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Abstract

Coin-flipping is the cryptographic task of generating a random coin-flip between two mis-
trustful parties. Kitaev [19] discovered that the security of quantum coin-flipping protocols
can be analyzed using semidefinite programming. This lead to his result that one party
can force a desired coin-flip outcome with probability at least 1/

√
2.

We give sufficient background in quantum computing and semidefinite programming
to understand Kitaev’s semidefinite programming formulation for coin-flipping cheating
strategies. These ideas are specialized to a specific class of protocols singled out by Nayak
and Shor [29]. We also use semidefinite programming to solve for the maximum cheating
probability of a particular protocol which has the best known security.

Furthermore, we present a family of protocols where one party has a greater probability
of forcing an outcome of 0 than an outcome of 1. We also discuss a computer search to
find specific protocols which minimize the maximum cheating probability.
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Chapter 1

Introduction

Quantum computing is the study of computing using the laws of quantum mechanics.
Classical computers, the computers we all use today, do computations on arrays of bits,
e.g., variables being in either the state 0 or 1. The power of quantum computing is
that it can deal with quantum states, an example being a qubit, which is the quantum
analogue of a bit. A qubit has the possibility of being in the 0 state and the 1 state
simultaneously, and we then say that a qubit is in a superposition of the two bits. The
ability to interfere superpositions makes quantum computing a powerful generalization of
classical computing and can make many problems much easier. Indeed there are quantum
algorithms which provide an exponential speedup over the best classical algorithms. One
of the first breakthroughs for quantum computing is a discovery by Shor. He discovered
a quantum algorithm for factoring integers in polynomial-time [32], a problem for which
no classical polynomial-time algorithms are yet known and many believe that none exists.
Since many cryptographic schemes rely on the assumed intractability of factoring integers,
an implementation of the Shor Algorithm on a quantum computer would be able to break
these schemes efficiently. This raises the question of which classical cryptographic schemes
would not be obsolete in the quantum computing age. If we had access to quantum
computers, then how would communication and the transfer of information change? How
could we view cryptography if we had access to quantum messages? These are some of the
important issues in quantum information theory.

Quantum information theory is the study of how information can be sent over quantum
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2 Thesis

communication channels. This is a very rich theory and is fundamental when studying
quantum cryptography since communication is the underlying task in many cryptographic
schemes. Quantum information theory deals with many of the same issues as classical
information theory, such as data compression and channel capacities. It also has some
interesting results which are not true in classical information theory. One of these results,
which is a fundamental theorem in quantum information theory, is the no-cloning theorem,
see [11] and [42]. The no-cloning theorem states that arbitrary unknown quantum states
can not be copied. This is not the case in classical computing since a classical computer can
easily copy as many bit values as needed. Another important result is that it is not always
possible to distinguish between quantum states, and attempting to do so typically disturbs
the state. Suppose Alice sends a qubit to Bob but Eve, the eavesdropper, intercepts the
qubit. If Eve does not know what state the qubit is in, then it may not be possible for her to
completely determine its state. If she wants to extract any information about the qubit, she
can do so but at the price of disturbing the superposition of the qubit. If the superposition
is disturbed, then she no longer has a copy of the qubit. We see that the no-cloning theorem
is important here since Eve is not able to copy the qubit she has in possession. If she could
copy the qubit, she could determine its state to any level of accuracy. As a consequence
of these two results, the amount of information an eavesdropper can intercept is limited.
This is the basis for many cryptographic schemes such as in quantum key distribution.

Quantum cryptography is the study of cryptography using quantum computers and
quantum communication channels. In quantum cryptography, often we only need to assume
the laws of quantum mechanics. A scenario in quantum cryptography is Alice sending
an encrypted message to Bob which is protected from Eve determining the content of the
message. Many of these schemes use the results mentioned above to limit the information an
eavesdropper can obtain. An example of this is quantum key distribution. Key distribution
is the task of two communicating parties trying to establish a private key. Two parties
who share a private key can use it to encrypt and decrypt messages. The issue is how to
securely exchange private keys when the private key needs to be changed. This is very
hard to implement classically. In the past, private keys were sealed in suitcases and hand-
delivered, which raises security issues of its own. There are quantum protocols for secure
key distribution which resolves the issue of exchanging private keys. The first popular
cryptographic scheme was created by Bennett and Brassard in 1984. They developed a
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protocol for quantum key distribution called BB84, see [8]. This was a huge breakthrough
and it illustrates how quantum computing will change the future of cryptography. The
idea is Alice sends Bob messages through a quantum channel and then they can test to see
if any errors occurred in the transmission. The more information Eve tries to obtain from
the messages the higher the error rate is, alerting Alice and Bob to the eavesdropper and
allowing them to abort the protocol. If they detect that few errors have occurred, they use
the messages to create a private key.

Another scenario in cryptography is multiple parties performing a computation where
the parties are remotely located. The security now sought is to protect against dishonest
parties altering the computation to force a desired result. This type of security differs from
the other scenario since instead of seeking security against third parties gaining informa-
tion, we now seek security from a dishonest party attempting to change the information.
Classically, these protocols are implemented with the security based on assumed computa-
tional limitations. In quantum computing, there are tests each party can perform to see if
the other parties have tried to alter or change the information. This limits how much one
party can effectively ‘cheat.’ An important first step in understanding how such security
can be implemented is to examine how two parties can generate a random coin-flip, a
problem known as coin-flipping.

Coin-flipping is the cryptographic primitive of two mistrustful people trying to generate
a fair coin-flip, where the two parties are not in the same location. The two parties
communicate through sets of messages and then output a bit which has equal probability
of being a 0 or 1. A typical scenario is a recently divorced couple who have moved apart and
enter into a coin-flipping protocol where the resulting bit determines who gets ownership
of their house. This is an example of weak coin-flipping, where the participants desire
opposing outcomes. There is another version, called strong coin-flipping, where no desired
outcomes are assumed. Call the two parties Alice and Bob and suppose that Bob wants
the outcome 0. He may attempt to ‘cheat’ by deviating from the rules of the protocol
trying to force the outcome to be 0 with high probability. As mentioned before, classical
coin-flipping protocols are based on computational limitations. In quantum coin-flipping,
each party is able to test whether or not the other has affected the information, trying
to disturb the probabilities of the outcomes. There are a few different types of security
one can study in coin-flipping, an example being cheat-sensitivity [37]. A cheat-sensitive
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quantum coin-flipping protocol is one in which there is a positive probability of detecting
a cheating attempt of a dishonest party. This type of security can be useful if there is a
high penalty for cheating. Another kind of security studied in coin-flipping is the extent
to which one party can affect the outcome of the protocol. Analyzing this type of security
of strong coin-flipping protocols is the focus of this thesis.

A reason quantum coin-flipping is an interesting problem is the fact that classical coin-
flipping is impossible (without assuming the validity of complexity theoretic conjectures).
It is known that one party can cheat perfectly in a classical coin-flipping protocol by forcing
an outcome with probability 1, see, for instance [24]. When implemented in the quantum
computing framework, we can design coin-flipping protocols where neither party can force
an outcome with probability 1, see [1]. Thus, there is a provable advantage to having
quantum coin-flipping protocols over the classical variety. When designing such protocols,
we seek the security to protect against both parties’ attempts to force either outcome.
Suppose Alice can deviate from the rules and force an outcome of 0 with a maximum
probability of P ∗

A,0. We can similarly define P ∗
A,1, P ∗

B,0, and P ∗
B,1 for the other cheating

probabilities. Any protocol is as insecure as the maximum of these four quantities since we
do not know beforehand who is cheating and towards what outcome. We define the bias,
denoted ε, of a strong coin-flipping protocol as

ε := max{P ∗
A,0, P

∗
A,1, P

∗
B,0, P

∗
B,1} −

1

2
.

The bias is the maximum a party can force a desired outcome above the honest outcome
probability of 1/2. Thus, we have turned the notion of security into an optimization
problem. Due to the underlying convex structure of the state space in the setting of
quantum mechanics, we can analyze the security with semidefinite optimization.

Semidefinite optimization is the study of optimizing a linear function over a positive
semidefinite matrix variable which is subject to affine constraints. This has been applied
to many combinatorial problems, a popular example being the MAX-CUT problem [13].
The MAX-CUT problem is the problem of finding a cut of maximum weight in an edge-
weighted graph. No polynomial-time algorithm for this problem is known to exist. Using
semidefinite optimization, we can solve the MAX-CUT problem in polynomial-time so that
the expected value of the solution is at least 0.87856 times the optimal value, as proved
by Goemans and Williamson [13]. This illustrates that semidefinite optimization is an
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indispensable tool for analyzing some combinatorial problems.
It is significant that semidefinite optimization plays a role in quantum cryptography

since we often examine worst-case scenarios. We attempt to design protocols to nullify
worst cases. This is very important in coin-flipping since a coin-flipping protocol is as
insecure as the maximum any of the two parties can cheat. If a party is going to cheat, there
is no advantage for him/her to cheat in a non-optimal way. This makes it important to be
able to quantify the extent of the cheating capabilities, which is something we can compute
using semidefinite optimization. In fact, semidefinite optimization can also be used to
describe the optimal cheating strategies for each party trying to force either outcome. It is
imperative to keep this in mind when designing new protocols to avoid such opportunities
for either party to cheat.

Coin-flipping is an interesting problem to study for several reasons. One reason is that
coin-flipping is the most basic task in computation involving multiple parties. A solid
understanding of how two people can compute a random coin-flip is key to understanding
how more parties can compute more general functions. Secondly, coin-flipping is often
used as a subroutine in a larger protocol. Thus, it is important to have a coin-flipping
protocol with low bias since it could affect the security of the larger protocol. In fact, there
are cryptographic protocols where the outcome of a coin-flip determines the next step of
the protocol. These reasons illustrate why coin-flipping is an interesting and important
problem to study.

There are some important results known about strong coin-flipping. Mayers [23] and Lo
and Chau [22] proved that a protocol with 0 bias is impossible. Aharonov et al. [1] showed
there exists a protocol with bias strictly less than 1, which is not possible in the classical
case. The upper bound on the best possible bias was improved to ε = 1/4 by Ambainis [2]
and independently by Spekkens and Rudolph [36]. Ambainis [2] showed that if a protocol

has bias ε, then the protocol requires Ω

(
log log

1

ε

)
rounds of communication. This result

holds for weak coin-flipping as well where the bias of a weak coin-flipping protocol is
defined analogously. Kitaev [19] used semidefinite optimization to show the best known
lower bound for strong coin-flipping. He showed that any strong coin-flipping protocol has
bias at least ε ≥ 1/

√
2 − 1/2. Ambainis et al. [5] give a detailed proof of Kitaev’s lower

bound and Watrous and Gutoski [14] give a different proof of the same lower bound. There
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are also some important results about weak coin-flipping. Kerenidis and Nayak [18] showed
that there is a weak coin-flipping protocol achieving a bias of less than 1/4. Spekkens and
Rudolph [37] found a protocol achieving a bias of 1/

√
2 − 1/2, independently found by

Ambainis, see [3]. Mochon [27] showed there exists a protocol with bias 1/6 which is the
best known upper bound for the optimal bias. Ambainis’ lower bound on the number of
rounds of communication is the best known lower bound for the bias in weak coin-flipping.

Our goal is to examine a class of strong coin-flipping protocols based on quantum bit-
commitment, singled out by Nayak and Shor [29]. Examining this class of protocols may
give insight towards the general case of coin-flipping. This class includes the protocols by
Ambainis and Spekkens and Rudolph which have bias ε = 1/4. We analyze these protocols
using semidefinite optimization and illustrate how they also satisfy Kitaev’s lower bound.
We show that asymmetric cheating probabilities arise when there are more than three
rounds of communication, the content of Chapter 9. We also present computational results
for finding the optimal bias in special cases of these protocols.

The next chapter introduces the key concepts of quantum computing. It presents prop-
erties of quantum states and gives their most general representation. This chapter discusses
basic concepts of quantum mechanics such as the evolution of quantum states and projec-
tive measurements. Chapter 3 discusses a linear operator called the partial trace which is
an operator used extensively in quantum computing and appears in semidefinite programs
(the content of later chapters). We investigate a generalization of the Kronecker product
and show its close connection to the partial trace. Chapter 4 discusses a ‘closeness’ measure
for quantum states called the fidelity. This chapter shows properties of the fidelity, which
play an important role in the analysis of coin-flipping protocols and bit-commitment, as
shown in Chapter 8. We also briefly discuss positive definite matrix means. Chapter 5
introduces semidefinite programming. We discuss duality theory which is essential to the
analysis in later chapters. We also give some applications of semidefinite programming in
quantum computing. In Chapter 6, we introduce quantum coin-flipping which is the focus
of the following chapters. We define coin-flipping protocols, cheating strategies, and the
bias of a protocol. Chapter 7 shows the analysis of quantum coin-flipping protocols by for-
mulating cheating strategies as semidefinite programs. We examine Kitaev’s lower bound
which is the best known lower bound for a general coin-flipping protocol. In Chapter 8,
we define a class of coin-flipping protocols based on quantum bit-commitment. A protocol
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with the best known bias belongs to this class and we solve for its bias using semidefinite
optimization. Chapter 9 presents a family of protocols with asymmetric cheating probabili-
ties. We analyze and find cheating strategies for these protocols and show how semidefinite
optimization plays a role. In Chapter 10, we discuss our computational search for protocols
with low bias. We define an equivalence on protocols and show that our search performs
well on a known example.



Chapter 2

Quantum Computing

2.1 Background Material

A Hilbert space is a vector space equipped with an inner product such that the norm
induced by the inner product is a complete metric. We are primarily concerned with
complex Hilbert spaces and denote the set of linear operators L : H → H by L(H).

The set of m×n matrices with complex entries is denoted by Mm,n and the set of n×n
matrices with complex entries is denoted by Mn.

Given two matrices A and B we define their Kronecker or tensor product as

A⊗B =


A1,1B A1,2B · · · A1,nB

A2,1B A2,2B · · · A2,nB
...

... . . . ...
An,1B An,2B · · · An,nB

 .
Properties of the Kronecker product are well-known in literature. We present here some

basic properties of the Kronecker product.

Properties 2.1. Assume A, B, C, and D are matrices and k ∈ C is a scalar. Then we
have the following properties of the Kronecker product.

1. (A+B)⊗ C = A⊗ C +B ⊗ C,

2. A⊗ (B + C) = A⊗B + A⊗ C,

8
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3. k(A⊗B) = kA⊗B = A⊗ kB (Bilinearity),

4. (A⊗B)⊗ C = A⊗ (B ⊗ C) (Associativity),

5. (A⊗B)(C ⊗D) = AC ⊗BD (Mixed-Product Property),

6. Tr (A⊗B) = Tr (A)Tr (B), if A and B are square,

7. det(A⊗B) = det(A)m det(B)n, if A ∈ Mn, B ∈ Mm,

8. (A⊗B)−1 = A−1 ⊗B−1, if A and B are invertible,

9. (A⊗B)∗ = A∗ ⊗B∗,

10. rank (A⊗B) = rank (A) · rank (B).

Given two Hilbert spacesH1, having orthonormal basis B1, andH2, having orthonormal
basis B2, we can create another Hilbert space H1 ⊗H2 having the orthonormal basis

{v ⊗ w : v ∈ B1, w ∈ B2}.

A tensor product of Hilbert spaces is the setting for quantum mechanics, discussed in
Section 2.2.

We say that an operator A ∈ L(H) is a nonnegative operator if

〈h,Ah〉 ≥ 0, ∀h ∈ H,

and a positive operator if
〈h,Ah〉 > 0, ∀h ∈ H \ {0}.

If a matrix is a nonnegative operator we say it is positive semidefinite and if it is a positive
operator we say it is positive definite.

We define
Σn := {X ∈ Mn : X = X∗}

as the set of Hermitian matrices,

Σn
+ := {X ∈ Σn : h∗Xh ≥ 0,∀h ∈ Cn}
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as the set of positive semidefinite matrices, and

Σn
++ := {X ∈ Σn : h∗Xh > 0,∀h ∈ Cn \ {0}}

as the set of positive definite matrices. Note we have the following containments

Σn
++ ⊂ Σn

+ ⊂ Σn.

A positive semidefinite matrix is denoted as X � 0 and a positive definite matrix is denoted
as X � 0 when the dimensions are clear from context. We write A � B meaning A−B � 0

and A � B meaning A−B � 0.
The standard inner product on Mm,n is the trace inner product defined as

〈X, Y 〉 = Tr (X∗Y ).

Given A,B ∈ Σn, we know A = A∗ and B = B∗, so we can write

〈A,B〉∗ = 〈B,A〉 = Tr (B∗A) = Tr (AB∗) = Tr (A∗B) = 〈A,B〉 .

Therefore, 〈B,A〉 = 〈A,B〉 ∈ R, ∀A,B ∈ Σn.
For a matrix X ∈ Mn, we index its eigenvalues in descending order and denote them

as
λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X)

and collect them in a vector and denote it as

λ(X) := [λ1(X), λ2(X), . . . , λn(X)]T .

A basic linear algebra result is that λ(X) ∈ Rn, ∀X ∈ Σn. For a vector x ∈ Rn, we
write x ≥ 0 meaning that each element of x is nonnegative and x > 0 meaning each element
is positive. Using this notation, we also have that

Σn
+ = {X ∈ Σn : λ(X) ≥ 0} and Σn

++ = {X ∈ Σn : λ(X) > 0}.

The above description of positive semidefinite and positive definite matrices serve as alter-
native definitions. Notice that every positive definite matrix is invertible by the absence
of zero eigenvalues.

We now present some well-known results about positive semidefinite matrices and tensor
products. The following can be found in, for example, [38].
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Lemma 2.2. For any two positive semidefinite matrices X,S ∈ Σn
+, we have that

〈X,S〉 ≥ 0.

The following corollary is immediate from linearity of inner products.

Corollary 2.3. For any positive semidefinite matrix X ∈ Σn
+, and matrices A,B ∈ Σn

satisfying A � B, we have that
〈A,X〉 ≥ 〈B,X〉 .

The following lemma characterizes the eigenvalue-eigenvector pairs of tensor products,
see for instance [39].

Lemma 2.4. Suppose A ∈ Mn has eigenvalue-eigenvector pair (λ, v) and B ∈ Mm has
eigenvalue-eigenvector pair (µ,w). Then A⊗B has eigenvalue-eigenvector pair (λµ, v⊗w).

Note that we may not have λ(A⊗B) = λ(A)⊗λ(B) since it may not list the eigenvalues
in descending order.

Next is a very important result relating positive semidefinite matrices and tensor prod-
ucts.

Corollary 2.5. For any two positive semidefinite matrices X ∈ Σn
+ and S ∈ Σm

+ , we have
that

X ⊗ S ∈ Σm·n
+ .

From bilinearity of the tensor product, we have the following corollary.

Corollary 2.6. For any positive semidefinite matrix X ∈ Σn
+, and matrices A,B ∈ Σn

satisfying A � B, we have that
A⊗X � B ⊗X.

We present two well-known lemmas which show properties of Σn
+ we use extensively.

Lemma 2.7. Σn
+ is a convex cone. That is,

X ∈ Σn
+, λ ≥ 0 =⇒ λX ∈ Σn

+ and X,S ∈ Σn
+ =⇒ X + S ∈ Σn

+.
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Next, we mention an important set of automorphisms of the cone of positive semidefinite
matrices.

Lemma 2.8. Given any invertible matrix M ∈ Mn, we have T (·) = M(·)M∗ ∈ Aut (Σn
+)

and T (·) = M(·)M∗ ∈ Aut (Σn
++). That is,

X ∈ Σn
+ ⇐⇒ MXM∗ ∈ Σn

+, for all invertible M ∈ Mn,

and
X ∈ Σn

++ ⇐⇒ MXM∗ ∈ Σn
++, for all invertible M ∈ Mn.

We now define orthogonal projectors which we use in quantum computing.

Definition 2.9 (Orthogonal Projector). Let H be an inner product space and let G ⊆ H
be a subspace of H. Then we define Π ∈ L(H) to be the orthogonal projector onto G if it
satisfies

Π(v) = v, ∀v ∈ G, and Π(w) = 0, ∀w ∈ G⊥.

Immediate from the definition is that orthogonal projectors are idempotent, that is,
any orthogonal projector Π ∈ L(H) satisfies Π2 = Π. Also, every orthogonal projector
Π ∈ L(H) satisfies λ(Π) ∈ {0, 1}dim(H).

2.2 Quantum Computing Definitions and Notation

This section presents some basic concepts of quantum computing. A reference for many of
these results and related linear algebra results is [31].

A pure quantum state |ψ〉 is a vector with unit norm in a Hilbert space H and H is the
corresponding state space. In quantum computing we use Dirac notation for vectors which
includes |ψ〉, read as “ket ψ,” and 〈ψ| := |ψ〉∗, read as “bra ψ.” We use 〈ψ|φ〉 to denote the
inner product on H of the vectors |ψ〉 , |φ〉 ∈ H and |ψ〉〈φ| to denote the outer product.

Using this notation, we have that

ΣH
+ = {A ∈ Σn : 〈ψ|A |ψ〉 ≥ 0, ∀ |ψ〉 ∈ H}

and
ΣH

++ = {A ∈ Σn : 〈ψ|A |ψ〉 > 0, ∀ |ψ〉 ∈ H \ {0}}.
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Notice that Tr |ψ〉〈ψ| = 〈ψ|ψ〉 = ‖|ψ〉‖2 = 1 for any quantum state |ψ〉 and |ψ〉〈ψ| is a
matrix with rank and trace equal to 1. Another useful fact to note is the resolution of the
identity, which states that ∑

|φ〉∈B

|φ〉〈φ| = IH,

for any orthonormal basis B of the Hilbert space H.
The quantum analogue of a bit is a qubit and the quantum analogue of a trit is a qutrit.

