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Abstract

Support vector machines (SVMs) have been a dominant machine learning technique for

more than a decade. The intuitive principle behind SVM training is to find the maximum

margin separating hyperplane for a given set of binary labeled training data. Previously,

SVMs have been primarily applied to supervised learning problems, where target class la-

bels are provided with the data. Developing unsupervised extensions to SVMs, where no

class labels are given, turns out to be a challenging problem. In this dissertation, I propose

a principled approach for unsupervised and semi-supervised SVM training by formulat-

ing convex relaxations of the natural training criterion: find a (constrained) labeling that

would yield an optimal SVM classifier on the resulting labeled training data. This relax-

ation yields a semidefinite program (SDP) that can be solved in polynomial time. The

resulting training procedures can be applied to two-class and multi-class problems, and

ultimately to the multivariate case, achieving high quality results in each case. In addition

to unsupervised training, I also consider the problem of reducing the outlier sensitivity

of standard supervised SVM training. Here I show that a similar convex relaxation can

be applied to improve the robustness of SVMs by explicitly suppressing outliers in the

training process. The proposed approach can achieve superior results to standard SVMs

in the presence of outliers.
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Chapter 1

Introduction

Supervised, semi-supervised and unsupervised learning are three of the dominant topics

of machine learning research. In supervised learning, a label is provided with each data

example given to the training procedure, whereas in unsupervised learning, no labels are

provided. Semi-supervised learning is an intermediate form of the problem where only a

subset of the target labels are provided during training. Although there have been a great

number of principles proposed for supervised, semi-supervised and unsupervised training

techniques respectively, most principles proposed in the literature are not applicable to all

three problems, but are instead only focused on one or two of them. What most proposals

fail to provide is a unifying perspective on all three of these different types of machine

learning problems. One of my motivations in this thesis is to investigate whether unifying

machine learning principles exist that can be used to combine different types of these

learning problems in a common framework. The specific methodology I follow is to exploit

one particular form of supervised learning principle and modify it to address unsupervised

learning, with the goal of achieving a simple and unified approach to solving various types

of learning problems, including supervised, unsupervised and semi-supervised learning.

The specific supervised learning principle I investigate in this thesis is the large margin

principle of support vector machines (SVMs). Support vector machines introduced the

notion of large margin training criteria for classification learning and have been one of

the most commonly applied machine learning methods in the past decade (Cortes and

Vapnik, 1995; Boser et al., 1992). The simplest version of the idea is to find a hyperplane

1



2 Convex Large Margin Training Techniques

that correctly separates binary labeled training data with the maximum possible margin,

and thus to reduce the risks of future misclassifications. This approach has the advantage

that training can be performed efficiently using quadratic programming. Moreover, kernel

techniques and feature maps can be introduced to achieve nonlinear decision boundaries

without affecting efficiency.

To adapt support vector machines to unsupervised learning problems, the training ob-

jective needs to be modified to finding a labeling that results in a large margin classifier.

However, developing unsupervised extensions to SVMs turns out to be a challenging prob-

lem, since naive approaches require one to check an exponential number of possible label

configurations. The apparent hardness of this problem has motivated researchers to heuris-

tic (Joachims, 1999) or branch and bound (Vapnik, 1995) approaches in previous research.

Meanwhile, new opportunities for developing effective machine learning techniques are

offered by the field of semidefinite programming (SDP) (Vandenberghe and Boyd, 1996),

which extends the range of practical optimization methods beyond the current uncon-

strained, linear and quadratic programming techniques common in machine learning re-

search. Recent progress in the field of semidefninte programming has provided viable

techniques that have reasonable efficiency characteristics (Boyd and Vandenberghe, 2004),

including polynomial run-time guarantees (Nesterov and Nemirovskii, 1994). In fact,

semidefinite programming has already started to prove its utility in machine learning re-

search. Lanckriet et al. (2004) show how semidefnite programming can be used to optimize

the kernel matrix for a supervised SVM. Weinberger et al. (2004) investigate how to learn

a kernel matrix for nonlinear dimensionality reduction based on semidefinite programming.

Similar techniques are used in the correlation clustering approach of (Swamy, 2004). Even

though the number of such results remain modest, the initial achievements are impressive.

The above ideas lead to the first part of my thesis work—a principled approach to

unsupervised SVM training by formulating semidefinite relaxations of the natural training

criterion. That is, rather than formulate heuristic algorithms, as done in past research

(Joachims, 1999), I instead formulate principled convex relaxations that can be solved in

polynomial time. Moreover, I extend previous research by considering a fully unsupervised

case (no training labels), before extending the training algorithms naturally to the semi-
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supervised case. Importantly, this approach not only can be applied to the binary class

problem (Xu et al., 2004), but also can be further extended to the multi-class case (Xu

and Schuurmans, 2005), making it applicable to a wider range of natural problems.

Nevertheless, both the binary and multi-class algorithms focus on solving problems in

the simplest univariate model, where the system only learns to predict a single label. In

many applications such as speech recognition (Jelinek, 1998), natural language processing

(Jurafsky and Martin, 2000) and biological sequence analysis (Durbin et al., 1998), one

would hope to train a model with a sequence of labels; hence the learning task involves

learning to make structured predictions. This is an extension of the standard supervised

learning to the multivariate setting with structured, non-scalar predictions y. The chal-

lenge here is that for each component ŷi, one should not only consider the input x, but

also the direct correlations of its neighboring components. Recently there have been some

significant advances in learning structured predictors, including conditional random fields

(Lafferty et al., 2001), discriminative sequence training (Tsochantaridis et al., 2004; Altun

et al., 2003) and maximum margin Markov networks (Taskar et al., 2003). However, this

work primarily focuses on the supervised case, where the label sequences are provided dur-

ing training. Supervision is a serious limitation in practice because labeled data is usually

very expensive and hard to obtain in many applications—particularly in the multivariate

case—whereas unlabeled data is cheap and abundant.

For unsupervised learning of structured models, such as hidden Markov models, most

previous research has focused on using the EM algorithm, whose objective is to maximize

the likelihood of the observed inputs p(x). However, in supervised training it has been ob-

served that discriminative training—that is, maximizing the conditional likelihood of the

outputs given the inputs p(y|x)—is usually more advantageous because the conditional

model works as the structured predictor of a joint labeling y for an input sequence x.

Another shortcoming of the objective used by EM is that it is not concave, which means

that EM fails to guarantee a global solution to the problem. To address these problems,

I extend my results on unsupervised discriminative (large margin) training to the struc-

tured prediction case normally tackled by EM. In particular, I consider maximum margin

Markov networks (Taskar et al., 2003), which are directly a multivariate version of SVMs,
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and develop a convex algorithm for unsupervised maximum margin Markov networks (Xu

et al., 2006b), using the techniques proposed for univariate SVMs.

A final problem I address in this thesis is one of the well known risks of large margin

training methods: sensitivity to outliers. In this part of my work the learning problem is

supervised; that is the labels of the data are given. Although, intuitively, the notion of

large margin reduces the risk of future misclassifications by separating the classes as widely

as possible, the simplest version of maximum margin principle produces poor results on

non-separable data. The problem is that the solution hyperplane becomes determined by

the misclassified data furthest from the decision hyperplane in this case, which results in

a breakdown in the performance, both in theory and practice. These risks are normally

mitigated by using a soft margin criterion to reduce outlier sensitivity. However, outlier

points still tend to have a maximal influence in determining the decision hyperplane, since

they normally have the largest hinge loss. To mitigate this problem, I propose a new

approach to suppress outliers explicitly in SVM training. I do so by augmenting each

example with an auxiliary variable indicating whether the data point is an outlier or

not. To optimize the objective over the indicator variables and SVM parameters jointly, I

develop semidefinite relaxations that yield a practical convex optimization formulation of

the training problem (Xu et al., 2006a).

1.1 Thesis Contributions

In this thesis I present four main contributions:

• Unsupervised and semi-supervised two-class support vector machines

First, I propose a new method for unsupervised learning based on finding maximum

margin hyperplanes through data. By reformulating the problem in terms of the

implied equivalence relation matrix, the problem can be posed as a convex integer

program. Although this still yields a difficult computational problem, the hard-

clustering constraints can be relaxed to a soft-clustering formulation which can be

feasibly solved with a semidefinite program. Since this clustering technique only

depends on the data through the kernel matrix, nonlinear clustering can easily be
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achieved in the same manner as spectral clustering. Another benefit of this approach

is that it leads naturally to a semi-supervised training method for support vector ma-

chines. By maximizing the margin simultaneously on labeled and unlabeled training

data, state of the art performance can be achieved by using a single, integrated

learning principle.

• Unsupervised and semi-supervised multi-class support vector machines

I then extend the previous two-class formulation to the case where more than two

classes exist. This is based on the multi-class SVM algorithm proposed in (Crammer

and Singer, 2001). The resulting unsupervised algorithm can also be easily aug-

mented to semi-supervised problems. With this extension from binary to multi-class

problems, one is now able to deal with a wider range of natural data sets. Moreover,

the further extension to the more complex structured predictors is made possible.

• Unsupervised large margin learning of structured predictors

I then propose a new unsupervised algorithm for training structured predictors. This

new approach has the nice properties of being discriminative, convex, and it avoids

the use of EM. The idea is to formulate an unsupervised version of structured learn-

ing methods, such as maximum margin Markov networks, that can be trained via

semidefinite programming. The result is a discriminative training criterion for struc-

tured predictors (like hidden Markov models) that remains unsupervised and does

not create local minima. To reduce training cost, the training procedure is reformu-

lated to mitigate the dependence on semidefinite programming, and finally a heuristic

procedure that avoids semidefinite programming entirely is proposed.

• Robust support vector machine training via convex outlier ablation

Finally based on the techniques developed above, I propose a new approach to ro-

bust supervised SVM training that explicitly incorporates outlier suppression in the

training process. In particular, I show that outlier detection can be encoded in the

large margin training principle of support vector machines. By expressing a convex

relaxation of the joint training problem as a semidefinite program, one can use this

approach to robustly train a support vector machine while suppressing outliers.
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1.2 Publication Notes

The work presented in this thesis has been published in several refereed conference pro-

ceedings. The work in Chapter 3, 4 and 5 on unsupervised two-class, multi-class and

structured-output SVMs were published in in (Xu et al., 2004), (Xu and Schuurmans,

2005) and (Xu et al., 2006b) respectively, and the work on robust SVM training was pub-

lished in (Xu et al., 2006a).



Chapter 2

Background

Before presenting the main contributions of my thesis research, I first review the rele-

vant background. My thesis contributions combine ideas from many different sub-areas

of machine learning and optimization research. Hence, I review four distinct topics that

comprise the main sources of ideas I will use below: support vector machines, unsupervised

classification and clustering, hidden Markov models, and semidefinite programming.

First, to establish the foundations of the whole thesis, the underlying concept of large

margin based training, and in particular supervised training algorithms for SVMs are first

introduced. Then to provide a sufficient background on unsupervised learning (clustering),

I present a brief review of unsupervised learning approaches that deal with single-variable

models. Subsequently, I introduce structured prediction models, and in particular discuss

supervised and unsupervised training algorithms for hidden Markov models that I will ex-

tend in my own work in Chapter 5. Finally, I introduce some basic concepts of semidefinite

programming that will be exploited in the algorithmic approaches I subsequently pursue

throughout the thesis.

2.1 Support Vector Machines

Supervised classification learning is one of the most fundamental tasks in machine learning.

Essentially, the problem is to observe a finite number of labeled data objects from two (or

more) classes, and then learn a classifier that can accurately assign new data objects to

7
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the appropriate class. There is a variety of methods in literature for classification learning.

Among these, support vector machines (SVMs) (Cortes and Vapnik, 1995; Boser et al.,

1992) have been the most dominant technique over the past decade because of their effective

performance and elegant theoretical properties.

In this section, I will first introduce the basic two-class SVM, and after that discuss

extensions to multi-class SVMs.

2.1.1 Two-class Support Vector Machines

Assume we are given a set of labeled training examples (x1, y1), ..., (xn, yn), where each

example is assigned to one of the two classes yi ∈ {−1, +1}. If one needs to learn a

classifier from these labeled data, a natural thing to do is to find a linear discriminant

fw,b = w · x + b to separate the negative examples from the positive ones (for now we

assume the data can be linearly separated). Later a new data point xnew can be classified

according to this linear discriminant by

ŷnew = sgn(w · xnew + b) (2.1)

A problem with this method is that there generally exists more than one linear discriminant

that is able to separate the data, so a criterion is needed to help decide which linear

discriminant is better than the others.

A simple but effective way to solve this problem is to choose a linear discriminant that

separates the data correctly and is maximally distant from the nearest data points; see

Figure 2.1(a). Specifically, if we have a linear discriminant fw,b = w · x + b, then the

distance of a data point (xi, yi) to the linear discriminant can be computed by

disti =
|w · xi + b|
‖w‖ (2.2)

Furthermore, if we add a sign to disti to indicate whether the linear discriminant has

classified the ith data point correctly, the signed distance can be computed as

sdisti = yi · sgn(w · xi + b) · disti

= yi · sgn(w · xi + b)
|w · xi + b|
‖w‖
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(a) (b)

Figure 2.1: Support vector classifiers. The solid line is the decision boundary while the

dashed lines show the margins. Circled data points are the support vectors. (a) Depicts

a hard margin SVM, and (b) depicts a soft margin SVM. The slack value ξi for a point

indicates how distant it is on the wrong side of the margin.

=
yi(w · xi + b)

‖w‖ (2.3)

where we can see that if a data point is classified correctly, the signed distance of this point

to the linear discriminant will be positive, and negative otherwise.

In this way, the minimum signed distance of all the data points to the linear discriminant

is

min
i

yi(w · xi + b)

‖w‖ (2.4)

If we define (2.4) as the margin of the linear discriminant, then our goal is to find a

linear discriminant with maximum margin. Thus, the problem can be formulated as

γ∗ = max
w,b

n

min
i=1

yi(w · xi + b)

‖w‖ (2.5)

where the optimal value of this optimization problem is the maximum margin γ∗ .
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To turn (2.5) into a tractable optimization problem, we require a few steps of derivation:

γ∗ = max
w,b

n

min
i=1

yi(w · xi + b)

‖w‖
= max

w,b,γ
γ subject to

yi(w · xi + b)

‖w‖ ≥ γ ∀i
= max

w,b,γ
γ subject to yi(w · xi + b) ≥ γ‖w‖ ∀i

= max
w,b

1

‖w‖ subject to yi(w · xi + b) ≥ 1 ∀i

γ∗−2 = min
w,b

‖w‖2 subject to yi(w · xi + b) ≥ 1 ∀i (2.6)

where γ∗−2 is the inverse square of the optimal margin.

The optimization problem (2.6) is a convex quadratic program1 (Boyd and Vanden-

berghe, 2004), and can be solved efficiently by various techniques (J.C.Platt, 1998). The

resulting optimal classifier is called a Support Vector Machine (SVM).

Soft margin support vector machines

The algorithm above is called a hard margin SVM because of the assumption that the data

is linearly separable. This assumption is enforced by the linear constraints yi(w ·xi+b) ≥ 1

in (2.6), which are equivalent to [1 − yi(w · xi + b)]+ = 0.2 However, linear separability

is generally not the case in real applications, hence, a soft margin SVM is introduced to

cope with noisy data.

In a soft margin SVM, we cope with non-separability by allowing some of the linear

constraints [1− yi(w · xi + b)]+ = 0 to be unsatisfied. Meanwhile, a penalty is needed for

violating the constraints. The resulting optimization problem is

γ∗−2 = min
w

β

2
‖w‖2 +

n∑
i=1

[1− yi(w · xi + b)]+ (2.7)

where the penalty term [1− yi(w ·xi + b)]+ is called hinge loss, and β is the regularization

parameter. From Figure 2.2 we can see that hinge loss is an upper bound on the misclassifi-

cation error. The augmented soft margin SVM is now equivalent to minimizing regularized

1A quadratic program is an optimization problem with quadratic objective and linear constraints.
2The notation [x]+ denotes the positive component of the argument, i.e. [x]+ = max(x, 0).
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Figure 2.2: Margin losses as a function of y(w·x+b). The solid line depicts misclassification

error, err, and the dotted line depicts hinge loss, hinge. Note that hinge ≥ err.

hinge loss, and it can be reformulated by adding a “slack” variable ξi to each example,

or equivalently to each constraint in (2.6). The new optimization problem, equivalent to

(2.7), is

γ∗−2 = min
w,b,ξ

β

2
‖w‖2 +

n∑
i=1

ξi subject to yi(w · xi + b) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i

(2.8)

Where ξi > 0, xi is allowed to lie on the wrong side of margin (Figure 2.1(b)), and the

degree of slackness is controlled by the β parameter. Thus, β is also known as the slack

parameter.

Dual support vector machines

The quadratic program in (2.8) is called the primal support vector machine. One can obtain

the dual to this quadratic program by introducing a dual variable for each constraint and

formulating the Lagragian function (Boyd and Vandenberghe, 2004):

L =
β

2
‖w‖2 +

n∑
i=1

ξi −
n∑

i=1

λi[y
i(xi ·w + b)− (1− ξi)]−

n∑
i=1

µiξi λ, µ ≥ 0 (2.9)

By minimizing over w, b, and ξ, setting the respective derivatives to zero, we can obtain

w =
1

β

n∑
i=1

λiy
ixi (2.10)
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n∑
i=1

λiy
i = 0 (2.11)

λ = e− µ (2.12)

together with all the non-negative constraints λ,µ, ξ ≥ 0, where e is a vector of all ones.

By substituting (2.10)-(2.12) into (2.9) and adding the constraints on dual variables, we

can obtain the dual of the optimization problem (2.8)

γ∗−2 = max
λ

n∑
i=1

λi − 1

2β

n∑
i=1

n∑
j=1

λiλjy
iyj(xi · xj)

subject to 0 ≤ λ ≤ 1, λ>y = 0 (2.13)

which is also a quadratic program.

After getting the dual solution, one can easily recover w by (2.10) although the primal

solution w is not needed to define the resulting classifier. Instead, one can express the

classifier strictly in terms of the dual solution λ and the offset b.

First, to compute b, notice that the following KKT (Karush-Kuhn-Tucker) condition is

satisfied at the solution

∂L

∂ξi

= 1− λi − µi = 0 (2.14)

µi ≥ 0 (2.15)

λi[y
i(xi ·w + b)− 1 + ξi] = 0 (2.16)

µiξi = 0 (2.17)

Note that we can replace w in (2.16) by (2.10) and therefore express it strictly in terms

of λ, without requiring w. As a result, for the data points xi such that λi < 1, we have

µi > 0 and ξi = 0 from (2.14) and (2.17). Therefore we can take the data points for which

0 < λi < 1 (and thus ξi = 0) and use (2.16) to compute b.

After solving the optimization problem (2.13) and recovering b, a new data point xnew

can then be classified according to the classification rule

ŷnew = sgn

(
1

β

n∑
i=1

λiy
i(xi · xnew) + b

)
(2.18)
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Nonlinear support vector machines

Furthermore, the nonlinear structure of data can be explored when linear discriminant does

not perform well. Specifically, we can project a data point x in Rd to a high dimensional

feature space RF , by a nonlinear mapping function φ : Rd → RF , F > d, and proceed to

training and testing in the feature space.

Here we can take advantage of the fact that for the dual SVM, during the training

process (2.13) or during classification (2.18), only the inner products between data points

are required. This fact implies that we only need to choose a function K : Rd × Rd → R

K(x,x′) = φ(x) · φ(x′) (2.19)

instead of defining φ(x) explicitly. The ability to use only inner products is an important

property that makes SVM training and testing procedures possible, even in very high-

dimensional feature spaces, and applicable to classifying objects other than vectors, such

as graphs and strings (Shawe-Taylor and Cristianini, 2004; Schoelkopf and Smola, 2002).

The function K is called the kernel function. Given the training set x1, ...xn, the n×n

matrix K formed by Kij = K(xi,xj) is called the kernel matrix. A natural question to

ask is, given a function K(x,x′), how to decide whether it is a kernel function, or whether

there exists a function φ(x) such that K(x,x′) = φ(x) ·φ(x′). The answer is provided by

the following lemma.

Lemma 1 (Shawe-Taylor and Cristianini, 2004; Schoelkopf and Smola, 2002) A function

K : Rd × Rd → R can be decomposed as an inner product for some feature map φ

K(x,x′) = φ(x) · φ(x′)

if and only if the function is symmetric and the matrix formed by restriction to any subset

of the space Rn is positive semi-definite.3

An example of kernel functions is the polynomial kernel K(x,x′) = (x · x′)p where p

is the polynomial degree. Another widely-used kernel that I will make use of below is the

3An n × n matrix X is positive semi-definite if X is symmetric and z>Xz ≥ 0 for all vectors z with
length n.
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radial basis function (RBF) kernel (Shawe-Taylor and Cristianini, 2004; Burges, 1998)

K(x,x′) = exp

(
−‖x− x′‖2

σ2

)
(2.20)

where σ is a width controlling parameter. The RBF kernel implies a function φ(x) that is

infinite dimensional.

With the introduction of the kernel matrix K, the dual SVM (2.13) can be reformulated

as

γ∗−2 = max
λ

n∑
i=1

λi − 1

2β

n∑
i=1

n∑
j=1

λiλjy
iyjKij

= max
λ

λ>e− 1

2β
〈K ◦ λλ>,yy>〉

subject to 0 ≤ λ ≤ 1, λ>y = 0 (2.21)

where A◦B produces a matrix the same size as A and B such that (A◦B)ij = AijBij, and

〈A,B〉 is the inner product of the two matrices A and B given by 〈A,B〉 = trace(B>A) =∑
ij AijBij. Now a new data point xnew will be classified by

ŷnew = sgn

(
1

β

n∑
i=1

λiyiK(xi,xnew) + b

)
. (2.22)

Generalization error

Given a classification algorithm, one is typically interested in the statistical stability and

robustness of the algorithm. In fact, for support vector machines there is a simple theoreti-

cal justification that depends only on the expected number of support patterns. If an SVM

is trained on n− 1 out of n examples, leaving one example out as testing data, a bound on

the expected misclassification error of support vector machines is given by (Vapnik, 1995)

E[p(error)] ≤ E[number of support vectors]

number of training samples
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where p(error) is the probability of error, or risk, of an SVM trained on n − 1 examples,

E[p(error)] is the expectation of the risk over all possible choices of training set with size

n − 1. Here E[number of support vectors] is the expectation of the number of support

vectors over all possible choices of training sets with size n. This bound suggests that

when the number of support vectors is small, the risk of a support vector machine will be

low.

Beyond this simple argument, there exists a large body of work analyzing the generaliza-

tion performance of supervised SVMs (Cristianini and Shawe-Taylor, 2000; Shawe-Taylor

et al., 1998; Vapnik, 1998; Shawe-Taylor et al., 1996; Vapnik, 1995, 1982). It has been

shown that a large margin indicates good generalization performance. These theoretical

analyses help justify the basic principle of support vector machines, and moreover can help

one design SVM training and testing procedures, as well as select parameters. Later on, I

will exploit this large margin principle for unsupervised training.

