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Abstract

High levels of automation in manufacturing industries are leading to data sets of increasing

size and dimension. The challenge facing statisticians and field professionals is to develop

methodology to help meet this demand.

Functional data is one example of high-dimensional data characterized by observations

recorded as a function of some continuous measure, such as time. An application considered

in this thesis comes from the automotive industry. It involves a production process in which

valve seats are force-fitted by a ram into cylinder heads of automobile engines. For each

insertion, the force exerted by the ram is automatically recorded every fraction of a second

for about two and a half seconds, generating a force profile. We can think of these profiles

as individual functions of time summarized into collections of curves.

The focus of this thesis is the analysis of functional process data such as the valve seat

insertion example. A number of techniques are set forth. In the first part, two ways to

model a single curve are considered: a b-spline fit via linear regression, and a nonlinear

model based on differential equations. Each of these approaches is incorporated into a

mixed effects model for multiple curves, and multivariate process monitoring techniques

are applied to the predicted random effects in order to identify anomalous curves. In the

second part, a Bayesian hierarchical model is used to cluster low-dimensional summaries

of the curves into meaningful groups. The belief is that the clusters correspond to distinct

types of processes (e.g. various types of “good” or “faulty” assembly). New observations

can be assigned to one of these by calculating the probabilities of belonging to each cluster.

Mahalanobis distances are used to identify new observations not belonging to any of the

existing clusters. Synthetic and real data are used to validate the results.
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Chapter 1

Introduction

1.1 Overview of Functional Data Analysis

Functional data analysis (FDA) is a branch of statistics involving the study of curve data.

The field is continuously evolving, with the technological and computational advances of

the past two decades offering new ways to collect and analyze such data.

Functional data are characterized by observations that are functions of some continuous

measurement. Figure 1.1 provides an example. Here force exertions are plotted against

time for a set of five valve seats inserted by a ram into the top of a cylinder head as part

of assembling automobile engines. Other examples of functional data range from height

and weight measurements taken at different ages for the same subject, to sound patterns,

to weather conditions, to tumor size and brain activity measurements, all of which can be

plotted as curves as they are recorded over time.

The focus of this thesis is on the analysis of functional data that arise from a process

that generates curves over the span of weeks, months or years. Our goals are to monitor

the process over time, and identify possible drifts and anomalous observations. That is,

we wish to develop methodology for dealing with process curve data - ways to screen for

changes in the process, and detect patterns and/or possible outliers.

In an effort to investigate some of these ideas we consider the above-mentioned appli-

cation in automotive manufacturing. We focus on the insertion of eight valve seats into

the cylinder heads of automobile engines. A number of aspects of this particular data set

1
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Figure 1.1: Five observed force curves for the valve seat insertion example. For each curve,
observed force values are recorded by the machine at discrete time points. The smooth
lines through these points help emphasize the fact that the curves can be thought of as
functions of time.
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make the analysis challenging. A key issue complicating the problem is the absence of

any knowledge as to which of the insertions are faulty. That is, the observed functional

response is the only information available about a particular insertion. Furthermore, the

curves, observed on a fine time grid, are not aligned to ensure that the same pattern can be

seen at the same time point. Thus some form of preprocessing of the raw data must take

place before they can be analyzed. The total number of recorded observations, over 6,000,

is also large spanning 41 days in two different months with eight different recordings for

eight different valve seats. This is only a small fraction of the data generated over several

years worth of production, a typical situation for highly automated processes such as this

one.

1.2 Valve Seat Insertion Example

As the valve seat insertion data possess most of the qualities we wished to study, this is

the primary example used to illustrate most of the ideas in this thesis. To gain a better

understanding of these data, we briefly outline the basic workings of an eight-cylinder

automobile engine.

The particular engines considered in our data set are V8, which simply means that

they are V-shaped with four cylinders on each side. Fixed on top of the engine are the

two cylinder heads. The eight valves, which are located on top of each cylinder head, are

primarily made of steel. The two types of valves (four of each kind) are intake valves that

allow fuel to enter the engine chamber and exhaust valves that release combustion gases

from it. Valve seats, also made of steel, are inserted into the relatively soft aluminum

head to protect it from the valves. Since the valves continuously open and close as fuel

and gases travel in and out of the engine, it is absolutely crucial that the valve seats are

securely attached to the cylinder heads so as to maintain a tight seal. If the valve seat is

not securely locked into place during the engine assembly process, the part can eventually

fall into the engine or become loose enough to cause leakage around the seat. Both are

catastrophic failures.

Figures 1.2 and 1.3 help visualize the process of valve seat insertion. The four valve

seats for each type of valve (intake and exhaust) are inserted simultaneously. For each
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Figure 1.2: Cylinder head of an eight-valve engine as viewed from the top (right) and the
bottom (left).

insertion, a machine automatically records the distance traveled by the ram as well as its

exerted force every 400th of a second for about 2.5 seconds.

In this example, data were collected for a total of 6,000 eight-cylinder engines over

the span of 41 days throughout January and February 2000. We can think of the data

as a series of 6,000 curves (or functions) of either force against time or distance against

time. Figure 1.4 provides a closer look at one such observation (run #000740) recorded

on February 21st. The data in the plot have been truncated at both ends of the insertion

process, removing the flat and generally uninformative tails of the curves.

In Figure 1.4, the distance curve is much less informative than the force curve. From the

force curve we can see that the point of impact between the ram and the valve seat must

have occurred roughly around 1.49 seconds, at which time the exerted force drastically

increased to adjust for resistance. In the distance curve, the same can be inferred from a

small bump in the curve at the same time. The distance curve is predominantly a steadily

increasing straight line. This is because the ram is designed to move at a constant velocity

with the force exertion adjusted accordingly.

A possible alternative to analyzing the force-time curve would be to consider the first

difference of force against time, however in that case our results become considerably more

difficult to interpret.
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Figure 1.3: Cylinder head of an eight valve engine as viewed from the top.
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Figure 1.4: A recording from a single insertion in terms of distance against time (top) and
force against time (bottom). The data were observed on February 21st (run #00740).
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1.3 Goals and Techniques

In the valve seat insertion example, we seek ways to differentiate between curves that

are “in-control” in a sense that the valve is inserted properly and all the possible “out-

of-control” curves, where the insertion is somehow unusual. We wish to find anomalous

features in the curves, which would indicate which valve seats have not been inserted

properly. We also hope to screen for possible changes in the insertion process as production

progresses over time. In general however, our goal is to develop statistical methodology

for dealing with functional process data - ways of extracting low-dimensional summaries

from it, monitoring the process, detecting patterns, changes and possible outliers, and

incorporating information about potentially multiple sources of systematic effects (e.g.,

eight valve seats inserted on the same head).

This thesis develops a number of techniques to achieve these goals. These can be divided

into three general categories listed below.

• Preliminaries.

A unique attribute of functional observations is the need to align them prior to the

analysis. This preprocessing step is called curve registration, and it ensures that

important parts of the curve (e.g., the start and end of the insertion process) occur

at roughly the same time, making the curves comparable. In this thesis, we describe

a curve registration algorithm for force exertion data. Other general issues pertaining

to functional data, such as exploratory analysis, are also considered.

• Profile monitoring.

Profile monitoring is a functional extension of process monitoring, a statistical tool

for detecting anomalous observations during an ongoing process. Conventional meth-

ods for monitoring multivariate data involve calculating Hotelling T 2 statistics as

measures of discrepancy between the data and their expected value, scaled by the

covariance. Thus, observations that correspond to significantly high values of this

test statistic are flagged as unusual.

One functional alternative to the multivariate approach is to monitor low-dimensional

summaries of the curves, such as estimated b-spline coefficients, obtained from smooth-

ing the data. We extend this idea by monitoring predicted random effects from a
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mixed effects model fitted to the functional data. Two different monitoring tech-

niques are developed for linear and nonlinear mixed effects models.

The novelty in monitoring the random coefficients is that this enables us to detect

small departures from the basic shape of the profiles, after controlling for the overall

trend common to all of the data. By using considerably fewer random effects than

time points on a curve, we are also able to monitor in a lower dimension than the

original data, which increases the power of our monitoring procedure, assuming that

the model is correct.

• Curve clustering.

A way to identify more than one possible change in a production process is to separate

curves into groups based on differences in their observed values. Curve clustering is

an approach used to explore this idea in this thesis. A new model is proposed, in

which the data are fit using a sum of three components: fixed effects that control for

any known differences amongst the curves (e.g., differences between the eight valves),

random effects that take into account curve-specific departures from the fixed effects,

and an error term that represents the amount of roughness/wiggliness in the observed

curves. Within the context of the model, the random effects are clustered and a

Bayesian approach is used to estimate all of the unknown parameters.

The advantages of clustering random coefficients parallel those of monitoring them,

while also providing a flexible and interpretable representation of the random effect

distribution. The Bayesian implementation also enables us to estimate the number

of clusters by treating this quantity as one of the unknown parameters in the model,

and to assess uncertainty with respect to this and other model parameters.

There are many different applications of curve clustering. In this thesis, we apply it

to the monitoring problem in two ways. First, if clusters correspond to interesting

changes in the production process, new observations can be classified as following one

of these processes by calculating probabilities of belonging to corresponding clusters.

Second, we develop a monitoring tool that defines outliers to be observations that do

not belong to any of the previously identified clusters.

The last two topics make up the primary focus of our investigation, whereas the first one
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is of secondary interest, but nonetheless important in assuring that subsequent analyses

are reliable. The remainder of the thesis is organized as follows: after a brief literature

review, we end this chapter with a short description of the software used to implement the

new models and analyze the data. This is followed by a summary of preprocessing and

functional data exploration techniques in Chapter 2. Modeling curves individually and

collectively is addressed in Chapters 3 and 4. Profile monitoring techniques for detecting

outlying curves using mixed effects models are developed in Chapter 5. In Chapters 6 and

7, curve clustering is reviewed, and a new model is proposed in Chapter 8. The thesis is

concluded with a summary in Chapter 9.

1.4 Past Work

FDA is an exciting area of statistics which has received considerable attention in the past

few years. The types of problems that arise in FDA depend heavily on particular as-

pects of the data being considered, and thus many of the papers published on the topic

are application-specific. Some examples involving industrial process data that are func-

tional include antenna manufacturing data (Jeong and Lu, 2004), density profile data for

wooden boards (Walker and Wright, 2002), nano-machining in semi-conductor manufac-

turing (Ganesan and Das, 2002), tonnage stamping in the automotive industry (Jin and

Shi, 2001) and many more. In this section we review several publications that have been

useful in our research.

FDA Fundamentals

The best starting points for any type of FDA are two books by Ramsay & Silverman

(1997 and 2001). The first book, entitled “Functional Data Analysis,” provides a detailed

introduction to FDA, with an abundance of examples to ease the reader through the

concepts. An underlying assumption is that each functional observation is intrinsically

smooth, and in many cases smoothing techniques are used to recover the functional form

of the data. With this in mind, the authors adopt such fundamental statistical concepts

as principal components analysis, discriminant analysis, and linear modeling within the

functional context. Curve registration - a preprocessing step of stretching and aligning the
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curves in order to facilitate pointwise comparison between them - is another topic discussed

in considerable detail in the book.

The second book, entitled “Applied Functional Data Analysis,” is exactly that - an

applied complement to the first text, comprised entirely of case studies in FDA. Each

example is carefully chosen to introduce a new concept. As in the first book, the authors

rely heavily on the use of derivatives and differential equations to solve problems ranging

from curve registration to modeling to discriminant analysis of functional data. Much of

the material covered in the second chapter of this thesis is based on the ideas developed in

these books.

Process Monitoring

The wide range of names for functional data in the process-monitoring community include

“signals”, “waveform signals”, “signatures”, “profiles” and “curves”. We will use the last

two terms interchangeably. Previous work in this area is well summarized by Woodall

et. al. (2004), who observed that simple linear regression is the most common tool for

summarizing curves. Kang & Albin (2000), Kim et. al. (2003), and Mahmoud & Woodall

(2004) propose numerous ways to use multivariate T 2-charts to monitor curves that are

well summarized by a slope and an intercept.

With respect to process monitoring of nonlinear profiles, Jin & Shi (2001) describe

an adaptive feature-extracting technique for data with limited or no prior “in-control”

information. They use wavelet transforms to extract a reduced feature set of the data, then

apply an iterative procedure to compare the Hotelling T 2 criteria for each new observation

to the base set of “normal” observations. At each step, an observation that is deemed

unusual is either classified into a known cluster of outliers or becomes a part of a new

outlying cluster.

Walker & Wright (2002) use generalized additive models to compare collections of

curves. They model the functional component of the data with smoothers, and the remain-

ing variability is assumed to come from independent identically distributed (iid) normal

errors. Unusual curves are flagged by conducting an appropriate F -test. Williams et. al.

(2005) extend this idea by using a multivariate T 2 control chart to monitor the curves.

These approaches differ from ours in that we monitor the random coefficients obtained
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from fitting a mixed effects model to the data. Abramovich & Angelini (2006), Guo (2002),

Antoniadis & Sapatinas (2004), Morris & Carroll (2006) and Morris, Arroyo et. al. (2006)

are just a few of the papers that discuss fitting random effects models to functional data;

however this work is constrained to linear models only. The two papers by Morris and

co-authors are closely related to our b-spline model, with the exception that wavelet basis

functions are used in place of the b-spines. One disadvantage of wavelets for the purposes

of process-monitoring is the fact that they require fitting many more coefficients than

b-splines, consequently leading to a large number of random effects to be predicted and

monitored.

Curve Clustering

Another approach to detecting outlying curves is to systematically separate the profiles

into meaningful groups. Clustering is one such technique. In the case of force exertion,

each cluster may correspond to a different type of insertion process, some of which may

be “good” and others “bad”. Examining cluster means can provide insight into how the

curves differ from one another.

A number of different clustering algorithms have been proposed for functional data.

Ones that have a probabilistic context include James & Sugar (2003), Gafney & Smyth

(2003), Chudova et. al. (2004), and Zhou & Wakefield (2005). An idea common to all of

these papers is to cluster compact summaries of the curves rather than the observed data.

James & Sugar (2003) extend Banfield and Raftery’s (1993) model-based technique to

cluster b-spline coefficients in a smoothing model that regresses observed data onto a basis

of spline functions. Their method is tailored to sparsely observed functional data, with

few values recorded for each curve. The use of smoothing splines has a dual advantage

of preserving the functional form of the data and achieving dimension reduction (if the

number of b-spline coefficients being used is fewer than the number of time points at which

curves values are observed). Zhou & Wakefield (2005) implement the same regression model

using a fully Bayesian framework, while Gafney & Smyth (2003) maximize the posterior

(as opposed to the likelihood) to obtain point estimates of all parameters. Chudova et. al.

(2004) apply Gafney & Smyth’s approach to clustering gene-expression curves.

A detailed overview of the b-spline clustering model that unifies the four papers is
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presented in Chapters 6 and 7, as a prelude to the more general Bayesian random effects

clustering (BREC) model developed in Chapter 8. This model differs from its predecessors

in that it takes into account the common basic shape of the curves by including corre-

sponding fixed effect terms in the clustering model.

1.5 Software

All of the techniques described in this thesis were implemented using R version 2.4.0, an

open-source implementation of the S programming language (R Development Core Team,

2006).

Another resource for the computational exploration of functional data is a package

written to analyze some of the examples in Ramsay & Silverman (2005). These functions

are coded in R/S-PLUS and MATLAB and are available on Professor Jim Ramsay’s website1. A

potential alternative is an FDA module developed by MathSoftTM, a commercial distributor

of S-PLUS. The product implements some of the exploratory FDA tools developed by

Ramsay & Silverman (2005) in an efficient and easy to use package.

1ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/



Chapter 2

Preprocessing and Exploratory

Analysis

Data preprocessing is the practice of transforming raw data into a suitable format for

analysis. Although this is not the primary focus of our investigation, being able to pre-

process data properly is a crucial step in ensuring computational ease as well as accuracy

and reliability of our modeling procedures. An important preprocessing tool for functional

data is curve registration, which is designed to reduce phase variation in the curves. An

algorithm for registering valve-seat insertion data is presented in §2.1. Other preprocessing

steps taken prior to modeling the data are summarized in §2.2.

An equally valuable preliminary step is to explore the underlying structure in the data

before doing any modeling. Section 2.3 is dedicated to the use of principal component

analysis to identify (and visualize) the extent of variation in the overall shape of the

curves. For functional data, in particular, any knowledge gained about common sources of

variability in the curves can be utilized in modeling them.

2.1 Curve Registration

A distinguishing characteristic of functional observations is the need to align the curves

prior to analyzing the data in order to facilitate a comparison of common features between

them. This is referred to as curve registration, a process that involves registering landmark

13
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features in the curves and aligning them to one another across all other curves. In this

section we describe an algorithm developed for registering the valve seat insertion data.

2.1.1 Literature Review

Ramsay & Silverman (2005, Chapter 7) identify two approaches to registering functional

data - shift registration and landmark (or feature) registration. A unifying idea behind

the two methods is to reduce phase variability, defined as the variation in the timings of

prominent features of the curves. This is achieved by replacing the existing time axis t for

each curve i with some function hi(t).

The first approach involves shifting the time scale for each curve individually to some

value that minimizes phase variability. This is generally achieved by using an iterative

algorithm (e.g., Newton-Raphson) to shift the curves in a way that minimizes a measure of

discrepancy, such as the sum of squared differences, between the observed curves and some

target curve, such as their mean. Methods of this sort are referred to as shift methods,

because the curves are shifted (i.e. hi(t) = t+ci for some constants ci) in order to minimize

the criterion.

Another option is to identify specific features that are unique to all of the curves in

the dataset, and shift, scale or warp each of the curves along the time axes so that the

landmarks occur at the same time points. The features are called registration points, which

are quantities such as curve maxima or curve minima. The approach is called landmark

registration, because the curves are shifted, scaled (hi(t) = ci ·t) or warped (hi(t) are some

nonlinear functions of t) to ensure that all registration points are aligned.

The algorithm developed in this section is an adaptation of the landmark and shift

registration techniques.

2.1.2 Algorithm

A registration algorithm developed specifically for the valve seat insertion data consists of

four steps:
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STEP 1: Identify landmark features as initial values for registration points.

For each individual curve, pick two registration points corresponding to the beginning and

the end of the insertion process. We use first differences of force and distance in order to

identify these landmark features. Although this was not the only possibility considered,

the use of differences has proven to work quite effectively for the valve seat insertion data.

Descriptions of the two landmarks and how these were identified are provided below.

• Start of the process.

If we define the beginning of the process as the initial point of impact between the

ram and the valve seat, then this point can be determined as the time when the force

differences are first at their local maximum. This is because a spike in the force is

needed to push the seat forward upon impact. The resulting point is marked by a

dashed dark blue line in Figure 2.1. By comparing the top and the bottom panels of

this plot, we see that the start point in the force curve at the top corresponds to a

local maximum in the force differences curve at the bottom. As an added precaution,

the starting point is chosen 20 units to the left of the initial estimate of the starting

value, in order to include some observed values just before the ram hits the valve

seat.

• End of the process.

The second landmark feature represents the completion of the insertion process,

which we assume to be the time at which the ram has stopped moving. Using first

differences of distance to estimate speed, the end of the process is taken to be the

last time point at which the speed is above zero. Due to the roughness of the first

differences, it is sometimes difficult to know when the speed is zero. As an alternative,

we used the average of all speed values over the entire span of the insertion process

as a measure of close to zero. The average speed is marked by a horizontal line in

Figure 2.2. A vertical dashed line identifies the last time when speed is greater than

the average line, which estimates the end of the process. As was the case with the

starting point, the final end point is chosen 20 time units to the right of its original

location to allow some room for error. The final end point is represented by a solid

light blue vertical line in Figures 2.2 and 2.1.
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Figure 2.1: Plots of force against time (top) and first difference of force against time (bot-
tom) for a single observation. The dashed line in each curve correspond to the points
marking the beginning and end of the insertion process as summarized in Step 1 of the
registration algorithm. The solid lines mark the final registration points after the mini-
mization procedure described in Step 2.
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Figure 2.2: Plots of distance against time (top) and first difference of distance against
time (bottom) for a single observation. The dashed lines in each curve correspond to the
point marking the end of the insertion process as summarized in Step 1 of the registration
algorithm. The solid line marks the final end point after the minimization procedure
described in Step 2.
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STEP 2: Refine the registration points.

To ensure that true locations of the landmark features are identified, final registration

points are refined to minimize the sum of squared differences between the individual curves

and a target curve µ(t), where t = [1, 2, . . . , 100]T is a standardized time scale. If we let

yi(t; si, ei) represent the ith observed curve cropped at the registration points (si, ei) and

interpolated to time grid t, then using registration points obtained in step 1 as starting

values, the refined start point si and end point ei are found by minimizing

100
∑

t=1

{yi(t; si, ei) − µ(t)}2 . (2.1)

The purpose of (2.1) is to shift the observed data yi(t
∗) along the time scale towards a

target value µ(t), such that the start and the end of the process are observed at roughly

the same time points across all curves. The minimization problem is solved iteratively

using a Newton-type algorithm offered by the nlm nonlinear optimization routine in R.

An initial estimate of the target curve µ(t) is obtained from step 1 as the mean of the

first twenty curves, cropped at the registration points and interpolated to the same time

scale t = [1, . . . , 100]T . Then, in the current step 2, the target is continuously updated

by using the new registration points to crop and interpolate each curve, and setting µ(t)

to be the average the registered data. An alternative is to specify the target as the cross-

sectional mean of the raw curves interpolated to time grid t, but even from the five curves

displayed in Figure 1.1, it is clear that the cross-sectional mean of the raw data describes

the curves quite poorly.

STEP 3: Crop and interpolate the data.

The next step is to crop each curve at the registration points, focusing only on the portion

of the process from the very beginning of the insertion to the very end. This is justified by

the fact that there is very little activity in the curves at the flat tail-ends of the registration

points (see Figure 1.1).

Once cropped, each force curve is assigned a new time scale of 1 through 100 and the

force values are interpolated with respect to these 100 grid points accordingly. In doing so,
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we force each curve to be on the same time scale, with the same starting and end points

across all of the curves. The particular choice of 100 dimensions for the new time scale

was made because the cropped data contained roughly that many values for each curve.

Figure 2.3 helps visualize the registration process for a subset of the last five insertions

made on February 21st. The top panel of the plot shows the raw data, with the two

registration points marked as filled circles and squares along the curves (Steps 1 and 2).

The middle panel shows the cropped curves before they have been aligned (Step 3), and

the bottom panel illustrates the curves after the data has been registered, cropped and

interpolated.

STEP 4: Re-register the data (optional).

As a final step, it may be helpful to iterate through steps 2 and 3 one more time in order to

stabilize landmark feature selection. Re-registering would reduce dependence on the initial

set of curves chosen as a baseline.

Registration of multiple valves was achieved by sweeping over each valve individually

and registering all of the curves within that valve first before moving on to the next. This

means that all of valve 1 curves were registered first, then valve 2 curves, valve 3 curves,

and so forth.

2.2 Other Preliminaries

Although observed data on both the distance and the force at which the valves were inserted

are available, we restrict our attention to force curves. This is done because unlike the

distance curves, which are mostly linear, the force curves seem to contain more information

about the dynamic behaviour of the process (see Figure 1.4).

We further restrict our attention to insertions made on a subset of 3,776 engine heads.

These include all of the insertions made in January and 1,008 insertions from the last six

days in February. Note that January was the start of production for this process. This

choice of data is made to facilitate demonstration of process monitoring methods later

in §5.3 and §8.5.2. In particular, the 1,008 insertions from February will represent the

process “in control” and the January insertions will represent a process that is possibly
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Figure 2.3: Force against time curves for the last five runs of February 21, 2000.
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wandering. Figure 2.4 motivates this logic. The plot displays the number of parts produced

per day within each month. We see that very few insertions were made at the beginning

of January. The mean number of parts produced that month is 126 (standard deviation

= 69), compared to 168 (standard deviation = 60) in February. The fact that the number

of insertions made in January is fewer and more variable than in February supports our

suspicion that production is more stable at the end of February.

Due to a suspected malfunction in the recordings made for valve six, only seven of the

eight valves are considered for a grand total of 26, 432 curves. For some of these curves,

the insertion process ended with inconceivably large force values. These were scaled back

to the last largest recorded value prior to the start of the erratic behaviour in the curve in

order to be able to proceed with the analysis.

2.3 Data Visualization

One useful approach to assessing key sources of variability in multivariate data is principal

components analysis (PCA). To do this, PCA creates a new orthogonal co-ordinate system,

formed by taking linear combinations of the original n-dimensional data, called principal

components (Ramsay & Silverman 2005, Chapter 8). This is accomplished in such a way

that the first principal component (PC) accounts for the most variability in the data, the

second one captures the most of whatever variability is left over, and so forth for the

remaining n-2 PCs.

Based on the analysis of February valve seat insertion data, the first two PCs explain

91% of the overall variation among the curves. By examining these PCs, we may be able

to better understand the structure of the data. We restrict our attention to February

curves in order to understand variability when the system is likely to be under control. In

Chapter 5, we utilize our findings for these data in detecting unusual behaviour amongst

the January insertions. For illustration purposes here, we ignore valve labels and explore

variation in all of the curves. Unscaled data are analyzed because all of the curves are

observed on the same scale.

We use an approach proposed by Jones & Rice (1996) to visualize the structure con-

tained in the first few PCs. The method involves projecting the data onto the first few
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Figure 2.4: Number of parts produced per day plotted against day.



Preprocessing and Exploratory Analysis 23

principal components and plotting the curves corresponding to the smallest and largest

projected values of each component. Figure 2.5 demonstrates this idea for the first two

PCs of the force exertion profiles. Curves with extreme values in the first principal compo-

nent (see top panel) differ the most in the long flat section spanning time points 25 through

75. Variation is also evident in both the time points at which sharp vertical increases occur

and in the extent of the sinusoidal loop in the curves between time points 10 and 20. Sinu-

soidal variation is further emphasized by looking at the bottom panel describing variability

contained in the second PC. Variation in the second PC also stems from the flat section

of the curve between time points 85 through 100, and the amount of decay in the long flat

segment of the curve at times 25 through 75.

