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Abstract 

The purpose of this thesis was to observe people’s abilities to compute probability problems 

at a fundamental level.  The problems in this study were presented in an abstract format to 

ensure non-ambiguity in its interpretation.  The study was administered to university level 

students.  The focus was to determine people’s ability to answer probability questions that 

combined the probabilities of two single events, using the most basic types of operations: 

AND and OR.  The study found that while most people were able to compute AND type 

probability questions, most had trouble with OR operations.  Of special interest was a 

switching strategy that was employed in computing OR operations as the probability of a 

single event varied.  The study also revealed that statistically sophisticated people were able 

to adopt the mindset of people who were statistically naïve.  Further research is required in 

order to develop a better framework in understanding people’s logical process of computing 

these basic probability questions as well as its application to our everyday lives. 
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1 Introduction 

An important factor in misjudgment is a misperception of the question being asked.  A 
tentative conclusion is that considerable advantage in comprehension may be realized by 
careful attention to the way in which questions are posed” (p. 55).  
 
-  (Borgida & DeBono, 1985; Morier & Borgida, 1984; Nisbett, Krantz, Jepson & Kunda, 
1983), rephrased by Garfield and Ahlgren (1988) 
 
 

Mathematics is an abstract concept.  It took mankind a considerable amount of time to 

develop these concepts and eventually invented operations with short-hands and numerous 

computational possibilities (Bronowski, 1976).  Even within simple mathematical operations, 

there are varying levels of abstraction.  For example, the concept of addition may be easy to 

grasp because we can apply it to our daily lives.  We can see 3 apples, 4 oranges and count to 

a total of 7 fruits.  Multiplication is further abstracted from addition and may be harder to 

visualize.  For example, it may be easy to picture 4 pairs of socks, resulting in 8 socks in total 

(4x2).  However, multiplying larger numbers introduce rapid increases, causing difficulties 

with mapping these numbers onto something concrete.  For example, imagine multiplying 

248 by 734 which equals 182032.  How does one visualize such an operation?  Donaldson 

(1978, 1993) as cited by Stanovich (2003) emphasized the abstraction of mathematics by 

saying “what is involved in the mind’s movement from ‘seven fishes’ to ‘seven’ is 

abstraction indeed, but it is more: it is a dramatic decontextualization.  In the contexts of our 

ordinary life, we have to deal with quantities of fishes but we never encounter seven” (p. 

337).  Furthermore, we live in a world that is rich in context and mathematics is often 

encapsulated in linguistic expressions in which we have to decipher. This causes obstacles in 
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formulating problems and carrying out the appropriate calculations in order to make proper 

decisions in our daily lives. Osherson, Shafir and Smith (1994) noted that “Probabilistic 

reasoning poses difficult computational challenges.  If probabilities must be distributed over 

the sentences of an expressive language, these difficulties can become insurmountable” (p. 

301). 

 

In studying probabilistic reasoning, researchers often posed problems in the form of an 

anecdotal story.  Problems presented in such a fashion had often been criticized because they 

were encased in a contextual manner, leading to possible misinterpretation and confusion.  

Cognitive researchers approached an aspect of heuristics and biases under a mathematical 

approach but with contextual information.  To properly understand people’s logic behind 

probabilistic reasoning, this thesis posed basic probabilistic questions abstracted from 

contextual information.  This established whether it is the mathematical concepts itself that 

people have difficulty with, or the inability to extract the appropriate information to solve 

probability questions.  Furthermore, to determine the fundamental level of people’s ability to 

solve these problems, questions with less abstract concepts were asked.  Basic combination 

of independent events using AND and OR operations should be studied as compared to more 

complex problems, such as conditional probability involving Bayes’ theorem.  The purpose 

of this thesis was to discover the extent of people’s probabilistic reasoning in a mathematical 

sense without context and the influence of people’s intuitions on such calculations.  Many 

claimed that concepts of probabilities were hard to grasp, but could not provide the reasoning 
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for this.  This thesis attempted to find out whether or not probabilistic reasoning was non-

intuitive even at a fundamental level.  This was achieved by posing basic AND and OR 

probabilistic problems with different ranges of the single probabilistic event and examining 

people’s approaches to solving such problems.  Studying people’s thought processes in 

calculating fundamental probabilities could be beneficial in constructing improved methods 

of educational material in teaching basic probabilities. 

 

2 A Review of Probabilistic Judgment in Literature 

2.1 Heuristics and Biases of Probabilistic Judgment 

A large body of research had been focused on the heuristics and biases of decision making by 

humans on subjective probability problems. Researchers claimed that people’s judgments 

were misguided by representativeness, causality and attribution, and the availability of 

information that people had on certain problems (Gilovich, Griffin & Kahneman, 2002; 

Kahneman, Slovic & Tversky, 1982).  The studies that were designed to illustrate these 

errors were often achieved by providing people with problems that were ‘dressed up’ with a 

background story.  This led to the heuristics and biases found in probabilistic reasoning.  For 

example, the Linda problem was often used to demonstrate the representativeness effect.  

The description of Linda was as follows: 

Linda is 31 years old, single, outspoken, and very bright.  She 
majored in philosophy.  As a student, she was deeply 
concerned with issues of discrimination and social justice and 
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also participated in antinuclear demonstrations (Tversky & 
Kahneman, 1982, p. 92). 

Several outcomes were then presented to subjects to which they had to rank from most 

probable to least probable.  Many fell under the conjunction fallacy in which they believed 

Linda was more likely a bank teller and a feminist, rather than just a bank teller (Kahneman 

& Frederick, 2002).  Another example was the Tom W. study.  Tom was described as a 

stereotypical engineer.  When presented with a base rate probability composing of engineers 

and lawyers (30% vs. 70%), most ignored the base rate of 70% chance that Tom was a 

lawyer.  Instead, they determined that Tom had a higher probability of being an engineer.  

This was known as the base rate neglect.  Studies showing similar concepts were conducted 

by many others including the disjunction fallacy (Bar-Hillel & Neter, 1993), and research on 

base-rate neglect displayed by health professionals when assessing patients’ mammography 

information (Casscells, Schoenberger, & Grayboys, 1978).  From these findings, Kahneman 

et al., (1982) concluded that intuitions should be regarded “with proper suspicion” and that 

people should “replace impression formation by computation whenever possible” (p. 31). 

 

Recently, challenges have been raised against the aforementioned studies.  One of the 

criticisms was raised by Moldoveanu and Langer (2002).  Commenting on the experiments 

that involved participants in making decisions under uncertainties, they pointed out that: 

Making “correct” judgments or choices from the information 
that was given to the participants depends on an unspoken set 
of assumptions about that information, which may or may not 
be justified.  It is not clear, therefore, that deviations from such 
“correct” answers instantiate cognitive “errors”; they may 
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alternatively instantiate divergences in the set of assumptions 
that people make about the decision scenario.  If the latter is 
true, then the decision scenarios that are associated with the 
“cognitive biases” literature are unspecified, and conclusions 
about the “incompetence” of decision makers vis-à-vis the 
axioms of calculus of probability may be premature (p. 373). 

 

Dulany and Hilton (1991), Hilton and Slugoski (2001) also questioned the interpretation of 

the wording used by researchers in conducting these experiments.  Many others have 

wondered whether or not psychologists have been applying the inappropriate normative 

model in observing these probability judgments (e.g. Margolis, 1987; Messer & Griggs, 

1993; Levi, 1983; Ayton & Hardman, 1997) as summarized by Stanovich and West (2002).  

These criticisms prompted psychologists to further explore these heuristics and to provide 

reasoning and justification of the biases found in probability judgments.  Kahneman and 

Frederick (2002) proposed that people employ a dual process model in which they labeled as 

System 1 and System 2 when making decisions.  They determined that System 1 was an 

intuitive system in our cognitive process that allowed us to arrive at answers effortlessly and 

rapidly.  System 2 was a reflective system that monitored System 1 to ensure its correctness.  

Therefore, it was established that factors that affected System 2 such as statistical 

sophistication, intelligence, manipulations of attention, etc., were responsible for eliminating 

biases.  Another widely discussed method that influenced statistical reasoning beyond 

Bayesian inference was the concept of Frequency Formatting.  Gigerenzer and Hoffrage 

(1995) conducted a series of experiments which showed that using natural numbers instead 

of percentages improved people’s Bayesian inference.  They also quoted others who had 
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similar findings by stating that “Fiedler (1988) and Hertwig and Gigerenzer (1995) showed 

that the conjunction fallacy (Tversky & Kahneman, 1983) in the Linda problem and similar 

problems largely disappeared when questions were changed form probability to frequency 

format” (p. 698).  Cosmides and Tooby (1996) also supported the frequency view from their 

result as seen from the following excerpt: 

Frequentist problems elicit Bayesian reasoning.  This finding 
adds to the growing body of literature that shows that many 
cognitive biases in statistical reasoning disappear, and good 
statistical reasoning reappears, when problems are posed in 
frequentist terms (p. 62). 

The Mental Model theory was another model that allowed individuals to infer probability of 

events without having the familiarity of probability calculus (Johnson-Laird, Legrenzi, 

Girotto, Legrenzi, & Caverni, 1999).  This model will be discussed in more detail in Section 

5.4.3 - Discussion on Logical Thinking. 

 

Although initial studies on probabilistic judgment revealed some interesting findings, the fact 

remained that the problems used by such studies were very context oriented and affected the 

direction of people’s logical argument.  Despite various attempts by researchers to explain 

the reasoning behind heuristics and biases, many were still using anecdotal problems to serve 

as the basis of analysis. Some have argued that the way people solve problems or use certain 

cognitive schemata was affected by how the problem was presented to them (e.g. Gigerenzer 

& Hoffrage, 1995; Girotto & Gonzalez, 2001; Moldoveanu & Langer, 2002; Fox & Levav, 

2004).  To establish how people truly arrive at probabilistic computations, it is essential to 
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comprehend their level of mathematical skills by abstracting the problems and presenting it 

to them in a clear manner.   This is similar to the way a mathematician would view a 

problem. Obtain the basic information and ignore information that is deemed irrelevant.  

Instead of using the contextual problems to explain and develop mental models, it would be 

beneficial to reformat these problems without the ‘fluff’ and investigate the results and 

potential errors that could emerge. 

 

2.2 Various Research on Probability Judgment in Cognitive Sciences 

Other research had also been carried out to study different types of probabilistic reasoning.  

Shimojo and Ichikawa (1989) studied variations of the “3 prisoners problem”, which dealt 

with prior probabilities.  They discovered that people used certain subjective theorems, such 

as the case theorem, ratio theorem, and invariant theorem, to attempt to solve the problem.  

Support theory was used to explain the concept of subadditivity (Tversky & Koehler, 2002).  

The authors claimed that people formed impressions by making a selective global view.  

