Efficient Procedure for Valuing American
Lookback Put Options

by

Xuyan Wang

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in

Actuarial Science

Waterloo, Ontario, Canada, 2007

©Xuyan Wang, 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Lookback option is a well-known path-dependent option where its payoff depends on
the historical extremum prices. The thesis focuses on the binomial pricing of the American

floating strike lookback put options with payoff at time ¢ (if exercise) characterized by

max S — S,

=U,...,

where S; denotes the price of the underlying stock at time ¢. Build upon the idea of
Reiner Babbs Cheuk and Vorst (RBCV, 1992) who proposed a transformed binomial lat-
tice model for efficient pricing of this class of option, this thesis extends and enhances their
binomial recursive algorithm by exploiting the additional combinatorial properties of the
lattice structure. The proposed algorithm is not only computational efficient but it also
significantly reduces the memory constraint. As a result, the proposed algorithm is more
than 1000 times faster than the original RBCV algorithm and it can compute a binomial
lattice with one million time steps in less than two seconds. This algorithm enables us
to extrapolate the limiting (American) option value up to 4 or 5 decimal accuracy in real

time.

il

Acknowledgements

It would be ridiculous to claim the success, if any, all to myself. Any obstacle could render
my effort in vain. Thanks are due to all the people mentioned below or the people I failed
to mention at all: it is their cohort effort that makes this progress happen.

First I want to thank Professor Jock MacKay for all the long hours he tried to help me
enroll or made it easy for me to enroll in courses.

I also want to thank Professor Mary Hardy for promising me admittance upon my
performance on undergraduate study and then permitting me directly into graduate study.

Big thanks are due to Professor Jiahua Chen, Mary Lou Dufton and my supervisor
Professor Ken Seng Tan for their unrelenting efforts in helping me make through to enroll
in graduate study.

Sincere thanks are due to Professor Colleen Cutler and Ken Seng Tan for their teach-
ing, encouragement and help. I am very appreciative of the awarded financial support of
NSERC Postgraduate Scholarship, Empire Life Insurance Company Graduate Scholarship
in Actuarial Science through IQFI, President’s Graduate Scholarship from the university
and department funding.

I wish to thank Professor Weidong Tian for his kindly consideration which has helped
me survive the exhausting course study and concurrent SOA exams.

Professor Peter Forsyth’s course, “Numeric Computation For Financial Modelling”, gave
me many helpful ideas, such as the concept of memory saving, which is utilized in my
algorithm: even though he may not favor lattice method in general to PDE method.

The KMV model project is a great programming task, and the result is of general in-
terest, both are valuable to me: thank Professor Harry H. Panjer for the course “Enterprise
Risk Management”.

I wish to thank Professor Phelim P. Boyle because the thesis topic started from obser-
vations made while doing an assignment in his finance course.

I cannot overemphasize my gratitude to Professor Ken Seng Tan. While at undergrad-
uate study I was led to pursue graduate study by his persuasion, at graduate study, his
valuable insight regarding the topic finally gave me the direction to success. Also, his em-
phasis on algorithm efficiency and the tasks he assigned to me fully prepared me for this

kind of problem.

v

Finally I want to thank my whole family here in Waterloo, Wenyi, Claire and Albert
and my big family back in China for always being beside me whether at the success time

or at the struggle time.

Contents

1 Introduction
1.1 Option Valuation and Binomial Model
1.2 Literature review

1.3 Main idea of our approach

2 Algorithm and Numerical Results
2.1 Binomial Valuation of Floating Strike Lookback Option
2.2 Proposed Algorithm for Pricing Floating Strike Lookback Option
2.2.1 RBCV Algorithm
2.2.2 Proposed enhanced algorithm

2.3 Numerical results

3 Proofs and Discussions
3.1 Proof of Corollary 2.1.4
3.2 Proof of Theorem 2.2.2
3.3 Proof of Lemma 2.2.4
3.4 Proof of Proposition 2.2.5
3.5 Proof of Theorem 2.2.6
3.6 Proof of Corollary 2.2.7

4 Other Types of Lookback Options
4.1 Floating strike lookback call options
4.2 Fixed strike lookback call options

vi

10

13
13
26
26
27
29

36
36
37
40
41
42
42

5

4.3 Fixed strike lookback put options

Conclusion

vil

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

4.1

State matrix for a binomial lattice with time periods N=6 18
State triangles: N =6,n=7Tandn=6. 20
State triangles: N =6,n=6andn=5. 21
State triangles: N=6,n=4andn=3. 22
State triangles: N=6,n=2andn=1. 24
Comparison of computing time (in seconds): Matlab code implementation . 29
Quotient of difference, note that % =0.70710678 32
Predicted continuously exercisable American lookback put option value . . 33
Computing time (C=20.5521826180488,P=18.7232860368255) 49

viii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3

Graphical Depiction of a Binomial lattice with N =6 15
State triangle for a lattice with time periods N=6 23
State triangle for a lattice with time periods N=20 25
Matlab code computing time of RBCV algorithm 30
Matlab code computed value of RBCV algorithm 31
C code computing time of our revised algorithm 31
C code computed value of our revised algorithm 32
Predicted continuously exercisable American lookback put option value . . 34
Power function weighted least square fit of American lookback put option . 35
Continue region of LY ™' x =a,y =u, f(z,y) <0 44
Continue region of LY ™ v =a,y=u,y > f(x) 45
Continue region of LY ! for sufficient large N 45

X

Chapter 1

Introduction

1.1 Option Valuation and Binomial Model

First, we will give a brief description of the terminology that will be used in this thesis.
Most of the terminology is taken from the free encyclopedia Wikipedia. For example, the
definition of option as given in the Wikipedia http://en.wikipedia.org/wiki/Option_
%28finance’,29 is:

In finance options are types of derivative contracts, including call options and
put options, where the future payoffs to the buyer and seller of the contract
are determined by the price of another security, such as a common stock. More
specifically, a call option is an agreement in which the buyer (holder) has the
right (but not the obligation) to exercise by buying an asset at a set price (strike
price) on (for a European style option) or not later than (for an American style
option) a future date (the exercise date or expiration); and the seller (writer)
has the obligation to honor the terms of the contract. A put option is an
agreement in which the buyer has the right (but not the obligation) to exercise
by selling an asset at the strike price on or before a future date; and the seller
has the obligation to honor the terms of the contract. Since the option gives the
buyer a right and the writer an obligation, the buyer pays the option premium

to the writer.

http://en.wikipedia.org/wiki/Option_%28finance%29
http://en.wikipedia.org/wiki/Option_%28finance%29

Introduction 2

Option valuation is the determination of an option contract’s premium. Two factors
that determine the complexity of the option valuation most are the option style and payoft
forms.

The option style determines when the buyer may exercise the option. Generally
the contract will either be American style — which allows exercise up to the
expiration date — or European style — where exercise is only allowed on the
expiration date — or Bermudan style - where exercise is allowed on several,

specific dates up to the expiration date.

When the payoff function not only depends on the on-the-spot underlying asset price,
but also on some function of the history of the underlying (asset price), it is called a path-
dependent option. When an extreme function is used, it is called a lookback option, and
when an average function is used, it is called an Asian option.

Another factor affecting the valuation most is the model or dynamics assumption about
the underlying asset. The classical assumption is that the asset follows a geometric Brow-
nian motion (GBM). Nowadays, it is extended to jump-diffusion processes or even more
general stochastic differential equations (SDE) [42]. The no-arbitrage (or no free lunch)
principle — portfolios with the same payoffs must cost the same — is applied to obtain
a partial differential equation (PDE) or variational inequality governing the option price.
This is the major approach to option valuation as vast tools exist in PDE: various trans-
formation [43] and approximation methods as well as numerical solutions including error
analysis and stabilization techniques [45]. This kind of method is so advanced that now
even the C code of option valuation can be automatically generated [6, 29]. It is shown
by analysis and numerical example that the PDE method is better than other methods in
efficiency (at least in low dimensions, but also see the counter example: [32]) [25, 22].

The Feynman-Kac (FK) formula gives another expression of the option price as the
path-integral (expectation) of the underlying, which is the foundation of Monte-Carlo (MC)
methods — the competing methods to PDE. The early exercisable and path-dependent
options are two trying cases for these two methods. To solve the first problem, PDE
methods exploit the exercise region and exercise boundary concept and use approximation

of the boundary shape from various function types to give a lower or upper bound for

Introduction 3

the option price. MC methods had a counterpart of estimated continuation value at each
time step [35, 38]. It seems a tie in this case in their competition. As for the second
problem, PDE methods used enhanced state space to handle the extra dependence on the
path and then tried to reduce the dimension of the enhanced state space by stratification
or aggregation by cells, which were cut out by using some characteristic function on the
enhanced state space [11]. What the MC method faced here was just a high-dimensional
integration problem, and a natural application place of the new development in quasi-
Monte Carlo or lattice rule method [41, 39, 10]. In this respect, the MC methods seem to
have great advantage over PDE methods.

Both the PDE and MC methods seem to complement each other and have the common
property of general applicability — can be applied to almost every type of options — and
have theoretical analysis tools to give error bands [8, 9]. Thus, there is little room for
other methods. But there is a third choice of lattice model, the simplest of which is the
binomial pricing model. Here is a description in Wikipedia http://en.wikipedia.org/

wiki/Binomial_options_pricing_model :

The binomial pricing model uses a “discrete-time framework” to trace the evo-
lution of the option’s key underlying variable via a binomial lattice (tree), for

a given number of time steps between valuation date and option expiration.

Each node in the lattice, represents a possible price of the underlying, at a
particular point in time. This price evolution forms the basis for the option

valuation.

The valuation process is iterative, starting at each final node, and then work-
ing backwards through the tree to the first node (valuation date), where the

calculated result is the value of the option.

