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Abstract

In this thesis we investigate the frustrated spin liquid Tb2Ti2O7 theoretically.

The low-energy effective Hamiltonian of this compound is derived by integrating

out the excited crystal field states. It is shown that the pairwise interaction in

the effective Hamiltonian is renormalized by all the other Tb3+ ions in the sys-

tem and dynamically generate frustration. The phase diagram of Tb2Ti2O7 in the

single tetrahedron approximation is calculated. It is shown that Tb2Ti2O7 is in a

singlet state which is a linear combination of all frustrated two-in/two-out states.

Motivated by experimental results, the diffuse neutron scattering of Tb2Ti2O7 is

obtained within the single tetrahedron approximation. This diffuse neutron scat-

tering captures semi-quantitatively most of the experimental neutron scattering

features. The magnetization of Tb2Ti2O7 in the single tetrahedron approximation

is calculated. Two experiments based on diffuse neutron scattering and magneti-

zation in high symmetry directions are proposed to verify the spin ice like ground

state of Tb2Ti2O7.
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Chapter 1

Introduction

1.1 Frustration

Frustration is a general concept, arising in different branches of physics and at

the origin of many novel and interesting phenomena [1-4]. In a physical system,

frustration occurs when the minimum energy of a system does not correspond to

the minimum energy of the interactions among its degrees of freedom which are

often pair-wise interactions. In some frustrated systems, the entropy of the system

grows with the total number of degrees of freedom.

One of the simple examples of frustration is four Ising spins on a square with

three ferromagnetic and one antiferromagnetic interactions between these Ising

spins (Fig. 1.1). The minimum energy of a pair of Ising spins, coupled by the

ferromagnetic (antiferromagnetic) interactions occurs when they are parallel (an-

tiparallel). However, in this system, the Ising spin with one ferromagnetic and one

antiferromagnetic interaction with its nearest neighbor cannot minimize its energy

with its two nearest neighbors at the same time. Hence, this system is frustrated.

Another well-known example of frustration is one of the phases of water ice,

called ice IH. In this phase each oxygen atom is surrounded by four hydrogens

and the minimum energy of this system occurs when two hydrogens are close to

the oxygen and two hydrogens are far from it (Fig. 1.2) [5]. However, the ground

1
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Figure 1.1: Four Ising spins on a square with three ferromagnetic (F) and one

antiferromagnetic (AF) interactions between them.

state of this system remains disordered to the lowest accessible temperature [6, 7].

In addition, specific heat results show a residual entropy to the lowest measured

temperature [6, 7]. At the time of publication, these results seemed implausible

given the fact that every system had a unique ground state and zero residual entropy

(third law of thermodynamics). Hence the question arose as to why this system

did not order and had a residual entropy. Pauling was the first to answer this

question by noticing that the two-close/two-far state was frustrated on the ice IH

crystal structure and he calculated the residual entropy by counting the number of

possible degeneracies of this state [8]. He found that the number of degeneracies

grows with the number of oxygens and calculated the residual entropy to be R
2
ln(3

2
)

(R is the gas constant), consistent with the experimental results [6,7]. This was the

first time that a frustrated system was investigated in physics and, interestingly,

the source of frustration in this system is the special geometry of the ice IH.

��




���
�

���
�

���
�

Figure 1.2: Arrangement of hydrogens around an oxygen in ice IH. The protons

(black dots) are in the two-close/two-far state which is frustrated. Oxygens are

shown with big open circles.

Spin glasses are disordered magnetic systems in which frustration plays an es-

sential role in these systems [9–12]. The source of frustration in these systems is

disorder, which can be either structural disorder or disorder induced by doping.
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For these systems, a phase transition from the paramagnetic phase to the spin

glass phase occurs at the spin glass transition temperature, Tg. The important

experimental sign of a spin glass phase is the difference in the field-cooled and

zero-field-cooled magnetization data. In the field-cooled experiment an external

magnetic field is applied to the system in the paramagnetic phase. The system is

then cooled down to a temperature below Tg and the magnetization is measured as

a function of temperature (upon cooling). In the zero-field-cooled case the system

is cooled with the field off, down to a temperature below Tg. When the required

temperature is reached, a magnetic field is applied to the system. The temperature

is then increased and the magnetization of the system is recorded as a function

of temperature upon warming. As mentioned, the magnetization obtained from

zero-field-cooled and field-cooled measurements are different in spin glass systems

and typically bifurcate near Tg. This is in contrast to usual magnetic systems that

have the same field-cooled and zero-field-cooled magnetizations. There are other

experimental features that are unique to the spin glass systems such as the diver-

gence (at Tg) of the third derivative of the magnetization as a function of magnetic

field.

In most of the aforementioned physical systems, such as spin glasses and water

ice, the complexity of the problem precludes an understanding of the generic be-

havior of frustration. Hence, the realization of other frustrated systems with less

complexity and the same behavior as the mentioned systems can improve our under-

standing of frustration. In this way, “geometrically frustrated magnetic” systems

are those with disorder-free crystal structures and tractable interacting Hamiltoni-

ans [13].

For an example of a geometrically frustrated system, consider a triangle and

a square with antiferromagnetic Ising spins on their vertices (Fig. 1.3). For the

square, the minimum energy of the system coincides with the minimum energy

of all the pair-wise interactions. However, for the triangle, it is not possible to

minimize all the pair-wise interactions simultaneously and this system is frustrated

because of its special geometry. In fact, a first example of frustration in magnetic

systems is the Ising model on the antiferromagnetic triangular lattice (a lattice

made of triangles we discussed in the previous paragraph). An exact solution for
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Figure 1.3: Three antiferromagnetic Ising spins on a triangle and a square. Ising

spins on the triangle are frustrated because of the special geometry of the triangle.

the triangular lattice reveals a residual entropy and no transition to an ordered state

down to zero temperature [14]. This can be naively understood by noticing that

the frustration is not removed by attaching triangles together to make a triangular

lattice and the number of degeneracies increase.

After this brief discussion about the geometrically frustration for the triangular

lattice it is interesting to ask:”Is there a three dimensional variant of a triangle

and a triangular lattice which can be geometrically frustrated?” The answer is yes.

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
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?

?

?

Figure 1.4: Tetrahedron is the three dimensional variant of the triangle in two

dimensions. The antiferromagnetic Heisenberg spin 1/2 system on the vertices of a

tetrahedron is frustrated.

The three dimensional variant of the triangle is a tetrahedron and this system with

four antiferromagnetically classical spins of length S on its vertices is frustrated

(Fig. 1.4). This can be simply verified by noticing that the minimum energy of

this system satisfies the S1 + S2 + S3 + S4 = 0 condition; hence it is not possible

to simultaneously align all spins anti-parallel [16]. This can be easily shown by

writing down the Hamiltonian as H = J
2
(S1 + S2 + S3 + S4)

2 − 2JS2, where J is

the antiferromagnetic exchange coupling (J > 0). As a result, the energy of this

system is minimum when the expression in the parentheses (S1 + S2 + S3 + S4) is

zero.

Similar to triangles that make a triangle lattice in two dimensions, tetrahedra
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Primitive Vector of FCC lattice Tetrahedral Basis

a1=
a
2
(1,1,0) r1=

a
4
(0,0,0)

a2=
a
2
(0,1,1) r2=

a
4
(1,1,0)

a3=
a
2
(1,0,1) r3=

a
4
(0,1,1)

r4=
a
4
(1,0,1)

Table 1.1: Primitive vectors and, the tetrahedra basis of the pyrochlore lattice. a

is the dimension of cubic unit cell.

can make a lattice in three dimensions. This lattice is called the pyrochlore lattice

and can be considered as an FCC lattice with four basis vectors that make a single

tetrahedron (Fig. 1.5). In Table 1.1 we give the primitive vectors of the FCC lattice

and the four basis vectors. We use this nomenclature throughout the thesis.
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Figure 1.5: Pyrochlore lattice which is a lattice of corner sharing tetraher as.

In the previous paragraph we mentioned that the antiferromagnetic spin S is

frustrated on a single tetrahedron. It is interesting now to ask what is the effect

of this frustration when we have antiferromagnetic quantum S = 1/2 and a clas-
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sical spin on the pyrochlore lattice. This question has been a matter of extensive

investigation [15-17]. In the classical case, the results of Monte Carlo, molecular

dynamics and mean field show that this system remains in the disordered state

at all temperatures [15,16]. Interestingly, because of the short range correlations

in this system, the DC susceptibility of a single tetrahedron with classical spins

gives the same susceptibility as the whole pyrochlore lattice [18]. In the quantum

case, the results of perturbation expansion and exact diagonalization suggest a spin

liquid ground state for this system with spin-spin correlations that never exceed in-

teratomic distances [17]. From these results, we can conclude that because of the

frustration, the correlations in both the classical and the quantum cases remain on

the order of an interatomic distance.

From the previous discussion we realize that pyrochlore-based compounds should

be a good playground for the emergence of geometrically frustration. Two impor-

tant sets of chemical composition with pyrochlore lattice structure are A2B2O7 and

CD2O4 where A, B and D ions make a pyrochlore lattice. In these compounds A

is a rare earth element, B is a transition metal, C is a divalent element and D is a

magnetic transition metal or C is a monovalent and D is a trivalent transition metal.

There are other compounds such as YMn2, where Mn ions reside on a pyrochlore

lattice. However, not all of the compounds with this structure are frustrated and

we need to know: “what is the experimental criterion for a compound to be highly

frustrated?”. This criterion is usually defined as the ratio between the Curie-Weiss

temperature θcw and the transition temperature to an ordered state Tc. If this ratio

| θcw

Tc
| is more than 10, the system is called highly frustrated [19]. Notice that this

criterion is proposed based on rough experimental facts and the value of 10 is not

really a critical value.

An example of these frustrated systems is ZnCr2O4 with θcw equal to -392

K [20]. This system undergoes a spin-Peierls phase transition at 12.5 K, from a

cubic spin liquid to a tetragonal Néel state [20–22]. For this system, the ratio | θcw

Tc
|

is about 31, hence this system is highly frustrated. Inelastic neutron scattering of

this compound reveals a novel phenomenon which until now is unique to frustrated

systems. Six magnetic moments on hexagonal units of the pyrochlore lattice make

unique objects interacting weakly with other hexagons [23]. This result is very



Chapter 1. Introduction 7

interesting because it shows that the degrees of freedom of a frustrated system can

make small clusters and these clusters become new composite degrees of freedom.

Perhaps the richest discovered set of frustrated systems is composed of the

compounds with the chemical composition A2B2O7, where A is one of the rare

earth ions Er3+, Tb3+, Dy3+, Ho3+ and Yb3+, and B is one of the transition metal

ions Ti4+, Sn4+ or Mo4+. Here, we give some examples of these systems and their

interesting properties.

Y2Mo2O7 with | θcw

Tc
| ≈10 shows a spin glass transition [24]. Ho2Ti2O7 and

Dy2Ti2O7, known as spin ice systems, are the first magnetic systems that mimic

the properties of water ice IH with no transition to an ordered state down to the

lowest measured temperature 50 mK [25,26]. Tb2Ti2O7 is one of the candidates for

a spin liquid state with no transition to an ordered state and magnetic correlations

of the order of intra-atomic distances [27,28]. Gd2Ti2O7 with | θcw

Tc
| ≈10 shows many

interesting phases under an applied magnetic field [29, 30]. Yb2Ti2O7 with Curie-

Weiss temperature of about 0.75 K, shows a first order liquid-gas like transition at

Tc=0.25 K which is unique among magnetic systems [31].

Among these compounds, the spin ice materials Ho2Ti2O7 and Dy2Ti2O7 and

spin liquid Tb2Ti2O7 have been subjected to extensive studies. The experimental

studies show that these compounds have quite different properties [26, 27]. How-

ever, from a theoretical point of view, the magnetic moments of Tb3+ , Ho3+ and

Dy3+ have the same symmetry (Ising like) at low temperatures and similar inter-

acting Hamiltonians [32, 33]. Hence, any theoretical framework that explains one

of these compounds has to explain the other compounds as well. However, the-

oretical calculations show that the spin ice systems Ho2Ti2O7 and Dy2Ti2O7 are

described by the same theory and Tb2Ti2O7 fails to follow this theory [32] . Hence,

the question: “what is the source of the difference between the spin ice systems

and Tb2Ti2O7?”. Answering this question can give the clue for deriving a proper

theoretical framework describing the novel properties of Tb2Ti2O7. Hence, in the

next two sections we describe the experimental properties and present theories for

Ho2Ti2O7, Dy2Ti2O7, and Tb2Ti2O7.
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1.2 Spin Ice Systems Ho2Ti2O7 and Dy2Ti2O7

Before we begin presenting the experimental and theoretical results for Ho2Ti2O7

and Dy2Ti2O7, we review their chemical structure. In Ho2Ti2O7 and Dy2Ti2O7,

Ho3+ and Dy3+ ions, along with Ti4+ ions, make two interpenetrating pyrochlore

lattices. However, the last shell of Ti4+ ions is full which makes Ti4+ non-magnetic

and hence, Ti4+ ions do not contribute to the magnetic properties of these com-

pounds. In contrast to Ti4+ ions, in the 4f shell of Ho3+ and Dy3+ ions, there are 9

and 10 electrons in the f orbitals respectively and, depending on their interaction

with the crystalline environment the single ion ground state can be magnetic. The

local chemical environment of Ho3+ and Dy3+ in Ho2Ti2O7 and Dy2Ti2O7 consists

of eight O2− ions which form a distorted cubic environment, with two oxygens along

one diagonal (〈111〉 direction) which are closer to Ho3+ and Dy3+ than the other

oxygens (Fig. 1.6) [25,35]. Although these O2− ions are non-magnetic, the electro-

static interaction between these oxygens and the angular momentum L of Ho3+ and

Dy3+ change the magnetic properties of Ho3+ and Dy3+ ions as we briefly explain

in the next paragraph (for a discussion on this effect, which is called the crystal

field effect, see Chapter 2).

O
2−

R

R1

2

A
3+

Figure 1.6: The distorted cubic environment of A3+ in A2Ti2O7 where A= Dy, Ho,

Tb. Oxygens are shown with red and green circles.

For a free Ho3+ or Dy3+, all the electronic states with different J z are degenerate.

However, the distorted cubic environment of oxygens removes this degeneracy and,

because of the distortion along the 〈111〉 direction, the magnetic moments of Ho3+
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and Dy3+ point towards the local 〈111〉 direction. A crystal field calculation of Ho3+

and Dy3+ that considers the local environmental oxygens confirms this picture and

in the |J,mJ〉 basis, finds to be predominantly |8,±8〉 and | 15
2
,±15

2
〉 as the ground

state of Ho3+ and Dy3+, respectively [35]. These states are separated by a large

gap of a few hundred Kelvin to the first crystal field excited state [35]. Because

there is no J matrix element between the two states of the ground state doublet,

in temperatures much lower than the crystal field gap, Ho3+ and Dy3+ ions behave

like local 〈111〉 Ising spins on the pyrochlore lattice.

This 〈111〉 Ising behavior has been observed in the magnetization data of Ho2Ti2O7

and Dy2Ti2O7. In Fig. 1.7 the magnetization data of Dy2Ti2O7 in high symmetry

directions [100], [110] and [111] is plotted. This data shows that for a high magnetic

field the magnetization in [100], [110] and [111] directions converges respectively to
1√
3
g〈Jz〉=5.77µB/Dy, 1√

6
g〈Jz〉=4.08µB/Dy and 1

3
g〈Jz〉=3.33µB/Dy (g is the Landé

factor) consistent with Ising assumption [36,37]. This saturation is understandable

because in high magnetic fields, where the Zeeman energy is more than the inter-

action between ions, the magnetization is controlled by the single ion properties.

Also inelastic neutron scattering of Ho2Ti2O7 confirms the 〈111〉 Ising behavior for

Ho3+ [35].
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Figure 1.7: Magnetization data of Dy2Ti2O7 for the high symmetry directions [100],

[110] and [111]. These magnetization are consistent with the local 〈111〉 Ising spins

on a pyrochlore lattice [36].



Chapter 1. Introduction 10

After investigating the single ion properties of Ho3+ and Dy3+, the next step is

to determine the interactions between these magnetic ions. The Curie-Weiss tem-

peratures of Ho2Ti2O7 and Dy2Ti2O7 (Curie-Weiss temperature gives an estimate

of the strength of the coupling between magnetic ions) are respectively 2.5 K and

1.4 K (Appendix A). This shows that the effective interaction between these mag-

netic ions is ferromagnetic. To find the origin of this ferromagnetic interaction we

recall that the crystal field ground states of Ho2Ti2O7 and Dy2Ti2O7 are mostly

made of |8,±8〉 and | 15
2
,±15

2
〉 and hence the diagonal matrix elements of J z in the

crystal field ground state are large. As a result, the dipole-dipole interaction in

these compounds is important. To estimate the strength of this interaction we

need to calculate the magnetic moments of these ions. The magnetic moment of

a magnetic ion in the ground state is related to the other physical quantities by

µ = µBg〈J〉, where g is the Landé factor equal to 5
4

and 4
3
, respectively, for Ho3+

and Dy3+ and 〈J〉 is the matrix element of the total angular momentum J in the

crystal field ground state. Substituting the proper values of these quantities, one

finds a magnetic moment of approximately 10 µB for both Ho3+ and Dy3+. Calcu-

lating the dipole-dipole coupling created by these moments gives a value of about

2.5 K at nearest neighbor separation (Appendix A), larger than the Curie-Weiss

temperature of these compounds.

Yet, the dipole-dipole interaction is not the only interaction, as the overlap be-

tween f orbitals gives an exchange interaction between magnetic ions. Considering

that the exchange coupling of nearest neighbors is much larger than exchange cou-

pling of other neighbors, one can calculate the nearest neighbor exchange coupling

using the Curie-Weiss temperatures of these compounds. The details of such cal-

culations are given in Appendix A and we give here the obtained values of these

couplings for Ho2Ti2O7 and Dy2Ti2O7 which are -0.5 K and -1.1 K respectively.

Therefore, the total magnetic interaction Hamiltonian for these compounds is the

sum of the antiferromagnetic exchange interaction and the dipole-dipole interac-

tion. At nearest neighbor separations, the sum of the dipole-dipole interaction and

the exchange interaction gives a ferromagnetic coupling between 〈111〉 Ising spins.

We explained in Section 1.1 that the antiferromagnetic spins on the pyrochlore
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Figure 1.8: Mapping the two-in/two-out state on a tetrahedron to the two-

close/two-far state in ice IH.

lattice are frustrated and while it is not for geometrically interacting ferromagnetic

spins. Hence, frustration in these compounds seems inconsistent with the fact that

the interaction between Ising spins is ferromagnetic. This discrepancy was first

explained by Harris et. al, who noticed that the 〈111〉 Ising spin on the pyrochlore

lattice can be mapped to water ice IH [25]. To explain this, we plot in Fig. 1.8

the arrangement of one molecule of water ice IH and a single tetrahedron with four

〈111〉 Ising spins on its vertices. In this plot we can easily realize that the “in” and

the “out” states of the Ising spins can be mapped to the “close” and “far” positions

of the protons in ice IH . The ground state of these four spins with ferromagnetic

interaction between them is the two-in/two-out state similar to the ground state

of ice IH, two-close/two-far state. As a result, the ground state of Ising spins with

effective ferromagnetic nearest neighbor interaction on the pyrochlore lattice can

be mapped to the water ice IH and is found to be frustrated. Because of this Har-

ris et. al. coined the name of spin ice for this kind of system [25]. As in to the

disordered ground state in ice IH, neutron scattering experiments and muon spin

resonance experiments on spin ice systems show no transition to an ordered state

down to the lowest measured temperature (50 mK) [25]. In Fig. 1.9(a) we show the

experimental neutron scattering data of Ho2Ti2O7 at 50 mK [38]. This pattern has

a highest intensity peak around (003) and (3/2,3/2,3/2) with no magnetic Bragg

peak indicating an ordered state. Also, the specific heat measurements on spin ice

systems Ho2Ti2O7 and Dy2Ti2O7 reveal that these systems have residual entropy

close to R
2
ln(3

2
) [34, 38]. This determination of residual entropy was not originally
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Figure 1.9: (a) Experimental elastic neutron scattering data of Ho2Ti2O7 in (hhl)

plane at 50 mK. (b) Calculated neutron scattering using Monte Carlo with near-

est neighbor exchange interaction at T= 0.15J. (c) Calculated neutron scattering

using Monte Carlo with antiferromagnetic exchange and dipole-dipole interactions

at T=0.6 K [38].
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Figure 1.10: Phase diagram of local 〈111〉 Ising spins on the pyrochlore lattice as

a function of ratio between nearest neighbor exchange Jnn coupling to the dipole-

dipole coupling at nearest neighbor Dnn. The inset show the two-in/two-out struc-

ture on a tetrahedron [32].

obvious for Ho2Ti2O7, because of a Schottky anomaly in the specific heat data re-

lated to the nuclear hyperfine contribution of Ho3+ ion. It was after subtracting the

contribution of this Schottky anomaly that specific heat measurements confirmed

the spin ice state for Ho2Ti2O7 [38].

Monte Carlo calculations of elastic neutron scattering using only the nearest

neighbor exchange Hamiltonian and the dipole-dipole Hamiltonian, show that in-

cluding the dipole-dipole interaction, and treating it with the Ewald method are

necessary to derive correct correlations for spin ice system Ho2Ti2O7 [38]. Also,

using Monte Carlo simulations, the phase diagram of spin ice systems with dipole-

dipole and antiferromagnetic exchange interactions was obtained (Fig. 1.10) [32].

In this phase diagram, the temperature divided by the dipole-dipole coupling at

nearest neighbor Dnn as a function of ratio between the exchange coupling Jnn and

Dnn is plotted. Two phases are found: the Q = 0, all-in/all-out phase for Jnn

Dnn
<

-0.91 and the frustrated spin ice phase for Jnn

Dnn
> -0.91. The Q = 0, all-in/all-out

phase is an ordered phase on the pyrochlore lattice with either all spins pointing in

or out of the tetrahedra. Incorporating loop moves in the Monte Carlo calculation
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gives a phase transition from a disorder spin ice state to a so-called “Melko phase”

at Tc
∼=0.077Dnn=180 mK [39]. In this calculation flips of the Ising spins on closed

loops of the pyrochlore lattice is added to the Monte Carlo calculations. This loop

dynamics is such that it obeys two-in/two-out, ice rule. This transition is indepen-

dent of the exchange coupling Jnn and hence it is the same for both Ho2Ti2O7 and

Dy2Ti2O7. This phase is a Q = 001 phase with the two tetrahedra in each unit

cell being in the same two-in/two-out state and the Ising spins on the other two

tetrahedra being flipped compared to the first two tetrahedra (Fig 1.11).

Figure 1.11: Ordered phase of spin ice system “Melko phase”. The left hand panel

shows the projection of spins to the xy plane [39].

One of the remaining puzzles in these compounds is the predicted exchange cou-

pling of Ho2Ti2O7 using the experimental DC susceptibility results [40, 41], which

give Jnn=-1.92 K. This coupling is inconsistent with the exchange coupling derived

from fitting the Monte Carlo specific heat to the experimental data [38]. We address

the source of this discrepancy in Appendix A.

1.3 Spin Liquid Tb2Ti2O7

In the previous section, some experimental and the theoretical results on spin

ice systems were presented. In this section, we give a brief description of the

experimental results of Tb2Ti2O7 to expose similarities and differences with the
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spin ice systems Ho2Ti2O7 and Dy2Ti2O7. We use the results of this comparison

to find a clue for understanding the physics of Tb2Ti2O7.

In Tb2Ti2O7 with space group Fd3̄m, Ti3+ and O2− are non-magnetic and Tb3+

ions with 8 electrons in the 4f shell (L=3 and S=3 and spectroscopic symbol 7F6)

are magnetic. Muon spin resonance [27] and diffuse neutron scattering [27, 28] ex-

periments show that Tb2Ti2O7 does not order down to 50 mK, more than 280 times

smaller than the estimated Curie-Weiss temperature θcw = −14 K estimated from

DC susceptibility [33]. Considering the negative θcw, one would naively conclude

that the effective interaction between Tb3+ ions in Tb2Ti2O7 is antiferromagnetic.

The antiferromagnetic Heisenberg model on the pyrochlore lattice is frustrated as we

discussed in Section 1.1 and as a result, magnetic correlations should remain short

ranged and the system failing to order. Although at first glance this picture seems

plausible, experimental and theoretical results reveal another scenario [27, 33, 43].

These results show that the single ion crystal field levels of Tb3+ are similar to Ho3+

and Dy3+ ions in the spin ice systems Ho2Ti2O7 and Dy2Ti2O7, with an Ising-like

magnetic doublet in the ground state which is separated from the first excited states

by a 18 K gap [27, 33].

As with the spin ice systems, neglecting the effect of crystal field excited states

at temperatures T � θcw, one can map the two states of the crystal field ground

state to local 〈111〉 Ising spins. The ground state of local 〈111〉 Ising spins on a sin-

gle tetrahedron is the all-in/all-out state in which either all Ising spins are towards

or outwards of the tetrahedron (Fig. 1.12) and, as we explained before, these states

are not frustrated. Considering the long-range nature of the dipole-dipole interac-

tion and the known dipole-dipole and exchange couplings for Tb2Ti2O7, which are

Dnn=0.5 K and Jnn=-0.53 K, put Tb2Ti2O7 ( Jnn

Dnn
=-1.07) in the all-in/all-out state

with a phase transition temperature of about 1 K (Fig. 1.10). However, interest-

ingly, for the given dipole-dipole and exchange couplings, Tb2Ti2O7 is very close to

the boundary of spin ice and all-in/all-out state, hence any small perturbation can

move Tb2Ti2O7 to the spin ice phase.

Before we proceed, we comment on the notation for dipole-dipole and exchange

couplings that was previously used for spin ice system [32] and the notation for

Tb2Ti2O7 that we use in the rest of this thesis. In spin ice systems the dipole-dipole
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Figure 1.12: The ground state of antiferromagnetic local 〈111〉 Ising spins on a single

tetrahedron (all-in/all-out state). This state is not frustrated on the pyrochlore

lattice.

and the exchange couplings between Ising spins are respectively D and J and they

are related to Dnn and Jnn by Dnn = 5
3
D and Jnn = 1

3
J . In our notation the dipole-

dipole and the exchange couplings between Tb3+ ions are denoted respectively by

J and D and this notation is related to the previous notation by J = J |〈J z〉|2 and

D = D|〈Jz〉|2, where |〈Jz〉| is the diagonal matrix element of J z in the ground state

doublet. Also, in our notation, positive exchange means antiferromagnetic coupling

opposite to the spin ice notation in which positive exchange means ferromagnetic

coupling. The dipole-dipole coupling can be obtained using D = ( µ0

4π
) (gsµB)2

r3
nn

, where

µ0=4π × 10−7 H/m is the vacuum permeability, gs = 3
2

is the Landé factor for

Tb3+, µB = 9.27× 10−24 J/T is the Bohr magneton and rnn is the nearest-neighbor

distance between magnetic ions equal to 3.59 Å [27]. Substituting these values we

obtain D=0.0315 K. The exchange coupling can be obtained using J = −3θcw

zJ(J+1)
[29],

where z is the number of nearest neighbor and J=6 is the total angular momentum.

We assume a needle-shaped sample with θcw=-14 K [33] (negative sign shows that

exchange interaction is antiferromagnetic) and obtain J=0.167 K. Now we continue

our discussion about the ground state of Tb2Ti2O7 based on the 〈111〉 Ising spins

on the pyrochlore lattice.

We mentioned that with the given dipole-dipole and exchange couplings for

Tb2Ti2O7, this compound should be in the all-in/all-out phase. However, this

compound is close to the boarder of the all-in/all-out and spin ice phases and

any small perturbation can move it to the spin ice phase or maybe make a quite
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distinct frustrated state. To find what perturbations are at play in this system, we

review the experimental results of Tb2Ti2O7 and address the key question: “why

is Tb2Ti2O7 frustrated?”.

In Fig. 1.13, muon spin relaxation (µSR) rate as a function of temperature is

plotted down to 70 mK [27,42]. The muon spin relaxation (1/T1) gives a scale for

the spin fluctuations and the larger 1/T1 is, the slower are spin fluctuations. Two

regions of fluctuations are observed, the fast fluctuation limit for T > 10 K and the

slow fluctuations limit for T < 2 K, until the lowest measured temperature of 70

mK. No peak is observed in these plots, which is a sign of no phase transition into

an ordered state [44]. In the inset of the left hand figure, the muon polarization as

a function of time is plotted for different temperatures. The exponential behaviour

of the polarization as a function of time for each temperature shows that system is

in the paramagnetic phase with no clear sign of glassy behaviour which would give

stretched exponential relaxation. We should mention that often in the case of a

long-ranged ordered system, the muon polarization oscillates as a function of time

[44]. Other µSR experiments on the diluted samples (TbpY1−p)2Ti2O7 (Fig. 1.13)

Figure 1.13: Muon spin relaxation of Tb2Ti2O7 and (TbpY1−p)2Ti2O7 for different

percentage of dilution. In this graph the muon spin relaxation is plotted as a func-

tion of temperature [27, 42]. Notice that the percolation threshold for pyrochlore

lattice is R=0.39.
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show that the muon relaxation rate changes with dilution, however, the percolation

threshold (Rc=0.39) does not signal any dramatic changes [42]. This may suggest

that the magnetic ions in Tb2Ti2O7 make small magnetic clusters insensitive to

the percolation threshold. Also, it is worthwhile to mention that unless T=4 K,

quantum fluctuations increase with increased dilution [42]. This means that there

are weak correlations among magnetic clusters but these correlations are not strong

enough to cause a phase transition in the system.

Although µSR experiments provide some information about Tb2Ti2O7, other ex-

perimental evidences are needed to confirm the results of µSR and give some new

information for understanding this system. In this context, the neutron scattering

experiments have been done on this compound. Fig. 1.14 shows the diffuse neutron

scattering of Tb2Ti2O7 at 9 K and 60 mK [27,28]. A broad region of high intensity

Figure 1.14: Diffuse neutron scattering of Tb2Ti2O7 at T=9 K (left figure) and

T=60 mK (right figure). Both data show a broad region around (002) which indi-

cates correlations remain short ranged at least down to 60 mK [28,43].

is observed around (002) without any change from 9 K to 60 mK. The broadness

of diffuse neutron scattering around (002) shows that the magnetic correlations in

Tb2Ti2O7 are very short ranged. This can be verified qualitatively by noting that
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the diffuse neutron scattering is well described by
sin(Qrij)

Qrij
[43] at 2.5 K, which is the

derived scattering function with magnetic correlations truncated at nearest neigh-

bor. The inclusion of magnetic correlations from further neighbors (using the more

general formula
∑

ij〈SiSj〉 sin(Qrij)

Qrij
) adds extra terms which result in a qualitatively

inconsistent pattern with the experiments [43]. Hence, the magnetic correlations

in Tb2Ti2O7 remain short ranged and of the order of nearest neighbor distance.

