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Abstract

A key requirement for developing any innovative system in a computing environment is

to integrate a sufficiently friendly interface with the average end user. Accurate design

of such a user-centered interface, however, means more than just the ergonomics of the

panels and displays. It also requires that designers precisely define what information to

use and how, where, and when to use it. Recent advances in user-centered design of

computing systems have suggested that multimodal integration can provide different types

and levels of intelligence to the user interface. The work of this thesis aims at improving

speech recognition-based interfaces by making use of the visual modality conveyed by the

movements of the lips.

Designing a good visual front end is a major part of this framework. For this purpose,

this work derives the optical flow fields for consecutive frames of people speaking. Indepen-

dent Component Analysis (ICA) is then used to derive basis flow fields. The coefficients

of these basis fields comprise the visual features of interest. It is shown that using ICA on

optical flow fields yields better classification results than the traditional approaches based

on Principal Component Analysis (PCA). In fact, ICA can capture higher order statistics

that are needed to understand the motion of the mouth. This is due to the fact that lips

movement is complex in its nature, as it involves large image velocities, self occlusion (due

to the appearance and disappearance of the teeth) and a lot of non-rigidity.

Another issue that is of great interest to audio-visual speech recognition systems de-

signers is the integration (fusion) of the audio and visual information into an automatic

speech recognizer. For this purpose, a reliability-driven sensor fusion scheme is developed.

A statistical approach is developed to account for the dynamic changes in reliability. This

is done in two steps. The first step derives suitable statistical reliability measures for the

individual information streams. These measures are based on the dispersion of the N-best

hypotheses of the individual stream classifiers. The second step finds an optimal mapping

between the reliability measures and the stream weights that maximizes the conditional

likelihood. For this purpose, genetic algorithms are used.

The addressed issues are challenging problems and are substantial for developing an

audio-visual speech recognition framework that can maximize the information gather about

the words uttered and minimize the impact of noise.
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Chapter 1

Introduction

1.1 Motivation

The last decade has witnessed a trend towards an increasingly ubiquitous computing en-

vironment, where tiny smart devices are being integrated in mobile phones, cars, med-

ical instruments and almost every aspect of our lives. This has been coupled by major

advances in information and communication technology, with sensors, actuators, and in-

tegrated processors being connected together via high-speed networks to provide people

with high quality services. In fact, today’s leading-edge information-processing devices are

being so integrated within the environment that it becomes necessary for people to interact

with them more naturally and casually than they currently do, and in whatever context

they find themselves. This applies for instance in intelligent vehicles, where an easy and

immediate form of dialog between the driver and the vehicle equipment could lead to a

safer and more efficient driving experience.

The most popular way to attain this natural human-machine interaction is through

voice-activated controls that make use of the various speech recognition algorithms de-

veloped in literature. However, developing voice-activated controls remains challenged in

noisy environments despite all the technical advances that have been developed to enhance

their capabilities. Although there has been good progress in speech recognition for well-

defined applications like dictation and medium vocabulary processing applications, speech

recognition has not yet reached the level of performance, which allows its deployment in

1



2 A Multimodal Sensor Fusion Architecture for Audiovisual Speech Recognition

embedded systems as a reliable user interface. In fact, speech recognition systems lag

human speech perception even in perfectly clean acoustic environments. For speech recog-

nition systems to be of practical use in noisy environments, such as automotive, crowded

areas and simultaneous human computer discourse applications, the issue of robustness

must be addressed.

This can possibly be accomplished by utilizing other sensing modalities to complement

the acoustic signal of speech. As a matter of fact, in almost every context, carefully de-

signed multimodal interfaces are shown to be more beneficial than any single-modality

interface. An example in line with this strategy is to fuse visual lip movements and expres-

sions with the acoustic signal of the speech so as to maximize information gather about

the words uttered and to minimize the impact of acoustic noise. This is referred to as

Audio-Visual Speech Recognition (AVSR) or Automatic Speech-Reading (ASR). In fact,

understanding speech from visual information is an attractive technology that has cap-

tured the interest of researchers to improve speech recognition systems. Using a camera

or infrared sensor, an audio-visual speech recognition system will be capable of providing

supplementary information from the lips movement and correlating the results with input

from a microphone. The idea behind using the visual modality is that both the production

and perception of human speech are bimodal in nature, and thus speech recognition sys-

tems require the integration of both the visual and the acoustic modalities. The now classic

McGurk effect is an excellent example: the auditory syllable /bi/ presented in synchrony

with a videotape of a talker saying the syllable /gi/ is usually perceived as /di/, a syllable

not presented to either modality. This phenomenon has important applications for theories

of speech perception which must account for how and why auditory and visual signals are

integrated during phonetic processing. Our primary goal in this work is to exploit this

human perceptual principle of sensory integration to develop a multimodal user interface

that is capable of understanding human speech.

To be able to perform in real-world human environment, the system will also have to be

able to understand the user intent, an issue that is not considered within the scope of this

thesis. Recognizing individual utterances and gestures can be helpful for basic commands

and a restricted environment, but natural language understanding involves identifying the

meaning of each gesture, as well as disambiguation between multiple meanings, since even
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basic gestures can be highly ambiguous themselves.

This work aims at developing a multimodal human computer interface, which can

efficiently fuse the information present in speech and visual lip gestures of the user, to

form a robust and comprehensive system, capable of improving the recognition accuracy of

speech utterances. This will involve the development and implementation of a multimodal

framework for the intelligent feature extraction and fusion of input audio and visual signals

as well as understanding the fused information.

1.1.1 Application Domains

The benefits of this work scan a wide range of areas that are capable of improving the

quality of life for people who are either hearing impaired, or merely trying to cope with the

technological advances of modern life. Hearing impaired people can restore by lipreading

about 50% of the speech. An audio-visual speech recognition system, on the other hand,

can provide them with complementary information, based on phonetic feature recognition.

Moreover, this casual multimodal user-interface will present new, simpler methods to inter-

act with mobile phones, personal digital assistants, traditional computers, and even smart

homes or entertainment systems.

Perhaps the most promising application of this field of research is its implications for

speech therapy. The idea here is related to those people who cannot speak due to hearing

loss. Since it would seem that speech perception is a combination of the audio and visual

inputs, then those people can use the visual component to learn speech. Indeed that is

the project that has been started by Cole at al. [18], which utilizes a computer-generated

human head that is designed to speak using extremely precise mouth movements. This

computer program is implemented at the Tucker-Maxon Oral School in Portland, Oregon

to teach its deaf students how to speak by seeing and mimicking the head’s oral gestures.

Another application domain for AVSR is the in-vehicle environment. In a car for in-

stance, operating a telephone or navigational system by hand may distract the driver,

whereas speaking the command is much safer. Unfortunately, speech recognition in cars is

a demanding task due to interference noise caused by the wind, tires and engine. Conse-

quently, it is crucial in such an environment to use visual observation of the lips to convey

speech information.
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An application that is also of interest is in videophones and telephone handset cameras.

Business applications such as stock and commodity trading profit from transcriptions, but

making accurate transcriptions is quite difficult in noisy environments. A miniature camera

and infrared source could be built into the telephone handset for video image capture for

a speechreading system.

Other applications include security and identification, video games, transcription of

television broadcasts for the deaf, defense applications and interactive web browsers. This

work will serve as a baseline for future work to be developed in order to bring this area of

research one step forward towards commercialization. In addition, most of the problems

addressed in this research will benefit other areas of research, such as speaker identification

and verification [42], [84], speaker localization [10], [85] and visual text-to-speech [17], [23].

Further investigation is expected to bring about better performance and to address several

hardware and software implementation issues in order to come up with a robust and natural

intelligent user interface.

1.2 Objectives

The primary goals of this research are to design, implement and evaluate a novel audio-

visual speech recognition system that is capable of providing a reliable and user-friendly

interface for smart embedded devices. This goal will be realized through the following

objectives.

1. Visual feature extraction: Several approaches have been proposed in literature to

address the issue of tracking lips or mouth regions and then extracting a represen-

tative set of features that are able to fully represent the visual speech information.

However, we need to propose new visual processing and extraction algorithms that

are well adapted and perfectly tuned to match our fusion and recognition modules.

2. Stream reliability: The reliability of an audio or video stream depends on the noise

that is present in the respective stream as well as on the level of voicing and other

factors. This introduces the problem of how to perform an adaptive integration of

the two modalities for the task of automatic speechreading. The integration scheme
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has to be able to achieve the best synergy by dynamically weighting the multimodal

streams based on their reliabilities.

3. Synchronization: Perceptual studies have shown that the production of sound and the

movements of the lips are not perfectly synchronous. Indeed, lips start articulation

by around 120 ms before sound is produced. Consequently, there is a need to create

a certain level of synchronization between acoustic and visual information during the

process of audio-visual speech recognition.

4. Level of integration: Several experiments have been performed to understand whether

sensory integration in man and machine occurs at an early (feature level), late (de-

cision level), or intermediate stage. However, no model was developed to clearly

depict the necessary level of integration. While some studies claim that an early

feature-level fusion is capable of eliminating the need for synchronization, others ar-

gue that feature-level fusion techniques are not capable of modeling the reliability

of the multi-modal streams and thus late decision-level fusion techniques should be

used.

5. Robustness: The developed audio-visual speech recognition system should be able to

perform equally well in different contexts and across different speakers. In addition,

it should be able to achieve a level of performance that is better than that of the

independent unimodal systems.

6. Visual speech modeling: A particular issue of interest is how to model visual speech in

the task of automatic speech recognition. In fact, the basic units of acoustic speech,

phonemes, are not well suited for visual speech representation because of the fact

that different sounds are perceived equally in the visual domain. For instance, the

phonemes /p/, /b/ and /m/ are identical in the visual domain and thus cannot be

distinguished using the visual modality. Using visually distinguishable units called

visemes, which consist of phoneme clusters, may bring a feasible solution to this

problem. However, it is questionable whether visemes are able to fully represent the

visual information, and whether more representative units are required.
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1.3 Thesis Overview

The remaining of this thesis is structured as follows.

Chapter 2 reviews the state of the art of audio-visual speech recognition, first by di-

viding the system into modules, and then by describing and analyzing the various

contributions to date of each module.

Chapter 3 gives an overview of the overall system architecture and principal contribu-

tions.

Chapter 4 deals with the audio-front end design. Since an extensive amount of work has

been done in this area, this chapter only uses a speech model and feature extraction

algorithm previously developed in literature.

Chapter 5 explains the fundamental building block developed for the visual front-end

design. This involves visual speech modeling, video preprocessing, and visual feature

extraction. The visual front-end system is tested on a database of mouth region

images of several speakers.

Chapter 6 elaborates on the multimodal fusion framework, that combines the audio and

visual features based on the reliability of their respective channels. For this purpose,

a stream reliability assessment model is developed and mapped into stream weights

in an optimal fashion. A multimodal recognition system is used to test the AVSR

system on an audio-visual database.

Chapter 7 summarizes the contributions of this thesis and introduces the focus of future

research.



Chapter 2

Background and Literature Review

The first audio-visual speech recognition system was introduced in 1984 by Petagan [63].

This system used simple image thresholding to extract binary mouth images from which

a set of visual features (mouth height, width, perimeter, and area) are derived. Since

then, a lot of work has been done in this domain. Most of this work has shown improved

performance over single-modality systems. However, this improvement was limited by the

size of used dataset and the level of the acoustic signal-to-noise ratios.

This chapter reviews the state of the art of what has been done in processing and

understanding speech using multiple modalities. When building an AVSR system, four

main issues must be considered: feature design and extraction, the choice of speech units,

recognition, and multimodal fusion. Most of the current work in AVSR is based on methods

that implement these steps sequentially and independently. Before exploring what has been

done in literature for implementing these steps, we will introduce an in-depth representation

of the complete physiological mechanism of speech production.

2.1 Speech Production

In order to develop practical audio-visual speech recognition systems, it is beneficial to

understand the physiological mechanism of speech production. The speech waveform is an

acoustic sound pressure wave which originates from the movements of the human speech

production system [70]. The main components that comprise this mechanism are the lungs,

7
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Figure 2.1: Complete physiological mechanism of speech production [70].
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trachea, larynx, pharyngeal cavity (throat), oral cavity (mouth) and nasal cavity (nose).

Figure 2.1 shows a representation of the physiological mechanism of speech production.

The lungs and associated muscles act as the source of air exciting the vocal mechanism.

The muscle force pushes air out of the lungs and through the bronchi and trachea. Speech

sounds can be classified into voiced and unvoiced sounds. Voiced sounds are produced

when the vocal cords are tensed incurring a vibration from the air flow. Unvoiced sounds,

on the other hand, are produced by turbulent flow of air created at a constriction in the

vocal tract.

In the acoustic speech modality the resultant pressure wave stemming from the mouth

and nasal cavities is a combination of all parts of the speech production. This does not

imply that the acoustic representation of speech is complete, as the McGurk effect still

illustrates the necessity of the visual modality in speech production and perception. How-

ever, it does illustrate that, unlike the visual speech modality, the acoustic modality does

have direct interaction with the entire speech production mechanism.

2.2 Feature Design and Extraction

As in any pattern recognition problem, the first major issue in automatic speechreading is

feature design and extraction. This includes features derived from the audio cues as well

as features derived from the visual cues. Much work has already been done in deriving

audio features for audio-only systems [70], and therefore this area will not be explored in

depth in this work. The important issue here is the visual front-end design.

The visual front-end stage encodes stimuli coming from the visual cues (mainly the lips)

of a speaker and transforms it into a suitable representation that is compatible with that

of the recognition module. However, prior to this feature extraction process, a number of

preprocessing steps have to be done as shown in Figure 2.2. This involves face detection

followed by ROI extraction. Then, the lips of the speaker are tracked in consecutive

frames. Following these steps, and given an informative set of features, the visual front-

end module can proceed with feature extraction. A number of approaches have been

proposed in literature for this purpose. These approaches can be categorized as either

appearance-based, shape-based, or both. We will give an overview of the preprocessing
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steps (face detection, ROI extraction and lip tracking) and then proceed to talk about the

visual feature extraction.

Figure 2.2: Visual speech recognition system.

2.2.1 Visual Preprocessing

Before extracting any visual features, a number of preprocessing steps are required as

described in Figure 2.2. The first step is usually face detection followed by Region Of

Interest (ROI) extraction. The ROI consists of the region of the face that contains most of

the speech information. Of course there is no unique understanding of where most of the

speech information is located and hence there are many interpretations of what we mean

by ROI. This issue will be discussed later. However, we can now establish that the ROI

depends on the type of visual data being provided to the visual speech recognition system.

In case shape-based visual features are to be extracted, for instance, the additional step

of lips detection might be needed using tools such as snakes, templates, and active shape

and appearance models. Next, the mouth of the subject needs to be tracked in consecutive

frames to extract relevant features that will be fed into a classifier for speech recognition.

Face and facial part detection is a classical pattern recognition problem that has cap-

tured the interest of researchers for many years. Consequently, many techniques have been

developed to solve this problem. These techniques can be divided into two categories:

the traditional image processing techniques use methods such as color segmentation, edge

detection, image thresholding, template matching, or motion information [32] for determin-

ing the region of the face; the second category is based on statistical modeling approaches,

employing neural networks for instance [74].



Background and Literature Review 11

Among the various algorithms used for face and facial part detection, two popular

approaches have been used extensively in literature for AVSR. Both of these techniques

belong to the second category. The first algorithm developed by Liang et al. [45] begins

with the detection of the user’s face using the neural network-based approach described in

[3]. Once the face region is detected, a cascade of Support Vector Machine (SVM) classifiers

is used to locate the mouth within the lower region of the face. To adapt to scale variations,

a multi-scale search in an estimated range is employed by repeatedly resampling the source

region image by a constant factor. Next, two SVM filters with and without facial hair, are

applied to each test pattern and its rotated versions in the image plane. The highest mouth

classification score among all rotated patterns and SVM classifiers is used to determine the

refined location of the mouth.

The second algorithm is the one developed by Senior [76]. Many systems have used

this algorithm including Neti et al. [60]. This algorithm starts by choosing a face template

size. Then it uses a face pyramid over all permissible face locations and scales in the

given image to search for possible face candidates. By “permissible” we mean the face

candidates that contain a relatively high proportion of skin-tone pixels. The selected face

candidates are then normalized to the chosen template size, and their grayscale pixel values

are placed into separate feature vectors. Each of these vectors is then given a score based

on a two-class (face versus non-face) Fisher Linear Discriminant Analysis (LDA) [71], as

well as its Distance From Face Space (DFFS), i.e. the face vector projection error onto a

lower-dimensional space obtained by means of Principal Component Analysis (PCA) [12].

All candidate regions having a score that exceeds a certain threshold are returned by the

algorithm as faces.

After detecting the face, an AVSR system has to locate the ROI. The ROI in an AVSR

system is usually a rectangle containing the image pixels of the speaker’s mouth region. As

mentioned before, there is no unique understanding of where the boundaries of a mouth

region lie in terms of relevant speech information. The ROI can include large parts of

the lower face, such as the jaw and cheeks [66], or even the entire face [60]. It can be a

disk around the mouth center [25], or a three-dimensional entity containing adjacent frame

ROIs [64], which enables the system to capture dynamic speech information.

The algorithm proposed by Senior [76] for face detection (described above), also per-
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forms ROI extraction and is commonly used for AVSR systems. It does that by attempting

to detect a set of predefined features on the face region. These features include the lip

corners and centers. Each feature location is determined by using a score that is based

on prior feature location statistics, linear discriminant, and distance from feature space,

based on the chosen feature template size. A training step is required for face detection

and facial feature estimation.

2.2.2 Visual Feature Extraction

Given an input video of a person speaking, the task of any visual speech recognition system

is to extract visual speech features that could be used for recognizing the uttered words.

Visual features are either appearance-based, shape-based, or a combination of both.

