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Abstract

A mathematical model of the transverse vibration of a plate, with collocated piezo-
electric actuators/sensors, to be used for free and forced vibration control purposes
is presented. For the analysis of plate flexural vibration, the “Finite Element”,
and “Galerkin” procedures are described. Hamilton’s Principle is used to derive
the equations of the motion of a Mindlin plate model, which takes into account
the transverse shear effects. The coupled differential equations of the motion are
solved using the finite element method. Test results show that the application of
this theory along with an appropriate choice of basis functions allows the analysis
of a wide range of thicknesses. The formulated approach avoids shear locking and
provides excellent accuracy and convergence characteristics. The performance of
the plate with/without attached layers of piezoelectric material is compared using
a finite element model. The comparison between the Galerkin formulation and the
finite element method shows the accuracy of each method within the desired plate
thickness range. The eigenfunctions of a Poisson-Kirchoff plate model have been
used as basis functions in the Galerkin formulation. The state transition matrix of

a Poisson-Kirchoff plate model is computed.

To ensure the highest energy efficiency, controllability, and observability of the
system a process of optimization is described. Separation of variables, a double
Fourier expansion, coupled with Navier’s method are used in the Poisson-Kirchoff

plate model to find the optimal location of the sensors /actuators.

A quadratic control objective is defined as a measure of system performance.
The control objective is composed of those error variables that are important to the
design and they are used to approximate the high order plant system by a lower
order model. To guarantee that the error in the reduced model is smaller than the

iv



desired error, a minimum required number of modes in the plate model is specified.

The application of the formulated techniques is illustrated via numerical example.

The energy based control strategy “Linear Coupling Control (LCC)” is used
for controlling free and forced vibrations in a simply supported plate. The control
strategy is implemented by coupling a virtual second order linear system (con-
troller) to an oscillatory plant and creating an energy exchange between the two
systems. The energy transfer phenomenon between two oscillators is maximized
by coupling the appropriate states of the plant and the controller. Once energy is
transfered from the plant to the controller it is dissipated via linear damping. To
provide a basis for comparing the results of the proposed control algorithm and the
conventional control methods, linear quadratic optimal control was implemented
as a control algorithm for the plate. The experimental verification of these ap-
proaches to vibration suppression is presented for the cases where it is undesirable
to add actuators with significant mass and stiffness to the structure. The virtual
controller is implemented on a personal computer. The experimental results have
shown the controller’s potential to eliminate free and forced vibration. In free vibra-
tion the controller reduces the oscillation time to one fourth. For forced vibration,
the energy coupling control law provides an over 80% reduction of the steady state

amplitude.
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Chapter 1

Introduction

Sandwich laminates are used in the primary structure of aircraft because of their
high specific strength and high specific stiffness. These properties, along with their
excellent fatigue strength, ease of formability, wide range of operating temperatures,
low coefficient of thermal expansion, high damping, and their general tailorability
result in materials with almost unlimited potential. Piezoelectric materials are

excellent candidates as sensors and actuators for laminated materials.

The piezoelectric effect was discovered experimentally by the Curie brothers.
Piezo is derived from a Greek word meaning to press, and piezoelectricity is an
electro mechanical phenomenon which couples mechanical deformation with an elec-
trical field [1]. Since the discovery of piezoelectric materials, significant progress
has been made in understanding their material properties, formulation, mechanical
properties and their usage as actuators and sensors. Recently piezoelectric and
other ceramic actuators have been used for vibration suppression, mode shape con-
trol and pointing accuracy. These applications mainly use an active control method

to increase the damping or alter the static and dynamic shape of the structure.
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Piezoelectric materials generate a charge in response to a mechanical deformation
or, conversely, provide mechanical strain when an electric field is applied across
them. As a result, piezoelectric elements are very effective sensors and actuators
in the vibration control applications. Because of their small size, a large number
of piezoelectric elements may be distributed along a structure without significantly
increasing the mass or modifying its passive dynamic properties. Once charged
however, piezoelectric actuators allow direct control of the local deformation of a
structure without applying rigid body torques and forces, and can be electrically

tuned to maximize the damping in the structure.

1.1 Research objectives

In proceeding towards the goal of establishing an active vibration absorber for a
simply supported plate all the important issues associated with the analysis and
the experiments will be addressed. Based on the deficiencies identified during the
literature review the following research objectives are proposed to bring together

all aspects associated with plate vibration control.

a) Mathematical formulations of a plate, with a thin piezoelectric element bonded
to the surface, based on Mindlin plate theory and Kirchoff plate theory. The phi-
losophy of this work revolves around the development of a mathematical model of
the transverse vibration of a plate to be used for free and forced vibration control
purposes. For the analysis of plate flexural vibration, the “Finite Element” and
“Galerkin® procedures are described. In numerical simulation the Mindlin plate
theory, which takes into account the effects ignored in the classical plate, has been
used to study the plate vibration. The eigenfunctions of a Poisson-Kirchoff plate
have been used as basis functions in a Galerkin formulation. The advantages and
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disadvantages of each method of modelling, “analytical” and “numerical”, have
been high lighted.

b) Optimization of the placement of the piezoelectric sensors and actuators. The
ultimate goal of this research is to determine the optimal location of piezoelectric

sensors and actuators to minimize the number of employed piezoelectrics.

c) Introduction of a vector of error variables in the measure of performance. The
control objective is composed of those error variables that are important to the
design and they are used to approximate the high order plant system by a lower
order model. The number of modes required in the plate model to guarantee that

the error in the objective function is smaller than a specified error is derived.

d) Establishment of a control strategy based on the use of piezoelectric actuators. A
modular control law based on linear coupling control theory is established, includ-
ing developing relations to quantify the characteristics of the controlled system,
ascertaining the conditions for which the controlled systems are optimal, stable,
and establishing the energy removal mechanisms to achieve a desired suppression
goal. A linear quadratic optimal control is implemented to provide a basis for com-
paring the results of the proposed control algorithm and the conventional control
methods. To investigate the performance of the control method, a laminated sim-

ply supported plate and the controller are numerically simulated.

e) Conduct of an Ezperimental Investigation. Experimental observations have been
produced for determining the nature of the actual system, illustration of the effec-

tiveness and performance of the proposed techniques. The experimental verification
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of these approaches to vibration suppression is presented for a simply supported
plate with attached piezoelectric actuators, where the effects of mass and stiffness

of the actuators are not significant in compare to the structure itself.

f) A comparison between theoretical and ezperimental results. A comparison be-
tween theoretical and experimental has been performed to evaluate the accuracy
of the mathematical model. As well, an evaluation of a conventional controller and

the proposed controller has been investigated.

1.2 Layout of the Thesis

This thesis presents the development of the theoretical and experimental application
of a linear coupled controller for a simply supported plate. After introducing the
scope of the thesis in chapter 1, chapter 2 through 4 deal with specific theoretical
aspects of the problem such as modelling, analysis, control system, and numerical
simulation of the system. The subsequent chapter illustrates the laboratory work
involved in realizing a functional controller. It should be noted that the general
review of related literature, categorized into four groups, is given at the beginning

of each chapter.

Chapter 2 describes the development of a mathematical model which is used
for the numerical simulation of the Mindlin plate. Lagrangian dynamics is used
to derive the equation of motion. In the last section of this chapter, a comparison
between classical theory and this first-order theory shows the significance of the
formulation in the range of interest. It is also shown that a lower order system

formulation will be sufficient in the vicinity of our research requirements.

Chapter 3 presents an analytical method of modelling the system. In the for-
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mulation, the Galerkin method is used to analyze the structure with attached dis-
tributed actuators. Optimal locations of the actuators/semsors are determined,
followed by describing the beat phenomena that will be used for control purposes
in the next chapter. This chapter will close by defining a measure of the system
performance to approximate the plant system by a lower order system. It also

shows the percent error in the reduced model.

Chapter 4 discusses two control strategies, namely quadratic optimal control
and linear coupling control. In addition, the associated tasks of quantifying closed
loop response characteristics and ascertaining closed loop stability are also detailed.
The chapter ends with a numerical example and a comparision between two control

methods.

Chapter 5 deals with the experimental verification of the theoretical and nu-
merical results. Experimental observations have been rendered for system iden-
tification, model verification and ultimately controller performance analysis. The
components of the experimental plant are described and illustrated. Two control
strategies have been tested under free and forced vibrations. Experimental results

are then presented and discussed.

Chapter 6 is a summary of the work. It presents the highlights of the work, with
conclusions drawn from this research endeavor, and recommendations for further

work on the subject.



Chapter 2

Finite Element Model

A finite element model of a plate with collocated piezoelectric actuators/sensors to
be used for free and forced vibration control purposes is presented. The performance
of the plate with attached layers of piezoelectric material is evaluated by a finite
element model based on the Mindlin plate theory. Hamilton’s Principle is used to

derive the equations of motion.

2.1 Introduction

The present chapter focuses on the mathematical model of plate vibration with
multiple layers of piezoelectric actuators. It addresses: (a) an analytical method of
modelling the system, and (b) a numerical method of the modelling the system. A
valuable reference for the analysis and design of composite structures is the broad
literature review of recent developments by Kapania and Raciti [2]. This work
presents a large variety of research and developments in studying shear effects,
buckling, post buckling of geometrically imperfect plates, local buckling and post

6
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buckling analysis of thin walled stiffeners and delamination buckling and growth in
laminated plates. These are added to recently developed analytical (closed form,
Galerkin, Rayleigh-Ritz) and numerical methods for various geometric shapes and

edge conditions.

The review of the literature on the finite element modelling of the plate shows
that the previous analyses of laminated composite plates are based on either three
dimensional elasticity theory or lamination theory. Three dimensional elasticity
theory treats each layer as an elastic continum with distict material properties. This
approach become intractable as the number of layers becomes large. In lamination
theories it is assumed that the laminate is in a state of plane stress, the individual
laminae are elastic, and there is perfect bonding between layers. Thus lamination
theories are equivalent to the single layer theories. The classical lamination theory,
which is an extension of the classical plate theory, ignores the transverse stress
components. This theory is adequate for many engineering problems (3]

The origin of displacement based theories is attributed to Basset [4]. He began
his analysis with the assumption that the displacement components in a shell can
be expanded in a power series of the thickness coordinate. The first stress based
shear deformation plate theory was developed by Mindlin [5]. The differential equa-
tions and the boundary conditions of the theory were obtained using Castigiliano’s
theorm of least work. The shear deformation theory based on the displacement
field is often referred to as Mindlin’s plate theory or the first-order shear deforma-
tion theory. Mindlin 5] presented a complete theory based on the displacement
field taken from Hencky [6]. The literature review points out that the basic idea
came from Basset [4], Hildebrand (7], and Reissner [8]. Hildebrand (7] and Hencky
[6] presented a displacement based shear deformation theory for shells that can be
specialized to plates.
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The development of a mathematical formulation for laminated plates has been
investigated by many researchers. The list includes the works of Reddy and Chao
(9], Lajczok [10], and Phan [11]. Additional work on laminated plates using a high-
order theory was done by Bhimaraddi and Stephens [12], Reissner (8] who developed
a twelfth order theory for transversely isotropic plates, and by Krishna Murty and
Vellaichamy [13] who examined the suitability of higher order deformation theory

based on cubic in-plane displacements and parabolic normal displacements.

Reddy [14] reviewed the literature on finite element modelling of laminated
composite plates, and presented a historical background of the development of
shear deformation plate theories. The classical Kirchhoff plate theory, which ne-
glects transverse shear deformations, were extensively used in the analysis of thin
isotropic plates. This theory can lead to considerable errors when analyzing lami-
nated plates, since it.underpredicts deflections and overpredicts natural frequencies.
In the literature, two categories for shear deformation displacement based plate the-
ories can be identified; that is, the first-order and higher-order theories. The first
order theory is the well known Reissner-Mindlin theory where the general differ-
ential equations are derived by using the principle of minimum potential energy.
This theory provides good results for the global response of the plate; that is, for
deflection, natural frequencies, and buckling loads. However, a more sophisticated
theory would be required for studying the through the thickness stress response
in the regions of discontinuities such as boundaries. To account for this three di-
mensional distribution of stresses, which are neglected in the classical lamination
theory, three dime;xsional theories in which each layer is treated as a homogeneous
anisotropic material have been developed [15] [16]. Although these theories lead to
more accurate results, their storage requirement due to the large number of vari-

ables and computer cost make them impractical. Later, Liaw and Little [17] solved
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bending problems of multilayered sandwich plates based on the theory developed
Reissner. Azar [18] extended Liaw and Little’s results to the same problems, but
with orthotropic facing.

The general finite element formulations for piezoelectric sensors and actuators
are proposed by Chen [19], Tzou [20], Lammering [21], Lee [22], and others. Chen et
al [23] employed the virtual work principle to form the general sensing and actuating
finite element formulations. The formulations are derived from first-order shear
plate theory which can be employed for very thin to moderately thick structures.
Tzou [20] developed the theory based on a generic continuum shell element coupled
with a distributed piezoelectric layer serving as a distributed sensor and the other
piezoelectric layer serving as a distributed actuators. Based on the derived theory,
it is concluded that a distributed sensor is capable of sensing all shell vibration
modes and the distributed actuator is capable of controlling all the shell modes.
Lammering [21] focuses on the finite element analysis of shell structures with thin
piezoelectric layers bonded to the surfaces. The finite element formulation is based
on the shear elastic shell theory of the Reissner Mindlin type. To establish stability
in vibration control, the second or direct method of Lyapunov is used. The time

integration is computed by means of the Newmark algorithm.

Lee [24] developed a finite element analysis of composite sandwich plates. The
purpose of this work was to include the transverse normal deformation, in addition
to the transverse shear stresses. In this study the face plates of composite sandwich
structure are modelled based on Mindlin’s plate theory. The vibrational analysis
shows that all the natural frequencies calculated in this method are lower than
those methods which consider the core transmission only for the transverse shear
forces. Thus the obtained frequencies are more conservative than those found by

other methods.
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In the following, after a brief description of the piezoelectric phenomena, the
mathematical model of the flexible structure based on the Mindlin theory is de-
veloped. As a method of investigation the finite element method is employed to
evaluate the performance of the Mindlin plate equation.

2.2 Theory

2.2.1 Piezoelectric Phenomena

Piezoelectricity is a phenomenon whereby mechanical strain produces an electrical
response in the material. This is also known as the direct effect and it can be used for
sensing purposes. The converse piezoelectric effect is the mechanical response to an
electrical excitation which is used for piezoelectric actuation. In the linear theory of
piezoelectricity both electrical and mechanical forcing functions affect the electro-
mechanical behavior of the materials. The forcing terms arise from the applied
excitation, boundary constraints, or the combination of both. The piezoelectric
characteristics can be approximately modelled by assuming a linear relationship
among different physical variables [1]. This set of linearly coupled electro-elastic

constitutive relations can be written as [25],
{e} = [s"{o} + [DI"{£}
{D} = [DH{e} + [€]7{€}
The stress vector {0} and the electric field vector {£} are the independent vari-
ables while the strain vector {€} and the electric displacement vector {D} are the

2.1)

dependent variables. According to linear theory of piezoelectricity, the dependent
variables are expressed as a linear combination of independent variables where the

permittivity [¢”], the piezoelectric coefficient [D}, and the compliance [s¥] matrices
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are assumed as constant coefficients. The superscript of a coefficient corresponds
to an independent variable, and indicates that the value of the coefficient is deter-
mined at the operating point where that independent variable is set to zero. The

superscript T indicates transpose operation.

2.2.2 Mindlin Plate-Bending theory

The classical Poisson-Kirchoff theory of plates requires C*! continuity in a finite
element formulation, as does the classical Euler-Bernoulli beam theory. Following
the development of the Kirchoff plate equations one finds that the order of gov-
erning equations derived by neglecting transverse shearing deformations permits
only two of the three obvious force conditions to be enforced at a free edge [26].
For thin plates, this shortcoming appears to be largely academic and the elemen-
tary plate theory is adequate. However, as a plate becomes relatively thick, the
transverse shearing effects become more important and cannot be ignored. The
Reissner-Mindlin plate theory [27] includes these effects and requires C° finite el-
ement interpolation ﬁmctions which are easily constructed. For these reasons we
turn away from Poisson-Kirchoff type of elements to elements based upon upon
theories which accommodate transverse shear strains (Reissner and Mindlin theo-
ries [27]) and which require only C° continuity in the finite element formulations.
Although the inclusion of transverse shearing deformations complicates the prob-
lem considerably for a direct formulation, incorporation of these effects is relatively

easy in an energy-based approach.
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2.2.3 Main Assumptions

In Mindlin plate theory it is assumed that a plane which is straight and normal to
the mid-surface before loading remains plane but not necessarily normal to the mid-
surface after loading. Thus, transverse shear deformation is allowed. The motion
of a point on the mid-surface is dependent on rotations of the normal to the mid
surface of the undeformed plate (4. and 6,). Thus, the displacement field can be
assumed to be,

u(z,y,2z) = —20:(z,y, z)

v(z,y,2) = —28y(2,9, 2) (2-2)

w(z,y,2) = w(z,y)
and the strain components {€} = {€zz €y Y=y Tus Vs=}" are given by

Yoy = —2(02y + by.2)

€zxz = —26,
* Tyz = Wy — 0y (23)

&y = —20yy

Yoz =Wz — 02
where, for example, (-) - is the partial derivative with respect to z.

We will use Hamilton’s Principle to derive the equations of motion for the plate

which requires us to form the Lagrangian
L=T-U (2.4)

where T is the kinetic energy, and U is the total potential energy.

2.2.4 Strain Energy

The general stress-strain relationship for the material for an entire cross section can

be written as:

{0} = [E]({e} - {A}) (2.5)
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——t f—-U=—Z8a,

Figure 2.1: Mindlin Plate element after loading.

Where o, £, A and E are stress, total strain, actuation strain and the constitutive
matrix, respectively. The actuation strain is nonzero only for that part of the cross
section which contains a piezoelectric material actuator. Consider a homogeneous,

linearly elastic plate; then the total strain energy in such an element is given by
1 T
=3 /‘,({6} — {A})[E]({e} - {A})aV (2.6)
or
U=U,4+U+ Us (27)

Integration of the first term with respect to z will give:

U= & [ [ ey (Bl epdzda = 5 [ () (Dl R}dA (2.8)

("'+‘-)
where ¢, and ¢, present plate thickness and piezoelectric thickness respectively. The

vector

{x}= {6:2 0yy b2y + by wy — by we— ez}T
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is the curvature, a superscript T denotes transpose and D is a constant coeflicient

matrix, and is defined according to

Dy Dy 0 0 0
Dy Dy 0 O 0
0
0

Dl=| 0 0 Dy 0 (2.9)
0 0 0 D
| 0 0 0 0 D
where
t? [ E‘ Ea 2Eﬂ tl S
Du=Dn = 15 1-13 1-ug] T30 —uz)(EH")
t3 " E,v, E,v, 2E,v, s
Dia=Dn = 12{1-12 1-12 ]+3(1 )( +ta)
t2r1 E, E, 2E, 3
Dss = EZ_1+u.'1+u,]+3(1+ )( +ta)
E.t, E.t,
'D“ = Ds; = + (210)

21+v,) 14+,
By integrating the second term in (2.7) we obtain

//—+(¢ +ta) }T[E]{A}dZdA=/;{K}T{M}dA (2.11)

where { M} is the moment apphed to the plate by the actuators. The piezoelectric
devices suitable for use as flexural elements are poled in the zz (commonly termed
as 31) mode [1]. If we assume the piezoelectric layers are polarized in the zz mode
and that the piezoelectric layers are long then

(M. | [ Easii+ A
M,, g-fp,f';[l + A
M=¢ 0 =3 0 . (2.12)
0 0
\ 0 / \ 0 J
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If there is no piezoelectric sensor or actuator on the element then E, = t, = 0.
The last term in (2.7) is independent of extension strain and curvature and is

denoted as

=3[ [ﬂ” AV (El{A}dzdA = [ U"(A)dA

—(%+te)

The total strain energy can now be expressed as

v=[ [%{n}T[D]{n} + {=}T{M} + U‘(A)] dA (2.13)

2.2.5 Kinetic Energy

The kinetic energy can be written as:

/. / +(52+ta) (u':’ +z3é:+z3é:)dsz= %/;{d}T[m]{d}dA (2-14)

("'+‘0)

where
{d} = {w 6. 6,}7
is the velocity vector, and the inertia density matrix [m] is given by
Pats + 2pata
ml = | 2{pu(4)® + pal( +t)° = (31} (2.15)
2{p.(4)* + pal(§ +ta) (*)’]}

where p is the volume mass density of the structure.
Combining the kinetic energy (2.14) with the potential strain energy (2.13), the

Lagrangian can be written as:
L= [ Gy mi{d} - {=7(DHR} +2{M}) - U (A)dA  (219)

By direct application of Hamilton’s Principle to (2.16) the equations of motion can
be derived. The result will be a system of coupled partial differential equations. To
solve this complex continuum problem, the finite element method will be used.
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2.3 Finite Element Model

As a preliminary mode of investigation, the finite element method will be employed
to evaluate the performance of the proposed model.

