

1.5100 10 15 

1.5900 9 12 

1.6700 8 5 

1.7100 7 0 

1.7660 6 -5 

1.8220 5 -12 

1.8780 4 -15 

1.9340 3 -24 

1.9900 2 -26 

2.0460 1 -28 

2.1020 0 -30 

 

4.4.2 Locomotion Mechanism 

Locomotion refers to the process of causing an autonomous robot or vehicle to move [66].  The main 

goal of the locomotion mechanism is to realize forward and backward motions.  A standard DC motor 

is chosen to perform these tasks due to its simplicity and availability.  A DC motor consists of a 

positive and a negative terminal. To control the rotational speed of the motor, voltages of various 

levels are applied to these terminals.  Similarly, to reverse the rotational direction, voltage polarity is 

reversed.  Intuitively, the two motor terminals should be connected directly to the main control unit, 

which process information from sensors and output required motion commands.  Unfortunately, two 

issues prevent such a connection.  Firstly, to modify the rotational speed of the motor, analog voltages 

of different magnitudes are required.  However, output signals of the main control unit implemented 

on FPGA hardware are digital in nature, providing only discrete values of 0V (off), and 3.3V or 5V 

(depending on the pin type).  Secondly, it is difficult to reverse the polarities on the two motor 

terminals directly from the FPGA hardware.  To overcome the two problems, speed controllers are 

commonly employed.  Instead of establishing direct connections between the main control unit and 

the DC motor, digital outputs from the control unit are first connected to the input channels of a speed 
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controller for generation of the appropriate DC motor control signal.  The output channels of the 

speed controller are then wired to the motor terminals.   

 

An electronic speed controller, TEU-101BK from Tamiya Inc., is chosen due to its compatibility 

with the control unit.  TEU-101BK generates motor control signals based on the PWM approach 

previously described.  Instead of processing an analog voltage proportional to the rotational speed of 

the motor, PWM signals with pulse durations proportional to the rotational speed are utilized.  A 

pulse width of 1.5 ms corresponds to the stop state.  Any deviation to that pulse width changes the 

rotational velocity of the shaft.  Pulse widths with higher deviations from 1.5 ms correspond to higher 

rotational speeds while those with smaller differences move the motor shaft slower.  Also, a pulse 

width less than 1.5 ms moves the shaft motor counterclockwise while a pulse width of more than 1.5 

ms moves the servo shaft clockwise.  By employing PWM control, analog signals can be simulated 

from digital sources, thus allowing for effective rotational velocity control.  From experimental data, 

it is concluded that the overall angular speed for the selected motor is relatively high.  Hence, the 

motor is constantly set to operate at its slowest speed setting at all times.   

 

4.5 Summary 

To demonstrate the feasibility of different control algorithms, a prototype vehicle is developed.  

Infrared sensors are equipped on the vehicle for perception.  A FPGA board is employed for 

controller realization.  In addition, a servo and a motor are supplied for steering and locomotive 

purposes.  The prototype vehicle is designed to support a wide range of control algorithms.  As a 

FPGA is utilized for implementation of the main control unit, different controller designs with 

varying objectives can be implemented on the same prototype system by reconfiguring logics and 

circuitries in the control unit.  The next chapter provides the design and implementation of two 

intelligent controllers that are tested on the prototype system. 
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Chapter 5 

Intelligent Controllers Design and Implementation 

The overall hardware architecture of the prototype is designed with considerations in flexibility.  It is 

implemented in such a way that alterations are unnecessary in all components except the main control 

unit, even if different algorithms are utilized for vehicular control.  In other words, a parallel parking 

system or a vehicle following system can easily be implemented on the designed prototype given 

appropriate modifications on the main control unit.  This chapter focuses on the design and 

implementation of a fuzzy logic and a neural network based controller for realization of the wall-

following task.  Experimental results of their hardware implementations are presented.  A 

comparative study of the two controller designs is performed, with emphasis on hardware resource 

requirement, maximum operational speed and trajectory tracking error.  Discussions regarding the 

advantages and drawbacks of each controller are provided. 

 

5.1 Fuzzy Logic Controller (FLC) 

Fuzzy logic provides a means to design robust control systems that are free of analytical models.  

Base upon human expert knowledge, the fuzzy reasoning process involves fuzzifying crisp input 

signals, evaluating individual fuzzy rules in the rule base, aggregating rule outputs and computing a 

crisp control signal through mathematical calculations.  To design an effective fuzzy logic controller, 

proper definitions on linguistic variables, fuzzy sets and fuzzy rules are required.  These parameters 

are commonly chosen by domain experts based on intuition and experience. 

 

5.1.1 FLC Design 

Linguistic Variables 

The first step in constructing a fuzzy logic controller is to specify the control problem, with 

definitions of input and output linguistic variables.  For the wall-following task, the objective is to 

maintain the vehicle at a predefined distance from the wall.  One way to achieve this goal is by 

continuously adjusting the steering angles based on sensory data.  In other words, by proper control of 

the steering angles, the controller should ensure that the vehicle’s orientation is parallel to the wall 

and its back side sensor distance is at the predefined level.  For realization of such a controller, two 

input variables, DIS and ANG, are used.  The DIS variable is defined as DSBS – DW, where DW is 

the predefined desired distance from the wall. This variable specifies the relative distance between the 

back of the vehicle and the wall.  The ANG variable is defined as DSBS – (DSFS + DF/2).  DSBS – 

DSFS denotes the orientation of the vehicle with respect to the wall.  If the forward direction of the 

vehicle is clear of obstacle, DSBS – (DSFS + DF/2) is approximately equal to DSBS – DSFS.  On the 

other hand, if a wall is detected in front of the vehicle, DSBS – (DSFS + DF/2) will be smaller than 



 

  37 

DSBS – DSFS, modifying the steering angle for an attempt to avoid the obstacle.  Sensory data 

including DSBS, DSFS and DF are encoded into 10-bit digital signals by the ADC.  However, to 

conserve computational resources, only the nine most significant bits are utilized for computing of the 

steering outputs.  This effectively limits the three sensory data to a range of 0 to 511.  

Correspondingly, the DIS and ANG variables are confined to ranges of -511 to 511 and -766 to 511, 

respectively.  For the same resource conservation reason, the universe of discourse of DIS and ANG 

are limited to ten bits, corresponding to the range of -512 to 511.  The variable to be controlled is the 

steering output, φ.  For simplicity, it is assigned the same universe of discourse as the input variables.   

 

Fuzzy Sets 

The next step in the fuzzy logic controller design cycle involves the selection of fuzzy sets for the 

description of fuzzy variables.  The number of fuzzy sets in each universe of discourse is application 

specific.  For problems with higher complexity, more fuzzy sets are required.  The design of fuzzy 

sets also involves the choice of membership function type.  They range from the linear triangular type 

to the nonlinear Gaussian type.  To design a fuzzy logic controller for the wall-following task, the 

definition of three fuzzy sets for each input variable is sufficient.  They are assigned linguistic terms 

NEG, ZERO and POS, denoting Negative, Zero and Positive.  Membership functions of the triangular 

and the trapezoidal type are selected due to their linearity and simplicity.  Figure 14 illustrates the 

input fuzzy sets employed. 

            

 

Figure 14: Fuzzy Sets for FLC Input Variables 

 

Partition on the output universe of discourse is dependent on the inference model.  For most control 

applications, the Sugeno Model is selected over the Mamdani Model as it is more compact and more 

computationally efficient.  In these cases, the output membership functions are fuzzy singletons that 

take on membership value of 1 only at a single position along the universe of discourse.  At all other 

locations, they assume a value of 0.  For the current controller design, the Sugeno Model is selected 
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based on complexity and resource usage considerations.  Nine output membership functions of the 

type singleton are defined, as shown in Figure 15.  Their corresponding locations in the universe of 

discourse are summarized in Table 4.  These values are approximated by human intuition and tuned 

by the trial and error approach.   

 

-256-512 0 256 511

1.0

c1,c5,c9c6c2c3 c8 c7c4

 

Figure 15: Fuzzy Sets for FLC Output Variable 

 

Table 4: Consequents of FLC 

Consequent Value 

c1 0 

c2 -88 

c3 -160 

c4 40 

c5 0 

c6 -40 

c7 160 

c8 88 

c9 0 

 

Fuzzy Rules 

Human expert knowledge in a particular domain is incorporated into fuzzy if-then rules stored in the 

rule base.  Based on intuition, nine fuzzy reasoning rules are developed for vehicle wall-following.  

They are summarized in Table 5. 
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Table 5: FLC Control Rule Base 

D
IS

 

 

In detail, the rules can be expressed as follows: 

R1: IF DIS is NEG AND ANG is NEG THEN φ is c1  

R2: IF DIS is NEG AND ANG is ZERO  THEN φ is c2   

R3: IF DIS is NEG  AND ANG is POS  THEN φ is c3  

R4: IF DIS is ZERO  AND ANG is NEG  THEN φ is c4  

R5: IF DIS is ZERO  AND ANG is ZERO  THEN φ is c5  

R6: IF DIS is ZERO  AND ANG is POS  THEN φ is c6  

R7: IF DIS is POS  AND ANG is NEG  THEN φ is c7  

R8: IF DIS is POS  AND ANG is ZERO  THEN φ is c8  

R9: IF DIS is POS  AND ANG is POS  THEN φ is c9  

where DIS, ANG and φ represent the distance input, the orientation input and the steering output, 

respectively.  For evaluation of the multiple parts in the antecedents of these fuzzy rules, the 

minimum operator is utilized for the AND operation. 

 

5.1.2 FLC Implementation 

Sugeno Model based fuzzy inference systems are made up of three components: several fuzzifiers for 

computation of the degree of membership of crisp inputs in each membership function, an inference 

engine for generation of a fuzzy control output, and a mechanism to convert the fuzzy control output 

to a crisp control signal.  To implement each of the three components in an intelligent fuzzy 

controller, various hardware modules are designed in VHDL based on two IEEE standard packages: 

numeric_std and std_logic_1164.  These hardware units are located in the hardware FLC block, 

which is composed of fuzzifiers, min modules, multipliers, adders, a divider and a steering adjustment 

module.  Each of them is described in detail in the following sections. 
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Fuzzifiers 

The fuzzifier blocks fuzzify the input values originating from the central controller.  In these blocks, 

the degree of membership of each input in each fuzzy set is evaluated.  In other words, the 

intersections between the inputs and the membership functions are computed.  Hardware based 

fuzzifiers are commonly designed utilizing a set of equations or a lookup table.  The first approach is 

widely adopted for fuzzy sets that are characterized by linearity.  For example, triangular and 

trapezoidal membership functions can be described using at most three linear equations.  The latter 

method is usually employed for fuzzy sets with some degree of nonlinearity, such as Gaussian 

membership functions.  Since the fuzzy sets used are of the linear type, the hardware fuzzifying unit 

is designed based on the first approach.  The equations used are of the form y = ax + b where y 

represents the membership grade, a and b are coefficients specific to a particular equation, and x is the 

input.  To further simplify the fuzzification process and conserve computational resources, the 

membership grades are scaled by 1023 such that any slope in the membership functions can be 

approximated by powers of two, as illustrated in Figure 16. 