We should mention that the diffuse neutron scattering of Tb2Ti2O7 is qualitatively

different from the neutron scattering of spin ice systems. In spin ice systems the

highest intensity is located at (003) and (3/2,3/2,3/2) and these region of high

intensity are not as broad as the highest intensity region in Tb2Ti2O7 at (002).

After this short note about the diffuse neutron scattering results of Tb2Ti2O7, we

discuss experimental inelastic neutron scattering of Tb2Ti2O7 results which give

information about the magnetic excitations in this compound.

Inelastic neutron scattering results give some Q-independent excitations related

to the crystal field states [27,43]. The three lowest crystal field states are observed

at 18, 126, and 175 K which explain that the crystal field ground state is connected

to the three lowest excited states by J+, J− or Jz matrix elements [27, 43]. The

excitations from the ground state to the first excited states show dispersion as a

function of Q for T < 30 K, while, the excitations from the ground state to the

other excited states are dispersionless [43].

To find the crystal field Hamiltonian which describes the single ion excitations

of Tb2Ti2O7, a crystal field calculation is reported in Ref. [33]. In this calculation

the point charge approximation as well as ab-initio methods were employed. It

was shown that the crystal field ground state doublet is predominantly made of

| ± 4〉 and the first excited state doublet is mostly made of | ± 5〉 [33]. This

doublet-doublet picture is consistent with the susceptibility results of Tb2Ti2O7

and (Tb0.02Y0.98)2Ti2O7 and, also with the magnetic moment in the ground state

equal to 5 µB estimated via µSR experiments [33].

So far, we have discussed the experiments that probe the microscopic properties

of Tb2Ti2O7. However, it is always useful to study the bulk experimental proper-

ties of a physical system such as specific heat and also the physical properties of

Tb2Ti2O7 under further external perturbations such as pressure and magnetic field.
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These studies can give key information such as residual low temperature entropy

and the response of the system to different perturbations.

The specific heat results of Tb2Ti2O7 show two broad peaks and one sharp

peak. In Reference [33], the broad peaks are reported to occur at T=1.5 K and

T=6 K while in reference [45], they are reported to occur at T=0.7 K and T=5

K (Fig. 1.15). The sharp peak is observed at T=0.37 K which may suggest a

phase transition to ordered state [45]. Deriving the entropy from these specific

heat results confirms the doublet-doublet scheme [33]. However, the entropy at

high temperatures still does not recover Rln(4) [33,45], which could be interpreted

as a sign of residual entropy in the ground state. The observed lower temperature

peaks in the specific heat data can be associated with the low energy manifold

of states made from interactions between crystal field ground states. The higher

temperature peak can be associated with the first crystal field excited state which

is broadened by the magnetic correlations between Tb3+ ions. The sign of phase

transition (sharp peak in the specific heat data at 0.37 K) is observed at AC [45]

and DC [46] susceptibility measurements. These results show a spin glass phase

transition which in references [45] and [46] are reported to arise at T=0.2 K and 0.07

K, respectively. However, as was discussed earlier this transition is not observed in

the µSR and neutron scattering experiments.

The diffuse neutron scattering experiment of Tb2Ti2O7 under pressure shows the

liquid-solid like transition for Tb2Ti2O7 under high pressures [47]. This transition

starts to develop at T=2.1 K under a pressure of 1.5 GP. At this pressure, the Bragg

peaks begin to appear at reciprocal points such as Q=100, 110, 210 and 211 and

become sharper with increasing pressure. However, the presence of diffuse neutron

scattering along with Bragg peaks shows that the system is not fully ordered. An

analysis of the Bragg peaks show that this order state is antiferromagnetic with

an ordering wave vector of either k= 100 or 110. The x-ray experiment under

the pressure reveals no structural phase transition [47]. Hence, the liquid-solid

transition can be associated with the change of interacting couplings among the

Tb3+ ions and maybe the spin-lattice coupling. Applying anisotropic stress via

large uniaxial pressure produces a transition to a Néel ordered state [48]. The

Néel ordered state is not stable under an applied magnetic field and, for magnetic
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Figure 1.15: The specific heat of Tb2Ti2O7 as a function of temperature. Two

broad peaks is observed in the left figure and two broad peaks and one sharp peaks

are observed in the right figure. The sharp peak at 0.37 K (in the left figure) can

be a sign of phase transition [33, 45].

fields more than 0.6 T, this ordered state change from antiferromagnetic to canted

ferromagnetic [48].

Tb2Ti2O7 has also been investigated under an external magnetic field B. The

magnetization measurements of Tb2Ti2O7 with B applied along different high cubic

symmetry directions, [100], [110] and [111], is shown in Fig. 1.16 [37]. The lack

of anisotropy reveals that Tb3+ ions behave more like Heisenberg spins than Ising

spins (inset of Fig. 1.16), inconsistent with the crystal field ground state which

predicts Ising spins for Tb3+. In Fig. 1.17 we show the diffuse neutron scattering

of Tb2Ti2O7 under an applied magnetic field along the [110] direction [51]. These

results show that with increasing the magnetic field, the highest intensity around

(002) starts to sharpen and above B=2 T, it changes to a Bragg peak. Also, with

increasing the magnetic field, a diffuse scattering along with a Bragg peak starts to

emerge near (211). In the ordered phase, spin waves are observed which is a further

evidence that the magnetic moments are isotropic and not Ising like.

Investigating the properties of Tb2Ti2O7 under different perturbations, the ques-



Chapter 1. Introduction 22

Figure 1.16: Magnetization of a single crystal of Tb2Ti2O7 along the high symmetry

directions [100], [110] and [111]. These data show the isotropic behavior for Tb3+

moments. In the inset the magnetization data of a single crystal of Ho2Ti2O7 in the

high symmetry directions [100], [110] and [111] is shown. This result is evidence

for 〈111〉 Ising spin behavior for the Ho3+ moments [37].
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Figure 1.17: Diffuse neutron scattering of Tb2Ti2O7 in the (hhl) plan and at 1 K

and under the magnetic field with strength (a) B=0 T, (b) B=2 T and (c) B=8

T. (d) The integrated scattering over Q as a function of energy at T=0.1 K [51].

tion arises as to how Tb2Ti2O7 behaves when we perturb the structure of this sys-

tem by replacing the non-magnetic ions Ti3+ with other non-magnetic ions. This

substitution changes the lattice size and this affects the magnetic properties of the

system. This experiment was done by substituting Ti3+ with Sn3+ in Tb2Ti2O7

to give Tb2Sn2O7. Tb2Sn2O7, in contrast to Tb2Ti2O7, shows a two-step phase

transition to a long range ordered state. In the first step a smeared transition to

a ferromagnetic phase arises at T ' 1.3 K, which is followed by a sharp transition

at T= 0.87 K. These phase transitions have been observed via neutron diffraction

studies [49]. Specific heat also shows a sharp peak at T= 0.87 K consistent with the

sharp phase transition observed by neutron diffraction. Comparing the magnetic

moments obtained from the specific heat, 3.3 µB, and neutron scattering, 5.9µB,

reveals the persistence of quantum fluctuations of correlated spins in the ordered

state [49]. The magnetic moment of Tb3+ ions in specific heat data is calculated

by fitting the experimental data to the nuclear Schottky anomaly. This fitting

determines the hyperfine field and from it the value of 3.3 µB for Tb3+ moment

is obtained [49]. The observed missing magnetic moment from the macroscopic

(specific heat) scale to microscopic scale (neutron scattering) may be related to the
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correlations among the dynamic magnetic clusters. The presence of dynamics in

Tb2Sn2O7 is confirmed by µSR experiment which shows no transition to a long

range ordered state [50].

To find whether Tb2Ti2O7 is a disorder-free lattice, the x-ray absorption fine-

structure and neutron powder-diffraction studies have been performed. The results

of these experiments show that Tb2Ti2O7 is a disorder-free pyrochlore lattice with

oxygens and Ti3+ at their exact position within experimental error and down to

the measured temperature of 4.5 K [52]. Also, comparing the experimental results

of µSR with DC susceptibility results show no sign of static lattice distortion in

Tb2Ti2O7 down to 70 mK [53]. In this experiment, the change in the local envi-

ronment of the muons as a function of temperature is studied. This change can be

related to the polarization of spin and also the distortion of the lattice and as a

result, provides strong evidence for the absence of any distortion in the lattice.

On the theoretical side, mean field theory [54] and random phase approxima-

tion (RPA) calculation [55] have been used to find a qualitative description of the

physical properties of Tb2Ti2O2. In the, the full crystal field state has been used

to calculate the neutron scattering of Tb2Ti2O7 [55]. This calculation gives a qual-

itative description of the experimental diffuse neutron scattering of Tb2Ti2O7 [55].

This is an evidence for the importance of excited crystal field states in describing

the physical properties of this compound. On the other hand, this calculation does

not give any clue to the source of frustration in this system. Also, a mean field cal-

culation with 〈111〉 Ising spins with dipole-dipole and antiferromagnetic exchange

interactions shows that the 〈111〉 Ising spins cannot predict the results of experi-

mental neutron scattering of Tb2Ti2O7 [54]. However, assuming a more isotropic

spin model, such as Heisenberg spins with finite 〈111〉 anisotropy gives a neutron

scattering pattern consistent with the neutron scattering results of Tb2Ti2O7 [54].

From the presented experimental data and theoretical results we conclude that

the 〈111〉 Ising Hamiltonian is unable to describe the low-energy physics of Tb2Ti2O7.

As a result, the magnetic behavior of Tb2Ti2O7 is likely governed by another low

energy Hamiltonian and the first goal of any theoretical work on this system must

be to find this Hamiltonian. From this perspective, the facts that Tb2Ti2O7 is close

to the boundary between spin-ice and all-in/all-out state and that the experimental
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evidence that the crystal field gap between the ground state and first excited states

is small provide an important clues: Perhaps the crystal field excited states change

the effective low energy physics of Tb2Ti2O7 from Ising like. This is the main issue

that we address in this thesis and we use some tools, such as effective Hamilto-

nian method (Chapter 3), to derive the low energy Hamiltonian of Tb2Ti2O7 and

attempt to give an explanation as to “why is Tb2Ti2O7 frustrated?”.

1.4 Structure of the Thesis

We begin with a review of the crystal field effect and how to derive the crystal

field Hamiltonian based on the crystal structure and introduce a point charge ap-

proximation. We also derive the crystal field Hamiltonian of Tb2Ti2O7 by rescaling

the crystal field parameters of Ho2Ti2O7. We show that the ground state of this

Hamiltonian is made of a magnetic doublet separated from the first excited state

doublet by a 18.7 K gap. We use the crystal field basis for constructing the effective

Hamiltonian of Tb2Ti2O7.

In Chapter 3 we review the tools for constructing the effective Hamiltonian of

Tb2Ti2O7 by introducing the Brillouin-Wigner perturbation theory, the Rayleigh-

Schrödinger perturbation theory and the effective Hamiltonian method. Using the

effective Hamiltonian method, we calculate in the forth chapter, the effective Hamil-

tonian of Tb2Ti2O7 in the ground state doublet basis and, to the second order of

perturbation theory, by integrating out the crystal field excited states. In the first

order of perturbation theory we derive the 〈111〉 Ising Hamiltonian on a pyrochlore

lattice similar to spin ice systems. We show that to second order in perturbation

theory, the crystal field excited states of Tb3+ ions renormalize the pair-wise inter-

action between 〈111〉 Ising spins derived in first order perturbation theory. This

renormalization changes the effective interaction between Ising spins at nearest

neighbor from antiferromagnetic to ferromagnetic and generates a frustrated 〈111〉
Ising Hamiltonian. We also show that the crystal field excited states create pair-

wise transverse terms in the effective Hamiltonian and restore some isotropy of the

magnetic moments in the effective Hamiltonian.
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In Chapter 5, we study the phase diagram of Tb2Ti2O7 with four lowest crystal

field states and with the effective Hamiltonian within the independent tetrahedron

approximation. This study helps us understand the effects of excited crystal field

states on the phase diagram of a single tetrahedron of Tb2Ti2O7. At this level

of approximation, we find that the ground state of Tb2Ti2O7 is mostly made of a

linear combination of spin ice states (two-in/two-out), i.e. a quantum spin ice.

In Chapter 6 we use the experimental fact that the magnetic correlations in

Tb2Ti2O7 are of the order of nearest neighbor and calculate the diffuse neutron

scattering of Tb2Ti2O7 within the single tetrahedron approximation. We show that

the inelastic scattering among the lowest energy states of the single tetrahedron,

which are in the energy window of the experiment, are responsible for the diffuse

neutron scattering in Tb2Ti2O7. We propose an experiment based on diffuse neu-

tron scattering to verify the underlying spin ice like nature of the low temperature

regime of Tb2Ti2O7.

In Chapter 7 we apply periodic boundary conditions to the effective Hamiltonian

of Tb2Ti2O7 in a cubic unit cell. We find the classical ground state of Tb2Ti2O7

and show that it is a two-in/two-out spin ice state. This study helps us to figure out

the ground state of Tb2Ti2O7 in the presence of long-range dipole-dipole interaction

and verify that in the thermodynamic limit, we still have the two-in/two-out state

as the ground state.

In Chapter 8 we study the crystal field states of Tb2Ti2O7 under magnetic field.

We also calculate the magnetization of a single tetrahedron with four Tb3+ ions

and six lowest crystal field states. We show in the context of magnetization results

that the combination of excited crystal field states and the interaction between

Tb3+ ions restores isotropy of the effective magnetic moments related to Tb3+ ions.

We propose an experiment based on the magnetization of Tb2Ti2O7 in different

symmetry directions to verify the spin ice like ground state in Tb2Ti2O7.

Finally, in Chapter 9 we summarize the results of all chapters and give few

proposals for future work.

In Appendix A we present a calculation of exchange interactions for spin ice

materials Ho2Ti2O7 and Dy2Ti2O7 using the experimental DC susceptibility results
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for these compounds. We obtain exchange interactions for Ho2Ti2O7 and Dy2Ti2O7

consistent with those derived exchange interactions by fitting the specific heat data

of these compounds to experimental results. This calculation resolves the last puzzle

as to whether Ho2Ti2O7 is a spin ice, and confirms that this compound is a spin

ice system.



Chapter 2

Crystal Field Effect in Tb2Ti2O7

The crystal environment of a single magnetic ion in conjunction with its elec-

tronic structure determine the single ion magnetic levels and the symmetry of the

magnetic ion in its electronic ground state. These single ion levels are key elements

in understanding the magnetic properties of a magnetic system. In this chapter, we

give a brief introduction to the crystal field effect for f-electron ions and determine

the crystal field levels of Tb3+ in Tb2Ti2O7

The electrostatic interaction between the electrons of a magnetic ion and its

environment in a crystal can lift the spatial degeneracy of the magnetic ion lev-

els. This interaction can be written in terms of the angular momentum, L, and

in the case of f-electron ions, where the spin-orbit interaction is strong, in terms

of the total angular momentum, J . As previously mentioned, this effect, which is

called the crystal field effect, plays an important role in understanding the magnetic

properties of magnetic compounds [57, 58]. The interaction caused by this effect

alongside the spin-orbit interaction are the main single-electron interactions in a

magnetic ion. In ions with d-electrons in the outermost shell, the strength of the

crystal field interaction is comparable with spin-orbit interaction and in f-electron

ions this interaction is usually much smaller than the spin-orbit interaction [57]. As

a result, in f-electron ions, the total angular momentum J is a good number and

the crystal field effect can be treated perturbatively. Based on this, Stevens and

others developed a method that substitutes different terms in the expansion of the

28
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electrostatic interaction between the f-electrons and the environment with opera-

tors which are functions of the total angular momentum operator J [58]. However,

because of quantum effects and the extent of charges, this calculation is unfeasible

and one needs to make some approximations. The simplest approximation for this

is the point charge approximation where all the quantum effects and spatial extent

of charges are neglected [58,59]. The obtained eigenvalues and eigenfunctions from

this approximation give a good qualitative picture of the crystal field states. How-

ever, these results are not good enough to be considered as an accurate method for

calculating physical quantities. Therefore, we need a more sophisticated method

for calculating the crystal field which takes into account the quantum effects and

the spatial extension of the environmental charges. To accomplish this, we use a

semi-empirical method in which we write the most general crystal field Hamilto-

nian consistent with the environmental symmetry of the magnetic ion with a few

unknown parameters that are determined from experimental results.

After this short introduction we present an overview of the organization of the

different sections in this chapter. In the first section, we use the point charge

approximation to derive the crystal field interaction in terms of the total angular

momentum operator. We take into account the quantum effects and the spatial

extension of the environmental charges by using a semi-empirical method. In the

second section, we calculate the crystal field Hamiltonian of Tb2Ti2O7 both in the

point charge approximation and with the semi-empirical method. We also calculate

the eigenvalues and eigenfunctions of the resulting Hamiltonian as well as the change

of eigenvalues with the positions of the environmental ions.

2.1 Point Charge Approximation

In this section, we calculate the crystal field Hamiltonian of a rare earth ion with

f-electrons as the outer shell and in a crystalline environment. We begin by using

the point charge approximation where the three basic assumptions are [58, 59]:

• The overlap between the f-orbitals of the rare earth ion and surrounding ions

is negligible.
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• The only interaction between f electrons of the rare earth ion and other charges

in the environment is the electrostatic interaction.

• All other ions and their electrons are treated as point charges sitting at their

equilibrium positions in the crystal.

i
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z 

ϕ
i

i

R
θ

Figure 2.1: The crystal environment of the f-electron ion. The reference frame

is usually chosen such that the f-electron ion is at the origin (blue sphere). The

environmental ions are shown by green spheres.

We choose a reference frame such that the magnetic ion is at the centre of the

coordinates (Fig. 2.1). In this reference frame, the electrostatic interaction between

the environmental ions and f-electrons reads

Vcf = −e
∑
ij

qj
4πε0|ri − Rj|

, (2.1)

where −e is the electron charge, qj is the effective electric charge of ion j at site Rj,

and ri is the position of f-electron i . The sum over j includes all the environmental

charges of the rare earth element and the sum on i is over all the f-electrons of

the rare earth element. Due to the symmetries of the crystalline environment, it is

useful to expand the crystal field Hamiltonian in terms of the spherical harmonics.

Hence, the crystal field potential, in terms of spherical harmonics, reads

Vcf =
∑

i

∑
lm

Am
l ri

lYlm(r̂i) , (2.2a)

Am
l = (−1)m 4π

2l − 1

∑
j

qj

Rl+1
j

Ylm(R̂j) (2.2b)
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where Ylm are spherical harmonics, r̂i is the radial unit vector at the position of

f-electron i, and R̂j is the radial unit vector of position vector at the position of ion

j, and the sum on i is over all the f-electrons, ri is the radial distance of f-electron

i and the sum on j is over all the environmental ions. Owing to of the symmetries

of the crystalline environment, most of the terms in this expansion are zero and

there are only a few non-zero terms that satisfy the symmetries of the crystalline

environment. To avoid imaginary coefficients in the crystal field Hamiltonian, we

define a new set of spherical harmonics such that,

Zn0 = Y 0
n , (2.3a)

Zc
nm =

1√
2
[Y −m

n + (−1)mY m
n ] , (2.3b)

Zs
nm =

i√
2
[Y −m

n − (−1)mY m
n ] . (2.3c)

In terms of this set of spherical harmonics, which are called tesseral harmonics, the

crystal field Hamiltonian reads

Vcf = e
∑

i

∑
nα

ri
nγnαZnα(xi, yi, zi) , (2.4a)

γnα =
∑
j=1

4πqj
2n+ 1

Znα(θj, φj)

Rn+1
j

, (2.4b)

where Ri, θi and φi are respectively the distance, the polar angle and the azimuthal

angle of ion i in spherical coordinates (Fig. 2.1), xi, yi and zi are the spatial coor-

dinates of electron i, n and α are determined by the symmetry of the environment

of the magnetic ion (all Znα are zero, except those which are invariant under the

symmetry of the environment), Znα represents both Zc
nm and Zs

nm and the sum on

i is over all f electrons. Because of the symmetry of A3+ in A2Ti2O7 (distorted

cubic), Zs
nα terms in Eq. (2.4a) are zero and from now on we use m instead of α

and Znm instead of Zc
nm. In rare earth elements, the spin orbit interaction is very

strong and, as a result, the total angular momentum J is a good quantum number

and the eigenstates of the total angular momentum operator J are good states.

Therefore, we calculate the crystal field Hamiltonian in the basis of total angular

momentum J . To accomplish this, we write Znm(xi, yi, zi) in Cartesian form and
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define new functions fmn as,

Znm(xi, yi, zi) = (c)
fnm(xi, yi, zi)

ri
n

. (2.5)

where c is given as a coefficient outside of the bracket in Table IV of Reference

[59]. According to the Wigner-Eckart theorem, a simple relation exists between the

matrix elements of this potential and functions of the matrix elements of the total

angular momentum operator given by,

∑
i

fnm(xi, yi, zi) = θn〈rn〉Om
n , (2.6)

where 〈rn〉 is the expectation value of the radial distance, θ2 = αJ , θ4 = βJ and

θ6 = γJ are Stevens’ multiplicative factors and their values for different rare earth

ions are given in References [58, 59]. Om
n , which are called Stevens operators, are

functions of total angular momentum and transform among each other like spherical

harmonics. As an example, the matrix elements of
∑

i(3z
2
i − r2

i ) in the basis of

|LSJJz〉 are related to the operator αJ〈r2〉O0
2 as follows:

〈LSJJz|
∑

i

(3z2
i − r2

i )|LSJJz〉 = αJ〈r2〉〈LSJJz|O0
2|LSJJz〉. (2.7)

A list of Stevens operators for rare earth ions is given in References [58, 59]. Sub-

stituting Eq. (2.6) in Eq. (2.5) and Eq. (2.5) in Eq. (2.4a), the crystal field

Hamiltonian in terms of the Stevens operators can be written as

Hcf =
∑
mn

[Am
n 〈rn〉θn]Om

n . (2.8)

This equation is usually written in the following more compact form:

Hcf =
∑
mn

Bm
n O

m
n , (2.9)

where the coefficients Bm
n are crystal field parameters.

There are other popular conventions for writing the crystal field Hamiltonian.

One of these conventions is based on tesseral operators [61]. These operators trans-

form like Stevens operators and they are related to Stevens operators such that
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for positive and negative m, Stevens operators are proportional to Cc
lm and Cs

lm

respectively, where Cc
lm and Cs

lm are tensorial operators [63]. Because of the quan-

tum effects and the complexity of the distribution of electric charge around each

rare earth ion, crystal field parameters are hard to calculate and they are usually

determined semi-empirically using experimental data. One of the ideal experi-

mental methods for determining the crystal field parameters is inelastic neutron

scattering [35]. In this method, the crystal field levels of the single magnetic ion

are determined by measuring the change of energy of scattered neutrons at zero

momentum transfer. The crystal field coefficients are obtained by fitting the eigen-

states of the crystal field Hamiltonian to these energy levels. In the next section,

we use the point charge approximation and semi-empirical method to determine

the crystal field Hamiltonian of Tb2Ti2O7.

2.2 Crystal Field Effects in Tb2Ti2O7

In this section, we apply the results of the previous section to calculate the

crystal field Hamiltonian in the point charge approximation and with the semi-

empirical method. It was mentioned in the first chapter that the symmetry group

of Tb2Ti2O7 is Fd3̄m. In this crystal structure, each Tb3+ ion is surrounded by

eight oxygens which make a distorted cubic environment such that two oxygens

in one diagonal are closer to Tb3+ ion than the other six oxygens (Fig. 2.2) [33].

The distance between the oxygens and the Tb3+ ion were determined by x-ray

experiment and they are R1=2.2 Å and R2=2.5 Å, respectively [33]. The electric

field of these oxygens at the Tb3+ site creates a crystal field effect which we first

calculate within the point charge approximation. We should mention that the effect

of other ions in the environment of a Tb3+ ion is much less than these eight oxygens

because the crystal field parameters Bm
n drop off as 1

R(n+1) where R is the distance

between the Tb3+ ion and other ions, and also because the densities of positive

and negative charges at large R are the same. In the following calculation, we

choose the first sublattice of the FCC lattice with the two closer oxygens in the

[111] directions. For the three other sublattices with easy axis towards [1̄1̄1], [11̄1̄]

and [1̄11̄], we have the same crystal field Hamiltonian with the difference that they
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possess a different local easy axis related by the point group symmetry.

O
2−

R

R1

2

A
3+

Figure 2.2: The crystal environment of Tb3+ ion (blue sphere in the center) in

Tb2Ti2O7 is made of eight oxygens (red and green spheres in the vertices of the

cube) which make a distorted cubic environment such that two oxygens (green) in

one diagonal are closer to Tb3+ ion than the other six oxygens (red) [33].

To find the crystal field Hamiltonian in the point charge approximation, one has

to calculate the γnm coefficients in Eq. (2.4b). The general formula for calculating

these coefficients is

γnm =
8∑

j=1

4πqj
2n+ 1

Znm(θj, φj)

Rn+1
j

(2.10)

where Rj is the distance between oxygen j and the Tb3+ ion and the sum is over

the eight oxygens surrounding the Tb3+ ion. Because the two oxygens in the 〈111〉
direction are closer to the Tb3+ ion, they make a preferred axis for the Tb3+ ion,

we thus choose a local reference of frame such that the new z, y and x axis are

respectively towards the 1√
3
(1,1,1), 1√

2
(1,2̄,0) and 1√

6
(1̄,1̄,2) vectors of the global

frame. The spherical coordinates of environmental oxygens in this local frame are

given in Table 2.1.

By substituting these angles in Eq. (2.4b) we calculate γnm coefficients in terms

of the ratio of R2 to R1. Substituting these coefficients in Eq. (2.4a) and using Eq.
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Ion’s index 1 2 3 4 5 6 7 8

R(Å) 2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.2

θ (degree) 0 70.53 70.53 70.53 109.47 109.47 109.47 180

φ (degree) 0 60 -60 0 0 60 -60 0

Table 2.1: The spherical coordinate of the environmental oxygens in the local axis

with z, y and x axis are respectively pointed towards the 1√
3
(1,1,1), 1√

2
(1,1̄,0) and

1√
6
(1̄,1̄,2) directions (Fig. 2.2).

(2.6) the crystal field Hamiltonian reads,

Vcf = αJB̃
0
2(r

3 − 1)O0
2 + βJB̃

0
4 [

27r5 + 1

28
O0

4 − 20
√

2O3
4]

+ γJB̃
0
6 [

(243r7 + 141)

384
O0

6 +
35
√

2

4
O3

6 +
77

8
O6

6] , (2.11)

where r = R2

R1
=1.14, αJ = −1

99
, βJ = 2

16335
and γJ = −1

891891
are Stevens’ multiplicative

factors for Tb2Ti2O7 , B̃m
n are crystal field parameters and Om

n are Stevens operators

for J=6 given in Appendix B. Then, we seek to find all possible ground states of

this Hamiltonian. Crystal field parameters B̃m
n are unknown parameters that have

to be determined. However, we can choose them as free parameters and by varying

them we can find all the possible ground states of Tb2Ti2O7. To accomplish this,

we define a new set of coefficients in terms of the unknown parameters in Eq. (2.11)

as follows

αJB̃
0
2F (2) = Wx , (2.12a)

βJB̃
0
4F (4) = Wy(1 − |x|) , (2.12b)

γJB̃
0
6F (6) = W (1 − |y|)(1 − |x|) , (2.12c)

where, F (2)=3, F (4)=60, F (6)=7560 [59,60], x, y are real numbers between -1 and

1 and W is an overall energy scale factor. Writing the crystal field Hamiltonian in

terms of these three parameters (r = 1.14) and varying them, we calculate all the

possible crystal field ground states. We find that the ground state of this crystal

field Hamiltonian is either a magnetic doublet or a singlet. However, to find the

proper x, y and W and thus, the ground state of Tb2Ti2O7 we need some input
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from experiments. Here, we use inelastic neutron scattering data which shows that

the ground state and first excited state of Tb2Ti2O7 are doublets separated from

each other by an 18 K gap [43]. Fitting these experimental results to the calculated

ground state and first excited state gives values -0.79, 0.68 and -13.85 K for x, y and

W , respectively. To investigate the effect of any change in the ratio of the positions

of oxygens r = R2

R1
on the crystal field levels, we find the behaviour of the crystal

field levels as a function of r for the given values x, y and W for Tb2Ti2O7. In Fig.

2.3, we depict the variation of the three lowest crystal field states as a function of

r.
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Figure 2.3: The evaluation of the crystal field states of Tb2Ti2O7 as a function of

r = R2

R1
(Fig. 2.2). The ground state and the first excited state are doublets while

the second and the third excited states are singlets.

For r=1 (cubic environment) the ground state of Tb2Ti2O7 is a non-magnetic

doublet and the first excited state is a triplet. In the cubic environment, eight

environmental oxygens form four symmetric directions in each equator of the cube.

If the Tb3+ ion possessed a magnetic doublet in this environment it would have to

choose one of these axis as the preferred axes for its magnetic moment which is not

symmetrically possible. Hence the ground state of Tb3+ in a cubic environment

is a non-magnetic doublet. For r > 1 the ground state and the first excited state

are both magnetic doublets and the gap between them changes as a function of r

and reaches a minimum at r=1.106. The magnetic ground state doublet originates
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from the fact that the two states of the crystal ground state are time-reversed

and, because of the symmetry of the Hamiltonian (Hamiltonian is made of O3m
n

operators), all eigenstates have the |φ〉 =
∑

n αn|m± 3n〉 (|m± 3n| < 6) structure,

where |m〉 is an eigenstate of J z. Hence the only non-magnetic doublet (〈φ|J z|φ〉 =

0) is the one that possess the highest J z component, namely m=6. For the Tb3+

ion in Tb2Ti2O7 , m = ±4 and, based on the above argument, two states of the

ground state have to be the magnetic doublet (〈φ|J z|φ〉 6= 0).

Until now we used the point charge approximation to calculate the crystal field

levels and states of Tb2Ti2O7. These crystal field levels give a semi-quantitative

description of the experimental crystal field levels. However, because of the approx-

imations made in deriving the crystal field Hamiltonian these levels are not quan-

titatively good enough to describe the crystal field levels and states of Tb2Ti2O7.