A bit can take two values so we define a qubit to be a unit vector in the two-dimensional
Hilbert space C2. A qubit |ψ〉 can thus be represented in the form

|ψ〉 =

[
α

β

]
,

where
|α|2 + |β|2 = 1.

Notice if we let

|0〉 :=

[
1

0

]
and |1〉 :=

[
0

1

]
,

we can represent a qubit in the form

α |0〉+ β |1〉 , where |α|2 + |β|2 = 1,

and we say |ψ〉 is in a superposition of the states |0〉 and |1〉.
The power of quantum computing comes from the fact that it can deal with quantum

states being in a superposition of many basis states. We say that {|0〉 , |1〉} is the com-
putational basis for C2. Not every quantum state is a qubit however. For example, we
could have a quantum state of multiple qubits. For this we need to be able to describe
the corresponding state space. It turns out that the state space for multiple states is the
tensor product of the individual state spaces. I.e., if we have a state of three qubits, the
corresponding state space is C2 ⊗ C2 ⊗ C2 = C23 .

Given a matrix M ∈ Mm,n, we have the correspondence between linear algebra notation
and Dirac notation given as

M = [mi,j] =
m∑
i=1

n∑
j=1

mi,j|i〉〈j|.



14 Thesis

Notice that |i〉〈j| = Ei,j where {Ei,j : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} is the standard basis
for Mm,n.

There is more notation which makes things easier. Notice |1〉⊗|1〉 ∈ C2⊗C2 is another
quantum state. When we write this state, we usually leave out the tensor products or take
this a step further and include it in one large ket, i.e., |1〉 |1〉 or |11〉. Note that this could
be confused whether this is “11” in binary or another basis state such as “11” in state space
C12, but the former should be assumed unless the context suggests otherwise. Suppose we
have a multiple qubit state space H := C2 ⊗ · · ·C2. We use the notation |0〉H := |0 · · · 0〉
to denote multiple qubits initialized to the |0〉 state. Usually only qubits not in the |0〉
state are explicitly mentioned.

With these conventions, consider the following two-qubit quantum states

|ψ1〉 :=
1√
2
|00〉+

1√
2
|01〉 and |ψ2〉 :=

1√
2
|00〉+

1√
2
|11〉 .

We see that |ψ1〉 has the tensor product factorization |ψ1〉 = |0〉
(

1√
2
|0〉+ 1√

2
|1〉
)
. A quick

check shows that |ψ2〉 does not have such a factorization, the two qubits are then said to
be entangled.

2.3 Ensembles and Density Matrices

We define an ensemble as a probability distribution over pure states in state space H,
denoted as

E := {(pi, |ψi〉) : i ∈ {1, . . . , k}, |ψi〉 ∈ H}.

This is also referred to as a mixed state. As a convention, we use {pi, |ψi〉} to denote an
ensemble when the dimension is clear from context. For an ensemble {pi, |ψi〉}, we define
its corresponding density matrix as ∑

i

pi|ψi〉〈ψi|.

We also say that X ∈ Σn is a density matrix if there exists an ensemble for which it is the
density matrix. This is the most general description of a quantum state. Suppose ρ is the
density matrix of the ensemble {pi, |ψi〉}. It could be the case that ρ is also the density
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matrix of a different ensemble {p′i, |ψ′i〉}. If two ensembles have the same density matrix
they are said to be equivalent. Equivalent ensembles behave the same way under quantum
operations and quantum measurements, see Section 2.5. Thus, they are effectively the
same quantum state.

Suppose we have two parties, Alice and Bob, who have respective state spaces A and B.
If Alice and Bob share a quantum state |ψ〉 ∈ A ⊗ B, then neither have total control over
|ψ〉. Mixed states are used to describe parts of quantum states over a tensor product when
the other part of the state space is not available. This is discussed further in Chapter 3.

The following theorem is a fundamental result which is essential to the discussion in
later chapters. It can be found in abundance in the literature, for example, see [31].

Theorem 2.10 (Density Matrix Equivalence). Given a matrix X ∈ ΣH, we have that X
is a density matrix if and only if X ∈ ΣH

+ and Tr (X) = 1.

Proof. Suppose X is a density matrix of the ensemble {pi, |ψi〉}, that is, X :=
∑
i

pi|ψi〉〈ψi|.

Then we have

Tr (X) = Tr

(∑
i

pi|ψi〉〈ψi|

)
=
∑
i

piTr |ψi〉〈ψi| =
∑
i

pi〈ψi|ψi〉 =
∑
i

pi = 1.

For any |h〉 ∈ H, we have

〈h|X |h〉 = 〈h|

(∑
i

pi|ψi〉〈ψi|

)
|h〉 =

∑
i

pi〈h|ψi〉〈ψi|h〉 =
∑
i

pi|〈h|ψi〉|2 ≥ 0.

Thus, X ∈ ΣH
+ and Tr (X) = 1.

Now suppose we are given X ∈ ΣH
+ where Tr (X) = 1. The spectral decomposition of X is

given as

X =
n∑
i=1

λi(X)|vi〉〈vi|,

where (λi(X), |vi〉) is an eigenvalue-eigenvector pair of X with ‖|vi〉‖ = 1, for all i in the
set {1, . . . , dim(H)}. Thus, X is the density matrix of the ensemble {λi(X), |vi〉}.

Using this equivalence, we define the set of density matrices over state space H as

DH := {X ∈ ΣH
+ : Tr (X) = 1}.
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For ease of notation, we denote DCn simply as Dn.
One may think a more general description of a quantum state is being in a probabilistic

mixture of density matrices. We can describe a quantum state in this manner by defining
the density matrix of an ensemble of density matrices {pi, ρi} as∑

i

piρi.

We show that this is a density matrix as defined earlier, thus we have not abused notation.
The following is a well-known result.

Lemma 2.11. The density matrix of a probabilistic mixture of density matrices is a density
matrix.

Proof. Consider the ensemble of density matrices {pi, ρi} and its density matrix

X :=
∑
i

piρi.

Then

Tr (X) = Tr

(∑
i

piρi

)
=
∑
i

piTr (ρi) =
∑
i

pi = 1.

For any |h〉 ∈ H, we have that

〈h|X |h〉 = 〈h|

(∑
i

piρi

)
|h〉 =

∑
i

pi 〈h| ρi |h〉 ≥ 0,

since ρi ∈ ΣH
+ and pi ≥ 0. The result now follows from Theorem 2.10.

The above lemma shows that DH is a convex set, i.e.,

λ ∈ [0, 1] and ρ1, ρ2 ∈ DH =⇒ λρ1 + (1− λ) ρ2 ∈ DH.

2.4 Evolution of a Quantum State

Suppose we have an operator M ∈ L(H) acting on a quantum state |ψ〉 ∈ H. If H is
finite dimensional, what conditions must M satisfy? Suppose we want any such action to
produce another quantum state, then it must preserve unit norm, i.e., we require

‖M |ψ〉‖2 = 1, ∀ |ψ〉 ∈ H.
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From this we see that M must be unitary. In fact, any unitary matrix is a valid operation
on a quantum state.

Suppose we are given a density matrix ρ ∈ Dn, how does one apply a unitary to this
quantum state? It turns out applying the unitary U to the density matrix ρ yields the
density matrix UρU∗, we now show why this is the case. Suppose ρ is the density matrix
of the ensemble E := {pi, |ψi〉} and we apply the unitary U to each of the states in E . This
yields a new ensemble, namely E ′ := {pi, U |ψi〉}. By definition, the density matrix of E ′ is

∑
i

pi(U |ψi〉)(U |ψi〉)∗ =
∑
i

piU |ψi〉〈ψi|U∗ = U

(∑
i

pi|ψi〉〈ψi|

)
U∗ = UρU∗,

where ρ is the density matrix of E .
There are more physically possible operations on a quantum state and these operations

are called quantum operations.

Definition 2.12 (Quantum Operation). Suppose we are given the following set of matrices
A := {Ai : i ∈ {1, . . . , k}, Ai : H → G} which satisfy

∑k
i=1A

∗
iAi = IH. We define a

quantum operation GA : L(H) → L(G) as

GA(X) :=
k∑
i=1

AiXA
∗
i .

The elements of the set A in the above definition are called “Kraus operators.” Quantum
operations are defined to act on any matrix X ∈ L(H), though we are concerned with their
actions on density matrices.

We now show the following well-known results that quantum operations are trace-
preserving and preserve positive semidefiniteness.

Lemma 2.13. Given a set of matrices A := {Ai : i ∈ {1, . . . , k}, Ai : H → G} satisfying∑k
i=1A

∗
iAi = IH, we have

Tr (GA(X)) = Tr (X), ∀X ∈ L(H).

Proof. Suppose we are given a set of matrices A := {Ai : i ∈ {1, . . . , k}, Ai : H → G}
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satisfying
∑k

i=1A
∗
iAi = IH. Then we have

Tr (GA(X)) = Tr

(
k∑
i=1

AiXA
∗
i

)

=
k∑
i=1

Tr (AiXA
∗
i )

=
k∑
i=1

Tr (A∗iAiX)

= Tr

(
k∑
i=1

A∗iAiX

)
= Tr (X).

We now show that quantum operations preserve positive semidefiniteness.

Lemma 2.14. Given a set of matrices A := {Ai : i ∈ {1, . . . , k}, Ai : H → G} satisfying∑k
i=1A

∗
iAi = IH, we have X � 0 =⇒ GA(X) � 0. Furthermore, if dim(G) ≤ dim(H)

and Aj has full row rank for some j ∈ {1, . . . k}, then we have X � 0 =⇒ GA(X) � 0.

Proof. Suppose we are given X � 0 and A := {Ai : i ∈ {1, . . . , k}, Ai : H → G} with∑
iA

∗
iAi = IH. Then, for an arbitrary |h〉 ∈ G, we have

〈h|GA(X) |h〉 = 〈h|

(∑
i

AiXA
∗
i

)
|h〉 =

∑
i

〈h|AiXA∗i |h〉 =
∑
i

〈hi|X |hi〉 ,

where |hi〉 := A∗i |h〉. Therefore, 〈h|GA(X) |h〉 =
∑

i 〈hi|X |hi〉 ≥ 0, since X � 0. Now,
further suppose that h 6= 0, X � 0, dim(G) ≤ dim(H), and Aj has full row rank for some
j ∈ {1, . . . , k}. Since A∗j has full column rank, |hj〉 = A∗j |h〉 6= 0. Therefore, we have

〈h|GA(X) |h〉 =
∑
i

〈hi|X |hi〉 ≥ 〈hj|X |hj〉 > 0,

since X � 0 and |hj〉 6= 0. Since |h〉 was chosen arbitrarily, this proves the result.

The following corollary is immediate from Theorem 2.10.
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Corollary 2.15. Suppose A := {Ai : i ∈ {1, . . . , k}, Ai : H → G} is a set of matrices
satisfying

∑k
i=1A

∗
iAi = IH. If X is a density matrix, then so is GA(X).

The converse does not hold in general. To see this, consider the matrix

X = 2|0〉〈0| − |1〉〈1| ∈ L(C2),

which is not positive semidefinite by the presence of a negative eigenvalue. Consider the
set A := {〈0| , 〈1|} which defines a quantum operation since |0〉〈0| + |1〉〈1| = IC2 . Notice
GA(X) = [2] + [−1] = [1], thus GA(X) is a density matrix in L(C), but X is not a density
matrix in L(C2).

2.5 Projective Measurements

Another operation on quantum states which is physically possible is a measurement. A
measurement is when you “observe” a quantum state to obtain information about its state.
A quantum state remains in superposition as long as it is in a closed system. A mea-
surement consists of anything that obtains information about the state. If we introduce
a measuring device then the system is no longer closed and this typically disturbs the
superposition of the state. For example, a qubit |ψ〉 in a superposition of the states |0〉
and |1〉 can be written as

|ψ〉 =
1∑
i=0

αi |i〉 , where
1∑
i=0

|αi|2 = 1.

If we were to measure the qubit, then the possible outcomes are{
0, with probability |α0|2,
1, with probability |α1|2.

The sum of the probabilities is 1 due to the norm condition on quantum states. This is
an example of measuring a qubit in the computational basis. When the state space has
multiple tensor factors, it is possible to measure only part of a state. It is also possible to
measure in other orthonormal bases as well, demonstrated in the following example. Sup-
pose we measure the subspace K from the quantum state |ψ〉 ∈ H⊗K in the orthonormal
basis {|νi〉} of K. This can be done by writing |ψ〉 as



20 Thesis

|ψ〉 =
∑
i

√
αi |ξi〉 |νi〉 ,

for some states |ξi〉 ∈ H, where αi ≥ 0 satisfy
∑

i αi = 1. Then the measurement pro-
duces outcome |νi〉 with probability αi and “collapses” |ψ〉 to the state consistent with the
outcome, i.e., |ξi〉 |νi〉.

We can also describe the process of measuring in a basis using a projective measurement.

Definition 2.16 (Projective Measurement). A projective measurement on a Hilbert space
H is a set of mutually orthogonal projectors {Πi ∈ L(H) : i ∈ {1, . . . , n}}, such that

n∑
i=1

Πi = IH.

Suppose we have a state |ψ〉 ∈ H and we measure it using the projective measurement
{Πi ∈ L(H) : i ∈ {1, . . . , n}}. The probability of outcome i is given by

pi := 〈Πi, |ψ〉〈ψ|〉 ,

leaving the post-measurement state

1
√
pi

Πi |ψ〉 .

We can also measure mixed states in the same way. This is done by measuring each state in
the ensemble. Suppose we have the ensemble E := {qj, |ψj〉}. The probability of outcome
i is given by

pi =
∑
j

qj 〈Πi, |ψj〉〈ψj|〉

=

〈
Πi,
∑
j

qj|ψj〉〈ψj|

〉
= 〈Πi, ρ〉 ,

where ρ is the density matrix of E . This leaves the post-measurement mixed state{
qjpi,

1
√
pi

Πi |ψj〉
}
.
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This ensemble has the density matrix∑
j

qj

(
1

pi
Πi|ψj〉〈ψj|Πi

)
=

ΠiρΠi

〈Πi, ρ〉
.

We again consider measuring the subspace K from a state |ψ〉 ∈ H ⊗ K in the basis
{|νi〉}. We can do this by defining the projective measurement

{Πi = IH ⊗ |νi〉〈νi|}.

This agrees with the definition of a projective measurement since {IH⊗ |νi〉〈νi|} is a set of
mutually orthogonal projectors and the resolution of the identity tells us that∑

i

IH ⊗ |νi〉〈νi| = IH ⊗ IK = IH⊗K.

We verify this with the previous example. If we measure the state

|ψ〉 :=
∑
i

√
αi |ξi〉 |νi〉 ∈ H ⊗K

with the projective measurement {Πi = IH⊗|νi〉〈νi|}, we obtain outcome i with probability

pi := 〈Πi, |ψ〉〈ψ|〉

=

〈
IH ⊗ |νi〉〈νi|,

∑
j,k

√
αjαk |ξj〉 〈ξk| ⊗ |νj〉 〈νk|

〉
=

∑
j,k

√
αjαk〈νi|νj〉〈νk|νi〉Tr |ξj〉〈ξk|

=
√
αiαiTr |ξi〉〈ξi|

= αi.

This leaves the post-measurement state

1
√
pi

Πi |ψ〉 =
1
√
αi

(IH ⊗ |νi〉〈νi|)

(∑
j

√
αj |ξj〉 |νj〉

)

=
1
√
αi

∑
j

√
αj |ξj〉 |νi〉 〈νi|νj〉

= |ξi〉 |νi〉 .
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This agrees with our original description of measuring a subspace of a state in the basis
{|νi〉}.

We now return to our discussion of quantum operations. Quantum operations are
physically possible operations on quantum states. Suppose we want to perform a quantum
operation on the state |ψ〉 ∈ H. We pad this state with an ancilla, |0〉 ∈ K, to create the
state |ψ〉H |0〉K. Suppose we perform a unitary U ∈ L(H⊗K) on |ψ〉H |0〉K then measure
the subspace K. This process can be described by a quantum operation on H. Conversely,
every quantum operation can be described in this manner.

Suppose we have a qubit entangled with another qubit but the other qubit is in another
person’s control. What statistical information do we have about the qubit? What if the
other qubit has been measured? If the other party measured the qubit, then our qubit is
in a probability distribution of possible states, as explained above. Thus, our qubit can be
described as a density matrix. The operation which obtains this density matrix from the
two entangled qubits is called the partial trace, which is examined in the next chapter.



Chapter 3

The Partial Trace and Partitioned
Matrix Theory

3.1 The Partial Trace

Definition 3.1 (Partial Trace). Suppose we are given the Hilbert space H := H1⊗H2⊗H3

and a matrix X ∈ L(H). We define the partial trace over H2 of X as

TrH2(X) :=
∑
|e〉∈B

(IH1 ⊗ 〈e| ⊗ IH3)X(IH1 ⊗ |e〉 ⊗ IH3),

where B is any orthonormal basis of H2.

The above definition of the partial trace is general since we can set H1 = C1 and/or
H3 = C1. This is because the only unit vector in C1 is 1 itself, and we can write X as
X = 1⊗X = X ⊗ 1.

The following well-known result states that the partial trace is well-defined.

Lemma 3.2. The partial trace is well-defined, i.e., the definition is independent of the
choice of orthonormal basis of H2.

Proof. Recall the resolution of the identity∑
|e〉∈B

|e〉〈e| = IH,

23
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for any orthonormal basis B of a Hilbert space H. Suppose we have the Hilbert space
H := H1⊗H2⊗H3. For two arbitrary bases B1 and B2 for H2, we can write the following.

TrH2(X) =
∑
|e〉∈B1

(IH1 ⊗ 〈e| ⊗ IH3)X(IH1 ⊗ |e〉 ⊗ IH3)

=
∑
|e〉∈B1

(IH1 ⊗ 〈e|

 ∑
|f〉∈B2

|f〉〈f |

⊗ IH3)X(IH1 ⊗

 ∑
|f ′〉∈B2

|f ′〉〈f ′|

 |e〉 ⊗ IH3)

=
∑

|e〉∈B1,|f〉,|f ′〉∈B2

(IH1 ⊗ 〈e|f〉 〈f | ⊗ IH3)X(IH1 ⊗ |f ′〉 〈f ′|e〉 ⊗ IH3)

=
∑

|e〉∈B1,|f〉,|f ′〉∈B2

〈e|f〉〈f ′|e〉(IH1 ⊗ 〈f | ⊗ IH3)X(IH1 ⊗ |f ′〉 ⊗ IH3)

=
∑

|f〉,|f ′〉∈B2

〈
|f〉〈f ′|,

∑
|e〉∈B1

|e〉〈e|

〉
(IH1 ⊗ 〈f | ⊗ IH3)X(IH1 ⊗ |f ′〉 ⊗ IH3)

=
∑

|f〉,|f ′〉∈B2

〈|f〉〈f ′|, IH2〉 (IH1 ⊗ 〈f | ⊗ IH3)X(IH1 ⊗ |f ′〉 ⊗ IH3)

=
∑

|f〉,|f ′〉∈B2

〈f ′|f〉(IH1 ⊗ 〈f | ⊗ IH3)X(IH1 ⊗ |f ′〉 ⊗ IH3)

=
∑
|f〉∈B2

(IH1 ⊗ 〈f | ⊗ IH3)X(IH1 ⊗ |f〉 ⊗ IH3).

Thus, we can write the partial trace using any choice of orthonormal basis B of H2.

Notice that TrH2 = GA, where A := {IH1⊗〈e|⊗IH3 : |e〉 ∈ B} and B is any orthonormal
basis of H2. Thus the partial trace is a quantum operation. Since IH1 ⊗ 〈v| ⊗ IH3 has full
row rank, for any nonzero vector |v〉, we have the following corollary of Theorem 2.14.

Corollary 3.3. Given a Hilbert space H := H1 ⊗ H2 ⊗ H3 and X ∈ L(H), we have the
following.

1. Tr (X) = Tr (TrH2(X)),

2. X � 0 =⇒ TrH2(X) � 0, and

3. X � 0 =⇒ TrH2(X) � 0.
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Therefore, taking the partial trace of a density matrix yields another density matrix.
Suppose we have a quantum state |ψ〉 ∈ H ⊗ K. If we measure the subspace K of the

state and discard the outcome, the remaining state is a mixed state over H. Let ρ be the
corresponding density matrix of this mixed state. Then the partial trace is defined so that

ρ = Tr K|ψ〉〈ψ|.

We call ρ the reduced density operator of the state |ψ〉 on H. Thus, the partial trace is the
operation of measuring a subspace and discarding the outcome. We say that a subspace
of a quantum state has been “traced out” when we examine its reduced density matrix.

Since the basis for the subspace being traced out can be arbitrarily chosen, we have

TrH2(ρ) = TrH2 [(IH1 ⊗ UH2 ⊗ IH3)ρ(IH1 ⊗ U∗
H2
⊗ IH3)],

for any unitary matrix UH2 and any density matrix ρ ∈ DH1⊗H2⊗H3 .
The following is a well-known result which is important in the discussion of coin-flipping

(the content of Chapter 6).

Lemma 3.4 ([22, 23]). Suppose we are given a density matrix ρ ∈ DH and two states
|ψ〉 , |φ〉 ∈ H⊗K satisfying Tr K|ψ〉〈ψ| = Tr K|φ〉〈φ| = ρ. Then there exists a unitary matrix
U ∈ L(K) such that

(IH ⊗ U) |ψ〉 = |φ〉 .