 

 

Figure 16: Scaled Fuzzy Sets for FLC Input Variables 

 

Instead of utilizing computationally expensive multiplication and division circuitries, these 

mathematical operations are replaced by bit shifting logic where a multiplication or division of 4 is 

represented by shifting all the bit values by two spaces to the left or right respectively.  It is important 

to note that this method is only an approximation, as the actual slopes in the diagonal segments are 

996.3
256

1023
=  and 996.3

256

1023
−=

−
, which is substituted by a value of 4 and -4.  Figure 17 

presents a flowchart with steps involved in finding the membership grade of an input value in the 

NEG fuzzy set.  Bit shifting and complement calculation is required for computation of the 

membership grade.  As an example, the binary representation of -250 is 11 0000 0110.  With a shift 

of two bits to the left, the value becomes 00 0001 1000, which has a complement value of 11 1110 

0111 corresponding to the membership grade of 999 in decimal.  Note that the utilization of bit 
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shifting operators introduces a negligible amount of error.  Compared to the approximation, the actual 

result is 02.999)250(
256

1023
= , with an error of 0.002%. 

 

 

Figure 17: Flowchart for Calculation of the Degree of Membership in the NEG Fuzzy Set 

 

With two input variables (DIS and ANG) and correspondingly three fuzzy sets to describe each of 

the variables, two fuzzifiers are utilized to generate a total of six membership grades (n1, n2, z1, z2, 

p1 and p2) representing the outputs of the fuzzifier modules, as shown in Figure 18.  These outputs 

are connected to the inputs of the min modules. 
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Figure 18: Fuzzifiers in Hardware FLC Block 

 

Min Modules 

Following the fuzzification step, the next stage is to realize the inference engine.  In this phase, the 

antecedent of each rule is evaluated and the corresponding weighting parameter is computed.  For a 

rule antecedent with multiple parts, a T-norm operator (in this specific case, the minimum operator) is 

utilized to attain the AND operation.  The weighting parameter is then determined as the minimum 

membership grade of the input variables in each of the corresponding antecedent fuzzy set.  For 

example, let the two inputs take on values of -250 and -256. Fuzzifying the two inputs then result in 

membership grades of 999, 24, 0 and 1023, 0, 0 corresponding to the degree of membership of the 

first and the second inputs in the NEG, ZERO, POS fuzzy sets.  To determine the weighting 

parameter for R1, the membership grades for the two inputs in the NEG fuzzy sets are compared.  The 

degree of membership of the first input in the NEG fuzzy set is 999 while that of the second input is 

1023.  Thus, the minimum degree of membership is 999, representing the weighting parameter for R1. 

R1: IF DIS is NEG  AND ANG is NEG THEN φ is c1  

In hardware, the minimum operations are realized by comparators residing in the min modules.  Each 

min module accepts two membership grades from the fuzzifier modules and compares them to 

determine the weighting parameter of each rule, as shown in Figure 19.  With nine inference rules, 

nine weighting parameters m1 to m9 are determined.  This information is then connected to the 

multipliers and utilized in further calculations for the overall crisp control output. 
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Figure 19: Min Modules in Hardware FLC Block 

 

Adders, Multipliers and Dividers 

The next part of the fuzzy logic controller computes the crisp control output utilizing weighting 

parameters found in the previous step.  This involves calculation of the weighted average of 

individual rule output.  With nine fuzzy rules, the weighted average calculation is governed by the 

following equation: 

987654321

998877665544332211ˆ
ωωωωωωωωω

ωωωωωωωωω

++++++++

++++++++
=

ccccccccc
c   (13) 

where ci represents the consequent of rule i, ωi is the weighting parameter for rule i and ĉ  is the 

overall crisp control output.  In hardware, this can be realized by two-input multipliers, three-input 

adders and two-input dividers. Nine multipliers are employed for performing multiplications between 

the consequent and the weighting parameter of each rule.  Four adders are then utilized to sum the 
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multiplication results, generating the numerator value for the division operation.  To generate the 

denominator, four additional adders are employed for summation of the weighting parameters.  

Finally, a divider is utilized to calculate the control output signal by dividing the numerator by the 

denominator, as shown in Figure 20. 
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Figure 20: Multipliers, Adders and Divider in Hardware FLC Block 
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Steering Adjustment Block 

The control output values are limited to a range of -512 to 511, corresponding to its universe of 

discourse.  However, only fifteen discrete steering outputs with assigned values from 0 to 14 are 

defined in the steering mechanism.  Thus, a steering adjustment block is employed to quantize the 

wide range of control outputs into fifteen values according to Table 6.  Once the steering output value 

is selected, the information is sent to the steering mechanism, as shown in Figure 21. 

 

Table 6: Steering Adjustment Mapping 

Output Ranges Steering Output Values 

> 40 14 

37  to 40 13 

33 to 36 12 

27 to 32 11 

19 to 26 10 

11 to 18 9 

6 to10 8 

-4 to 5 7 

-9 To -5 6 

-17 To -10 5 

-25 to -18 4 

-31 to -26 3 

-35 to -32 2 

-39 to -36 1 

<= -40 0 

 

 

Figure 21: Steering Adjustment Module in Hardware FLC Block 

 

5.2 Neural Network Controller (NNC) 

Neural network, a structure composed of individual processing units joined by a large number of 

parallel interconnects, provides a means to develop a generalized control unit with fault tolerant 
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characteristics.  Similar to fuzzy logic control, neural network control is also a model-free control 

technique which has the advantage of basing its decisions on past experiences.  Neural network 

control involves calculating the weighted sum of individual processing inputs and computing the 

resultant processing unit output via a mapping function.  The design of an effective neural network 

controller involves collection of representative training data, definition of an appropriate network 

structure and execution of the training process. 

 

5.2.1 NNC Design 

Training Patterns 

Collection of representative training data is an important stage in the development of a neural 

network.  Often, neural networks are only as good as their training sets.  Results can be improved by 

utilizing a greater number of training patterns, which are sufficiently spaced within their operating 

ranges.  One key issue in the data collection process is the selection of parameters to focus on.  This is 

usually application-specific and depends on the control objective.  For example, the objective is to 

determine the value of deceleration as a vehicle approaches a red traffic light.  In this case, the inputs 

may be the distance to the light and the current speed of the vehicle while the output is the 

deceleration value.  These input and output variables must be taken into consideration during the 

training process.  As mentioned previously, the overall objective of the wall-following task is to 

maintain the vehicle at a predefined distance from the wall.  This can be achieved by applying 

steering control based on sensory information.  In this scenario, a training pattern should incorporate 

both sensory information and the ideal steering output.  Hence, side sensor measurements, DSFS and 

DSBS, as well as the steering output, φ, are included in each training pattern.  To closely mimic 

human driving behavior, training patterns with these parameters are gathered by recording the driving 

experiences of human operators, which can be collected through manual control of the prototype 

vehicular system via the control pad.  It is possible to collect this training data using alternative 

methods.   

 

The training data needs to be representative to ensure satisfactory neural network controller 

performance because these control units tend to be excellent interpolators but poor extrapolators.  In 

other words, the controller excels for those cases in which the network has been trained while it 

performs poorly for those which are underrepresented by the training set.  For the wall-following 

application, three different trajectories are designed for neural network training: straight, angled, and 

corner.  Section 5.3.3 discusses these trajectories in detail.   The general input operating ranges for the 

training set are 0 to 380 for DSFS and 80 to 337 for DSBS.  Good performance is expected when the 

vehicle traverses the trained trajectories, corresponding to input values within the training ranges.  On 

the contrary, poor performance may result from untrained scenarios. 
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Network Structure 

Commonly used feed-forward type neural networks have one input layer, one output layer, and one or 

more hidden layers.  The number of neurons in the input layer and the output layer correspond to the 

number of input and output parameters in each training pattern. However, the number of hidden 

layers and hidden neurons in each layer varies depending on the complexity of a given problem.  A 

network with a small number of hidden neurons can be problematic as it may be insufficient for 

approximating the nonlinearities involved in that particular problem.  On the other hand, a network 

with a large number of hidden neurons may over-parameterize hidden relationships in training 

patterns thus impairing its generalization capability.  This effect is often termed as overtraining.  

Although experimental neural networks generally have several hidden layers, practical designs have 

at most one hidden layer due to the exponential increase in computational complexity added by each 

hidden layer [67].  For the application in discussion, the input layer is composed of two neurons 

corresponding to the sensory inputs while the output layer consists of one neuron, which is associated 

with the steering output.  To minimize computational resources, only one hidden layer is employed. 

In terms of the number of neurons within the hidden layer, a trial and error approach is taken to obtain 

a suitable value, given that there are no set rules.  

 

Another crucial parameter in the design of a neural network is the mapping function, or the 

activation function.  Poor choice of activation function limits the performance of the network.  The 

ideal mapping function is not only application-specific, but also takes into account the level of 

nonlinearity and complexity in the problem.  As discussed previously, the steering mechanism 

recognizes fifteen different values in an assigned range of 0 to 14.  To ensure that the direct control 

output from a neural network is bounded within this range, without an external scaling function, the 

activation function in the output layer must be chosen accordingly.  Amongst the most commonly 

utilized mapping functions, only the linear function has output values outside of the range of -1 and 1.  

Thus, it is selected as the output activation function for the wall-following application.  For the 

hidden layer, three different mapping function types are experimented on: linear, saturating linear, 

and hyperbolic tangent. 