Hastie, Tibshirani & Friedman (2002, page 490) offer an alternative method to visu-

alizing the structure described by the first two PCs. Their approach is demonstrated on

the force data in Figure 2.6. The first two PC scores are plotted in the top panel. We can

think of each point in this plot as a single curve reduced to 2D. One way to understand the

extent of profile-to-profile variation as represented by the first two principal components is

to examine changes in the original curves as we move from one extreme part of the space

to another. For example, curves corresponding to the points highlighted in black in the top

panel of Figure 2.6 are plotted in the same order in the bottom panel. The black points

correspond to the 5th, 25th, 50th, 75th and 95th quantiles of the two principal components.

Looking from left to right in the bottom plot of Figure 2.6 (across the range of variation

in the first principal component), it appears that the profiles differ primarily in the amount

of vertical shift in the long flat middle section. This suggests that the majority of the

variability in the data occurs during the middle of the insertion process. Similarly, looking

from the bottom to the top, the amount of curvature in the first spike of the curves

is increasingly more pronounced. The end flat segment of the curve also seems to be

changing in its level. Combined, the extent of curvature in the first spike of the curve and

the amount of force applied at the end of the insertion appear to be secondary sources of

variation in the profiles, accounting for 6% of the variability in the data. These conclusions

are in agreement with the findings based on the Jones & Rice (1996) technique.

Interpreting variability described by higher order PCs is more challenging. As these

tend to explain less variation, it is harder to visually detect differences between the curves.
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Figure 2.5: Exploring variability in the February force exertion data as summarized by
the first two principal components (PCs). The data are plotted in light grey, and curves
corresponding to the smallest and largest PC scores are highlighted in black.
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Figure 2.6: The top panel is a plot of the data projected onto the first two principal com-
ponents for the valve seat insertion example. Each point is an insertion for one valve. All
observations are plotted in grey in both panels. The dashed grid lines mark five quantiles
of the two principal components, with the points highlighted in black chosen within the
closest proximity of the intersections on the grid. Each of these points corresponds to a
single functional observation plotted in the bottom panel.



Chapter 3

Modeling a Single Curve

By definition, functional data are characterized by the presence of a systematic pattern

in the data points. Looking back at the force curve in Figure 1.4, for example, it is clear

that force has a “stair-step” pattern with two significant spikes occurring at 1.49 and 1.67

seconds (marked by the last two vertical dashed lines). The first one occurs when the

ram reached the valve seat, which requires an increase in the force in order to push the

seat forward. The second spike likely corresponds to the time when the valve seat is fully

inserted, but the force exerted by the ram increases to counteract the resistance from

the cylinder head. A less significant sinusoidal-looking spike occurs at 1.52 seconds, and

corresponds to some other (less obvious) oscillation in the force values. It is this systematic

pattern that makes this a functional observation.

In this chapter we describe smoothing and nonlinear modeling as two ways to charac-

terize the functional behavior of a single curve. A fundamental goal of both approaches

is to provide a low-dimensional representation of the data. Smoothing is an off-the-shelf

technique that can be applied to any curve, whereas nonlinear modeling utilizes functional

information about the dynamics of the system and is tailored specifically to the force pro-

files presented here. In both cases, dimension reduction is achieved by using considerably

fewer coefficients than time points on a curve to model each profile.

26
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3.1 Smoothing Splines

A well-known approach for capturing the functional form of a curve from observed data

is smoothing. It assumes that a vector of response values y = [y1, y2, ..., yn]T and discrete

times t = [t1, t2, ..., tn]T at which they are observed have a functional relationship of the

form f(t). That is, let

y = f(t) + ǫ, ǫ∼Nn

(

0, σ2In

)

, (3.1)

where f(t) = [f(t1), ..., f(tn)]T is a univariate function f evaluated at components of t.

Although the exact form of f is unknown, one possibility is to assume that it is a linear

combination of p known basis functions, such that

f(t) =

p
∑

k=1

θkbk(t) = Bθ, (3.2)

where b1(t), . . . , bp(t) are called basis functions because (3.2) is a basis-expansion of f(t).

Using compact notation, B = {bj(t)}j=1,...,p represents an n × p matrix whose columns

contain the p basis functions observed at n time points. Then the vector of unknown

coefficients θ = [θ1, θ2, ..., θp]
T can be estimated by minimizing the least-squares criterion

SSE = [y − Bθ]T [y − Bθ]

with respect to θ.

A special case of this idea is polynomial smoothing. Here the unknown functional form

of a curve is estimated using a p-degree Taylor series expansion of f(t) about some point

t = a, which is given by

f(t) ≈ f(a) + f ′(a)t + ... + f (p−1)(a)tp−1 =

p−1
∑

k=0

f (k)(a)tk.

Letting θ = [f(a), f ′(a), ..., f (p−1)(a)]T and B = [1, t2, ..., tp−1], we get the expression

in (3.2). Since the true forms of f and subsequently its derivatives f (k) are unknown,

coefficients θ cannot be evaluated directly. Instead we can estimate them by regressing
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observed data y on B, a matrix whose columns correspond to the polynomial (basis)

functions evaluated at the vector of observed times t.

A flexible generalization of the polynomial fit widely used in practice for modeling

nonperiodic data is spline smoothing (Ramsay, 2005, pg. 46). Following James and Sugar

(2003), we use a special type of spline functions called b-splines, described by de Boor

(2001) and implemented in the R splines library (R Development Core Team, 2006).

In b-spline smoothing, the basis functions b1(t), . . . , bp(t) are piecewise polynomials

constrained to ensure that a linear combination of these functions is smooth at a set of

points, called interior knots. The order of the polynomials, the number and the place-

ment of the knots determine the level of desired smoothness. If first-degree polynomials

(line segments) are used, the resulting function is continuous but not differentiable. For

quadratic polynomials, the smoothed function is differentiable, and for cubic polynomials

it is twice-differentiable.

The total number of b-spline coefficients (p) used to fit a single curve is called the

smoother degrees of freedom (d.f.). For curves that have a zero intercept, the d.f. is equal

to the degree of the polynomials being used plus the number of interior knots. To see this,

suppose that we split a curve into 18 regions at 17 equally-spaced interior knot points and

smooth within each region using piecewise cubic polynomials (see Figure 3.1(a)). A cubic

polynomial has four terms and thus 4× 18 parameters must be estimated. However 3× 17

of these are constrained to be the same in order to ensure that the estimated function and

its first two derivatives are continuous at the knots. Thus, a total of (4×18)−(3×17) = 21

coefficients need to be estimated. If we exclude the intercept, this number drops down to

20. Thus p = 3 + 17 = 20.

Figure 3.1(b) provides an example of a b-spline fit to one of the curves from the force

exertion process. We let p = 20, generating 20 piecewise cubic basis functions to smooth

the data at 17 interior knots. The basis functions are plotted in heavier lines below the

original data (circled points) and the fitted smooth (solid black line). The fitted line was

obtained by regressing the observed data onto the matrix of basis function values.

Due to the inherent relationship between the number of knots and the degrees of free-

dom, smoothness can be controlled by adjusting the number of basis functions used to fit

the data. One way to choose the number of basis functions needed to provide adequate fit
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Figure 3.1: (a) A single force exertion curve (points) split into 18 regions at 17 equally
spaced boundary points (dashed lines). (b) A b-spline fit ŷ = f(t; θ̂) to the observed data.
Heavier curves at the bottom are the p = 20 basis functions b1(t), ..., b20(t) used to smooth
over the data.
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Figure 3.2: R2 goodness-of-fit measures averaged over all of the observations and plotted
against the number of basis functions (d.f.) used to smooth over the force exertion data.

is to examine goodness of fit measures for varying degrees of freedom, then pick a value of

p that provides the desired amount improvement in the data fit.

Figure 3.2 illustrates this idea for the force exertion data. Letting ŷi = [ŷi1, . . . , ŷin]T

denote a b-spline smooth to the ith observed curve (i = 1, ...,m) recorded at n time points,

we define

R2 = 1 −

∑m
i=1

∑n
j=1(yij − ŷij)

∑m
i=1

∑n
j=1(yij − ȳi)

.

The solid black line in Figure 3.2 connects R2 values calculated by fitting b-spline smoothers

to all of the available curves at varying degrees of freedom. It is easy to see that 20 basis

functions provide an excellent fit to the data (R2 is close to 1), and very little improvement

is achieved by using more basis functions.

Other ways to adjust smoothing include changing the degree of the piecewise polyno-

mials and/or the placement of the knots. A common choice and the default in R is to use
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cubic b-splines and space the knots at the quantiles of the time scale. These specifications

are used throughout this thesis. One possible alternative is to place the knots in such a

way that the most interesting aspects of the curve are weighted more heavily than the

remainder of the curve. For example, for the force against time curves like the one in

Figure 3.1, we might want to de-emphasize the long flat segment of the curve and focus on

the peaks instead. We can do this by selectively placing more knots at the peaks.

Advantages of smoothing are numerous, the key benefit being that the b-spline model is

linear in the parameters, meaning that model coefficients are easy (and fast) to estimate and

have well-established properties. One drawback is that a large number of these parameters

are often needed to adequately represent the functional form of a curve. For valve seat

insertion, the number of b-spline coefficients that are used (20) is nearly double the number

of parameters in some of the nonlinear models, which we introduce next.

3.2 Nonlinear Modeling

While linear models simplify computation, a broader range of nonlinear functions will

often provide a better fit to the data. For the force exertion example, such models are

generated by observing the dynamics of the process, which are reflected in the general

shape and prominent features of the curve. For example, referring back to the force curve

fitted using smoothing splines in Figure 3.1 and replotted in Figure 3.3(a), at least three

important events appear to occur during the insertion process. These are marked by the

three significant spikes in the force values around 10, 20 and 80 time units, which are

emphasized by vertical dashed lines in the plot. Within each region, the force functions

appear to be exponentially increasing towards force values marked by the horizontal dashed

lines.

Combining this information, we propose

f(t) =
3
∑

k=1

{

αk

(

1 − e−βk(t−δk)
)

· I(t > δk)
}

(3.3)
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Figure 3.3: Nonlinear least-squares fits of the (a) first-order and (b) second-order DE
models for one realization of the force exertion data (points). Three piecewise functions
plotted in (c) and (d) are summed to obtain fits in (a) and (b) respectively.
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as a nonlinear model for the curve. Here

I(t > δk) =

{

1 if t > δk

0 otherwise

constrains each of the three piecewise solutions to specific regions of the curve for which

t > δk. Thus, δ1, δ2 and δ3 represent the times at which each of the three events initiate. An

engineering term for these quantities is reaction times, because they measure the amount

of time it takes for the system to react to the initiated events.

The proposed model is the solution to a first-order system of differential equations,

and will be motivated in §3.2.1. An important characteristic of (3.3) is its exponential

form, which reflects the fact that at each stage of the insertion process force exertion

monotonically increases, eventually reaching a steady-state of

lim
t→∞

αk(1 − e−βk(t−δk)) = αk

for positive values of βk.

The terms αk are called gain parameters, because they quantify an increase in force

exertion going from one part of insertion to the next. By time t ≈ 4
βk

+ δk, the process is

nearly stabilized at level α1 + . . . + αk, since

αk(1 − e−βk(t−δk))|t= 4
βk

+δk
= 0.98αk ≈ αk.

Thus βk are called response speed parameters.

Following Ramsay (2000), the unknown parameters in (3.3) are found using nonlinear

least squares. That is, θ = [α1, α2, α3, β1, β2, β3, δ1, δ2, δ3]
T are estimated by minimizing

SSE =
n
∑

j=1

{yj − f(tj; θ)}2 = [y − f(t; θ)]T [y − f(t; θ)]

with respect to θ. As before, y = [y1, y2, ..., yn]T represents a vector of force values observed

at times t = [t1, t2, ..., tn]T . We use the nls function in R/S-PLUS (R Development Core

Team, 2006) to accomplish the minimization; another good option is the lsqcurvefit
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function in MATLAB’s Optimization Toolbox.

A fitted curve (3.3) is displayed as a solid black line in Figure 3.3(a). The three

distinct regions of the curve are modeled using three different nonlinear functions, which

are plotted in Figure 3.3(c). We assume that these correspond to different events in the

valve-seat insertion process.

As expected, δ̂1 = 11, δ̂2 = 23, and δ̂3 = 82, marked by dashed vertical lines, correspond

to the times at which each of the three events were initiated. Force amounts accumulated

during each part of the process are estimated to be α̂1 = 1145, α̂2 = 1013, are α̂3 = 2707.

Cumulative gain parameters (α̂1, α̂1 + α̂2, and α̂1 + α̂2 + α̂3) are marked by horizontal

dashed lines in Figures 3.3(a) and (c).

Estimated response speed parameters are β̂1 = 0.36, β̂2 = 0.13 and β̂3 = 0.33. These

quantify how quickly changes occur. The higher value of β̂3 than β̂2, for example, indicates

that force is increasing more rapidly at the end of the insertion process, a fact that is

clearly evident from the shape of the force curve.

As can be seen from Figure 3.3(a), the fitted model has clear deficiencies in describing

some of the curvature in the observed data. A more flexible nonlinear model is considered in

§3.2.2. Both models are motivated as solutions of differential equations, and the rationale

behind this is presented next.

3.2.1 Motivation

A key assumption behind modeling force data is that force changes continuously with time

via some mapping function f(t). This implies the existence of a first and possibly higher

order derivatives of f(t), which we denote by D(n)f(t) = d(n)f(t)

dt(n) using Euler notation.

Our goal is to incorporate any information we may have about the derivatives, i.e. the

dynamics of the process, in modeling the curves. That is, we seek to use models based on

differenctial equations (DEs).

Ramsay (2000) introduced these ideas to functional data analysis by using data to

estimate parameters of interest in a DE model. Recent developments by Ramsay, Hooker

et. al. (2006) extend this methodology to allow its application to just about any dynamic

process.

For valve seat insertion data, the process is characterised by three critically dampened
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spikes in force exertion. These are well characterized by the first order DE

Df(t) =
3
∑

k=1

{αkβkI(t ≥ δk) − βkf(t)} . (3.4)

The function provided in (3.3) is a solution to this equation. The result was obtained

by combining solutions to the three first-order DEs inside the sum of (3.4), which can be

found in introdutory texts on DEs, e.g. Ogunnaike and Ray (1994).

3.2.2 Second-order DE Model

Although the first order model is able to describe an overall pattern in the process, it

appears to be inadequate at summarizing local features in the shape of the curve (refer to

Figure 3.3(a)). One concern is that it has difficulty representing the oscillations between

20 < t < 80. The three terms being summed in (3.3) to obtain the fit (see Figure 3.3(a))

are monotonically increasing functions that flatten out without oscillating. The fit is also

abrupt in transitioning to the piecewise solutions at times 10, 20 and 80.

An extension of the first-order relationship in (3.4) which allows for oscillations is the

solution to a second-order DE is given by:

f(t) =
3
∑

k=1

{

αk

(

1 − e−βk(t−δk) cos(γk(t − δk))
)

· I(t ≥ δk)
}

. (3.5)

With the exception of the new sinusoidal parameters, unknown quantities in (3.5) have

the same interpretation as for the first order model. This follows from the fact that if all

γk = 0, (3.5) simplifies to (3.3). The new parameters γ1, γ2 and γ3 measure oscillation

frequency in the force values. Higher absolute values of these parameters correspond to

rapidly oscillating parts of the force curve. One caution is that cos(x) = cos(−x), and

therefore γk and −γk generate the same curve estimates. To alleviate any confusion,

we recommend either constraining these parameters to be positive during the nonlinear

estimation procedure or taking absolute values of the final estimates.



36 Flexible Mixed-Effect Modeling of Functional Data

A fitted solution to the model

y = f(t) + ǫ, ǫ∼Nn

(

0, σ2In

)

where f(t) has nonlinear form (3.5) is displayed as a solid black line in Figure 3.3(b).

The three piecewise solutions that sum to the fitted line are displayed in Figure 3.3(d).

Dampening oscillations in the shapes of these functions provide the desired flexibility in

fitting the data.

The improvement in the fit is encouraging. The middle part of the curve and the

smoothness at t = 20 are clearly better fit by the second-order model. Time parameters

δ̂ = (11, 15, 82) are in close correspondence with our earlier estimates of reaction times.

The only exception is δ̂2, which is now closer to δ̂1, implying that the process may be

dominated by two rather than three major events or that the first event lasts a shorter

time. Cumulative gain parameters
∑

α̂k = (753, 1987, 4772) are also similar to the first-

order estimates (1145, 2158, 4865), with the amount of force accumulated during the first

part of the insertion process (α̂1) adjusted for initial oscillation.

Estimated response speed parameters β̂ = (.29, .04, .22) are close to the earlier es-

timates, with the exception of β̂2, which is considerably lower than the previous value,

implying that it takes longer to reach a steady state. This is evident from examining the

shape of the function for 15 < t < 82, which curves upward before stabilizing to a constant

value. Such curvature is modeled by the oscillation frequencies, which are estimated to be

γ̂ = (0.47, 0.07, 0.18).

In summary, fitting results for the two nonlinear DE models support the following

interpretation of the parameters:

i) Difference in reaction times, δk+1 − δk, indicates the duration of the kth part of the

process;

ii) αk equals the gain, or the amount of force accumulated during event k. The overall

gain of the system is given by
∑

k αk;

iii) βk measures the decay, or the speed with which force stabilizes;

iv) |γk| represents oscillation frequency in the force values.
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We can think of decay and oscillation frequency as shape parameters, and gain and

reaction time as scale parameters. That is, decay and oscillation frequency carry informa-

tion about the twists and turns in the curve, whereas gain and reaction time simply shift

parts of the plot toward higher or lower values.

Points (i)-(iv) highlight the biggest advantage of using DEs to model functional data

- interpretability of the parameters. Using only a handful of parameters, we are able

to specify a model that makes sense in the context of our problem. A disadvantage of

this approach is the fact that the rather complicated nature of the solutions involve a

nonlinear model, and an iterative algorithm is needed to estimate the parameters at hefty

computational costs. Many problems may also involve higher-order DEs which are less

easy to solve, and may not have closed-form solutions.

3.3 Discussion

Several factors are worth noting when deciding whether the b-spline or the nonlinear model

is best suited for the problem. Advantages of b-splines are that they are linear in the para-

meters and generic enough to be applied to any data without the need for understanding

the dynamics of the process. This also means that they are easier and faster to fit compu-

tationally. In contrast, the nonlinear model involves parameters that are easy to interpret

in the context of the problem. As with any situation where there is a choice between

two different modeling techniques, there is no “best” model, but there might be one that

is more appropriate than the other in terms of the trade-offs between computation and

interpretability.

For the force data, we also believe that the nonlinear model is better at explaining

key sources of variability because it is application-specific. The model uses derivatives to

characterize observable changes in the process. Specifically, each of the three sections of

the force curves can be represented as a solution to a second-order differential equation

(DE). We chose to use a second-order DEs as it allows more flexibility than the simpler

first-order DE in modeling curvature at the δk. For more information on the use of DEs to

model functional data, see Ramsay & Silverman (2005).



Chapter 4

Modeling Collections of Curves

Let us now consider a collection of m independent profiles: y1,y2, ...,ym. One possible

extension of (3.1) to describing the curve yi is to allow the structural parameters to vary

from curve to curve, leading to the model:

yi = f(t; θi) + ǫi; ǫi∼Nn(0, σ2In), (4.1)

where θi = [θi1, ..., θip]
T is a vector of p unknown model parameters specific to curve i, and

ǫi is a random component measuring pointwise roughness in the curve. To emphasize our

interest in the structural parameters, we write f(θi) instead of f(t; θi), suppressing the time

variable. For b-splines f(θi) is the linear function f(θi) = Bθi, and for the DE model, it is

the nonlinear function of form (3.5) with coefficients θi = [αi1, αi2, αi3, βi1, βi2, βi3, γi1, γi2,

γi3, δi1, δi2, δi3]
T .

A recurrent idea in this thesis is to utilize information contained in the estimated model

parameters rather than the observed data in monitoring the insertion process, identifying

general trends, process drifts and/or outliers. In this context, (4.1) has far too many

parameters to be useful. An extension of (4.1) is the mixed effects model, which employs

a set of fixed parameters (µ) that is the same across all curves and characterizes their

common shape, and random parameters (ηi) that describe curve-specific variation from

the overall shape. That is, we let θi = (µ,ηi), where µ is a vector that does not vary with

i, and ηi is a random effect that varies across curves i = 1, . . . ,m. The manner in which

38
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Figure 4.1: Hierarchical dependencies in the mixed-effects models (4.2) and (4.3). Boxed
and unboxed quantities correspond to random and fixed quantities respectively. Here,
Cov(ηi) = Σ and Cov(ǫi) = σ2In

.

µ and ηi are combined to represent f will depend on whether a b-spline or a nonlinear

model is used. Details are provided in the next section.

By including both fixed (µ) and random (ηi) parameters, each curve is modeled indi-

vidually, while at the same time borrowing strength from similarities amongst all profiles.

This is evident from Figure 4.1, which illustrates hierarchical dependencies among the data

and the parameters. The diagram highlights two sources of variability associated with each

curve: within curve variability (σ2) and variability in the structural parameters (Σ) con-

tributing to differences among the individual curves. That is, by treating some of the

structural parameters as random effects, we allow the profiles to vary in both roughness

(ǫi) and shape (ηi). While it is possible to place restrictions on the form of Σ (e.g., forcing

it to be diagonal), to allow flexibility we do not explore this idea here.

The number of random effects used to model each curve can vary. For parsimony and to

ease computation, we suggest using fewer random effects than the number of fixed effects.

That is, even though a potentially large number of parameters may be needed to model an

overall trend in the curves, few parameters can generally be used to describe curve-specific

departures away from the overall trend.

In the remainder of this chapter, we consider two possible applications of the mixed

effects to b-spline and nonlinear models.
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4.1 Linear Mixed Effects

A straightforward application of mixed effects to b-splines is the Laird & Ware (1982)

model:

yi
n×1

= B1 µ
n×p p×1

+ B2 ηi
n×q q×1

+ ǫi
n×1

, (4.2)

ηi∼Nq(0, Σ) and ǫi∼Nn(0, σ2In),

Here B1 is an n × p matrix whose columns contain p known basis functions evaluated at

times t, and µ is a fixed vector of corresponding b-spline coefficients. B2 is a matrix of q

basis functions and ηis are the random coefficients for each curve.

An example of a single curve from the February data, fit using (4.2) with p = 20

and q = 4, is displayed as a heavy black line in Figure 4.2(a) alongside the raw data. A

reconstruction using only the fixed effect is marked on the same plot as a thin red line. This

represents the fitted mean of all February curves under consideration. The plot stresses the

role played by the random effects in modeling departures of a specific curve from the overall

average (red line). For this particular observation, the contribution of the random effects

appears to be in the flat middle and end segments of the curve. The 24 basis functions

used to model the data are plotted below, with the 20 columns of B1 and four columns of

B2 shown in Figures 4.2(b) and 4.2(c) respectively.

According to model (4.2), the shape of each profile is dictated by an overall mean

curve B1µ plus a curve-specific departure B2ηi. We focus on the latter. The hope is that

predictions of the random effects ηi will capture enough key information about unique

attributes of each profile to allow monitoring the process by observing changes in η̂i rather

than the original data yi. This is a form of dimension reduction in that the η̂is serve

as compact low-dimensional summaries of the differences among the curves. In an effort

to summarize curve-specific variation in as few parameters as possible, we use a large

number of b-splines (p = 20) to model the mean profile, but only a few (q = 4) to describe

curve-specific departures from the overall mean.

A conceptual equivalent of the b-spline mixed-effects model involves subtracting the

functional average of all the profiles (ȳ) from each curve, and modeling the residual curves
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Figure 4.2: Linear mixed-effects model fitted to a single observation in the force exertion
data (a), and 24 basis function used to obtain the fit ((b) and (c)).
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using

yi − ȳ = B2ηi + ǫi,

ηi∼Nq(0, Σ) and ǫi∼Nn(0, σ2In).

While this leads to similar results, an advantage of (4.2) is that it generalizes easily to

more complicated scenarios. For example, rather than fitting a common fixed effect, we

may wish to control for the valve effect (recall there are eight in total) and the ram effect

(two rams simultaneously insert four valve seats at a time) by including corresponding

fixed terms in the model. Another advantage of fitting (4.2) is that there is no need to

assume that all curves are observed on the same time scale (eliminating the need for curve

registration), whereas subtracting an average level requires this to be true.

4.2 Nonlinear Mixed Effects

An extension of the Laird & Ware (1982) mixed model to the nonlinear case is discussed

in Lindstrom & Bates (1990). We adopt a special case by letting

yi
n×1

= f( µ
p×1

+ Z ηi
p×q q×1

) + ǫi
n×1

, (4.3)

ηi∼Nq(0, Σ) and ǫi∼Nn(0, σ2In)

for i = 1, ...,m and q ≤ p. Here θi = µ + Zηi, where Z is an indicator matrix dictating

which of the p parameters have a random component.

In the application, the nonlinear form of f(θi) is given by

f(θi) =
3
∑

k=1

{

αik

(

1 − e−βik(t−δik) cos(γik(t − δik))
)

· I(t > δik)
}

.

The structural parameters are θi = [αi1, αi2, αi3, βi1, βi2, βi3, γi1, γi2, γi3, δi1, δi2, δi3]
T , and

their interpretation is discussed in §3.2. The formulation of our model in (4.3) allows all

12 of these parameters to differ for each curve (i.e. Z = Ip or equivalently θi = µ + ηi).
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However it seems likely that only a handful of the parameters capture significant changes

in the curves. It is only these parameters that we wish to have random components, with

the remaining parameters fixed across all of the curves.

A key distinction between (4.3) and the linear model (4.2) is that in (4.3) there is an

additive relationship between the fixed and random effects (i.e. θi = µ + Zηi), which

implies that some (or all) of the fixed effects have associated random components. This is

different from the linear case, where we use fixed effects to fit the mean curve (B1µ) and

random effects (B2ηi) to fit the residual curves after subtracting off the mean profile. In

the linear case, all we have to decide is how many parameters we wish to make random;

for the nonlinear model, we must decide which of the fixed effects will have associated

random components. An example of how to make this choice for the force exertion data is

presented in §4.3.2 and implemented in §5.3.