2.1.2 Multi-class Support Vector Machines

So far I have only been considering binary classification problems, where the class labels

can only take values from {−1, +1}. However, in most practical situations, there are more

than two classes. In this section, I review standard methods for multi-class support vector

machines including the specific techniques I will use in Chapter 4 below.

One versus the rest classification

To perform κ-class classification, the idea behind “one versus the rest” classification is to

construct κ support vector machines, where each is trained to separate one class from the

others. For each classifier f(λj, bj), take the output as 1
β

∑n
i=1 λj

iy
iK(xi,xnew) + bj where

j = 1, ..., κ. Then the class label is determined by the maximum output among the κ

classifiers.

The main problem with this method is that the κ classifiers are trained on κ different

binary problems, and it is not clear that the real-valued outputs of different classifiers are

comparable. The other problem is that during training, each classifier typically encounters

many more negative than positive training examples, which makes the class distribution
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unbalanced.

All pairs classification

In the “all pairs” classification approach, a classifier is trained to distinguish each pair

of classes. This results in κ(κ − 1)/2 binary classifiers for κ classes, where each single

classifier is trained on a smaller training set. The class label of a test example can then be

determined by the class that gets the highest number of votes.

The problem with this method is that the number of classifiers to be trained is quite

large. Although the training set for each classifier is smaller, when κ is large, training

κ(κ− 1)/2 classifiers can be more expensive than the one-versus-the-rest SVM.

Error-correcting output coding

Error-correcting output coding was first developed in (Dietterich and Bakiri, 1995). The

main idea of this method is to generate a set of binary classifiers f 1, ..., f l such that the

vector of their responses will completely determine the class label of an example, but do so

in a way that is robust to misclassification errors of individual classifiers. In other words,

each class is associated with a code vector in {−1, +1}l. For κ classes, these vectors form

a matrix R ∈ {−1, +1}κ×l, referred to as a decoding matrix. Given a new test example,

one can first get the response vector produced by the set of binary classifiers, and then

find the closest match between this vector and the rows of the decoding matrix. Here the

“closeness” between two vectors is determined by the Hamming distance (the number of

entries where the two vectors differ). This results in a multi-class classifier.

Error-correcting output coding has proved to be a successful method in many multi-

class tasks. In (Allwein et al., 2000), a coding scheme tailored to large margin classifiers

is developed, where Hamming-based decoding is replaced by a more sophisticated scheme

taking the margin into account.

Multi-class objective and constraints

Unlike the methods above, recent multi-class SVM algorithms have been developed which

have the goal of solving the problem directly (Crammer and Singer, 2001; Weston and
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Watkins, 1999; Vapnik, 1998). This is achieved by modifying the SVM objective function

as well as the constraints in a way to simultaneously allow the computation of multi-

class classifier. In this section, we will focus our discussion on the approach proposed in

(Crammer and Singer, 2001), which is the one I will adopt in my own work below.

Given training examples (x1, y1), ..., (xn, yn), where each class label yi is an integer from

{1, ..., κ}, we need to extend the feature functions φ(x, y) to include the y-labels explicitly.

The extended feature functions can be viewed as a concatenation of the underlying input

features φ(x), with one copy switched on at a time, according to the class label y

φ(x, y) =




φ(x) · δy,1

...

φ(x) · δy,κ




where δa,b is 1 if a = b and 0 otherwise. Thus, each class r has its own separate weight

vector wr, and these are concatenated into a single large weight vector w = (w1...wκ).

Once a complete weight vector has been learned, subsequent test examples x are classified

according to

y∗ = arg max
y

w · φ(x, y)

The inner product of w and φ(x, r) is sometimes called the similarity score or response

for class r.

The classification rule above will assign a data point to a class with the highest similarity

score. The goal of the training algorithm is to find a vector w that results in small empirical

error on the training set. To achieve this, similar to the binary case, given all training

examples, we want to maximize a margin γ such that the similarity score of each feature

vector to the true class is larger than those of the rest of the classes by at least γ:

w · (φ(xi, yi)− φ(xi, r)
) ≥ γ(1− δyi,r) ∀i, r (2.23)

If a training set is linearly separable, there always exists a vector w such that the

above constraints are satisfied, since the differences between w · φ(xi, yi) and w · φ(xi, r)

can always be made arbitrarily large by increasing the norm of w. Therefore, we need to

control the values in w or else they could become unbounded. Given a training set that
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is linearly separable, we want to find a vector w of a small norm that satisfies (2.23), this

results in an optimization problem

max
w,γ

γ subject to ‖w‖ ≤ 1, w · (φ(xi, yi)− φ(xi, r)
) ≥ γ(1− δyi,r) ∀i, r (2.24)

which is equivalent to

max
w,γ

γ subject to w · (φ(xi, yi)− φ(xi, r)
) ≥ γ‖w‖(1− δyi,r) ∀i, r

= max
w

1

‖w‖ subject to w · (φ(xi, yi)− φ(xi, r)
) ≥ (1− δyi,r) ∀i, r (2.25)

Furthermore, (2.25) is equivalent to

min
w

1

2
‖w‖2 subject to w · (φ(xi, yi)− φ(xi, r)

)
+ δyi,r ≥ 1 ∀i, r (2.26)

In the more general case when the data is not separable, slack variables are introduced

to cope with noisy examples, and the optimization problem (2.26) is modified as

ω = min
w,ξ

1

2
β‖w‖2 +

n∑
i=1

ξi

subject to w · (φ(xi, yi)− φ(xi, r)) + δyi,r ≥ 1− ξi ∀i, r
ξi ≥ 0 ∀i

(2.27)

where β is the slack parameter, and ω is the margin loss, which is the multi-class analog

of the inverse squared margin γ∗−2 (2.8) in the two-class case.

The dual of (2.27) can be derived as:

max
Λ

∑
ir

Λir(1− δyi,r)−
1

2β

∥∥∥∥∥
∑
ir

Λir

(
φ(xi, yi)− φ(xi, r)

)
∥∥∥∥∥

2

(2.28)

subject to
∑

r

Λir = 1,∀i and Λir ≥ 0,∀i, r
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where Λ is a n× κ matrix. (See Theorem 2 in Chapter 4 for more details.) This optimiza-

tion problem is a quadratic program that can be solved in polynomial time.

This development yields an algorithm for training a multi-class SVM directly and effi-

ciently. Compared to the multi-class training algorithms discussed previously, this method

is elegant for its compactness. As a side-effect, it considers the entire problem (all data

points and all classes) simultaneously. In (Crammer and Singer, 2001), some algorithmic

improvements have been proposed to make the training technique practical for large-scale

problems. My work in Chapter 4 extends this multi-class SVM formulation to the unsu-

pervised and semi-supervised cases.

2.2 Unsupervised Classification and Clustering

One of the main contributions of this thesis is to develop unsupervised training algorithms

for SVMs, that is, training algorithms for SVMs that do not require any training labels

y. Unsupervised training of a classifier is equivalent to a strong form of clustering : the

learned classifier proposes a label for each training example, and hence clusters the training

data, but furthermore proposes a classification rule for the entire domain, including out-

of-sample test points. Thus, in this way unsupervised classifier learning is more general

than clustering. However, unsupervised classification learning techniques, like the unsu-

pervised SVM algorithms I develop below, can still be compared to classical clustering

algorithms if one restricts attention to the training data points only. Since generally I have

to compare my results to clustering algorithms in chapters 3 and 4, I will briefly survey

significant clustering algorithms here, concentrating primarily on algorithms that produce

non-hierarchical clusterings (since hierarchical classification is not a topic covered in this

thesis), and algorithms that can use different “similarity/dissimilarity” measures.

Clustering is one of the oldest forms of machine learning. It can be thought of as

learning a classification labeling over a fixed set of data, except that no labels are available

during training. Intuitively, the goal of clustering is to group the data objects into subsets

or “clusters”, so that the objects within each cluster are more closely related to each other
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than those in different clusters.

Once we describe the goal of clustering as organizing unlabeled data objects into groups

whose members are similar in some way, the measure of “similarity/dissimilarity” used

turns out to be fundamental in the whole process (Hastie et al., 2001; Duda and Hart,

1973). Using such a measure, one would expect that the distance between the objects

in the same cluster is significantly smaller than the distance between the objects in the

different clusters. (Or, analogously, that the similarities between objects in the same cluster

are significantly higher than the similarities between objects in different clusters.) However,

the specific results of clustering depends heavily on which similarity/dissimilarity measure

is used.

2.2.1 Similarity/Dissimilarity Measures

The most common approach normally first considered in clustering is to simply use (squared)

Euclidean distance d(x,x′) = ‖x−x′‖2 to measure the dissimilarity between data objects.

The choice of squared Euclidean distance implies that the resulting clusters will be invari-

ant to translations or rotations. However, they will not be invariant to transformations

that distort distance relationships. For example, different axis scalings can lead to differ-

ent clusterings. One way to avoid this problem is to normalize the data before clustering,

which means making each attribute of the data has zero mean and unit variance. In gen-

eral, a Mahalanobis distance could be used, where d(x,x′) = (x−x′)>Σ−1(x−x′) and Σ is

an arbitrary positive definite covariance matrix that could be estimated from data (Duda

and Hart, 1973). However, naive rescalings and estimates of Σ might be inappropriate if

the large variance of an attribute is due to the presence of clusters. In this case, domain

knowledge will be important to identify which attributes have higher influence in defining

object similarity.

Instead of defining distance measures directly, another common approach is to define

a similarity measure s(x,x′) from which one can derive a distance. For example, the

normalized inner product

s(x,x′) =
x>x′

‖x‖‖x′‖ (2.29)

which gives the cosine of the angle between x and x′, is a popular choice to define the
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similarity of meaning in natural language. A similarity measure like this is similar to a

kernel, as defined in (2.19). In fact, the cosine similarity (2.29) corresponds to an inner

product between feature vectors

s(x,x′) =
x

‖x‖ ·
x′

‖x′‖
and thus by Lemma 1 is a kernel. Standard kernels can therefore be used as similarity mea-

sures for clustering. For example, beyond the cosine function, the RBF kernel introduced

previously (2.20) is also a popular choice for a similarity measure in clustering algorithms.

Similarity measures and distances are obviously closely related to each other. For

example, there is a direct relationship between positive definite similarity measures (i.e.

similarity measures that are kernels) and squared Euclidean distances. By Lemma 1, any

positive semidefinite similarity function K(x,x′) is a kernel and can be decomposed as an

inner product K(x,x′) = φ(x) ·φ(x′) for some feature map φ. Therefore, a corresponding

squared Euclidean distance can be defined by

d(x,x′) = K(x,x)− 2K(x,x′) + K(x′,x′)

= [φ(x)− φ(x′)] · [φ(x)− φ(x′)]

= ‖φ(x)− φ(x′)‖2

Similarly, given a squared Euclidean distance d(x,x′) = ‖φ(x) − φ(x′)‖, a corresponding

kernel can be defined by K(x,x′) = φ(x) · φ(x′).

Not all similarity measures used by clustering algorithms are necessarily positive semidef-

inite, however, and correspondingly, not all dissimilarity measures are squared Euclidean

distances. For example, another popular class of similarity measures used in spectral clus-

tering algorithms (which I will introduce in Section 2.2.3 below) is any symmetric function

s(x,x′) = s(x′,x) that is nonnegative, i.e. such that s(x,x′) ≥ 0. This in general is not

sufficient to ensure s is positive definite. Nevertheless, positive semidefinite similarities still

tend to be common in practice, even in the spectral clustering methods I will review in

Section 2.2.3. For these algorithms, one need only ensure that the similarities also remain

nonnegative, which means that the cosine similarity (2.29) cannot be directly used, but

the RBF kernel similarity (2.20) can be and often is used. Therefore, to facilitate a fair

comparison between the unsupervised SVM algorithms I will develop in Chapter 3 and 4
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which use kernels (positive semidefinite similarities), and spectral clustering methods (Sec-

tion 2.2.3 below) which use nonnegative similarities, I will focus on similarity measures like

the RBF kernel (2.20) that are both positive semidefinite and nonnegative.

2.2.2 Number of Clusters

In addition to similarity/dissimilarity measures, another important issue is determining

how many classes the data objects should be grouped into. As mentioned above, clus-

tering is unsupervised. Hence, the number of clusters, κ, in addition to the class labels

of the data objects, is unknown. A clustering algorithm can be used to infer the class

labels. However, for most clustering algorithms, the number of clusters has to be given a

priori. Unfortunately, there is no general agreed upon way to find the optimal number of

clusters for any given data set. One possible approach is to apply cross-validation: run

the clustering algorithm many times with different values for κ, compare the results, and

finally choose a best value according to a given criterion. But one has to be aware that as κ

increases, the clustering error generally decreases monotonically, which implies the risk of

overfitting. More recently, many investigators have begun to use nonparametric Bayesian

approaches with a prior on the possible number of clusters κ = 1, 2, 3.... For example,

Dirichlet processes could be used to specify a prior on the number of clusters without

requiring an upper bound on the number (Neal, 2003). However, I have not addressed

the problem of automatically choosing the number of clusters in this thesis, and in the

following, I will discuss several clustering algorithms that unless specified, assume that κ

is given beforehand.

2.2.3 Clustering Algorithms

Different clustering algorithms can be designed based on different criteria and perspectives.

In this thesis, I will mainly focus on the partition-based techniques which group the data

directly into a flat clustering. This is usually achieved by optimizing a criterion function

defined on the data set. Among partition-based clustering algorithms, there are many

approaches, including k-means based clustering and graph cut based clustering. Below I
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will discuss two major classes of partition-based clustering algorithms—k-means based and

graph cut based—respectively.

K-means clustering

K-means is still one of the most popular clustering techniques in use today (MacQueen,

1967). This method classifies a given data set into κ clusters by an iterative minimization

of a within class dissimilarity criterion. For k-means clustering, squared Euclidean distance

is normally chosen as the dissimilarity measure, although, in general, any distance measure

d(x,x′) could be used.

Given a set of unlabeled data points x1, ...,xn, the main idea of k-means is to define κ

centers, m1, ...,mκ, one for each cluster, with the goal of minimizing the sum of distances

to the class centers to which data points are assigned. That is, one minimizes the objective

min
m1,...,mκ; C1,...,Cn

κ∑
j=1

n∑
i=1,Ci=j

d(xi,mj) (2.30)

where typically d(xi,mj) = ‖xi −mj‖2 and Ci = j means the ith data point belongs to

cluster j. In this optimization problem, both C1, ..., Cn and m1, ...,mκ are unknown. To

solve the problem, an iterative descent algorithm given below is used:

1. Randomly choose κ points as initial cluster centers.

2. Given the κ centers, minimize (2.30) by assigning each object to the closest cluster

center; that is,

Ci = arg min
j=1,...κ

d(xi,mj).

3. When all data points have been assigned, update the class centers m1, ...,mκ. If

d(xi,mj) equals squared Euclidean distance in particular, the cluster centers can

be set to the means of the currently assigned clusters. In general, the centers can

be assigned to the data points in each cluster that minimize some measure of the

within-cluster distances (for example, either a sum or a maximum).

4. Iterate steps 2 and 3 until the assignments do not change.
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Figure 2.3: Simulated data: two circles. On the right are the clusters produced by k-means.

When using squared Euclidean distances and class means as centers, the convergence

of this algorithm is guaranteed because each step of 2 and 3 reduces the objective value

in (2.30). However, the result may be a local minimum, which implies that running the

algorithm repeatedly can produce different results. To alleviate the effect of local minima,

one typically runs the algorithm many times with different initial means, and choose the

solution with the smallest objective value.

Although using squared Euclidean distance provides a nice (local) convergence guar-

antee, one problem this distance creates is that, in Step 3, “assigning each object to the

closest cluster mean” implies that the data objects will be linearly clustered. This is a

serious limitation when the natural clusters cannot be linearly separated; see for example

Figure 2.3. For data with nonlinear structure such as this, an alternative, nonlinear dis-

tance measure must be used to capture the local structure in the data. The possibility

of using alternative distance/similarity measures is best captured by spectral clustering

techniques, which have become very popular in the past few years.

Spectral Clustering

A promising alternative to linear clustering methods is graph cut based (spectral) cluster-

ing, which clusters data by using the eigenvectors of a matrix generated in a graph theoretic

formulation. Graph cut (or spectral) clustering methods have been empirically successful
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in many application areas and are now one of the dominant clustering algorithms used in

machine learning (Shi and Malik, 2000, 1997; Hagen and Kahng, 1992). However, there are

a variety of algorithms that use the the eigenvectors and generate the matrices in slightly

different ways.

Before we can derive this class of algorithms, we need to define a weighted undirected

graph G = (V,E) on the data, where the nodes of the graph are the data objects to be

clustered, and there is an edge between every pair of nodes. The weight on each edge

s(u, v), is a nonnegative similarity function between nodes u and v. If xu and xv are the

corresponding data points of nodes u and v, a popular choice of the weight function is the

RBF kernel we considered earlier (2.20)

s(u, v) =

{
exp(−‖x

u−xv‖2
σ2 ) if u 6= v

0 otherwise
.

Two-way spectral clustering

In two-way clustering, a graph G = (V, E) is partitioned into two disjoint sets A and B,

A∪B = V , A∩B = ∅, by removing edges connecting the two sets. This partitioning can

be described by a labeling function y that indicates the two disjoint sets

y(u) =

{
1 if u ∈ A

−1 if u ∈ B
,

and the degree of dissimilarity can be evaluated by the sum of weights (similarities) of the

edges that have been removed by the labeling (i.e. those edges that connect nodes with

different labels). In graph theory, this is called the cut :

cut(A,B) =
∑

u∈A,v∈B

s(u, v). (2.31)

Let r(u) =
∑

v s(u, v) be the total connection weight from node u to the other nodes in

the graph, and let R be a diagonal matrix with r on its diagonal. Then the cut cost can
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be rewritten as

cut(A,B) =
1

4

∑
u∈A,v∈B

s(u, v)(y(u)− y(v))2

=
1

8

∑

(u,v)∈E

s(u, v)(y(u)− y(v))2

=
1

4

∑
u,v

s(u, v)(1− y(u)y(v))

=
1

4
(y>Ry − y>Sy)

=
1

4
y>(R− S)y (2.32)

where the matrix R − S is usually known as the Laplacian matrix. Interestingly, the

Laplacian matrix is guaranteed to be positive semidefinite and therefore defines a derived

kernel similarity between data points (Fiedler, 1975, 1973).

Naturally, people consider partitioning the data by minimizing the cut value, this is

the criterion called minimum cut. Although there are exponential number of possible

partitions, finding the minimum cut of a graph is a well-studied problem and there exist

efficient algorithms to solve it (Papadimitriou and Steiglitz, 1998). However, without

introducing any other constraint, the minimum cut criterion favors cutting small pieces

of isolated nodes in the graph. This will be undesirable in most cases. To overcome this

problem, the sizes of A and B should be taken into account during the process of clustering.

Ratio cut The ratio cut algorithm (Hagen and Kahng, 1992) introduces the sizes of

A and B with attempt to minimize the cut cost while keeping the partitions balanced

simultaneously. The ratio cut objective is

Rcut(A,B) =
cut(A,B)

|A| +
cut(A,B)

|B| (2.33)

where | · | denotes the size of a set.

Let α = |A|/|G|. Then the ratio cut objective can be reformulated as

Rcut(A,B) =
1

8|G|
∑
u,v

s(u, v)(y(u)− y(v))2

(
1

α
+

1

1− α

)
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=

∑
u,v s(u, v)(y(u)− y(v))2

8α(1− α)
∑

u y2(u)
.

If we define a new function f

f(u) = y(u) + (1− 2α) =

{
2(1− α) if u ∈ A

−2α if u ∈ B
, (2.34)

it is easy to show that

f(u)− f(v) = y(u)− y(v)

and

∑
u

f 2(u) =
∑
u∈A

4(1− α)2y2(u) +
∑
u∈B

4α2y2(u)

= 4(1− α)2α
∑

u

y2(u) + 4α2(1− α)
∑

u

y2(u)

= 4α(1− α)
∑

u

y2(u).

Consequently, y(u) can be replaced by f(u):

Rcut(A,B) =

∑
u,v s(u, v)(f(u)− f(v))2

2
∑

u f 2(u)

=
f>(R− S)f

f>f
. (2.35)

At this point, we can see that the objective of ratio cut takes the form of the Rayleigh

quotient (Golub and Van Loan, 1996). However, since the discrete optimization of the

objective (2.33) is NP-hard (Hagen and Kahng, 1992), we need to relax the discrete con-

straints (2.34) on f . One way to do that is to simply give up the discreteness while still

keeping the property that f>e = 0 to enforce the partitions are balanced. In this case, the

ratio cut problem turns into solving the following optimization problem

min f>(R− S)f subject to ‖f‖ = 1, f>e = 0 (2.36)

This problem can be readily solved by computing the second smallest eigenvector of

the Laplacian matrix R − S (Golub and Van Loan, 1996), and the cluster labels can be
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decided by the signs of vector f .

The ratio cut is superior to the minimum cut because it takes the sizes of the partitions

into consideration. However, from the ratio cut objective in (2.33), we can see that the

similarity within each group is ignored. In other words, the ratio cut is able to find a

partitioning where the cut cost is small and the two parts are relatively balanced, but it

might create a partition where the members within each subset are only weakly related.

Normalized cut The normalized cut algorithm (Shi and Malik, 1997) addresses the

shortcomings of the ratio cut by computing the cut objective as a fraction of the total edge

connections to all the nodes in the graph, instead of the size of each part. That is, we

adopt a normalized cut criterion given by

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(2.37)

where assoc(A, V ) =
∑

u∈A,t∈V s(u, t) =
∑

u∈A r(u) is the total edge weight from A to all

the nodes in the graph. With this normalized cut objective, the normalized cut algorithm

is able to group the data into clusters that are widely separated from each other, while

also being tight within themselves.

Similar to normalized cut, there is a measure called normalized association:

Nassoc(A,B) =
assoc(A,A)

assoc(A, V )
+

assoc(B, B)

assoc(B, V )

which reflects how tightly the nodes are related to each other in each group. Interestingly,

it is easy to see that Ncut(A, B) = 2−Nassoc(A,B), which means minimizing normalized

cut is equivalent to maximizing normalized association. This also shows evidence that

the disassociation between groups and the association within groups are both taken into

account in normalized cut.

To develop an efficient computational procedure, we can similarly rewrite the normal-

ized cut objective through the following steps. First let β =
∑

u∈A r(u)∑
u r(u)

, the normalized cut
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objective can then be written as

Ncut(A, B) =
1

8
∑

u d(u)

∑
u,v

s(u, v)(y(u)− y(v))2

(
1

β
+

1

1− β

)

=

∑
u,v s(u, v)(y(u)− y(v))2

8β(1− β)
∑

u y2(u)r(u)

then we also define a new function g

g(u) = y(u) + (1− 2β) =

{
2(1− β) if u ∈ A

−2β if u ∈ B
(2.38)

which has similar properties that

g(u)− g(v) = y(u)− y(v)

∑
u

g2(u)r(u) = 4β(1− β)
∑

u

y2(u)r(u).