 

Network Training 

Network training is essentially a process to optimize the associated weight parameter for each 

connection between two processing units such that the trained network assumes the required 

functionality and differences between the network and the desired outputs are minimized.  Each 

weight in the network describes the strength of a specific connection.  For instance, a weight of zero 

means that the two units are unconnected.  There exist many learning algorithms for adjusting these 

weight parameters to properly train a neural network.  For training sets consisting of both input and 

output pairs, the most widely used technique is supervised learning in which the network is trained by 

example.  An input pattern is first presented to the input layer of the network and is propagated 

through subsequent layers until an output pattern is obtained in the output layer.  An error value, 

known as network error, is then calculated by comparing the network output with that of the training 

pattern.  The weights are adjusted as to minimize this error.  This process continues until satisfactory 
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error value is obtained and the network has been trained with all the desired characteristics and 

functionalities.  The gradient descent methodology modifies the weights in the direction of which the 

network error decreases most rapidly. BPL, the most commonly used algorithm for supervised 

learning, is based on this tactic.  BPL sometimes suffers from its long training time in practical 

applications.  A more attractive training algorithm is the Levenberg-Marquardt Learning technique, 

which combines Newton’s Method with the gradient descent methodology utilized in BPL.  It is 

superior to the BPL algorithm in terms of training times. 

 

The neural network based wall-following controller is trained using supervised learning schemes 

with a set of input-output pair training patterns.  The Levenberg-Marquardt Learning algorithm is 

selected for this purpose due to its rapid training time.  To conserve hardware resources and 

development time, training of the network is performed off-line using Matlab and then, the trained 

network is implemented in the vehicle model for real-time experiments.  Network training is 

performed on a few different network structures which differ in the number of hidden neurons and the 

activation function type.  The best architecture, which produces the smallest network error, is chosen 

as the final design for hardware implementation.  In the first set of experiments, the number of hidden 

neurons is varied. A hyperbolic tangent activation function is employed in the hidden layer and a 

linear one in the output layer.  Once the optimal number of hidden neurons is defined, the second set 

of experiments is conducted to obtain the best activation function type for the hidden layer.  

 

Table 7 summarizes the training results when using five, ten and fifteen hidden neurons.  The mean 

square network errors after one thousand training cycles are presented.  It is concluded that the 

optimal number of hidden neurons is ten.  With an increase in the number of neurons from ten to 

fifteen, an increase in network error is observed due to the overtraining phenomena.  Too many 

neurons result in memorization of training patterns, impairing the network’s ability to generalize and 

interpolate for extraction of hidden relationships among input and output patterns. On the other hand, 

network error also increases with a decrease in number of neurons from ten to five. This is expected 

because with a small number of hidden neurons, the network structure is insufficient to approximate 

the level of nonlinearity in the given problem.  Table 8 summarizes the training results when 

employing linear, saturating linear and hyperbolic tangent activation functions in the hidden layer.  

The network errors after one thousand training cycles are presented.  Ten hidden neurons are utilized 

in all three cases. The linear function, which generates the largest network error, cannot adequately 

approximate the large amount of nonlinearities presented in the training set.  The saturating linear 

function, which produces less error, provides a better approximation.  Of the three selections, the 

hyperbolic tangent function generates the smallest error and hence, is ultimately employed in the 

hidden layer. 
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Table 7: Network Error using Five, Ten and Fifteen Hidden Neurons 

Hidden Neurons Mean Squared Network Error 

5 1.5607 

10 1.4421 

15 1.4674 

 

Table 8: Network Error for the use of Three Different Activation Functions 

Activation Function Mean Squared Network Error 

Linear 1.8966 

Saturating Linear 1. 4766 

Hyperbolic Tangent 1. 4421 

 

Figure 22 presents the final network design after training.  Neurons are organized in a feed-forward 

manner with two, ten and one neurons in the input, hidden and output layers, respectively. The 

activation function of the hidden layer is hyperbolic tangent while that of the output layer is linear. 
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Figure 22: Final Neural Network Design 
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The input-output relationship of the network can be described by the following equations: 

 

Input Layer 
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The two inputs of the network, x0 and x1, represent the two sensory inputs, DSFS and DSBS, 

respectively.  The network output, y0O represents the steering output, φ. The function f(.) is a 

hyperbolic tangent activation function, given by (17).  ωs and θs represent the adjustable weights and 

biases obtained from training, with values summarized in Table 9.  All weights are denoted as ωαβγδ, 

representing the strength of the connection from neuron γ in the δ layer to neuron α in the β layer.  

For example, ω9H0I represents the strength of the link from neuron 0 in the input layer to neuron 9 in 

the hidden layer.  Bias values denoted as θαβ follows the same notation.  As an example, θ0O 

represents the bias value associated with neuron 0 in the output layer. 
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Table 9: Trained Weights of NNC 

Parameter Value Parameter Value Parameter Value Parameter Value 

IH 00ω  -0.1061 
IH10ω  0.0553 

H0θ  16.3239 
HO00ω  -0.4984 

IH 01ω  0.8513 
IH11ω  -0.6289 

H1θ  -7.6035 
HO10ω  42.8902 

IH 02ω  -0.3400 
IH12ω  0.3988 

H2θ  18.3682 
HO20ω  -0.3560 

IH 03ω  -0.0772 
IH13ω  0.2347 

H3θ  -15.9546 
HO30ω  -0.2522 

IH 04ω  0.0789 
IH14ω  -0.0146 

H4θ  -7.1801 
HO40ω  1.1693 

IH 05ω  -0.0292 
IH15ω  -0.0060 

H5θ  7.1676 
HO50ω  -1.2703 

IH 06ω  0.1235 
IH16ω  -0.3361 

H6θ  52.4580 
HO60ω  -0.1684 

IH 07ω  0.0184 
IH17ω  0.0360 

H7θ  -6.2948 
HO70ω  1.1598 

IH 08ω  0.8559 
IH18ω  -0.6323 

H8θ  -7.6365 
HO80ω  -42.5374 

IH 09ω  -0.0355 
IH19ω  0.0653 

H9θ  -16.6307 
HO90ω  -1.6749 

      
O0θ  3.4157 

 

5.2.2 Manual Controller (MC) Implementation 

For development of a neural network controller that closely emulates human driving behavior, the 

manual mode of operation is utilized for data collection purposes.  In this mode, the steering outputs 

are controlled by a human operator through the use of a control pad.  It is solely based on the 

judgment of the operator, independent of collected sensory data.  Sensory inputs and steering outputs 

are recorded during manual driving experiences and then, employed in the neural network training 

phase.  According to Section 4.4, the control pad consists of a number of switches with mechanical 

contacts.  The switches are normally opened, which corresponds to grounded outputs while pressed 

buttons correspond to high output signal.  However, clean transitions between low and high logic 

levels are difficult to attain with commonly available switches.  During transitions between open and 

closed states, a series of spikes in the signal level is expected, which is referred to as a bouncing 

problem.  Figure 23 presents the output waveform of a switch demonstrating the bouncing situation.   
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Figure 23: Sample Output Waveform of a Switch 

 

In digital design, the bouncing issue can affect system performance.  Instead of a single detection 

of the high or low state, multiple oscillating signals are detected.  This may be falsely interpreted as 

repeated switching by the controller.  To correct this problem, de-bouncing circuitries are required.  

One of the simplest methodologies for de-bouncing is the time-delay approach. By introducing 

additional delays to the design, the detection of the bounces is avoided.  The length of the delay is 

generally application dependent as short delays fail to eliminate the bouncing problem while lengthy 

delays results in sluggish responses.  In addition to a de-bouncing circuit based upon the time-delay 

approach, the manual controller implements steering control using adders and comparators. On reset, 

the steering output of the controller defaults to 7, representing a steering angle of 0
o
 according to 

Table 3.  Upon activation of the right button, the controller decrements the steering output down to a 

minimum of zero, which represents a steering angle of 30
o
 to the right.  Similarly, the steering output 

increments with each push of the left button up to a maximum of fourteen, which represents an angle 

of 30
o
 to the left.   

 

5.2.3 NNC Implementation 

Implementation of a neural network is essentially the realization of a set of mathematical equations 

for signal propagation from the input to the output layer.  The propagation process has two steps.  The 

hidden layer neuron outputs are first computed by passing the weighted sum of their corresponding 

inputs through a mapping function.  The output layer neuron then computes its result as the weighted 

sum of its inputs through another mapping function. 

 

Signal Representation 

One common issue in neural network implementation is signal representation.  Performance of neural 

networks is highly dependent on the data representation scheme.  Conventional integer representation 

is inadequate for representing floating point weights generated by Matlab.  Precision is significantly 

reduced assuming no additional scaling arithmetic units.  To represent the trained weights, two signal 

representations, namely floating point representation and fixed point representation, are investigated.  

In floating point representation, the location of the radix point, separating the integer part and the 



 

  53 

fractional part of a number, can vary allowing for wide range and high precision.  Because this 

representation closely approximates real numbers, development time and complexity are reduced.  

However, it is impractical to use floating point representation in hardware implementation as they 

require large amounts of computational resources.  Fixed point arithmetic provides a compromise 

between integer and floating point representations. The former significantly reduces precision while 

the latter significantly increases computational resources.  In fixed point representation, the location 

of the radix point is fixed, assigning a fixed number of digits for the integer part and the fractional 

part of a real number, respectively.  With limited range and precision, it is difficult to represent very 

large and very small numbers in the fixed point notation.  In other words, it is prone to overflow and 

precision loss issues.  However, the arithmetic logic is simpler compared to that of the floating point 

notation.  In hardware implementation, this translates to less power consumption, less processing 

time, and lower cost.  To take advantage of parallelism in neural networks without sacrificing 

valuable computational resources, fixed point representation is utilized in the neural network 

controller design.  All trained weights are converted to fixed point representation in Matlab prior to 

hardware implementation.  To avoid undesired precision loss and overflow issues, a 20-bit fixed point 

representation is chosen with the first eight bits representing the integer portion of a numeric value 

and the last twelve bits representing the fraction portion.   

 

Hardware Modules 

To implement an intelligent neural network controller, various hardware modules are designed in 

VHDL. Currently, standard VHDL packages have no support for fixed point arithmetic.  To 

implement the NNC in fixed point notation, an open source fixed point package [68] is utilized.  It is 

built on an existing IEEE standard package, numeric_std, employing built-in data types and attributes.  

Fixed point arithmetic operations in the open source package include comparison, addition, 

subtraction and multiplication.  However, division operations are not synthesizable.  The hardware 

NNC module is composed of a number of multipliers, adders, act_fun modules and sensor mapping 

blocks, which are described in the following sections. 

