
Stochastic Mortality Models

with Applications in Financial

Risk Management

by

Siu Hang Li

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Actuarial Science

Waterloo, Ontario, Canada, 2007

c© Siu Hang Li, 2007



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Siu Hang Li

ii



Abstract

In product pricing and reserving, actuaries are often required to make predictions of fu-

ture death rates. In the past, this has been performed by using deterministic improvement

scales that give only a single mortality trajectory. However, there is enormous likelihood

that future death rates will turn out to be different from the projected ones, and so a

better assessment of longevity risk would be one that consists of both a mean estimate and

a measure of uncertainty. Such assessment can be performed using a stochastic mortality

model, which is the core of this thesis.

The Lee-Carter model is one of the most popular stochastic mortality models. While it

does an excellent job in mean forecasting, it has been criticized for providing overly narrow

prediction intervals that may have underestimated uncertainty. This thesis mitigates this

problem by relaxing the assumption on the distribution of death counts. We found that

the generalization from Poisson to negative binomial is equivalent to allowing gamma

heterogeneity within each age-period cells. The proposed extension gives not only a better

fit, but also a more conservative prediction interval that may reflect better the uncertainty

entailed.

The proposed extension is then applied to the construction of mortality improvement

scales for Canadian insured lives. Given that the insured lives data series are too short

for a direct Lee-Carter projection, we build an extra relational model that could borrow

strengths from the Canadian population data, which covers a far longer period. The

resultant scales consist of explicit measures of uncertainty.

The prediction of the tail of a survival distribution requires a special treatment due

to the lack of high quality old-age mortality data. We utilize the asymptotic results in

modern extreme value theory to extrapolate death probabilities to the advanced ages, and

to statistically determine the age at which the life table should be closed. Such technique

is further integrated with the Lee-Carter model to produce a stochastic analysis of old-age

mortality, and a prediction of the highest attained age for various cohorts.

The mortality models we considered are further applied to the valuation of mortality-

related financial products. In particular we investigate the no-negative-equity-guarantee

that is offered in most fixed-repayment lifetime mortgages in Britain. The valuation of such

guarantee requires a simultaneous consideration of both longevity and house price inflation
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risk. We found that house price returns can be well described by an ARMA-EGARCH time-

series process. Under an ARMA-EGARCH process, however, the Black-Scholes formula

no longer applies. We derive our own pricing formula based on the conditional Esscher

transformation. Finally, we propose some possible hedging and capital reserving strategies

for managing the risks associated with the guarantee.
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Chapter 1

Introduction

1.1 Background

Human mortality has experienced remarkable improvement in the past century. For in-

stance, in Canada, the life expectancy at birth has increased from about 56 years in 1921

to the current level of about 79 years1, and its rise continues. While the enormous im-

provement in life expectancy is usually viewed as one of the greatest achievements of mod-

ern civilization, unanticipated mortality improvement can cause insurance companies and

providers of mortality-related financial products to suffer huge losses. To protect financial

institutions from the threats of reduction in mortality, actuaries often utilize life tables

including a forecast of future trends in survival probabilities. However, the production of

such tables is not easy.

A renowned demographer described the challenge of forecasting mortality as “a bumpy

road to Shangri-La”2. This is because the demographic future of any human population

is a result of complex and only partially understood mechanisms, and is highly uncertain.

Recently, actuaries and demographers have been understandably concerned about error in

their predictions, and part of their response is a new wave of work that is focused on the

forecasting of uncertainty in mortality projections. Such work aims to forecast a range of

possible outcomes along with associated probabilities, instead of a single prediction that

1Source: Human mortality database (2005) and own calculations.
2See Tuljapurkar (2005).
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2

will almost surely be wrong.