Hence, from a first principle approach, one would need to use more sophisticated

methods to go beyond the simple point charge approximation to calculate the crys-

tal field Hamiltonian of Tb2Ti2O7. One of these methods is to use the known

crystal field parameters of a compound with similar structure to derive the crystal

field parameters of Tb2Ti2O7 as we now explain. The crystal field parameters of

Ho2Ti2O7, with the same structure of Tb2Ti2O7, were determined by fitting the

crystal field eigenvalues to the energy levels obtained by the experimental inelastic

neutron scattering. We use these Ho2Ti2O7 crystal field parameters to determine

the crystal field Hamiltonian of Tb2Ti2O7.

Based on symmetry considerations for the distorted cubic environment, the most

general form of the crystal field Hamiltonian of Tb3+ in Tb2Ti2O7 reads [33],

Hcf = B0
2O

0
2 +B0

4O
0
4 +B3

4O
3
4 +B0

6O
0
6 +B3

6O
3
6 +B6

6O
6
6 , (2.13)

where Om
n are Stevens operators for Tb2Ti2O7 given in Appendix B and Bm

n are

crystal field parameters that have to be determined.

From Eq. (2.8) we conclude that the crystal field parameters Bm
n are propor-

tional to 〈rn〉 and hence for two similar compounds with different rare earth ele-

ments the crystal field parameters of one rare earth ion are related to those of the

other ion by this scaling factor. We use this scaling of the crystal field parameters

to scale the crystal field parameters of Ho2Ti2O7 by 〈rk〉(Tb+3)/〈rk〉(Ho+3), where k
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B̃0
2 (K) B̃0

4 (K) B̃3
4 (K) B̃0

6 (K) B̃3
6 (K) B̃6

6 (K)

Ho2Ti2O7 68.2 274.8 83.7 86.8 -62.5 101.6

Tb2Ti2O7 75.3 329.0 100.2 110.6 -79.6 129.42

Table 2.2: Crystal field parameters of Ho2Ti2O7 and the derived crystal field

parameters of Tb2Ti2O7. The scaling parameters are 〈r2〉(Tb+3)/〈r2〉(Ho+3)=1.104,

〈r4〉(Tb+3)/〈r4〉(Ho+3)=1.197, 〈r6〉(Tb+3)/〈r6〉(Ho+3)=1.274 [62]. The B̃m
n are in Kelvin.

M0
2 M0

4 M3
4 M0

6 M3
6 M6

6

αJ

2
βJ

8
−

√
35βJ

2
γJ

16

√
105γJ

8

√
231γJ

16

Table 2.3: Scaling factors from B̃m
n to Bm

n ; Bm
n = Mm

n B̃
m
n . αJ = − 1

99
, βJ = 2

16302
,

γJ = − 1
891891

[63]

is the order of the crystal field parameter, to derive the crystal field parameters of

Tb2Ti2O7 [35, 62].

The crystal field parameters of Ho2Ti2O7 (Table 2.2) were determined by fit-

ting the calculated crystal field states to the crystal field levels determined from

inelastic neutron scattering [35]. However, in Reference [35] Rozenkranz et. al.

used the tensorial operator notation to fit their data. The transformation between

the parameters in this notation and Stevens parameters Mm
n are given in Table 2.3

and to avoid any inconsistency we show the Rozenkranz et. al. [35] crystal field

parameters by B̃m
n and our crystal field parameters in Eq. 2.13 by Bm

n .

In Table 2.4, we show the eigenstates and eigenvalues of the crystal field Hamil-

tonian. Some important points about these crystal field levels are:

• The ground state of the Hamiltonian is a magnetic doublet with largest con-

tribution from | ± 4〉 and small contributions from | ∓ 5〉, | ∓ 2〉 and | ± 1〉.
Because of the time reversal symmetry, two states of the doublet are time

conjugate and the expectation value of J components between these states

is zero (J is Hermitian and odd under the time-reversal symmetry, hence its

expectation value between two time-reversal states is zero).
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E (K) | − 6〉 | − 5〉 | − 4〉 | − 3〉 | − 2〉 | − 1〉 |0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉

0 D 0 0.29 0 0 -0.14 0 0 0.1 0 0 -0.94 0 0

18.7 D 0 0.93 0 0 0.19 0 0 0.08 0 0 0.31 0 0

142.1 S 0.25 0 0 0.66 0 0 0 0 0 -0.66 0 0 0.25

212.4 S 0.33 0 0 0.62 0 0 0.12 0 0 -0.62 0 0 0.33

484.1 S 0.66 0 0 -0.25 0 0 0 0 0 0.25 0 0 0.66

497.7 S 0.63 0 0 -0.32 0 0 -0.04 0 0 0.32 0 0 0.63

577.0 D 0 0.23 0 0 -0.97 0 0 -0.07 0 0 0.06 0 0

817.8 D 0 0.03 0 0 0.07 0 0 -0.99 0 0 0.12 0 0

912.0 S 0.02 0 0 0.09 0 0 -0.99 0 0 -0.09 0 0 0.02

Table 2.4: Crystal field eigenvalues and eigenstates of Tb2Ti2O7. The first column

shows the energy of the state and the second column shows the degeneracy of that

state that can be either singlet (S) or doublet (D). The corresponding eigenstate of

each eigenvalue is given in front of the eigenvalues and in the J z basis. In the case

of a doublet one of the states is given and the other state is the time conjugate of

that state.

• The first excited state is a doublet separated from the ground state by an

18.7 K gap and is connected to the ground state by Jx, Jy and Jz matrix

elements. The rest of the crystal field excited states are separated by a large

gap, more than ∼100 K, from the ground state.

• Neglecting all the J matrix elements between the ground state and excited

states, the two states of the ground state can be considered as Ising spins

pointing either towards or away from the center of gravity of each tetrahedron

(local 〈111〉 axis). This Ising-like behavior in the manifold of the ground

state is the basic assumption of spin ice systems and that is why most of the

previous works assumed Tb2Ti2O7 as to be a 〈111〉 Ising spin system on a

pyrochlore lattice [27, 32, 33].

2.3 Summary

In this Chapter we studied the crystal field effect in f-electron ions in a crystalline

environment. Based on the symmetry of the environment, we derived a crystal field

Hamiltonian in terms of Stevens operators that are functions of total angular mo-

mentum J . In this framework we introduced the point charge approximation where
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all the environmental ions are treated as point charges and the interaction between

the rare earth f electrons and environment is the electrostatic interaction. We

calculated the crystal field Hamiltonian of Tb2Ti2O7 in the point charge approxi-

mation and showed that the ground state and the first excited states are doublets.

Going beyond the point charge approximation, we used a semi-empirical method

to determine the crystal field parameters of Tb2Ti2O7 by rescaling the crystal field

parameters of Ho2Ti2O7 independently found from inelastic neutron scattering. Us-

ing these crystal field parameters, we calculated the crystal field Hamiltonian, its

eigenstates and its eigenvalues, which were consistent with the experimental results.

These crystal field states are semi-quantitatively similar to crystal field states of

Ref. [33] and the small difference in the coefficients of the crystal field eigenstates

and energy levels is related to the different methods with which the crystal field

parameters were obtained.



Chapter 3

Effective Hamiltonian Method

In this chapter, we give a review of the effective Hamiltonian method and use

this method in the next chapter as well as in Appendix A to derive an effective

Hamiltonian for Tb2Ti2O2, Dy2Ti2O7 and Ho2Ti2O2.

Except for a few well known problems in quantum mechanics, it is impossible

to calculate the exact eigenvalues and eigenstates of a physical quantum system.

Therefore, many perturbative methods have been invented to obtain an approxima-

tion of the exact eigenvalues and eigenstates of a physical quantum system. One of

these perturbative methods which is useful in studying the low-energy physics of a

problem is the so-called effective Hamiltonian method [64]. This method is mostly

useful for systems whose Hamiltonian can be approximated by another Hamilto-

nian which has a degenerate ground state. This is because this method gives a

systematic procedure as to what combination of degenerate states perturbation to

choose as its eigenstates.

Since our aim in this chapter is to give a systematic method for deriving the ef-

fective Hamiltonian, we start the first section with a review on the Brillouin-Wigner

perturbation theory and derive a perturbative expansion for the eigenvalues and

eigenfunctions of a given Hamiltonian [64]. We show that in this expansion, the de-

rived eigenvalues and eigenfunctions depend on the exact eigenvalues of the system,

which is a disadvantage. Following the same prescription as in the Brillouin-Wigner

perturbation theory we introduce the Rayleigh-Schrödinger perturbation theory.

41
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This perturbation method is used in the second section to derive a perturbative

expansion for the eigenstates and the eigenvalues of a Hamiltonian in terms of the

eigenvalues and eigenstates of its model Hamiltonian. In the third section, we use

the Rayleigh-Schrödinger perturbation theory to determine the effective Hamilto-

nian of a system in its low-energy sector. Moreover, we introduce a systematic

method to calculate the eigenstates of the original Hamiltonian in the low-energy

sector in terms of the eigenstates and eigenvalues of the effective Hamiltonian. We

mention here that this chapter is mostly adopted from Chapter 9 of Reference [64].

3.1 Brillouin-Wigner Perturbation Theory

In this section we derive a perturbative expansion for the eigenvalues and eigen-

states of a Hamiltonian in terms of eigenstates and eigenvalues of a known Hamil-

tonian. To start, we assume that H is the total Hamiltonian of the system and this

Hamiltonian can be written in terms of a model Hamiltonian H0 and a perturbation

V as follow:

H = H0 + V. (3.1)

The model Hamiltonian is chosen such that it is exactly solvable and a good start-

ing approximation for the total Hamiltonian. For simplicity, we assume in this

section, that the eigenstates of the model Hamiltonian are non-degenerate. This

does not affect the generality of the discussion and eases the formalism. Now, as-

sume that |φα〉 are the eigenstates of the model Hamiltonian. These eigenstates

make a complete and orthonormal set of states such that,

H0|φα〉 = Eα
0 |φα〉, (3.2a)

〈φα|φβ〉 = δαβ (3.2b)

where δαβ is the Kronecker delta. Often, the physical properties of a system at

low-temperatures can be suitably described by a restricted low energy sector of the

eigenvalues and eigenstates of the total Hamiltonian. This sector of the eigenvalues

and eigenstates can be approximated to zero-order by the eigenstates and eigenval-

ues of H0. If we denote this sector of the Hilbert space by |Ψ0〉 = |φα〉 and define a
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projector operator to this subspace with P , and to the complementary part of the

Hilbert space with Q, we have,

P =
∑

α

|φα〉〈φα| , (3.3a)

Q =
∑
β 6=α

|φβ〉〈φβ|. (3.3b)

Using the completeness and orthonormality of the eigenstates of H0, we have

P +Q = 1. (3.4)

Some of the useful properties of P and Q operators are

P † = P ;Q† = Q , (3.5)

P 2 = P ;Q2 = Q ,

[p,Q] = 0 ,

[P,H0] = [Q,H0] = 0 .

Consider |Ψ〉 as the exact eigenstate of the total Hamiltonian H. The effect of

operator P on this state is,

P |Ψ〉 = |Ψ0〉〈Ψ0|Ψ〉 . (3.6)

Setting the scalar product 〈Ψ0|Ψ〉 to 1, and assuming that |Ψ0〉 is normalized to 1,

we get,

P |Ψ〉 = |Ψ0〉 . (3.7)

This equation can be written down in terms of |Ψ0〉 and operator Q as follows

|Ψ〉 = (P +Q)|Ψ〉 = |Ψ0〉 +Q|Ψ〉 . (3.8)

Here, the goal is to find a perturbative (recursive) method to calculate Q|Ψ〉 in

terms of |Ψ0〉. To accomplish this, we write down the Schrödinger equation (H|Ψ〉 =

E|Ψ〉) as follows:

(E −H0)|Ψ〉 = V |Ψ〉 . (3.9)
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Applying Q to the left hand side we get,

(E −H0)Q|Ψ〉 = QV |Ψ〉 . (3.10)

To solve this equation, we introduce a resolvent TE that satisfies the following

relations,

TE(E −H0) = Q , (3.11a)

TEQ = QTE = TE . (3.11b)

Applying TE to the eigenstates of the model Hamiltonian gives,

TE(E −H0)|φβ〉 = Q|φβ〉, (3.12a)

TE|φβ〉 =
Q

E − Eβ
0

|φβ〉. (3.12b)

Hence, TE and H0 have the same eigenstates and eigenvalues. Also, Applying TE to

the model space and using Eq. (3.11b), gives zero (TE|φα〉 = 0, α 6= β). Expanding

the resolvent in terms of the eigenvalues and eigenstates of H0 gives

TE =
∑
β 6=α

|φβ〉〈φβ|
E − Eβ

0

. (3.13)

Multiplying TE to the left-hand side of Eq. (3.10) gives,

Q|Ψ〉 = TEV |Ψ〉. (3.14)

Using P +Q = 1, we get,

|Ψ〉 = |Ψ0〉 + TEV |Ψ〉. (3.15)

Now, we seek a perturbative solution to Eq. (3.15). Applying a recursive method

and using Eq. (3.11a), we find a perturbative solution for this equation as follows,

|Ψ〉 = (1 +
Q

E −H0

V +
Q

E −H0

V
Q

E −H0

V + ...)|Ψ0〉. (3.16)

This is the Brillouin-Winger expansion for the exact wavefunction. As we mentioned

in the beginning of this section, V is a small perturbation to the model Hamiltonian
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H0 and hence Eq. (3.16) is convergent. From Eq. (3.16) it is possible to find a

so-called wave operator so that,

|Ψ〉 = ΩE|Ψ0〉, (3.17)

where from Eq. (3.15), ΩE satisfies the equation

ΩE = 1 + TEV ΩE. (3.18)

This wave operator depends explicitly on the eigenvalues E of the full Hamilto-

nian H which are not known. Therefore, it is useful to seek another perturbative

method in terms of the known eigenvalues and eigenstates of the model Hamil-

tonian. This method, which we discuss in the next section, is the well-known

Rayleigh-Schrödinger perturbation theory.

3.2 Rayleigh-Schŕ’odinger Perturbation Theory

In this section, we seek a perturbation expansion in terms of the eigenvalues and

eigenstates of the model Hamiltonian (H0). From the previous section, the operator

P is defined such that it projects the exact eigenstates to the model space and, the

operator Ω maps the model space to the exact eigenstates. We should mention

that in this section we denote operator ΩE by Ω because at the end we derive this

operator in terms of the eigenvalues of H0 (E0). In mathematical notation these

operators are defined through,

|Ψa
0〉 = P |Ψa〉 (a = 1, 2, ..., m) , (3.19a)

|Ψa〉 = Ω|Ψa
0〉 (a = 1, 2, ..., m) , (3.19b)

where m is the dimension of the degenerate ground state. Mapping the exact eigen-

states onto the model space gives some states that are in general non-orthonormal

(mapping of two orthogonal vectors to a hypersurface gives two vectors that are not

in general orthogonal). However, it is usually possible to use the Graham-Schmidt

method and find some orthonormal states (|Ψ′b
0 〉) out of these states (|Ψb

0〉) that

satisfy biorthonormality condition,

〈Ψ′b
0 |Ψa

0〉 = δab (3.20)
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The projection operator onto the model space in terms of these new states (|Ψ′b
0 〉)

is

P =
m∑

b=1

|Ψb
0〉〈Ψ

′b
0 |. (3.21)

Using the fact that |Ψa
0〉 = PΩ|Ψa

0〉, we have the following identity between operators

P and Ω,

PΩP = P. (3.22)

To zeroth order in perturbation theory, the operator Ω is 1 (Eq. (3.18)), hence it is

useful to define another operator χ such that it gives the perturbative part of the

expansion as:

χ = Ω − 1. (3.23)

The operator χ contains the information about the perturbative part of the inter-

action. Applying this operator to the model space gives the projection of the full

wave function to the complementary space as,

χ|Ψa
0〉 = (Ω − 1)|Ψa

0〉. (3.24)

|Ψa〉− |Ψa
0〉 gives the component of each exact state to the excited states, therefore

the effect of the operator Ω − 1 is similar operator Q in Eq. (3.3b) and we have

(Ω − 1)|Ψa
0〉 = Q|Ψa〉. (3.25)

Two useful identities for this operator are,

PχP = 0, (3.26a)

QΩP = χP. (3.26b)

Eq. (3.26b) can be proved by writing Eq. (3.25) as χ|Ψa
0〉 = QΩ|Ψa

0〉. To derive

a recursion relation in terms of the eigenvalues of the model Hamiltonian for χ we

start with the Schrödinger equation

H|Ψa〉 = Ea|Ψa〉. (3.27)
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This equation can be written as

(Ea −H0)|Ψa
0〉 = PV |Ψa〉. (3.28)

Applying Ω to the left hand side gives,

Ea|Ψa〉 − ΩH0|Ψa
0〉 = ΩPV Ω|Ψa

0〉. (3.29)

Subtracting this equation from the Schrödinger equation gives,

[Ω, H0]P = V ΩP − ΩPV ΩP. (3.30)

This equation can be reorganized in terms of operator χ by writing ΩPV ΩP =

(1 − χ)PV ΩP and using the identity Q = 1 − P as follow,

[Ω, H0]P = QV ΩP − χPV ΩP. (3.31)

Using a recursive method, we can find a perturbative solution for χ in terms of the

perturbation potential V . Hence we seek an expansion for χ and Ω as follows,

χ = Ω(1) + Ω(2) + ..., (3.32a)

Ω = 1 + Ω(1) + Ω(2) + .... (3.32b)

Substituting these equations into Eq. (3.30), and keeping terms of the same order

in V , we have

[Ω(1), H0]P = QV P, (3.33)

[Ω(2), H0]P = QV Ω(1)P − Ω(1)PV P,

[Ω(3), H0]P = QV Ω(2)P − Ω(2)PV P − Ω(1)PV Ω(1)P.

The generalized form of these commutators for Ω(n) in terms of the lower pertur-

bation terms is

[Ω(n), H0]P = QV Ω(n−1)P −
n−1∑
m=1

Ω(n−m)PV Ω(m−1)P. (3.34)

The recursive form of this equation in terms of χ(n) is

[Ω(n+1), H0]P = QV Ω(n)P − χ(n)PV Ω(n)P, (3.35a)

χ(n) = 1 − Ω(n). (3.35b)
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We can find a matrix form of this equation by evaluating Eq. (3.33) between states

|α〉 and |β〉 and using the eigenstates of the model Hamiltonian as follow

〈β|Ω(1)|α〉 =
〈β|V |α〉
Eα

0 − Eβ
0

, (3.36a)

〈β|Ω(2)|α〉 =
∑

γ

〈β|V |γ〉〈γ|V |α〉
(Eα

0 − Eβ
0 )(Eα

0 − Eγ
0 )

−
∑
α′

〈β|V |α′〉〈α′|V |α〉
(Eα

0 − Eβ
0 )(Eα′

0 − Eβ
0 )
, (3.36b)

where |α〉 and |α′〉 belong to the model space and |β〉 and |γ〉 belong to the Q space.

In the next section we apply the results of this section to derive an effective

Hamiltonian in a degenerate model space.

3.3 Effective Hamiltonian

In the previous section we derived the Rayleigh-Shrödinger perturbation theory

for a degenerate model space. However, before applying the Rayleigh-Shrödinger

perturbation theory we need to know what linear combination of degenerate states is

selected by the perturbation Hamiltonian. In this section we introduce an effective

Hamiltonian method which not only finds systematically the linear combination

of degenerate states, but also sometimes gives a deeper physical insight into the

problem (if the effective Hamiltonian is similar to another well-known Hamiltonian).

To derive the effective Hamiltonian for the degenerate model space we apply

operator P to the Schrödinger equation, (Eq. (3.27)) and also use Eq. (3.17) to

derive the following equation,

PHΩ|Ψa
0〉 = Ea|Ψa

0〉. (3.37)

Hence |Ψa
0〉 is the eigenstate of operator PHΩ with eigenenergy Ea. We use the

fact that P |Ψa〉=|Ψa
0〉 to write down Eq. (3.37) in terms of operators as follows

Heff = PHΩP. (3.38)
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This operator Heff is called the effective Hamiltonian and from Eq. (3.37) we find

that the eigenenergies of this operator are the eigenenergies of the total Hamiltonian

H (Eq. (3.27)) in the model space sector. In addition, from Eq. (3.19a) and the

eigenstates of Heff (Eq. (3.38)), we conclude that its eigenstates of this operator is

the projection of the exact eigenstates onto the model space P . To separate the

perturbative part of the interaction from the non-perturbative part we write down

the effective Hamiltonian in terms of the operator χ as follow,

Heff = PHP + PV χP. (3.39)

Assuming that all the states of the model space are degenerate, the effective Hamil-

tonian could be calculated in terms of the operator P , the perturbative potential

V , and the resolvent R. To accomplish this, we use the relation (ΩH0 −H0Ω)P =

(E0 −H0)ΩP and write down the left hand side of Eq. (3.30) as

[Ω, H0] = (E0 −H0)ΩP. (3.40)

Using Eq. (3.29) this equation can be written as,

(E0 −H0)ΩP = QV ΩP − χPV ΩP. (3.41)

We define the resolvent R for this equation similarly to the resolvent TE in Eqs.

(3.11a) and (3.11b) as follow,

R(E0 −H0) = Q, (3.42a)

RQ = R. (3.42b)

We apply operator R, to both sides of Eq. (3.41) and use the expansion of Ω and χ

in terms of Ω(n) in Eqs. (3.32a) and (3.32b) to derive a recursive solution in terms

of Ω(n). The result of this calculation to third order reads

Ω(1)P = RV P, (3.43a)

Ω(2)P = R(V Ω(1)P − Ω(1)PV P ), (3.43b)

Ω(3)P = R(V Ω(2)P − Ω(2)PV P − Ω(1)PV Ω(1)P ). (3.43c)

For n > 1 the right hand side of each equation is a function of lower order terms

in Ω(n), hence by substituting the lower order terms of Ω(n) into the higher order
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terms, we can recursively calculate each term as a function of operators P , R and

V . Substituting this perturbative solution in Eq. (3.37), we find a perturbative

solution in terms of operators P , R and V for the effective Hamiltonian. The result

of this calculation to third order reads

H
(0)
eff = PH0P, (3.44a)

H
(1)
eff = PV P, (3.44b)

H
(2)
eff = PV RV P, (3.44c)

H
(3)
eff = PV RV RV P − PV R2V PV P. (3.44d)

This perturbative solution for the effective Hamiltonian is complete if we find a

solution for resolvent R in terms of the eigenvalues and eigenstates of the model

Hamiltonian. Using Eq. (3.42a), we find a spectral decomposition of R as follows:

R =
∑
β/∈P

|β〉〈β|
E0 − Eβ

0

. (3.45)

where β /∈ P confirms that state |β〉 does not belong to the model space. Substitut-

ing R into Eqs. (3.44a), (3.44b), (3.44c) and (3.44d) of the effective Hamiltonian,

we obtain a perturbative expansion for the effective Hamiltonian in terms of the

eigenvalues and eigenstates of the model Hamiltonian.

By diagonalizing this effective Hamiltonian to the desirable order we can find the

eigenvalues of the system to that order in the model space. However, the eigenvalues

of the system are not the only quantities we need to calculate. In fact, we generally

need to calculate other physical quantities. To accomplish this, we need to know

the eigenstates of the exact Hamiltonian in the low-energy sector. The eigenstates

of the exact Hamiltonian can be obtained by applying the wave operator to the

model space term by term. Substituting Eqs. (3.43a) and (3.43b) into Eq. (3.19b),

the eigenstates of the exact Hamiltonian in terms of the eigenvalues and eigenstates
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of the model Hamiltonian to second order are,

|Ψ(1)〉 = Ω(1)|Ψa
0〉 =

∑
β

|β〉〈β|V |Ψa
0〉

E0 − Eβ
0

(3.46a)

|Ψ(2)〉 = Ω(2)|Ψa
0〉 =

∑
βγ

|β〉〈β|V |γ〉〈γ|V |Ψa
0〉

(E0 − Eβ
0 )(E0 − Eγ

0 )
−

∑
βγ

|β〉〈β|V |γ〉〈|γ|V |Ψa
0〉

(E0 − Eβ
0 )2

, (3.46b)

where |β〉 and |γ〉 belong to the Q space.

Having derived the eigenstates of the exact Hamiltonian in the model space, our

discussion is complete and we can now apply this method to any physical system

and calculate the low energy physics of the problem. In the next chapter we apply

this effective Hamiltonian method to Tb2Ti2O7 to derive an effective Hamiltonian

in the low-energy sector of the crystal field ground state doublet.



Chapter 4

Effective Hamiltonian of Tb2Ti2O7

Armed with the Rayleigh-Schrödinger perturbation theory described in the pre-

vious chapter, we apply it in this chapter to Tb2Ti2O7 in order to derive an effective

Hamiltonian in the crystal field ground state doublet basis. The reason for using

the effective Hamiltonian method is to first reduce the amount of computational

resources (by reducing the Hilbert state from all (2J + 1=13) crystal field states

per ion to two states per ion) and second to help unravel the basic physics of

the problem. We also use this effective Hamiltonian method in the next chapters

to investigate some of the physical properties of Tb2Ti2O7 at low temperatures.

This chapter is organized in the following sections. In the first section, we intro-

duce the total Hamiltonian for Tb2Ti2O7, which is sum of the single ion crystal

field Hamiltonian plus the dipole-dipole and exchange Hamiltonians. We choose

the crystal field Hamiltonian and the interacting Hamiltonian as, respectively, the

model Hamiltonian and the perturbative Hamiltonian, and also choose the crystal

field ground state doublet as the model space. In the second section, we derive

the effective Hamiltonian to first order of approximation and call it the classical

term of the effective Hamiltonian. We show that the classical term of the effective

Hamiltonian is made of local 〈111〉 Ising spins on a pyrochlore lattice interacting

via exchange and dipole-dipole interactions. In the third section, we investigate

the quantum corrections to second order in perturbation theory and, due to single

ion excitations. We show that this quantum correction renormalizes the classical

52
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term of the effective Hamiltonian. This renormalization is due to the single ion

excitation of all Tb3+ ions in the system and we name this term the quantum Ising

term. We also investigate the effect of double crystal field excitations and show that

these excitations generate matrix elements between the two states of the ground

state doublet. This changes the symmetry of the magnetic moments of the effective

Hamiltonian from the local 〈111〉 Ising spin system to the pseudo-spin 1/2 system

with the local z direction pointing towards the 〈111〉 local axis.

4.1 Total Hamiltonian of Tb2Ti2O7

As discussed in Chapter 3, we need to introduce the total Hamiltonian H,

the model Hamiltonian H0, the perturbative Hamiltonian V , the model space P ,

and the resolvent R to calculate the effective Hamiltonian of a system. Hence,

in this section, our aim is to introduce these operators for Tb2Ti2O7. It is well

established that the main interactions between Tb3+ ions in Tb2Ti2O7 are isotropic

exchange interaction and the dipole-dipole interaction. Other interactions are small

in comparison with these interactions (we will comment on this in Chapter 6 and

put a limit on the anisotropic exchange and DM couplings) [33, 55, 56]. Based on

this assumption, the total Hamiltonian of the system reads

H = Hcf + J
∑
〈ij〉

Ji · Jj

+ Dr3
nn

∑
i>j

Ji · Jj

|rij|3
− 3(Ji · rij)(Jj · rij)

|rij|5
, (4.1)

where Hcf is the crystal field Hamiltonian for Tb3+ ions in Tb2Ti2O7 given in Eq.

(2.13), J is the exchange coupling, D is the dipole-dipole coupling at first nearest

neighbor, Ji is the J=6 total angular momentum operator for ion i, and rij = rj−ri

is the vector position between ions i and j. The estimated values of J and D for

Tb2Ti2O7 are respectively, 0.167 K and 0.0315 K (Section 1.3). With these values

of the couplings, the interaction between Tb3+ ions (∼1 K) are much smaller than

the crystal field gap between the ground state and excited states (∆ > 18.7 K) and,
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as a result, we can implement perturbation theory to deal with the interacting part

of the Hamiltonian. In addition, crystal field states are good quantum states and

we choose them as the basis for determining the matrix elements of the interacting

part of the Hamiltonian. We should comment that by good quantum states we

mean states that combine linearly under a perturbation and the structure of states

does not change. Based on these assumptions, we split the Hamiltonian in two

parts,

• The crystal field Hamiltonian, Hcf , which is the model Hamiltonian, H0.

• A perturbative Hamiltonian, V , which is the dipole-dipole plus isotropic ex-

change terms. We calculate the matrix elements of the perturbative Hamil-

tonian V in the crystal field basis.

Hence, the model Hamiltonian, H0, and the perturbative Hamiltonian, V , can be

written as,

H0 = Hcf (4.2a)

V = J
∑
〈ij〉

Ji · Jj

+ Dr3
nn

∑
i>j

Ji · Jj

|rij|3
− 3(Ji · rij)(Jj · rij)

|rij|5
. (4.2b)

With this decomposition of the model Hamiltonian, we define the basis states for our

calculation as the tensor product of single ion crystal field states |Φ0,{k}〉, |Φn,{m}〉,
with energies E0 and En,

|Φ0,{k}〉 =

N∏
i=1

|φ(ki)
i,0 〉 , (4.3a)

|Φ{n},{m}〉 =
N∏

i=1;
P

ni 6=0

|φ(mi)
i,ni

〉 , (4.3b)

where |φ(ki)
i,0 〉 is the kth

i state of the crystal field ground state of Tb3+ ion sitting at

site i, |φ(ki)
i,ni

〉 is the kth
i state of the ni level of crystal field state for ion at site i. The
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multiplication is over all Tb3+ ions N in the crystal and
∑
ni 6= 0 imposes that at

least one of the Tb3+ ions in the system is in an excited crystal field state.