 

Sensor Mapping Block 

The neural network controller was trained using results from a manually controlled vehicle 

performing wall-following at a single predefined distance.  However, it is often necessary to achieve 

wall-following at other distances.  Instead of training the network with all possible wall-following 

distances, it is easier to utilize sensor mapping blocks.  The sensor mapping blocks work by 

converting the desired wall-following distance to that of the trained data, and correspondingly change 

all the outputs of the neural network to match that of the desired distance.  For example, the vehicle 

training data is performed for a distance of 13 cm.  When the vehicle is in the autonomous mode and 

the desired wall-following distance is 13 cm, the sensor mapping blocks are not necessary.  However, 

if 10 cm is selected, the sensor mapping blocks adjust the sensor data by 3 cm, allowing the neural 

network to apply the training data for the 13 cm trajectory into the selected 10 cm following distance, 

effectively shifting the path of the vehicle by 3 cm closer to the wall.  The simplest method in the 

realization of a sensor mapping block is by means of a LUT.  A single entry in the LUT consists of 
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two values, one for the actual sensor value and another for the mapped sensor value.  For example, if 

the network is trained at a wall-following distance of 13 cm with a sensor value of 217 and the 

desired wall-following distance is 10 cm with a sensor value of 288, then 288 and 217 constitutes an 

entry in the LUT.  When the sensor detects an input of 217, the LUT is utilized to interpret the sensor 

reading as 288.  The LUT contains 512 entries, with one entry for mapping each of the 512 possible 

sensor values in the range of 0 to 511.  To determine the effective sensor values for the two input 

variables, DSFS and DSBS, two sensor mapping blocks are utilized, as shown in Figure 24.  They 

reside in the dedicated memory block of the FPGA. 

 

 

Figure 24: Sensor Mapping Modules in Hardware NNC Block 

 

Hidden Layer 

To generate the output signals of the hidden neurons, twenty multipliers, ten adders and ten act_fun 

modules are utilized, as shown in Figure 25.  The multipliers with two input channels are employed to 

take the product of the mapped input sensory values and their associated weights.  The adders, with 

three input signals, are then utilized to sum the multiplied signals and their corresponding bias values.  

The act_fun modules realize the hyperbolic activation function given in (17).  Each module maps the 

weighted sum calculated by the multipliers and the adders to a single numeric value.   

 

Efficient hardware implementation of the hyperbolic tangent activation function is a challenge due 

to the required exponential functions.  Two approaches are commonly used in the realization of such 

nonlinear mapping functions.  The first approach represents the activation function in a set of 

equations [69].  These equations can be of first-order or of a higher-order.  The first-order 

approximation uses less hardware resources while high-order approximations produce higher 

precision.  Linearization of the activation function results in a set of first-order equations of the form 

y = ax + b, where x represents the input to the activation function and y represents the output.  To 

obtain the correct output value, comparators are required to select the appropriate equation.  A 

multiplier and an adder are then utilized to implement the chosen equation.  In general, multiplication 

circuitries are required to compute the ax term.  Nevertheless, with appropriate chosen coefficients in 

powers of two, they can be eliminated and replaced by bit shifting operators, minimizing the amount 

of computational resources required.  An example of a higher-order approximation is the quadratic 

equation y = ax
2
 + bx + c.  This representation can potentially produce more accurate results at the 

expense of hardware area since additional multipliers and adders are required to implement this 
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Figure 25: Hidden Layer in Hardware NNC Block 

 

equation.  The second way to approximate the activation function involves setting up a look-up table 

(LUT) [70].  Uniform samples of the activation function are stored in a table format.  Rather than 

mathematical calculations, a read operation is performed to obtain the output value.  The main 

advantage of this approximation technique is simplicity and flexibility.  However, the main drawback 

lies in the large amount of LEs or memory units required.  To realize the hyperbolic tangent 

activation function, a LUT with 141 entries is designed.  The table consists of output values 

corresponding to inputs in the range of -3.5 to 3.5.  Numerical inputs less than -3.5 and above 3.5 

results in output values of -1 and 1, respectively.  Figure 26 presents the hyperbolic activation 

function and its approximations based upon the LUT generated.  It is seen that the approximated 

values closely follow the actual outputs. 

 

Output Layer 

To compute the network output according to equation (18), ten multipliers and an adder are used, as 

shown in Figure 27.  Since the activation function is linear, additional hardware circuitry for its 
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Figure 26: Actual and Approximated Hyperbolic Tangent Activation Function 

 

implementation is unnecessary.  The multipliers, which are identical to those employed in the hidden 

layer, have two input channels.  One channel is assigned to the output of a given hidden neuron while 

the other is allocated for its corresponding weight.  The product signals then serve as inputs to the 

adder whose output is the final output signal.  The neural network is trained by patterns with  
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Figure 27: Output Layer in Hardware NNC Block 
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information from the side front and back sensors.  However, to follow walls with abrupt changes, 

front sensor information is often required.  Without this information, the vehicle will not have 

sufficient time to adjust its steering wheels upon recognition of the change.  To resolve this issue 

without re-collection of training data, a simple adjustment rule is utilized.  In cases where the front 

sensor detects an obstacle in close proximity, the steering output is adjusted such that the vehicle 

over-steers (utilize a larger steering angle compared to an obstacle-free situation) as an attempt to 

avoid the obstacle, thereby safely following the wall. 

 

5.3 Performance Evaluation 

Controller design effectiveness is generally measured by the metrics of accuracy, speed, and resource 

requirements.  However, optimizing according to these criteria requires balancing tradeoffs.  For 

example, performance is enhanced often at expense of additional resources while an improvement in 

speed may result in accuracy reduction.  

 

5.3.1 Computational Resources and Operational Speed 

Computational resources and operational speed are two vital factors in determining hardware cost.  

The ideal scenario utilizes the minimum amount of resources while maximizing speed. 

 

Computational Resources 

Computational resources in FPGAs are categorized as follows: Logical Element (LE), Random 

Access Memory (RAM), Digital Signal Processor (DSP) and Input Output Element (IOE).  A LE is 

the smallest logic unit in FPGAs.  By adjusting interconnects between LEs, both combinational and 

sequential logic can be realized.  Theoretically, any design can be implemented utilizing only LEs.  

However, in practice, for efficient use of hardware area, blocks dedicated for specific purposes are 

also employed.  These blocks tend to be more efficient because they are optimized for performing 

specific tasks.  For example, RAM blocks are memory bits allocated for information storage while 

DSP blocks are designed for arithmetic operations.  Frequently, the measure of computational 

resources and hardware utilization efficiency are based upon three of the four resources types 

previously mentioned.  The number of LEs, quantity of memory bits, and amount of DSPs are metrics 

used to compare different designs.  A design utilizing a smaller number of these elements is 

considered more computationally efficient than one that uses more.  Table 10 summarizes the amount 

of computational resources required for the FLC and the NNC, respectively.   
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Table 10: Computational Resources Comparison 

 FLC NNC 

LE (% of total) 17.34 38.22 

Memory (% of total) 0 1.11 

DSP (% of total) 37.50 41.67 

 

 

Looking at Table 10, the FLC requires considerably less LE compared to the NNC.  This difference 

is mainly due to the implementation methodology of the activation function in the NNC.  Currently, 

the activation function LUT with 141 entries is realized using LEs.  One way to reduce the amount of 

required resources is to decrease the number of entries in the table potentially at the expense of 

reduced precision.  Another method is to relocate the LUT into dedicated memory blocks, as they 

provide higher efficiency for information storage.  With these two means, the variance between the 

FLC and the NNC in terms of LEs can be reduced significantly.  Aside from the number of LEs, the 

NNC also requires more memory units due to the additional sensor mapping blocks. LUTs in these 

blocks are utilized for mapping of sensor values to provide the vehicle with the ability to follow the 

wall at any predefined distance.  In terms of DSP usage, the FLC requires 18 units consuming 37.50% 

of total available resources while the NNC requires 20 units consuming 41.67% of resources.  This 

insignificant difference illustrates that both implementations use a comparable number of 

multiplication and addition operations. 

 

Operational Speed 

The operational speed of a design is constrained by its maximum clock frequency (Fmax), which is 

generally determined by the longest propagation time of a signal between two flip-flops.  If the 

system clock is set above this frequency, propagation of any signal along this slowest path cannot 

reach its destination in time, causing undesirable behavior such as data loss, data corruption or even 

system failure.  The value for Fmax can generally be obtained from the compilation reports of most 

design tools such as Quartus [71].  Utilizing this technique, the Fmax value for the FLC and the NNC 

are found to be 17.08 MHz and 45.47 MHz, respectively.  In other words, the system clock of the 

NNC can operate approximately two times as fast as that of the FLC.  The speed measurement is also 

constrained by the number of clock cycles required for a signal to propagate from an input channel to 

an output channel of the design, commonly termed as latency.  Essentially, Fmax represents the 

shortest length of a single clock cycle and depending on the number of these cycles required for 

output generation, the overall speed of the design varies.  One method to obtain the latency value for 

a particular design is through the use of a functional simulation.  By providing the simulator with a 

set of input signals, the latency value is determined as the number of clock cycles required for 

generation of the corresponding output signal.  Figure 28 and Figure 29 present two screen shots 

associated with the functional simulation results of the FLC and the NNC, respectively. 
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Figure 28: FLC Functional Simulation Results 

 

 

Figure 29: NNC Functional Simulation Results 

 

For the FLC, the ideal scenario occurs when both input signals are zero, representing perfect 

alignment of the vehicle and the wall at the predefined distance.  The desired steering output signal in 

this particular scenario is seven, corresponding to a steering angle of 0
o
 according to Table 3.  As 

illustrated in Figure 28, the desired steering output of seven is generated 80 ns or eight clock cycles 

after setting the two inputs to zero.  Thus, it can be concluded that the FLC has a latency of 8 clock 

cycles.  For the NNC, the ideal scenario occurs when both input sensory values are “217” (in decimal 

representation), which maps to the predefined distance of 13 cm.  The desired steering output signal 

in this situation is seven.  As illustrated in Figure 29, the desired steering output is achieved 50 ns or 

five clock cycles after adjusting the two inputs to the predefined distance.  Thus, the NNC has a 

latency of is 5 clock cycles, a reduction of approximately 37% from that of the FLC.  With identical 

clock frequencies, a higher latency value means longer output generation time.  Thus, given the same 

clock frequency, the NNC can generate outputs faster compared to the FLC. 