When people ‘unpack’ information, the sum of the exclusive components exceeded that of 

the implicit global impression.  Macchi, Osherson, and Krantz (1999) further extended this 

theory by conducting studies that demonstrated superadditivity.  Other researchers focused 

on aspects of conditional probabilities using Wason’s selection task as the basis to develop 

models and applying them to syllogistic reasoning (i.e. Oaksford & Chater, 2001; Fiddick, 

Cosmides & Tooby, 2000).  Fox and Rottenstreich (2003) studied how people partitioned a 

problem under different conditions when making judgments under uncertainty.  Fox and 
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Levav (2004) proposed a ‘partition-edit-count’ method that people applied to solve 

conditional probability problems by using questions similar to the Monty Hall problem and 

Wason’s selection tasks.  Probabilistic reasoning had also generated interest in the field of 

Artificial Intelligence.  For example, Osherson et al. (1994) developed a method to extract a 

coherent body of judgment in probability that is consistent with a person’s intuition.  This 

approach was suitable for developing artificial intelligence systems.   

 

Despite the various portrayal of study, very few in the cognitive field had explicitly looked at 

simpler probability operations to determine people’s comprehension level of these 

mathematical problems.  It might be true that computational limitation and performance 

errors alone may not account for deviation from normative models when making probability 

judgments (Stanovich & West, 2002).  However, observing computation errors in solving 

basic level probability problems might serve as a basis to better understand people’s 

cognitive models.  It might also contribute to existing models in probabilistic reasoning. 

2.3 Probabilistic Intuition and Mathematical Education 

Research in mathematical education had been mainly focused on improving students’ 

understanding of probabilities.  Many claimed that the difficulty in teaching probabilities was 

students’ inability to develop the intuition and fundamental ideas behind these problems.  

Garfield and Ahlgren (1988) suggested the following to explain students’ inability to learn: 

students have an underlying difficulty with rational numbers and proportional reasoning, 

students’ experiences and views conflicting with probability concepts and students’ distaste 
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for probability due to the abstract training they received for these problems.  Since 

mathematical education researchers tended to focus their efforts on younger children, studies 

on probabilistic reasoning incorporated more basic types of probability problems when 

compared to cognitive research.  Topics revolving around research in this field included but 

were not limited to: probabilistic intuition and its evolution with age (Fischbein & Schnarch, 

1997), the effect of teaching probability concepts on students’ probabilistic intuitions 

(Fischbein & Gazit, 1984), a study on intuitive interference in probabilistic reasoning using 

Reaction-Time tests (Babai, Brecher, Stavy & Tirosh, 2006), and inconsistencies about 

students’ probabilistic reasoning due to conflicting frameworks (Konald, Pollatsek, Well, 

Lohmeier & Lipson, 1993).  Fischebein and Grossman (1997) conducted studies concerning 

schemata and intuitions in combinatorial reasoning using basic probability concepts such as 

permutations, arrangement without replacements, arrangement with replacements, and 

combinations.  It was concluded that people’s guesses were not ‘blind’ and were expressed in 

a manner related to the combinatorial schema.  The idea behind this thesis was to study 

people’s probabilistic abilities at an even more fundamental level than the concepts covered 

by Fischbein and Grossman. 

 

Inspired by previous research, the purpose of this thesis was to observe people’s abilities to 

compute probability problems.  It was important to ensure that people who were deemed to 

have an adequate background in probabilities would be able to solve probability questions at 

a fundamental level.  The problems should be abstracted from ‘story-like’ context, leaving no 
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ambiguity in its interpretation.  The focus was to determine people’s ability to answer 

probability questions that combined two single events, using the most basic types of 

operations: AND and OR.  No research had been explicitly carried out in looking at the 

simple operation of combining two sets of data.  Assuming that most people at the university 

level would be able to compute the probability of a single event, AND and OR operations 

were often one of the most fundamental concepts learned in probability theory.  Due to the 

emphasis that had been placed on frequency formatting, the problems were also presented 

with ‘natural’ numbers instead of percentages.  The next section will state the initial 

predictions and observations made prior to the study.  This will be followed by a description 

of how the study was carried out.  Analyses of the results are then discussed, followed by 

general discussions and concluding remarks. 

3 Initial Predictions and Observations 

The idea behind this thesis was to determine whether people would be able to carry out basic 

probability problems using AND and OR operations.  It was suspected that while most 

people would be able to compute AND type probability problems, even university students 

with a technical background might encounter some difficulty with basic OR type probability 

questions because they are more complex. 

 

The purpose of having different probabilities for the single events (0.2, 0.4, 0.6, and 0.8) in 

the AND and OR probability operation problems was to observe the effect of the initial 
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probability on the actual answer to the problem.  This initial probability (the probability of a 

single event/jar) will be referred to as the ‘anchor.’  It was predicted that most people would 

be able to arrive at the probability of a single event correctly; that is, they would be able to 

compute the probability of obtaining a red marble from each jar (they only needed to 

compute one as the two jars were identical in this study).  This reference point (the anchor) 

would be used to determine the combined probability.  It was suspected that students would 

make adjustments in the correct direction (direction toward the actual answer) from the 

anchor for both AND and OR operations.  The correct direction for AND would be 

movement below the anchor, and the correct direction for OR operation would be movement 

above the anchor.  The predicted rationale of how students would arrive at the combined 

probability is explained below. 

 

For AND operation: 

The student can determine the anchor, or the probability of choosing a red marble from a 

single jar.  However, if he/she has difficulty merging the probabilities of choosing a red 

marble from both jar 1 and jar 2, he/she may be able to logically deduce the probability of 

choosing a red marble from both jars is lower than the single jar case.  The probability of 

choosing a red marble from both jars 1 and 2 must be less than the anchor.  No prediction 

was made in determining exactly how much lower people will adjust from the anchor.   
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For OR operation: 

The student can determine the anchor, or the probability of choosing a red marble from a 

single jar.  However, if he/she has difficulty merging the probabilities of choosing a red 

marble from at least one of the jars (from two jars), he/she may be able to logically deduce 

the chance of choosing a red marble from at least one of the jars is better than a single jar.  

The probability of choosing a red marble from at least one jar out of two must be greater than 

the anchor.  Again, no prediction was made in determining exactly how much higher people 

will adjust from the anchor.   

The two explanations above led to the following Directional Hypothesis: 

People are able to determine the probability of a single event 
and make adjustments from this probability to arrive at a 
combined probability involving either AND or OR operations.  
They will move in a direction below the anchor for AND 
operations and move in a direction above the anchor for OR 
operations. 

 

It was predicted that students would make insufficient adjustments from the anchor leading 

to an under estimation of OR operations and over estimation of AND operations.  The reason 

behind insufficient adjustment might have been due to the result of multiplying decimal 

numbers.  For example, when running simulations, people often make assumptions about 

their models.  If these assumptions were independent and each of them was 90% accurate, 

the model might appear to be reasonable.  However, it would only take 6 of these 

assumptions for the model to become inaccurate causing simulation results to be no better 

than a 50-50 chance (0.96 = 0.53) (Poile, 2004).  The non-intuitiveness of this phenomenon is 
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due to people’s familiarity of thinking that multiplication causes numbers to increase.  

Fischbein (1999) observed that people “have gotten used to this belief from their childhood 

when they operated only with natural numbers (for which these beliefs are correct). Later on, 

even after learning the notion of rational numbers (that is, including also sub-unitary 

fractions) they continue to hold the same belief – which obviously, does not correspond any 

more” (p. 29).  Since multiplication itself is an abstract concept, people would have even 

more difficulties in rationalizing multiplication of decimals.  The calculation of two 

independent events with AND operation entailed the multiplication of the probability of the 

events.  Thus, multiplying two decimal numbers would cause the resulting probability to 

decrease at an unexpectedly rapid rate.  One of the methods of determining the probability of 

the OR operations (in our case) was:  

1 – P (picking a blue marble from Jar 1 and Jar 2) 

Since the probability of picking 2 blue marbles (i.e. P(x)) would be surprisingly small (due to 

multiplication of decimals), the equation of: 1 –P(x)¸ where P(x) is a small decimal number 

between 0 and 1, would upshot the probability of picking at least a red marble from both jars 

to be larger than anticipated.  As a result, the unintuitive rapid rate of change from 

multiplying decimals may lead to overestimations in AND operations and underestimations 

in the OR operations.  The actual equations for solving the AND and OR probabilities are 

shown in Figure 1. 
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AND operation: 

 
P(red from both jars)   = P(red from jar 1)*P(red from jar 2) 
 
OR operation (2 methods): 
 
(1) P(red from at least 1 jar)  = P(red from jar 1)*P(red from jar 2) +  

   P(red from jar 1)*P(blue from jar 2) + 
           P(blue from jar 1)*P(red from jar 2) 
 
(2) P(red from at least 1 jar) = 1 – [P(blue from jar 1)*P(blue from jar 2)] 

 

Figure 1: Equations for AND and OR Operations 

As a secondary analysis, different probabilities of the single events (0.2, 0.4, 0.6, and 0.8) 

allow us to study the possible effects of whether these different anchor values would cause 

people to vary the amount of adjustments from the anchor.  For example, in the probability 

problems with OR operations, students may be more comfortable with adjusting a greater 

amount away from the anchor when the anchor is 0.2.  Compared to an anchor of 0.8, 

students may be more conservative and adjust less because 0.8 is much closer to 1 than 0.2 

(assuming students are making an adjustment above the anchor for OR operations).  Refer to 

Section 5.1.3 for a more detailed explanation of the varying adjustment theory. 

 

Originally, the study was directed at using a simpler model to determine people’s intuitive 

concepts of AND and OR probabilistic problems.  Some of the predictions made were based 

on this model.  The initial model questioned whether people would be able to intuitively 

adjust in the correct direction in combining two probabilities given the probability of a single 



 

  15

event.  This model was more concerned with people’s intuitive movement and direction 

relative to the initial given probability.  An instrumental study on graduate students was 

conducted in this manner.  It was discovered that most of these students had prior 

probabilistic training and their approaches in solving these basic probability problems were 

very methodological instead of being based on intuition.  The study was tailored to be more 

compatible to the population sample and will be described in the next section.   

4 Methodology 

4.1 Subjects 

A total of 246 students from the University of Waterloo participated in this study.  The 

students were comprised of undergraduates from second to fourth year in either engineering 

or math, with a small percentage in arts and sciences.  The students were split into eight 

groups.  The first four groups (groups 1 to 4) had 25, 23, 25, and 24 students respectively.  

The remaining four groups (groups 5 to 8) had of 34, 40, 40, and 35 students respectively.  

84% of these students had received previous instruction in probability, either at a university 

level or at a high school level.  

4.2 Procedure 

Online questionnaires were administered to the students using UW-ACE, a web-based course 

management system.  Prior to the questionnaires, the students were informed of the purpose 

of the study.  They were allowed to use calculators to solve the problems, but were told to 
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compute the answer on their own, without referencing other sources.  They were rewarded a 

1% bonus mark for their efforts.  There were eight different sets of questionnaires delivered 

to the corresponding eight groups of students. 