Thus, the normalized cut objective can be reformulated as

Ncut(A,B) =

∑
u,v s(u, v)(g(u)− g(v))2

2
∑

u g2(u)r(u)

=
g>(R− S)g

g>Rg
. (2.39)

While minimizing the normalized cut objective, we still have the discrete constraint (2.38)

on g, which causes NP-hardness (Shi and Malik, 1997). Again, this is relaxed by only

keeping the property that g>Re = 0.

Thus, the normalized cut problem turns into solving for the second smallest eigenvector

of the generalized eigenvalue system

(R− S)g = λRg (2.40)

To achieve this, one can transform the eigensystem into a standard one

R− 1
2 (R− S)R− 1

2g′ = λg′ (2.41)
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where g′ = R
1
2g is a normalization of g. It can be easily shown that the second smallest

eigenvector of (2.40) corresponds to that of (2.41). Therefore, we can solve the normalized

cut problem by calculating the second smallest eigenvector of the matrix R− 1
2 (R−S)R− 1

2 .

Normalized cut is one of the most popular clustering algorithms used in machine learn-

ing today. It can use any nonnegative similarity measure as discussed in section 2.2.1,

which gives the technique a lot of flexibility that can be exploited in practice. For ex-

ample, by using the RBF kernel as the similarity measure, the simulated two circles data

as shown in Figure 2.30 (left) can be easily separated by the normalized cut algorithm.

Furthermore, the normalized cut objective has a nice theoretical property that it converges

to some limit clustering as the sample size increases, which means the resulting clustering

becomes more stable as the amount of data increases (von Luxburg and Ben-David, 2005;

von Luxburg et al., 2004).

κ-way spectral clustering

In practice, it is important to be able to cluster data into κ classes where in general κ > 2.

There are several possible ways to perform κ-way spectral clustering, where κ is the number

of clusters. One technique is recursive two-way clustering, which requires repetitions of the

eigenvector computation. An alternative is to use multiple eigenvectors simultaneously,

which has been observed to be better at computing a κ-way partitioning experimentally

(Alpert et al., 1999).

The framework of the latter method is to first embed the data points in the space

of the top κ eigenvectors, and then cluster the embedded points using another clustering

algorithm, such as k-means (Ng et al., 2001). This type of methods is quite effective in

finding multiple clusters of the data, and it is more efficient than the recursive algorithms.

Other clustering algorithms

Although I do not explicitly consider them in my thesis, there are a large number of other

clustering algorithms that have been developed. Two prominent examples are hierarchical

clustering and correlation clustering.
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Hierarchical clustering Hierarchical clustering is among the best known clustering

methods due to its conceptual simplicity. There are two different forms, known as agglom-

erative and divisive respectively. Agglomerative procedures start with n singleton clusters

and proceed by merging existing clusters in each step until some termination criterion is

reached. Divisive procedures, by contrast, start with all data objects in one cluster and

proceed by splitting the clusters successively.

The primary criticism of hierarchical clustering is that it is not robust to outliers and

noise. Once an object has been assigned to a cluster, the decision will not be reconsidered,

even though it might continue to influence future partitions. Moreover, the computational

complexity for hierarchical clustering is at least O(n2), which can limit its practicality for

large-scale problems.

I do not consider hierarchical forms of unsupervised learning in my work below, and

therefore do not consider comparison to hierarchical clustering in this thesis.4

Correlation clustering Correlation clustering is another graph theory based clustering

problem (Bansal et al., 2002). Similar to spectral clustering, it takes a graph as input, but

employs a simpler model where each edge is either labeled + or − to indicate whether

a pair of nodes are similar or not. The goal is to partition the graph to maximize the

agreement : the number of positive edges within clusters plus the number of negative edges

between clusters. Interestingly, for correlation clustering, the number of clusters κ is not

required a priori; it can be any number from 1 to n, whichever maximizes the agreement.

Unfortunately, correlation clustering is an NP-hard problem (Bansal et al., 2002). In

(Bansal et al., 2002), a PTAS (polynomial-time approximation scheme) is proposed for

maximizing agreements. Later, a semidefinite relaxation for correlation clustering has

been developed (Swamy, 2004), which is one of the recent applications of semidefinite

programming techniques in machine learning.

Unfortunately this approach has not been applied in practice and requires a global

tradeoff parameter λ to be set, which has a profound influence on the number of clusters

chosen. I have therefore not compared to this approach in this thesis.

4However hierarchical unsupervised SVMs could be a topic for future work.
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2.2.4 Evaluation of Clustering Performance

A related issue of designing a clustering algorithm is the evaluation of the resulting clus-

ters. Unfortunately, there is no definitive way to measure the performance of a clustering

algorithm. In my work, I have used an objective measure called mis-assignment rate. To

evaluate a clustering algorithm, I take a set of labeled data, remove the labels, run the

clustering algorithms, find the optimal correspondence between the true class labels and

the resulting clusters, and then measure the number of misclassifications. This has the

advantage of providing an objective assessment of clustering performance, but it relies on

the assumption that the classes provided by the labeled data represent the true structure of

the data that we are trying to recover. Below in chapters 3 and 4 I will use this technique

to compare the quality of the unsupervised SVM algorithms I develop to standard k-means

and spectral clustering algorithms.

2.3 Hidden Markov Models

My first set of thesis contributions (in chapters 3 and 4) concentrate on univariate classi-

fication, where decisions on a single class variable are made. Similarly, all of the learning

techniques I have surveyed so far, whether supervised or unsupervised have also focused

solely on making univariate class predictions.

However, many important problems require one to make sequential multivariate predic-

tions, for example, as in speech recognition (Jelinek, 1998) or biological sequence analysis

(Durbin et al., 1998). In Chapter 5 below I extend my unsupervised SVM training tech-

nique to the multivariate case, and consider unsupervised training of sequence labelers.

Therefore I briefly survey existing approaches to learning structured predictors from data

here. In particular, I have focused on learning sequence labeling models in my own work,

and therefore focus attention on hidden Markov models (HMMs). Here I introduce the

main representational ideas for HMMs and discuss both the standard supervised and un-

supervised training algorithms that I will respectively extend and compare to in Chapter

5 below.

HMMs are by far the most important foundational approach taken to sequence labeling

problems to date. HMMs are a special form of graphical model for sequence data of the
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Figure 2.4: Equivalent directed and undirected representations of a hidden Markov model.

Each vertical slice represents a time step. The top node in each slice is the state variable

while the bottom node is the observation (or output) variable.

form x = (x1, ..., xL) and y = (y1, ..., yL), where x is a vector of observations and y is

a corresponding sequence of states. The model assumes that the observation xk at time

k is conditionally independent of all other variables given the state yk at the same time,

and moreover yk is conditionally independent of all other variables given yk−1, xk, yk+1; see

Figure 2.4. Higher order Markov models are also common where the probability at time

k depends not only on the states at k − 1 but also on the ones before it. For ease of

exposition, I restrict attention to the first order case.

2.3.1 Parametrization

To parameterize an HMM formally, first we assume a stationary model where the transition

and observation probabilities do not change as a function of time. Although sophisticated

Markov models can deal with continuous variables and continuous time, we will restrict

ourselves to the discrete case here, and for simplicity we assume finite alphabets for the

state and observation variables. So given a finite set of states S = {s1, ..., sκ} and a set of

possible observations O = {o1, ..., ov}, an HMM can be parameterized by the following:
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1. An unconditional distribution on the initial state, p(y1), represented by a κ×1 vector

π with πi = p(y1 = si), where κ is the number of states;

2. The observation probability p(xk|yk) for each time step k, also called emission prob-

ability. This is denoted by a κ × v matrix B = {Bi(o`)} where Bi(o`) = p(xk =

o`|yk = si);

3. The transition probability from one state to the next state, p(yk+1|yk), specified by

a κ× κ matrix A with Aij = p(yk+1 = sj|yk = si). For the rest of the discussion, we

use θ = (π, A,B) to denote all the parameters.

Thus, the joint probability can now be formulated as a product of the local prob-

abilities due to the conditional independencies specified above. Given a configuration

(x1, x2, ..., xL, y1, y2, ..., yL), the joint probability is:

p(x,y) = p(y1)
L∏

k=2

p(yk|yk−1)
L∏

k=1

p(xk|yk)

=
L∏

k=1

p(yk|yk−1)p(xk|yk)

if we assume that p(y1|y0) = p(y1). It can be further written as a log-linear model through

the following:

p(x,y) =
L∏

k=1

p(yk|yk−1)p(xk|yk)

=
L∏

k=1

[ ∏

a,b∈S

p(a|b)δykyk−1,ab

][ ∏
a∈S,c∈O

p(c|a)δykxk,ac

]

= exp

(
L∑

k=1

[∑

ab

wabδykyk−1,ab +
∑
ac

wacδykxk,ac

])

= exp

(
L∑

k=1

[∑

ab

wabφab(ykyk−1) +
∑
ac

wacφac(ykxk)

])

= exp

(∑

k

∑
j

wjφj(xk, yk, yk−1)

)
/Z1 (2.42)
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Similarly we have

p(y|x) = p(x,y)/p(x)

= exp

(∑

k

∑
j

wjφj(xk, yk, yk−1)

)
/Z2(x) (2.43)

where Z1 and Z2 are the normalization factors.

Given the parametrization, we can now focus on the operations that one can perform

with the models. Generally speaking, there are three fundamental problem for HMMs.

1. Evaluation. Given an HMM and the local probabilities, determine the probability

p(x) of an observation sequence x. In other words, compute the probability that the

observed sequence was produced by the model. This can be done efficiently by a

recursive algorithm that computes the probabilities time step by time step, with a

time complexity linear in the sequence length.

2. Decoding. Given an observation sequence x and an HMM with its local probabilities,

determine the optimal hidden state sequence, y∗ = arg maxy p(y|x). This is also

called the inference problem, and it can be solved in linear time by using the Viterbi

algorithm (Rabiner, 1989).

3. Learning/training. Given a set of training data that is produced by an HMM,

determine the parameters of the model. The problem can be either supervised where

in the training data, not only the observation sequences but also the state sequences

are given, or unsupervised where only observation sequences are provided. Below I

will discuss these two types of learning problems in more detail.

2.3.2 Supervised HMM Training

There are several different criteria that one could use for supervised learning—the choice

usually depends on the intended application. For example, one can set the parameters with

the values that maximize the joint likelihood
∏n

i=1 pθ(x
i,yi), which can be easily done by
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setting the observation and transition probabilities to the observed frequency counts of

each state→state, state→observation, and initial state patterns.

More often, however, one is more interested in learning a conditional model p(y|x)

rather than a joint model p(x,y), because the conditional model is needed as a decoder in

a subsequent application. That is, the conditional model serves as the structured predictor

of a joint labeling y for an input sequence x. For conditional models it has long been

observed that discriminative (conditional likelihood) training is advantageous compared

to joint (maximum likelihood) training. In fact, the significant recent progress on learn-

ing structured predictors has been based on developing training procedures that exploit

discriminative criteria, such as conditional likelihood or margin loss; for example, as in

conditional random fields (Lafferty et al., 2001), discriminative sequence training (Altun

et al., 2003; Tsochantaridis et al., 2004), and maximum margin Markov networks (Taskar

et al., 2003). The decoding accuracy achieved by these techniques generally exceeds that

of the more straightforward maximum likelihood approaches. Below I will primarily focus

on maximum margin Markov networks (M3N) because this is the approach I extend to the

unsupervised case in Chapter 5 below. The goal of M3N training is to learn the HMM

predictors under the multivariate margin loss formulation.

Maximum margin Markov networks

Large margin classification (SVMs) and graphical probability models have often been re-

garded as independent of each other, however, they can actually work nicely together

(Altun et al., 2003; Tsochantaridis et al., 2004; Taskar et al., 2003). The key observation is

that combining large margin training principles with graphical probability models retains

the useful properties of both methods, such as the flexibility of SVMs with kernels, and

the ability of probabilistic models to deal with structured data.

To establish the connection, consider the alternative representation of a graphical model

(HMM) as a linear model expressed by features, as shown in (2.43). That is, as we have

seen in (2.43), the conditional model is in the log-linear form such that

log p(y|x) =
∑

k

∑
j

wjφj(xk, yk, yk−1)− A(w,x)
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=
∑

k

w · φ(xk, yk, yk−1)− A(w,x)

= w · φ(x,y)− A(w,x) (2.44)

where we define

φ(x,y) =
∑

k

φ(xk, yk, yk−1). (2.45)

and

A(w,x) = log
∑
y

exp(w · φ(x,y)) = log Z2(x)

Note that for classification, that is determining the optimal label sequence y∗ for a given

input sequence x, the normalization term A(w,x) is constant and does not matter.

If we drop the normalization, and concentrate instead on the classification boundaries

directly, (Altun et al., 2003; Tsochantaridis et al., 2004; Taskar et al., 2003) show how a

large margin criterion can be used to obtain a supervised, discriminative training procedure

for HMMs. Recall that the multi-class SVM algorithm (2.24) introduced in Section 2.1.2

strives to maximize the margin γ subject to the constraints that the similarity of the feature

vector to the correct class is larger than those of the rest of the classes by at least γ. For

convenience I repeat the training problem here

max
w,γ

γ subject to ‖w‖ ≤ 1, w · (φ(xi, yi)− φ(xi, r)
) ≥ γ(1− δyi,r) ∀i, r (2.46)

This can be easily extended to the multivariate case as follows. Given labeled training

sequences (x1,y1), ..., (xn,yn), where each individual training sequence is of the form (xi =

(xi
1, ..., x

i
L), yi = (yi

1, ..., y
i
L)), one can optimize the global prediction margin:

max
w,γ

γ subject to ‖w‖ ≤ 1, w · (φ(xi,yi)− φ(xi,u)
) ≥ γ∆(u,yi) ∀i,u

where ∆(u,yi) =
∑L

k=1(1− δuk,yi
k
) counts the disagreements between u and yi. Note that

when generalizing the large margin approach to the multivariate case, the loss is usually

augmented to the per-label loss ∆(u,yi) instead of the 0-1 loss. The effect of this extension

is to favor solutions that produce fewer misclassifications in the predicted state sequence.
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In practice, the data is usually non-separable, therefore we introduce slack parameters

and use the standard transformation to eliminate γ:

min
β

2
‖w‖2+

∑
i

ξi subject to w>(
φ(xi,yi

)− φ(xi,u))≥∆(u,yi)−ξi ∀i,u (2.47)

This problem can be solved using quadratic programming. Its corresponding dual is

max
∑
i,u

λi(u)∆(u,yi)− 1

2β

∥∥∥∥∥
∑
i,u

λi(u)
(
φ(xi,yi)− φ(xi,u)

)
∥∥∥∥∥

2

subject to
∑
u

λi(u) = 1; λi(u) ≥ 0 ∀i,u (2.48)

At this point, the number of constraints in the primal QP (2.47), or correspondingly

the number of variables in the dual (2.48) is exponential in the length of the label sequence

L, which is intractable in practice. To reduce the computational expense of solving this

problem, marginal dual variables are defined as follows (Taskar et al., 2003):

νik(uu′) =
∑

u∼(uu′,k)

λi(u) ∀k; ∀u, u′; ∀i

µik(u) =
∑

u∼(u,k)

λi(u) ∀k; ∀u; ∀i

where u ∼ (uu′, k) denotes a full assignment u which is partially consistent with assign-

ments uu′ on the pair (k, k − 1), similarly for u ∼ (u, k). Here νik(uu′) and µik(u) are

related in the way that

∑

u′
νik(uu′) = µik(u)

Moreover, since φ(xi,yi) =
∑

k φ(xi
ky

i
ky

i
k−1) and ∆(u,yi) =

∑
k ∆(uk, y

i
k), the original

dual QP can be factorized into

ω(y1, ...,yn) = max
µ,ν

∑

i,k,u

µik(u)1(u 6=yi
k)

− 1

2β

∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)∆φik(uu′)>∆φj`(vv′) (2.49)
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subject to µik(u) ≥ 0,∀iku

νik(uu′) ≥ 0,∀ikuu′

∑

u′
νik(uu′) = µik(u),

∑
u

µik(u) = 1

where ∆φik(uu′) = φ(xi
ky

i
ky

i
k−1) − φ(xi

kuu′). Here i, j index training cases, k, ` index

locations in each training sequence, and u, u′ index possible relabelings at these locations.

There is a dual variable µik(u) corresponding to each singleton relabeling, and a dual

variable νik(uu′) corresponding to each adjacent pair relabeling.

This formulation provides a reduced, polynomial size QP with polynomial complexity.

Note however that this is a supervised training algorithm, as it requires the sequence labels

yi to be provided for each input sequence xi. One of my main research contributions in

this thesis is to extend this supervised HMM training algorithm to the unsupervised case

(in Chapter 5 below).

2.3.3 Unsupervised HMM Training

Unsupervised training of HMMs, where one is given the observation sequences x1,x2, ...,xn

but no accompanying label sequences is a classical problem that has normally been tack-

led from a probabilistic perspective. (I will offer an alternative margin based perspective

in Chapter 5 below.) In fact, historically for the unsupervised training of HMMs, most

researchers back off to a joint model view, and try to maximize the marginal likelihood

maxθ

∏
i pθ(xi), and thus recover a conditional model as a side-effect of acquiring p(x,y).

However, with no hidden state sequences given, it is generally not possible to solve the prob-

lem analytically. Instead, an EM algorithm for HMMs is used, which is sometimes known

as the Baum-Welch algorithm. As a particular case of EM, the Baum-Welch algorithm

starts with some initial values of the parameters. At each iteration, the Expectation-

step computes the expected probability of all possible hidden state transitions, then the

Maximization-step re-calculates the parameters to maximize the objective based on the

expected values. This procedure is repeated until convergence is reached.

Below I will introduce a sequence of algorithms that constitute the main part of EM

training for HMMs, which I will compare to my own work in Chapter 5 below.
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The forward algorithm

Define αk(i) = p(x1, ..., xk, yk = si|θ) as the probability of witnessing all the observations

generated up to time step k and staying at state si at time k. These α’s can be computed

using the forward algorithm:

1. The probability of initially being in state si and generating x1 is given by

α1(i) = πiBi(x1).

2. We can then arrive at state si from any state sj with probability Aji and generate

observation xk+1, thus yielding the α probabilities:

αk+1(i) = Bi(xk+1)
∑

j αk(j)Aji for 1 ≤ k ≤ L.

It is easy to see that given the model, p(x) =
∑

i αL(i). In other words, we can use the

forward algorithm to solve the evaluation problem for HMMs.

The backward algorithm

Define βk(i) = p(xk+1, ..., xL|yk = si, θ) as the probability of generating all the observations

after time k, given that the system stays at state si at time k. These β probabilities can

be computed via the following process:

1. Each state is allowed to be a possible end state, thus

βL(i) = 1

2. Then xk+1 can be generated from any state sj, thus yielding a recursive computation

of the β probabilities:

βk(i) =
∑

j βk+1(j)AijBj(xk+1) for 1 ≤ k ≤ L.

Given these computations, it is also easy to see that p(x|θ) =
∑

i αk(i)βk(i) for any k.

The Baum-Welch algorithm

Finally, we can use these forward and backward probabilities to provide the Expectation

step for the Baum-Welch algorithm used to learn a good set of model parameters θ from

unlabeled data. To find θ∗ = arg maxθ p(x|θ), first define γk(i) = p(yk = si|x, θ) as
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the probability of the system being at state si at time k given the observations, and

ξk(i, j) = p(yk = si, yk+1 = sj|x, θ) as the transition probability from state si to sj at time

k given the observations. It is easy to see that γk(i) =
∑

j ξk(i, j), and, for k = 1, ...L,

γk(i) =
αk(i)βk(i)∑
j αk(j)βk(j)

(2.50)

For k = 1, ...L− 1, ξk(i, j) can be computed by

ξk(i, j) =
αk(i)AijBj(xk+1)βk+1(j)∑

j αk(j)βk(j)
(2.51)

=
γk(i)AijBj(xk+1)βk+1(j)

βk(i)
(2.52)

Formulas (2.50)-(2.52) provide the means to compute the expected probability of the

hidden state transitions. Based on these expected values, we can re-estimate the parameters

(the Maximization step) with a sequence of updates specified below until convergence:

π′i = γ1(i) (2.53)

A′
ij =

∑L−1
k=1 ξk(i, j)∑

j

∑L−1
k=1 ξk(i, j)

(2.54)

Bi(o`)
′ =

∑L
k=1,xk=o`

γk(i)∑L
k=1 γk(i)

(2.55)

Although EM has been widely used in many applications for unsupervised HMM train-

ing, there are several problems with it. First, EM fails to guarantee a global solution to

the problem, therefore initialization is an important issue in practice. Second, as we have

observed, EM takes a joint model view, therefore if we are interested in learning a discrim-

inative model p(y|x), there is little reason to expect that the training criterion used by EM

will recover a good decoder. One of the goals of my research in Chapter 5 is to mitigate

both these problems by formulating a convex training objective that is also discriminative

(i.e. it is based on maximizing a margin criterion).
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2.4 Semidefinite Programming

Finally, one of the main algorithmic tools I exploit in the training algorithms I develop

below is semidefinite programming (SDP). In particular, I will exploit semidefinite pro-

gramming as a means for solving a relaxation of the combinatorial problem that arises

from unsupervised SVM training (i.e. SVMs applied to clustering), as well as robust su-

pervised SVM training.

Semidefinite programming is a recent extension of linear and quadratic programming

that was significantly advanced by (Nesterov and Nemirovskii, 1994), which provided ef-

fective algorithmic foundations as well as polynomial run-time guarantees for solution

techniques based on interior point methods. Semidefinite programming has since had a

significant impact on the field of combinatorial optimization, and has opened up excit-

ing new avenues of research in machine learning (Lanckriet et al., 2004; Swamy, 2004;

Weinberger et al., 2004; Goemans and Williamson, 1995).

A semidefinite programming problem is a convex optimization problem where one op-

timizes a symmetric n× n matrix of variables X

min
X

〈C,X〉 subject to 〈Ai, X〉 = bi, i = 1...m

X º 0 (2.56)

where X º 0 denotes the constraint that X must remain positive semidefinite (Helm-

berg, 2000; Boyd and Vandenberghe, 2004). Here, the objective is linear in X, and the

semidefinite constraint simply means that X must satisfy z>Xz ≥ 0 for any vector z 6= 0,

which implies infinitely many liner constraints. However, it is still a convex constraint on

X. That is, for any two positive semidefinite matrices X and Y , any convex combination

will be positive semidefinite, since z>(ρX + (1 − ρ)Y )z = ρz>Xz + (1 − ρ)z>Y z ≥ 0 for

0 ≤ ρ ≤ 1.

The dual form of (2.56) is (Helmberg, 2000; Boyd and Vandenberghe, 2004):

max
y,Z

b>y subject to Z +
∑

i yiAi = C, Z º 0

Semidefinite programming can be solved by algorithmic approaches in polynomial time.