We now show that the partial trace cannot be written in a certain way.

Theorem 3.5. Suppose we have a Hilbert space H := H1 ⊗H2 ⊗H3 satisfying

dim(H1) · dim(H3) ≥ 2 and dim(H2) ≥ 2.

Then TrH2 cannot be written as TrH2(·) = M(·)M∗, for a matrix M : L(H) → L(H1⊗H3).

Proof. Suppose we are given a Hilbert space H := H1⊗H2⊗H3 where h1 := dim(H1) and
h3 := dim(H3) satisfy h1h3 ≥ 2 and h2 := dim(H2) ≥ 2. Assume the partial trace can be
written as M(·)M∗, for some matrix M : L(H1 ⊗H3) → L(H). Define the quantum state

|ψ〉 :=
1√
2

(|000〉+ |h1 − 1〉 |h2 − 1〉 |h3 − 1〉) .
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By assumption we know that

TrH2 |ψ〉〈ψ| = M |ψ〉〈ψ|M∗ = (M |ψ〉)(M |ψ〉)∗,

which is a rank 1 matrix. We also have that

TrH2|ψ〉〈ψ| =

h2−1∑
i=0

(IH1 ⊗ 〈i| ⊗ IH3)|ψ〉〈ψ|(IH1 ⊗ |i〉 ⊗ IH3)

=
1

2
|0〉〈0|H1 ⊗ |0〉〈0|H3 +

1

2
|h1 − 1〉〈h1 − 1|H1 ⊗ |h3 − 1〉〈h3 − 1|H3 .

Since h1h3 ≥ 2, we know that
1

2
|0〉〈0|H1 ⊗ |0〉〈0|H3 +

1

2
|h1− 1〉〈h1− 1|H1 ⊗ |h3− 1〉〈h3− 1|H3

is a rank 2 matrix, which is a contradiction.

To give an explicit characterization of the partial trace, we need the following definition.

Definition 3.6 (p-Block Submatrix). Suppose we are given J ⊆ {0, 1, . . . ,m − 1} and a
matrix X ∈ Mm·p. We define the p-block submatrix of X, denoted X[J ]p, as

X[J ]p := {[Xi,j] : i, j ∈ J} =
∑
i,j∈J

|i〉〈j| ⊗Xi,j,

where Xi,j is the i, j’th p× p block of X.

Note in the above definition we start indexing from 0 instead of 1. This eases notation
since the computational basis for Cm is {|0〉 , |1〉 , . . . , |m− 1〉}.

Recall the definition of the adjoint of a linear operator.

Definition 3.7. Given a linear operator A : V → W , where V and W are Hilbert spaces,
the adjoint of A, denoted A∗, is defined to be the unique linear operator satisfying

〈Av, w〉W = 〈v,A∗w〉V , ∀v ∈ V, ∀w ∈ W.

Define T : Mm·p → Mp·|J | to be T (X) = X[J ]p, for some J ⊆ {0, 1, . . . ,m − 1}. Let
Z[J ]∗p := T ∗(Z) and j0, j1, . . . , j|J |−1 be an ordering of indices in J . Then we can write
X = Z[J ]∗p as

[Xi,j] =

{
[0] , if i 6∈ J or j 6∈ J,

[Zl,k] , if i = jl and j = jk.

We can alternatively write X = Z[J ]∗p as
m·p−1∑
i,j=0

|i〉〈j| ⊗Xi,j, for Xi,j above.
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Example 3.8. Given the matrix X below, we can find the 2-block submatrix X[0, 2]2.
(Recall we start indexing from 0.)

X :=



X11 X12 X13 X14 X15 X16

X21 X22 X23 X24 X25 X26

X31 X32 X33 X34 X35 X36

X41 X42 X43 X44 X45 X46

X51 X52 X53 X54 X55 X56

X61 X62 X63 X64 X65 X66


, X[0, 2]2 =


X11 X12 X15 X16

X21 X22 X25 X26

X51 X52 X55 X56

X61 X62 X65 X66

 .

Given the matrix Z below, we can find Z[0, 2]∗2.

Z :=


Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44

 , Z[0, 2]∗2 =



Z11 Z12 0 0 Z13 Z14

Z21 Z22 0 0 Z23 Z24

0 0 0 0 0 0

0 0 0 0 0 0

Z31 Z32 0 0 Z33 Z34

Z41 Z42 0 0 Z43 Z44


.

The following result is well-known and widely used in practice.

Theorem 3.9. Suppose we are given H := Cm1 ⊗ Cm2 ⊗ Cm3, where m1,m2, and m3 are
positive integers. Let (k, i) be the base m2 representation of km2+i. Then we can explicitly
write the partial trace over Cm2 as

Tr Cm2 (X) =

m2−1∑
i=0

X[Ji]m3 ,

where Ji := {(k, i) : k ∈ {0, 1, . . . ,m1 − 1}} for each i ∈ {0, 1, . . . ,m2 − 1}.

Proof. Suppose we have H := Cm1 ⊗ Cm2 ⊗ Cm3 . Then we can write

Im1 ⊗ 〈0| ⊗ Im3 = Im1 ⊗
[
Im3 0

]
=


Im3 0 0 0 · · ·
0 0 Im3 0 · · ·
...

...
...

... . . .

 ,
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and

Im1 ⊗ |0〉 ⊗ Im3 = Im1 ⊗

[
Im3

0

]
=


Im3 0 · · ·
0 0 · · ·
0 Im3 · · ·
0 0 · · ·
...

... . . .

 .
By block matrix multiplication, we have that

(Im1 ⊗ 〈0| ⊗ Im3)X(Im1 ⊗ |0〉 ⊗ Im3) = X[J0]m3 ,

where Ji := {(k, i) : k ∈ {0, 1, . . . ,m1 − 1}} for each i ∈ {0, 1, . . . ,m2 − 1}. Similarly, for
any i ∈ {0, . . . ,m2 − 1}, we have that

(Im1 ⊗ 〈i| ⊗ Im3)X(Im1 ⊗ |i〉 ⊗ Im3) = X[Ji]m3 ,

giving the result.

We use the notation (k, i) throughout this discussion. We now give an alternative proof
of Theorem 3.9 using Dirac notation.

Proof. Suppose we are given X ∈ L(Cm1 ⊗ Cm2 ⊗ Cm3). We can write X as

X =

m1−1∑
k,l=0

|k〉〈l| ⊗Xk,l,

where Xk,l is the k, l’th m2 ·m3×m2 ·m3 block of X. Then, for any i ∈ {0, 1, . . . ,m2− 1},
we have

(Im1 ⊗ 〈i| ⊗ Im3)X(Im1 ⊗ |i〉 ⊗ Im3)

= (Im1 ⊗ 〈i| ⊗ Im3)

(
m1−1∑
k,l=0

|k〉〈l| ⊗Xk,l

)
(Im1 ⊗ |i〉 ⊗ Im3)

=

m1−1∑
k,l=0

|k〉〈l| ⊗ [(〈i| ⊗ Im3)Xk,l(|i〉 ⊗ Im3)]

=

m1−1∑
k,l=0

|k〉〈l| ⊗X(k,i),(l,i)

=
∑

(k,i),(l,i)∈Ji

|k〉〈l| ⊗X(k,i),(l,i)

= X[Ji]m3 ,
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where Ji := {(k, i) : k ∈ {0, 1, . . . ,m1 − 1}} for each i ∈ {0, 1, . . . ,m2 − 1}. Therefore, we
have

Tr Cm2 =

m2−1∑
i=0

(Im1 ⊗ 〈i| ⊗ Im3)X(Im1 ⊗ |i〉 ⊗ Im3) =

m2−1∑
i=0

X[Ji]m3 .

To verify this result, let us examine the three-qubit state
1√
2
|000〉 +

1√
2
|111〉. This

has the 8× 8 density matrix

X :=



1/2 0 0 0 0 0 0 1/2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1/2 0 0 0 0 0 0 1/2


.

Tracing out the second qubit yields the state described by the following density matrix

1∑
i=0

X[i, i+ 2]2 =


1/2

0

0

0

+


0

0

0

1/2

 =


1/2

0

0

1/2

 .
This is precisely the density matrix of the ensemble {(1/2, |00〉), (1/2, |11〉)}. Notice we

can obtain the same ensemble by measuring the middle qubit of
1√
2
|000〉 +

1√
2
|111〉 in

the computational basis.
We now state an immediate corollary of Theorem 3.9.

Corollary 3.10. Suppose we are given the Hilbert space H := Cm1 ⊗Cm2 ⊗Cm3. Then we
can write the adjoint of the partial trace Tr Cm2 as

Tr ∗Cm2 (Z) =

m2−1∑
i=0

Z[Ji]
∗
m3
,

where Ji := {i+ km2 : k ∈ {0, 1, . . . ,m1 − 1}} for each i ∈ {0, 1, . . . ,m2 − 1}.
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Notice that tracing out the first part of a composite system H ⊗ K has the form
TrH(·) :=

∑
|e〉∈B(〈e| ⊗ IK)(·)(|e〉 ⊗ IK), for any orthonormal basis B of H. The adjoint of

this is simply

Tr ∗H : Z ∈ Σn →
∑
|e〉∈B

(|e〉 ⊗ IK)Z(〈e| ⊗ IK)

=
∑
|e〉∈B

(|e〉 ⊗ IK)(I1 ⊗ Z)(〈e| ⊗ IK)

=
∑
|e〉∈B

|e〉〈e| ⊗ Z

= IH ⊗ Z.

Therefore, we have a nice expression for the adjoint, namely Tr ∗H(Z) = IH ⊗ Z. Similarly,
for the partial trace over K, we have that Tr ∗K(Z) = Z ⊗ IK. We show a similar way of
expressing the adjoint of the partial trace over an arbitrary tensor factor, but first some
notation is needed.

Definition 3.11 (Block Kronecker Product). For a matrix A and a matrix B ∈ Mm·p, we
define the p-block Kronecker product, denoted A⊗p B, as

A⊗p B :=


A⊗B1,1 A⊗B1,2 A⊗B1,3 · · · A⊗B1,m

A⊗B2,1 A⊗B2,2 A⊗B2,3 · · · A⊗B2,m

A⊗B3,1 A⊗B3,2 A⊗B3,3 · · · A⊗B3,m

...
...

... . . . ...
A⊗Bm,1 A⊗Bm,2 A⊗Bm,3 · · · A⊗Bm,m

 ,

where Bi,j is the i, j’th p× p block of B.

Notice that the Kronecker product is a permutation of the rows and columns of the
block Kronecker product. If we index the blocks of B starting from 0, we can write B as

B =
m−1∑
i,j=0

|i〉〈j| ⊗Bi,j, where Bi,j is the i, j’th block of B. Then we have

A⊗B =
m−1∑
i,j=0

A⊗ |i〉〈j| ⊗Bi,j.
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By definition of the block Kronecker product, we have that

A⊗p B =
m−1∑
i,j=0

|i〉〈j| ⊗ A⊗Bi,j.

This leads to a characterization of the adjoint of the partial trace.

Theorem 3.12. For H := Cm1 ⊗ Cm2 ⊗ Cm3, we have

Tr ∗Cm2 (Z) = Im2 ⊗m3 Z.

Proof. From Corollary 3.10, we know that Tr ∗Cm2 (Z) =

m2−1∑
i=0

Z[Ji]
∗
m3

. Let Zk,l be the k, l’th

m3 ×m3 block of Z. Then we have

Tr ∗Cm2 (Z) =

m2−1∑
i=0

Z[Ji]
∗
m3

=

m2−1∑
i=0

m1−1∑
k,l=0

|k, i〉〈l, i| ⊗ Zk,l

=

m2−1∑
i=0

m1−1∑
k,l=0

|k〉〈l| ⊗ |i〉〈i| ⊗ Zk,l

=

m1−1∑
k,l=0

|k〉〈l| ⊗

(
m2−1∑
i=0

|i〉〈i|

)
⊗ Zk,l

=

m1−1∑
k,l=0

|k〉〈l| ⊗ Im2 ⊗ Zk,l

= Im2 ⊗m3

(
m1−1∑
k,l=0

|k〉〈l| ⊗ Zk,l

)
= Im2 ⊗m3 Z.

3.2 The Block Kronecker Product

Generalized Kronecker products were first introduced by Singh [33] and Tracy and Singh
[34]. Koning, Neudecker, and Wansbeek [20] were the first to study the block Kronecker
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product in the way it has been presented above. This section presents generalizations of
some well-known results about the Kronecker product.

Definition 3.13 (Vec Operator). Given A ∈ Mm,n, we define the vec operator, denoted
by vec : Mm,n → Cm·n, where

vec(A) :=


col 1(A)

col 2(A)
...

col n(A)

 =
n−1∑
i=0

|i〉 ⊗ A |i〉 .

That is, the vec operator stacks the columns of A on top of each other in a vector.

Below we list two properties relating the vec operator and the Kronecker product, see
for example [15] or [39].

1. vec
(
AXBT

)
= (B ⊗ A)vec(X),

2. Tr
(
ABCDT

)
= vec

(
AT
)T

(D ⊗B)vec(C).

We now define commutation matrices.

Definition 3.14 (Commutation Matrices). The commutation matrix Km,n ∈ Mm·n is the
unique real-valued matrix that satisfies

Km,nvec(A) = vec
(
AT
)
, ∀A ∈ Mm,n.

Notice that commutation matrices are permutation matrices. Since they are also real-
valued, we have that

Kn,m = KT
m,n = K∗

m,n = K−1
m,n.

Commutation matrices arise in quantum computing. Consider the two quantum states
|ψ〉 ∈ Cm and |φ〉 ∈ Cn, where

|ψ〉 =


a1

a2

...
am

 ∈ Cm.
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Then we have

|ψ〉 ⊗ |φ〉 =


a1 |φ〉
a2 |φ〉

...
am |φ〉

 and |φ〉 · |ψ〉T =
[
a1 |φ〉 a2 |φ〉 · · · am |φ〉

]
.

Therefore, |ψ〉 ⊗ |φ〉 = vec
(
|φ〉 · |ψ〉T

)
. We can write

Km,n (|ψ〉 ⊗ |φ〉) = Km,nvec
(
|φ〉 · |ψ〉T

)
= vec

[(
|φ〉 · |ψ〉T

)T]
= vec

(
|ψ〉 · |φ〉T

)
= |φ〉 ⊗ |ψ〉 .

Thus, commutation matrices swap tensor factors.
The following results generalize the well-known fact that there exists permutation ma-

trices P1 and P2 such that
A⊗B = P1(B ⊗ A)P2.

If A and B are square, then we have P2 = P T
1 .

Theorem 3.15 ([20]). Suppose we have A ∈ Mm,n and B ∈ Ma·p. Then

A⊗p B = (Ia ⊗Km,p)(B ⊗ A)(Ia ⊗Kp,n),

where Km,p and Kp,n are commutation matrices.

The following corollary is immediate.

Corollary 3.16. Suppose we have a matrix A and another matrix B ∈ Mm. Suppose p1

and p2 are positive integers dividing m. Then

A⊗p1 B = P1(A⊗p2 B)P2,

for some permutation matrices P1 and P2. Furthermore, if A is square, then we have
P2 = P T

1 .
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This does generalize the previously mentioned result because the Kronecker product is
a special case of the block Kronecker product. We see this by writing

A⊗B = A⊗m B, where B ∈ Mm.

A generalization of the vec operator is defined below.

Definition 3.17 (Block Vec Operator). For A ∈ Mmp,np, we define the block vec operator,
denoted by vecp : Mmp,np → Cmnp2, as

vecp (A) :=



vec(A1,1)

vec(A1,2)
...

vec(A1,n)

vec(A2,1)

vec(A2,2)
...

vec(Am,n)


,

where Ai,j is the i, j’th p× p block of A.

Notice the block vec operator lists the vec operator applied to the blocks of A along its
partitioned rows. We can similarly define the block vec operator using Dirac notation as
follows. Given a matrix A ∈ Mmp,np, we know that

A =
m∑
i=1

n∑
j=1

|i〉〈j| ⊗ Ai,j,

where Ai,j is the i, j’th p× p block of A. Then we can write

vecp (A) =
m∑
i=1

n∑
j=1

|i〉 |j〉 ⊗ vec(Ai,j)

=
m∑
i=1

n∑
j=1

|i〉 |j〉 ⊗

(
p−1∑
k=0

|k〉 ⊗ Ai,j |k〉

)

=
m∑
i=1

n∑
j=1

p−1∑
k=0

|i〉 |j〉 |k〉 ⊗ Ai,j |k〉 .
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We now list some basic properties of the block Kronecker product, most are immediate
consequences of Theorem 3.15.

Properties 3.18 ([20]). Given A,A1, A2 ∈ Mn, B,B1, B2 ∈ Mm·p, and X ∈ Mm·p,n, we
have the following properties.

1. vecp (BXAT ) = (A⊗p B)vecp (X), if p|n,

2. (A1 + A2)⊗p B = A1 ⊗p B + A2 ⊗p B,

3. A⊗p (B1 +B2) = A⊗p B1 + A⊗p B2,

4. (A⊗p B)T = (AT ⊗p BT ),

5. (A1 ⊗p B1)(A2 ⊗p B2) = (A1A2 ⊗p B1B2),

6. (A⊗p B) = P (B ⊗p′ A)P T , for some permutation matrix P , if p′|n,

7. det(A⊗p B) = det(A)m·p · det(B)n,

8. Tr (A⊗p B) = Tr (A) · Tr (B),

9. If A has eigenvalue λ and B has eigenvalue µ then A⊗p B has eigenvalue λµ,

10. λ(A⊗p B) = λ(A⊗B) = λ(B ⊗ A) = λ(B ⊗p′ A), if p′|n.

As a result of the last property above, we have that for all A ∈ Mn, B ∈ Mm,

A⊗p1 B � 0 ⇐⇒ A⊗B � 0 ⇐⇒ B ⊗ A � 0 ⇐⇒ B ⊗p2 A � 0,

for all p1|m and p2|n. Another property to note is (A ⊗p B)∗ = (A∗ ⊗p B∗), which is
important since we are examining matrices with complex entries.

Recall that the partial trace is the operator for finding reduced density matrices. In
the next chapter we define a “closeness” measure for density matrices called the fidelity.



Chapter 4

Survey of Fidelity

4.1 Fidelity of Quantum States

Recall that a Hermitian matrix is always orthogonally diagonalizable. That is, given any
X ∈ Σn, we can write it as

X = QDXQ
∗,

where Q is unitary and DX is the diagonal matrix whose diagonal is λ(X). If X ∈ Σn
+,

then λ(X) ≥ 0, and we can define the square root of X as

X1/2 := QD
1/2
X Q∗,

where D1/2
X is defined as the diagonal matrix of the nonnegative square roots of the diagonal

elements of DX . Notice that we do indeed have X1/2X1/2 = X.

Definition 4.1 (Purification). A purification of a density matrix ρ ∈ DH is a pure state
|ψ〉 in a larger Hilbert space H⊗H′ such that

TrH′|ψ〉〈ψ| = ρ.

For example, suppose we have the density matrix

ρ := α0|ξ0〉〈ξ0|+ α1|ξ1〉〈ξ1| ∈ DH.

We can define a purification of ρ in H⊗ C2 as

|ρpure〉 :=
√
α0 |ξ0〉 |0〉+

√
α1 |ξ1〉 |1〉 ∈ DH⊗C2

,

36
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since Tr C2|ρpure〉〈ρpure| = ρ.
Now we can define the fidelity.

Definition 4.2 (Fidelity). Suppose we are given two density matrices ρ1, ρ2 over a Hilbert
space H. We define the fidelity, denoted F (ρ1, ρ2), as

F (ρ1, ρ2) := max
|ψ1〉,|ψ2〉

|〈ψ1|ψ2〉|,

where |ψ1〉 and |ψ2〉 are purifications of ρ1 and ρ2 in H⊗K, respectively.

The fidelity is a measure of “closeness” for density matrices. Before we illustrate this,
we need the following definition.

Definition 4.3. Given two matrices A,B ∈ Σn, we say that they are orthogonal, denoted
A ⊥ B, if

AB = BA = 0.

Now we state the following well-known result.

Lemma 4.4. Given any two density matrices ρ1, ρ2 ∈ DH, we have

0 ≤ F (ρ1, ρ2) ≤ 1.

Moreover, we have

F (ρ1, ρ2) = 0 ⇐⇒ ρ1 ⊥ ρ2 and F (ρ1, ρ2) = 1 ⇐⇒ ρ1 = ρ2.

Note that F (ρ, ρ) = 1 for every density matrix ρ, thus fidelity is not a metric.
We have the following result which is similar in spirit to Lemma 3.4.

Lemma 4.5 ([17]). Suppose ρ ∈ DH has purification |ψ〉 ∈ H ⊗ K and σ ∈ DH has
purification |φ〉 ∈ H ⊗K. Then

F (ρ, σ) = sup
U
〈ψ| IH ⊗ U |φ〉 ,

where U is a unitary matrix in L(K). Furthermore, if dim(K) ≥ dim(H), then the maxi-
mum is attained.
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If the maximum is attained, we call the unitary in the above lemma the fidelity achieving
unitary.

An immediate consequence of the definition of the fidelity is the following lemma.

Lemma 4.6. Given any two density matrices ρ1 and ρ2 over a Hilbert space H ⊗ K, we
have

F (ρ1, ρ2) ≤ F (Tr K(ρ1),Tr K(ρ2)).

The following well-known result shows that the fidelity is strongly concave, see for
instance [31].

Theorem 4.7. Suppose we have two ensembles of density matrices {pi, ρi} and {qi, σi}.
Then we have

F

(∑
i

piρi,
∑
i

qiσi

)
≥
∑
i

√
piqiF (ρi, σi).