 

An example showing the first and seventh sets out of eight sets of the questionnaire can be 

found in Appendix A and Appendix B.  The purposes of the first two questions were to 

determine the field of study of the student and whether they had prior probability education.  

Next, a probability question dealing with either AND or OR operation, followed by a 

question asking for the student’s confidence in their answers were administered.  The student 

was then asked to provide an answer to the same probability question in the role of someone 

who had not been educated in probabilities.  This served as a precaution to the study as it 

allowed for the examination of students’ intuitive approach to the problem despite knowing 

the logical computation.  The student was also asked to provide an explanation of the logic 

used to arrive at his/her answer. 

 

The first four sets of questionnaires tested the ability of students to solve basic AND type 

probability questions.  The question was structured so that students had to determine the 

probability of two identical events (each presented as probability of choosing a red marble in 

a jar) by combining the two events using the AND operation.  An example of the AND type 

question with probability of the single event being 0.2 can be found in Appendix A (question 

#3).  The probabilities of the events were varied with the values 0.2, 0.4, 0.6, and 0.8 making 
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up the four sets of questionnaires.  The other four sets of questionnaires tested the ability of 

students to solve basic OR type probability questions.  Again, the question was structured so 

that students had to determine the probability of two events with identical probabilities by 

combining the two events using the OR operation.  The probabilities of the choosing a red 

marble from each jar were again varied with the values 0.2, 0.4, 0.6, and 0.8.  The seventh set 

out of the eight sets of questionnaire found in Appendix B is an example of the OR type 

questionnaire with the probability of the single event being 0.6.  The only difference between 

the AND and OR type questionnaires was question #3 (see Appendix A and Appendix B).  It 

should be noted that the number of students that answered OR type probability questions was 

deliberately set to be larger than the number of students that answered AND type probability 

questions, as it was predicted that a larger number of students would be able to carry out 

AND probability operations correctly.  It would be more interesting to study the effects of 

OR probability operations with a larger sample size. 

 

5 Results and Discussions 

5.1 Global Analysis of Data 

It was assumed that at least some of the students would be able to carry out basic probability 

calculations since the study was given out to second to fourth year university level students.  

It was of interest to examine people’s intuitions on probabilistic reasoning and whether or not 

these intuitions matched the proposed directional hypothesis.  For those who were unable to 
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carry out the computation to the probability problems, their intuitive reasoning could be 

examined from their actual answers.  For those who were able to compute the answers, they 

were asked to take on the role of a statistically naïve individual to allowed for the 

examination of their ‘intuitive’ method of computing probabilities.  Analysis of data was split 

into two parts.  For people who were able to answer the initial probability question correctly, 

their answer to the same question while assuming the role of someone who has not had 

probability training was considered.  This group was termed as the ‘correct’ group.  For 

people who did not answer the initial question correctly, their answer for the initial question 

was considered.  This group was termed as the ‘incorrect’ group.  The reason for dividing the 

analysis between the ‘correct’ and ‘incorrect’ groups was to observe the intuitive thought-

processes of the statistically sophisticated compared with the statistically naïve.  A global 

analysis combining data from the ‘correct’ and ‘incorrect’ groups was obtained from the 

results.  Analysis showed that the data supported the directional hypothesis.   

5.1.1 Frequency Analysis for AND Operations 

For AND operations, using frequency analysis from SAS, it was found that only 11.7% of the 

students produced an answer bigger than the anchor. The remaining 54.26 % and 34.04% of 

the students produced answers that were either the same as or smaller than the anchor 

respectively.  The differences between these numbers were found to be significant (p < 

.0001).  Refer to Table 1 for a more detailed breakdown of the percentage frequency for each 

of the anchor.   
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Table 1: AND Frequency % for Both ‘correct’ and ‘incorrect’ Groups 
Anchor Same as anchor 

(%) 
Smaller than 
anchor (%) 

Bigger than 
anchor (%) 

0.2 33.4 45.8 20.8 
0.4 54.6 31.8 13.6 
0.6 54.2 33.3 12.5 
0.8 75 25 0 
Overall % 54.3 34 11.7 

 

Note that a large number of students arrived at an answer that was the same as the anchor for 

AND probability operations.  The logical explanation for this answer can be found in the 

discussion of Section 5.4.1, Table 14: Common Mistakes for AND Operation.  Similar 

results were obtained when the data was split into ‘correct’ and ‘incorrect’ groups.  For the 

‘correct’ group, 11.6% of the students had an answer above the anchor, 59.4% had an answer 

the same as the anchor, and 20% had an answer below the anchor.  For the ‘incorrect’ group, 

12% of the students had an answer above the anchor, 40% had an answer the same as the 

anchor, and 48% had an answer below the anchor.   

 

From Table 1, it could be seen that people who calculated answers both below and above the 

anchor decreased 20% as the anchor increased from 0.2 and 0.8.  Instead, a much larger 

proportion of people (> 40%) computed answers that were the same as the anchors for the 

anchor change of 0.2 to 0.8.  Currently, no explanation could be given for the relationship 

between the increasing initial anchor value and the increasing number of answers that are the 

same as the anchor.  Perhaps this relationship is due to some unusual statistical variation 

from the small sample sizes collected for the study for the AND operation.  To demonstrate 
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the size of the samples obtained for the AND operation, Table 2 below shows the actual 

frequency (instead of percentages) of the answers that were the same as, below, and above 

the anchor. 

Table 2: The Sample Sizes of AND Operation 
Anchor Same as anchor  Smaller than 

anchor  
Bigger than 
anchor  

0.2 8 11 5 
0.4 12 7 3 
0.6 13 8 3 
0.8 18 6 0 
Overall  51 32 11 

 

As seen, sample sizes were quite small as many of the cells were less than 10.  Unusual 

statistical variation could very well contribute to the large increase of people that arrived at 

an answer equivalent to the anchor as the anchor values changed from 0.2 to 0.8.  Further 

research needs to be conducted to study the correlation (if it exists) between initial anchor 

value and calculations resulting in answers being the same as the anchor.   

 

To better compare the percentages of people who calculated answers that were either smaller 

or bigger than the anchor, frequency analysis was conducted with the exclusion of anchor 

value answers.  This allowed for a more detailed examination of people’s direction of 

movement from the anchor.  From Table 3, it could be seen that a larger percentage of people 

were consistently computing answers below, rather than above the anchor for each of the 

anchor values.  The overall result was that 74.4% had answers below the anchor compared to 
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only 25.6% above the anchor.  The p-value was 0.0014, which showed significant difference 

between the answers below versus the answers above the anchor.   

Table 3: AND Frequency Excluding 'same as anchor' Answers 
Anchor Smaller than 

anchor (%) 
Bigger than 
anchor (%) 

0.2 68.7 31.3 
0.4 70 30 
0.6 72.3 27.3 
0.8 100 0 
Overall % 74.4 25.6 

 

The significant portion of people who computed answers below the anchor compared to the 

people with answers above the anchor provided statistical support for the directional 

hypothesis.  

5.1.2 Frequency Analysis for OR Operations 

The frequency analysis of the combined data of ‘correct’ and ‘incorrect’ groups for OR 

operations revealed that 20.8% of the students produced an answer smaller than the anchor.  

The other 47.7 % and 31.5 % of the students produced answers the same as and greater than 

the anchor respectively.  The differences between these numbers were found to be significant 

(p = 0.0003).  Refer to Table 4 for a more detailed breakdown of the percentage frequency 

for each of the anchor.  
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Table 4: OR Frequency for Both ‘correct’ and ‘incorrect’ Groups 
Anchor Same as anchor 

(%) 
Smaller than 
anchor (%) 

Bigger than 
anchor (%) 

0.2 41.2 14.7 44.1 
0.4 30 22.5 47.5 
0.6 57.5 22.5 20 
0.8 62.85 22.85 14.3 
Overall % 47.7 20.8 31.5 

 

Similar results were obtained when data was split into ‘correct’ and ‘incorrect’ groups.  For 

the ‘correct’ group, 18.2% of the students had an answer below the anchor; 45.4% had an 

answer the same as the anchor; and 36.4% had an answer above the anchor.  For the 

‘incorrect’ group, 22.9% of the students had an answer below the anchor; 49.4% had an 

answer the same as the anchor; and 27.7% had an answer greater than the anchor.   

 

Unlike AND operations, there was no drastic change in the percentages of people that 

computed answers the same as the anchor as the initial anchor value increased.  However, 

there was a drop in the number of people that calculated answers above the anchor.  A more 

detailed investigation of people’s direction of movement from the anchor was conducted with 

the exclusion of anchor value answers.  From Table 5, it could be seen that a higher 

percentage of students arrived at an answer above the anchor for questions with low initial 

anchors (0.2, 0.4), while this percentage dropped considerably (> 20%) for the higher anchor 

questions (0.6, 0.8).  With an initial anchor value of 0.2, the percentage of people that had 

answers above the anchor was 50% higher than people with answers below the anchor.  For 
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anchor values of 0.6 and 0.8, however, there were less people from the ‘bigger than anchor’ 

group compared to the number of people from the ‘smaller than anchor’ group.   

Table 5: OR Frequency Excluding 'same as anchor' Answers 
Anchor Smaller than 

anchor (%) 
Bigger than 
anchor (%) 

0.2 25 75 
0.4 32.1 67.9 
0.6 52.9 47.1 
0.8 61.5 38.5 
Overall % 39.7 60.3 

 

The overall result was that 39.7% of students had answers below the anchor compared to the 

60.3% who had answers above the anchor.  Although there were more people with answers 

above the anchor for the OR operation, there was very little evidence against the answers 

below and above the anchor being significantly different (p-value = 0.07).  This result was 

caused by the ‘switch’ of percentages between the ‘bigger than anchor’ and ‘smaller than 

anchor’ group from low initial anchor values (0.2, 0.4) to high initial anchor values (0.6, 0.8).  

This phenomenon will be discussed in Section 5.5: Changing Strategies in OR Operation. 

5.1.3 Adjustments and the Effect of Anchor Values 

Another point of interest from the initial predictions was whether or not the initial anchor 

value had any effect on the amount of adjustment from these anchors.  This trend was 

analyzed by examining the distribution of the absolute value of adjustment away from each 

of the anchors.  For example, if the anchor value was 0.2 and two of the answers given to the 

probability questions were 0.1 and 0.3, then the absolute value of adjustment for both of 

these answers would be 0.1.  The smaller anchors were combined into a group of ‘lower’ 
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anchors (0.2, 0.4) and the larger anchors were grouped as the ‘higher’ anchors (0.6, 0.8).   

The mean of the absolute value of adjustments was calculated for the lower and higher 

anchors for both AND and OR operations.  For the AND operations, the mean of the 

adjustments of the lower anchors was 0.103, while the mean of the higher anchors was 0.129.  