Among them, interior point methods (or “barrier”) methods are currently one of the most
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effective approaches (Nesterov and Nemirovskii, 1994). The worst-case complexity of these

methods is O(m2n2.5) in general, and one can exploit the structure of the problem (e.g.

sparsity) for more computational efficiency. In fact, there exist many software packages

for solving semidefinite programming problems using interior point methods, including

SeDuMi (Sturm, 1999), SDPT3 (Toh et al., 1999) and CSDP. Although these techniques

are not as well developed as methods for solving quadratic programs, progress is continuing

and the current tools are starting to become adequate for solving practical problems.

I will generally exploit these existing tools in my own research below. That is, my thesis

research focuses on applying semidefinite programming as a flexible new tool for deriving

useful new machine learning algorithms. I do not, however, contribute any significant new

ideas to the practice of solving general SDPs.



Chapter 3

Unsupervised Two-class Support

Vector Machines

Clustering is one of the oldest form of machine learning. Nevertheless, it has received re-

newed attention recently with the advent of nonlinear clustering methods based on kernels.

Kernel based clustering methods continue to have a significant impact on recent work in

machine learning (Ng et al., 2001; Kandola et al., 2001), computer vision (Shi and Malik,

2000), and bioinformatics (Kluger et al., 2003). Although many variations of kernel based

clustering has been proposed in the literature, most of these techniques share a common

“spectral clustering” framework (outlined in Section 2.2.3) that follows a generic recipe:

one first builds the kernel (“affinity”) matrix, normalizes the kernel, performs dimensional-

ity reduction, and finally clusters (partitions) the data based on the resulting representation

(Weiss, 1999).

In this chapter, I propose a new approach to clustering, based on the large margin clas-

sification ideas presented in Section 2.1. The primary focus will be on the final partitioning

step where the actual clustering occurs. Once the data has been preprocessed and a kernel

matrix has been constructed (and its rank possibly reduced), many variants have been sug-

gested in the literature for determining the final partitioning of the data. The predominant

strategies include using k-means clustering (Ng et al., 2001), minimizing various forms of

graph cut cost (Kandola et al., 2001) (relaxations of which amount to clustering based on

eigenvectors (Weiss, 1999)), and finding strongly connected components in a Markov chain

44
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defined by the normalized kernel (Chennubhotla and Jepson, 2002). Some other recent

alternatives are correlation clustering (Bansal et al., 2002) and support vector clustering

(Ben-Hur et al., 2001).

Here I propose instead to use a maximum margin separting hyperplane to separate

the data into clusters. One nice aspect of the approach that I propose is that it pro-

vides a simple unified view of unsupervised, supervised, and semi-supervised learning—a

common unifying approach to these problems is lacking in most of the current literature

on these topics. In particular, I start with a completely supervised learning technique—

support vector machines (SVMs)—and modify it for unsupervised learning, with the goal

of achieving a simple, unified way of solving a variety of problems, including unsupervised

and semi-supervised learning.

3.1 Unsupervised Two-class SVMs

Recall that for supervised two class SVM training, we assume we are given labeled training

examples (x1, y1), ..., (xn, yn), where each example is assigned to one of the two classes

yi ∈ {−1, +1}. The goal of an SVM in this case is to find the linear discriminant that

maximizes the minimum mislcassification margin, as shown in Figure 2.1. Furthermore, as

shown in Section 2.1, this reduces to solving the optimization problem

γ∗−2 = max
λ

λ>e− 1

2β
〈K ◦ λλ>,yy>〉

subject to 0 ≤ λ ≤ 1, λ>y = 0 (3.1)

However, in the unsupervised case we are not given the labels y, and therefore cannot

directly solve the supervised problem (3.1). Here I propose a “principle of (guarded)

optimism” to convert a supervised machine learning algorithm to the unsupervised case:

to optimize the parameters of the supervised model without training labels, first optimize

the labeling (subject to constraints) so that the resulting supervised problem admits a good

training outcome. This is a very general approach that, in principle, could be applied to

any supervised learning algorithm to make it unsupervised. In this thesis, I will specifically

consider applying this principle to support vector machines.
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For unsupervised SVMs, instead of finding a large margin classifier given labels on the

data, the idea is to find a labeling so that if one were to subsequently run an SVM training

algorithm, the margin obtained would be maximal over all possible labelings. That is,

given data x1, ..,xn, we wish to assign the data points to two classes yi ∈ {−1, +1} so that

the separation between the two classes is as wide as possible.

This appears to be a hard computational problem. Although I am not aware of any NP-

hardness proof, previous investigators have suggested this as a training principle for semi-

supervised SVMs, but have resorted to heuristic algorithms (Joachims, 1999) and branch

and bound search (Vapnik, 1998). In my work, I have assumed the exact discrete problem

is hard, and worked at deriving tractable approximations. Proving hardness remains an

issue for future research.

Toward developing a tractable approximation, I show below that, with some deriva-

tion, one can re-express the problem so that it is convex (except for the integrality con-

straints), which suggests that there might be some hope of obtaining practical solutions.

Subsequently, I relax the integer constraint to obtain a semidefinite program that yields

soft cluster assignments which approximately maximize the margin between the classes.

Therefore, one can obtain soft clusterings efficiently using widely available software.

Before proceeding with the main development, there are some preliminary issues I need

to address. First, we clearly need to impose some sort of constraint on the class balance,

since otherwise one could simply assign all the data points to the same class and obtain

an unbounded margin. A related issue is that we would also like to avoid the problem

of separating a single outlier (or very small group of outliers) from the rest of the data.

Thus, to mitigate these effects I will impose a constraint that the difference in class sizes

be bounded. This will turn out to be a natural constraint for semisupervised learning and

is very easy to enforce. Second, one would like the clustering to behave gracefully on noisy

data where the classes may in fact overlap, so I adopt the soft margin formulation of the

maximum margin criterion. Finally, there is a small technical complication that arises with

one of the SVM parameters: It turns out that an unfortunate nonconvexity problem arises

when I include the use of the offset b in the underlying large margin classifier. I currently

do not have a way to avoid this nonconvexity, and therefore I currently set b = 0 and

therefore only consider homogeneous linear classifiers. The consequence of this restriction
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is that the constraint λ>y = 0 is removed from the dual SVM quadratic program (3.1).

Although it would seem like this is a harsh restriction, the negative effects are mitigated

by centering the data at the origin, which can always be imposed. Nevertheless, dropping

this restriction remains an important issue. With these caveats in mind, I proceed to the

main development.

3.2 Derivation of the Main Result

We face the following computational problem: we would like to solve for a labeling y ∈
{−1, +1}n that leads to a maximum (soft) margin. Straightforwardly, one could attempt

to tackle this optimization problem by directly formulating

min
y∈{−1,+1}n

γ∗−2(y) subject to − ε ≤ e>y ≤ ε

where

γ∗−2(y) = max
λ

λ>e− 1

2β
〈K ◦ λλ>,yy>〉 subject to 0 ≤ λ ≤ 1

Unfortunately, γ∗−2(y) is not a convex function of y, and this formulation does not lead

to an effective algorithmic approach. In fact, to obtain an efficient technique for solving

this problem we need two key insights.

The first key step is to re-express this optimization, not directly in terms of the cluster

labels y, but instead in terms of the label outer product matrix M = yy>. The main

advantage of doing so is that the inverse soft margin γ∗−2 is in fact a convex function of

M

γ∗−2(M) = max
λ

λ>e− 1

2β
〈K ◦ λλ>,M〉 subject to 0 ≤ λ ≤ 1 (3.2)

The convexity of γ∗−2 with respect to M is easy to establish since this quantity is just a

maximum over linear functions of M (Boyd and Vandenberghe, 2004). This observation

parallels one of the key insights of (Lanckriet et al., 2004), here applied to M instead of

K.
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Unfortunately, even though we can pose a convex objective, it does not allow us to

immediately solve our problem because we still have to relate M to y, and M = yy> is not

a convex constraint. Thus, the main challenge is to find a way to constrain M to ensure

M = yy> while respecting the class balance constraints −ε ≤ e>y ≤ ε. One obvious

way to enforce M = yy> would be to impose the constraint that rank(M) = 1, since

combined with M ∈ {−1, +1}n×n this forces M to have a decomposition yy> for some

y ∈ {−1, +1}n. Unfortunately, rank(M) = 1 is not a convex constraint on M (Helmberg,

2000).

The second key idea is to realize that one can indirectly enforce the desired relationship

M = yy> by imposing a different set of constraints on M . To do so, notice that any such

M must encode an equivalence relation over the training points. That is, if M = yy> for

some y ∈ {−1, +1}n then we must have

Mij =

{
1 if yi = yj

−1 if yi 6= yj

The properties that encode an equivalence relation are (1) reflexivity, Mii = 1, (2)

symmetry, Mij = Mji and (3) transitivity, Mij = 1 and Mjk = 1 implies Mik = 1. For

discrete {−1, +1}-valued matrices, these constraints can be imposed with linear inequal-

ities. Unfortunately, transitivity require a cubic number of constraints to be imposed,

which is impractical to store for most real problems. Fortunately, there is a nice result in

the SDP literature that allows one to enforce all of these constraints in a quadratic SDP

representation.

Lemma 2 (Helmberg, 2000; Laurent and Poljak, 1995) Let M º 0 and diag(M) = e, then

−1 ≤ M ≤ 1. If in addition M ∈ {−1, +1}n×n then M = yy> for some y ∈ {−1, +1}n.

Therefore to enforce the constraint M = yy> for y ∈ {−1, +1}n it suffices to impose

the set of constraints: M ∈ {−1, +1}n×n, M º 0 and diag(M) = e. Moreover, we can

enforce the class balance constraint −ε ≤ e>y ≤ ε by imposing the additional set of linear

constraints: −εe ≤ Me ≤ εe.

The combination of these two steps leads to our first main result: One can solve for a

hard clustering y that maximizes the soft margin by solving a convex integer program. To
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accomplish this, one first solves for the equivalence relation matrix M in

min
M∈{−1,+1}n×n

max
λ

λ>e− 1

2β
〈K ◦ λλ>,M〉

subject to 0≤λ≤1, diag(M) = e, Mº0, −εe ≤ Me ≤ εe (3.3)

Then, from the solution M∗ the optimal cluster assignment y∗ is recovered simply by

setting y∗ to any column vector in M∗.

Unfortunately, the formulation (3.3) is still not practical because nonlinear integer

programming is still a hard computational problem. Therefore, we are compelled to take

one further step and relax the integer constraint on M to obtain a convex optimization

problem over a continuous parameter space

min
M∈[−1,+1]n×n

max
λ

λ>e− 1

2β
〈K ◦ λλ>,M〉

subject to 0≤λ≤1, diag(M) = e, Mº0, −εe ≤ Me ≤ εe (3.4)

A more convenient form of this optimization problem is then given by the following theorem.

Theorem 1 Solving (3.4) is equivalent to solving the semidefinite program

min
M,ζ,µ,ν

ζ subject to diag(M) = e,M º 0,−εe ≤ Me ≤ εe

µ ≥ 0,ν ≥ 0
[

M ◦K e + µ− ν

(e + µ− ν)> 2
β
(ζ − ν>e)

]
º 0

(3.5)

Proof It is easy to see that the convex optimization problem (3.4) is equivalent to

min
M

max
λ

λ>e− 1

2β
λ>(K ◦M)λ

subject to 0≤λ≤1, −1 ≤ M ≤ 1, diag(M) = e, Mº0, −εe ≤ Me ≤ εe

which can be rewritten as

minM,ζ ζ subject to ζ ≥ maxλ λ>e− 1
2β

λ>(K ◦M)λ

0 ≤ λ ≤ 1, diag(M) = e, M º 0,−εe ≤ Me ≤ εe
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Note that based on Lemma 2, the constraint −1 ≤ M ≤ 1 is implied by diag(M) = e,M º
0 and thus can be removed.

Now let us look at the maximization problem

ω(M) = max
λ

λ>e− 1

2β
λ>(K ◦M)λ subject to 0 ≤ λ ≤ 1 (3.6)

the Lagrangian of which is

L(λ,µ, ν) = λ>e− 1

2β
λ>(K ◦M)λ + µ>λ + ν>(e− λ)

By strong duality (Boyd and Vandenberghe, 2004), we have

ω(M) = max
λ

min
µ≥0,ν≥0

L(λ, µ,ν) = min
µ≥0,ν≥0

max
λ

L(λ,µ,ν)

By maximizing the Lagrangian over µ and ν, at the optimum we have1

λ = β(K ◦M)−1(e + µ− ν)

and therefore can eliminate the primal variable in the Lagrangian, to obtain the dual of

(3.6)

ω(M) = min
µ≥0,ν≥0

β

2
(e + µ− ν)>(K ◦M)−1(e + µ− ν) + ν>e

Now the constraint ζ ≥ ω(M) can be satisfied if and only if for any ζ, there exist

µ ≥ 0, ν ≥ 0 such that

ζ ≥ β

2
(e + µ− ν)>(K ◦M)−1(e + µ− ν) + ν>e

or

2

β
(ζ − ν>e) ≥ (e + µ− ν)>(K ◦M)−1(e + µ− ν) (3.7)

1We assume that (K ◦ M)−1 exists. Otherwise, the pseudo inverse (K ◦ M)+ can be used instead
and the rest of the derivation still holds (Bie and Cristianini, 2003); or one can add a small value to the
diagonal of K ◦M to make it non-singular.
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Using the Schur complement lemma (Horn and Johnson, 1985),2 the constraint (3.7)

can now be reformulated as
[

M ◦K e + µ− ν

(e + µ− ν)> 2
β
(ζ − ν>e)

]
º 0

Consequently, the problem (3.4) is turned into

min
M,ζ,µ,ν

ζ subject to diag(M) = e,M º 0,−εe ≤ Me ≤ εe

µ ≥ 0,ν ≥ 0
[

M ◦K e + µ− ν

(e + µ− ν)> 2
β
(ζ − ν>e)

]
º 0

which is a semidefinite program.

This gives us the second main result: To solve for a soft clustering y that approximately

maximizes the soft margin, first solve the semidefinite program (3.5), and then from the

solution matrix M∗ recover the soft cluster assignment y by setting y =
√

α1v1, where

α1,v1 are the maximum eigenvalue and corresponding eigenvector of M∗.3

3.3 Comparison to Existing Unsupervised Methods

As mentioned previously, a large number of kernel based clustering algorithms have been

proposed in the literature, most of which follow the “spectral clustering” approach. An

2Schur Complement Lemma: Given a symmetric matrix

X =

[
A B

B> C

]

where A Â 0, C º 0, we define the Schur complement of A in X by S = C −B>A−1B. Then
[

A B

B> C

]
Â 0 ⇐⇒ S Â 0 and

[
A B

B> C

]
º 0 ⇐⇒ S º 0

3One could also employ randomized rounding to choose a hard class assignment y.
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interesting question is how the standard graph cut criterion used in spectral clustering

relates to the large margin principle I am exploring in this thesis. A recent paper (Rahimi

and Recht, 2004) sheds some light on this relationship.

In (Rahimi and Recht, 2004), the authors analyze a special case, previously introduced

in Section 2.2.1, where the kernel matrix K is both positive semidefinite and nonnegative.

In their analysis they assume furthermore that diag(K) = e, which, for example, holds for

the standard RBF kernel (2.20). Given these assumptions, one can see that all training

points x1, ...,xn are mapped onto the surface of the unit sphere in the positive orthant,

since ‖φ(xi)‖ =
√

Kii = 1 and φ(xi) · φ(xj) = Kij ≥ 0. In this intuitive scenario,

Rahimi and Recht (2004) observe that spectral clustering, and in particular, normalized

cut, is equivalent to partitioning the data with a hyperplane that maximizes a weighted

average distance of the n data points to the hyperplane:

max
1

n

n∑
i=1

(disti)
2

cos θi

(3.8)

where disti is the Euclidean distance between data point i and the hyperplane (defined in

(2.2)), and θi is the angle between the i-th data point with the mean of the data in the

feature space. Thus the criterion prefers hyperplanes that obtain a large distance to points

that are nearly orthogonal to the data mean, where 1/ cos θi serves as the weight of data

point i.

By contrast, the principle of maximum margin clustering is to find a hyperplane that

maximizes the distance of the nearest data point to the hyperplane. More precisely, I use

a soft margin formulation (subject to a relaxation) to find a hyperplane that minimizes

the hinge loss (2.7). Intuitively, the hinge loss criterion is more robust against outliers and

nonlinear class structure away from the boundaries, whereas the normalized cut criterion

remains sensitive to these. For example, consider the effect of an outlier. Under (3.8)

the outlier’s contribution to the loss will be proportional to its squared distance to the

hyperplane, times 1/ cos θi, which must grow to ∞ as the outlier moves further away

from the mean (i.e., θi goes to zero). By contrast, an outlier’s contribution to the hinge

loss (2.7) is only given by its absolute distance to the hyperplane. Below we find that

the outcome usually works in favor of the maximum margin approach: a sufficiently rich

feature space defined by a kernel usually allows reasonable separation by a hyperplane,
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whereas nonlinearities in the within class structure appears to weaken the performance of

normalized cut.

One important note is that, currently, the computational cost of minimizing the two

objectives is not the same. As shown in Section 2.2.3, a relaxed form of the normalized cut

criterion can be minimized by solving a generalized smallest eigenvalue problem. However,

the algorithm I have developed for minimizing a relaxed form of the maximum margin

criterion involves solving a semidefinite program, and hence is much more expensive in

practice (although still polynomial time (Nesterov and Nemirovskii, 1994)).

3.4 Experimental Results: Unsupervised Training

I implemented the maximum margin clustering algorithm based on the semidefinite pro-

gramming formulation (3.5), using the SeDuMi library (Sturm, 1999), and ran various

experiments to verify its intuitive behavior and also to determine its potential effectiveness

on real data sets.

First, to illustrate the difference of k-means clustering, spectral clustering and maximum

margin clustering, I ran a simple synthetic experiment using data on the unit sphere, as

discussed above. Here the number of data points is small enough to run k-means to

optimality, we can see that due to the existence of the outlier, k-means separates the rest

of the data points with the outlier to minimize the within class distance. On the other

hand, normalized cut can be thought of as partitioning the data with a hyperplane that

maximizes a weighted average of the squared distances to the hyperplane in this case.

Because normalized cut puts more weight on data points that are nearly orthogonal to the

mean of data (i.e., data points that are far from the class mean), this criterion prefers a

hyperplane that is is attracted to these data points; thus inducing outlier sensitivity. As

shown in Figure 3.1, one can see by comparing the left and right column that when the

outlier moves further from the data mean the solution of normalized cut is shifted, while

the maximum margin solution remains unaffected. Moreover, it can be observed that in

the third row, the semidefinite approach returns with the optimal solution to the maximum

margin clustering problem, therefore, this comparison shown in Figure 3.1 demonstrates not

only the difference of the algorithms themselves, but also the difference of the underlying
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clustering principles.

Note that this particular experiment was only designed to illustrate the basic differ-

ence between the clustering algorithms discussed above. Here I only used a linear kernel

to illustrate the point. It is possible that spectral clustering and k-means can avoid the

specific problem shown above by using an appropriate kernel, but that is missing the point

that they remain sensitive to outliers in whatever feature space is implied by the kernel.

In the next set of experiments I compared the performance of the maximum mar-

gin clustering technique to the spectral clustering method of (Ng et al., 2001) as well as

straightforward k-means clustering on a wider range of data sets. Both maximum margin

clustering and spectral clustering were run with the same radial basis function kernel and

matching width parameters. In fact, in each case, I chose the best width parameter for

spectral clustering by searching over a small set of five widths related to the scale of the

problem. In addition, the slack parameter for maximum margin clustering was simply set

to an arbitrary value.4

To assess clustering performance I used mis-assignment rate introduced in Section 2.2.4

as the performance measure. That is, I take a set of labeled data, remove the labels, run

the clustering algorithms, find the optimal correspondence between the true class labels

and the resulting clusters, and then measure the number of misclassifications.

The first experiments were conducted on the synthetic data sets depicted in Figure 3.2.

Table 3.1 shows that for the first three sets of data (Gaussians, Circles, AI) maximum

margin and spectral clustering obtained identical small error rates, which were in turn sig-

nificantly smaller than those obtained by k-means. However, maximum margin clustering

demonstrates a substantial advantage on the fourth data set (Joined Circles) over both

spectral and k-means clustering.

I also conducted clustering experiments on the real data sets, two of which are depicted

in Figures 3.3 and 3.4: a database of 100 images of handwritten digits of twos and threes

(Figure 3.3), and a database of 76 face images of two people (Figure 3.4). The last two

columns of Table 3.1 show that maximum margin clustering obtains a slight advantage on

4It turns out that the slack parameter β did not have a significant effect in these experiments, so I just
set it to β = 0.01 for all of the experiments reported here.



Unsupervised Two-class Support Vector Machines 55

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

0.15

0.2
kmeans

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

0.15

0.2
kmeans

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

0.15

0.2
spectral clustering

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

0.15

0.2
spectral clustering

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

0.15

0.2
max−margin clustering

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

0.15

0.2
max−margin clustering

Figure 3.1: Comparison of k-means, normalized cut and maximum margin clustering when

outliers are present. The three rows show the results produced by k-means, normalized cut

and maximum margin clustering respectively. The two axes show angular positions on the

unit sphere in spherical (φ, θ) coordinates.
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Clustering: Semidefinite Spectral Kmeans

Gaussians 1.2 1.2 5

Circles 0 0 50.0

AI 0 0 38.5

Joined Circles 1.0 24.0 50.0

Digits 3.0 6.0 7.0

Faces 0 16.7 24.4

Table 3.1: Percentage misclassification errors of the various clustering algorithms on the

various data sets.

the handwritten digits data, and a significant advantage on the faces data.

The running time of the maximum margin clustering algorithm on 50 data points varies

from 10 to 30 seconds on a 2.4 GHz AMD Opteron 250 processor, depending on different

problems, however it can increase up to around 10 minutes on data sets with 100 examples.

Although these results are limited, they demonstrate that the maximum margin prin-

ciple offers a potentially very effective approach to kernel based clustering. In particular,

maximum margin clustering with RBF kernels appears to be very effective at separating

classes, even when data has a complex distribution, and moreover seems to demonstrate

a greater robustness to outliers on the training data than the standard spectral clustering

method.

One nice advantage of the maximum margin approach developed in this chapter is that,

in principle, it is out of sample. That is, once the clustering has been determined, (2.21)

can be used to recover λ. This defines a universal classification rule (2.22) that can be

applied to any future data without running the training algorithm again.

3.5 Semi-supervised Two-class SVMs

In addition to clustering, I have the further goal of adapting the maximum margin approach

to semi-supervised learning. For semi-supervised learning, we assume we are given a labeled

training set (x1, y1), ..., (xt, yt) as well as an unlabeled training set xt+1, ...,xn, and the goal
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Figure 3.2: Four artificial data sets used in the binary clustering experiments.

Figure 3.3: A sampling of the handwritten digits (twos and threes).

Figure 3.4: A sampling of the face data (two people).
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is to combine the information in these two data sets to produce a more accurate classifier.