 

In general, a high Fmax along with a small latency is desired.  A design with a higher Fmax value 

but requiring a significant number of clock cycles to generate its output is only comparable in speed 

to a design with a lower Fmax requiring fewer cycles.  To combine these two measures, the 

throughput time of a design is often calculated. The throughput time (TT) is governed by the 

following equation: 

maxF

Latency
TT =         (19) 

It identifies the amount of time for a signal to propagate from an input to an output channel given the 

clock is set to its highest frequency, Fmax.  In other words, it represents the shortest amount of time 
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an output can be generated without undesirable effects. In terms of throughput time, the FLC and the 

NNC require 468.38 ns and 109.96 ns, respectively.  As expected, with smaller latency and higher 

Fmax, the NNC requires less TT, providing an output of approximately four times faster than that of 

the FLC when the clock frequency is set to its maximum value.  This significant time difference is 

mainly due to two reasons.  Firstly, the FLC utilizes a division operation, which is slow in nature 

resulting in a low Fmax value and hence, long TT. Secondly, the small number of hidden neurons 

facilitates a high Fmax while the small number of hidden layers and parallel nature of the NNC limit 

the number of input to output cycles required resulting in a short TT.  Note that this deviation can be 

reduced significantly with more efficient implementation of the divisor in the FLC.  Table 11 

summarizes the maximum clock frequency, the latency and the throughput time for the FLC and the 

NNC.  In general, the NNC provides higher bandwidth compared to the FLC. 

 

Table 11: Operational Speed Comparison 

 FLC NNC 

Fmax (MHz) 17.08 45.47 

Latency (Clock Cycles) 8 5 

TT (ns) 468.38 109.96 

 

5.3.2 Experimental Results 

Controller Validation and Comparison 

Prior to integrating the two intelligent controllers with the prototype system, their corresponding 

hardware implementations are validated.  Control surfaces (three dimensional surfaces illustrating the 

mapping from two sensory inputs to the steering output) generated from Matlab simulations are 

compared to those generated by a soft core microprocessor NIOS II.  676 different scenarios 

uniformly distributed in the input operating ranges of 0 to 511 are investigated.  For generation of a 

control surface utilizing NIOS II, the microprocessor core and one of the two intelligent controllers 

are programmed onto the FPGA.  C code is generated such that the microprocessor successively 

provides the intelligent controller with one of the 676 test patterns.  To collect the corresponding 

output value, the input channel of the microprocessor is connected to the output channel of the 

intelligent controller, as shown in Figure 30. 

Central controller

input1[3..0]

output2[9..0]

output1[9..0]

Intelligent Controller

input1[9..0]

input2[9..0]

o_steer[3..0]

 

Figure 30: Validation Setup 
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Fuzzy Logic Controller Validation 

Figure 31 and Figure 32 present the two control surfaces of the FLC, in which the NIOS II-based 

surface with hardware behavior closely approximates that from the Matlab simulation.  This 

conclusion confirms the overall successfulness of the hardware FLC implementation.   

 

 

Figure 31: FLC Control Surface Generated by NIOS II 

 

 

Figure 32: FLC Control Surface Generated by Matlab 
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An error surface, shown in Figure 33, is formed by subtracting the Matlab control surfaces from the 

NIOS II surface.  The maximum error between the two control surfaces is 1.  This is mainly due to 

the use of an integer divider in the hardware FLC block for realization of (13), which truncates the 

fractional portion of the floating point quotients, if any.  For example, a crisp fuzzy inference output 

of 5.9 will generate a steering output of 8 in Matlab.  However, in the hardware implementation, 

which uses an integer divider, the value of 5.9 will first be truncated into 5, resulting in a steering 

output value of 7.  Note that if the Matlab generated output differs from that of the NIOS II, there is 

always a difference of 1, with the Matlab generated output being the larger value.  To quantize the 

amount of output error, the mean squared error of the error surface is computed to be 0.1080. 

 

 

Figure 33: FLC Error Surface 

 

Neural Network Controller Validation 

To verify the hardware implementation of the NNC, Figure 34 and Figure 35 present the NIOS II-

based control surface and the Matlab-based control surface, respectively.  These control surfaces are 

generated using the same input values as in the FLC validation.  The two NNC surfaces exhibit 

similarities validating the hardware implementation. 
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Figure 34: NNC Control Surface Generated by NIOS II 

 

 

Figure 35: NNC Control Surface Generated by Matlab 

 

Figure 36 illustrates the error surface of the NNC, representing the differences between the NIOS II 

and the Matlab results.  Upon close examination of the surface and its corresponding contour plot 

shown in Figure 37, the maximum error in steering outputs is found to be 2.  Depending on the 

number of occurrences and the location of the error on the error surface, this may or may not be 

significant.  If the difference of 2 constantly changes an output from left steering to right steering, 

then the error becomes significant.  However, if the difference results only in a change in magnitude 
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of the steering output in the same direction, it is insignificant.  Based on Figure 37, the difference of 2 

occurs only in one specific location.  In this case, Matlab simulation provides a steering output of 7, 

corresponding to a steering angle of 0
o
.  In comparison, the hardware NNC block results in a steering 

output of 5, corresponding to a steering angle of 12
o
 to the right.  This variation is mainly due to 

quantization error in the use of the 20-bit fixed point signal representation.  To avoid such a 

difference, more digits in the fixed point representation are required, which directly translates into 

higher computational resource requirements.  Since the discrepancy occurs only in one location and 

 

Figure 36: NNC Error Surface  

 

 

Figure 37: NNC Error Contour Plot 
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sensory data is noisy in nature, coupled with the fact that thousands of computations occur per 

second, this specific error is insignificant and the number of digits in the signal representation is not 

changed.  Overall, the mean squared error of the error surface is calculated to be 0.0178, which is 

relatively small. 

 

Controllers Comparison 

The control surfaces for the FLC and the NNC provided above are somewhat different.  This is due to 

the behavioral difference in the two control techniques.  Figure 38 presents a contour plot, generated 

from the differences between the steering outputs of the hardware FLC and NNC blocks.  As 

illustrated, the FLC and the NNC often provide different output signals.  This difference increases as 

the back sensor distance measurement decreases, corresponding to an increase in sensor value.  In 

some scenarios, the two controllers even provide completely opposite control outputs.  As an 

example, with DSFS and DSBS equal to 400 and 500 respectively, the FLC suggests a steering output 

of 14 corresponding to the maximum steering angle of 30
o
 to the left while the NNC generates a 

steering output of 5 corresponding to 12
o
 to the right.  For this particular case, in which both the front 

and the back sensor distance measurement is small in magnitude, the FLC provides the desired 

response.  The undesired output of the NNC comes from the lack of training data covering the 

selected input ranges.   

 

 

Figure 38: Contour Plot Summarizing the Differences between the NNC and the FLC Control 

Surfaces Generated by NIOS II 
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Another area of interest in the contour plot is when DSFS and DSBS are in the ranges of 200 to 300 

and 50 to 100, respectively.  As another example, let the side front and the side back sensor values be 

250 and 100, respectively, corresponding to a smaller than desired front side sensor distance and a 

larger than desired back side sensor distance.  In this particular case, the FLC and the NNC provide 

steering output values of 6 and 9, respectively.  The steering output value of 9 provided by the NNC 

suggests a steering angle of 12
o
 to the left, which is intuitive for alignment of the vehicle to the wall.  

On the other hand, the steering output of 6 provided by the FLC corresponds to a steering angle of 5
o
 

to the right, allowing the vehicle to move closer to the wall prior to aligning the vehicle. 

 

Trajectory Designs 

To evaluate and compare the performance of the FLC and the NNC, the prototype vehicle is tested in 

the real-world environment.  Three trajectories are designed for this purpose.  Different initial 

distances and wall-following distances are utilized and tested for each of the trajectories, such that an 

overall performance evaluation of the FLC and the NNC can be conducted.  The three different 

trajectories designed for performance evaluation are the straight, angled and corner trajectories. 

 

1) Straight Trajectory: The Straight Trajectory is utilized to evaluate the performance of the two 

controllers in maintaining a pre-defined distance.  The physical dimensions of this trajectory are 

presented in Figure 39.   

 

 

Figure 39: Straight Trajectory 

 

2) Angled Trajectory: In the Angled Trajectory, two turns are utilized; a right-turn of 145 degrees and 

a left-turn of 140 degrees, as shown in Figure 40.  The two turns are used to observe the performance 

of the two controllers when there is a change in the trajectory profile.   

 

 

Figure 40: Angled Trajectory 
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3) Corner Trajectory: For the Corner Trajectory, the performance of the two controllers is compared 

when subjected to abrupt path changes.  This trajectory involves a sharp 270-degree right-hand turn, 

as illustrated in Figure 41.  

 
1
8
3
 c
m

 

Figure 41: Corner Trajectory 

 

Performance Measure 

One method for controller performance evaluation is by means of an objective function, which 

quantizes the level of success in meeting the design goals.  Generally, the function is designed such 

that either a maximum or minimum objective value is desired.  For the FLC and the NNC, the goal is 

to generate an output such that the vehicle follows the wall at a predefined distance.  In other words, 

both sensor measurements should maintain at a specified value. One objective function definition 

illustrating this goal is as follows: 

2

)()( DWDSBSMSEDWDSFSMSE
DW)DSBS,f(DSFS,TTE

−+−
==  (20) 

In equation (20), MSE(DSFS-DW) and MSE(DSBS-DW) represent the mean squared errors of the 

differences between the front side sensor distance and the predefined distance and between the back 

side sensor distance and the predefined distance, respectively.  The objective value, TTE, is also 

known as the trajectory tracking error.  Upon closer examination of (20), for the scenario where the 

front side and back side sensor distances equal to the predefined distance, the function output is 

reduced to zero.  Any variation between the predefined value and the sensor reading increases the 

function output value.  Thus, a minimum objective value is desired. 

 

Trajectory Tracking Error 

For each trajectory, three different experiments were performed given different sets of initial 

distances (DI) and wall-following distances (DW) according to Table 12.  The sensor readings and 

steering outputs from each of the experiments are gathered to graphically illustrate the vehicle paths.  