Shape-based Features

Shape-based feature extraction is usually based on deriving features for the lip contours.

These features include geometric features such as mouth height and width [2], [63], Fourier

and image moment descriptors of the lip contours [34], snakes [43], statistical models

of shape, such as Active Shape Models (ASM) [22] , or other parameters of lip-tracking

models. A snake is an elastic curve represented by a set of control points. The control

point coordinates are iteratively updated, by converging towards the local minimum of an

energy function, defined on basis of curve smoothness constraints and a matching criterion

to desired features of the image [43]. Such an algorithm is used for lip contour estimation

in the speechreading system of Chiou and Hwang [15]. Another widely used technique for

lip tracking is by means of lip templates, employed in the system of Chandramohan and

Silsbee [11] for example. Templates constitute parametrized curves that are fitted to the

desired shape by minimizing an energy function, defined similarly to snakes. B-splines,

used by Dalton et al. [24], work similarly to the above techniques as well.

Appearance-based Features

However, shape-based features are often insufficient on their own and do require the in-

tegration of appearance-based features. Appearance-based features are extracted from
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the entire image containing the region of interest (usually the mouth and the chin of the

speaker). This results in a feature vector with a dimensionality that is quite large to al-

low for statistical modeling of speech classes using HMMs for example. Therefore, the

dimensionality of the feature set is reduced using linear transform techniques that capture

most of the speech-relevant information. These techniques include Principal Component

Analysis (PCA), Discrete Cosine Transform (DCT) [69], discrete wavelet transform [64],

Hadamard and Haar transforms [32] and Linear Discriminant Analysis (LDA) based data

projection [71]. Some examples of this approach include simple gray levels [30], PCA of

pixel intensities [9], transform-based compression coefficients [69], edges [2], and filters such

as sieves [51].

In this thesis, we introduce an approach for visual feature extraction that is appearance-

based. Therefore, we will review some of the approaches that have been proposed for

appearance-based visual feature extraction, and that are related to our approach. In [9],

Bregler et al. introduced the concept of “eigenlips” in regards to a similar approach from

Turk and Pentland [79] for face recognition, called “eigenfaces”. In this work, the principal

components of the lip contours are extracted. These principal components are used to

construct a set of basis lip images such that the PCA coefficients are uncorrelated. The

problem with this approach is that it only captures second-order statistics and thus may

not be appropriate for motion of the lips, where higher order statistics are required. In [27],

Black et. al introduced the concept of constructing basis flow fields from example motions

using principal component analysis. In motions such as that of the mouth, principal

component analysis may not be perfectly appropriate. This is due to the fact that lips

movement is complex in its nature, as it involves large image velocities, self occlusion

(due to the appearance and disappearance of the teeth) and a lot of non-rigidity. In [77],

Tamura et. al proposed a multimodal speech recognition method using optical flow analysis

for lip images. Their method calculates two kinds of visual feature sets in each frame. The

first feature set consists of variances of vertical and horizontal components of optical flow

vectors. The second feature set consists of the maximum and minimum values of the

integral of the optical flow. Our approach aims at extracting other features related to the

optical flow, namely the coefficients of their independent components, as will be discussed

in Chapter 5.
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As said before there are some approaches which integrate shape-based feature with

appearance-based features in a single feature vector for visual speech recognition. An

example of this approach is the Active Appearance Model (AAM) [21]. Once the visual

features are extracted, they are integrated to synchronously extracted audio features for

audio-visual speech recognition.

2.3 Recognition

Whatever the final choice of representation of the visible speech gestures, the other major

issue is how to recognize this information along with the information about the acoustic

stream of information so that the best use can be made of the two modalities together. A

number of recognition approaches have been proposed in literature for the task of audio-

visual recognition. These approaches include: a simple weighted distance in visual feature

space [63], artificial neural networks [9], [44], SVMs [30] and Dynamic Bayesian Networks

(DBNs), which include Hidden Markov Models (HMMs). We will discuss in this section

some of the most widely used approaches.

2.3.1 Dynamic Bayesian Networks (DBN)

The HMM as well as other audio-visual models used in existing AVSR systems, are special

cases of dynamic Bayesian networks. DBNs are directed graphical models of stochastic

processes in which the hidden states are represented in terms of individual variables or

factors. A DBN is specified by a directed acyclic graph, which represents the conditional

independence assumptions and the conditional probability distributions of each node [40].

Hidden Markov Models (HMM)

The HMM provides a stochastic framework that is commonly used for speech recogni-

tion. It is the most commonly used classifier in both audio-only and audio-visual speech

recognition. HMMs statically model transitions between the speech classes and assume a

class-dependent generative model for the observed features. Let us denote the set of speech

classes by C, and the ls-dimensional feature vector in stream s at time t by o
(s)
t ∈ Rls ,
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where s = a if we are referring to the audio stream and s = v if we are referring to the

video stream. We will use this notation throughout this thesis. The HMM assumes a se-

quence of hidden states that are sampled according to the transition probability parameter

vector as = [Pr[c′|c′′], c′, c′′ ∈ C]. These states subsequently emit the observed features

with class-conditional probabilities P (o
(s)
t |c), c ∈ C. In most of the work done in this area,

the HMMs are assumed to have a continuous observation probability density, modeled as

a mixture of Gaussian densities:

Pr[o
(s)
t |c] =

Ks,c∑

k=1

ws,c,kN (o
(s)
t ; ms,c,k, ss,c,k), (2.1)

where the Ks,c mixture weights ws,c,k are positive and add to one, and N (o;m, s) is the

l-variate normal distribution with mean m and a diagonal covariance matrix s.

As will be discussed in Section 2.4, there are two principal models for audio-visual

fusion: feature fusion and decision fusion. Feature fusion models combine acoustic and

visual features into a single feature vector and transmit them directly to a single, bimodal

classifier. For these models, a regular left-to-right HMM [70] is used. On the other hand,

in decision fusion systems, two parallel, unimodal classification systems are employed and

the results from each are fed forward for fusion and final decision making, for example, on

a probabilistic basis. For these kinds of systems, conventional HMM recognizers are useless

because they assume asynchrony of the visual and acoustic data (which is not always the

case). Therefore, other models have been used. Some of the most successful decision

fusion models include the Multi-Stream HMM (MSHMM), the Product HMM (PHMM),

the Independent HMM (IHMM), the Factorial HMM (FHMM) and the Coupled HMM

(CHMM). The multi-stream HMM [47] assumes that the audio and video sequences are

state synchronous, but unlike the HMM for feature fusion, allows the likelihood of the audio

and visual observation sequences to be computed independently. Although more flexible

than the HMM, the multi-stream HMM cannot accurately describe the state synchrony

of the audio-visual speech. The audio-visual multi-stream product HMM [26], on the

other hand, extends the previous model by representing each hidden state of the multi-

stream HMM as a pair of one audio and one visual state. Due to its structure, the multi-

stream product HMM allows for audio-visual state asynchrony, controlled through the state

transition matrix of the model, and forces the audio and video streams to be in synchrony
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at the model boundaries (phone level or word level). The audio-visual streams can also be

modeled using two independent HMMs [60], one for audio and one for visual features. This

model extends the level of asynchrony between the audio and visual states of the previous

models, but fails to preserve the natural dependency over time of the acoustic and visual

features of speech.

In [57], Nefian et al. used two novel models for audio-visual speech recognition: the

factorial HMM (FHMM) and the coupled HMM (CHMM). The FHMM has not been widely

used and therefore we will not talk about it here. The CHMM, which was introduced in

[8], models multiple interacting processes while maintaining the Markov condition that

each state must depend only on the prior state. Unlike the independent HMM used for

audio-visual speech recognition, the CHMM can capture the interactions between the audio

and video streams through the transition probabilities between the backbone nodes. The

CHMM can model the audio-visual state asynchrony and preserve the natural audio-visual

dependencies over time. This technique has been used in many systems including that of

Potamianos et al. [67].

In general, HMMs are very beneficial and widely used. However, there are some prob-

lems associated with them which drive certain researchers to use other recognition modules.

For instance, it is often hard to determine the right HMM state complexity, which means

that one must search through the model space for the proper number of states. Further-

more, HMMs make certain assumptions that often do not hold, for instance, that the

features are uncorrelated. They also often fail to capture co-articulation during speech

production.

Other Models

Other models that are based on DBNs have been proposed in literature. In [75] for example,

Saenko et al. work on the task of phrase recognition, and they propose a DBN with loosely

couple streams of articulatory features, where the observation model is a Gaussian mixture

over the feature classifier outputs. This approach can capture many of the effects of co-

articulation during speech production. In fact, it is shown that this approach can better

account for variation introduced by speech which was spoken more quickly than that in

the training data. Another model that uses DBNs has been developed by Gowdy et al.
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[31]. The advantage of this approach is that it can handle two or more streams, and can

account for the reliability of these streams.

2.3.2 Neural Networks (NN)

In contrast to HMMs, Neural Networks (NN) make only few assumptions about the un-

derlying data and thus they can be generalized to large classes using sufficiently large

training data. However, training is slow and asynchrony modeling is difficult to achieve.

One such approach is proposed by Meier et al. [52]. This approach uses a Multiple State-

Time Delayed Neural Network (MS-TDNN) for recognition of the audio-visual speech task.

Combining visual and acoustic data is done on the phonetic layer or on lower levels. An-

other approach that uses neural networks is developed by Yuhas et al. [83]. This work

uses layered feed-forward networks. The image of the speaker’s mouth is presented in the

bottom layer of units, which then passes the signal to a layer of hidden units, that in turn

projects this signal to an output layer. As a signal travels from unit to unit, it is multiplied

by a weight that resembles the reliability of the signal.

2.4 Multimodal Fusion

2.4.1 Model Architectures

Multimodal fusion is a very important research area that relies on measuring a set of

complementary features from multiple sensors or modalities and combining these features

in an “intelligent” way that maximizes information gather and minimizes the impact of

noise coming from the individual sensors. In AVSR, the issue of multimodal fusion has

received a lot of attention, as it aims to combine the multiple speech informative streams

into a multimodal classifier that can achieve better classification results than the audio-

and visual-only classifiers. The first issue to be addressed in fusion of audio-visual speech is

where the fusion of the data takes place. Cognitive studies have suggested four architectures

for the combination of audio and visual modalities:

• Direct Identification (DI), in which acoustic and visual data are combined and trans-

mitted directly to a single, bimodal classifier.
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• Separate Identification (SI), in which two parallel, unimodal classification systems

are employed and the results from each are fed forward for fusion and final decision

making.

• Dominant Recoding (DR), in which auditory processing is supposed to be dominant.

Visual data is recoded into the dominant modality. Each modality thus generates a

representation appropriate to the dominant modality, such as a tract transfer func-

tion. The two estimates are then fused and fed forward to a classifier.

• Motor-space Recoding (MR), in which both inputs are projected and recoded into

an amodal (not audio or video) common space, such as that of articulatory configu-

rations, and the two representations are fused and passed to the classifier.

In literature, the most widely used model architectures are the direct identification

model (also referred to as feature fusion) and the separate identification model (also referred

to as decision fusion). For this purpose, in this section we will only discuss the work that

has been done for these two models.

Feature Level Fusion

The first architecture integrates data on the feature level. This is referred to in literature

as feature fusion, direct identification (DI), or early integration. In this case, the audio

and visual features are used simultaneously and equally for classification using a bimodal

classifier. Feature-level fusion algorithms train this classifier on the concatenated vector

of audio and visual features or any appropriate transformation of it. Examples of feature

fusion methods include plain feature concatenation [2] and hierarchical discriminant feature

extraction [60].

Concatenative feature fusion is the simplest fusion technique. Given time-synchronous

audio and visual feature vectors o
(A)
t and o

(V )
t , with dimensionalities DA and DV respec-

tively, this method generates a concatenated audio-visual feature vector at every time

instance t:

o
(AV )
t = [o

(A)T
t ,o

(V )T
t ]T ∈ RD, (2.2)
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where D = DA + DV is the dimensionality of the combined feature vector. This can result

in a very large feature vector which may not be suitable for representing the underlying

data. That is where discriminative feature fusion can be used.

Hierarchical discriminant feature fusion projects the concatenated feature vector o
(AV )
t

into a lower-dimensional feature vector. In [60], this is done using Linear Discriminant

Analysis (LDA) projection on the concatenated vector, while seeking the best discrimi-

nation among the speech classes of interest. LDA is followed by a Maximum Likelihood

Linear Transform (MLLT) rotation of the feature vector to improve maximum-likelihood

data modeling using the Gaussian mixture emission probability densities of Equation 2.1.

This approach is hierarchical because it is found on two stages (LDA followed by MLLT).

It is therefore referred to as hierarchical LDA or HiLDA. The resulting audio-visual feature

vector is:

o
(HiLDA)
t = P

(AV )
MLLTP

(AV )
LDAo

(V )
t . (2.3)

Decision Level Fusion

The problem with feature fusion techniques is that they provide no way of capturing the

reliability of the individual streams of information. Reliability in audio-visual integration

is an important issue because factors such as noise, face occlusions and volume of the

speaker’s sound can lead to a certain modality being more “trustworthy” than the other.

Decision-level fusion (also called separate identification (SI) or late integration), on the

other hand, uses the two outputs of the audio and visual classifiers to combine the two

modalities. This framework provides a mechanism for capturing the reliability of each

modality, by borrowing from classifier combination literature [39].

A number of classifier combination methods have been used in the AVSR literature. One

such technique is to use a cascade of fusion modules, some of which using only rank-order

classifier information about the speech classes of interest [63]. However, the most popular

approach in this regard uses a parallel architecture, adaptive combination weights, and class

measurement level information [67]. This corresponds to finding the most likely speech class

using linear combination in the log-likelihood domain of the two single-modality classifier

decisions. This combination in the log-likelihood domain can be done at several levels, and

every level corresponds to a certain recognition model as described in the previous section.
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In the case where single-stream HMMs, with the same set of speech classes (states), are

used for both audio- and visual-only classification, we consider this likelihood combination

to be at a frame (HMM state) level, and it is modeled by means of a multistream HMM.

The state-dependent emission of the audio-visual observation vector o
(AV )
t is thus governed

by:

P (o
(AV )
t |c) = P (o

(A)
t |c)λAP (o

(AV )
t |c)λV , (2.4)

for all HMM states c ∈ C.

Since we are dealing with continuous speech recognition, where a sequence of classes

should be estimated (a number of phones or words), there should be a certain way of

accounting for the temporal differences between the two streams (stream asynchrony).

This asynchrony is observed in [9] to be up to the order of 120 ms. Decision fusion at a

state or frame level is not good enough because the states are probably not in synchrony.

For this reason, decision should be done at a later stage. One approach could be to wait

until the end of an utterance and then fuse the decisions about the different streams based

on their log-likelihoods. One such technique is the one applied in [28], which uses the

discriminative model combination technique. A third way to approach decision fusion, is

to fuse at an intermediate stage. Such a scheme is typically implemented by means of the

product HMM [81], or the coupled HMM [8], as discussed in the previous section. So, in

conclusion, to allow asynchrony between the audio and visual streams, it is required to

integrate at a late or intermediate stage. This allows for the modeling of the audio and

visual streams temporal properties.

2.4.2 Stream Reliability

For multimodal fusion to be of practical use in noisy environments, such as automotive,

crowded areas and simultaneous human-computer discourse applications, the issue of ob-

servation reliability must be addressed. Consider a sensor that at times gives an erroneous

output and therefore has a certain level of unreliability associated with it. Then, when the

recognition system receives information from this sensor, it should assume with a certain

probability that this information might be incorrect. What sensor fusion does is integrate

information from a different sensor (which has its own probability of error as well) in an
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effort to ramify any classification errors. Since one sensor might have a higher probabil-

ity of error than another sensor (due to higher noise elements, sensor malfunction, etc.),

there should be a way of estimating the reliability of every sensor and giving greater con-

fidence in the classification phase to the sensor with higher reliability. This constitutes an

important aspect of the multimodal sensor fusion paradigm in AVSR. Here, the system au-

tonomously gathers observations from its multiple sensors adapting itself to environmental

changes and sensor malfunction. For this purpose, a common approach in many stream

integration methods is to use stream weights that operate as exponents to each stream’s

probability density. Such stream weights have been applied in AVSR using HMMs, DBNs,

ANNs, and other classifiers. These weights are estimated from some reliability measures

of the individual streams. Consequently, this problem can be formulated as two main

tasks: the first task is to derive a suitable reliability measure for the individual informa-

tion streams, and the second task is to find an optimal mapping between the reliability

measures and the stream weights that maximizes information gather.

Signal-based Approaches

The most popular approach to reliability estimation is that developed in [68] by Potamiaonos

and Potamianos. This algorithm uses a multi-stream HMM for AVSR recognition as de-

scribed in the previous section. The resulting classification result should thus satisfy:

c = argmax
c

P (c|o(A)
t )λAP (c|o(V )

t )λV . (2.5)

λA and λV are the audio and video exponents respectively, which model the reliability of

each stream, and they satisfy:

0 ≤ λA, λV ≤ 1 (2.6)

and λA + λV = 1. (2.7)

The Generalized Probabilistic Descent (GPD) algorithm is used to estimate the stream

exponents early during the training phase, and then the estimated stream exponents are

fixed for a particular audio-visual environment and database. The problem with this

approach is that it cannot model the rapid changes in observation conditions over time. For
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example, possible noise bursts, face occlusion, or other face tracking failures can greatly

change the reliability of the affected stream, and thus the estimated weights might not

correctly reflect the reliability of each of the signals. Thus, a major concern here is to

derive a reliability assessment model that can adjust the stream weights dynamically during

recognition.