After defining all the necessary element of our calculation, we can now proceed

to calculate the effective Hamiltonian by integrating out the fluctuations via the

excited crystal field states and recast their effect as an effective interaction between

the crystal field ground states of Tb3+ ions. Since the ground state of the crystal

field Hamiltonian is a doublet, we have to use the Rayleigh-Schrödinger expansion

for a degenerate model space to calculate the effective Hamiltonian. From the

previous chapter, the general expression for the effective Hamiltonian in terms of

the projection operator, P , and the resolvent, R, to second order is,

Heff = PV P + PV RV P , (4.4a)

P =
∑
{k}

|Φ0,{k}〉〈Φ0,{k}| , (4.4b)

R =
∑

{n},{m}

|Φ{n},{m}〉〈Φ{n},{m}|
(E0 − En)

. (4.4c)

Where V is given by Eq. (4.2b). The sum over {k} = {k1, k2, ..., kN} is over all

the combinations of single ion crystal field ground states, sum over {n}{m} =

{n1, n2, ..., nn}{m1, m2, ..., mN} is over all the combinations of crystal field ground

states and at least one Tb3+ ion is in an excited crystal field state. E0 and En are

defined as,

En =
∑

i

Eni , (4.5)

where Eni is the energy of the nth crystal field excited states and sum is over all

Tb3+ ions in the crystal. Now we desire to determine the effective Hamiltonian

to second order. To unravel quantum effects that may be at play, we break the

effective Hamiltonian in two terms, the classical term, PV P in Eq. (4.4a), which

gives the effective Hamiltonian without any quantum excitations from the excited

crystal field states, and the quantum correction, PV RV P in (Eq. (4.4a)). We call

PV P the classical term because in this problem we can map this term to a strictly

classical Ising model having local 〈111〉 axis.
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4.2 The Classical Term of the Effective Hamil-

tonian PV P

In this subsection, we calculate the classical part of the effective Hamiltonian. As

we mentioned in the previous section, we name this part the classical Hamiltonian

because the Hamiltonian calculated in the manifold of the crystal field ground state

maps, as we show later, to a local 〈111〉 Ising model. Substituting Eq. (4.4b) in

PV P we get,

H
(classic)
eff =

∑
{k′}{k}

|Φ0,{k′}〉〈Φ0,{k′}|V |
∑

|Φ0,{k}〉〈Φ0,{k}|. (4.6)

Substituting V form Eq. (4.2b) and |Φ0,{k}〉 from Eq. (4.3a) in the above equation,

we must recall that the operators J in the perturbative Hamiltonian V are written

in the global basis while the crystal field states |φ(ki)
i,0 〉 in the basis state |Φ0,{k}〉 are

written in the local 〈111〉 basis. Therefore, we need to use the rotational theorem to

calculate the matrix elements of J operator in the crystal field basis. Transformation

of the matrix elements of the angular momentum from the local easy axis to the

global axis reads

〈φ(li)
i,0 |Jα

i,a|φ
(mi)
i,0 〉 = uαβ

i,a〈φ
(li)
i,0 |J̃β|φ(mi)

i,0 〉 , (4.7)

where uαβ
i,a is the αβ component of the transformation matrix from the global axis

to the local easy axis for sublattice a given in Appendix C, Jα
i,a is the α component

of the total angular momentum of Tb3+ ion on sublattice a in the global axis frame

and J̃α is the α component of the total angular momentum of Tb3+ ion in the local

axis frame. As we showed in Chapter 2, the only non-zero J matrix elements in

the ground state doublet is the diagonal part of the J z matrix elements. Hence,

two states of the crystal field ground state with the z direction towards the local

〈111〉 axis can be described by a local 〈111〉 Ising model. The classical part of the

effective Hamiltonian then reads,

H
(classic)
eff = J

∑
〈ij,ab〉

Sza

i,a · Szb

j,b

+ Dr3
nn

∑
i,a>j,b

Sza

i,a · Szb

j,b

|rij,ab|3
−

3(Sza

i,a · rij,ab)(S
zb

j,b · rij,ab)

|rij,ab|5
, (4.8)
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where J = J |〈Jz〉|2=1.57 K and D = J |〈Jz〉|2=0.30 K are respectively exchange

and dipole-dipole couplings between Ising spins (Section 1.3), Sza

i,a is the classical

〈111〉 Ising vector at site {i, a} where i denotes the lattice point of the FCC lattice

and a denotes the sublattice. From now on we drop the sublattice indices from

za because it has been implied in Si,a and we use this notation in the rest of this

Chapter. The Hamiltonian in Eq. (4.8) is the Hamiltonian of a 〈111〉 Ising model

on a pyrochlore lattice and it is a model Hamiltonian for spin ice systems [32]. It is

worthwhile to remind that this model, as we discussed in Section 1.2, has been ex-

tensively investigated by Monte Carlo simulations and the phase diagram as a func-

tion of temperature the ratio between the exchange coupling to the dipole-dipole

coupling is discussed (Fig. 1.10) in Reference [32]. Depending upon this ratio, two

phases arise at low temperatures. The all-in/all-out phase which is an ordered state

and a spin-ice phase which is frustrated. It is shown that for low temperatures,

there is a transition from the frustrated spin ice phase to a so-called Melko ordered

phase [39]. Based on this phase diagram, and for the estimated exchange, and

dipole-dipole couplings for Tb2Ti2O7, Tb2Ti2O7 is predicted to have a transition

to the all-in/all-out ordered state at approximately 1.2K [32], inconsistent with the

experimental results. In the next section, we consider the first correction due to

the single ion crystal field excitations and explain how this correction renormalizes

the classical phase boundary.

4.3 Quantum Term PVRVP

In this section, we calculate the first correction from the crystal field excited

states to the classical term of the effective Hamiltonian, and address the incom-

pleteness of the classical Hamiltonian in describing the behaviour of Tb2Ti2O7. At

this (second) order in perturbation theory, for each Tb3+ ion, one virtual process

between the crystal field ground state and the crystal field excited states occurs via

the interaction Hamiltonian V . Hence, for a perturbative bi-particle Hamiltonian,

the Hamiltonian in Eq. (4.2b), only single and double ion processes accrue. In the

next two sections, we show how these processes create not only new terms with dif-

ferent symmetries than the classical term in the effective Hamiltonian, but also, and
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perhaps most importantly, renormalize the interacting part of the classical term of

the effective Hamiltonian PV P and change the physical description of the system

in the Ising sector of the low energy Hamiltonian.

To organize the calculations, we decompose the interaction Hamiltonian V into

its exchange and the dipole-dipole parts:

V = Vex + Vdip, (4.9)

where Vex is the exchange part of Hamiltonian V and Vdip is the dipole-dipole part

of Hamiltonian V . Substituting V ≡ Vex + Vdip in PV RV P gives,

H
(Quantum)
eff = PVexRVexP + (PVexRVdipP + PVdipRVexP )

+ PVdipRVdipP , (4.10)

In this way, besides simplifying the calculations, we can figure out the effect

of individual interactions in making up the effective Hamiltonian to order of V 2.

In the next subsections, we study the single ion and double ion excitations arising

from these individual terms, and derive the resulting effective Hamiltonian in terms

of pseudo-spin 1/2 operators.

4.3.1 Single Ion Excitation

Following the discussion of the previous section, in this section we discuss the

single ion excitation process and derive the contribution to the effective Hamiltonian

generated by this process for a general bi-particle Hamiltonian. We then apply

it to the individual terms of Eq. (4.10) to calculate the consequential effective

Hamiltonian by the single ion process for Tb2Ti2O7. To begin, we categorize the

single ion process terms in the effective Hamiltonian in two distinct sets:

• Ion i interacts with ion k such that ion k is excited to one of its crystal field

excited states (Fig. 4.1(a)). In the second step, ion k interacts back with

same ion i and returns to the crystal field ground state (Fig. 4.1(b)). If ion

k returns to its initial state, the net result of this virtual fluctuation of ion
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k is a renormalization of the crystal field ground state energy. On the other

hand, if ion k returns to a different state, the result of the process is a single

ion transverse magnetic field at the position of ion k. It should be mention

that there are allowed Jx, Jy and Jz matrix elements between the crystal field

ground state and excited states. Therefore, all the discussed fluctuations are

allowed between the states.

(i)

(k)

(j)(i)

(k)

(j)

(a) (b)

Figure 4.1: (a) Ion i interacts with ion k and excites it from the crystal field ground

state to one of the crystal field excited states. (b) Ion k interacts with ion i and

return to one of the states of the ground state. If the final state of the ground state

is the same as the initial state this process renormalizes the crystal field ground

state energy. However if the initial and final states of ion k are different (dashed

vector) this process creates a single ion transverse field at the site of ion k.

• Ion i interacts with ion k and excites it to one of the crystal field excited

states (Fig. 4.2(a)). In the next step, ion k interacts with another ion j and

returns to the crystal field ground state (Fig. 4.2(b)). If in this process ion

k returns to its initial state, an effective (mediated) interaction is created

between ions i and j (Fig. 4.2(c)). Since in this process the states of ions i

and j do not change, the derived effective interaction has the symmetry of

the classical term, PV P of the effective Hamiltonian. In the case that PV P

between ions i and j is zero, this process generates an interaction between

ion i and j while if the PV P term between ions i and j is not zero, this

process renormalizes the classical term of the effective Hamiltonian. We name
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(i)

(k)

(j)

(b)

(j)(i)

(k)

(j)

(a)

(i)

(c)

(k)

Figure 4.2: (a) Ion i interacts with ion k and excites it from the crystal field ground

state to one of the crystal field excited states. (b) Ion k interacts with ion j and

returns to one of the states of the ground state. If the final state of ion k is the same

as the initial state (solid spin vector) this process generates an effective interaction

between ion i and j (c). If, however, the initial and final states of ion k are different

(dashed spin vector), this process creates a single ion transverse field at the site of

ion k (c).
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this generated interaction, that has the local 〈111〉 Ising symmetry and is

generated by the quantum fluctuations, a quantum Ising interaction. On

the other, hand if the state of ion k changes, the result of this process is a

single ion transverse field at site k. Here we should comment that the single-

ion transverse term discussed in part (a) becomes zero when we consider

the tetragonal and translation symmetries of the system. Since all ions that

surround a given ion i create single ion transverse terms at the site of ion i and

are connected by the tetragonal and translation symmetries. As a result, the

transverse terms created by these ions are also connected by the tetragonal

symmetry and their sum is zero.

As an example of the importance of the quantum Ising interaction, we consider

the pyrochlore lattice with only first nearest neighbor exchange interaction

between ions. As we discuss it later for this lattice, the quantum Ising inter-

action renormalizes the exchange interaction between nearest neighbors and

generates second and third nearest neighbor interactions between Ising spins.

The quantum Ising interaction thus changes a classical first nearest neighbor

Hamiltonian into an effective J1, J2 and J3 Hamiltonian on a pyrochlore lat-

tice. The strength of these interactions depend on the matrix elements of J

and the gap between the ground state and excited states. Although it seems

that this is a small correction to the classical Hamiltonian, we can imagine

cases in which this correction could be very important. For example, consider

a frustrated system at the classical level. Any new term in the Hamiltonian,

although small, can partially remove the frustration and change the physical

properties of the system. In the next subsection, we calculate the quantum

Ising term of the effective Hamiltonian for a general bi-particle Hamiltonian

and then apply it to the perturbation Hamiltonian terms (4.10).

Quantum Ising Interaction (QIT)

Following our discussion about the single ion process and especially the impor-

tance of the quantum Ising interaction, in this subsection, we calculate the quantum

Ising interaction for a general bi-particle Hamiltonian and the crystal field levels of

Tb3+.
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We start the calculations by considering a general case in which ions i and j

interact with ion k with the most general bi-particle Hamiltonian as

H1 = Dαβ
ij J

α
i J

β
j , (4.11a)

H2 = D
′γδ
jk J

γ
j J

δ
k , (4.11b)

Where, from now on, we use the sum rule in which repeated Greek indices indicates

a sum over the three dimensional spin directions. As we discussed it in the previous

section, to calculate the quantum Ising term we need to sum over all intermedi-

ate Tb3+ ions in the system. In the following calculations we only consider one

fluctuating ion (k) as the third ion. Substituting H1 and H2 in PV RV P we obtain

HQIT
eff = |φ(li)

i,0 φ
(pj)
j,0 φ

(mk)
k,0 〉〈φ(li)

i,0 φ
(pj)
j,0 φ

(mk)
k,0 |Dα1α2

ik Jα1
i Jα2

k

∑
n,rk

|φ(li)
i,0 φ

(pj)
j,0 φ

(rk)
k,n 〉〈φ(li)

i,0 φ
(pj)
j,0 φ

(rk)
k,n |

(E0
k − En

k )

D
′β1β2

jk Jβ1

j Jβ2

k |φ(li)
i,0 φ

(pj)
j,0 φ

(tk)
k,0 〉〈φ

(li)
i,0 φ

(pj)
j,0 φ

(tk)
k,0 |, (4.12)

where En
k is the energy of nth single ion crystal field level. We employ Eq. (4.7) to

calculate the matrix elements of J in the local crystal field basis. Eq. (4.12) can

be simplified as

HQIT
eff = |φ(li)

i,0 φ
(pj)
j,0 φ

(mk)
k,0 〉〈φ(li)

i,0 φ
(pj)
j,0 φ

(mk)
k,0 |Dα1α2

ik uα1γ1uα2γ2 J̃γ1

i J̃
γ2

k

∑
n,rk

|φ(li)
i,0 φ

(pj)
j,0 φ

(rk)
k,n 〉〈φ(li)

i,0 φ
(pj)
j,0 φ

(rk)
k,n |

(E0
k − En

k )

D
′β1β2

jk uβ1η1uβ2η2 J̃η1

j J̃
η2

k |φ(li)
i,0 φ

(pj)
j,0 φ

(tk)
k,0 〉〈φ

(li)
i,0 φ

(pj)
j,0 φ

(tk)
k,0 |, (4.13)

where J̃α
i is the α component of the total angular momentum of ion i in the local

basis. Ions i and j can not change their states because 〈φ(li)
i,0 |J̃α|φ(ti)

i,0 〉 is non-zero only

if α=z and li = ti (the only non-zero J matrix elements in the crystal field ground

state basis are diagonal J z matrix elements). Thus, Eq. (4.13) can be simplified by

assuming |φ(li)
i,0 〉〈φ

(li)
i,0 |J̃α|φ(li)

i,0 〉〈φ
(li)
i,0 | = |〈Jz〉|σz

i (two states of the crystal field ground
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state make an Ising spin) and using the fact that γ1 = z and η1 = z;

HQIT
eff = |〈Jz〉|2

∑
n6=0

uα1z
i uα2γ1

k uβ1z
j uβ2γ2

k Dα1α2

ik D
′β1β2

jk

×〈φ(lk)
k,0 |J̃

γ1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E0
k − En

k )
|J̃γ2

k |φ(lk)
k,0 〉σz

i ⊗ σz
j , (4.14)

where σz
i is the z component of Pauli’s sigma matrix and 〈J z〉 is the matrix elements

of operator Jz in the crystal field ground state. We should mention that the effective

coupling between two ions is a complicated function of matrix elements and the gap

between the ground state and excited states. Eq. (4.14) is a general formula for

calculating the quantum Ising coupling between ion i and j mediated by an ion k.

As we mentioned before for a system of many ions, we have to sum this expression

over all such third ions in the system.

Now we use this general Hamiltonian to derive the individual contribution to

the quantum Ising term in Eq. (4.10). To simplify the labeling, we name each term

of the effective Hamiltonian by the first initial of the two terms in the Hamiltonian

that contribute to the effective Hamiltonian. For example, E-D interaction means

that the first interaction (H1) that connects the ground state to the excited state

is the exchange interaction and the second interaction (H2) which connects the

excited state back to the ground state is the dipole-dipole interaction. For clarity,

we present the calculations of quantum Ising interaction for each term in Eq. (4.10)

in subsections.

E-E Interaction

We consider a calculation of the first term of Eq. (4.10). In this term, ions

interact via the first nearest neighbor interaction and hence both H1 and H2 are

exchange interactions. Depending on the relative position of two interacting ions,

two possibilities can occur:

a. For a pair of nearest neighbor ions there are only two other nearest neighbors

making a tetrahedron with that pair (Fig. 4.4). These two ions are the only ions

connected to the nearest neighbor pair by the exchange interaction and renormalize
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the interaction between them. Substituting Dαβ
ij and D

′αβ
ij with J δαβ in Eq. (4.14),

the effective coupling between this pair of ions reads,

J1 = 2|〈Jz〉|2
∑

n

J 2uγ1z
a uγ2z

b uγ1α1
c uγ2β1

c

〈φ(lk)
k,0 |J̃α1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E
(0)
k − E

(n)
k )

|J̃β1

k |φ(lk)
k,0 〉(1 − δac)(1 − δbc) , (4.15)

where J1 is the induced first nearest neighbor coupling between ions in lattice sites

{i, a} and {j, b}. In Fig. 4.3(a) this induced first nearest neighbor coupling is

plotted as a function of the microscopic exchange coupling J . The classical Ising

curve in this plot shows the exchange coupling between Ising spins to first order in

PV P (Section 4.2).

b. If two ions are second or third nearest neighbors among themselves (Fig.

4.4), an effective second or third nearest neighbor interaction is created between

them. Their effective couplings are

J2 = |〈Jz〉|2
∑

n

J 2uγ1z
a uγ2z

b uγ1α1
c uγ2β1

c

〈φ(mk)
k,0 |J̃α1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E
(0)
k − E

(n)
k )

|J̃β1

k |φ(lk)
k,0 〉, (4.16a)

J3 = |〈Jz〉|2
∑

n

J 2uγ1z
a uγ2z

b uγ1α1
c uγ2β1

c

〈φ(lk)
k,0 |J̃α1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E
(0)
k − E

(n)
k )

|J̃β1

k |φ(lk)
k,0 〉 , (4.16b)

where J2 and J3 are, respectively, the induced second and third nearest neighbor

exchange couplings.

We should mention that in the pyrochlore lattice there are two kinds of third

nearest neighbors which are shown in Fig. 4.4. The first kind of third nearest

neighbors which are directly connected by a third ion (shown with magenta line)

and the second kind nearest neighbors which are not connected by the third ion

(blue line). The third nearest neighbor coupling (J3) can only be created for the

first kind of ions. A plot of the second and third nearest neighbor couplings as a

function of exchange coupling J is shown in Fig. 4.3(b).
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Figure 4.3: (a) Classical exchange interaction, quantum Ising interaction and the

effective first nearest neighbor interaction (resultant) as a function of the classi-

cal exchange interaction in the local basis. (b) Generated second nearest neighbor

(SNN) and third nearest neighbor (TNN) couplings by the quantum Ising interac-

tion as a function of the classical exchange interaction J .
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Figure 4.4: Generated first, second (green), and third nearest neighbor (red) inter-

actions by the quantum Ising terms. Two ions that are connected by blue color

line are third nearest neighbor, however, no third nearest neighbor interaction is

created between them since they are connected by one Tb3+ ion.

E-D Interaction

In this subsection, we calculate the E-D contribution of the quantum Ising term.

Therefore H1 and H2 are respectively exchange and dipole-dipole interactions plus

their permutation. Owing to the dipole part of the generated effective interaction,

the E-D term is a long-range interaction which drops off asymptotically as 1
r3 , where

r is the distance between two ions. On the other hand, the exchange interaction is

non-zero at the first nearest neighbor and, as a result, the only ions that renormalize

the interaction are the six nearest neighbors of each ion. Writing the dipole-dipole

interaction in the similar form as H2 in Eq. (4.11b) reads

Hdipole−dipole =
∑
ij;ab

Dαβ
ij;abJ

α
i,aJ

β
j,b , (4.17a)

Dαβ
ij;ab =

D
r3
ij;ab

(δαβ − 3(r̂α
i,ar̂

β
j,b)) , (4.17b)

where Dij;ab is the coupling between ions at sites {i, a} and {j, b}. Substituting the

dipole-dipole coupling tensor Dij;ab and the exchange J couplings in Eq. (4.14) the
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quantum Ising term from the E-D interaction reads,

HE−D
eff = |〈Jz〉|2

∑
〈k,c〉

∑
n

J uα1z
a uα2γ1

c uβ1z
b uβ1γ2

c Dα1α2

ik;acJ

〈φ(lk)
k,0 |J̃

γ1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E0
k − En

k )
|J̃γ2

k |φ(lk)
k,0 〉σz

i,a ⊗ σz
j,b + Per(i↔ j) , (4.18)

where 〈k, c〉 denotes the sum over the 6 nearest neighbors of ions {i, a}. For two ions

separated by large distances (rik;ac � a where a is the nearest neighbor distance),

we can approximate rik;ac with rij;ab because the sum over k and c is restricted to

the first nearest neighbors (rik;ac = a). Hence, for two well separated ions the E-D

interaction drops off as 1
r3
ij;ab

similarly to the dipole-dipole interaction. In Fig. 4.5

a log-log plot of the E-D coupling between two ions in the [100], [110] and [111]

directions are depicted as a function of distance between them. For distances larger

than few unit cells, the slope is exactly -3 which confirms our analytical argument

that the interaction between two far ions drops off as 1
rij;ab

3 as a function of distance

between them. Different intercepts, observed in different directions in Fig. 4.5,

show that the E-D coupling depends on the position vectors, their orientations in

the space, and the sublattices of ions i and j.
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[111]

Figure 4.5: Log-log plot of the E-D coupling as a function of distance and for [100],

[110] and [111] directions.
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D-D Interaction

Calculation of the D-D interaction is a much more difficult task than the E-D

and E-E interactions. The difficulty is not only due to the long-range nature of the

dipole-dipole interaction but is also from the sum over all third ions that mediate

the interaction between two ions. Substituting the dipole-dipole coupling Dij into

Eq. (4.14) we derive the general formula for calculating the D-D interaction as

HD−D
eff = |〈Jz〉|2

∑
k

∑
n

uα1z
i uα2γ1

k uβ1z
j uβ2γ2

k Dα1α2
ik Dβ1β2

jk

〈φ(lk)
k,0 |J̃

γ1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E0
k − En

k )
|J̃γ2

k |φ(lk)
k,0 〉σz

i ⊗ σz
j . (4.19)

A general method for calculating this sum is to consider a sphere with its center

at the middle of two ions whose radius is much larger than the distance between

them and sum over all ions inside the sphere (Fig. 4.6). The radius of the sphere is

much larger than the distance between two ions, r12. We can assume that for ion k

outside of the sphere r1k=r2k = R. As a result, for the ions outside the sphere the

D-D interaction which is the multiplication of two dipole-dipole interactions drops

of as 1
R6 . We can thus neglect the contribution of these ions to D-D interaction.

This cut off method only works for two close ions where R is not very large and

the computation is feasible.

For two well separated ions, the sum must be calculated exactly which makes

the computation unfeasible. However, our numerical calculation for two far ions

shows that the D-D interaction drops off as 1
r3
12

, where r12 is the distance between

two ions. In Fig. 4.7 we depict the log-log plot of the D-D coupling as a function

of r12. For large distance (r12 > 10a) the slope of this coupling is -3 showing that

this interaction is proportional to 1
r3
12

for two distance ions. In Chapter 7, we show

that for the given exchange, J , and dipole-dipole, D, couplings of Tb2Ti2O7 , the

D-D coupling is at least three times smaller than the E-D coupling.



Chapter 4. Effective Hamiltonian of Tb2Ti2O7 69

R

x

y

z

1

2

k

r
12

r
2k

r
1k

Figure 4.6: All ions inside the sphere (such as ion k) renormalize the interaction

between ion 1 and 2. For ions outside of the sphere with radius R � r12 the

interaction drops off as 1
R6 and we neglect their contribution in the sum over Tb3+

ions.
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Figure 4.7: Log-log plot of the D-D coupling as a function of distance and for [100],

[110] and [111] directions.
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4.4 Two Ion Excitations

In the previous section we discussed and calculated the effective Hamiltonian

due to virtual single ion crystal field excitations. In this section, we continue the

discussion by considering virtual two-ion excitations and derive a relevant formula

to calculate the effective Hamiltonian for this process. In contrast to the single ion

excitations, which give the same symmetry as the classical Ising part of the effective

Hamiltonian, two ion excitations have a different symmetry than the classical term

of the effective Hamiltonian. To explain this, we use the four lowest crystal field

states of Tb3+ ion and show that the matrix elements between the two states of the

crystal field ground state is not zero in the presence of a bi-particle interaction. This

is because the interaction creates quantum fluctuations from the ground state to the

excited states and the net result of these quantum fluctuations can be considered

as induced matrix elements between the two states of the ground state. These non-

zero matrix elements can be interpreted as the transverse terms in the pseudo-spin

1/2 effective Hamiltonian in which the two states of the crystal field ground state

map to the spin up and spin down states of the pseudo-spin.

4.4.1 Two Ion Excitations, Spin Flip Mechanism and Trans-

verse Magnetic Field

In the second chapter, we mentioned that all the matrix elements of J are zero

within the crystal field ground state doublet except the diagonal terms of the J z

matrix element and we mapped the two states of the ground state to a local 〈111〉
Ising spin. In this section, we show that the virtual transitions between the crystal

field ground state and the first excited state mediated via magnetic interactions

creates matrix elements between the two states of the crystal field ground state.

These virtual transitions create terms in the effective Hamiltonian which have a

different symmetry from the local 〈111〉 Ising symmetry and is the microscopic

source for the insufficiency of the Ising assumption for a description of Tb2Ti2O7.

In Fig. 4.8 we show the crystal field ground state and first excited state doublets

for a single Tb3+ ion, separately, to illustrate the different matrix elements that exist
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between them. We call the two states of the ground state doublet |1〉 and |2〉, and

the two states of the first crystal field excited state doublet |3〉 and |4〉. Their

eigenfunctions in the Jz basis are given in Table 2.4.

Imagine a magnetic interaction between two Tb3+ ions i and j where the ion i

is in state |1〉 and ion j is in the state |2〉 (Fig. 4.9(a)). The i interaction between

two ions can excite ion i from state |1〉 to state |3〉 and ion j from state |2〉 to state

|4〉 by Jx or Jy matrix elements PV R = 〈1i2j|Jα
i J

β
j |3i4j〉 (Fig. 4.9(b)). These

ions return the ground state by interacting with each other. In this process ion i

can transit from state |3〉 to state |2〉 and ion j form state |4〉 to state |1〉 via J z

operator RV P = 〈3i4j|Jα
i J

β
j |2i1j〉 (Fig. 4.9(c)). The net result of these processes

is a transition of ion i state |1〉 to state |2〉 and ion j from state |2〉 to state |1〉.
This change of states within the manifold of the crystal field ground state can be

interpreted as a spin flip mechanism in the pseudo-spin 1/2 representation in which

two states of the crystal field ground state are mapped to spin up and spin down

states.

| 1 > | 2 >

| 3 > | 4 >

J
x
, J

 y 
J

z

Figure 4.8: The ground state and first excited state of the crystal field Hamiltonian.

Two degenerate states of the ground state (|1〉 and |2〉) and first excited state (|3〉
and |4〉) are drawn separately to show the different matrix elements at play between

these states.

Another important process that we need to mention is the creation of single ion

transverse field via the two ion excitations. In this process ion i interacts twice

with ion j and is excited from one of the states of the ground state doublet to the

excited states and comes back to the same state of the ground state doublet. At the

same time, ion j undergoes the same process with the difference that it is flipped

from one state to the other state of the ground state doublet. The net result of this
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(j)(i)
(c)

(i)

(a)

(j) (i) (j)

(b)

Figure 4.9: Spin flip mechanism via the crystal field excited states in Tb2Ti2O7.

Ion i interacts with ion j (a) and both ions are excited to one of the excited states

(b). This state of the system is energetically unstable, hence they interact again

and come back to the ground state with the difference that the states of ion i and

j are changed.(c).

process leaves the state of ion i unchanged and changes the state of ion j. Within

the manifold of the ground state doublet, in which the two states of the ground

state map to the spin up and spin down states, this process can be described by a

term in the effective Hamiltonian such as ΓSx
j or ΓSy

j , where S is the pseudo-spin

1/2 operator. We comment about this single ion transverse fields in this section.

Effective Hamiltonian of Two Ion Excitations

Having discussed the two important processes for the two ion excitation, we

derive in this section a formalism to calculate an effective Hamiltonian generated

by two ion excitations. Considering the two terms H1 and H2 in Eq. (4.11a)

and (4.11b) and substituting them into the second order perturbation theory (Eq.

(4.4a)) leads to an effective Hamiltonian given by

Heff = |φ(pi)
i,0 φ

(pj)
j,0 〉〈φ(pi)

i,0 φ
(pj)
j,0 |Dαiαj

ij Jαi

i J
αj

j

[
|φ(ri)

i,n φ
(rj)
j,m 〉〈φ(ri)

i,n φ
(rj)
j,m |

(E0
i + E0

j − En
i − Em

j )
]D

′βiβj

ij Jβi

i J
βj

j |φ(si)
i,0 φ

(sj)
j,0 〉〈φ(si)

i,0 φ
(sj)
j,0 | , (4.20)
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where |φ(pi)
i,0 〉 is the pth

i state of the crystal field ground state doublet of ion i, |φ(ri)
i,n 〉

is the ri state of the nth degenerate crystal field level of ion i, E0
i is the crystal

field ground state energy, En
i is the energy of the nth crystal field level and Jαi

i is

the αth
i component of the total angular momentum operator for ion i. With double

excitation, and to this order of perturbation theory, only two spins can participate

in each process because PVijRVklP is non-zero when i = k and j = l, or i = l and

j = k, otherwise the orthonormality of the crystal field states make this term vanish.

Based on Eq. (4.20) we can calculate different terms emerging from substituting

H1 and H2 with exchange and dipole-dipole interactions.

We first consider the simplest case where both H1 and H2 are exchange inter-

actions and substitute them in Eq. (4.20). Since the operator J is expressed in a

global basis and the crystal field states are expressed in a local basis, one has to

use Eq. (4.7) to determine the matrix elements of operator J in the crystal field

basis. Doing this calculation we derive the effective Hamiltonian as,

Heff = J 2|φ(li)
i,0 φ

(mj )
j,0 〉〈φ(li)

i,0 φ
(mj)
j,0 |uα1α2

a uα1β2

b J̃α2
a J̃β2

b [
∑

rn;tipj

|φ(ti)
i,r φ

(pj)
j,n 〉〈φ(ti)

i,r φ
(pj)
j,n |

(2E
(0)
i − E

(r)
i − E

(n)
j )

]

uγ1γ2
a uγ1θ2

b J̃γ2
a J̃

θ2

b |φ(li)
i,0 φ

(lk)
j,0 〉〈φ(li)

i,0 φ
(lj)
j,0 | , (4.21)

where uαβ
a is the αβ component of the transformation matrix from the global to the

local axis for an ion on sublattice a, J̃α
a is the αth component of the total angular

momentum in sublattice a and in the local basis.

The next step in calculating the two ion excitation is to substitute H1 and H2

in Eq. (4.20) with exchange and dipole-dipole interactions, respectively, and their

permutations. Calculating the matrix elements of operator J in the local basis, the

effective Hamiltonian reads

Heff = JDα1α2
ij;ab |φ

(li)
i,0 φ

(mj)
j,0 〉〈φ(li)

i,0 φ
(mj )
j,0 |uα1β1

a uα2β2

b J̃β1
a J̃β2

b

[
∑

rn;tipj

|φ(ti)
i,r φ

(pj)
j,n 〉〈φ(ti)

i,r φ
(pj)
j,n |

(2E
(0)
i − E

(r)
i − E

(n)
j )

]uγ1γ2
a uγ1θ2

b J̃γ2
a J̃

θ2
b |φ(li)

i,0 φ
(lk)
j,0 〉〈φ(li)

i,0 φ
(lj)
j,0 |

+ Per{i→ j; a→ b}, (4.22)

where Dij;ab is the dipole-dipole coupling defined in Eq. (4.17b). This term of the
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effective Hamiltonian is non-zero only for nearest neighbor ions due to the exchange

interaction.