4.3 Parameter Estimation

The first step in monitoring the structural parameters is to estimate them and establish the

distributional properties. In this section we summarize some of the theoretical results for

mixed-effect models. Basic ideas are introduced in the context of b-spline and DE models,

though these generalize directly to all other mixed-effect models in the respective linear

and nonlinear domains.

Resources used in this section include results and discussions by Laird & Ware (1982),

Lindstrom & Bates (1988 and 1990), Demidenko (2004) and Pinheiro & Bates (2001).

The last two books in particular provide an excellent overview of linear and nonlinear

mixed-effects models.

4.3.1 Linear Model

A unique attribute of model (4.2) and mixed-effects models in general is the fact that they

combine both frequentist and Bayesian ideas. Demidenko (2004) describes it best in the

summary of his book:
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“The mixed model technique is a child of the marriage of the frequentist and

Bayesian approaches. Similar to the Bayesian approach, a mixed model spec-

ifies the model in a hierarchical fashion (see Figure 4.1), assuming that para-

meters are random. However, unlike the Bayesian approach, hyperparameters

are estimated from the data as in the frequentist approach. As in the Bayesian

approach, one has to make a decision as to the prior distribution, but that dis-

tribution may contain unknown parameters that are estimated from the data,

as in the frequentist approach”.

Specifically, if we rewrite model (4.2) as

yi∼Nn (B1µ, V ) where V = B2ΣBT
2 + σ2In, (4.4)

from a frequentist perspective unknown parameters include µ, Σ, and σ2. These are

generally estimated using maximum likelihood or least squares. However, the unobserved

or latent ηi are also parameters of interest. If anything, these are the structural quantities

that are the most interesting as they contain key profile-specific information. Conditional

expectations of ηi based on sample data can be used to estimate these quantities. That is,

we let η̂i = E(ηi|yi), which is essentially a posterior mean.

Although this methodology has a Bayesian flavor, our interpretation remains frequen-

tist. The use of expectations may give a misleading impression that η̂i is a fixed quantity.

It is important to remember that this is not the case. This is because the expectation is

taken with respect to ηi not the data. As such η̂i will still depend on the random yi and

therefore will itself be random. Many authors like to distinguish between the two different

ways in which the fixed and random effects are estimated by calling the former estimates

and the latter predictions. For consistency, we adopt the same terminology here.

Estimating Fixed Effects

Common approaches to estimating µ, Σ, and σ2 are maximum likelihood (ML) and its

close relative restricted maximum likelihood (REML). The basic idea behind both is to

determine parameter values that are best supported by the data. In ML this is achieved
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by maximizing the log-likelihood function (Lindstrom and Bates, 1990):

l(µ, σ2, Σ|y) = −
m

2
log |V −1| −

1

2

m
∑

i=1

{

(yi − B1µ)T V −1(yi − B1µ)
}

, (4.5)

with respect to µ, Σ, and σ2. Here V = B2ΣBT
2 + σ2In denotes overall variability in the

curves as given in (4.4).

A closer look at expression (4.4) reveals that this evaluation problem is equivalent to

that of generalized least squares (GLS), with parameter estimates depending largely on

the form of Σ, which dictates the form of V . If true values of σ2, Σ and therefore V are

available, then by letting y∗
i = V −1/2yi, we can re-write (4.4) into an OLS problem

y∗
i∼Nn

(

V −1/2B1µ, In

)

,

with the least squares estimate of µ taking on familiar form

µ̂GLS = (BT
1 V −1B1)

−1BT
1 V −1ȳ.

For fixed V , µ̂GLS is also the MLE of µ. The estimate also possesses a myriad of other

desirable properties, the primary of which is the fact that it is the best linear unbiased

estimator (BLUE) of µ (Pinheiro & Bates, 2001). It is best in a sense that it has the lowest

mean squared error among all estimators of its kind, linear with respect to the response,

and unbiased because its expected value with respect to the data is equal to µ.

In practice, the true values of σ2, Σ and subsequently V are unknown. In the absence

of these quantities, the feasible generalized least squares (FGLS) estimate of µ is given by

µ̂ = (BT
1 V̂ −1B1)

−1BT
1 V̂ −1ȳ, (4.6)

where V̂ = B2Σ̂BT
2 + σ̂2In. Although µ̂ is not exactly BLUE, as sample size m increases

towards infinity, V̂ ≈ V so that asymptotically µ̂ is approximately BLUE (Harville, 1990).

As indicated earlier, variance estimates σ̂2 and Σ̂ are generally obtained by maximizing

the log-likelihood function (4.5). A REML alternative is to estimate the variance compo-
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nents by maximizing

lR(µ̂, σ2, Σ|y) = −
1

2
log |BT

1 V −1B1| + l(µ̂GLS, σ2, Σ|y),

where l(µ, σ2, Σ|y) is the log-likelihood function, as shown in (4.5). This approach is used

in this thesis and is preferred to ML because it takes into account the degrees of freedom

lost in estimating the fixed effects and therefore tends to produce variance estimates that

are less biased. REML and ML estimates of µ are equivalent. For a discussion of the

REML approach, the reader is referred to Pinheiro & Bates (2001). Computational details

of the iterative algorithms used to compute parameter estimates, such as the EM algorithm

or the Newton-Raphson method, can be found in Laird & Ware (1982), Lindstrom and

Bates (1988) and many other papers and textbooks written on the topic.

Predicting Random Effects

While µ is fixed for all curves, (4.2) dictates that the random effects ηi vary. Thus,

inference about these parameters is based on their estimated distribution, and predictions

of the random effects are obtained using conditional expectation (Lange & Ryan, 1989). For

σ2 and Σ known, Harville (1990) showed that the best linear unbiased predictor (BLUP)

of the random components is given by

E(ηi|yi, σ
2, Σ) = ΣBT

2 V −1 (yi − B1µ̂GLS) .

Then much like with the fixed effects, for large enough sample size m, approximate BLUPs

of the random effects in the absence of true knowledge of the variance components are

given by

η̂i = Σ̂BT
2 V̂ −1 (yi − B1µ̂) , (4.7)

where µ̂ is the approximate BLUE as stated in (4.6) and σ̂2 and Σ̂ are estimated numerically

from the data using the ML or REML framework.
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4.3.2 Nonlinear Model

An alternative to b-splines is the nonlinear DE model:

yi =
∑3

k=1

{

αik

(

1 − e−βik(t−δik) cos(γik(t − δik))
)

· I(t > δik)
}

+ ǫi, (4.8)

θi∼Nq(0, Σ) and ǫi∼Nn(0, σ2In).

This model has 12 structural parameters θi = [αi1, αi2, αi3, βi1, βi2, βi3, γ1, γ2, γ3, δi1, δi2, δi3]
T ,

and their interpretation is discussed in §3.2. In (4.8), we allow all 12 parameters to be

different for each curve (each of the components of θi is indexed by i). As in the b-spline

model, estimating a large number of random effects is computationally challenging and not

useful for monitoring purposes. Thus we seek only a subset of θi as random effects.

The number and the choice of random effects should be set based on process knowledge,

obtained from field experts. If such information is limited, we can use conclusions drawn

from PCA. Recall from the PCA results in §2.3 that the most common causes of variability

in the force profiles appear to be:

- vertical shift in the long flat segment at times 25 through 75;

- vertical shift in the flat end part at times 85 through 100;

- the times at which the three major parts of the curve begin to change;

- amount of decay in the long flat segment at times 25 through 75;

- extent of curvature in the profile at times 10 through 20.

For illustrative purposes, we focus on the first three points on this list, each correspond-

ing to specific parameters in the nonlinear DE model. That is we have chosen five gain and

reaction-time parameters αi2, αi3, δi1, δi2, and δi3 to be random effects in our model. In an

earlier discussion, we referred to these as the level parameters, because they determine the

amount of vertical and horizontal shift in the force curves. In the context of model (4.3),

this particular choice of random effects implies setting

θi = [α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3]
T + [0, ηi1, ηi2, 0, 0, 0, 0, 0, 0, ηi3, ηi4, ηi5]

T

or equivalently θi = µ + Zηi, where µ = [α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3]
T , Z is a

12 × 5 sparse matrix of zeros everywhere except for entries (2,1), (3,2), (10,3), (11,4) and
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(12,5), which are equal to 1, and ηi = [ηi1, ηi2, ηi3, ηi4, ηi5]
T .

Estimating these quantities is complicated by the fact that f(θi) is nonlinear in terms

of the structural parameters. Due to the complicated nature of the model, even when

the variance components σ2 and Σ are known, there are no closed-form solutions for µ̂

and η̂i. Instead these must be calculated via numerical optimization. The usual approach

is an adaptation of the Gauss-Newton technique, which works iteratively by linearizing

f(θi) using a Taylor series expansion about some initial value (as shown later in §4.4) and

finding ML or REML estimates of the parameters under the approximation. These replace

the initial values and the process is repeated in this fashion until convergence is attained.

Detailed descriptions of the Gauss-Newton approach to nonlinear regression can be found

in Gallant (1975), Bates & Watts (1988) and Greenwood (2004), with discussions in the

context of mixed models developed in Lindstrom & Bates (1990), Wolfinger (1993) and

Pinhero & Bates (2001).

4.4 Distributional Properties of the Predicted Ran-

dom Effects

To summarize, for the linear model with known variance components in V = B2ΣBT
2 +σ2In,

the estimated fixed and the predicted random effects are

µ̂ = (BT
1 V −1B1)

−1BT
1 V −1ȳ;

η̂i = ΣBT
2 V −1 (yi − B1µ̂) = ΣBT

2 V −1 (yi − ȳ) .

where yi∼Nn (B1µ, V ).

Thus the sampling distribution of the predicted random effects is as stated below.

Result 4.4.1 Let y1,y2, ...,ym denote a collection of m independent profiles modeled by

the linear mixed-effects model (4.2). Then for σ2 and Σ known,

• µ̂ ∼ Np

(

µ, (mBT
1 V −1B1)

−1
)

and

• η̂i ∼ Nq

(

0, m−1
m

ΣBT
2 V −1B2Σ

)

independently for i = 1, . . . ,m.
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The result is a direct consequence of the fact that every linear combination of multivariate

normals is itself normal.

When variance components are not known, they can be replaced by their estimated

values. Under such circumstances, Result 4.4.1 will be an approximation. Since none of

the MLEs have closed-form expressions, it is not clear how to prove this mathematically.

However in §5.3 we will show empirical results based on the analysis of real data that seem

to support this claim.

Determining large-sample properties for the nonlinear DE model is even more challeng-

ing since there are no closed-form solutions for µ̂ and η̂i even when variances are known.

Some progress can be made by linearizing f(θi) and then applying Result 4.4.1 as an ap-

proximation. Using first-order Taylor series expansion of a nonlinear vector function f(θi)

about some fixed values of the structural parameters denoted by θ∗
i , we get

f(θi) ≈ f(θ∗
i ) + J(θ∗

i )
T (θi − θ∗

i )

where J(θ∗
i ) = df(θ)

dθ
|θi=θ

∗

i
is a p × n matrix whose rows correspond to partial derivatives

of f(θi) with respect to θi evaluated at θi = θ∗
i . It follows from (4.3) that

yi ≈ f(θ∗
i ) − J(θ∗

i )
T θ∗

i + J(θ∗
i )

T θi + ǫi,

or equivalently

yi − f(θ∗
i ) + J(θ∗

i )
T θ∗

i ≈ J(θ∗
i )

T θi + ǫi.

Setting y∗
i = yi − f(θ∗

i ) + J(θ∗
i )

T θ∗
i and substituting θi = µ + ηi, we get the linearized

mixed effects model similar to (4.2):

y∗
i ≈ J(θ∗

i )
T µ + J(θ∗

i )
T Zηi + ǫi, for i = 1, ...,m

ηi∼Nq(0, Σ) and ǫi∼Nn(0, σ2In).

All of the usual results from the linear case roughly extend here. For example, when

variances are known and θ∗
i is some fixed estimate of the structural parameters at the

present stage of the iteration, approximate estimates of the fixed effects and predictions of



50 Flexible Mixed-Effect Modeling of Functional Data

the random effects are given by

µ̂ = [J(θ∗
i )V

−1J(θ∗
i )

T ]−1J(θ∗
i )V

−1ȳ∗

and

η̂i = ΣZT J(θ∗
i )V

−1
[

y∗
i − J(θ∗

i )
T µ̂
]

respectively (Lindstrom & Bates 1990 and Wolfinger 1993, pg. 793). This leads to the

following claim, which is also a direct consequence of the fact that every linear combination

of multivariate normals is itself normal.

Result 4.4.2 Let y1,y2, ...,ym denote a collection of m independent profiles modeled by a

nonlinear mixed-effects model (4.3). If σ2 and Σ are known and J(θ∗
i ) = df(θ)

dθ
|θi=θ

∗

i
for

some known true value θ∗
i = µ∗ + η∗

i , sampling distributions of the structural parameters

are approximated by

• µ̂
.
∼ Np

(

µ, (mJ(θ∗
i )V

−1J(θ∗
i )

T )−1
)

, and

• η̂i
.
∼ Nq

(

0, m−1
m

ΣZT J(θ∗
i )V

−1J(θ∗
i )

T ZΣ
)

independently for i = 1, ...,m.

Since J(θ∗
i ) depends on the true (unknown) value of θi, an approximation Ĵ = 1

m

∑

i J(θ̂i)

can be used. Unknown variance components would also be replaced by their sample ML

or REML estimates. While there is no hope of determining the exact distribution of η̂i

after so many approximations, in Chapter 5 we present empirical evidence suggesting that

(similarly to the linear case) Result 4.4.2 generalizes approximately in the presence of a

large amount of data.



Chapter 5

Profile Monitoring

Recall that our ultimate goal is to set forth statistical machinery for detecting curves that

are “unusual” during the course of the valve seat insertion process. Process monitoring

allows us to do this. The usual course of action in this procedure consists of two phases

(Ryan, 1989). In Phase I, a base set of observations is selected as representative of normal

operation, and scrutinized for unusual behavior. Detected outliers (if any) are investigated

and removed if and only if there are attributable causes of their abnormality. The base

set is then re-examined, and control limits indicating bounds for “normal” or “in-control”

activity are calculated. Phase II of the analysis involves assessing new curves from ongoing

production using the control limits obtained from the base set. The process is flagged

as out-of-control whenever new observations fall outside the control limits. Unusual ob-

servations are then investigated for potential sources of the problem, and corresponding

adjustments to the process are made.

The fact that we are dealing with functional observations complicates the task. Moni-

toring profiles as high-dimensional multivariate observations is challenging in practice due

to such issues as correlation between neighboring values within a single curve, and loss

of power as a result of deteriorating covariance estimation in increasing dimensions. A

natural extension of the process-monitoring procedure to functional data is to monitor

estimated structural parameters instead of the observed data (Williams et. al., 2005). In

this chapter, we describe a procedure for monitoring the predicted random effects of a

functional observation under the mixed-effects model.

51
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As discussed in Chapter 4, we distinguish between the two different ways in which

the fixed and random effects are estimated by calling the former estimates and the latter

predictions.

5.1 Chart for Individual Curves

Starting with m curves in Phase I, let η̂i denote predicted random effect vectors for each

curve approximately following a Nq (0,W ) distribution. Then, assuming that q > 1, a

Hotelling T 2 measure of atypical behavior for each curve is given by:

T 2
i = η̂T

i W−1η̂i.

Large values of this test statistic imply that η̂i is far from its expected value of zero, and

corresponding curves would be flagged as “unusual”. To define large, we must determine

the distribution of T 2
i .

If η̂i∼Nq (0,W ) exactly, this is trivial. Let W−1/2 denote a q × q symmetric standard

error matrix of η̂i, obtained using eigen-decomposition of W . Then ζi = W−1/2η̂i ∼

Nq (0, Iq), so that T 2
i = ζT

i ζi is a sum of q standard normals squared. It follows that

T 2
i ∼ χ2(q).

Of course W is unknown and the exact distribution of η̂i cannot be determined. A

natural solution is to approximate W using a sample covariance matrix of the random

predictions:

Ŵ =
1

m − 1

m
∑

i=1

(η̂i − ¯̂η)(η̂i − ¯̂η)T ,

where ¯̂η is the average of the predicted random effects. Another possibility is to estimate

W by W̃ , where W̃ is a model-based estimate of the covariance matrix for the predicted

random effects, found by fitting a mixed-effects model using all of the Phase I data. Based

on Result 4.4.1, W̃ = m−1
m

Σ̂B2V̂
−1BT

2 Σ̂ in the linear case, where B2 is an n × q matrix of

basis functions used to fit the random effects. Similarly for the nonlinear case, using Result

4.4.2, we could set W̃ = m−1
m

Σ̂ZT Ĵ V̂ −1ĴT ZΣ̂, an approximation generated by linearizing

the DE model as stated in §4.4. As before, Ĵ denotes a p× n matrix of partial derivatives
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of f(θ) at estimated values of the parameters.

Based on simulation results and for the insertion data, both W̃ and Ŵ produce similar

estimates of W . We chose to use Ŵ , because it is simple and easy to understand. Other

possible covariance estimators discussed in Williams et. al. (2005) but not explored in

this thesis include the successive differences estimator (Hawkins & Merriam, 1974) and the

minimum volume ellipsoid estimator (Rousseeuw, 1984).

Using either W̃ or Ŵ in place of W , the chi-squared distribution of T 2
i can be approxi-

mated by an F distribution with q and m− q degrees of freedom. This is formalized in the

following extension of a well-known result from multivariate statistics (Johnson & Wichern

1992, pg. 237).

Result 5.1.1 Suppose that η̂i∼Nq (0,W ) is an unbiased estimator of a ηi (i = 1, ...,m

where m is the total number of profiles) and let T 2
i = η̂T

i Ŵ−1η̂i such that Ŵ ≈ W as

m→∞. Then for curve i,

Fi =
m − q

q(m − 1)
T 2

i ∼̇F (q,m − q).

It follows that curve i is unusual if Fi ≥ Fα(q,m− q) for some significance level α. As a

general rule throughout the thesis we let α = 0.0027. Combining all of the ideas presented

thus far, our approach to monitoring individual curves in the force exertion data can be

summarized as follows:

PHASE I

1. Select a base set of m curves. Fit a mixed model to these curves. Use it to obtain

predictions of the random effects η̂i for each curve and an estimate of the associated

covariance W .

2. Calculate Hotelling T 2 statistics for each curve, T 2
i = η̂T

i Ŵ−1η̂i. Use a QQ plot

and/or a Kolmogorov-Smirnov test to verify that Fi = m−q
q(m−1)

T 2
i

.
∼ F (q,m − q).



54 Flexible Mixed-Effect Modeling of Functional Data

3. Confirm that there are no unusual curves in the base set by examining a control chart

of the test statistics. Investigate observations corresponding to Fi ≥ Fα(q,m − q)

for unusual behavior. Remove these if and only if the production process can be

adjusted to avoid such observations in the future. Fα(q,m − q) is called an upper

control limit (UCL) because it provides an upper bound for plausible values of Fi at

the α level of significance.

PHASE II

1. For each new curve, predict its random effect η̂i using variance estimates obtained

in Phase I.

2. Calculate Hotelling T 2 statistics for each new profile using Ŵ from Phase I.

3. Verify that the process is in-control by examining control charts of the test statistics.

Flag observations that fall outside of the UCL established in Phase I as “unusual”.

5.2 Chart for Subgrouped Curves

Subgrouping is an important process-monitoring technique for situations when there are

small persistent changes within a small subgroup of consecutively observed curves. The

basic idea is to monitor the averages of subgrouped data rather than the individual ob-

servations themselves (Ryan, 1989), which allows the monitoring procedure to be more

sensitive to small departures.

An extension of profile-monitoring to subgrouped data is straightforward. Let m denote

the total number of curves in Phase I. Fit a mixed-effects model to these data and obtain

predicted random effects for each curve. Group these into k sets of equal size mg = m/k,

and calculate corresponding subgroup averages of the predicted random effects. Proceed

to monitor the subgrouped averages as if they correspond to individual curves.

The following result formalizes profile-monitoring for subgrouped data (Ryan, 1989).

Result 5.2.1 Suppose that η̂i∼Nq (0,W ) is an unbiased predictor of ηi (i = 1, ...,m).
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Group these into k sets S1, S2, ..., Sk of equal size mg, and let

¯̂ηg =
1

mg

∑

i∈Sg

η̂i for g = 1, ..., k.

denote the means of predicted coefficients for each subgroup. Then a Hotelling T 2 criterion

for testing that the functional mean of the curves in subgroup g is “unusual” is given as

T 2
g =

m

k

[

¯̂η
T
g Ŵ−1¯̂ηg

]

where Ŵ ≈ W as m→∞, such that

Fg =
m − k − q + 1

mq − kq − mq/k + q
T 2

g ∼̇F (q,m − k − q + 1).

Phase I and II steps of the analysis for subgrouped data extend directly from §5.1 by

replacing η̂i, Fi and T 2
i with η̂g, Fg and T 2

g as defined in Result 5.2.1, and setting the

UCL equal to Fα(q,m− k − q + 1). For the subgrouped data, we let Ŵ equal the mean of

the within-subgroup sample covariance estimates. This is consistent with what is done in

multivariate process-monitoring (Ryan, 1989). Another possibility is to let Ŵ = W̃/mg,

which does not seem to change the results for our data, but might be more appropriate

depending on the problem at hand.

An alternative to the subgrouped chart formulated here is to subgroup and average the

curves first, then fit a mixed effects model to the subgroup averages, and monitor predicted

random effects obtained from the model as you would individual observations. This is not

explored here.

5.3 Example

As stated in §2.2, we examine 2,768 valve insertions from January and 1,008 from the last

six days in February. February data are used in Phase I and January data in Phase II of

the analysis. Note that the process was started on January 7. Although monitoring the
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past is not representative of what would happen in reality, this was done for illustrative

purposes only, as we expected that the production process stabilized as time progressed.

This rationale was discussed in §2.2 and is revisited in §5.4.2.

Our goal is to identify unusual insertions made in January (if any) using the profile-

monitoring techniques developed in this thesis. This is accomplished by following the steps

outlined in §5.2. Results from the two phases of the subgrouped analysis are summarized

below. To save space and avoid repetition only results for the first valve are presented

here. R statistical software was used for computation, utilizing the nlme package to fit

mixed effects models (Pinheiro & Bates, 2001).

5.3.1 Model Specification

Both linear (4.2) and nonlinear (4.8) mixed-effects models are considered. In the linear

b-spline case, 20 fixed and four random effects are fit. The number of fixed terms is chosen

by examining R2 goodness of fit measures from fitting a pure fixed effects model (see Figure

3.2). Using twenty b-splines provides an excellent fit of the overall trend in the curves,

with the addition of more b-splines offering little improvement. Four random terms are

specified for illustrative purposes only, as this seems adequate in capturing curve-specific

trends (see Figure 4.2(a)).

For the nonlinear model, we use 12 fixed effects as dictated by the parameterization of

the second order DE. Using the motivation in §4.3.2, five of these (αi2, αi3, δi1, δi2, and δi3)

are chosen to have random components. The decision is based on the conclusions drawn

from the exploratory analysis in §2.3. This is possible due to the interpretability of the

parameters in the DE model, which allows random effects to be assigned to the parameters

that characterize key sources of variability in the curves as summarized by the first few

principal components.

Further discussion of model selection can be found in §5.4.1.

5.3.2 Phase I Analysis

The first part of monitoring involves modeling the February data. B-spline and nonlinear

mixed models are fit, producing predicted random coefficients and their estimated covari-
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ances. For b-splines, p = 20 fixed and q = 4 random parameters are fit. For the nonlinear

model, there are p = 12 fixed parameters, of which q = 5 (αi2, αi3, δi1, δi2, and δi3) are

chosen to have random components.

For purpose of illustration, for each model, m = 1, 008 predicted random coefficient

vectors are subgrouped into k = 202 sets of five parameter vectors per subgroup. An

alternative not explored in this thesis would be to group together values across an entire

day, or some other time period.

We fit each model to the base set and obtain the predicted random effects for each

of the 1,008 curves. For each subgroup (g = 1, ..., 202), corresponding Fg statistics are

calculated as defined in Result 5.2.1. Our first goal is to verify that these test statistics

follow an appropriate F-distribution. For b-splines, the null hypothesis is that

F =
803

3208
T 2 .

∼ F (4, 803).

The corresponding Kolmogorov-Smirnov test statistic and p-value are 0.0578 and 0.5096,

meaning that the null hypothesis should not be rejected. That is, it is not unreasonable

to assume that the test statistics Fg follow the F (4, 803) distribution. For the nonlinear

model, the test statistic and p-value are 0.0585 and 0.4931 respectively, leading to the

same conclusion. Quantile-quantile plots under the linear and nonlinear models in Figures

5.1(a) and 5.1(c) respectively further support our conclusions.

Next, control charts are built for February data using distributional properties of the

T 2 statistic based on subgrouped data. Figures 5.1(b) and 5.1(d) display these results for

the linear and the nonlinear models. Dashed horizontal lines mark the upper control limits

in each case. For b-splines, this is F0.0027(4, 2218) = 4.08 at the 0.0027 significance level.

For the nonlinear model, F0.0027(5, 2217) = 3.65. The fact that all of the observations fall

below these values support our assumption that the base set is “in-control”.

5.3.3 Phase II Analysis

The second stage is to examine January data for potential faults in the online production

process. Covariance estimates from Phase I are used to calculate predicted values of the

random coefficients for both linear b-spline and nonlinear models. In each case, these are



58 Flexible Mixed-Effect Modeling of Functional Data

0.0 1.0 2.0 3.0

0
1

2
3

4

F(4,803) Quantiles

S
am

pl
e 

Q
ua

nt
ile

s K−S Test:
D = 0.0578

p−val = 0.5096

(a) QQ Plot

0 50 100 150 200

0
2

4
6

8
10

(b) Phase I: Linear Model

F
 s

ta
tis

tic

UCL = 4.1

0.0 1.0 2.0 3.0

0
1

2
3

4

F(5,802) Quantiles

S
am

pl
e 

Q
ua

nt
ile

s K−S Test:
D = 0.0585

p−val = 0.4931

(c) QQ Plot

0 50 100 150 200

0
2

4
6

8
10

(d) Phase I: Nonlinear Model

F
 s

ta
tis

tic

UCL = 3.68

Figure 5.1: Quantile-quantile plots comparing sample distributions of the test statistics
under the (a) linear and (c) nonlinear models to the F-distribution. Phase I control charts
for the two models are in (b) and (d) respectively.
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split into subgroups of five and corresponding subgrouped T 2 statistics obtained as stated

in Result 5.2.1.