Neti et al. [59] and Glotin et al. [28] proposed a dynamic technique for reliability

estimation based on the degree of voicing present in the audio stream averaged over the

entire utterance such that 0 ≤ λA = degree of voicing ≤ 1 and λV = 1 − λA. Using

dynamic weights demonstrated an improved performance over statically-weighted schemes

in noisy environments. However, there are two main problems with this approach. The

first problem, as shown by the results of this work, is that in clean acoustic environments,

some of the late fusion techniques were outperformed by the early fusion. The second

problem with this system arises when there are sudden noise bursts such as a sudden loud

noise. In this case, this sudden noise burst will affect the overall voicing average and thus

the estimated stream weights will not resemble the actual reliability of the modalities.

Using the median instead of the mean might help, but still the performance would degrade

drastically at extra noisy levels.

Statistical Approaches

The problem with the above-mentioned approaches is that they only consider the noise in

the audio channel and hence do not allow the modeling of the possible variations in the

visual stream reliability. This is due to the fact that estimating the noise in the visual

signal is quite hard. Therefore, statistical indicators of classifier confidence on the stream

data can be used as shown in [67]. These indicators capture the reliability of each stream

at a local frame level and have the advantage of not depending on the properties of the

underlying signal which means that they can capture the reliability of the visual classifier

as well as the audio classifier in the same manner. Some algorithms have been proposed

in literature to make use of this statistical approach of reliability modeling.

Adjoudani and Benoit [2] used a certainty factor to differentially weight each subsystem.

The advantage of this certainty factor weighting scheme is that it not based on the level

of acoustic noise within the signal, but rather on the dispersion of the N -best hypotheses
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in each modality. This is justified by the fact that large differences in probabilities equate

to greater certainty, close probabilities to less certainty. This dispersion value is based on

the variance of the output classifier:

σ2 =
1

N − 1

N∑
n=1

(Rn − µ)2, (2.8)

where Rn is the nth output of the classifier. The variances of the N -best hypotheses of

every stream are calculated over all noise levels and a mapping is established between these

values and the stream weights as follows:

λA =
σA

σA + σV

, (2.9)

for the acoustic weight and a similar mapping for the visual weight.

Potamianos and Neti [65] also use a similar dispersion method that uses Gaussian

Mixture Model (GMM) to classify speech classes. Their method uses an N -best dispersion

method that is formulated as the difference between each pair of the nth-best hypotheses,

given by:

2

N(N − 1)

N∑
n=1

N∑

n′=n+1

(Rn −Rn′), (2.10)

where N ≥ 2 and Rn is equal to the nth-best hypothesis. The choice of the value of

N that results in the best weighting scheme was found to be 4 by both Adjoudani and

Benoit [2] and Potamianos and Neti [65]. Another dispersion measure that was also used

by Potamianos and Neti, called the N -best likelihood ratio average is calculated as the

difference against the best hypothesis:

1

N − 1

N∑
n=2

(R1 −Rn), (2.11)

where R1 to RN are sorted in descending order, and thus R1 is the best hypothesis. Com-

paring the above mentioned approaches, the one using dispersion as a reliability measure

proved to be the best, yielding a phoneme accuracy of 55.19%, followed by the one using

the ratio average which achieved a 55.05% accuracy.
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Another interesting approach to be discussed in this section is the one developed by

Heckmann et al. [36] which uses a hybrid ANN/HMM AVSR system with the NNs provid-

ing the aposteriori probabilities for the HMM. The HMM in turn models the phonemes and

words and is used for recognition. Heckman et al. develop a method for stream weighting

that they call Geometric Weighting. First they calculate a value c that reflects an esti-

mate of the SNR of the acoustic signal. Then, they use this value to estimate the stream

weights. Detecting the most probable phoneme is found by a conditional probability that

is augmented by the geometric weights. Their weighting scheme uses a similar idea as

dispersion that exploits the distribution of the a posteriori probabilities at the output of

the MLP, but based on the calculated entropy:

H = − 1

K

K∑

k=1

N∑
n=1

P (Hn,k|xA,k)log2P (Hn,k|xA,k), (2.12)

where N is the number of phonemes and K is the number of frames. The idea behind using

entropy as a reliability measure is that high entropy corresponds to an even spread implying

high ambiguity and low reliability. The mapping between c and H was established using

an empirical analysis of the values (optimization process). Results on the word error rate

show an improved performance using this technique until an SNR value of -6 dB (high noise

level) where it starts to perform than worse the visual-only system. When comparing the

entropy confidence measure to the voicing index and the dispersion methods, they showed

that the entropy based approach gave the best results.

The last approach that we are going to discuss is of particular importance because

it combines both feature and decision fusion in one system. This system, developed by

Rogozan [72] first uses a HMM to produce a hypothesis based on a concatenated audio-

visual feature vector (feature fusion). Then, another system (a HMM or a ANN) refines the

result using the visual observations. The system then uses a confidence measure based on

the dispersion of the N -best hypotheses, to fuse the results of the two subsystems (decision

fusion).

In this thesis, we attempt to solve the above-mentioned problems by introducing a

statistical reliability assessment model that also takes into consideration the previous be-

havior of the classifier with respect to changes in observation conditions, and we propose

a method for exponent estimation based on these indicators.



Chapter 3

Architecture and Principal

Contributions

With all the improvements over audio-only systems, developing an audio-visual speech

recognition system introduces new challenges and difficulties that should be tackled. Figure

3 depicts the overall system architecture developed in this work to solve these problems.

The system starts by acquiring the audio speech signal of a speaker through a microphone

as well as the video frames of the speaker’s face by means of a camera. The audio and

visual streams are then ready for analysis at a signal level.

3.1 Acoustic Front End

The analysis of the audio speech signal has been extensively investigated in the speech

recognition community and much work has been done in order to mitigate the speech

classification errors. Therefore, audio speech recognition will not be improved within the

scope of this work. Instead, we will extract audio features that have been proven in

literature to be robust to noise. The predominant feature type used in speech recognition

is the the Mel Frequency Cepstral Coefficients (MFCCs). These features are inspired by

properties of human auditory system. The derivation of the MFCCs and the audio signal

analysis are reviewed in Chapter 4.
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Figure 3.1: Overall system architecture.
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3.2 Visual Front End

The first major issue in audio-visual speech recognition is the visual front-end design.

Given an input video of a person speaking, the task of the visual front-end system is to

extract visual features from the lips and to recognize these features as well-defined units of

visual speech or visemes. As discussed in Chapter 2, the first step that should be performed

for this purpose is face detection. Following this step, the system should extract the ROI

which consists of the region of the face that contains most of the speech information (the

mouth and the jaw). Next, the mouth of the subject is tracked in consecutive frames to

extract relevant features, where a Kalman filter, for instance, can be used. In Chapter

2, we investigated some efficient approaches to the above-mentioned preprocessing steps.

These approaches have been widely used in literature due to their robustness to various

contexts and databases. Therefore, for the scope of this thesis, no contribution will be

done for these steps.

A major contribution of this thesis is in the visual feature extraction module. In this

thesis, we develop a novel approach for lips reading using two main steps. In the first step,

the motion of the mouth is estimated using a robust optical flow technique. The goal of

optical flow estimation is to compute an approximation to the motion field (or the 2D pixel

velocities) from time-varying image intensity. In the second step, Independent Component

Analysis (ICA), as proposed by Bell and Sejnowski [5], derives a set of basis flow fields

for the frames generated by a word utterance. Consequently, every word is expressed as a

linear combination of these basis flow fields, and the coefficients of this linear combination

comprise the reduced feature set. ICA is a technique for finding a transformation in which

transformed components are as statistically independent as possible. Typically associated

with the Blind Source Separation (BSS) problem, ICA has also been used to separate Elec-

troencephalogram (EEG) signals, Functional Magnetic Resonance Imaging (fMRI) signals,

and for face detection.

Once features become available from the visual front end, we can proceed with auto-

matic recognition of the spoken utterances by combining them to synchronously extracted

acoustic features for audio-visual speech recognition. Visual speech modeling is required

in this process, its two central aspects being the choice of speech classes that are assumed

to generate the observed features, and the statistical modeling of this generation process.
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Both issues are important, as they are also embedded into the design of audio-visual fu-

sion. For visual speech modeling, an AVSR system could use word, viseme, or sub-viseme

speech classes, which are based on articulatory features of the lips movement [75]. While

the latter provides more information, it complicates audio-visual integration because the

speech classes in the audio and visual modalities are no longer identical. The architecture

developed in this thesis uses viseme classes.

3.3 Bimodal Sensor Fusion

The framework will involve an intelligent fusion mechanism. The fusion can take place at

the feature-level, decision level or both. As described in Chapter 2, feature-level fusion

algorithms train a single classifier on the concatenated vector of audio and visual features

or any appropriate transformation of it. Decision-level fusion, on the other hand, uses

the two outputs of the audio and visual classifiers to combine the two modalities. In the

framework of this thesis, a decision-level Bayesian fusion scheme is deployed. For decision-

level fusion, the two modalities or data streams should be weighted based on their reliability.

The combination weights should be dynamic, in the sense that they should adapt to the

varying levels of noise, voicing and other channel effects. To achieve this, certain reliability

measures have to be defined. These measures have to depend on the varying levels of

noise and channel effects. However, they cannot be trained for deterministic models and

thus have to assume no prior knowledge about the channel. Moreover, efficient techniques

should be developed to avoid the problem of having to estimate the channel characteristics

including noise. This boils down to an optimization problem, where an optimal weighting

scheme should be generated based on an optimal reliability measure.

Estimating stream reliability is a complex issue. For instance, in a vehicle environment,

the wind, tires and engine all introduce noise to the microphone. Simply estimating the

noise in the channel (or assuming prior knowledge of the noise) is not enough, because

the noise makes the speakers increase their vocal effort. This change in vocal produc-

tion makes the voice sound different, further reducing the accuracy of speech recognition.

Consequently, although the reliability of the channel is degraded because of the noise and

because the voice sounds different, it has been enhanced by the increased vocal effort. This
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makes the problem of stream reliability a difficult problem and thus gives rise to the need

for robust statistical methods.

A stream reliability assessment model is developed in this thesis, which is also con-

sidered one of the major contributions of this work. The approach works in two steps.

In the first step, two reliability measures are developed to evaluate the performance of

the individual streams based on observing statistically the respective classifier behavior.

The developed reliability measures, which we call instantaneous dispersion and temporal

dispersion are based on the dispersion of the a posteriori probabilities of the unimodal

classifiers. They take into consideration both the current as well as the past performance

of the classifier in order to create a behavioral profile of each modality. In the second step,

an optimal mapping from the derived stream indicators to the stream weight measures

is developed using genetic algorithms. This approach is superior to previous approaches

because it is dynamic, easy to implement and considers an arbitrary number of streams.

Another issue with multimodal fusion is synchronization. This problem is coupled with

the issue of the level of integration. Indeed, it is important to determine whether the

fusion module should integrate at an early (phone level), intermediate (word level), or late

(utterance level) stage in order not to lose synchronicity across modalities. In this work, the

audio-visual recognition engine is implemented by means of a coupled HMM. The coupled

HMM allows for asynchrony modeling between the audio and the visual streams by allowing

the multimodal streams to interact. The concept of a CHMM is elaborated in more detail

in Chapter 6. In addition to this audio-visual classifier, an audio HMM classifier and a

visual HMM classifier are implemented on the audio and visual feature vectors respectively

in order to compare the multimodal system with the individual unimodal systems.

The current popular approaches to fusion involve fuzzy based systems, Hidden Markov

Models (HMMs), Bayesian networks, rule-based systems and evidential reasoning methods.

Many variants and modified algorithms based on the above and a few other methods have

been developed for different scenarios. This research investigates current approaches, and

seeks to develop an improved fusion algorithm, which can efficiently perform its job in the

target environment. The fusion algorithm is a weighted Bayesian fusion scheme that is

designed with the following requirements:

1. Robust performance even under high noise levels, like that of an in-vehicle environ-
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ment. In addition, the performance of the system should not degrade due to excessive

noise in one of the modalities. Thus noise suppression is an important stage of the

fusion process.

2. Temporal fusion of the different modalities. As has been mentioned in Section 1.2,

the two modalities may not be synchronous in time. Thus the system has to be able

to handle the delay between the two modalities, by means of different synchronization

techniques.

3. Ability to provide output even if one modality is inefficient, faulty or even non-

functional. The system should be able to provide an output based on the information

present in the other modality and the previously identified speech sequence.



Chapter 4

Audio Front-End Design

Audio speech recognition has been extensively addressed in literature. Since the main goal

of this work is to improve on speech recognition by making use of the visual modality, it is

important to elaborate on the audio modality design and implementation before describing

its integration with the visual front-end. For this purpose, this chapter addresses two main

issues that are to be considered in the audio front-end design. The first issue is the audio

speech modeling and the second issue is the audio feature extraction.

4.1 Audio Speech Modeling

4.1.1 The Concept of a Phoneme

For the acoustic stream, the basic units of speech are the phones. A phone is an acoustic

realization of a phoneme, a theoretical unit for describing how speech conveys linguistic

meaning. The acoustic realization of a phoneme depends on the speaker, the word context,

and so forth. The variations in the pronunciation of the same phoneme are called allo-

phones. In literature, people usually use the words phone and phoneme interchangeably.

In this work, we are going to deal with speech recognition in English, so we will only use

the phonemes developed for the English language. Usually there are about 10-15 vowels

or vowel-like phones and 20-25 consonants. The most popular computer-based phonetic

alphabet in American English is ARPABET which consists of 48 phones [14]. The publicly
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available Carnegie Mellon University dictionary [1] can be used to to transcribe the Eng-

lish words into its phonetic transcription. This dictionary uses a subset of the ARPABET

which consists of 39 phones. For instance, for the word “three”, this transcription would

give “TH-R-IY”. Table 4.1 shows the phonemes of the English language.

4.2 Audio Features Extraction

The predominant feature type used in speech recognition is the Mel Frequency Cepstral

Coefficients (MFCCs). Figure 4.1 show a block diagram of the MFCC computation. These

features are derived after applying a Fourier transform based filterbank designed to give

approximately equal resolution on a mel-scale. The mel-scale is inspired by properties of

human auditory system. The emphasis is on a better sensitivity at lower frequencies to

the expense of lower sensitivity to high frequencies.

Figure 4.1: Block diagram of MFCC computation.

The filters in the filterbank are triangular. The filtering results in multiplying each

discrete Fourier (DT) magnitude with the filter gain. Afterwards all values per filter are
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Table 4.1: Phonemes in the English language.

Phone Classes Phonemes Example Words Phone Classes Phonemes Example Words

Stops

/B/ bee

Front

/AE/ bat

/D/ day /EH/ bet

/G/ gay /IH/ bit

/K/ key /IY/ beet

/P/ pea

Mid

/AA/ bott

/T/ tea /AH/ but

Affricates
/CH/ choke /AO/ bought

/JH/ joke /ER/ bird

Fricatives

/DH/ then
Back

/UH/ book

/F/ fin /UW/ boot

/S/ sea

Diphthongs

/AW/ bout

/SH/ she /AY/ bite

/TH/ thin /EY/ bait

/V/ van /OW/ boat

/Z/ zone /OY/ boy

/ZH/ azure Silence /H#/

Nasals

/M/ mom

/N/ noon

/NG/ sing

Glides

/L/ lay

/R/ ray

/W/ way

/Y/ yacht

Whisper /HH/ hay
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added (accumulated). Typically before the accumulation, power values (squared magni-

tudes) can be computed. The number of triangular filters depend on the speech frequency

band [82]. After applying the filter bank, we get filterbank coefficients. To get the log-

filterbank coefficients, a logarithm is taken of the filterbank coefficients. This step also

mimics human logarithmic perception to the increase in speech volume. Finally, to derive

the MFCCs the log-filterbank coefficients are transformed into the cepstral domain, using

discrete cosine transform. Usually, the low-order 12 or 15 MFCCs are taken as final speech

features, as they describe in a compressed form the spectral envelope of the short-term

speech spectrum. MFCCs are shown to perform better in noisy conditions than spectral

representations (e.g. filterbank coefficients) [20]. However, MFCCs also get contaminated

by additive and convolutional noise. If the convolutional noise component is constant or

slowly varying, it appears as a bias in the time evolution of the MFCCs values. Cepstral

mean normalization can be used with MFCCs to remove constant convolutional noise. Such

noise may result from the transfer function of the microphone or the transmission channel

through which speech is communicated. Applying cepstral mean normalization results in

features robust to convolutional noise that does not change rapidly over time. In that way

features can become much less sensitive to different microphone equipment. The steps to

construct MFCC features are as follows:

1. Pre-Emphasis:

The following FIR pre-emphasis filter is applied to the input waveform:

y[n] = x[n]− αx[n− 1]. (4.1)

α is provided by the user or set to the default value. If α = 0, then this step is

skipped. In addition, the appropriate sample of the input is stored as a history value

for use during the next round of processing.

2. Windowing:

The frame is multiplied by the following Hamming window:

w[n] = 0.54− 0.46 cos(
2πN

N − 1
), (4.2)

where N is the length of the frame.



Audio Front-End Design 35

3. Power Spectrum:

The power spectrum of the frame is computed by performing a DFT of length spec-

ified by the user, and then computing its magnitude squared:

S[k] = (real(X[k]))2 + (imag(X[k]))2. (4.3)

4. Mel Spectrum:

The mel spectrum of the power spectrum is computed by multiplying the power

spectrum of each of the triangular mel weighting filters and integrating the result:

S̃[l] =

N/2∑

k=0

S[k]Ml[k] l = 0, 1, ..., L− 1, (4.4)

where N is the length of the DFT, and L is the total number of triangular mel

weighting filters.

5. Mel Cepstrum:

A DCT is applied to the natural logarithm of the mel spectrum to obtain the mel

cepstrum:

c[n] =
L−1∑
i=0

ln(S̃[i]) cos(
πn

2L
(2i + 1)) n = 0, 1, ..., C − 1, (4.5)

where C is the number of cepstral coefficients.