Option valuation using this method is, as described, a three step process:

1. price tree generation

2. calculation of option value at each final node

3. progressive calculation of option value at each earlier node; the value at the

first node is the value of the option.

http://en.wikipedia.org/wiki/Binomial_options_pricing_model
http://en.wikipedia.org/wiki/Binomial_options_pricing_model

Introduction 4

The tree is a simple plane geometry object and the recursion is simple algebra and yet
already capable of valuing early exercise options. This simple nature gave it a niche of a
bottom-up approach. Instead of starting from theory analysis and working to algorithm
design to implementation, in a binomial model, we can do it the other way. First, we do
the implementation and then do the analysis through observation of the pattern in the
calculated number, perhaps by also doing some experiment — manipulating the place that
can be adjusted, for example, to alter the data representation method or use different but
equivalent recursion formulas. For the very primitive intention of reducing the unneeded
calculations or reducing the memory usage, we can reinvent the “wheel” from scratch, and
even go beyond the known “wheel”. To deal with the path-dependent option valuation, we
can use a brute-force method of calculating all the possible paths, which amounts to adding
a third dimension to the binomial tree, and see what we can do to reduce the calculations.
By stepping through the calculations, we find that the calculated prices at different nodes
have some nice properties: many values remain unchanged across different time steps, and
once they change in a time step, they will increase monotonically thereafter. In addition,
through observing the recursion formula, we find that we can divide it by some quantity
and the formula is still valid. Thus, the recursive calculations in different part of the tree
are in a sense repetitive calculations. All these observations gave us some general principles,
or just general guidelines. We summarize them as: “uniformity” — which means do not
repeat the calculations if they are just proportional to each other — a counterpart to the
change of numeraire concept in SDE and transformation method in PDE; “exercise barrier”
— which means if a value remains unchanged then we do not need to do the calculation
again and again to get the same number in each time step — a counterpart to the exercise
region or exercises boundary concept in PDE, even if we do not know a priori it exists and
is convex (our numerical experiment shows in Geometric Asian option case the boundary
is not convex and is instead a jigsaw); and “monotonicity” and “exercises propagation” —
some inequality relationship of the prices that is obvious in the simple recursion algebra
formula. Abstruse theory and methods do work very well, but the converse is not true.
In some cases, very simple and even very primitive methods also work well. Our simple
observations will be shown to work thousands of times faster than without utilizing these

additional observations.

Introduction 5

This bottom-up approach sheds new light on the concept that other methods used,
which enables us to understand better what is really working if at a first reading of those
“higher methods” we cannot understand what is really going on. And in some special cases,
it can even work better. The drawback to the lattice method is that we need a case-by-case
analysis of each kind of option. And even if we find these nice properties in such a case, we
usually cannot give a thorough analysis for the error bounds. We can only use numerical
examples to show its efficiency. But also due to its fully tailored nature, if it can be applied
somewhere, it may be more efficient than the general applicable methods. Such is the case

of lookback option valuation.

1.2 Literature review

According to Babbs(2000) [4], the lookback or “hindsight” option, which gives the owner
the right to buy (sell) a non-divided paying security at the lowest (highest) price achieved
by that security over the lifetime of the option, was first proposed by Goldman, Sosin and
Gatto [30] in the year 1979 as pure theoretical research. This option is now called the
floating strike European lookback call (put) option, as the option can be exercised only at

the maturity time 7. More explicitly, the payoff of the call is given by Sy — mi where
mg = min{S, | s € [0,7]},

and S; is the security price at time t. On the other hand, the payoff of a European put

option is M{I — Sy where
MT = max{S,|te€0,7T]}

The counterpart fixed strike European lookback option is defined similarly. For example,
the call option’s payoff becomes (MI — K), while the put option’s payoff is (K — m{).,
where K is the fixed strike price.

The closed-form formulae for valuation of these European lookback options were given
by Conze and Viswanathan(1991) [15]. There, the floating strike lookback options were

named “standard lookback”, and the fixed strike lookback options were named “options

Introduction 6

on extrema”. For the floating strike lookback call (put) option issued at time 0 and with
maturity at time 7', the value is respectively C' and P:

2 2

C = Soll = N(=d)(1+) + e N(d)(~1+). (12.1)
P = Sy[-1+ N(dy)(1+ g—:) +e "N (—dy)(1 - ;—i)], (1.2.2)
where
d = (g + %)\/T, (1.2.3)
dy = <£ - 2T, (1.2.4)

N@) = \/LQ_W/_ % du, (1.2.5)

and r is the risk-free interest rate, o is the volatility of the security. Similar formulae for
the fixed strike (and other kind of) lookback options were also given in their paper.

The authors also considered for the first time the American version of these lookback
options: the exercise time of the options can be any moment from 0 to 7. They proved
that for floating strike lookback options:

C*=C, P<P*< Pem + Sy — 1),

where C(P) denotes the time-zero value of the European call (put), C*(P*) denotes the

time-zero value of the American call (put), for the fixed strike lookback option:
C<C*<Ce”, PSP <Pt

The paper used Martingale theory and the concept of Snell envelope to arrive at these
conclusions, while in our paper we will also give a proof of C' = C° for floating strike
lookback call option, but only elementary algebra calculations are used.

Please also note that the famous Global Derivatives Lookback Options website
http://www.global-derivatives.com/options/lookback-options. php
gives a misleading (at least for me once upon a time) introduction regarding this formula
in saying that “American fized lookback calls are always equal in value to their European

counterparts” etc.

http://www.global-derivatives.com/options/lookback-options.php

Introduction 7

Since no analytic formulae exist for floating strike American lookback put options and
all kinds of fixed strike American lookback options, many numerical methods have been
proposed, including for example, the Laplace/Gaussian transform method by Petrella and
Kou(2004) [37], Yamamoto(2005) [43]; the Monte Carlo/Quasi-Monte Carlo method by
Boyle, Lai and Tan(2001) [10], Papatheodorou(2005) [36], and Athanassios, Avramidis and
L’Ecuyer (2005) [1]; PDE methods by the paper of Forsyth, Vetzal and Zvan(1999) (28],
Foufas and Larson(2004) [24], Yan(2005) [44], especially, Barraquand and Pudet(1994) [11],
who proposed a Forward Shooting Grid (FSG) method that can be used to compute the
exact price of American lookback options, see also Forsyth, Vetzal and Zvan(1998) [27]
and (2002) [26] regarding convergence problems of the FSG method; and finally the lattice
method.

John Hull in his Technical Note 13 gives a succinct and elementary introduction to the
“transformed” lattice method: a new quotient variable of the maximum stock price divided
by terminal stock price is defined, a tree and recursion equation is given for this quotient.
No mention is made of change of numeraire. Hull attributes this idea to unpublished work
of Eric Reiner, S. Babbs, T. H. F. Cheuk and T. C. F. Vorst (RBCV). Hull’s note takes

only about two pages:

We define G(t) as the maximum stock price achieved up to time ¢ and set

Y(t) = %

We next use the Cox, Ross, and Rubinstein binomial lattice for the stock price
to produce a tree for Y. Initially, Y = 1 because G = S at time zero. If there
is an up movement in S during the first time step, both G and S increase by a
proportional amount u and Y = 1. If there is a down movement in S during
the first time step, G stays the same, so that Y = 1/d = u.

The rules defining the geometry of the tree are

1. When Y =1 at time t, it is either v or 1 at time ¢t + At.

2. When Y = «™ at time ¢ for m > 1, it is either «™*! or ™! at time ¢ + At.
An up movement in Y corresponds to a down movement in the stock price, and
vice versa. The probability of an up movement in Y is, therefore, always 1 — p

and the probability of a down movement in Y is always p.

Introduction 8

We use the tree to value the American lookback option in units of the stock

price rather than in dollars. In dollars, the payoff from the option is

SY — 5.

In stock price units, the payoff from the option, therefore, is

Y —1.

We roll back through the tree in the usual way, valuing a derivative that provides
this payoff except that we adjust for the differences in the stock price (i.e., the
unit of measurement) at the nodes. If f; ; is the value of the lookback at the jth
node at time iAt and Y; ; is the value of Y at this node, the rollback procedure
gives

fig =max(Yi; — 1,e " [(1 = p) fir1j41d + pfit1j-1u]),

when j > 1. Note that f;;; ;11 is multiplied by d and f; 41 ;-1 is multiplied by u
in this equation. This takes into account that the stock price at the node (3, j)
is the unit of measurement. The stock price at the node (i 4+ 1,7 + 1), which is
the unit of measurement for f;; j11, is d times the stock price at the node (4, j)
and the stock price at the node (i + 1,7 — 1), which is the unit of measurement
for fiy1-1, is u times the stock price at the node (4, j). Similarly, when j =0

the rollback procedure gives
fij =max(Y;; — 1, e_rAt[(l —p)fir1j+1d + pfivijul).

His reasoning may not sound very rigorous in stating that the up and down probability
of the quotient of the maximum stock price over the current stock price is the same as the
original down and up probability, also the addition of a factor of d and u for the rollback
procedure seems very heuristic. But he does emphasize the essence of the transformation
method is the recursion on the quotient that gives the major reduction to the calculation.

We followed Hull’s approach, but instead of working on the tree for the quotient, we
reverse to the original binomial tree of the underlying. By analysis of the form of the values

of the maximum of stock price of all the possible paths and the movement of these values

Introduction 9

when time goes on, we find other properties of the quotient which can be used as “stop”
criteria for the recursion and thus gives improvement upon the original RBCV recursion.

If we adopted Hull’s ingenious tree for the quotient, and did not use our cumbersome
and clumsy inflated binomial tree with all the possible path maximum values attached to
each node, it may not be possible for us to find other properties of this recursion. Even
though these concepts are well known in other methods, only have I spent much efforts
in the complicated state matrix manipulation do I know how the counterparts of those
concepts work in the binomial case. In the next chapter we will go through the same
journey as how these concepts are originally discovered. At first sight they may seem
much wired because they stem from the Matlab data structures to represent the complete
path maximum of each node and then do recursion on these data structures. If we do not
interested on how these concepts are discovered we may ignore this part as these principles
once established their algebraic description and deduction are very simple: just simple
elementary algebra — these are the contents of the second section of the next chapter and
of chapter 3.

Cheuck and Vorst(1997) [16] as well as Babbs(2000) [4] published their works later. In
the latter paper, Babbs gives proof of the convergence of the modified lattice method as
the time step goes to infinite. Using our revised algorithm and possibility for calculation of
wide range of time steps (up to 1,024,000,000) we can see clearly the convergence pattern
and the power function relationship form of option values with respect to time steps (an
example of reinvent the “wheel” of the Richardson extrapolation from our naked eyes).
This is also used in our paper to make extrapolation for the continuous exercisable option
value.

Boyle and Tian(1999) [12] and Boyle, Tian and Imai(1999) [13] give a trinomial lattice
approach built also upon the change of numeraire idea, see also Broadie, Glasserman and
Kou(1999) [7]. In Boyle et al’s paper, the minor difference between Cheuck and Vorst’s
approach and Babbs’” approach is mentioned. Some new development closely related to the
RBCV method can be found in the paper of Lai and Lim(2004) [33] and [34], see also Dai
and Kwork(2005) [19] and (2006) [20].