The last term to discuss is generated by substituting both H1 and H2 in Eq.

(4.20) with the dipole-dipole interaction. Following the same prescription as the

previous, terms this term of the effective Hamiltonian reads

Heff = Dκ1κ2
ij;abDα1α2

ij;ab |φ
(li)
i,0 φ

(mj )
j,0 〉〈φ(li)

i,0 φ
(mj)
j,0 |uα1β1

a uα2β2

b J̃β1
a J̃β2

b

[
∑

rntipj

|φ(ti)
i,r φ

(pj)
j,n 〉〈φ(ti)

i,r φ
(pj)
j,n |

(2E
(0)
i − E

(r)
i − E

(n)
j )

]uκ1γ2
a uκ2θ2

b J̃γ2
a J̃

θ2
b |φ(li)

i,0 φ
(lk)
j,0 〉〈φ

(li)
i,0 φ

(lj)
j,0 |. (4.23)

Notice that this term converges very fast as 1
r6
ij;ab

where rij;ab is the distance between

two ions (Dα1α2

ij;ab Dκ1κ2

ij;ab ∝ 1
r6
ij;ab

). To derive the total effective Hamiltonian generated

by the two-ion excitations we sum up Eqs. (4.21), (4.22) and (4.23) over all the

ions in the lattice and map them to a pseudo-spin 1/2 system as,

Heff =
∑
i,a;j,b

αβ
ij;abσ

α
i,aσ

β
j,b +

∑
i,a

Γx
i,aσ

x
i,a + Γy

i,aσ
y
i,a , (4.24)

where ij;ab is the effective coupling between pseudo-spins at {i, a} and {j, b} and

Γx
i,a and Γy

i,a are the transverse fields in x and y directions at lattice point i and

sublattice a. The effective couplings and transverse fields are a function of the

exchange and dipole-dipole couplings, the gap between the ground state and the

excited state and the matrix elements of the angular momentum between the ground

state and excited states. In general αβ
ij;ab can have different combinations of spatial

components and therefore the derived effective Hamiltonian breaks Ising symmetry

of the classical term of the effective Hamiltonian PV P . The single-ion transverse

fields break the time-reversal symmetry for a pair of ions. However, these single-

ion transverse fields cancel out each other, recovering the tetragonal and inversion

symmetry of Tb2Ti2O7. This is because all environmental Tb3+ ions around ion i

transform to each other by the point symmetry group of the lattice. Hence, any

transverse field created by an ion at site i is cancelled out by the transverse fields

created by the point symmetry transformed versions of ion i.
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4.5 Summary

In this chapter, we derived a general formalism for calculating the effective

Hamiltonian of Tb2Ti2O7. Considering the fact that crystal field gap between the

ground state and first excited state doublets is much larger than the exchange

and dipole-dipole couplings, we chose the crystal field Hamiltonian as the model

Hamiltonian and the interacting Hamiltonian as the perturbation. We showed that,

to first order, the effective Hamiltonian is made of local 〈111〉 Ising spins interacting

via the exchange and dipole-dipole interactions and we called this term a classical

Ising term. We showed that to second order of perturbation, the virtual single ion

excitations give a new contribution that we call quantum Ising term and which

also has local 〈111〉 Ising symmetry. These terms renormalize the interaction at

the classical Ising level and also create new terms such as second and third nearest

neighbors into the effective Hamiltonian. We presented a method for calculating

the quantum Ising term for all allowed combinations of exchange and dipole-dipole

interactions. By considering the two-ion excitations to second order of perturbation,

we found a channel for spin flip mechanism via the crystal field excited states and

we showed that this mechanism changes the symmetry of the magnetic moments

from 〈111〉 Ising spins to more isotropic effective spins.



Chapter 5

Single Tetrahedron

Approximation

We discussed in Chapter 1 that the diffuse neutron scattering experiment on

Tb2Ti2O7 down to 60mK shows that the magnetic correlation length remains of

the order of the nearest neighbor interatomic distance [27, 28]. Therefore, any rea-

sonable model which gives the correlation function at the first nearest neighbor

may be a good candidate to describe some of the physical properties of Tb2Ti2O7.

In Tb2Ti2O7, four Tb3+ ions on a single tetrahedron make the smallest magnetic

building block. Hence, a non-interacting single tetrahedron approximation is a

good approximation for describing the correlation functions in Tb2Ti2O7. In this

approximation it is assumed that the pyrochlore lattice is made of non-interacting

tetrahedra and there is only interactions between the four Tb3+ ions or individual

tetrahedra. This approximation has been used in other frustrated systems such

as the classical Heisenberg model on the pyrochlore lattice and gives a very good

results in good agreement with the exact results [18,43]. In this Chapter we calcu-

late the phase diagram of Tb2Ti2O7 at zero temperature using four lowest crystal

field states per Tb3+ ion and in the single tetrahedron approximation. In this

phase diagram we plot the exchange coupling as a function of the gap between the

crystal field ground state and first excited state. We show that the ground state of

Tb2Ti2O7 in the single tetrahedron approximation is a singlet state which is a linear

76
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combination of all two-in/two-out states plus a small contribution from the excited

crystal field states. We also use the effective Hamiltonian method of Chapter 4 and

calculate the phase diagram from the effective Hamiltonian and compare it with

exact results with four and six crystal field states per ion for a single-tetrahedron.

This single tetrahedron calculation therefore allows us to assess the quantitative

range of validity of the effective Hamiltonian description based on second order

perturbation theory.

5.1 Single Tetrahedron Approximation

In this section we introduce a Hamiltonian to describe Tb2Ti2O7 in a single

tetrahedron approximation and choose the crystal field basis for calculating the

properties of Tb2Ti2O7. We use this Hamiltonian to calculate a phase diagram and

diffuse neutron scattering of Tb2Ti2O7 in the single tetrahedron approximation. In

the single tetrahedron approximation the Hamiltonian reads,

H =

4∑
a

(Hcf)a + J
∑

ab;a>b

Ja · Jb

+ Dr3
nn

∑
a>b

Ja · Jb

|rab|3
− 3(Ja · rab)(Jb · rab)

|rab|5
, (5.1)

where Hcf is the crystal field Hamiltonian for Tb3+ ion in Tb2Ti2O7 given in Eq.

(2.13), J is the exchange coupling, D is the dipolar coupling at nearest neighbor,

Ja is the J=6 total angular momentum operator and rab is the vector position

between ions in sublattices a and b. The estimated values of J and D for Tb2Ti2O7

are, respectively, 0.167 K and 0.0315 K. To simplify the equations we write down

Hamiltonian (5.1) as,

H =
4∑

a=1

Hcf
a +

∑
ab

Fαβ
ab J

α
a J

β
b , (5.2a)

Fαβ
ab = J δαβ + D(δαβ − 3(r̂α

a r̂
β
b )) , (5.2b)

where r̂α
a is the α component of the unit vector of the position vector of sublattice

a and Fab is the coupling between ions at sublattices a and b. It was discussed
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in Section 4.1 that the crystal field basis is a good basis, and we use this basis to

calculate the matrix elements of the Hamiltonian. We define the four-body basis

state as the direct product of the single-ion crystal field states as,

|Φ{n},{m}〉 =

4∏
a=1

|φ(ma)
a,na

〉 , (5.3)

where |φ(ka)
a,na〉 is the kth

a state of the nth
a energy level of the crystal field for ion on

sublattice a. Because the eigenstates of the crystal field Hamiltonian are in the local

Cartesian frame and, the angular momentum operators expressed in the interacting

Hamiltonian are in the global Cartesian frame we use the transformation theorem

(Eq. (4.7)) to calculate the matrix elements of the interacting part of the Hamilto-

nian. After applying this transformation the matrix elements of Hamiltonian (5.2a)

in this basis are,

〈Φ{n},{m}|H|Φ{k},{l}〉 =
4∑
a

En
a +

∑
a>b

Fα1β1

ab uα1α2
a uβ1β2

b

〈φ(ma)
a,na

|J̃α2
a |φ(la)

a,ka
〉〈φ(mb)

b,nb
|J̃β2

b |φ(lb)
b,kb

〉, (5.4)

where uαβ
a is the αβth component of the transformation matrix from the global

axis to the local easy axis for sublattice a and, J̃α is the α component of the total

angular momentum for a Tb3+ ion in the local frame ( Appendix C). In the rest

of this chapter, we use this Hamiltonian to calculate the physical properties of

Tb2Ti2O7 within the single tetrahedron approximation.

5.2 Phase Diagram of Tb2Ti2O7 in the Single Tetra-

hedron Approximation

In this section we calculate the zero-temperature phase diagram of Tb2Ti2O7

in the single tetrahedron approximation with the two states of the ground state

doublet and also with the four states of the crystal field ground state and first

excited state. We use the four lowest crystal field states because, while working

with four ions and thirteen crystal field states per ion is doable, it needs a needlessly
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large amount of computational resources. Moreover, using the four lowest crystal

field states gives quantitative results in agreement with a calculation using thirteen

states per ion. This can be naively justified based on the fact that the four lowest

crystal field states are well separated from the rest of the excited states by a further

energy gap of 100 K (Section 2.2). We also confirmed this assumption quantitatively

by showing that the phase diagram and the diffuse neutron scattering do not change

by including more crystal field states into the calculation.

We start the calculation by finding the phase diagram of a single tetrahedron

considering only two states of the ground state doublet per ion. These two states

of the ground state (Section 4.2) make a local 〈111〉 Ising spin. This model was dis-

cussed in Section 1.2 and because of its importance for our discussion it is restated

here. For this system of Ising spins, the number of states are 16 and, using this

basis of states, we determine the eigenstates and eigenvalues of Hamiltonian (5.4).

By varying the exchange and dipole-dipole couplings two (collective) ground states

are obtained: the all-in/all-out state where all Ising spins are either parallel or anti-

parallel to the local 〈111〉 axis and, the two-in/two-out state where two Ising spins

are parallel and two other Ising spins are anti-parallel to the local easy axis. The

two-in/two-out state is six-fold degenerate and it is frustrated on the pyrochlore

lattice (Section 1.2) [25]. The transition from all-in/all-out state to two-in/two-out

state occurs at J = 5D (Because of the different orientation of easy axis the ef-

fective exchange coupling between Ising spin is J |〈Jz〉|2
3

and effective dipole-dipole

coupling is 5D|〈Jz〉|2
3

). The parameters for Tb2Ti2O7 give the all-in/all-out state as

the ground state (Fig. 5.1).

Tb Ti O
2 2 7

Spin Ice

0
J

All−in/All−out

5

D

Figure 5.1: Classical phase diagram of a local 〈111〉 Ising spins in a single tetrahe-

dron approximation. Tb2Ti2O7 with J
D=5.3, should be in the all-in/all-out phase

within a classical 〈111〉 Ising model description.
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Before we start to incorporate the effect of the first excited crystal field state

into the calculation, we need to mention an important point about the crystal field

states. In Fig. 5.2, the ground state and first excited state of the crystal field

Hamiltonian with the J matrix elements between them is depicted. In Section

4.4, we introduced a crystal field fluctuation channel via which generates matrix

elements between the two states of the ground state doublet. One of the important

elements for the presence of this channel is the non-zero J z value of matrix elements

between the states of the ground state and the first excited state. If we artificially

remove these matrix elements, the manifold of the crystal field states breaks in two

subsets of states with states |1〉 and |3〉 in one subset and states |2〉 and |4〉 in the

other subset. These subsets behave like Ising spins in which each state of the Ising

state has one corresponding excited state. Hence, with zero off-diagonal J z matrix

elements the Ising symmetry of the system in the ground state cannot be broken

by the excited states. We can use this fact to track down the quantum Ising terms

in the exact calculation that uses four crystal field states per ion. To investigate

this artificial case, which will prove crucial in understanding what follows, we set

the Jz matrix elements laying between the states of the ground state doublet and

states of the first excited state doublet to zero and calculate the phase diagram of

the system.

| 1 > | 2 >

| 3 > | 4 >

J
x
, J

 y 
J

z

Figure 5.2: The ground state and the first excited states of the crystal field Hamilto-

nian. Two states of the ground state and first excited states are plotted separately

to show the different matrix elements between these states. There are no matrix

elements between the two states of the ground state via the excited states if the J z

matrix elements are zero.

Following the above discussion, we use the four lowest crystal field states with
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zero off-diagonal Jz matrix elements to calculate the phase diagram of the system.

The number of states for four Tb3+ ions and four states per ion is 44=256. We

calculate the matrix elements of Hamiltonian (5.4) in this basis, using the exact

diagonalization method, and we diagonalize the resulting 256×256 matrix and find

its eigenvalues and eigenstates. The eigenstates of the system can be divided in

two sets:

• The sixteen lowest states which are decomposed into one doublet, one sextet

and one octet.

• All the remaining excited states (256-16=240) which are separated from the

ground state by a gap of at least 15K.

Varying the exchange and dipole-dipole couplings, two states are found as the

ground state of the system (four interacting Tb3+ ions on a tetrahedron). A doublet

state which is mostly comprised of the all-in/all-out classical states plus a small part

of the crystal field excited states, and a sextet state which is comprised mostly of

the two-in/two-out classical states plus a small part of the crystal field excited

states. We mention that we also refer at times to the two states of the ground state

doublet as the “in” and “out” states.

To investigate the role of the excited crystal field states on the J
D phase di-

agram, we use the gap between the ground state and the first excited state, ∆,

as a free parameter that controls the strength of the quantum fluctuation via the

excited crystal field states. However, 1
∆

is more suitable for displaying this strength

since, for 1
∆

=0, the quantum fluctuations between the crystal field ground state

and first excited state are zero and by increasing the value of 1
∆

, the fluctuations

become stronger. We determine the phase boundary between the sextet and the

doublet states as a function of 1
∆

and for D=0.0315 K, the dipolar coupling strength

appropriate for Tb2Ti2O7.

The resulting phase diagram is shown in Fig. 5.3. The boundary between the

doublet and the sextet states, which have their predominant weight respectively

in the all-in/all-out and two-in/two-out states, is moved towards the doublet state

compared to the classical phase boundary (dashed line in Fig. 5.3). This upward
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shift of the boundary is essential in understanding the physics of Tb2Ti2O7 within

the present single tetrahedron approximation because, for the given couplings of

Tb2Ti2O7, Tb2Ti2O7 is in the sextet (spin ice like) state instead of the doublet state

of the classical phase diagram. We stress here that this sextet state is frustrated and

this may play a key role in understanding the resurgence of quantum fluctuations

in Tb2Ti2O7 at very low temperatures.
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Figure 5.3: Phase diagram of Tb2Ti2O7 with four lowest crystal field states and

zero off-diagonal Jz matrix elements in the single tetrahedron approximation and

with D=0.0315 K. In this phase diagram the exchange interaction is plotted as a

function of 1
∆

and Tb2Ti2O7 is in the sextet phase (spin ice phase). Black dashed

line shows the classical phase boundary between the doublet and the sextet.

Now, we consider the four lowest states of the crystal field Hamiltonian with

all matrix elements including those with the J z operator in order to find the phase

diagram of Tb2Ti2O7 within the single tetrahedron approximation. To accomplish

this we find the matrix elements of Hamiltonian (5.4) in the four crystal field basis

and diagonalize it. The Hamiltonian matrix in this basis is a 256×256 matrix and

we specify two sets of states based on their eigenvalues:

• The sixteen lowest states of the system are spread within a 0.5 K band of
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energy. These states are made of one singlet, three doublets and three triplets

which are the irreducible representation of the tetragonal symmetry. The

singlet state is a linear combination of all two-in/two-out states plus a small

part of the crystal field excited states. One of the doublets is made of an all-in

state plus a small part of the excited states and the time reversal of this state

(from now on we use the word doublet for this state unless we mention it

explicitly). Other states are made of linear combinations of two-in/two-out,

three-in/one-out and three-out/one-in states plus a small contribution from

the crystal field excited states.

• The other 256-24=240 states minus the first set. These states are separated

from the first set by a gap of approximately 16 K. Because of the large gap be-

tween the second and the first set of states the low energy physics of Tb2Ti2O7

is governed by the 16 lowest states.

To find the possible phases we vary the exchange and dipole-dipole couplings and

we find that the ground state of this system is either the singlet or the doublet. In

Fig. 5.4 we plot the phase diagram of this system in terms of the exchange coupling

and as a function of 1
∆

for the given dipole-dipole coupling of Tb2Ti2O7 (D = 0.0315

K). The boundary between the singlet and the doublet states can be considered as

the quantum variant of the boundary between the two-in/two-out and all-in/all-out

states in the Ising phase diagram. This boundary shifts slightly further towards

the doublet state compared to the boundary of Fig. 5.3. Therefore, the effect of

non-zero Jz matrix elements is not only to make a singlet out of all two-in/two-out

states, but also to move the phase boundary upward towards the all-in/all-out state.

Based on this phase diagram and the given exchange and dipole-dipole couplings

of Tb2Ti2O7, Tb2Ti2O7 finds itself in the singlet state. Therefore, in the single

tetrahedron approximation, Tb2Ti2O7 is in the quantum version of the spin ice

states. We name this state quantum spin ice and this state could be considered as

a variational basis state for making the ground state of Tb2Ti2O7 on the pyrochlore

lattice.

In Fig. 5.5 we plot the three phase boundaries in the same plot to illustrate the

movement of the phase boundary due to the virtual crystal field transitions induced
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Figure 5.4: Phase diagram of Tb2Ti2O7 with four Tb3+ lowest crystal field states in

the single tetrahedron approximation and with D=0.0315 K. In this phase diagram

the exchange interaction is plotted as a function of 1
∆

and Tb2Ti2O7 is in the singlet

phase which is a linear combinations of all two-in/two-out states plus a small part

of excited states. Black dashed line shows the classical phase boundary between

the doublet and the sextet.
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by the spin interactions. To investigate the change of this boundary in terms of
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Figure 5.5: Phase diagram of Tb2Ti2O7 with four lowest crystal field states in the

single tetrahedron approximation and with D=0.0315 K. In this phase diagram the

exchange interaction is plotted as a function of 1
∆

. Blue and red phase boundaries

respectively separate the singlet/doublet and sextet/doublet phase boundaries. In

this phase diagram Tb2Ti2O7 is in the sextet (Jz = 0) or its quantum variant

singlet state (Jz 6= 0). We use the notation J z = 0 and Jz 6= 0 to imply that the

Jz matrix elements between the crystal field ground state doublet and first excited

crystal field state have been manually set respectively to zero and non-zero.

dipole-dipole coupling we set the exchange coupling to the estimated value for

Tb2Ti2O7 (J=0.167 K) and plot the dipole-dipole coupling as a function of 1
∆

.

The result of this calculation in the classical limit and also with zero and non-zero

off-diagonal Jz matrix elements is plotted in Fig. 5.6. The quantum effects move

the phase boundary downwards, hence a smaller dipole-dipole coupling is needed

to keep the system in the sextet state (spin-ice state) or its quantum variant, the

singlet state. Here we should add that we calculate this phase boundary using the

six lowest crystal field states and we derived a phase boundary with about 0.05%

deviation from the phase boundary of Fig 5.5. So we conclude that the effect of

higher crystal field states in this calculation is negligible.
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Figure 5.6: Phase diagram of Tb2Ti2O7 with four lowest crystal field states in the

single tetrahedron approximation and with J z=0 and Jz 6= 0 and with J=0.167

K. In this phase diagram the dipole-dipole interaction is plotted as a function of 1
∆

.

Blue and red phase boundaries are respectively separating the singlet/doublet and

sextet/doublet phase boundaries. In this phase diagram Tb2Ti2O7 is in the sextet

or its quantum variant singlet state.
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In the next section we use the effective Hamiltonian results of Chapter 4 to find

the phase diagram of Tb2Ti2O7 within the single tetrahedron approximation. We

also give a physical description for the movement of the phase boundary between the

all-in/all-out and two-in/two-out states using the effective Hamiltonian description,

and by focusing especially on the quantum Ising term of the effective Hamiltonian.

5.3 Phase Diagram of the Effective Hamiltonian

in the Single Tetrahedron Approximation

In the previous section we derived the phase boundary of Tb2Ti2O7 within the

single tetrahedron approximation using a direct (brute force) approach in diago-

nalizing Eq. (5.4). In this section we calculate the phase boundary of Tb2Ti2O7

using the effective Hamiltonian method. We remind the reader of Chapter 4 where

an effective Hamiltonian for Tb2Ti2O7 was derived by integrating out the effect of

excited crystal field states which led to a mapping of the system onto a pseudo-spin

1/2 model.

In analogy with the procedure followed in Section 5.2 we begin the calcula-

tions with zero off-diagonal J z matrix elements and derive an effective Hamiltonian

within the single tetrahedron approximation. We recall that the zero off-diagonal

Jz matrix elements closes the channel for bi-particle transverse terms in the effec-

tive Hamiltonian. As a result, the effective Hamiltonian of the system maps onto a

model with strictly local 〈111〉 Ising spins. Hence, the 16 states of the system split

into one sextet, one octet and one doublet. The effective interaction between these

Ising spins is the sum of the classical interaction term (Section 4.2) between them,

the quantum Ising term (Section 4.3), and a small contribution which is the result

of the virtual two-ion-excitations effective Hamiltonian (Section 4.4). We remind

the reader that the classical term comes from the PHP term of the effective Hamil-

tonian and the quantum Ising term originates from the virtual single ion excitation

of all the third Tb3+ ions in the system. Hence, the effective Hamiltonian of the
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system is,

Heff =
∑
a<b

abS
z
aS

z
b , (5.5)

where Sz
a is the 〈111〉 local Ising spin in sublattice a and ab is the effective interac-

tion between Ising spins in sublattices a and b. In this effective interaction, and for

Tb2Ti2O7 the quantum Ising term, which is coming from the two nearest neighbors

of each pair, is dominant over the classical antiferromagnetic interaction and an

Ising interaction which is the local z component of the induced interaction by the

virtual two-ion-excitation, making overall an effective 〈111〉 ferromagnetic interac-

tion. It was mentioned in the introduction that the ground state of local Ising spins

with a ferromagnetic interaction between them is the sextet state or two-in/two-out

state, which is frustrated. Hence, the quantum Ising term changes the sign of the

effective αβ
ab in Eq. (5.5) and makes an originally non-frustrated system in the limit

of classical term in the effective interaction(PV P ) “dynamically-frustrated”. This

result is consistent with the exact result with four states per ion which shows that

the ground state of the system is the sextet. In Fig. 5.7 we plot the phase diagram

for the effective Hamiltonian for a single tetrahedron in terms of exchange coupling

as a function of 1
∆

and for the given dipole-dipole coupling for Tb2Ti2O7 (J=0.167

K). To compare, we add the phase boundary without the quantum Ising terms of

the Hamiltonian (only the classical Hamiltonian plus two ion excitation effective

Hamiltonian) (green curve) and the phase boundary from the exact results of four

states per ion to this plot (blue curve). With decreasing ∆, the quantum Ising

term becomes larger and the phase boundary moves to the doublet state (Fig. 5.7)

which is the indication of increased effective ferromagnetic interaction between Ising

spins. These results are in semi-quantitative agreement with the exact results (Fig.

5.7). However, calculating the phase boundary without considering the quantum

Ising term, moves the boundary towards the all-in/all-out phase, indicating the in-

creased effective antiferromagnetic interaction between Ising spins. Here, we should

mention that the observed deviation between the exact and effective Hamiltonian

results are related to the higher order terms in the effective Hamiltonian that we

did not include in the calculation of Heff .

It was discussed in Chapter 4 that non-zero off diagonal J z matrix elements lead
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Figure 5.7: Phase diagram of Effective Hamiltonian (red line) of Tb2Ti2O7 in the

single tetrahedron approximation and with J z=0 and D=0.0315 K. In this phase

diagram the exchange interaction is plotted as a function of 1
∆

. For comparison the

exact results with four states per Tb3+ ion (blue line) and effective Hamiltonian

result without quantum Ising term (green) are shown in the graph. The line with

cyan color shows the classical limit of the phase boundary.
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via the interaction between Tb3+ ions to induced non-zero matrix elements between

the two states of the original crystal field ground state doublet. In the mapping of

the two states of the crystal field ground state to the two states of the pseudo-spin

1/2, these non-zero matrix elements are translated into a spin flip mechanism and

transverse terms in the effective Hamiltonian. Because of the tetragonal symmetry

of the single tetrahedron the single ion transverse terms cancel out each other

and consequently the effective Hamiltonian is made of bi-particle terms with the

〈111〉 Ising term as the largest component. Diagonalizing this effective Hamiltonian

we find that the 16 states of the effective Hamiltonian are split into one singlet,

three doublets and three triplets consistent with the 16 lowest states of the single

tetrahedron with four states per Tb3+ ion. The singlet state is made of linear
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Figure 5.8: Phase diagram of effective Hamiltonian (red line) of Tb2Ti2O7 in the

single tetrahedron approximation and with D=0.315 K. In this phase diagram the

exchange interaction is plotted as a function of 1
∆

. For comparison the exact results

with four states per Tb3+ ion (blue line) is shown in the graph.

combination of all two-in/two-out states and one of the doublets is made of all-in

and all-out states. From now by doublet we refer to this state. We calculate the

ground state of the effective Hamiltonian for the whole range of dipole-dipole and

exchange couplings and we find that the ground state of the effective Hamiltonian
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is either the singlet or the doublet. In Fig. 5.8, we plot the phase boundary of

the effective Hamiltonian in terms of the exchange coupling as a function of 1
∆

.

For comparison, we add the exact diagonalization results using the four crystal

field states per ion. In the limit of large ∆, both the effective Hamiltonian and

exact results are semi-quantitatively the same and, with decreasing ∆, a deviation

of the effective Hamiltonian results from the exact results develop. For ∆=18.7

K, which is the gap for Tb2Ti2O7, the exact and the effective Hamiltonian results

are in a semi-quantitative agreement, with approximately a 10% difference. The

discrepancy between the exact and effective Hamiltonian results are from the higher

order terms in the construction of the effective Hamiltonian that have not been

included in the calculations. In this phase diagram Tb2Ti2O7 is in the singlet

ground state.

From the results of this section we conclude that the quantum Ising term changes

the effective interaction between Tb3+ ions from antiferromagnetic to ferromag-

netic and dynamically induces frustration. These frustrated states combined to-

gether with the bi-particles transverse terms give a singlet ground state which is

a linear combination of all these frustrated states (two-in/two-out) with the same

weight. Deriving the two-in/two-out-like (spin ice-like) state as the ground state

of Tb2Ti2O7 raises the question as to why neutron scattering of Tb2Ti2O7 has no

similarity to the neutron scattering of spin ice systems Ho2Ti2O7 and Dy2Ti2O7.

We address this question in the next Chapter.

5.4 Summary

Motivated by the experimental fact that the magnetic correlations in Tb2Ti2O7

are of the order of interatomic distances we proposed a single tetrahedron approxi-

mation with four Tb3+ ions as a good description for Tb2Ti2O7. We calculated the

phase diagram of Tb2Ti2O7 within this approximation using the two states of the

crystal field ground state doublet and also four states of the crystal field ground

state and first excited state doublets per ion. We showed that in the two states per

ion limit, the ground state of the system could be either a sextet or a doublet. The

doublet state can be long-range ordered on the pyrochlore lattice and the sextet
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state is frustrated. In this two state per ion approximation, Tb2Ti2O7 is in the

doublet state or all-in/all-out state. When considering the four lowest crystal field

states with zero Jz matrix elements between the crystal field ground state and first

excited state, we calculated the phase diagram of Tb2Ti2O7 and showed that in this

limit the ground state of the system is again either a doublet or a sextet. However,

the effect of crystal field excited states lead to a movement of the sextet/doublet

phase boundary deeper towards the doublet state and puts Tb2Ti2O7 in the two-

in/two-out (sextet) state. Including the J z matrix elements in the calculations,

we showed that the 16 lowest states decompose into one singlet (which is a linear

combination of all two-in/two-out states plus a small part of excited states), three

doublets (in which one of the doublet is made of all-in and all-out states plus a

small part of excited states) and three triplets. For the whole range of parameters

the ground state of the system is either the singlet or the all-in/all-out doublet. In

this phase diagram, Tb2Ti2O7 is in the singlet state. We also calculated the phase

diagram for the effective Hamiltonian in the single tetrahedron approximation. In-

vestigating the behaviour of this phase diagram with and without the quantum

Ising term, which comes from the renormalization of the interaction via the inter-

vening third ions, we found that the phase boundary to the doublet state finds its

origin from the quantum Ising term. This is the most crucial observation made in

this work. To rephrase, the effective interaction between the Ising components of

the effective spin σzi

i and spin σ
zj

j changes from being antiferromagnetic and not

frustrated to ferromagnetic and frustrated. This effect originates from the virtual

crystal field fluctuations of all third ions k which interact with ions i and j.



Chapter 6

Neutron Scattering of Tb2Ti2O7

In Chapter 5 we derived a phase diagram of Tb2Ti2O7 within a single tetrahe-

dron approximation and discussed the different phases that may occur as a function

of exchange coupling. We also showed that in this approximation, and for a given

value of the exchange and dipolar couplings for Tb2Ti2O7, this compound is in the

quantum spin ice phase which is predominantly made of linear combinations of all

spin ice states. However, this prediction of a spin ice like ground state for Tb2Ti2O7

would seem to be in contradiction with diffuse neutron scattering results since it is

very different from that of the spin ice systems (Chapter 1). In this chapter we ad-

dress this discrepancy. We use the fact that the magnetic correlations in Tb2Ti2O7

are of the order of nearest neighbor and we calculate the diffuse neutron scattering

of Tb2Ti2O7 in the single tetrahedron approximation. In the first section of this

chapter, we give a review of neutron scattering theory and derive an equation for

calculating the diffuse neutron scattering in terms of the eigenvalues and eigenfunc-

tions of a system. In the second section, we calculate the diffuse neutron scattering

of Tb2Ti2O7 with two, four and six lowest states (the six lowest crystal field states

are the ground state, first excited state doublets and second and third excited state

singlets) of the crystal field states per ion. In this section we show that considering

the four and six lowest crystal field states does not quantitatively change the neu-

tron scattering pattern and, hence the crystal field ground state and first excited

state doublets are enough to describe the neutron scattering of Tb2Ti2O7 within the

93
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single tetrahedron approximation. In the third section we give a falsifiable experi-

ment based on the diffuse neutron scattering in (hh2) direction to confirm whether

Tb2Ti2O7 indeed posses a quantum spin ice ground state. This calculation shows

that in the quantum spin ice state the highest diffuse neutron scattering intensity

is at (002), whereas in the doublet state, the highest intensity moves from (002) to

two peaks at (δδ2) and (δ̄δ̄2).