This naturally leads to the weaker concavity conditions below.

Corollary 4.8. Suppose we have two ensembles of density matrices {pi, ρi}, {pi, σi}, and
a density matrix σ. Then we have

1. F

(∑
i

piρi,
∑
i

piσi

)
≥
∑
i

piF (ρi, σi), and

2. F

(∑
i

piρi, σ

)
≥
∑
i

√
piF (ρi, σ).

There is an equivalent way of writing the fidelity, but first we need the following defi-
nition.

Definition 4.9 (Trace Norm). Given a matrix A ∈ Mm,n, we define the trace norm of A,
denoted ‖A‖t, as

‖A‖t := Tr
[
(A∗A)1/2

]
.

We have the following equivalent description of the fidelity by Uhlmann [40] using the
trace norm.
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Lemma 4.10 ([40]). Given any two density matrices ρ1, ρ2 ∈ Dn, we have

F (ρ1, ρ2) = Tr

[(
ρ

1/2
1 ρ2ρ

1/2
1

)1/2
]

= ‖√ρ1
√
ρ2‖t.

The above is an alternative definition of the fidelity and is much easier to use in many
cases.

We now state a result by Fuchs and van de Graaf.

Lemma 4.11 ([12]). Given any two density matrices ρ1, ρ2 ∈ DH, we have

1− F (ρ1, ρ2) ≤
1

2
‖ρ1 − ρ2‖t ≤

√
1− F (ρ1, ρ2)2.

The following two properties are well-known.

Theorem 4.12.

1. Fidelity is multiplicative under Kronecker products, i.e.,

F (X1 ⊗X2, Y1 ⊗ Y2) = F (X1, Y1)F (X2, Y2), ∀X1, X2, Y1, Y2 ∈ DH.

2. Fidelity is invariant under unitary transformations, i.e.,

F (UXU∗, UY U∗) = F (X,Y ), ∀X1, X2, Y1, Y2 ∈ DH.

Proof. Assume we are given X1, X2, Y1, Y2 ∈ DH. Then we can write the following.

1. F (X1 ⊗X2, Y1 ⊗ Y2) = Tr

[((
X

1/2
1 ⊗X

1/2
2

)
(Y1 ⊗ Y2)

(
X

1/2
1 ⊗X

1/2
2

))1/2
]

= Tr

[(
X

1/2
1 Y1X

1/2
1 ⊗X

1/2
2 Y2X

1/2
2

)1/2
]

= Tr

[(
X

1/2
1 Y1X

1/2
1

)1/2

⊗
(
X

1/2
2 Y2X

1/2
2

)1/2
]

= Tr

[(
X

1/2
1 Y1X

1/2
1

)1/2
]

Tr

[(
X

1/2
2 Y2X

1/2
2

)1/2
]

= F (X1, Y1)F (X2, Y2)
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2. F (UXU∗, UY U∗) = Tr
[(

(UXU∗)1/2(UY U∗)(UXU∗)1/2
)1/2]

= Tr
[(

(UX1/2U∗)(UY U∗)(UX1/2U∗)
)1/2]

= Tr
[(
UX1/2Y X1/2U∗)1/2]

= Tr
[
U
(
X1/2Y X1/2

)1/2
U∗
]

= Tr
[(
X1/2Y X1/2

)1/2]
= F (X, Y ).

4.2 Positive Definite Matrix Means

Definition 4.13 (Matrix Means). Given two matrices, X,S ∈ Mn, we define their arith-
metic mean as

AM(X,S) :=
1

2
(X + S).

Given two positive definite matrices X,S ∈ Σn
++, we define their geometric mean as

GM(X,S) := X1/2
(
X−1/2SX−1/2

)1/2
X1/2,

and their harmonic mean as

HM(X,S) := 2
(
X−1 + S−1

)−1
.

The following matrix inequalities are well-known in Matrix Theory, see for instance [6].

Lemma 4.14. Given any positive definite matrices X,S ∈ Σn
++, we have the following

harmonic-geometric-arithmetic mean inequality

2
(
X−1 + S−1

)−1 � X1/2
(
X−1/2SX−1/2

)1/2
X1/2 � 1

2
(X + S).

We note here that the geometric mean of two density matrices is not always a density
matrix. Although X,S � 0 implies GM(X,S) � 0 by the harmonic-geometric-arithmetic
mean inequality, it may not be the case that the trace is preserved. Consider the example

X :=

[
3/4 0

0 1/4

]
and S :=

[
1/4 0

0 3/4

]
.
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Both X and S are positive semidefinite and have trace 1. Since X and S are diagonal, we
can write the geometric mean as

GM(X,S) = X1/2S1/2 =

[ √
3/2 0

0 1/2

][
1/2 0

0
√

3/2

]
=

[ √
3/4 0

0
√

3/4

]
.

Therefore Tr (GM(X,S)) =
√

3/2 < 1.
Matrix geometric means and related concepts also arise in semidefinite optimization

(the topic of the next chapter). For instance, in interior-point methods for semidefinite
optimization, given X,S ∈ Σn

++, we look for a T ∈ Aut (Σn
++), T = T ∗ such that

T (S) = T−1(X). Such a T can be described by a W ∈ Σn
++ such that T (·) = W (·)W . I.e.,

WSW = W−1XW−1. The unique solution of this matrix equation is given by W ∈ Σn
++

such that W 2 = GM(S−1, X), which leads to the so-called Nesterov-Todd scaling [30].
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Semidefinite Programming

5.1 Semidefinite Programming and Duality

A semidefinite program, referred to as an SDP, is a linear optimization problem over
positive semidefinite matrices. In standard form, it is defined as

(P ) inf 〈C,X〉
subject to A(X) = b,

X � 0,

where X ∈ Σn is the variable, C ∈ Σn, b ∈ Cm, and A : Σn → Cm is a linear operator.
The object being minimized is 〈C,X〉 which we call the objective function. The objective
function is real-valued since X and C are Hermitian. The conditions A(X) = b and X � 0

are called the constraints.
We say that an SDP is feasible if there exists an X̄ that satisfies the constraints, that

is, ∃X̄ � 0 such that A(X̄) = b; such an X̄ is called a feasible solution. If the SDP is
not feasible, we say that it is infeasible. A strictly feasible solution is a feasible solution
X̄ where X̄ also satisfies X̄ � 0. We say that the SDP is unbounded if there exists
{X̄k : k ∈ N, X̄k feasible} such that

〈
C, X̄k

〉
→ −∞ as k → ∞. We say that a feasible

solution X̄ is optimal if
〈
C, X̄

〉
≤ 〈C,X〉 for all feasible X and that the SDP attains its

optimal value if an optimal solution exists. It may be the case that an SDP is feasible, not
unbounded, and does not attain its optimal value; thus we must examine the infimum of

42
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the objective function in this case.
Given an SDP in standard form, we define its dual, or dual problem, as

(D) sup 〈b, y〉
subject to A∗(y) + S = C,

S � 0,

where y ∈ Cm and S ∈ Σn are the variables and A∗ is the adjoint of the linear operator A.
The fact that 〈b, y〉 is real-valued is implied by the proof of Theorem 5.1, below.

When we examine the dual of an SDP, we call the original problem the primal, or
primal problem, and the pair of problems (P,D) a primal-dual pair. An easy exercise is to
verify that the dual of the dual problem is the primal problem. We similarly define feasible
solutions for the dual problem and note for a feasible solution (ȳ, S̄) to be a strictly feasible
solution we require that S̄ � 0.

The following duality theorems and corollaries play a critical role in our analysis of
coin-flipping protocols in later chapters. For a good reference of these results see [41, 38].

Theorem 5.1 (Weak Duality). Suppose (P,D) is a primal-dual pair and we are given X̄

which is feasible in the primal problem and (ȳ, S̄) which is feasible in the dual problem.
Then

〈C, X̄〉 ≥ 〈b, ȳ〉 .

Proof. Suppose we are given primal feasible X̄ and dual feasible (ȳ, S̄). Then we have〈
C, X̄

〉
− 〈b, ȳ〉 =

〈
C, X̄

〉
−
〈
A(X̄), ȳ

〉
=

〈
C, X̄

〉
−
〈
X̄,A∗(ȳ)

〉
=

〈
C, X̄

〉
−
〈
X̄, C − S̄

〉
=

〈
S̄, X̄

〉
.

The last equality above holds since 〈X,C〉 = 〈C,X〉 because X,C ∈ Σn. Note that〈
S̄, X̄

〉
≥ 0 since X̄, S̄ ∈ Σn

+, which completes the proof.

The above proof shows that given a primal feasible solution X̄ and a dual feasible
solution (ȳ, S̄), the difference in objective values is

〈
X̄, S̄

〉
. This brings us to the following

definition.
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Definition 5.2 (Duality Gap). The duality gap of a primal-dual pair (P,D) is defined as

inf{
〈
X̄, S̄

〉
: X̄ is feasible in (P ), ∃ȳ such that (ȳ, S̄) is feasible in (D)}.

We say that a primal-dual pair have zero duality gap if the duality gap, as defined
above, is 0. A zero duality gap means that both (P ) and (D) have feasible solutions and
the optimal values of (P ) and (D) are the same.

Theorem 5.3 (Strong Duality). Suppose (D) has a strictly feasible solution and the ob-
jective value is bounded from above. Then there is zero duality gap and (P ) attains its
optimal value.

We have the following two corollaries of the strong duality theorem.

Corollary 5.4. Suppose (D) has a strictly feasible solution and (P ) has a feasible solution.
Then there is zero duality gap and (P ) attains its optimal value.

Corollary 5.5. Suppose (P ) and (D) both have strictly feasible solutions. Then there is
zero duality gap and both (P ) and (D) attain their optimal values.

Strong duality says that under certain conditions, we can solve for the optimal value of
an SDP by solving that of its dual, which may be advantageous to analyze instead of the
original problem.

5.2 Applications of Semidefinite Programming in Quan-
tum Computing

We now present some applications of semidefinite programming in quantum computing.
First, we need some definitions.

Definition 5.6 (Hadamard Product). We define the Hadamard product of A,B ∈ Mm,n

as
[(A ◦B)i,j] := [Ai,jBi,j] .
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Notice that the Hadamard product is only defined for matrices having the same dimen-
sions. Given A,B ∈ Σn, we can write 〈A,B〉 = 〈e|A◦B |e〉, where |e〉 is the n-dimensional
vector of all ones. From this, we see that

T : X ∈ Σn → A ◦X ∈ Σn,

is a self-adjoint operator, for any A ∈ Σn.
We say that a system A(Y ) � C ∈ Σn is almost feasible if for all ε > 0, ∃E with

‖E‖ :=
√
〈E,E〉 < ε such that A(Y ) � C + E is feasible.

The following is a well-known result about alternative systems. See for example [38].

Lemma 5.7. There exists D � 0 satisfying A(D) = 0 and 〈C,D〉 < 0 if and only if
A∗(y) � C is not almost feasible.

Using this lemma, we have an alternative proof of Lemma 2 in [7].

Theorem 5.8 ([7]). Let Σn(R) denote the set of real-valued symmetric matrices and let
Σn

+(R) denote the set of real-valued positive semidefinite matrices. Suppose we are given
the following two systems.

(I)
m∑
j=1

Ai,j ◦Xj = B, ∀i ∈ {1, . . . , k},

Xj ∈ Σn
+(R), ∀j ∈ {1, . . . ,m}.

(II)
k∑
i=1

〈B, Yi〉 > 0,

k∑
i=1

Yi ◦ Ai,j � 0, ∀j ∈ {1, . . . ,m},

Yi ∈ Σn(R), ∀i ∈ {1, . . . , k}.

Suppose X1 = · · · = Xm = 0 is the only solution to (I) when B = 0. Then exactly one of
(I) or (II) has a solution.



46 Thesis

Proof. Consider the following primal-dual pair

(P ) inf
m∑
j=1

〈C,Xj〉

subject to
m∑
j=1

Ai,j ◦Xj = B, ∀i ∈ {1, . . . , k},

Xj ∈ Σn
+(R), ∀j ∈ {1, . . . ,m},

and

(D) sup
k∑
i=1

〈B, Yi〉

subject to
k∑
i=1

Ai,j ◦ Yi � C, ∀j ∈ {1, . . . ,m},

Yi ∈ Σn(R), ∀i ∈ {1, . . . , k}.
SinceX1 = · · · = Xm = 0 is the only feasible solution to (P ) when B = 0, by hypothesis, we
know that there does not exist a feasible solution (X1, . . . , Xm) such that

∑m
j=1 〈C,Xj〉 < 0.

Thus, for any choice of C, we have that the dual is almost feasible. Choosing C = −In
implies that there exists Y1, . . . , Yk such that

∑k
i=1Ai,j ◦ Yi ≺ 0, for all j ∈ {1, . . . ,m}.

Now, choose C = 0 in the above primal-dual pair and consider two cases. Case 1, if (II)

is infeasible, then there does not exist Y1, . . . , Yk such that
∑k

i=1Ai,j ◦ Yi � C, for all
j ∈ {1, . . . ,m}, and

∑k
i=1 〈B, Yi〉 > 0. Then the objective value of (D) is bounded from

above. This implies that (P ) attains its optimal value by Theorem 5.3 which implies the
weaker condition that (P ), and therefore (I), is feasible. I.e., ∃X1, . . . , Xm ∈ Σn

+(R) such
that

∑m
j=1Ai,j ◦Xj = B, ∀i ∈ {1, . . . , k}. Case 2, if (II) is feasible, then ∃Y1, . . . , Yk such

that
∑k

i=1Ai,j ◦ Yi � C, ∀j ∈ {1, . . . ,m}, and
∑k

i=1 〈B, Yi〉 > 0. Assuming that (I) is also
feasible, we have that the objective value of the primal is 0 since C = 0. By weak duality,
we get the following contradiction

0 =
m∑
j=1

〈C,Xj〉 ≥
k∑
i=1

〈B, Yi〉 > 0.

We now discuss an application of semidefinite programming in quantum complexity
theory. Quantum complexity theory is the study of finding lower bounds on the complexity
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of quantum algorithms. There are many methods for finding lower bounds including the
weighted adversary method [4] and spectral adversary method [7]. Adversary methods
give lower bounds on the complexity of calculating a function f . For a function f , the
weighted adversary method is posed as an optimization problem having optimal value
WA (f). This implies the complexity of calculating f is Ω(WA (f)). Spalek and Szegedy
[35] prove that all of the adversary methods known are equivalent, that is, they all give
the same lower bound. As part of their proof, they show that a specific adversary method,
posed as an optimization problem, is equivalent to a semidefinite program. That is, there
is a correspondence between feasible solutions and they have the same optimal value. They
examine the dual of the SDP and prove a zero duality gap by showing a strictly feasible
solution for the dual. They next show that the dual, being an adversary method itself,
is equivalent to another adversary method. This proves that these four methods give the
same value and, therefore, the same lower bound. The key observation is that by examining
the dual, they have a new approach to analyzing the problem.

The next chapter introduces coin-flipping, cheating strategies, and optimal cheating
probabilities. We examine how the results in this chapter play a role in the analysis of
coin-flipping protocols (the content of Chapter 7).



Chapter 6

Quantum Coin-Flipping

Coin-flipping is the cryptographic task of two mistrustful parties generating a random bit.
If one party is dishonest, and deviates from protocol, he/she could try to cheat by trying
to increase the probability of a desired outcome. A protocol should be able to withstand
such dishonesty by not allowing a party to force a desired outcome with probability 1. This
is different than many cryptographic protocols in the sense that the security we seek in a
protocol is to protect an honest party from the other dishonest party.

6.1 Definitions and Notation

Before we examine coin-flipping, we set up a general framework in which the protocol takes
place, and how the two parties communicate. For this discussion of coin-flipping, we call
the two parties Alice and Bob and the setting is as follows. Alice and Bob have their own
private spaces and they each have access to a message space which they use to alternate
sending messages to each other. One may think of the private spaces as desktop computers
and the message space as email. After they finish communicating they determine the result
of the coin-flip.

We set this up in the following framework. Alice and Bob’s private spaces are the state
spaces A and B, respectively. The message space is the state space M. They initially
share a quantum state prepared as

|ψstart〉 := |0〉A |0〉M |0〉B .

48
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Alice has a set of unitary operations {UA,i ∈ L(A ⊗M) : i ∈ {1, . . . , N}} and Bob has
another set {UB,i ∈ L(M⊗B) : i ∈ {1, . . . , N}} of unitary operations. They apply these
unitary operations alternately to the appropriate part of the state, starting with UA,1.
These are the messages of the protocol. Once all the unitary operations are applied, Alice
and Bob each measure the part of the state in their respective private spaces using a projec-
tive measurement. This determines the resulting coin-flip. The projective measurements
for each party have the form

{Π0,Π1,ΠAbort := I − ΠA,0 − ΠA,1},

where Πx corresponds to the outcome x ∈ {0, 1}, and all projectors are mutually orthogo-
nal.

This formulation also includes classical protocols. A classical coin-flipping protocol has
private and message spaces of the form Cm, for some m, and all the unitary operations
are commutation or “swap” matrices. (Recall from Section 3.2 that commutation matrices
swap tensor factors.)

To fully describe a coin-flipping protocol, we define the following tuple.

Definition 6.1 (Coin-Flipping Tuple). Given a protocol, we collect all the unitary opera-
tions and projections in a protocol-tuple

P := (UA,1, . . . , UA,N , UB,1, . . . , UB,N ,ΠA,0,ΠA,1,ΠB,0,ΠB,1).

Not any such tuple is a coin-flipping protocol however. The tuple needs to satisfy two
conditions. Firstly, we need Alice and Bob to output the same bit when they follow the
protocol. Let |ψfinal〉 be the final state shared by Alice and Bob at the end of the protocol.
We need

(ΠA,x ⊗ IM ⊗ IB) |ψfinal〉 = (IA ⊗ IM ⊗ ΠB,x) |ψfinal〉 , ∀x ∈ {0, 1},

to ensure this condition. Secondly, we need the output bit to be randomly generated, that
is, having an equal probability of being a 0 or 1. To ensure this, we require

‖(ΠA,0 ⊗ IM ⊗ IB) |ψfinal〉‖2 = ‖(ΠA,1 ⊗ IM ⊗ IB) |ψfinal〉‖2 = 1/2.

Note that we do not need the analogous condition for Bob since it is redundant assuming
the first condition.

We collect the two conditions below.
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Conditions 6.2.

1. (ΠA,x ⊗ IM ⊗ IB) |ψfinal〉 = (IA ⊗ IM ⊗ ΠB,x) |ψfinal〉 , ∀x ∈ {0, 1},

2. ‖(ΠA,0 ⊗ IM ⊗ IB) |ψfinal〉‖2 = ‖(ΠA,1 ⊗ IM ⊗ IB) |ψfinal〉‖2 = 1/2.

If Bob and Alice trust each other and follow a protocol honestly, they do not need
complicated protocols. Indeed, one party could just let the other flip a coin and share the
result. This is obviously not useful if the two parties do not trust each other. In simple
protocols it could be the case that Bob or Alice can bias the outcome by forcing a desired
outcome with probability higher than 1/2. Before analyzing the security of coin-flipping
protocols, we need to introduce some terminology and discuss the limitations on cheating.

We do not assume any computational limitations on cheating, anything within the laws
of quantum mechanics is allowed. We do however assume for this discussion that if a party,
say Bob, is dishonest then he cannot perform any operation on Alice’s private space A or
change M to another message space. What he can do is prepare any private space B̂ and
apply a possibly different unitary on M⊗ B̂ when it is his turn to apply a unitary in
the protocol. We also assume that he can apply an extra unitary of his choosing at the
beginning of the protocol, before any communication occurs. A cheating strategy for Bob is
comprised of his private space B̂ and his set of unitary operations he applies instead of the
ones prescribed in the protocol. Notice he does not need to perform any measurements.
Since they must output the same bit, the result of Alice’s measurement is the outcome
of the protocol, which he accepts. Recall from Chapter 2 that this is equivalent to Bob
performing a quantum operation on M.

Definition 6.3 (Cheating Strategy). Assume Alice is honest and Bob is dishonest. Assume
Bob also has a private space B̂ which is unknown to Alice. Given a protocol-tuple

P := {UA,1, . . . , UA,N , UB,1, . . . , UB,N ,ΠA,0,ΠA,1,ΠB,0,ΠB,1}

we define a cheating strategy via a cheating-tuple, which is defined as

PB := {ÛB,0, ÛB,1, . . . , ÛB,N ,ΠA,0,ΠA,1},

where ÛB,j is a unitary operator acting on M ⊗ B̂, for j ∈ {0, 1, . . . , N}. During the
protocol, Bob changes the starting state of M⊗B̂ using ÛB,0 and then applies ÛB,j instead
of UB,j.
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In the case of dishonest Alice and honest Bob, we define a cheating strategy for Alice
analogously.

In the above description, Bob can apply a unitary transformation to the initial state
of the protocol before Alice applies any of her unitary operations. In the next chapter, we
show that this does not improve his optimal cheating probabilities. Since it is physically
possible, we include it in the description and in the analysis in the next chapter.

If one party were to cheat, they have a desired outcome in mind, so ideally they want
to increase the probability of that outcome larger than the honest outcome probability of
1/2. How much one can raise the probability is how we view the security of such protocols.

Definition 6.4 (Maximum Cheating Probability). Suppose P is a protocol-tuple. Let
|ψfinal (PB)〉 be the final state of the protocol when Bob uses cheating strategy PB. We
define the maximum cheating probability for Bob forcing outcome x ∈ {0, 1}, denoted
P ∗
B,x, as

P ∗
B,x := max

PB

Pr(Alice’s outcome = x) = max
PB

‖ΠA,x |ψfinal (PB)〉‖2 .