Subgrouped control charts for the first valve are provided in Figures 5.2(a) and 5.2(c).

The first plot is for the b-spline model and the second is for the nonlinear model. As

before, observations that exceed upper control bounds for each model (marked as dashed

lines) are regarded to be “out-of-control”.

One striking feature of these results is a number of the flagged insertions occur during

the first few days of January. This makes perfect sense. Problems are likely to occur in

the initial stages of production as the engine-assembly process is set up. Over time these

problems tend to be resolved in an effort to improve performance - an intuitive notion that

seems to be supported by the control charts. Two other less prominent sets of outlying

curves occur in mid-January, and during the last week of that month.

Averages of subgrouped curves that are extreme outliers (F > 6) for the linear and

nonlinear models are displayed to the right of the control charts in Figures 5.2(b) and

5.2(d) respectively. In the control charts, these are circled in black. Consistency between

the fundamentally different b-spline and nonlinear models is reassuring. The seven most

outlying subgroups of curves flagged by at least one or both of the linear and nonlinear

procedures include two on January 7th, four on the 8th, and one on the 9th.

Looking at the shapes of the averages of the most outlying subgroups of curves, they

appear to differ from the rest in the dip of the middle flat part of the profile and have a

relatively small amount of force gain at the end. Process experts might be able to attribute

these features to specific faults in the manufacturing procedure. Visualization techniques

may yield insight into why curves are flagged as outliers. For example, a plot comparing

the outlying curve to the mean curve might highlight discrepancies. Also, treating the

predicted random effects η̂ for each curve as “data” and applying exploratory graphical

analysis such as parallel coordinate plots and scatterplot matrices might indicate which

random effect made the curve appear unusual.

Results for the remaining valves are very similar. Across all valves, the largest outliers

tend to correspond to insertions made during the first few days of January.
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Figure 5.2: Phase II control charts for valve one under the (a) linear b-spline and (c)
nonlinear models. Functional means of the outlying subgroups of profiles flagged by each
chart are displayed in red alongside all of the subgroup means (black lines) in (b) and (d).
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5.4 Discussion

The goal of this chapter was to address key issues involved in monitoring functional process

data such as the force exertion example, and to develop tools for accomplishing the task.

Using linear and nonlinear mixed-effects models, we utilized Hotelling T 2 statistics to

differentiate between “good” and “bad” insertions. Results based on the force exertion

data indicate reasonable performance. Some of the underlying issues raised by the proposed

methodology and future research are considered next.

5.4.1 Choosing Random Effects

When formulating the mixed effects model, it is not clear how many random effects should

be chosen. For both b-spline and nonlinear models, we recommend restricting the number

of random effects to be as small as possible. This reduces the computational cost of the

procedure, and allows us to monitor compact summaries of the curves in a low dimension.

For nonlinear models, it is also difficult to know which of the parameters should have

random components. We suggest using both process knowledge and conclusions drawn from

PCA in selecting the fixed parameters that should have associated random components.

Another possibility is to fit 12 different models, where each model has a single random

effect. We could then use model-selection criteria such as AIC or BIC to identify the best-

fitting few, one at a time. Random effects associated with these fits are then selected to be

used in the final model. Alternatively, we could adapt a step-wise model-selection approach

or use a straightforward fixed-effect regression fit to identify which of the parameters are

the most significant, then make these random in a re-fitted mixed-effects model. In both

cases, it is important to standardize the parameters as they are not measured on the same

scale.

In general, deciding how many random effects should be used and which parameters

to make random is a challenging problem. The approach of shrinking a large number of

random effects taken by Morris and Carrol (2006) does not seem to be in the spirit of a

parsimonious representation of the data. Rice and Wu (2001) suggest the use of information

criteria (AIC, BIC, cross-validation) for selection of the number of equally-spaced splines

used in a random effects model. Such a technique might be appropriate for the approach
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considered here.

5.4.2 Choice of Phase I Data

One problem common to all control chart applications is the choice of a base set in Phase

I. For the force exertion data, we monitored the January data and used all 1,008 insertions

made in the last six days of February as a baseline set indicative of a well-behaved process.

This does not represent what would be done in practice (historical not future data is

used as a baseline), but was done for demonstration purposes only due to the suspicion

that the insertion-process stabilized as time went on. Even so, with the limited amount of

information that we have about our data, it is unclear whether or not February observations

are truly representative of “normal operation”. One helpful tactic is to re-fit the combined

data after a while and adjust control limits using appropriate sampling and/or subgrouping

schemes.

5.4.3 Sequential Charts

The basic idea of monitoring the predicted random effects of a mixed-effects model can

easily be extended to include a wide range of other multivariate charts. These include

sequential charts and charts to monitor the covariance matrix, with the type of approach

used depending on the context of the problem.

We consider one such possible extension - the use of exponentially weighted moving

average (EWMA) monitoring procedure for profile data. Following a multivariate version

of the EWMA chart developed by Lowry et. al. (1992), our MEWMA procedure moni-

tors weighted averages of the estimated random effects in a way that gives less weight to

observations further in the past. More formally, using Lowry’s approach, we monitor

MEWMAi = ZT
i W−1

Z Zi ≥ UCL.

where

Zi = λη̂i + (1 − λ)Zi−1; Z0 = 0; (5.1)
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and

WZ = Cov(Zi) =
λ(1 − (1 − λ)2i)

2 − λ
∗ W.

As before η̂i denotes the ith predicted random effect (i = 1, ...,m) and W is replaced by

an appropriate estimate Ŵ . A corresponding extension to subgrouped data involves using
¯̂ηg and W = Ŵ , where Ŵ is the average of the within-subgroup covariance matrices.

A phase II multivariate EWMA chart under the linear model is provided in Figure

5.3. For illustration, the weight parameter is set to λ = 0.2 and the upper control limit

is estimated using MINITAB to provide a false alarm rate of roughly 0.02%. Since the

distribution of the Zis is unknown, control limit calculations are complex and beyond the

scope of this chapter. Details can be found in Lucas & Saccucci (1990).

Results in Figure 5.3 match our earlier findings in §5.3.3, with the majority of outliers

flagged at the beginning of January. A key distinction of the MEWMA chart is that it

retains information about previously monitored observations. By weighing past informa-

tion, the MEWMA chart is more sensitive to small shifts in the process, which explains

the relatively smooth shape to the plotted results. The idea is emphasized by connecting

adjacent values in Figure 5.3.
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Figure 5.3: Phase II multivariate EWMA control chart under the linear model.
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5.4.4 Charts Using Both Fixed and Random Effects

The underlying theme throughout this thesis has been the monitoring of random effects

parameters. Another possibility is to monitor a measure of overall variation unexplained

by the fitted mixed effects model, such as the residual sum of squares, in addition to the

random effects. Monitoring the errors provides a way of detecting more general phenomena

that are not represented by the model parameters.

5.4.5 Charts for Multiple Valves

With respect to the force exertion example, we focused our analysis on data from only one

of the eight valve seat insertions per head. One possibility would be to extend some of the

ideas developed in this thesis to models that consider all eight valves simultaneously.

The easiest way to include information on multiple valves is to include a fixed valve

effect in the model. For b-splines this is equivalent to fitting

yij = B1µ + B2γj + B3ηij + ǫij,

ηij∼Nq(0, Σ) and ǫij∼Nn(0, σ2In),

where i = 1, ...,m indexes the insertion, and j = 1, ..., 8 indexes the valve number.

Both the µ and the valve parameter γj in this model are fixed, which allows us to

control for both the overall trend and any systematic valve effects in the data. The same

basic idea can be extended to controlling for the ram effect (we have two rams, each making

four valve insertions) by including a fixed effect for the ram rather than the valve.



Chapter 6

Model-Based Clustering

Up until now we have assumed that all production data can be classified in one of two

categories: in-control or out-of-control curves. Another approach is to allow for the fact

that there may be multiple modes of in-control and out-of-control operation taking place

during the production process. Clustering is one such method of grouping data (or in our

case - curves) in some meaningful way. In the absence of any other information except for

the recorded response values, it provides a way of extracting latent information from the

data by organizing it into similar groups.

For functional data, standard clustering techniques can be implemented by treating

collections of curves (after suitable dimension reduction) as multivariate observations in

n-dimensional space (n > 1). The idea is that the clusters may correspond to different

modes of operation. For example, data with a large number of similar curves and a remote,

small cluster of curves may indicate a single most predominant process and a series of less

common operations. Further insight can be gathered by comparing mean curves for each

cluster to knowledge of the shape of in-control curves.

In the next two chapters, we review some of the existing techniques for clustering

functional data. New methodology is developed in Chapter 8.

65
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6.1 Background

There are several techniques available for clustering data in high dimensions. Two algo-

rithmic ones include hierarchical and partitioning methods. The hierarchical (or agglomer-

ative) approach works by initially treating each observation as a separate cluster and then

gradually merging subsets of the data until they form a single set. This sequence of nested

clusters can be visualized with a tree-like structure known as a dendrogram. In a second

step, branches of the dendrogram are “cut” to result in a K-cluster separation. Partition-

ing (e.g., K-Means) methods work in a somewhat opposite direction by requiring the user

to specify K, the number of clusters to be formed, and subsequently arranging the data

into that many groups. This is accomplished by assigning data to clusters that minimize a

sum of squared Euclidean distances between the observed values and the cluster centroids

to which they belong. The partitioning approach differs from hierarchical methods in that

the clusters are not necessarily nested. This is because clusters of size K are not formed

by merging two clusters from the K + 1 solution as is the case in agglomerative clustering.

A third possibility is model-based clustering (MBC), an approach that assumes a para-

metric model for the formation of clusters. In Gaussian MBC, for example, each observa-

tion is assumed to be sampled from a mixture of K multivariate normal densities. A key

appeal of this technique over algorithmic methods is that the presence of a model makes it

possible to account for the functional structure of our data. For example, James & Sugar

(2003) model functional data using b-splines and assume that the coefficients of this model

(rather than the data itself) are distributed as Gaussian mixtures. MBC does present

some challenges, including a heavy computational cost and a large number of parameters

requiring estimation. This is because the number of unknown parameters in a model is

directly linked to curve resolution n. The higher the resolution, the more parameters there

are to estimate, making it difficult to identify structure in the data. Estimating n × n

covariance matrices also becomes a challenge, as the number of elements in the matrices

increases with n.

In this chapter we illustrate how Gaussian MBC can be used on functional data. We

begin with a discussion of techniques for dealing with the high-dimensional aspect of curve

data in §6.2, as this poses a particular difficulty in clustering. Fraley & Raftery’s (2002)

frequentist implementation of MBC is described next in §6.3. An extension of this model
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to functional data is introduced in §6.4, and illustrated using the valve seat insertion data

in §6.5. This introduction to MBC serves as a reference and a building block for the

alternative clustering models described in Chapters 7 and 8.

6.2 Dimension Reduction

One challenge in applying model-based clustering to the valve seat insertion data is that

within-cluster covariance matrices are high dimensional (100×100). This poses a difficulty

as the number of parameters that must be estimated increases greatly with the dimension-

ality of the data. An unrestricted n× n covariance matrix has (n2 + n)/2 free parameters,

and thus K(n2 +n)/2 covariance parameters must be estimated in a K-cluster model. For

large n, estimation is particularly difficult if some of the clusters are small, and there are

fewer observations than there are unknown variables.

Modeling challenges involving the dimensionality of the observed data are often re-

ferred to as the curse of dimensionality. James and Sugar (2003) suggest filtering and

regularization as two ways of dealing with the curse of dimensionality in the context of

mixture models. The primary difference between the two methods lies in the way in which

the covariance structure is estimated during the formation of clusters. In regularization,

estimates of the within-cluster covariance matrices Σk are constructed directly from the

data, and then improved upon by interpolating between a pooled estimate of the overall

covariance matrix Σ and the estimates for each cluster. That is,

Σ̂k(λ) = (1 − λ)Σ̂k + λΣ̂,

for some λ ∈ [0, 1] and Σ̂ = (Σ̂1+. . .+Σ̂K)/K. In filtering, on the other hand, the observed

curve yi is first projected onto a matrix of p basis functions B = [b1(t)
T , . . . ,bp(t)

T ] such

that

yi = Bηi + ǫi,

where p < n and ǫi is assumed to have mean zero and constant variance. The p-dimensional

terms ηi are estimated using linear least squares regression and used in place of the orig-

inal data. Thus, in filtering, covariance matrix Σk describes variation in the coefficients
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ηi, not the original data. This estimation in a reduced-dimension space may prove simpler

than regularization in the original high-dimensional space. Whereas regularization con-

strains the covariance structure which in turn leads to more stable parameter estimates,

the advantage of filtering is that we are reducing the dimensionality of the problem before

estimation even begins.

In earlier chapters of the thesis we have used filtering approaches to model the data.

We shall continue to use this approach in curve clustering. That is, we model the data

using p = 20 b-spline basis functions and assume a mixture distribution on the spline

coefficients instead of the observed data. This means that each Σk is a 20 × 20 matrix,

with (202+20)K/2 = 210K unknown covariance components instead of (1002+100)K/2 =

5050K. Other possible ways to implement filtering include principal component analysis

and multidimensional scaling (DeSarbo et. al. 1991, Oh and Raftery 2000).

6.3 A Mixture Model for Multivariate Data

Banfield & Raftery (1993) describe the use of mixtures of multivariate normal densities

to model clustered data. A more recent treatment of this technique is given in Fraley &

Raftery (2002). In this section, we describe MBC as a tool for grouping curves observed

as multivariate vectors of response values occurring at fixed time points.

Consider a set of m independent curves observed on an n-dimensional coordinate system

t = [t1, t2, . . . , tn]T and denoted by ym = {y1,y2, . . . ,ym}. For convenience and the sake of

our application, we assume that t refers to a time component, however the same inferences

can be made by substituting a generic x vector in place of t.

Suppose that the curves in ym can be separated into K disjoint groups. Assuming that

K is known for the moment, let zi denote a vector of cluster membership indicators for

curve i, such that zik = 1 if the curve belongs to the kth cluster and zik = 0 otherwise.

Conditional on this label, assume that the observed vector yi comes from a multivariate
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normal distribution with cluster-specific mean vector and covariance matrix of the forms

µk =







µk(t1)
...

µk(tn)






and Σk =







Σk(t1, t1) . . . Σk(t1, tn)
...

. . .
...

Σk(tn, t1) . . . Σk(tn, tn)







respectively. That is,

yi|{zik = 1} ∼ Nn(µk, Σk) (6.1)

independently for i = 1, . . . ,m curves belonging to one of k = 1, . . . , K clusters.

Since we do not know which group each curve belongs to, the z′is are unknown. Letting

π1, . . . , πK denote probabilities of belonging to each cluster, such that

πk = Pr(zik = 1) and
K
∑

k=1

πk = 1,

model parameters θk = (πk,µk, Σk) can be estimated by jointly maximizing the likelihood

function for this mixture model:

L(θ|ym) =
m
∏

i=1

K
∑

k=1

πkNn(yi; µk, Σk) (6.2)

with respect to θ = {θ1, . . . ,θK}.

Given an observed vector associated with a new curve, Bayes’ rule can be used to

calculate the probability that the ith curve belongs to cluster k:

p(zik = 1|yi, θ̂) =
π̂kNn(yi; µ̂k, Σ̂k)

∑K
l=1 π̂lNn(yi; µ̂l, Σ̂l)

. (6.3)

If a predicted label is desired, the cluster label k with the largest posterior probability (6.3)

can be returned. Thus, we can set zik = 1 if the value of p(zik = 1|yi, θ̂) is the largest for

all k ∈ {1, . . . , K}.

Maximization of (6.2) with respect to the model parameters in θ is generally attained

using the Expectation-Maximization (EM) algorithm. The solution is found by treating
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zi as missing data, and xi = {yi, zi} as independent identically distributed (iid) complete

data. Then the likelihood function for complete data is given by

LC(θ|ym, zm) =
m
∏

i=1

K
∏

k=1

{πkNn(yi; µk, Σk)}
zik . (6.4)

The EM algorithm proceeds by iterating through two steps. In the E-step, conditional

expectations of the membership labels are calculated as

ẑik = 1 × p(zik = 1|yi, θ̂) + 0 × p(zik = 0|yi, θ̂) = p(zik = 1|yi, θ̂),

with the p(zik = 1|yi, θ̂) as specified in (6.3) and components of θ̂ taking on the current

estimated values. Then, in the M-step, estimated membership labels are substituted into

(6.4), which is maximized to obtain the remaining model parameters θ̂. The process is re-

peated until parameter estimates from consecutive iterations offer little or no improvement.

Provided reasonable starting values, the EM algorithm is likely to converge to the maxi-

mum likelihood estimates (MLEs), i.e. the maximum modes of the incomplete likelihood

specified in (6.2) (see McLachlan & Peel 2000, §2.14).

6.3.1 Covariance Structure

MBC differs from other clustering methods in that it allows the clusters to vary in magni-

tude and appearance. Such relationships can be expressed in terms of various constrains

on a decomposition of within-cluster covariance matrices. Specifically, an n× n matrix Σk

can be written as

Σk = λkΓkΛkΓ
T
k k ∈ {1, . . . , K} (6.5)

where Γk is an orthogonal matrix of eigenvectors, λk is the first eigenvalue, and Λk is a

diagonal matrix with elements (1, λ2,k/λk, . . . , λn,k/λk), which denote all of the eignevalues

scaled by λk. The three elements of the eigen-decomposition - λk, Λk and Γk - describe

specific attributes of the kth mixture component, corresponding to its volume, shape and

rotation/orientation respectively. Each of these quantities can be constrained in different

ways to allow varying levels of flexibility in the specification of the mixture components.
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Label Covariance structure Description of clusters

EII Σk = λI Spherical, equal volume
VII Σk = λkI Spherical, unequal volume
EEI Σk = λΛ Diagonal, equal volume, equal shape
EVI Σk = λΛk Diagonal, equal volume, varying shape
VEI Σk = λkΛ Diagonal, varying volume, equal shape
VVI Σk = λkΛk Diagonal, varying volume, varying shape
EEE Σk = Σ Ellipsoidal, equal volume, shape, and orientation
EEV Σk = λΓkΛΓT

k Ellipsoidal, equal volume and shape, varying in orientation
VEV Σk = λkΓkΛΓT

k Ellipsoidal, equal shape, varying in volume and orientation
VVV Σk = λkΓkΛkΓ

T
k Ellipsoidal, varying in volume, shape and orientation

Table 6.1: Special cases of the covariance structure for the clusters that are implemented
in R (Fraley & Raftery, 2002) .

Table 6.1 provides a list of possible restrictions placed on the covariance structures in

the mclust library in R (Fraley & Raftery, 2006). The labeling convention used in the first

column is composed of three letters, with the first describing the desired volume (λk), the

second - the shape (Λk), and the third - the orientation (Γk) of the mixture components.

The letters can take on three possible values:

• E, which implies that corresponding elements of the decomposition are equal across

clusters (e.g., λk = λ for all k);

• V, which allows the associated part of the decomposition to vary across clusters;

• I, represents an identity matrix and is only applicable to defining the shape and

orientation (e.g., Γk = I constrains the off-diagonal elements of the covariance matrix

to be zero).

For example, EVI implies that λk = λ, Λk = Λk and Γk = I, so that Σk = λΛk,

which means that the within-cluster covariance matrices are constrained to be diagonal,

with corresponding mixture components of the same size but potentially different shape

across clusters. Other special cases include spherically shaped clusters of varying radius

(Σk = λkI), clusters with diagonal covariance matrices of varying magnitude (Σk = λkΛk),
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and unrestricted elliptically-shaped clusters with a different Σk for each mixture compo-

nent. Covariance structures associated with these three scenarios are increasing in com-

plexity. Spherical clusters, for example, require a maximum of K parameters to estimate

the covariance structure, whereas in the unrestricted case this is of order Kn2.

6.3.2 Model-Selection

Two prevalent issues in model-based cluster analysis are the choice of the covariance struc-

ture and the number of clusters to use. Banfield & Raftery (1993) suggest the use of

Bayesian model selection in deciding upon each. Following their notation, suppose that

we have a choice between J different models M1, . . . ,MJ . In our case, each of the models

uses a different type of covariance structure and a different number of clusters. Further

suppose that for each model Mj (j = 1, . . . , J) there is an associated prior probability of

belonging to that model, p(Mj). Then using Bayes’ theorem,

p(Mj|y
m) ∝ p(ym|Mj)p(Mj)

where p(Mj|y
m) is a posteriori probability of model Mj given the data, ym. Banfield

& Raftery further note that prior probabilities p(Mj) are usually assumed to be equal

and p(ym|Mj), referred to as the integrated likelihood, is obtained by integrating over all

possible values of the unknown parameters to be estimated in the model, θj. In other

words,

p(ym|Mj) =

∫

p(ym|θj,Mj)p(θj|Mj)dθj. (6.6)

The integrated likelihood in (6.6) can be difficult to compute directly, however Schwartz

(1978) developed the Bayes’ Information Criterion (BIC) as an approximation. The crite-

rion consists of a log-likelihood evaluated at the MLE θ̂j, and a penalty term as follows:

BICj = 2 log p(ym|Mj) ≈ 2 log p(ym|θ̂j,Mj) − vj log(m), (6.7)

where vj is the number of independent parameters to be estimated under model Mj. In

this framework, the problem of selecting the best model reduces to picking a model that

has the highest associated posterior probability given the data, p(Mj|y
m). When the priors
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assigned to each model are equal, this is equivalent to selecting a model associated with

the highest integrated likelihood, p(ym|Mj). Selecting a model with the highest BIC (6.7)

will aid in the selection of the best model.

As outlined in Raftery (1995), the expression in (6.7) is derived using a Taylor series

expansion of g(θj) = log{p(ym|θj,Mj)p(θj|Mj)} about the MLE θ̂j, given by

g(θj) ≈ g(θ̂j) + (θj − θ̂j)
T g′(θ̂j) +

1

2
(θj − θ̂j)

T g′′(θ̂j)(θj − θ̂j)

= g(θ̂j) +
1

2
(θj − θ̂j)

T g′′(θ̂j)(θj − θ̂j),

where g′(θ̂j) and g′′(θ̂j) are matrices of first and second partial derivatives of g(θj) with

respect to elements of θj, calculated at their point estimates. The second line in the

above expression stems from the fact that θ̂j is a solution to g′(θ̂j) = 0. Also, g′′(θ̂j) is

proportional to −mI(θ̂j), where I(θ̂j) is the expected Fisher information matrix. Thus,

p(ym|Mj) ≈

∫

eg(θj)dθj

≈ eg(
ˆθj) ·

∫

exp

{

−
1

2
(θj − θ̂j)

T mI(θ̂j)(θj − θ̂j)

}

dθj

= p(ym|θ̂j,Mj)p(θ̂j|Mj) · (2π)vj/2|mI(θ̂j)|
−1/2,

because the integrand in the second line of the above equality is a constant multiple of the

multivariate normal density.

It follows that

BICj = 2 log p(ym|Mj)

≈ 2 log p(ym|θ̂j,Mj) + 2 log p(θ̂j|Mj) + vj log(2π) − vj log(m) − log |I(θ̂j)|

≈ 2 log p(ym|θ̂j,Mj) − vj log(m) + O(1).

Fraley & Raftery (2002) claim that while a large number of different techniques have

been developed over the years (see Biernacki & Govaert 1999 for a comparison of these

techniques), the BIC approach provides good results for model-based clustering. However,
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as mentioned earlier, problems arise whenever dealing with high-dimensional data. For

the BIC approach, for example, the penalty term vj log(m) depends on the number of

parameters used to estimate the model. This includes all parameters used to estimate the

covariance matrix. Clearly, the simpler the covariance structure, the fewer parameters need

to be estimated, which implies that in high-dimensional problems, the criterion will favour

the simplest covariance structures (Weakliem 1999, pg. 360). Because simple covariances

may be unrealistic for functional data, we use filtering as described in §6.4 to reduce

dimensionality and enable the use of more complex covariance structures.

6.4 Extension to Functional Data

One way of incorporating functional information about the shape of the curves into the

clustering model is to let

yi = f(t; ηi) + ǫi; (6.8)

ηi|{zik = 1} ∼ Np(µk, Σk) and ǫi∼Nn(0, σ2In).

As with the mixed-effects models in Chapter 4, each n-dimensional observation yi is

fitted using a random curve component f(t; ηi) plus some iid normally distributed vector

of white noise ǫi representing roughness in the curve. However, unlike our previous work,

random effects in (6.8) depend on the unobserved cluster labels, and thus have cluster-

specific means µ = µk and covariance matrices Σ = Σk.

A key distinction between models (6.8) and (6.1) is the fact that the functional model

parameters ηi rather than the original data yi are the quantities being clustered. This is

particularly useful when the number of parameters being used to model the shape of each

curve is fewer than the number of time points at which each curve is observed (p < n),

because it simplifies the complexity of the problem and speeds up computation. As such,

model (6.8) serves a dual purpose. First, it incorporates functional information into the

model. Secondly, it allows us to work in a lower-dimensional subspace of the data.

James & Sugar (2003), Gafney & Smyth (2003), Chudova et. al. (2004), and Zhou

& Wakefield (2005) have all considered special cases of (6.8), varying in the functional
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specification of f(t; ηi) and the way in which model parameters are estimated. The first

paper assumes a b-spline model for each curve, and uses model-based clustering on the

b-spline coefficients to group the curves. That is, they let

f(t; ηi) = Bηi,

where B is an n×p matrix of p known b-spline basis functions recorded at n time points t =

[t1, t2, . . . , tn]T , and ηi = [ηi1, ηi2, . . . , ηip]
T is a vector of corresponding b-spline coefficients.