Delta MFCC

Also, delta MFCC coefficients can be calculated using the following equation:

∆c[n] = c[n + 1]− c[n]. (4.6)

Delta delta MFCC

Moreover, to obtain delta-delta coefficients, the following equation can be used:

∆∆c[n] = ∆c[n + 1]−∆c[n]. (4.7)



36 A Multimodal Sensor Fusion Architecture for Audiovisual Speech Recognition

The database used in this work for both the unimodal and bimodal recognition is the

Tulips1 database. For this database, the mel-cepstrum coefficients are already extracted

from the speech signal. The first 12 cepstral coefficients, 12 delta-cepstral coefficients, 1

logpower and 1 delta log-power are used. Audio-only recognition is done using HMMs.



Chapter 5

Visual Front-End Design

As discussed in Chapter 3, the first major issue to address in audio-visual speech recognition

is the visual feature design and representation scheme. This involves the extraction of visual

features from the lips and mouth movement and recognizing these features as well-defined

units of visual speech. This requires robust face detection, as well as location estimation and

tracking of the speaker’s mouth or lips, followed by visual feature extraction. Consequently,

the problem is reduced to a pattern recognition formulation where it is important to reduce

the dimensionality of the feature vector into a representative feature set.

5.1 Problem Definition

Let xi, i = 1, 2, ..., P be the set of patterns corresponding to feature vectors describing the

mouth shape. The feature vector xi can be related to a low level representation of the

mouth image like the gray levels from a rectangular image region containing the mouth. It

can also comprise geometric parameters like the mouth height, width, perimeter, etc., or

the coefficients of a linear transformation of the mouth image. All the feature vectors from

the set have the same number of components M . We also denote the pattern classes by

Cj, j = 1, 2, ..., Q, where Q is the total number of classes. We apply this pattern recognition

formulation to our visual front-end design in the following way:

• Each unknown pattern represents the optical flow derived between two consecutive
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frames of the speaker’s mouth region at a particular time instant.

• Each class label represents one viseme.

As mentioned before, it is important to reduce the dimensionality of the feature vector

into a representative feature set. Several unsupervised statistical methods, such as principal

component analysis (PCA) [12], have been proposed in literature to achieve this goal. These

methods, while deriving reduced feature sets, are only sensitive to second-order statistics.

The problem is that second-order statistics capture the amplitude spectrum of images but

not their phase spectrum. The high-order statistics, on the other hand, capture the phase

spectrum. For natural images, such as those of the lips, the phase spectrum, not the power

spectrum, contains structural information that drives human perception. Consequently,

there is a need for a better solution that is well suited for representing lips movement.

In this chapter, a novel approach for lips reading using two main steps is established. In

the first step, the motion of the mouth is estimated using a robust optical flow technique.

The optical flow fields are derived between the consecutive ROI images of a speaker’s image

sequence. These optical flow estimates provide valuable information about the motion of

the mouth from time-varying image intensity. In the second step, independent component

analysis, as proposed by Bell and Sejnowski [5] is used to derive a set of basis flow fields

for the frames generated by a word utterance. Each speech class is then expressed as a

linear combination of these basis flow fields, and the coefficients of this linear combination

comprise the reduced feature set. ICA is a technique for finding a transformation in which

the transformed components are as statistically independent from each other as possible.

Typically associated with the blind source separation (BSS) problem, ICA has also been

used to separate EEG signals, fMRI signals, and for face recognition.

In Chapter 2, we mentioned that we are going to develop a feature extraction model

that is appearance-based, and we discussed some of the main approaches that have been

proposed in literature for this purpose. In particular, we addressed some drawbacks of the

used approaches, and came up with a few observations:

• Lips movement is complex in its nature, as it involves large image velocities, self occlu-

sion (due to the appearance and disappearance of the teeth) and a lot of non-rigidity.

As a result, such kind of motion is characterized by higher-order dependencies.
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• PCA-based coefficients are insufficient on their own because they only capture second-

order statistics and thus may not be appropriate for motion of the lips, where higher

order statistics are required.

• For complex objects that are characterized by higher-order dependencies, a represen-

tation using independent components provides more knowledge.

For these reasons, ICA may be more appropriate for analyzing the motion of the mouth.

Figure 5.1 shows an overview of the visual front-end design.

Figure 5.1: Overview of the visual front-end system.

5.2 Visual Speech Modeling

Prior to the feature extraction stage, visual speech modeling is required, its two central

aspects being the choice of speech classes that are assumed to generate the observed fea-

tures, and the statistical modeling of this generation process. Both issues are important,

as they are also embedded into the design of audio-visual fusion.

5.2.1 The Concept of Viseme

As in the acoustic space, one can define the basic unit of speech in the visual space, the

viseme. The concept of viseme is usually defined in accordance with the mouth shape

and mouth movements. An example where the concept of viseme is related to the mouth

dynamics is the viseme /AO/ which represents the movement of the mouth from a posi-

tion close to /A/ to a position close to /O/. In such a case, to represent a viseme, one
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should develop a method for representing the video sequence, further complicating the

video processing stage. Fortunately, most of the visemes can be represented by stationary

mouth images. The benefit of using such a representation is that it can be mapped directly

to the acoustic speech units, which makes the integration process pretty easy. However,

in some scenarios, the use of visemes may not be representative of the speech content and

therefore there is a need for using sub-visemic speech classes, which are based on articula-

tory features of the lips movement [75]. While this technique provides more information,

it complicates audio-visual integration because the speech classes in the audio and visual

modalities are no longer identical. Therefore, for the scope of this thesis, we will use

visemes as visual speech units.

To be able to design the visual front-end, it is desirable to define for each phoneme its

corresponding viseme. This enables us to integrate the visual speech recognition system

into existing acoustic-only systems. Unfortunately, speech production involves invisible

articulatory organs, which renders the mapping of phonemes to visemes into many-to-one.

Consequently, there are phonemes that cannot be distinguished in the visual domain. For

example, the phonemes /P/, /B/, and /M/ are all produced with a closed mouth and

cannot be distinguished visually, so they will be represented by the same viseme. It is

important also to consider the effect of the dual of the allophone, where the same viseme

can be realized differently in the visual domain due to the speaker variability and the

context. Table 5.1 shows the most commonly used visemes for the English consonants in

literature [13]. Unlike the phonemes, there is no viseme set that is commonly used by all

researchers.

5.3 The Basic Structure of the HMM for Visual Speech

Recognition

In order to develop a visual model that can be easily integrated with existing audio speech

recognition systems, we will use HMMs for recognition. At this stage, it is crucial to define

the basic structure of the HMM developed for viseme-based visual speech recognition, so

that we can understand the general framework in which our proposed visual features will

be integrated. When we introduced visemes in the previous section, we only showed which
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Table 5.1: The most commonly used visemes for the English consonants [13].

Viseme Group Index Corresponding Consonants

1 /F/, /V/

2 /TH/, /DH/

3 /S/, /Z/

4 /SH/, /ZH/

5 /P/, /B/, /M/

6 /W/

7 /R/

8 /G/, /K/, /N/, /T/, /D/, /Y/

9 /L/

visemes can be present in the pronunciation of a certain word and not their duration. Let

Ti, i = 1, 2, ..., S denote the duration of the ith viseme in a word model of S visemes. Let

T be the duration of the video sequence that results from the pronunciation of this word.

The duration of a viseme or a word is defined here to be the number of optical flow fields

per viseme or word, which is equal to the number of frames minus one. Representation

using optical flow will be discussed later.

For the purpose of aligning the video sequence of duration T with the visemic model

of S visemes, we create a temporal Viterbi lattice [82] containing as many states as the

optical flow fields in the video sequence, that is, T . An example of this Viterbi lattice is

shown in Figure 5.2 for the representation of the word “four”. A similar Viterbi lattice is

derived for every visemic model wd, d = 1, 2, ..., D, where D is the total number of visemic

models. Each node in this lattice generates an observation that belongs to a certain class

at each time instant. Let lk = 1, 2, ..., Q be the class label that the observation ok generated

at time instant k belongs to. Let us denote the emission probability of that observation

by blk(ok). Each solid line between any two nodes in the lattice represents a transition

probability between two states. Denote by alk,lk+1
the transition probability from the node

corresponding to the class lk at time instant k to the node corresponding to the class lk+1
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at time instant k + 1. The class labels lk and lk+1 may or may not be different.

Figure 5.2: A Viterbi lattice for the word “four” having duration of 5.

Having a video sequence of T frames for a word and a Viterbi lattice for each visemic

word model wd, d = 1, 2, ..., D, we can compute the probability that the visemic word

model wd is realized, following a path l in the Viterbi lattice as:

pd,l =
T∏

k=1

blk(ok)
T−1∏

k=1

alk,lk+1
. (5.1)

The probability that the visemic word model wd is realized can be computed by:

pd =
L

max
l=1

pl, (5.2)

where L is the number of all possible paths in the lattice. Among the words that can be

realized following any possible path in any of the D Viterbi lattices, the word described

by the model whose probability pd, d = 1, 2, ..., D, is maximum is finally recognized. In

the visual speech recognition approach discussed in this chapter, the emission probability

blk(ok) is given by the corresponding HMM, HMMk. Here we assume equal transition

probabilities alk,lk+1
between any two states. Therefore, it is sufficient to take into account

only the probabilities blk(ok), k = 1, 2, ..., T , in the computation of the path probabilities
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pd,l which gives the simplified equation:

pd,l =
T∏

k=1

blk(ok). (5.3)

5.4 Visual Preprocessing

For the scope of this work, we will use the Tulips1 database. For the visual part of this

database, the mouth regions are already extracted, which means that we do not have to

perform face detection and ROI extraction. However, a number of image preprocessing

steps need to be performed for these regions as described in [33] and shown in Figure 5.3.

First, the contour of the outer lips is tracked using point distribution models, a data-

driven technique based on analysis of the grey-level statistics around lip contours. The

mouth images are then normalized for translation and rotation. This is accomplished by

first padding the image on all sides with 25 rows or columns of zeros, and modulating the

images in the spatial frequency domain. The images are then symmetrized with respect to

the vertical axis going through the center of the lips. This makes the final representation

more robust to horizontal changes in illumination. The images are then cropped to a size

36× 50 and their intensity is normalized using logistic gain control. This in turn produces

a grayscale region of interest that is robust against varying lighting conditions.

Figure 5.3: Visual preprocessing steps.
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5.5 Optical Flow of Mouth Motion

Once the images are preprocessed, optical flow is derived between consecutive images of

mouth regions, in order to understand the motion of the mouth from time-varying image

intensity. Optical flow in computer vision is a concept used to measure the motion of

objects within a visual representation. In camera-oriented coordinates each point on a 3D

surface moves along a 3D path X(t). When projected onto the image plane each point

produces a 2D path x(t) ≡ (x(t), y(t))T , the instantaneous direction of which is the velocity

dx(t)/dt. The 2D brightness velocities for all visible surface points is often referred to as

the 2D motion field. The goal of optical flow estimation is to compute an approximation to

the motion field from time-varying image intensity. Typically the optical flow between two

consecutive frames is represented as vectors originating or terminating at pixels in a digital

image sequence. Figure 5.4 shows the flow field estimated for two consecutive images of a

person speaking.

5.5.1 Optical Flow Estimation

Optical flow estimation can be classified into three types [4]: intensity-based differential

methods, frequency-based filtering methods and correlation-based methods. The method

we use for optical flow estimation is a differential technique based on [7]. This is a regu-

larization technique, where a robust statistics method is employed to alter the traditional

objective function to be minimized. This makes it feasible to reject outliers and obtain a

more accurate optical flow field.

Let I(x, y, t) be the image brightness, or a filtered version of the image brightness, at

a point (x, y) at time t. The data conservation constraint can be expressed in terms of the

standard brightness constancy assumption as follows:

I(x, y, t) = I(x + uδt, y + vδt, t + δt), (5.4)

where (u, v) is the horizontal and vertical image velocity at a point and δt is small. This

is equivalent to stating that the image value at time t, at a point (x, y), is the same as the

value in a later image at a location offset by the optical flow.
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Figure 5.4: Optical flow of two consecutive images.
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A Taylor series expansion of the right side of Equation 5.4 and discarding the terms

higher than first-order leads to the following equation:

Ixu + Iyv + It = 0, (5.5)

where Ix = ∂I
∂x

, Iy = ∂I
∂y

, and It = ∂I
∂t

. For convenience, Equation 5.5 is rewritten as:

(∇I)Tu + It = 0, (5.6)

where ∇I denotes the local brightness gradient vector, and u = [u, v]T denotes the flow

vector. Equation 5.6 is known as the brightness constancy constraint equation and is not

sufficient to recover u since it is one equation with two unknowns u and v. This equation

constrains u and v to lie on a line as shown in Figure 5.5.1.

Figure 5.5: Brightness constancy constraint equation.

In order to provide other constraints, many methods have been used in literature. One

common approach to constrain u is to use gradient constraints from nearby pixels assuming

they share the same 2D velocity. The central idea here is to derive the constraints in a

neighboring region and minimize them using least squares. Least squares is used here

because of the pooling of constraints over some spatial neighborhood R. While R should
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be large enough to constrain the solution, the larger the region of integration the more

likely it is to contain multiple motions with competing constraints. The optical flow is

consequently derived by minimizing the following quantity:

E(u, v) =
∑

(x,y)∈R

[Ix(x, y, t)u + Iy(x, y, t)v + It(x, y, t)]2. (5.7)

Using the notation of Equation 5.6, Equation 5.7 is rewritten as:

E(u) =
∑

R

[(∇I)Tu + It]
2. (5.8)

Other methods assume global smoothness through regularization approaches and are

represented by the classic method of Horn and Shunk [38]. The method works by mini-

mizing the following function over all the image:

E(u) =
∑

R

[((∇I)Tu + It]
2 + λ(u2

x + u2
y + v2

x + v2
y)), (5.9)

where λ is a regularization parameter, ux = ∂u
∂x

, uy = ∂u
∂y

, vx = ∂v
∂x

, and vy = ∂v
∂y

.

However, the smoothness assumption is violated if two or more motions are present

in a neighborhood. In this case, one set of constraints will be consistent with one of the

motions while the other set of constraints will be consistent with the other motion. If we

are considering one of the motions, the constraints for the other motion will appear as

errors referred to as outliers. Least-squares estimation do not produce good results in the

presence of outliers. For this purpose, Black and Anandan [7] propose a robustification

technique to deal with the sensitivity of the least-squares estimator to measurement out-

liers. The objective function for their regularization approach, with a gradient-based data

term, becomes:

E(u) =
∑

R

ρ((∇I)Tu + It, σ) + λ
∑

R

[ρ(ux, σ) + ρ(vx, σ)], (5.10)

where

ρ(x, σ) = log(1 +
1

2
(
x

σ
)2) (5.11)

is the Lorentzian ρ-function, and σ is a scale parameter.
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5.5.2 Representation in Terms of Basis Flow Fields

Since the optical flow is computed without extracting the speakers lip contours and lo-

cation, robust visual features can be obtained for lip movements. This is actually the

prime advantage of using optical flow visual features. The optical flow field, u(x; c), over

positions x = (x, y) can be written as a weighted sum of basis flow fields :

u(x; c) =
n∑

j=1

cjbj(x), (5.12)

where bj(x)j=1,...,n is the basis set and c = (c1, ..., cn) is the vector containing the scalar co-

efficients. Figure 5.6 shows how an optical flow field is represented by a linear combination

of a set of basis flow fields. A translational model, such as that we’re dealing with here,

requires two basis flow fields, encoding horizontal and vertical translation. Consequently,

determining the optical flow for consecutive frames becomes a problem of estimating the

coefficients c of the basis flow fields. In [27], the principal components of a training set of

flow fields were used as the basis. In this work, we extract the independent components

of a training set and use them as the basis in order to derive a linear motion model. This

motion model will then be used to recognize linguistic events.

5.6 Independent Component Analysis

Having obtained the optical flow fields of consecutive mouth regions, the next step is to

derive coefficient values of a linear transformation of the optical flow fields. Independent

component analysis is used for this purpose due to the fact that it is superior to other

transformation techniques when it comes to representing natural images such as that if the

mouth. Independent component analysis of multivariate data aims at finding a transfor-

mation in which the transformed components are as statistically independent from each

other as possible. The concept of ICA is usually coupled with the concept of Blind Source

Separation (BSS), in which it is desired to separate multiple mixed signals based on the fact

that the sources of these signals are statistically independent (also known as the cocktail

party problem).
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Figure 5.6: Representation of optical flow by basis flow fields.
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5.6.1 ICA Derivation

A number of algorithms have been proposed in literature for performing ICA [5], [19], [16].

In this work we will use ICA as proposed by Bell and Sejnowski [5] to derive our motion

model. This approach employs the principle of optimal information flow in neural networks

with sigmoidal transfer functions, by minimizing output joint mutual information (infomax

principle) as described below.

Let X be an n-dimensional random vector representing a distribution of inputs in a

certain context. Let W be an n× n invertible matrix. Let U = WX be an n-dimensional

vector of linear combinations of inputs. Y = f(U) is an n-dimensional random variable,

representing the outputs of n neurons. Each component of f = (f1, ..., fn) is typically the

logistic function:

fi(u) =
1

1 + e−u
. (5.13)

The goal in Bell and Sejnowski’s algorithm is to maximize the mutual information

between the environment X and the output Y of the neural network. This is achieved by

performing gradient ascent on the entropy of the output with respect to the weight matrix

W . The gradient update rule for W is shown in equation 5.14:

∆W ∝ ∇W H(Y) = (W T )−1 + E(Y′XT ), (5.14)

where H(Y) is the output joint mutual information, Y′
i = f ′′i (Ui)/f

′
i(Ui) is the ratio

between the second derivative and the first derivative of f , E stands for expected value,

and ∇W H(Y) is the gradient of the entropy in matrix form. In the case of the sigmoidal

transfer function in Equation 5.13, we have Y′
i = (1 − 2Yi), and therefore Equation 5.14

reduces to:

∆W ∝ ∇W H(Y) = (W T )−1 + (1− 2Yi)X
T . (5.15)

When the cumulative distribution function (CDF) of the independent components is

aligned with the transfer function f (up to a scaling and rotation), maximizing output joint

entropy becomes equivalent to minimizing the mutual information between the individual

outputs. This in turn causes the individual outputs to be more statistically independent.