Nodal degrees of freedom consist of lateral deflections w; and rotations 0,; and 6,
of the mid-surface normals. The corresponding deflections and rotations within an
element are now approximated in the usual manner by employing a suitable set of

basis functions ¢;, such that [27]

w N ¢ 0 0 w;
6 ¢=2 |0 & 0[] fx (2.17)
o, | T lo 0 g8y
or
{Uy= 1[4 {d} (2.18)
3 x3IN

where N = Number of nodes per element and the element displacement vector is

{d}e = (w1 621 041 ... Wy Oun Oy |T (2.19)

The choice of basis functions will determine the element performance, and generally
the ¢ may be different for each degree of freedom. For plate elements it has been
shown that very good results are obtainable by choosing basis functions of differ-
ent type [28] [29] and different orders for the normal displacements and rotations
respectively. Results from other studies show that the Lagrangian element formu-
lation is much less susceptible to shear locking than the serendipity formulation.
It is well known that the cubic Lagrange element exhibits no locking, no spurious
eigenvalues and rapid convergence to the thin plate solution. For a general plate
element it has been recommended that the displacement trial functions should be
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at least bi-cubics [30]. Therefore the chosen basis functions are bi-cubics formed

from cubic Lagrange polynomials given as {27].

T T -6 —n;)
o= I 11 @ =)m—n (220)
t=0 5=0
t#m j#n

where m,n=0,...,3 and (;, n; are assumed to be distinct. The basic element is

shown in Figure 2.2 with the ordinal numbering of the nodes as indicated. The

7
A
(0.1)
- —o— o- — o
13 14 15 16
‘9 1.0 1.1 12
1
(-1.0) (0.0) a0 ¢
I : Y !
1 2 3 4
—— —e- —o
(00—1)

Figure 2.2: Basic sixteen-node element; 48 degrees of freedom; (w,6.,6,) at each

node.

interpolated displacement vector {w 6. 8,}7 can be used to state the curvatures x
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in terms of nodal displacements as

{s} =4 6.y +6,. ¢ =[01{U}

18

(2.21)

where {U}, the nodal degrees of freedom vector consists of the lateral deflection

w and the mid-surface normal rotations 8, and 8,. The [] matrix relates the

displacement field and the curvature and is given by

[6] =

Substituting (2.17) into (2.21) gives

where

{s} = [0][pl{d} or

[B] = [8][¢] =

-

0
0

o
~ o Qo o P
© + Pl o

Pl o

L

[] = [Bl{d}

(2.22)

(2.23)

(2.24)
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By using Hamilton’s Principle the inertia matrix (M], and the stiffness matrix [K]

can be obtained. These matrices are given by

k] = [ [BI"DIB]II|4A (2.25)
M] = [ (47 mll¢]l7dA’ (2.26)

where |J| is the determinant of the Jacobian of the transformation. The inertia
density matrix [m], with the presence of piezoelectric elements, is defined according
to 2.16. The integrations in (2.25), and (2.26) are performed numerically by way
of Gauss-Legendre quadrature.

2.4 Tests and Results

Initially, the plate finite element model was tested to determine the accuracy of the
model in which the mass and stiffness of the piezoelectric layers have been ignored.
The maximum deflection of a simply supported and clamped plate under normal
load or centre point load is given in [31]. For the test, the force acting on the
plate is assumed to be a concentrated load acting at the centre of the plate. The
boundary conditions are considered to be simply supported and clamped.

To determine the sensitivity of the plate model to the mass of piezoelectric
layers, the natural frequencies of a simply supported plate are examined. Table
9.9 shows the results of numerical simulation of a simply supported plate. From
these results it is apparent that disregarding the mass and stiffness of the piezo-
electric layers in the plate model does not alter the results by more than 0.2%.
Overall, these two tests suggest that by ignoring the piezoelectric layers in a simply
supported plate model, the results deviate less than 0.3% (from Table 2.2 there
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Table 2.1: Maximum deflection of a plate under a static centre point load (FEM

method)
Boundary conditions | Simply Supported Clamped
FEM with PZT 16.6342mm 7.8762mm
FEM without PZT 16.6731mm 7.8952mm
Discrepancy% 0.2339 0.2412

Plate = 0.5m x 0.5m x 0.815mm

Piezoelectric = 5cm x 2ecm x 0.3mm

pa =2710%2 4, =03 E,=70x10°Pa P =20Pa

pa = 680052 v, =0.3 E, =50 x 10°Pa

Piezoelectric locations = (0.25m, 0.25m), (0.25m, 0.125m), (0.125m, 0.25m)
(0.25m,0.375m),(0.125m,0.375m)

is 0.2339% discrepancy in the maximum deflection and from Table 2.4 there is

0.1970% discrepancy for the 3rd mode.)

In order to show that the present formulation can analyze different ranges of

plate thicknesses and is free of shear locking, a series of tests on square plates under
a variety of loading and boundary conditions were performed. For the test a % ratio
range from thick (£ = 1 x 10') to very thin (¢ = 1 x 107) was considered, where L
and t are the length and thickness of the plate respectively.
For the test a uniform normal load or a centre point load was applied to the simply
supported or clamped plates for the length to thickness ratio range of L e [10%,107).
The model is illustrated in Figure 2.3 where it should be noted that due to sym-
metry only one quarter of the plate is considered.
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Table 2.2: Comparison of the FEM plate modes of vibration under different bound-
ary conditions

Mode (Hz) 1st 2nd 3rd
FEM with PZT 14.4151 | 28.3831 | 43.6587
FEM without PZT | 14.4015 | 28.3482 | 43.5727
Discrepancy% 0.0943 | 0.1230 | 0.1970
Plate = 0.45m x 0.65m x 0.815mm

Piezoelectric = 5em x 2em x 0.3mm
p. =271052 4, =03 E,=170x10°Pa
pa = 680052 1, =0.3 E, =50 x10°Pa

Table 2.3: Maximum deflection of a plate under static loading (analytical method
[32])

Boundary conditions | Centre point load | Uniform normal load

Simply Supported 0.011622 0.00416 %L~
Clamped 0.0056 2 0.00126 %L~

For the test, two types of loading along with two different types of boundary
conditions are considered. Initially the force acting on the plate is assumed to be a
concentrated load acting at the centre of the plate, and later the load was consid-
ered to be a uniformly distributed load. In each trial simply supported boundary

conditions or clamped boundary conditions are considered. In order to solve the
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) L/Z-S -
E=1e7 psi
q=100 psi
or
p=100 Ib
g L/t={1e1 1e7]
N v=0.3
(4]

%x\\\\\\\&\\\E\\\\\X\\\

Y7/

Figure 2.3: Square plate test model, { plate symmetry used; edges may be simply
supported or clamped.

problem, the plate is subdivided to one element per quarter plate and four elements

per quarter plate.

The test results are shown in Figures 2.4, 2.5 where the discrepancy of maximum
deflection for the computed solution and the exact thin plate solution [32] is plotted
against the logarithm of the side length to thickness ratio. The large disagreement
for % = 10 is due to thin plate theory being inapplicable in this range of aspect
ratios while the large errors for % = 107 arise from numerical errors due to the finite
computer word length and the extreme thinness of the model. From this result it
is obvious that the plate element is not susceptible to shear locking and in addition

possesses good convergence characteristics.

To validate the mass matrix, an analytical solution, as outlined in (33], for
modes of vibration was used. The frequencies of vibration of a simply supported
and cantilever plate are given in table 2.4, where n and m are the mode number for

vibration in the a and b directions respectively. D, p, and t are the bending rigidity,
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Figure 2.4: Uniform load on a square plate.

material density, and the plate thickness respectively. i is the mode of vibration
and )\; is a constant value and for {:- =2, \; = 3.41, A\; =21.3, and A3 = 359.7.

A comparison between the analytical results and the finite element approxima-
tion for the first three modes of vibration is shown in Table 2.5. As can be seen
for these two cases the percentage error for the first three modes is less than 0.5
percent.

Figure 2.6 displays the first four modes of a cantilever plate. As can be seen the
first two modes are pure bending modes. In the third mode, a wave travels across
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Figure 2.5: Point load on a square plate.

the width of the plate and it is a torsional mode. The forth mode is again a pure
bending mode.

The frequency response functions of the finite element model has also been
plotted (Figure 2.7) as outlined in [34].
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Table 2.4: Natural frequencies of a plate (analytical method [33])

Boundary conditions Natural Frequencies Constants
Simply Supported | wmn = 72((2)* + (%)’)\/g m,n=1,2,3,..
Cantilever w; = %,* % 1=1,2,3,...

2.5 Conclusion and Summary

The mathematical modelling of a plate with collocated piezoelectric actuators/sensors
is presented. The basic theory of piezoelectricity and Mindlin plate theory is de-
scribed. Then a mathematical model of the flexible structure is developed by con-
sidering the interaction between a typical piezoelectric actuator and the plate. A
finite element formulation of plate elements with thin piezoelectric layers bonded
to the surface as actuators/sensors is formulated in the form of the well known
equations of structural dynamics. In this formulation, the Mindlin plate theory is
utilized. By applying the Mindlin theory along with an appropriate choice of basis
functions, the formulation can be used over a wide range of plate thicknesses, while
avoiding shear locking, but still giving excellent accuracy and convergence charac-
teristics. In order to show that the formulation can analyze different ranges of plate
thicknesses, a series of tests on square plates under a variety of static loading and
boundary conditions were performed. The comparison of the computed solution
with the exact thin plate solution shows good agreement. To validate the mass ma-
trix, the finite element modes of vibration are compared with analytical solutions.
In this comparison, the vibration of a simply supported and a cantilever plate is
considered. The two compared cases confirmed the accuracy of the model. The

frequency response functions obtained using the finite element model for a simply
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Table 2.5: Comparison of plate modes of vibration under different boundary con-

ditions

supported and a clamped plate is plotted.

The numerical examinations of a plate with/without piezoelectric layers indicate
a maximum discrepancy of 0.3% between the two models. Based on this result, we

will ignore the mass and the stiffness of the piezoelectric elements patched to the

Mode (Hz) 1st 2nd 3rd
Simply Supported
Analytical | 14.0542 | 32.1393 | 38.1320
FEM 14.0558 | 32.2125 | 38.2396
%difference | 0.0114 | 0.2277 | 0.2822

@ = 0.4953m b= 0.5715m ¢ = 0.000815m
=2710%¢ v=0.3 E=170x10°Pa

Cantilever
Analytical | 0.6803 | 4.2492 | 11.9098
FEM 0.6809 | 4.2575 | 11.9683
%Error 0.0882 | 0.1953 | 0.4912

a=2m b=1m ¢t =0.000815m

p=2110% =03 E=70x10°Pa

plate, allowing a model of a rectangular plate to be developed based on classical

laminated plate theory.
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Figure 2.6: Mode shape predicted by finite element for cantilever plate (a) Mode
1. (b) Mode 2. (c) Mode 3. (d) Mode 4.
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Figure 2.7: (a) Predicted Frequency Response Function by Finite Element Analysis

for Simply Supported Plate. (b)Predicted Frequency Response Function by Finite
Element Analysis for Clamped Plate.



Chapter 3

Mathematical Model

From earlier research, it can be seen that there are two major approaches to the
analysis of laminated plates, the classical Poisson-Kirchhoff plate theory and the
Reissner-Mindlin plate theory. Following the development of the Kirchoff plate
equations, one finds that the order of the governing equations derived by neglecting
transverse shearing deformations permits only two of the three obvious force condi-
tions to be enforced at a free edge. Since the problem of the plate vibrations deals
mainly with thin plates, this shortcoming appears to be largely academic and the
elementary plate theory is adequate. However in the finite element formulation, the
classical theory requires C! finite element interpolation functions which in compar-
ison with C° finite element interpolation requirement for Mindlin theory is much
more sophisticated. For this reason in the previous chapter we turned away from
Poisson-Kirchoff type of elements to elements based upon theories which require
only C° continuity. However in an analytical method, due to the simplicity of the
classical theory, this theory is used to analyze the plate vibrations.

In this chapter a mathematical model of the transverse vibration of a plate to

29
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be used for free and forced vibration control purposes is presented. For the analysis
of plate flexural vibration, the eigenfunctions of a Poisson-Kirchoff plate have been
used as basis functions in a Galerkin formulation. Separation of variables and a
double Fourier expansion coupled with Navier’s method are used to find the opti-
mal location of the sensors/actuators. A quadratic control objective is defined as a
measure of system performance. The control objective is composed of those error
variables that are important to the design, and they are used to approximate the
high order plant system by a lower order model. To guarantee that the error in the
reduced model is smaller than the desired error, a minimum required number of
modes in the plate model is specified. The application of the formulated techniques

is illustrated via numerical example.

3.1 Introduction

This chapter focuses on the mathematical modelling of a plate with multiple layers
of piezoelectric actuators. It addresses: (a) an analytical method of modeling
the system, (b) optimization of the location of the sensors and actuators, and (c)
approximation of a high-order plant and controller by low order models as part of
the control system design process. A valuable reference for the analysis and design

of composite structures is the broad literature review by Kapania and Raciti (2].

The development of a mathematical formulation for laminated plates has been
investigated by many researchers [24] [35]. One major stream in this development
is the analytical formulation. A significant number of investigations have been con-
ducted on the analytical treatment of linear vibrations of laminated plates. Young
[36] used Ritz’s method to obtain approximate solutions for the frequencies and

modes of vibration of thin elastic plates. Solutions were obtained for three specific
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plate problems, namely, a square plate clamped at all four edges, a square plate
clamped along two adjacent edges and free along the other two edges and a square
plate clamped along one edge and free along the other three edges. Warburton (37]
considered the free vibrations of rectangular plates with all possible boundary con-
ditions obtained by combining free, freely supported, and fixed edges. The Rayleigh
method, assuming waveforms similar to those of beams, was used to derive a simple
approximate frequency expression for all modes of vibration. Rajalingham et al.
[38] used the eigenfunctions of a clamped Poisson-Kirchoff plate as the basis func-
tions in a Rayleigh-Ritz formulation of a clamped rectangular plate. The results
showed that the specific choice of basis functions enhances the effectiveness of the
Rayleigh-Ritz methqd.

An attempt has been made by Baz [39] to select the optimal geometrical pa-
rameters and locations of the piezoelectric elements on a beam under known static
loading conditions. A modified independent modal space control method has been
presented to select the optimal location, control gains and excitation voltage of the
piezoelectric actuators. The method minimizes the vibration amplitudes of beams
to which these actuators are bonded, as well as the input control effort necessary
to suppress the vibrations. The results are applicable only to beams and cannot
be directly used to optimize the locations of the actuators and sensors in plate

applications.

The problem of model reduction has received considerable attention over the
last two decades. The approximation of high-order plant and controller systems
by lower order models is an integral part of the control system design process.
The problem can be characterized by the availability of a high order parameterized
model to which an appropriate low order approximation is sought. The aim is to

provide a low order model which retains the effect of parameter changes. Various
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properties of linear systems such as transfer functions, output correlations and cost
functions, can be considered to preserve the exact properties of interest. Friswell
[40] considered the problems of using high order finite element models to iden-
tify physical structural parameters with the time and frequency domain methods.
Modal approximations, based either on current estimated eigenvectors or a first or-
der eigenvector expansion in the parameter variations, have been recommended as
the most suitable order reduction methods. The main reason for this recommenda-
tion is that modal truncation is the only method that guarantees no change in the
natural frequencies of interest. Hankel norm model reduction with fixed modes is
presented by Hung et al. [41]. This method can be described as a partial eigenvalue
preservation method. The reduced order transfer function is allowed to have a set
of free poles in addition to eigenvalues which are present from the original system
due to physical considerations. This method can be used in conjunction with the
dominant mode concept. It is equally feasible to retain some eigenvalues of par-
ticular interest and let the free poles take care of the dominant characteristics of
the system. The frequency response matching is based on a minimum Hankel-norm
criterion. Hughes et al. [42] discussed a technique for model reduction which simul-
taneously attempts to match a specified number of output covariance derivatives.
The COVariance Equivalent Realizations which match q+1 covariance derivatives
are called “q-COVERS”. In general, -COVERS are not unique and the additional
freedom is so that the -COVERS obtained also match q Markov parameters. The
truncation technique uses a form of the observability matrices of the full order sys-
tem to determine a priori the order required of the reduced order model to match a
specified number of output covariance derivatives and Markov parameters. Yousuff
et al. [43] developed a method for controller reduction, based upon the participa-
tion of the controll& states in the value of a quadratic performance metric. The
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controller states which have the smallest contribution to the performance metric
are truncated to produce the reduced controllers. In this work an error index is also
defined to evaluate the reduced controller compared to the optimal LQG controller

and bounds on this index are derived.

In the following, the Poisson-Kirchoff plate theory will be used to study the
transverse vibrations of a rectangular simply supported plate with attached piezo-

electric actuators.

3.2 Theoretical Formulation

The mathematical model of the classical Poisson-Kirchoff plate is developed. Fol-
lowing the development of the Kirchoff plate equation, the plate eigenfunctions are
used in a Galerkin formulation to study vibrations of rectangular plates.