While James & Sugar (2003) model the data and cluster it simultaneously (see 6.8), a

conceptual equivalent of this idea is a two-step procedure in which b-spline coefficients are

estimated by least squares regression, and then η̂i are clustered instead of the raw data yi

in (6.1). An example of the latter for force exertion data is provided in §6.5. Gafney &

Smyth (2003) and Chudova et. al. (2004) implement the same b-spline regression model

using maximum a posteriori estimation instead of maximum likelihood estimation. Zhou

& Wakefield (2005) propose a Bayesian framework for fitting (6.8), implemented for linear

curves as a primary example (e.g., instead of a b-spline basis, B has only two columns

corresponding to an intercept and a slope term in the model). An adaptation of the Zhou

& Wakefield (2005) approach to the b-spline model is developed in §7.1.

6.5 Example

In this section we use model-based clustering as presented in §6.4 to explore latent struc-

tures present in the valve seat insertion curves. For computational ease, only the last

twenty curves from each of the last six days of production in February are considered.

Rather than cluster the seven valves (i.e. seven sets of 120 curves per valve) individually,

all of the data are examined as one big group. That is, a total of 20 × 6 × 7 = 840 curves

are analyzed. Since we expect that there may be valve effects in the functional data, we

hope that some of the between cluster variation will correspond to differences in the valves.
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Exploring the Best Model

For each curve in the subset, the filtering technique is used to reduce the observed 100-

dimensional data to a 20-dimensional vector of b-spline smoothing coefficients, which are

subsequently clustered using the model-based approach. The BIC criterion is used to

determine the type of covariance structure and the number of clusters appropriate for

these data. We restrict our attention to four non-diagonal covariance structures: EEE,

EEV, VEV and VVV, as specified in Table 6.1. Simpler structures were also fit, but found

to be highly unlikely according to BIC, likely due to considerable covariance between some

of the coefficients.

In Figure 6.1, values of BIC are plotted against the number of clusters for each of

the four different models. Large values of BIC indicate the best covariance structure and

number of parameters. The plot suggests that a model with a uniform covariance structure

and 15 clusters is best-fitting to this data. This model is labeled as EEE, which corresponds

to elliptically-shaped clusters of equal volume, shape and orientation (i.e. Σk = Σ in (6.5)).

Under the EEV, VEV and VVV schemes, a pronounced jump in the BIC from one to two

clusters strongly emphasizes the two-cluster model as best fitting.

As discussed in §6.3.2, BIC’s preference for the simpler covariance structure is not

surprising, since it explicitly penalizes models with more parameters. This may also explain

why BIC specifies a model with only two clusters (and thus very few parameters) as best-

fitting when covariance structures are allowed to differ across clusters (EEV, VEV and

VVV). While preference for simple models can be useful in general, the penalty poses a

challenge for high-dimensional data, since the number of parameters used by a given model

increases with the number of clusters and the dimension of the data.

Another problem with this analysis is that it ignores all information contained in the

valve labels. This implies that, in the presence of strong differences between insertions

made on each valve, clustering can lead to separation by valve rather than any interesting

changes in the process. Table 6.2 investigates whether this is the case for the best-fitting

model according to BIC by tabulating assigned cluster memberships by valve labels. The

results support our suspicion. The eighth cluster is made up entirely of valve two curves,

and all insertions assigned to the eleventh cluster are made on the fifth valve. Similar

statements can be made for the fifth and tenth clusters, implying pronounced differences
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Figure 6.1: The BIC criterion for model selection suggests a 15-cluster model with a
common covariance structure across clusters (EEE) as best-fitting to the February data.

between insertions made on each of the seven valves.

Another interesting pattern in Table 6.2 is the fact that none of the clusters have large

numbers of observations in both {1, 2, 3, 4} (intake valves, with insertions made by ram

1) and in {5, 7, 8} (exhaust valves, with insertions made by ram 2). The split seems to

correspond to the two types of valve (intake or exhaust). So even in cases where the

observations within a cluster come from more than one valve, they typically come from the

same type of valve.



78 Flexible Mixed-Effect Modeling of Functional Data

Valves
1 2 3 4 5 7 8 total

1 61 5 51 0 1 0 2 120
2 1 4 2 0 0 0 6 13
3 0 0 2 2 0 0 0 4
4 4 9 22 3 0 0 0 38
5 1 0 2 0 101 0 2 106
6 11 3 0 77 0 0 0 91
7 19 2 37 1 2 0 4 65
8 0 63 0 0 0 0 0 63
9 0 0 0 0 5 28 30 63

10 0 34 1 0 0 0 0 35
11 0 0 0 0 10 0 0 10
12 22 0 1 37 0 0 0 60
13 1 0 1 0 1 61 32 96
14 0 0 1 0 0 28 12 41
15 0 0 0 0 0 3 32 35

total 120 120 120 120 120 120 120 840

Table 6.2: Cluster memberships for the 15-cluster EEE model tabulated against the number
of curves observed for each valve.

Controlling for Valve Differences

Since we already know the valve labels, a clustering method that splits the data by valve

is not useful. A way to avoid this is to control for the systematic valve effects within the

clustering model, an idea elaborated upon in Chapter 8. An ad-hoc equivalent of this

solution for MBC is to subtract off the functional mean curves for each valve from the data

prior to the analysis. This is equivalent to fitting the model:

yij − ȳj = Bηij + ǫij (6.9)

ηij|{zij = k} ∼ Np(µk, Σk),

where j = 1, . . . , 7 indexes the valve, i = 1, . . . , 120 indexes the number of insertions made

for each valve, and ȳj =
∑120

i=1 yij/120 denote the valve means.
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An added advantage of subtracting the valve means from each curve is that the residual

curves have a relatively simple shape, allowing fewer b-spline basis functions to be utilized

in the model. For illustration purposes, we use only five basis functions to smooth over

the residual curves in the force exertion example.

A BIC plot for the fitted models, provided in Figure 6.2, identified the VEV covariance

structure with two clusters as best-fitting for the force exertion data. Under EEE, EEV

and VVV covariance schemes, a single cluster is identified. While it is not clear if the BIC

approach is reliable for multivariate data, intuitively it makes sense that the insertions made

during the last six days of the production process are relatively homogenous, as we assume

the process to be in-control during that time period. Having said that, our conclusions

with respect to the exact number of clusters appear to be inconclusive. If we assume that

each cluster corresponds to a different mode of operation in the insertion process, it is

unclear from Figure 6.2 if there are only two types of production. An alternative approach

to determining the number of groupings of the curve data after accounting for the valve

effects is proposed in Chapter 8.

For now, we fit the two-cluster VEV model identified as best-fitting according to BIC.

A useful way of visualizing the structure contained in the clusters is to plot the estimated

probabilities of belonging to each cluster, p(zijk = 1|η̂ij, θ̂) as stated in (6.3), for each

observation. When displayed in chronological order, the plots help reveal any time depen-

dence that may be present in the formation of clusters. A display of the daily averages of

the estimated probabilities plotted by day makes it easier to identify longer term trends.

For example, from Figures 6.3(a)-(c), we see that during four of the six days in February,

most of the 20 · 7 = 140 insertions are associated with the first cluster. However, on Feb-

ruary 15th and 16th, a change appears to have occurred, with about half of the valve seats

inserted in a way that is more characteristic of the second cluster. Functional means of the

curves within each cluster, displayed in Figure 6.3(d), suggest that the change occurred

because the ram was exerting less force in the middle of the insertion. This is evident from

the shape of the cluster mean for the second component, which has the long flat segment

between 20 and 80 time units considerably lower than the functional mean for the first

cluster.

In summary, model-based clustering of the force exertion data suggests the following:
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Figure 6.2: BIC plot for model-based clustering of the estimated b-spline coefficients fitted
to the residual data after subtracting the valve means.

a) Insertions made on different valves seem to differ, which must be taken into account in

order to produce meaningful clustering results. The fact that the number of clusters

dropped dramatically from 15 to 2 when valve effects were incorporated in the model

is strong evidence of the impact of systematic effects on the clustering results.

b) Based on BIC alone, it is not clear exactly how many clusters (i.e. different types

of production) govern the insertion process during February 14th through 21st. More

effective ways of determining the number of clusters are desirable.

c) The production process is predominantly homogenous, with about 77% of the curves

belonging to the first cluster. The remaining 23% differ in the decreased amount of
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Figure 6.3: MBC results for the best-fitting two cluster fit. Estimated probabilities of
belonging to each of the two clusters are plotted by observation index in (a) and (b).
Daily averages of these propabilities are shown in (c), and within-cluster covariances are
in (d). Within-cluster covariances for this fit have a common shape, but varying volume
and orientation.
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force applied during the middle of the insertion, a change that occurred primarily on

February 15th and 16th.

These results suggest several directions, which will be explored in the next two chap-

ters. These include the need to account for systematic effects (e.g., valve effects), and

determining the number of clusters. An important property of curve clustering models for

these data is the extent to which they can be used for process analysis and monitoring.

Experts in the area might also be able to assign practical meaning to the clusters by looking

at their means, which would provide valuable insight into the ranging modes of operation

during valve seat insertion. If prediction for a new set of data is the goal, this can also

be achieved by clustering a training set representative of the process, then assigning each

new curve to a cluster that has the highest associated probability given the data as shown

in (6.3). In Chapter 8, we consider one possible application of clustering in the context of

profile-monitoring.



Chapter 7

A Bayesian Approach to Clustering

One disadvantage of the model-based clustering approach described in the previous chapter

is that it is not always clear how many clusters should be used in the mixture. If we

assume that each cluster corresponds to a different process during valve seat insertion,

without any expert knowledge, it is impossible to know the correct number of process

changes occurring during mainstream production. While BIC is helpful in this regard, it

is not always a reliable approximation (e.g., Weakliem 1999 and §6.9.3 in McLachlan and

Peel 2000), particularly for high-dimensional data, as it is geared towards choosing simpler

models with fewer parameters.

Another drawback is the fact that the clustering model presented in §6.4 does not

explicitly take into account valve information. While an ad-hoc solution of subtracting

the valve means from the data prior to the analysis is useful, a comprehensive way of

accounting for fixed effects within the framework of the model is desirable.

The remainder of this thesis is dedicated to addressing the problems of choosing the

number of components and incorporating systematic information into the model. In this

chapter, we deal with the first concern by adopting a fully Bayesian approach to clustering

via mixtures of multivariate normal densities. All inference about the unknown parameters

is based on Markov chain Monte Carlo (MCMC) samples obtained from the posterior

distribution. By not relying on approximations such as BIC, more exact inference on the

model can be attained. A generalized version of this model that accounts for systematic

effects is proposed in Chapter 8.

83
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7.1 Model

In Chapter 6, we considered the following mixture model for clustering curve data:

yi = Bηi + ǫi; (7.1)

ηi|{zi = k} ∼ Np(µk,Σk) and ǫi ∼ Nn

(

0, σ2In

)

,

where i = 1, . . . ,m is the curve index, and k = 1, . . . , K indexes the mixture component.

In order to emphasize the distinction between known curve indices and unknown cluster

indices, cluster membership labels are denoted as zi = k rather than zik = 1 in the

remainder of this thesis. That is, cluster membership for curve i will now be denoted by a

label zi that can take values 1, . . . , K, rather than K binary indicators.

Up to now, the number of clusters K was assumed to be fixed, and model parameters

estimated using maximum likelihood (ML). Bayesian methods provide an alternative ap-

proach to estimation and inference, allowing us to treat K as an unknown parameter. A

comprehensive overview of Bayesian inference for mixture models can be found in Chapter

4 of McLachlan & Peel (2000), Gelfand et. al. (1990), Green (1995), and Stephens (2000a).

Zhou & Wakefield (2005) extended these ideas to clustering curve data using (7.1). Their

work is largely restricted to fitting linear curves (p = 2), and differs from our problem

primarily in the size of the parameter space (in our case, p = 20).

Unlike ML, which seeks point estimates of model parameters, the Bayesian paradigm

assumes that the unknown parameters are random quantities. Thus, inference about them

is based on their posterior distribution, which combines information contained in the data

with prior knowledge about the parameters.

For example, let

Θ =
(

{zi}
m
i=1, {ηi}

m
i=1, {πk}

K
k=1, {µk}

K
k=1, {Σk}

K
k=1, V, R, σ2

)

denote all of the unknown parameters in (7.1) and ym = {y1,y2, . . . ,ym} the data. Then

using Bayes’ theorem,

p(Θ|ym) =
p(ym|Θ)p(Θ)

p(ym)
∝ L(Θ|ym)p(Θ). (7.2)
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Here, p(.) is used generally to denote a probability density function of its argument. Thus

p(Θ|ym) and p(Θ) are generally not the same distribution. In the remainder of the thesis,

the terms “distribution” and “density” are used interchangeably to mean p(.).

According to (7.1), the likelihood function for the curve-clustering model is given by

L(η, σ2|ym) =
m
∏

i=1

Nn(yi; Bηi, σ
2),

so that the joint posterior has general form

p(Θ|ym) ∝
m
∏

i=1

Nn(yi; Bηi, σ
2) × p(Θ).

In specifying the prior distribution p(Θ), a hierarchical structure with several indepen-

dence assumptions will be employed. Before explicitly specifying this prior, we graphically

represent the dependence assumptions with a Directed Acyclic Graph (DAG) in Figure

7.1. The figure also summarizes the structure of model (7.1). The structure matches those

used by Richardson & Green (1997), Stephens (2000a) and Zhou & Wakefield (2005) for

mixture models. Boxed quantities in the plot indicate unknown parameters in the model

and directed arrows denote conditional dependence. For example, we see that the amount

of variability in the shape of the curve σ2 is independent of all other parameters, whereas

cluster membership labels zi depend only on the probabilities of belonging to each cluster

π = [π1, . . . , πK ]T and the number of clusters K. Justification of this structure and the

exact prior distributions are discussed in detail in §7.2.

Even though the number of clusters K is displayed as an unknown parameter in Figure

7.1, for now let us assume it is fixed. Then the joint posterior distribution for the model
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Figure 7.1: DAG of the Bayesian curve-clustering model. The diagram helps visualize the
hierarchical dependence amongst the parameters. A triangle frames the quantity being
clustered. Quantities not framed by boxes are fixed.

parameters Θ is given by:

p(Θ|ym) ∝
m
∏

i=1

Nn(yi; Bηi, σ
2) × (7.3)

K
∏

k=1

{ mk
∏

i:zi=k

{

p(ηi|zi,µzi
, Σzi

) × p(zi|πzi
)

}

× p(µk) × p(Σ−1
k |R)

}

×p(π) × p(σ−2) × p(R).

The joint posterior in (7.3) can be used for the purposes of model fitting and drawing

inference. For example, Bayesian point estimates of the model parameters can be obtained

by calculating conditional expectations, such that

E(Θ|ym) =

∫

θ · p(θ|ym) · dθ. (7.4)

Marginal posterior distributions of some subset of Θ (say zi = k) can also be estimated by
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expressions such as:

p(zi = k|ym) =

∫

. . .

∫

p(θ|yi) · ∂η . . . ∂σ2.

=

∫

. . .

∫

p(zi = k|η, . . . , σ2,yi) · p(η, . . . , σ2|yi) · ∂η . . . ∂σ2 (7.5)

= E(p(zi = k|η, . . . , σ2,yi)).

A difficulty posed by this approach is the evaluation of the high-dimensional integrals

in (7.4) and (7.5), which do not have tractable form and thus cannot be determined analyt-

ically. A computational solution to this problem is a Markov chain Monte Carlo (MCMC)

procedure presented in §7.3.

The advantage of using Bayesian inference in clustering data is the flexibility that

it allows in estimating K. If we treat K as an unknown parameter (Stephens 2000a,

Richardson & Green 1997, Cappe et. al. 2003), the posterior could provide inference on

the uncertainty in K, via the marginal distribution p(K|ym). An estimate of this parameter

could then be determined by evaluating its posterior expectation

E(K|ym) =
∞
∑

k=1

k · p(K = k|ym).

The posterior could also be used to infer the amount of variation associated with this

approximation.

Detailed discussions pertaining to the strengths and weaknesses of the Bayesian ap-

proach can be found in Robert (2001) and Bernardo & Smith (1994), among many oth-

ers. Key selling points of this methodology are full accountability for uncertainty in the

model and the ability to incorporate prior information. Criticisms include computational

constraints associated with the implementation of Bayesian approaches using MCMC algo-

rithms and difficulties in specifying the priors. In the context of mixture models, empirical

results show superior performance of MCMC over EM algorithms with respect to conver-

gence to good solutions and misclassification error, but not in terms of computation times

(Neal 1992 and Dias & Wedel 2004). Specifically, the EM algorithm “often fails to converge

to the global maximum of the likelihood surface,” and “is very dependent upon the type
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of starting values” (Dias & Wedel, 2004).

7.2 Priors

The first step in fitting a Bayesian model is prior specification. This can often be tricky,

particularly for multivariate parameters. Some general guidelines for choosing these dis-

tributions are:

1. Priors should represent our knowledge about the problem before observing any data.

A relaxed version of this is to allows the use of data in setting the parameters of these

distributions (Casella, 1985). In that spirit, for example, we can let µk ∼ Np(υ, rIp),

where υ is the midpoint of the estimated b-spline coefficients and r is some measure

of their spread (e.g., the mean of the squared range values).

2. In the absence of specific knowledge about the parameters, it is advisable to use

objective (also called uninformative) priors to represent vague or general knowledge.

For example, choosing a normal prior that has a large variance can serve as a way of

expressing uncertainty about the mean.

3. A good rule of thumb is to avoid restrictive priors, i.e. prior distributions that are

too informative about the parameter values. This can be achieved by placing one or

more additional levels of prior distribution (called hyperpriors) on some or all of the

parameters. For example, we can let

Σ−1
k |R ∼ Wp(ρ, (ρR)−1) where R ∼ Wp(b, (bR0)

−1).

Under the above assumption, the expected value of Σ−1
k is the first moment of the

Wishart distribution, ρ(ρR)−1 = R−1. Thus, hyperparameter R represents the extent

of within-cluster variation in the data. Since this is a p × p matrix, knowing how to

specify it directly without being overly informative is nearly impossible. By assigning

a hyperprior to this parameter, we introduce an extra level of variability in our

specification of R, and thus make the prior on Σ−1
k less informative.
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4. Whenever possible, select conjugate priors for computational ease. A prior is said to

be conjugate if it results in a posterior distribution that is of the same family (e.g.,

both the prior and the posterior are normal). If we let Θj denote an element of Θ,

a conditionally conjugate prior is such that both Θj and Θj|y
m are from the same

class of distributions.

A summary of prior distributions assigned to the parameters of the curve-clustering

model in (7.1) is provided below. These represent the standard choice of priors for mix-

ture models (see Zhou & Wakefield 2005, Stephens 2000a, Richardson & Green 1997, and

Gelfand et. al. 1990). We assume that the functional data have been scaled so that their

observed range is roughly between 0 and 1. The scaling makes it easier to generalize prior

beliefs expressed in this section to a wide variety of functional data, not just the force

exertion curves considered in this thesis.

zi = k|π ∼ B(πk)

π|K ∼ D(τ1, . . . , τK)

µk ∼ Np(υ, V )

Σ−1
k |R ∼ Wp(ρ, (ρR)−1) (7.6)

R ∼ Wp(b, (bR0)
−1)

σ−2 ∼ Γ(g, h)

K ∼ P(λ).

B(), D(), W(), N (), Γ() and P() signify the Bernoulli, Dirichlet, Wishart, multivariate nor-

mal, gamma and Poisson distributions respectively. Probability density and mass functions

associated with some of these distributions are specified in Appendix A.

The DAG in Figure 7.1 helps visualize hierarchical dependencies imposed on the model

by our choice of priors. Quantities not framed by boxes denote the hyperparameters, to

which the user must assign fixed values. Letting r = ‖η̂max − η̂min‖
2/p, where η̂max and

η̂min represent upper and lower envelopes of least squares estimates ηi, recommended values
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are:

τk = 1 for all k = 1, ..., K

υ = (η̂min + η̂max)/2

V = rIp

ρ = b = 2p

R0 = (100/r)Ip

g = 0.01 or 0.001; h = 1/g

λ = 3, 5, or 10.

A few key points clarifying the rationale behind prior selection are summarized next. Unless

otherwise indicated, these specifications are based on Stephens (2000a).

Proportion Parameters (πk)

Prior: π ∼ D(τ1, . . . , τK)

The Dirichlet distribution is chosen to describe the probabilities of belonging to each clus-

ter, because it is the conjugate prior of a multinomial distribution. That is, if we let mk

denote the number of observations in each cluster, it is easy to see that

[m1, ...,mK ]|π ∼ Mult(π1, ..., πK),

and by selecting a Dirichlet prior on the π, we obtain

π|[m1, ...,mK ] ∼ D(τ1 + m1, . . . , τK + mK).

The Dirichlet is also convenient because it is a continuous multivariate distribution

satisfying the constraint
∑

πk = 1. Letting τ0 =
∑

τk, the mean and variance of this

distribution are E(πk) = τk

τ0
and V (πk) = τk(τ0−τk)

τ2
0 (τ0+1)

. Thus, by setting τk = 1 for all k, we

assume a noninformative prior on π, with equal expected probabilities of belonging to each

cluster. Since D(1, . . . , 1) = 1/(K − 1)! (see Appendix A), this implies that the prior on
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the πk’s is constant (i.e. uniform) across mixture components.

Within-cluster Mean (µk)

Prior: µk ∼ Np(υ, V )

If we believe that each cluster of random effect coefficients has its own mean, we want

to allow these averages to vary across clusters. Thus, a prior is assumed on the within-

cluster means µk. The normal distribution is a natural choice for this prior since b-

spline coefficients are themselves normal. The hyperparameters of the prior on µk are

υ and V , which represent the expected value and covariance of µk. Thus, by setting

υ = (ηmin + ηmax)/2, we reflect our belief that within-cluster means will tend to center

around the mid-range of the estimated b-spline coefficients (Richardson & Green, 1997).

Specifying V is trickier. The hyperparameter represents the amount of between-cluster

variability in the data, and even if we knew how many and how far away the clusters should

be, it is difficult to specify each of the p(p + 1)/2 elements of the matrix. One alternative

is to specify V as a diagonal covariance matrix with sufficiently large elements, which will

ensure a reasonably flat prior for the µk over the observed range of the data. Based on

Stephens (2000a), we set V to be proportional to an identity matrix (i.e. V = rIp), with

the constant of proportionality equal to the mean of the squared functional range vector,

r = ‖η̂max − η̂min‖
2/p, which is essentially just an empirical measure of dispersion. This

reflects our belief that the amount of variability between the clusters is roughly proportional

to the overall variability in the b-spline coefficients, without being too informative about

its exact value. Since the squared range of a sample must be larger than its variance, this

choice of scaling yields extra dispersion, and gives a reasonably flat prior.

Covariance Parameters (σ2, Σk and R)

Priors: σ−2 ∼ Γ(g, h), Σ−1
k ∼ Wp(ρ, (ρR)−1) and R ∼ Wp(b, (bR0)

−1)

Consider σ2 - a measure of overall roughness in each curve. While it does not have a simple

conditionally conjugate prior, σ−2 does (Gelman, 2006). Two commonly used possibilities

are the uniform and the gamma priors. We chose to use the latter because it is closely
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related to the χ2, which is the sampling distribution of the scaled sample variance. The

mean and variance of the gamma distribution are E(σ−2) = gh and V (σ−2) = gh2, so

that by setting g = 1/h to be very small (e.g., 0.01 or 0.001), we specify a noninformative

(highly variable) prior on σ2. Increasing values of g correspond to priors that are less and

less objective, with stronger belief put into lower values of σ2. Our specification parallels

that of Zhou & Wakefield (2005) who suggest setting g = 0.001.

Let us now consider within-cluster covariance matrices Σk. Since we believe that each

mixture component has a different covariance matrix, it is natural to allow these to vary by

specifying a prior distribution. A multivariate extension of the gamma distribution is the

Wishart, which is conditionally conjugate for precision matrices1, making it the preferred

prior for Σ−1
k . A formal justification of assuming normal priors for mean parameters and

Wishart priors for precision matrices is provided in Geiger & Heckerman (2002).

Specifying hyperparameters for high-dimensional Wishart priors is complex. The two

parameters of a Wishart distribution correspond to the degrees of freedom (d.f.) and the

expected value of the random variable. That is, by assuming that Σ−1
k ∼ Wp(ρ, (ρR)−1) as

stated in (7.6), we have E(Σ−1
k ) = ρ× (ρR)−1 = R−1, where ρ is the d.f.. The distribution

is only proper for values of ρ ≥ p (see Appendix A). As with the χ2, smaller d.f. imply

more uncertainty. The usual approach is to set these to be as small as possible (e.g., ρ = p

or 2p), in order to ensure that the priors are vague and objective.

The second hyperparameter of a Wishart distribution is a p × p symmetric matrix

characterized by p(p + 1)/2 components. For large p, it is nearly impossible to know what

the elements of this matrix should be. Following Stephens (2000a) and Zhou & Wakefield

(2005), one possibility is to center R on a diagonal matrix, but allow it depart from this.

This is achieved by assuming a hyperprior on R, such that R ∼ Wp(b, (bR0)
−1), where

R0 is a diagonal matrix equal to 100/r. This implies that the amount of spread in the

curves within each cluster is roughly proportional to one tenth the amount of spread in

all of the data. The constant multiple of 100 is data-dependent in that it corresponds to

a diffuse prior if the observed data has a relatively small range, but it is quite informative

if the range of data values is quite large. The problem is avoided by scaling the data by

their maximum value, as indicated earlier. This will cause the range of observed values

1A precision matrix is the inverse of the covariance matrix.
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to be roughly between 0 and 1, making our suggested choice of hyperprior sufficiently

uninformative. The value of 100 is ten times the one suggested by Stephens, 1997 (pg. 37)

to allow for a more diffuse prior.

The importance of specifying objective prior beliefs on Σ−1
k is emphasized by Richardson

& Green (1997), who point out the dependence between this parameter and the number

of clusters K in the univariate case. These findings extend to the multivariate problem

considered in this thesis. When K is treated as a random variable (as is done later in

§7.3.3), its posterior distribution will depend on the amount of within-cluster variation.