We analogously define P ∗
A,x, for x ∈ {0, 1}, for Alice’s maximum cheating probability.

Since a protocol is designed to protect an honest party from a dishonest party, a protocol
is only as good as the maximum of the four cheating probabilities. This leads to the
following definition.

Definition 6.5 (Bias). For a protocol-tuple P, we define the bias, denoted ε, as

ε := max{P ∗
A,0, P

∗
A,1, P

∗
B,0, P

∗
B,1} −

1

2
.

This is our measure of security of such protocols. We later show how to solve for P ∗
A,0,

P ∗
A,1, P ∗

B,0, and P ∗
B,1 using semidefinite programming and thus determining the bias. The

central focus of studying coin-flipping protocols is to try to find protocols which have a
low bias so that they are secure against dishonest parties.

Naturally, for any coin-flipping protocol, the bias is in the interval
[
0, 1

2

]
. Ideally, we

want a protocol with 0 bias, but this has been proven impossible by Mayers [23] and Lo
and Chau [22].
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6.2 An Example of a Coin-Flipping Protocol

We illustrate a simple coin-flipping protocol and show it satisfies Conditions 6.2. This
protocol attempts to make a quantum state in each of Alice and Bob’s private spaces in
such a way that if either try to change the content of the last few messages, the other party
can detect cheating.

Suppose we have the five-qubit state space H := A1 ⊗ A2 ⊗ M ⊗ B1 ⊗ B2 where
A := A1 ⊗A2 and B := B2 ⊗ B2. Define UA,1 and UB,1 such that

UA,1 (|0〉A |0〉M) =
1√
2

∑
a∈{0,1}

|aa〉A |0〉M and UB,1 (|0〉M |0〉B) =
1√
2
|0〉M

∑
b∈{0,1}

|bb〉B .

Define UA,2 := IA1⊗SWAP4, where SWAP4 ∈ L(C4) is the unitary operation of swapping
the places of two qubits, i.e., SWAP4 (|x1〉 |x2〉) = K2,2 (|x1〉 |x2〉) = |x2〉 |x1〉, for all basis
states x1, x2 ∈ {0, 1}.

It is given explicitly as

SWAP4 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .
Define UB,2 := SWAP4 ⊗ IB2 and UA,3 := IA1 ⊗ SWAP4.

The first two unitary operations create specific states in A and B. The next three are
used to swap qubits between Alice and Bob.

For this protocol, we use the projectors

ΠA,0 := ΠB,0 :=
∑

c∈{0,1}

|c〉〈c| ⊗ |c〉〈c| and ΠA,1 := ΠB,1 :=
∑

c∈{0,1}

|c〉〈c| ⊗ |c̄〉〈c̄|,

where c̄ := 1− c, for c ∈ {0, 1}.
To fully illustrate this protocol, let us examine an honest run of the protocol by applying

all the unitary transformations.
|ψ0〉 := |0〉A |0〉M |0〉B is the starting state. Alice applies UA,1 which creates the state

|ψ1〉 = (UA,1 ⊗ IB) |ψ0〉

=
1√
2

∑
a∈{0,1}

|aa〉 |0〉 |00〉 .
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Bob now applies UB,1 to create the state

|ψ2〉 = (IA ⊗ UB,1) |ψ1〉

=
1

2

∑
a,b∈{0,1}

|aa〉 |0〉 |bb〉 .

Continuing in this fashion the protocol generates the states

|ψ3〉 = (UA,2 ⊗ IB) |ψ2〉

= (IA1 ⊗ SWAP4 ⊗ IB1 ⊗ IB2)

1/2
∑

a,b∈{0,1}

|aa〉 |0〉 |bb〉


=

1

2

∑
a,b∈{0,1}

|a0〉 |a〉 |bb〉 ,

|ψ4〉 = (IA ⊗ UB,2) |ψ3〉

= (IA1 ⊗ IA2 ⊗ SWAP4 ⊗ IB2)

1/2
∑

a,b∈{0,1}

|a0〉 |a〉 |bb〉


=

1

2

∑
a,b∈{0,1}

|a0〉 |b〉 |ab〉 , and

|ψ5〉 = (UA,3 ⊗ IB) |ψ4〉

= (IA1 ⊗ SWAP4 ⊗ IB1 ⊗ IB2)

1/2
∑

a,b∈{0,1}

|a0〉 |b〉 |ab〉


=

1

2

∑
a,b∈{0,1}

|ab〉 |0〉 |ab〉 .

After all the unitary operations have been applied, |ψ5〉 is the final state of the protocol.
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We still have to check to see if Conditions 6.2 hold. Applying ΠA,0 to |ψ5〉 we get

(ΠA,0 ⊗ IM ⊗ IB) |ψ5〉 =

 ∑
c∈{0,1}

|cc〉〈cc| ⊗ IM ⊗ IB

1

2

∑
a,b∈{0,1}

|ab〉 |0〉 |ab〉


=

1

2

∑
a,b,c∈{0,1}

|c〉 〈c|a〉 |c〉 〈c|b〉 |0〉 |ab〉

=
1

2

∑
a∈{0,1}

|aa〉 |0〉 |aa〉 .

A similar check shows us that

(IA ⊗ IM ⊗ ΠB,0) |ψ5〉 =
1

2

∑
a∈{0,1}

|aa〉 |0〉 |aa〉 .

Therefore, (ΠA,0 ⊗ IM ⊗ IB) |ψ5〉 = (IA ⊗ IM ⊗ ΠB,0) |ψ5〉. We can similarly show that

(ΠA,1 ⊗ IM ⊗ IB) |ψ5〉 =
1

2

∑
a∈{0,1}

|aā〉 |0〉 |aā〉 = (IA ⊗ IM ⊗ ΠB,1) |ψ5〉 ,

so the first condition is satisfied. To check the second condition, we have

‖(ΠA,0 ⊗ IM ⊗ IB) |ψ5〉‖2 =

∥∥∥∥∥∥1

2

∑
a∈{0,1}

|aa〉 |0〉 |aa〉

∥∥∥∥∥∥
2

=

1

2

∑
a∈{0,1}

〈aa| 〈0| 〈aa|

1

2

∑
b∈{0,1}

|bb〉 |0〉 |bb〉


=

1

4

∑
a∈{0,1}

〈a|b〉〈a|b〉〈0|0〉〈a|b〉〈a|b〉

=
1

4

∑
a∈{0,1}

1

=
1

2
.

Similarly, we can show that

‖(ΠA,1 ⊗ IM ⊗ IB) |ψ5〉‖2 =
1

2
,
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so the second condition is satisfied.
This is an example of a coin-flipping protocol based on bit-commitment, discussed in

detail in Chapter 8.



Chapter 7

Security Analysis of Quantum
Coin-Flipping Protocols

7.1 Semidefinite Programming Formulation

In this chapter we show how to analyze the security of coin-flipping protocols by formulating
cheating strategies as semidefinite programs. Suppose that Alice is honest and Bob is
dishonest. A cheating strategy for Bob is to create a new private space B̂ and a new set
of unitary operations ÛB,j, j ∈ {0, 1, . . . , N}, to apply instead of the unitary operations in
the protocol. In our cheating strategy formulation, the variables are the density matrices
ρj, j ∈ {0, 1, . . . , N}, where ρj is the reduced density matrix Alice has after Bob applies
the unitary ÛB,j. Bob’s unitary operations preserve the reduced density matrix that is in
Alice’s private space A. Alice’s reduced density matrices therefore satisfy

TrM(ρj) = TrM
[
UA,jρj−1U

∗
A,j

]
, ∀ j ∈ {1, . . . , N}.

Bob cannot change the part of the starting state in Alice’s space. This is given as the
constraint

TrM(ρ0) = |0〉〈0|A.

Suppose Bob is interested in forcing outcome x ∈ {0, 1}. Then the probability of Alice
accepting outcome x is given as

〈ΠA,x ⊗ IM, ρN〉 .

56
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This is the objective function which Bob attempts to maximize. We collect the above in a
semidefinite program given below.

Theorem 7.1 ([19]). For a protocol-tuple P, Bob’s optimal cheating probability for forcing
outcome x ∈ {0, 1} is given as the optimal value of the following SDP.

(B) P ∗
B,x = sup 〈ΠA,x ⊗ IM, ρN〉

subject to

TrM(ρ0) = |0〉〈0|A,
TrM(ρj) = TrM(UA,jρj−1U

∗
A,j), ∀j ∈ {1, . . . , N},

ρj � 0, ∀j ∈ {0, 1, . . . , N}.

This semidefinite program is referred to as Bob’s cheating SDP. Note that the variables
are indeed density matrices as they are positive semidefinite and all are forced to have
trace equal to Tr |0〉〈0|A = 1.

What is also interesting about the above formulation is that we can determine an
optimal cheating strategy from an optimal solution of the SDP.

Corollary 7.2 ([19]). For each x ∈ {0, 1} and any feasible solution (ρ0, ρ1, . . . , ρN) of
the above SDP, Bob has a cheating strategy that forces outcome x with a probability of
〈ΠA,x ⊗ IM, ρN〉.

Proof. Suppose for x ∈ {0, 1} that (ρ0, ρ1, . . . , ρN) is a feasible solution for Bob’s cheating
SDP. Let |ψj〉 ∈ A ⊗ M ⊗ B̂ be a purification of ρj, for j ∈ {0, 1, . . . , N}. Note that
Tr bB|ψj〉〈ψj| = ρj, for j ∈ {0, 1, . . . , N}. For each j ∈ {1, . . . , N}, we can write

TrM
(
Tr bB|ψj〉〈ψj|) = TrM (ρj)

= TrM
(
UA,jρj−1U

∗
A,j

)
= TrM

(
UA,j

(
Tr bB|ψj−1〉〈ψj−1|

)
U∗
A,j

)
= TrM

(
Tr bB [(UA,j ⊗ I bB)|ψj−1〉〈ψj−1|(U∗

A,j ⊗ I bB)]) .
Therefore, by Lemma 3.4, there exists a unitary Vj ∈ L(M⊗ B̂) such that

(IA ⊗ Vj)(UA,j ⊗ I bB) |ψj−1〉 = |ψj〉 .

Let ÛB,j be such a Vj for each j ∈ {1, . . . , N}. Let ÛB,0 be a unitary satisfying

ÛB,0 |0〉A⊗M⊗ bB = |ψ0〉 .



58 Thesis

This defines a cheating strategy for Bob. Using this strategy, Alice has the density matrix
ρj after applying ÛB,j, for j ∈ {0, 1, . . . , N}. Therefore, Alice accepts outcome x with
probability 〈ΠA,x ⊗ IM, ρN〉.

From the above proof, we see that there is no need for the unitary ÛB,0. That is, we
can choose it arbitrarily.

By solving his cheating SDP for a desired outcome, Bob finds his maximum cheating
probability and he has an optimal cheating strategy achieving this value.

Theorem 7.3 ([19]). The dual of Bob’s cheating SDP is given as the following SDP.

(DB) inf 〈Z0, |0〉〈0|〉

subject to
Zj ⊗ IM � U∗

A,j+1(Zj+1 ⊗ IM)UA,j+1, ∀j ∈ {0, 1, . . . , N − 1},
ZN = ΠA,x.

Proof. For each variable in (B), we look at the linear operators acting on it. Consider ρj
for j ∈ {0, 1, . . . , N − 1}, it is acted on by TrM(·) in one constraint, corresponding to a
dual variable Zi, and by TrM

[
(UA,j+1(·)U∗

A,j+1)
]

in another constraint, corresponding to
a dual variable Zi+1. Recall the adjoint of the linear operator TrM is Tr ∗M(Z) = Z ⊗ IM

and the adjoint of T (ρ) := UρU∗ is T ∗(Z) = U∗ZU . Since these variables do not appear in
the objective function, and ρi � 0, for i ∈ {0, 1, . . . , N − 1}, we have the dual constraints

Zj ⊗ IM � U∗
A,j+1(Zj+1 ⊗ IM)UA,j+1, ∀j ∈ {0, 1, . . . , N − 1}.

We can write the constraints in this way since A � B if and only if ∃S � 0 such that
A = B + S. Notice ρN appears in the last constraint acted on by TrM, corresponding to
a dual variable ZN , and it appears in the objective function 〈ΠA,x ⊗ IM, ρN〉. This gives
a dual constraint Tr ∗M(ZN) = ZN ⊗ IM � ΠA,x ⊗ IM. This is equivalent to ZN � ΠA,x

from which we may assume any optimal solution satisfies with equality. Since the only
non-homogeneous constraint in the primal is TrM(ρ0) = |0〉〈0|, corresponding to the dual
variable Z0, we have the objective function of the dual 〈Z0, |0〉〈0|〉.

Notice that the dual variables are positive semidefinite because ΠA,x � 0, for each
x ∈ {0, 1}, and U∗

A,j+1(·)UA,j+1 ∈ Aut (ΣA⊗M
+ ).

The next lemma shows that there is zero duality gap.
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Lemma 7.4 ([19]). The primal-dual pair (B,DB) has zero duality gap and primal attain-
ment.

Proof. We see that we get a feasible solution to the primal if Bob plays honestly. Elimi-
nating ZN and setting Zj = (N − j + 1)IA, for each j ∈ {0, 1, . . . , N − 1}, gives a strictly
feasible solution to the dual. Therefore, there is zero duality gap and primal attainment
from strong duality.

Since the primal SDP attains its optimal value, we know for any protocol there is indeed
an achievable optimal cheating strategy. The zero duality gap implies that we can solve for
the maximum cheating probability by solving the dual SDP. Weak duality implies that the
objective value of any feasible solution of the dual gives an upper bound on the optimal
cheating probability.

We now consider the case of cheating Alice. This case is similar to cheating Bob except
that we let her apply a unitary ÛA,N+1 after Bob’s last unitary UB,N . Since Alice does
not perform any measurements, applying such a unitary does not give her an advantage.
However, we include it in our analysis since it is physically possible.

Her cheating SDP is given as

(A) P ∗
A,x = sup 〈IM ⊗ ΠB,x, σN〉

subject to

TrM(σ0) = |0〉〈0|B,
TrM(σj) = TrM(UB,jσj−1U

∗
B,j), ∀j ∈ {1, . . . , N},

σj � 0, ∀j ∈ {0, 1, . . . , N}.

The dual of Alice’s cheating SDP is given below.

(DA) inf 〈Y0, |0〉〈0|〉

subject to
IM ⊗ Yj � U∗

B,j+1(IM ⊗ Yj+1)UB,j+1, ∀j ∈ {0, 1, . . . , N − 1},
YN = ΠB,x.

All the results about Bob’s cheating SDP also hold for Alice’s cheating SDP. Namely,
Alice’s cheating SDP and dual have zero duality gap and Alice can extract an optimal
cheating strategy from an optimal solution of her cheating SDP.
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7.2 A Lower Bound on the Bias of any Coin-Flipping
Protocol

Recall that a coin-flipping protocol with 0 bias is impossible [22, 23]. We now present other
lower bounds. The next result is by Ambainis.

Theorem 7.5 ([2]). Any coin-flipping protocol achieving bias ε must use Ω(log log ε)

rounds of communication.

We now examine the best known lower bound for a general coin-flipping protocol by
Kitaev [19].

Theorem 7.6 ([19]). Achieving a bias of ε < 1/
√

2−1/2 is impossible in any strong coin-
flipping protocol. In other words, at least one party in any strong coin-flipping protocol can
cheat with probability at least 1/

√
2− 1/2 ≈ 0.2071.

Proof. Assume we are given an arbitrary protocol-tuple and we form Alice and Bob’s
cheating SDP’s where each separately tries to force outcome 0 when the other is honest.
Zero duality gaps imply for any ε > 0 there exist feasible solutions (Z0, Z1, . . . , ZN) for
(DB) and (Y0, . . . , YN) for (DA) such that P ∗

B,0 + ε > 〈Z0, |0〉〈0|〉 and P ∗
A,0 + ε > 〈Y0, |0〉〈0|〉.

Since 〈IM, |0〉〈0|〉 = 1, we can write the following.

(P ∗
B,0 + ε)(P ∗

A,0 + ε) > 〈Z0, |0〉〈0|〉 〈IM, |0〉〈0|〉 〈Y0, |0〉〈0|〉
= 〈Z0 ⊗ IM ⊗ Y0, |0〉〈0|〉 .

Define |ψj〉 := (IA⊗UB,j)(UA,j⊗IB) · · · (IA⊗UB,1)(UA,1⊗IB) |0〉, for j ∈ {0, . . . , N}, to be
the state after Bob applies his j’th unitary in an honest run of the protocol. Also, define
Ψj = 〈Zj ⊗ IM ⊗ Yj, |ψj〉〈ψj|〉 for j ∈ {0, . . . , N}. We next show that Ψj ≥ Ψj+1 for all
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j ∈ {0, 1, . . . , N − 1}.

Ψj = 〈Zj ⊗ IM ⊗ Yj, |ψj〉〈ψj|〉
≥

〈
U∗
A,j+1(Zj+1 ⊗ IM)U∗

A,j+1 ⊗ Yj, |ψj〉〈ψj|
〉

=
〈
Zj+1 ⊗ IM ⊗ Yj, (UA,j+1 ⊗ IB)|ψj〉〈ψj|(U∗

A,j+1 ⊗ IB)
〉

≥
〈
Zj+1 ⊗ U∗

B,j+1(IM ⊗ Yj+1)UB,j+1, (UA,j+1 ⊗ IB)|ψj〉〈ψj|(U∗
A,j+1 ⊗ IB)

〉
=

〈
Zj+1 ⊗ IM ⊗ Yj+1, (IA ⊗ UB,j+1)(UA,j+1 ⊗ IB)|ψj〉〈ψj|(U∗

A,j+1 ⊗ IB)(IA ⊗ U∗
B,j+1)

〉
= 〈Zj+1 ⊗ IM ⊗ Yj+1, |ψj+1〉〈ψj+1|〉
= Ψj+1.

Also notice that

ΨN = 〈ZN ⊗ IM ⊗ YN , |ψN〉〈ψN |〉
= 〈ΠA,0 ⊗ IM ⊗ ΠB,0, |ψN〉〈ψN |〉
= 〈(IA ⊗ IM ⊗ ΠB,0)(ΠA,0 ⊗ IM ⊗ IB), |ψN〉〈ψN |〉
= 〈ψN | (IA ⊗ IM ⊗ ΠB,0)(ΠA,0 ⊗ IM ⊗ IB) |ψN〉
= 〈ψN | (ΠA,0 ⊗ IM ⊗ IB)(ΠA,0 ⊗ IM ⊗ IB) |ψN〉
= ‖(ΠA,0 ⊗ IM ⊗ IB) |ψN〉‖2

= 1/2,

where the last two equalities follow from Conditions 6.2.
Thus, we have

(P ∗
B,0 + ε)(P ∗

A,0 + ε) > Ψ0 ≥ Ψ1 ≥ · · · ≥ ΨN = 1/2.

Taking the limit ε→ 0 implies P ∗
B,0P

∗
A,0 ≥ 1/2. Therefore, max{P ∗

B,0, P
∗
A,0} ≥ 1/

√
2.
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7.3 Solving for the Bias with One SDP

We can find the maximum of the four cheating probabilities by solving the following single
SDP.

(Pmax) inf t

subject to

〈Z0, |0〉〈0|〉 ≤ t,

〈Z ′0, |0〉〈0|〉 ≤ t,

〈Y0, |0〉〈0|〉 ≤ t,

〈Y ′
0 , |0〉〈0|〉 ≤ t,

Zj ⊗ IM � U∗
A,j+1(Zj+1 ⊗ IM)UA,j+1, ∀j ∈ {0, 1, . . . , N − 1},

ZN = ΠA,0,

Z ′j ⊗ IM � U∗
A,j+1(Z

′
j+1 ⊗ IM)UA,j+1, ∀j ∈ {0, 1, . . . , N − 1},

Z ′N = ΠA,1,

IM ⊗ Yj � U∗
B,j+1(IM ⊗ Yj+1)UB,j+1, ∀j ∈ {0, 1, . . . , N − 1},

YN = ΠB,0,

IM ⊗ Y ′
j � U∗

B,j+1(IM ⊗ Y ′
j+1)UB,j+1, ∀j ∈ {0, 1, . . . , N − 1},

Y ′
N = ΠB,1.

This clearly solves for the maximum of the four cheating probabilities, which is exactly
ε + 1/2. In the proof of Kitaev’s lower bound we show that at least one party can cheat
towards 0 with probability 1/

√
2. The same result holds for the parties cheating towards

1. We see that we can recreate Kitaev’s proof using an optimal solution of the above SDP.
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Taking the dual of the above SDP yields the following SDP.

(Dmax) sup 〈ΠA,0, ρN〉+ 〈ΠA,1, ρ
′
N〉+ 〈ΠB,0, σN−1〉+

〈
ΠB,1, σ

′
N−1

〉

subject to

TrM(ρ0) = λ1|0〉〈0|A,
TrM(ρj) = TrM(UA,jρj−1U

∗
A,j), ∀j ∈ {1, . . . , N},

ρj � 0, ∀j ∈ {0, 1, . . . , N − 1},

TrM(ρ′0) = λ2|0〉〈0|A,
TrM(ρ′j) = TrM(UA,jρ

′
j−1U

∗
A,j), ∀j ∈ {1, . . . , N},

ρ′j � 0, ∀j ∈ {0, 1, . . . , N − 1},

TrM(σ0) = λ3|0〉〈0|B,
TrM(σj) = TrM(UB,jσj−1U

∗
B,j), ∀j ∈ {1, . . . , N},

σj � 0, ∀j ∈ {0, 1, . . . , N − 1},

TrM(σ′0) = λ4|0〉〈0|B,
TrM(σ′j) = TrM(UB,jσ

′
j−1U

∗
B,j), ∀j ∈ {1, . . . , N},

σ′j � 0, ∀j ∈ {0, 1, . . . , N − 1},

λ1, λ2, λ3, λ4 ≥ 0,

λ1 + λ2 + λ3 + λ4 = 1.