Dai(2000) [18] used PDE method to establish a modified RBCV recursion formula by

using different grid and showed by numerical experiments that his modified method has

Introduction 10

better convergence rate than the original RBCV recursion formula. By inspecting our
algebraic proof of exercise barrier property, we can see our idea of revised algorithm with
stop criteria imposed by exercise barrier property can be also applied to Dai’s modified
binomial tree method (then a modified modified RBCV). Numerical calculation confirms
our claim and also confirms the vast improvement of accuracy of Dai’s method over the
original RBCV.

The RBCV type of algorithm (in our terminology “uniformity” principle and in PDE
term scalability or homogeneous) is only one method of reducing the calculation. If we do
not limit our scope to this one method, we can find many other papers of different methods
of calculation or storage reduction. First is Boyle’s ingenious trinomial tree method [5],
because it gives us extra freedom to manipulate upon. This freedom is utilized in [21]
(see also [23]) to give the first time a viable exact valuation method of Asian option —
the parameter of the trinomial lattice is adjusted to make each underlying price integer
and thus effectively reduce the exponential increase of possible path states. Another good
example of “bottom-up” method is [14, 17| and [40], apparently out of their efforts in
overcoming the overwhelm need of memory for storing the underlying price path.

Finally we have to mention the work of Andricopoulos et al. [2, 3] because it does
not fall under any category of the three kinds of methods, neither can it be ascribed as
amenable to our guidelines, but it beats all other methods according to their numerical

results — obviously our principles are not ubiquitous axioms!

1.3 Main idea of our approach

As mentioned in John Hull’s Technical Note 13,
http://www.rotman.utoronto.ca/%7Ehull/Technical’,20Notes/TechnicalNotel3. pdf
the transformed lattice method by Reiner Babbs Cheuk and Vorst is very efficient: compare
to the intuitive method introduced in [31, p. 570], this method has a computation complex-
ity quadratically on time steps instead of cubically depends on time steps. An implementa-
tion of this algorithm in Matlab can be found in the following address: http://www.math.
nctu.edu.tw/finmath/C_FILES/Intro_to_FinMath/Projects/Teaml/finmath(1) .pdf
Using Numerical Methods to Value Lookback Options -Based on Taiwan’s Stock Markets

http://www.rotman.utoronto.ca/%7Ehull/Technical%20Notes/TechnicalNote13.pdf
http://www.math.nctu.edu.tw/finmath/C_FILES/Intro_to_FinMath/Projects/Team1/finmath(1).pdf
http://www.math.nctu.edu.tw/finmath/C_FILES/Intro_to_FinMath/Projects/Team1/finmath(1).pdf
http://www.math.nctu.edu.tw/finmath/C_FILES/Intro_to_FinMath/Projects/Team1/finmath(1).pdf

Introduction 11

By utilizing the following five observations, we can greatly reduce the storage and

computation requirement of this algorithm:

1. Except for the minimum possible path maximum state (to be introduced latter)
values, the optimum strategy is to exercise if at the next time step the optimum
strategy is to exercise regardless of up or down movements of the underlying. In
other words, if the value of the price of the American lookback put option at time
step n+1 as a maximum of either continue or exercise is attend at exercise, and
that at time step n, the path state is not the minimum possible state value, in the
exceptional minimum case, it is always optimum to not exercise, i.e., to continue,

then the option value is still attend at exercise.

2. With the same ratio of path maximum state value over underlying value, the ratio
of option value over underlying value is the same at each fixed time step for different
state values, i.e., the ratio of option value over underlying value is unique over every
45° “line” of the state matrix (to be introduced latter): this idea is inspired from the
tech note #13 of John Hull by his emphasis on the quotient, but we cannot find it
directly from that document because we are using a different framework from his —
in his setting the quotient is defined a priori and in our setting we need to proof the
quotient is independent of the state and thus can be defined — his approach is simple

and our approach is complex.

3. The initial ratio of option value to underlying asset value is 0,u —1,u®>—1, ..., u"¥ —1,
if exercised at time N + 1. In the backward recursion, at time n, only the (at most)
first min(n, N 4+ 1 —n) ratios will change when we calculate the ratio for time n from

the ratios at time n + 1. So we only need to store the initial value up to ul® 3 — 1

4. These ratios are increasing with respect to index and to time steps when reversely
counted from time N to time 1. If at time n the ratio at an index j is not changed,
i.e., it is still w/~! — 1, then at time previous (here means greater) to n, the ratio at
the index j is all w/=! — 1; and at time n, for all index that is greater than j, the

k—1

ratio is also not changed, i.e., for all index k£ > j, the ratio is still ©*~" — 1. Hence at

time step n, we only need to calculate the ratio up to the index where the discounted

Introduction 12

back ratio (or ratio if continue) is greater than that if exercised immediately. And
once the optimum strategy is continue, at the next time step (here means smaller) it

will also continue.

5. The ratio at the index j needs to be calculated from the ratio at the index 7 — 1 and
j + 1 at the previous step, when j > 2. We need the original ratio at the index j to
calculate the new ratio at the index j + 1. So we can renew the ratio at j after we
calculated ratio at j + 1 by store the new ratio at j at a temporary variable, because
all the calculation for ratio index greater than j + 1 will no longer depends on the

original ratio at the index j.

The results are that we almost relieve the memory constraint for this algorithm (for a
computer with 1G byte memory it can calculate up to 400 billion time steps without
run out of memory in theory), and also can calculate the continuous exercising lookback
American put option value by extrapolation to up to 4 or 5 decimal accuracy in real time
(within one or two seconds).

Henceforward we will focus on the improvement of the translated lattice method and
referring audience to other sources for related topics. Chapter 2 introduces the state
matrix concept by example and then the concept of “option ratio” and “exercise ratio”, the
“uniformity” and monotonicity property of these ratios, and the “exercise propagation” and
“exercise barrier” property of these ratios, the original RBCV algorithm and our revised
algorithm upheld by these properties. Numerical results are presented to show the efficiency
of the revised algorithm against the original algorithm. Chapter 3 collects the proofs of
all the claims made in Chapter 2 and some preliminary works that I have conducted in
the direction of analysis the complexity of our revised algorithm. Chapter 4 discusses the
possibility of extending our revised algorithm to other types of lookback options. Chapter
5 summarizes our findings and principles and outlines two more possible situations of

application of our approach.

Chapter 2
Algorithm and Numerical Results

In this chapter, we will present a binomial valuation framework for valuing the floating
strike lookback American put option. The key of our proposed algorithm exploits many
of the combinatorial structures inherent in pricing the floating strike lookback option in
a binomial lattice setting. We describe these properties in details in Section 2.1. Sec-
tion 2.2 presents our proposed algorithm and we also contrast it to the existing algorithm.

Numerical results are conducted in Section 2.3.

2.1 Binomial Valuation of Floating Strike Lookback
Option

In this chapter, we will mainly consider the floating strike lookback American put option
valuation. The reason for only considering this particular type of option will become
obvious by the end of Chapter 4. Recall that for the floating strike lookback option, the
payoff of the option if it is exercised at time t is the difference between the maximum stock
price todate (i.e. between time 0 and time ¢) and the current stock price. We will denote
this maximum value as the path mazimum state variable and the current stock price as the
underlying state variable; hence the option value depends on these two state variables.
Recall also that the classic Cox, Ross, and Rubinstein binomial lattice model is a

discrete approximation of the continuous-time geometric Brownian motion. This model is

13

Algorithm and Numerical Results 14

known for its capability of capturing the early exercise feature of the American options.
The binomial model works by first partitioning the time space into N time periods with
the time (index) takes on value n = 1,2,..., N + 1. (Here we adopt the Matlab’s usage of
indexing that starts from 1 instead of starting from 0 as in the C programming language’s
convention.) At each time index, the stock price in the next time period can either go
up with a multiplicative factor u and with probability p or go down with a multiplicative

factor d and with probability 1 — p. Furthermore, the classic way of defining u, d and p

are:
u = V¥, (2.1.1)
i = % (2.1.2)
p = Z:j, (2.1.3)
a = €, (2.1.4)

where ¢ is the volatility of the underlying state variable, T is the maturity of the option
in years, and r is the risk-free interest rate.

A graphical depiction of a binomial model is given in Figure 2.1 with N = 6 time
periods. Before we describe our approach to pricing a lookback option using a binomial
lattice, we first introduce several terminologies associated with the structure of the binomial
model as depicted in Figure 2.1. These will be useful for our subsequent discussions. First
note that the time index starts from 1, instead of the usual convention of 0. Second, there
are n possible stock prices at time index n. Third, the nodes that lie on the same horizontal
level have the same stock prices. With N = 6, there are 13 possible such prices and we
label these stock values as j = 1,2, ...,13. Consequently, the root (or the first node) of the
lattice is labeled as (1,7) and the underlying value index j = 7 corresponds to the stock
level Sy, which we denote as the Sp-level. Similarly, using the same labeling system, node
A is denoted as (5,9). In the next time step, node A evolves to the up-state (6,10) (i.e.
node C') with probability p or the down-state (6,8) (i.e. node B) with probability 1 — p.

The binomial lattice in Figure 2.1 also provides another equivalent way of labeling the
nodes. By defining k as the state index so that in our example, the state index admits

values k = 1,2,...,7. Also, nodes (n,1) and (n,n) denote, respectively, the lowest and

Algorithm and Numerical Results

stock price level

S(]u

So-level

time index: n =1 2 3 4 5 6 7

Figure 2.1: Graphical Depiction of a Binomial lattice with N =6

15

Algorithm and Numerical Results 16

upper most nodes at each time step n. Nodes A, B, and C' can be re-labeled respectively
as (5,4), (6,4) and (6,5). Furthermore, starting from node (1, 1) with initial stock price Sy,
it takes k£ — 1 up movements and n — k down movements to reach node (n, k). This implies
that the stock price for a general node (n, k) is given by SouF~tu=("=F = Gyy2k—n-1,

Note that for a fixed n, the state index k£ and the underlying value index j are one-to-
one correspondence and satisfies the relationship 7 = 2k — n + N. This implies that for a
given fixed n and N, we can uniquely label the nodes using either the state index k or the
underlying value index j.

We now proceed to considering the path maximum state variable in the binomial lattice
framework. Let us first consider the number of paths that can be traced from node (1, 1) to
node (n,k). When k =1 or k = n, there is only a single path since these nodes represent
the extreme nodes in the binomial lattice. For general node (n, k), it can be shown easily
that there are (Z_ 1) paths emanating from node (1,1) to node (n, k). This implies

n
that for each node (n, k), there are at most ()) possible path maximum values and

n
hence at most b1 calculations. A crude way of pricing the lookback option is to

rely on the standard backward recursive approach and enumerate all the possible paths at
each node. This is computationally not feasible, even for modest size IV, since the number
of paths grows exponentially with N.