That is, if elements of Σk are constrained to be too small, a large number of clusters will

be found, whereas if they are forced to be very large, all of the data will be merged into

a single cluster. The authors found that by defining an extra level of hierarchy on the

hyperprior of the precision parameter (R), we can avoid specifying Σ−1
k too informatively,

and estimation of K becomes considerably less sensitive to the choice of prior on Σk.

The Number of Clusters (K)

Prior: K ∼ P(λ)

A Poisson prior on K was chosen following Stephens (2000a). The prior has direct impact

on the algorithm used to draw inference from the joint posterior, a topic discussed in more

detail in §7.3.

Our choice of hyperparameters for this prior are motivated by the fact that the mean

and the variance of a Poisson distribution are E(K) = V (K) = λ. It is therefore preferable

to set λ roughly equal to the expected number of clusters, with larger values resulting in

more objective (less informative) priors. In our experience, setting λ = 5 or 10 in the prior

provides a nice range of plausible values for K without being too informative. Following

Zhou & Wakefield (2005), these values are larger than those suggested by Stephens (2000a),

generating priors that are more diffuse.
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7.3 Markov chain Monte Carlo

Having articulated prior beliefs about the parameters, let us return to the problem of

making inference. Let Θ = (θ1, ..., θd) denote some unknown set of parameters with a joint

distribution π(.). In order to be able to evaluate conditional expectations like (7.4) and

(7.5), we must be able to solve complex integrals of general form:

E(h(Θ)) =

∫

h(θ)π(θ)dθ. (7.7)

Using this expression, point estimates of parameter values can be obtained by setting

h(Θ) = Θ, and marginal distributions of say θ1 can be estimated by fixing h(Θ) =

π(θ1|θ2, ..., θd), since E(π(θ1|θ2, ..., θd)) =
∫

π(θ1|θ2, ..., θd)π(θ)dθ = π(θ1).

Due to the multidimensional nature of the integral in (7.7), the expression cannot be

evaluated analytically. Markov chain Monte Carlo (MCMC) methods offer a convenient

approximation of the solution via simulation.

7.3.1 Review

Two fundamental concepts behind all MCMC methods are the two MCs - Monte Carlo

integration and Markov chains. In this section we provide an overview of these ideas,

drawing from Tierny 1994 (§2), Roberts 1996 (§3.2) and Stephens 1997 (§2.1). For complete

details, we recommend reading Chapters 1, 3 and 4 in Gilks, Richardson & Spiegelhalter

(1996). Readers familiar with MCMC theory are encouraged to skip ahead to §7.3.2.

Monte Carlo Integration

Let Θ1, Θ2, . . . denote an infinite sequence of multidimensional random variables that are

independent and identically distributed with density π(.) and mean θ. Then according to

the strong law of large numbers (SLLN), for Eπ(|Θs|) < ∞,

lim
N→∞

Θ̄N
a.s.
−→ θ,
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where Θ̄N = (Θ1 + . . . + ΘN)/N is the sample mean.2

More generally, as N → ∞,

h̄N(Θ) =
1

N

N
∑

i=1

h(Θi)
a.s.
−→ Eπ(h).

Based on this result, integrals of the form (7.7) can be approximated using sample av-

erages of draws from π(.). The approach is called Monte Carlo integration. It is named

after a prominent city in Monaco famous for its casinos, because both gambling and the

approximation involve a random component.

Now suppose Θ represents a set of unknown parameters, which we assume to be random.

In the context of Bayesian model-fitting, the Monte Carlo method is utilized by drawing

repeatedly from the posterior distribution of Θ, then using arithmetic means to estimate

marginal posteriors and/or obtain point estimates of the unknown parameters. Sample

variances and prediction intervals can also be used to provide measures of uncertainly for

these estimates.

Unfortunately, for the curve clustering model, it is not possible to sample directly from

the joint posterior distribution presented in (7.3). An alternative is to set up a Markov

chain that has a stationary distribution equal to the joint posterior. Although we will no

longer be able to evoke the SLLN (successive states of a Markov chain are not independent),

under certain conditions, the Ergodic Theorem guarantees that path averages of the chain

can be used to approximate expectations. A review of Markov chains and the necessary

conditions for the Ergodic Theorem are provided next.

Markov Chains

A Markov chain is defined as a succession of random variables satisfying the property that

a future state depends only on the present and not on the past. Formally, a sequence

of random variables Θ(0) → Θ(1) → . . . → Θ(N) defined in some state space Ω ⊆ R
p is

a Markov chain so long as the distribution of Θ(s+1) given the current value of Θ(s) is

independent of Θ(0), . . . , Θ(s−1).

2a.s. is shorthand for “almost surely”.
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Board games provide a simple example (Ash & Bishop, 1972). In Monopoly, at any

given time a new move is dictated only by the immediate location on the board. The

likelihood of moving to a different location, in this case governed by the roll of the die,

is called a transition probability. These are dictated by a transition kernel. For a fixed

measurable set of values A ⊂ Ω, this is defined as

P (θ, A) = Pr(Θ(s+1) ∈ A|Θ(s) = θ).

The kernel plays a key role in ensuring that Θ(s) have the same distribution for all

values of s. Formally, if Θ(s) has density π on Ω, then Θ(s+1) has distribution πP . Thus, a

Markov chain will have a stationary (or invariant) distribution π if π = πP , or equivalently

Θ(s) ∼ π ⇒ Θ(s+1) ∼ π. (7.8)

A sufficient criteria for satisfying (7.8) is the detailed balance condition

π(θ)P (θ,θ′) = π(θ′)P (θ′,θ) for all θ,θ′ ∈ Ω (7.9)

which specifies that the probability with which a chain leaves a state must be the same as

the one with which it enters it (Cappe et. al., 2003).

Two important properties of a Markov process, which guarantee that a stationary

distribution exists, are irreducibility and aperiodicity. Irreducibility implies that, regardless

of the present state, a process can move to any other state in finite time. Aperiodicity

requires that the chain does not get caught in cycles. In Monopoly, the two properties

guarantee that a) you can always get to any of the 40 locations on the board, and b) you

will not continuously return to the same spot, say jail.

Precise definitions of the two concepts are:

i) A Markov chain is irreducible if for some s > 0 and all A ⊂ Ω,

P (Θ(s) ∈ A|Θ(0) = θ) > 0.
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ii) An irreducible chain is aperiodic if all of its states have period 1, i.e.

gcd{s : P (Θ(s) = θ|Θ(0) = θ) > 0} = 1,

where gcd denotes the greatest common denominator.

An irreducible Markov chain that has aperiodic states is said to be ergodic, which leads

to the following result (Roberts 1996, pg. 47).

Theorem 7.3.1 (Ergodic Theorem) Let Θ = (Θ(0), . . . , Θ(N)) denote an ergodic Markov

chain defined on state space Ω, with a transition kernel P and a stationary distribution π.

Then for any real-valued function h(Θ) defined on Ω such that
∫

|h(θ)|π(dθ) < ∞,

h̄N(Θ) =
1

N

N
∑

s=1

h(Θ(s))
a.s.
−→ E(h(Θ))

as N goes to infinity.

The theorem states that an ergodic average of a stationary Markov chain will converge

almost surely to its expected value. That is, E(h) ≈ h̄N for large N .

Combining ideas behind Markov chains and Monte Carlo, MCMC is an approach for

estimating expectations involving a set of unknown parameters Θ. This is accomplished by

constructing a Markov chain that has the same joint posterior p(Θ|ym) as the stationary

distribution. Then, by the Ergodic Theorem, path averages of the chain are used to

estimate marginal posteriors and/or any of the unknown parameters.

Convergence

In practice, the first few draws of the MCMC sample (called the burn-in period) are dis-

carded in order to ensure that the chain has converged to good solutions and is independent

of starting conditions. The Heidelberger & Welch (H-W) test (1983) implemented in the R

coda library can be used to assess chain convergence of the remaining output and ensure

sufficient burn-in.

A null hypothesis for the H-W test is that a chain under consideration has a stationary

distribution. This is assessed sequentially. First, the entire chain is tested. If it has
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not converged (i.e. the null hypothesis is rejected), 10% of the chain is discarded and

the remainder is re-tested. The process is repeated up to four more times until the null

hypothesis of convergence is no longer rejected. If the latter does not happen, the conclusion

is that the chain does not have a stationary distribution. At each step, the test statistic

for evaluating the null hypothesis is a Cramer-von-Mises measure of discrepancy between

posterior means of the parameter before and after a fraction of the output was discarded.

The test is univariate, and therefore it is conducted elementwise for parameters that

are vectors or matrices. For example, to check the convergence of a K × 1 vector π, K

H-W tests have to be conducted.

Cowles & Bradley (1996) provide a comprehensive review of other MCMC convergence

diagnostics that can be used, including those implemented in coda. According to their

comparative review, most provide similar results. However, the authors caution against

using numeric diagnostics alone, and encourage plotting output as well in order to verify

convergence visually. Examples of graphical assessment of convergence is provided in §8.5.

7.3.2 Gibbs Sampling Algorithm

Let Θ = (θ1, ..., θd) denote a multidimensional random variable with a joint distribution

p(Θ). Gibbs sampling is a special type of MCMC method used to draw realizations of

Θ from p(Θ) (Geman & Geman, 1984). It applies to situations where we cannot sample

from the joint density function of Θ directly, but are able to draw from the conditional

distributions of the θi’s given values of the remaining parameters.

For Bayesian problems, the Gibbs algorithm is used to sample from the joint posterior

in the following manner. Starting with initial values Θ(0) = (θ
(0)
1 , . . . , θ

(0)
d ), sequentially

draw each element of Θ(s) for s = 1, 2, . . . , N iterations:

θ
(s+1)
1 ∼ p(θ1|y

m, θ
(s)
2 , . . . , θ

(s)
d )

θ
(s+1)
2 ∼ p(θ2|y

m, θ
(s+1)
1 , θ

(s)
3 , . . . , θ

(s)
d )

...

θ
(s+1)
d ∼ p(θd|y

m, θ
(s+1)
1 , . . . , θ

(s+1)
d−1 )
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Geman & Geman (1984) show that the resulting sample (Θ(0), Θ(1), . . . , Θ(N)) forms an

irreducible, aperiodic Markov chain with a limiting distribution p(Θ|ym). The latter is

easy to see by verifying the stationarity condition in (7.8) (see Stephens 1997, pgs. 19-20).

Gibbs Sampling for the Bayesian Curve Clustering Model

Consider the Bayesian curve clustering model presented in §7.1. Suppose that the number

of clusters K is fixed, and let

Θ =
(

{zi}
m
i=1, {ηi}

m
i=1, {πk}

K
k=1, {µk}

K
k=1, {Σk}

K
k=1, R, σ2

)

denote all of the unknown parameters in the model. Then using Θ(0) as starting values, a

Gibbs algorithm would proceed as follows for s = 1, 2, . . . , N iterations:

1. Draw z
(s+1)
i from p(zi|y

m, η
(s)
i , . . . , σ2(s)) for i = 1, . . . , m.

2. Draw η
(s+1)
i from p(ηi|y

m, z
(s+1)
i , π(s), . . . , σ2(s)) for i = 1, . . . , m.

3. Draw π(s+1) from p(π|ym, z
(s+1)
i , η

(s+1)
i , µ

(s)
k , . . . , σ2(s)).

4. Draw µ
(s+1)
k from p(µk|y

m, z
(s+1)
i , η

(s+1)
i , π(s+1), Σ

(s)
k , . . . , σ2(s)) for k = 1, . . . , K.

...

8. Draw σ2(s+1) from p(σ2|ym, z
(s+1)
i , η

(s+1)
i , π(s+1), µ

(s+1)
k , Σ

(s+1)
k , R(s+1)).

The conditional posteriors in 1.-8. are called full conditionals. For hierarchical prob-

lems, many of these simplify nicely when conditional independencies in the prior and model

are utilized. For example, consider the full conditional distribution of π = (π1, . . . , πK).

From Figure 7.1, it is clear that π is conditionally independent from the data and all pa-

rameters except for the zi’s. This is also evident from the form of the joint posterior (7.3).

That is,

p(π|ym, {zi}
m
i=1, {ηi}

m
i=1, {µk}

K
k=1, {Σk}

K
k=1, R, σ2) = p(π|{zi}

m
i=1).
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In order to obtain the full conditional of π up to a proportionality constant, it follows

that

p(π|ym, . . .) ∝ p({zi}
m
i=1|π)p(π)

=

{ K
∏

k=1

mk
∏

i:zi=k

p(zi|πzi
)

}

· p(π).

Since zi|π ∼ B(πzi
) and π ∼ D(τ1, . . . , τK), we obtain

p(π|ym, . . .) ∝ πm1
1 · ... · π

mK−1

K−1 · (1 − π1 − ... − πK−1)
mK ×

πτ1−1
1 · ... · π

τK−1−1
K−1 · (1 − π1 − ... − πK−1)

τK−1

= πm1+τ1−1
1 · ... · π

mK−1+τK−1−1
K−1 · (1 − π1 − ... − πK−1)

mK+τK−1

Thus the full conditional distribution of π is D(m1 +τ1, ...,mK +τK), where mk is the total

number of observations in cluster k.

Full conditionals for the remaining parameters of the curve clustering model are derived

in Appendix B.1. These are:

p(zi = k| . . .) = πk · Nn(yi; µk, Σk)

ηi| . . . ∼ Np((σ
−2BT B + Σ−1

k )−1(σ−2BTyi + Σ−1
k µk), (σ

−2BT B + Σ−1
k )−1)

π| . . . ∼ D(m1 + τ1, . . . , mK + τK)

µk| . . . ∼ Np((mkΣ
−1
k + V −1)−1(mkΣ

−1
k η̄k + V −1υ), (mkΣ

−1
k + V −1)−1)

Σ−1
k | . . . ∼ Wp



mk + ρ,





mk
∑

i:zi=k

(ηi − µk)(ηi − µk)
T + ρR





−1



R| . . . ∼ Wp



b + Kρ,

[

bR0 + ρ

K
∑

k=1

Σ−1
k

]−1




σ−2| . . . ∼ Γ





nm

2
+ g,

[

1

2

∑

i

(yi − Bηi)
T (yi − Bηi) +

1

h

]−1




where η̄k =
∑mk

i:zi=k ηi/mk.
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Then a Gibbs sampler for the curve clustering model involves generating an MCMC

sample (Θ(1), . . . , Θ(N)), with each element of Θ(s) drawn sequentially from the full condi-

tionals listed above. For large N , the stationary distribution of this chain is roughly equal

to the joint posterior. Having discarded the burn-in values, MCMC output is averaged

to obtain point estimates of the parameters and can also be used to estimate marginal

distributions.

7.3.3 Birth-Death MCMC

One of the most challenging characteristics of our problem is the absence of any information

about the type and number of processes that are governing valve seat insertion. This

calls for an automated way of selecting the total number of clusters, K. In the context of

hierarchical mixture models, this can be accomplished by treating K as one of the unknown

parameters, assigning a prior to it and estimating it conditional on the data.

The challenge in allowing K to vary is the fact that this causes the dimensionality of

the parameter space to change at each iteration of the MCMC. That is, as K varies, the

model contains a larger or smaller number of cluster specific parameters such as πk, µk,

and Σk. In recent years, several algorithms have been proposed to deal with the trans-

dimensional MCMC problem in the context of mixture models. Two dominant ones are

reversible jump MCMC (RJMCMC) developed by Green (1995) and birth-death MCMC

(BDMCMC) developed by Stephens (2000a). Cappe, Robert & Ryden (2003) show that

RJMCMC can be regarded as a special case of BDMCMC, and propose a variation of the

latter, called continuous time MCMC.

For its generality and ease in implementation, we only consider Stephens’ birth-death

approach. Zhou & Wakefield (2005) applied this algorithm to fit the curve clustering

model in (7.1). We follow their work closely, making necessary adjustments to improve

performance whenever possible. An overview is provided in this section.

The Basics

The assumption behind Stephens’ approach to mixture modeling is that new clusters are

“born” and old clusters “die” in continuous time. These are regarded as a sequence of
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events occurring at some rate λ + δ, where λ is the rate of birth and δ is the rate of death

per unit of time. Although it can be assigned as any arbitrary quantity, we specify the

birth rate λ as the prior mean of K. The progression of birth and death events can then

be represented as a Poisson process, with the waiting time until the occurrence of an event

following an exponential distribution with mean 1/(λ + δ). Stephens proposes simulating

this process using the following recipe.

Let K denote a starting value for the number of clusters, and use Φ = {φ1, . . . ,φK} to

denote all cluster-specific parameters, with φk = {πk,µk,Σk} containing the parameters

for component k. Proceed to simulate a birth-death process by repeating the following

steps for some extended amount of time:

i) Simulate the time t at which the next event will occur, where T ∼ EXP (1/(λ + δ)).

ii) Simulate the type of event x occurring at time t, with

X =

{

1 if birth, with P (X = 1) = λ
λ+δ

;

−1 if death, with P (X = −1) = δ
λ+δ

.

iii) Update the number of clusters, K = K + x, and make the following adjustments:

– If a birth occurs, propose new cluster parameters φnew, and update Φ = Φ∪φnew.

Within Φ, adjust the proportion parameters to π = π(1 − πnew) in order to

ensure that elements of π sum to one.

– If a death occurs, delete a cluster with the highest death rate δk (where δ =
∑

k δk) by setting Φ = Φ\φk. Scale proportion parameters to π = π
(1−πk)

.

Stephens combines this with the Gibbs sampler (which draws the remaining parameters)

by running Gibbs iterations at equally spaced time units of the continuous birth-death

simulation. A visualization of this idea is provided in Figure 7.2.

In order to ensure that the stationary distribution of the resulting Markov chain is

the joint posterior p(Θ, K|ym), the birth and death rates of the process must satisfy the

detailed balance condition dictated by (7.9). That is, it must hold true that for all Θ,

1

(K − 1)!
p(Θ\φk, K − 1|ym)P (Θ\φk, Θ) =

1

K!
p(Θ, K|ym)P (Θ, Θ\φk), (7.10)
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Figure 7.2: A toy example of a birth-death process for λ = 2 and δ = 1.

where P (Θ, Θ′) is the rate of transition to a new part of the chain. This implies that the

probability of entering a state as a result of a birth must be the same as the probability of

leaving it due to a death.

Cappe et. al. (2003) point out that 1/K! and 1/(K − 1)! in (7.10) denote probabilities

of selecting one of K! possible orderings of the elements in Θ, and (K − 1)! possible

orderings of Θ\φk. This is necessary because components of Θ lack identifiability, so that

Θ = (φ1,φ2,φ3, . . . , ) and Θ′ = (φ3,φ1,φ2, . . . , ), for example, produce the same values

of the posterior p(Θ, K|ym).

Letting p∗(φk) = p∗(πk)p
∗(µk)p

∗(Σ−1
k ) denote the proposal density for new cluster

components, the rates of transition to a birth and a death in (7.10) are respectively

P (Θ\φk, Θ) = λ · p∗(φk) and P (Θ, Θ\φk) = δk.

It follows that the posterior is a stationary distribution as long as

1

(K − 1)!
p(Θ\φk, K − 1|ym)λp∗(φk) =

1

K!
p(Θ, K|ym)δk,

or equivalently

δk = λ ·
p(Θ\φk, K − 1|ym)

p(Θ, K|ym)
·
p∗(φk)

K

for all k = 1, . . . , K.



104 Flexible Mixed-Effect Modeling of Functional Data

The posterior distribution for the curve clustering model with unknown K is given by:

p(Θ, K|ym) ∝

{

m
∏

i=1

Nn(yi; Bηi, σ
2)

}

×







m
∏

i=1

K
∑

j=1

Np(ηi; µj , Σj)P (zi = j)







×







K
∏

j=1

Np(µj ; υ, V ) ×Wp(Σ
−1
j ; ρ, (ρR)−1)







×D(π; 1, . . . , 1)

×Wp(V
−1; a, (aV0)

−1) ×Wp(R; b, (bR0)
−1) × Γ(σ−2; g, h) × P(K; λ).

Let q(η|Φ) =
∏

i

∑

j πjN (ηi; µj, Σj), and note that D(π; 1, . . . , 1) = (K − 1)! and

P(K; λ) ∝ λK/K! from the list of distributions in Appendix A. Then the death rates are:

δk =
λ

K
·
q(η|Φ\φk)

{

∏K
j=1 6=k N (µj)W(Σ−1

j )
}

D
(

π\πk

1−πk
; 1, ..., 1

)

P(K − 1; λ)

q(η|Φ)
{

∏K
j=1 N (µj)Wp(Σ

−1
j )
}

D(π; 1, ..., 1)P(K; λ)
· p∗(φk)

=
λ

K
·
q(η|Φ\φk)

q(η|Φ)
·

1

N (µk)Wp(Σ
−1
k )

·
1

K(1 − πK)K−1
·
K

λ
· p∗(φk)

=
q(η|Φ\φk)

q(η|Φ)
·

p∗(πk)p
∗(µk)p

∗(Σ−1
k )

Beta(πk; 1, K)N (µk)Wp(Σ
−1
k )

(7.11)

Assuming a Beta(1, K) proposal for the proportion parameters, and proposals from the

priors for the within-cluster mean and covariance components, the death rates for model

(7.1) simplify to:

δk =
q(η|Φ\φk)

q(η|Φ)
. (7.12)

That is, the death rate for cluster k is simply the probability contribution made by exclud-

ing the component from the model, which makes sense intuitively.

Label Switching

A common challenge in fitting Bayesian mixture models is the switching of cluster labels

as the MCMC algorithm is run (Richardson & Green 1997, Stephens 2000a). The problem
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stems from the fact that the mixture density

q(η|Φ) =
∏

i

K
∑

k=1

πkN (ηi; µk, Σk) (7.13)

in the joint posterior is invariant to the relabeling of the mixture components. That is,

the value of q(η|Φ) is the same regardless of whether the cluster labels are (1, 2, . . . , K) or

any permutation thereof. This can cause closely related clusters to exchange labels as the

MCMC algorithm runs.

Since the modes of (7.13) tend to be more uniquely identified in high-dimensional space,

the problem becomes less prominent as the number of basis functions used to fit the random

effects increases. Nonetheless, we recommend applying a relabeling algorithm proposed by

Stephens (2000b) to ensure that the cluster labels remain consistent.

Stephens’ (2000b) algorithm works by considering all K! possible permutations of the

labels and picking the best one at every step of the MCMC. The permutated labels are

chosen by minimizing the Kullback-Leibler (K-L) difference between the present estimate

of (7.13) and its target value. The target value of the density is calculated as an average

over the first few iterations. Complete details can be found on pg. 8 of Stephens (2000b).

BDMCMC Sampling for the Bayesian Curve Clustering Model

A complete BDMCMC algorithm for the Bayesian curve clustering model is provided below.

It follows the recipe prescribed by Stephens (2000a) and adopted by Zhou & Wakefield

(2005).

Begin by setting the initial values K(0), Φ(0), η(0), σ2(0) and R(0). We suggest using

least squares to approximate η(0) and partitioning clustering methods, such as K-means,

to set initial values for cluster-dependent parameters. The latter involves running K-

means on the estimated b-spline coefficients η̂(0), getting cluster labels for each curve, and

then calculating sample means and covariances of the least squares estimates {η̂(0)
i , i ∈

cluster k}. Initial values for the remaining parameters can be obtained as draws from

their respective priors.

Proceed to repeat the following steps for s = 1, 2, . . . , N iterations.
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1. Sample K(s+1) and Φ(s+1) by running the birth-death process for a fixed time t0. That

is, start with K(s+1) = K(s) and Φ(s+1) = Φ(s), then repeat steps i)-iii) for t ≤ t0.

i) Simulate the time to the next jump, t ∼ EXP (1/(λ + δ)), where λ is a fixed

birth rate and δ =
∑K

k=1 δk is the overall death rate calculated according to

(7.12).

ii) Simulate the type of jump, X = I(birth)∼ B

(

λ
λ+δ

)

.

iii) If a death occurs, identify cluster k corresponding to the largest death rate

δk. Adjust proportion parameters π(s+1) = π(s+1)

1−π
(s+1)
k

to sum to one. Update

K(s+1) = K(s+1) − 1 and Φ(s+1) = Φ(s+1)\φ(s+1)
k .

If a birth occurs, propose a new cluster φnew = (πnew,µnew,Σnew) from the

proposal distribution p∗(φ), e.g.

πnew ∼ Beta(1, K(s) + 1),

µnew ∼ N (υ(s), V (s)), (7.14)

Σnew ∼ W(ρ, (ρR(s))−1).

Update K(s+1) = K(s+1) + 1 and Φ(s+1) = Φ(s+1) ∪ φnew.

2. Simulate z
(s+1)
i and η

(s+1)
i for i = 1, . . . ,m from their full conditionals.

3. Simulate R(s+1) and σ2(s+1) from their respective full conditionals.

4. Simulate cluster-specific parameters φ
(s+1)
k = {π(s+1)

k ,µ
(s+1)
k ,Σ

(s+1)
k } from their full

conditionals.

An improvement incorporated into this algorithm is the use of K-means to set initial

values on the cluster-specific parameters. While these results still depend on the arbitrarily-

chosen initial choice of K, we found the approach to be helpful in practice. Reasonable

choice of initial values will lead to chains that burn in faster.



Chapter 8

Bayesian Random Effects Clustering

8.1 Model

In this chapter, we extend the Bayesian curve clustering model to account for systematic

changes in the process, such as valve or ram effects. We do this by expanding the basic

model in (7.1) as follows:

yij
n×1

= B1 γj
n×p p×1

+ B2 ηij
n×q q×1

+ ǫij
n×1

; (8.1)

ηij|zij = k ∼ Nq(µk,Σk) and ǫij ∼ Nn(0, σ2In).

Here i = 1, . . . , c could index the engine head (which we will call part) and j = 1, . . . , v

the valve number, so that the total number of observed curves is c × v = m.

The new parameters in this model are the γj’s, which are unknown quantities that do

not depend on the cluster label. We can think of (8.1) as a mixed effects mixture model

similar to the linear mixed effects model (4.2) in Chapter 4. In fact, for K = 1, the two

models are equivalent. As before, the role of γj is to account for fixed systematic changes

in the process, while the clustering is performed on the random ηij’s. In each case, a

different set of basis functions (B1 and B2) is used to estimate the two terms in the model.