In the context of large margin classifiers, many techniques have been proposed for

incorporating unlabeled data in an SVM, most of which are intuitively based on ensuring

that large margins are also preserved on the unlabeled training data (Joachims, 1999;

Bennett and Demiriz, 1998), just as in our case. However, none of these previous proposals

have formulated a convex optimization objective that is guaranteed to yield a globally

optimal approximation, as I propose in Section 3.1.

For our procedure, extending the maximum margin clustering approach of Section 3.1

to semi-supervised training is easy: We simply add constraints on the matrix M to force it

to respect the observed equivalence relations among the labeled training data. In addition,

we impose the constraint that each unlabeled example belongs to the same class as at least

one labeled training example. These conditions can be enforced with the simple set of

additional linear constraints

S1: Mij = yiyj for labeled examples i, j ∈ {1, ..., t}
S2:

∑t
i=1 Mij ≥ 2− t for unlabeled examples j ∈ {t + 1, ..., n}

Note that the observed training labels yi for i ∈ {1, ..., t} are constants, and therefore

the new constraints are still linear in the parameters of M that are being optimized.

The resulting training procedure is similar to that of (Bie and Cristianini, 2003), with

the addition of the class balance constraint −εe ≤ Me ≤ εe and S2 which enforce two

classes and facilitate the ability to perform clustering on the unlabeled examples.

3.6 Comparison to Existing Semi-supervised Meth-

ods

The most well known technique for semi-supervised training with SVMs is the transductive

SVM algorithm proposed in (Joachims, 1999), which is also based on large margin criterion.

As in my work, given a labeled training set (x1, y1), ..., (xt, yt) and an unlabeled training

set xt+1, ...,xn, the goal of transductive SVMs is to find a hyperplane (w, b) and a labelling

(ŷt+1, ..., ŷn) of the unlabeled part such that the hyperplane separates the labeled data and
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unlabeled data with the largest margin. This is formulated as

min
ŷt+1,...,ŷn,w,b,ξ1,...ξn

1

2
‖w‖2 +

1

β

t∑
i=1

ξi +
1

β′

n∑
i=t+1

ξi

subject to yi(w · xi + b) ≥ 1− ξi ∀t
i=1

ŷi(w · xi + b) ≥ 1− ξi ∀n
i=t+1

ξi ≥ 0 ∀i
(3.9)

where β and β′ are the slack parameters.

A naive approach to solve (3.9) is to enumerate all possible configurations of (ŷt+1, ..., ŷn),

however, this is impractical. Therefore (Joachims, 1999) proposes an iterative algorithm

instead. In each iteration two examples are identified if changing their labels could decrease

the objective function, and then the labels of these examples are switched. This algorithm

will converge with a finite number of iterations, however, global solution is not guaranteed.

By contrast, the algorithm I proposed in Section 3.5 solves a convex optimization problem,

and hence obtains a global solution. Below we find that the globally optimized outcome

tends to produce more accurate results than (3.9).

3.7 Experimental Results: Semi-supervised Training

I tested my approach to semisupervised learning on various two class data sets from the

UCI repository. For these UCI data sets, I took 50 random examples from both classes.

In each case, I evaluated the techniques transductively. That is, I randomly subsampled

1/10 of the data as the labeled part and the rest as the unlabeled part, held out the labels

of the unlabeled portion, trained the semi-supervised techniques, reclassified the unlabeled

examples using the learned results, and measured the misclassification error on the held

out labels. I compared the performance of the proposed technique to the transductive

SVM technique of (Joachims, 1999) and standard SVM. Linear kernel was used here, and

β parameter was set to 0.01 for the maximum margin approach, while the best β value was

chosen for transductive SVM and standard SVM respectively. The results were averaged

over 5 times.
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Semi-sup: Semidefinite TSVM Spectral supSVM

Digits 1-7 3.3 ±0 4.6 ±0.9 4.2 ±0.2 5.1 ±1.3

Digits 2-3 4.7 ±0.2 5.4 ±2.7 6.4 ±0.2 10.9 ±4.9

UCI Australian 32.0 ±1.2 38.7 ±3.5 48.7 ±7.4 42.2 ±3.6

UCI Flare 34.0 ±1.0 33.3 ±1.4 40.7 ±7.3 35.6 ±2.6

UCI Vote 14.0 ±0.7 17.5 ±2.9 13.8 ±0.4 19.3 ±6.6

Table 3.2: Percentage misclassification errors of the various semisupervised learning al-

gorithms on the various data sets (± one standard error of the mean). TSVM is due to

(Joachims, 1999). Note that supSVM uses no unlabeled data.

Here one can see that the maximum margin approach based on semidefinite program-

ming generally outperforms the approach of (Joachims, 1999). Table 3.2 shows that the

maximum margin method is effective at exploiting unlabeled data to improve the predic-

tion of held out labels. In every case, it significantly reduces the error of plain SVM, and

obtains the best overall performance of the semisupervised learning techniques we have

investigated.

3.8 Conclusion

In this chapter I have proposed a simple principle for two-class clustering based on the max-

imum margin principle popularized by supervised SVMs: we seek a labelling that would

yield an optimal SVM classifier on the training data. Interestingly, this criterion can be ap-

proximately optimized using an efficient semidefinite programming formulation. Moreover,

semi-supervised learning can also be easily achieved in a unified framework. The results

on both clustering and semi-supervised learning are competitive with, and sometimes ex-

ceed the state of the art. Overall, margin maximization appears to be an effective way to

achieve a unified approach to these different two-class learning problems. Importantly, the

principle proposed here, together with the advances of margin maximization approaches

beyond the simple two-class case, facilitates us to extend the framework in anther direction

to the multi-class and even multivariate settings.



Chapter 4

Unsupervised Multi-class Support

Vector Machines

In many real-world applications, learning problems involve more than two classes. There

are many ways to extend two-class classification schemes to multi-class classification schemes

as discussed in Section 2.1.2, including one versus the rest classification, all pairs classi-

fication, error-correcting output coding, and hierarchical classification. However, from an

SVM perspective the most elegant approach to handling multi-class problems is to directly

minimize the multi-class margin loss (2.27) introduced by (Crammer and Singer, 2001), as

discussed in Section 2.1.2.

In this chapter, I extend the previous two-class methods to general multi-class SVM

training algorithms for unsupervised and semi-supervised learning. Essentially, the method-

ology can now be broken down into a series of steps: First, one treats the missing classifi-

cation labels as variables to be optimized jointly with the SVM parameters. Second, one

formulates the dual form of the supervised maximum margin problem. This formulation

will be expressed in terms of pairwise comparisons of the supervised y-labels. Third, one

then re-expresses the problem in terms of indicator variables that compare y-labels, as

opposed to the y-labels themselves. The optimization criterion will then become a convex

function in the indicator variables, even when it was generally not a convex function of

the original y-labels. Finally, one relaxes the indicator variables to real values, and pos-

sibly relaxes additional indicator constraints, to obtain a convex optimization problem.

61
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This problem can either be expressed as a pure semidefinite program, or a more compact

semidefinite program with a constraint generation phase that calls the original maximum

margin algorithm (a quadratic program) with the current soft indicators.

Even though the strategy employed for the multi-class case is similar to that employed

above, there are some significant complications to deriving an effective training procedure.

4.1 Unsupervised Multi-class SVMs

As before, I start with the supervised case. Assume we are given labeled training examples

(x1, y1), ..., (xn, yn) where each example is assigned a label from a fixed finite set yi ∈
{1, ..., κ}. As shown in (2.27), the multi-class training problem can be reformulated as a

quadratic program, which I repeat here for convenience

ω(y) = min
w,ξ

1

2
β‖w‖2 +

n∑
i=1

ξi

subject to w · (φ(xi, yi)− φ(xi, r)) + δyi,r ≥ 1− ξi ∀i, r
ξi ≥ 0 ∀i

(4.1)

Here ω is the multi-class analog of the inverse squared margin γ∗−2, and depends on the

given multi-class labels y. My main result depends crucially on being able to reformulate

the quadratic program (4.1) so that it can be expressed entirely in terms of equivalence

relation matrices instead of individual y-labels. To achieve this, I need to derive a different

formulation of the dual from that given in (2.28) (Crammer and Singer, 2001).

With some work, one can show that the following quadratic program is equivalent to

the dual of (4.1).

Theorem 2 The dual quadratic program of (4.1) can be reformulated as

ω(M,D) = max
Λ

Q(Λ, M,D) subject to Λ ≥ 0, Λe = e

where Q(Λ,M, D) = n− 〈D, Λ〉 − 1
2β
〈K, M〉 +

1
β
〈KD, Λ〉 − 1

2β
〈ΛΛ>, K〉

(4.2)
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Here D and Λ are n × κ matrices, M and K are n × n matrices, and we define the

equivalence relation indicator matrices M and D such that Mij = δyi,yj and Dir = δyi,r

respectively.

Note: An important consequence of the definitions above, which I exploit below, is that

M = DD>.

Proof Given the primal multi-class training problem

ω = min
w,ξ

β

2
‖w‖2 +

n∑
i=1

ξi

subject to w · (φ(xi, yi)− φ(xi, r)
) ≥ 1− δyi,r − ξi ∀i, r (4.3)

where

φ(x, y) =




φ(x) · δy,1

...

φ(x) · δy,κ


 ,

we can get the Lagrangian of this optimization problem by adding a set of dual variables

Λ

L =
β

2
‖w‖2 +

n∑
i=1

ξi −
n∑

i=1

κ∑
r=1

Λir

(
w · (φ(xi, yi)− φ(xi, r)

)− (1− δyi,r − ξi)
)

Λ ≥ 0

(4.4)

where Λ is an n× κ matrix.

By minimizing over w, ξ, we can obtain

w =
1

β

∑
i,r

Λir(φ(xi, yi)− φ(xi, r)) (4.5)

∑
r

Λir = 1 ∀i (4.6)

Plugging (4.5) and (4.6) into (4.4), and adding the constraints that Λ ≥ 0, we obtain the

dual optimization problem

max
Λ

∑
ir

Λir(1− δyi,r)−
1

2β
‖

∑
ir

Λir

(
φ(xi, yi)− φ(xi, r)

) ‖2

subject to
∑

r

Λir = 1,∀i and Λir ≥ 0, ∀i, r
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Notice that φ(x, y) · φ(x′, y′) = δy,y′φ(x) · φ(x′), therefore, the dual can be further

reformulated as

maxΛ Q(Λ,M, D)

= maxΛ n−∑
ir Λirδyi,r − 1

2β

∑
ij

∑
rs ΛirΛjs (φ(xi) · φ(xj)) (δyi,yj − δyi,s − δyj ,r + δr,s)

= maxΛ n−∑
ir ΛirDir − 1

2β

∑
ij

∑
rs ΛirΛjsKij(Mij −Dis −Djr + δrs)

= maxΛ n− 〈Λ, D〉 − 1
2β
〈K, M〉+ 1

β
〈K, DΛ>〉 − 1

2β
〈ΛΛ>, K〉

subject to Λ ≥ 0, Λe = e

where Mij = δyi,yj and Dir = δyi,r.

This is not the same formulation of the dual to (4.1) given in (Crammer and Singer,

2001). Importantly, this reformulation of the dual expresses the problem explicitly in

terms of the equivalence relations M and D—which gives us a necessary advantage over

the formulation of the dual given in (Crammer and Singer, 2001).

The main result can now be established. We would like to compute a solution to the

problem

min
M,D

ω(M, D) subject to M = DD>

M ∈ {0, 1}n×n, D ∈ {0, 1}n×κ

A solution to this problem will minimize the inverse square margin criterion ω and thus

maximize the original margin criterion. However, just as in the two-class case, we need

to worry about class balance, because a large margin value can always be achieved by

eliminating classes. To impose class balance in the multi-class case we add the constraint

( 1
κ
− ε)ne ≤ Me ≤ ( 1

κ
+ ε)ne for some ε.

The overall formulation, to this point, enjoys the advantage that the objective ω(M, D)

is jointly convex in M and D. Unfortunately, neither the integer constraints nor the

nonlinear constraint M = DD> are convex. Therefore, as before, we need to derive a

convex relaxation to this problem that preserves as much of the structure of the problem

as possible. To do so, we first relax the constraint that M and D be {0, 1}-valued, and
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instead allow them to take values in [0, 1]. However, we also have to cope with the nonlinear

equality constraint M = DD>. To remove the non-convexity implicit in the nonlinear

equality, we replace it with the convex inequalities M º DD> and diag(M) = e. The

resulting problem is a convex optimization over M and D.

minM,D ω(M, D) subject to 0 ≤ M ≤ 1, 0 ≤ D ≤ 1

diag(M) = e, M º DD>

( 1
κ
− ε)ne ≤ Me ≤ ( 1

κ
+ ε)ne

(4.7)

This in fact yields the convex optimization problem we wish to solve.

To tackle this problem in practice, it is convenient to reformulate it as a semidefinite

program.

Theorem 3 The convex optimization problem (4.7) is equivalent to

min
M,D,V,α,ζ

ζ subject to
[

I ⊗K p

p> 2
β
ζ + 1

β2 〈K,M〉+ 2
β
α>e

]
º 0

[
I D>

D M

]
º 0

diag(M) = e, 0 ≤ M ≤ 1, 0 ≤ D ≤ 1, V ≥ 0

( 1
κ
− ε)ne ≤ Me ≤ ( 1

κ
+ ε)ne

(4.8)

where p = vec( 1
β
KD −D + V + αe>).1

1The notation vec(X) means turning X into a vector by concatenating its columns. A⊗B denotes the
Kronecker product (Horn and Johnson, 1985). If A is an m× n and B is a p× q matrix, then A⊗B is a
block matrix of mp× nq, and

A⊗B =




a11B . . . a1nB
...

. . .
...

am1B . . . amnB



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Proof We have

ω(M, D) = max
Λ

Q(Λ,M, D) subject to Λ ≥ 0, Λe = e (4.9)

The corresponding Lagragian is

L(Λ, V, α) = − 1
2β
〈ΛΛ>, K〉+ 1

β
〈KD, Λ〉 − 〈Λ, D〉 − 1

2β
〈K, M〉

+〈V, Λ〉+ 〈αe>, Λ〉 −α>e

= − 1
2β

tr(KΛΛ>) + tr(( 1
β
D>K −D> + V > + eα>)Λ)− 1

2β
〈K, M〉 −α>e

subject to V ≥ 0

This can be further reformulated into

L(Λ, V, α) = − 1

2β
λ>(I ⊗K)λ + p>λ− 1

2β
〈K, M〉 −α>e (4.10)

based on the rule tr(AXBX>) = vec(X)>(B ⊗ A)vec(X) , where

λ = vec(Λ), p = vec(
1

β
KD + V −D + αe>)

By maximizing the Lagragian over λ, at the optimum we have:2

λ = β(I ⊗K)−1p

Therefore, the dual of (4.9) is:

ω(M, D) = min
V,α

β

2
p>(I ⊗K)−1p− 1

2β
〈K,M〉 −α>e subject to V ≥ 0

This can be reformulated as an equivalent semidefinite program using similar derivation as

in the proof of Theorem 1 , yielding

min
M,D,V,α,ζ

ζ subject to

2Here we assume that (I ⊗ K) is invertible. If not, similar fixes to those discussed in the proof of
Theorem 1 of Chapter 3 would apply equally here.
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[
I ⊗K p

p> 2
β
ζ + 1

β2 〈K,M〉+ 2
β
α>e

]
º 0

[
I D>

D M

]
º 0

diag(M) = e, 0 ≤ M ≤ 1, 0 ≤ D ≤ 1, V ≥ 0

( 1
κ
− ε)ne ≤ Me ≤ ( 1

κ
+ ε)ne

(4.11)

This formulation re-expresses the problem in a form that can be solved by conventional

semidefinite programming techniques (Helmberg, 2000; Boyd and Vandenberghe, 2004).

4.2 Unsupervised Experimental Results

Based on the above semidefinite formulation for the multi-class unsupervised SVM training

(4.8), I implemented the training procedures using the semidefninte programming package

SDPT3 (Toh et al., 1999).3

First, I conducted some simple experiments to investigate the basic properties of spec-

tral clustering methods in comparison to the approach developed above. In particular, I

compared the proposed approach to the multi-class spectral clustering algorithm of (Ng

et al., 2001). As described in Section 3.3, we expect that the normalized cut criterion

used by (Ng et al., 2001) retains sensitivity to outliers. Figure 4.1 shows the results of an

experiment on data embedded on the unit sphere, using the linear kernel as in Section 3.4.

Here we see that the behavior of normalized cut is clearly influenced by the presence of

outliers. However, there is another potential weakness: the technique of (Ng et al., 2001)

uses k-means clustering to partition the data after it has been embedded in the space of the

top κ eigenvectors, which means that its final clustering will tend to assume Gaussian (i.e.

spherical) classes in feature space. Figure 4.2 demonstrates that that the maximum mar-

gin approach is indeed able to capture linear, but non-Gaussian class structure, whereas

spectral clustering fails to preserve the intrinsic structure of the data.

3In general SDPT3 is faster than SeDuMi, and it is able to solve larger problems using the same memory.
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Figure 4.1: Normalized cut vs. maximum margin clustering in the multi-class case. (a)

and (b) show the results produced by normalized cut and maximum margin clustering

respectively. The two axes show angular positions on the unit sphere in spherical (φ, θ)

coordinates.
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Figure 4.2: Normalized cut vs. maximum margin clustering in the multi-class case. (a)

and (b) show the results produced by normalized cut and maximum margin clustering

respectively. The two axes show angular positions on the unit sphere in spherical (φ, θ)

coordinates.
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Note that, once again, even though the spectral clustering approach of (Ng et al., 2001)

might avoid these specific problems on these data sets by using an appropriate kernel, it

will always be sensitive to outliers and assume Gaussian classes in whatever feature space

is implied by the kernel.

In the next set of experiments I compared the semidefinite multi-class clustering tech-

nique to k-means and the spectral clustering method of (Ng et al., 2001). Initial experi-

ments were conducted on the sythetic data sets depicted in Figure 4.3. Table 4.1 shows that

for the first four sets of data (AAAI, Circle&Balls, 3JoinedCircles, Squiggles) semidefinite

and spectral clustering obtained identically small error rates, which were in turn signifi-

cantly smaller than those obtained by k-means (except for the AAAI case).

The clustering algorithms were also evaluated on two real data sets consisting of images

of hand-written digits; see Figures 4.4 and 4.5. The first data set, DigitsA, consists of black

and white images of 20× 16 pixels, as shown in Figure 4.4. The second data set, DigitsB,

consists of grey scale images of 16×16 pixels, as shown in Figure 4.5. In Table 4.1, the rows

with DigitsA are the results on the black and white digit data set, and the rows with DigitsB

are the results on the grey scale digit data set. The digits included in the data sample

are explicitly indicated. DigitsA∗ reports one run using all 39 examples of each digit while

DigitsA reports 10 repeats of subsampling 20 out of 39 examples of each digit. DigitsB

reports 10 repeats of subsampling 30 out of 1100 examples of each digit. Table 4.1 shows

that semidefinite clustering demonstrates a significant advantage over k-means clustering

on these data sets, but also a systematic advantage over spectral clustering.

The results shown above demonstrate that the large margin principle of the unsuper-

vised SVM approach is very effective discovering complex clusterings in the data. Moreover,

the advantage of obtaining a universal classification rule remains in the multi-class case,

which enables us to classify future data without re-running the algorithm.

4.3 Semi-supervised Multi-class SVMs

Again, the above formulation of unsupervised multi-class SVM training can easily be ex-

tended to semi-supervised learning. The extension of the unsupervised training procedure
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Figure 4.3: Four artificial data sets used in the clustering experiments.

Figure 4.4: A sampling of handwritten digit images from the first data set, DigitsA (zeros,

sixes, eights and nines).
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Clustering: Semidefinite Spectral Kmeans

AAAI 0 0 0

Circle&Balls 0 0 18.7

3Circles 4.0 4.0 47.3

Squiggles 0 0 28.3

DigitsA689∗ 3.4 12.0 12.0

DigitsA689 7.2 ±1.3 12.3 ±2.3 14.0 ±4.4

DigitsB689 13.3 ±2.8 15.1 ±3.9 18.5 ±4.6

DigitsA0689∗ 7.5 9.2 38.3

DigitsA0689 11.6 ±1.8 20.4 ±2.4 24.1 ±4.1

DigitsB0689 21.1 ±2.3 25.8 ±2.6 27.7 ±4.4

Table 4.1: Clustering results: Percentage misclassification errors of the various clustering

algorithms on the various data sets (± one standard error of the mean).

to the semi-supervised case proceeds similarly to the two-class case. Here one simply adds

the constraints given by the observed labels to the semidefinite program: Mij = δyi,yj for all

labeled training pairs i, j, and Dir = δyi,r for each labeled training pair and class label i, r.

The remainder of the program is equivalent to (4.8), and thus still defines a semidefinite

programming problem and can be solved by standard methods.

4.4 Comparison to Existing Semi-supervised Meth-

ods

Unlike the unsupervised case where multi-class k-means and spectral clustering are still

applicable, in the semi-supervised scenario, to the best of my knowledge, there are no

other procedures available for multi-class SVMs that apply the large margin approach

of (Joachims, 1999; Bennett and Demiriz, 1998), therefore, standard multi-class SVMs

(Crammer and Singer, 2001) are compared to, where the labeled training part is taken as

the whole training data.
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Figure 4.5: A sampling of handwritten digit images from the second data set, DigitsB

(zeros, sixes, eights and nines).

4.5 Semi-supervised Experimental Results

In the semi-supervised case, I tested my approach to semi-supervised learning on various

data sets. As mentioned, there are no other semi-supervised training techniques based on

the large margin principle or the semidefinite approach we develop above. Therefore, I

compare to standard supervised multi-class SVMs (Crammer and Singer, 2001) but also to

a general semi-supervised approach based on clustering the data using spectral clustering,

and then using the labeled data to assign minimum error labels to the classes. In each

case, I evaluated the techniques transductively as discribed in Section 3.7.

In these experiments, I used two UCI data sets (Balance-scale and Cars), one of the

hand-written digits data sets (DigitsA), and a data set of face images. The results were

averaged over 10 repeats, each randomly subsampling 1/10 of the data to be labeled (Ta-

ble 4.2). Here we see that the semi-supervised semidefinite approach tends to outperform

the other methods, particularly on the digits data. Generally, semi-supervised training

shows an advantage over strictly supervised training which ignores the extra unlabeled

data. Table 4.2 shows that the semidefinite SVM method is effective at exploiting unla-

beled data to improve the prediction of held out labels. In every case (except 5faces), it

significantly reduces the error of standard multi-class SVM, and obtains the best overall

performance of the semi-supervised learning techniques we have investigated. (See the

Table 4.2 caption for details of the experimental set up.)
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Figure 4.6: A sampling of the face data (three people).