3.2.1 Classical Plate-Bending Theory

Consistent with the assumptions for an Poisson-Kirchoff theory of plates it is as-
sumed that axial loads and rotatory inertia are negligible, and that plane sections
remain plane and normal (Figure 4.4). The governing differential equation of free
vibration for a Poisson-Kirchoff plate is {32}:

DV*w(z,y,t) + phii(z,y,) =0 0<z<L, 0<y<L, (3.1)

where D = B2 is the bending rigidity, E is the modulus of elasticity, h is the
plate thickness, v is Poisson’s ratio and p is the mass density. The Galerkin method

is one of several possible procedures for solving this equation. Assume that w is
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. z Midsurface

Figure 3.1: Kirchoff plate element after loading.
separable in space and time, such that:

w(z,y,t) = $=(z)¢y(v) 2(t) (3.2)

where ¢. and ¢, are the shape functions depending on z and y respectively and Z
is a time dependent function. This may be substituted into equation (3.1) to yield:

D(¢." by +26."6,"+ 6:6," ) Z +phopetyZ =0 0<z< L 0<y<Ly (33)

where superscripts I and IV are the second and the fourth derivatives of the shape
functions with respect to the subscript. Dividing through by phé.¢,Z, setting a =
p%, and equating the result to the separation constant A yields separate equations

in time and space expressed in symmetrical form by:

sz zn I yIV Z
“(¢¢, +2¢¢,Z: +¢¢,, )=-3

The spatial equation is readily shown to lead to an eigenvalue problem which, under

=\ 0<z<L, 0<y<L, (34)

various boundary conditions, has been formulated by Rajalingham et al [38]. For
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simply supported plates the boundary conditions can be expressed as:

8:0)=0  4(0)=0
HO =0 410 =0
$alla) =0 (L) =0
$(L) =0 #f1(L,) =0

(3.5)

For rectangular plates, with edges parallel to the x- and y- axes, it is expedient
[31] to take the series approximation for w in the form

R S
w(z,ys8) = Y Y bnz(z)bmy(y) Zom(t) (3-6)

n=1m=1

where the infinite series is truncated at R and S modes and (z, y) are the coordinates
with origin at a corner of the rectangular plate which spans the domain z € [0 L]
and y € [0 L,). In (3.6), $nz and @my must satisfy the essential and the natural
boundary conditions. Substituting (3.6) into (3.1) and dropping the summations to
consider only the pgth mode results in an equation in the form of (3.3). Now take
the inner product of (3.3) with respect to @mzPny, and use integration by parts,
boundary conditions (3.5), and recognizing that (pg) and (mn) are interchangeable,
the mass orthogonality relation may be found to be:

Le v
[ [ pbrabutuabmdedy =0 p#n, gm 6.1

Introducing an external forcing term F(z,y,t) and an external moment per unit

length T'(z,y,t) into (3.1) and assuming the series solutions (3.6) gives:
[m]{Z} + [k}{Z} = F(z,y,t) + T(z,v,¢) (3.8)
where [m], (k] are row vectors such that

m; = ph(¢ncbmy) j=Rx(m-=1)+n (3.9)
ki = D(bnc’ by + 20nc Pmy" + Grzbmy™) 7 =R x (m —1) +n(3.10)



CHAPTER 3. MATHEMATICAL MODEL 36

and {Z} is the time function vector in separation of variables. Now take the inner

product of (3.8) with respect to p—l,;[m]T and integrate over the area to find:

[MI{Z} + [KI{2} = [F] + [T} (3.11)
where

Le Ly
M = /0 [ batbamidady (3.12)
Ki = /o “ /; “ brebaykidzdy (3.13)
Foo= [ brbuFl@y,t)dody (3.14)
_ OL. OL'
T, = /0 /0 et T (2, t)dzdy (3.15)

where i = R x (¢ —1) +p. For a simply supported plate the deflections w(z,y)
can be expressed by the double sine series [31], such that

nrr m

) bmay) = Boin(~*

Upon substituting (3.16) into equation (3.11), and normalizing the mass matrix to
1

Pnz(z) = Asin( ) (3.16)

s 4
identity by choosing A = [ﬁ.] ‘and B = [ ph_‘L% ] we obtain

(2} + (912} = (7] +[7] @)
where [-| denotes a diagonal matrix and
Q) =[] f] =l e =y [(-’,}f;)z +(E) ] (3.18
By introducing Rayleigh damping, the system equation (3.17) can be rewritten as
(2} + [CH{Z}+101{Z} = [F]+[T] (3.19)
where

[C] =2[¢][w] = [26uwi1, -+ 2Gwi5, ], [¢) = [Curye ey Gigye o) (3.20)
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and (;; is the damping factor for mode ij.
The forcing term may now be addressed. Assuming a point load applied at z = §
and y = n (3.14) yields:

Le Ly
Fient)= [ [ n@a@W @iz~ &y —n)dedy  (3.21)

where, § is Dirac delta function and W(t) is the magnitude of the point force at

time t. Therefore the modal forcing term can be written as:

Fi(&snst) = $pe(€) b (MW (t) = 7 W (2) (3.22)
where, 74, is a parametric gain depending on the location of the load and W (¢) is

the magnitude of the point force at time t. In the case of simply supported plates

the parametric gain is equal to

4 . .
v = |z a2 s (3.23)

Under an assumption of perfect bonding, the piezoelectric actuators produce a

bending moment on the plate. In that case, the forcing terms may be treated as a
superposition of point moments acting at the edges of the piezoelectric elements. In
all the currently avaiable piezoelectric actuators, the moments are applied about z
and y axes simultaneously. The moments are either equal (ceramic) or anisotropic
(PVDF). In this work, since we assume a large aspect ratio between length of
piezoelectric element in two diffent directions, the effect of piezoelectric element in
the shorter direction will be ignored.

Assuming a point moment with the magnitude of U(t) applied at z =, y =17
and replacing the moment with a coupled force U(t) = W(t)e , the modal effect of

the point moment can be written as:

Le Ly
Temt) = tm [ [7 6ubaW®) 6z~ &y~ 1) — 8(z — &y — 1+ )] dedy
e—0 (3.24)
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where ¢ is the moment arm between the forces and the point moment assumed to
be applied around z axis.

Now, the modal contribution of the point moment can be computed as:

Ti(6,mt) = ¢pe(§) b0 (MU () (3.25)

where ¢ is the derivative of the shape function with respect to y.

When an actustor is located at z = £, y = n and is oriented in the z direction

the modal effect of the piezoelectric element can be written as:

[7ite - 22,0 = Tite + 22,7,8)] = V) (3.29)

where, L, is the length of the piezoelectric actuator, U(t) is the magnitude of the
moment applied at either end of the piezoelectric and .., is a parametric gain
term in the z direction resulting from the modal contribution of the point moments.

Yzupe Will be implemented electrically as a piezoelectric gain and is defined by
/ L? / LP
Tous = [$(6 — ) — $ul€ + )] twl0) (3.2
For a simply supported plate vz, can be evaluated from

_ | 16p*n?
T=w = \| phL3L,

sin(pLﬂf) sin(p;LL:) sin(q;::) (3.28)

When the actuator is oriented in the y direction the effect of the piezoelectric can
be found by interchanging z and y, and £ and n in (3.28).

{

3.2.2 Solution of the State Equations

A dynamical system of a finite number of lumped elements may be described by
ordinary differential equations in which time is the independent variable. By use
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of vector matrix notation, an nth-order differential equation may be expressed by
a first order vector matrix differential equation. If n elements of the vector are a
set of state variables, then the vector matrix differential equation is called a state
equation. Considering the state equation of a linear, causal and relaxed system of

the form

2(t) = A{t)Z(t) + BRU(E) + DEYW(L) (3.29)
w(z,y,t) = C(z,y,t)Z(t) + H(z,y,t)U(t) + J(z, v, t)W()  (3.30)

The unique solution of (3.30) is given as [23]
w(z,y,t) = Co(to, ;) + C/:go(t,r)[BL((r) + DW(r)]dr + HU(t) + JW(t) (3.31)

where (o, t) is the state transition matrix for A, and to and ¢ are any specified
times.
Considering the second order linear time invariant system (3.19) with no direct
transformation, the state equation can be written as

Z(t) = AZ(t) + BU(t) + DW(t) (3.32)
w(z,y,t) = CZ(t)

where

_] %0 _
0-{ 20} -

0 I
—Q -C

B=[° D={°] 839
Tu 2l

By applying the linear transformation E, the matrix A can be written in Jordan

canonical form as:

(7] = [EI[AllE] = [ Ao (3.34)
0 A

where

[E]=[’ _’_] [E]“=[ A~ Al7°A '[f'“] (3.35)
AKX _A-AA  [A-A7
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where A = [—(w+ jwy/T— (3], A = [—(w—jw+/T — (] and the natural frequency
matrix w and the damping factor matrix ¢ are defined in (3.18) and (3.20) respec-
tively.

Now, by choosing the damped frequency matrix wg = wv/T — (? the state transition
matrix of A can be computed as follows:

e"c“"[cos(wdt) + & 2 sin(wat)] et — sin(wyt) }

“’2‘ sm(wdt) e““"[cos(wdt) - % sin(wqt)]
(3.36)

At — EeJtE—l = [

where the following matrix relations have been used
eht 4 oAt = 2e~¢“tcog(wgt) €M — ekt = 2je7¢“* gin(wqt) (3.37)

For lightly damped structures, {( < I, in which case

e—Cwt

At _ EAE-1 — e~¢“*[cos(wt) + ¢ sin(wt)] sm(wt) } (3.38)
—we ¢t gin(wt) e"‘“"[cos(wt) — ¢ sin(wt)]

For the case of no direct transformation and tq = 0, the system dynamic response

can be written as
t
w(z,y,t) = CeAZ(0) + C /o At=7) B (r)dr (3.39)
Now position and velocity states can be separated by defining C as
P 0
C =
[ 0 R

The impulse response can be found as

(3.40)

w(z,y,t) = Ce**B = [ } (3.41)

Re~¢“t[cos(wt) — ¢ sin(wt)]vs
The above state space solution will be employed to illustrate a numerical example.
In the following, an analytical method will be considered to find the optimal location

of sensors/actuators.
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3.3 Optimization of Actuator/Sensor Locations

The size and the location of the piezoelectric actuators are two important issues to
guarantee the highest energy efficiency and controllability of the system. As well,
the appropriate location of the sensors has to be considered for system observability
and minimum noise-sensor output ratio. In the following a process of optimization

for sensor/actuator placement is described.

3.3.1 Formulation of the Problem

The governing differential equation of forced vibration for a Poisson-Kirchoff plate

is:

8w(z,y,t)
at3

where T(z,y,t) is the external bending moment applied to the unit iength of the

DV*w(z,y,t) + ph = T(z,y,t) (3.42)

plate. Now consider a simply supported plate, subject to a concentrated moment,
which varies harmonically with time at point A(£,n) as illustrated in Figure 4.5,
t.e.

T(z,y,€,0,t) = ¥(z,y,€,n)U(t) = ¥(z,y,§ 1) sinwyt (3.43)

We seek the solution for (3.42) in two parts as follow:
w(z*) Y, t) = wH(za y1t) + wP(za Y, t) (344)

where suffix H denotes the complementary solution and P the particular solution.
The time invariant part of the forcing function can be represented by the double
trigonometric series [31}]:

nry

)sin(") (3.45)

$@,9) = 5 3 Lo (£, 1) sin

mnz
n=1m=1 L'-’
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A2

Figure 3.2: Simply Supported Plate with a Concentrated Moment

where the constants of the Fourier expansion of the load are [31]

4Mn nwé
an 6177 {0} ] sin
€m = =L, p oo (g, ) = (T,

’”"”):fmcos(”“f) ("""’) (3.46)

n,m are the mode numbers, L., L, are dimensions of the plate and M, is the
moment applied to the plate. In accordance with Navier's method we shall look for
the particular solution in the form:

mTz nwy

=) (3.47)

w,(z,y,t) = smwftz T Do sm( )sm(

n=1 m—l

The substitution of (3.47) into the governing differential equation of motion (3.42),
using a specific set of n,m values, yields:

Do [D—:‘(— + —)2 — phw?] =T (3.48)
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The first term inside the square brackets in equation (3.48) can be expressed in
terms of the free vibration frequency (3.18) to yield:

Dpm = Lom (3.49)

phud, (1 — i)

If the time dependent changes of the excitation are very slow, w; will be small in
comparison with wy,, and the displacements will correspond to those obtained from
the static loading.

The lateral deflection of a freely vibrating simply supported plate can be expressed
by:

nrz . MY

L
n=1m=1 v
where A, is amplitude, and ¢ represents the phase angle and can be determined

sin(wmat — @) (3.50)

from the initial conditions. If the initial conditions are w =0 and w =0 at ¢ = 0,
for instance, then ¢ is zero.

We now assume the simultaneous action of free and forced vibrations. The super-
position of free and forced vibration can be written as

w(z,y,t) = 3 Y sin(wyt) x

n=1m=1

(Dnm sm( ) sm( y)] + Apm 8in

ITZ sin Lﬂy sin(Wmnt — ¢)(3.51)
3 v

Under the assumption of a velocity initial condition of w = 0 we obtain

wf

A»vnn:_

Dpm (3.52)

umﬂ
By substituting (3.52) into (3.51) the solution for (3.42) can be rewritten as:

mny

w(z,y,t) = E z [sin(wst) — —- sm(wm )N Dam sm( )sm( ) (3.53)

n=1 m=1
where D, is calculated from equation (3.49). A similar approach can be taken

when the excitation is not a simple harmonic but is of arbitrary period or even
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transient. For such conditions, we express the time dependent parts in a Fourier
series and obtain the dynamic response of the system by using superposition.

The response of the system for an actuator with the influence length of L, is given
by

w=3" 3 [sin(wst) - ) Lmn(€,17) sin("7%) sin(Y) (354)

n=1m=1 ph(wi, — “’;) z L,
where
L, L,
Foen (6:7) = Tiam(€ = =22,7) = Canm(€ + 2,1) (3.55)

Now the deflection shapes can be expressed as separable functions of actuator lo-

cation, actuator length and deflection coordinates and time as

wEmeut) = 3 3 By, )i () ia(FD  (356)

n=1m=1

It is clear that to maximize the effect of the control inputs on the system one
should maximize the sine functions in (3.56). For instance the optimal location
function for the first mode has a half sine distribution in the z and y directions.
This means that to control the first mode, the best location for a piezoelectric
actuator is at I—'; and L‘.‘;'- However, by doing this, there is no participation of
the even modes of either direction and the system is not controllable. At least
one more actuator is needed to control an even mode. Similar to the problem of
controllability, the observability of the system can be investigated, where now §
and 5 in (3.56) are the location of the sensor. If one needs the (n,m)th mode to be
observable, £ and q must be chosen such that the two participating sine functions

in that mode do not go to zero.

When M, is applied, the plate deflection shapes can be found by interchanging
¢ and n, m and n, and L, and L, in (3.56). Therefore the optimal size and location
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of the piezoelectric actuator for applied M, gives similar results as when M, has
been applied.

Now we consider only one term in (3.53), when the frequency of the forcing
function, wy, is approximately the same magnitude as one of the free vibration
frequencies, wmn.

Wnm — W§ = 20nm (3.57)

Since the two frequencies are nearly equal, d,m represents a small quantity and

u—“’mL; ~ 1. Therefore a selected set of values for n and m in (3.53) can be written as:

t T, . Ly
(wt + Wnm) sin("TZ mny

7 )sin( -

) (3.58)

Wam = —2Dpm 8in(8pmt) cos(

Since 8., is a small quantity sin(dnmt) varies slowly, with the large period 27 /dnm.
Whenever the frequency of the excitation is close to the natural frequency of the
system we will have a beat phenomenon and when wy = wnm the amplitude will
increase without bound (Figure 4.6). The beating phenomena can be employed to
transfer energy between coupled oscillatory systems for the purpose of vibration

suppression [44].

3.4 Modal Cost Analysis

It is a common practice in the control design and analysis of mechanical systems
to comstruct a mathematical model which ignores some of the dynamic feedback
paths or couplings in the physical system. This is often due to a desire to work
with a finite dimensional model.

As a measure of system performance a quadratic control objective composed

of those error variables that are of importance to the design is introduced. The
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w()

0.5 1 1.5 0.5 1 1.5 2
Time Time

Figure 3.3: a) Beat phenomenon in plate and actuator (wmn & wy), b) Resultant
response of the plate and actuator in a, c) Beat phenomenon in plate and actuator

(wmn = wy), d) Resultant response of the plate and actuator in ¢

smaller the error variables, the better is the performance and hence the norm of
the vector of error variables is an important measure of performance. Consider the

linear state space system (3.19)

Z(t) = AZ(t)+ BU(t) + DW(¢) (3.59)
w(z,y,t) = CZ(t) (3.60)

where U is the “control” vector with its ith input given as U;(t) = %:6(t) and where
W is a vector of “disturbances” with its ith input given as W;(t) = w;4(¢). Both are
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impulses of strength %; and w; respectively. By considering the root mean square
(RMS) of the error as an important performance measure, the “cost function” V is

defined by:
V= z / T () Qui (t)dt (3.61)

where w'(t), i = 1,2,...,n, + n,, + n, are the responses from the sequence of ex-
citations from initial conditions, disturbances and inputs acting alone. @ is a

weighting matrix. Defining the state covariance matrix X as:
- z; [ z0z" 0= gcz, ) (3.62)
and the output covariance as:
z / v (t)dt = CXCT (3.63)

the value of the cost function is given by [28]:

V =trXCTQC = trKT (3.64)

where X and K satisfy
0 = KA+ATK+CTQC (3.65)
0 = X,uoAT+AX,0, +T (3.66)

with

(T4, + Dr,, DT + BT, BT) (3.67)
Zgii Ziz(o)‘;ii (3.68)
L, = wf&,-,- (369)

= b (3.70)
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The contribution of each state to the controlled (or disturbance) part of the cost
function is

oy ny(ng) @ a
=3 [T Gz = [CXC™Qk (3.71)

a=1
where V,_ is called the ith component of cost [42] and represents the contribution
of state variable Z; in the cost function. The contribution of the ath input (control

input or disturbance) to the output cost V. is given by [45]

Vg =[(CC,.(0)CTQlx (3.72)

Theorem 1 (Skelton [46]) For the asymptotically stable, nondefective system

Zi(t) = M2+ bU(t) (3.73)
w(z,y,t) = Z.:C’eZ; (3.74)
i=1
wheret = 1,...,n,, define {;, w; by
N=—Cwi+jwy1-¢, >0, wi>0 (3.75)

and let M\iyy = X;, for some i. Suppose b; # 0, c; # 0. Then, if any of the following
hold

i) BT, be =0 k # i,
i) Qe =0 k#1, (3.76)
#13) G < Lzl k#i

the tth modal cost is given by

o sl |
Ve =Vyy = e 0 +0(4) (3.17)

where O((;) is zero under conditions (i) or (ii) and is of order {; otherunse.
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Corollary 1 (Skelton [{6]) For the asymptotically stable system described by

Z: + 2(;(0.'2.' +w?Z;=U i=1,...,N (3.78)
N N )

w= E ¢,'sz.' w= Z ¢.~,,,Z.- (3.79)
=1 i=1

the modal cost associated with Z;(t) for the cost function

W Q O w'
V= dt 3.80
‘_Zl./ { } 0 Q. ] { W } ( )
with impulsive inputs is given by
. T

where Ty = 712 8.

For a simply supported plate, the modes of vibrations are described by (3.16).
Considering an impulsive point force 7;W (t) at (Lzy, Lys), the impulsive control
inputs 7,,,,1U(t) Y2 U(t), mU(t) MU(t), TusU(t), and vusU(t) at locations

I—‘zl,—,l) (41 y 3, (§£"~ =), (B, 3 Loy (Le e, ] Lyy, (&= §£"-) respectively (the optimal

locations obtained in section 3.3 to control the first three modes), and the unit

weight function Q = I, the modal cost analysis is given as

b¢={’Y! Trui Vzuz Yrus Tyus  Tyus ‘sz} (3.82)

fo=|w @ o o @ @ | (3.83)
BT 31121 e

v, oy (3.84)

B 4w}
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The contribution of all the impulses yields

v, = ;V ~§I|b Pu4llc‘|l¢szull (3.85)

The impact of pgth mode on the performance function when a unit impulse is
applied to the plate, is shown in Figure 4.7; Figure 4.7-a shows the effect when the
unit impulse applied through actuator located at (&=, = L), Figure 4.7-b shows the
effect when the the unit impulse applied through actuator located at (&=, ; L), Figure
4.7-c shows the effect of applying the unit impulse at all four actuator locations,
and Figure 4.7-d shows the effect of an external disturbance to the cost function
when applying a unit impulse. These Figures indicate that the contribution of the
pgth mode to the cost function is drastically decreased for the higher modes.