The forecasting of uncertainty in mortality improvement is especially important to

actuarial risk management. More specifically, longevity risk resembles investment risk in

that it is non-diversifiable, since any change in the overall mortality level is likely to affect

all policyholders of the same cohort. As a result, it cannot be mitigated by the traditional

insurance mechanism of selling large number of policies. However, it is different in that

there is a lack of mortality-linked securities that could possibly be used for hedging. In

other words, capital is often required to cushion longevity risk, and such capital is, of

course, determined by measures of uncertainty associated with mortality projections.

Tuljarpurkar (1997) suggested that methods for forecasting uncertainty can be segre-

gated into two categories, namely, static and dynamic. In a static approach, the forecaster

makes assertions about demographic characteristics, such as life expectancy at birth, and

the trajectories along which those characteristics will change between the start and end.

These trajectories are then assigned a probability, usually determined subjectively. A

shortcoming of the static approach is that the dynamics of getting from “here” to “there”

are largely ignored. In contrast, dynamic forecasts employ a stochastic model that is fit-

ted to historical data. The resulting models have uncertainty embedded within them, as

reflected in historical change, and yield trajectories in the form of sample paths, which

are particularly valuable in assessing financial liabilities that are sensitive to the timing

and pattern of demographic change. The application of such models in financial risk man-

agement has recently been highly regarded by leading actuarial organizations (see, e.g.,

Continuous Mortality Investigation Bureau, 2004).

1.2 Previous Mortality Improvement Scales

For ease of use and interpretation, actuaries sometimes prefer using simple formulae that

summarize the entire projection of future mortality rates. Such formulae are often referred

to as mortality improvement scales, and they work with the base mortality rates in a

multiplicative manner, that is,

qx,t = qx,0IS(x, t), (1.1)

where qx,0 and qx,t are the probabilities that a person who is aged x dies within a year, at
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time 0 and at time t, respectively; and IS(x, t) is the improvement scale for projecting qx,t.

Below we summarize the improvement scales that have been widely used in Britain and

North America.

• The Society of Actuaries 1994 Group Annuity Mortality Table.

The Society of Actuaries Group Annuity Valuation Table Task Force (1995) devel-

oped a table that it recommended as suitable for a Group Annuity Reserve Valuation

Standard. In addition, the task force recommended the following improvement scale

for projecting future mortality rates of group annuitants:

IS(x, s) = (1− AAx)
s, (1.2)

where AAx are age-dependent parameters, whose numerical values can be found in

the Society of Actuaries Group Annuity Valuation Table Task Force (1995, p.892).

• The Society of Actuaries 2001 Valuation Basic Experience Table.

In 2002, the Society of Actuaries and the Academy of Actuaries developed the 2001

CSO tables, which were intended to replace the 1980 CSO Table in the existing statu-

tory valuation structure (American Academy of Actuaries, 2002). The 2001 CSO

tables consist of six tables − for each sex, there are separate tables for nonsmoker,

smoker, and composite nonsmoker/smoker. Each table has values for a 25-year select

period and for ultimate ages.

The entire work was divided into two pieces: the construction of the 2001 valuation

basic experience table (VBT, done by the SoA Task Force), and the development

of the loads (done by the Academy’s Task Force). A key step in the construction

of the VBT was to project the mortality experience underlying the 1990-95 Basic

Mortality Tables to year 2001, the date at which the valuation table would be released.

Given the information from the 1985-90 and 1990-95 Basic Mortality Tables, and

from various non-life insurance sources, the SoA Task Force derived a mortality

improvement scale, which can be expressed as follows:
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for males:

IS(x, s) =



0, x < 45(
1− 0.01(x−45)

10

)s

, 45 ≤ x < 55

0.99s, 55 ≤ x < 80 ;(
1− 0.01(90−x)

5

)s

, 80 ≤ x < 90

0, x > 90

(1.3)

for females:

IS(x, s) =



0, x < 45(
1− 0.005(x−45)

10

)s

, 45 ≤ x < 55

0.995s, 55 ≤ x < 85 .(
1− 0.005(90−x)

5

)s

, 85 ≤ x < 90

0, x > 90

(1.4)

• The Institute of Actuaries “80” and “92” Series Mortality Table.