Figure 4.7: A sampling of the face data (five people).
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Semi-sup: Semidefinite supSVM Spectral

UCI: Balance-scale 24.1 ±1.7 30.3 ±2.4 26.3 ±4.3

UCI:Cars 41.9 ±0.4 43.1 ±1.4 43.2 ±0.4

DigitsA689 5.6 ±0.7 16.3 ±1.6 12.7 ±0.3

DigitsA0689 6.5 ±0.5 20.6 ±3.3 11.8 ±2.7

3faces 0 10.0 ±2.0 0

5faces 5.2 ±1.5 14.4 ±1.7 0

Table 4.2: Semi-supervised learning results: Percentage misclassification errors of the var-

ious semi-supervised learning algorithms on the various data sets (± one standard error of

the mean). Data set sizes are: UCI:Balance-scale: 3 classes, 40 examples each. UCI:Cars: 3

classes, 40 examples each. DigitsA689: 3 classes, 39 examples each. DigitsA0689: 4 classes,

39 examples each. 3faces: 3 classes, 32 examples each. 5faces: 5 classes, 30 examples each.

4.6 Conclusion

In this chapter, the learning techniques of unsupervised and semi-supervised two-class

SVMs, presented in the previous chapter, have been generalized and extended to the multi-

class case. The methodologies share the same framework, which is to take the dual of the

maximum margin problem, re-express it in terms of the indicator variables that compare

the y-labels and then relax the indicator variables to get a convex optimization problem.

However, the derivation here involves more technical complications. Experiments show

that the proposed methods produce results that are competitive with, and sometimes

better than the state of the art. Overall, semidefinite programming has shown itself to be

an effective approach for unifying and generalizing SVM training techniques, and applying

SVMs to a wider range of circumstances, like unsupervised and semi-supervised learning.

Moreover, as shown in the background, the supervised multivariate prediction problem can

be viewed as a special case of multi-class classification problem, therefore, with the multi-

class unsupervised learning technique, the further extension to unsupervised multivariate

problems becomes possible.



Chapter 5

Unsupervised Structured-output

Support Vector Machines

There have recently been a number of significant advances in learning structured multi-

variate predictors from labeled data (Tsochantaridis et al., 2004; Altun et al., 2003; Taskar

et al., 2003). Structured prediction extends the standard supervised learning framework

beyond the univariate setting, where a single output variable is considered, to the mul-

tivariate setting, where complex, non-scalar predictions ŷ = f(x) must be produced for

inputs x. The challenge this creates is that each component ŷi of ŷ should not be produced

in isolation, depending only on the input x, but instead should take into account correla-

tions or constraints between ŷi and its neighboring components ŷj ∈ ŷ. It has been shown

in many applications that structured predictors that directly capture the relationships be-

tween output components perform better than models that do not directly enforce these

relationships (Tsochantaridis et al., 2004; Altun et al., 2003; Taskar et al., 2003). However,

recent progress on learning structured predictors has focused primarily on the supervised

case, where the structured output labels are provided with the training data.

In this chapter, I extend an important existing technique for learning structured multi-

variate predictors to the unsupervised case, by generalizing the approach I have developed

in Chapter 3 and 4. Although the technique I develop is general, in this chapter I will focus

the exposition on the special case of hidden Markov models (HMMs) that was introduced

in Section 2.3.

76
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As introduced in Section 2.3, an HMM expresses a joint distribution over an observation-

sequence state-sequence pair (x,y). A significant appeal of these models is that nearly every

operation one might wish to perform with them is tractable. For example, as discussed in

Section 2.3.1, an HMM can be used to efficiently decode an observation sequence to recover

an optimal hidden state sequence, y∗ = arg maxy p(y|x), by the Viterbi algorithm (Ra-

biner, 1989). Another example is maximum likelihood training discussed in Section 2.3.2:

if one is given complete training data expressed in paired sequences (x1,y1), ..., (xn,yn)

then training a hidden Markov model to maximize joint likelihood is a trivial matter of

setting the observation and transition potentials to the observed frequency counts of each

state→state, state→observation, and initial state patterns.

More often, however, as noted in Section 2.3.2, people are more interested in learning a

conditional model p(y|x) rather than a joint model p(x,y), because the conditional model

is needed for structured prediction in subsequent applications. For structured prediction

applications, the performance of discriminative training techniques, that optimize p(y|x)

generally exceeds that of more straightforward joint training techniques, that optimize

p(x,y).

One major limitation of current discriminative training algorithms, however, is that

they are all supervised. That is, these techniques require complete state sequences y to

be provided with the observation sequences x, which precludes the use of unsupervised or

semi-supervised approaches. This is a serious limitation because in most application areas

of sequence processing—be it speech, language, or biological sequence analysis—labeled

state sequence information is very hard or expensive to obtain as in the univariate case,

whereas unlabeled observation sequences are very cheap and available in almost unlimited

supply. Intuitively, much of the state-class structure of the domain can already be inferred

from a massive collection of unlabeled observation sequences. My goal in this chapter is to

try to develop a generally effective technique for unsupervised learning of discriminative

models. Such techniques do not currently exist.1

As discussed in Section 2.3.3, for the unsupervised training of hidden Markov models,

most researchers back off to a joint model view, and use EM to recover a conditional

1An exception is (Altun et al., 2005), which considers a semi-supervised training approach. Unfortu-
nately, the technique is not applicable to the unsupervised case I address in this chapter.
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model as a side-effect of acquiring p(x,y). It is interesting to note that, even given the

advantage of discriminative versus joint training for the supervised case, most research on

unsupervised training of HMMs has had to drop the discriminative approach. However,

there are several well-known problems with EM that I point out in Section 2.3.3. First,

EM is not an efficient optimization technique. That is, the marginal likelihood criterion

it attempts to optimize is not concave, and EM only converges to local maxima. Thus,

from the global optimization perspective, EM fails to guarantee a solution to the problem.

Second, if we are interested in learning a discriminative model p(y|x), there is little reason

to expect that the training criterion used by EM, which focuses on improving the input

model p(x), will recover a good predictor. In fact, given the experience with discriminative

versus joint supervised training, there is every reason to expect that it will not.

This leads to the work I pursue in this chapter: we will see that it is possible to optimize

a discriminative training criterion even when learning an HMM model in the unsupervised

case. I will also show that it is possible to achieve this in a convex optimization frame-

work, where at least in principle it is possible to compute optimal solutions in polynomial

time (Nesterov and Nemirovskii, 1994). In particular, I will extend the supervised max-

imum margin Markov network (M3N) approach outlined in Section 2.3.2, and show that

even without training labels (hidden state sequences) one can still learn a discriminative

model p(y|x) that postulates “widely separated” hidden state sequences for different input

observation sequences.

5.1 Discriminative Unsupervised Training

To develop a discriminative unsupervised training approach for structured predictors, I

follow the same methodology outlined in Chapter 3 and 4 which involves the same sequence

of steps: First, one treats the missing training labels as variables to be optimized. Second,

one takes the dual of the supervised problem, yielding an expression that involves pairwise

comparisons between the postulated y-labels. Third, one re-expresses the problem in terms

of comparisons between y-labels, rather than the y-labels themselves, which yields a convex

function in the comparison variables, even when the objective was not convex in the original

y-labels. Then, one relaxes the comparison variables to real values, and possibly relaxes
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additional constraints, to obtain a convex optimization problem. Finally, the comparison

variables in the solution can be used to recover a classification of the original data.

5.2 Unsupervised M3Ns

As usual, the development of an unsupervised training technique begins with the supervised

case, which in this case is the M3N approach discussed in Section 2.3.2. Although the

presentation here will be focused on extending M3N for sequence predictions, the ideas

easily extend to other approaches, and other structured prediction problems.

Recall the representation of the supervised problem established in Section 2.3.2. Sup-

pose we are given labeled training sequences (x1,y1), ..., (xn,yn), where each individual

training sequence is of the form (xi = (xi
1, ..., x

i
L),yi = (yi

1, ..., y
i
L)). As before, we consider

feature functions φ(xi,yi) of both the observation and the label sequence. If one assumes

a stationary hidden Markov model, as we do, then (2.44) and (2.45) show that the vector

of features φ(xi,yi) can be re-expressed as a sum of feature vectors over the local pieces

of the example, which I rewrite here for convenience

φ(xi,yi) =
L∑

k=1

φ(xi
ky

i
ky

i
k−1)

That is, each feature vector φ(xi
ky

i
ky

i
k−1) for a local sequence piece (xi

ky
i
ky

i
k−1) is just a

sparse vector that indicates which particular configuration is true in each local table of the

graphical HMM model. The fact that the feature vector depends only on a local subset

of variables (xi
ky

i
ky

i
k−1) encodes the conditional independence assumption of the HMM.

The fact that the total feature vector for a complete labeled sequence is just a sum of the

feature vectors for each local sequence piece, independent of k, encodes the stationarity

assumption of the HMM.

As discussed in Section 2.3.2, this would be the representation one would use in training

a supervised M3N given labeled training sequences. In the supervised case, a discriminative

structured predictor can be trained by solving a quadratic program (2.47) with respect to

weights on the feature vector φ(x,y). The goal of this quadratic program is to minimize
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the multivariate margin loss

ω(y1, ...,yn) = min
w

β

2
‖w‖2 +

∑
i,u

max
u

[
∆(u,yi)−w · (φ(xi,yi)− φ(xi,u))

]
+

(5.1)

where ∆(u,yi) counts the disagreements between u and yi, thus encouraging a margin

between the correct labeling yi and an alternative labeling u that is proportional to their

Hamming distance.

To derive a convenient unsupervised form of the training criterion, we will need to work

with the dual quadratic program (2.48). Taskar et al. (2003) observed that, as discussed

in Section 2.3.2 the dual QP, although of exponential size in a naive derivation, can be

factored into marginal dual variables using the conditional independence structure of the y-

labeling which can yield a compact formulation of the dual as a polynomial sized quadratic

program. In the HMM representation we are assuming, a compact quadratic program that

computes the same multivariate margin loss can be expressed as (2.49), which I repeat

here for convenience

ω(y1, ...,yn) = max
µ,ν

∑

i,k,u

µik(u)1(u 6=yi
k)

− 1

2β

∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)∆φik(uu′)>∆φj`(vv′) (5.2)

subject to µik(u) ≥ 0,∀iku

νik(uu′) ≥ 0,∀ikuu′

∑

u′
νik(uu′) = µik(u),

∑
u

µik(u) = 1

where ∆φik(uu′) = φ(xi
ky

i
ky

i
k−1) − φ(xi

kuu′). Here i, j index training cases, k, ` index

locations in each training sequence, and u, u′ index possible relabelings at these locations.

There is a dual variable µik(u) corresponding to each singleton relabeling, and a dual

variable νik(uu′) corresponding to each adjacent pair relabeling.

To derive an unsupervised version of this training criterion, we now consider minimizing

the multivariate margin loss ω as a function of the sequence labelings y1, ...,yn. Our task
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will be made considerably simpler by reformulating the multivariate margin loss in terms

of the indicator and equivalence relation matrices that we will ultimately have to use.

Theorem 4 The quadratic terms in (5.2) can be reformulated as

∑

ij,k`,uv

µik(u)µj`(v) δ1(iku, j`v)K(ik, j`) +
∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)δ2(ikuu′, j`vv′) (5.3)

where δ1(iku, j`v) = 1(yi
k=yj

` ) − 1(u=yj
` ) − 1(yi

k=v) + 1(u=v)

δ2(ikuu′, j`vv′) = 1(yi
k,k−1=yj

`,`−1) − 1(uu′=yj
`,`−1) − 1(yi

k,k−1=vv′) + 1(uu′=vv′)

Here K(ik, j`) is the inner product between the sub-feature vectors that omit the transition

model features and set the current state values equal.

Proof Since we have ∆φik(uu′) = φik(y
i
k,k−1)−φik(uu′), ∆φj`(vv′) = φjl(y

j
`,`−1)−φjl(vv′),

the quadratic term ∆φik(uu′)>∆φj`(vv′) can be reformulated into

∆φik(uu′)>∆φj`(vv′)

= φik(y
i
k,k−1)

>φj`(y
j
`,`−1)

− φik(uu′))>φj`(y
j
`,`−1)

− φik(y
i
k,k−1)

>φj`(vv′))

+ φik(uu′))>φj`(vv′))

Here to make things simple, we only consider linear feature vectors. From the arguments

shown in (2.42), we can see that for each local sequence piece (xi
ky

i
ky

i
k−1), the feature vector

φik(y
i
k,k−1) is just a sparse vector that indicates which particular configuration is true in

each local table of the graphical HMM model. More specifically, the feature vector can

be written as [1xi
kyi

k
;1yi

kyi
k−1

], where 1xi
kyi

k
is a vector that enumerates all configurations of

(xiyi), all the entries except the one for (xi
ky

i
k) are zero.

Therefore, we have

φik(y
i
k,k−1)

>φj`(y
j
`,`−1) = 1(yi

kxi
k=yj

`xj
`
) + 1(yi

k,k−1=yj
`,`−1)

= 1(yi
k=yj

` )K(ik, j`) + 1(yi
k,k−1=yj

`,`−1) (5.4)
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If we rewrite the other three terms similarly, the quadratic terms in (5.2) can be refor-

mulated into

∑
ij,k`,uu′,vv′ νik(uu′)νj`(vv′)

[ (
1(yi

k=yj
` )K(ik, j`) + 1(yi

k,k−1=yj
`,`−1)

)

−
(
1(u=yj

` )K(ik, j`) + 1(uu′=yj
`,`−1)

)

−
(
1(yi

k=v)K(ik, j`) + 1(yi
k,k−1=vv′)

)

− (
1(u=v)K(ik, j`) + 1(uu′=vv′)

) ]

=
∑

ij,k`,uu′,vv′ νik(uu′)νj`(vv′)
(
1(yi

k=yj
` ) − 1(u=yj

` ) − 1(yi
k=v) + 1(u=v)

)
K(ik, j`)

+
∑

ij,k`,uu′,vv′ νik(uu′)νj`(vv′)
(
1(yi

k,k−1=yj
`,`−1) − 1(uu′=yj

`,`−1) − 1(yi
k,k−1=vv′) + 1(uu′=vv′)

)

=
∑

ij,k`,uu′,vv′ νik(uu′)νj`(vv′)δ1(iku, j`v)K(ik, j`) +
∑

ij,k`,uu′,vv′ νik(uu′)νj`(vv′)δ2(ikuu′, j`vv′)

=
∑

ij,k`,u,v µik(u)µj`(v)δ1(iku, j`v)K(ik, j`) +
∑

ij,k`,uu′,vv′ νik(uu′)νj`(vv′)δ2(ikuu′, j`vv′)

because
∑

u′ νik(uu′) = µik(u)

Then, we can define the indicator matrices M, N,C,D

Mik,j` = 1(yi
k=yj

` )

Nikk−1,j``−1 = 1(yi
k,k−1=yj

`,`−1)

Cik,u = 1(yi
k=u) (5.5)

Dikk−1,uu′ = 1(yi
k,k−1=uu′)

Note that by these definitions, M and N are equivalence relations on singleton and pairwise

positions in the y-label sequences, respectively. Also, by these definitions M = CC> and

N = DD>. We can now also place the optimization variables into corresponding matrices

µ and ν such that µik,u = µik(u) and νik,uu′ = νik(uu′). Given these definitions, we

can then re-express an equivalent quadratic program to (5.2) in a compact matrix form.

Letting p1 be the number of singleton positions in the training data, and letting E denote

the matrix of all 1’s, we obtain
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Theorem 5 The multivariate margin loss (5.2) equals

ω(M, N, C, D) = p1 − 〈µ, C〉+ 1
β
(〈µ, KC〉+ 〈ν, ED〉)

− 1
2β

(〈M,K〉+ 〈N, E〉+ 〈µµ>, K〉+ 〈νν>, E〉)

subject to
∑

u′ νik(uu′) = µik(u) ∀iku

µ≥0, ν≥0, νe=e

M =CC>, N =DD>

Nikk−1,j``−1 = Mik,j`Mik−1,j`−1 ∀ijk`

(5.6)

Proof First we rewrite the linear term of the multivariate margin loss (5):

∑
i,k,u µik(u)1(u 6=yi

k)

=
∑

i,k,u µik(u)(1− 1(u=yi
k))

=
∑

i,k,u µik(u)−∑
i,k,u µik,uCik,u

=
∑

i,k 1− 〈µ, C〉
= p1 − 〈µ, C〉

(5.7)

Second, it has been proven for Theorem 4 that the quadratic term in (5) can be refor-

mulated as (5.3), which can be further decomposed into

∑

ij,k`,u,v

µik(u)µj`(v)1(yi
k=yj

` )K(ik, j`) (5.8)

−
∑

ij,k`,u,v

µik(u)µj`(v)1(u=yj
` )K(ik, j`) (5.9)

−
∑

ij,k`,u,v

µik(u)µj`(v)1(yi
k=v)K(ik, j`) (5.10)

+
∑

ij,k`,u,v

µik(u)µj`(v)1(u=v)K(ik, j`) (5.11)

+
∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)1(yi

k,k−1=yj
`,`−1) (5.12)
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−
∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)1(uu′=yj

`,`−1) (5.13)

−
∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)1(yi

k,k−1=vv′) (5.14)

+
∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)1(uu′=vv′) (5.15)

Below I will rewrite each component from (5.8)-(5.15) in terms of the indicator matrices

M , N , C and D.

(5.8):

∑

ij,k`,u,v

µik(u)µj`(v)1(yi
k=yj

` )K(ik, j`)

=
∑

ij,k`

(∑
u

µik(u)

)(∑
v

µj`(v)

)
Mik,j`Kik,j`

=
∑

ij,k`

Mik,j`Kik,j`

= 〈M, K〉 (5.16)

(5.9):

∑

ij,k`,u,v

µik(u)µj`(v)1(u=yj
` )K(ik, j`)

=
∑

ij,k`,u

µik(u)

(∑
v

µj`(v)

)
1(u=yj

` )K(ik, j`)

=
∑

ij,k`,u

µik,uCj`,uKik,j`

=
∑

i,k,u

µik,u (KC)ik,u

= 〈µ, KC〉 (5.17)

(5.10), similar to (5.9)

∑

ij,k`,u,v

µik(u)µj`(v)1(yi
k=v)K(ik, j`)
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=
∑

ij,k`,v

µj`(v)1(yi
k=v)K(ik, j`)

=
∑

ij,k`,v

µj`,vCik,vKik,j`

= 〈µ, KC〉 (5.18)

(5.11):

∑

ij,k`,u,v

µik(u)µj`(v)1(u=v)K(ik, j`)

=
∑

ij,k`,u

µik(u)µj`(u)K(ik, j`)

=
∑

ij,k`,u

µik,uµj`,uK(ik, j`)

=
∑

ij,k`

(
µµ>)

ik,j`
K(ik, j`)

= 〈µµ>, K〉 (5.19)

(5.12):

∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)1(yi

k,k−1=yj
`,`−1)

=
∑

ij,k`

(∑

uu′
νik(uu′)

) (∑

vv′
νj`(vv′)

)
1(yi

k,k−1=yj
`,`−1)

=
∑

ij,k`

Nikk−1,j``−1

= 〈N, E〉 (5.20)

(5.13):

∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)1(uu′=yi

`,`−1)

=
∑

ij,k`,uu′
νik(uu′)

(∑

vv′
νj`(vv′)

)
1(uu′=yj

`,`−1)
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=
∑

ij,k`,uu′
νik,uu′Dj``−1,uu′

=
∑

ij,k`,uu′
νik,uu′Eik,j``−1Dj``−1,uu′

=
∑

ik,uu′
νik,uu′ (ED)ik,uu′

= 〈ν, ED〉 (5.21)

(5.14), similar to (5.13)

∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)1(yi

k,k−1=vv′)

=
∑

ij,k`,vv′
νj`(vv′)1(yi

k,k−1=vv′)

=
∑

ij,k`,vv′
νj`,vv′Dikk−1,vv′

= 〈ν, ED〉 (5.22)

(5.15):

∑

ij,k`,uu′,vv′
νik(uu′)νj`(vv′)1(uu′=vv′)

=
∑

ij,k`,uu′
νik(uu′)νj`(uu′)

=
∑

ij,k`,uu′
νik,uu′νj`,uu′

=
∑

ij,k`

(
νν>

)
ik,j`

= 〈νν>, E〉 (5.23)

Combining (5.2) and (5.16)-(5.23) together and substituting into (5.2), we can rewrite

the multivariate margin loss as

ω(M,N,C,D) = p1 − 〈µ, C〉+ 1
β
(〈µ, KC〉+ 〈ν, ED〉)

− 1
2β

(〈M, K〉+ 〈N,E〉+ 〈µµ>, K〉+ 〈νν>, E〉)
(5.24)
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With this matrix form of the multivariate margin loss we can now develop a convex

optimization objective for discriminative unsupervised training of a structured prediction

model. In particular, given unlabeled sequences x1, ...,xn, we would like to solve for the

sequence labelings—represented implicitly as indicator matrices M , N , C and D over the

singleton and pair labelings—by minimizing the multivariate margin loss of the resulting

M3N predictor. In formulating the optimization problem, there are a number of constraints

on the matrix variables that we need to impose.

First, one needs to impose class balance constraints on the indicator matrices to avoid

trivial results. This can be achieved by imposing class balance constraints on each local

singleton labeling yi
k and each local pairwise labeling yi

k,k−1 by

(
1
κ
− ε

)
p1e ≤ Me ≤ (

1
κ

+ ε
)
p1e (5.25)

(
1
κ2 − ε

)
p2e ≤ Ne ≤ (

1
κ2 + ε

)
p2e

where p1 and p2 are the number of singleton and pair positions in the data.

Second, we need to respect the quadratic constraints between matrices, such as M =

CC> and N = DD>. Unfortunately, these are non-convex. However, using the same

approach as (Xu and Schuurmans, 2005) we can relax these to the convex one-sided con-

straints

M º CC>, N º DD>, diag(M)=e, diag(N)=e (5.26)

We also need to relax the quadratic constraints that relate M and N (the equivalence

relations on singleton and pairwise assignments):

Nikk−1,j``−1 = Mik,j`Mik−1,j`−1 ∀ijk`.

These are also non-convex, but can be approximated by linear constraints

Nikk−1,j``−1 ≤ Mik,j`

Nikk−1,j``−1 ≤ Mik−1,j`−1 (5.27)

Nikk−1,j``−1 ≥ Mik,j` + Mik−1,j`−1 − 1
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Finally, to pose the training problem, we need to relax the {0, 1} integer constraints on the

matrix entries to [0, 1]. Putting these pieces together we get a relaxed training criterion

for structured predictors that is entirely convex

min
M,N,C,D≥0

ω(M, N, C, D) subject to (5.25), (5.26), (5.27)

To solve this training problem in the same manner as above, one would then have to

re-express this convex problem as a semidefinite program. Unfortunately, we find that the

semidefinite program that results is too large to be practical. Therefore, our initial attempt

at optimizing this training criterion has taken a different approach: We can obtain a more

compact training technique by using a constraint generation method

min
M,N,C,D,ζ

ζ subject to ζ ≥ ω(M,N, C,D; µc,νc), ∀c ∈ C (5.28)

Here we keep a finite set of constraints C, where each µc,νc corresponds to a set of dual

parameters for an M3N. Then given a current, M, N, C, D, an M3N training algorithm

(QP) is used to maximize ω(M, N, C, D; µ,ν) as a function of µ and ν; hence adding a

new constraint to (5.28). Then (5.28) can be solved for a new M,N, C, D by a smaller

semidefinite program. By convexity, a fixed point must yield a global solution to the convex

problem (5.28). Unfortunately, this training algorithm is still quite expensive. Therefore,

in Section 5.4 below I propose some principled alternatives that are much faster, but no

longer guaranteed to find a global solution.