The algorithm is speeded up by including a “sphering” step prior to learning [6]. The row
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means of X are subtracted, and then X is passed through the whitening matrix Wz, which

is twice the inverse square root of the covariance matrix:

Wz = 2 ∗ (Cov(X))(−1/2). (5.16)

This removes the first and the second-order statistics of the data; both the mean and

covariances are set to zero and the variances are equalized. When the inputs to ICA are

the “sphered” data, the full transform matrix WI is the product of the sphering matrix

and the matrix learned by ICA:

WI = WWz. (5.17)

MacKay [49] and Pearlmutter [62] showed that the ICA algorithm converges to the Maxi-

mum Likelihood estimate of W−1 for the following model of the data:

X = W−1S (5.18)

where S = (S1, ...,Sn)′ is a vector of independent random variables, called the sources, with

cumulative distributions equal to fi. This means that the W−1, the inverse of the weight

matrix in Bell and Sejnowski’s algorithm, can be interpreted as the source mixing matrix

and the U = WX variables can be interpreted as the maximum-likelihood estimates of the

sources that generated the data.

5.6.2 ICA Compared to PCA

As stated before, the use of ICA is proposed in this work due to the fact that ICA is

superior to PCA and can thus can yield better performance than the traditional approaches

based on PCA. In fact, PCA is a special case of ICA which uses Gaussian source models.

For PCA, the mixing matrix W−1 is unidentifiable, which means that there is an infinite

number of equally good ML solutions for W−1. In fact, for PCA, the rows of W are the

eigenvectors of the covariance matrix of the data. Therefore, PCA deals with second-order

statistics and only captures the amplitude spectrum of the mouth motion not the phase

spectrum. However, for natural images such as that of the mouth, structural information

is contained in the phase spectrum, and the amplitude spectrum is not enough. The high-

order statistics, obtained through ICA, capture the phase spectrum [6]. Since PCA is only
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sensitive to the power spectrum of images, it may not be the best way for representing

natural images.

Another drawback of PCA is that it assumes Gaussian sources, which may be inade-

quate when the true sources are non-Gaussian. In fact, it has been empirically observed

that many natural images, including speech, natural images, and EEG are better described

as linear combinations of sources with long tailed distributions [5] instead of Gaussian dis-

tributions. These sources are called high-kurtosis, sparse, or super-Gaussian. When the

sources are modeled by high-kurtosis models, ICA is better than PCA for the following

reasons: 1) It provides a better probabilistic model of the data. 2) It uniquely identifies

the mixing matrix W−1. 3) It finds a not-necessarily orthogonal basis which may represent

the data better than PCA in the presence of noise. 4) It is sensitive to high-order statistics,

not just the covariance matrix.

5.7 Data Collection and Processing

5.7.1 The Tulips1 Database

Our goal in this work is two-fold: to understand the motion of the lips, and to recognize

the motion of the lips. In order to achieve the first goal, we need to derive the basis flow

fields from a training set. The training set should be representative in the sense that it

should include people from different ages, genders and appearances (beard or no beard for

example), uttering a defined set of words at approximately equal rates. For this purpose

we use the Tulips1 database compiled by Movellan [53]. This is a small, publicly available

database of 12 subjects (9 males and 3 females), pronouncing the first four digits in English

two times in repetition. The audio part is sampled at 11127 Hz with 8 bits per sample.

The video part consists of 934 gray scale lip images of size 100 × 75, sampled at the rate

of 30 frames per second. Subjects are undergraduate students from the Cognitive Science

Program at the University of California, San Diego. Although the number of words is small,

this database is challenging due to the differences in illumination conditions, ethnicity, and

gender of the subjects.

For the purpose of our work, the visual speech recognizer was tested using the leave-
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one-out testing strategy for the 12 subjects in the Tulips1 database. This implies training

the visual speech recognizer 12 times, each time using only 11 subjects for training and

leaving the 12th out for testing.

5.7.2 Processing Using The Proposed Approach

For the purpose of training our system, we collect the video sequences of the 12 subjects

in the database. Depending on the approach used to model the spoken words in the visual

domain, visual speech recognition systems can be based on either a word-oriented model, a

viseme-oriented model, or a sub-viseme-oriented model. In this work, we develop a viseme-

oriented model, where each of the visemes is treated as a separate unit of visual speech

and is thus processed independently. Consequently, we obtain a training set that is made

up of the mouth regions for consecutive frames. Figure 5.7 shows an overall diagram of

our approach.

Figure 5.7: Processing using proposed approach.

Given the sequence of mouth regions, the images are normalized to 36×50 (see Section

5.4) in size and fed into the visual feature extraction module. In the first place, the

input mouth region frames are mapped into optical flow fields derived between consecutive
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frames. Since training is done offline, we can afford to use a computationally expensive

optical flow technique. The method used for optical flow estimation is based on [7] as

discussed in Section 5.5.1.

Next, we use the derived optical flow fields as our training ensemble. Each word consists

of a variable number of consecutive frames and thus a variable number of optical flow fields.

For 36 × 50 images, each image has 36 × 50 = 1800 pixels, and each flow field contains

2 × 1800 = 3600 quantities (i.e. the horizontal and vertical elements of the flow at each

pixel). We place these 3600 values into a vector by scanning the horizontal components of

the flow followed by the vertical components. Since we have 11 subjects (training set) and

each subject utters 4 words, this gives us 11 × 4 = 44 vectors that become the rows of a

44× 3600 matrix X. Each row of X represents a word (from “one” to “four”) per person.

We subtract the mean from each row so that each word has zero mean.

After deriving X, ICA is used to find a matrix W such that the rows of U = WX are

as statistically independent as possible. From W we can find WI as shown in Section 5.6.1,

and the mixing matrix A ≡ W−1
I . The source optical flow fields estimated by U are then

used as the basis flow fields for representing the motion of the mouth. The coordinates for

these basis flow fields are contained in the rows of the mixing matrix A. Consequently, A

has 44 rows, and each row of A is the feature vector for each of the corresponding words

in the training sequence. The dimensionality of the input is equal to the number of ICs

found by the ICA algorithm (44 in this case). Figure 5.8 shows how ICA is performed on

the optical flow fields.

Prior to performing ICA, we perform PCA on the matrix X and use the first 12 principal

components as the input to our ICA module. The first 12 PCs account for over 95% of the

variance in the optical flow fields. PCA captures the second order statistics (i.e. the power

spectrum), but not the higher order statistics (i.e. the phase spectrum). This does not

mean that the higher order relationships are lost by performing PCA. These relationships

still exist in the data but are not separated until we perform ICA. ICA is then performed

on the first 12 principal components and this results in a matrix of independent source

optical flow fields in the rows of U .

The following steps summarize the approach followed:

• Let P be the matrix containing the first 12 principal components in its rows.
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Figure 5.8: ICA for optical flow fields.

• The PC representation of X is defined as R = XP T .

• A minimum squared error approximation X is obtained by X̂ = RP .

• The ICA algorithm produces WI = WWz such that:

WIP = U. (5.19)

• This implies that:

X̂ = RP = RW−1
I U. (5.20)

• This means that the coefficients of the basis flow fields are contained in RW−1
I .

Therefore, if we denote the coefficient matrix by F , then F = RW−1
I .

Figure 5.9 shows the first 5 IC’s of the optical flow fields.
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Figure 5.9: The first five derived basis flow fields.

5.8 Training the Motion Model

In order to evaluate the performance of our motion model, we will use the coefficients

of the basis flow fields derived from training sequence as the training set. The recovered

coefficients from the testing sequence will be used for evaluating the recognition task. For

training, we used 4 streams of image sequences for every speaker, which correspond to the

4 words of the training set. As indicated before, training is performed for 11 users in every

training set.

The first 12 eigenvectors (those with the largest eigenvalues) were used to estimate

the motion of the mouth. This means that we obtain 12 basis images and consequently

12 coefficients. The learning rate was initialized at 0.0005 and annealed down to 0.0001.

After training we obtain a 44× 12 matrix F containing the coefficient values for the basis

flow fields of the training set. Next, we perform the same steps on the testing set (which

comprises one speaker in every one of the 12 tests uttering the 4 words) and obtain a 4×12

matrix Ftest containing the coefficient values for the testing set. Next, the coefficient values

are derived over a number of frames and a coefficient trajectory is found for every speaker

in the training set. The coefficient trajectories are then averaged over the 11 users. The

dimensionality of our feature vector at every frame level is then equal to 12. This feature

vector is used to derive the viseme class label and then decide on the word class as dictated
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by the Viterbi lattice (described in Section 5.3). The following subsections demonstrate

the experimental setup that is performed to show the efficiency of the developed model.

5.9 Experimental Results

In order to assess the efficiency of our feature extraction approach, we perform recognition

using the leave-one-out principle described earlier. Since we have 12 subjects and 4 word

classes repeated 2 times by each speaker in the Tulips1 database, this means that we have

96 word recognition tests. In this section, we present our experimental results and compare

them to others reported in literature for the same experiment on the Tulips1 database. As

a performance measure, we use the Word Recognition Rate (WRR) averaged over all the

recognition tasks.

Figure 5.10 shows the first and sixth frame of four subjects uttering the word “one”.

It also shows the optical flow fields derived at these frames (bottom of Figure 5.10). If the

proposed model is correctly capturing the motion of the lips, then the estimated coefficients

of each speaker should be the similar. For this purpose, the first four coefficients (c1, c2, c3

and c4) are plotted at the top of Figure 5.10 over 15 frames. In general, the plots appear to

be highly correlated for different speakers saying the same word. This correlation is high

for some coefficients (like coefficient c1) and low for other coefficients (like coefficient c4).

However, there appears to be a trend of coefficient temporal variation for the same word

across different speakers, which demonstrates the efficiency of our proposed model.

To further illustrate that the derived coefficients contain structural information about

the speech classes, the coefficient values are plotted over 15 frames for both the training

and testing data. Figure 5.11 shows the the first 5 coefficient values obtained by averaging

the coefficient trajectories of the four words over the training set (11 subjects). Figure

5.12, on the other hand, shows the first 5 coefficient trajectories of the four words for the

speaker being tested. At each time instant there is a vector of coefficients that represents

the flow field of the ROI. Note that the trajectories for the coefficients of a certain word

are similar for both the training set and the testing set.

Speech is usually characterized by large, rapidly changing motions, which can be dif-

ficult to estimate, especially across multiple speakers. Consequently, our model, having
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Figure 5.10: Four coefficients for four subjects uttering the word “one”.
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Figure 5.11: Training set: 5 coefficient values over 15 frames.
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Figure 5.12: Testing set: 5 coefficient values over 15 frames.

achieved this high level of correlation, is expected to have performed well for the task of

speech recognition. In order to evaluate and quantify this performance, we have to perform

classification. We will first discuss our experimental protocol.

5.9.1 Experimental Protocol

We start the design of the visual speech recognizer with the definition of the viseme classes

for the first four digits in English. We first obtain the phonetic transcriptions of the first

four digits in English using the CMU pronunciation dictionary [1]:

“one”→“W-AH-N”

“two”→“T-UW”

“three”→“TH-R-IY”

“four”→“F-AO-R”. We then define the viseme classes so that

• A viseme class includes as few phonemes as possible

• We have as few different visual realizations of the same viseme as possible.

The definition of viseme classes was based in the visual examination of the video part

from the Tulips1 database as shown in [30]. The clustering of the different mouth images
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into viseme classes was done manually on the base of visual similarity of these images.

Accordingly, we obtain the viseme classes described in Table 5.2 and the phoneme-to-

viseme mapping given in Table 5.3.

Table 5.2: Viseme classes for the Tulips1 database [53].

Viseme Group Index Symbolic Notation Viseme Description

1 (W) Small-rounded open mouth state

2 (AO) Larger-rounded open mouth state

3 (WAO) Medium-rounded open mouth state

4 (AH) Medium ellipsoidal mouth state

5 (N) Medium open, not rounded, mouth state;

teeth visible

6 (T) Medium open, not rounded, mouth state;

teeth and tongue visible

7 (TH) Medium open, not rounded mouth state

8 (IY) Longitudinal open mouth state

9 (F) Almost closed mouth state; upper teeth

visible; lower lip moved inside

5.9.2 Classification Results

Given the dataset, we estimate the optical flow fields and perform independent component

analysis as described earlier. The reduced feature vectors obtained from the independent

components of the optical flow fields are then used for classification. For this purpose, each

of the 4 words is fed into an HMM for recognition.

Table 5.4 shows the WRR per subject, obtained by the proposed approach, and com-

pared to other approaches that have worked on the same database. These other approaches

are not explained in this work, but their results are provided for comparison.

This table shows that the minimum WRR attained in the proposed approach is 75%

and the maximum WRR is 100%, a result that is generally acceptable in speech recogni-
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Table 5.3: Phoneme-to-viseme mapping for the Tulips1 database [53].

Viseme Group Index Corresponding Phonemes

1,2, or 3 /W/, /UW/, /AO/

(depending on the speaker’s pronunciation)

1 or 3 /R/

(depending on the speaker’s pronunciation)

4 /AH/

5 /N/

6 /T/

7 /TH/

8 or 4 /IY/

(depending on the speaker’s pronunciation)

9 /F/

Table 5.4: WRR per subject in the Tulips1 database.

Subject 1 2 3 4 5 6 7 8 9 10 11 12

Accuracy [%] 87.5 75 100 87.5 100 100 100 100 75 87.5 87.5 100

Accuracy [%] [30] 100 75 100 100 87.5 100 87.5 100 100 62.5 87.5 87.5

Accuracy [%] [48] 100 87.5 87.5 75 100 100 75 100 100 75 87.5 87.5
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tion. However, this performance metric does not give a clear understanding of the overall

enhancement introduced by the proposed approach.

Table 5.5, on the other hand, shows the confusion matrix between the words actually

uttered and the words recognized by the HMM classifier. This confusion matrix is compared

to the average human confusion matrix [53] in Table 5.6. It is shown here that there is a

relation between the two matrices. For example, both of the human confusion matrix and

the confusion matrix of the proposed approach show higher accuracy in recognizing the

words “two” and “four” than the words “one” and “three”.

Table 5.5: Confusion matrix for visual word recognition.

One Two Three Four

One 91.67% 0% 0% 8.33%

Two 0% 95.83% 4.17% 0%

Three 8.33% 4.17% 87.5% 0%

Four 0% 4.17% 0% 95.83%

Table 5.6: Average human confusion matrix.

One Two Three Four

One 89.36% 0.46% 8.33% 1.85%

Two 1.39% 98.61% 0% 0%

Three 9.25% 3.24% 85.64% 1.87%

Four 4.17% 0.46% 1.85% 93.52%

Table 5.7 shows the overall WRR for all subjects, along with the WRR confidence

intervals, in comparison to those obtained by other approaches. The WRR of our approach

was calculated by averaging the diagonal values of the confusion matrix.

From examining these tables, we can see that our system achieves an overall WRR of

92.7%. This exceeds the WRR of the best rate reported in [33] and in [56] by 1%. It
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Table 5.7: Overall recognition rate compared to other methods.

Method WRR Confidence Interval

Our Method 92.7% [87.5%, 95.83%]

Global PCA [33] 79.2% [70%, 86.1%]

Global ICA [33] 74% [64.4%, 81.7%]

Blocked filter bank PCA/ICA [33] 85.4% [76.9%, 91.1%]

Unblocked filter bank PCA/ICA [33] 91.7% [84.4%, 95.7%]

Diffusion network shape+intensity [56] 91.7% [84.4%, 95.7%]

Delta features/SVM classifier [30] 90.6% [83.1%, 94.7%]

Delta features/HMMs [53] 89.93% [82.3%, 94.5%]

should also be mentioned that the minimum value of the confidence interval as found by

our approach is 87.5% which is larger than the best value obtained in [33] and in [56] by

3.1%. In addition, it is to be noted that the methods reported in [33] require a lot of local

processing, by the use of a bank of linear shift invariant filters with unblocked selection

whose response filters are ICA or PCA kernels of very small size (12× 12 pixels). On the

other hand, our approach is much simpler to implement.

5.9.3 Quality of the Chosen Eigenvectors

We have stated before that the reason for choosing 12 basis flow fields is that the first 12

eigenvectors of the source fields (those corresponding to the highest eigenvalues), account

for 95% of the variance. We show here why the first 12 basis flow fields are enough for

representing the motion of the mouth.

As discussed in [27], in order to observe the quality of the chosen basis fields, we

measure the fraction of the variance of the training set that is accounted for by the first n

components:

Q(n) =
(
∑n

j=1 λ2
j)

(
∑p

j=1 λ2
j)

, (5.21)
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where p is the total number of eigenvalues. As Q(n) approaches 1, the first n eigenvectors

will account for a large portion of the variance. Consequently, these eigenvectors will act as

a good representation because eigenvalues λj are very small for j > n. On the other hand,

if Q(n) is relatively small for a given n, then the first n eigenvectors are not enough to

represent the model of interest. This means that the dimensionality of the model depends

on how fast Q(n) increases with respect to n, being very large for instance if Q(n) increases

slowly. Performing this calculation, we find that Q(12) = 0.95 which means that the first

12 eigenvectors account for 95% of the variance. This is why we choose to use the first 12

principal components in the PCA stage prior to the ICA calculation. This means that we

have coefficient values per class at each time frame.