Note that some of the variables are not positive semidefinite, namely ρN , ρ′N , σN , and σ′N .
Since ΠA,0,ΠA,1,ΠB,0,ΠB,1 � 0, we can assume that ρN , ρ′N , σN , σ′N � 0 as well, since we
are maximizing the inner products above.

Although this does not help computationally, it does incorporate all of the optimal
cheating probabilities and cheating strategies of the entire protocol.

We now examine a specific class of coin-flipping protocols based on quantum bit-
commitment which includes protocols that have the best known bias of 1/4.



Chapter 8

Coin-Flipping Based on Quantum
Bit-Commitment

8.1 Quantum Bit-Commitment

Quantum bit-commitment (BC) is a two-party protocol where one party, Alice say, chooses
a bit a ∈ {0, 1} at the beginning of the protocol which is to be unveiled to the other party,
say Bob, at the end of the protocol. BC protocols are designed to limit the amount of
information Bob can obtain about the bit a and, simultaneously, to protect from Alice
changing the value of a before unveiling. We say that Alice is committed to the bit a and
refer to a as her commitment. Mayers [23] and Lo and Chau [22] show that quantum
bit-commitment is impossible. This means that there is a positive probability that Alice
can change her commitment or Bob can extract information about her commitment.

To illustrate BC protocols, consider the following example.

Protocol 8.1.

1. Commitment Stage: Alice chooses a ∈ {0, 1} and commits to the two-qutrit state

|ψa〉 :=
1√
2

(|aa〉+ |22〉) ∈ C3 ⊗ C3

by sending the second qutrit to Bob. We call |ψ0〉 and |ψ1〉 Alice’s commitment states.
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2. Unveiling Stage: Once Alice is ready to unveil a to Bob, she sends a and the first
qutrit of |ψa〉. Bob can now measure using the projective measurement

{Πaccept := |ψa〉〈ψa|,Πabort := IC3⊗C3 − |ψa〉〈ψa|}

to see if Alice tried to change her commitment.

If Alice tries to change her commitment, she risks Bob detecting her cheating attempt.
On the other hand, Bob may not be able to extract much information about the bit a from
his half of |ψa〉. The amount Alice and Bob can cheat is known in this case and is later
examined in a simple coin-flipping protocol.

8.2 Coin-Flipping Based on Quantum Bit-Commitment

We now discuss a type of coin-flipping protocol introduced by Nayak and Shor [29]. The
idea is that Alice commits to a random bit a ∈ {0, 1} and Bob commits to a random bit
b ∈ {0, 1}. Then after both unveil their bits to each other, they output a⊕ b, which is the
outcome of the protocol.

An m-round BC coin-flipping protocol,1 referred to as a BCCF protocol, is of the fol-
lowing form.

Protocol 8.2. Suppose m = 2n−1, i.e., m is odd and n ≥ 2. Suppose Alice starts with the
Hilbert space A := A1⊗· · ·⊗An and Bob starts with the Hilbert space B := B1⊗· · ·⊗Bn−1.

• Preparation: Assume we have states |ψ0〉 , |ψ1〉 ∈ A satisfying |ψ0〉 ⊥ |ψ1〉, and states
|φ0〉 , |φ1〉 ∈ B satisfying |φ0〉 ⊥ |φ1〉. These states are called the start states or
starting states. Alice creates the state

|A〉 :=
1√
2

∑
a∈{0,1}

|a〉 |ψa〉 ∈ A0 ⊗A = C2 ⊗A

and Bob creates the state

|B〉 :=
1√
2

∑
b∈{0,1}

|b〉 |φb〉 ∈ B0 ⊗ B = C2 ⊗ B.

1We assume m ≥ 3 since 1 and 2-round coin-flipping protocols are not of much interest.



66 Thesis

• Commitment and Unveiling Stages: Alice first sends A1 to Bob. Then Bob sends B1

to Alice. Then Alice sends A2 to Bob and so on until Alice has all of B and Bob has
all of A.

• Measurement Stage: Alice measures the state she has in A0 ⊗ B using the projective
measurement

{ΠA,0 :=
∑

b∈{0,1}

|b〉〈b| ⊗ |φb〉〈φb|, ΠA,1 :=
∑

b∈{0,1}

|b̄〉〈b̄| ⊗ |φb〉〈φb|, IA0⊗B − ΠA,0 − ΠA,1}

to get cA, which she outputs. Bob measures the state he has in B0 ⊗ A using the
projective measurement

{ΠB,0 :=
∑

a∈{0,1}

|a〉〈a|⊗ |ψa〉〈ψa|, ΠB,1 :=
∑

a∈{0,1}

|ā〉〈ā|⊗ |ψa〉〈ψa|, IB0⊗A−ΠB,0−ΠB,1}

to get cB, which he outputs.

In the above protocol, if cA 6= cB, then an honest party detects cheating. We note
here that we do not lose any generality by assuming the protocol has an odd number of
messages. Suppose we have a 4-round BCCF protocol. This is equivalent to a 5-round
BCCF protocol where we append a trivial message at the end. In other words, Alice sends
some message in the last round which does not depend on her commitment, for instance,
the last message could be |0〉. We consider BCCF protocols with an even number of rounds
in later chapters, but we assume an odd number of rounds here for the analysis.

This type of protocol is a special case of the general protocol discussed in Chapter 7,
where the first two unitary operations set up the starting states |A〉 and |B〉 and the rest of
the unitary operations are commutation or “swap” matrices. (Recall from Section 3.2 that
commutation matrices swap tensor factors.) Including a message space in BCCF protocols
is redundant since instead of using commutation matrices, we imagine the spaces Ai and
Bi changing hands.

We next prove that this type of protocol satisfies Conditions 6.2 for any choice of
starting states |ψ0〉 , |ψ1〉, satisfying |ψ0〉 ⊥ |ψ1〉, and |φ0〉 , |φ1〉, satisfying |φ0〉 ⊥ |φ1〉.

Theorem 8.3. Any BCCF protocol satisfies Conditions 6.2.
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Proof. Let |ψfinal〉 =
1

2

∑
a,b∈{0,1}

|a〉 |φb〉 |b〉 |ψa〉 be the final state at the end of an honest run

of the protocol. Then we have

(ΠA,0 ⊗ IA0⊗B) |ψfinal〉 =
1

2

∑
a,b,b′∈{0,1}

(|b′〉〈b′| ⊗ |φb′〉〈φb′| ⊗ IA0⊗B) |a〉 |φb〉 |b〉 |ψa〉

=
1

2

∑
a,b,b′∈{0,1}

|b′〉 〈b′|a〉 |φb′〉 〈φb′|φb〉 |b〉 |ψa〉

=
1

2

∑
a∈{0,1}

|a〉 |φa〉 |a〉 |ψa〉 .

Similarly, we have

(IA0⊗B ⊗ ΠB,0) |ψfinal〉 =
1

2

∑
a∈{0,1} |a〉 |φa〉 |a〉 |ψa〉 ,

(ΠA,1 ⊗ IA0⊗B) |ψfinal〉 =
1

2

∑
a∈{0,1} |ā〉 |φa〉 |a〉 |ψā〉 , and

(IA0⊗B ⊗ ΠB,1) |ψfinal〉 =
1

2

∑
a∈{0,1} |ā〉 |φa〉 |a〉 |ψā〉 .

Therefore, Conditions 6.2 are satisfied.

We later discuss how to find optimal cheating probabilities for this type of protocol
using semidefinite programming. First, we examine known results about the special case
of 3-round BCCF protocols.

8.3 Three-Round BCCF Protocols

For a 3-round protocol, we examine the cheating probabilities for Alice and Bob. Let
|ψa〉 ∈ A1 ⊗ A2 be Alice’s start states satisfying |ψ0〉 ⊥ |ψ1〉 and let |φb〉 ∈ B1 be Bob’s
start states satisfying |φ0〉 ⊥ |φ1〉. Recall that Alice sends the first and last messages and
Bob sends the second message.

Bob’s cheating strategy is straightforward. He only sends one message to Alice and
this is his only opportunity to cheat. If he wants to force a desired outcome, what he
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effectively does is determine Alice’s commitment. If he can determine Alice’s commitment
with probability p, then he can force either outcome with probability p. This is because the
outcome of the protocol is the XOR of Alice’s commitment and Bob’s commitment, so Bob
can choose his commitment accordingly. The only information he can obtain about Alice’s
commitment is what he can extract from her first message. His optimal measurement can
determine the bit to which Alice is committing with probability

1

2
+

1

4
‖ρ0 − ρ1‖t ,

where ρ0 := TrA2 |ψ0〉〈ψ0| and ρ1 := TrA2|ψ1〉〈ψ1|, see [2]. This is the probability of correctly
guessing i given ρi, i ∈ {0, 1}, with equal probability.

Alice’s optimal cheating strategy is different. She is required to send a message in the
first round, at which point she has no information about Bob’s commitment. In the second
round, Bob unveils his commitment to Alice, so at the time of Alice’s last message she
has complete information about Bob’s commitment. Her optimal strategy is to send a
“non-committal” state in the first round and try to determine her commitment in the third
round. Her optimal strategy is to prepare |ψ〉 ∈ A1 ⊗A2, where

|ψ〉 =
1√
2
(|ψ0〉+ |ψ1〉),

and send A1 to Bob in the first round. Then, before sending A2 in the third round, she
applies a fidelity achieving unitary operation (see Lemma 4.5) to the state. That is, if she
wants to determine her commitment as a′ ∈ {0, 1}, then she applies the fidelity achieving
unitary U ∈ L(A2) satisfying

〈ψ| IA1 ⊗ U |ψa′〉 = F (ρ, ρa′),

where ρ := TrA2|ψ〉〈ψ|. With this strategy, she can successfully cheat with probability

1

2
+

1

2
F (ρ0, ρ1) ,

see [2, 36, 18]. These cheating strategies are optimal for 3-round BCCF protocols.
We now show that Kitaev’s bound can never be attained in a 3-round BCCF protocol.
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Lemma 8.4. Suppose we have two density matrices ρ, σ ∈ Dn. Then(
1

2
+
‖ρ− σ‖t

4

)(
1 + F (ρ, σ)

2

)
≥ 1/2,

with equality if and only if ρ ⊥ σ or ρ = σ.

Proof. From Lemmas 4.4 and 4.11, we have that ‖ρ− σ‖t = 2 if ρ ⊥ σ and ‖ρ− σ‖t = 0

if ρ = σ. This proves we have equality above if ρ = σ or ρ ⊥ σ. Let F := F (ρ1, ρ2). Using
the first inequality of Lemma 4.11, we have(

1

2
+
‖ρ− σ‖t

4

)(
1 + F

2

)
≥

(
1

2
+

2(1− F )

4

)(
1 + F

2

)
=

1

4
(1 + (1− F )) (1 + F )

=
1

4
(2− F )(1 + F )

=
1

4

(
2 + (F − F 2)

)
≥ 1/2.

We also see that the last inequality is tight if and only if F − F 2 = 0 and that happens if
and only if F = 0 or F = 1. The result now follows from Lemma 4.4.

This leads to the following corollary.

Corollary 8.5. ε = 1/
√

2− 1/2 is impossible in any 3-round BCCF protocol.

Proof. Suppose there exists a 3-round BCCF protocol with a bias of ε = 1/
√

2−1/2. Then
this implies P ∗

A,0 = P ∗
B,0 = 1/

√
2. We know Bob can cheat with probability

P ∗
B,0 =

1

2
+
‖ρ0 − ρ1‖t

4
,

where ρ0 := TrA2|ψ0〉〈ψ0| and ρ1 := TrA2|ψ1〉〈ψ1|, and Alice can cheat with probability

P ∗
A,0 =

1 + F (ρ0, ρ1)

2
.

From the above lemma, we have P ∗
A,0P

∗
B,0 = 1/2 if and only if ρ0 = ρ1 or ρ0 ⊥ ρ1. If ρ0 ⊥ ρ1,

Bob could distinguish the two states without error and thus cheat with probability 1. If
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ρ0 = ρ1, Alice can perfectly determine her commitment in the last round since there exists
a unitary U ∈ L(A2) such that

(IA1 ⊗ U) |ψ0〉 = |ψ1〉 ,

by Lemma 3.4. In either case, one party can cheat perfectly, a contradiction.

Thus, the only way we can have P ∗
A,0P

∗
B,0 = 1/2 is if one probability is 1 and the other

is 1/2. Notice that P ∗
B,0 = P ∗

B,1 in 3-round BCCF protocols, by nature of the cheating
strategies. So we also have P ∗

A,0P
∗
B,1 ≥ 1/2 with equality if and only if one probability is

1 and the other is 1/2. Therefore, a maximum cheating probability of 1/
√

2− 1/2 is also
impossible for 3-round BCCF protocols used for weak coin-flipping.

Using the relationship between fidelity and trace distance, Lemma 4.11, we can show
that any 3-round BCCF protocol has a bias of at least 1/4, see [2]. This is better than the
1/
√

2− 1/2 ≈ 0.2071 bound given in Corollary 8.5.
The optimal cheating strategies for m-round BCCF protocols, with m ≥ 4, are not

known. We can determine them for each specific protocol using semidefinite programming,
which brings us to the next section.

8.4 Semidefinite Programming Formulation

The formulation of cheating strategies as an SDP for BCCF protocols is similar to the
formulation in the general case. Recall we do not need a message space as we observe it
as Ai and Bi changing hands. E.g., in the first round, Alice sends A1 to Bob, so Bob has
control of B0 ⊗ A1 ⊗ B1 ⊗ · · · ⊗ Bn−1. By what is Bob constrained in this case? Alice
starts with her starting state ρ0 := |A〉〈A|. Let ρi be Alice’s density matrix after Bob sends
Bi to Alice, for i ∈ {1, . . . , n − 1}. Bob is constrained by Tr Bi

(ρi) = TrAi
(ρi−1), for all

i ∈ {1, . . . , n − 1}, since Alice replaces Ai with Bi, but Bob is not allowed to change the
rest of the density matrix. Alice’s final density matrix ρn is TrAn(ρn−1) since Alice sends
the last message to Bob. Then she measures ρn and accepts the outcome x ∈ {0, 1} with
probability 〈ΠA,x, ρn〉. Putting it all together, we have the following result.



Coin-Flipping Based on Quantum Bit-Commitment 71

Theorem 8.6. Bob’s cheating SDP for a BCCF protocol is the following.

(P x
B) P ∗

B,x = sup 〈ΠA,x, ρn〉

subject to

ρ0 = |A〉〈A|,
Tr Bi

(ρi) = TrAi
(ρi−1), ∀i ∈ {1, . . . , n− 1},

ρn = TrAn(ρn−1),

ρ0 ∈ ΣA0⊗A1⊗···⊗An
+ ,

ρi ∈ Σ
A0⊗B1⊗···⊗Bi⊗Ai+1⊗···⊗An

+ , ∀i ∈ {1, . . . , n− 1},
ρn ∈ Σ

A0⊗B1⊗···⊗Bn−1

+ .

Using adjoint operators and replacing ρ0 with |A〉〈A|, we get the following smaller, yet
equivalent, SDP.

(P x
B) P ∗

B,x = sup
〈
Tr ∗An

(ΠA,x), ρn−1

〉
subject to

Tr B1(ρ1) = TrA1|A〉〈A|,
Tr Bi

(ρi) = TrAi
(ρi−1), ∀i ∈ {2, . . . , n− 1},

ρi ∈ Σ
A0⊗B1⊗···⊗Bi⊗Ai+1⊗···⊗An

+ , ∀i ∈ {1, . . . , n− 1}.

We can examine its dual, which is obtained in the same manner as in the general coin-
flipping case.

(Dx
B) inf 〈Z1,TrA1|A〉〈A|〉

subject to

Tr ∗Bi
(Zi) � Tr ∗Ai+1

(Zi+1), ∀i ∈ {1, . . . , n− 1},
Tr ∗Bn−1

(Zn−1) � Tr ∗An
(ΠA,x),

Z1 ∈ ΣA0⊗A2⊗···⊗An ,

Zi ∈ ΣA0⊗B1⊗···⊗Bi−1⊗Ai+1⊗···⊗An ,∀i ∈ {2, . . . , n− 1}.

We similarly formulate Alice’s cheating SDP as follows.

Theorem 8.7. Alice’s cheating SDP for a BCCF protocol is the following.

(P x
A) P ∗

A,x = sup 〈ΠB,x, σn〉

subject to

TrA1(σ1) = |B〉〈B|,
TrAi+1

(σi+1) = Tr Bi
(σi), ∀i ∈ {1, . . . , n− 1},

σi ∈ Σ
B0⊗A1⊗···⊗Ai⊗Bi⊗···⊗Bn−1

+ , ∀i ∈ {1, . . . , n− 1},
σn ∈ ΣB0⊗A1⊗···⊗An

+ .
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Notice Alice sends the first message, which explains the first constraint. From there, she
replaces each of Bob’s messages with one of her own, explaining the rest of the constraints.
The dual of Alice’s cheating SDP is given below.

(Dx
A) inf 〈Y1, |B〉〈B|〉

subject to

Tr ∗Ai
(Yi) � Tr ∗Bi

(Yi+1), ∀i ∈ {1, . . . , n− 1},
Tr ∗An

(Yn) � ΠB,x,

Y1 ∈ ΣB0⊗B1⊗···⊗Bn−1 ,

Yi ∈ ΣB0⊗A1⊗···⊗Ai−1⊗Bi⊗···⊗Bn−1 , ∀i ∈ {2, . . . , n− 1},
Yn ∈ ΣB0⊗A1⊗···⊗An−1 .

By Lemma 7.4, we know that every coin-flipping protocol has an achievable optimal
strategy. This result is therefore true for BCCF protocols as well. We can also check this
directly by the following lemma.

Lemma 8.8. The primal-dual pairs (P x
B, D

x
B) and (P x

A, D
x
A) both have zero duality gap and

primal attainment.

Proof. By playing honestly, both Alice and Bob can achieve feasible solutions for their
respective primal problems. By setting Zi = (n − i + 2)I, ∀i ∈ {1, . . . , n − 1}, for the
corresponding identity matrix I, yields a strictly feasible solution for (Dx

B). Similarly,
setting Yi = (n − i + 2)I, ∀i ∈ {1, . . . , n}, for the corresponding identity matrix I, yields
a strictly feasible solution for (Dx

A). The result now holds by strong duality.

We have the immediate corollary of Theorem 7.6.

Corollary 8.9. We have Kitaev’s lower bound for BCCF protocols, i.e., for each x ∈ {0, 1},
we have

max{P ∗
A,x, P

∗
B,x} ≥

1√
2
.

8.5 An Upper Bound on the Best Possible Bias

The first protocol with bias less than 1 was found by Aharonov et al. [1]. This was
improved by Ambainis [2] and Spekkens and Rudolph [36] by showing ε = 1/4 is possible.
We now give an alternative proof that there exists a protocol with ε = 1/4.
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To fully specify a BCCF protocol, we need to specify Alice’s message spaces Ai, for
i ∈ {1, . . . , n}, Bob’s message spaces Bi, for i ∈ {1, . . . , n−1}, and their respective starting
states. We examine a 3-round protocol by Kerenidis and Nayak [18] which has the starting
states

|ψa〉 =
1√
2
(|aa〉+ |22〉) ∈ C3 ⊗ C3,

for Alice and
|φb〉 = |b〉 ∈ C2,

for Bob.
We append an extra qubit |a〉 onto the starting state |ψa〉, for each a ∈ {0, 1}, so that

they satisfy the condition |ψ0〉 ⊥ |ψ1〉. Thus, we have the states now being

|ψa〉 =
1√
2
(|aa〉+ |22〉) |a〉 ,

where A1 = C3 and A2 = C3 ⊗ C2.
We show that this protocol has a bias of 1/4. Firstly, we show that ε = 1/4 is a lower

bound on the bias (similarly done in [18]).
From Section 8.3, we know Bob can successfully cheat with probability

1

2
+

1

4
‖ρ0 − ρ1‖t ,

where

ρ0 = TrA2|ψ0〉〈ψ0| =
1

2

 1

0

1

 and ρ1 = TrA2|ψ1〉〈ψ1| =
1

2

 0

1

1

 .
Thus, he can cheat with probability

1

2
+

1

4
‖ρ0 − ρ1‖t =

1

2
+

1

4

∥∥∥∥∥∥∥
 1/2

−1/2

0


∥∥∥∥∥∥∥
t

=
1

2
+

1

4

(
1

2
+

1

2

)
=

3

4
.
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Now that we know that Bob can cheat with probability at least 3/4, we use semidefinite
programming to show that neither party can bias the outcome with probability higher than
3/4. We do this by finding dual solutions to the four dual SDP’s each with objective value
3/4.

The dual of Bob’s cheating SDP in this case is the following.

(Dx
B) P ∗

B,x = inf 〈TrA1 |A〉〈A|, Z〉

subject to
Tr ∗B1

(Z) � Tr ∗A2
(ΠA,x),

Z ∈ ΣA0⊗A2 .

The following lemma helps prove positive semidefiniteness of certain matrices.

Lemma 8.10. Suppose we are given a matrix X ∈ Σn and there exists a permutation
matrix P such that PXP T is block diagonal with blocks of size 1 × 1 and 2 × 2. Then
X ∈ Σn

+ if X has nonnegative diagonal and the 2 × 2 blocks (upon permutation) have
nonnegative determinant.