6.1 Diffuse Neutron Scattering

Neutron scattering is a very powerful tool for investigating the magnetic prop-

erties of a solid at an atomic scale. On one hand, neutrons are neutral and they

only interact with the environment via the magnetic dipole-dipole interaction, and

on the other hand, their interaction with the environment is so weak that they

do not disturb the magnetic system significantly. Hence, neutrons can easily pen-

etrate into a magnetic material and are scattered by magnetic moments without

disturbing the magnetic structure of the system. These scattered neutrons con-

tain enough information to give all the magnetic properties of the system. In a

long range ordered phase, elastically scattered neutrons give magnetic Bragg peaks

which reveal the magnetic structure of the system while the inelastically scattered

neutrons give information about the dispersion relation of the magnetic excitations.

Moreover, the magnetic scattering cross section is related to the time-dependent

pair-correlation function and is related to the generalized susceptibility via the

fluctuation-dissipation theorem. In this section we give a review of neutron scat-

tering theory and derive a formula for calculating the diffuse neutron scattering in

terms of the eigenvalues and eigenfunctions of a system. We use this formula in

the next section to calculate the neutron scattering of Tb2Ti2O7 within the single

tetrahedron approximation.

For a system of identical magnetic ions, the differential neutron scattering cross

section is given by [61],

d2σ

dEdΩ
= N

k′

k
(
~γe2

mc2
)2e−2W (κ)|1

2
gF (κ)|2

∑
αβ

(δαβ − κ̂ακ̂β)Sαβ(κ, ω), (6.1)
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where N is the number of magnetic ions, k and k′ are unit wave vectors of ongoing

and outgoing neutrons, ~ is the Plank’s constant divided by 2π, γ is the gyromag-

netic ratio of neutrons, e2/mc2=2.82 fm is the classical electron radius, W (κ) is the

Debye-Waller factor, F (κ) is the magnetic form factor for Tb3+ ion, κα is the scat-

tering vector, κ̂α is the α component of the unit vector of κα, ω is energy transfer

divided by ~. Sαβ is the Van Hove scattering function defined as [61],

Sαβ(κ, ω) =
1

2π~

∫ ∞

−∞
dteiωt 1

N

∑
jj′

e−iκ.(Rj−Rj′ )〈Jα
j (t)Jβ

j′(0)〉, (6.2)

where Jα
j is the α component of the angular momentum of ion j and the sum over

j and j ′ are over all Tb3+ ions in the system. Adding and subtracting 〈Jα
j 〉〈Jβ

j′〉,
the scattering function can be written as the sum of the elastic and inelastic con-

tributions as,

Sαβ(κ, ω) = Sαβ(κ) + Sαβ
inelastic(κ, ω), (6.3)

where the elastic component is

Sαβ(κ) = δ(~ω)
1

N

∑
jj′

〈Jjα〉〈Jj′β〉e−iκ.(Rj−R
′
j) . (6.4a)

Sαβ
inelastic(κ, ω) =

1

π

1

1 − e−β~ω
χ

′′

αβ(κ, ω) , (6.4b)

where ω is the energy transfer divided by ~ and χ
′′

αβ(κ, ω) is the imaginary part of

the susceptibility defined as,

χ
′′

αβ = π

Eγ 6=Eγ′∑
γγ′

〈γ|Jα
j |γ′〉〈γ′|Jβ

j′|γ〉(nγ − nγ′)

δ(Eγ − Eγ′ − ~ω)e−iκ.(Rj−Rj′). (6.5)

where |γ〉 and |γ′〉 are the eigenstates of the system and nγ = exp( Eγ

kBT
) is the

Boltzmann population of state |γ〉 at temperature T .

In a diffuse neutron scattering experiment, the outgoing neutrons from the sam-

ple are counted within a narrow range of energy which we call the window of energy.

As a result, the inelastic contribution from the lowest states of the system which



Chapter 6. Neutron Scattering of Tb2Ti2O7 96

are in this energy window has to be included in the total scattering. To accomplish

this, we calculate the diffuse neutron scattering by integrating over Sαβ
inelastic in the

energy window of the experiment w,

Sdiffuse =

∫ E0+w

E0

Sαβ
inelastic(κ, ω)dω =

∫
1

π

1

1 − e−β~ω
χ

′′

αβ(κ, ω). (6.6)

The imaginary part of the susceptibility χ
′′

αβ(κ, ω) can be written down as follow:

χ
′′

αβ =
∑
jj′

π

Eγ 6=Eγ′∑
γγ′

〈γ|Jα
j |γ′〉〈γ′|Jβ

j′|γ〉e
−Eγ
kBT (1 − exp

−(
E

γ′
−Eγ

kBT
)
)

δ(Eγ − Eγ′ − ~ω)e−iκ.(Rj−Rj′ ). (6.7)

Substituting this equation into Eq. (6.6) and taking the integral we derive the

diffuse scattering function as,

Sαβ
diffuse =

∑
jj′

∑
γ,γ′

〈γ|Jα
j |γ′〉〈γ′|Jβ

j′|γ〉nγe
−iκ.(Rj−Rj′). (6.8)

where |γ〉 and |γ′〉 states are in the energy window of the experiment and we have

both elastic Eγ = Eγ′ and inelastic Eγ 6= Eγ′ components. This is a general

formula for calculating the diffuse neutron scattering in terms of the eigenvalues

and eigenfunctions of a system with a narrow band of energy levels within the

energy window of the experiment. In the next section, we apply this formalism to

Tb2Ti2O7 to calculate the diffuse neutron scattering for this compound.

6.2 Diffuse Neutron Scattering of Tb2Ti2O7

In this section we calculate the diffuse neutron scattering for Tb2Ti2O7 within

the single tetrahedron approximation and clarify the effect of excited crystal field

states on the magnetic correlations of Tb2Ti2O7. In Fig. 6.1 we show the exper-

imental diffuse neutron scattering of Tb2Ti2O7 at 9 K [43]. The diffuse neutron

scattering of Tb2Ti2O7 at 60 mK gives the same pattern as the 9 K result [28]. As

a first approximation, we use the crystal field ground state doublet to calculate the

neutron scattering of Tb2Ti2O7. From Eq. (6.8) the scattering function of some
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Figure 6.1: Experimental diffuse neutron scattering of Tb2Ti2O7 at 9 K. The ob-

served checkerboard pattern with highest intensity at (002) makes a unique scat-

tering pattern for Tb2Ti2O7 [43].

identical magnetic ions in terms of the eigenvalues and the eigenstates of the system

is given by

Sαβ =
∑
ab

∑
γ,γ′

〈γ|Jα
a |γ′〉〈γ′|Jβ

b |γ〉nγe
−iκ.(Ra−Rb) (6.9)

where |γ〉 and |γ′〉 are eigenstates of the system, Jα
a is the α component of the

total angular momentum of ion at sublattice a, nγ is the Boltzmann factor equal to

exp(−Eγ

kBT
) where Eγ is the energy of state |γ〉, kB is the Boltzmann constant, T is the

temperature, the sum on |γ〉 and |γ ′〉 are over eigenstates of the system with energy

within the energy window of the experiment, and the sum on a and a′ is over the four

sublattices of a single tetrahedron. The eigenstates of the Hamiltonian, made of one

doublet, one sextet and one octet, were discussed in Chapter 5. Using this formula

and the given exchange and dipole-dipole couplings for Tb2Ti2O7 (D=0.0315 K

and J=0.167 K), we calculate the scattering function of four Tb3+ ions on a single

tetrahedron using the crystal field ground state doublet for each Tb3+ ion. The

result of this calculation is shown in Fig. 6.2. This scattering pattern does not



Chapter 6. Neutron Scattering of Tb2Ti2O7 98

capture any feature of the diffuse neutron scattering of Tb2Ti2O7 and instead, it

is similar to the neutron scattering pattern of 〈111〉 Ising spin systems at high

temperatures. This is because, in the classical limit, there is no transverse term

in the effective Hamiltonian and two states of the crystal field Hamiltonian make

local 〈111〉 Ising spins similar to spin ice systems. This pattern, when compared

with the experimental pattern of Tb2Ti2O7 (Fig. 6.1) [43] shows no consistency

between the theoretical results and experimental data. Hence, considering the two

states of the crystal field ground state or, in other word, assuming the 〈111〉 Ising

assumption is not adequate to describe the experimental data from diffuse neutron

scattering of Tb2Ti2O7.

Figure 6.2: Calculated diffuse neutron scattering using the two states of the crystal

field ground state of Tb2Ti2O7 in the single tetrahedron approximation at T=9 K.

This neutron scattering pattern is not compatible with the exact results and it is

similar to neutron scattering pattern of spin ice system at high temperatures.

We discussed in Chapter 5 the fact that virtual excitations to the first excited

crystal field states play an essential role in displacing the phase boundary to the

all-in/all-out state. We also mentioned that zero J z matrix elements between the

crystal field ground state and first excited state eliminates the channel for inducing
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matrix elements between the two states of the crystal field ground state doublet.

We first use the four states of the crystal field Hamiltonian considering zero J z

matrix elements to calculate the scattering function of Tb2Ti2O7 within the sin-

gle tetrahedron approximation. In Section 5.2 we calculated the eigenvalues, the

eigenstates, and the phase diagram of this problem. We use these eigenvalues and

eigenstates to calculate the scattering function in Eq. (6.9). In contrast to the

classical approximation above, we incorporate the Jx and Jy matrix elements be-

tween the crystal field ground state and first excited state. These matrix elements

give inelastic scattering among states that fall within the energy window of the

experiment (diffuse neutron scattering).

To compare our diffuse neutron scattering results with the experimental diffuse

neutron scattering we need to find the energy window of the experiment. In the

diffuse neutron scattering results which were obtained by Gardner et . al . [43], the

energy window of the experiment is about 4.2 K. Hence, all the states of the system

with energy lower than 4.2 K contribute to the diffuse neutron scattering intensity

pattern. The 16 lowest energy states of the system satisfy this condition and their

effects have to be included in the calculation. Using Eq. (6.9) and the 16 lowest

eigenvalues and eigenstates obtained in the last section, we calculate the scatter-

ing function in the single tetrahedron approximation at T=9 K. The result of this

calculation is shown in Fig. 6.3. The calculated scattering pattern is dramatically

different from the classical limit pattern (Fig. 6.2). The highest region of intensity

moves from (000) to a region around (002) with the highest intensity splitted into

two symmetric peaks at (h̄h̄2) and (hh2). This pattern has some similarities with

the diffuse neutron scattering pattern of Tb2Ti2O7 (Fig. 6.1), with the difference

that the highest intensity in the experimental results is at (002). The observed

diffuse scattering in this pattern is related to the non-zero Jx and Jy matrix ele-

ments between the crystal field ground state and first excited state. These matrix

elements give transitions between the 16 lowest states of the single tetrahedron.

However, because of the zero J z matrix elements between the crystal field ground

state and first excited state, these 16 states are divided into two sets each with 8

states and no matrix elements between these two sets of states. From this result we

conclude that although the produced neutron scattering pattern with four lowest
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crystal field states has some similarities with the experimental pattern, it does not

capture all the features like highest intensity at (002). Hence, it seems that consid-

ering the non-zero matrix elements is indeed necessary in understanding the diffuse

neutron scattering of Tb2Ti2O7. A similar conclusion was previously reached on

the basis of mean-field treatment of an anisotropic spin model for Tb2Ti2O7 [54] as

well as a random phase approximation (RPA) calculation [55].

Figure 6.3: Calculated diffuse neutron scattering with four lowest states of the crys-

tal field states of Tb2Ti2O7 and zero off-diagonal Jz matrix elements in the single

tetrahedron approximation (D=0.0315 K and J=0.167 K). This neutron scattering

pattern is similar to the experimental neutron scattering with the difference that

the highest intensity is at (hh2) and (h̄h̄2) instead of (002).

Following the discussion in previous paragraph, we now consider the four lowest

crystal field states of Tb3+ and calculate the scattering function of Tb2Ti2O7 in the

single tetrahedron approximation, but now considering all the Jx, Jy and Jz matrix

elements between the states. We use the eigenvalues and the eigenfunctions of the

single tetrahedron with four states per ion to calculate the scattering function.

It was discussed in Section 5.1 that the 16 lowest states of the system make a

narrow band (0.5 K), which is in the energy window of the experiment, and the
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rest of the states are separated by a 16 K gap. Substituting these eigenstates and

eigenvalues into Eq. (6.9) we calculate the diffuse neutron scattering and the result

of this calculation is shown in Fig. 6.4. This scattering function captures all of the

features of the experimental results including highest intensity at (002) and lowest

intensity at (000). Comparing this figure with Fig. 6.3 one sees that the effect

Figure 6.4: Calculated diffuse neutron scattering with four lowest states of the crys-

tal field states of Tb2Ti2O7 and non-zero Jz matrix elements between the ground

state doublet and first excited state doublet in the single tetrahedron approximation

(D=0.0315 K and J=0.167 K).

of non-zero Jz matrix elements is to make the scattering pattern more symmetric.

This can be seen most clearly by the two highest intensity peaks in Fig. 6.3 at (hh2)

and (h̄h̄2) combined into a single maximum at (002) in Fig 6.4. The calculated line

scans of the scattering function in (00h), (hh0) and (hhh) directions are plotted in

Fig. 6.5 and, for comparison, the experimental line scans of Tb2Ti2O7 have been

included. The theoretical line scans are scaled by the ratio between the highest

experimental to the highest (global maximum) theoretical intensity peaks at (002).

These results are in semi-quantitative agreement with experimental results of Fig.

6.1. If we remove the elastic part of the scattering function, namely consider Eq.
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(6.9) and apply the condition Eγ 6= E ′
γ , and only plot the line scan of the diffuse

scattering we get the more quantitative agreement between the theoretical and

the experimental results. The result of these calculations is plotted in Fig. 6.6.

Notice that in this calculation one scaling parameter has been used while, in the

single tetrahedron model of Reference [43], three scaling factors were used for each

direction. From this discussion we conclude that there may be a mechanism that

makes the elastic scattering of Tb2Ti2O7 weak. The source of this mechanism can

be small terms in the Hamiltonian that lift the degeneracy and make the elastic

response zero. In the next section we use the diffuse neutron scattering result in

the (002) direction to propose an experiment to verify the quantum spin ice phase

in Tb2Ti2O7.

We should mention that by adding anisotropic exchange and Dzyaloshinskii-

Moriya (DM) interactions with 1
10

of the strength of the isotropic exchange we

obtained a neutron scattering pattern which has much less symmetry than what

is obtained using an isotropic exchange interaction. This symmetry cannot be

recovered by considering the long-range dipole-dipole interactions and magnetic

correlations beyond the first nearest neighbors. Hence, we tentatively conclude

that the effects of other interactions on the magnetic properties of Tb2Ti2O7 are

small. However, this is a question that requires further investigation.

6.3 Possible Experimental Realization of Quan-

tum Spin Ice

In this Section we propose an experiment based on the scattering of neutrons

along the (hh2) direction that can be used to verify the proposed quantum spin ice

ground state in Tb2Ti2O7. In this calculation we use the four lowest crystal field

states and calculate the diffuse neutron scattering as was explained in Section 6.1.

In Fig. 6.7(a) we plot the scattering function as a function of exchange coupling

and for the given dipole-dipole coupling for Tb2Ti2O7 in the single tetrahedron

approximation at 40 mK. Comparing this result with the phase diagram of Fig. 5.4

we see that at the transition point (J= 0.187 K) from the singlet state (quantum
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Figure 6.5: Calculated line scan of diffuse scattering function in the symmetric

directions [00l], [hh0] and [hhh] (blue lines) at T=4 K. The experimental data of

Intensity/(Form factor)2 with their error bars are added to the plot for comparison

(red data) [43].
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Figure 6.6: Calculated line scan of the diffuse scattering function without elastic

term in the symmetric directions [00l], [hh0] and [hhh] (blue lines) at T=4 K. The

experimental data of Intensity/(Form factor)2 with their error bars are added to

the plot for comparison (red data) [43].
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spin ice phase) to the doublet state (all-in/all-out phase) the highest intensity at

(002) splits into two highest intensity branches at (δδ2) and (δ̄δ̄2). This suggests

a verifiable experimental probe for investigating the quantum spin ice phase in

Tb2Ti2O7. In Fig. 6.7(b) we plot the same graph but at the higher temperature,

T=400 mK. Again, we observe a bifurcation of highest intensity at (002), but

this time because of the thermal effects, the splitting is not sharp at the phase

boundary. In other words, close to the phase boundary, the doublet and the singlet

states are very close and the thermal population of both states are the same at

400 mK. Hence, we do not have a sharp splitting of the intensity at (002), at the

phase boundary. Hence, a line scan of the neutron scattering intensity at the lowest

possible temperature along [hh2] direction could be used to ascertain whether the

low-temperature state of Tb2Ti2O7 is a quantum spin ice. The presence of local

intensity maxima away from (002) would tend to rule out, at least within the

discussion presented in Chapter 5, the existence of a spin-ice like state at low

temperature in this material.

6.4 Summary

In this Chapter we used the experimental fact that the magnetic correlations in

Tb2Ti2O7 are to the order of nearest neighbor distance and introduced the single

independent tetrahedron approximation with four Tb3+ ions per tetrahedron as

a good approximation for Tb2Ti2O7. Using the eigenstates and eigenvalues of

the single tetrahedron with two and four states per ion, we calculated the diffuse

neutron scattering of Tb2Ti2O7. In the limit of two states per ion we showed that

the scattering function is identical to that of 〈111〉 Ising spins on the pyrochlore

lattice at high temperatures. In the limit of four states per ion and with zero J z

matrix elements between the crystal field ground state and first excited state, the

scattering function is similar to the experimental results with exception that the

highest intensity appears at the (hh2) and (h̄h̄2) and not at (002). Using the four

states per ion we derived a scattering pattern which captures all the features of

the experimental results. We also proposed an experiment based on the scattering

function at (hh2) direction that can be used to verify the spin ice state in Tb2Ti2O7.
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Figure 6.7: Calculated line scan of scattering function along the (hh2) direction at

40 mK (top figure) and 400 mK (down figure). The splitting of the (hh2) line scan

arises at the phase boundary between the singlet and doublet states.



Chapter 7

The Ground State of Tb2Ti2O7 in

the Classical Limit

In Chapter 4 we derived an effective spin Hamiltonian for Tb2Ti2O7 and found

the quantum ground state and related phases of Tb2Ti2O7 within a single tetra-

hedron approximation (Chapter 5). However, in this approximation, the effects of

long-range interactions such as dipole-dipole, E-D and D-D (Section 4.3) interac-

tions and also the generated second and third nearest neighbors effective exchange

interactions were not taken into account. Hence, the next question that arises is”

what is the ground state of Tb2Ti2O7 in the presence of these interactions in the

thermodynamic limit?”. In this chapter we explore these questions in the classical

limit in which, we treat the effective spin 1/2 operators as classical rotors. This

ground state could then be used in a subsequent 1/S calculation to test its stability

and also to find the quantum fluctuations around this ground state. This could be

done, for example, by following the approach used in Ref. [65]. In the first section of

this chapter we apply the Ewald method to the E-D interaction to derive the proper

interaction in a simulation box with periodic boundary conditions. In the second

section we show that the D-D part of the interaction is at least three times smaller

than the E-D part at long distances and hence, we neglect the D-D interaction in

comparison to the E-D interaction for long distances. More work would be needed

to investigate the consequences of this work. In the third section we calculate the

107
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classical ground state of Tb2Ti2O7 within a single cubic unit cell with 16 spins.

7.1 Ewald Method for E-D Interaction

In this section we apply periodic boundary condition to the long-range E-D

interaction for spins inside a simulation box. However, because of, firstly, the

slow convergence nature of the E-D interaction 1
rij

3 (Section 4.3.1.), and secondly,

the sum over the mirror images of any spin inside the box, applying the periodic

boundary condition is not trivial.

We use the well-known Ewald method to implement the periodic boundary for

the dipole-dipole interaction. This method has been extensively used to calculate

the dipole-dipole interaction for the pyrochlore lattice [32,54]. We use the numerical

data of spin ice systems for dipole-dipole interaction provided by Taras Yavors’kii

to derive the E-D interaction in a simulation box with periodic boundary condition.

However, the E-D interaction is not exactly dipolar like. The reason for this is the

sum over the third Tb3+ ions in the system. Hence we apply a trick to sum over

the E-D part of the effective Hamiltonian using the Ewald data of the classical

dipole-dipole interaction.

The E-D part of the effective Hamiltonian for a pair of spins 1 and 2 inside the

simulation box reads,

HE−D
eff =

∑
〈k,c〉

∑
n

J uα1z
a uα2γ1

c uβ1z
b uβ1γ2

c Dα1α2
ik;ac

〈φ(lk)
k,0 |J

γ1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E0
k − En

k )
|J̃γ2

k |φ(lk)
k,0 〉σz

i,a ⊗ σz
j,b + Per(i↔ j) , (7.1)

where J is the exchange coupling, D is the dipole-dipole coupling, J̃α
k is the α

component of the angular momentum, φpk

k,n is the pk state of the nth crystal field

state, uαβ
a is the αβ component of the transformation matrix for sublattice a and

the lattice sum is over the six nearest neighbors of spins 1 and 2. To apply the

periodic boundary condition we sum over all images of both spins 1 and 2, and the
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effective Hamiltonian in the simulation box can be written down as,

HE−D
eff =

′∑
i1,i2

∑
〈k,c〉

∑
n

J uα1z
a uα2γ1

c uβ1z
b uβ1γ2

c Dαi1αi2
1ik;ac

〈φ(lk)
k,0 |J̃

γ1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E0
k − En

k )
|Jγ2

k |φ(lk)
k,0 〉σz

i,a ⊗ σz
j,b + Per(i↔ j) , (7.2)

where the sum over i1 and i2 is a sum over spins 1, 2 and all the images of spins

1 and 2 and prime shows the exclusion of self energy term from this summation.

Sum over i2 is a finite sum and it is limited to the first nearest neighbor, hence it

is easy to calculate. However, because of the long-range nature of the dipole-dipole

interaction the sum over i1 is an infinite sum and we calculate this sum using Ewald

method. In another word, Eq. 7.2 is linear in terms of the dipole-dipole interaction

and hence, we can change the order of sums and use the Ewald method. After doing

these sums, the E-D part of the interaction for spins 1 and 2 in the simulation box

reads,

HE−D
eff =

∑
〈k,c〉

∑
n

J uα1z
a uα2γ1

c uβ1z
b uβ1γ2

c DEwald;α1αk

1k;ac

〈φ(lk)
k,0 |J̃

γ1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E0
k − En

k )
|J̃γ2

k |φ(lk)
k,0 〉σz

i,a ⊗ σz
j,b + Per(i↔ j) , (7.3)

where DEwald;α1αk

1k;ac is the Ewald coupling between spin 1, a and k, c . From this

expression we can easily calculate the E-D part of the effective Hamiltonian using

the known results of Ewald sum for the classical dipole-dipole interaction.

In this section we calculated the E-D interaction in a simulation box with the

periodic boundary condition. In the next section we calculate the D-D part of the

effective Hamiltonian in a simulation box with periodic boundary condition.

7.2 D-D Interaction in a Simulation Box

To complete our discussion about applying the periodic boundary condition

on the long-range interactions, in this section we calculate the D-D part of the
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interaction in a simulation box. The D-D part of the interaction reads,

HD−D
eff = |〈Jz〉|2

∑
k

∑
n

uα1z
i uα2γ1

k uβ1z
j uβ2γ2

k Dα1α2
ik Dβ1β2

jk

〈φ(lk)
k,0 |J̃

γ1

k |
|φ(pk)

k,n 〉〈φ(pk)
k,n |

(E0
k − En

k )
|J̃γ2

k |φ(lk)
k,0 〉σz

i ⊗ σz
j (7.4)

Because of the infinite sum over all the spins in the system and the slow convergence

of this interaction, 1
r3 , an exact calculation of this interaction is unfeasible. We

should mention that we can not substitute the dipole-dipole couplings in Eq. (7.4)

with the Ewald sum, because the reason for this is that this expression is not linear

in terms of the dipole-dipole interaction. However, comparing the E-D and the D-D

interactions gives a clue for solving this problem.

In Fig. 7.1 we plot the E-D and the D-D couplings as a function of distance

between them for the [100], [110] and [111] directions in the range of 1 to 10 unit

cells. In Fig. 7.2 we plot the same graph but this time in the range of 10 to 50

unit cells. In these figures the D-D interaction is at least three times smaller than

the E-D interaction for large distances. To make sure that the D-D interaction is

always smaller than the E-D interaction, we choose some random pairs and calculate

the D-D and the E-D interactions for them. This calculation shows that the D-

D interaction is always more than three times smaller than the E-D interaction.

Hence, in this work we tentatively use the cut off method to apply the periodic

boundary condition to the D-D interaction. The approximation we make in this

calculation is to drop the long-range part of the D-D interaction compared to the E-

D interaction which is justifiable based on the argument we had about the numerical

results for E-D and D-D interactions.

By showing how to apply periodic boundary conditions to the long-range D-D

and E-D interactions, our discussion about handling the two most difficult terms

in the effective Hamiltonian is dealt with. However, there are other terms in the

effective Hamiltonian such as bi-particle transverse terms, second and third nearest

neighbor terms for which we need to implement periodic boundary conditions to

them. We use the Ewald method to apply the periodic boundary condition for

the dipole-dipole Ising interaction. For the second and the third nearest neighbors,

the number of neighbors for both interactions are 12. However, we showed in
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Figure 7.1: E-D and D-D couplings (here we show it by Deff) as a function of

distance between two spins for the symmetric directions [100], [110] and [111] and

in the range of 1 to 10 unit cell.
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distance between two spins separated along the [100], [110] and [111] directions and
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the effective Hamiltonian chapter that the quantum Ising term generates the third

nearest neighbors interaction for only six of the twelve third nearest neighbors.

Hence, we apply the periodic boundary condition to the 12 second nearest neighbors

and also to six of third nearest neighbors that are connected by one Tb3+ ion

(Section 4.3.1). The bi-particle transverse terms are the last terms for which we

need to apply boundary conditions. It was mentioned in Section 4.4 that the long-

range part of the bi-particle transverse terms drop off as 1
r6 , where r is the distance

between two spins. Therefore, we use the cut off method to apply the periodic

boundary condition to this part of the interaction.

7.3 Classical Ground State of Tb2Ti2O7

After applying the periodic boundary condition on the E-D and the D-D in-

teractions, we calculate in this section the classical ground state of Tb2Ti2O7 by

minimizing the classical energy of the system. Before embarking into the calcula-

tion it is interesting to ask what is the stable classical ground state of Tb2Ti2O7 in

a single tetrahedron approximation.

To find the classical ground state we assume that each spin is a classical rotor

with SO(3) symmetry with fixed length of 1 in real space and we choose an ini-

tial random configuration of these spins. We find the new configuration of spins

by moving each spin towards the local magnetic field caused by the interactions

between this spin and other spins. We repeat this until we find that the difference

between the direction of local field and the direction of spin at each site is less

than a given threshold (in this simulation we use the threshold 10−8). This process

can give a local minimum, thus we use a random generator which creates another

initial configuration and repeat the procedure. We then compare the energy with

the previous energy. If the energy is equal or larger than the previous one, the

new state is declined and if it is smaller this state is chosen as the new ground

state. We wrote a computer code to accomplish this simulation for thousands of

attempted times to find the global classical ground state. We fix the value of the

dipole-dipole coupling to the value known for Tb2Ti2O7, Dnn=0.0315 K and find

the classical ground state as a function of exchange coupling. In the single tetra-
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hedron approximation we determine three stable phases for Tb2Ti2O7. For J <

0.16K the classical ground state is two-in/two-out state which we naively expect.

For 0.16 K < J < 0.22 K all spins move to the local xy plane such that the vector

sum of the four spins becomes zero. We call this phase an XY phase. For J >

0.22 K the ground state of the system is all-in/all-out state. In Fig. 7.3 we plot

the energy of these competing phases as a function of exchange interaction. In this

phase diagram, Tb2Ti2O7 is in the XY phase.
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Figure 7.3: Competing classical phases of Tb2Ti2O7 as a function of exchange

coupling and in the single tetrahedron approximation. For J < 0.16 K the two-

in/two-out state is the ground state and for 0.16 K < J < 0.22 K, the XY state (all

spins are in the xy plane such that the vector sum of the four spins is zero) is the

ground state. For J > 0.22 K the ground state of the system is the all-in/all-out

state.

Having found the classical ground state of Tb2Ti2O7 in the single tetrahedron

approximation, we now proceed to calculate the classical ground state of Tb2Ti2O7

in a larger unit cell. We consider a single cubic unit cell with 16 spins and we use the

results of the E-D and the D-D interactions within a simulation box to calculate the

classical ground state. We truncate the D-D and bi-particle transverse interactions

at the third unit cells. We calculate the stable classical ground state with the
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method explained in the previous paragraph. For the given dipole coupling of

Tb2Ti2O7and varying the exchange interaction, we find two candidate ground state

for Tb2Ti2O7: the Melko phase which is a Q=001 ordered spin ice phase (Section

1.2) and the Q=0 spin ice phase which is made of repeating a single tetrahedron with

a two-in/two-out state through the FCC lattice. In this phase diagram Tb2Ti2O7

is in the Q=0 spin ice state. In Fig. 7.4 we plot the energy of different well

known competing phases as a function of exchange interaction and for the given

dipole-dipole interaction of Tb2Ti2O7. Naively, one would expect that for large

exchange coupling the classical term of the effective Hamiltonian becomes larger

than the quantum part, and we get the all-in/all-out phase. However, interestingly,

for the whole range of exchange interactions, the ground state is not the all-in/all-

out state and the Q=0 spin ice phase remains the ground state for large exchange

interaction. This is because for large exchange coupling J the generated second

and third nearest neighbors and also the E-D interaction become large and the

ground state is determined not only by the classical exchange but also by the other

interactions.

Figure 7.4: Competing classical phases of Tb2Ti2O7 as a function of exchange

coupling for a single unit cell with 16 spins. For J < 0.6 K the Melko phase is

the ground state and for 0.6 K > J the two-in/two-out Q = 0 state is the ground

state.
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7.4 Summary

In this chapter we applied periodic boundary conditions to all the interactions

of the effective Hamiltonian of Tb2Ti2O7 to study the classical ground state of

Tb2Ti2O7 in the single tetrahedron approximation and also for a single unit cell

which contains 16 spins. For the single tetrahedron approximation we found that

Tb2Ti2O7 is in the XY phase. To apply the periodic boundary condition for the

classical dipole-dipole interactions we used the Ewald result for the spin ice systems.