To determine the number of modes N required to be retained in the model to
guarantee that the error in the finite sum vy V%, | is smaller than a specified
value, an upper bound can be found for the cost function in (3.85). By using the
Schwartz inequality (3.85) can be written as

2 2
v, < Z |18 lltzgullll%yll (3.86)
i=1 @i

With reference to the denominator of (3.86) we observe that the use of a Rayleigh
damping model implies that

Clwnwia + w3 ]
wpe(w11 + w12)

G = (3.87)

Considering L, < L, a lower bound for the natural frequency can be found by
replacing L. with L, in (3.18) and an upper bound for the natural frequency can
be found by replacing L, with L. in (3.18)

minup =[BT+ ) masu - [Preee) G
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using (3.88) a lower bound for the damping factor can be found as

. _ - inflonwia +wi ] S LA10 + (p* + ¢%)°]

sup (Wpg(wi1 + w13)]
The supremum of the b; in (3.86) components can be found by maximizing the sine

functions in (3.23) and (3.28) as
16p2n3 16¢%n3
\‘ phL3L, phL.L} (3:90)

then upon substituting (3.90) into (3.82), and taking the vector norm of b;, leads

(3.89)

supyy =

to

sup |[b:|* = (L3 + 12° (9" + ¢*)] (3.91)

hL’L
The supremum of the shape function vector norm in (3.86) can be found by maxi-
mizing the sine functions in (3.16) as

4
z~yY

By substituting (3.88), (3.89), (3.91) and (3.92) into (3.86) a supremum for the cost
function can be found to be

28L’]|tr1‘0|| 2, [L2 +127%(p? + ¢%))

upV: = Feli/oAD 2 2 01 (7 + &)1 + OF (3:93)
Using (3.93), a new supremum for V; can be defined as
supV, = Kp;q; (p’+ z)s ;; i (3.94)
where
28L’||trI‘t,||(Lz + 12x%) (3.95)

{neL2\/phD3
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Now, if f(p,q) is a nonincreasing function of p and q then (Naylor, 1982)

00 (=2

wp Y S f@ma< [ [ fodpdg

p=R+1 q=S+1

The cost function truncation error € can be formed as

SUp Sisn 4V, - Lp=R+1 La=s+1 ,qu&' < RIS p%;dpdq
R A R

From algebra and with reference to (3.94) and (3.96) we observe that

12

oo 1 ., _ 1 g6 T
/a /s PEPM = EpEgE 2P0 = go303

. p=lq=1

and therefore a supremum for ¢ can be defined as

893025

SUP € = O5rizR5 S5

32

(3.96)

(3.97)

(3.98)

(3.99)

Sample values of (R,S) versus € as a percent are given in Table 3.1. It may be

observed that for R > 2 and § > 2 the error ¢ is always less than 0.004%.

Table 3.1: Number of Modes Required in Plate Model to Satisfy the Error require-

ments

Percent RorS

Error 1 2 3 4 5

3.86E00 | 1.21E-1 | 1.59E-2 | 3.77E-3 | 1.23E-3

S 1.21E-1 | 3.77E-3 | 4.97E-4 | 1.18E-4 | 3.86E-5
or 1.59E-2 | 4.97E-4 | 6.54E-5 | 1.55E-5 | 5.09E-6
R 3.77E-3 | 1.18E4 | 1.55E-5 | 3.68E-6 | 1.21E-6

(S0 I I O

1.23E-3 | 3.86E-5 | 5.09E-6 | 1.21E-6 | 3.96E-7
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Example' Consider a simply supported plate subjected to a point load v, W (%)
at (&= = 2 ) In order to suppress the vibrations six thin piezoelectric actuators are
bonded to the plate The actuators v-,U(t) (or control inputs one to three) are
located at (&=, Ley, (&= 3 Ly, (%‘, —2'-), and the actuators v, U(2) (or control inputs
four to six) are located at (&, 3 Ley (&= 2 Ly, (&, g,_) The material characteristics
and dimensions of the plate and piezoelectric elements are given in Tables 3.2 and
3.3. It should be noted that to simulate the reality a 5% propotonal damping is

considered for each mode.

Table 3.2: Material characteristics and dimensions of the Plate

Length in x direction | L; = 0.68 m

Length in y direction | L, = 0.77 m
Thickness h =0.815 mm
Young’s Modulus E =170 GPa

Poisson’s ratio v=03
Mass density 2710 r—':",—
Damping ratio ¢="C(1="Ca2=2C(n=(2=005

Now if the maximum desired truncation error in the cost function is 0.004%,
from Table 3.1 the minimum required number of modes in the plate model will
be R=2 and S=2. However from this table it is clear that also R=1 and S=4, or
R=4 and S=1 satisfy the error requirements but would result in an asymmetrical
modelling situation.

Considering R=2 and S=2, from (3.18) and (3.20) the undamped natural frequency



CHAPTER 3. MATHEMATICAL MODEL 54

Table 3.3: Material characteristics and dimensions of the Piezoelectric

Dimension cmxecm xXxmm | 5 x 2 x 0.3

Composition Lead Zirconate Titanate
Material Designation PSI-5H-S4ENH
Dielectric Constant (1KHz) | 3800

Strain Coefficient Mctere dss = 650E—12, ds; = ~320E~12
Density X¢ 6800

Elastic Modulus Es = 5.0 x 10!°, E; = 6.2 x 10'°

matrix and damping matrix are

[ 47.62 [ 4.76
110.22 11.02
[w] = e = (3.100)
127.89 12.79
190.48 19.05 |

By using (3.35) the components of the Jordan canonical form of matrix A can be

evaluated as

—C(uwn + jwnyl - ¢ [ _2.38 + 47.565
—~(1aw1z + jwizy/1 — ¢ —5.51 + 110.085
[A] = = (3.101)
~(1wa + Jway/1 — ¢ —6.39 + 127.735
—(3awaz + jwaay/1 — (3 ] —9.52 + 190.255 ]

The state transion matrix of A can be evaluated from (3.38) and is defined in
appendix B. Upon substitution of the natural frequencies and damping factors, the
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state transition matrix can be rewritten as

At [auJ [Glz J
et = 3.102
[ [a21] [823] } 102

where ay;, a12, az; and as; are defined in appeandix B.
Considering the point load force applied at §; = I‘g‘, m= 51,'-, the parametric gain

vector of the disturbance force can be from (3.23) as

-

[ sin(%%) sin () [ 0.47
] 4 sin () sin(*2) 0.85 (3.103)
f - et .
PhL:Ly | gin(28) sin(R) 0.77
| sin(3%)sin(?fR) | | 1.38 |
Therefore the disturbance vector can be formed as
T
D= [ 0 00 0 047 0.85 0.77 1.38 ] (3.104)

The piezoelectric gains v, and 7., are obtained from (3.28), and are defined in
appendix B. Upon evaluation the parametric gain matrix is

(198 1.40 140 155 1.09 1.09 |
0.00 0.00 0.00 0.00 6.15 —6.15
fl = (3.105)
0.00 7.87 —7.87 0.00 0.00 0.00

| 0.00 0.00 0.00 0.00 0.00 0.00 |

The control matrix B can be formed as specified in (3.33) and the matrix C' can
be found from (3.40) where

- iy - . T
C | hrzdyy sin(ZZ) Sin(‘ff)
$rob2y 4 sin(F) sin(Z¥)
Pl = (Rl - ./ 8L, 3.106)
[P] = [R] brndrs PhL.Ly | sin(3=)sin() (
i D2zP2y ] i Sin(sz) sin(zf") )
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By having collocated piezoelectric actuators and sensors (the sensors measure the
deflection) matrices P and R can be formed as shown in appendix B. Upon substi-
tution of the ¢ ...£s and 71 .. .76 in (B.4), P and R matrices become

- - T
1 071 0.71 1 0.71 0.71
o 0 0 0 1 -1
[P]=[R] = (3.107)
0o 1 -10 0 0
0o 0 0 0 0 O

If an impulse is applied to the plate through the point load, from (3.40) the impulse

response of the plate can be found as

- -T - - -
sin (=) sin( %) - 8in(47.62t) 0.47
*z) gin (27X e gin(110.22¢ 0.85 | —
w(z,y,t) = 1.86 sfn(f-)mf( ) ez sin(110.22) F (3.108)
sin(7=) sin(F*) e 8in(127.89¢) 0.77
. e\ < e—9853¢ .
| sin(FZ) sm(%’f‘) ] 5 6in(190.48¢) | | 1.38

where f is the magnitude of the impulse.
In the case of force response with zero initial conditions the system dynamic re-

sponse can be written as

[ sin(3=) sin(3) |
sin(F=) sin (%)
sin(22) sin (32

sin(2%=) gin (2%
w(z,y,t) = 1.86 (L' ) (L' X

0
0
0
0
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o 0o o o 0 0 0 | ;
F(r)
o 0o 0 0 0 0 0
T:(7)
o 0o 0 ©0 0 0 0
Ta(7)
gy 0 0 0O 0 0 0 0
/ e To(r) | dr (3.109)
0 0.47 1.98 1.40 140 1.55 1.09 1.09
Ta(7)
0.85 0.00 0.00 0.0 0.00 6.15 —6.15
Ts(7)
0.77 0.00 7.87 —7.87 0.00 0.00 0.00
Te(7)
| 1.38 0.00 0.00 000 0.00 0.00 000 |- .

From (3.107) the deflections observed through the collocated semsors can be es-
timated as shown in appendix B. The integration in (3.109) will be performed
numerically in the next chapter.

The responses of a linear time-invariant dynamical equation are dictated mainly
by its modes, or equivalently, the eigenvalues of A. If an eigenvalue has a negative
real part, its mode will approach zero exponentially as time goes to infinity. De-
pending on whether its imaginary part is zero or not the approach to zero is either
monotonic or oscillatory. If an eigenvalue has a positive real part, its mode will
approach infinity exponentially. In the case of zero real part with index one, its
mode is a pure sinusoid, and by having zero real part with index n; higher than one,
the mode will approach infinity at the rate of t™~!. In this example, the eigenvalues
of matrix A have negative real parts and non-zero imaginary parts therefore all the

modes approach zero monotonically.

A dynamical system of the form (3.34) is controllable if and only if the set of vec-
tors in the matrix ;(E"‘B)T are linearly independent, and the system is observable
if and only if the set of vectors in the matrix (CE) are linearly independent. Exam-
ining this condition, it is observed that the above system is not state controllable

and state observable.
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3.5 Conclusion and Summary

Towards the goal of establishing an active vibration absorber for a simply supported
plate all important issues associated with modelling the problem were addressed.
Initially the classical plate theory has been considered to develop the mathematical
model of the system. The plate characteristic functions have been used to study
the plate vibrations analytically.

The separation of variables and Fourier expansion coupled with Navier’s method
is used to optimize size of piezoelectric actuators, the actuation voltage, and ap-

propriate location of the sensors,

In order to work with a finite dimensional model and ignoring some of the feed-
back paths in the physical system a quadratic control objective has been introduced.
The number of modes required in the plate model to guarantee that the error in

the objective function is smaller than a specified error has been derived.
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0.02, 0.02,

0.1, 0.01,

> 0.05 1

Figure 3.4: Contribution of inputs to the cost function at observation point

Sla ETL,'-) (a)Effect of piezo located at (==, -Iil) (b)Effect of piezo located at (&=, %’- .

(c)Effect of all piezos (d)Effect of external point load



Chapter 4

Optimal Controller

The energy based control strategy “Linear Coupling Control (LCC)” [47] is used
for controlling free and forced vibrations in a simply supported plate. The control
strategy is implemented by coupling a virtual second order linear system (controller)
to an oscillatory plant and creating an energy exchange between the two systems
[47]. The energy transfer phenomena from the plant to the controller is maximized
by coupling the appropriate states. Once the transfer of energy has taken place it
is dissipated via linear damping. To provide a basis for comparing the results of
the proposed control algorithm and the conventional control methods, the linear

quadratic optimal control method also was implemented.

4.1 Introduction

Recently, there has been a great deal of research in the area of passive and active
vibration control of flexible structures [48, 49]. There are a number of mechanisms

that can be used for the element of smart structures. They are piezoelectricity

60
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[50, 51], thermal expansion [52], electrostriction [53, 54], magnetostriction (65], and
material phase change [56, 57]. Piezoelectricity has been especially recognized as
a favorable mechanism over the others because the integration with load-bearing
structures can be easily accomplished by surface bonding or embedding. It does
not significantly alter the static or dynamic stiffness and mass characteristics of
the structures. It is capable of operating in a wide frequency range. An overview
of various active noise and vibration control methods is given in a recent review
paper by Stevens [58]. The present work focuses on the control of plate vibration

via piezoelectric actuators. It addresses the development of the control law.

In the past decade, the control of free and forced vibration has been accom-
plished largely in practice by classical control techniques such as PID or state
feedback [59, 60]. Burke [61] presented an energy based technique for the design
and analysis of distributed transducers used for the observation and control of thin
plates. The technique assumes that the requisite transducers can be modelled as
separable in space and time, i.e. degenerate distributed transducers. The limita-
tions of a uniform spatial weighting as applied to a simply supported plate were
explored. By matching the spatial distributions of both sensing and actuating
transducers it was shown that guaranteed stability is achieved in the Lyapunov

gense.

Tzou [62] used the conventional elastic shell to develop generic theory for the
intelligent shell systems. From the theory derived, it was concluded that the dis-
tributed sensor is capable of sensing all vibration modes and the distributed actua-
tor controlling all modes. Two feedback control algorithms, namely direct feedback
control and Lyapunov control, were proposed and the control moments for each
control algorithm were also derived. However the modal gains and time delay in
feedback systems were not explored.
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Lee et al. [63] used laminated plate theory to first derive theoretically and then
examine experimentally the modal sensors/actuators. A point sensor/actuator, had
been developed which bypasses the need for extensive signal processing because the
surface electrode and the polarization profile of a distributed sensor/actuators can
be used to integrate sensor/actuator signals in the special domain. A mode one
and mode two sensor for a one-dimensional cantilever plate were constructed and

tested to examine the applicability of the modal sensors/actuators.

Dworak and Falangas [64] modelled mechanical and electrical behavior of a thin
plate with attached piezoelectrics. Two control system configurations were consid-
ered in which an accelerometer was used as feedback to a collocated piezoelectric
actuator and a cross coupled configuration in which the accelerometers were com-
bined to form the feedback to a particular piezoelectric. Two control design methods
were considered for closing the loops between the accelerometers and the piezoelec-
tric actuators, rate feedback obtained by integrating the accelerometer signals and
the H,, design methodology.

Fariborzi et al. [65] have presented a mathematical model of the transverse
vibration of a plate to be used for free and forced vibration control purposes. A
quadratic control objective had been defined as a measure of system performance.
The control objective is composed of those error variables that are important to the
design and they are used to approximate the high order plant system by a lower
order model. To guarantee that the error in the reduced model is smaller than the

desired error, a minimum required number of modes in the plate model is specified.

The notion of using an energy based controller has been considered by Gol-
naraghi [66] and later extended to forced vibrations by Fariborzi et al. (44]. Tuer et
al. [67) extended this work by utilizing the energy transfer phenomena precipitated
by linear and nonlinear state coupling as paradigms in the formulation of vibration
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suppression laws. In his work Tuer investigated the performance of both linear and
nonlinear coupling controllers on a numerical level. Fariborzi et al. (44] investi-
gated the theoretical modeling and simulation of piezoelectric actuators and used a
linear coupling control strategy to control free and forced vibration in a cantilever
beam. The controller was modelled as a single degree of freedom linear oscillator
which was coupled to the plant via a linear term. The system was solved as a linear
eigenvalue problem. The experimental verification of this approach to vibration
suppression was presented. In the forced vibration the control law provided over

98% improvement in amplitude over the uncontrolled responses.

4.2 Optimal Control

For an asymptotically stable system, there exists some function that is decreased
during the natural trajectory of the states. This function, which is called the
Liapunov function might, represent a physical entity such as system energy. The
particular Liapunov function might not be the function the designer wishes to
decrease, and one may ask if it might be possible to decrease this function even
faster with some choice of control input. Therefore, the task can be proposed as:
given a function of the designer’s choice, find a control input that will keep the
Liapunov function as small as possible. This is the philosophy of optimal control.

4.2.1 LQ “Linear Quadratic” Optimal Control

A dynamical system of a finite number of lumped elements may be described by
ordinary differential equations in which time is the independent variable. By use

of vector matrix notation, an nth-order differential equation may be expressed in
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state space form. Considering the state equation of a causal and relaxed second
order linear time invariant system with no direct transformation, the state equation

can be written as

Z(t) = AZ(t) + BU(t) + DW()
w(z,y,t) = CZ(¢)

(4.1)
where

Z(t) = Ze | 4.1 0 I'l g=|"? 0 (4.2)
Z(¢) -Q -C T 7

and U is the “control” vector with its ith input given as U;(t) = %;0(¢t) and where
W is a vector of “disturbances” with its ith input given as Wi(t) = w;d(t). Both

D=

are impulses of strength %; and W; respectively.

In the linear quadratic optimal control problem the order of the controller is
equal to the order of the plant, and it is desired to minimize a quadratic function
of the outputs and the control inputs. the “cost function” V is defined by:

V= 2} /0 = [w (1) Qu(t) + U ()R U (L) dt (4.3)

where w'(t), i = 1,2,...,n, +n, are the responses from the sequence of excitations
from disturbances and inputs acting alone. Q and R are the weighting matrix. Now
the objective is to minimize the cost function using a choice of state feedback gain

G.
z(t) = MZ(t)

U(t) = Gz(t)

(4.4)
where z is the measured states

Theorem 2 (Skelton [68]) The measurement feedback problem described by (4.1)
and ({.2) has a unique solution if
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a) M has linearly independent rows, R > 0,

b) The controllable modes of (A+BGM, D) and observable modes of (A+BGM,C)
are asymptotically stable,

¢) [A + BGM)] has no eigenvalues symmetric about the imaginary azis.

The solution must satisfy

G =—-R'BTKXMT(MXMT)™! (4.5)
where X and K satisfy

K(A+ BGM) + (A+ BGM)TK + MTGTRGM + CTQC,  (4.6)
X(A+ BGM)T + (A+ BGM)X + DWDT + X, (4.7)

0

0

and the minimum value of the cost function is

V =trX(CTQC + MTGFRGM) = trK(DW DT + X) (4.8)

The uniqueness follows from conditions for unique solutions of Liapunov equations
(4.6) and (4.7). b), c) and condition a) imply that the measurements z,(t), z2(¢), - - -
are linearly independent. The equations (4.5) through (4.7) have no analytical
solution and numerical iteration is required. A special case of this theorem is much
simpler to solve. The special case can be defined when U = GZ(t) as the “state
feedback control.”

Corollary 2 The optimal state feedback control is

U GZ(t), G = -R'B7K, (4.9)
0 KA+ ATK - KBR'BTK +CTQC, (4.10)
V = trK(DT,D+T, ) =trX(CTQC + GTRG), (4.11)
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where
0=X(A+ BG)T +(A+ BG)X + DTwDT +T,, (4.12)

Theorem 3 (Skelton [68]) If (A,B) is stabilizable and (A,C) is detectable, then

solution of the nonlinear equation

0 = KA+ ATK-KBR'BTK +CTQC (4.13)

K = E,E[! (4.14)
where Ey,E, are the eigenvector of the left half-plane eigenvalues of the matriz

A -BR™ BT

(4.15)
—CTQC  —-AT

4.2.2 Stability Margin of the LQ Optimal Control

In the study of the state feedback system (4.1), where the feedback control input is
given as (4.9), the eigenvalues of the system are in the left half plane if the following
inequality holds

[+ LT(jw)|lI + L(jw)] 2 T (4.16)
where
[T (jw) = —R-3BT[-AT - jwI|"'G* R} (4.17)

It can be shown that such control designs have an infinite gain margin and a phase
margin > 60° [68]. The inequality (4.16) implies that the Nyquist plot for the
optimal state feedback system never penetrates the unit circle centered around the

~1 + ;O point.
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4.3 Controller Design

Linear and nonlinear coupling methods [67] represent a relatively new approach to
control of flexible structures. Use of these techniques involves dynamically link-
ing components within a system or creating external supplementary dynamic links.
This coupling creates a global system between which energy can be exchanged
within vibrational modes or coordinates.