5.3 Experimental Evaluation of Global Techniques

To test the quality of the proposed unsupervised training criterion, I implemented the

training technique proposed above, using CPLEX for constraint generation and SDPT3

for the outer semidefinite optimizations. The goal in this section is not to assert that I

have a practical technology, yet, that one can easily apply to real problems immediately.

However, I believe the fundamental idea is important and I first want to demonstrate that

the principle works, regardless of computational cost. Then the question of computational

efficiency will be revisited and some faster but approximate alternatives will be proposed

below.
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Data Set: CDHMM EM

Synth. Data1 (95%) 3.38 ±0.75 15.09 ±1.92

Synth. Data2 (90%) 8.12 ±1.57 17.49 ±1.81

Synth. Data3 (80%) 22.12 ±1.40 30.06 ±1.24

Synth. Data4 (70%) 31.50 ±1.46 39.90 ±0.86

Protein Data1 51.75 ±1.80 58.11 ±0.47

Protein Data2 50.38 ±2.04 57.23 ±0.39

Table 5.1: Prediction error with different methods. Results are averaged over 10 repeats,

for each repeat, EM is run 10 times with different starts.

Since we were initially limited in the sizes of the problems I could consider, six small

data sets were investigated: four synthetic data sets generated from a 2-state HMM (see

Figure 2.4), and two reduced versions of a real protein secondary structure data set obtained

from the UCI repository (protein-secondary-structure). In each case, I gathered a sample

of labeled sequences, removed the labels, trained the unsupervised HMM models, and used

these to relabel the sequences using Viterbi decoding. The accuracy was measured by first

optimizing the map between predicted and possible state labels for each method, and then

counting the number of misclassified positions in all training sequences. I compared the

performance of the proposed convex discriminative HMM training (CDHMM) to standard

EM training (EMHMM). The regularization parameter β for CDHMM was set to 0.01 for

the synthetic experiments and 1.0 for the protein experiments. EM was run from a random

set of initial parameters 10 times. Smoothing had little noticeable effect on EM.

The synthetic data sets were generated from a simple 2-state HMM, where each state

emits either 0 or 1 according to emission probability. Emission noise was set equal to the

probability of transitioning to the other state. In synthetic data set 1, there is a 5% chance

of staying in the same state and a 95% chance of moving to another state; similarly, in

synthetic data set 2, 3, and 4 there is a 10%, 20%, and 30% chance respectively of staying

in the same state. Thus, the synthetic data sets are incrementally noisier from synthetic

data set 1 to 4. To generate training data, we sampled 10 sequences of length 8 from the

2-state HMM.
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For the protein sequence experiments, I created two small data sets of 10 subsequences

of length 10, with endpoints randomly selected in the data. In the first experiment (protein

data 1) a simple HMM was used (Figure 2.4), where yk is the secondary structure tag (one

of 3 values) and xk is the amino acid tag (one of 20 values). In the second experiment

(protein data 2), each observation xk was set to a window of 3 adjacent amino acid tags

(one of 203 values).

Table 5.1 shows the classification accuracies achieved by CDHMM and EMHMM on

these problems. Here we see that CDHMM learns far more accurate prediction models

than EMHMM. In fact, these results are quite strong, supporting the contention that the

discriminative training criterion, based on M3Ns, might provide a fundamental improve-

ment over EM for learning structured predictors. Of course, one source of the advantage

might simply be that the convex training criterion avoids getting stuck in local minima.

However, independent of local minima, we still argue that even in the unsupervised set-

ting, optimizing a discriminative criterion that focuses on p(y|x) is superior to optimizing

a criterion that focuses solely on improving the model of p(x) (which in fact is what EM is

trying to do in this case). Below further evidence is presented to attempt to support the

second contention.

Unfortunately, the computational cost of the convex training is quite high (hours versus

seconds) and I do not yet have a efficient optimization strategy that is able to guarantee

global minimization, even though there are no local minima. To try and address this issue,

I attempt to formulate more computationally attractive versions of the proposed training

criterion.

5.4 Efficient Approximation Techniques

The main idea, currently, for a computationally efficient approximate training method

is based on an equivalent reformulation of the training objective. The reformulation we

propose sacrifices convexity, but permits more efficient local optimization.

The easiest way to illustrate the idea is to consider the simple 2-class univariate case
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with the optimization problems:

ω(y) = min
w

β

2
‖w‖2 +

∑
i

[1− yiw · φ(xi)]+ (5.29)

= max
o≤λ≤1

λ>e− 1

2β
〈K ◦ λλ>,yy>〉 (5.30)

Equations (5.29) and (5.30) give two equivalent expressions for the margin loss as a function

of the labeling y, expressed as primal and dual quadratic programs. It is well-known that

the primal and the dual solutions are related by w = 1
β

∑
j λjy

jφ(xj). This relationship is,

in fact, not accidental, and one can establish several alternative quadratic programs that

give the same solution as the standard primal and dual forms.

Proposition 1 The margin loss, (5.29) and (5.30), is equivalent to

ω(M) = min
0≤λ≤1,ξ≥0

1

2β
〈K ◦ λλ>,M〉+ ξ>e

subject to ξi ≥ 1− 1

β

∑
j

MijλjK(xi,xj) ∀i

where M = yy>

Proof It is easy to see that the margin loss (5.29) is equivalent to

ω(y) = min
w,ξ

β

2
‖w‖2 +

∑
i=1

ξi subject to yiw · φ(xi) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i

(5.31)

Therefore one can formulate the Lagrangian function by introducing a variable for each

constraint:

L =
β

2
‖w‖2 +

∑
i=1

ξi −
∑
i=1

λi[y
iφ(xi) ·w − (1− ξi)]−

∑
i=1

µiξi λ,µ ≥ 0 (5.32)

By minimizing over w, and ξ, setting the respective derivatives to zero, we can obtain

w =
1

β

∑
i=1

λiy
iφ(xi) (5.33)

λ = e− µ (5.34)



92 Convex Large Margin Training Techniques

together with all the non-negative constraints λ, µ, ξ ≥ 0. If we substitute (5.33) into (5.31)

and adding the constraints on dual variables, it is not difficult to obtain the following

ω(M) = min
0≤λ≤1,ξ≥0

1

2β
〈K ◦ λλ>,M〉+ ξ>e

subject to ξi ≥ 1− 1

β

∑
j

MijλjK(xi,xj) ∀i

where M = yy>

That is, the normal maximization over the dual variables can be replaced by an equiv-

alent minimization over the dual and slack variables. This allows one to re-express the

problem of maximizing margin loss as a joint minimization between the dual variables λ

and the equivalence relation M as

min
M

min
0≤λ≤1,ξ≥0

ω(M ; λ, ξ) = λ>(K ◦M)λ/2β + ξ>e

subject to convex constraints

Unfortunately, ω(M ; λ, ξ) is not jointly convex in M and λ, meaning that global minimiza-

tion cannot be easily guaranteed. Nevertheless, the objective is marginally convex in M

and λ, ξ. This suggests an alternating minimization approach—first solve a semidefinite

program in M given λ and ξ, then solve a quadratic program in λ, ξ given M , and so on.

A key fact about alternating minimization is that it must make monotonic progress in the

objective ω. Given that the loss ω is bounded below, such a procedure is guaranteed to

converge to a local minimum.

Although alternating minimization yields superior intermediate solutions to the con-

straint generation method used above, it still involves a semidefinite program at each

alternation, making it still too expensive for large practical problems. However, the key

observation is that one can now in fact sidestep semidefinite programming entirely.

Proposition 2 Given an SVM solution specified by a fixed λ, the labeling y (and its

equivalence relation M = yy>) that minimizes margin loss is given by the labeling that is

consistent with the SVM’s predictions.



Unsupervised Structured Output Support Vector Machines 93

Proof In fact, this proposition is fairly obvious: the best labeling for a fixed SVM, in

terms of minimizing margin loss, is simply the SVM’s predictions.

Even though this proposition is straightforward, one can obtain a very fast approximate

training procedure as a result: initialize the labeling, train an SVM, relabel according to

the SVM’s discriminant, re-train the SVM, and so on. Although this sounds like a naive

heuristic, it is in fact a principled coordinate descent method: each iteration, either re-

training or re-labeling, is guaranteed to be non-increasing in the margin loss. Thus the

alternation must make monotonic progress in the objective and cannot oscillate, except

at a fixed point, which corresponds to a local minimum. I have experimented with this

approach below and found that it requires a nontrivial number of iterations (typically

more than 1) to reach a fixed point—so the procedure is not completely vacuous as one

might fear—but on the other hand the number of iterations rarely exceeds 5-10, so the

training time is not significantly worse than training a supervised M3N. Quite obviously,

however, this heuristic only finds local minima and will be dependent on good initialization.

Surprisingly, however, I have found that this heuristic alternation technique can achieve

good results when applied to large scale sequence data, and is still able to surpass EM in

the quality of the structured predictors it learns from unlabeled data.

5.5 Experimental Evaluation of Approximation Tech-

niques

In order to gauge the impact of the approximation, the alternating heuristic (ACDHMM)

was run on the same small data sets as the constraint generation method. Note that

ACDHMM needs some initial labeling, so it was seeded with the Viterbi labeling from a

model learned on a single run of EM. The results shown in Table 5.2 show that ACDHMM

is not as accurate as the exact CDHMM procedure, but generally offers better results

than EM, especially with the complex model (PROT2). However, the main point here is

that ACDHMM scales better than CDHMM so it is possible to present results on much

larger data sets. To demonstrate this, I use the same protein secondary structure data set

but now use complete sequences (from the available set of 110) instead of sampling short
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Data Set: CDHMM ACDHMM EM

Synth. Data1 (95%) 3.38 ±0.75 14.46 ±1.78 15.09 ±1.92

Synth. Data2 (90%) 8.12 ±1.57 17.34 ±1.52 17.49 ±1.81

Synth. Data3 (80%) 22.12 ±1.40 26.56 ±1.06 30.06 ±1.24

Synth. Data4 (70%) 31.50 ±1.46 38.58 ±0.96 39.90 ±0.86

Protein Data1 51.75 ±1.80 56.67 ±0.47 58.11 ±0.47

Protein Data2 50.38 ±2.04 53.65 ±0.57 57.23 ±0.39

Table 5.2: Prediction error including alternating method.

Data Set: ACDHMM EM

20×2-seq 43.12 ±2.20 46.27 ±1.51

10×5-seq 44.33 ±2.30 48.67 ±1.51

5×10-seq 46.44 ±2.12 48.67 ±1.82

Table 5.3: Prediction error for larger data sets.

segments. Results are shown in Table 5.3 for 20 samples of 2 sequences (20×2-SEQ), 10

samples of 5 sequences (10×5-SEQ), and 5 samples of 10 sequences (5×10-SEQ) taken

randomly from the data set. These data sets are much larger than the earlier examples,

having, on average, 337, 628, and 1214 structure observations respectively. In all cases,

the observations xk were set to a window of 7 adjacent amino acids. The results show an

improvement over EM in a more realistic context.

5.6 Conclusion

I have presented a new discriminative approach to the unsupervised training of hidden

Markov models. This technique combines current ideas in discriminative sequence pre-

diction with those in discriminative unsupervised training. To the best of my knowledge

this is the first technique to formulate a convex criterion for discriminative unsupervised

training. It preserves the advantages of discriminative training criterion, moreover, it gets
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around the problem of local minimum that the EM algorithm incurs.

The experimental results mirror the experience in supervised learning that, from the

perspective of learning a decoder p(y|x), it is better to use a discriminative training crite-

rion than a joint criterion. I can obtain an exact but expensive training method for this

criterion, or fast but inexact training methods, but cannot yet attain both. However, fur-

ther progress can be achieved along either direction by improving the semidefinte solvers

or by developing better approximations, to improve the scalability of the algorithm.



Chapter 6

Robust Supervised Support Vector

Machines

In this chapter, I shift attention away from deriving unsupervised and semi-supervised

variants of SVMs to addressing another shortcoming SVMs exhibit for supervised learning.

The fundamental principle of large margin training, though simple and intuitive, has proved

to be one of the most effective estimation techniques devised for supervised classification

learning problems. The simplest version of the idea is to find a hyperplane that correctly

separates binary labeled training data with the largest margin, intuitively yielding maximal

robustness to perturbation and reducing the risks of future misclassifications.

Unfortunately, the naive maximum margin principle yields poor results on non-linearly

separable data because the solution hyperplane becomes determined by the most misclas-

sified points, causing a breakdown in theoretical and practical performance. In practice,

some sort of mechanism is required to prevent training from fixating solely on anomalous

data. For the most part, the field appears to have fixated on the soft margin SVM ap-

proach to this problem (Cortes and Vapnik, 1995), where one minimizes a combination of

the inverse squared margin and linear margin violation penalty (hinge loss).

Unfortunately, the soft margin SVM has serious shortcomings. One drawback is the lack

of a probabilistic interpretation of the margin loss, which creates an unintuitive parameter

to tune and causes difficulty in modeling overlapping distributions. However, the central

drawback I address in this chapter is that outlier points are guaranteed to play a maximal

96
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role in determining the decision hyperplane, since they tend to have the largest margin loss

and therefore significantly influence the objective. Such dependence is exactly the opposite

of what we would like to do with outliers. In this chapter, I augment the standard soft

margin SVM scheme with an explicit outlier suppression mechanism.

There have been a few previous attempts to improve the robustness of large margin

training to outliers. The theoretical literature has investigated the concept of a robust mar-

gin loss that does not increase the penalty after a certain point (Bartlett and Mendelson,

2002; Krause and Singer, 2004; Mason et al., 2000). One problem with these approaches

though is that they lose convexity in the training objective, which prevents global opti-

mization. There have also been a few attempts in the literature to propose convex training

objectives that can mitigate the effect of outliers. Song et al. (2002) formulate a robust

SVM objective by scaling the margin loss by the distance from a class centroid, reducing

the losses (hence the influence) of points that lie far from their class centroid. Weston

and Herbrich (2000) formulate a new training objective based on minimizing a bound on

the leave one out cross validation error of the soft margin SVM. These approaches are

discussed in more detail in Section 6.4 below, but one property they share is that they do

not attempt to identify outliers, but rather alter the margin loss to reduce the effect of

misclassified points. Unfortunately, altering the fundamental margin loss can cause useful

theoretical properties to be lost, such as the margin loss being an upper bound on misclas-

sification error, which makes a connection to existing interpretations and generalization

analyses much more difficult.

In this chapter I propose a more direct approach to the problem of robust SVM training

by formulating outlier detection and removal directly in the standard soft margin frame-

work, without altering the standard hinge loss formulation. I gain several advantages in

doing so. First, the robustness of the standard soft margin SVM training is improved by

explicit outlier ablation. Second, the approach preserves the standard margin loss and

thereby retains a direct connection to standard theoretical analyses of SVMs. Third, one

obtains the first practical training algorithm for training on the robust hinge loss proposed

in the theoretical literature. Finally, outlier detection itself can be a significant benefit.

Although outlier detection is not the central goal in this chapter, it is an important

problem in many areas of machine learning and data mining (Aggarwal and Yu, 2001;
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Brodley and Friedl, 1996; Fawcett and Provost, 1997; Tax, 2001; Manevitz and Yoursef,

2001). Most work on outlier detection focuses on the unsupervised case where there is no

designated class variable. However, the technique I develop in this chapter is focused on

the supervised case, where the class labels are used to help identify outliers in each class.

6.1 Soft Margin SVMs

Here I will focus on the standard soft margin SVM for binary classification. In the primal

representation the classifier is given by a linear discriminant on input vectors (2.1), ŷ =

sgn(w · x), parameterized by a weight vector w. Note that I drop the scalar offset b for

ease of exposition.

As introduced in Section 2.1.1, given a training set (x1, y1), ..., (xn, yn) represented

as an n × d matrix of (row) feature vectors, X, and a n × 1 vector of training labels,

y ∈ {−1, +1}n, the goal of soft margin SVM training is to minimize a regularized hinge

loss, which for a training example (xi, yi) is given by:

hinge(w,xi, yi) = [1− yiw · xi]+

Let the misclassification error be denoted by

err(w,xi, yi) = 1(yiw·xi<0)

Then it is easy to see that the hinge loss gives an upper bound on the misclassification

error.

Proposition 3 hinge(w,x, y) ≥ err(w,x, y)

The proof is immediate. See Figure 6.1. The hinge loss is a well motivated proxy for

misclassification error, which itself is non-convex and NP-hard to optimize (Kearns et al.,

1992; Hoeffgen et al., 1995). Recall that to derive the soft margin SVM, one can derive a

quadratic program (2.8), and its dual (2.13) corresponding to minimizing regularized hinge

loss (2.7), which I repeat here for convenience

min
w

β

2
‖w‖2 +

∑
i

[1− yiw · xi]+ (6.1)
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Figure 6.1: Hinge loss vs. misclassification error as a function of yw·x. The dotted function

is the hinge loss (hinge), and the step function is the misclassification error (err).

= min
w

β

2
‖w‖2 +

∑
i

ξi subject to ξi≥1−yiw · xi, ξi≥0 ∀i (6.2)

= max
λ

λ>e− 1

2β
〈XX> ◦ λλ>,yy>〉 subject to 0≤λ≤1 (6.3)

Recall that in the dual (6.3), the feature vectors only occur as inner products xi · xj and

therefore can be replaced by a kernel operator Kij = K(xi,xj).

It is instructive to consider how the soft margin solution is affected by the presence of

outliers. In general, the soft margin SVM limits the influence of any single training example,

since 0 ≤ λi ≤ 1 by (6.3), while the solution classifier is determined by an λ-weighted linear

combination of the training examples and thus the influence of outlier points is bounded.

However, the influence of outlier points is not zero in the soft margin SVM. In fact, of

all training points, outliers will still retain maximal influence on the solution, since they

will normally have the largest hinge loss. This results in the soft margin SVM still being

inappropriately drawn toward outlier points, as Figure 6.3 illustrates. Essentially, the soft

margin mechanism is a reasonable approach for handling minor amounts of class overlap,

but it is not an effective mechanism for discounting outlier points.

6.2 Robust SVM Training

The main idea in this chapter is to augment the soft margin SVM with explicit indicator

variables that can remove outliers entirely. The first application of this approach will be to
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Figure 6.2: Margin losses as a function of yw ·x. The dotted function is the hinge loss

(hinge), the bold function is the robust hinge loss (robust), the thin function is the η-

hinge loss (η-hinge), and the step function is the misclassification error (err). Note that

η-hinge ≥ robust ≥ err for 0 ≤ η ≤ 1. Also hinge ≥ robust. If yw · x ≤ 0, then η = 0

minimizes η-hinge; else η = 1 minimizes η-hinge. Thus minη η-hinge = robust for all yw·x.

show that outlier indicators can be used to directly minimize the robust hinge loss (Bartlett

and Mendelson, 2002; Shawe-Taylor and Cristianini, 2004). Then the approach is adapted

to focus more specifically on outlier identification.

Define a variable ηi for each training example (xi, yi) such that 0 ≤ ηi ≤ 1, where

ηi = 0 is intended to indicate that example i is an outlier. Assume initially that these

outlier indicators are boolean, ηi ∈ {0, 1}, and known beforehand. Then one could trivially

augment the soft SVM criterion (6.1) to discount the outliers by solving

min
w

β

2
‖w‖2 +

∑
i

ηi[1− yiw · xi]+ (6.4)

In this formulation, no loss is charged for any points where ηi = 0, and these examples

are removed from the solution. One problem with this initial formulation, however, is that

ηi[1− yiw · xi]+ is no longer an upper bound on the misclassification error. Therefore, we

add a constant term 1 − ηi to recover an upper bound. Specifically, we define a new loss

function

η-hinge(w,x, y) = η [1− yw · x]+ + 1− η

With this definition one can show for all 0 ≤ η ≤ 1
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Proposition 4 η-hinge(w,x, y) ≥ err(w,x, y)

In fact, this upper bound is very easy to establish; see Figure 6.2. Similar to (6.4), mini-

mizing the objective

min
w

β

2
‖w‖2 +

∑
i

ηi-hinge(w,xi, yi) (6.5)

ignores any points with ηi = 0 since their loss is a constant with respect to w.

Now rather than fix η ahead of time, we would like to simultaneously optimize η and

w, which would achieve concurrent outlier detection and classifier training. To facilitate

efficient computation, the outlier indicator variables are relaxed to be 0 ≤ η ≤ 1. Note that

Proposition 4 still applies in this case, and we retain the upper bound on misclassification

error for relaxed η. Thus, we propose the joint training objective

min
w

min
0≤η≤1

β

2
‖w‖2 +

∑
i

ηi-hinge(w,xi, yi) (6.6)

This objective yields a convex quadratic program in w given η, and a linear program in η

given w. However, (6.6) is not jointly convex in w and η, so alternating minimization is

not guaranteed to yield a global solution. Instead, I will derive a semidefinite relaxation

of the problem that removes all local minima below. However, before deriving a convex

relaxation of (6.6) I first establish a very useful and somewhat surprising result: that

minimizing (6.6) is equivalent to minimizing the regularized robust hinge loss from the

theoretical literature.

6.2.1 Robust Hinge Loss

The robust hinge loss has often been noted as a superior alternative to the standard hinge

loss of soft margin SVMs (Krause and Singer, 2004; Mason et al., 2000). This loss is given

by

robust(w,x, y) = min(1, hinge(w,x, y))

and is illustrated in bold in Figure 6.2.
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Figure 6.3: Illustrating behavior of SVM given outliers.

The main advantage of robust over regular hinge loss is that the robust loss is bounded,

meaning that outlier examples cannot have an effect on the solution beyond that of any

other misclassified point. The robust hinge loss also retains an upper bound on the mis-

classification error, as shown in Figure 6.2. Given such a loss, one can pose the regularized

objective

min
w

β

2
‖w‖2 +

∑
i

robust(w,xi, yi) (6.7)

Unfortunately, even though robust hinge loss has played a significant role in the literature

on generalization theory (Bartlett and Mendelson, 2002; Shawe-Taylor and Cristianini,

2004), the minimization objective (6.7) has not been often applied in practice because it is

non-convex, and leads to significant difficulties in optimization (Krause and Singer, 2004;

Mason et al., 2000).

I can now offer an alternative characterization of robust hinge loss, by showing that it

is equivalent to minimizing the η-hinge loss introduced earlier. This connection facilitates

a new approach to the training problem that I introduce below. First, the η-hinge loss can

be easily shown to be an upper bound on the robust hinge loss for all η.

Proposition 5 η-hinge(w,x, y) ≥ robust(w,x, y) ≥ err(w,x, y)
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Second, minimizing the η-hinge loss with respect to η gives the same result as the robust

hinge loss

Proposition 6 min
η

η-hinge(w,x, y) = robust(w,x, y)

Both propositions are straightforward, but can be seen best by examining Figure 6.2.