Although these values were similar, the adjustment for lower anchors was slightly smaller 

than the higher anchors.  Further analysis was conducted to compare the distribution of 

absolute adjustments between the lower and higher anchor values.  The Wilconxon-Mann-

Whitney test was applied on the data because data distribution showed strong evidence 

against normality.  The p-value of the distribution comparing the adjustment of lower and 

higher anchor was 0.2939.  This value indicted the insignificance of the differences between 

the distributions of the adjustments for the lower and higher anchors, despite of the slight 

variation in values observed from the mean of the adjustments between the lower and higher 

anchor values.   

 

From the previous analysis, it was seen that people tended to adjust in a direction below the 

anchors for AND operations.  As a result, there would be less room for adjustment for lower 

anchor values compared to higher anchor values.  Refer to Figure 2 for a visual 

representation of the explanation. 
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Figure 2: Adjustment for the AND Operations 

Although there was a possibility that the amount of fluctuation of adjustments from the 

anchor was caused by the amount of space from the endpoint, it was determined that the 

distributions of the absolute value of adjustments between lower and higher anchors did not 

vary.  Therefore, for AND operations, the initial anchor value did not have an effect on 

people’s amount of adjustments from the anchor. 

 

For the OR operations, the mean for the absolute value of adjustments of the lower anchor 

was 0.176, while the mean of the higher anchor was 0.126.  Again, these values were similar, 

but in contrast to the AND operations, the mean of the lower anchor adjustments was slightly 

larger than the higher anchor adjustments.  Analysis was conducted to compare the 

distribution of absolute adjustment between the lower and higher anchor values using the 

Wilconxon-Mann-Whitney test. The p-value of the distribution comparing the adjustment of 

lower and higher anchor for OR operation was 0.001.  This showed a statistically significant 

difference between lower and higher anchors values on their absolute value of adjustments.  

Unlike the AND operations where people arrived at an answer by adjusting below the 

anchor, people generally moved in a direction above the anchor for OR operations.  As the 
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anchor values became larger in OR operations, there appeared to be less room for adjustment.  

It was found that higher anchor values instigated a reversal in people’s direction of 

movement (moving below the anchor instead of above) for OR operations.  Refer to Figure 3 

for a visual representation of the explanation. 

 

 
Figure 3: Adjustment for the OR Operations 

Therefore, in contrast to the AND operation, the initial anchor value, which affected the 

amount of adjustment space to the endpoint, might be a factor in the rationalization of the 

smaller mean adjustment value for the higher anchors of the OR operation. 

 

From the global data analysis, it was found that there was some statistical support for the 

directional hypothesis.  Most people by large recognize the probability of a single event, the 

anchor.  A large number of people from both AND and OR operations provided answers that 

were the same as the anchors.  Furthermore, excluding those results, it was found that people 

were able to make adjustments in the ‘appropriate’ direction for the AND operations; their 

answers were below the anchor.  This provided statistical support for the directional 

hypothesis.  For OR operations, some support was shown for the directional hypothesis as 
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there were a larger number of people who had answers above the anchor for the low anchor 

values of 0.2 and 0.8.  However, it was found that a larger number of people had answers 

below the anchor for higher anchor values of 0.6 and 0.8.  Initial anchor values also had an 

effect on the level of adjustments that people make from the anchor for OR operations, but 

had no effect on AND operations.  Further investigation will have to be carried out in order 

to determine the validity of the ‘room for adjustment’ explanation on the actual amount that 

people adjust from the anchor.  Also, the reasoning behind the relationship between anchor 

values and the amount of adjustments which varied for OR operations but not for AND 

operations still need to be determined. 

 

Due to some unpredicted results from the data, it was found that the directional hypothesis 

only provided a narrow view of how people constructed basic probabilities.  The data 

revealed that people applied models that were beyond the realm of logic provided by the 

directional hypothesis in computing basic AND and OR probability operations. These 

concepts will be discussed in the following sections. 

5.2 The Differences Between AND and OR Operations 

Initially, it was predicted that most people would be able to carry out AND type probability 

operations, but would have more difficulties with OR type probability operations.  Looking 

at the results from the collected data, this prediction held true.  For AND type operations, 

74.2% of the people were able to answer the question correctly, when the four different 

anchor values of AND operations were combined.  Amongst them, 86.6% of the people had 
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been trained in probabilities before either at a high school or university level.  A specific 

breakdown of the percentages of people that answered the AND probability questions 

correctly and the percentages of people with prior probability training for each anchor value 

are shown in Table 6. 

Table 6: Prior Probability Training vs. Correct Answers for AND Operation 
Anchor value % of correct answers % with prior probability training 
0.2 84% 92% 
0.4 70% 87% 
0.6 76% 88% 
0.8 67% 79% 

 

Although a majority of people was able to answer AND type probability questions correctly, 

it could be seen that the percentage of people with prior probability training was higher.   

 

For OR type probability questions, data showed that less than 50% of the people were able to 

answer these questions correctly.  Combining all of the questions from the different anchor 

values, 45.2% of the people were able to obtain the correct answer.  Out of these people, 

82.2% had received prior training in probabilities.  A breakdown of the percentages of people 

that answered the OR probability questions correctly and the percentages of people with prior 

probability training for each anchor value are shown in Table 7. 

Table 7: Prior Probability Training vs. Correct Answers for OR Operation 
Anchor value % of correct answers % with prior probability training 
0.2 44% 82% 
0.4 34% 76% 
0.6 58% 85% 
0.8 44% 86% 
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Again, the percentages of people with prior probability training were higher than the 

percentages of people who were able to answer these probability questions.  Unlike the AND 

cases, these percentages were higher by a considerable amount (at least 35%).  It should be 

noted that in both AND and OR cases, the students’ logical explanations were verified to 

ensure that the correct answers were indeed ‘correct’ and followed the appropriate 

mathematical calculations. 

 

The effect of prior probabilistic training and people’s ability to compute AND and OR 

operations was further analyzed in Table 8 and Table 9.  For AND operations from Table 8, 

it was seen that prior training in probabilities had a positive effect on knowledge.  While 0% 

of the people who have not had training answered the questions correctly, a large majority of 

the people, over 80% and above who had training answered the questions correctly for all the 

anchors. 

Table 8: The Effect of Prior Training for AND Operation 
Anchor value % correct with 

prior training 
% correct without 
prior training 

0.2 91.3% 0% 
0.4 80% 0% 
0.6 86.4% 0% 
0.8 84.2% 0% 

 

Table 9: The Effect of Prior Training for OR Operation 
Anchor value % correct with 

prior training 
% correct without 
prior training 

0.2 53.1% 14.3% 
0.4 45.2% 0% 
0.6 68.6% 0% 
0.8 51.6% 20% 
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The effect of prior probabilistic training and people’s ability to compute OR operations was 

analyzed in Table 9.  For OR operations, prior training in probabilities also had a positive 

effect on knowledge, but the results were not as drastic as it was for AND operations.  

Surprisingly, for anchors 0.2 and 0.6, 14.3% and 20% of the people who had no prior training 

were able to compute OR operations correctly.  Only around half the people who had prior 

training were able to answer OR operation problems correctly for all the anchors.  From 

Table 8 and Table 9, it was seen that prior probability training improved one’s abilities to 

calculate basic probabilistic operations.  This training proved to be more effective for AND 

operations compared to OR operations. 

 

Another difference between AND and OR operations was the propensity to overestimate 

answers for AND operations and underestimate answers for OR operations.  This trend is 

evident when the mean of the answers is obtained from the ‘correct’ and ‘incorrect’ groups 

for each of the anchors in Table 10 and Table 11.  The similarity in the mean values for both 

‘correct’ and ‘incorrect’ groups showed that people who were statistically advance applied 

intuitive approaches to the problems that were comparable to the statistically naïve in their 

tendency to overestimate AND operations and underestimate OR operations. 

Table 10: Mean Values of 'correct' and 'incorrect' Groups for AND Operation 
Anchor Correct estimation Incorrect answer Actual answer 
0.2 0.19 0.19 0.04 
0.4 0.42 0.32 0.16 
0.6 0.56 0.53 0.36 
0.8 0.78 0.73 0.64 
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Table 11: Mean Values of 'correct' and 'incorrect' Groups for OR Operation 
Anchor Correct estimation Incorrect answer Actual answer 
0.2 0.28 0.30 0.36 
0.4 0.55 0.52 0.64 
0.6 0.61 0.61 0.84 
0.8 0.73 0.75 0.96 

 

For the AND operations, the mean of all the answers from the ‘correct’ group and the mean 

of all the answers from the ‘incorrect’ group were both larger than the actual answers for 

each of the anchors.  For OR operations, both the ‘correct’ and ‘incorrect’ groups presented 

answers with means that were smaller than the actual answers for each of the anchors.  From 

the initial predictions, it was assumed that people overestimated AND operations and 

underestimated OR operations because of insufficient adjustments made from the initial 

anchor value provided that they were following the directional hypothesis.  However, the 

logic behind overestimations and underestimations was not due to the unexpected 

consequence of multiplying decimal numbers (theorized as the cause of insufficient 

adjustment).  As mentioned in Section 5.1.2, people did not follow the directional hypothesis 

for the higher anchor values for OR operations; they did not adjust in the correct direction 

from the anchor.  This occurrence was also observed from the mean of people’s answers in 

Table 11.  The mean values of both the ‘correct’ and the ‘incorrect’ groups’ answers showed 

a significant amount of underestimation compared to the actual answer as these mean values 

were below the anchor, moving in the wrong direction for the anchor value of 0.8 for the OR 

operation.  
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The study revealed that a majority of people was able to carry out basic AND type 

probability questions but had more difficulty with basic OR type probability questions.  

While only a few people with prior probability training were unable to compute basic AND 

type probability questions, a high number of people had forgotten how to calculate basic OR 

type probability problems even with prior probability training.  Although prior probabilistic 

training was beneficial for both AND and OR operations, further analysis revealed that such 

education proved to be more useful for AND operations than for OR operations.  Even 

though it was predicted that more people would be unable to carry out OR probability 

operations, it was surprising to find such a large percentage of students unable to do so, 

especially at a second year university level or higher.  Another interesting discovery was that 

while people showed propensity to overestimate AND operations and underestimate OR 

operations, the reasoning behind this occurrence was not caused by insufficient adjustment 

from the anchor.  To obtain a better understanding into students’ reasoning and approaches to 

these problems, their logical explanations will be reviewed in Section 5.4. 

5.3 A Comparison Between the ‘Correct’ and ‘Incorrect’ Groups 

The purpose of dividing the analysis between the ‘correct’ and ‘incorrect’ groups was to 

better examine people’s intuitive thought process when calculating AND and OR probability 

questions.  It would be acceptable to simply study people who made mistakes in their 

calculations and analyze the type of approaches they were using.  However, curiosity also 

surfaced in investigating how someone with the knowledge to properly formulate an answer 

would go about answering such problems based on their ‘gut feelings’.   A comparison 
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between the ‘correct’ group’s estimation of the answer by assuming a role of a person with 

no probability training and the ‘incorrect’ group’s actual answers revealed that a large 

number of people who were able to compute probabilities correctly had a good model of the 

‘incorrect’ method of operation.  Table 10 (p. 30) from Section 5.2  shows the mean of the 

correct estimates for each of the four anchor values (single event probability) compared to 

the mean of the incorrect answers for the AND operations.  The OR operation means 

between correct estimates and incorrect answers are found in Table 11 (p. 31) from Section 

5.2.  