The plant under consideration consists of a flexible simply supported plate ex-
hibiting planar vibration due to a concentrated load located at (I—‘sl, —.,1) To control
oscillations, piezoelectric elements are rigidly bonded to the plate as described in
the previous section. Using a four term Rayleigh-Ritz approximation the system is

of the form:

Zu, + 2(11,(011,211, +wh, 211, = Yy, Wu(t) + Uu
Zu, + 2(12,&’12,212, + w]’,:,ZH, = Ya, Wia(t) + Una
Za1, + 2o, wn, Za1, + wi1, 221, = Tay, Wai(t) + Un
Zaa, + 23, w3, Zaz, + why, Za3, = Vs, Waa(t) + Una

(4.18)

where w,, is the pgth natural frequency of the plant, v, W..(t) is a disturbance
input and U,, is a general function representing the control signal. In (3.19) it
has been shown that each mode of vibration can be represented by an ordinary
differential equation similar to (4.18). Using superposition the control strategy can
be implemented as a superposition of the control for each mode.

A successful control strategy [67], incorporates four virtual systems such that

Zy. 4 20uwnZu, + i Zn, = o, M1,(Z,,,, Zu, Zn, t)
Zra. + 2C12.012. 203, + W Zna. = @y, M13, (2,5, 2, Zx t)
Far. + 2 w2, + Wi T, = 0y, M1, (2, sz, a1,1%)
Zaa. + 20a2,w23. Zaa, + why Zaz, = 0y, M22,(Z,5,, 25, “n, 1)

(4.19)

Nx
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where Z,,, is a time dependent generalized controller co-ordinate, (,,. is the con-
troller damping ratio, wy,. is the controller natural frequency and M.,,, 2., Z,,, , Z,,, )
is a generalized forcing input which is a linear or nonlinear function of the plant
acceleration (Z,,,), velocity (Z,,,) or position (Z,,,) and is proportional to the
parametric gain a,, . The control inputs U.,, in (4.18) are defined as

Uy = a,, My (2., Z110y 21, t)
Uiz = a, M3 (213, Z12., 213, t)
Un = oy, Ma1.(2a1., Za1ey Zar,,t)
Uzs = ay, Maz (Zaa., Zaaey 22z, t)

(4.20)

where M., (Z..., Z,,c, Z,.,c,t) is a linear or nonlinear function of the controller ac-
celeration (Z,,.), velocity (Z.,.) or position (Z,,.) and is proportional to the para-
metric gain «,,_.

In the Linear Coupling Control (LCC) technique there are up to nine possible
coupling parameters [69]. Six of these are complementary pairs; for example, the
coupling of controller velocity and plant position have similar characteristics to the
coupling of controller position and plant velocity. Here the plant position and the
controller position have been used as coupling terms between the plant and the
controller [67].

M., (2. .2, ,2,,.t) = 2.,

rap? Trep

R (4.21)
M‘l’le(Z"¢) Zflc’ Z'le’ t) = _an

Assuming an undamped plant in (4.18) and coupling the system of the equa-
tion with the corespondance virtual system in (4.19), the Laplace transform of the

coupled system yields

s’+ais+ao
= W.. 4.22
ZORS rw s w Fe vl (422
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where
G = w?-., ay = 2Craewra=
bo = “’3-,“’3:, + anp ane bl = 2("ew'ﬁew30p (4'23)
by = (“’3., + wzcg bs = 2(?.;“’1-.,

In the case of harmonic forcing in which all of the forcing is considered to be
of a single frequency ., (4.22) can be converted to the corresponding frequency

response function via the substitution s = j{.,. Hence,

2., (@) = =X (@) (4.24)

R+ Iy

where
R, = (ao - Qa,) In = a182,,
Rd = Q:. —_ 6293. + bo Id = bIan - bﬂﬂia'-

The coefficient of W;.,(,,) represents the frequency response function of the total

(4.25)

system. The amplitude of the plant response can be obtained as
Z, (Q)? 2 .13
12, @IF _ R+ 12 “26)

Wea(Qe)IP RE+ 13

A successful vibration suppression strategy minimizes the function described by
(4.26). In (4.26), the parameters wy,, and Q,, are fixed features of the system,
and a,, and a,, are variables controlling the rate of energy exchange. They are
used to maximize the flow of energy from one coupling coordinate to the other.
Finally, both (., and wy,, are adjustable parameters that can be used for vibration
suppression. The gain described in (4.26) is shown in Figure 4.1 as (.. is varied,
where (4.26) becomes an undamped system with two degrees of freedom when
(re. = 0, and an undamped system with one degree of freedom when Cre. = O°.
Notice that for two points, I and J, the gain does not change regardless of the
damping ratio, (.,.. Using I and J as design conditions, the optimum system can

be found when the gains at these two points are equal and are at the neighborhood
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of a local maxima. The location of these points can be found by equating the two

limits of (4.26)

(“’3., _ an)z - 1
[Q:c - (“’3-, + ‘*’3.,)93. + wf,'w}.e + Q,.,, awc]2 (“’3., - 93.)2

(4.27)

where the left-hand-side represents the amplitude of the coupled system when ¢, =
0 and the right hand side is the amplitude when ¢,, = o0. This can be expanded
into a quadratic form to give,

a a
Qf, — (W2, +w, )0, + ol i, + —5— =0 (4.28)

r8p 2

and the roots of this equation represent the “fixed” points. These are given by,

(wzc +w3l¢) ‘*‘3. —wfz'g a,., X,
Qflt,.l = . 2 i ( . 2 )2 - ’2 (4'29)

The optimization process involves ensuring the two fixed points to have the
same amplitudes. This constraint may be met by placing a restriction on we,,.
Since the amplitude at the fixed points is independent of the damping ratio, wy,,
can be found by using the right hand side of (4.27),

1 1

R Tl R (4.30)
rap rey rey rap
giving
2 3 2
qu + Qn; - 2“"!:, (431)

Then, because the sum of the roots of a quadratic are equal to its second coefficient,
(4.29) gives
QL +Q, = uf,’ + w3, (4.32)

ra

which means,
Wi =l (4.33)

Ple rop
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The second of two conditions for optimum design is when the amplitude ratio in
(4.27) is maximized in the neighborhood of Q.,,,. (4.27) is partially differentiated

with respect to ., in order to obtain the optimum damping ratio as

1 Qv
Crocpe = 1 |1 - (wm)zl (4.34)

Realizing a plant/controller beat phenomena relies on tuning two frequencies to
be near each other and we will require that w,,, = We,, = Wry (65]. This then yields

R, + I.j
z,,0Q)= Rt 15 = W.(2.,) (4.35)
where
= 2 _ Qz In =2 roc r.Qn
R" (wfl .) c w (4.36)
Ry=Qf, — 22,0 +uf, +a, e, Li= 26r e wreSles (Wi, — Q2,)

The stability of the closed loop system under the linear canonical control law can be
examined by Routh’s stability criterion [70]. Since the closed loop system is linear
and time invariant, system stability can be ascertained by examining the product

of the coupling parameters, where the stability condition can be found as

—wt<a,, a, <0 (4.37)

rep “rac

Example' Consider a simply supported plate subjected to a point load v;W ()
at (L= = Lx). In order to suppress the vibrations six thin piezoelectric actuators are
bonded to the plate. The actuators vz, U(t) (or control inputs one to three) are

located at (&, Zr), (L, Zx) (3La Zx), and the actuators +,, U(¢) (or control inputs

2131 U3 4732
four to six) are located at (&=, I—’z'-) (&, -;'-) Le %’-) The material characteristics

and dimensions of the plate and piezoelectric elements are given in Tables 3.2 and

3.3. Now if the maximum desired truncation error in the cost function is 0.004%,
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from Table 3.1 of chapter 3, the minimum required number of modes in the plate
model will be R=2 and S=2. However from this table it is clear that also R=1
and S=4, or R=4 and S=1 satisfy the error requirements but would result in an
asymmetrical situation.

Considering R=2 and S=2, from (3.18) and (3.20) the natural frequency matrix

and damping matrix are

[ 47.62 [ 4.76
110.22 11.02
[wp] = [Col = (4.38)
127.89 12.79
190.48 19.05 |

Considering the point load force applied at {1 = [—‘sl, m = I—f,'-, the parametric gain

vector of the disturbance force can be from (3.23) as

- - -

i - m -
sin(F+) sin(Z* 0.47
sl 4 sin(FL) sin(F2) 0.85 (4.39)
V= = :
P v | sin(*[)sin(ZH) 0.77
I sin(z-z-f*)sin(% | | 1.38 ]
Therefore the disturbance vector can be formed as:
T
D= [ 000 0 047 0.85 0.77 1.38 ] (4.40)

The piezoelectric gains obtained from (3.28), and are defined in the appendix. Upon

evaluation the parametric gain matrix is

(198 140 140 155 1.09 1.09
0.00 0.00 0.00 0.00 6.15 —6.15
0.00 7.87 —7.87 0.00 0.00 0.00
000 0.00 000 0.00 0.00 0.00

[va] = (4'41)
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The control matrix B can be formed as specified in 3.33 and the matrix C can be

found from 3.40 where

¢lz¢1y
¢13¢2v

[P] = [R] =
$1zd1y

L

brabry

[ sin(32) sin(§)
sin(32) sin(%)
sin (%) sin ()

| sin(=)sin(ZY) |

(4.42)

By having collocated piezoelectric actuators and sensors (the sensors measure the

deflection) matrices P and R can be formed as shown in equation (B.4). Upon

substitution of the & ... and g

(P = [R] =

The optimal state feedback control matrix can be obtained from (4.14) as

[K] = 10% x

where E, = Eip + iEy; and E; == E;g + tEq; obtained from (4.15) as

1
0
0
0

...ng in B.4 of, P and R matrices become

0.71 0.71 1
0 0 0
1 -1 0
0 0 O

0.00 0.00 9.89
0.00 0.00 0.00
0.00 0.00 0.00
| 0.00 0.00 0.00

0.71 0.71 |
1 -1
0 0
0 0

[ 6.84 0.00 0.00 0.00 0.00 0.00
0.00 8.82 0.00 0.00 0.00 0.00

0.00 0.00 0.00
0.00 0.06 0.00
0.00 0.00 0.02
0.00 0.00 0.00

0.00
0.00
0.00
0.00
0.00
0.01

T

0.00
0.00
0.00
0.00
0.00

-

0.00 |

(4.43)

(4.44)
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(Bir] =

—0.04
0.00
0.00
0.00

—6.49
0.00
0.00
0.00

10~? x

-0.04
0.00
0.00
0.00

—6.49
0.00
0.00
0.00

[E1[] = 10—2 X

0.14
0.00
0.00
0.00
~2.48
0.00
0.00
0.00

-0.14
0.00
0.00
0.00
2.48
0.00
0.00
0.00

0.00 0.00
-0.11 -0.11
0.00 0.00
0.00 0.00
0.00 0.00
521 5.21

0.00
0.00
0.08
0.00
0.00
0.00

0.00 0.00 -8.22

0.00 0.00

0.00 0.00
—0.04 0.04
0.00 0.00
0.00 0.00
0.00 0.00
-11.25 11.25
0.00 0.00
0.00 0.00

0.00

0.00
0.00
0.06
0.00
0.00
0.00
9.84
0.00

0.00
0.00
0.08
0.00
0.00
0.00
-8.22
0.00

0.00
0.00
—0.06
0.00
0.00
0.00
-9.04
0.00

0.00
0.00
0.00
0.47
0.00
0.00
0.00
—50.10

0.00
0.00
0.00
0.24
0.00
0.00
0.00
86.54

0.00

0.00
0.00
0.47
0.00
0.00
0.00

-50.10

0.00
0.00
0.00
—0.24
0.00
0.00
0.00

—86.54
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[Ear] = 1072 x
[ o711 —27.11
0.00  0.00
0.00  0.00
0.00  0.00
~1.96 -196
0.00  0.00
0.00  0.00
| 000 0.0

[Bar) = 107% x
[ 95.98 —95.98
0.00  0.00
0.00  0.00
0.00  0.00
~0.75  +0.75
0.00  0.00
0.00  0.00
| 000 0.0

0.00
-92.91
0.00
0.00
0.00
0.38
0.00
0.00

0.00
—34.84
0.00
0.00
0.00
—0.82
0.00
0.00

0.00
—-92.91
0.00
0.00
0.00
0.38
0.00
0.00

+0.00
34.84
0.00
0.00
0.00
—0.82
0.00
0.00

0.00
0.00
80.92
0.00
0.00
0.00
—0.50
0.00

0.00
0.00
57.33
0.00
0.00
0.00
0.60
0.00

0.00
0.00
80.92
0.00
0.00
0.00
—0.50
0.00

0.00
0.00
-57.33
0.00
0.00
0.00
—0.60
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00 -
0.00
0.00
0.00
0.00
0.00
0.00

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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where the controllable left half-plane eigenvalues of the matrix # are

—4.28 +47.43:

—4.28 — 47.43¢
—8.26 + 109.91:
—8.26 — 109.91z
—9.52 + 190.24:
—9.52 — 190.24¢
—10.14 + 127.49¢
—10.14 — 127.49: ]

(4.49)

The performance of the LQ controller have been numerically simulated. Figures
(4.2) and (4.3) show the impulse response and forced response of the plant at
(%&e, L) respectively. As shown in the FFT of the uncontrolled impulse response
and forced response of the simply supported plate, the observation point was chosen
such that the contributions of the all modes are evident in the output signal. For the
uncontrolled impulse response, it takes over 10 seconds to suppress the vibration.
By implementing the LQ controller this period can be cut down to 3 seconds. In the
controlled forced case the vibration amplitude shows a 50% reduction of amplitude
in comparison to the uncontrolled case. It was observed that magnification of the
feedback matrix does not help to further reduce the vibration amplitude in the
forced case or oscillation period in transient response.

In LCC method the controller frequencies have been selected to ensure the necessary

beat phenomenon is present and are

4762 0 0 0 |
0 11022 0 0
fwe] = (4.50)
0 0 12789 O
|0 0 0 19048
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Considering the disturbance input has four harmonics 48s~',110s7!,128s~*, and

190s~1, From (3.20) and (4.34) the controller optimal damping can be found as

(213 0 0 O
0 246 0 O
c] = (451)
0 0 187 O
| 0 0 0 478

To investigate the performance of this control method the plant and the controller
have been numerically simulated. A damping {, = 0.05 is introduced for each
mode to reflect the true simulation of the plant. Figures (4.4) and (4.5) show
the numerical results of the free vibration. As it is shown in Figure (4.5)b, the
FFT of the output signal shows the contributions of the four modes. Figure (4.4)
shows the plant response for a set of nonoptimal and nonmaximized a. and aj.
As is clearly evident in Figure (4.4), the energy exchange between the coordinates,
and furthermore this energy exchange may be maximized by appropriate coupling
parameters. Observe that the beat period is entirely dependent of the product
of the coupling parameters [69]. This means that to change the system, we need
only change one of the parameters, leaving the other unaltered. This is a valuable
tool where coupling coefficients may be restricted due to physical limitations of the
chosen actuator. The best results were obtained when the controller damping ratio
was optimum and the link between the plant and the controller was maximized
with respect to physical limitation and stability limitation. In the forced case
setting the controller damping factor is a compromise between plant /controller
rate of energy modulation and the controlled steady state value. By increasing
the controller damping factor the exchange and dissipation of energy between the
plant and the controller was achieved in a shorter time but the steady state error

increased. Figure (4.7) indicates that the product of coupling parameters define
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the beat period as well as the control response improvement [69]. Defining the
percentage of improvement over the uncontrolled response as one minus the ratio
of the controlled amplitude to the uncontrolled amplitude, Figure (4.7) shows 70%
improvement of the response. The effect of increasing the the coupling parameters
depicted in Figure (4.8), which shows the force response of the system at (%‘, %‘)
for an optimal damping and maximized a.a,. Here, the percentage of improvement
over the uncontrolled response is over 80%. Figure (4.9) shows the force response
of the system for an optimal damping and maximized a.a,, where the observation
point is somehow that forth mode is not observable. It can be seen that in all

cases, the frequency of the beat is entirely dependent on the product of the coupling

parameters.

4.4 Conclusion and Summary

To study distributed actuators, we implemented a control law to quantify the char-
acteristics of the controlled system. To investigate the performance of the control
method, a laminated simply supported plate and the controller have been numer-
ically simulated. Initially a LQ controller was employed to control a simply sup-
ported plate. The use of this strategy assisted in solving problems associated with
the control of the plate. The results were also used to estimate the effectiveness of
the other controller strategy. Examination of the LCC strategy indicated that the
results did not generally improve relative to the LQ controller. However the LCC
method can be furthermore improved by monitoring the energy of the plant as a
criteria to connect/disconnect the link between the parameter of plant with the con-
troller. In this method, the rate of energy modulation between plant and controller
can be increased, compared to the LCC method, and the steady state controlled
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value can be achieved in shorter time [44]. In the developed LCC technique the

steady state vibration was reduced by over 80%.
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Figure 4.1: Damping Effects on the Forced Coupled System
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Chapter 5

Experimental Implementation

The experimental study of structural vibration control is a key component of this
research. Experimental observations have been made to determine the nature and
extent of vibration and to verify the theoretical models and predictions. We have
used Modal Testing with an objective to estimate the dynamic and vibration be-
havior of a simply supported plate. This phase of the modal test procedure is often
referred to as experimental modal analysis and leads to derivation of the system’s
modal properties. In addition, the control models suggested by the theory devel-
oped in Chapters 3 and 4 are verified experimently. The experimental verification of
these approaches to vibration suppression is presented for a simply supported plate
with attached piezoelectric actuators at optimum locations according to the method
described in Chapter 3. The virtual controller has been built into a Pentium based
personal computer with a clock rate of 100 MHz. The Matlab software, Real-Time
Workshop Toolbox, WatCom C+* compiler, and WinCon software in conjunction
with an Analog-Digital/Digital-Analog card are employed to implement the control

law.

88
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5.1 Introduction

A review of the recent developments in the analysis of laminated plates shows a
significant amount of research conducted on the numerical and analytical modeling
of the plate. However, to the best knowledge of the author, there are not many

experimental investigations on active control of plates.

Fuller et al. [71] experimentally studied the control of sound radiation from a
simply supported rectangular plate with a single piezoelectric actuator as the con-
trol input. In that study, control of a far-field sound was achieved by “modal sup-
pression,” meaning that during control, all of the modal amplitudes were reduced.
The alternative to modal suppression is “modal restructing.” In modal restructing,
the modal amplitudes can increase; however, the residual structural response has a
lower overall radiation efficiency leading to a reduction in far-field sound level [72].
As an extension to the work conducted by Fuller et al. [71], Clark [73] studied the
distributed control of the structure, utilizing up to three piezoelectric actuators as
control inputs, in conjunction with an adaptive controller. In this work Clark con-
sidered a simply supported rectangular plate excited by a steady-state harmonic
point force. Based on results of this study, the adaptive lms algorithm (71] is
shown to be effective narrow-band controller. As a future work Fuller and Clark

both recommend the optimization of the location of the piezoelectric actuators.

An experiment has been performed by Gu et al. [74] to investigate the imple-
mentation of shaped polyvinylidene fluoride (PVDF) modal sensors on a simply
supported rectangular plate to control specific modes of the vibration. A com-
parative test was performed by using two accelerometers as error sensors. Results
indicated that for both on and off resonance excitations, the shaped PVDF modal

sensors are superior to point error sensors, such as accelerometers for controlling
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specific structural modes.