One approach of reducing the computational burden is to reduce the number of paths
that needs to be considered at each node. For example, for all the paths that do not
traverse above the Sy-level, the path maximum is Sy, and hence has zero payoff for the
floating strike lookback option. Recognizing this simple fact already reduces the number
of paths quite substantially. For all other paths, it turns out that there exists a recursive
relationship between the path maximum at time step n and the path maximum at time
step n+ 1. This property can be exploited to enhance the binomial recursive valuation and
this is the essence of our proposed enhancement.

We now describe these properties. Let us first revisit the node A in Figure 2.1. For this

Algorithm and Numerical Results 17

4
particular node, there are 3 = 4 admissible paths emanating from the initial node Sy.

These four paths are enclosed in the parallelogram (1, 1), (4,4), A, (2,1) and the maximum
stock price along such a path is attained at the highest point in each path. Among these
paths, the highest one is the upper edge traced by (1,1) — (4,4) — A and the lowest one is
the lower edge traced by (1,1) — (2,1) — A of the parallelogram. For this particular node,
the path maximums can only spanned between the value index 9 and 10 even though there
are a total of 4 paths. We denote the possible range of the maximum stock prices as the

path mazimum state interval. For node A, its path maximum state interval is (9, 10).

Remark 2.1.1. For any node below the Sy-level, the left end point of the path maximum

state interval must be Sj.

With regard to our example in Figure 2.1, the remark above implies that for any node
that lies below the value index 7, the lowest value of the path maximum state interval 7.

We can use the state matriz to represent all the path maximum state intervals for all
time index n and all state index k. The state matrix corresponding to a binomial lattice
with NV = 6 is illustrated in Table 2.1.

Let us now interpret this table. For time index n = 7, the state index is defined for
k=1,2,3,...,7 that corresponds to stock price value index j = 1,3,5,...,13. For each
k, the path maximum state interval is indicated by the range [| in the state matrix in
Table 2.1. For example when k = 7, the path maximum state interval is [13] since there is
only one admissible path from (1,1) to (7,7) and its maximum stock price must be Syu®,
which corresponds to value index 13. Similarly when k& = 5, even though there are 30
admission paths from (1,1) to (7,5), the state matrix indicates that its path maximum
state interval is [9, 11].

For time index n = 6, the state index is defined for k = 1,2, 3, ..., 6 with corresponding
value index j = 2,4,6,...,12. This represents the other half of our state matrix rows.
For each k the possible path maximum state variable takes values in an interval which is
indicated by () in our state matrix.

Similarly for n = 5 and n = 4, the path maximum state intervals are denoted by [}
and (), respectively. Note that the path maximum state intervals for n = 5 and n = 4 are

subset of the path maximum state intervals at time index 7 and 6, respectively.

Algorithm and Numerical Results 18

Table 2.1: State matrix for a binomial lattice with time periods N=6

131 7 8 9 10 11 12 [13] 7
12 7 8 9 10 11 (12) 13 6
11| 7 8 9 10 [11} 12} 13 6
10 7 8 9 (10) 11) 12 13 5
91 7 8 [9 10} 11] 12 13 5
8 7 (8 9) 10) 11 12 13 4
717 8 9} 10| 11 12 13 4
6| (7 8) 9) 10 11 12 13 3
51 [7 8 9 10 11 12 13 3
41(7) 8 9 10 11 12 13 2
31 (7 8 9 10 11 12 13 2
21 (7)) 8 9 10 11 12 13 | k=1
i=1117 8 9 10 11 12 13 k=1
m=| 7 8 9 10 11 12 13
Path maximum state interval n=6 n=7

Remark 2.1.2. For a binomial lattice with N time steps, the path maximum state interval

corresponds to node (n, k) is given by
(max(N —n+2k,N+1), N+k), (2.1.5)

which is located at row j = N —n + 2k in the state matrix.

To demonstrate explicitly the relationship between the successive path maximum state
intervals, Table 2.2) extracts the relevant path maximum state intervals from Table 2.1
for n = 7 and n = 6. This table shows that the combined path maximum state intervals
produce a slant triangle bounded by a perpendicular line, a 45° and a 67.5°. We refer this
as the state triangle.

We now make two observations regarding the state triangle. The first observation
corresponds to nodes below the Sy-level while the second observation pertains to nodes at
or above the Sy-level.

Algorithm and Numerical Results 19

e It is easy to explain the first observation by considering node (6,2) with the path
maximum state interval is spanned by (7,8) and the node is below the Sy-level. The
state triangle indicates that if the stock price were to move down to node (7,2), then
the path maximum state interval becomes (7, 8) while if the stock price were to move
up to node (7,3), then the path maximum state interval expands to (7,9). This
implies that for a node that is below the Sp-level, the path maximum state interval
at time step n+ 1 always encompasses the path maximum state interval at time step

n, regardless of the underlying stock moving up or moving down.

e To explain the second observation, let us consider node (6,4) with the path maxi-
mum state interval (8, 10). In the next time period, the path maximum interval either
evolves to (7,10) in the down-state or to (9,11) in the up-state. This implies that if
the underlying stock price drops in the next time period, the revised path maximum
state interval still spans the path maximum from the previous time step. On the
other hand, if the current path maximum at node (6,4) is the smallest admissible
underlying value index 8 (i.e. Sou) and followed by an up movement, the new attain-
able maximum increases to Syu? or the value index increases to 9. Consequently, for
nodes above the Sy-level, as long as the current path maximum is not the left-most
end point of the path maximum state interval, the path maximum is part of the path

maximum state interval in the next time interval.
We now formally summarize the above observations in the following lemma:

Lemma 2.1.3.

(i) Suppose the nodes are below the Sy-level. The path mazximum state interval at time
step n is a subset of the path maximum state interval at time step n + 1, irrespective

of whether the underlying stock moving up or moving down.

(ii) Suppose the nodes are at or above the Sy-level. The path mazimum state interval at
time step n is a subset of the path maximum state interval at time step n+ 1, except
when the current path mazimum equals to its smallest admissible path mazximum and

the stock price goes up. In the latter case, the path marimum increases by one.

Algorithm and Numerical Results 20

Tables 2.3, 2.4, and 2.5 demonstrate the evolution of the state triangles as we recursively
move backward in time. As we move one time step backward, the state triangle shrinks
by moving up one level the 67.5° edge of the triangle until we collapse to only one path

maximum when n = 1 as shown in Tables 2.3, 2.4, and 2.5.

Table 2.2: State triangles: N =6,n=7and n =06

13 13 7
12 12 6
11 11 12 6
10 10 11)
9 9 10 11 5
8 8 9 10 4
717 8 9 10 4
617 8 9 3
517 8 9 3
4|17 8 2
3|17 8 2
2|7 k=1
=17 k=1
m=|7 8 9 10 11 12 13
Path maximum state interval | n=6 n=7

In the original binomial lattice method for American lookback put option evaluation,
we start from time N+1, calculate the exercise value of the option for all the state & and
all the path state at k; for time N and each state k at time N and each path state M
at the node (N, k),we calculate the continue value as the discounted back average option
value at time N + 1 due to up or down movement of underlying asset, using the elongated
path to calculate the corresponding path state at time N+1 and using this path state and
underlying state to get option value at time N + 1; if this continue value is greater than
the immediate exercise value, we will continue and using the continue value as the option

value at time N, otherwise using exercise value; the same procedure is repeated as we do

Algorithm and Numerical Results 21

Table 2.3: State triangles: N =6,n =6 and n =5

13
12 12 6
11 11 5
10 10 11 5
9 9 10 4
8 8 9 10 4
TI7T 8 9 3
6|7 8 9 3
517 8 2
417 8 2
37 k=1
207 k=1
j=1
m=|7 8 9 10 11 12 13
Path maximum state index | n=5 n=6

from N 4+ 1 to N to other time index n until we arrive at n = 1, when we will have unique
state and path state, and the option value is the option price at time 1.
At time n if the option value is the immediate exercise value, we say the optimum

strategy is to exercise, otherwise we say the optimum strategy is to continue.

Corollary 2.1.4. If the optimum strategy at time step n + 1 is exercised regardless of up
or down movement when emanating from time step n, then the optimum strategy at time
step n s also exercised, except for the special case where the node is above the Sy-level and
the path maximum equals to its smallest admissible path; in that case, the optimum strateqgy

18 to continue.

At some path states, the option value is the exercise value while the other states are
the continuation value. At time step n = N + 1, all path maximums, as represented by the

largest slant triangle, must correspond to the exercise value. It also follows from the above

Algorithm and Numerical Results 22

Table 2.4: State triangles: N =6,n =4 and n =3

13
12
11
10 10 4
9 9 3
8 8 9 3
7|7 8 2
6|7 8 2
517 k=1
4|7 k=1
3
2
j=1
m=|7 8 9 10 11 12 13
Path maximum state index | n=3 n=4

corollary that at time /N, only the upper 45° edge of the slant triangle is the “continuation
state” while all other states are the “exercise state”. By induction we have the following

corollary:

Corollary 2.1.5. At time period n, at most the upper N + 1 —n 45° parallel lines of
the state triangle can be the continuation state, while all the states on the lower lines are

optimal to exercise early.

This pattern is illustrated in Figure 2.2. The state triangle is somewhat like a tie (This
pattern is more obvious with bigger N, see also another Figure 2.3 with N = 20). Some
of the 45° parallel lines are drawn on the figure. For example, the upper most edge of the
45° line is the continue path state at time n = 6 (or the first backward iteration), and
counting downwards, the second parallel line is the boundary of possible continue states

at time n = 5, the second backward iteration, the thirds parallel line is the boundary of

Algorithm and Numerical Results

iteration

index
1

7

Figure 2.2: State triangle for a lattice with time periods N=6

23

Algorithm and Numerical Results 24

Table 2.5: State triangles: N =6,n=2and n =1

13
12
11
10
9
8 8 2
|7 k=1
67 k=1
5
4
3
2
j=1
m=|7 8 9 10 11 12 13
Path maximum state index | n=1 n=2

possible continue states at time n = 4, and so on.

Remark 2.1.6. From Remark 2.1.2 we also know that at time n we only need to calculate
path states that are at or to the left of the (N + 2 — n)™ 67.5° parallel line counting from
right leftwards (or the n'® line counting from left rightwards). The effect is that, at time
n, we only need to calculate continue value at most for the upper min(n, N + 1 — n) 45°
parallel lines of the state triangle.

In our example with N = 6 and for n = 3 or 4, we need to calculate to the 3'¢ position,

2nd

for n = 2 or 5, we need to calculate to the position, and for n = 1 or 6, we only need

to calculate continue value for the 1% line.