5.10 Chapter Summary and Discussion

Visual speech is complex in its nature as it includes a lot of non-rigidity, self-occlusion

and high image velocities. Consequently, much of the information is contained in the

higher order statistics (the phase spectrum), with a little knowledge provided by second-

order statistics (the amplitude spectrum). The fact that PCA derives only second order

statistics makes it an inefficient tool for our application. For this purpose, we have used

Bell and Sejnowski’s ICA, which is based on the principal of optimal information flow

in sigmoidal neurons by minimizing output joint mutual information. PCA is a special

case of ICA in which the source models are Gaussian. The assumption that sources are

Gaussian is not necessarily true, especially for natural signals such as speech, EEG and

natural images. Consequently, ICA provides a better probabilistic model of the data and

derives a basis set that can reconstruct the data better than PCA in the presence of noise.

In addition, it uniquely identifies the mixing matrix A and captures higher-order statistics

that are not provided by the covariance matrix.

The purpose of the work of this chapter was two-fold: to understand the motion of the

lips, and to recognize the motion of the lips. We proposed a novel approach for achieving

these goals. Each word from the Tulips1 database was represented by a sequence of frames,

and the optical flow was derived between every pair of consecutive frames. ICA was then

performed on the optical flow fields to find a basis set that is statistically independent.
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The temporal trajectory of the model coefficients provided a rich description of the visual

speech information. Next, we used the coefficients of these basis images to recognize units

of speech (defined here as the visemes of the words “one” to “four” uttered by subjects of

the Tulips1 database).

For recognition we first created a temporal Viterbi lattice containing as many states

(N) as the optical flow frames in the video sequence. We then used an N -state HMM

based on this Viterbi lattice to classify the visemes and the corresponding words. We

found that the classification results improved by 1% as compared to the best performing

state of the art system. We also showed that the first 5 eigenvectors (those corresponding

to the largest eigenvalues) of the input flow fields account for 95% of the variance in the

data. This means that the chosen 12 basis optical flow fields are highly representative of

the lips motion model.



Chapter 6

Multimodal Fusion

Having presented the design methodology for the visual and audio feature design and

extraction, this chapter develops a method of modality fusion that is based on reliability.

In order to achieve this purpose, several issues should be addressed. The first issue is

where the fusion of the data takes place. As discussed in Chapter 2, several architectures

have been developed in literature to tackle this issue. Feature fusion integrates data on

the feature level, where audio and visual features are used simultaneously and equally to

identify the corresponding speech unit. Decision fusion, on the other hand, takes place after

the independent identification of each stream and is thus an integration of identification

results. Other methods, such as Motor Recoding, Dominant Recoding and hybrid methods

also exist. However, the most widely used integration techniques use either a feature-based

or a decision-based fusion architecture.

For our recognition experiments we exclusively followed a Separate Integration (decision

fusion) architecture because different comparisons showed superior performance of the SI

compared to the other fusion architectures [78], [73]. Once the level of integration is

chosen, the next issue to tackle is how the fusion of the identification results takes place.

The identification results in our case are the a posteriori probabilities of the observation

vectors. The quality of this estimate is related to the match of the training and testing

conditions. Since the training data was all recorded in a clean environment, the reliability

if the testing set depends solely on the noise present in the test condition and not on any

other conditions (such as sensor malfunction). In order to account for the dynamic changes

66
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in reliability, a weighting of the audio and visual probabilities is desirable. For this purpose,

we propose in this chapter two stream reliability indicators based on the dispersion of the

a posteriori probabilities of the observation vectors. These reliability indicators are then

mapped into stream weights using the genetic algorithm, in such a way that maximizes

the conditional likelihood. Figure 6.1 shows an overall diagram of our fusion system. Note

that although the work in this chapter focuses only on two modalities (the audio and the

video), all the derivations are done with respect to a random number of input modalities.

This facilitates the integration of our fusion module in future architectures that may use

more than two streams of information.

Figure 6.1: Overview of the multimodal fusion system.

6.1 Bayesian Fusion

In pattern classification problems, we measure a property (feature) of a pattern instance

and try to decide to which of M classes ci, i = 1, ..., M it should be assigned. Multimodal

fusion or integration combines S complementary features, originating from a single or
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multiple modalities, in order to maximize information gather and to overcome the impact

of noise in each individual stream.

Let Sk, k = 1, ..., S, denote the information streams that we want to integrate.

Let xs, s = 1, ..., S, denote the feature vectors of every stream.

The simplest way to combine audio and video data is to use Bayes’ rule and multiply

the audio and video a posteriori probabilities. From a probabilistic perspective, this ap-

proach is valid if the audio and video data are independent. Perceptive studies have shown

that in human speech perception, audio and video data are treated as class conditional

independent [54], [50]. In this case, the conditional probability of the observation vector

x1:S = (x1, ...,xS) given the class label ci is governed by the product:

P (x1:S|ci) = P (x1, ...,xS|ci) =
S∏

s=1

P (xs|ci). (6.1)

Using Bayes’ rule, we get the desired a posteriori probability of the class given the features:

P (ci|x1:S) =

∏S
s=1 P (ci|xs)

P (ci)
.

∏S
s=1 P (xs)

P (x1:S)
. (6.2)

By replacing the probabilities P by estimates P̂ , we get a representation of the Bayesian

Fusion (BF):

P̂BF (ci|x1:S) =

∏S
s=1 P (ci|xs)

P (ci)
.η, (6.3)

where the terms independent of the actual class are replaced by the normalization factor

η:

η =
1

∑M
j=1

QS
s=1 P (cj |xs)

P (ci)

, (6.4)

where M is the number of classes. This probability can then be used in classification by

making use of the Maximum A Posteriori (MAP) rule:

ĉ = argmax
ci∈C

P̂BF (ci|x1:S). (6.5)

It is to be noted here that the counterpart of the Bayesian Fusion model in the area of

human perception is the Fuzzy Logical Model of Perception (FLMP).
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6.2 Weighted Bayesian Fusion

The standard Bayesian Fusion approach does not deal with varying reliability levels of

the input streams. In order to improve classification performance, several authors have

introduced stream weights {λ1, λ2, λ3, ..., λS} as exponents in Equation 6.3, resulting in

the modified score:

P̂WBF (ci|x1:S) =

∏S
s=1 P (xs|ci)

λs

∑M
j=1

∏S
s=1 P (xs|cj)λs

. (6.6)

Notice that Equation 6.6 corresponds to a linear combination in the log-likelihood do-

main; however, it does not represent a probability distribution in general, and will conse-

quently be referred to as a score. Such schemes have been motivated by potential differences

in reliability among different information streams, and larger weights are assigned to infor-

mation streams with better classification performance. Using such weighting mechanisms

has experimentally been proven beneficial for feature integration in both intra-modal and

inter-modal scenarios.

In order to determine the weights {λ1, λ2, λ3, ..., λS}, we first need to define reliability

measures for the individual streams. These reliability measures should reflect the quality

of the observation conditions by considering statistical information conveyed in both prior

and current classification results. The second step is to find an optimal mapping between

these reliability indicators and the stream weights {λ1, λ2, λ3, ..., λS}. The only constraints

that this problem has are that the weights should be positive and should add up to 1.

S∑
s=1

λs = 1, (6.7)

λs ≥ 0 (6.8)

6.3 Reliability of Sensor Information

In this section, we provide an adaptive reliability assessment model for the different modal-

ities. The stream reliability variables are calculated using a frame level evaluation process

prior to the recognition process. Since the discriminative powers of the audio and visual

signals have a temporally correlated variation which may be altered by dramatic noise
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bursts, a reliability weighting scheme should take into account the previously observed be-

havior of the classifier. For this purpose, we propose an adaptive stream reliability measure

that is based on the idea of dispersion.

As discussed in Chapter 2, the first work to ever introduce the dispersion as a measure

of reliability in audio-visual speech recognition systems was that developed by Adjoudani

and Benoit [2]. Since then, this idea has been further developed by other researchers.

In this work, a dispersion measure developed by Potaminaos and Neti [65] is used. This

measure uses an N -best dispersion method that is formulated as the difference between

each pair of nth-best hypotheses, and it is given by:

L =
2

N(N − 1)

N∑
n=1

N∑

n′=n+1

(Rn −Rn′), (6.9)

where N ≥ 2 and Rn is equal to the nth-best hypothesis. Dispersion measures provide

a good estimate of stream confidence, as a large difference in classifier outputs reflects a

greater confidence. Lucey et al. [46] have theoretically proven that dispersion approxi-

mately reflects the the cepstral shrinkage effect induced by additive noise.

6.3.1 Instantaneous Dispersion

The first reliability measure that we use is the instantaneous dispersion based on a local

frame measurement. It is defined as:

Ls,t = L(log(P (xs,t|cs,t))) =
2

N(N − 1)

N∑
n=1

N∑

n′=n+1

log
P (xs,t|cs,t,n)

P (xs,t|cs,t,n′)
, (6.10)

where L(.) is the N -best log-likelihood dispersion function defined in Equation 6.9 and

P (xs,t|cs,t) is the observation emission probability generated by an HMM-based classifier.

Here we choose N = 4 because both Adjoudani and Benoit [2] and Potamianos and Neti

[65] have found that an N -best of 4 has been the most successful. This reliability measure

is calculated for a particular instance of time t, which shows that it is only capable of

capturing the reliability of a given stream at a certain time. However, it does not cap-

ture information about the stream from previous time or previous states. This missing

information contains valuable knowledge about the reliability of a system.
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It is to be noted here that the audio and visual speech signals have different discrim-

inative powers depending on their classes. For instance, the audio channel may have a

difficulty discriminating between the phonemes /m/ and /n/; however, these classes are

easily distinguishable using the visual cues because /m/ takes a closed mouth shape while

/n/ takes an open mouth shape. On the other hand, the classes /p/ and /m/ are not easily

distinguished in the visual domain.

6.3.2 Temporal Dispersion

The instantaneous dispersion measure evaluates the stream reliability at a frame level.

It is evident from the above discussion that in clean speech, the instantaneous dispersion

should be low for speech classes that are perceived similar to each other and high for classes

that are highly discriminative, and thus it can be implied that instantaneous dispersion

is a good measure of a stream’s reliability. However, this assumption is not necessarily

valid in highly corrupted speech. In this case, the noise will cause the dispersions to vary

rapidly. Therefore, it is hard to judge whether the dispersion changes come from the

varying discriminative powers of the recognizer or from the ambient noise presented in the

multimodal streams. For this purpose, the instantaneous dispersion is not sufficient to

assess the stream reliability and there is a need for a temporal reliability measure. The

idea of a temporal reliability is similar to that of a local reliability measure, but rather

than being solely based on the current output of the system, a weighting based on temporal

reliability would take into account the previously observed behavior of the classifier.

The results of the audio and visual streams should be combined dynamically according

to their relative reliability. For this purpose we propose a second confidence measure that

is based on the instantaneous dispersion measure. We define this weight function Rs,t (with

backward-looking time step ∆t) as:

Rs,t =

q∑
n=1

ρ(n)Ls,t−n∆t + εt, (6.11)

where q is the window length (chosen here to be equal to 5), and εt is a white noise process

with zero mean and variance σ2. The ρ(n), n = 1, ..., q, in the range 0 to 1, are parameters

that correspond to how rapidly past performance will be discounted. This factor ρ(n)
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is largely responsible for determining the dynamic weights Rs,t, where recent performance

should be weighted highly (large ρ(n)) and past performance should be gradually forgotten

(low ρ(n)). Here the problem boils down to determining the proper values of ρ(n). This

value could be set to a constant raised to the power n, which implies that as n increases (by

going more into the past), the weighting of the dispersion values decreases. However, this is

not very appropriate in environments with a large noise variation. In order to demonstrate

this idea, consider the case where at a certain frame instance t1, a sudden noise burst

occurs, and then this noise disappears at the following frame instance t2 = t1 + ∆t. This

means that for calculating the temporal dispersion at t2, the instantaneous dispersion at

t1 should not be weighted highly. This is because, to a certain extent, the two dispersions

are not correlated in this case. Consequently, the calculation of ρ(n) should depend on the

correlation between the dispersion values.

For this purpose, we note from Equation 6.11 that this temporal dispersion is formulated

as an autoregressive model. Autoregressive (AR) models are among the most commonly

used statistical models for time series modeling. The parameters ρ(n) are thus calculated

using the Yule-Walker equations [35]:

rL(m) =

q∑
n=1

ρ(n)rL(m− n) + σ2
ε δm, (6.12)

where m = 0, ..., q, yielding q + 1 equations, and rL(m) is the autocorrelation function of

the instantaneous dispersion series. σε is the standard deviation of the input noise process,

and δm is the Kronecker delta function. Because the last part of the equation is non-zero

only if m = 0, these equations are usually solved by representing them as a matrix for

m > 0, thus getting the following equation:




rL(1)

rL(2)

.

.

.

rL(q)




=




rL(0) rL(−1) . . . rL(−q + 1)

rL(1) rL(0) . . . rL(−q + 2)

. . .

. . .

. . .

rL(q − 1) rL(q − 2) . . . rL(0)







ρ(1)

ρ(2)

.

.

.

ρ(q)




. (6.13)

Using the property that rL(n) = rL(−n) for real processes, the Yule-Walker equations
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become:



rL(1)

rL(2)

.

.

.

rL(q)




=




rL(0) rL(1) . . . rL(q − 1)

rL(1) rL(0) . . . rL(q − 2)

. . .

. . .

. . .

rL(q − 1) rL(q − 2) . . . rL(0)







ρ(1)

ρ(2)

.

.

.

ρ(q)




, (6.14)

and we solve for all ρ. For m = 0 we have:

rL(0) =

q∑
n=1

ρ(n)rL(−n) + σ2
ε , (6.15)

which allows us to solve σ2
ε . Note that since the Yule-Walker equations are linear in the

coefficients ρ(n), it is a simple matter to find the coefficients ρ(n) from the autocorrelation

sequence rL(n).

6.4 Stream Weight Optimization

The next step is to find a mapping between the reliability measures (L and R derived

in Equations 6.10 and 6.11) and the stream weights (λ1, λ2, λ3, ..., λS). We use a sig-

moid function for this purpose, as chosen by [67], due to the fact that it is monotonic,

smooth and bounded between zero and one. First we define the reliability vector dt =

[d1,t, d2,t, d3,t, ..., d2S,t] = [R1,t, R2,t, ..., RS,t, L1,t, L2,t, ..., LS,t].

Then, the mapping is defined as:

λs =
1

1 + exp(−∑2S
i=1 ws,idi,t)

, (6.16)

where Ws = [ws,1, ws,2, ws,3, ..., ws,2S] is the vector of the sigmoid parameters for stream s.

As discussed before, several optimization techniques were proposed in literature to find the

optimal parameters Ws from which we can derive the optimal weights (λ1, λ2, λ3, ..., λS).

Since we have S streams and 2S sigmoid parameters per stream, then we have S×2S = 2S2

sigmoid parameters that we need to optimize. This is a nonlinear optimization problem
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with a large number of variables. Consequently, we propose a method based on genetic

algorithms (GA) to solve this problem and show how we use this method to determine the

optimal set of weights. We now give a brief introduction of genetic algorithms and then

move on to show how a genetic algorithm model is developed for our problem.

6.4.1 Introduction to Genetic Algorithms

Linear programming and dynamic programming techniques often fail (or reach local op-

tima) in solving NP-hard problems with large number of variables and non-linear objective

functions. For this purpose, researchers have proposed evolutionary algorithms that mimic

the biological evolution of species, and that are capable of reaching near-optimum solu-

tions. GAs are the most popular of these systems and they comprise a family of stochastic

search methods that are based on improving fitness through evolution [37]. A solution to

a given problem is represented in the form of a string, called a “chromosome”, consisting

of a set of elements, called “genes”, that hold a set of values for the optimization variables

[29]. The fitness of each chromosome is determined by evaluating it against an objective

function. To simulate the natural “survival of the fittest” process, the best chromosomes

exchange information, through crossover or mutation, to produce offspring chromosomes.

The offspring solutions are then evaluated and used to evolve the population if they provide

better solutions than their parents. Usually, the process is continued for a large number of

generations to obtain a best-fit (near-optimum) solution. The building blocks of any GA

algorithm are the GA operators. The simplest form of genetic algorithm involves three

types of operators: selection, crossover and mutation.

6.4.2 Problem Modeling Using Genetic Algorithms

Having established a formal definition of genetic algorithms, we now describe the way a

GA model is formulated for our problem. Constructing a genetic algorithm starts with

selecting the way in which candidate solutions are encoded. Then a certain technique for

each operator (i.e. selection, crossover, and mutation) is chosen. The following subsections

describe our model.
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Encoding Encoding is a central factor in the success of a genetic algorithm. As most

applications in GA, a fixed-length, fixed-order bit string (binary encoding) is selected to

encode the candidate solution. In our case, the objective function of the genetic algorithm is

to find the optimum weights for the S streams such that the system reliability is maximized.

In our GA model, we have S streams {S1, S2, S3, ..., SS} which require 2S2 parameters

W = {W1,W2...,WS}. Each parameter is encoded by k bits. In this case the chromosome

will contain 2S2 × k bits. Each parameter has 2k possible values. This will determine the

resolution of the weight values, which is in this case 1/2k.

Selection and Fitness Function This “selection” operator selects chromosomes in the

population for reproduction. The fitter the chromosome, the more times it is likely to be

selected to reproduce.