In the United Kingdom, the Continuous Mortality Investigation Bureau (CMIB)

of the Institute of Actuaries has periodically been considering future improvements

in mortality for annuitants and pensioners. In two recent sets of published CMIB

tables, namely the “80” Series (CMIB, 1990) and the “92” Series (CMIB, 1999), the

projected mortality values are estimated by multiplying death rates in the base table

by the improvement scale, which can be written as

IS(x, t) = α(x) + [1− α(x)][1− fn(x)]
t
n . (1.5)

In other words, the improvement scale is characterized by two age-dependent param-

eters, α(x) and fn(x). Parameter α(x) is the limiting value of the improvement scale

as t tends to infinity, and fn(x) is the percentage of the total improvement (1−α(x))

that is assumed to occur in n years.

For the “80” Series, n was fixed at 20 and f20(x) at 0.6 for all ages, α(x) was assumed

to be linearly increasing for x = 60, ..., 110, and fixed at 0.5 and 1 for x < 60 and
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x > 110, respectively. In other words, the form of α(x) can be expressed as

α(x) =


0.5, x < 60
x− 10

100
, 60 ≤ x ≤ 110 .

1, x > 110

(1.6)

The “92” Series shows important differences in the parameters assumed. The value

for n remains fixed at 20, but f20(x) varies linearly from 0.55 to 0.29 between ages

60 and 110. In addition, α(x) takes the value of 0.13 instead of 0.5 under 60; that is,

α(x) =


0.13, x < 60

1 + 0.87
x− 110

50
, 60 ≤ x ≤ 110 ,

1, x > 110

(1.7)

f20(x) =


0.55, x < 60
0.55(110− x) + 0.29(x− 60)

50
, 60 ≤ x ≤ 110 .

0.29, x > 110

(1.8)

In all these improvement scales, values assumed for the parameters have tended to

result from qualitative analysis of past trends and expert opinion, which is not generally

regarded as an exact science. More importantly, these scales project future mortality rates

in a purely deterministic manner, and give no measure of uncertainly at all.

It has been found that the rate of improvement in male pensioner mortality has been

significantly faster than anticipated in the CMIB “92” scale, resulting in pension plan

providers experiencing losses. The need for a more prudent improvement scale is pressing,

and the CMIB (2002) offered three different scales as an alternative to the “92” scale.

Although, in some sense, the range between these scales indicates uncertainty, no prob-

abilities are associated with the alternative outcomes, and so it is difficult to interpret,

employ and evaluate them. A better improvement scale would be one that is calibrated on

a scientific ground, and provides explicit measures of uncertainty.
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1.3 Objectives and Outline of the Thesis

This thesis explores the stochastic models for forecasting uncertainty in future mortality

rates. In particular, we research on how the weaknesses of the existing models can be over-

come, and how they may be turned into useful applications in financial risk management.

In Chapter 2, we focus on the celebrated Lee-Carter model, which has been extensively

used for a wide range of purposes such as population projection (Booth and Tickle, 2003),

and assessment of retirement income adequacy (Chia and Tsui, 2003). However, it has

been criticized for its provision of overly narrow prediction intervals, which may lead to

underestimating uncertainty entailed in mortality projections. This motivates us to relax

the model structure so that the underlying uncertainty can be more realistically reflected in

the forecast. The relaxation has to be performed carefully since an arbitrary modification

of the model structure may lead the resultant mortality forecast to behave erroneously.

In Chapter 3, we applied the proposed variant of the Lee-Carter model to the derivation

of mortality improvement scales for Canadian insured lives. The derivation is hampered

by the lack of data about the insured lives. Specifically, the insured lives experience is

too short to give a prudent statistical projection. To overcome this problem, we develop a

joint model that utilizes mortality data of both the general population and insured lives.

Such a joint model gives improvement scales that include explicit measures of uncertainty,

which are particularly useful for actuaries to access longevity risk quantitatively.