-7 index

7 / —
¥
i
N —

1 _

Algorithm and Numerical Results 26

2.2 Proposed Algorithm for Pricing Floating Strike
Lookback Option

In this section, we will demonstrate how to exploit the properties established in the previous
section to enhance the binomial valuation of the floating strike lookback put option. We
will see that by using these properties, we can reduce the calculation complexity of the
original RBCV algorithm to half. Subsection 2.2.1 reproduces the algorithm proposed by
RBCV and Subsection 2.2.2 describes the proposed enhanced algorithm.

2.2.1 RBCYV Algorithm

For a general node A(n k) with path maximum state M4, the option value will be a function

of M4 and the underlying stock price Pjy:
O4 = 04(Ma, Pa).
Let us first define the following two ratios:

Definition 2.2.1.

L, = —/— 2.2.1

iz 221)
My

Y, = —. 2.2.2

.= 222)

We can restate RBCV’s algorithm in the following theorem:

Theorem 2.2.2 (RBCV,1992). L4 and Y4 are constant along every 45° parallel lines of

the state triangle and have the following recursion relationship:

1
Ly = =Ly up+ LyTd(1 - p)], (2.2.3)
a
1
L} = max <Yk — 1, =Ly up + Lyt d(1 — p)]) when k > 1, (2.2.4)
a

where k is the index of the line and n is time index.

Algorithm and Numerical Results 27

By combining this theorem and Remark 2.1.6, we can achieve a slight improvement of
the above algorithm as follows:
RBCYV algorithm:

N+1

o LN*1 calculate initial exercises value: 0,u — 1,...,ul"2 1 — 1,

e form=1: [%] and for k=1:n using equation 2.2.3 and 2.2.4 to update Ly t'™",
o forn=N — [%] : 1 and for k=1:n using equation 2.2.3 and 2.2.4 to update L},
e Ll is option price.

Remark 2.2.3. Every step in the iteration we have a constant times of floating point (mul-
tiplication) calculations, if for simplicity we normalize it as 1, then the total floating point

calculation in our algorithm will be:

N N N N+1, N+2
L4 2 b [N — [N m [1 1= (2, (2.2.5)
2 2 2 2 2
which is approximately half of the original calculations:
N(N +1)

N+N-1+N-24.. +1= (2.2.6)

2

2.2.2 Proposed enhanced algorithm

In this subsection, we first provide some key results and then demonstrate how to use these
results in improving the binomial valuation of the lookback options. The prove of these

results are collected in the next chapter.

Lemma 2.2.4. L} is strictly increasing with respect to k and nonincreasing with respect
to n.

Proposition 2.2.5. L} is strictly decreasing with respect to n.
Theorem 2.2.6. If Ly =Y, — 1, then forVj >k, L} =Y; — 1.

Corollary 2.2.7. If 3 n such that L} > Y, — 1, then for Vj < n, Li 18 strictly decreasing
with respect to j, that is to say Lz_l > LY.

Algorithm and Numerical Results 28

Corollary 2.2.7 implies that for a fixed k, L} will remain to be the “exercise ratio”,
but once it reaches above that level it will then strictly increasing when n decreasing.
Theorem 2.2.6 means there exits an exercise boundary: once the option ratio hits this
boundary, it will remain to be the exercised ratio (for a fixed n); this is in a sense duality
to the corollary. While the RBCV algorithm 2.2.2 only utilizes the “ratio uniformity”
property, we will further utilize all the other properties: the “exercise barrier” as expressed
by Theorem 2.2.6 and Corollary 2.2.7, “ratio monotonicity” of this section’s Lemma 2.2.4
and the “exercise propagation” property as represented by Corollary 2.1.4 and Corollary
2.1.5. Here is our revised algorithm:

Revised algorithm:
o LN+l calculate initial exercises value: 0,u — 1, ..., ™3t — 1

e forn=1:[] and

— for k=1 using equation 2.2.3 to update LY ™"

— for k=2:n using equation 2.2.4 to update ij“_" until ij“_" =Y,—1
e forn=N—[5]:1and

— for k=1 using equation 2.2.3 to update L}

— for k=2:n using equation 2.2.4 to update L} until L} =Y, — 1
e Ll is option price

Remark 2.2.8. A further simplification to our revised algorithm is possible by using the

following relationship:

Ly = [LFup+ Lifd(1 - p)l/a
= Ly + (L — Lifd(1 = p)/a, (2.2.7)
instead of the equation 2.2.4 in the above algorithm. In the comparison we can use either

LZ“ or LZ” instead of the Y, — 1; and in each time step we need only to perform one

floating point comparison due to the monotonicity property.

Algorithm and Numerical Results 29

Table 2.6: Comparison of computing time (in seconds): Matlab code implementation

Time periods (N) | Proposed algorithm | RBCV algorithm
1 million 2 8313
2 million 13 22776

2.3 Numerical results

In this section, we provide some numerical illustrations on our proposed algorithm. The
reduction of the proposed algorithm in calculation load is related to the question of when
L} will begin “continue value” (for fixed k); some discussions are given in Chapter 3. Here

are some numerical results: for the following parameters
So =100, N = 1000,0 = 0.25,7 = 0.05, 7 =1, (2.3.1)

the largest k reached in our algorithm is 48, which means in place of the 1000 lines in the
original RBCV algorithm we only need to calculate up to 48 lines. When N = 10, 000, 000,
maximum k reached is about 10,000, a reduction of 1000. And the actual run time of our
algorithm for N=2,000,000 is 13 seconds vs. the original’s 22776 seconds, a reduction of
1751 times. This little extra “until” has done an astounding job with thousands of time
reduction (see Table 2.6).

The memory requirement is now reduced to depend linearly on the maximum k: if we
use one temporary variable to store Lj_; while calculating L} and after that update L}_,,
then for a different n we can reuse the same variable L;. In my laptop with 1 GB memory,
we can calculate a lattice with up to 432 million time periods if we use N/2 storage. If we
use max k storage, we tried and guess it can deal with more than 432 billion time periods
(we will need almost 5000 years to finish this calculation if we permit it to run), thus leave
the memory constraint a non-constraint. (But if we do not use this swap method, and
instead, using double amount of memory and alternating between two whole sequences,
the computing speed will be boosted somewhat: a trade off between memory space and
time.)

The original RBCV algorithm has quadratic computing complexity that is obvious from

Algorithm and Numerical Results 30

x10° RBCV Algorithm Time Complexity
T T T

16 y:UUGZ'xZ-*U,WTX‘r 1.3e+003

Figure 2.4: Matlab code computing time of RBCV algorithm

equation 2.2.6 and can also be shown by the actual calculating time graph in Figure 2.4.

The computed value is in Figure 2.5.

Also see our revised algorithm time usage in Figure 2.6

and the computed value in Figure 2.7.

The value graph is very much like a power function. And from Table 2.7’s almost
f4z)—f(2z)

constant ratio P —F ()

Algorithm and Numerical Results

American lookback put option value
198

19:5

194

193 /
192

option value

18.9

0 05 1 15 7 25 3 35
time periods N S

Figure 2.5: Matlab code computed value of RBCV algorithm

American lookback put option evaluation
18000 T T

16000 — data 1
——— quadratic

14000 — . . =
y= 0.2158% + 12.78% = 53.17
12000 — B ‘ -

10000

8000

seconds

6000

4000

2000

2000 I I | i
0 50 100 150 200 250
time periods in millions

Figure 2.6: C code computing time of our revised algorithm

Algorithm and Numerical Results 32
Figure 2.7: C code computed value of our revised algorithm
Table 2.7: Quotient of difference, note that % = 0.70710678
x 625 1250 2500 5000 10000 20000
% 0.715114917 | 0.712786765 | 0.711165286 | 0.7099835 | 0.709148086 | 0.708559778
x 40000 80000 160000 320000 640000 1280000
% 0.70813393 | 0.707835577 | 0.707623202 | 0.707472162 | 0.707365604 | 0.707289945
x 1000000 2000000 4000000 8000000 16000000 32000000
fU2)=1C2) 1 707314247 | 0.707250955 | 0.70720726 | 0.707228303 | 0.707160446 | 0.70690663

fx)—f(=x)

Algorithm and Numerical Results 33
Table 2.8: Predicted continuously exercisable American lookback put option value

X 625 1250 2500 5000 10000 20000
prediction | 19.62843339 | 19.62500506 | 19.62332641 | 19.62246474 | 19.62203527 | 19.62182185

X 40000 80000 160000 320000 640000 1280000
prediction | 19.62171276 | 19.62165878 | 19.62163163 | 19.62161798 | 19.62161117 | 19.62160776

X 1000000 2000000 4000000 8000000 16000000 32000000
prediction | 19.62160872 | 19.62160644 | 19.62160532 | 19.6216057 | 19.62160483 | 19.62160254

we guess the function form of our option value as a function of time periods will be:

(2.3.2)

Based on the asymptotic property of our numerical results and that % = 0.707106781186547,

we conjecture that m=

1
5

Then we can predict f(oo) by (“two point prediction”):

FIN) + (F2N) = f(N))/(1 = 1/V2);

(2.3.3)

or predict just locally (“three point prediction”), with the only assumption of constant

ratios, by:

floo) =

f(N) +

f2N) — f(N)

| _ [UM=j@N)

TN N)
f2N)? — f(N)f(4N)

2f(2N) = f(N) = f(4N)
The predicted value is given in Table 2.8 and Figure 2.8.

(2.3.4)

(2.3.5)

We can see the prediction is unchanging for up to 5 decimal points when N > 16

million. And the prediction is already accurate to 4™ decimal points when N is 160000

that can be calculated in less than two seconds by our algorithm.

Algorithm and Numerical Results 34

American lookback put option continously exercise value prediction
19629 T T T T

19.628 — -

19.627 — -

19.626 — -

19.625 -

option

19.624 - -

19.623 -
19.622 -

19.621 1 1 1 1 1 1
0

Figure 2.8: Predicted continuously exercisable American lookback put option value

Remark 2.3.1. In implementation we find when time steps are more than 10 million, the
accuracy of floating point calculation will affect the final results to the 7" decimal position:
the double arithmetic in C is only accurate to 13" decimal position, we must use high

precision arithmetic to calculate the coefficient in equation 2.2.7.

Remark 2.3.2. Regarding the m = 0.5 conjecture, when we fit it in Matlab using power
function f(r) = az®+ c and using time periods as weight function, heuristically more time
steps getting closer to continue limit, we get a = —0.01495172116627, ¢ = 19.62160231517513,
and b = —0.50028858674636: different methods give similar results somewhat confirms our
conclusion (see Figure 2.9).