They are analyzed by computing the trajectory tracking errors as well as rise and fall times to evaluate 
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both the FLC and the NNC.  It is important to note that the vehicle paths presented in this section 

represent typical results only. Although the vehicle paths may differ slightly when the same 

conditions and trajectories are repeated several times, the overall patterns remain the same. 

 

Table 12: Experimental Initial and Wall-following Distances 

Experiment DI (cm) DW (cm) 

#1 10 13 

#2 20 13 

#3 10 10 

 

 

Straight Trajectory 

Figure 42 illustrates the average of the front and back sensor distances with the corresponding 

steering outputs for a straight path.  The initial and wall-following distances from Table 12 are used 

to generate these results.  The corresponding trajectory tracking errors as well as rise and fall times 

are summarized in Table 13.  These values represent mean averages from at least three different test 

runs.  In Table 13, the rise and fall times are defined as the time it takes for the front sensor 

measurement to reach the predefined distance. 

 

Table 13: Straight Trajectory Tracking Error, Rise and Fall Times 

DI (cm) DW (cm) 

FLC 

TTE 

(cm
2
) 

FLC 

RISE/FALL TIMES 

(Time Step) 

NNC 

TTE 

(cm
2
) 

NNC 

RISE/FALL TIMES 

(Time Step) 

10 13 3.15 30 1.82 46 

20 13 5.40 41 4.58 53 

10 10 0.57 - 0.95 - 
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(a) NNC, DW = 13, DI = 10 (b) FLC, DW = 13, DI = 10

(d) FLC, DW = 13, DI = 20(c) NNC, DW = 13, DI = 20

(f) FLC, DW = 10, DI = 10(e) NNC, DW = 10, DI = 10  

Figure 42: Sensor Distances and Steering Outputs of FLC and NNC for the Straight Trajectory 
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In following a predefined distance of 13 cm, the NNC requires longer rise and fall times compared 

to the FLC.  The FLC approaches the desired distance within a shorter timeframe, but with the 

disadvantage of numerous oscillations experienced by the vehicle.  Compared to the FLC, the NNC 

successfully maintains at the pre-defined distance without significant oscillations.  The FLC generally 

utilizes bigger steering outputs, resulting in overshoots and in turn, oscillations.  On the other hand, 

the NNC utilizes smaller steering outputs reducing oscillations, but requiring longer rise and fall 

times.  In terms of trajectory tracking error, the NNC is superior to the FLC.  In both scenarios, with 

initial distances of 10 cm and 20 cm, the trajectory tracking errors are slightly smaller for the NNC 

compared to the FLC.  Similar to the first two scenarios, in following the trajectory at 10 cm, the 

vehicle oscillates more frequently when utilizing the FLC compared to the NNC.  This can be 

attributed to more frequent adjustments in the steering outputs.  In terms of trajectory tracking error, 

the FLC provides a smaller value compared to the NNC in direct contrast to the previously examined 

cases.  For the straight trajectory, the FLC results in a larger trajectory error for the first two scenarios 

while a smaller error is resulted in the last case due to the differences in initial conditions.  In the 10 

cm case, the vehicle is launched at the predefined distance.  It is unnecessary for the FLC to utilize 

large steering outputs, which would have resulted in large overshoots and trajectory errors as in the 

case for following the 13 cm distance.  It can be seen that the NNC for 10 cm predefined distance 

provided similar performance to the case of the nominal 13 cm predefined distance.  This 

demonstrates that the sensor mapping block can be easily applied to other wall-following distances in 

which training was not performed.   

 

Angled Trajectory 

Figure 43 illustrate the sensor distances and steering outputs of the FLC and the NNC as the vehicle 

traverses along the angled path with different initial conditions and wall-following distances.  The 

corresponding trajectory tracking errors, rise and fall times for these scenarios are shown in Table 14. 

 

Table 14: Angled Trajectory Tracking Error, Rise and Fall Times 

DI (cm) DW (cm) 

FLC 

TTE 

(cm
2
) 

FLC 

RISE/FALL TIMES 

(Time Step) 

NNC 

TTE 

(cm
2
) 

NNC 

RISE/FALL TIMES 

(Time Step) 

10 13 35.53 26 7.01 46 

20 13 17.97 38 10.13 48 

10 10 8.47 - 4.71 - 

 

In following a predefined distance of 13 cm, it can be seen that the FLC approaches the desired 

distance faster compared to the NNC.  Near the 200
th
 time step, in which the two controllers react to 

changes in the environment, the FLC generally results in higher average sensor distances.  This is 

mainly due to the fact that at the time of the environmental changes, the FLC responds with smaller  
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(a) NNC, DW = 13, DI = 10 (b) FLC, DW = 13, DI = 10

(d) FLC, DW = 13, DI = 20(c) NNC, DW = 13, DI = 20

(f) FLC, DW = 10, DI = 10(e) NNC, DW = 10, DI = 10  

 Figure 43: Sensor Distances and Steering Outputs of FLC and NNC for the Angled Trajectory 
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steering outputs, resulting in bigger sensor distances from the wall.  For example, in time step 200 of 

Figure 43 (a)-(b), the FLC responds to an average sensor distance of approximately 23 cm with a 

steering output of 5, corresponding to 12
o
 to the right.  In comparison, the NNC responds to an 

average distance of approximately 20 cm with a steering output of 2, corresponding to 26
o
 to the 

right.  Although the FLC compensates with a large angle turn at a later point in time, the vehicle had 

already deviated from the intended path.  Based on Table 14, the NNC provides superior performance 

in following the angled trajectory at 13 cm.  With different initial distances, the trajectory errors are 

smaller for the NNC compared to the FLC.  The difference is more significant in the case where the 

initial distance is 10 cm compared to the 20 cm case.  An analysis on Figure 43 (b) and (d) shows that 

in the first scenario, the vehicle is performing left steering prior to the abrupt change, effectively 

making the change more significant.  However, in the second scenario, the opposite is true.  The 

vehicle is steering to the right in the direction of the change, effectively reducing its effect on the 

average sensor distance.  Results from following a distance of 10 cm are consistent with that from the 

13 cm scenarios.  The trajectory error of the NNC is smaller than that of the FLC.  This observation 

differs from the 10 cm scenario in which it was shown that the NNC had a greater trajectory error 

than the FLC when traversing the straight trajectory.  For the straight trajectory, in which the FLC 

exerted small angle changes for path adjustments, this tactic allowed the vehicle to traverse close to 

the desired path.  However, in the angled trajectory, the angle change required from the FLC was 

applied for an insufficient duration, creating a relatively large deviation from the intended path.   This 

short duration can be partly attributed to the use of the following fuzzy rule: 

R1: IF DIS is NEG AND ANG is NEG THEN φ is c1 

which states that if the back side sensor is close to the wall and the vehicle is oriented away from the 

wall, no steering is applied to the vehicle.  In this scenario, the vehicle moves away from the wall.  

When the vehicle is at a sufficiently far distance from the wall, R1 no longer applies and the vehicle is 

allowed to steer towards the right.  This explains why the vehicle performs several short duration 

right turns in quick succession as seen in Figure 43 (f). 

 

Corner Trajectory 

Figure 44 illustrates the average sensor distances and steering outputs of the FLC and the NNC as the 

robot performs the right-hand turn with various initial distances and a wall-following distance of 13 

cm.  Instead of two different wall-following distances, only one is tested since both the FLC and the 

NNC become ineffective in corner tracking with a smaller wall-following distance.  Table 15 

summarizes the trajectory tracking errors, rise and fall times for the two different scenarios.  A close 

examination of Figure 44 shows that the average sensor distances of the FLC and the NNC peak at 

similar values.  However, the average sensor distances in cases utilizing the NNC return close to the 

desired value faster than that of the FLC.  Investigating the steering outputs of the FLC and the NNC 

shows that the NNC consistently applies a large steering angle for a longer duration when faced with 

abrupt changes.  Based on Table 15, the FLC is inferior to the NNC in following the corner trajectory, 

as illustrated by higher trajectory tracking error values.   
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Table 15: Corner Trajectory Tracking Error, Rise and Fall Times 

DI (cm) DW (cm) 

FLC 

TTE 

(cm
2
) 

FLC 

RISE/FALL TIMES 

(Time Step) 

NNC 

TTE 

(cm
2
) 

NNC 

RISE/FALL TIMES 

(Time Step) 

10 13 287.59 27 218.89 44 

20 13 308.91 40 207.66 47 

 

 

(a) NNC, DW = 13, DI = 10 (b) FLC, DW = 13, DI = 10

(d) FLC, DW = 13, DI = 20(c) NNC, DW = 13, DI = 20  

Figure 44: Sensor Distances and Steering Outputs of FLC and NNC for the Corner Trajectory 
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5.4 Summary 

The design and implementation of two intelligent controllers, namely the FLC and the NNC, are 

presented.  To evaluate their performance, three metrics are utilized.  The first one is associated with 

the utilization efficiency of computational resources comparing the LE, memory and DSP 

requirements.  In this respect, the FLC is superior with a hardware implementation that demands less 

LE, memory bits and DSP units.  The second metric is the controller speed. The FLC and the NNC 

are compared in terms of maximum clock frequency, latency and throughput time.  The NNC 

performs considerably better based on these factors.  A higher maximum clock frequency is achieved 

along with smaller number of input-output cycles.  Accordingly, a shorter throughput time is attained 

generating outputs at approximately four times the speed of the FLC, given that the clock frequency is 

set to its maximum value.  The final metric is the experimental trajectory tracking error.  Both 

controllers exhibit comparable performance in following all three trajectories.  The robotic car with 

the FLC generally approaches the predefined distance faster resulting in shorter rise and fall times.  

However, the vehicle suffers from frequent undesirable oscillations as measured in the average sensor 

distance data.  The NNC generally provides good tracking behavior with smaller trajectory tracking 

error, but requires longer rise and fall times for all cases.   

 

One of the drawbacks of utilizing the NNC is the overhead cost in collecting high quality training 

data that closely simulates the intended trajectory and parameters when the vehicle operates 

autonomously.  The controller is unlikely to provide the same performance in scenarios that were not 

originally considered by the training set compared to those that were.  When the vehicle is tested on 

the trained paths (that is, paths used during training data collection), good performance is obtained 

regardless of the initial condition.  In these scenarios, the network exhibits its learning and 

generalization abilities.  In fact, smaller trajectory tracking errors are achieved in most trained 

scenarios compared to the FLC.  Overall, neural networks are outstanding interpolators but poor 

extrapolators, meaning that they work well in circumstances covered by the training set, but 

underachieve otherwise.  Generally speaking, the FLC should be selected if the amount of 

computational resources is limited.  However, the NNC should be considered in cases where 

bandwidth and trajectory tracking error are limiting factors.   The FLC and the NNC perform well for 

different situations.  Thus, a controller combining features of the two is highly attractive. 
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Chapter 6 

Hybrid Controller Design and Parallel Parking Application 

With the advantages and drawbacks of the fuzzy logic and neural network controllers identified, a 

hybrid controller combining the desired features of both control units is investigated in this chapter.  