In Chapter 4, we focus on the uncertainty of the tail of survival distributions. This is

not considered in the previous chapters, partly because of the scarcity and unreliability of

mortality data at the advanced ages − old-age mortality data are often right-censored, and

are available only in small numbers, leading to significant sampling error. This chapter

utilizes modern extreme value theory to extrapolate survival distributions to the higher

ages, and to determine an appropriate end point of a life table. The technique is further

integrated with the stochastic mortality model in Chapter 2 to analyze the uncertainty

of future old-age death rates, and to estimate the probability distribution of the highest

attained age.

In Chapter 5, we apply the stochastic mortality models in previous chapters to the

risk management for mortality-related financial products. In particular, we investigate the

no-negative-equity-guarantee (NNEG) in equity release mechanisms offered in Britain. In
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a typical equity release plan, the customer (homeowner) is advanced a certain amount

of cash, and the loan and interest are repaid from the property sale proceeds when the

borrower dies, or moves into long-term care. The NNEG guarantees that the amount

repayable is no greater than the property sale proceeds. This means that the guarantee

may be viewed as an option that involves a myriad of demographic and financial risks. In

this chapter, we attempt to value the NNEG, and to mitigate the risks entailed in offering

such a guarantee.

Finally, in Chapter 6, we conclude the thesis with several suggestions for further re-

search.



Chapter 2

Modeling Uncertainties in Mortality

Forecasting

2.1 Introduction

In recent years, mortality has improved considerably faster than had been predicted, re-

sulting in unforeseen mortality losses for annuity liabilities (see, e.g., CMIB, 2004). As a

result, there has been a growing consensus about the need for reliable, scientific models

for mortality that can be used to measure not only the expected improvement in mortality

over the next few decades, but also the associated uncertainty in the projections. Sev-

eral solutions have been proposed including the Lee-Carter model (Lee and Carter, 1992),

the P-splines regression (Currie et al., 2004) and the parameterized time-series approach

(McNown and Rogers, 1989).

The Lee-Carter model may be considered the current gold standard. It has been used

as the basis of stochastic forecasts of the finances of the U.S. social security system and

other aspects of the U.S. federal budget (see Congressional Budget Office of the United

States, 1998). It has also been successfully applied to populations in Australia (Booth et

al., 2002), Scandinavia (Li and Chan, 2005a), and the G7 countries (Tuljapurkar et al.,

2000). The model has several appealing features. First, the number of parameters is small

relative to that of other stochastic mortality models. Secondly, the model parameters can

be interpreted rather easily. Thirdly, the parsimonious model structure gives constraints

8
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to the behavior of future death rates, resulting in a stable age pattern of mortality in

the projections. This effectively prevents mortality crossovers and various anti-intuitive

behaviors that may be encountered in some other stochastic approaches.

Nevertheless, the stringent model structure has been seen to generate overly narrow

confidence intervals (see, e.g., Lee (2000)). This narrowness may result in underestimation

of the risk of more extreme outcomes, and this may defeat the original purpose of moving on

to a stochastic framework. This phenomenon is an example of model risk (see, e.g., Cairns,

2000). Reduction of model risk can be achieved by relaxing the model structure to obtain

a more general class of models. So far, relaxation of the Lee-Carter structure has been

confined in the inclusion of additional bilinear terms, from two (Renshaw and Haberman,

2003) to five (Booth et al., 2002). Although these augmented versions can explain a

higher proportion of temporal variance than the original model, the additional time-varying

components are typically highly non-linear, which makes time-series forecasting harder.

The objective of this chapter is to explore the feasibility of extending the model from

a different angle, by considering individual heterogeneity at the cell level. In more detail,

the implementation of any mortality model requires the division of the Lexis plane into

cells. For example, given mortality data for years 1951 to 2000, the forecaster may divide

the Lexis plane into 5000 cells for ages 0 to 99 and for the ex ante period of 50 years.