Algorithm and Numerical Results 35

American lookback put option value power fit

19.62 —

19.615—

19.61 |

option value

19.605

19.595

* yvs. xwith
fit

fit model: y:axhﬂ:
weight=time periods(m) | |
a=-0.01495172116627
b=-0.50028858674636
€=19.62160231517513

Figure 2.9:

1 1
20 40 60 80 100 120 140 160 180 200
time periods in million

Power function weighted least square fit of American lookback put option

Chapter 3
Proofs and Discussions

In this chapter, we provide proofs to various of the results established in the last chapter.

Some discussions on these results are also presented.

3.1 Proof of Corollary 2.1.4

Let us denote A as node (n, k), P4 the underlying stock price and M4 a path maximum
state at A. At time n+ 1, node A can move up to C' or move down to B. By Lemma 2.1.3

we know that in the general case,
MC:MB:MA,PC:PAU,PB:PACZ. (311)
The continue value is

(M¢ — Po)p+ (Mg — Pg)(1 —p)]/a = Mas/a— Palup+d(1 —p)]/a

a—d u—a
= M — P
A/a A[uu_d+du_d]/a
_ MA/G_PAua—ud+du—da/a
u—d
= MA/a—PAl
< My — Py,

the exercise value, as a > 1.

36

Proofs and Discussions 37

In the special case of minimum path state value,
MB:MA:PA,MC:PC:PAU,PB:PACZ. (312)

We will use O to denote option value, E to denote exercise value and C' to denote

continue value, then

Efx = My— Py
Cy = [Ocp+Op

(1 /a
> [Ecp+ Ep(1
)

/a

—p)
—p)

]
]

= [(Mc —Pe)p+ (Mg — Pg)(1 —p)]/a
= Pa(1-d)(1-p)/a
> 0,
Op = Cy
> FEg,

as in general u > 1,d < 1, and 0 < p < 1. So in this case, the optimum strategy is to

continue. m

3.2 Proof of Theorem 2.2.2

The following proof of RBCV theorem of ours is solely based on the original binomial lattice
and our state matrix concept and does not depend on the translated lattice framework that
is outlined in John Hull’s Technical Note 13.

By inspecting the state matrix, noting that the horizontal index is for M4 and vertical
index is for P4, we see Yy is 1,u,...,u" along the parallel 45° diagonal lines calculate
downwards starting from the upper edge of the state triangle, which is constant within
each parallel line. Henceforth we will index these lines by 1,2, ..., N + 1, and denote these

values Y1, Y5, ..., Y.

Proofs and Discussions 38

At time N+1,

Oa

Py

My — Py
Py

— Y1,

Ly =

is also constant within each of these lines.

This argument and conclusion are also valid for the portion of lines in the triangle where
optimum strategy is exercise.

Then at time N, we need only to consider the first line, which are the only continue
states by Corollary 2.1.4:

Ly = ?3—;‘
_ [0cp+ 05 (1 —p)l/a
Py
_ [EGTp+ ERT(1—p)l/a
Py
_ [(Mc = Po)p+ (Mp — Pg)(1 —p)/a
Py
_ PAQ—-d)(1-p)/a
Py

= (1=d)(1-p)/a,

is also independent of the location of M, or P, within the same diagonal line, here we
use the same notation as before, the only difference is we use an additional superscript to
denote time index.

Thus we see for time N, L4 is also only depends on the position of the line.

In general, if L, is only depends on the position of the line, we will denote its value on

the k™ line, which is characterized by

Proofs and Discussions

39

By induction, if at time n + 1, all the L4 depends only on line index k, then at time n,

if M4 is the minimum state, by equation 3.1.2,

My
Py
Mc

1,
Fe
Pe
1,
My
Pad
u7
Oi
Py
Oz 'p+ O (1 = p)]/a
Py
Og+1 %—1—1
up + d(l — a
[Pt (1-p)/

(LY up + Lytd(1 — p))/a,

which is also independent of values of M4 or P4, so we may write

LY = [L'up 4+ Ly+d(1 - p)]/a.

(3.2.2)

Proofs and Discussions 40

If M, is not the minimum state, and is on the k' line, by equation 3.1.1 and 3.2.1,

M
Py
= ka
Mg B My
P. Pau
N
= Y1,
Mp B My
Pg N Pad
== Yk+l>

L} = max(E}, C})/Pa
max(M} — Pa, [O¢"p+ OF (1 = p)]/a)
Py
= max(Yy — 1, [L¢up + L (1 — p)]/a)
= max(Yy — 1, [LiTup + LiTyd(1 = p)]/a),

which is also independent of values of M4 or P4, so we may write

Ly = max(Yy, — 1, [LiTjup + LE1d(1 — p)]/a). (3.2.3)

3.3 Proof of Lemma 2.2.4

Asu > 1,Y), = u*! is strictly increasing with respect to k, so does Ly ™' =Y, — 1.

Using induction and suppose LZH is strictly increasing with respect to k,
Ly = [Litup + LyHd(1 = p)]/a

< [LMup+ LETd(1 - p)]/a
.

Proofs and Discussions

When a < b and ¢ <
mazx(b,d),

because u*2[up + u?d(1 —

41

d, a < b < max(b,d),c < d < max(b,d), then maz(a,c) <

max (Y — 1, [Li up + Lt d(1 — p)]/a)
max (Vi — 1, [Li " up + LiT,d(1 — p)]/a)

Ly when k> 1,

Lt = [L7Mup+ LyTd(1 —p))/a
> [Liup+ LiTd(1 - p)]/a
= L

max(Yy, — 1, [LY T up + LkNJ:rlld(l —p)l/a)

(
max(Y; — 1, [Yiojup + Y1 d(1 — p)|/a — 1)
max(u* ! — 1, [u*2up + uPd(1 — p)]/a — 1)
max(u" — 1, u*?[up + u?d(1 — p)]/a — 1)
uFl—1

LYt when k > 1,

p)]/a < u*~2u = u*~1 by proposition 3.6.1 (3)

Using induction by assuming LZ“ > L"+2 for Vk,

Ly =
>

3.4 Proof of P

max(Yy — 1, [LH up + L d(1 — p)]/a)
max(Yy — 1, [Lp up + Lifd(1 — p)]/a)
LZ“ when k > 1.

roposition 2.2.5

Already included in the proof of Lemma 2.2.4

Proofs and Discussions 42

3.5 Proof of Theorem 2.2.6

Using induction, suppose the theorem is valid for n+1, Y, —1 =L} > LZ“ > Y, —1, then
L' =Yy —1and for Vj > k, L' =Y, — 1,

Ly = max(Y;— 1, [Lj5up + LT d(1 - p)]/a)
— max(¥ - 1, [Yj-1up + Yiad(1 = p)lfa — 1)
— v -1

J)

and Lj-VH =Y, — 1 is always true. O

3.6 Proof of Corollary 2.2.7

By Theorem 2.2.6, L} | > Y,_; — 1; and by Lemma 2.2.4, L} | > Li*} and L}, > L}
Suppose in contrary to the conclusion we have L'~" = L7 then 0 = Ly~ — L = [(L} | —
Ly Dup + (Ly,, — Lyt)d(1 — p)]/a, which implies Ly ; — L} = 0 or L} | = L™ >

Yi-1 — 1. Recursively we will get LP~ ™ = L™ >V, —1; let m = k — 1 we get

Lyth=2 = [*F=1 " This is possible by proposition 3.6.1 (5): L. 5, = Yni2-n — 1, s0

L} >Y,—1impliesk < N+2—norn+k—1 < N+1 by Theorem 2.2.6 again. But this is

contradictory to proposition 2.2.5. For general j the conclusion is arrived recursively. [

Redefine up = up/a,dn = d(1 — p)/a in the following of this section, using similar

algebraic calculation method we can prove
Proposition 3.6.1.

I. up+dn=1

2. up > dn

3. up +dn u? < u always true

4. LY =Yy — 1

9 Lo = Ynson—1

Proofs and Discussions 43

Proof. 1. already given in the proof of Corollary 2.1.4

2. up >dniff u(a—d)/(u—d)>d(1—p)iff u(a—d)>du—a)iff ua—1>1—da iff
ua+da>2iff u+1/u>2/a;buta>1and u+1/u>2/uxl/u=2>2/a

3. 1=up+dn>dn+dn = 2dn,1—2dn > 0; up+dn u? < uiff dn u®> —u-+1—dn < 0;
as A = 1 —4dn(1 — dn) = (1 — 2dn)?, the solution of dn u*> —u+1—dn = 0 is
FVIZ2? 120 () L q) bt 0 < dno< 1/2,1/dn > 2,1/dn —1 > 1,

- Y dn
1_g
a .

2dn 2dn

up+alnuz<uiﬂ?1<u<%—1;0ln:@:d(l—z;_fl)iz(‘ff_‘dd)‘;:u_d7

_1
%—1:ﬁ—1:ﬁ;u<é—liﬁ%—ud<u—%iﬁ“7+l<u+1;butthisis
always true as a > 1 (where we assume 0 < p < 1, which will be always true if N is

sufficient large, then 1 —p > 0,u —a > 0, and £ — L > 0)

a

4. in the proof of Lemma 2.2.4 we get LY = LY =Y, — 1

5. from the last equation and Theorem 2.2.6 we have LY = Y3 — 1 = LY*! and LY =
Yy —1 = LY*"; in our new notation LY = max(Ys — 1, LY up+ LY dn) = max(Ys —

1, LY up + LY dn) = LY = Y3 — 1. The general case can be arrived by induction.

]

This is another proof of Corollary 2.1.5.

Property (3) means C3' < EY, then will ever L} > Y, — 1?7 and if so how many
iterations are needed to value over this “exercise value”? This question is a special case of
the computing complexity of our revised algorithm. The solution turns out to depend on

the parameter combinations.
Proposition 3.6.2. L)™' > Y, — 1 iff

(2% — 2)y® + (2® — 22)y* + (x + 1)y — 2% <0, (3.6.1)
where x = a,y = u.

Proof. LYt = 0, Ly = u — 1L LY = dn(u—1),L) =u—1,LY =u* -1, LY =

dn(u—1)up+(u?—1)dn = (u—1)dn(up+u+1). LY > Yo—1iff (u—1)dn(uptut+1) > u—1
1

iff dn(l14u+1—dn)>1ifu>dn+ L -2 dn=d(l1-p)/a=2L(1- %)= "2

u—1 au?—a"’
u

Proofs and Discussions 44

(3=x) y>+(x*-2 x) y2+(x+1) y-x?