From these two propositions, one can immediately establish the following equivalence.

Theorem 6

min
w

min
0≤η≤1

β

2
‖w‖2 +

∑
i

ηi-hinge(w,xi, yi)

= min
w

β

2
‖w‖2 +

∑
i

robust(w,xi, yi)

Moreover, the minimizers are equivalent.

Proof Fix β and define the following:

frobust(w) =
β

2
‖w‖2 +

∑
i

robust(w,xi, yi)

fhinge(w,η) =
β

2
‖w‖2 +

∑
i

ηi-hinge(w,xi, yi)

wr = arg min
w

frobust(w)

(wh,ηh) = arg min
w

min
0≤η≤1

fhinge(w, η)

ηr = arg min
0≤η≤1

fhinge(wr, η)

Then from Proposition 5

min
w

min
0≤η≤1

fhinge(w,η) = min
0≤η≤1

fhinge(wh, η)

≥ frobust(wh) ≥ min
w

frobust(w)

Conversely, by Proposition 6 we have

min
w

frobust(w) = frobust(wr)

= min
0≤η≤1

fhinge(wr, η) ≥ min
w

min
0≤η≤1

fhinge(w,η)
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Thus, the two objectives achieve equal values. Finally, the minimizers wr and wh must be

interchangeable, since we have frobust(wr) = fhinge(wr,ηr) ≥ fhinge(wh,ηh) = frobust(wh) ≥
frobust(wr), showing all values are equal.

Therefore minimizing regularized robust loss is equivalent to minimizing the regularized

η-hinge loss we introduced. Previously, I observed that the regularized η-hinge objective

can be minimized by alternating minimization on w and η. Unfortunately, as Figure 6.2

illustrates, the minimization of η given w always results in boolean solutions that set

ηi = 0 for all misclassified examples and ηi = 1 for correct examples. Such an approach

immediately gets trapped in local minima. Therefore, a better computational approach is

required. To develop an efficient training technique for robust loss, a semidefinite relaxation

of the problem is derived.

6.2.2 Convex Relaxation

To derive a convex relaxation of (6.6) I need to work in the dual of (6.5). Let ◦ denote

componentwise multiplication. We then obtain

Proposition 7 For fixed η

min
w

β

2
‖w‖2 +

∑
i

ηi-hinge(w,xi, yi)

= min
w,ξ

β

2
‖w‖2 + e>ξ + e>(e− η)

subject to ξi ≥ 0, ξi ≥ ηi(1− yiw · xi) ∀i
(6.8)

= max
λ

η>(λ− e)− 1

2β
λ>(XX> ◦ yy> ◦ ηη>)λ + n

subject to 0 ≤ λ ≤ 1

Proof The Lagrangian of (6.8) is

L1 =
β

2
w>w + e>ξ +

∑
λi(ηi − ηiy

iw · xi − ξi)− ν>ξ + e>(e− η)

subject to λ ≥ 0,µ ≥ 0
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Computing the gradient with respect to ξ yields dL1/dξ = e − λ − ν = 0, which implies

λ ≤ e. The Lagrangian can therefore be equivalently expressed by

L2 =
β

2
w>w +

∑
λi(ηi − ηiy

iw · xi) + e>(e− η)

subject to 0 ≤ λ ≤ 1

Finally, taking the gradient with respect to w yields dL2/dw = βw − ∑
λiηiy

ixi = 0,

which implies w =
∑

λiηiy
ixi/β. Substituting back into L2 yields the result.

I can subsequently reformulate the joint objective as follows.

Corollary 1

min
0≤η≤1

min
w

β

2
‖w‖2 +

∑
i

ηi-hinge(w,xi, yi) (6.9)

= min
0≤η≤1

max
0≤λ≤1

η>(λ− e)− 1

2β
λ>(XX> ◦ yy> ◦ ηη>)λ + n

The significance of this reformulation is that it now allows one to express the inner

optimization as a maximum, which allows a natural convex relaxation for the outer mini-

mization. The key observation is that η appears in the inner maximization only as η and

the symmetric matrix ηη>. Using the same idea I exploited in Chapter 3 to 5, if we create

a new matrix variable M = ηη>, we can re-express the problem as a maximum of linear

functions of η and M , yielding a convex objective in η and M (Boyd and Vandenberghe,

2004)

min
0≤η≤1, M=ηη>

max
0≤λ≤1

η>(λ− e)− 1

2β
λ>(G ◦M)λ

where G = XX> ◦ yy>.

The only problem that remains is that M = ηη> is a non-convex quadratic constraint.

This constraint forces me to make the only approximation: I relax the equality to M º ηη>

and diag(M) = η, which yields a convex optimization problem

min
0≤η≤1

min
M

max
0≤λ≤1

η>(λ− e)− 1

2β
λ>(G ◦M)λ (6.10)

subject to M º ηη>, diag(M) = η

This problem can be equivalently expressed as a semidefinite program.
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Theorem 7 Solving (6.10) is equivalent to solving the semidefinite program

min
η,M,µ,ν,ζ

ζ subject to µ ≥ 0, ν ≥ 0, 0 ≤ η ≤ 1, M º ηη>, diag(M)=η,

[
G ◦M η + µ− ν

(η + µ− ν)> 2
β
(ζ − ν>e + η>e)

]
º 0

The proof of Theorem 7 is very similar to that of Theorem 1.

This formulation as a semidefinite program admits a polynomial time training algorithm

(Nesterov and Nemirovskii, 1994; Boyd and Vandenberghe, 2004). I refer to this algorithm

as the robust η-hinge (REH) SVM.

6.3 Explicit Outlier Detection

Note that the technique developed above does not actually identify outliers, but rather

just improves robustness against the presence of outliers. That is, a small value of ηi in the

computed solution does not necessarily imply that example i is an outlier. To explicitly

identify outliers, one needs to be able to distinguish between true outliers and points that

are just misclassified because they are in a class overlap region. To adapt the technique to

explicitly identify outliers, I propose a minor modification of the previous procedure.

Specifically, let us reconsider a joint optimization of the original objective (6.4), but now

add a an explicit constraint that at least a certain proportion ρ of the training examples

must not be considered as outliers

min
w

min
0≤η≤1

β

2
‖w‖2 +

∑
i

ηi[1− yiw · xi]+

subject to e>η ≥ ρn (6.11)

The difference is that I drop the extra 1−ηi term in the η-hinge loss and add the proportion

ρ constraint. The consequence is that the upper bound on the misclassification error is

lost, but the optimization is now free to drop a proportion 1−ρ of the points without

penalty, to minimize hinge loss. The points that are dropped should correspond to ones

that would have obtained the largest hinge loss; i.e. the outliers. Following the same steps
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Figure 6.4: Illustrating behavior of REH, ROD and SVM on Gaussian blobs with outliers.

as above, one can derive a dual and then a semidefinite relaxation of this objective (6.11)

that allows a reasonable training algorithm:

min
η,M,µ,ν,ζ

ζ subject to µ ≥ 0, ν ≥ 0, 0 ≤ η ≤ 1, M º ηη>, e>η ≥ ρn,

[
G ◦M η + µ− ν

(η + µ− ν)> 2
β
(ζ − ν>e)

]
º 0

I refer to this method as the robust outlier detection (ROD) algorithm. Figure 6.4 shows

anecdotally that this outlier detection works well in a simple synthetic setting, discovering

a much better classifier than the soft margin SVM (hinge loss), while also identifying the

outlier points. The robust SVM algorithm developed above also produces good results in

this case, but does not identify outliers.

I will examine these two techniques in more detail below, but first I need to discuss

competing approaches.
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6.4 Comparison to Existing Techniques

Before discussing experimental results, I briefly review related approaches to robust SVM

training. Interestingly, the original proposal for soft margin SVMs (Cortes and Vapnik,

1995) already considered alternative losses to hinge loss, based on the transformation

loss(w,x, y) = hinge(w,x, y)p. for 1 ≤ p < ∞. The so called L2 slack (Lanckriet et al.,

2004) is achieved by setting p = 2, for example. Unfortunately, transforming the margin

penalties by any factor choosing p > 1 exaggerates the largest losses and in fact makes the

technique more sensitive to outliers than the standard hinge loss. Choosing p < 1 improves

robustness, but creates a non-convex training problem.

As I mentioned at the start of this chapter, there have been a few more recent attempts

to improve the robustness of soft margin SVMs to outliers. The centroid SVM formulation

of Song et al. (2002) modifies the margin penalty by shifting the loss according to the

distance from the class centroid

min
w

1

2
‖w‖2 +

∑
i

[1− yiw · xi − λ‖xi − µyi‖2]+

where µyi is the centroid for class yi ∈ {−1, +1}. Intuitively, examples that are far

away from their class centroid will have their margin losses automatically reduced, which

diminishes their influence on the solution. If the outliers are indeed far from the class

centroid the technique is reasonable; see Figure 6.5. Unfortunately, the motivation is

heuristic and loses the upper bound on misclassification error, which blocks any simple

theoretical justification.

Another interesting proposal for robust SVM training is the leave-one-out (LOO) SVM

and its extension to the adaptive margin SVM (Weston and Herbrich, 2000). The LOO

SVM minimizes the leave-one-out error bound on dual soft margin SVMs, derived originally

by Jaakkola and Haussler (1999). The bound shows that the misclassification error achieved

on a single example i by training a soft margin SVM on the remaining n − 1 data points

is at most

loo err(xi, yi) ≤ yi
∑

j 6=i

αjy
jxi ·xj

where α is the dual solution trained on the entire data set. Weston and Herbrich (2000)
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Figure 6.5: Illustrating behavior given outliers.

propose to directly minimize the upper bound on the loo err, leading to

min
α≥0

∑
i

[1− yixi ·
∑

j

αjy
jxj + αi‖xi‖2]+ (6.12)

Although this objective is hard to interpret as a regularized margin loss, it is closely related

to a standard form of soft margin SVM using a modified regularizer

min
α≥0

∑
i

αi‖xi‖2 +
∑

i

[1− yixi ·
∑

j

αjy
jxj + αi‖xi‖2]+

The objective (6.12) implicitly reduces the influence of outliers, since training examples

contribute to the solution only in terms of how well they help predict the labels of other

training examples. This approach is simple and elegant and only requires linear program-

ming. Nevertheless, its motivation remains a bit heuristic: (6.12) does not give a bound on

the leave-one-out error of the LOO SVM technique itself, but rather minimizes a bound on

the leave-one-out error of another algorithm (soft margin SVM) that was not actually run

on the data. Consequently, the technique is hard to interpret and requires novel theoretical

analysis. It can also give anomalous results, as Figure 6.5 indicates. Figure 6.6 shows how

these existing techniques compare to my proposed algorithms on the simple synthetic data

set.

In contrast to the approach I have proposed above, which is to take a semidefinite

relaxation of the non-convex problem to avoid local minima, Collobert et al. (2006) follow
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Figure 6.6: Illustrating behavior of different algorithms on Gaussian blobs with outliers.

a different direction, which is to take the non-convex problem as it is, and solve it using

some iterative optimization technique. This will not avoid the problem of local minimum,

however, better computational efficiency is achieved in return. This work was conducted

independently and concurrently with mine (Xu et al., 2006a).

The two algorithms proposed in (Collobert et al., 2006; Xu et al., 2006a) are trying

to solve the same problem of minimizing the regularized robust hinge loss (6.7). As dis-

cussed previously, this is equivalent to minimizing the regularized η-hinge loss (6.6), via

Theorem 6, which I solve by developing a semidefinite relaxation. On the other hand, as

the authors of (Collobert et al., 2006) observed, the non-convex part of (6.7), the robust

hinge loss robust(w,xi, yi), can be decomposed into the sum of the convex hinge loss and a

concave loss. Thus the problem can be solved using the so called Concave-Convex Proce-

dure (CCCP), which is an iterative algorithm. In each iteration, one only needs to solve a

standard SVM, which is a quadratic program. After a finite number of iterations, CCCP is

guaranteed to converge. Nevertheless, due to the lack of convexity, only a local minimum

will be reached.

In summary, there are two underlying issues related to the problem of minimizing robust

hinge loss, which are convexity and scalability. The two algorithms discussed above pursue
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one of the two directions respectively.

6.5 Experimental Results

I conducted a series of experiments on synthetic and real data sets to compare the robust-

ness of the various SVM training methods, and also to investigate the outlier detection

capability of the proposed approach. I implemented the training methods using SDPT3

(Toh et al., 1999) to solve the semidefinite programs proposed in this chapter.

The first experiments were conducted on synthetic data and focused on measuring

generalization given outliers, as well as the robustness of the algorithm to their param-

eters. One Gaussian was assigned per class, with the first given by µ = (3,−3) and

Σ =

(
20 16

16 20

)
and the second by −µ and Σ. Since the two Gaussians overlap, the

Bayes optimal misclassification error is 2.2%. Outliers were added to the training set by

drawing examples uniformly from a ring with inner-radius of R and outer-radius of R + 1,

where R was set to one of the values 15, 35, 55, 75. These examples were labeled randomly

with even probability. In all experiments, the training set contained 50 examples: 20 from

each Gaussian and 10 from the ring. The test set contained 1, 000 examples from each

class. Here the examples from the ring caused about 10% outliers.

All the experiments were repeated 50 times, drawing a training set and a test set

every repetition. All the results reported are averaged over the 50 runs, with a 95%

confidence interval. I compared the performance of standard soft margin SVM, robust

η-hinge SVM (REH) and the robust outlier detector SVM (ROD). All algorithms were

run with the generalization tradeoff parameter set to one of five possible values: β =

10−4, 10−2, 100, 102, 104. The robust outlier detector SVM was run with outlier parameter

set to one of seven possible values, ρ = 0.2, 0.4, 0.6, 0.8, 0.9, 0.94, 0.98.

Figure 6.7 shows the results for the two versions of robust hinge loss training versus

soft margin SVM, LOO SVM, and centroid SVM. For centroid SVM I used 8 values for

the λ parameter and chose the best over the test-set. For all other methods I used the best

value of β for standard SVM over the test set. The x-axis is the noise level indicated by

the radius R and the y-axis is test error.
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Figure 6.7: Synthetic results: test error as a function of noise level.
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robust η-hinge algorithm and the CCCP algorithm.
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Figure 6.9: Synthetic results: test error as a function of the regularization parameter β.
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These results confirm that the standard soft margin SVM is sensitive to the presence of

outliers, as its error rate increases significantly when the radius of the ring increases. By

contrast, the robust hinge SVM is not as affected by label noise on distant examples. This

is illustrated both in the value of the mean test error and the standard deviation. Here the

outlier detection algorithm with ρ = 0.80 achieved the best test error, and robust η-hinge

SVM second best.

The comparison of the robust η-hinge algorithm and the CCCP approach is clear: the

robust η-hinge algorithm I propose in this thesis is capable of finding a global solution in

a semidefinite relaxation. However, as stated in previous chapters, despite its polynomial

run time, semidefinite programming is still relatively expensive compared to the traditional

convex optimization techniques such as LP and QP, leading to difficulty in scaling up to

large problems in many real applications. On the other hand, the CCCP approach yields

local solutions more efficiently, which makes the larger scale experiments in (Collobert

et al., 2006) possible. However, local minima are always an issue, and the quality of solution

always depends on the initialization in this approach. This can be clearly illustrated from

the comparison shown in Figure 6.8.

Figure 6.9 shows the test error as a function of β for all methods (except the CCCP

approach) for high noise level R = 55. From the plot a few more conclusions can be drawn:

First, when β is close to zero the value of ρ does not affect performance very much. But

otherwise, if the value of ρ is too small, then the performance degrades. Third, the robust

methods are generally less sensitive to the value of the regularization parameter β. Fourth,

if β is very high then it seems that the robust methods converge to the standard SVM.

The outlier detection algorithm was also evaluated as follows. Since the identity of

the best linear classifier is known, I identified all misclassified examples and ordered the

examples using the η values assigned by the ROD training algorithm. The recall and

precision are computed using this ordering and averaged over all 50 runs. Figure 6.10

shows the precision versus recall for the outlier detection algorithm (ROD) for various

values of ρ and for the minimal value of β. As we can see from the plot, if ρ is too large

(i.e. one guesses that the number of outliers is smaller than their actual number), the

detection level is low and the F-measure is about 0.75. For all other values of ρ, I obtain

an F-measure of about 0.85.
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Figure 6.11: Relative improvement of the robust algorithms over standard soft SVM for

the speech data.

A few further comments: First, when β is large I can achieve better F-measures by

tuning ρ. Second, there are two ways to set ρ. The simple method is to perform cross-

validation using the training data and to set ρ to the value that minimized the averaged

error. However, an alternative method was found that worked well in practice. If ρ is

large, then the graph of sorted η values attains many values near one (corresponding to

non-outlier examples) before decreasing to zero for outliers. However, if ρ is small, then all

values of η fall below one. Namely, there is a second order phase transition in the maximal

value of η, and this phase transition occurs at the value of ρ which corresponds to the true

number of outliers.

Given these conclusions, I can proceed with experiments on real data. I conducted

experiments on the TIMIT phone classification task. Here I used experimental setup

similar to (Gunawardana et al., 2005) and mapped the 61 phonetic labels into 48 classes.

10 pairs of classes were then picked to construct binary classification tasks. I focused

mainly on unvoiced phonemes, whose instantiations have many outliers since there is no

harmonic underlying source. The ten binary classification problems are identified by a pair
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of phoneme symbols (one or two Roman letters). For each of the ten pairs 50 random

examples were picked from each class, yielding a training set of size 100. Similarly, for

test, 2, 500 random examples were picked from each class and generated a test set of size

5, 000. In Preprocessing, mel-frequency cepstral coefficients (MFCCs)1 were computed

with 25ms windows at a 10ms frame rate. The first 13 MFCC coefficients of each frame

were retained, along with their first and second time derivatives, and the energy and its

first derivative. These coefficient vectors (of dimension 41) were whitened using PCA. A

standard representation of speech phonemes is a multivariate Gaussian, which uses the first

order and second order interaction between the vector components. Thus each phoneme

was represented using a feature vector of dimension 902 using all the first order coefficients

(41) and the second order coefficients (861).

For each problem I first ran the soft margin SVM and set β using five-fold-cross vali-

dation. This β was then used for all runs of the robust methods. The results, summarized

in Figure 6.11, show the relative test error between SVM and the two robust SVM algo-

rithms. Formally, each bar is proportional to (εs−εr)/εs, where εs(εr) is the test error. The

results are ordered by their statistical significance for robust hinge SVM (REH) according

to McNemar test2—from the least significant results (left) to the most significant (right).

All the results right to the black vertical line are significant with 95% confidence for both

algorithms. Here we see that the robust SVM methods achieve significantly better results

than the standard SVM in six cases, while the differences are insignificant in four cases.

(The difference in performance between the two robust algorithms is not significant.) I

also ran the other two methods (LOO SVM and centroid SVM) on this data, and found

that they performed worse than the standard SVM in 9 out of 10 cases, and always worse

than the two robust SVMs.

1Mel-frequency cepstral coefficients are coefficients derived from a type of cepstral representation of the
audio clip to represent audio.

2The McNemar test is a way to measure the marginal homogeneity of 2 × 2 contingency tables, in-
troduced by Q. McNemar in 1947. When applied to a 2 × 2 table which summarizes agreement between
two classifiers, the McNemar test illustrates whether or not the difference between the two classifiers is
statistically significant.
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6.6 Conclusion

In this chapter I proposed a new form of robust SVM training that is based on identifying

and eliminating outlier training examples. Interestingly, it was found that this principle

provided a new but equivalent formulation to the robust hinge loss often considered in the

theoretical literature. The new alternative characterization of robust hinge loss allowed

me to derive a practical training procedure for this objective, based on a convex relax-

ation as a semidefinite program. The resulting training procedure demonstrates superior

robustness to outliers than standard soft margin SVM training, and yields generalization

improvements in synthetic and real data sets. A useful side benefit of the approach, with

some modification, is the ability to explicitly identify outliers as a byproduct of training.



Chapter 7

Conclusion

This thesis presents a novel methodology for applying convex optimization techniques,

more specifically semidefinite programming, to various large margin based learning tasks.

The new methods share a common framework, with a sequence of steps that can roughly

be broken down as: First, augment a standard SVM with indicator variables for unob-

served quantities. In unsupervised and semi-supervised SVMs, the new variables are the

unobserved y-labels, while in robust SVMs, the new variables are the outlier indicators,

neither of which are given during training. The next step is to reformulate the resulting

non-convex optimization problems into semidefinite programs via a sequence of convex

relaxations. Within this framework, several extensions of SVMs to new scenarios, with

promising results, can be developed.

7.1 Summary of Contributions

The first part of the thesis (Chapter 3-4) considers the problem of unsupervised support

vector machines (SVMs) for the simple univariate model where one only needs to learn

a single label. This can be viewed as a novel alternative to the traditional clustering

algorithms such as k-means and spectral clustering. However, the advantage here is a

natural connection between supervised learning and unsupervised learning. Through this

connection, semi-supervised variants can be easily developed as a direct side benefit.

In the second part (Chapter 5), the methodology is further extended to the multivariate

118
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prediction model with structured predictions. The goal here is to train a model with a

sequence of labels, where each component not only depends on the input, but also on its

neighbors. The work in Chapter 5 is achieved by developing an unsupervised version of

maximum margin Markov networks (Taskar et al., 2003), which is a multivariate extension

of SVMs.

Instead of unsupervised and semi-supervised SVMs, Chapter 6 deals with the problem

of robust SVM training, which is another useful application of semidefinite programming to

large margin learning tasks. This work addresses the standard problem of SVM’s sensitivity

to outliers. Robustness in this case can be achieved by augmenting each example with a

variable indicating whether or not it is an outlier, and thus suppressing outliers explicitly.

The underlying techniques employed for deriving both unsupervised and robust extensions

of SVMs are very much similar.

7.2 Research Directions

There are several specific directions for future research. In particular, there are important

questions remaining regarding computation and theoretical analysis.

First, regarding computation, two important issues remain unresolved. One obvious

question is proving the hardness of the exact unsupervised SVM problem. Although in-

tuitively there are exponential number of possible label configurations, which makes the

problem challenging, a formal proof of the hardness is necessary to illustrate the value of

the convex relaxations. Next, even given the polynomial time procedures offered by the

semidefinite relaxations, the efficiency of current SDP solvers is still not adequate to scale

up to reasonably large problems. This creates a significant problem in practice, because

reasonably large data sets are increasingly common in machine learning research. The

problem is even more significant in the multivariate case. Thus, developing more efficient

training algorithms is a necessary challenge to consider.

Second, regarding the theoretical analysis, there are two main questions to consider.

One important question is raised by the fact that the training algorithms I have derived

are based on a series of relaxations, and therefore it is important to investigate how these

relaxations affect the quality of the final approximation. Another important theoretical
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issue is to analyze the generalization performance of unsupervised SVMs, and attempt to

derive a guarantee that a good labeling that permits a large margin on training data should

generalize to new data.

I hope that continued research will provide a theoretically sound and practically efficient

framework for the large margin based learning techniques discussed in the thesis, including

unsupervised/semi-supervised SVMs and robust SVMs.
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