We also showed that we can use the Ewald method of the spin ice systems to apply

the periodic boundary condition to the E-D interaction. We showed that the D-D

interaction is more than three times smaller than the E-D interaction and therefore

we neglect the D-D interaction for long distances. For the bi-particle transverse

terms of the effective Hamiltonian, we applied the cut-off method because these

interactions drop off as 1
r6 (r is the distance between two spins). Using these results

we calculated the stable classical ground state of Tb2Ti2O7 for a single unit cell and

showed that it is Q=0 spin ice state. Moreover, we calculated the phase diagram

of Tb2Ti2O7 in terms of exchange interaction at zero temperature, and we showed

that for J < 0.6 K the ground state is the Melko phase and for J > 0.6 K the

ground state is the Q=0 spin ice phase. Having said this, one must conclude that

these results are at this time tentative and further investigation of this challenging

question would be both requested and interesting.



Chapter 8

Tb2Ti2O7 in a Magnetic Field

In the previous chapters we studied the ground state and some of the physical

properties of Tb2Ti2O7 without any external perturbation. In this chapter we study

the effect of an external magnetic field on Tb2Ti2O7. Magnetization experiments on

Tb2Ti2O7 for different symmetry directions show a rather isotropic behaviour [37]

in spite of the fact that the single ion crystal field ground state doublet is Ising-like.

In this chapter we try to address this question in the context that the crystal field

excited states change the low-energy Hamiltonian (Chapter 4) of Tb2Ti2O7 from

Ising-like to an anisotropic Heisenberg. We also propose an experiment based on

magnetization measurement for different symmetry directions to ascertain whether

Tb2Ti2O7 has a quantum spin ice state. We organize this chapter as follows: in

the first section, we study the eigenstates and eigenvalues of a single Tb3+ ion in

Tb2Ti2O7 in a magnetic field. In the second section, we investigate the magneti-

zation of Tb2Ti2O7 in the non-interacting Tb3+ ions approximation and show that

the excited crystal field states do make the magnetic moments more isotropic. In

Section 4, we compare the magnetization results of interacting Tb3+ ions with the

non-interacting system and we conclude that the observed isotropic behaviour of

Tb3+ ions is partly related to admixing of the excited crystal field states induced by

the spin interactions. In Section 5, we propose an experiment based on the mag-

netization results to investigate whether Tb2Ti2O7 possesses a quantum spin ice

state. Because the single ion eigenenergies and eigenstates change with a magnetic

117
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field, and to avoid any misunderstanding, from now on we refer to ’crystal field

states’ as the eigenstates of the crystal field Hamiltonian at zero magnetic field.

8.1 Crystal Field Levels of Tb2Ti2O7 in a Mag-

netic Field

In this section we study the effect of a magnetic field on the energy levels of a

non-interacting single ion of Tb3+ in Tb2Ti2O7. The Hamiltonian of this single ion

is the sum of the crystal field and the Zeeman Hamiltonians which reads,

H = Hcf + gµBB · J, (8.1)

where Hcf is the crystal field Hamiltonian given in Eq. (2.13), g = 3
2

is the Landé

factor for Tb3+ ion, µB is the Bohr magneton, B is the applied magnetic field

and J is the total angular momentum of the Tb3+ ion equal to 6. Because the

Zeeman Hamiltonian does not commute with the crystal field Hamiltonian all the

degeneracies of the crystal field states are lifted.
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Figure 8.1: The applied magnetic field in the global coordinate frame with θ and

φ as polar and azimuthal of the magnetic field. The Tb3+ ion sits at the origin of

coordinates and the [112̄] and [111] local axis are specified.

Hence, the two states of the crystal field ground state and first excited state

doublets, which govern the low-energy physics, are split into four singlets. In Fig.
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8.2 we plot these four lowest energy states as a function of azimuthal angle and for

B=0.01 T, 0.5 T and 5 T and θ=90◦, where the polar and azimuthal angles are

measured from the global axis (Fig. 8.1). The special feature of these plots is a

minimum gap between the ground state and first excited state, which are the split-

ted states of the crystal field ground state doublet, at φ=135◦ where the magnetic

field is perpendicular to the [111] axis. For this minimum angle the matrix elements

of the Zeeman Hamiltonian projected within the crystal field ground state doublet

are zero. As a result, the energy gap between two lowest energy states originates

from the crystal field excited states and, based on second order perturbation theory,

the gap changes as B 2 at low magnetic fields (Fig. 8.3).

After studying the energy levels of a Tb3+ ion as a function of azimuthal angle

it is interesting to study their behaviour as a function of polar angle (θ) as well.

From the results of this calculation we propose an experiment in Section 8.4 to test

for the quantum spin ice ground state in Tb2Ti2O7. In Fig. 8.4 we plot the lowest

energy levels of Hamiltonian (8.1) as a function of polar angle for B=0.01 T, 0.5

T and 5 T and φ=225◦ (we choose this value of φ because we use it for our future

study). The same behaviour as the previous graphs is observed with the minimum

gap occurring at θ=35.2◦ where the magnetic field is perpendicular to the [111]

easy axis. This magnetic field is parallel to the [1̄1̄2] axis which has been used to

verify the spin ice ground state in the Dy2Ti2O7 spin ice material [66]. In Fig. 8.5,

we plot this minimum energy gap as a function of applied magnetic field and this

graph again reveals a B 2 behaviour at the minimum gap at low magnetic fields.

To investigate the behaviour of these energy levels for different symmetry di-

rections we plot them (Fig. 8.6) as a function of the magnetic field strength for

the [100], [110] and [111] directions. The observed feature at B=2 T is related to

the level crossing of the second and the third lowest crystal field states. This level

crossing is smooth because of the following reason: the second and the third lowest

crystal field states in terms of eigenstates of J z are, respectively, α1|+4〉+β1|−5〉+...
and α2| − 5〉 + β2| + 4〉 + ..., where α1 and α2 are much larger than β1 and β2. In-

creasing the magnetic field, the energy of the third state, which has its predominant

part at | − 5〉, starts decreasing while on the other hand the energy of the second

state starts increasing until B=1.5 T. From this point an increase in the magnetic
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Figure 8.2: Four lowest levels of Hamiltonian (8.1) as a function of azimuthal angle

φ with θ=π
2

and with a field B=0.01 T(a), B=0.5 T(b) and B=5 T(c) magnetic

fields (Because the splitting of the states at B=0.01 T is very small, the two states

of the excited states are shown in the inset). The correspondent eigenstates of

these energy levels at zero magnetic field, are the crystal field ground state and

first excited state doublets. These doublets are splitted and their splitted states

evolve under an applied magnetic field.



Chapter 8. Tb2Ti2O7 in a Magnetic Field 121

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

B (T)
E

ne
rg

y 
ga

p 
(K

)

PSfrag replacements

B||[1̄10]

Figure 8.3: Energy gap between ground state and first excited state (the splitted

states of the crystal field ground state doublet) as a function of a magnetic field

applied along the [1̄10] direction.

field decreases the coefficients α1 and α2 and increases the coefficients β1 and β2 are

increasing. This process can be interpreted as the transfer of angular momentum

from one state to another as a result of the magnetic field. This transfer of angular

momentum continues until B=5 T where this smooth level crossing between the

second and the third states becomes complete. In the [111] direction the reduction

in the third energy level continues until it crosses the ground state at 16.3 T and be-

comes the ground state of the system. This level crossing, especially in the ground

state, can be observed experimentally as a signature in some physical phenomena

such as the field dependent magnetization.

8.2 Non-Interacting Tb3+ Ions in a Magnetic field

In this section we study the magnetization of non-interacting Tb3+ ions in

Tb2Ti2O7. This compound has four magnetic sublattices with different easy axes

and therefore the total magnetization per ion reads,

M =
1

4

4∑
a

Ma (8.2)

where M is the total magnetization per ion and Ma is the magnetization of sub-

lattice a and the sum is over the four sublattices. The magnetization for each



Chapter 8. Tb2Ti2O7 in a Magnetic Field 122

0 30 60 90 120 150 180
0

0.02

0.04

0.06

0.08

0.1

E
ne

rg
y 

(K
) 0 60 120 180180

18.66
18.7

18.76(a) B=0.01T
φ=5π/4

Minimum Gap

0 30 60 90 120 150 180
0

5

10

15

20

25

E
ne

rg
y 

(K
)

(b)

Minimum Gap

B=0.5T
φ=5π/4

0 30 60 90 120 150 180
0

20

40

60

80

θ (degree)

E
ne

rg
y 

(K
)

(c) B=5T
φ=5π/4

Minimum Gap

Figure 8.4: Four lowest energy levels of single Tb3+ ion as a function of polar angle

θ and with a field of B=0.01 T (a), B=0.5 T (b) and B=5 T (c) magnetic fields

(Because the splitting of the states at B=0.01 T is very small, the two states of

the excited states are shown in the inset). The correspondent eigenstates of these

energy levels at zero magnetic field, are the crystal field ground state and first

excited state doublets. These doublets are splitted and their splitted states change

under an magnetic field.
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Figure 8.5: Energy gap between the ground state and first excited state as a function

of magnetic field along [112̄] direction.

sublattice is given by,

Mα
a = gµB

13∑
ν=1

uαβ
a 〈ψν|Jβ|ψν〉nB(Eν) (8.3)

where Mα
a is the α component of the magnetization of sublattice a, g = 3

2
is the

Landé factor for Tb3+, µB is the Bohr magneton, uαβ
a is the rotation matrix from

the local to the global axis for sublattice a (Appendix C), Jα is the α component

of the total angular momentum of Tb3+ with J=6, |ψν〉 is the νth eigenstate of

Hamiltonian (8.1), nB(Eν)=exp(− Eν

kBT
) is the Boltzmann population of state ν with

energy Eν at temperature T , and the sum is carried out over all 13 eigenstates of

Hamiltonian (8.1). We calculated the magnetization for B along the [100], [110]

and [111] directions at different temperatures. The results of these calculations are

shown in Fig. 8.7.

The magnetization in [100], [110] and [111] directions saturates respectively at

6.8 µB/Tb3+, 6.6 µB/Tb3+ and 7.2 µB/Tb3+ for B < 30 T and no feature is observed

for the magnetization data in the [100], [110] directions. However, a plateau is

observed at B=16.2 T and T=1 K in the [111] magnetization data which is related

to the level crossing that we discussed in the previous section. The saturation values

for different directions is consistent with isotropic moments with the < J z >=5 and

< Jz >=4 as the major contributors to the ground state. This can be naively seen

if we use the M = gµB〈ψν |Jz|ψν〉 expression with ψν as the crystal field ground
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Figure 8.6: Four lowest levels of Hamiltonian (8.1) as a function of magnetic field

along [100], [110] and [111] directions. The observed feature between 1.5 T to 5 T is

related to the angular momentum transfer from the first excited state to the second

excited state. In the [111] magnetization a level crossing between the ground state

and first excited state happens at B=16.2 T.
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Figure 8.7: Magnetization of four non-interacting Tb3+ ions on a single tetrahedron

for a magnetic field B along the [100], [110] and [111] directions. The observed

plateau at B=16.2 T is related to the level crossing between the ground state and

first excited state.
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state doublet. This value is still far from the 9.72 µB/Tb3+ for the free Tb3+ ion.

To further compare the behaviour of the magnetic moments in different directions,

we plot in Fig. 8.8 the [100], [110] and [111] magnetization data as a function of

magnetic field and for T=1 K and 5 K and 20 K.

At T=1 K the behaviour of the magnetization is qualitatively similar to the

spin ice systems with the highest magnetization at [100] direction and the lowest

magnetization at [110] direction [36]. Increasing the temperature, the magnetiza-

tion along different directions develops a more isotropic behaviour and at T=20K

the magnetization along the three directions are very much converged together. In

Fig. 8.9 we plot the ratio of the magnetization in the [100] direction to the magne-

tization in the [110] direction, as a function of magnetic field. For T=1 K this ratio

reaches a maximum M
[100]

M [110] =1.279 at B=1.4 T which is smaller than the spin ice

limit 1.414. Increasing the temperature this ratio converges to 1 since the excited

states become more populated (by the thermal excitations) and, as a result, the

magnetic moments behave effectively isotropically. Experimental results of mag-

netization (Fig 1.16) show that the effective magnetic moments in Tb2Ti2O7 are

more isotropic than what we found in this section. Hence, there should be another

mechanisms such as higher order Zeeman terms in the Hamiltonian which give rise

to the observed isotropy in the experimental results.

8.3 Interacting Tb3+ Ions in a Magnetic Field

In this section we calculate the magnetization of interacting Tb3+ ions in Tb2Ti2O7

within the single tetrahedron approximation and under an applied magnetic field.

We showed in Chapter 2 that the excited crystal field states above the first excited

state doublet are separated by a gap which is more than 100 K. Hence, quantita-

tively, these states are irrelevant in describing the low energy physics of Tb2Ti2O7.

In Chapter 5 we showed that the four crystal field lowest states give results that are

in semi-quantitative agreement with the exact results. Hence, choosing any subset

of the crystal field states containing the four lowest states or more is enough to

describe the interacting part of the Hamiltonian at low temperatures. To find a

sufficient subset of crystal field states that quantitatively describe the Zeeman term
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Figure 8.8: Magnetization of non-interacting Tb3+ ions on a single tetrahedron for

a magnetic field along [100], [110] and [111] directions and at T=1 K (a), 5 K (b)

and 20 K (c).
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Figure 8.9: The ratio between the magnetization of non-interacting Tb3+ ions at

[100] direction to [110] direction M [100]/M [110], as a function of magnetic field and

for T= 1, 5, 10 and 20 K.

of the Hamiltonian we compare the exact magnetization of non-interacting Tb3+

ions (with thirteen states) with the magnetization derived from various subsets of

the crystal field states.

In Fig. 8.10 the magnetization of non-interacting Tb3+ ions as a function of

magnetic field with four states, six states and thirteen states per ion is depicted.

From these results we conclude that choosing the four lowest crystal field states

per ion is not enough to adequately describe the exact results. However, choosing

the six lowest crystal field states gives a result that is quantitatively consistent

with the exact results. Therefore, in the rest of this chapter we use the six lowest

crystal field states to calculate the physical properties of Tb2Ti2O7 in the single

tetrahedron approximation.

The total Hamiltonian of the system in this approximation is,

H =
∑
a>b

(Hex
ab +Hdip

ab ) +

4∑
a=1

HZeeman
a , (8.4)

where Hex
ab and Hdip

ab are respectively the exchange and the dipole-dipole Hamiltoni-

ans for pair ab and HZeeman
a is the Zeeman Hamiltonian for ion a. We calculate the

matrix elements of this Hamiltonian in the six lowest crystal field basis states and,
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Figure 8.10: Magnetization of a non-interacting single Tb3+ ion in Tb2Ti2O7 de-

rived from the four, six and thirteen lowest crystal field states. The set of six lowest

crystal field states is a minimum set of crystal field states that quantitatively de-

scribed the exact result (thirteen states).

using the exact diagonalization method, we find its eigenvalues and eigenstates. We

use these eigenstates and eigenvalues to calculate the magnetization of Tb2Ti2O7 in

the single tetrahedron approximation. The magnetization per ion for this magnetic

system reads,

Mα =
gµB

4

∑
ν

4∑
a=1

uαβ
a 〈φν|Jβ|φν〉nB(Eν), (8.5)

where Mα is the α component of the total magnetization per ion, |φν〉s are the

eigenstates of the Hamiltonian, uαβ
a is the αβ component of the rotation matrix

from the local to the global axis of sublattice a, Jα is the α component of the total

angular momentum of Tb3+ ion with J=6, nB(Ei)=exp( Eν

kBT
) is the Boltzmann

population of state ν with energy Eν and temperature T , the sum on ν is over

all 64=1296 eigenstates of the Hamiltonian and the sum on a is over the four

sublattices. We calculate the magnetization of this system for the [100], [110] and

[111] directions and at T=1, 5, 10 and 20 K. The results of these calculations are

shown in Fig. 8.11. The magnetization data for the [111] direction shows a plateau

at B=16.2 T and this plateau is less steep compared to the non-interacting case

(Fig. 8.7). The magnetization in different directions also saturates to values which
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Figure 8.11: Magnetization of four interacting Tb3+ ions on a single tetrahedron

with six states per each ion along the [100], [110] and [111] directions. The plateau

observed in the [111] direction and at B=16.2 is less steep compare to the non-

interacting result.
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are lower than the saturation values for the non-interacting Tb3+ ions (Fig. 8.7).

This can be explained in the sense that the ground state of the system without

magnetic field is a quantum spin ice state and, as a result, a fraction of applied

magnetic field works to cancel out the internal field and breaks the quantum spin

ice state and aligns all the magnetic moments towards the magnetic field. In Fig.

8.12 we plot the [100], [110] and [111] magnetization data at T=1 K and 5 K

, 10 K as a function of magnetic field. At T=1 K the magnetization shows a

qualitative spin ice behaviour meaning that the highest and lowest magnetizations

are respectively in the [100] and [110] directions. At T=5 K the magnetization

in the [110] and [111] directions become closer which is a sign of more isotropic

magnetic moments at this temperature rather than Ising-like magnetic moments.

At this temperature the magnetization along the [100] direction still shows Ising-

like behavior. In Fig. 8.13 we plot the ratio of magnetization in the [100] direction

to the magnetization in the [110] direction. Comparing these results with the non-

interacting results (Fig. 8.8) shows a decrease in this ratio. This indicates that the

interactions render the magnetic moments behave more isotropically and this can

be physically understood if we recall that the interactions create transverse terms

operating within the manifold of the ground state.

8.4 Probing the Ground State of Tb2Ti2O7

In this section we propose an experiment to investigate the ground state of

Tb2Ti2O7 using magnetization measurements for fields along different directions.

To start, we label the four sublattices and their correspondent Tb3+ ions from 1 to

4 (Fig. 8.14) with their easy axis being respectively, [111], [1̄1̄1], [11̄1̄] and [1̄11̄].

We explained in Section 8.1 that for a Tb3+ ion sitting on sublattice 1 and for some

specific magnetic field direction, the gap between the ground state and the first

excited state reaches a minimum (Figs. 8.2 and 8.4). One of these directions is

the [112̄] direction. For this direction of magnetic field ([112̄]), ions on sublattices

2, 3 and 4 experience a magnetic field with strength 2
√

2
3
B for ion 2 and

√
2

3
B for

ions 3 and 4 towards their easy axes. Therefore, for a magnetic field along the

[112̄] direction and of strength larger than the effective internal interactions only
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Figure 8.12: Magnetization of an interacting single tetrahedron with four Tb3+ ions

along the [100], [110] and [111] directions at T=1 K (a), 5 K (b) and 10 K (c).
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Figure 8.14: Nomenclature of four sublattices from 1 to 4 in a single tetrahedron.

The easy axis for ions 1 to 4 are, respectively [111], [1̄1̄1], [11̄1̄] and [1̄11̄].
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sublattice 1 possesses a minimum gap while the three other sublattices possess a

singlet ground state enforced by the magnetic field (Fig. 8.15).

We now use this observation to propose an experiment to characterize the

ground state of Tb2Ti2O7. Since the magnetic fields in the present calculations

are small, the crystal field states do not change much and, to simplify our discus-

sion, we denote the two states of the crystal field ground state with spin up, | ↑〉
and spin down, | ↓〉. We begin the calculation by considering the single tetrahe-

dron approximation with four ions and six states per ion and apply a magnetic field

towards the [112̄] direction. The Hamiltonian of the system can be written down

as,

H =
∑
a>b

(Hex
ab +Hdip

ab ) + gµB

4∑
a

Ja · B[112̄], (8.6)

where B[112̄] is the applied magnetic field towards the global [112̄] direction. We

choose the strength of the magnetic field such that first it forces the magnetic ions

2, 3 and 4 to possess a unique state and second it does not affect the low energy

spectrum dramatically. By the first condition the gap between the ground state

and first excited state for ions 2, 3 and 4 is more than the effective interaction

between them and as a result they are forced to stay in one state. By the second

condition the initial eigenstates (eigenstates with B = 0) remain a good quantum

states. Applying a magnetic field with a strength of 0.1 T fulfills these criteria.

With this specific magnetic field, ions on sublattices 2, 3 and 4 respectively possess

| ↓〉, | ↑〉 and | ↑〉 states. For ion 1 we see from Fig. 8.5 that the gap between the

ground state and the first excited state is very small and they can be considered

to be a doublet. As a result, ion 1 possesses a ground state largely enforced by the

internal field from other ions.

Now, we consider the two phases of quantum spin ice discussed in Chapter 5,

the doublet and the singlet phases. In the singlet phase, application of the [112̄]

field puts the system in the βs| ↓↓↑↑〉 + γs|φ〉 state where βs � γs and |φ〉 shows

the contribution form other states. Here ion 1 possesses the | ↓〉 state in order to

obey the two-in/two-out state. By applying a further magnetic field to this system

along the [111] direction and measuring the magnetization in this direction, we see

a continual increase in the magnetization (Fig. 8.16(a)). However, if we reverse the
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direction of the [111] magnetic field and increase the strength of the field, the Tb3+

ion 1 flips from state | ↓〉 to state | ↑〉 and as a result the magnetization changes

sign for a sufficiently large field (Fig. 8.16(a)).

[112]

[111]

1

2

3

4

Figure 8.15: The configuration of magnetic moments in the spin ice phase and

under a magnetic field in the [112̄] direction. Applying a magnetic field in the

[111] direction with strength more than the effective internal interaction reverse

the magnetic moment in site 1.

In the doublet phase we apply exactly the same procedure with the only differ-

ence in the initial state of the system being βd| ↑↓↑↑〉 + γd|φ〉 (βd � γd). In this

case ion 1 takes on the | ↑〉 state to minimize its energy by being parallel to two

ions 3 and 4. Hence, in contrast to the singlet phase, here applying a magnetic field

in the [111] direction flips spin 1 from state | ↑〉 to state | ↓〉 and the magnetiza-

tion changes sign (Fig. 8.16(b)). On the other hand applying a magnetic field in

the [1̄1̄1̄] direction increases the magnetization without any change in the sign of

magnetization (Fig. 8.16(b)).

From the above discussion we conclude that by applying a magnetic field with

strength 0.1 T in the [112̄] direction and another magnetic field in the [111] direction

we can find a direct evidence to test the quantum spin ice state in Tb2Ti2O7.
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Figure 8.16: Magnetization in the [111] direction as a function of applied magnetic

field along the [111] direction at 20 mK in the doublet (top figure) and the singlet

(down figure) states under a constant magnetic field 0.1 T along the [112̄] direction.
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8.5 Summary

In this chapter, we studied the behaviour of Tb2Ti2O7 in a magnetic field. We

started by calculating the single ion crystal field levels of non-interacting Tb3+ ions

in a magnetic field. We showed that the gap between the ground state and the first

excited state has a minimum for directions that are perpendicular to the local easy

axis. For small magnetic fields this gap changes as B2. For a range of magnetic

fields between 1.5 T to 5 T, we observed a transfer of angular momentum from the

second excited state to the third excited state. We also showed that a level crossing

between the ground state and first excited state happens at B=16.2 T. We calcu-

lated the magnetization of Tb2Ti2O7 in the non-interacting Tb3+ approximation

and observed a plateau in the magnetization data for B along [111] direction and

at B=16.3 T, which is related to the level crossing. By comparing the magneti-

zation for different directions, we also found that at low temperatures the system

behaves qualitatively like spin ice systems. At high temperatures, when the first

excited crystal field states becomes populated, the magnetization results show a

rather isotropic behaviour. We also calculated the magnetization of Tb2Ti2O7 in

the presence of the spin interactions and within the single tetrahedron approxima-

tion, using six states per ion. The magnetization data show an even more isotropic

behaviour compared to the non-interacting case which can be interpreted via the

presence of transverse terms in the effective Hamiltonian discussed in Chapter 4.

In the last section, we proposed a magnetization experiment to ascertain whether

Tb2Ti2O7 is in the quantum spin ice phase.



Chapter 9

Summary and Future Work

9.1 Effective Hamiltonian of Tb2Ti2O7

The single ion crystal field Hamiltonian of Tb3+ in Tb2Ti2O7 and its eigenvalues

and eigenstates have been calculated. It was shown that the crystal field gap

between the ground state and first excited state is quite a bit larger than the

interaction Hamiltonian. Using this fact, and by applying the Rayleigh-Schrödinger

perturbation theory, an effective Hamiltonian in terms of spin 1/2 operators has

been derived. It was shown that, to first order in perturbation theory, the effective

Hamiltonian is built of interacting 〈111〉 Ising spins on the pyrochlore lattice, i.e.

a classical 〈111〉 Ising Hamiltonian as previously studied in the context of spin

ices [32] .

To investigate the effects of excited crystal field states, the effective Hamiltonian

was calculated up to second order in perturbation theory. Two processes (fluctua-

tion channels) have been identified at that order: the single ion and the double ion

excitations. We showed that the single ion excitations of Tb3+ ions generate terms

with 〈111〉 Ising symmetry between a pair of Ising spins in the effective Hamilto-

nian (quantum Ising term). These terms not only renormalize the classical Ising

interaction, but also generate new terms such as second and third nearest neigh-

bor interactions between Ising spins. At the first nearest neighbor, the quantum

Ising terms change the classical antiferromagnetic interaction to ferromagnetic. It

138
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was shown that the double ion excitations create transverse terms in the effective

Hamiltonian and change the effective Hamiltonian from 〈111〉 Ising-like system to

that of an effective anisotropic S = 1/2 model.

9.2 Tb2Ti2O7 in the Single Tetrahedron Approx-

imation

The phase diagram of Tb2Ti2O7 with the single ion crystal field ground state

doublet and first excited state crystal field doublet, has been calculated within the

single tetrahedron approximation. Two states have been found as the ground state:

a doublet which is predominantly made of the classical all-in/all-out state and a

singlet which is predominantly built of a linear combination of all frustrated two-

in/two-out states. In this phase diagram, Tb2Ti2O7 is in the singlet state which

we named quantum spin ice. It was shown that the quantum Ising term changes

the classical antiferromagnetic interaction to ferromagnetic and makes the Ising

spins on the tetrahedron frustrated. The transverse terms, originated from the

virtual double ion excitation, lift the degeneracy of these frustrated states and are

responsible for the quantum (singlet) nature of the ground state.

Motivated by the fact that the experimental correlations in Tb2Ti2O7 are of the

order of an atomic distance, the diffuse neutron scattering of Tb2Ti2O7 has been

calculated in the single tetrahedron approximation with four lowest crystal field

states. The obtained diffuse neutron scattering pattern captures all the features of

the experimental neutron scattering. We showed that inelastic neutron scattering

originates from fluctuations among the lowest states and is responsible for the

intensity pattern of the experimental diffuse neutron scattering. An experiment

based on the diffuse neutron scattering was proposed to confirm the spin ice like

ground state in Tb2Ti2O7.

The magnetization of non-interacting and interacting Tb3+ ions has been cal-

culated within the single tetrahedron approximation. We showed that the excited

crystal field states subject to the interaction between Tb3+ ions, change the sym-

metry of magnetic moments from 〈111〉 Ising like to more Heisenberg-like. An
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experiment based on the magnetization for fields applied along different directions

was proposed to verify the spin ice like ground state in Tb2Ti2O7.

9.3 Beyond the Single Tetrahedron Approxima-

tion

The effective Hamiltonian of Tb2Ti2O7 was calculated using periodic boundary

condition, with Ewald method applied to calculate the long-range part of the ef-

fective Hamiltonian. By considering the spin 1/2 operators as classical rotors, the

classical ground state of the effective Hamiltonian was determined for a single cubic

unit cell. It was found that the classical ground state of Tb2Ti2O7 is a two-in/two-

out Q=0, which differs from the previously identified strictly classical 〈111〉 Ising

spins.

In conclusion we found that the quantum fluctuations via the excited crystal

field states renormalize the low energy Hamiltonian of Tb2Ti2O7 and change the

coupling between Ising 〈111〉 spins from antiferromagnetic to ferromagnetic. These

quantum fluctuations, also change the symmetry of the degrees of freedom of the

low energy Hamiltonian from Ising-like to a more isotropic system, namely pseudo-

spin 1/2 system. We also show that these quantum fluctuations are responsible

for the diffuse neutron scattering of Tb2Ti2O2. These results show the importance

of the quantum fluctuations in systems with large angular momentum which are

usually considered as classical spins.

9.4 Future Work

We showed in Chapter 6 that the classical ground state of Tb2Ti2O7 is a Q=0

two-in/two-out state. This ground state was obtained by assuming that spins are

classical rotors and the quantum effects were not considered. To verify the stability

of this ground state under the presence of quantum fluctuations, a 1/S expansion

could be employed. This method was used to find the stability of the classical
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ground state in Gd2Ti2O7 [65] and a similar 1/S calculation could be used to find

the stability of the classical ground state in Tb2Ti2O7.

In Chapter 3 the effective Hamiltonian of Tb2Ti2O7 was obtained. For a single

cubic unit cell with 16 spins this effective Hamiltonian can be diagonalized. Using

the eigenvalues and eigenstates of this effective Hamiltonian, some of the physical

properties of Tb2Ti2O7 such as specific heat could be calculated and compared with

experiment.

If the proposed quantum spin ice state for Tb2Ti2O7 was to be demonstrated,

one could consider investigating (Tb1−xDyx)2Ti2O7 which may exhibit a quantum

phase transition between a spin-ice and a spin liquid state as the concentration of

Dy3+ is decreased.

Applying a magnetic field along the [111] direction creates a kagomé in the

classical spin ice system Dy2Ti2O7 [69, 70]. Based on our calculations which show

that Tb2Ti2O7 is in the spin ice state, we propose that applying a magnetic field

along [111] direction could create a quantum kagomé spin ice in Tb2Ti2O7.

The experimental magnetization results along the [100], [110] and [111] show a

strong isotropic behaviour. However, our results only capture parts of this isotropy.

This suggests that other mechanisms are at play to recover such high level of

isotropy in modrate applied magnetic field. Identifying these symmetry-restoration

mechanism would be helpful in ultimately understanding the physics of Tb2Ti2O7.

Finally, we close with a general comment. The key contribution of this thesis

has been the identification of a “dynamically-induced” emergence of frustration in

an effective quantum theory. It would be interesting to investigate the possible

manifestation of this phenomena in other strongly correlated electron or quantum

spin systems.



Appendix A

Exchange Couplings of Ho2Ti2O7

and Dy2Ti2O7

It was briefly mentioned in the introduction that while Ho2Ti2O7 was the first

proposed spin ice system, it has also been the most controversial [26, 40, 67]. On

one hand, µSR, elastic and inelastic neutron scattering experiments [25] suggest

a spin ice ground state for Ho2Ti2O7 while on the other hand the observed sharp

peak in specific heat experiment [41] and the derived exchange interaction from

the DC susceptibility experiment would seem to suggest that Ho2Ti2O7 is not a

spin ice system [41]. It was shown that the observed Schottky anomaly in the

specific heat data is related to the nuclear Schottky contribution. Subtracting off

the contribution from the specific heat results, the derived magnetic specific heat

result confirmed the spin ice state for Ho2Ti2O7 [38].