Figure 3.1: Continue region of LY ™' = = a,y = u, f(x,y) <0

w>dn+ 2t —2iffu > 50 0 9 62 > (a4 Dut (0 —2a)u? +(a? —a)u® if u > a.

au?—a

We assume 0 < p < 1 and hence u > a. O

The solution to this inequality can be seen from the 3-D picture 3.1 and 2-D picture 3.2.
For very large N,u and a will be both very close to 1 with u be relatively much bigger
than a, (a,u) will naturally belong to the continue region. A closer look at the graph 3.3

reveals that for sufficient large N the continue region is approximately

o |N
—4/ = > b. 3.6.2
r\V T ()

On the other hand if LY~" = Y, — 1, we can prove that for sufficient large N and
sufficient small n we will finally have Lj > Y5 — 1. Same thing can be said of L}. But
a general analysis for estimation of maximum k remains open or a theoretical analysis
regarding the complexity of our algorithm is still lacking. Also our algorithm cannot be
extended to other kind of lookback options, the following chapter will briefly describe the

negative results.

Proofs and Discussions

18

17

14

13

12

1.045

1.035

> 1.025

1.015

1.005

2-x) Y2+ (-2 X) y2+(x+1) y-x2 = 0

Figure 3.2: Continue region of LY ™ x = a,y = u,y > f(x)

(0P-x) Y3 +(x%-2 x) yP+(x+1) y-x2 = 0
T T

1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.01
X

Figure 3.3: Continue region of L) ~* for sufficient large N

Chapter 4

Other Types of Lookback Options

In this chapter, we discuss the applicability of our proposed algorithm to other types of
lookback options including the floating strike lookback call options, fixed strike lookback
call option, fixed strike lookback put options.

4.1 Floating strike lookback call options

For American floating strike lookback call option with payoff at time ¢ given by

.....

we can derive parallel results with only minor modifications of the previous arguments, so

only one of the proofs will be given:

Lemma 4.1.1. Ezcept for the case of the path state index equals its maximum value and
the movement is down, and the underlying value is equal to or lower than Sy, it will not
change when time index increase one; in the exceptional case the path state index decrease

one.
Corollary 4.1.2. The optimum strategy is always continuing.

Proof Let’s denote A the node (n,k), P4 the underlying stock price and m,4 a path (min-
imum value) state at A. At time n + 1A going up to C' and going down to B. The

46

Other Types of Lookback Options 47

permissible state is the symmetry image of the slant triangle with respect to the left top
vertex in the triangle as exemplified by Table 2.1.
By Lemma 4.1.1 we know in the special case of maximum path state value, the lower

edge of the triangle,
mC:mA:PA,mB:mAd:PB:PAd,PC:PAu. (4.1.1)

We will use O to denote option value, E to denote exercise value and C to denote

continue value, then

EA = PA—mA
= 0,
Ca = [Ocp+Op(1—p)/a

v

[Ecp + Ep(1 —p)]/a
[(Pc —me)p+ (Pp —mp)(1—p)l/a
= (Pau— Pa)p/a
Pa(u—1)p/a
> 0,
Ca

> EAa

Oa

because in general u > 1 and 0 < p < 1. So in this case, the optimum strategy is continuing.

In the other cases,
mc = mp :mA,Pc:PAu,PB:PAd. (412)
The continue value is

Ca = [(Pe—me)p+ (Pp—mp)(l—p)/a
= Psl—mu/a

> Py —ma,

Oxp = Cy

> EA,

Other Types of Lookback Options 48

the exercise value, as a > 1. So the optimum strategy is still continuing. O

Theorem 4.1.3. L, and Y, are constant along every 45° parallel lines of the state triangle

and have the following recursion relationship:

Ly = [LyTd(1 —p) + Ly up]/a, (4.1.3)
L} = [Ltd(1—p)+ Lt upl/a) when k > 1, (4.1.4)

where k is the index of the line and n is time index.

Proposition 4.1.4. L} is strictly increasing with respect to k and strictly decreasing with

respect to n.

This corollary means the value of a floating strike lookback American call option is the
same as a floating strike lookback European call option value. While the “ratio uniformity”
and “ratio monotonicity” are still hold, but without the other two properties(‘exercise
propagation” and “exercise barrier”), a similar revised algorithm do not exit for this call
option. We can still use the available analytical form of European lookback option value to
confirm our conjecture regarding two point and three point prediction. Table 4.1 gives the
computing time (in seconds) of our revised algorithm for American lookback put option
and that of the original RBCV algorithm for American lookback call option in various time
steps. It is done in a computer with Intel Pentium(D) 3.40GHz CPU and 2.00GB RAM.
It shows a roughly magnitude of the amount of reductions our algorithm made against
the original algorithm (This calculation is done in C but the time reduction magnitude is
comparable to that using Matlab, compare Table 2.6). The exact value of the European
lookback call and put option: C' and P are given by formula 1.2.1 and 1.2.2. The two or
three point predictions are calculated using formula 2.3.3 or 2.3.4. We may expect that

these predictions will have similar accuracy in the American lookback put case.

4.2 Fixed strike lookback call options

For American fixed strike lookback call option with payoff at time ¢ given by

(max Sp — K)y,

=Useeny

Other Types of Lookback Options 49
Table 4.1: Computing time (C=20.5521826180488,P=18.7232860368255)

X 250000 500000 1000000 2000000 4000000 8000000
alp time 0 1 2 7 20 o7
alc time 157 738 2835 12830 48609 194986
alp value | 19.59173395 | 19.60047554 | 19.60666040 | 19.61103556 | 19.61413017 | 19.61631885
alc value | 20.53233428 | 20.53814490 | 20.54225504 | 20.54516205 | 20.54721798 | 20.54867191
% 0.707349523 | 0.707278377 | 0.707228001 | 0.707192594
2-p pred | 20.55217298 | 20.55217780 | 20.55218021 | 20.55218141 | 20.55218201
3-p pred | 20.55218944 | 20.55218602 | 20.55218432 | 20.55218347

where K is the fixed strike price, we can derive similar results:

Lemma 4.2.1. FExcept for the case of the path state index equals its minimum value and
the movement is up, and the underlying value is equal to or higher than Sy, it will not
change when time index increase one; in the exceptional case the path state index increase

one.

Corollary 4.2.2. If the optimum strategy at time n + 1 is exercises regardless of up or
down movement when coming from time n, then the optimum strategy at time n is also
exercises, except for the special case of path state index equals its minimum value and the
underlying value is equal to or higher than Sy; in that case, the optimum strategy is always

continue.

Proof Let’s denote A the node (n, k), P4 the underlying stock price and M4 a path state
at A. At time n + 1A going up to C' and going down to B. By Lemma 4.2.1 we know in
the general case,

MC:MB:MA,PC:PAU,PB:PACZ. (421)

Other Types of Lookback Options 50

The continue value is

[(Me — K)sp+ (Mp— K)+(1—-p)l/a = [(Ma—K)ip+ (Ms—K)+(1-p)]/a
= (Ma—K)+/a
< (Ma—K)s4,

the exercise value, as a > 1: it is optimal to exercise.

In the special case of minimum path state value,

MBIMA:PA,MC:PCIPAU,PB:PAd. (422)

We will use O to denote option value, E to denote exercise value and C' to denote

continue value, then

Ea
Ca

Oa

[VA | R |

| AV AV,

>

My = K/u)yup + (Ma — K)1d(1 = p)]/a

(
(
(Ma — K/u)yup+ (Ms— K) (1 —p)]/a
(
(Ma — K)yup + (Ma — K)d(1 - p)l/a

asin general u > 1,d < 1,0 <p < 1land (uX)y =uX;, (X —Ky); > (X — Ky)4, if u>
0,0 < K; < K5. So in this case, the optimum strategy is continuing. O

Even though at time N + 1, the payoff of an American fixed strike lookback call option

only depends on the path state (i.e., the column number of the state matrix), due to the

above corollary, the option value will broke the uniformity property during iteration and

cannot have a similar algorithm to that of American floating strike lookback put option.

Other Types of Lookback Options 51

4.3 Fixed strike lookback put options

For American fixed strike lookback put option with payoff at time ¢ given by
(K — min Si)y,

where K is the fixed strike price, we can derive similar results:

Lemma 4.3.1. Ezcept for the case of the path state index equals its maximum value and
the movement is down, and the underlying value is equal to or lower than Sy, it will not
change when time index increase one; in the exceptional case the path state index decrease

one.

Corollary 4.3.2. If the optimum strateqy at time n+1 is exercises regardless of up or
down movement when coming from time n, then the optimum strategy at time n is also
exercises, except for the special case of path state index equals its mazimum value and the

underlying value is equal to or less than Sy.

Proof Let’s denote A the node (n, k), P4 the underlying stock price and m 4 a path state
at A. At time n + 1A going up to C' and going down to B. By Lemma 4.3.1 we know in

the general case,

mc:mB:mA,Pc:PAu,PB:PAd. (431)
The continue value is
(K —mc)yp+ (K —mp)(1=p)l/a = [(K —ma)ip+ (K —ma)(1-p)l/a
= (K —ma)i/a

< (K - mA)-i—a
the exercise value, as a > 1: it is optimal to exercise. O

No conclusive result can be arrived for the maximum path state case. It seems that all
the other cases of lookback options are not amenable to our revised algorithm: it is unique
to floating strike American lookback put options. While algorithms utilizing properties of
this chapter for floating strike lookback options will have quadratic upper bound calculating
complexity with respect to time steps, algorithms for fixed strike lookback will only have

cubic upper bound calculating complexity.

Chapter 5
Conclusion

We devised algorithm that is in the original binomial lattice framework and thus simple to
understand but yet is efficient enough to be of practical meaning: it can give option value
to up to 4 or 5 decimal accuracy in real time. Our elementary approach eliminated the
using of more abstruse martingale theory and the concept of absorbing barrier or reflecting
barrier, making the well-known RBCV method more accessible to wider audience. On the
other hand, our discovery working as stop criteria to the RBCV method makes it more
perfect by cast off the vast unneeded calculations, and thousands of times faster than
without our addition make our amendment to RBCV a not unnecessary part of it (As for
Dai’s method, perhaps our amendment to his is unnecessary, because his method is already
so efficient. But why not, our addition is not a free lunch but is a free cookie after the
lunch. Just a joke).

Other than this concrete Lookback option result, our approach also revealed some
general principles or guidelines. In the lattice context we name it “uniformity”, “exercise
barrier”, “monotonicity” and “exercise propagation” (our numerical experiment with or-
dinary American put and Asian option examples showed their wider applicability). More
widely, these principles have their counterpart concepts in other methods. If we understand
these principles from their underlying very primitive intention of reducing calculations and
storages, we can comprehend still wider methods that cannot be categorized as one of the
three major methods: PDE, MC and lattice.