By means of switching, the hybrid controller selects between the steering output signal of the fuzzy 

logic and the neural network controller when performing the wall-following task.  The effectiveness 

of the fuzzy logic and the neural network controller in following different trajectories triggers interest 

in their potential applications.  Strong correlations with the lane-following and parallel parking tasks 

make the wall-following controllers applicable in parallel parking systems.  In this chapter, the 

application of the fuzzy logic and the neural network controller in the parallel parking task is studied. 

 

6.1 Hybrid Controller (HC) 

Comparison of the two intelligent wall-following controllers shows that the FLC is less expensive in 

terms of computational resources but provides lower bandwidth.   Based on experimental data, the 

NNC generally provides smaller trajectory tracking errors, but requires longer rise and fall times.  The 

FLC, on the other hand, results in shorter rise and fall times with the disadvantage of undesirable 

oscillations in average sensor distances.  Both controllers demonstrate strengths and weaknesses in 

serving as a wall-follower.  To attain their benefits, a hybrid controller integrates the advantages of 

both.  One method of realizing this type of hybrid controller is by utilizing the means of switching, in 

which a switching controller selects one of several control units for output generation.  The selection 

algorithm embedded in this unit is often dependent on the design goals.   

 

6.1.1 HC Design 

A switching controller is developed for integrating the FLC and the NNC into a hybrid controller. At 

each time step, the switching controller selects one of the two steering outputs from the FLC and the 

NNC as the dominant steering signal.  Based on experimental results, two potential controller 

selection rule sets are generated.  The first is based on the trajectory type.  As the NNC provides 

better performance in the trained trajectories (straight, angled and corner), it should be selected in 

those scenarios.  For trajectories not covered in the training set, the FLC is preferred.  This set of rules 

provides any hybrid type controllers with the benefit of the NNC in terms of small trajectory tracking 

error and the advantage of the FLC in its environment robustness.  Nevertheless, realization of such a 

switching controller poses a challenge.  Without an on-board camera unit capable of collecting large 

amounts of information about the environmental settings ahead of the vehicle, characteristics of 

trajectories such as degree of straightness and rate of change of curvature are difficult to assess.  The 

second rule set is based on the current vehicle configuration with respect to its surrounding 
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environment.  As the employment of the FLC results in shorter rise and fall times, it should be 

utilized in the initial stages of the wall-following experiments.  Once the vehicle has reached within 

close proximity of the desired distance, the NNC should be chosen as it results in better performance 

for maintaining a predefined distance.  Not only does this set of rules attain the benefit of the FLC in 

minimizing the rise and fall times, it also incorporates the small trajectory tracking error feature of the 

NNC.  In addition, this rule set can easily be implemented since the switching condition is only 

dependent on the side sensor distance readings.  Because the vehicle is not installed with a vision 

system, the second rule set is chosen to be implemented on the vehicle.   

 

6.1.2 HC Implementation 

Figure 45 shows the switching controller along with its connections to other hardware modules.  The 

input channel of the switching controller is linked to the central controller for sensory information 

collection.  The corresponding controller selection signal is connected to a multiplexer, which selects 

either the FLC or the NNC as the dominant output to the steering mechanism. 

 

 

Figure 45: Hybrid Control Unit 
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6.1.3 Experimental Results 

To demonstrate the feasibility of the hybrid controller, the prototype vehicle is tested along the same 

trajectories presented in Section 5.3.3.  Figure 46 illustrates the average sensor distances and the 

steering outputs of the FLC, the NNC, and the HC as the robot traverses along the straight path with 

desired wall-following distance of 13 cm and initial distances of 10 cm and 20 cm.  To closely 

examine the rise and fall times of each controller, Figure 47 shows only the first 80 time steps. For 

completeness, the controller selection decisions are also presented in both figures.  They are assigned 

a value of 0 and 1 corresponding to the choice of the FLC and the NNC, respectively.   

 

A close examination of Figure 46 shows that the NNC is chosen most of the time by the switching 

controller.  The FLC is utilized only in the initial phase, accounting for approximately 3% of the 

entire trajectory.  In general, the tracking performance of the hybrid controller is similar to that of the 

NNC, but with the advantage of reduced rise and fall times.  Compared to the FLC, the hybrid 

controller has smaller trajectory tracking errors as illustrated in Table 16. 

 

Table 16: Straight Trajectory Tracking Error, Rise and Fall Times for Different Controllers 

DI 

(cm) 

DW 

(cm) 

FLC 

TTE 

(cm
2
) 

FLC 

RISE/FALL 

TIMES 

(Time Step) 

NNC 

TTE 

(cm
2
) 

NNC 

RISE/FALL 

TIMES 

(Time Step) 

HC 

TTE 

(cm
2
) 

HC 

RISE/FALL 

TIMES 

(Time Step) 

10 13 3.15 30 1.82 46 1.79 28 

20 13 5.40 41 4.58 53 4.13 43 

 

Table 17 summarizes the rise and fall times along with the trajectory tracking errors for different 

trajectory types and initial conditions.  Consistent with observations from tracking the straight 

trajectory, the rise and fall times of the HC is smaller than that of the NNC.  Furthermore, the HC 

produces trajectory tracking errors comparable to that of the NNC and smaller than that of the FLC.   
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(a) FLC, DW = 13, DI = 10 (b) FLC, DW = 13, DI = 20

(d) NNC, DW = 13, DI = 20(c) NNC, DW = 13, DI = 10

(f) HC, DW = 13, DI = 20(e) HC, DW = 13, DI = 10  

Figure 46: Sensor Distances and Steering Outputs of Different Controllers for the Straight Trajectory 
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(a) FLC, DW = 13, DI = 10 (b) FLC, DW = 13, DI = 20

(d) NNC, DW = 13, DI = 20(c) NNC, DW = 13, DI = 10

(f) HC, DW = 13, DI = 20(e) HC, DW = 13, DI = 10  

Figure 47: Sensor Distances and Steering Outputs of Different Controllers for the Straight Trajectory 

in Time Step 1-80 
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Table 17: Trajectory Tracking Error, Rise and Fall Times for Different Controllers and Trajectories  

 

DI 

(cm) 

DW 

(cm) 

FLC 

TTE 

(cm
2
) 

FLC 

RISE/FALL 

TIMES 

(Time Step) 

NNC 

TTE 

(cm
2
) 

NNC 

RISE/FALL 

TIMES 

(Time Step) 

HC 

TTE 

(cm
2
) 

HC 

RISE/FALL 

TIMES 

(Time Step) 

ANGLED 10 13 35.53 26 7.01 46 6.47 28 

ANGLED 20 13 17.97 38 10.13 48 9.39 40 

CORNER 10 13 287.59 27 218.90 44 191.00 28 

CORNER 20 13 308.91 40 207.66 47 201.20 39 

 

The main advantage of the hybrid controller is the combination desirable qualities in both the FLC 

and the NNC.  Small rise and fall times are inherited from the use of the FLC in the initial stage.  At 

the same time, small trajectory tracking errors result from selection of the NNC once the vehicle is in 

close proximity to the predefined distance.  However, these advantages come at the expense of an 

increase in computational resources as both the FLC and the NNC are implemented on the same 

hardware unit.  Because the NNC is utilized most of the time, the same limitations of the NNC apply 

to the hybrid controller when in use. 

 

6.2 Parallel Parking Application 

A typical parallel parking procedure involves initial detection of a suitable parking space and ends 

when the car is parked successfully into the detected space [72].  To determine the current state in the 

parking cycle and the corresponding steering output, parking systems often make use of sensory data 

gathered by sensors equipped around the vehicle.  This is very similar to wall-following systems, in 

which the steering outputs are determined by sensory information.  Figure 48 illustrates the multiple 

steps involved in parallel parking a vehicle.  First, the car moves parallel to the curb and then, stops 

shortly after it passes Car A. Next, it slowly reverses until its rear bumper aligns with the rear bumper 

of Car A. In the subsequent step, the driver of the car would turn the steering wheel all the way to the 

right and slowly move the vehicle backwards. As the front door passes the back bumper of Car A, the 

wheels are straightened. Once the front of the car is clear of Car A, the steering wheel is turned to the 

left as the vehicle continues reversing. Finally, the vehicle is moved back and forth to adjust the gaps 

in the front and rear of the vehicle.   
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Figure 48: A Typical Parallel Parking Procedure [72] 

 

6.2.1 Parallel Parking Controller Design 

Realization of the parallel parking task requires all six sensors equipped on the vehicle.  The parking 

controller uses the sensory information in performing one of five distinct states: Short Distance Wall-

following, Long Distance Wall-following, Parking Maneuver, Reverse Adjustment and Forward 

Adjustment.  In State 1, Short Distance Wall-following, the vehicle is in search of a parking space.  

The vehicle performs wall-following using the intelligent controllers discussed in previous chapters.  

When the vehicle detects the presence of other vehicles, the two short-range side sensor readings 

(DSFS and DSBS) in addition to the front sensor reading provide inputs to the wall-following 

controllers, as shown in Figure 49 (a).  In the absence of a parked vehicle, the distance to the curb is 

measured.  Due to the longer distances involved for curb distance measurements, which is out of the 

detection range of the short-range sensors, the short-range front side sensor reading (DSFS) is 

replaced with the mid-range front side sensor value (DSFM), as shown in Figure 49 (b).   



 

  82 

 

 

Figure 49: Short Distance Wall-following using Different Sensors 

 

The transition from State 1 to State 2 is triggered by the absence of a parked car which signifies the 

presence of a potential parking space.  In State 2, Long Distance Wall-following, the vehicle 

continues the parking space search by wall-following.  The mid-range side sensor readings (DSFM 

and DSBM) along with the front sensor reading compose the input signals as the vehicle traverses 

along the potential spot, as shown in Figure 50 (a).  Once the vehicle reaches the space in which the 

curb ends and the parked vehicle begins, the mid-range front side sensor reading (DSFM) is replaced 

with the short-range front side sensor value (DSFS), as shown in Figure 50 (b).   