We shall refer to our new approach as Bayesian random effects clustering (BREC).

In the context of force exertion data, model (8.1) allows for the possibility that, con-

sistently throughout the process, each of the v = 7 valve seats may have been differently

107
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inserted. An equivalent ad-hoc solution would be to subtract off the smoothed mean curves

for each valve from all observations associated with that valve, and then cluster b-spline

coefficients obtained from smoothing the residual curves as was done in §6.5. If several

types of systematic effects are present (such as both valve and ram effects), subtracting

off mean curves can get cumbersome, whereas the comprehensive structure of (8.1) is nat-

urally appealing. Furthermore, by formalizing the existence of fixed effects in the model,

we are able to accurately estimate the curve roughness component σ2.

Another important advantage of BREC is its generality. Previous work in clustering

curves such as James & Sugar (2003), Zhou & Wakefield (2005), and Gaffney & Smyth

(2003) are all special cases of (8.1) with B1γj = 0. For the valve seat example, we could

also set ηij = ηi, which would be equivalent to simultaneously clustering all of the seven

insertions on the same part after the valve effects have been removed. Another possibility

mentioned earlier would be to account for any differences associated with the two types of

rams that simultaneously insert the intake and the exhaust valve seats. This can be done

by including another fixed component in the model corresponding to the ram effect, e.g.,

letting l = 1, 2 index the two types of rams,

yijl = B0αl + B1γj + B2ηijl + ǫij; (8.2)

ηijl|zijl = k ∼ Nq(µk,Σk) and ǫijl ∼ Nn(0, σ2In).

An added bonus of this representation over say (7.1) is a type of dimension reduction

that occurs at the clustering level. That is, while a large number of basis functions are

necessary to smooth over the valve means in the fixed effects, only a few need be used to

smooth over the residual curves in the random effects (i.e. q ≪ p). As such the quantities

being clustered are in a low-dimensional subspace, which leads to improved performance

in model-fitting (James & Sugar 2003 and Zhou & Wakefield 2005).

As in Chapter 7, a Bayesian approach to inference is adopted. This will enable as-

sessment of uncertainty in all model parameters, particularly the number of clusters K.

Prior specification and posterior estimation using BDMCMC are extended from Chapter

7 in §8.2 and §8.3. Possible applications of the BREC model in practice are discussed in

§8.4, and synthetic and real data are analyzed in §8.5 to show accuracy and efficacy of our

methodology. A discussion completes this chapter in §8.6.
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8.2 Priors
Model (8.1) is characterized by the following set of unknown parameters:

Θ =
(

{{zij,ηij}
c
i=1,γj}

v
j=1,π, {µk, Σk}

K
k=1, R, σ2, K

)

.

A hierarchy of prior distributions assigned to these quantities includes:

zij = k|π ∼ B(πk)

π|K ∼ D(τ1, . . . , τK)

γj ∼ Np(w,W ) (8.3)

µk ∼ Nq(0, V )

Σ−1
k |R ∼ Wq(ρ, (ρR)−1)

R ∼ Wq(b, (bR0)
−1)

σ−2 ∼ Γ(g, h)

K ∼ P(λ).

The list of priors specified in (8.3) is similar to (7.6), with one additional prior placed

on the systematic components γj and a change to a distribution centered on zero for

the cluster means µk. A normal prior was chosen for the fixed effects in order to ensure

conditional conjugacy of the posterior distribution. Cluster means of the random effects

are assumed to have an expected value of zero, because these are based on the random

effects, which now model the residual curves after subtracting off the valve means. A graph

summarizing prior dependencies among the parameters is displayed in Figure 8.1.

Suggested values for the hyperparameters are summarized below. As before, if we let

xmax and xmin denote vectors of length d containing maximum and minimum values for

each row of some d × m matrix x = [xT
1 , . . . ,xT

m], then the scalar rx = ‖xmax − xmin‖
2/d
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Figure 8.1: DAG of the Bayesian random effects clustering model. The diagram helps
visualize the hierarchical dependence amongst the parameters and the data. A triangle
frames the quantity being clustered. Quantities not framed by boxes are fixed, or in the
case of yij, are observed.

represents a measure of spread in the data similar to that of Stephens, 1997 (pg. 37).

w = (γ̂min + γ̂max)/2;

W = rγ̂Ip;

τk = 1 for all k = 1, ..., K;

V = rη̂Iq;

R0 = (100/rη̂)Iq; ρ = b = 2q;

g = 0.01 or 0.001; h = 1/g;

λ = 3, 5, or 10.

Values of γ̂min, γ̂max, rγ̂ , and rη̂ are calculated based on the estimated fixed effect and

predicted random effect coefficients. These prior parameters can be specified empirically

using least squares to fit (8.1), such that γ̂j = (BT
1 B1)

−1BT
1 ȳj and η̂ij = (BT

2 B2)
−1BT

2 (yij−

B1γ̂j).

Our rationale in specifying the prior distribution on the fixed effects is the same as that

of assigning the prior on the random effects. That is, we want to centre the fixed effects
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prior on the midpoint of the sampling distribution (w = (γ̂min + γ̂max)/2), and choose a

covariance W that is sufficiently large so that the prior is diffuse over the range of the

estimated coefficients.

8.3 Estimation

Letting c denote the number of parts and v the number of insertions made on each part as

indicated earlier, a total of m = c · v observed curves are considered. Then the likelihood

function for model (8.1) is:

L(γm,η, σ2|ym) =
r
∏

i=1

v
∏

j=1

Nn(yij; B1γj + B2ηij, σ
2).

Combining this information with our prior beliefs (for fixed K), we get the following joint

posterior for the unknown parameters:

p(Θ|ym) ∝
r
∏

i=1

{ v
∏

j=1

Nn(yij ; B1γj + B2ηij , σ
2) ×Np(γj ;w, W )

}

× (8.4)

K
∏

k=1

{ mk
∏

ij:zij=k

{

Nq(ηij ; zij , µzij
, Σzij

) × B(zij ; πzij
)

}

Nq(µk;0, V ) ×Wq(Σ
−1
k ; ρ, (ρR)−1)

}

×D(π; τ1, . . . , τK) ×Wq(R; b, (bR0)
−1) × Γ(σ−2; g, h).

This can then be used to obtain full conditional distributions of the parameters, which

are summarized below. Complete derivations are provided in Appendix B.2.

p(zij = k| . . .) ∝ N (ηij ; µk, Σk) · πk

π| . . . ∼ D(m1 + τ1, . . . , mK + τK)

ηij | . . . ∼ Np

(

(σ−2BT
2 B2 + Σ−1

k )−1(σ−2BT
2 (yij − B1γj) + Σ−1

k µk),

[

σ−2BT
2 B2 + Σ−1

k

]−1)

γj | . . . ∼ Nq

(

(cσ−2BT
1 B1 + W−1)−1(cσ−2BT

1 (ȳj − B2η̄j) + W−1w),

[

cσ−2BT
1 B1 + W−1

]−1)

µk| . . . ∼ Np

(

mk(mkΣ
−1
k + V −1)−1Σ−1

k η̄k,

[

mkΣ
−1
k + V −1

]−1)
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Σ−1
k | . . . ∼ Wp

(

mk + ρ,

[ mk
∑

i:zij=k

(ηij − µk)(ηij − µk)
T + ρR

]−1)

R| . . . ∼ Wp

(

b + ρK,

[

bR0 + ρ

K
∑

k=1

Σ−1
k

]−1)

σ−2| . . . ∼ Γ

(

nm

2
+ g,

[

1

2

v
∑

j=1

c
∑

i=1

(yij − B1γj − B2ηij)
T (yij − B1γj − B2ηij) +

1

h

]−1)

.

The list is nearly identical to the full conditionals summarized in §7.3.2. Obvious

changes include the addition of new parameters γj, replacing all B with B2 and yi with

yij − B1
T γj. Gibbs steps are adjusted accordingly. Then, allowing the number of clusters

to vary, BDMCMC is used to generate a large sample of unknown parameters from the

joint posterior p(Θ, K|ym). The algorithm is presented below.

BDMCMC Algorithm

Begin by calculating initial values of the estimated fixed effects and predicted random

effects:

γ
(0)
j = (BT

1 B1)
−1BT

1 ȳj and η
(0)
ij = (BT

2 B2)
−1BT

2 (yij − B1γ̂j)

Cluster η
(0)
ij using K-means, and use the results to set initial values for cluster-dependent

parameters (z
(0)
ij , π(0), µ

(0)
k , and Σ

(0)
k ). Obtain the remaining starting values (R(0), and

σ2(0)) by drawing from the priors. Repeat the following steps for s = 1, 2, . . . , N iterations.

1. Obtain K(s+1) by simulating a birth-death process for t0 = 1 units of time, as outlined

in steps i)-iii) in §7.3.3.

2. Draw z
(s+1)
ij , η

(s+1)
ij and γ

(s+1)
j from their full conditionals (i = 1, . . . , c; j = 1, . . . , v).

3. Draw R(s+1) and σ2(s+1) from their respective full conditionals.

4. Draw π
(s+1)
k ,µ

(s+1)
k ,Σ

(s+1)
k from their full conditionals (k = 1, . . . , K(s+1)).

Having obtained sample values of the parameters Θ(1), . . . , Θ(N), the first Nb of these

are discarded as burn-in, and the remaining posterior samples are used for inference. Con-

vergence of the parameters (and an appropriate value for Nb) can be assessed visually



Bayesian Random Effects Clustering 113

using trace plots of the simulated values against iteration number or numerically using

convergence diagnostics.

8.4 Applications

Before we consider some examples, it is worth re-emphasizing the practical relevance of

our approach. In this section, we describe three general applications of curve clustering,

and specify how our model can be used in each context.

8.4.1 Mode Detection

Any process observed over the span of several days, months or years begs the question:

how does it change (if at all) over time? For functional response data with nothing more

recorded than the curves themselves, an answer can be obtained from clustering. By

grouping curves with similar features, we are able to identify important changes in the

process. To investigate whether or not these changes are time-dependent, probabilities of

belonging to each cluster over time can be examined.

In our experience, clustering is especially effective at detecting shifts between reasonably

well-defined modes. We tend to think of these modes as corresponding to distinct states

of the system. An example would be if we observe that most curves belong to one cluster

one day and another cluster on another day, indicating a sudden change in the production

process. If instead the change is a gradual shift over time, clustering might not be the best

tool to detect this, and sequential profile monitoring tools such as EWMA charts described

in §5.4.3 can be used instead.

In Chapter 6, two graphical tools used to identify and assess potential changes in the

production process are:

• Predicted probabilities of belonging to each cluster and daily averages thereof plotted

in chronological order (see Figures 6.3(a)-(c)). Such plots make it possible to identify

which clusters of curves correspond to one or more changes in the process.

• Plots of functional means for each cluster (see Figure 6.3(d)). By looking at the

shapes of the within-cluster means, particularly with the help of subject specialists,
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it may be possible to determine possible causes for a change in the process.

The two types of visual display can also be used to detect outliers. A more comprehensive

solution to the problem is proposed in §8.4.3.

An underlying assumption behind the above-mentioned approach to mode detection is

that the data are clustered according to some unobservable structure in the data, rather

than any known systematic changes, such as the valve or ram effects in the valve seat

insertion example. An important advantage of the BREC model over other clustering

techniques is that it is able to control for these systematic changes.

8.4.2 Bayesian Prediction

Another interesting problem is that of prediction for future observations. In manufacturing,

for example, it is often important to make instant decisions about the data at the time

of production. The usual approach (see Chapter 5) is to compare new data to some well-

established base set. Clustering can be applied in the same manner. Having clustered a

subset of curves, a new observation yij can be classified to the cluster that has the highest

associated probability of belonging to that group - Pr(zij = k|yij). In the context of valve

insertion, if we assume that the clusters correspond to different types of assembly (e.g.,

“good”, “bad” and varying degrees thereof), assigning new observations to one of these

groups provides important information about the current state of the process.

Prediction calculations for the BREC model are presented here. From (8.1),

yij|zij = k ∼ Nn(B1γj + B2µk, B2ΣkB2
T + σ2In).

Then using Bayes rule, for any new insertion on valve j with observed force values ynew,

the probability of belonging to cluster k having observed the data is given by

pnew(k) = Pr(znew = k|ynew) =
πk · Nn(ynew|µ

∗
k, Σ

∗
k)

∑K
l=1 πl · Nn(ynew|µ∗

l , Σ
∗
l )

, (8.5)

where

µ∗
k = B1γj + B2µk and Σ∗

k = B2ΣkB2
T + σ2In
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for k = 1, . . . , K̂.

Using (8.5), a new curve is assigned to the cluster that has the highest estimated value

of pnew(k). Since the parameters required to evaluate (8.5) are unknown, the posterior

must be used to estimate them. A simple approach is to calculate posterior means of all

parameters in (8.5), and “plug in” these values to obtain p̂new(k). The term p̂new(k) could

also be estimated as a posterior expectation, which can be evaluated based on MCMC

output as follows:

p̂new(k) =
1

N − Nb

N
∑

s=Nb

π
(s)
k · Nn(ynew|µ

∗(s)
k , Σ

∗(s)
k )

∑K
l=1 π

(s)
l · Nn(ynew|µ

∗(s)
l , Σ

∗(s)
l )

, (8.6)

where s = Nb, . . . , N denotes the iteration numbers after the burn-in period,

µ
∗(s)
k = B1γ

(s)
j + B2µ

(s)
k and Σ

∗(s)
k = B2Σ

(s)
k B2

T + σ2(s)In.

Expression (8.6) is used to predict cluster labels in this thesis.

An obvious limitation of this approach is that a new curve may not follow any known

process, and thus would not belong to any of the clusters. Observations that do not belong

to any of the known clusters should be considered outliers. A profile monitoring technique

for detecting outliers using the clustering model is proposed next.

8.4.3 Profile Monitoring

One way to determine if a new observation is an outlier with respect to a base set of

clustered curves is to verify that it is far away from all of the existing clusters. In order to

formalize this, we must define a measure of distance. A natural candidate for multivariate

quantities is the Mahalanobis distance, defined as

T 2
k = (η̂ij − µ̂k)

T Σ̂−1
k (η̂ij − µ̂k).

The metric represents the distance of the predicted random effects from the kth cluster

mean scaled by the kth within-cluster covariance. As such, a new observation is likely to



116 Flexible Mixed-Effect Modeling of Functional Data

belong to the cluster corresponding to the lowest value of T 2
1 , . . . , T 2

K . Let

Dij = min(T 2
1 , · · · , T 2

K) (8.7)

denote this distance to the closest cluster. The higher this value the less likely it is that

a curve belongs to any of the clusters, since it is far away from all of them. Thus, one

possible way to detect outliers is to monitor changes in the Dij.

Using statistical process control methodology outlined in Chapter 5, profile-monitoring

using a clustered base set proceeds in two phases. The first phase involves the analysis

and assessment of in-control data, with the results used in the second phase to classify new

curves. The steps of the proposed procedure are outlined below.

PHASE I

1. Cluster data that is assumed to be “in-control”. Obtain η̂ij, µ̂k and Σ̂k as posterior

means estimated from the MCMC output.

2. For each curve in the base set, calculate Dij metrics as stated in (8.7).

3. Let UCL be some value so that Dij < UCL for all or most ij. This represents a

threshold value for unusual behaviour.

PHASE II

1. For each new curve, obtain point estimates of the random effects

η̂ij = (BT
2 B2)

−1BT
2 (yij − B1γ̂j),

where γ̂j = (BT
1 B1)

−1BT
1 ȳj and ȳj =

∑c
i=1 yij/c.

2. Calculate Dnew using estimates of µ̂k and Σ̂k from Phase I.

3. Flag curves that have Dnew ≥ UCL as outliers, where UCL is the upper control limit

obtained in Phase I.
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Since the above procedure involves monitoring Mahalanobis distances, we shall refer to

this profile monitoring procedure as the distance approach.

8.5 Examples

In this section, we use empirical evidence to answer two important questions regarding our

BREC approach: does it work, and is it useful? Synthetic data are used to address the

first concern (since it requires knowledge of the truth), and real data to examine the latter.

R statistical software (R Development Core Team, 2006) was used to implement the

BDMCMC algorithm for fitting the BREC model. The Heidelberger & Welch test (1983) as

implemented in the coda library was utilized in assessing chain convergence and sufficient

burn-in. A description of this convergence criteria can be found in §7.3. Having obtained

parameter estimates, Stephens (2000b) relabeling algorithm described in §7.3.3 was run to

ensure that the cluster labels remain consistent. We implemented the method in C and

ran in R using a wrapper function. The WNLIB ANSI C subroutine library written by

Naylor & Chapman (2006) was used to minimize the K-L divergence criteria with respect

to the labels.

8.5.1 Synthetic Data

Our key objective in simulating force exertion data was to ensure that it closely resembles

the real valve seat insertion problem. To ensure this, we used model-based clustering

(MBC) results from Chapter 6 to separate the February data (which we suspect to be

well-behaved) into four clusters and obtain plausible estimates for various parameters of

the BREC model. More precisely, we followed these steps in simulating new data:

1. Using a subset of curves from the last six days of production in February, calculate

two average curves: one for intake and one for exhaust type of valve insertion. Smooth

over these average curves to obtain the fixed-effect b-spline coefficients. These will

correspond to the true systematic effects in our model (γj).

2. Let B1 denote the matrix of p = 20 b-spline basis functions used for fixed effects
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smoothing in step 1. Subtract B1γj’s from the force curves, and use least-squares to

estimate b-spline coefficients for this residual data.

3. Cluster the second set of b-spline coefficients using MBC. The four-cluster EEE model

appears to fit best according to BIC. Calculate proportions of curves belonging to

each cluster (πk), within-cluster means (µk) and within-cluster covariances (Σk).

4. Generate new data according to the model:

ǫij ∼ MV N(0, 102I100)

ηij|zij = k ∼ MV N(µk, Σk)

yij = B1γj + B2ηij + ǫij

for i = 1, ..., 198, j = 1, 2, and k = 1, 2, 3, 4. The columns of B2 are set to contain

q = 10 basis functions.

Following these steps, a total of 396 curves split into four clusters with m1 = 320,

m2 = 36, m3 = 20 and m4 = 20 observations in each one were generated. The data (yij)

and the random effect coefficients (ηij) obtained in step 4 are plotted according to the

cluster labels in Figure 8.2. Looking at the plot of the random effects, clustering this data

is clearly not a trivial problem since the curves within each cluster are highly variable and

the three smaller clusters overlap with the bigger one. In fact, when we use MBC to cluster

the 396 true random effects, none of the top three BIC models get the correct number of

clusters or the correct covariance structure. The best-fitting model according to BIC is

a two-cluster model with an EEE covariance structure (ellipsoids of equal shape, volume

and direction), which merges the first three clusters into one. As indicated previously, BIC

gives preference to simpler models (with fewer clusters and a simple covariance structure)

not necessarily on merit, but because such models have fewer parameters.

BREC appears to do considerably better in estimating K. Figure 8.3(b) shows the

predicted marginal distribution of this parameter obtained by running 10,000 iterations

of the BDMCMC algorithm, and discarding the first half as burn-in. The plot points

clearly to K = 4, the true number of clusters. Trace plot in Figure 8.3(a) indicates a rapid
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Figure 8.2: (a) Simulated data and (b) b-spline coefficients of the random effects used to
generate the data.
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convergence to this value from a starting point that was purposely set to be much higher

than the truth.

Estimation of the remaining parameters is also good. Table 8.1 summarizes the true

versus predicted number of curves assigned to each of the four clusters. It shows that only

19 of the 396 curves have been mislabeled, producing a misclassification rate of 4.8%.

Predicted labels
1 4 2 3 mk

1 314 2 4 0 320
True 2 4 32 0 0 36
labels 3 5 0 15 0 20

4 4 0 0 16 20

Table 8.1: True vs. predicted cluster labels obtained from BREC.

Estimated proportion and roughness parameters are presented below the true values

in Table 8.2. Based on the results in Table 8.1, cluster labels (1, 2, 3, 4) for the estimated

values of π were changed to (1, 4, 2, 3) in order to allow for a comparison with the true

labels. The correspondence between the two rows is reassuring.

π1 π2 π3 π4 σ2

True 0.80 0.09 0.05 0.05 100.0
Estimated 0.80 0.10 0.06 0.04 100.4

Table 8.2: Selected true and estimated parameter values obtained from BREC.

However, the true challenge of this model lies in estimating the eight multidimensional

within-cluster mean and precision matrix parameters. To investigate whether or not this

task was achieved, we plotted the estimated versus true elements of each parameter in

Figure 8.4. For guidance, a solid line with slope one and intercept zero is included in each

plot. We see that, for the most part, the points in each plot fall close to the line, indicating

a close correspondence between the point estimates and the truth.

As a final check, convergence of all of the above-mentioned parameters was investigated

using trace plots and H-W convergence diagnostics implemented in the R coda library and
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Figure 8.3: Results for synthetic data. (a) Trace plot and (b) estimated probability mass
function for the number of clusters K. The vertical line in the top plot marks the end of
the burn-in period.
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Figure 8.4: Results for synthetic data: point estimates of the within-cluster mean vectors
and precision matrices strung out into vectors and plotted against their true values.
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summarized in §7.3. Both pointed to sufficient burn-in and convergence of the parameters

to stationary values. A sample of the trace and estimated posterior density plots for σ, π3,

and two randomly selected elements of the µ2 vector and the Σ−1
1 matrix are included in

Figure 8.5. Dashed vertical lines mark true values of the parameters in the density plots.

The fact that these do not fall in the tails of the posterior distribution provides reassurance

that the chain converged close to the true solutions.

In conclusion, empirical results based on synthetic data suggest that our model is both

competitive and reliable in estimating the number of clusters and other model parameters.

This performance is especially impressive in comparison to model-based clustering since

MBC was solving a simpler problem, that of clustering the random effects as if they were

data. BREC was inferring the model from the observed data only, a more challenging task.

8.5.2 Force Exertion Data

Let us now consider the real data. As before, we proceed under the assumption that

profiles from the last six days in February are “in-control,” and attempt to detect unusual

behaviour in January. We carry out process monitoring in two steps, as outlined in §8.4.

Phase I Analysis

Our goal at the preliminary stage of the analysis is to cluster February data, and examine

it for unusual behaviour. We used p = 20 and q = 5 basis functions to model the fixed and

random effects respectively. That is, the clustering took place in a five-dimensional space,

which is a significant reduction from the 100-dimensional space in which the original data

was observed.

The BDMCMC algorithm was run for 20, 000 iterations, with the first 10, 000 discarded

as burn-in. Draws for K converged very quickly, with high posterior probability (0.953)

that K = 3. According to trace plots, convergence of the remaining parameters was also

achieved (see Figure 8.6 for sample trace plots). The Heidelberger & Welch tests were also

passed for all of the parameters.

The plots in Figures 8.7 help gain a better understanding of the results, and check

the data for the presence of any possible changes in the process. Predicted probabilities
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Figure 8.5: Results for synthetic data: trace and estimated density plots for selected
parameters of the BREC model. True values of the parameters are marked by vertical
dashed lines in the density plots.
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Figure 8.7: Predicted probabilities of belonging to each cluster plotted in chronological
order by observation number for February data. Daily averages of these probabilities are
displayed in the lower right panel.
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Figure 8.8: Functional means of the curves in each cluster, with cluster labels obtained by
fitting the BREC model to February data.

of belonging to each cluster, p̂ij(k), plotted by observation number are displayed. Daily

averages of the predicted probabilities are summarized in the lower bottom panel. The

plots show that the majority of the data during the six days in February belongs to the

second cluster. An exception is the sudden spike in the number of curves assigned to the

first cluster on February 15th and 16th.

Plots of curve averages for each cluster in Figure 8.8 indicate that the clusters differ

mostly in the amount of force exerted at the mid-point of the insertion (between 20-80

time units). This is evident from the ranging levels of the means in the long flat segment

of the curves.

These results seem to agree with our MBC findings in §6.5. A comparison of Figures

6.3, 8.7 and and 8.8 reveals that the first two clusters found by the BREC approach are

roughly the same as the two found by the MBC of the estimated b-spline coefficients after
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subtracting the fixed valve effects. Unlike the previous analysis, an extra cluster was found

by the present approach. BIC’s preference for simpler models may explain why only two

instead of three clusters were found to be best-fitting in §6.5.

As a final step in the Phase I analysis of February data, a control chart of the Dij

metrics based on (8.7) is provided in Figure 8.9(a), with the upper control limit set to

UCL = 42 and marked by a dashed horizontal line. This number was chosen as twice the

maximum value of the Dij, driven by the assumption that most of the February data is

in-control. This is supported by the fact that these values are relatively homogenous, with

none of the distance measures drastically higher than the rest.

Our overall conclusion for the February data is that there are no significant drifts or

outliers. The process appears to be governed by three different types of insertions, which

differ primarily in the amount of force exerted at the mid-point and the end of the insertion.

Parameter estimates from Phase I and the specified UCL are further retained for use in

the analysis of January data.

Phase II Analysis

At the final stage, we scan the January data for outliers. Predicted probabilities of belong-

ing to each cluster, p̂new(k), calculated as stated in (8.6) for the new data are plotted in

Figure 8.10. Daily averages of these probabilities are also shown in the lower right panel

of Figure 8.10. The plots suggest nothing unusual at the start of January, however this

could be because of the restriction that the new observations have to belong to just one of

the clusters.

A better approach to outlier detection for new data based on the BREC results is the

distance control chart obtained by following the three steps of Phase II analysis as outlined

in §8.4.3. A plot of the resulting control chart is provided in Figure 8.9(b). As expected,

most of the outliers identified by the chart occur at the beginning of the month, before

production had a chance to stabilize.

Profiles corresponding to unusual behaviour are highlighted in black and red in Figure

8.9(c). The two colours represent varying degrees of severity in the nature of the outliers,

with black marking curves that correspond to Dij ≥ UCL and red marking extreme outliers

with Dij ≥ 3 · UCL. By looking at these curves, we see that one of the most prominent
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order by observation number for January data. Daily averages of these probabilities are
displayed in the lower right panel.
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differences between them and the remainder of the data is the amount of force applied at

the end of the insertion, with the largest outlier showing the smallest force as demonstrated

by the level of the short flat end part of the curve. While experts would be able to shed

more light into the nature of these differences, it seems plausible that the outliers are “bad”

insertions because an insufficient amount force was applied at the crucial end stage of the

process when the ram makes contact with the engine head and pushes the valve seat into

the cylinder head.