Dworak [64] considered two configurations to experiment the vibration control of
a rectangular clamped plate. A localized configuration in which an accelerometer is
used as feedback to a collocated PZT actuator and a cross coupled configuration in
which the accelerometers combined to form the feedback to a particular PZT. Two
control design method considered for closing the loops between the accelerometers
and PZT actuators, rate feedback obtained by integrating the accelerometer signals
and the H, design methodology. The experimental comparison shows superior
performance of rate feedback over Hy controllers for a broad band disturbance.
However, the advantage of the H,, design over the rate feedback is its ability to

concentrate the attenuation at specific frequencies.

The experimental application of a linear coupling control strategy to control free
and forced vibrations of a cantilever beam was investigated by Fariborzi et al. [44]
which will also be discussed in this chapter. In this work the overall effectiveness of
three different strategies for vibration suppression of a cantilever beam was exam-
ined. Initially a state feedback controller was employed. The results of this method
of control were used to estimate the effectiveness of the other control strategies.
Examination of the linear coupling control strategy by using position as coupling
state indicated that the results were generally comparable to a conventional state-
feedback controller. Furthermore the linear coupling control method was improved
by monitoring the energy of the plant as criterion to connect/disconnect the link
between the parameter of the plant and the controller. In the forced vibration the
control law provided over 98% improvement in amplitude over the uncontrolled

responses.



CHAPTER 5. EXPERIMENTAL IMPLEMENTATION 91

5.2 Experimental Apparatus

In this section the control models suggested by Tuer [75] are evaluated experi-
mentally and the reéults of the proposed control algorithm are compared with the
linear quadratic optimal control. The experimental setup is comprised of two com-
ponents, the physical structure (the plant) and the virtual system (the controller).
The physical system is a simply supported aluminum plate. The control appara-
tus consists of a Pentium computer with an internal Analog-Digital/Digital-Analog
module. The piezoelectric elements bonded to the optimal locations of the plate
are used to couple the plant and the controller [65]. The collocated strain gauges

have been placed on the opposite face of the plate to measure the plate vibration.

5.2.1 Aluminum Plate

The simply supportéd plate under study is a thin aluminum plate which is at-
tached to a massive test-bed (with cutoff frequency of 100Hz) in order to isolate
the plate from external excitations (Figure 5.1). The simply supported boundary
conditions were achieved by attaching the plate to the rigid frame with cloth duct
tape (Figure 5.2). This method of implementation of simply supported boundary
allows the plate to bend relatively freely but restricts out of plane motion at the
boundaries. The piezoelectric actuators consist of 8 thin piezoelectric elements,
which are used for disturbance inputs and the control inputs (Figure 5.3). The
piezoelectric material is a PZT ceramic H4E-602 series produced by Piezo Systems,
Inc. These piezoelectric elements are bonded to the plate with TRA-DUCT 2919
epoxy, and are arranged such that the dielectric poles of all elements are pointing
in the same direction. TRA-DUCT 2919 is a non-bleeding, electrically conductive,
silverfilled epoxy recommended for electronic bonding. Since the epoxy is conduc-
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tive, it permits current to flow to the undersides of the elements. The material
characteristics and dimensions of the plate and piezoelectric elements are outlined
in Tables 3.2 and 3.3. The plate deflections are measured using a bidirectional
strain gauge (Measurement Group Gauge, type EA-B-125TQ-350) bonded near
the piezoelectric layers as in Figure 5.4. The strain gauge signal is amplified by
a signal conditioning instrument “CIO-EXP-GP” made by National Instruments
Corporation (Figure 5.5), and was sent to a data collection device “A/D card”.

5.2.2 Control System

A personal computer containing a Pentium processor with a clock rate of 100 MHz
is used to design the controller Figure 5.6. The controller is implemented on Mat-
lab software in conjunction with Simulink, Real-Time Workshop, DSP Blockset
toolboxes, and WinCon software. Matlab is a technical computing environment for

high-performance numeric computation and visualization.

5.2.3 Data Acquisition

The proposed control algorithm requires signal conditioning instruments, a data
collection device and a control signal mechanism. Figure 5.5 shows the strain gauge
signal conditioner. Initial data is acquired using an EA series strain gauge from
Measurements Group, Inc. (see Figure 5.2). The strain gauge is a 300Q resistor
that changes resistance when it is stretched or compressed. In order to measure
the resistance change, a CIO-EXP-GP is used. The CIO-EXP-GP manufactured
by ComputerBoards, Inc is an amplification, signal conditioning and multiplexing
accessory for DAS boards. The inputs are suitable for connecting a voltage to the

DAS board so it may be measured. An analog to digital converter “ADC” is used to
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interpret the beam response signal and a digital to analog converter “DAC” is used
to provide a contral voltage back to the piezoelectric actuators. These two functions
are implemented using circuitry on the same acquisition card, CIO-DAS1600. This
board is manufactured by Computer Boards, Inc. and can achieve 12 bit resolution
with speeds of up to 10° samples per second. The card is set with a hardware
switch to a maximum output of +10 volts to provide the largest possible signal to
the piezoelectric elements. Later the calculated control signal is sent via DAC to a
20 times amplifier. This increases the voltage to a level that allows the piezoelectric

elements to produce a significant amount of strain in the plate.

5.3 System Identification

The experimental investigation of the structural vibration characteristics is a nec-
essary step prior to the design of a control strategy for vibration regulation. Ex-
perimental observations help to determine the nature and extent of the vibration.
A preliminary test was conducted to derive the modal properties of the plate. The
response of the simply supported plate was tested by using an impulse excitation
as an input to the plate and the frequency was sampled (through strain gauges) be-
tween 2.00 Hz and 50 Hz. The force signal output and the strain gauge signal were
amplified and sent to a HP 35660 Dynamic Signal Analyzer. These two signals are
used to plot the frequency response function (FRF) curve of the plate. An average
of 15 impulse responses are obtained to reduce the effect of noise. Based on exper-
imental FRF plots the first three damped frequencies are 48.21s7*, 117.2s7", and
137.2s~! (Figure 5.7). The comparison between the experimental and predicted
natural frequencies obtained in (3.100) shows a good agreement between these two

methods. The first predicted mode shows less than 1.3% discrepancy with the first
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experimental mode. The trend of the second and third mode appear to be com-
parable for the experimental and predicted FRF’s, but with a larger variation of
the natural frequencies. The discrepancy may be due to many factors and imper-
fections not incorporated in the mathematical model. For example, there exist a
possibility of inconsistencies in the boundary condition, material imperfections, or
heterogeneous thickness of the plate in the experiment. In addition, the natural
frequencies obtained in (3.100) are undamped natural frequencies, while the exper-
imental natural frequencies are damped natural frequencies. Based on these, the
experimental natural frequencies are expected to be different from the predicted
natural frequencies. There are some methods to adjust the mathematical model
of the plate to more accurately predict the measured behavior of the system [76).
There are also methods to measure the damping of the system more precisely [77].
However, model updating and damping measurements are not in the scope of this

work.

Because of the aforementioned limitations, the inherent noise in the system
(due to the cables, the force transducer, and the strain gauge), and unpredictable
response of the supports, some error can be expected between the experimental and

the theoretical results of the controlled system.

5.4 Free Vibration Control results

For free vibration control, an impulse input is applied to the center of the plate.
After 2 seconds the response of the plate is monitored. For the uncontrolled case,
Figure 5.8a, after the pulse is applied to the plate , the vibration takes about 3.6
seconds to disappear. The measured data also reveals that the first mode has the
most significant contribution to the response of this specific observation point. A
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comparison between the experimental results and the numerical simulation shown
in Figure 4.2a show that the actual system, as expected from system identification,
has much more than the 5% inherent damping which was assumed in the numerical
simulation. If one assumes the effect of higher modes to be negligible, a rough
estimate of the damping associated with the first mode may be obtained from the
logarithmic decrement method to be (31 = 0.26. However this method is highly

unreliable in this case.

To provide a basis for comparing the results of conventional control methods
and the proposed control algorithms, the LQ control method has been implemented
as a control algorithm for the simply supported plate. In this method position and
velocity were selected as the states to feedback. Therefore U in equation (4.1) is
defined as

U=G2(t) (5.1)
The controller gain is then set to the optimal state feedback control matrix obtained
in (4.44) such that maximum effectiveness (minimum plate deflection) is obtained
and saturation of the amplifier does not occur. The ability of the LQ controller
to damp the pulse response is shown in Figure 5.8b. A comparison between the
theoretical model (Figure 4.2c) and the experimental model (Figure 5.8b) shows
similar trends of response; however due to having nonsymmetric piezoelectric ac-
tuators (the piezoelectric layers are attached on one face of the plate) the response
does not look quite as symmetric as in the numerical simulation. This is due to
the fact that in the model, it was assumed that the moments are applied on the
neutral axis.

To implement the LCC method, based on desirable pseudo-energy characteris-

tics of the system [75], position (strain gauge output) was chosen (see (4.20), (4.21))
as the coupling term between the plant and the controller. A necessary requirement




CHAPTER 5. EXPERIMENTAL IMPLEMENTATION 96

for the LCC technique to succeed is the presence of a beat [75]. Through varia-
tion of the controller frequency it is possible to manipulate the beating relationship
with the plant, and consequently obtain different beat frequencies in the plant.
To confirm that this phenomenon could be obtained, coupling parameters were
chosen based on the first three modes of the identification result w.,, = 48.21s7%,
Wey, = 1172871, and we,, = 137.2s~'. The controller damping (. was then varied.
There is a critical damping parameter that will optimally reduce vibration by maxi-
mizing the decay rate of plant energy. The optimal values of the ccntroller damping
were experimentally evaluated as (.,, = 0.303, {,, = 0.411, and {,, = 0.710. These
values were found by sweeping the value of the damping factor over an expected
range. The controller initial condition is set by means of giving an initial voltage
to the integrator. This voltage is selected as a function of disturbance. The result
is that the controller output always starts with the maximum error to suppress the
vibration. The position feedback gain is set such that the saturation of the ampli-
fier does not occur. The experimental result of LCC is shown in Figure 5.8c. This
Figure shows that in the controlled case the oscillation time has been cut to one
third of uncontrolled case. This result (Figure 5.8c) deviates from numerical results
because of the same reasons mentioned in the experimental LQ control. However,
the controller is very successful in eliminating the plate vibrations. Figures 4.5d4
and 5.8d present numerical and experimental LCC control input voltages to the
piezoelectric actuators. From these results it is obvious that other than simplicity

there is no significant advantage/disadvantage of LCC over LQ method.
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5.5 Forced Vibration Control results

The problem with forced vibrations that result from a continuous input to the
system is that it is not easy to completely suppress the plant vibration in the
absence of a strong actuator with a small time constant. Whereas for free vibrations
it is possible to entirely eliminate the vibration, with speed being the only limiting
factor. In forced vibrations, external excitation is mainly destructive when the
driving frequency is close to the resonant frequency of the physical system. Since
it is at resonance when this forcing frequency maximizes the vibration amplitude,
the first natural frequency of the plate was used in each of the control tests (wy =
48.21s~!) as the forcing frequency. Initially the disturbance input was applied
to the plate through a VTS 40 vibration shaker. Due to the limitation of the
piezoelectric actuators, it was desirable to apply a smaller force at the resonant
frequency without adding any traveling constraint at the excitation point. To apply
a small force, the peak amplitude of the shaker had to be very small. However by
doing this through a shaker, a constraint would be introduced to the system. To
achieve the ideal situation (a small force applied at resonance without adding any
traveling limitation), the plate was excited through piezoelectric element numbered
1 in Figure 5.5. As a result since the nature of the forcing has been changed, the
numerical results may no longer be compared with the experiments. The plate
transients were allowed to dissipate and the controller was only turned on when
the steady state response was established. Initially an LQ controller was used. The
controller gain was set to the optimal state feedback control matrix values (4.44)
for maximum controller effectiveness and to avoid saturation. After 4 seconds, the
amplitude of the vibration is diminished by 80% (Figure 5.9a). A disadvantage

of this system was a control spillover effect where the second mode of the system



CHAPTER 5. EXPERIMENTAL IMPLEMENTATION 98

was easily stimulated. This was avoided by the use of a second order filter but it
introduced a trial and error component. In the LCC method through six coupling
mechanisms, a stable pair “plant position and controller position” was used to link
the plant and the controller [36]. The frequency of the controller, w., was left at
the optimal value, which is equivalent to a forcing frequency wy = 48.21s7*. Since
the controller is a continuous active vibration absorber, the initial condition of the
controller was inconsequential to the overall response, hence it was set to zero.
Initially, the optimal damping parameter {. = 0.316 obtained in (4.34) was used.
For further tuning of the system, an energy monitoring algorithm was used to tune
the damping parameter (.. By estimating the final level of the plant energy, it
was found that the damping parameter {. = 0.368 minimized the amplitude in the
steady state response. The steady state response amplitude, and the minimal level
of energy for the nonoptimal values of the controller natural frequency and damping
parameters are shown in Figure 5.9b. Figure 5.9a shows the response of the system
for the optimal values of the controller. It is apparent from these plots that the
modulation of energy between the plant and the controller takes 3 seconds. After
energies transfered from the physical system to the auxiliary system the amplitude

of vibration shows an 80% reduction in comparison to the uncontrolled case.

With further improvement of the LCC method, a subsequent control technique
can be implemented to increase the rate of energy modulation and to decrease the
final energy level of the plant. The principle of the imp.roved controller is based
on introducing a disable time for the controller. In the energy exchange between
oscillators, there exist periods of time when the virtual controller is importing extra
energy to the plant. One alternative to avoid such a phenomena is to monitor the
level of the pseudo-energy in either the plant or the controller [44]. When the energy

in one of these coordinates passes a local extreme, the plant and the controller are
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decoupled (“disable time”).
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Figure 5.1: Plate in the experimental set-up
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Figure 5.2: Boundary condition in the experimental set-up
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Chapter 6

Conclusion and Summary of the

Research

The mathematical modelling of a plate with collocated piezoelectric actuators/sensors
to be used for free and forced vibration control purposes is presented. For the anal-
ysis of plate flexural vibration, the basic theory of piezoelectricity, Mindlin plate
theory and Poisson-Kirchoff theory are described. Then a mathematical model of
the flexible structure is developed by considering the interaction between a typical
piezoelectric actuator and the plate. In the finite element formulation the classical
theory requires C! finite element interpolation functions which, in comparison with
the C° finite element interpolation requirement for the Mindlin theory, is much
more complicated. Ia‘or this reason, we turn away from the Poisson-Kirchoff type
of elements to elements based on theories which require C° continuity. However in
analytical formulations we will use the classical theory to analyze the plate vibra-
tions due to its simplicity.

A finite element formulation of plate elements with thin piezoelectric layers bonded
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to the surface as actuators/sensors is formulated in the form of the well known
equations of structural dynamics. In this formulation, the Mindlin plate theory
is utilized. By applying the Mindlin theory along with an appropriate choice of
basis functions, the formulation can be used over a wide range of plate thicknesses,
while avoiding shear locking, but still giving excellent accuracy and convergence
characteristics. In order to show that the formulation can analyze different range
of plate thicknesses, a series of tests on square plates under variety of static loading
and boundary conditions were performed. The comparison of the computed solu-
tion and the exact thin plate solution shows a good agreement. To validate the
mass matrix, the finite element modes of vibration are compared with analytical
solutions. In this comparison vibration of a simply supported and cantilever plate
is considered. Two compared cases confirmed the model. The frequency response
functions of the finite element model for simply supported and clamped plate is
plotted. This prediction will be used for a comparison of experimental and theo-
retical modes of vibration and also can be utilize to adjust the theoretical modal

properties.

Following the development of the Kirchoff plate equations one finds that the
order of the governing equations derived by neglecting transverse shearing defor-
mations permits only two of the three obvious force conditions to be enforced at a
free edge. Since the problem of the plate vibrations deals mainly with thin plates,
this shortcoming appears to be largely academic and the elementary plate theory is
adequate. So, the classical plate theory has been considered to develop the mathe-
matical model of the system. The plate characteristic functions have been used to

study the plate vibrations analytically.

The separation of variables and Fourier expansion coupled with Navier’s method

is used to optimize size of piezoelectric actuators, the actuation voltage, and ap-
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propriate location of the sensors,

In order to work with a finite dimensional model and ignoring some of the
feedback paths in the physical system a quadratic control objective have been in-
troduced. The number of modes required in the plate model to guarantee that the

error in the objective function is smaller than a specified error have been derived.

Toward the goal of establishing a control strategy for research in distributed
actuators, a control law to quantify the characteristic of the controlled system was
implemented. To investigate the performance of the control method, a laminated
simply supported plate and the controller have been numerically simulated. A
prototype active simply supported plate was built and tested. In this work the
overall effectiveness of two different strategies for vibration suppression were exam-
ined. Initially an LQ controller was employed to control a simply supported plate.
The use of this strategy assisted in solving problems associated with the control
of the plate. The results were also used to estimate the effectiveness of the other
controller strategy. Examination of the LCC strategy indicated that the results
were not generally improved as compared to an LQ controller. However the LCC
method can be further improved by monitoring the energy of the plant as a criteria
to connect/disconnect the link between the parameter of plant with the controller.
In this method the rate of energy modulation between plant and controller can
be increased compa.fed to the LCC method, and the steady state controlled value
can be achieved in shorter time [44]. The LCC controller can be enhanced by au-
tomating the parameter setting, that is frequency, damping, initial condition, and
disable time are made to be self-tuning. As well the application of Modal Coupling
Control (MCC) to vibration control of the oscillatory system can be studied [78].
This method is based on transferring the oscillatory energy from the plant to an
auxiliary second order system (controller), coupled to the plant through nonlinear
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terms.




Appendix A

Computer program

A computer program, which is written in Matlab environment performs the steps
shown in Figure A.l. The main program consist of 9 subroutines DATAF.m,
STIFF.m, MKQ.m, EIGV.m, EIGV1.m, PERDIS.m, FRF.m, ZDRAW.m, and
RESP.m. The listing of the program is included in appendix A and contains numes-
ous comment statements to explain various subroutine operations. To give insight

into the program a brief description is given in the following.

A.1 Subroutine DATAF.m

The nodal data is generated by the subroutine DATAF.m called by the main pro-
gram. A nodal point is described by the global and local node number, a boundary
condition code, the global and local nodal coordinates. Nodal data globally and
locally is specified in the Cartesian system. All the nodal point data retain in the
DATA . mat file.
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A.2 Subroutine STIFF.m and MKQ.m

This subroutine reads the DATA.mat file, and for each element of the plate takes
the local nodal data into the MKQ.m subroutine. MKQ.m subroutine uses the
nodal data and nodal properties to evaluate the local Mass, Damping, and Stiffness
matrices. This local modal properties brought back into the STIFF.m subroutine.
STIFF.m subroutine assembles all local Mass, damping, and Stiffness matrices, and
generates the global Mass, damping, and Stiffness matrices.

A.3 Subroutine EIGV.m and PERDIS.m

EIGV.m subroutine calls in STIFF.m. This subroutine for incremental thickness
takes the global mass, damping, and Stiff.m matrices applies the boundary condi-
tions required. This subroutine also create force vectors, which two force vectors
are considered, point load in a middle of the plate force vector, and uniform load
on the plate force vector. In the following this subroutine solves two static cases
and evaluate the deflection of the center point. The deflection of the center point is
also calculated through an analytical method and the result will compare with the
finite element results to find the percentage of the error. In the end PERERR.m
subroutine will call to plot the percentage of the error for incremental thickness.

A.4 Subroutine EIGV1.m, FRF.m, and ZDRAW.m

This subroutine is also calls in STIFF.m. Initially this subroutine applies the
required boundary conditions to the plate’s modal properties, and later evaluate the

eigen values and eigen vectors of the system. This subroutine also calls two other
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subroutines FRF.m and ZDRAW.m. The FRF.m subroutine plot the frequency
response function curve and ZDRAW.m subroutine draws the mode shape of the
plate.