Proof. Suppose we are given such a matrix X ∈ Σn. A block diagonal matrix is positive
semidefinite if and only if the blocks are positive semidefinite, this follows from definition.
Since P (·)P T ∈ Aut (Σn

+), we only need to check if the blocks in the diagonal of PXP T

are positive semidefinite. Since X has nonnegative diagonal, the 1× 1 blocks are positive
semidefinite. Arbitrarily choose a 2×2 block of PXP T . Suppose this block has eigenvalues
λ1 and λ2. Since it has nonnegative determinant, we know λ1λ2 ≥ 0. Also, since X has
nonnegative diagonal, we know the trace of this block is also nonnegative. Thus, λ1+λ2 ≥ 0.
This implies λ1, λ2 ≥ 0, showing it is positive semidefinite.

The operation P (·)P T , where P is a permutation matrix, is called a symmetric permu-
tation.
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Consider the following parametrized matrix.

Z(t) :=



1

1

1

1

t −
√
t(t− 1)

1

1

1

1

1

1

−
√
t(t− 1) t



,

where t ≥ 1. We now prove it is feasible for (D0
B) and (D1

B). We can write
Tr ∗A2

(ΠA,0) ∈ A0 ⊗ B1 ⊗A2 as

Tr ∗A2
(ΠA,0) = Diag ([1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]T )

and Tr ∗A2
(ΠA,1) ∈ A0 ⊗ B1 ⊗A2 as

Tr ∗A2
(ΠA,1) = I24 − Tr ∗A2

(ΠA,0),
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where In := ICn . Expanding, we can write Tr ∗B1
(Z(t)) ∈ A0 ⊗ B1 ⊗A2 as

1

1

1

1

t s

1

1

1

1

1

t s

1

1

1

1

1

1

s t

1

1

1

1

1

s t



,

where s := −
√
t(t− 1). (The s’s align with the t’s in the matrix.) By Lemma 8.10, we

have Tr ∗B1
(Z) − Tr ∗A2

(ΠA,0) � 0 and Tr ∗B1
(Z) − Tr ∗A2

(ΠA,1) � 0 since both have nonzero
diagonal and

det

([
t −

√
t(t− 1)

−
√
t(t− 1) t− 1

])
= 0,

for t ≥ 1. Thus, Z(t) is feasible in (D0
B) and in (D1

B).
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Note we have

TrA1|A〉〈A| :=
1

4



1

0

0

0

1 1

0

0

0

0

1

0

1 1



,

so the objective value of this feasible solution is

lim
t→∞

〈TrA1|A〉〈A|, Z(t)〉 = lim
t→∞

1

4
(1 + 1 + 2t−

√
t(t− 1))

=
1

2
+

1

2
lim
t→∞

[
t−
√
t(t− 1)

]
=

3

4
.

Therefore, Bob can cheat towards either outcome with a probability bounded above by
3/4. We now bound Alice’s cheating probabilities.

The dual of Alice’s cheating SDP is given as the following SDP.

(Dx
A) P ∗

A,x = inf 〈Y1, |B〉〈B|〉

subject to

Tr ∗A1
(Y1) � Tr ∗B1

(Y2),

Tr ∗A2
(Y2) � ΠB,x,

Y1 ∈ ΣB0⊗B1 ,

Y2 ∈ ΣB0⊗A1 .
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Consider the parametrized pair (Y1(t), Y2) given as

(Y1(t), Y2) =





t −

√
t

(
t− 3

2

)
3

2
3

2

−

√
t

(
t− 3

2

)
t


,



3

2
0

3

4
0

3

2
3

4




,

for t ≥ 3/2. We now show this is feasible in (D0
A). We can write Tr ∗A1

(Y1(t)) ∈ B0⊗A1⊗B1

as

Tr ∗A1
(Y1(t)) :=



t s
3

2
t s

3

2
t s

3

2
3

2
s t

3

2
s t

3

2
s t



,
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where s := −
√
t(t− 3/2), and Tr ∗B1

(Y2) ∈ B0 ⊗A1 ⊗ B1 as

Tr ∗B1
(Y2) :=



3

2
3

2
0

0
3

4
3

4
0

0
3

2
3

2
3

4
3

4



.

By Lemma 8.10, Tr ∗A1
(Y1(t))−Tr ∗A2

(Y2) � 0, for t ≥ 3/2, since it has nonnegative diagonal
and, noting s = −

√
t(t− 3/2), we have

det

([
t− 3/2 s

s t

])
, det

([
t s

s t− 3/2

])
, det

([
t− 3/4 s

s t− 3/4

])
≥ 0.

Thus, the first constraint is satisfied. To show the second constraint is satisfied, we need
to show that Tr ∗A2

(Y2) � ΠB,0. We know

Tr ∗A2
(Y2) = Y2 ⊗ I3 ⊗ I2 ∈ B0 ⊗A1 ⊗A2

and

ΠB,0 = |0〉〈0| ⊗ |ψ′0〉〈ψ′0| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |ψ′1〉〈ψ′1| ⊗ |1〉〈1| ∈ B0 ⊗A1 ⊗A2,
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where |ψ′a〉 = 1√
2
(|aa〉+ |22〉). Therefore, we can write Tr ∗A1

(Y2)− ΠB,0 as

Tr ∗A1
(Y2)− ΠB,0 = Y2 ⊗ I3 ⊗ I2 − |0〉〈0| ⊗ |ψ′0〉〈ψ′0| ⊗ |0〉〈0| − |1〉〈1| ⊗ |ψ′1〉〈ψ′1| ⊗ |1〉〈1|

= Y2 ⊗ I3 ⊗ |0〉〈0|+ Y2 ⊗ I3 ⊗ |1〉〈1|
−|0〉〈0| ⊗ |ψ′0〉〈ψ′0| ⊗ |0〉〈0| − |1〉〈1| ⊗ |ψ′1〉〈ψ′1| ⊗ |1〉〈1|

= (Y2 ⊗ I3 − |0〉〈0| ⊗ |ψ′0〉〈ψ′0|)⊗ |0〉〈0|
+(Y2 ⊗ I3 − |1〉〈1| ⊗ |ψ′1〉〈ψ′1|)⊗ |1〉〈1|.

Thus, we have Tr ∗A1
(Y2)− ΠB,0 � 0 if and only if

Y2 ⊗ I3 − |0〉〈0| ⊗ |ψ′0〉〈ψ′0| � 0 and Y2 ⊗ I3 − |1〉〈1| ⊗ |ψ′1〉〈ψ′1| � 0.

Since Y2 is diagonal, we can write Y2 ⊗ I3 as

[
Y ′ 0

0 Y ′′

]
, where Y ′, Y ′′ ∈ M9. We need to

check that Y ′ � |ψ′0〉〈ψ′0| and Y ′′ � |ψ′1〉〈ψ′1|. Notice that

Y ′ =



3

2
3

2
3

2
0

0

0
3

4
3

4
3

4
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and

|ψ′0〉〈ψ′0| =



1

2

1

2
0

0

0

0

0

0

0
1

2

1

2



.

Thus, Y ′ � |ψ′0〉〈ψ′0| by Lemma 8.10. We can write the other two matrices as

Y ′′ =



0

0

0
3

2
3

2
3

2
3

4
3

4
3

4
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and

|ψ′1〉〈ψ′1| =



0

0

0

0
1

2

1

2
0

0

0
1

2

1

2



.

Therefore, Y ′′ � |ψ′1〉〈ψ′1|, by Lemma 8.10, showing the second constraint is satisfied.
To find the objective value, note that

|B〉〈B| = 1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 .
The objective value can now be written as

〈Y1, |B〉〈B|〉 = lim
t→∞

1

2

(
2t− 2

√
t(t− 3/2)

)
= lim

t→∞

[
t−
√
t(t− 3/2)

]
=

3

4
.

Thus, Alice can not cheat towards 0 with probability higher than 3/4.
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We can similarly prove that

(Y ′
1(t), Y

′
2) =





t −

√
t

(
t− 3

2

)
3

2
3

2

−

√
t

(
t− 3

2

)
t


,



0
3

2
3

4
3

2
0

3

4




,

for t ≥ 3/2, is a feasible solution for (D1
A). Since Y ′

1(t) = Y1(t), it also has an objective
value of 3/4 as t → ∞. Therefore, Alice can not cheat towards 1 with probability higher
than 3/4.

We have just proved the following result.

Theorem 8.11. The above protocol has a bias of 1/4.

Recall that Kitaev’s lower bound on any protocol is ε ≥ 1/
√

2 − 1/2 ≈ 0.2071. The
difference between the best known upper bound and best known lower bound for the bias
is 1/4− (1/

√
2− 1/2) ≈ 0.0429, which is quite small, but there is room for improvement.



Chapter 9

Asymmetry in Cheating Probabilities

9.1 An Asymmetric Protocol

In every 3-round BCCF protocol we have that P ∗
A,0 = P ∗

A,1 and P ∗
B,0 = P ∗

B,1 since the optimal
cheating strategies do not depend on the desired outcome. However, while solving for the
bias of 4-round protocols, we noticed that sometimes it is the case that P ∗

A,0 6= P ∗
A,1 and

P ∗
B,0 6= P ∗

B,1. We have isolated a family of protocols which we noticed had this asymmetry
in the cheating probabilities.

Consider the following class of 4-round BCCF protocols where all the messages are
qubits.

|ψ0〉 :=
√
m |00〉+

√
1−m |11〉 , |ψ1〉 := |01〉 ,

|φ0〉 :=
√
y |00〉+

√
1− y |11〉 , |φ1〉 := |10〉 ,

where m, y ≥ 0 satisfy m+ y ≤ 1.
We argue that P ∗

B,0 = 1 and P ∗
B,1 ≤ 1, provided that m + y ≤ 1, and P ∗

B,1 < 1 if we
further assume m 6= 0 and y 6= 0.

This is interesting since the optimal cheating strategies for 3-round BCCF protocols
were independent of the desired outcome and now we claim that there exist protocols where
cheating strategies do depend on the desired outcome.

Note that this BCCF protocol has 4-rounds and our SDP formulations are for an odd
number of rounds. We formulate the cheating SDP’s for 4-round BCCF protocols in the

84
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same manner and are given below.

(P x
B) P ∗

B,x = sup 〈ΠA,x, ρ2〉

subject to

Tr B1(ρ1) = TrA1|A〉〈A|,
Tr B2(ρ2) = TrA2(ρ1),

ρ1 ∈ ΣA0⊗B1⊗A2
+ ,

ρ2 ∈ ΣA0⊗B1⊗B2
+ .

The dual of Bob’s cheating SDP is

(Dx
B) inf 〈X1,TrA1 |A〉〈A|〉

subject to

Tr ∗B1
(X1) � Tr ∗A2

(X2),

Tr ∗B2
(X2) � ΠA,x,

X1 ∈ ΣA0⊗A2 ,

X2 ∈ ΣA0⊗B1 .

Assume m + y ≤ 1, m 6= 0, and y 6= 0. To show Bob can force outcome 0 with
probability 1, we find optimal solutions for the primal and dual each having objective
value 1. Since the objective value of the primal is a probability, we know it is bounded
above by 1. We find the optimal dual solution to verify the zero duality gap.

Consider (ρ1, ρ2) defined below. We show it is a feasible solution for (P 0
B).

ρ1 :=
1

2



0

y

m
√
m

1−m− y

0

0

0
√
m 1
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and

ρ2 :=
1

2



y
√
y(1− y)

0 0

0 0√
y(1− y) 1− y

0

0

1

0


.

By Lemma 8.10, we see that the above two matrices are positive semidefinite.
We note that

TrA2(ρ1) =
1

2


y

1− y

0

1

 = Tr B2(ρ2),

so the second constraint is satisfied. Also

Tr B1(ρ1) =
1

2


m

√
m

1−m

0
√
m 1

 = TrA1|A〉〈A|,

where

|A〉〈A| = 1

2



m
√
m(1−m)

√
m

0 0

0 0√
m(1−m) 1−m

√
1−m

0
√
m

√
1−m 1

0

0


.

This shows the first constraint is satisfied. Therefore, (ρ1, ρ2) is feasible for (P 0
B). Since
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ρ2 =
1

2
ΠA,0, the objective value is

〈ΠA,x, ρ2〉 =
1

2
Tr (ΠA,0ΠA,0) =

1

2
Tr (ΠA,0) =

1

2
rank (ΠA,0) = 1.

To prove this is an optimal solution for (P 0
B), note that (X1, X2) = (IA0⊗A1 , IA0⊗B1) is a

feasible solution to (D0
B) giving objective value

〈I,TrA1|A〉〈A|〉 = Tr (TrA1|A〉〈A|) = 1.

Therefore, both the primal and dual solutions above are optimal by weak duality.
We now find P ∗

B,1 by finding an explicit formula for the optimal value of (P 1
B). Define

γ :=
√

(m+ 1)2 − 4my. Recall that m + y ≤ 1 and m, y 6= 0. Under these assumptions,
we have that (m+ 1)2 − 4my > 0. Thus, γ is well-defined and positive.

We show that (ρ′1, ρ
′
2), below, is a feasible solution to (P 1

B).

ρ′1 :=



α
α√
m

0
m

2
− α

√
m

2
− α√

m
1

2
− m

2
0

α√
m

α

m

0√
m

2
− α√

m

1

2
− α

m
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and

ρ′2 :=



α

2 α

2
1

2
− α

0

α

m

√
α

m

(
1

2
− α

m

)
0 0

0 0√
α

m

(
1

2
− α

m

)
1

2
− α

m



,

where α =
m

4

(
1− m+ 1− 2y

γ

)
. By Lemma 8.10, the above two matrices are positive

semidefinite if we can show the following four conditions.

1. α ≤ m

2
,

2. m ≤ 1,

3. α ≤ 1

2
, and

4. α ≥ 0.

Since m ≤ 1, it suffices to show 0 ≤ α ≤ m

2
. To do so, we present the following lemma.

Lemma 9.1. For γ as defined above, we have

γ ≥ m+ 1− 2y and γ ≥ −(m+ 1− 2y).

Proof. We prove the result by showing γ ≥ |m+ 1− 2y|.

γ ≥ |m+ 1− 2y| ⇐⇒ γ2 ≥ ((m+ 1)− 2y)2

⇐⇒ (m+ 1)2 − 4my ≥ (m+ 1)2 − 4y(m+ 1) + 4y2

⇐⇒ 4y ≥ 4y2.

Thus, γ ≥ |m+ 1− 2y| since 0 ≤ y ≤ 1 implies 4y ≥ 4y2.
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As a result of the lemma, we have that α =
m

4

(
γ − (m+ 1− 2y)

γ

)
≥ 0. Also,

γ ≥ −(m+ 1− 2y) =⇒ m

2
≥ α.

Therefore, 0 ≤ α ≤ m

2
which proves that ρ′1 and ρ′2 are positive semidefinite.

Note that

Tr B1(ρ
′
1) =

1

2


m

√
m

1−m

0
√
m 1

 = TrA1|A〉〈A|,

where TrA1|A〉〈A| is given earlier. Also we have

TrA2(ρ
′
1) =


α

1

2
− α

α

m
1

2
− α

m

 = Tr B2(ρ
′
2),

so the first two constraints are satisfied, proving (ρ′1, ρ
′
2) is feasible.

Before evaluating the objective value, we need the following lemma.

Lemma 9.2. Suppose we are given α as above. Then we have√
α(m− 2α) =

m√
2γ

√
y(1− y).

Proof. Suppose α =
m

4γ
(γ − (m+ 1− 2y)). Then we can write the following.

√
α(m− 2α) =

√
m

4γ
(γ − (m+ 1− 2y))

(
m− m

2γ
(γ − (m+ 1− 2y))

)
=

m√
8γ

√
(γ − (m+ 1− 2y)(γ + (m+ 1− 2y))

=
m√
8γ

√
(m+ 1)2 − 4my − ((m+ 1)− 2y)2

=
m√
2γ

√
y(1− y).
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We have ΠA,1 explicitly as

ΠA,1 =



0

0

1

0

y
√
y(1− y)

0 0

0 0√
y(1− y) 1− y


,

thus we can write the objective value below.

〈ΠA,1, ρ2〉 =

(
1

2
− α

)
+ y

( α
m

)
+ (1− y)

(
1

2
− α

m

)
+ 2
√
y(1− y)

√
α

m

(
1

2
− α

m

)
=

1

2m

(
2m+ 4αy − 2α− 2mα− ym+

√
8
√
y(1− y)

√
α(m− 2α)

)
=

1

2m

(
2m+ 4αy − 2α− 2mα− ym+

√
8
√
y(1− y)

m√
2γ

√
y(1− y)

)
=

1

2mγ

(
2mγ + α(4yγ − 2γ − 2mγ)− ymγ + 2ym− 2y2m

)
=

1

4γ

(
4γ − (γ − (m+ 1− 2y))(m+ 1− 2y)− 2yγ + 4y − 4y2

)
=

1

4γ

(
4γ − γm− γ + 2yγ + (m+ 1)2 − 4y(m+ 1) + 4y2 − 2yγ + 4y − 4y2

)
=

1

4γ
(3γ − γm+ γ2)

=
3−m+ γ

4
.

To show the solution above is optimal for (P 1
B), consider the parametrized pair

X2 =


0

1
1

2
(1 +m+ γ)

1

2
(1−m+ γ)

 ,
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and

X1(t) =


t −

√
tm(t− 1)

1
1

2
(1 +m+ γ)

−
√
tm(t− 1)

1

2
(1−m+ γ) + tm

 .
To see this is feasible for (D1

B), we can write Tr ∗B1
(X1(t)) ∈ A0 ⊗ B1 ⊗A2 as

t f1(m, t)

1

t f1(m, t)

1

f2(m, y)

f1(m, t) f3(m, γ, t)

f2(m, y)

f1(m, t) f3(m, γ, t)


,

where f1(m, t) := −
√
tm(t− 1), f2(m, y) :=

1

2
(1 +m+ γ), and

f3(m, γ, t) :=
1

2
(1−m+ γ) + tm. (These functions are only defined to help fit the matrix

on the page.) We can also write Tr ∗A2
(X2) ∈ A0 ⊗ B1 ⊗A2 as

0

0

1

1
1

2
(1 +m+ γ)

1

2
(1 +m+ γ)

1

2
(1−m+ γ)

1

2
(1−m+ γ)



.
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To prove feasibility of the first constraint, let X(t) := Tr ∗B1
(X1(t))− Tr ∗A2

(X2), i.e.,

X(t) =



t −
√
tm(t− 1)

1

t− 1 −
√
tm(t− 1)

0

0

−
√
tm(t− 1) m(t− 1)

m

−
√
tm(t− 1) m(t− 1)


.

For t ≥ 1, the above matrix is positive semidefinite by Lemma 8.10.
Since B2 = A2 = C2, we have Tr ∗A2

(X2) = Tr ∗B2
(X2) ∈ A0 ⊗ B1 ⊗ B2. To verify the

second constraint, let X ′ := Tr ∗B2
(X2)− ΠA,1, i.e.,

X ′ =



0

0

0

1

s1 − y −
√
y(y − 1)

s1

s2

−
√
y(y − 1) s2 − (y − 1)


,

where s1 :=
1

2
(1+m+γ) and s2 :=

1

2
(1−m+γ). To show that X ′ is positive semidefinite,

we first show it has nonnegative diagonal elements by showing the following.

1. s1 − y =
1

2
(1 +m+ γ)− y ≥ 0, and

2. s2 − (y + 1) =
1

2
(1−m+ γ)− (y − 1) ≥ 0.

We see that
1

2
(1−m+γ)−(y−1) ≥ 0 sincem, y ≤ 1 and γ ≥ 0. Also,

1

2
(1+m+γ)−y ≥ 0

holds by Lemma 9.1. We need to verify that

det

([
1 +m+ γ − y −2

√
y(y − 1)

−2
√
y(y − 1) 1−m+ γ − y + 1

])
≥ 0.
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The determinant above is nonnegative since (1+m+γ−y)(1−m+γ−y+1)−4y(y−1) can
be written as (1+m−y)(2−m−y)+(2−m−y)γ+(1+m−y)γ+(m+1)2 +4y(1−m−y),
which is a sum of nonnegative terms. Thus, by Lemma 8.10, we have that X ′ � 0, verifying
the second constraint. This solution has objective value

lim
t→∞

〈X1(t),TrA1|A〉〈A|〉 = lim
t→∞

1

2

[
(1−m) +

1

2
(1−m+ γ) + 2tm− 2

√
tm(t− 1)

√
m

]
=

1

2

[
(1−m) +

1

2
(1−m+ γ)

]
+m · lim

t→∞

[
t−
√
t(t− 1)

]
=

1

4
(3−m+ γ) .

This matches the primal objective value so the primal and dual feasible solutions given
above are optimal. Now we prove P ∗

B,1 < 1 by showing

P ∗
B,1 < 1

⇐⇒ γ2 < (1 +m)2

⇐⇒ (1 +m)2 − 4my < (1 +m)2

⇐⇒ 0 < my.

Since my > 0, we have that P ∗
B,1 < 1, as desired.