The objective function of the genetic algorithm used in this experiment is to optimize

the system reliability by adjusting the weights. This requires a fitness function that assigns

a fitness to each chromosome in the current population. The fitness function should be

selected such that the fitness of a chromosome will reflect how well that chromosome

enhances the system reliability. For this purpose we choose our objective function to be

the maximum conditional likelihood (MCL) estimates of parameters W over the training

set. Given an observation vector x1:S, we first represent the conditional likelihood of class

ci by:

P̂WBF (ci|x1:S) =

∏S
s=1 P (xs|ci)

λs

∑M
j=1

∏S
s=1 P (xs|cj)λs

. (6.17)

We then seek the parameters W over a time interval T in the training set as:

Ŵ = argmax
W

∑
t∈T

log PWBF (ci,t|x1:S), (6.18)

where ci,t is the class ci at time t. Equation 6.18 is our objective function, subject to the

constraints:

S∑
s=1

λs = 1, (6.19)

λs ≥ 0. (6.20)
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The purpose of the selection process is to emphasize the fitter individuals in the pop-

ulation hoping that their offspring will in turn have even higher fitness. The selection

process has to be balanced with variation from crossover and mutation (the exploita-

tion/exploration balance); i.e., too-strong selection will result in suboptimal highly fit

individual who may take over the population, reducing the diversity needed for further

change and progress; too-weak selection will result in too-slow evolution.

A common selection method in GA’s is fitness-proportionate selection, in which the

number of times an individual is expected to reproduce is equal to its fitness divided by

the average fitness of the population, (this is equivalent to what biologists call “viability

selection”).

A simple method of implementing fitness-proportionate selection is the “roulette-wheel

sampling”, which is conceptually equivalent to giving each individual a slice of a circular

roulette wheel equal in area to the individual’s fitness. The roulette wheel is spun, the ball

comes to rest on one wedge-shaped slice, and the corresponding individual is selected.

The fitness proportionate selection with elitism is used in this experiment. Elitism is

an addition to many selection methods that forces the GA to retain some number of the

best individuals at each generation. Such individuals can be lost if they are not selected

to reproduce, or if they are destroyed by a crossover or a mutation. In this experiment

only one elite (the best individual) is kept. The rest of the selection process is a normal

roulette wheel sampling selection.

Crossover This operator randomly chooses a locus and exchanges the subsequences be-

fore and after that locus between two chromosomes to create two offspring. There are many

variants of crossover found in the GA literature such as one point crossover, two point

crossover, parametrized uniform crossover, etc. In this experiment, two point crossover

with probability of 0.7 is selected.

Mutation This operator randomly flips some of the bits in a chromosome. Mutation

can occur at each bit position in a string with some probability, usually very small. In this

experiment, we set the mutation rate to 0.007.

For the genetic algorithm modeling, the “Evolver” tool was used. This is implemented

as a macros in Microsoft Excel and has proven to be an efficient and easy-to-use tool for
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GA applications.

6.5 The Recognition System

It is well known that the visual speech activity precedes the audio signal by as much as 120

ms [9], which is close to the average duration of a phoneme. As discussed in Chapter 2, the

multi-stream HMM enforces state synchrony between the audio and visual streams. It is

therefore important to relax the assumption of state synchronous integration, and instead

allow some degree of asynchrony between the audio and visual streams. Many recognition

models, such as the product HMM, the factorial HMM and the coupled HMM have been

proposed for this purpose. In this work, the coupled HMM is used and is discussed next.

6.5.1 The Coupled Hidden Markov Model

The coupled HMM (CHMM) [58] is a dynamic Bayesian network (DBN) that allows the

backbone nodes to interact, and at the same time to have their own observations. In the

past, CHMM have been used to model hand gestures [8], the interaction between speech

and hand gestures [61], or audio-visual speech [58]. A CHMM can be seen as a collection of

HMMs, one for each modality stream, where the hidden backbone nodes at time t for each

HMM are conditioned by the backbone nodes at time t− 1 for all related HMMs. Figure

6.2 shows a continuous two-stream CHMM used for our audio-visual speech recognition

system. The squares represent the hidden discrete nodes, while the circles describe the

continuous observable nodes. Unlike the independent HMM used for audio-visual data,

the CHMM can capture the interactions between audio and video streams through the

transition probabilities between the backbone nodes. The CHMM can model the audio-

visual state asynchrony and preserve the natural audio-visual dependencies over time.

The training of the CHMM parameters is performed in two stages. In the first stage,

the CHMM parameters are estimated for isolated phoneme-viseme pairs. These parameters

are determined first using the Viterbi-based initialization described in [58], followed by the

expectation-maximization (EM) algorithm [41]. In the second stage, the parameters of

the CHMMs, estimated individually in the first stage, are refined through the embedded

training of all CHMMs. In a way similar to the embedded training for HMMs [82], each
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Figure 6.2: The audio-visual coupled HMM.

of the models obtained in the first stage are extended with one entry and one exit non-

emitting states. The audio-visual speech recognition is carried out via a graph decoder

applied to a word network consisting of all the words in the test dictionary. Each word in

the network is stored as a sequence of phoneme-viseme CHMMs, and the best sequence of

words is obtained through an extension of the token passing algorithm.

For the recognition task, we used the publicly available open source Audio-Visual Con-

tinuous Speech Recognition (AVCSR) toolkit developed by Intel. It is written in C++.

Besides a CHMM-based audio-visual speech recognition decoder, two more recognition

engines, an audio-only decoder (audio-only speech recognition engine) and a visual-only

decoder (lip-reading engine) are integrated into this toolkit. We integrate the derived audio

and video feature vectors along with the derived stream weights in an appropriate format

into this toolkit. By using the CHMM and HMM recognition decoders of this toolkit, we

compare the performance the different systems (as shown in the next section).
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6.6 Experiments

6.6.1 Experimental Setup

In order to evaluate the efficiency of the fusion method, several experiments are conducted

to show that audio-visual speech recognition can benefit from the suggested approach.

This is achieved via classification experiments for the task of word classification of isolated

digits. The Tulips1 database is used for all the experiments, which consists of 12 subjects,

uttering the first four digits in English two times in repetition. Similar to the visual front-

end experimental setup, the audio-visual speech recognizer is tested using the leave-one-out

testing strategy for the 12 subjects in the Tulips1 database. This implies training the visual

speech recognizer 12 times, each time using only 11 subjects for training and leaving the

12th out for testing. The audio signal is contaminated by adding 5 kinds of noise taken

from the NOISEX database [80]:

• White noise

• Noise recorded in a car at 120 km/h

• Babble noise

• Two types of factory noise.

These different types of noise are mixed with the audio signal at 8 SNR levels ranging from

-12dB to 30dB (clean speech). The SNR levels are: -12dB, -5dB, -3dB, 0dB, 5dB, 10dB,

20dB, and 30dB.

Mel frequency cepstral coefficients (MFCCs) are utilized as observations for the audio

stream, constructing a 26-dimensional vector (derived in Chapter 4). As far as the visual

front-end is concerned, a 12-dimensional visual feature vector is derived from the indepen-

dent components of the optical flow fields (derived in Section 5.6.1). For the acoustic and

visual modeling of the observations, 3-state left-right word Coupled HMMs with a single

5-continuous-Gaussian observation probability distribution per stream are used. The mod-

els are trained on clean data. As for the speech classes, the 9 visemes of Table 5.2 and the

10 phonemes of Table 5.3 are used.
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6.6.2 Experimental Results

Figure 6.3 shows the temporal dispersions over 3 SNR levels (-5dB, 10dB and 20dB) for

the audio stream of the same utterance. It is clear in general from these plots that the

higher the SNR values, the higher the temporal dispersion measures are. This proves that

the proposed measure can efficiently assess the reliability of the multimodal streams in a

way that can capture the noise level in the channel. Figure 6.4 shows two plots. The top

figure plots the instantaneous dispersions of both audio and visual streams varying over

a 70-frame time window, where calculations are done at an SNR of 10dB taken from a

speaker in the testing set. From this plot, it is clear that instantaneous dispersions vary

dramatically over time. In most of the time, the instantaneous dispersions of the visual

stream are much lower than that of the audio stream, which implies that the audio stream

provides more information about the speech classes than the video stream. The bottom

figure, on the other hand, plots the temporal dispersions calculated for the same speaker

and same conditions. It is to be noted that the temporal dispersion plot shows more

smoothness in estimating the channel reliability than the instantaneous dispersion plot.

This translates into a reliability estimate that is more robust against noise bursts and that

can assess classifier performance based on prior behavior.

Figure 6.5 shows the word error rate on average for the approach based on dispersion

and gradient descent method (top) and our proposed method (bottom) respectively. The

values of the word error rate are evaluated for the different types of noise applied on the

different noise levels (babble noise, white noise, noise in a car, and two types of factory

noise). It is shown that our proposed approach using the genetic algorithm optimization

technique, yields a much better performance for almost all noise types and levels.

In order to more clearly see this performance improvement, Figure 6.6 presents the

percentage of the correctly classified words in the isolated-digit recognition task. It shows 5

curves. The “A” curve represents the audio-only speech recognition classification accuracy

shown for baseline comparison. This accuracy increases as the SNR level increases. This

makes sense because the lower the noise in the channel (and the higher the SNR) the

better the performance of the classification task. The “V” curve represents the video-only

speech recognition classification accuracy. This value is constant because the level of noise

in the audio channel does not affect the video channel. The “AV-Unweighted” curve is
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Figure 6.3: Audio temporal dispersion for 3 SNR levels.

the baseline audiovisual setup in which we use Coupled HMMs with stream weights equal

to unity for both streams. For comparison, we also provide results with stream weights

using the dispersion as reliability measure and the generalized gradient descent as the

optimization method [67] (“AV-Dispersion” curve). The results show that our proposed

approach (the “AV-Proposed Approach curve”) improves AVSR performance.

One interesting result of this comparison is that the proposed approach seems particu-

larly effective at lower SNRs. In fact, these plots show the good performance at medium to

high SNR of the Bayesian fusion (“AV-Unweighted”), which does not require any weighting

and hence no reliability estimation either. As can be seen in Figure 6.6, the performance

of the Bayesian fusion is very close to the weighted schemes for medium and good SNR

values, whereas for low SNR values the performance drastically degrades. This is due to

the fact that Bayesian fusion is able to capture, in an implicit way, the varying reliability

of the input streams. Decreasing the reliability of a stream results in an increase of the

entropy of the corresponding classification results. Consequently, the distribution of these

values flattens and in an extreme case reaches the uniform distribution when the stream
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Figure 6.4: Instantaneous (top) and temporal (bottom) dispersion variation at 10dB.
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Figure 6.5: WER for dispersion-GPD (top) and proposed approach (bottom).
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Figure 6.6: Word classification accuracy.

is totally unreliable. During fusion the uniform distribution does not interfere with the

distribution of the reliable input stream as the product of the uniform distribution does

not change the shape of the second distribution. Therefore, classification is not altered by

the unreliable stream.

However, at very low SNR levels, the unweighted Bayesian fusion scheme performs even

worse that the visual modality alone. This is referred to in literature as catastrophic fusion

[55]. Catastrophic fusion in intelligent sensory systems happens when the accuracy of the

fused outcome is less than the accuracy of both individual systems alone. Movellan and

Mineiro [55], argue that most fusion systems suffer from catastrophic fusion because they

make implicit assumptions and degenerate quickly when these assumptions are broken and

used outside its original context. The training in this work was done for subjects in a clean

environment. This means that for very low SNR values (such as -12dB), the context of

training is totally different. Consequently, both the unweighted Bayesian fusion and the

dispersion-based fusion suffer from catastrophic fusion. However, the proposed approach,

having taken into consideration channel information within a certain interval of time, is
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able to capture context information and hence does not suffer from catastrophic fusion.

It is clear now that both dispersion-based fusion and fusion using the proposed approach

significantly improve AVSR performance at low SNRs, with the proposed approach being

somewhat superior as it combats catastrophic fusion. For example, at -12dB SNR, the

fusion method using the proposed approach produces a 72% word classification accuracy,

representing a vast improvement over the audio-only rate of 25%, the unweighted fusion

rate of 55%, the dispersion-based fusion rate of 61% and the video-only rate of 64%.

Notice however that at the high end of the SNR range, all the recognition methods, except

for the video-only, reveal a similar performance. To further illustrate quantitatively the

performance of the proposed approach to fusion, we compare fusion strategies in terms of

their resulting effective SNR gain. We measure this gain with reference to the audio-only

word classification accuracy at 10dB, by considering the SNR value where the audiovisual

word classification rate equals the reference audio-only word classification rate. From

Figure 6.6, this SNR gain is around 10dB for both the unweighted Bayesian fusion and the

dispersion-based fusion. On the other hand, classification based on the proposed approach

achieves a 16dB improvement, further illustrating the efficiency of this approach.

6.7 Chapter Summary and Discussion

In this chapter, we proposed a new probabilistic reliability assessment model for multiple

streams in a multimodal system. The main benefit of this assessment model is that it takes

into consideration the reliability of the overall system on both a local and global level and

thus is robust to sudden noise bursts. In addition, it is a model, which can be generalized

for multiple information streams and multiple applications. We developed two stream

reliability indicators based on the dispersion of N-best hypotheses in each modality. The

first reliability indicator, the instantaneous dispersion, was simply the dispersion of the a

posteriori probabilities of the observation vectors. Thus, large differences in probabilities

equate to greater certainty, close probabilities to less certainty. The second reliability

indicator, the temporal dispersion, was based on a linear combination of the first indicator

measure over a time interval. This indicator was depicted as an autoregressive model and

thus its parameters were calculated using the Yule-Walker equations.
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The reliability indicators were then mapped into stream weights using the genetic al-

gorithm, in such a way that maximized the conditional likelihood. This optimal scheme is

superior to previous approaches because it is dynamic, easy to implement, and considers

an arbitrary number of streams (instead of just 2 as is usually done for AVSR scenar-

ios). Experimental results did show improvements, especially at low SNR levels, where it

was able to combat catastrophic fusion. We demonstrated a significant improvement of

16dB word classification accuracy relative improvement over audio-only matched models

at a 10dB SNR. Future work can extend this architecture to consider multiple streams of

information on both an intramodal and intermodal level.



Chapter 7

Conclusion and Future Work

This work provided a framework for audio-visual speech recognition that can effectively

maximize information gather about the words uttered and minimize the impact of noise.

Two main issues that are relevant to the design of AVSR systems were addressed. The first

issue is the visual front end that captures visual speech information. The second issue is the

integration (fusion) of audio and visual features into the automatic speech recognizer used.

Both are challenging problems, and significant research effort has been directed towards

finding appropriate solutions for them.

7.1 Summary and Contributions

7.1.1 Visual Speech Modeling and Feature Extraction

This work first proposed a visual front-end system that processes visual speech informa-

tion and extracts features that are representative of the speech classes. Visual speech is

complex in its nature as it includes a lot of non-rigidity, self-occlusion and high image

velocities. For this purpose, a motion model of the mouth movement was developed using

optical flow analysis. The optical flow fields were derived between every pair of consec-

utive video frames. Independent component analysis was then performed on the optical

flow fields to find a basis set that is statistically independent. The temporal trajectory of

the model coefficients provided a rich description of the visual speech information. Next,

87
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the coefficients of these basis flow fields were used to recognize units of speech chosen here

to be the visemes.

To motivate this approach, it is important to mention that for natural images, such as

the mouth, much of the speech information is contained in the higher order statistics (the

phase spectrum), with a little knowledge provided by second-order statistics (the amplitude

spectrum). The fact that PCA derives only second order statistics makes it an inefficient

tool for our application. For this purpose, we have used Bell and Sejnowski’s ICA, which

is based on the principal of optimal information flow in sigmoidal neurons by minimizing

output joint mutual information. PCA is a special case of ICA in which the source models

are Gaussian. The assumption that sources are Gaussian is not necessarily true, especially

for natural signals such as speech, EEG and natural images. Consequently, ICA provides a

better probabilistic model of the data and derives a basis set that can reconstruct the data

better than PCA in the presence of noise. In addition, it uniquely identifies the mixing

matrix, and captures higher-order statistics that are not provided by the covariance matrix.

For recognition we first created a temporal Viterbi lattice containing as many states

(N) as the optical flow frames in the video sequence. We then used an N-state HMM based

on this Viterbi lattice to classify the visemes and the corresponding words. Experimental

results showed good improvement (Section 5.9). We found that the classification results

had a 92.7% word recognition rate showing an improvement by 1% compared to the best

performing state of the art system. Moreover, the minimum value of the confidence interval

as found by our approach was found to be 87.5% which is larger than the best value

obtained in [33] and in [56] by 3.1%. We also showed that the first 5 eigenvectors (those

corresponding to the largest eigenvalues) of the input flow fields account for 95% of the

variance in the data. This means that the chosen 12 basis optical flow fields are highly

representative of the lips motion model.

7.1.2 Reliability-Driven Sensor Fusion

Another major contribution of this work was in developing an assessment model that

measures the reliability of the audio and visual information streams to weight the influence

of the decisions in the combination. Reliability of the audio and visual streams can be

obtained by measures of the signal (such as the amount of noise using SNR) or by statistical
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approaches. In this work, a statistical approach was developed, which accounts for the

dynamic changes in reliability. This was done in two steps. The first step derived suitable

statistical reliability measures for the individual information streams. The second step

found an optimal mapping between the reliability measures and the stream weights that

maximized information gather.

For the purpose of the first step, this work proposed two stream reliability indicators

based on the dispersion of N-best hypotheses in each modality. The first reliability indica-

tor, the instantaneous dispersion, was simply the dispersion of the a posteriori probabilities

of the observation vectors. Thus, large differences in probabilities equate to greater cer-

tainty, close probabilities to less certainty. The second reliability indicator, the temporal

dispersion, was based on a linear combination of the first indicator measure over a time

interval. This indicator was depicted as an autoregressive model and thus its parameters

were calculated using the Yule-Walker equations. This assessment model takes into con-

sideration the reliability of the overall system on both a local and a global level, and can

thus overcome problems related to sudden noise bursts.