A.5 Subroutine RESP.m

This routine present the transient and forced response of the plate. The global
modal matrices calculated in STIFF.m is passed into this subroutine, and by using
the direct integration method the response of the plate is evaluated. This subroutine
also graphically demonstrates the transient and the forced response of the plate.
In this simulation two cases are considered, first the responses of the plate without
interaction of the piezoelectric and second the responses of the plate with effect of

the attached piezoelectrics.
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PROGRAM

DATAF.m

Create global & local coordinates J

I
[ Creste giobal & local nodal numbers |
[ Identify the constrained node nmnbmJ

STIFF.m

t Read data file (DATA.mat) |

Take the local & global coordinate of each element |

[Create global Mass, Stiffness, and damping Matrices ]—l

MKQ.m EIGV.m
[Create local Mass, Stiffaess, and damping Matrices | Create the force vectors |
| Saive for static load with varing thickness |
EIGVLm | Compare the results with anlytical solution ]
[ Find eigen values & eigen vectors J
[ Compare aalytical solution & FEM results j PERDIS.m

IPlot %errar between computed and exact nolutiorﬂ

ZDRAW.m FRF.m

RESP.m

[ Plot mode shapes | [ Plot FRF curves |

[ Plot the transient response of the plate B

L Plot the force response of the plate J

Figure A.1: Flow chart for plate vibration analysis
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A.6 DATAF.m

Y This program only get 2 edges of plate as the simply supported boundary conditions.

% File name is DATAF.a
% node number of applied constraias

L LI=0.4963;
% LY=0.5715;
LAEx=3;
{IEy=3;
LX=0.4;
LY=0.6;
EEkx=1;
Ky=1;
(X,Y]>meshgrid(0:LX/(3+8Ex) :LX,0:LY/(3¢NEx) :LY);
t=1; % Indicate the element number
for m=1:1IXy
for n=1:§Ex
P=y;
for i=1:4
for j=1:4
ax(s, (i-1)e4+j)=X(i+(m-1)03, j+(n-1)e3);
Gy (e, (i-1)e4+j)=Y(i+(m-1)+3, j+(n-1)3);
Laod(t,(i-1)s4+§)=P;
Pup+y;
end
ead
sl
end
ond
h=i;
for m=1:NEye3+1
for a=1:FExe3+1
nod(m,n)=h;
h=h+y;
end
ond
Tan=h-1; ) % Total number of nodes

t=1;
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Bmy;
for i=1:FRysS+1 % This part the Boundary condition and save the nede
for j=1:FExeS+i
if (imwy | imwgqrt(Tan))
Bond(B)=ned(i,3);
BaB+1;
end
if (i°=1 & i“=sqrt(Tan))
if (ju=1 | j==gqre¢(Tan))
Bond(B)=nod(i,j);
BaBét;
ond
end
ond
end
¥B=B-1;
for i=1:3:KKye3
for j=1:3:5Exe3
Gnod(t,1:4)™nod(i,j:j*+8);
Gnod(t,5:8)=nod (i+1,j:J+3);
Gnod(t,9:12)wnod(i+2,j:j+3);
Gnod(t,13:18)™od(i+3,§:J+3);
L 32
ead
ond
save DATA4esimel Gx Gy Lnod Gnod ¥B Bond Tan X Y NEx NEy LX LY ned

A.7 STIFF.m

X This file is STIFF.m.
% This program create the stiffness matrix, mass matrix and

loed DATA2esimé
% load DATA2eclad
Inod=Tan;

% FEx=1; ¥ Number of elements in X directien
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X NEysy; % Number of elements in Y direction
% LI=0.4963; % Length of plate in X direction m
%L LY=0,.5715;

¥ $8m0.816¢-3; %X Thickness of substructure m
ta=0.0;

fta=0.1¢-3; % Thickness of actuator m

% Es=70K9; % elastic modulus of aluminum Pa
Ka=0.0;

Ks=1e7;

XRa=8E10; % Elastic modulus of PZT

d3i=-~1, 15K-10; % PZT consta
rhos=2710; % Density of aluminum kg/m-3

thoa=0.0;

Xrhoa=7.6K3; % Density of PZT

nus=0.3; X Poisson ratio of substracture
nua=0,0;

%nua=0.26; %X Poisson ratio of PZT

€lobal FEx FKy LX LY Enode ts ta Ks Ea d31 rhos rhoa nus nua &g delta LogLh Bond Tan Bc Co ned;
8tep=0.0001;
% for isi:NExsEBy X ac is an indicator for existence of actuator Lero means no
% ac(i)=0; L actuator and one means actuator
X end

acm0,0;

pl=1;
LogLh1=2;
ts=1.01e-6;
while(LogLh1>1.5 & LogLhi<7 )
for i=1:Fnode3s
for j=1:Enode3
aK(i,§)=0.0; % This is making the the global stiffness matrix equal to zero
GN(i,j)=0.0; X This is making the the global mass matrixz equal to zero
end
end
% ac(i1)=1;
X ac(28)=y;
% ac(26)=y;
% as(a7)=y;
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% ac(39)=1;
for t=1:NExeIky
Ot XI=MKQ(Gx(t,:),Qy(t,:)); % This subroutin create the local stiffness matrix
for i=1:3:48
rowm(i~1)/3+1;
for j=1:3:48 X This loops laocate the local stiffness matrix {m ske gloal position
col=(§-1)/3+1;
1x=(Gnod(t,row)-1)e3+1;
ly=(Gnod(s,col)-1)e3+1;
GK(1x:1x+2,1y:1y+2)=K(i:1+2,§:§+2)+GK(1x:1x+2,1y:1y+2);
GN(1x:1x+2,1ly:1y+2)=l(i:i+2, j: J+2)+GN(1x:1x+2,1y:1y+2);
ond
end
ond
(deltai LogLhi delta2 LogLh2]=eigvsim(GK,GN);
% [deltai LogLhi delta2 LogLh2]=eigvcla(GK,GH);
41(pl,1)=Loglhi;
AL1(pl,2)=deltal;
42(pl,1)=Loglh2;
A2(pl,2)=delta2;
Pl=pl+t;
if(LogLh1<1.8)
step=0.001;
ead
12(LogLh1>2 & LogLh1<8)
step=.1;
end
if£(LogLh1>6.2)
8%ep=0.0000001 ;
ond
te=ts+step;
LogLht
deltal
delta2
end % End of the loop for different thickness

save RESUL2esimed i1 A2
X save RESUL2ecaled A1 A2
% save GNGK GR GK Enod X Y
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A.8 MKQ.m

¥ This file is RKXQ.m.

¥ This subroutin find the local Kk (Stiffness), X (Nass) and matrix for each element
% of a two dimensional C°0 problem with 18 nodes per isoparametric element.

X format short e

% load DATA

function [M,K]=NKQ{Gx,Qy)

% Gz and Gy are the global coordinates of each element and ac equal to zero means there

% is no pizoelectric on that element and as equal to one means there is an piso on the element
global ¥Ex BEy LX LY Enode ts ta Es Ra d31 rhos rhoa nus nua ac Bond Tnn

LGx=[-1 -1/8 1/3 1 -1 -1/8 1/3 1 -t -1/31/31 -1 -1/3 1/3 1];
%Gy=[-1 -2 -t -1 -1/3-1/3 -1/3 -1/3 1/31/31/331/81 1 1 1];

% ac=0;

% t3=0.816¢-3;
%X ta=0.0;

% rhos=2710;
% rhoa=0;

% Es=70X9;

X nus=0.3;

01=0.88113831159406;
02=0,33998104358486;
wim0.34785484513745;
¥2=0.65214515486265;

% x & y are coordinate of the quadrature points

x=[-01 =02 +62 +el -el -02 +e2 +el -el -02 +e2 +el -l =-e2 +e2 +eill;

y=[-01 -1 -0l =01 -¢2 -02 -02 =02 +e2 +e2 +e2 +e2 +el +el +el +ell;

%L ¥ is the veighting factors for quadrature points
U=[viewl w2evwi viewl wiewl...

visw2 v2sw2 wlew2 wiewl...
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wiew2 viev? w2ew2 wievw2...
viswl wiewl w2ewl viewi];

I=f1 1111112111121 1];

X EP can be changed to increase or decrease number of quadrature points
EP=16;

%X P(m,k) is she value of shape functions of each point at quadrature points
%X m=1..16 indicate it is the shape furction of the m node at quadrature point Xk

P(1,1)m(~9.0x."349, ¢x,.“24x-1) . 6(-9. oy, “349. ¢y, “2+y-1) .+(1/266) ;
P(2,:)m(+3.0x.°3-x."2-3.sx+1) . 6 (=9, oy, “349. oy, “2+y-1) .+(9/268) ;
P(S,:)m(-8.ex.°3-x."2+3.ex+1) . (-0.sy. "349. sy, “2+y-1) .+(9/266) ;
P(4,:)m(+9.0x.°349. ox.“2-2-1) . ¢ (-0. oy, "9, oy, “2+y-1) .¢(1/258) ;

P(5,:)=(~9.ex. 349 .0x. “2+4x-1) . #(+3. 8y, "S-y, “2-3.0y+1) . ¢(9/256);
P(8,:)=(+8.0x.°3~x,2-3.9x+1) .o (+3, 0y, “3-y, "2-3.0y+1) .¢(81/266) ;
P(7,:)m(-8.9x.°3-x."2+43.ex+1) .#(+3.90y,“3-y,.~2~-3.ey+1) .¢(81/266);
P(8,:)=(+9, .0x,"3+9.9x."2-x-1) .#(+3.9y."3-y. “2-3,.sy+1) .+(9/266);
P(9,:)=(-9.0x.°3+9. ex."24x~1) .¢(-8. 0y, “3-y. " 243 .0y+1) .¢(9/266) ;
P(10,:)m(+3.9x,.~3~x."2-3.ex+1) .¢(~3. 9y, “3-y.~2+3.sy+1) .(81/266) ;
P(11,:)m(~3.0x."3-x."243.ex+1) .6 (-3 .0y."3-y."2+8.sy+1) . (81/256) ;
P(12,:)=(+9.0x. 349 8x."2-x~1) .8 (-3.9y. “3-y. ~2+3.ey+1) . +(9/266) ;

P(18,:)8(-9.0x. " 340.0x."2+4x-1) .6 (+9.4y. "3+9.¢y. “2-y-1) .+(1/266) ;
P(14,:)=(+3.0x.°3-x."2-8.sx+1) .8 (+9.9y. "349 o7, “2-7y-1) . #(9/258) ;
P(15,:)8(-3.¢x.°3-x.°2¢3, ex+1) .o (+9. oy, “3+49, ¢y, “2-y-1) . #(9/258) ;
P16, :)m(+9.¢x. " 349 . 0x.°2-x-1) .+ (+0.¢y. “349. 0y, “2-y-1) .¢(1/266) ;

% q=(1 569 1326 101437 11 16 4 8 12 16];
Xa=(159 1314 16 16 12 84 3 2 6 10 11 7];

%X P(m,k) is the velue of derivative of shape functions in seta (or x) direction for each
¥ quadrature point m=17..32 indicate it is the derivative of shape funoction in zeta direction
%X m=17..32 respond to 1..16 and k indicate the quadrature points
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P(17,1)=(-27.9x. 2418 . ex+1) .0 (9. 9y. “S+0.oy. “2+y-1) . ¢(1/266);
P(18,:)m(+9.9x.2-2.9x-8) .¢(-9.0y. 349 .oy, ~24y-1) .¢(9/266) ;
P(19,1)=(~9.9x.°2-2.9x+8) .2 (~9.0y. 349 .0y, ~24y-1) . ¢(9/256) ;
P(20,:)=(+27.0x.°2+18.0x-1) .9 (-D.ey."349.4y. “2+y-1) . ¢(1/266) ;

P(21,:)=(-27.0x. 2418 .ex+1) .o (+3. 0y, "3~y “2-3.07+1).¢(9/266) ;
P(22,:)=(+9.9x.72-2.¢x-3) .5(+8.0y."3-y.~2-8.ey+1) . ¢(81/268);
P(23,:)=(~9.ex.“2-2.0x+3) .¢(+8.0y,. "3~y ,“2-8 . ¢y+1) .¢(81/266);
P(24,:)=(+27.9x.°2418.ex-1) . ¢ (+3. ¢y, . “3~-y.~2-3.sy+1).4(9/256);

P(36,:)=(-27.0x.“2+18.¢x+1) .4 (-3 .oy, "S-y, ~2+3. sy+1) . ¢(9/266) ;
P(26,:)=(+9.9x.72-2,.0x-8) .o(-3.0y.“3-y.“2+3,.¢y+1) .+(81/266);
P(27,:)=(-9.9x.°2-2.0x+8) .¢(-8.0y.“3-y.2¢3,0y+1) .(81/266);
P(38,:)m(+27.ex.~2+418.0x-1) .¢ (-3, oy, ~3-y. "2+3,sy+1) . «(9/268) ;

P(29,:)=(-2T7.6x.°2418. ex+1) . ¢ (+9.9y."3+9.0y. "2-y-1).9(1/266) ;
P(30,:)m(+9.0x,°2-2.0x-8) .0 (+@.9y. 349 oy, “2-y-1) . +(9/266) ;
P(31,:)m(-9.0x.°2-2.0x+3) .¢(+9.0y. 349 sy . “2-y-1) .+(9/266) ;
P(32,:)=(+27.9x.°2+18.9x-1) .0 (+9. 0y, 349 0y, “2-y-1).¢(1/268) ;

% P(m,k) is the value of derivative of shape functions in eta (or y) direction for
% quadrature point m=33..48 respond to points 1..16 indicate it is the derivative of shape

% and k indicate the quadrature points

P(33,:)m(-9.0x,°3+9.0x.2+x~1) . (~27.0y.~2+18.9y+1) .+ (1/268) ;
P(34,:)m(+8.9x."3-x.72-3.9x+1) .6 (~27.0y.“2+18.sy+1) .+ (9/266) ;
P(35,:)=(-8,9x,.°3-x."2+3.0ex+1) . ¢ (-27 .0y, 2+18.9y+1) .+ (9/266) ;
P(36,:)=(+9.9x."3+9 .8x.2-x-1) .8 (-27.0y."2+18.0y+1) . ¢(1/266) ;

P(87,:)=(-9.¢x, 348 .0x."24x~1) .0 (+9. 0y, “2-2,3y-3) .2(9/256) ;
P(38,:)m(48.0x,.°3-x.°2-8 ., ex+1) .6 (+9.9y.“2-2.0y-3) .(81/266);
P(39,:)=(-8.0x2.°3-x.°2+3 . ox+1) . ¢ (+9.9y."2-2.9y-8) .¢(81/266);
P(40,:)=(+9.2x,. " 349 .9x."2-x~1) . s (+0.9y."2-2,9y-3) .¢(9/268) ;

P(41,:)=(~9.0x. “3+9.0x."24x-1) . ¢ (-9, ¢y. "2-2.0y+3) .+ (9/266) ;
P(42,1)a(+3.0x."3-x."2-8. ox+1) .o (~8.0y.“2-2. ¢y+3) . +(81/266);
P(43,:)m(-3,0x.°3-x. 243, sx+1) .8 (9. ¢y, ~2-2. ¢y+3) . ¢(81/266);
P(44,:1)=(+9.0x. " 349 . 0x. 2-x-1) .o (~B.0y."2-2, ¢y+3) .+(9/258) ;
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P(46,:)=(-9.0x.3+9.0x."24x-1) .#(+27.9y.°2¢18. 0y-1) .+ (1/266) ;
P(46,:)=(+3,0x.“3-x."2-3.9x+1) .8 (+27.9y.“2+18.0y-1) .¢(9/256) ;
P(AT,:)=(-8.8x.“3~x.~2+3,6x+1) .0 (+27.+y. "2+18.¢y-1) . ¢(9/266) ;
P(48,:)=(+9.8x.°3+9.0x.2-x-1) .¢ (+27 .9y .“2+18.+y-1).¢(1/266) ;

% J11, 312, J21 and J22 are each member of Jacebian.

J11=GxeP(17:32,:);
J12=GyeP(17:32,:);
J21=GxeP(33:48,:);
J22=Gy*P(33:48,:);

for i=1:8P % ¥P is the number of quadrature points
Jaco(i)sdet(LI11(4),J12¢di);J21(4),J22(4)]); ¥ Jaco(i) is the value of Jacobian at each
end % quadrature point

for i=1:6
for j=1:8
D(1,j)=0; %Y D is the constant value in stiffness matri$
ead
ond

i2(ac==0) Y if there is no actuator on the element all$
Ra=0; % PZT constants will be zere

ta=0;

aua=0;

rhoa=0;

end

D(1,1)=(ts"3)/12¢(Es/(1-aus~2)-Ea/(1-nua~2))+2eBa/ (3¢ (1-nua“2))*(ts/2+%)"3;
D(2,2)=D(1,1);

D(1,2)=(ts~3)/12¢(aus*Es/ (1-nus"2)-nuasEa/(1-nua*2))+2¢nuaska/(3¢(1-a0a"2) )+ (ts/2+ta) °3;
D(2,1)=D(1,2);

D(S,3)=ts~3/24%(Es/ (1+nus)-Ba/(1+nua) ) +Ea/ (35 (1+nua) ) ¢(ts/2+ta) °3;
D(4,4)=Es/(1+nus)*ts/2+Easta/(1+nua);

D(5,56)=D(4,4);

for is=s1:48
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for j=1:48
K(i,3)=0;
R(4,3§)=0;
Qd, jI=0;
ond
end

for a=1:5P
for i=1:§
for j=1:48
B(i,§)=0;
end
end
L=1;
for k=1:16

% stifness matrix
% mass matrix

% actuator forcing matrix

X EP is the number of quadrature points
%X Loop over the strains
% loop over the element d.0.f.