 

From the tables, it was clear that the mean of the correct estimations and incorrect answers 

were astoundingly close.  This was especially true for the OR operations.  Comparing the 

mean values for the AND operations might not be reliable as the sample sizes were quite 

small for some of the groups.  For example, the incorrect sample size for the four anchors 

ranged from four to eight people.  However, looking at the mean served only as an initial 

step.  It hinted that even if people knew how to carry out AND and OR probability operations 

with an objective formula, they somehow retained the knowledge or intuition of calculating 

them incorrectly. 

 

A more statistically sound method of looking at the ‘correct’ and ‘incorrect’ groups was to 

compare their distributions for the anchor values of 0.2, 0.4, 0.6, and 0.8 for both AND and 

OR operations.  Due to the small sample sizes, it was found that these distributions were not 
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normally distributed.  Using the proc univariate function in SAS, it was found that for AND 

operations, the distributions showed either moderate or strong evidence against normality 

(with all p < = 0.0047).  For OR operations, all distributions showed strong evidence against 

normality (all p <=0.003).  The Wilcoxon-Mann-Whitney test was used on the data as it did 

not require the assumption of normally distributed interval variables.  Table 12 displays the 

p-values comparing the answers between the ‘correct’ and ‘incorrect’ group for each of the 

anchors of the AND and OR operations. 

Table 12: P-values for Comparing 'correct' and 'incorrect' Distributions 
Anchors P-value Difference Between Correct and Incorrect Groups 
AND 0.2 0.8729 - answers not statistically different  
AND 0.4 0.0789 - little evidence against answers being statistically different  
AND 0.6 0.4881 - answers not statistically different 
AND 0.8 0.0668 - little evidence against answers being statistically different  
 
Anchors P-value Difference Between Correct and Incorrect Groups 
OR 0.2 0.7098 - answers not statistically different  
OR 0.4 0.4184 - answers not statistically different  
OR 0.6 0.7960 - answers not statistically different  
OR 0.8 0.5256 - answers not statistically different  

 

The test revealed that for AND operations, the answers between the ‘correct’ and ‘incorrect’ 

groups were either not statistically different (for the anchors 0.2, and 0.6) or there was little 

evidence against the answers of ‘correct’ and ‘incorrect’ groups being statistically different 

(for the anchors of 0.4 and 0.8).    For OR operations, all of the answers between the ‘correct’ 

and ‘incorrect’ group for the four anchor values (0.2, 0.4, 0.6, and 0.8) were not found to be 

statistically different.  Even without statistical calculations, it was clear that the distributions 

for the ‘correct’ and ‘incorrect’ groups were extremely similar as shown from the example in 
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Figure 4.  This Figure displays the OR distribution with an anchor of 0.6 for both the 

‘correct’ and ‘incorrect’ groups. 

 

 

 

Figure 4: Answer Distributions in OR Operation Between ‘correct’ and ‘incorrect’ 
Groups 
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Looking at the logical explanations that people provided for their answers, a majority of the 

‘correct’ group gave the same logical explanation as the ‘incorrect’ group for both AND and 

OR operations for various anchor values.  This was especially true for OR operations as 

shown in Table 13.  The percentages of the ‘correct’ group from Table 13 was calculated by 

combining all the students in the ‘correct’ group for all the cases of either the AND or OR 

operations in which the logical explanation of obtaining the answer was the same for both the 

‘correct’ and ‘incorrect’ group.  This number was then divided by the total number of 

students that were in the ‘correct’ group, producing the percentage value.  Since a majority of 

the people was able to answer the AND questions correctly, it was more interesting to 

observe the results from the OR operation.  The logical explanations for the students’ 

answers to these probability questions will be discussed in greater detail in Section 5.4: 

Calculation Logic. 

Table 13: Percentage of 'correct' with Same Logical Explanation as 'incorrect' 
 % in ‘correct’ group with the same logical 

explanation as the ‘incorrect’ group 
AND operations 65.2% 
OR operations 79.7% 

 

The results showed that a large number of people who, despite being able to compute basic 

probabilities, were able to retain the knowledge of the incorrect computational method.  This 

indicated a strong tendency for people to employ certain methodologies in calculating these 

probabilities.  These methods have not been forgotten even after learning the correct 

technique of basic probability calculations.  There might be some ‘intuitive’ logic that people 

apply to these probability questions when the appropriate mathematical method of 
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calculation is not used or known.  Research on probabilistic judgment claimed that people 

have a natural ability to solve probabilistic problems depending on how the problem is 

presented, such as using frequency formats (Gigerenzer & Hoffrage, 1995).  However, from 

the findings of this analysis, instead of being naturally good statisticians, people naturally 

revert back to being in the mind frame of the statistically naïve.    

5.4 Calculation Logic 

The global analysis showed some statistical support for the directional hypothesis (refer to 

Section 5.1) and the presence of overestimation and underestimation for AND and OR 

operations respectively.  However, the reasoning for arriving at the answers to these 

probability questions was completely different from the logic that was predicted in Section 3, 

which was based on a simpler intuition model.  As predicted, a majority of people were able 

to identify the probability of 1 jar (or a single event) with little effort.  The difficulty resided 

in combining probabilities of 2 jars.  It seemed that when students encounter trouble in 

combining the probabilities, instead of making an attempt to estimate an answer through 

logical deduction, many of them went into a ‘number crunching’ mode.  They would try to 

manipulate the given numbers using some sort of mathematical operation.  This was different 

from studies on base-rate neglect, or conjunction fallacy (Kahneman et al., 1982), where 

people’s intuitions misled them because of how the problems were presented (in a very 

contextual format).  In this case, because the numbers drove the logic, people lost their gut 

feeling, or intuition, based on these calculations.  This concept was neatly summarized by 

Garfield and Ahlgren (1988) as they stated that: 
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Students often tend to respond to problems involving 
mathematics in general by falling into a “number crunching” 
mode, plugging quantities into a computational formula or 
procedure without forming an internal representation of the 
problem (Noddings, Gilber-MacMillan, & Lutz, 1980).  They 
may be able to memorize the formulas and the steps to follow 
in familiar, well-defined problems but only seldom appear to 
get much sense of what the rationale is or how concepts can be 
applied in new situations (Chervany, Collier, Fienberg, & 
Johnson, 1977; Garfield 1981; Kempthorne, 1980).  Within the 
conceptual underpinnings, the details they have learned or 
memorized, for whatever use they might be, therefore quickly 
fade (p. 46). 

Another basis for the reliance of mathematical computation in determining the answers was 

due to the way the problem was presented to the students along with the targeted population 

chosen for this study.  The population had been compromised by selecting people with prior 

probability training.  An improved study on people’s intuitions of basic probability involving 

AND and OR operations would be to select participants without background in probability 

training and to frame the question without asking participants to compute the answer.  Such a 

study might be better suited for the initial predictions made in this thesis.  Further discussions 

and a sample question are found in Section 7.  Surprisingly, the mathematical tendencies in 

calculating these probabilities were common as they were predicted by those who were able 

to compute the correct answer as shown in Section 5.2.  Specific cases of people’s logic in 

arriving at their answers for the AND and OR probability questions is analyzed in the 

following section. 
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5.4.1 AND Operation Logic 

It was shown in Section 5.2 that a majority of people (74.2%) were able to carry out AND 

probability operations.  Refer to Figure 1 for the equation of how to solve the AND type 

probability questions.  For the people who computed the AND probability questions 

incorrectly, some of the common mistakes made are summarized in Table 14. 

Table 14: Common Mistakes for AND Operation 
# Answer 

compared to 
anchor 

% of incorrect 
people with this 
logic 

Operation logic 

1) Same 27.3% - forms correct probability of 1 jar, disregards the 
need of combining with the probability of the other 
jar resulting in answer being the probability of just 1 
jar (probability of both jars are identical) 

2) Smaller 18.2% - forms correct probability of 1 jar, divide this 
probability by 2 to obtain result 

3)  Same 9.1% - combine the marbles from jar 1 and jar 2 together, 
formulate the probability of choosing a red marble 
using the combined result of both jars 

 

These common mistakes were also identified by people who were able to answer the 

problems correctly (the correct group) with 27.5% using explanation 1) and 4.3% using 

explanation 2), and a rather large percentage of people (30%) using explanation 3).  An 

interesting phenomenon found in the common mistakes was also observed in the global 

analysis.  A significant number of people provided an answer that was the same as the 

anchor.  In the case of the AND operation, instead of attempting to combine the probabilities 

of both jars together, people took the probability of a single event as their answer.  It is 

uncertain why people chose to ignore the probability of the other jar.  Perhaps people had the 

notion of combining the probabilities, but when uncertain of the method of operation, they 
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reverted back to just using the probability of a single jar.  It was difficult to obtain people’s 

train of thought from examining their logical explanations as they were not revealing.  Most 

of them provided explanations such as: 5 marbles in each jar, 3 are red, therefore 3/5 = 60% 

(for an anchor of 0.6) or total of 5 marbles with 4 of them being red, choose one and you 

have 4/5 chance of picking out red (for an anchor of 0.8).  A different approach to the current 

study will have to be prepared in order to collect the appropriate data for understanding the 

reasoning behind people’s tendency to ‘ignore one of the jars’. 

 

Although most people were able to formulate the correct probability of choosing a red marble 

from one jar (a single event), 8.8% of the total people that answered the AND probability 

questions made several mistakes in formulating the probability of a single jar.  These 

explanations were not grouped together as there were various ways in which people 

rationalized the probability of choosing a red marble from a single jar followed by different 

methods of combining the probabilities of jar 1 and jar 2 for AND operations.  Aside from 

the combination logics (for two jars) displayed in Table 11 (ignoring 1 jar, dividing the 

probability by 2, combining marbles of 2 jars), the other combination logics were as follows: 

• Multiplying the probabilities of the two jars together (this is the correct method of  
arriving at the answer for AND operations) 

 
• Adding the probabilities of the two jars together 

 
Out of the people who answered incorrectly, 22.7% of them formulated the wrong 

probability for a single jar, but used the correct operation (multiplying the probabilities of the 

two jars together) to calculate the combined AND operation. 
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Some of the methods in which people formulated the probability of obtaining a red marble 

from a single jar p(A) were as follows: 

a) p(A)  = 1/(total # of red marbles) 
b) p(A)  =1/2 
c) p(A)  = # of red marbles / # of blue marbles 
d) p(A)  = 1/(total # of marbles); regardless of the number of red marbles 

 

As a comparison, the correct method of identifying the probability is: p(A) = r / n, where 

r is the total # of red marbles in the jar and n is the total # of marbles in the jar. 
 