As more examples of applications of these guidelines, we outline two other possible

52

Other Types of Lookback Options 53

research topics. First, it worth a try to use the trinomial lattice for American put to
adjust the parameter so that the strike price is just located at some node and eliminate
the different position relation cases analysis. Another possible is to use trinomial lattice
in the payoff function form recursion to adjust tree parameter so that the “turn point” of
payoffs of up and down node can recombine or overlap somehow and reduce the increase

speed of memory usage in each recursion.

Bibliography

1]

A. N. Avramidis, P. L’Ecuyer (2006) Efficient Monte Carlo and Quasi-Monte Carlo
Option Pricing Under the Variance-Gamma Model. Management Science 52(12):1930-
1944

A. D. Andricopoulos, M. Widdicks, P. W. Duck, D. P. Newton (2003) Universal option

valuation using quadrature methods. Journal of Financial Economics 67(3):447-471.

A. D. Andricopoulos, M. Widdicks, D. P. Newton, P. W. Duck (2007) Extending
quadrature methods to value multi-asset and complex path dependent options. Journal
Of Financial Economics 83(2):471-499.

S. Babbs (2000) Binomial valuation of lookback options. Journal of Economic Dy-
namics and Control 24:1499-1525.

P. P. Boyle (1998) A Lattice Framework for Option Pricing with Two State Variables.
Journal Of Financial And Quantitative Analysis 23(1):1-12.

M. Broadie, J. B. Detemple (2004) Option Pricing: Valuation Models and Applica-
tions. Management Science 50(9):1145-1177.

M. Broadie, P. Glasserman, S. G. Kou (1999) Connecting discrete and continuous

path-dependent options. Finance Stochast 3:55-82.

P. P. Boyle, A. Kolkiewicz, K. S. Tan (2002) Pricing American derivatives using
simulation: a biased low approach. K.-T. Fang, F.J. Hickernell, H. Niederreiter (Eds.),
Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer, Berlin, 181-200.

o4

Bibliography 5}

[9]

[10]

[11]

[12]

[13]

P. P. Boyle, A. Kolkiewicz, K. S. Tan (2003) An improved simulation method for
pricing high-dimensional American derivatives. Mathematics and Computers in Sim-
ulation 62:315-322.

P. P. Boyle, Y. Lai, K. S. Tan (2005) Pricing Options Using Lattice Rules . North
American Actuarial Journal 9(3):50-76

J. Barraquand, T. Pudet(1994) Pricing of American Path-Dependent Contingent
Claims. Journal of Mathematical Finance 6(1):17-51.

P. P. Boyle, Y. Tian(1999) Pricing lookback and barrier options under the CEV process.
Journal of Financial and Quantitative Analysis 34:241-264.

P. P. Boyle, Y. S. Tian, J. Imai (1999) Lookback options under the CEV pro-
cess: a correction. Journal of Financial and Quantitative Analysis Unpublished Ap-
pendixes, Notes, Comments, and Corrections http://depts.washington.edu/jfqa/
hold/342BoyleCrx1.pdf

R. H. Chan, Y. Chen, K. M. Yeung (2004) A memory reduction method in pricing

American options. Journal of Statistical Computation and Simulation 74(7):501-511.

A. Conze, R. Viswanathan (1991) Path dependent options: the case of lookback op-
tions. Journal of Finance 46:1893-1907.

T. Cheuk, T. Vorst(1997) Currency Lookback Options and Observation Frequency: A
Binomial Approach. Journal of International Money and Finance 16(2):173-187.

R. H. Chan, C. Y. Wong, K. M. Yeung (2006) Pricing multi-asset American-style
options by memory reduction Monte Carlo methods. Applied Mathematics And Com-
putation 179(2):535-544.

M. Dai (2000) A Modified Binomial Tree Method for Currency Lookback Options. Acta
Mathematica Sinica, English Series 16(3):445-454.

M. Dai, Y. K. Kwok (2005) American Options with Lookback Payoff. SIAM Journal
of Applied Mathematics 66(1):206-227.

http://depts.washington.edu/jfqa/hold/342BoyleCrx1.pdf
http://depts.washington.edu/jfqa/hold/342BoyleCrx1.pdf

Bibliography 26

[20]

21

22]

23]

[24]

[25]

[26]

[27]

M. Dai, Y. K. Kwok (2006) Characterization of optimal stopping regions of American
path dependent options. Mathematical Finance 16(1):63-82.

T. S. Dai, Y. D. Lyuu (2002) Efficient, exact algorithms for asian options with mul-

tiresolution lattices. Review of Derivatives Research 5(2):181-203.

F. Dubois, T. Lelievre(2004/05) Efficient Pricing of Asian Options by the PDE Ap-
proach. Journal of Computational Finance 8(2):55-64.

T.S. Dai, Y. D. Lyuu (2007) An ezact subexponential-time lattice algorithm for Asian
options. Acta Informatica 44(1):23-39.

G. Foufas, M. G. Larson (2004) Valuing European, Barrier, and Lookback Options us-
ing the Finite Element Method and Duality Techniques. http://www.math.chalmers.
se/"foufas/paperl.pdf

P. Forsyth, K. Vetzal. (2002) Quadratic convergence for valuing American options
using a penalty method. SIAM Journal on Scientific Computing 23(6):2095-2122.

P. A. Forsyth , K. R. Vetzal, R. Zvan (2002) Convergence of Numerical Methods for
Valuing Path-Dependent Options Using Interpolation. Review of Derivatives Research
5(3):273-314.

P. A. Forsyth, K. R. Vetzal, R. Zvan (1998) Convergence Of Lattice And PDE Meth-
ods For Pricing Asian Options. Technical Report, University of Waterloo, Canada
http://www.cs.uwaterloo.ca/research/tr/1998/30/CS-98-30.pdf

P. A. Forsyth, K. R. Vetzal, R. Zvan. (1999) A Finite Element Approach to the Pricing
of Discrete Look backs with Stochastic Volatility. Applied Mathematical Finance 6:87-
106.

J. Gatheral, Y. Epelbaum, J. Han, K. Laud, O. Lubovitsky, E. Kant, C. Randall (1999)
Implementing option-pricing models using software synthesis. IEEE Computational
Science and Engineering 1(6):54-64.

http://www.math.chalmers.se/~foufas/paper1.pdf
http://www.math.chalmers.se/~foufas/paper1.pdf
http://www.cs.uwaterloo.ca/research/tr/1998/30/CS-98-30.pdf

Bibliography Y

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. B. Goldman, H. B. Sosin, M. A. Gatto (1979) Path dependent options: buy at the
low, sell at the high. Journal of Finance 34:1111-1127.

J. C. Hull. (2006) Options, Futures, and Other Derivatives, Sizth Edition. Prentice-
Hall, Upper Sadder River, New Jersey.

T. R. Klassen (2001) Simple, fast, and flexible pricing of Asian options. Journal of
Computational Finance 4(30):89-124

T. L. Lai, T. W. Lim(2004) Ezercise regions and efficient valuation of American
lookback options. Mathematical Finance 14:249-269.

T. L. Lai, T. W. Lim (2004) Efficient valuation of American floating-strike look-
back options using a decomposition technique. working paper of Stanford University.
http://www.stat.nus.edu.sg/ stalimtw/PDF/1b-float.pdf

F. A. Longstaff, E. S. Schwartz (2001) Valuing American options by simulation: a
simple least-squares approach. The Review of Financial Studies 14:113-147.

B. Papatheodorou (2005) Enhanced Monte Carlo Methods for Pricing and Hedging
Exotic Options. http://web.comlab.ox.ac.uk/oucl/work/mike.giles/psfiles/
basileios.pdf

G. Petrella, S. G. Kou (2004) Numerical pricing of discrete barrier and lookback

options via Laplace transforms. Journal of Computational Finance 8:1-37.

L. Stentoft (2004) Assessing the Least Squares Monte-Carlo Approach to American
Option Valuation. Review of Derivatives Research 7:129-168.

M. E. Silva, T. Barbe (2005) Quasi-Monte Carlo in finance: extending for problems
of high effective dimension. Economia Aplicada 9(4):577-594.

S. K. Dutt, G. M. Welke (2005) Just-In-Time Monte Carlo for Path Dependent
American Options. http://faculty.haas.berkeley.edu/welke/images/RMC. pdf

http://www.stat.nus.edu.sg/~stalimtw/PDF/lb-float.pdf
http://web.comlab.ox.ac.uk/oucl/work/mike.giles/psfiles/basileios.pdf
http://web.comlab.ox.ac.uk/oucl/work/mike.giles/psfiles/basileios.pdf
http://faculty.haas.berkeley.edu/welke/images/RMC.pdf

Bibliography o8

[41] K. S. Tan, P. P. Boyle (2000) Applications of randomized low discrepancy sequences
to the valuation of complex securities. Journal of Economic Dynamics and Control
24:1747-1782.

[42] R. Wu, M.C. Fu (2003) Optimal Exercise Policies and Simulation-Based Valuation
for American-Asian Options. Operations Research 51(1):52-66.

[43] Y. Yamamoto (2005) Double-Ezponential Fast Gauss Transform Algorithms for Pric-
ing Discrete Lookback Options. Publications of the Research Institute for Mathemat-
ical Sciences 41(4):989-1006.

[44] L. F. Yan (2005) Pricing of Lookback Options. http://wwl.math.nus.edu.sg/
ProjectArchive/Honours/archive_files/scil0007.pdf

[45] R. Zvan, P. Forsyth, K. Vetzal. (1998). Robust Numerical Methods for PDE Models
of Asian Options. Journal of Computational Finance 1:39-78.

http://ww1.math.nus.edu.sg/ProjectArchive/Honours/archive_files/sci10007.pdf
http://ww1.math.nus.edu.sg/ProjectArchive/Honours/archive_files/sci10007.pdf

	Introduction
	Option Valuation and Binomial Model
	Literature review
	Main idea of our approach

	Algorithm and Numerical Results
	Binomial Valuation of Floating Strike Lookback Option
	Proposed Algorithm for Pricing Floating Strike Lookback Option
	RBCV Algorithm
	Proposed enhanced algorithm

	Numerical results

	Proofs and Discussions
	 Proof of Corollary 2.1.4
	 Proof of Theorem 2.2.2
	 Proof of Lemma 2.2.4
	 Proof of Proposition 2.2.5
	 Proof of Theorem 2.2.6
	 Proof of Corollary 2.2.7

	Other Types of Lookback Options
	Floating strike lookback call options
	Fixed strike lookback call options
	Fixed strike lookback put options

	Conclusion