% initialisze the strain-displacement relation

X begin 4th row of B

Y loep over the nodes

B(4,L)=-(P(16+k,n) .¢J21(n)./(-Jaco (m) )+P(32+k,n) .*J1i(m) ./ Jaco(m));

L=L+3;
end

L=1;

for k=1:16

% step to the next node

% start rov 5 of B

B(5,L)=-(P(16+k,mn).+J22(n)./Jacao(n)+P(32¢k,m).*J12(n)./(~Jaco(m)));

L=L+3;
end

L=2;

for k=1:16

% step to the next node

% start rov i of B column 2

B(1,L)=(P(16+k,m) .#J22(m) ./ Jaco (m)+P(32+k,n) .#J12(n}./(~Jace(m)));

L=L+3;
end

L=2:

for k=1:16

% start rov 3 of B column 2

B(3,L)=(P(16+k,m) .#J21(m) ./ (~Jaca(m) )+P(32+k,n) .¢J11(m) ./Jaco(m));

L=L+3;
end

L=2;

for k=1:16

B(5,L)=P(k,m);

L=L+3;
end

L=3;

for k=1:16

Ystart row 6 of B column 2

% start rov 2 of B column S
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B(2,L)=(P(16+k,m) .¢J21 (n) ./ (-Jaco(m) )+P(32+k,m) .¢J11(m) ./Jace(m));
LeL+3;
end
L=3; % start rov 3 of B column 3
for k=1:16
B(3,L)=(P(16+k,m).*J22(n)./Jaco (m)+P(324k,m).¢J12(m)./(-Jace(m)));
L=L+S;
end
L=3; % start rov 4 of B column 3
for k=1:16;
B(4,L)=P(k,m);
LsL+S;
ond

K=K+B’eDeBeJaco(m)s¥(m); % form K by adding over she quadrature points

ond

for i=1:3 % initialise the basis functions
for j=1:48
phi(4,§)=0.0;
end

ond

% rho effective should calculated here

T(1,1)=2¢zhos*(ts/2)+2saceThoarta;
T(2,2)=2/3s(rhoss(ts/2) “3+acesrhoas((ts/2+ta) “3-(t8/2)°3));
T(3,3)=2/3+(choss(ts/2) “3+acerhoas((ts/2+ta) “3-(t8/2)"8));

for i=1:48
for j=1:48
K(i,3)=0;
end
end

for u=1:IP % This loop calculate the mass matrix

for i=1:16
phi(1,(i-1)e8+1)=P(i,m); ¥ rov
phi(2,(i-1)e3+2)sP(i,m); % zow 2
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phi(8,(i-1)e3+3)sP(i,m); % zov 3
end

NeoK+phi’eTephieJaco(m)e¥Wim);
end

A9 EIGV.m

function [deltai,LogLhi,delta2,Loglh2]=eigvsini (GK,GN)
% This program find the eigen values and eigen vectors

global FEx FEy LX LY Fnode ts ta Es Ea 431 rhos rhoa nus nua ac delta Loglh Bond Tan Bc Co nod;
k=1;
SI=gise(Bond);
for i=1:Tan
i£(i°=Bond)
TBo(k)=i;
ke=k+l;
ond
end
1=q;
q=1;
siisgize(Bond);
si2ssise(NBe);
for i=1:Tan
for j=1:811(2)
if(any(i==Bond(§}))
i2(any(Bond (j)==mnod(1,1:sqrt(Tan)-1)) | any(Bond(j)=mmod(1:sqrt(Tan)-1,1)))
Be(1l)=(i~1)e3+2;
Bo(1+41)=(i-1)e3+3; Y Bc is the C & 1 in global coord. without any constrains
1=1+2;
end
if(any(Bond(j)==nod(sqrt(Tan),2:sqrt(Tan)-1)) )
Bo(1)=(i-1)e3+1;
eo(q)=1;
q=q*i;
Bo(le¢1)m(i-1)e3+2;
1=1+2;
end
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i£(any(Bond(j)=mod(2:sqre (Tan)-1,sqet(Tan))))
Bo(l)=(i-1)e3+4;
co(q)=1;
=qtii
Ba(l+1)m(i-1)e3+43;
1=1+42;
ond
i£(Bond(j)»=nod(sqrs(Toa),sqre(Tan)))
Bo(l)=(i-1)e3+1;
co(q)=1;
q=qtig
lmley;
end
if(Bond(j)==nod(sqrt(Tan),1))
Be(l)=(i-1)e3+2;
-1-1#1;
ond
i£(Bond (j)=mod(1,sqrt(Tan)))
Bo(1)=(i~1)e3+3;
1=1+41;
end
end
end
if(al1(i-=Bond))
Be(l)=(i-1)e3+1;
co(q)=l;
q=q*1;
Bo(l+1)=(i-1)e3+2;
Bo(1+2)=(i-1)e3+8;
1=1+3;
ead
end

DGK=GK(Bc,Bs);

DGA=GN(Bc,Ba) ;

DGK=(DGK+DGK’)/2;

DGN=(DGN+DGN’)/2;

% This prepare the point load force;

Simgize(Be);
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for i=1:31(2)
Porce1(i,1)=0;
if2(i==(81(2)))
Forcel(i,1)=25;
ond
ond

% This prepare the distributed load force;

for i=1:8i(2)
Force2(i,1)m=0;

ond

Sicomsize(co);

stmaqrt(Sice(2));

for im1:8ic0(2)-st
Force2(co(i),1)=100#(LX/(3¢NEx))e(LY/(3+¥Ey));

end

for imst:st:Sico(2)-1
Porce2(co(i),1)=100¢(LX/(3sNEx) )s(LY/(3+EBy))/2;

end

Porce2(ce (Sico(2)),1)=100¢(LX/(3¢8Ex))s(LY/(3+KBy))/4;

for im8ico(2)-st+1:3ic0(2)-¢
Force2(co(i),1)=100e(LX/(3eNEx))s(LY/(3+8Ey))/2;

ond

Z1i=DGK\Forcel;
Z2=DGK\Forcel;
Z1=Z1(00,1);
22=22(c0,1);
Vimax=0.0;
for m={:10
for a=1:10

Vimar=Vimax+((sin(mepi/32))“2¢(sin(n*pi/2))~2)/(((m/(26LX))~2+(n/(2¢LY))}"2)"2);

end
end

def=gize(co);
DD=(Es*ts~3)/(12¢(1-nus"2));
'1-.:-“1.-:04‘100/(pi'itztﬂltz‘LY‘DD):
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deltai=(Z1(de£(2))-Vimax)/Vimaxe100;
LogLhi=10g10(2eLX/%8);
V¥2max=0.0;
for a=1:10
for n=1:10
UZmax=¥2nax+(sin(mepis2eLY/(292eLY))) "3 (sin(nepis2eLY/(2#20LX)))"3/...
(mene((m/(2oLY) ) ~2+(n/(20LX))"2)"2);
end
end
V2max=W2max*16+100/ (DDespi“-8);
deltal=(22(d:2(2))-Vimax) /V2maxs100;
LogLh2=10g10(2sLX/ts) ;

A.10 EIGVl1i.m

function [u,v,00,vil,vi2,vli,v22]=eigvsini (GK,GN)
% This progrem find the eigen values and eigen vestors

global FEx NEy LX LY Enode ts ta Es Ea d31 rhos rhoa nus nua ac delta Loglh Boad Tan Bec Co ned;
k=1;
SI=size(Bond);
for i=1:Tan
i£(i-=Bond)
FBo(Xx)=41;
kuk+i;
end
ond
i=g;
q=1;
sii=sise(Bond);
sil=size(NBe);
for i=1:Tan
for j=1:8i1(2)
if(any(i==Bond(j§)))
i#(any(Bond(j)==nod(1,1:8qrt(Tnn))) | any(Bond(j)==nod(2:sqrt(Tan)-1,1))...
| any(Bend(j)=mod(sqrt(Tnn),1:sqzt(Tan))) | any(Bond(j)==mod(2:sqrt(Ton)~1,sqr¢(Tan))));
Be(1)=(1i-1)*3+2;
Bo(l+1)=(i-1)e3+3; { Bo is the C & R in global coord. vithout any constrains
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1=1+42;
ond

end

ond

i£(al1(i“=Bond))
Bo(1)=(i-1)e3+1;
co(q)=l;
q=q*l;
Ba(l+1)=(i-1)s8+2;
Bo(1+2)=(i-1)93+3;
1=1+3;

ond

end

DGK=GK (Bc,Ba) ;
DGR=GK(Bc,Bc);
DGK=(DGK+DGK’)/2;
DGH=(DGN+DGN*)/2;

(u,v]=eig(DAK,DGN);
usreal(n);
vareal(y);
v=diag(y);
v=gqrt(v)/(2epi);

DD=(Esets~3)/(12¢(1-nus"2));

wil=pi~2e((1/1LX)~2+(1/LY) “2)#sqrs(DD/(rhosets))/(2epi);
v12wpi~2¢((1/LX) “2+(2/LY) ~2) ssqre(DD/(rhosets) ) /(2epi);
w21wpi-2¢((2/LX) 2+ (1/LY)“2)esqrt (DD/ (chossts))/(29pi);
922w=pi-2¢((2/LX) “2+(2/LY)“2)*sqrt (DD/(rhosets))/(2¢pi);

A.11 PERDIS.m

load RESUL2ecall
clapi=il;
cladi=A2;
clear AtL;

clear A2;
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load RESUL2ecale4d
clap4=41;
cladd=A2;

clear Al;

clear A2;

load RESUL2esimi
simpi=AL;
simdi=A2;

clear Al;

clear A2;

load RESUL2esimed
simp4=Ai;
sindd=A2;

clear Af;

clear A2;

subplot(211),plot(simpt(:,1),simp1(:,2),’~’ ,clap1(:,1) ,clep1(:,2),'~7,...
simpa(:,1),simpa(:,2), "=, clapd(:,1),clapt(:,2),7=");
subpleot(211),xlabel(’Log(L/t)’);

subplot(211),ylabel('Percentage of Error’)
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subplot(211),title(’Percentage of disegreement betveen computed and exact solution’);

subplot(211),grid;

subplot(212) ,plot(simdi(:,1),sind1(: ,2),7=-?,clad1(:,1),clad2(:,2),-2,...
simd4(:,1) ,simd4(z,2),7~-?,clad4(:,1),clad4(:,2),’-");

subplot(212) ,xlabel (’Log(L/¢)’);

subplot(212),ylabel(’Percentage of Error’)

subplot(212),title(’Percentage of disagreement betveen computed and exact solutien’);

subplot(212),grid;
subplot(211),held;

subplot(211),plot(1,30,1,-30);
subplot(211),text(1,-22.0,’
subplot(211),text(1,-26.0,’
subplot(211),text(2.5,3.6,’4
subplot(211),text(4.2,7.5,71
subplot(313),text(1,-22.0,’
subplot(212),text(1,-26.0,’
subplot(212),text(2.5,3.5,'¢
subplot(212) ,%ext(4.2,7.5,’1

subplos(212),hold;

subplot(212),plot(1,30,1,-30);

---- Simply supported boundary condition’)
--~= Clamped boundary conditicn’)
elements’);

elements’);

---- Simply supported boundary cendition?’)
==-= Clamped boundary coadition’)
elements’);

elements’);
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A.12 ZDRAW.m

Tan=190;

IEx=6;

Ry=3;

load RESUL4eclamp3C.mat
modi=180;

nod2=179;

mnod3=178;

nod4=177;

for i=1:NEyeS+1
for j=1:FExs3+1
21(1,3)=0.0;
22(4,5)=0.0;
23(i,j)=0.0;
74(4,j)=0.0;
end
ond
sz1=u(co,modl);
z32"u(co,mo0d2);
ss3=u(co,mods);
ss4%u(co,mod4);

p=1;
for i=1:NEye3+i
for j=2:TExe3+1
21(4,j)=xs1(p);
22(4,j)=s32(p);
23(4,3)=ss3(p);
24(4, j)==z4(p);
PPty
end
end
subplot(221),sure(Zl);
subplot(221),title(’a’);
subplot(221),hold;
subplot(221),plot8(0,0,0.02);
subplot(222),surf(22);
subplot(222),title(’d?);
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subplot(228),surt(23);
subplot(228),title(’c’);
subplot(224),sure(Z4);
subpiot(224),title(’4?);

A.13 FRF.m

load RESUL4esimed;
load DATAdesimed;
vsuv;

us=u;

clear v u

load RESUL4eclamed;
vomv;

wcmu;

smodi»112;
smod2=113;
smod3=114;
smod4=115;
smodb=116;

cmodi»117;
cmod2=118;
caod3=121;
cmod4=120;
cmodb=119;

ael;

Y for imvs(smodi)-1:0.313:vs(smodl)+1

Y frs(n)=us(smodi, (Tnn+1)/2)eus(smodl, (Ton+1)/2)/(vs(smodl)“2-1"2);

% frs(n)=abs(frs(n))sie-6;

for i=0:0.313:30
fra(n)=1/(vs(smod1)“2-1°2);
frs(n)=abs(frs(n));
fs(n)=i;
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nenél;

eond

¥ for imvs(smod2)-1:0.06:vs(smod2)+1
Y frs(n)=us(smod2, (Tnn+1)/2)eus(smod2, (Tan+1)/2)/(vs(smod2)“2-1°2);
for i=30:0.3:50

frs(n)=1/(vs(smod2) “2-1-2);

frs(n)=abs(frs(n));

2s(n)=i;

a=m+i;

end

for iwvs(smodS)-1:0.05:vs(smods)+1
% frs(a)=us(smods, (Tan+1)/2)sus(smod3, (Tnn+1)/2)/(vs(smod3)*2-1°2);
frs(n)=t/(vs(smods) “2-1°2);
frs(n)=abs(frs(n))e.75;
2s(n)=i;
asn+sl;
ond
for imvs(smod4)=-1:0.05:vs(smod4)+1
Y f£rs(a)=us(smod4,(Tnn+1)/2)sus(smod4, (Tan+1)/2)/(vs(smod4)~2-1"2);
frs(n)=1/(vs(smod4) “2-1"2);
frs(n)=abs(frs(n))*0.6;
fs(n)=4;
nsm+i;

ond

¥ for imvs(smodE)-1:0.06:vs(smod6)+1
{ frs(n)=us(smodS,(Tnn+1)/2)eus(smod5, (Tnn+1)/2)/(vs (smodB) “2-i°2);
for i=ve(smod5)-1:0.06:100

f2rs(n)=1/(vs(smodb)“2-i"2);

2rs(n)=abs(frs(n))*0.5;

2s(n)=i;

nwn+l;

ond

subplot(211),plos(fs,fre);
sabplot(211),grid;
subplot(211),xlebel (*Frequency (Es)’);
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subplot(211),ylabel('Inertance (ms“-2/%)’);
subplot(211),title(’a?’)

n=y;
% for i=10:0.2:vo(cmodl)+1
L fro(n)=uc(emedi, (Tnn+1)/2)euc(amodi, (Tnn+1)/2)/(ve(cmodl) 2-1°2);
for 1i»0:0.2:45
fro(n)=1/(ve(cmod1) “2-1-2);
fre(n)=abs(tre(n));
fo(n)=41;
amn+l;

end

%for is45:0.06:vc(omod2)+1
{ fre(n)=uc(amed2, (Tnn+1)/2)suc(amod2, (Tan+1)/2)/(ve(cmod2) "2-1°2) ;
for 1=50:0.21:76

fre(n)=1/(vc(cmod2)“2-1°2);

fro(n)=abs(fro(n))«0.9;

fo(n)mi;

a=sp+l;

end

% for imvc(cmod3)-1:0.06:vc(cmod3)+1
Y fre(n)=uc(emeds,(Tnn+1)/2)suc(amod3, (Tan+1)/2)/(ve(cmod3)“2-12);
for i=76:0.17:84

fre(n)=1/(ve(omods) “2-42);

fro(n)=abs(frc(n))+0.76;

2o(n)=i;

=+l

end

% for iwvo(cmod4)-1:0.06:vc(cmod4)+1
% fro(n)=uc(omodd, (Tnn+1)/2)suc(amod4, (Tan+1)/2)/(vc(cmod4) “2-1°2);
for i=84:0.19:100

fre(n)=1/(ve(cmod4) “2-1°2);

2rc(n)=abs(froe(n))s.6;

fe(a)=4i;

awn+y;

ond



APPENDIX A. COMPUTER PROGRAM

subplos(212),plot(fe,fxra);
subplot(212),grid;
subplet(212),xlabel(’Frequency (Hs)’);
subplot(212),ylabel(’Inertance (ms--2/X)’);
subplot(212),title(’b?)
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Appendix B

SYSTEM DYNAMIC
RESPONSE MATRICES

[ e—€11911¢{cog(wyy t) + £11 sin(wyt)] e—3-38¢[0g(47.62¢) + .05 sin(47.62¢)]
e—€13¢13¢{cog(wy 3 t) + €12 sin(wrat)] e—5-51t{c0e(110.22¢) + .05 8in(110.22¢)]
a = =
T emtarvatcon(uway ) + €31 sin(war )] €—8-39¢[cog(127.89¢) + .05 sin(127.89¢)]
e—¢33v23¢[cog(urgat) + €32 sin(waat)] e—9-83¢(c0g(100.48¢) + .05 5in(190.48¢)]
- - - . -3.38t
9—%“" sin(wy1t) smz— sin(47.613t)
-¢1gw . —8.81¢
232 n(wnat) | _ | %5 sin(110.22¢)
813 = —¢a1w31t . = —s.a0t
& = sin(wast) 3739 in(127.89¢)
—€azwazt . -9.83¢t |
j 2 sin(w33t) %oo<s *in(190.48¢) (B.1)
wire—¢urent gin(w t) 47.62¢—3-3%¢ 4in(47.62t)
wige—€13%13¢ gin(wat) 110.22¢~5-51% 4in(110.22¢)
asz; = =
! ware~ €319t gin(wq, t) 127.89¢—%39¢ 4in(127.86¢)
waze—€33¥a3t gin(wyat) 190.48¢ 53¢ 4in(180.48t)
[ e—€uvnit{cog(wy g t) — £33 sin(wryt)] e—3-38¢{004(47.62t) — .06 5in(47.63t)]
e—€13¥13¢[coa(wy 3 t) — €13 sin(wn3t)] e—5-518[c0g(110.22¢) — .05 8in(110.22¢)]
a =
B e~€1vat{cog(wyy t) — €31 sin(way t)] e—8-39[004(127.86t) — .05 sin(127.89t)]
e—€33¥33t[cos(unat) — £33 sin(waszt)] e—9-53t[c04(190.48¢) — .05 8in(190.48t)]
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APPENDIX B. SYSTEM DYNAMIC RESPONSE MATRICES

[‘hul = Yeu

fwul =7,

where-?,u=‘/'—&-z1—. and’i.,:d;{%‘%s.

(P1=

[ sin(358) sin(FR)  ein(FE) ain(2E2L)
in(2) sin(3R)  ain(F2) sin(2fR)
(A= sin(E*) sin(2)  sin(F2)sin(}f22)
sin( ) sin(24)  sin(F)sin(* L)
sin(E8) in(P%)  sin(FE) ein(*E2)
| sin(550) sin(J2)  sin(%e) sin(2E20)
[ 1.86 000 000 0.00 000 000 0.00
132 000 1.8 000 000 000 0.0
132 000 -1.86 0.00 0.00 0.00 0.00
186 000 000 000 000 000 0.00
132 186 000 000 000 000 0.00
132 -1.86 000 000 0.00 000 0.0
[ 0.00 0.00 0.0
0.00 0.0 0.00
0.00 0.00 0.0
/‘34(,_,) 0.00 0.00 0.00
o 047 188 140
0.85 0.00 0.00
077 000 7.87
| 138 000 0.00

-~7.87

sin()ein(FE2)sin(F)  «in(E2) sin(572) sin(T2)
dn() sin(5f2) sin(2f2)  sin(FR)ein(372) sin(E2)
20in(38) sin(522) sin(P)  2ein(3f2) sin(T2) sin(F2)
| 26in(38 ) sin(522) ain(3ER)  2sin(2f82) sin(72) sin(*ER)
6n(3%) sin(3E2) sin(Pt)  sin(§EK) sin(FE2) sin(FX)
3sin(3e) sin( 72 ) si (—Lm) 2sin(2) sin( £2) i (-;3‘)
.m(.,u).m(:ga) n(4)  sin(2f4R) sin(572) sin( )
z-m(—‘*)-m("—"z) sin(2f24) z-m(—“)nn('—‘l)-m( )

sin(2752) sin( 722)
sin([82) sin(72)
sin(2752) sin( 74)
sin( 27£4) sin( 2¢)
sin(275%) sin(28)
sin( 2758 sin(74)

0.00 |
0.00
0.00
0.00
0.00
0.00 |

0.00
0.00
0.00
0.00
1.40
0.00

0.00
0.00
0.00
0.00
1.56
0.00
0.00
0.00

0.00
0.00
0.00
0.00
1.09
8.15
0.00

0.00 0.00
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(f2) sin(572) sin(RR)
sin( ) sin(F72) sin(2f01)
2sin( 275 sin( 22) sin(F4)
2sin( 2782 ) sin( 22 ) sin(2F2)

(Bz
sin( g8 ) sin( 572) sin(F4)
m(ft)-m(#) (%m)
ain(27%) sin(572) sin(F8)
2sin(2f58) sin( T2 sin(2E2)

(B.9)

sin( 25 )sin(2f2) ]
sin(2752) sin(2f22)
sin(2758 ) sin(2522)

4
(3 an2gie) |

.in(’—gft).in(’—ggx)
-in(’—ZS‘)-in(’—,'I,",‘)

0.00 -
0.00
0.00
0.00
1.09
-8.15
0.00

Ti(r)
Ta(r)
Ts(7)
Ta(r)
Ts(r)

Fr) ]

Ts(r)

(B5)
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