Attempts at estimating how people arrived at these probabilities were made.  However, since 

most students did not provide an explanation of how they computed these probabilities, the 

assumptions might not be accurate.  For a) and d), the students were expressing the 

probability as a 1/n ratio (where n was the total set of possibilities).  Fischbein and Gazit 

(1984) found a similar misconception in their paper of studying the effect of education on 

probability intuition in children.  The reason for having a ‘1’ in the numerator was because 

“one extracts in fact, at each trial, a single marble” (Fischbein & Gazit, 1984, p. 9).  The total 

set of possibilities (n) in a) was regarded as the total # of red marbles in the jar.  In d), it was 

regarded as the total # of marbles (which was correct).  It was challenging to pin down the 

exact reasoning of the logic behind b).  An explanation could be because the outcome would 

be to either draw a red marble or not, resulting in a 50/50 chance.  Fox and Rottenstreich 

(2003) found that people would often adopt a default case partition where an event target 

would either occur or not occur when trying to solve a probability query.  There might be 

other reasoning behind the 1/2 probability formulation, but this could not be verified under 
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the circumstances.  For c), the person simply took the ratio of red marbles over the blue 

marbles. 

5.4.2 OR Operation Logic 

Unlike AND probability operations, a majority of people (54.8%) were unable to carry out 

OR probability operations correctly.  Few of the people who computed the OR probability 

questions incorrectly made common mistakes that are summarized in Table 15. 

Table 15: Common Mistakes for OR Operation 
# Answer 

compared to 
anchor 

% of incorrect 
people with this 
logic 

Operation logic 

1) Same 27.1% - forms correct probability of 1 jar, disregards the 
need of combining with the probability of the other 
jar resulting in answer being the probability of just 1 
jar (probability of both jars are identical) 

2) Same 22.9% - combine the marbles from jar 1 and jar 2 together, 
formulate the probability of choosing a red marble 
using the combined result of both jars 

3)  Bigger 22.9% - forms correct probability of 1 jar, adds the 
probabilities of jars 1 and 2 together OR doubles the 
probability of 1 jar 

4) Smaller 10% - forms correct probability of 1 jar, multiply the 
probabilities of jars 1 and 2 together (this is the 
correct method for the AND type probability 
question, but not OR probabilities) 

 

Logic explanations 1) and 2) for OR operations (from Table 15) matched the logical 

explanations 1) and 3) for AND operations (from Table 14).  It seemed that people who were 

unable to answer these questions correctly arrived at the same logic regardless of the 

probability operation being AND or OR type.  Again, a large percentage of people arrived at 

an answer that was the same as the anchor for the OR operation.  Even more surprising was 
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that in the case of OR operations, not only would people ignore one of the jars, they also 

showed the tendency of combining the marbles from both jars into one.  This also led to 

answer which was the same as the anchor.  For both of these logics, calculating the 

probability became easier as one only had to formulate the probability of a single event.  The 

common mistakes of the ‘incorrect’ group were also identified by people who were able to 

answer the problems correctly with 26.6% using explanation 1), 17.2% using explanation 2), 

20.3% using explanation 3) and 9.4% using explanation 4).   

 

Only 4.5% of the total people that answered OR probability questions of the people from the 

OR operation groups made mistakes in formulating the probability of choosing a red marble 

from a single jar.  The logic behind incorrectly computing the single event probability was 

the same as the cases in the AND section (refer to Section 5.4.1) with the exception of b) (no 

one used the probability of drawing a red marble for 1 jar = 1/2 in the OR cases).  Out of the 

people who answered incorrectly, only 7.1% of the people had logical explanations and 

performed mathematical operations that were close to the correct answer.  These people 

either formed the incorrect probability of a single jar and performed the correct operation, or 

formed the correct probability of a single jar but erred in listing all the different cases of 

drawing a red marble.  They would miss some of the cases or miss certain components in the 

cases.  Table 16 illustrates some of these answers. 
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Table 16: 'Incorrect' Group with Partially Correct Logic 

Marbles 
of 1 jar 

Explanation Comments 

1 red,  
4 blue 

P(red marble for each jar) = 1/5 
P(at least 1 red marble) = 
1/5+1/5+1/5*1/5 

- forms correct probability for 1 jar  
- have the right cases but did not include 
probability of drawing the blue marble 
from the other jar 

3 red,  
2 blue 

P(1 red from 1st jar, 1 red from 2nd jar) 
+ P(1 red from 2nd jar, blue from other) 
+ P(1 red from 1st jar, blue from other) 
= 2/3*1/2+ 1/3*1/2 +1/3*1/2 

- forms incorrect probability for each jar 
- lists the right cases and operations 

3 red,  
2 blue 

P(success) = P(success)*P(failure) + 
P(success)*P(success)  
= 0.6*0.4 + 0.6*0.6 

- forms correct probability for each jar 
- missing one of cases (1 red and 1 blue 
has be counted twice) 

4 red, 
1blue 

P(at least 1 red marble) =  
1 – P(getting blue marbles from both 
jars) = 1 – 1/4 

- forms incorrect probability of getting 
blue marbles from both jars 
- have the right idea 
 
*Note: This person did not know how to 
compute basic AND case probability he 
could not calculate P(getting both blue 
marbles) 

 

Another interesting observation was made from the results of how people were computing 

these probabilities.  It was initially predicted that student would be able to determine the 

probability of choosing a red marble from one jar, and also be able to logically deduce the 

chance of choosing a red marble from both jars (probability lower than a one jar because it is 

harder to obtain a red marble from two jars – AND case) or choosing a red marble from at 

least one of the two jars, its probability higher than one jar because chances are better for two 

jars – OR case.  Such reasoning was true for a few cases.  There were four people who 

correctly computed the OR probability questions and reasoned the same way when they had 

to estimate how a person without prior probability training would solve the question.  

However, there was only one person that showed the same reasoning as the initial prediction 
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out of the people who answered the question incorrectly.  The reason provided was: Since I 

get to pick from 2 jars, the probability will be higher than that of a single jar.  More people 

might have adopted this reasoning from the list of people who answered the question 

incorrectly.  This will be further discussed in Section 5.5: Changing Strategies in OR 

Operations. 

 

It could be argued that a few people who answered the AND type probability questions also 

had a similar type of logic as the initial prediction.  Of all the people that answered 

incorrectly for the AND type questions, 18.2% used a logic which formed the correct 

probability of a single event, and then divided this probability by 2 to determine the final 

result (refer to Table 11).  Although the students did not explicitly state that the probability 

would decrease if they were to obtain a red marble from both jar 1 and jar 2, they might have 

divided the probability of choosing a red marble from the single jar by 2 because the answer 

‘made sense’.  They rationalized that the resulting probability of choosing a marble from 

both jars should be smaller than that of a single jar. 

5.4.3 Discussion on Logical Thinking 

Judging by the amount of people who had prior probability training and the number of people 

that answered the questions from the study incorrectly (refer to Section 5.2), it could be 

concluded that computation of probability even at a basic level was not a trivial matter.  Even 

if students had received previous training in probabilities, the concepts that they had been 

taught were forgotten.   
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From analyzing the results from the experiments, it seemed that most students that were 

unable to answer the probability questions correctly fell under the following categories: 

i) Formulate the correct probability for the single event, but use a wrong operation to 
combine the two probabilities 

 
ii) Formulate the incorrect probability for the single event, but use the correct operation 

(or logic that is inline with the correct operation) to combine the two probabilities 
 

A majority of students provided an answer based on the logic from i).  By presenting students 

with two sets of probabilities, most of them recognized the probability for each set, but had 

trouble using the correct method to combine them.  As stated earlier, instead of estimating an 

answer based on the single event, they performed various mathematical operations on the two 

sets of probabilities in an attempt to combine them. The computation of the probability was 

two folds: 

1) Formation of events that occur 
 
2) Computation of events: either by removing an event, or computing the events 

together (through mathematical operation, or reorganizing event space) 
 

This computation was common in both AND and OR cases.  However, while this was 

acceptable for AND type operations, it was unsuitable for OR type probability operations.  

Thus, from the analysis in the previous sections, it was seen that a lot more people were 

unable to provide the correct answer for the OR type probability problems compared to the 

AND type probability problems. 
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For AND type probability questions, most people were able to compute the answer.  In fact, 

even if they formed the wrong probability of a single event, they still used the right operation 

to combine the events (refer to previous page, item ii).   Section 5.4.1 illustrated that these 

students actually made up 22.7% of the people who answered incorrectly.  The basis behind 

why AND type probability questions were easier may be due to the following: 

• AND type probability operation involving independent events has only one case 
 
• AND type probability operation is coded into a simple formula (multiplication of all 

the independent events) 
 

Apparently the concept of multiplying the probabilities of each independent event to obtain 

the combined probability of all these events was something that most people retained from 

prior probability training.  Therefore, whenever people encounter independent events and 

need to compute their combined probabilities, it was trivial as long as they were able to 

calculate the probability of each independent event.  The concept of multiplying independent 

probabilities may be considered intuitive because this knowledge seemed to be deeply 

embedded in their minds.  However, if one took a step further and asked people to explain 

why the probabilities are multiplied together, it was uncertain whether or not people would be 

able to answer this question.  For example, when asked what the probability of flipping two 

heads from a fair coin was, this method provided a solution of 1/2 x 1/2 = 1/4.  This equation 

does not require any understanding of how to form the set for the combined event and allows 

one to do away without having to list all the separate cases {HH, HT, TH, TT}.  The two fold 
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operation of how people calculate probability as described above would be enough to 

compute the correct answer for basic AND type probability problems. 

1) Formation of events that occur – forms probability of each jar 

2) Computation of events– compute probability of events together with multiplication 
 

For OR type questions, there was no longer a “magical formula” that encapsulated the 

solution into a single calculation.  However, it seemed that people with prior probability 

training had forgotten this fact as they tried to apply an equation (various forms of simple 

arithmetic such as addition, multiplication, etc.) to compute the probability of drawing out at 

least one red marble from the two jars in a single step.  The aforementioned two fold 

operation caused error in calculating probabilities for OR type questions because in the 

second step of computation, they: a) remove an event (by ignoring the probability of one of 

the jars altogether), b) combine events together with mathematical operation, c) combine 

events together by reorganizing the sample space (combing the marbles of both jars and 

determining probability from that single sample space).  The trouble with using such a 

method was that people were considering the events of each jar separately and tried to 

combine them in a single step.  This method was suitable for AND operations because they 

only needed to combine the event of each jar once as it accounted for only a single case of 

obtaining red marbles (the case of getting a red marble from both jars).  For OR operations, 

people needed to combine the events of the two jars several times to account for the different 

cases of drawing out a red marble from either jar 1 or jar 2, or both.  In other words, instead 

of only considering the events of two jars separately, looking at them simultaneously would 
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assist people in listing out all the possibilities.  Johnson-Laird and colleagues (1999) 

proposed that people who were naïve in probability reasoning applied mental models of 

possibilities that accounted for the true cases with each model being equally probable.  Using 

the proportionality principle, people would compute the probability of a certain event as the 

proportion of models where that specific event occurred.  For example, consider the 

following problem given in the paper: 

There is a box in which there is a black marble, or a red marble, or both.  Given the 
preceding assertion, according to you, what is the probability that there is a black 
marble with or without another marble (Johnson-Laird et al., 1999, p. 70)? 