However, the large antiferromagnetic exchange coupling derived from the high

temperature DC susceptibility that predicted a non-spin-ice state has so far re-

mained a puzzle. Specifically, fitting the Monte Carlo results for the specific heat

to the experimental data [32] predicted a value for the exchange coupling three times

less than that obtained via DC susceptibility measurements [41]. In this chapter

we address this question and identify the source of this discrepancy between the

exchange interaction derived from specific heat [38] and DC susceptibility measure-

ments [41]. To proceed, we must discuss the high temperature behaviour of the DC

142
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susceptibility. In the first section we formally derive the effective Hamiltonian for

Ho2Ti2O7 and Dy2Ti2O7. In the second section we derive the DC susceptibility of

a single crystal of Ho2Ti2O7 and Dy2Ti2O7 at high temperatures. We also calculate

the Curie and Van Vleck terms of the DC susceptibility to assess their respective

contribution to the high temperature part of the DC susceptibility. In the third

section we present the experimental DC susceptibility results and give a comment

on the importance of the demagnetization effect in these compounds. Using these

experimental data, we calculate the exchange couplings of Ho2Ti2O7 and Dy2Ti2O7

and show that the derived exchange couplings are consistent with those previously

obtained via analysis of specific heat data [38]. We conclude that using the wrong

regime for high temperatures and the raw DC susceptibility data are the source of

the large exchange coupling determined for Ho2Ti2O7 [41], moreover, our results

for exchange coupling of Ho2Ti2O7 confirms the spin ice nature of Ho2Ti2O7.

A.1 Effective Hamiltonian of Spin Ice Systems

To determine quantitatively the effects of crystal field excited states on the low

energy physics of Ho2Ti2O7 and Dy2Ti2O7, we calculate the effective Hamiltonian of

these systems (Chapter 3). It has been well established that the total Hamiltonian

in these compounds is the sum of the crystal field Hamiltonian plus dipole-dipole

and exchange Hamiltonians. Hence the total Hamiltonian of these systems reads,

H = Hcf + J
∑
〈ij〉

Ji · Jj

+ Dr3
nn

∑
i>j

Ji · Jj

|rij|3
− 3(Ji · rij)(Jj · rij)

|rij|5
, (A.1)

where Hcf is the crystal field Hamiltonian of Dy2Ti2O7 and Ho2Ti2O7, J is the

exchange coupling, D is the dipolar coupling at first nearest neighbor, Ji is the

total angular momentum operator equal to 8 and 15
2

respectively for Ho2Ti2O7 and

Dy2Ti2O7, and rij is the position vector between ions i and j. We showed in Chapter

2 that the ground state of Ho2Ti2O7 is a doublet with zero matrix elements between

these two states and the first excited state is separated by a large gap of about 250
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K from the ground state. In contrast to Ho2Ti2O7, Dy2Ti2O7 has a very small Jz

matrix elements between the two states that form the ground state doublet and

the first excited state is separated by a 380 K gap from the ground state. However,

this off-diagonal Jz matrix element is 100 times less than the diagonal J z matrix

elements. Hence, for our purpose, we assume that in both of these compounds the

off-diagonal angular momentum matrix elements within the ground state doublet

are zero. We consider the two states of the ground state doublet as the model space

and we apply the effective Hamiltonian method (Section 3.3) to derive an effective

Hamiltonian in this manifold of states. The effective Hamiltonian for a degenerate

ground state to second order is,

Heff = PV P + PV RV P , (A.2a)

P =
∑
{k}

|Φ0,{k}〉〈Φ0,{k}| , (A.2b)

R =
∑

{n},{m}

|Φ{n},{m}〉〈Φ{n},{m}|
(E0 − En)

, (A.2c)

where V is the dipole-dipole and exchange interactions, sum on {k} is over all the

many-body crystal field ground states and sum on {n} and {m} is over all the

many-body crystal field excited states and |Φ0,{k}〉, |Φn,{m}〉, E0 and En are defined

as follow,

|Φ0,{k}〉 =
N∏

i=1

|φ(ki)
i,0 〉 , (A.3a)

|Φ{n},{m}〉 =

N∏
i=1;

P

ni 6=0

|φ(mi)
i,ni

〉 , (A.3b)

En =
∑

i

Eni

i (A.3c)

where |φki

i,0〉 is the kth
i state of the crystal field ground state for site i, |φ(ki)

i,ni
〉 is the

kth
i state of the ni level of crystal field state for site i, Eni

i is the energy of the nth
i

crystal field excited states. Multiplication is over all magnetic ions in the crystal

and
∑
ni 6= 0 imposes that at least one of the ions in the system is in the excited

crystal field state. Because of the zero matrix elements between two states of the
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crystal field ground state doublet, these two states can be mapped out to the two

states of an Ising spin with local 〈111〉 axis as the Ising axis. Hence, to the first

order, the effective Hamiltonian of Ho2Ti2O7 and Dy2Ti2O7 reads,

Heff = −J
∑
〈ij〉

Szi

i · Szj

j

+ Dr3
nn

∑
i>j

Szi

i · Szj

j

|rij|3
−

3(Szi

i · rij)(S
zj

j · rij)

|rij|5
, (A.4)

where J = J |〈Jz〉|2 (〈Jz〉 is the diagonal Jz matrix element in the ground state dou-

blet) is the effective exchange coupling, D = D|〈J z〉|2 is the effective dipole-dipole

coupling and Szi

i is the Ising spin at site i with z direction towards the local 〈111〉
direction. In second order perturbation theory, the change in physical quantities

varies as one over the gap between the crystal field ground state and first excited

state ( 1
E(0)−E(n) ) and because this gap is very large for Ho2Ti2O7 and Dy2Ti2O7, this

term is much smaller than the first order perturbation term. Numerical calculations

confirm this prediction and the effective Hamiltonian of Ho2Ti2O7 and Dy2Ti2O7

is indeed described by Hamiltonian (A.4).

In Hamiltonian (A.4) the exchange J and the dipole-dipole D couplings are

yet to be determined. In what follows we express the dipole-dipole coupling in

terms of Dnn = 5D
3

which is the strength of the dipole-dipole interaction between

local 〈111〉 Ising spin at nearest neighbor (Section 1.2). We start by calculating

the dipole-dipole coupling. The dipole-dipole coupling at the first nearest neighbor

reads,

Dnn =
5

3
(
µ0

4π
)
(gµB|〈Jz〉|)2

r3
nn

, (A.5)

where µ0 is the vacuum permeability equal to 4π×10−7 H/m, g is the Landé factor

equal to 5
4

for Ho2Ti2O7 and 4
3

for Dy2Ti2O7, rnn =
√

2a
4

is the nearest-neighbor

distance between magnetic ions (a is size of conventional cubic unit cell) respectively

equal to 3.579 Å [36] , and 3.573 Å [68], for Dy2Ti2O7 and Ho2Ti2O7, and |〈Jz〉| is

the diagonal matrix element of J z in the ground state equal to 7.4043 and 7.7604

(these values obtained using the crystal field parameters of Ho2Ti2O7 in Ref. [35])

for Dy2Ti2O7 and Ho2Ti2O7, respectively. By substituting the proper values of each
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quantity in Eq. (A.5) we obtain Dnn=2.142 K and Dnn= 2.207 K, respectively, for

Ho2Ti2O7 and Dy2Ti2O7. The observed difference between these values of Dnn and

the reported values in other references [26,32,41] is related to the different values of

rnn and 〈Jz〉 used in this calculation. All other references [26,32,41] used rnn=3.54

Å for both Ho2Ti2O7 and Dy2Ti2O7 and 〈Jz〉 equal to 8 and 15
2

respectively for

Ho2Ti2O7 and Dy2Ti2O7, which were the first reported values for these quantities

to derive the Dnn dipole-dipole couplings. However, in this calculation we used the

most accurate and newly reported values of rnn and 〈Jz〉 and we derived a slightly

different, and likely more accurate, value for Dnn.

While Dnn can be determined by the intrinsic properties of a single magnetic

ion, J depends on the overlap of f orbitals and other quantum effects and hence is

very difficult to calculate it by ab-initio methods. Therefore, semi-empirical meth-

ods have been developed to derive the exchange interaction from the experimental

results. In this work we use the experimental high temperature DC susceptibility

results of Ho2Ti2O7 and Dy2Ti2O7 to determine the exchange couplings for these

two compounds.

A.2 High Temperature Expansion of DC Suscep-

tibility for Spin Ice Systems

In the previous section we derived the effective Hamiltonian of Ho2Ti2O7 and

Dy2Ti2O7 with the unknown dipole-dipole and exchange couplings and we deter-

mined the dipole-dipole couplings of these compounds. In this section we calculate

the exchange coupling of Ho2Ti2O7 and Dy2Ti2O7 using the high temperature DC

susceptibility.

It was discussed in the previous section that the effective Hamiltonian of spin ice

systems Ho2Ti2O7 and Dy2Ti2O7 at low temperatures is made of local 〈111〉 Ising

spins. We use this assumption to calculate the high temperature DC susceptibility

of these systems and later, comment on the validity of this effective Hamiltonian
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at high temperatures. The DC susceptibility of a spin ice system reads,

χαγ(T ) =
gs

2µB
2〈Jz〉2

kBT

∑
i>j

〈Sα
i S

γ
j e

(−βHeff )〉
〈e(−βHeff)〉 , (A.6)

where kB is the Boltzmann’s constant, T is the temperature, β= 1
kBT

, Heff is the

Hamiltonian of the system given by Eq. (A.4), Sα
i is the α component of Ising spin

at site i in the global axis and the sum is over all Ising spins in the system. Because

of the cubic symmetry of the pyrochlore lattice, the DC susceptibility is a coefficient

of identity matrix. Based on this fact, the DC susceptibility of these compounds

in the [100], [110], [111] directions and polycrystalline should be equal to the DC

susceptibility in [001] direction. Hence, we calculate the high temperature part of

Eq. (A.6) for the [001] direction, and this expansion, to first order reads,

χ(T ) =
N0(gsµB)2(〈Jz〉)2

3kBT
[1 +

3

kBT
(0.545Dnn + 0.67Jnn)] , (A.7)

where, N0 is the Avogadro number, µB is the Bohr magneton, Dnn is the nearest

neighbor dipole-dipole coupling defined in Eq. (A.5) and Jnn = J
3
. To derive Eq.

(A.7) we chose the direction of four easy axis related to four sublattices in the

global frame as 1√
3
(1, 1, 1), 1√

3
(−1,−1, 1), 1√

3
(1,−1,−1) and 1√

3
(−1, 1,−1). The

first term in the susceptibility is
∑

ij n
z
in

z
j which is non-zero when i is equal to

j. Calculating this sum gives N
3
, where N is the number of magnetic ions in the

system. To calculate the next sum we need to calculate nz
in

z
jn

α
kn

α
l which is non-

zero when k is i and l is j or, l is i and k is j with the condition that i 6= j.

Using the fact that nα
i n

α
j is always −1

3
, independent of the sublattices, this sum

reduces to sum over nz
in

z
j which is −2

3
for a given i. Hence, summing over all

the particles, the coefficient of exchange interaction is 2
9
N or in terms of Jnn,

2
3
N .

To accomplish the sum over the dipole-dipole interaction we use the cut off and

Ewald methods to calculate the dimensionless coefficient − 3
5D
Dαβ

ij n
α
i n

β
j n

z
in

z
j , which

is written down in the unit of Dnn = 5D
3

. In Fig. A.1 we plot this coefficient as a

function of cut-off radius and we observe that this coefficient converges to 0.545.

This is consistent with the coefficient obtained by the Ewald method. Eq. (A.7) is

only valid for high temperatures where, firstly, all the states of Hamiltonian (A.4)

are thermally accessible and χ(T ) is a linear function of 1
T

while secondly, the
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Figure A.1: The coefficient in front of the dipole-dipole coupling in Eq. (A.7) as a

function of 1/R, where R is the cut-off distance in the unit of cubic unit cell.

effective Hamiltonian is valid. The validity of the effective Hamiltonian is based

on the fact that the thermal populations of the crystal field excited states ought

to be negligible and the magnetic moments must behave as Ising spins. Therefore,

we need to find a region of temperatures where both these criteria are valid. From

an experimental point of view, the linear part of the DC susceptibility can be

interpreted as the high temperature regime for the Ising spins. However, we have

to verify that in this region of temperature, the effect of the excited crystal field

states are small. To accomplish this, we calculate the Curie and Van Vleck terms of

the DC susceptibility originating form the excited crystal field states of Ho2Ti2O7

and Dy2Ti2O7. Notice that from now on we use the wording “Curie term” for the

permanent moment contribution from the excited crystal field states. The Curie

and Van Vleck terms of the DC susceptibility are given by [61],

χ
(VanVleck)
iαβ =

Eµ 6=Eν∑
µν

〈ν|Jiα|µ〉〈µ|Jiβ|ν〉
Eµ − Eν

(nν − nµ) , (A.8a)

χ
(Curie)
iαβ =

1

kBT

Eµ=Eν∑
µν,{µ,ν}6=0

〈ν|Jiα|µ〉〈µ|Jiβ|ν〉nν −
1

kBT
〈Jiα〉〈Jiβ〉, (A.8b)

where Eµ is an eigenstate of the crystal field Hamiltonian, Jiα is the α component
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of the total angular momentum of ion i, nµ = e(−βEµ)

Z
is the population of the state

µ at temperature T , β = 1
kBT

. The condition {µ, ν} 6= 0 in the Curie term confirms

that the sum in this term is over the excited states and the sum on µ and ν is over all

the eigenstates of the crystal field Hamiltonian of the system. In this calculation

we used the crystal field parameters of Ho2Ti2O7 given in Ref. [35] to calculate

crystal field Hamiltonian of Ho3+. By rescaling the crystal field parameters [62] of

Ho2Ti2O7 we obtain the crystal field parameters of Dy2Ti2O7. Diagonalizing these

crystal field Hamiltonians we calculate their eigenvalues and eigenstates. We used

these crystal field states to calculate the Curie and the Van Vleck terms of the DC

susceptibility. In Fig. A.2 we show the result of this calculation by plotting χT as a

function of 1
T

for Curie and Van Vleck susceptibilities of Ho2Ti2O7 and Dy2Ti2O7.

The high temperature DC susceptibility in this section can be used to calcu-

late the exchange coupling in the spin ice systems Ho2Ti2O7 and Dy2Ti2O7. To

accomplish this, we determine the slope of the linear part of the experimental DC

susceptibility and, by fitting the theoretical slope to this slope we find the exchange

coupling. To confirm that the effect of crystal field excited states are indeed negli-

gible, we show that in the linear high temperature regime of the DC susceptibility

the Curie and the Van Vleck terms coming from the crystal field excited states

make negligible contribution compared to the experimental DC susceptibility data.

A.3 Exchange Couplings of Ho2Ti2O7 and Dy2Ti2O7

In this section we present the experimental DC susceptibility results of Ho2Ti2O7

and Dy2Ti2O7, in order to determine the exchange couplings for both compounds.

We accomplish this with specifying the proper high temperature regime of the DC

susceptibility, and using the calculated high temperature DC susceptibility results

of the previous section, we derive the exchange couplings of these compounds.

The experimental DC susceptibility results were provided to us by Dr. Ryuji

Higashinaka and Prof. Yoshi Maeno from Kyoto University. In their measurements,

they used two distinct single crystals for each compound and the DC susceptibility

were measured along the high symmetry directions [100], [110] and [111] with an
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Figure A.2: (a) The Van Vleck term and (b) the Curie term of the DC susceptibility

of Ho2Ti2O7 and Dy2Ti2O7 as a function of 1
T
. The displayed Curie term is from

the crystal field excited states (The contribution from the crystal field ground state

is not included).
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applied magnetic field of B=0.01 T. We label the data related to each single crystal

of Ho2Ti2O7 and Dy2Ti2O7 by set 1 and set 2. In Fig. A.3 and Fig A.4 we

demonstrate plots of χT as a function of 1
T
, where here χ is the raw DC susceptibility

data of Ho2Ti2O7 and Dy2Ti2O7 for the two sets of data.
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Figure A.3: Raw DC susceptibility data of Dy2Ti2O7 (a) and Ho2Ti2O7 (b) for a

field of B=0.01 T along the [100], [110] and [111] directions from data set 1. Powder

DC susceptibility data of Ho2Ti2O7 is from Ref. [41].

Two linear regimes are observed in these data sets, one between the range of

T=2 K to T=5 K and the other one between T=15 K to T=35 K. We respec-

tively call these two ranges of temperatures low-temperature linear regime and

high-temperature linear regime. However, because of the following reason we can

not use these results as the real DC susceptibility of Ho2Ti2O7 and Dy2Ti2O7 to
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Figure A.4: Raw DC susceptibility data of Dy2Ti2O7 (a) and Ho2Ti2O7 (b) for a

field of B=0.01 T along the [100], [110] and [111] directions for Dy2Ti2O7 and, [100]

and [110] directions for Ho2Ti2O2 from data set 2.
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calculate the exchange coupling; it turns out that due to the large magnetic mo-

ments of Ho3+ and Dy3+ demagnetization effects in Ho2Ti2O7 and Dy2Ti2O7 are

important [25]. Hence, the experimental DC susceptibility data has to be corrected

for demagnetization effects. In Fig. A.5 and Fig. A.6 we use the demagnetization

corrected results of the DC susceptibility (χ) to plot χT as a function of 1
T

for

Ho2Ti2O7 and Dy2Ti2O7 for the two data sets.
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Figure A.5: Demagnetization corrected DC susceptibility data for Dy2Ti2O7 (a)

and Ho2Ti2O7 (b) along the [100], [110] and [111] directions from data Set 1.

These plots show only one linear regime at high temperatures (between 15 K

to 35 K) with no other linear regime at low temperatures. Hence, it would appear

that the observed linear region at low temperatures in the raw data (Fig. A.3

and Fig. A.4) is an artifact of demagnetization effect. As a result, we conclude
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Figure A.6: Demagnetization corrected DC susceptibility data for Dy2Ti2O7 (a)

and Ho2Ti2O7 (b) along the [100], [110] and [111] directions for Ho2Ti2O7 and,

[100] and [110] directions for Dy2Ti2O7 from data Set 2.
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that the high-temperature linear regime, is in fact the real linear high temperature

regime of spin ice systems Ho2Ti2O7 and Dy2Ti2O7. We use this linear regime to

determine the exchange coupling in Ho2Ti2O7 and Dy2Ti2O7. Comparing the value

of the Curie and Van Vleck terms of the DC susceptibility, arising from the crystal

field excited states (Fig. A.2), with the value of the DC susceptibility in the linear

regime reveals that Curie and Van Vleck terms are negligible compared to the linear

regime of DC susceptibility.

In Fig. A.7 and Fig. A.8, we respectively plot the high-temperature linear part

of the demagnetization-corrected DC susceptibility of Ho2Ti2O7 and Dy2Ti2O7 for

set 1 and set 2 of data and high symmetry directions for fields applied along the

[100], [110] and [111].

Determining the slope of these lines and fitting them to the theoretical slope

N(gµB)2〈Jz〉2 (0.54Dnn + 0.67Jnn), we derive the exchange couplings of Ho2Ti2O7

and Dy2Ti2O7. The exchange couplings for different directions are almost the same

and we take the average of these couplings as the exchange coupling of Ho2Ti2O7

and Dy2Ti2O7. In Table 1 we report the average Curie temperature, the dipole-

dipole couplings and exchange couplings for Ho2Ti2O7 and Dy2Ti2O7 for both data

set 1 and data set 2. The obtained exchange couplings for Ho2Ti2O7 and Dy2Ti2O7

are in agreement, within an acceptable error, with the derived exchange couplings

obtained from fitting the Monte Carlo results for the specific heat to the experi-

mental data [38]. The previously reported exchange coupling of Ho2Ti2O7 in Refer-

ence [41], derived from the DC susceptibility results was Jnn=-1.92 K, which is not

consistent with our results. The sources of error in that work are: first, using the

raw data of the DC susceptibility as opposed to demagnetization-corrected data;

second, choosing the wrong region of high temperature in the experimental data.

Using the raw data of set 1 (Figs. A.3) and the same region of high temperature

as Reference [41] we obtain Jnn = −2.12 K for Ho2Ti2O7 and Jnn = −2.26 K for

Dy2Ti2O7 from data set 1. Using these values of exchange couplings and the phase

diagram for 〈111〉 Ising spins on the pyrochlore lattice [32], one would have wrongly

concluded that both Ho2Ti2O7 and Dy2Ti2O7 should be in the all-in/all-out ordered

phase, which is inconsistent with the experimental results.
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Figure A.7: Linear part of the DC susceptibility (demagnetization corrected) for

Dy2Ti2O7 (a) and Ho2Ti2O7 (b) along the [100], [110] and [111] directions from

data Set 1.

Ho2Ti2O7 Dy2Ti2O7

θC (K) Dnn (K) Jnn (K) θC (K) Dnn (K) Jnn (K)

Set 1 2.5 2.142 -0.50 1.4 2.207 -1.08

Set 2 2.2 2.142 -0.646 1.14 2.207 -1.225

Table A.1: The derived Curie-Weiss temperature (θC) from the experimental results

and the calculated dipole-dipole (Dnn) and exchange (Jnn) couplings of Ho2Ti2O7

and Dy2Ti2O7 .
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Figure A.8: Linear part of the DC susceptibility (demagnetization corrected) for

Dy2Ti2O7 (a) and Ho2Ti2O7 (b) along the [100], [110] and [111] directions for

Ho2Ti2O7 and, [100] and [110] directions for Dy2Ti2O7 from data set 2.
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A.4 Summary

In conclusion, we presented results aimed at determining the exchange coupling

of the spin ice materials Ho2Ti2O7 and Dy2Ti2O7 using the high temperature expan-

sion of the DC susceptibility to second order in 1
T
. Using the Rayleigh-Schrödinger

perturbation theory, we derived an effective Hamiltonian for spin ice systems and

showed that this Hamiltonian is indeed that of local 〈111〉 Ising spins.

We calculated the high temperature DC susceptibility of spin ice systems. In

order to properly identify the effects and contributions from the excited crystal field

states, we derived the Curie and Van Vleck terms of the DC susceptibility arising

from those crystal field excited states. We presented raw and demagnetization-

corrected experimental DC susceptibility data for Ho2Ti2O7 and Dy2Ti2O7 with

two samples for each compound. We showed that the demagnetization effects in

spin ice systems are important and using raw data leads to wrong estimates of Jnn.

By specifying the high temperature regime of the demagnetization corrected DC

susceptibility, we determined the exchange couplings of Ho2Ti2O7 and Dy2Ti2O7.

The obtained exchange couplings for Ho2Ti2O7 and Dy2Ti2O7 are consistent with

the estimated exchange couplings based on fitting the Monte Carlo simulations

to the experimental specific heat [32, 38]. To determine the incorrectness of the

result of Reference [41], we used raw DC susceptibility data (Set 1) and the similar

region of temperature used in Reference [41] to derive dramatically wrong exchange

couplings for both spin ice systems Ho2Ti2O7 and in particular, Dy2Ti2O7, which

is in dramatic contrast with the value found in Ref. [34].



Appendix B

Stevens Operator of Tb2Ti2O2

Stevens operators in terms of the total angular momentum J operator. J is the

magnitude of J and J+ and J− are, respectively, the raising and lowering operators

[58, 59].

O0
2 = 3J2

z − J(J + 1) (B.1a)

O2
2 =

1

2
(J2

+ + J2
−) (B.1b)

O0
4 = 35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1) + 3J2(J + 1) (B.1c)

O3
4 =

1

4
[Jz(J

3
+ + J3

−) + (J3
+ + J3

−)Jz] (B.1d)

O0
6 = 231Jz − 315J(J + 1)J4

z + 735J4
z + 105J2(J + 1)2Jz

− 525J(J + 1)J2
z + 294J2

z − 5J3(J + 1)3 + 40J2(J + 1)2

− 60J(J + 1) (B.1e)

O3
6 =

1

4
(11J3

z − 3J(J + 1)Jz − 59Jz)(J
3
+ + J3

−)

+ (J3
+ + J3

−)(11J3
z − 3J(J + 1)Jz − 59Jz) (B.1f)

O6
6 =

1

2
(J6

+ + J6
−) (B.1g)
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Appendix C

Local Basis Vector

In this appendix we introduce the local frame of basis for the four sublattices

we use in our calculation in the global axis of frame. The transformation matrix

from the global frame to the local frame in terms of vecrors v is: u = [v ′xv′yv′z],

where vz(a)′ is the transpose of vector vz(a).

vx(1) = 1√
6
(1̄, 1̄, 2), vy(1) = 1√

2
(1, 1̄, 0), vz(1) = 1√

3
(1, 1, 1).

vx(2) = 1√
6
(1, 1, 2), vy(2) = 1√

2
(1̄, 1, 0), vz(2) = 1√

3
(1̄, 1̄, 1).

vx(3) = 1√
6
(1̄, 1, 2̄), vy(3) = 1√

2
(1, 1, 0), vz(3) = 1√

3
(1, 1̄, 1̄).

vx(4) = 1√
6
(1, 1̄, 2̄), vy(4) = 1√

2
(1̄, 1̄, 0), vz(4) = 1√

3
(1̄, 1, 1̄).
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Andre, M. Rams, K. Krolas, C. Ritter, P. C. M. Gubbens, C. T. Kaiser, P.

J. C. King and C. Baines, “First-order transition in the spin dynamics of

geometrically frustrated Yb2Ti2O7”, Phys. Rev. Lett. 88, 077204 (2002).



BIBLIOGRAPHY 164

[32] B. C. den Hertog and M. J. P. Gingras, “Dipolar interactions and origin of

spin ice in Ising pyrochlore magnets” , Phys. Rev. Lett. 84, 3430 (2000).

[33] M. J. P. Gingras, B. C. den Hertog, M. Faucher, J. S. Gardner, L. J. Chang,

B. D. Gaulin, N. P. Raju, and J. E. Greedan, “Magnetic and thermodynamic

properties of the collective paramagnet-spin liquid pyrochlore Tb2Ti2O7”, Phys.

Rev. B, 62, 6496 (2000).

[34] A. P. Ramirez, A. Hayashi, and R. J. Cava, R. Siddharthan and B. S. Shastry,

“Zero-point entropy in spin ice”, Nature 399, 333 (1999).

[35] S. Rosenkranz, A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and

B.S. Shastry, “Crystal-field interaction in the pyrochlore magnet Ho2Ti2O7”,

J. Appl. Phys. 87, 5914 (2000).

[36] H. Fukazawa, R. G. Melko, R. Higashinaka, Y. Maeno, and M. J. P. Gingras,

“Magnetic anisotropy of the spin ice compound Dy2Ti2O7”, Phys. Rev. B 65,

054410 (2002).

[37] Y. Yasui, M. Kanada, M. Ito, H. Harashina, M. Sato, H. Okumura, K. Kakurai,

H. Kadowaki, “Static correlation and dynamical properties of Tb3+-moments

in Tb2Ti2O7 −neutron scattering study”, J. Phys. Soc. Jpn. 71, 599 (2002).

[38] S. T. Bramwell, M. J. Harris, B. C. den Hertog, M. J. P. Gingras, J. S. Gardner,

D. F. McMorrow, A. R. Wildes, A. L. Cornelius, J. D. M. Champion, R. G.

Melko, and T. Fennell, “Spin correlations in Ho2Ti2O7: A dipolar spin ice

system”, Phys. Rev. Lett. 87, 047205 (2001).

[39] R. G. Melko, B. C. den Hertog, and M. J. P. Gingras, “Long range order at

low temperature in dipolar spin ice”, Phys. Rev. Lett. 87, 067203 (2001).

[40] B. S. Shastry, “Spin ice and other frustrated magnets on the pyrochlore lattice”,

Physica B. 329, 1024 (2003).

[41] R. R. Siddharthan, B. S. Shastry, A. P. Ramirez, A. Hayashi, R. J. Cava,

and S. Rosenkranz, “Ising pyrochlore magnets: low-temperature properties, ice

rules, and beyond”, Phys. Rev. Lett. 83, 1854 (1999).



BIBLIOGRAPHY 165

[42] A. Keren, J. S. Gardner, G. Ehlers, A. Fukaya, E. Segal, and Y. J. Ue-

mura, “Dynamic properties of a diluted pyrochlore cooperative paramagnet

(TbpY1−p)2O2Ti2O7”, Phys. Rev. Lett. 92, 107204 (2004).

[43] J. S. Gardner, B. D. Gaulin, A. J. Berlinsky, P. Waldron, S. R. Dunsiger,

N. P. Raju, and J. E. Greedan, “Neutron scattering studies of the cooperative

paramagnet pyrochlore Tb2Ti2O7”, Phys. Rev. B 64, 224416 (2001).

[44] S. R. Dunsiger, R. F. Kiefl, K. H. Chow, B. D. Gaulin, M. J. P. Gingras, J. E.

Greedan, A. Keren, K. Kojima, G. M. Luke, W. A. MacFarlane, N. P. Raju, J.

E. Sonier, Y. J. Uemura and W. D. Wu, “Muon spin relaxation investigation of

the spin dynamics of geometrically frustrated antiferromagnets Y2Mo2O7 and

Tb2Mo2O7”, Phys. Rev. B 54, 9019 (1996).

[45] N. Hamaguchi, T. Matsushita, N. Wada, Y. Yasui, and M. Sato, “Low-

temperature phases of the pyrochlore compound Tb2Ti2O7”, Phys. Rev. B 69,

132413 (2004).

[46] G. Luo, S. T. Hess, and L. R. Corruccini, “ Low temperature magnetic prop-

erties of the geometrically frustrated pyrochlores Tb2Ti2O7, Gd2Ti2O7, and

Gd2Sn2O7” Physics Letters A 291, 306(2001).

[47] I. Mirebeau, I. N. Goncharenko, P. Cadavez-Peres, S. T. Bramwell, M. J. P.

Gingras, and J. S. Gardner, “Pressure-induced crystallization of a spin liquid”,

Nature 420, 54 (2002).

[48] I. Mirebeau, I. N. Goncharenko, G. Dhalenne, and A. Revcolevschi, “ Pressure

and field induced magnetic order in the spin liquid Tb2Ti2O7 as studied by

single crystal neutron diffraction”, Phys. Rev. Lett. 93, 187204 (2004).

[49] I. Mirebeau, A. Apetrei, J. Rodriuez-Carvajal, P. Bonville, A. Forget, D. Col-

son, V. Glazkov, J. P. Sanchez, O. Isnard, and E. Suard, “Ordered spin ice

state and magnetic fluctuations in Tb2Sn2O7”, Phys. Rev. Lett. 94, 246402

(2005).
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