The reliability indicators were then mapped into stream weights using the genetic al-

gorithm, in such a way that maximized the conditional likelihood. The proposed approach

did show improvements (Section 6.6.2), especially at low SNR levels, where it was able to

combat catastrophic fusion. We demonstrated a significant improvement of 16dB word clas-

sification accuracy relative improvement over audio-only matched models at a 10dB SNR.

This improvement reached its maximum at -12dB, where the proposed fusion produced

a 72% word classification accuracy, representing a vast improvement over the audio-only

rate of 25%, the unweighted fusion rate of 55%, the dispersion-based fusion rate of 61%

and the video-only rate of 64%. The improvement, however, was minimum at high SNRs

yielding a 97% word classification accuracy, which is comparable to the other unimodal

and bimodal approaches.

7.2 Future Work

This work clearly shows that audio-visual speech recognition is a wide area that has been

explored by many researchers over the past two decades. However, issues of both practical
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and research nature remain challenging, and much progress still needs to be done for

capturing and integrating visual speech information.

From a practical point of view, the high quality of captured visual data, which is needed

for extracting visual speech information capable of enhancing AVSR performance, is cou-

pled with an increased cost, storage, and computer processing requirements. Furthermore,

the need for a large common audio-visual corpora that is capable of capturing a wide range

of contexts and speaker variabilities hinders the development of practical and robust AVSR

systems.

On the research side, many substantial issues related to the design of the low-level

components of AVSR systems, remain challenged and open for investigation. In the visual

front end design, for example, developing mouth detection, facial feature extraction, and

lips tracking algorithms that are robust to speaker, pose, lighting and environment con-

ditions remain challenging problems. Moreover, a combined shape and appearance based

three-dimensional modeling for lips tracking and visual feature extraction has not yet been

addressed in the AVSR community, although such an approach would achieve the desired

robustness needed for the visual front-end design. In addition, a thorough comparison be-

tween shape and appearance based features for the mouth region of interest has not been

explored. Audio-visual decision fusion also has a number of issues that require further

study. For example, the optimal level of integrating the audio and visual log-likelihoods,

the optimal function for this integration, as well as the derivation of appropriate local

estimates of the reliability of each stream into this function, are all problems that need to

be tackled. Further investigation of these issues is expected to lead to improved robustness

and performance of AVSR systems.

Most of the problems investigated in this research will benefit other areas of research,

such as speaker identification and verification, visual text-to-speech, speech event detection,

video indexing and retrieval, speech enhancement, coding, signal separation, and speaker

localization. Coupled with improvements in practical and research issues, these areas will

bring audio-visual speech recognition one step forward towards a commercial, natural and

robust human-computer interface.
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[2] A. Adjoudani and C. Benôıt. On the integration of auditory and visual parameters in

an HMM-based ASR. Proceedings NATO ASI Conference on Speechreading by Man

and Machine: Models, Systems and Applications, pages 461–471, 1996.

[3] H. Ai, L. Liang, and G. Xu. Face detection based on template matching and support

vector machines. Proceedings of the International Conference on Image Processing, 1,

2001.

[4] JL Barron, DJ Fleet, and SS Beauchemin. Performance of optical flow techniques.

International Journal of Computer Vision, 12(1):43–77, 1994.

[5] A.J. Bell and T.J. Sejnowski. An information-maximization approach to blind sepa-

ration and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995.

[6] A.J. Bell and T.J. Sejnowski. The independent components of natural scenes are edge

filters. Vision Research, 37(23):3327–3338, 1997.

[7] M.J. Black and P. Anandan. The robust estimation of multiple motions: paramet-

ric and piecewise-smooth flow fields. Computer Vision and Image Understanding,

63(1):75–104, 1996.

[8] M. Brand, N. Oliver, and A. Pentland. Coupled hidden Markov models for complex

action recognition. Computer Vision and Pattern Recognition, pages 994–999, 1997.

91



92 A Multimodal Sensor Fusion Architecture for Audiovisual Speech Recognition

[9] C. Bregler and Y. Konig. “Eigenlips” for robust speech recognition. IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing. ICASSP-94, 2, 1994.

[10] U. Bub, M. Hunke, and A. Waibel. Knowing who to listen to in speech recognition:

visually guided beamforming. International Conference on Acoustics, Speech, and

Signal Processing. ICASSP-95, 1, 1995.

[11] D. Chandramohan and PL Silsbee. A multiple deformable template approach for visual

speech recognition. Proceedings of the Fourth International Conference on Spoken

Language. ICSLP 96, 1, 1996.

[12] C. Chatfield and A.J. Collins. Introduction to multivariate analysis. Chapman & Hall,

1980.

[13] T. Chen. Audiovisual speech processing. Signal Processing Magazine, IEEE, 18(1):9–

21, 2001.

[14] T. Chen and RR Rao. Audio-visual integration in multimodal communication. Pro-

ceedings of the IEEE, 86(5):837–852, 1998.

[15] GI Chiou and J.N. Hwang. Lipreading from color video. IEEE Transactions on Image

Processing, 6(8):1192–1195, 1997.

[16] A. Cichocki, R. Unbehauen, and E. Rummert. Robust learning algorithm for blind

separation of signals. Electronics Letters, 30(17):1386–1387, 1994.

[17] MM Cohen and DW Massaro. What can visual speech synthesis tell visual speech

recognition? Conference on Signals, Systems and Computers, 1994. Conference

Record of the Twenty-Eighth Asilomar, 1.

[18] R. Cole, J. Beskow, J. Yang, U. Meier, A. Waibel, P. Stone, A. Davis, C. Soland,

G. Fortier, T. Carmell, et al. Intelligent animated agents for interactive language

training. ACM SIGCAPH Computers and the Physically Handicapped, pages 5–10,

1998.



Conclusion and Future Work 93

[19] P. Comon et al. Independent component analysis, a new concept. Signal Processing,

36(3):287–314, 1994.

[20] M. Cooke, P. Green, L. Josifovski, and A. Vizinho. Robust automatic speech recogni-

tion with missing and unreliable acoustic data. Speech Communication, 34(3):267–285,

2001.

[21] T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.

[22] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models-their

training and application. Computer Vision and Image Understanding, 61(1):38–59,

1995.

[23] E. Cosatto, G. Potamianos, and HP Graf. Audio-visual unit selection for the synthesis

of photo-realistic talking-heads. IEEE International Conference on Multimedia and

Expo. ICME 2000., 2, 2000.

[24] B. Dalton, R. Kaucic, and A. Blake. Automatic speechreading using dynamic contours.

Proceedings NATO ASI Conference on Speechreading by Man and Machine: Models,

Systems and Applications, pages 373–382, 1996.

[25] P. Duchnowski, U. Meier, and A. Waibel. See me, hear me: integrating automatic

speech recognition and lipreading. To appear in proc.

[26] S. Dupont and J. Luettin. Audio-visual speech modeling for continuous speech recog-

nition. IEEE Transactions on Multimedia, 2(3):141–151, 2000.

[27] D.J. Fleet, M.J. Black, Y. Yacoob, and A.D. Jepson. Design and use of linear models

for image motion analysis. International Journal of Computer Vision, 36(3):171–193,

2000.

[28] H. Glotin, D. Vergyr, C. Neti, G. Potamianos, J. Luettin, and G. ICP. Weighting

schemes for audio-visual fusion in speech recognition. Proceedings of the IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing. (ICASSP’01)., 1,

2001.



94 A Multimodal Sensor Fusion Architecture for Audiovisual Speech Recognition

[29] D.E. Goldberg. Genetic algorithms in search, optimization and machine learning.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.

[30] M. Gordan, C. Kotropoulos, and I. Pitas. A support vector machine-based dynamic

network for visual speech recognition applications. EURASIP Journal on Applied

Signal Processing, 2002(11):1248–1259, 2002.

[31] JN Gowdy, A. Subramanya, C. Bartels, and J. Bilmes. DBN based multi-stream

models for audio-visual speech recognition. Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing. (ICASSP’04)., 1, 2004.

[32] HP Graf, E. Cosatto, and M. Potamianos. Robust recognition of faces and facial

features with a multi-modal system. IEEE International Conference on Systems,

Man, and Cybernetics, 1997. ’Computational Cybernetics and Simulation’, 3, 1997.

[33] M.S. Gray, T.J. Sejnowski, and J.R. Movellan. A comparison of image processing

techniques for visual speech recognition applications. Advances in Neural Information

Processing Systems, 13:939–945, 2001.

[34] S. Gurbuz, Z. Tufekci, E. Patterson, and JN Gowdy. Application of affine-invariant

Fourier descriptors to lipreading for audio-visual speech recognition. Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Processing.

(ICASSP’01)., 1, 2001.

[35] M.H. Hayes, MH Hayes, and M.H. Hayes. Statistical digital signal processing and

modeling. John Wiley & Sons, Inc. New York, NY, USA, 1996.

[36] M. Heckmann, F. Berthommier, and K. Kroschel. A hybrid ANN/HMM audio-visual

speech recognition system. Proceedings of AVSP-2001, 2001.

[37] J.H. Holland. Adaptation in natural and artificial systems. MIT Press Cambridge,

MA, USA, 1992.

[38] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial Intelligence,

17(1-3):185–203, 1981.



Conclusion and Future Work 95

[39] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: a review. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(1):4–37.

[40] F.V. Jensen. Bayesian networks and decision graphs. Springer.

[41] F.V. Jensen, FVV Jensen, and FV Jensen. Introduction to Bayesian networks.

Springer-Verlag New York, Inc. Secaucus, NJ, USA, 1996.

[42] P. Jourlin, J. Luettin, D. Genoud, and H. Wassner. Acoustic-labial speaker verifica-

tion. Pattern Recognition Letters, 18(9):853–858, 1997.

[43] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. International

Journal of Computer Vision, 1(4):321–331, 1988.

[44] G. Krone, B. Talle, A. Wichert, and G. Palm. Neural architectures for sensor fusion in

speech recognition. Proc. Europ. Tut. Works. Audio-Visual Speech Processing, pages

57–60.

[45] L. Liang, X. Liu, Y. Zhao, X. Pi, and A.V. Nefian. Speaker independent audio-visual

continuous speech recognition. IEEE International Conference on Multimedia and

Expo, pages 25–28, 2002.

[46] S. Lucey, Queensland University of Technology School of Electrical, and Elec-

tronic Systems Engineering. Audio-visual speech processing. Queensland University of

Technology, Brisbane, 2002.

[47] J. Luettin, G. Potamianos, C. Neti, and A.S. AG. Asynchronous stream modeling

for large vocabulary audio-visual speech recognition. Proceedings of the IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing. (ICASSP’01)., 1,

2001.

[48] J. Luettin and N.A. Thacker. Speechreading using probabilistic models. Computer

Vision and Image Understanding, 65(2):163–178, 1997.

[49] D.J.C. MacKay. Maximum likelihood and covariant algorithms for independent com-

ponent analysis. Report, University of Cambridge, Cavendish Lab, 1996.



96 A Multimodal Sensor Fusion Architecture for Audiovisual Speech Recognition

[50] D.W. Massaro and D.G. Stork. Speech recognition and sensory integration. American

Scientist, 86(3):236–244, 1998.

[51] I. Matthews, TF Cootes, JA Bangham, S. Cox, and R. Harvey. Extraction of vi-

sual features for lipreading. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(2):198–213, 2002.

[52] U. Meier, R. Stiefelhagen, J. Yang, and A. Waibel. Towards unrestricted lip reading.

International Journal of Pattern Recognition and Artificial Intelligence, 14(5):571–

585, 2000.

[53] J.R. Movellan. Visual speech recognition with stochastic networks. Advances in Neural

Information Processing Systems, 7, 1995.

[54] JR Movellan and G. Chadderdon. Channel separability in the audio-visual integration

of speech: a Bayesian approach. Stork & Hennecke, pages 473–487, 1996.

[55] J.R. Movellan and P. Mineiro. Robust sensor fusion: analysis and application to

audio-visual speech recognition. Machine Learning, 32(2):85–100, 1998.

[56] J.R. Movellan, P. Mineiro, and R.J. Williams. Partially observable SDE models for

image sequence recognition tasks. Advances in Neural Information Processing Systems,

13:880–886.

[57] A.V. Nefian, L. Liang, X. Pi, X. Liu, and K. Murphy. Dynamic Bayesian networks

for audio-visual speech recognition. EURASIP Journal on Applied Signal Processing,

2002(11):1274–1288, 2002.

[58] AV Nefian, L. Liang, X. Pi, L. Xiaoxiang, C. Mao, and K. Murphy. A coupled HMM

for audio-visual speech recognition. Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing. (ICASSP’02)., 2, 2002.

[59] C. Neti, G. Potamianos, J. Luettin, I. Matthews, H. Glotin, and D. Vergyri. Large-

vocabulary audio-visual speech recognition: a summary of the Johns Hopkins Summer

2000 Workshop. IEEE Fourth Workshop on Multimedia Signal Processing, pages 619–

624, 2001.



Conclusion and Future Work 97

[60] C. Neti, G. Potamianos, J. Luettin, I. Matthews, H. Glotin, D. Vergyri, J. Sison,

A. Mashari, and J. Zhou. Audio-visual speech recognition. Final Workshop 2000

Report, 764, 2000.

[61] V.I. Pavlovic. Dynamic Bayesian networks for information fusion with applications to

human-computer interfaces. PhD thesis, University of Illinois at Urbana-Champaign,

1999.

[62] B.A. Pearlmutter and L.C. Parra. A context-sensitive generalization of ICA. Inter-

national Conference on Neural Information Processing, 151, 1996.

[63] ED Petajan. Automatic lipreading to enhance speech recognition. Dissertation Ab-

stracts International Part B: Science and Engineering, 45(11), 1985.

[64] G. Potamianos, HP Graf, and E. Cosatto. An image transform approach for HMM

based automatic lipreading. Proceedings of the International Conference on Image

Processing. ICIP 98., pages 173–177, 1998.

[65] G. Potamianos and C. Neti. Stream confidence estimation for audio-visual speech

recognition. Proceedings of the International Conference on Spoken Language Process-

ing, 3:746–749, 2000.

[66] G. Potamianos and C. Neti. Improved ROI and within frame discriminant features

for lipreading. Proceedings of the International Conference on Image Processing., 3,

2001.

[67] G. Potamianos, C. Neti, G. Gravier, A. Garg, and A.W. Senior. Recent advances in

the automatic recognition of audio-visual speech. Proc. IEEE, 91(9):1306–1326, 2003.

[68] G. Potamianos and A. Potamianos. Speaker adaptation for audio-visual speech recog-

nition. Proc. European Conference on Speech Communication and Technology EU-

ROSPEECH, 3:12911294.

[69] G. Potamianos, A. Verma, C. Neti, G. Iyengar, and S. Basu. A cascade image trans-

form for speaker independent automatic speechreading. IEEE International Confer-

ence on Multimedia and Expo. ICME 2000., 2, 2000.



98 A Multimodal Sensor Fusion Architecture for Audiovisual Speech Recognition

[70] L. Rabiner and B.H. Juang. Fundamentals of speech recognition. Prentice-Hall, Inc.

Upper Saddle River, NJ, USA, 1993.

[71] C.R. Rao. Linear statistical inference and its applications. New York, 1973.

[72] A. Rogozan. Discriminative learning of visual data for audiovisual speech recognition.

International Journal on Artificial Intelligence Tools, 8(1):43–52, 1999.

[73] A. Rogozan and P. Deleglise. Adaptive fusion of acoustic and visual sources for auto-

matic speech recognition. Speech Communication, 26(1):149–161, 1998.

[74] HA Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–38, 1998.

[75] K. Saenko, T. Darrell, and J. Glass. Articulatory features for robust visual speech

recognition.

[76] AW Senior. Face and feature finding for a face recognition system. Proc. Int. Conf.

Audio and Video-based Biometr. Person Authent, pages 154–159, 1999.

[77] S. Tamura, K. Iwano, and S. Furui. A robust multi-modal speech recognition method

using optical-flow analysis. Proc. IDS02, pages 2–4, 2002.

[78] P. Teissier, J. Robert-Ribes, J.L. Schwartz, and A. Guerin-Dugue. Comparing models

for audio-visual fusion in a noisy-vowel recognition task. IEEE Transactions on Speech

and Audio Processing, 7(6):629–642, 1999.

[79] M.A. Turk, A. Pentland, Vision, Modeling Group, Massachusetts Institute of Technol-

ogy, and Media Laboratory. Eigenfaces for recognition. Vision and Modeling Group,

Media Laboratory, Massachusetts Institute of Technology, 1991.

[80] A. Varga, HJM Steeneken, M. Tomlinson, and D. Jones. The NOISEX-92 study on

the effect of additive noise on automatic speech recognition. DRA Speech Research

Unit, Malvern, England, Tech. Rep, 1992.



Conclusion and Future Work 99

[81] AP Varga and RK Moore. Hidden Markov model decomposition of speech and noise.

International Conference on Acoustics, Speech, and Signal Processing. ICASSP-90.,

pages 845–848, 1990.

[82] S. Young, J. Odell, D. Ollason, V. Valtchev, and P. Woodland. The HTK book.

Cambridge University, 1996, 1995.

[83] BP Yuhas, MH Goldstein Jr, and TJ Sejnowski. Integration of acoustic and visual

speech signals using neural networks. Communications Magazine, IEEE, 27(11):65–71,

1989.

[84] X. Zhang, C.C. Broun, R.M. Mersereau, and M.A. Clements. Automatic speechreading

with applications to human-computer interfaces. EURASIP Journal on Applied Signal

Processing, 2002(11):1228–1247, 2002.

[85] D.N. Zotkin, R. Duraiswami, and L.S. Davis. Joint audio-visual tracking using particle

filters. EURASIP Journal on Applied Signal Processing, 2002(11):1154–1164, 2002.