The original Lee-Carter and other conventional methods allow death rates to vary between

cells, but not within each cell; that is, individuals within a single cell are assumed to be

homogeneous. However, researchers have noted that individuals may differ substantially

in their capacity for longevity, and that individual differences are important in population-

based mortality studies (see, e.g., Hougaard, 1984; Vaupel et al., 1979). The primary

contribution of this chapter is the incorporation of heterogeneity into the Lee-Carter model

by introducing an unobserved variate for individual differences in each age-period cell. To

justify our contribution, the proposed extension must satisfy the following criteria.

1. Provision of wider confidence intervals. Taking account of individual variations, the

interval forecasts should encompass a broader range of probable outcomes.

2. Improvement of goodness-of-fit. The improvement of fit should be significant enough

so that the introduction of additional parameters is worthwhile.
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3. Retention of the appealing features in the original version. Introduction of additional

parameters should be done carefully so that criteria 1 and 2 can be satisfied without

making any undesirable distortion in the projected age patterns. Linearity in the

time-varying component of the model should also be retained.

The rest of this chapter is organized as follows. In Section 2, we provide a brief review of

current methodologies of fitting the Lee-Carter model, with emphasis on the properties of

the confidence intervals obtained under each method. In Section 3, we present our proposed

extension. Technical details on model parameter estimation and forecasting are also given.

In Section 4, we compare the performance of our proposed generalizations with the older

models, using Canadian population mortality data. Section 5 concludes this chapter.

2.2 The Lee-Carter Model

The Lee-Carter model describes the central rate of death, mx,t, at age x and time t by

three series of parameters, namely {ax}, {bx} and {kt}, in the following way:

ln(mx,t) = ax + bxkt + εx,t, (2.1)

where ax gives the average level of mortality at each age; the time-varying component,

kt, sometimes referred to as the mortality index, signifies the general speed of mortality

improvement, and it is worked in a multiplicative manner with another age-specific compo-

nent bx that characterizes the sensitivity to kt at different ages; the error term εx,t captures

all the remaining variations. The variance of εx,t is assumed to be constant in Lee and

Carter (1992). Such assumption is relaxed in some variants of the model.

Equation (2.1) assumes that mortality improvement is additive to the “base” age pat-

tern of mortality, represented by ax. As a result, even though mortality at different ages

is allowed to improve at various paces, determined by bx, the age pattern in the distant

future is not easily distorted.

The mortality forecasting in Lee-Carter is performed in two stages. In the first stage,

we estimate parameters ax, bx and kt by historical mortality data. In the second stage,

fitted values of kt are modeled by an autoregressive integrated moving average (ARIMA)
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process, determined by the Box and Jenkins (1976) approach. Finally, we extrapolate kt

through the fitted ARIMA model to obtain a forecast of future death rates.

Note that parameters on the right hand side of equation (2.1) are unobservable. Hence,

we are not able to fit the model by simple methods like the ordinary least squares. To solve

the problem, researchers have proposed a few alternative approaches, which may be roughly

categorized as non-likelihood-based and likelihood-based. An in-depth understanding of

methods in both categories is important as the differences in their fundamental assumptions

often lead to dissimilar forecasting results. In the following, we give detailed descriptions

on model parameter estimation and interval forecasting under each approach.

2.2.1 Non-likelihood-based Methods

In non-likelihood-based methods, we are not required to specify any probability distribution

during model parameter estimation. Examples in this category include the method of

Singular Value Decomposition (SVD) proposed in Lee and Carter (1992) and the method

of weighed least squares (WLS) suggested later in Wilmoth (1993).

In the method of SVD, we set ax = 1
T

∑T
t=0 ln(mx,t), where T is the number of periods

in the time-series mortality data, and apply SVD to the matrix of {ln(mx,t) − ax}. The

first left and right singular vectors give a tentative estimate of bx and kt, respectively. To

satisfy the constraints for parameter uniqueness, the estimates of bx and kt are normalized

so that they sum to one and zero, respectively.