 

According to these authors’ theory, such a question would result in the following mental 

model (Johnson-Laird et al., 1999, p. 70): 

 Black      - 
   - Red 
Black  Red 

 

where a model with different possibilities was captured in each row.  With the mental 

model theory described above, the probability of a black marble with or without another 

marble would be 2/3.  One of the main criticisms of the mental model was the assumption 

of a “canonical representation of the sample space for a given problem” (Fox & Levav, 

2004, p. 637).  Usually, the format of many problems concerning probability evaluations 

would not present the problem in a method that would identify all the individual cases.  

Fox and Levav (2004) highlighted the argument made by Lagnado and Sloman (in press) 

that there was no claim to the assumption in identifying where the fixed representations of 
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these models were emerging from.  The current study for an OR type problem in this 

thesis was stated in the following format: 

There are 2 jars of marbles.  Each jar has [1] red marbles and [4] blue marble.  If you 
were to pick 1 marble out of the first jar and 1 marble out of second jar, what are the 
chances of getting at least 1 red marble? 

 

The numbers in the square brackets varied in the study for the OR type questions.  The 

different cases needed to compute the probability of drawing the red marble were not 

explicitly listed out for the students.  It was presented using the words at least which in 

this situation, represented as i) red from jar 1, ii) red from jar 2, and iii) red from both jars. 

There was very little evidence that people were able to formulate the individual cases for 

solving OR type probability questions.  For instance, it was seen in section 5.4.2 that only 

7.1% of the people who answered the OR question incorrectly came up with the idea to 

list all the relevant cases to solve this problem.  Unlike the problems presented by 

Johnson-Laird et al. (1999), in which the context encouraged partition, leading to certain 

probability judgment, the logic in this study was not explicitly laid out for the students.  

The finding was that a majority of students were unable to construct these partitions.  

They displayed a tendency of viewing the two jars as separate entities and then attempted 

to quickly eliminate this partition using various methods to combine them into a single 

partition.  The problem was that students needed to first consider the events of the two jars 

simultaneously to be able to list out all the cases: {RR, RB, BR, BB} where R is 

probability of choosing a red marble and B is the probability of choosing a blue marble, 

and the position they were in represented which the jar they were in (i.e. RB = red from 
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jar 1, blue from jar 2).  Only after listing down all the cases would it then be appropriate to 

consider the probability of each jar separately and combine them to determine the 

probability for each case where a red occurred {RR, RB, BR}.  Finally, the separate cases 

have to be added together to arrive at the probability of drawing at least one red marble 

out of the two jars. 

 

The calculation of the OR type probability questions was more complex than AND type 

probability questions as it accounted for several cases in the sample space.  Determining 

the answer required more than applying a simple mathematical operation between the 

probabilities of two events.  However, there was a short-cut method of approaching this 

type of problem that permitted the use of a simpler equation.  Asking for the probability of 

at least one red marble could also be viewed as: 

1 – Probability(drawing blue marbles from both jars 1 and jar 2) 

Looking at the problem this way was much easier as this single equation enabled the 

determination of the answer without having to list all the separate cases.  Of the people 

who computed the OR type probability questions correctly, 63.4% used the above 

formula.  Only one person out of the people who computed the answer incorrectly 

attempted to use this operation.  The logic behind this formula still required a different 

partitioning mechanism than the two-fold operation that the ‘incorrect’ group often used.  

To formulate this equation, people still had to consider two jars simultaneously in drawing 

the conclusion that the answer was merely the whole sample space minus the case where 
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no red marbles were drawn from jars 1 and 2.  Viewing the two jars as separate events and 

combining them would not be enough.  Thus, both the basic AND and OR type 

probability problems have simple formulas that could be used to determine the answer.  

Unlike the AND operation, the OR type operation required a more in-depth understanding 

of the logic and the partitioning of the event space in order to be able derive the equation.  

Another interesting finding about the shortcut method of OR operation was that 

calculating the probability of both marbles being blue from jars 1 and 2 was just the AND 

type operation. 

5.4.4 Comments on Frequency Formatting 

Girotto and Gonzalez (2001) argued that regardless of whether a question was presented in 

probabilistic or frequency format, naïve individuals were able to solve these problems if the 

form of the question and the structure of the problem were framed in a certain way.  For 

example, they elicited that people faired much better in a two-step conditional probability 

question than a single-step question that corresponded to the form of a usual conditional 

probability question.  The two-step question was structured such that the conditional problem 

forced people to first count the chance of P(E) and then count the chance of P(H&E) for 

solving the problem of P(H|E) where P(H|E) = P(H&E)/P(E).  In the current study, the 

problems presented the information with natural numbers (i.e. 3 red marbles and 2 blue 

marbles) as opposed to using a probabilistic format (i.e. 0.6 of the marbles are red).  

However, despite using these natural numbers, people were still making errors in their 

computation of AND and OR operations.  Therefore, it seemed the natural frequency 
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representation was not effective in this case.  People were only able to perform better on the 

frequency formatted questions given by Gigerenzer and Hoffrage (1995) because the 

problems were framed in a way that guided people into structuring them correctly. 

5.5 Changing Strategies in OR Operations 

It was established that people had little difficulty with AND type questions because a 

majority of them knew that calculating the probability of two independent events involved 

multiplying the two probabilities together.  Looking at the data gathered from the study, 

people also applied a similar approach to calculate OR type operations.  However, they used 

the mathematical operation of addition instead of multiplication.  From the data, it was seen 

that for the lower anchor values (0.2, 0.4), many people who computed the problems 

incorrectly added the probabilities of choosing a red marble from jar 1 and choosing a red 

marble from jar 2.  The same answer resulted from doubling the probability of a single jar as 

well.  For the anchors of 0.2 and 0.4 for OR type questions, the largest number of people 

(21.4%) provided the answer of either adding or doubling the probability of choosing a 

marble from the single jar.  Perhaps people added the probabilities of choosing the red 

marble from the two jars or doubled the probability of a single jar was because they reasoned 

the same way as the initial prediction of this thesis: because one can either pick a red marble 

from jar 1 or jar 2, the probability will be higher than the probability of a single jar. (Also 

refer to Section 5.4.2).  Adding the probabilities of jar 1 and jar 2 or doubling the probability 

of a jar gave a reasonable answer because: 

• The resulting probability was larger than that of a single jar 
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• The resulting probability was within reasonable bounds (i.e. not exceeding 1) 

 
• Able to use simple mathematical operation to compute result 

 

For the anchor of 0.2, the difference between adding the two events and the actual answer 

was only off by 0.04 (0.4 compared to 0.36).  A concept that explained the reasoning behind 

doubling the probability of choosing a marble from one of the jars was the idea of linearity.  

Van Dooren, De Bock, Depaepe, Janssens and Verschaffel (2003) introduced the idea of the 

‘illusion of linearity’ and applied it to probabilistic reasoning.  They believed that “students 

have a strong tendency to apply linear or proportional models anywhere, even in situations 

where they are not applicable” (p. 113).  For example, given that the probability of obtaining 

two ones in rolling two fair dice is 1/36, people reasoned that the two dice have to be thrown 

18 times to have a probability of 1/2 to get two ones at least once (Van Dooren et al., 2003).  

In the current study, if people fell under the illusion of linearity, they would reason that 

drawing a red marble twice (one from each jar) would double their chances.  Following this 

logic, if three jars were presented to them and the question asked for the probability of 

drawing at least one red marble out of the three jars, they would triple the probability of a 

single jar (assuming probabilities of all jars were the same) to arrive at the answer.  One of 

the explanations provided by a student from the OR type probability problem with anchor of 

0.4 was: The probability of getting a red marble from one jar is 2/5 and we are picking form 

two jars so the probability is twice that, therefore the answer is 80%.  This particular student 

seemed to have fallen into the trap of linearity.  However, those students who added the 
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probabilities of the two jars together were not using a linearity approach.  If the problem 

provided different probabilities for the two events, then the illusion of linearity would 

disappear.  For example, if the probabilities of drawing a red marble from jar 1 and jar 2 were 

different, addition P(jar 1) + P(jar 2) would result in a different answer than doubling the 

probability of one of the jars, P(jar 1)*2.  Upon further analysis, it was found that only 4 

people out of the 15 who had the same answers (either from adding or doubling the 

probabilities) for the lower anchor used the doubling method as their reasoning.  Although 

the illusion of linearity may be used to explain errors in certain problems, it did not seem to 

be applicable for the OR type problems. 

 

A shift in people’s strategy occurred for the higher anchor values of 0.6 and 0.8.  For these 

anchor values, the probability of drawing a red marble from a single jar was either 0.6, or 0.8.  

If one followed the above logic and added the probabilities for the two jars or doubled 

probability of one jar, the result would exceed 1.  A majority of people recognized that a 

probability of > 1 was not possible.  Whereas a large number of people used the addition 

reasoning for the anchors of 0.2 and 0.4, only one person provided this reasoning and arrived 

at an answer greater than 1, when the anchors were 0.6 and 0.8.  There seemed to be a shift in 

people’s logic when the answer no longer made sense.  For the anchors of 0.6 and 0.8 for OR 

type questions, most people arrived at answers that were the same as the anchors, which was 

achieved by the following two strategies:  

1) Formulating the probability of choosing a red marble of 1 jar, ignore the other jar 
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2) Combine the marbles of the 2 jars together; compute the probability of choosing a red 
marble from the new combination 

 

These two strategies were shown in Table 15: Common Mistakes for OR Operation.  Most 

people adapted to using 1) for the higher anchor values.  Quite a few of the people used the 

method shown in 2) as well.  When the probabilistic situation got too complicated or created 

a puzzling answer such as in the OR type questions with higher anchor values, people 

avoided computation altogether.  Instead of attempting to use mathematical operation to 

combine the probabilities of each jar, people used the single event logic that was less 

complicated in nature.  This created a strong tendency to avoid using the probability from the 

second jar or to mix the marbles together to form a single event.  For example, one person 

attempted to use addition to combine the two events from each jar but reverted back to the 

probability of choosing a red marble from a single jar when the answer exceeded 1 as seen by 

his explanation: 

Each jar has 3 red and 2 blue marbles.  Total outcome for getting a red marble out of 
the first jar is 3/5.  Getting a red out of the second is also 3/5.  But this would make the 
entire probability (3/5+3/5 = 6/5) > 1. That is not possible.  I am confused here.  
Answer is 3/5. 