 

Transition from State 2 to subsequent states occurs immediately after the vehicle has traversed the 

entire potential space.  Based on the time taken to traverse through the parking spot and the speed of 

the car, the size of the parking space is calculated.  For a sufficiently large space, transition to State 3 

is initiated.  On the other hand, for a space of insufficient size, the controller defaults back to State 1.  

In State 3, Parking Maneuver, the vehicle attempts to move into the parking spot.  The vehicle first 

reverses while using maximum right turn steering until it detects a certain distance on the rear sensor.  

It then initiates straight backward movement until the rear sensor measurement (DR) reaches a second 

distance value.  Lastly, it performs left turn steering while continuously backing into the space.   
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Figure 50: Long Distance Wall-following using Different Sensors 

 

Transition to State 4 is triggered once the vehicle has completely backed into the parking space.  In 

State 4, Reverse Adjustment, the vehicle attempts to align itself with the wall.  The two short-range 

side sensor readings (DSFS and DSBS) are used to perform wall-following in backward direction.  In 

this state, the rear sensor reading (DR) is checked to prevent the vehicle from colliding with a parked 

ehicle behind it.  State 4 terminates when the rear sensor value decreases to a predefined distance at 

which time transition to State 5 is triggered.  In State 5, Forward Adjustment, the vehicle continues 

the wall-following maneuver, but in the forward direction using the two short-range side sensor 

readings (DSFS and DSBS).  This state is completed when the front sensor value (DF) decreases to a 

predefined distance while the overall parking cycle can terminate once the two side sensor 

measurements are below a predefined value.  If this criterion is not met, the controller transitions back 

to State 4. Alternating forward and backward wall-following movements continue until the final side 

sensor readings fall into satisfactory ranges. 

 

6.2.2 Parallel Parking Controller Implementation 

With five distinct states, the parallel parking controller can be realized by a finite state machine. 

Figure 51 presents the corresponding state transition diagram, in which state transitions are triggered 

by sensory information.  Based on the current parking state and specified input conditions, the finite 

state machine generates input signals of the FLC or the NNC, which in turn determines the steering 

output.  The best location to place the state machine is to embed it into the central controller.  With 
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this design, all connections among various hardware modules previously discussed remain 

unchanged, as modifications are applied only to the internal design of the central controller.  In other 

words, only VHDL coding describing the central controller behavior needs to be modified. 

 

 

Figure 51: State Transition Diagram for Parallel Parking Controller 

 

6.2.3 Experimental Results 

To evaluate the performance of the parallel parking system, the prototype vehicle is tested on a setup 

that consists of a valid parking space along a straight wall.  Figure 52 illustrates the physical 

dimensions of the environmental setting. Ideally, the prototype vehicle should first search for a valid 

parking space while performing the wall-following task.  Once a parking spot is found, it should 

parallel park into the spot and adjust itself to be a predefined distance away from the wall. 
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Figure 52: Straight Wall with a Valid Parking Space 

 

Figure 53 and Figure 54 log the sensory inputs and steering outputs of the parking system while 

utilizing the FLC and the NNC to perform the wall-following task.   Corresponding camera snapshots 

for each maneuver are provided.  As mentioned previously, the steering outputs are assigned a range 

of 0 to 6 for right turn steering, 7 for no steering, and 8 to 14 for left turn steering.  For completeness, 

the motion outputs of the vehicle are also presented on the figures.  They are assigned a value of 0, 1 

or 2 corresponding to forward, stop and reverse motion, respectively.  Figure 53 and Figure 54 are 

divided into three sections according to the objectives of the various states. State 1 and State 2 

constitute the Gap Detection phase as the vehicle is in search for a parking space in these states.  State 

3 represents the Parking Maneuver phase, in which the parking maneuvers are executed to move the 

vehicle into the parking spot.  The Final Adjustment phase is composed of State 4 and State 5.  In 

these states, the vehicle performs forward and backward adjustments to position the vehicle in the 

desired final position.   

 

At the beginning of the parking cycle, the vehicle searches for a valid parking spot.  A potential 

parking space is found when the side front sensor, DSFS, detects a distance longer than 22 cm.  The 

potential parking space is then evaluated to determine its validity once the sensor reading returns to a 

distance shorter than 22 cm.  In Figure 53 (a) and Figure 54 (a), DSFS is initially less than 20 cm. The 

value then increases to approximately 40 cm and returns to a value of less than 20 cm, indicating the 

vehicle has successfully detected a potential parking space.  The controller then estimates the length 

of the parking space based on the speed of the vehicle and the length of time in which the detected 

distance is larger than 22 cm.  In this scenario, since the parking space length is larger than the 

required size, the parking maneuver is initiated.  Once a valid parking spot is found, the vehicle 

attempts to move into the space.  According to Figure 53 (b) and Figure 54 (b), the front wheels are 

first steered to the maximum right, while the vehicle travels in the backward direction.  They are then 

steered to the maximum left as the vehicle continuously moves backwards.  As illustrated, the vehicle 

successfully moves into the parking space.  The final step in the parking cycle is to adjust the vehicle 

to the desired location.  In Figure 53 (c) and Figure 54 (c), the vehicle moves back and forth to adjust 

the front and rear gaps.  Figure 53 and Figure 54 show that the vehicle successfully found the parking 

space and performed parallel parking into the given spot utilizing the FLC and the NNC. Hence, the 

designed parking system performs well in general.  

 

 



 

  86 

(a) NNC, Gap Detection

(b) NNC, Parking Maneuver

(f) TLC, DW = 13, DI = 20

(c) NNC, Final Adjustments

 

Figure 53: NNC Parallel Parking Results 
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(f) TLC, DW = 13, DI = 20

(a) FLC, Gap Detection

(b) FLC, Parking Maneuver

(c) FLC, Final Adjustments  

Figure 54: FLC Parallel Parking Results 
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6.3 Summary 

This section provides the design and implementation of a hybrid controller, combining features of the 

fuzzy logic controller in terms of short rise and fall times and the neural network controller in terms 

of small trajectory tracking error.  Experimental results show that the hybrid technique provides 

trajectory tracking error comparable to that of the NNC and better than that of the FLC.  Also, the rise 

and fall times are comparable to the FLC and better than that of the NNC.  The practical applicability 

of the FLC and the NNC in parking systems is demonstrated by creating a parallel parking control 

unit with the two wall-following controllers and a finite state machine.  Based on experimental data, a 

vehicle incorporated with this system successfully found a valid parking space and performed parallel 

parking into this given spot.   
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Chapter 7 

Conclusions 

This research work focuses on the development and comparison of two soft computing based 

controllers, implemented on a reconfigurable hardware unit.  The two control units are designed for 

realization of the wall-following task in vehicular systems, in which the goal is to control the steering 

angle of an autonomous vehicle based only on perception information from various sensors.  A 

prototype vehicle is developed for testing and evaluating the two control algorithms.  In general, the 

FLC utilizes less computational resources due to the use of integer representation and replacement of 

multiplication units with bit shifting circuitry.  In comparison, the NNC utilizes fixed point signal 

representation and LUTs to implement the activation function and sensor value mapping, which is 

more costly in terms of hardware computational resources.  Out of all available units, approximately 

20% more LE, 1% more memory bits and 4% more DSP units are required in the implementation of 

the NNC compared to that of the FLC.  Despite the greater hardware processing and storage element 

requirement, the NNC offers an advantage in bandwidth due to the parallel nature of neural networks 

along with the small number of hidden layers and neurons chosen.  Only five clock cycles is required 

for propagation of a signal from input to output channels.  This is approximately 37% reduction 

compared to the eight clock cycles required by the FLC.  In addition, the maximum frequency of the 

NNC is 45.47 MHz, allowing it to support clock signals with frequencies two times faster than that 

supported by the FLC.  Overall, the throughput time of the NNC is small, with a value of 109.96 ns, 

and approximately four times smaller than that of the FLC. 

 

When comparing the control surfaces of the FLC and the NNC, a scenario in which the NNC is 

inferior to the FLC is discovered.  In this particular case, the FLC provides the desired steering output 

to steer the vehicle away from the wall when the vehicle is initially in close proximity.  However, the 

NNC suggests the opposite action shortening the already small distance between the vehicle and the 

wall.  This result can be attributed to the lack of representative training patterns in the selected 

operating range since the quality of the neural network control unit is limited by the characteristics of 

its training set.  In neural network controller design, the overhead cost in the collection of a set of 

good quality training data can be expensive.  This is a significant drawback of neural networks.  The 

cost in the design phase of fuzzy logic controllers is significantly lower since the data collection 

process is not required.  The major cost in fuzzy logic controller design is essentially the process of 

translating expert knowledge into a set of fuzzy rules.  Also, the definition of fuzzy variables and 

tuning of membership functions also pose a challenge.  Experimental results show that the FLC 

generates shorter rise and fall times in all three predefined trajectories, at the expense of undesirable 

oscillations in average sensor distances.  On the other hand, the NNC provides smaller trajectory 

tracking error in most scenarios, but with longer rise and fall times. Both controllers demonstrate 

strengths and weaknesses in trajectory following.  The development of a hybrid controller in attaining 

the benefits of both controllers is shown to be overall successful.  The hybrid controller selects the 

FLC output in the initial phase of the trajectory and later switches to the NNC when the desired 
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distance is reached. This takes advantage of the small rise and fall times of the FLC as well as the 

small trajectory error of the NNC.  In the hybrid controller design, the main drawbacks of the NNC 

remains as it is selected for steering output in most scenarios.  Also, the amount of resources is 

increased with both the FLC and the NNC implemented in the same hardware unit.  The application 

of the fuzzy logic and the neural network controllers to the parallel parking task is deemed successful.  

By supplying the appropriate steering angles, both controllers parked the prototype vehicle into a 

valid parking space. 

 

With the benefits of the NNC and the FLC identified, future work will focus on other 

methodologies for integration.  For instance, by incorporating a vision sensor, the switching controller 

can select either the FLC or the NNC based on the trajectory type.  Another example is the use of a 

neuro-fuzzy controller, in which the benefits of computational resource requirement of the FLC can 

be integrated with the small trajectory tracking error feature of the NNC without implementing two 

complete controllers. 
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