These results match our findings from §5.3.3. Correspondence between Figures 8.9(b)-

(c) and 5.2 is highly reassuring. An important advantage of the distance chart and the

BREC model is that it can be used to monitor all valves simultaneously, rather than

separately monitoring each valve.

8.6 Discussion

Using two different examples, we have now demonstrated that the clustering model pro-

posed in this chapter is both useful and effective. Miscellaneous topics related to this

model and possible extensions of the basic idea are considered next. Although we do not

implement all of the discussed approaches, a brief summary of how this can be achieved is

presented in each case.

Multiple Fixed Effects

Controlling for more than one known effect is easy in the context of our proposed model.

This is accomplished by adding corresponding fixed effects terms. An example is the

adjustment for ram effects in the valve seat insertion example, as shown in (8.2).

Choice of Basis

Throughout the thesis, we have used b-spline basis functions for linear modeling of func-

tional data. However, our formulation does not preclude other possibilities. For example,
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we can model the curves using the linear relationship

yi = Xηi + ǫi,

where X is an n × p matrix containing the first p principal components, which can be

obtained from PCA on the data itself. An obvious difficulty with this approach is that

the data is used twice; first to estimate X and then to estimate the coefficients ηi. An

alternative is to use a subset of the observed curves or some other base set (e.g., historic

data) in calculating the basis.

Choice of Covariance Structure

A simplifying assumption behind much of our work is that the residual curves from each

model follow a multivariate normal distribution with vector mean zero and a diagonal

covariance matrix σ2In. This implies that all recordings being made are independent

within a curve and between curves. This is somewhat restrictive as observed curve values

that are close to each other will likely be more similar than measurements made on opposite

ends of the profile. Furthermore, consecutive curves may belong to the same cluster. By

tweaking the assumptions made on the error covariance structure of the model, we can

take some of these issues into account.

One possibility to consider is the Gaussian process model of the form:

yij(t) = B1γj + B2ηij + ǫij(t);

ηij|zij = k ∼ Nq(µk,Σk) and ǫij(t) ∼ Nn(0, σ2K(t, t′)).

The term K(t, t′) represents a correlation matrix, the form of which can be specified in

such a way so as to induce correlation between observed components of the force vector

that are close. Similar correlation constraints can also be imposed on the specified priors

to achieve the same goal.
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Nonlinear Clustering

Our present clustering model is linear with respect to both fixed and random effects. While

this was sufficient for illustration purposes, it is possible to extend this to fit nonlinear

mixed effects models. This is particularly interesting because of the importance of differ-

ential equations in modeling dynamic systems that often arise in the context of functional

data (Ramsay & Silverman, 2005). Such models are entirely nonlinear, and require care-

ful consideration if model parameters are allowed to be random. MCMC implementation

details for nonlinear hierarchical models can be found in Bennett et. al. (1996).

Birth Proposals

Recall from our introduction to BDMCMC that we followed Stephens (2000a) and Zhou &

Wakefield (2005) by proposing new cluster parameters µnew and Σnew from their respective

priors as summarized in (7.14). Although this provided favourable results, it may be

possible to improve the algorithm by developing smarter birth proposals. For example, we

may wish to run a partitioning clustering method (such as K-means) prior to the analysis,

and then propose births from the set of pre-determined mixture components corresponding

to these clusters.

Another possibility is to change the proposal distribution for the cluster mean to µnew ∼

N (η̄(0), S
(0)
η ), where η̄(0) and S

(0)
η are the mean and covariance of some initial estimate of

the b-spline coefficients. This is different than sampling from the prior in that the proposed

cluster centres are likely to be within the true range of ηij values. This should lead to

plausible clusters being born more often and thus faster convergence.

From (7.11), adjusted death rates for a BDMCMC algorithm in which new cluster-

specific parameters φnew = {πnew,µnew, Σnew} are proposed from some function p∗(φnew)

are given by

δk =
q(η|Φ\φk)

q(η|Φ)
·

p∗(φk)

Beta(πk; 1, K)N (µk)Wp(Σ
−1
k )

.

Cape et. al. (2003) extend the idea even further by including two more types of

proposals: a split of a cluster and a merge of two clusters. Their method is called continuous

time MCMC, of which BDMCMC is a special case. While we did not require such a level
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of complexity in fitting our model, exploring the idea of better proposals would be an

interesting topic to consider as part of future research.



Chapter 9

Summary and Conclusions

A connecting theme behind the ideas presented in this thesis is the analysis of functional

process data such as the valve seat insertion example. Our contributions to this area are

summarized in four key points listed below.

• A curve-registration technique for aligning valve seat insertion data is presented in

Chapter 2. This pre-processing tool allows for better comparison of the observed

data, and plays an integral role in ensuring validity of all subsequent analysis.

• In Chapter 3, two approaches for modeling individual force exertion curves are pre-

sented. The first is a b-spline model, which is linear with respect to its parameters,

and the second is a novel differential equations model, which is nonlinear and based

on the dynamics of the process. The advantage of the latter is that it is more parsimo-

nious and the parameters can be interpreted in the context of the problem. A mixed

effects model extending these ideas to fit multiple curves is developed in Chapter 4.

The inclusion of both fixed and random effects allows for a flexible model capable of

fitting each of the curves individually, at the same time borrowing strength from all

of the data. It is also valuable as a dimension-reduction tool, since generally very

few random effects are needed to model individual differences from the fixed overall

trend.

• A new curve-clustering technique is presented in Chapter 8 as a practical tool for

identifying changes in the process, such as drifts over time or outliers. The model

135
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utilizes fixed effects to control for known systematic changes in the process and

random effects to identify unobservable latent structures in the data. The novelty of

this approach over similar methods, such as model-based clustering (Chapter 6) and

its Bayesian equivalent (Chapter 7), is the ability to control for known differences in

the data and the dimension reduction that using mixed-effects entails. The model is

fit using a Bayesian approach, which allows us to incorporate prior knowledge about

the parameters and assess uncertainty associated with estimated quantities. This

is particularly useful in that it provides a way of estimating the number of clusters

following Stephens’ birth-death MCMC paradigm.

• Three new profile-monitoring tools for detecting outlying curves are developed in

Chapters 5 and 8. The first two are extensions of a multivariate Hotelling T 2 chart

to functional data fitted using linear and nonlinear mixed effects. The third is a

Mahalanobis distance chart based on the curve-clustering model. The latter differs

from the previous two in that multiple types of “in-control” processes are assumed

to exist in Phase I of the analysis.

Efficacy and practicality of our methodology is demonstrated using synthetic and real

data throughout the thesis. Conclusions for the valve seat insertion data, in particular,

are consistent and point to outliers in early January, at which time the insertion process

was initiated. In February, the process was verified to be “in-control” in Chapter 5, using

statistical methodology developed in §4.4. These well-behaved data were classified into at

least three different processes in Chapter 8.

The questions answered in this thesis suggest more questions and future research pos-

sibilities. Many of these have been considered at various parts of the thesis and are sum-

marized next.

With respect to profile monitoring, one unresolved issue is that of choosing the random

effects in the model. Depending on which and how many of the parameters are allowed

to be random, the chart will differ. One way to address this issue is to fit several models

with different sets of random effects, then use model-selection criteria such as AIC or BIC

to identify the best fitting one. Other possible extensions of the profile monitoring idea

are to develop sequential charts such as CUSUM or EWMA and/or monitor registration
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points from curve-registration. One possible EWMA chart for detecting process drifts in

functional data that occur gradually over time is proposed and briefly discussed in §5.4.3.

Whenever mixed-effects models are used for curve data, our underlying assumption

has been that the residual curves from each model follow a Nn(0, σ2In) distribution. A

better choice may be to assume a Gaussian spatial process model, which accounts for

time-dependent correlation in the observed data, or a time-series model, which allows

for serial correlation. In Bayesian curve-clustering, similar covariances structures may

be appropriate for our choice of priors. Other curve-clustering possibilities include the

inclusion of multiple fixed effects, different choices of birth proposals for the BDMCMC

algorithm, and clustering using differential equations. Possible implementations of some

of these ideas are proposed in §8.6.



Appendix A

Commonly Used Distributions

• Beta

If π follows a Beta(α, β) distribution, then for α, β > 0,

p(π; α, β) =
Γ(α + β)

Γ(α)Γ(β)
πα−1(1 − π)(β−1).

Aside: p(π; 1, K) = K(1 − π)K−1.

• Dirichlet

Let π = [π1, . . . , πK ]T ∼ D(δ1, . . . , δK) such that
∑

πk = 1. Then

p(π; δ) =
Γ(δ1 + . . . + δk)

Γ(δ1 · . . . · δk)
· πδ1−1

1 · . . . · π
δk−1−1
k−1 · (1 − π1 − . . . − πk−1)

δk−1.

Aside: Since Γ(x) = (x − 1)!, p(π|[1, . . . , 1]) = (K − 1)!.

• Gamma

If w follows a Γ(α, β) distribution, then for α, β > 0,

p(w; α, β) =
1

Γ(α)βα
· wα−1e−w/β.
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• Multivariate Normal

If a n-dimensional vector y follows a Nn(µ, Σ) distribution, then

p(y; µ, Σ) = (2π)−n/2 · |Σ|−
1
2 · exp

{

−
1

2
(y − µ)Σ−1(y − µ)T

}

.

• Wishart

If a p-dimensional square matrix V is Wp(a, A), then for a ≥ p,

p(V ; a, A) = C · |A|−a/2 · |V |(a−p−1)/2 · exp

{

−
1

2
· tr(A−1V )

}

is the density of V , where C−1 = 2ap/2πp(p−1)/4
∏p

s=1 Γ((a + 1 − s)/2).
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Full Conditionals

In this section we derive full conditional densities for the Bayesian heirarchical curve-

clustering model described in §7.1 and the BREC model developed in §8.1.

B.1 Bayesian Clustering Model

1. zi = k (i = 1, . . . , m)

p(zi = k|ηi,µk, Σk, πk) ∝ p(ηi|zi = k,µk, Σk) · p(zi = k|πk) = N (ηi; µk, Σk) · πk.

That is, p(zi = k|ηi,µk, Σk, πk) =
πkN (η

i
;µ

k
,Σk)PK

l=1 πlN (η
i
;µ

l
,Σl)

.

2. π = [π1, . . . , πK ]T

p(π|ym, z′is) ∝

{

K
∏

k=1

mk
∏

i:zi=k

p(zi|πzi
)

}

· p(π)

∝ πm1
1 · . . . · π

mK−1

K−1 · (1 − π1 − . . . − πK−1)
mK ×

πδ−1
1 · . . . · πδ−1

K−1 · (1 − π1 − . . . − πK−1)
δ−1

= πm1+δ−1
1 · . . . · π

mK−1+δ−1
K−1 · (1 − π1 − . . . − πK−1)

mK+δ−1
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That is, the full conditional density of π is

π ∼ D(m1 + δ, . . . ,mK + δ).

3. ηi (i = 1, . . . , m)

p(ηi|y
m, zi = k,µk, Σk, σ

2) ∝ p(yi|ηi, σ
2) · p(ηi|zi = k,µk, Σk)

∝ exp

{

−
1

2

{

σ−2(yi − Bηi)
T (yi − Bηi) + (ηi − µk)

T Σ−1
k (ηi − µk)

}

}

Inside the exponent,

σ−2(yi − Bηi)
T (yi − Bηi) = σ−2yT

i yi − σ−2yT
i Bηi − σ−2ηT

i BTyi + σ−2ηT
i BT Bηi

and (ηi − µk)
T Σ−1

k (ηi − µk) = ηT
i Σ−1

k ηi − ηT
i Σ−1

k µk − µT
k Σ−1

k ηi + µT
k Σ−1

k µk.

Let Dk = (σ−2BT B + Σ−1
k )−1 and use “. . .” to denote constant terms not involving

ηk. Then the sum of the above two terms reduces to

ηT
i (σ−2BT B + Σ−1

k )ηi − ηT
i (σ−2BTyi + Σ−1

k µk) − (σ−2yT
i B + µT

k Σ−1
k )ηi + . . .

= ηT
i D−1

k ηi − ηT
i (σ−2BTyi + Σ−1

k µk) − (σ−2BTyi + Σ−1
k µk)

T ηi + . . .

= ηT
i D−1

k ηi − ηT
i D−1

k Dk(σ
−2BTyi + Σ−1

k µk) − (σ−2BTyi + Σ−1
k µk)

T DkD
−1
k ηi + . . .

= (ηi − Dk(σ
−2BTyi + Σ−1

k µk))
T · D−1

k · (ηi − Dk(σ
−2BTyi + Σ−1

k µk)) + . . .

It follows that the full conditional densities of ηi are

ηi|{yi, zi = k,µk, Σk, σ
2} ∼ N (Dk(σ

−2BTyi + Σ−1
k µk), Dk).
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4. µk (k = 1, . . . , K)

p(µk|η, zi = k, Σk, σ
2, V ) ∝

{

mk
∏

i:zi=k

p(ηi|zi,µk, Σk)

}

· p(µk)

∝ exp

{

−
1

2

mk
∑

i:zi=k

(ηi − µk)
T Σ−1

k (ηi − µk) −
1

2
(µk − υ)T V −1(µk − υ)

}

As before inside the exp{. . .} we get

mk
∑

i:zi=k

(ηi − µk)
T Σ−1

k (ηi − µk) =

mk
∑

i:zi=k

{

ηT
i Σ−1

k ηi − ηT
i Σ−1

k µk − µT
k Σ−1

k ηi + µT
k Σ−1

k µk

}

and (µk − υ)T V −1(µk − υ) = µT
k V −1µk − µT

k V −1υ − υT V −1µk + υT V −1υ.

Let η̄k = 1
mk

∑mk

i:zi=k ηi, Ck = (mkΣ
−1
k + V −1)−1 and use “. . .” to denote all leftover

terms that do not contain µk. Then the two term up above sum to

µT
k (mkΣ

−1
k + V −1)µk − µT

k (mkΣ
−1
k η̄k + V −1υ) − (mkΣ

−1
k η̄k + V −1υ)T µk + . . .

= µT
k C−1

k µk − µT
k C−1

k Ck(mkΣ
−1
k η̄k + V −1υ) − (mkΣ

−1
k η̄k + V −1υ)T CkC

−1
k µk + . . .

= (µk − Ck(mkΣ
−1
k η̄k + V −1υ))T · C−1

k · (µk − Ck(mkΣ
−1
k η̄k + V −1υ)) + . . .

It follows that the full conditional densities of µk are

µk|{η, zi = k, Σk, σ
2, V } ∼ N (Ck(mkΣ

−1
k η̄k + V −1υ), Ck).
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5. Σ−1
k (k = 1, . . . , K)

p(Σ−1
k |η, zi = k,µk, R) ∝

{

mk
∏

i:zi=k

p(ηi|zi,µk, Σk)

}

· p(Σ−1
k |R)

∝ |Σ
− 1

2
k |mk exp

{

−
1

2

mk
∑

i:zi=k

(ηi − µk)
T Σ−1

k (ηi − µk)

}

|Σ−1
k |

(ρ−n−1)
2 exp

{

−
1

2
tr(ρRΣ−1

k )

}

= |Σ−1
k |(mk+ρ−n−1)/2 exp

{

−
1

2
tr

((

∑

i

(ηi − µk)(ηi − µk)
T + ρR

)

Σ−1
k

)}

.

It follows that the full conditional densities of Σk are

Σ−1
k |{η, zi = k,µk, R} ∼ W



mk + ρ,

(

mk
∑

i:zi=k

(ηi − µk)(ηi − µk)
T + ρR

)−1


 .

6. R

p(R|Σ1, . . . ΣK) ∝ p(R) ·
K
∏

k=1

p(Σ−1
k |R)

∝ |bR0|
b/2 |R|(b−n−1)/2 exp

{

−
1

2
tr(bR0R)

}

·

K
∏

k=1

|ρR|ρ/2|Σ−1
k |(ρ−n−1)/2 exp

{

−
1

2
tr(ρRΣ−1

k )

}

∝ |R|(b−n−1)/2 exp

{

−
1

2
tr(bR0R)

}

|ρR|Kρ/2 exp

{

−
1

2
tr

((

ρ
K
∑

k=1

Σ−1
k

)

R

)}

= |R|(b+Kρ−n−1)/2 exp

{

−
1

2
tr

((

bR0 + ρ
∑

k

Σ−1
k

)

R

)}

.
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This is a Wishart pdf, and thus the full conditional density of R is

R|{Σ1, . . . ΣK} ∼ W



b + Kρ,

(

bR0 + ρ
K
∑

k=1

Σ−1
k

)−1


 .

7. σ−2

p(σ2|ym,η) ∝
m
∏

i=1

p(yi|ηi, σ
2) · p(σ−2)

∝ (σ−2n)m/2 exp

{

−
1

2
σ−2

m
∑

i=1

(yi − Bηi)
T (yi − Bηi)

}

· σ−2(g−1) exp

{

−σ−2 1

h

}

= σ−2(nm/2+g−1) exp

{

−σ−2

(

1

2

∑

i

(yi − Bηi)
T (yi − Bηi) +

1

h

)}

.

It follows that the full conditional density of σ−2 is

σ−2|{ym,η} ∼ Γ





nm

2
+ g,

(

1

2

∑

i

(yi − Bηi)
T (yi − Bηi) +

1

h

)−1


 .

B.2 Bayesian Random Effects Clustering

1. zij = k (i = 1, . . . , c and j = 1, . . . , v)

p(zij = k|ηij,µk, Σk, πk) ∝ p(ηij|zij = k,µk, Σk) · p(zij = k|πk) = N (ηij; µk, Σk) · πk.

That is, p(zij = k|ηij,µk, Σk, πk) =
πkN (η

ij
;µ

k
,Σk)PK

l=1 πlN (η
ij

;µ
l
,Σl)

.
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2. π = [π1, . . . , πK ]T

p(π|ym, z′ijs) ∝







K
∏

k=1

mk
∏

ij:zij=k

p(zij|πzij
)







· p(π)

= πm1+δ−1
1 · . . . · π

mK−1+δ−1
K−1 · (1 − π1 − . . . − πK−1)

mK+δ−1

Thus, π ∼ D(m1 + δ, . . . ,mK + δ).

3. ηij (i = 1, . . . , c and j = 1, . . . , v)

p(ηij |yij , zij = k,γj , µk, Σk, σ
2) ∝ p(yij |γj , ηij , σ

2) · p(ηij |zij = k,µk, Σk)

∝ exp

{

−
1

2

(

σ−2(yij − B1γj − B2ηij)
T (yij − B1γj − B2ηij) + (ηij − µk)

T Σ−1
k (ηij − µk)

)

}

where

σ−2(yij − B1γj − B2ηij)
T (yij − B1γj − B2ηij) + (ηij − µk)

T Σ−1
k (ηij − µk)

= σ−2(yij − B1γj)
T (yij − B1γj) − σ−2(yij − B1γj)

T B2ηij − σ−2ηT
ijB

T
2 (yij − B1γj)

+σ−2ηT
ijB

T
2 B2ηij + ηT

ijΣ
−1
k ηij − ηT

ijΣ
−1
k µk − µT

k Σ−1
k ηij + µT

k Σ−1
k µk

= ηT
ij(σ

−2BT
2 B2 + Σ−1

k )ηij − ηT
ij(σ

−2BT
2 (yij − B1γj) + Σ−1

k µk)

−(σ−2(yij − B1γj)
T B2 + µT

k Σ−1
k )ηij + . . .

Letting y∗
ij = yij − B1γj and Dk = (σ−2BT

2 B2 + Σ−1
k )−1,

ηT
ijD

−1
k ηij − ηT

ij(σ
−2BT

2 y∗
ij + Σ−1

k µk) − (σ−2BT
2 y∗

ij + Σ−1
k µk)

T ηij + . . .

= ηT
ijD

−1
k ηij − ηT

ijD
−1
k Dk(σ

−2BT
2 y∗

ij + Σ−1
k µk) − (σ−2BT

2 y∗
ij + Σ−1

k µk)
T DkD

−1
k ηij + . . .

= (ηij − Dk(σ
−2BT

2 y∗
ij + Σ−1

k µk))
T · D−1

k · (ηij − Dk(σ
−2BT

2 y∗
ij + Σ−1

k µk)) + . . .

Thus, ηij|{yij, zij = k,γj,µk, Σk, σ
2} ∼ N (Dk(σ

−2BT
2 (yij − B1γj) + Σ−1

k µk), Dk).
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4. γj (j = 1, . . . , v)

p(γj |yij , zij = k,ηij ,w, W, σ2) ∝
c
∏

i=1

p(yij |γj , ηij , σ
2) · p(γj |w, W )

∝ exp

{

−
1

2

c
∑

i=1

(

σ−2(yij − B2ηij − B1γj)
T (yij − B2ηij − B1γj) + (γj − w)T W−1(γj − w)

)

}

,

where

σ−2(yij − B2ηij − B1γj)
T (yij − B2ηij − B1γj) + (γj − w)T W−1(γj − w)

= σ−2(yij − B2ηij)
T (yij − B2ηij) − σ−2(yij − B2ηij)

T B1γj − σ−2γT
j BT

1 (yij − B2ηij)

+σ−2γT
j BT

1 B1γj + γT
j W−1γj − γT

j W−1w − wT W−1γj + wT W−1w

= γT
j (σ−2BT

1 B1 + W−1)γj − γT
j (σ−2BT

1 (yij − B2ηij) + W−1w)

−(σ−2(yij − B2ηij)
T B1 + wT W−1)γj + . . . .

Letting y∗
j =

∑c
i=1(yij − B2ηij) = c(ȳj − B2η̄j) and D = (cσ−2BT

1 B1 + W−1)−1,

p(γj |yij , zij = k,ηij ,w, W, σ2)

∝ exp

{

−
1

2

(

γT
j D−1γj − γT

j (σ−2BT
1 y∗

j + W−1w) − (σ−2BT
1 y∗

j + W−1w)T γj + . . .
)

}

= exp

{

−
1

2

(

γT
j D−1γj − γT

j D−1D(σ−2BT
1 y∗

j + W−1w) − (σ−2BT
1 y∗

j + W−1w)T DD−1γj + . . .
)

}

= exp

{

−
1

2

(

(γj − D(σ−2BT
1 y∗

j + W−1w))T · D−1 · (γj − D(σ−2BT
1 y∗

j + W−1w)) + . . .
)

}

.

Thus, γj|{yij, zij = k,ηij,w,W, σ2} ∼ N (D(cσ−2BT
1 (yij − B2ηij) + W−1w), D).
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5. µk (k = 1, . . . , K)

p(µk|η, zij = k, Σk, σ
2) ∝







mk
∏

ij:zij=k

p(ηij|zij = k,µk, Σk)







· p(µk)

∝ exp







−
1

2

mk
∑

ij:zij=k

(ηij − µk)
T Σ−1

k (ηij − µk) −
1

2
µT

k V −1µk







∝ exp







−
1

2





mk
∑

ij:zij=k

ηT
ijΣ

−1
k ηij − ηT

ijΣ
−1
k µk − µT

k Σ−1
k ηij + µT

k Σ−1
k µk − µT

k V −1µk











.

Letting η̄k = 1
mk

∑mk

ij:zij=k ηij, Ck = (mkΣ
−1
k + V −1)−1 and denoting terms that do

not contain µk by “. . .”,

p(µk|η, zij = k, Σk, σ
2)

∝ exp

{

−
1

2

(

µT
k (mkΣ

−1
k + V −1)µk − µT

k (mkΣ
−1
k η̄k) − (mkΣ

−1
k η̄k)

T µk + . . .
)

}

= exp

{

−
1

2

(

µT
k C−1

k µk − µT
k C−1

k Ck(mkΣ
−1
k η̄k) − (mkΣ

−1
k η̄k)

T CkC
−1
k µk + . . .

)

}

= exp

{

−
1

2

(

(µk − mkCkΣ
−1
k η̄k)

T · C−1
k · (µk − mkCkΣ

−1
k η̄k) + . . .

)

}

.

It follows that µk|{η, zij = k, Σk, σ
2} ∼ N (mkCkΣ

−1
k η̄k, Ck).
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6. Σ−1
k (k = 1, . . . , K)

p(Σ−1
k |η, zij = k,µk, R) ∝







mk
∏

ij:zij=k

p(ηij|zij = k,µk, Σk)







· p(Σ−1
k |R)

∝ |Σ
− 1

2
k |mk exp







−
1

2

mk
∑

ij:zij=k

(ηij − µk)
T Σ−1

k (ηij − µk)







|Σ−1
k |

(ρ−n−1)
2 exp

{

−
1

2
tr(ρRΣ−1

k )

}

= |Σ−1
k |(mk+ρ−n−1)/2 exp

{

−
1

2
tr

((

∑

ij

(ηij − µk)(ηij − µk)
T + ρR

)

Σ−1
k

)}

.

Thus Σ−1
k |{η, zij = k,µk, R} ∼ W

(

mk + ρ,
(

∑mk

ij:zij=k(ηij − µk)(ηij − µk)
T + ρR

)−1
)

.

7. R

Full conditional of R and derivations thereof are as shown in point 6 of §B.1.

8. σ2

p(σ2|ym,γ,η) ∝
c
∏

i=1

v
∏

j=1

p(yij|γj,ηij, σ
2) · p(σ−2)

∝ (σ−2n)m/2 exp

{

−
1

2
σ−2

c
∑

i=1

v
∑

j=1

(yij − B1γj − B2ηij)
T (yij − B1γj − B2ηij)

}

·

σ−2(g−1) exp

{

−σ−2 1

h

}

= σ−2(nm/2+g−1) exp

{

−σ−2

(

1

2

∑

ij

(yij − B1γj − B2ηij)
T (yij − B1γj − B2ηij) +

1

h

)}

.

Thus σ−2| . . . ∼ Γ

(

nm
2

+ g,
(

1
2

∑

ij(yij − B1γj − B2ηij)
T (yij − B1γj − B2ηij) + 1

h

)−1
)
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