9.1.1 Optimal Cheating Strategy for Forcing Outcome 0

We begin by finding the optimal cheating strategy for Bob forcing outcome 0 with prob-
ability P ∗

B,0 = 1. Let C be an ancilla space used for finding purifications of the optimal
primal solutions (which are density matrices). We can purify ρ1 as |ψpure1 〉 and ρ2 as |ψpure2 〉
below.

|ψpure1 〉 =

√
y

2
|001〉 |0〉C +

√
m

2
|010〉 |1〉C +

√
1

2
|111〉 |1〉C +

√
1− y −m

2
|011〉 |2〉C

and

|ψpure2 〉 =

√
y

2
|000〉 |0〉C +

√
1− y

2
|011〉 |0〉C +

√
1

2
|110〉 |1〉C .
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To find U1, we append the state |0〉C to Alice’s beginning state |A〉 as follows.

|A〉 =

√
m

2
|000〉 |0〉C +

√
1−m

2
|011〉 |0〉C +

√
1

2
|101〉 |0〉C

=

(√
m

2
|00〉+

√
1

2
|11〉

)
⊗ |00〉A1⊗C +

√
1−m

2
|01〉 ⊗ |10〉A1⊗C .

We also have

|ψpure1 〉 =

√
y

2
|001〉 |0〉C +

√
m

2
|010〉 |1〉C +

√
1

2
|111〉 |1〉C +

√
1− y −m

2
|011〉 |2〉C

=

√
y

2
|01〉 ⊗ |00〉B1⊗C +

(√
m

2
|00〉+

√
1

2
|11〉

)
⊗ |11〉B1⊗C

+

√
1− y −m

2
|01〉 |12〉B1⊗C .

Thus, we define the unitary U1 : A1 ⊗ C → B1 ⊗ C to act on the basis states as follows.

U1 :
|00〉 → |11〉 ,

|10〉 →
√

y

1−m
|00〉+

√
1− y −m

1−m
|12〉 .

To find U2, note that

|ψpure1 〉 =

√
y

2
|001〉 |0〉C +

√
m

2
|010〉 |1〉C +

√
1

2
|111〉 |1〉C +

√
1− y −m

2
|011〉 |2〉C

=

√
y

2
|00〉 ⊗ |10〉A2⊗C +

√
m

2
|01〉 ⊗ |01〉A2⊗C +

√
1

2
|11〉 ⊗ |11〉A2⊗C

+

√
1− y −m

2
|01〉 ⊗ |12〉A2⊗C

and

|ψpure2 〉 =

√
y

2
|000〉 |0〉C +

√
1− y

2
|011〉 |0〉C +

√
1

2
|110〉 |1〉C

=

√
y

2
|00〉 ⊗ |00〉B2⊗C +

√
1− y

2
|01〉 ⊗ |10〉B2⊗C +

√
1

2
|11〉 ⊗ |01〉B2⊗C .
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Thus, we define the unitary U2 : A2 ⊗ C → B2 ⊗ C to act on the basis states as follows.

U2 :

|10〉 → |00〉 ,
|11〉 → |01〉 ,√

m

1− y
|01〉+

√
1− y −m

1− y
|12〉 → |10〉 .

Therefore, Bob’s optimal cheating strategy is to create the ancilla space C, performing
U1 before sending B1 to Alice, and performing U2 before sending B2 to Alice. Doing this,
the optimal solutions of the SDP are Alice’s density matrices from which she measures and
accepts 0 with probability P ∗

B,0 = 1.

9.1.2 Optimal Cheating Strategy for Forcing Outcome 1

Now we find the optimal cheating strategy for Bob forcing outcome 1 with probability
P ∗
B,1. Again, let C be an ancilla space used for finding purifications of the optimal primal

solutions. We can purify ρ′1 and ρ′2 as

|ψpure1 〉 =
√
α |000〉 |00〉C +

√
α

m
|101〉 |00〉C

+

√
m

2
− α |010〉 |01〉C +

√
1

2
− α

m
|111〉 |01〉C

+

√
1−m

2
|011〉 |11〉C

and

|ψpure2 〉 =

√
α

2
|000〉 |00〉C +

√
α

2
|001〉 |01〉C

+

√
1

2
− α |010〉 |10〉C +

√
α

m
|100〉 |11〉C

+

√
1

2
− α

m
|111〉 |11〉C .
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To find V1, we append |00〉C to the end of |A〉 and write it as

|A〉 =

√
m

2
|000〉 |00〉C +

√
1−m

2
|011〉 |00〉C +

√
1

2
|101〉 |00〉C

=

(√
m

2
|00〉+

√
1

2
|11〉

)
⊗ |0〉A1

|00〉C +

√
1−m

2
|01〉 ⊗ |1〉A1

|00〉C .

We can write |ψpure1 〉 as

|ψpure1 〉 =

(√
α |00〉+

√
α

m
|11〉

)
⊗ |0〉B1

|00〉C

+

(√
m

2
− α |00〉+

√
1

2
− α

m
|11〉

)
⊗ |1〉B1

|01〉C

+

√
1

2
− m

2
|01〉 ⊗ |1〉B1

|11〉C .

Therefore, we define the unitary V1 : A1 ⊗ C → B1 ⊗ C to act on the basis states as
follows.

V1 :
|0〉 |00〉 →

√
2α

m
|0〉 |00〉+

√
m− 2α

m
|1〉 |01〉 ,

|1〉 |00〉 → |1〉 |11〉 .
To find V2, note that

|ψpure1 〉 =
√
α |00〉 ⊗ |0〉A2

|00〉C +

√
α

m
|10〉 ⊗ |1〉A2

|00〉C

+

√
m

2
− α |01〉 ⊗ |0〉A2

|01〉C +

√
1

2
− α

m
|11〉 ⊗ |1〉A2

|01〉C

+

√
1

2
− m

2
|01〉 ⊗ |1〉A2

|11〉C

and

|ψpure2 〉 =

√
α

2
|00〉 ⊗ |0〉B2

|00〉C +

√
α

2
|00〉 ⊗ |1〉B2

|01〉C√
1

2
− α |01〉 ⊗ |0〉B2

|10〉C +

√
α

m
|10〉 ⊗ |0〉B2

|11〉C√
1

2
− α

m
|11〉 ⊗ |1〉B2

|11〉C .
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Thus, we define the unitary V2 : A2⊗C → B2⊗C to act on the basis states as follows.

V2 :

|0〉 |00〉 →
√

1

2
|0〉 |00〉+

√
1

2
|1〉 |01〉 ,

|1〉 |00〉 → |0〉 |11〉 ,
|1〉 |01〉 → |1〉 |11〉 ,√

m− 2α

1− 2α
|0〉 |01〉+

√
1−m

1− 2α
|1〉 |11〉 → |0〉 |10〉 .

Bob’s optimal cheating strategy for forcing outcome 1 is the same as his strategy for
forcing outcome 0 except he applies V1 instead of U1 and V2 instead of U2. With this
strategy Alice accepts outcome 1 with probability P ∗

B,1 < 1.



Chapter 10

Computational Results

10.1 The Search for 3 and 4-Round Protocols with Low
Bias

In this chapter, we discuss how we approach finding BCCF protocols with low bias. Recall
that the protocols in [2, 36, 18] achieve a bias of ε = 1/4. Also, recall from Section 8.3
that the bias is at least 1/4 in any 3-round BCCF protocol [2]. This implies if we want to
find protocols with a lower bias, we need more than 3 rounds. The first step is to search
for 4-round BCCF protocols with low values for the bias.

We set up our search using the following pseudocode. Since there are an infinite number
of starting states, we test all starting states to within a certain accuracy, which we describe
later.

Pseudocode 10.1.

1. Choose accuracy parameter. Initialize Statesbest and Biasmin being the best found
starting states and bias, respectively.

2. For all starting states |ψ0〉, |ψ1〉, |φ0〉, and |φ1〉, within the given accuracy, such that
|ψ0〉 ⊥ |ψ1〉, and |φ0〉 ⊥ |φ1〉:

(a) Solve for P ∗
A,0, P ∗

A,1, P ∗
B,0, and P ∗

B,1. Set Bias = max{P ∗
A,0, P

∗
A,1, P

∗
B,0, P

∗
B,1}−1/2.

(b) If Bias < Biasmin then update Statesbest and Biasmin.

98
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3. end For loop.

We later describe how we define the accuracy parameter and the way we choose the
starting states, but first we discuss an equivalence on BCCF protocols which reduces re-
dundant computation.

Theorem 10.2. Suppose we have a BCCF protocol defined by the starting states |ψ0〉, |ψ1〉,
|φ0〉, and |φ1〉. We define a new protocol by defining a set of new starting states, where
we apply an arbitrary unitary of the form UAj

∈ L(Aj) to both of Alice’s starting states1

and correspondingly changing the projection operators ΠB,0 and ΠB,1. Then the optimal
cheating probabilities of each outcome for each party are the same in both the original and
new protocol.

Proof. Recall the SDP for cheating Bob (corresponding to the original protocol) is as
follows.

(P x
B) P ∗

B,x = sup
〈
Tr ∗An

(ΠA,x), ρn−1

〉
subject to

Tr B1(ρ1) = TrA1|A〉〈A|,
Tr Bi

(ρi) = TrAi
(ρi−1), ∀i ∈ {2, . . . , n− 1},

ρi ∈ Σ
A0⊗B1⊗···⊗Bi⊗Ai+1⊗···⊗An

+ , ∀i ∈ {1, . . . , n− 1}.

Let (τ1, . . . , τn−1) be a feasible solution of (P x
B). Define a new protocol by applying a

unitary of the form UAj
∈ L(Aj), for some j ∈ {1, . . . , n}, to both of Alice’s starting states

and correspondingly changing the projectors ΠB,0 and ΠB,1. Note that Alice’s projectors
do not change. Let (P̃ x

B) be the cheating SDP for Bob corresponding to the new protocol.
We see that if j = 1 or j = n, then (τ1, . . . , τn−1) is a feasible solution for (P̃ x

B) as well.
Suppose j ∈ {2, . . . , n− 1}. Define

(τ ′1, . . . , τ
′
n−1) = (UAj

τ1U
∗
Aj
, . . . , UAj

τj−1U
∗
Aj
, τj, . . . , τn−1).

We show this is a feasible solution for (P̃ x
B). Note that UAj

(·)U∗
Aj
∈ Aut (ΣA

+), thus τ ′j � 0,
for all j ∈ {1, . . . , n − 1}. Also, unitary operations of the form UAj

commute with the
partial traces in the SDP’s. This is either because they act on different tensor factors

1When we apply a unitary to a tensor factor, we assume it acts as the identity on the rest of the tensor
factors.
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or because the partial trace is invariant under changes of basis (Lemma 3.2). Thus, for
i ∈ {2, . . . , j − 1}, we have

Tr Bi
(τ ′i) = Tr Bi

(UAj
τiU

∗
Aj

)

= UAj
(Tr Bi

(τi))U
∗
Aj

= UAj
(TrAi

(τi−1))U
∗
Aj

= TrAi
(UAj

τi−1U
∗
Aj

)

= TrAi
(τ ′i−1).

For i = j, we have

Tr Bj
(τ ′j) = Tr Bj

(τj)

= TrAj
(τj−1)

= TrAj
(UAj

τj−1U
∗
Aj

)

= TrAj
(τ ′j−1).

The rest of the constraints can be similarly verified. Since j ≤ n − 1, we know that
τ ′n−1 = τn−1, thus, 〈

Tr ∗An
(ΠA,x), τ

′
n−1

〉
=
〈
Tr ∗An

(ΠA,x), τn−1

〉
.

Therefore, there is an objective value preserving bijection between feasible solutions of (P x
B)

and the feasible solutions of (P̃ x
B). This proves that the optimal values of the two SDP’s are

the same. Therefore, Bob’s optimal cheating probabilities are the same in both the original
and new protocol. By a similar argument, we can show Alice’s cheating probabilities are
also preserved.

We can also apply a unitary of the form UBj
∈ L(Bj), for some j ∈ {1, . . . , n − 1}, to

Bob’s starting states and accordingly change Alice’s projectors to define a new protocol.
By a similar argument, this also preserves the optimal cheating probabilities.

This leads to the following definition.

Definition 10.3 (Equivalent Protocols). Suppose we are given two BCCF protocols defined
by the starting states {|ψa〉 , |φb〉 : a, b,∈ {0, 1}} and {|ψ′a〉 , |φ′b〉 : a, b,∈ {0, 1}}. We
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say they are equivalent if there exist unitary operations of the form UA :=
⊗

i UAi
and

UB :=
⊗

j UBj
such that

|ψ′a〉 = UA |ψa〉 , for a ∈ {0, 1}, and |φ′b〉 = UB |φb〉 , for b ∈ {0, 1}.

From Theorem 10.2, we see that equivalent protocols have the same cheating probabil-
ities and thus the same bias. Therefore, we need only test starting states from different
equivalence classes. We achieve this through the following lemma.

Lemma 10.4. Suppose we have a 3 or 4-round BCCF protocol with A1 = A2 = Cd. We
may assume

|ψ0〉 =
d∑
i=1

λi |i〉 |i〉 ,

where λi ≥ 0 satisfy
∑d

i=1 λ
2
i = 1, called the Schmidt coefficients. Suppose we have a

4-round protocol with B1 = B2 = Cd′. Then we may also assume

|φ0〉 =
d′∑
i=1

µi |i〉 |i〉 ,

where µi ≥ 0 satisfy
∑d′

i=1 µ
2
i = 1.

Proof. Consider the Schmidt decomposition2 for Alice’s starting states below.

|ψ0〉 =
∑
i

λi |iA1〉 |iA2〉 and |ψ1〉 =
∑
i

λ′i
∣∣i′A1

〉 ∣∣i′A2

〉
,

where {|iA1〉}, {|iA2〉}, {
∣∣i′A1

〉
}, and{

∣∣i′A2

〉
} are orthonormal sets in their respective spaces.

Using the equivalence above, we can apply the change of basis |iA1〉 |iA2〉
U⊗V−→ |i〉 |i〉 to

both states to find an equivalent protocol. Alice now has the starting states |ψ′0〉 , |ψ′1〉
with |ψ′0〉 =

∑d
i=1 λi |i〉 |i〉. Similarly, we can do this for Bob’s starting states in a 4-round

protocol.

Note the Schmidt decomposition does not hold true for tripartite states. I.e., for an
arbitrary state |ψ〉 ∈ A1 ⊗ A2 ⊗ A3, we can not always find λi ≥ 0,

∑
i λ

2
i = 1 such

2See, for example, Theorem 2.7 in [31]
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that |ψ〉 =
∑

i λi |iA1〉 |iA2〉 |iA3〉, where {|iA1〉}, {|iA2〉}, and {|iA3〉} are orthonormal sets.
Therefore, such a lemma does not exist for m-round BCCF protocols where m ≥ 5.

A consequence of our equivalence is that we may assume |φ0〉 = |0〉 and |φ1〉 = |1〉 for
3-round BCCF protocols. Unfortunately, in 4 rounds we cannot assume much about the
form of |ψ1〉 and |φ1〉 except, by orthogonality, we can easily write down a basis for the
orthogonal compliment of

∑
i λi |i〉 |i〉.

We now describe the accuracy of our search for protocols with low bias. Suppose all
of the messages are qubits, for ease of computation. To choose a starting state |ψ0〉, we
need only choose one Schmidt coefficient. This is because dim(A1) = dim(A2) = 2, so one
Schmidt coefficient determines the other. For the first Schmidt coefficient, we loop through
every value between 0 and 0.5 by increments of 10−q. The reason we do not need any value
larger than 0.5 is because then we could have chosen a different change of basis in the
proof of Lemma 10.4, namely |iA1〉 |iA2〉

U ′⊗V ′
−→ |1⊕ i〉 |1⊕ i〉. For every choice of |ψ0〉, we

test different choices for |ψ1〉. After fixing |ψ0〉, we define an orthonormal basis for |ψ0〉⊥

as {|m1〉 , |m1〉 , |m3〉}, where

|m1〉 := |01〉 , |m2〉 := |10〉 , and |m3〉 := λ1 |00〉 − λ0 |11〉 .

We loop to find all the values of β1 and β2 by increments of 10−p. For the values that
satisfy β2

1 + β2
2 ≤ 1, we define |ψ1〉 to be

|ψ1〉 := β1 |m1〉+ β2 |m2〉 ±
√

1− β2
1 − β2

2 |m3〉 .

We note here that we only test real values for β1 and β2 to keep the computation man-
ageable. This is how we enumerate all the possible starting states for Alice. We do the
same for Bob in the case of 4 rounds, but as mentioned above, in 3 rounds we can assume
|φb〉 = |b〉.

10.1.1 Computational Platform

Programs were run on Matlab, Version 7, on a Sun V880 with 8 UltraSPARC III CPUs
at 1.2 GHz, and 32 GB of memory, running Solaris 8. Semidefinite programs were solved
using SeDuMi 1.1, a program for solving semidefinite optimization problems in Matlab.
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10.2 Three-Round BCCF Search Results

We test the search for the case of 3-round BCCF protocols where all the messages are
qubits. The best 3-round BCCF protocol where the first message is a qubit achieves a

cheating probability of ε =
1

4
(1 +

√
5) ≈ 0.8090 with the starting states

|ψ0〉 := |11〉 and |ψ1〉 := α1 |01〉+ α2 |10〉 ,

where α2 =
1

2
(
√

5− 1) ≈ 0.6180 and α1 =
√

1− α2
2 ≈ 0.7862, see Question 2 in [28].

When we set our accuracy parameters to be q := 1 and p := 1, our search finds a
protocol with cheating probability 0.8162 with the starting states

|ψ0〉 = 0.6325 |00〉+ 0.7746 |11〉 and |ψ1〉 = |01〉 .

When we set our accuracy parameters to be q := 1 and p := 2, our search finds a
protocol with cheating probability 0.8100 with the starting states

|ψ0〉 = |11〉 and |ψ1〉 = −0.0849 |00〉+ 0.7800 |01〉 − 0.6200 |10〉 .

When we set our accuracy parameters to be q := 1 and p := 3, our search finds a
protocol with cheating probability 0.8091 with the starting states

|ψ0〉 = |11〉 and |ψ1〉 = −0.0167 |00〉+ 0.7860 |01〉+ 0.6180 |10〉 .

We notice the search algorithm agrees with the known optimal states to within a certain
level of accuracy. We now expand our search to find the optimal 4-round BCCF protocol.

10.3 Four-Round BCCF Search Results

In 4-round BCCF protocols we have to iterate through all possible starting states for Bob
as well as Alice. The number of protocols is the square of the number of 3-round protocols
since we have to test every choice of Alice’s starting states with every choice of Bob’s
starting states. Furthermore, we have the added difficulty that we do not have a nice
expression for the optimal cheating probabilities, thus we must solve for each of the four
probabilities using the SDP formulations.
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If we set the accuracy at q := 1 and p := 1 in the search, we have 3920400 protocols
which means we solve 15681600 SDP’s. Since we are only interested in finding the protocols
which have a low bias, we can weed out certain bad starting states. Although we do not
know the optimal cheating strategies, we do know some cheating strategies, namely the
extensions of the optimal 3-round cheating strategies to 4 rounds. These extensions are
basically the 3-round strategies where Alice and Bob ignore the last message. We check the
(non-optimal) cheating probabilities using these strategies and, if any are larger than the
lowest recorded cheating probability, move on and test the next choice of starting states.
This skips the step of solving the SDP’s which is not of any use in this case.

Setting p := 1 and q := 1, the best protocol has a cheating probability of 0.8128 with
the starting states

|ψ0〉 = 0.6325 |00〉+ 0.7746 |11〉 ,
|ψ1〉 = |01〉 ,
|φ0〉 = |11〉 , and
|φ1〉 = −0.9798 |00〉 − 0.2000 |10〉 .

Setting p := 1 and q := 2, the best protocol has a cheating probability of 0.8099 with
the starting states

|ψ0〉 = 0.7000 |00〉+ 0.7141 |11〉 ,
|ψ1〉 = −0.7141 |00〉+ 0.7000 |11〉 ,
|φ0〉 = 0.6164 |00〉+ 0.7874 |11〉 , and
|φ1〉 = |01〉 .

We conjecture that the optimal bias achievable in 4 rounds is no better than what can
be achieved in 3 rounds. This seems to be the case computationally.



Chapter 11

Conclusion and Future Research

We examine coin-flipping protocols based on quantum bit-commitment. For this class
of protocols, we formulate cheating strategies as semidefinite programs and analyze the
cheating strategies therein. We show that we can solve for the cheating probabilities by
solving the corresponding dual SDP’s. Within this class of protocols, we show a family of
4-round protocols with asymmetric cheating probabilities. Also, we show computational
results which suggest that adding more rounds to BCCF protocols may not help in finding
a smaller bias.

Future research includes solving the open problem of finding the optimal bias for strong
coin-flipping. A special case of this problem is to find the optimal bias for BCCF protocols.
Solving this special case could solve the general case if there exists a BCCF protocol with
bias matching Kitaev’s lower bound. If no such protocol exists, this could give insight
for the analysis of the general case. An important step in analyzing BCCF protocols
is understanding how the bias depends on the number of rounds. Also, understanding
how to ‘symmetrize’ a BCCF protocol so that all four cheating probabilities are equal
could characterize optimal protocols. The optimal 3-round BCCF protocol where the first
message is a qubit has this property, as does the optimal 3-round qutrit protocol. We believe
that all four cheating probabilities being equal is a necessary condition for an optimal
strong coin-flipping protocol. Finding continuous methods for changing the four cheating
probabilities is key to characterizing such a property. It is also important to have a better
understanding of the duals of the cheating SDP’s. If possible, having a quantum mechanical
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interpretation of the duals could lead to an alternative method of examining coin-flipping
protocols. This has been done for virtually every application of linear programming. A
basic example is König’s theorem in combinatorics. König’s theorem states that the size of
a maximum matching is equal to the size of a minimum vertex cover in any bipartite graph.
A proof of this involves a linear programming formulation for finding a maximum matching
and examining its dual program. (A linear program is a special case of a semidefinite
program.) An open question is to determine whether a quantum mechanical interpretation
of the duals exists and to see what this reveals about coin-flipping.
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