 

It should be noted that strategies 1) and 2) were also used by a number of people when the 

anchor values were 0.2 and 0.4, but more people used the addition approach.  Figure 5 

provides a graphical representation that shows the shift in the people’s strategies from the 

changing anchor values. 
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Comparing Mean and Anchor Values of OR 
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Figure 5: Graphical Representation of Strategy Shift 

From Figure 5, it could be seen that for the lower anchors (0.2, 0.4), the means were at least 

0.1 above the anchor values because people who were calculating their answers with the 

addition reasoning were pulling the mean higher.  For larger anchors (0.6, 0.8), the means 

were a lot closer to the anchor.  For the anchor value of 0.8, the mean was below the anchor 

because of a few exceptional cases that pulled the mean down. 

6 General Discussions 

Reiterating the prediction in this study, it was forecasted that people would be better at 

computing AND operations than OR operations.  The reason for this was because OR 
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operations are generally more complex to formulate and compute.  In the real world however, 

there are various situations and decisions that involve OR scenarios.   When considering 

several events at once, people generally want to determine the probability of the occurrence 

of at least one of the events rather than all of the events.  Most people know that intuitively, 

the probability of at least one incident occurring is higher than the probability of all the 

incidents occurring.  Therefore, they tend to align their thought process with decisions that 

yield a higher probability.  Consider the situation of job hunting.  When applying for jobs, a 

person will most likely judge his chances of getting at least one interview instead of judging 

his chances of getting interviews from all the jobs he applied for.  Upon attending several 

interviews, one usually considers the chances of getting at least one offer rather than 

receiving an offer from all of the job interviews.  There are many other OR type scenarios 

that people encounter in their daily lives.  In academics for example, students tend to only 

study a subset of questions and hope the probability of at least one of the questions will be on 

the exam.  In terms of finance, an angel investor would hope that at least one of the startup 

companies he had invested in would be successful.  

 

At first, it may seem odd that people have difficulties or may demonstrate a lack of intuition 

with OR probability operations despite the degree of exposure they receive.  However, it is 

important to consider what is actually occurring in people’s thought processes when they 

encounter these OR type situations and whether these processes are in fact correct.  From my 

experience, the following two facts are intuitive: 
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i) The probability of at least one event occurring is much higher than all events 
occurring 

 
ii) The probability of at least one event occurring increases if the set of events 

itself increases (i.e. the more questions one studies for, the better the chance 
that one of them will be on the exam) 

 

From the findings in this thesis however, when there is more than one event applied to OR 

type operations, people tend to view these events separately, rather than simultaneously, 

causing errors in their computation.  Referring back to the job hunting example, how would a 

person process his chance of getting at least one job offer?  He knows that the more 

interviews he has, the better the chance of getting a job offer.  He may compute the 

probability of getting a job offer for each of the interviews separately based on how he 

conducted himself during the interview.  The study in this thesis have shown that he would 

look at the probabilities of each interview individually to determine his chances of getting at 

least one job.  That is, if he considers his chances of getting a  job from three separate 

interviews are 0.1, 0.2, and 0.8, he may conclude that his chances of getting a job is 0.8, 

ignoring the probabilities of the other two interviews since they are lower.  On the other 

hand, if the probability of getting a job from each interview are the same, say 0.2, he may 

conclude that his chances of getting a job is 0.6, the sum of all the probabilities!  The data 

gathered from this thesis provided a good basis for understanding some simple heuristics that 

people apply to these problems.  Despite encountering many OR type probabilities, the 

method people go about in estimating these probabilities are often incorrect.   
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7 Concluding Remarks 

As stated in the beginning of the thesis, how a problem is framed is essential in conveying 

information and affecting how people understand a problem.  In OR operations, it was seen 

that people have trouble with looking at events simultaneously, making the mistake of 

looking at them separately.  This could be a result of one usually making comparisons 

between objects by looking at one object first, then the other, but not at the same time.   It 

would be interesting to conduct further research to observe whether people will change their 

method of computation if their attention was directed to look at events simultaneously.  This 

could be accomplished by changing the form of the questions in this study.  Currently, the 

question provides the information for each jar and asks for the probability of a red marble 

after picking a marble out of each jar.  The question may be altered to read ‘reach both hands, 

one into each jar, to draw the two marbles’ or by using a picture that conveys the same 

information (as shown in Figure 6). These strategies should enhance people’s focus to 

consider the probabilities of the two jars simultaneously. 
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Figure 6: Drawing 2 Marbles Simultaneously 

Studying how people calculate basic AND and OR probabilities brought about some 

fascinating findings, including people’s intuitive ability to move in the correct direction from 

the anchor depending on the type (AND or OR) of problem presented; the ease of estimating 

other’s common mistakes in calculating these problems for people who can compute the 

problems correctly; the tendency for people to only consider a single event when more than 

one event is given; and the switching of strategy that was employed when the probability of a 

single event of the OR type problem becomes too high.  However, the study from this thesis 

only provided a glimpse into understanding people’s logic in calculating these basic 

problems.  Another approach in testing the directional hypothesis and the idea of making 

insufficient adjustments would be to conduct this study with a population that had no prior 

training in probabilities.  The question could also be framed differently to eliminate the need 

for mathematical computations.  For example, the anchor (probability of the single event) 

itself could be given to the participants and the question could simply ask the participants to 
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indicate the direction of the combined probability of drawing marbles out of the two jars.  A 

sample question with AND type operations is shown in Figure 7. 

   

There are 2 jars of marbles.  Each jar has 1 red marble and 4 blue marbles.  The probability 
of getting a red marble out of one of the jars is 0.2 (1/5).  This is shown on the line below.  If 
you were to pick 1 marble out of the first jar and 1 marble out of second jar, what are the 
chances of getting a red marble out of both jars?   
 
You do not need to compute the answer.  Please mark a spot on the line below indicating the 
direction the answer would lie from the initial point and roughly how far it would be. 
 

 

Figure 7: Sample Question of New Study 

As indicated previously (Section 5.4 – Calculation Logic), this would be beneficial for 

studying people’s intuition and how they handle basic probabilistic type questions.  More 

analysis and studies will have to be conducted to further understand people’s rationalities in 

calculating these probabilities to either build a better framework in developing cognitive 

models or to devise better methods to teach probabilistic reasoning.   

 

The primary purpose of this thesis was to observe people’s abilities to compute probabilities 

at a fundamental level using AND and OR operations.  Encouraged by past research, 

attempts were made to construct probabilistic questions on an abstract mathematical level 



 

  63

devoid of information irrelevant to the problem.  People’s logical approaches to these 

problems were analyzed on various levels.  This allowed for a better understanding of 

people’s logistical reasoning in calculating these fundamental probabilities and the common 

types of errors that were occurring.  While few had difficulties with AND operations, many 

had trouble with OR operations.  Although people’s intuition provided a general guideline in 

these calculations, initial anchors on these problems seemed to affect people’s answers.  

Given two or more events in a probabilistic question, more emphasis should to be placed in 

viewing these events simultaneously and constructing the different possible cases from these 

events.  The ease at which the sophistically educated reverted back to the ‘incorrect’ methods 

of thinking could be used to proposed ways to devise problems in which OR type 

probabilities could become as intuitive as AND operations.  This thesis revealed certain 

errors that people make in OR operations that could be applied to revise the current method 

of teaching probabilities at the basic level. 

 

People already have so much trouble with OR operations without contextual information, it 

would be even more confusing to deal with the complex problems in a world full of context 

and information.  Yet, it seemed that OR type probabilities are encountered frequently and 

are very applicable in our daily lives.  In order to avoid making repeated mistakes in our 

decisions without being conscious of it, there’s a need to devise better methods of teaching 

basic probabilities before advancing to the next level.  This thesis provided a basis in 

developing better teaching methods in learning OR operations.  Just as one cannot learn to 
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leap before learning how to stand firmly, one cannot make certain decisions without having a 

good solid foundation of basic probabilistic concepts. 
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Appendix A 

Sample Survey Questionnaire – Set 1 

Msci 211 Survey #1 

The purpose of this survey is to study intuition and how people without any probability 
training estimate chance events. In this study, you will be asked to first solve a 
relatively simple probability question and then to estimate the response of a person 
without any knowledge in probability.  
 
Please read each of the questions carefully. Answer each question to the best of your 
abilities. Your answer will not affect your mark in this course so please do the best you 
can without consulting other people or materials as that may affect the experiment. The 
use of a calculator is allowed for this experiment.  
 
By completing this survey, you will receive 1% bonus mark for the course. Thank you for 
your time, your assistance is much appreciated. 
 
1. Please specify your undergraduate program.

 
 

   

2. Have you ever had probability training before? If yes, please specify where you have 
received training (i.e. from a previous course in high school/university). It would also 
be helpful if you to write down the course name/number. 

 

 
  

   

3. There are 2 jars of marbles. Each jar has 1 red marble and 4 blue marbles. If you 
were to pick 1 marble out of the first jar and 1 marble out of second jar, what are the 
chances of getting a red marble out of both jars? 

 
 

   

4. Please give an explanation for your answer in Question 3. 
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5. How confident are you in your answer being correct in Question 3?

 
Not certain at all 

Not very certain 

50/50 (half a chance of being right, half a chance of being wrong) 

pretty certain 

100% certain

   

6. Please do your best to guess how a person who has never had any probability theory 
training would answer Question 3 based on their impression or gut feeling. 

 
 

   

7. Please give an explanation for your answer in Question 6. 

 

  
   

Done
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Appendix B 

Sample Survey Questionnaire – Set 7 

Msci 211 Survey #7 

The purpose of this survey is to study intuition and how people without any probability 
training estimate chance events. In this study, you will be asked to first solve a 
relatively simple probability question and then to estimate the response of a person 
without any knowledge in probability.  
 
Please read each of the questions carefully. Answer each question to the best of your 
abilities. Your answer will not affect your mark in this course so please do the best you 
can without consulting other people or materials as that may affect the experiment. The 
use of a calculator is allowed for this experiment.  
 
By completing this survey, you will receive 1% bonus mark for the course. Thank you for 
your time, your assistance is much appreciated. 
 
1. Please specify your undergraduate program.

 
 

   

2. Have you ever had probability training before? If yes, please specify where you have 
received training (i.e. from a previous course in high school/university). It would also 
be helpful if you to write down the course name/number. 

 

 
  

   

3. There are 2 jars of marbles. Each jar has 3 red marbles and 2 blue marbles. If you 
were to pick 1 marble out of the first jar and 1 marble out of second jar, what are the 
chances of getting at least 1 red marble?

 
 

   

4. Please give an explanation for your answer in Question 3. 
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5. How confident are you in your answer being correct in Question 3?

 
Not certain at all 

Not very certain 

50/50 (half a chance of being right, half a chance of being wrong) 

pretty certain 

100% certain

   

6. Please do your best to guess how a person who has never had any probability theory 
training would answer Question 3 based on their impression or gut feeling. 

 
 

   

7. Please give an explanation for your answer in Question 6. 

 

  
   

Done
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