As the method of SVD is purely a mathematical approximation, the fitted and actual

number of deaths may not be the same. To reconcile the fitted and observed number

of deaths, we are required to make an ad hoc adjustment to kt. Having performed the

re-estimation, we can model kt by an appropriate ARIMA process and then obtain the

mortality forecast by extrapolation.

Let k̂T+s be the s-period ahead forecast of kt. Then, the s-period ahead forecast of mx,t

is given by

m̂x,T+s = exp(âx + k̂T+sb̂x). (2.2)

Assuming that the model specification is correct, the true value of ln(mx,T+s) can be
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expressed as

ln(mx,T+s) = (âx + αx) + (k̂T+s + uT+s)(b̂x + βx) + εx,T+s, (2.3)

where αx and βx are the error in estimating parameters ax and bx, respectively, and uT+s

is the stochastic error in the s-period ahead forecast of kt. By combining equations (2.2)

and (2.3), we have the following expression for the error in the forecast of ln(mx,t):

Ex,T+s = αx + εx,T+s + (b̂x + βx)uT+s + βxk̂T+s. (2.4)

Unfortunately, there is no analytic solution to the covariance between the error terms

and the parameter estimates. Hence, in the computation of variance of the forecast error,

Lee and Carter (1992) assumed independence between all the terms on the right hand

side of equation (2.4). Under this assumption, the variance of the forecast error can be

expressed as

σ2
E,x,T+s = σ2

α,x + σ2
ε,x,T+S + (b̂2

x + σ2
β,x)σ

2
k,T+s + σ2

β,xk̂
2
T+s, (2.5)

where σ2
α,x and σ2

β,x correspond to the variance of the error in estimating ax and bx, respec-

tively, σ2
ε,x,T+s is the variance of εx,T+s, and σ2

k,T+s is the stochastic error in the s-step ahead

forecast of kt. We can estimate σ2
α,x by the dividing the sample variance of ln(mx,t), for

t = 1, 2, ..., T , by T , σ2
ε,x,T+s by the variance of the error in fitting age x within the sample

period, and σ2
β,x by a small-scaled bootstrap (see Appendix B, Lee and Carter, 1992). The

form of σ2
k,T+S depends on the order of the ARIMA process.

To generate the interval forecast, we are required to make the additional assumption

that normality holds. Under this assumption, we have the following expression for the

approximate 95% point-wise interval forecast of ln(mx,t):

ln(mx,T+s) = ln(m̂x,T+s)± 1.96σE,x,T+s. (2.6)

In most cases, the original Lee-Carter (rank-1 SVD approximation) gives a good fit

in terms of the proportion of temporal variance explained1. To further improve the fit,

1The proportion of temporal variance explained by a rank-p SVD approximation is measured by∑p
i=1 s2

i /
∑n

i=1 s2
i , where si is the ith singular value, and n is the rank of the matrix {ln(mx,t)− ax}.
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researchers later considered using a rank-p SVD approximation. For example, Renshaw

and Haberman (2003) considered p = 2, and Booth et al. (2002) considered p = 5. Under

a rank-p SVD approximation, equation (2.1) is generalized to

ln(mx,t) = ax +

p∑
i=1

b(i)
x k

(i)
t + εx,t. (2.7)

Given an increased number of parameters, a rank-p (p > 1) SVD approximation can

obviously explain a higher proportion of temporal variance. However, it makes forecasting

more complicated because (1) the time-varying component in the higher order terms are

often non-linear, making it difficult to be handled by an ARIMA process, and (2) analytic

solutions to the covariance between errors in estimating the additional parameters are not

available, so that stronger assumptions are required in computing the interval forecast.

In WLS method, the model parameters ax, bx and kt are derived by minimizing∑
x,t

wx,t(ln(mx,t)− ax − bxkt)
2, (2.8)

where wx,t can be taken as the reciprocal of the number of exposures-to-risk at age x and

time t. Interval forecasting in WLS is similar to that in SVD, and therefore we do not

restate the details. Note that interval forecasting under WLS also requires the normality

assumption.

2.2.2 Likelihood-Based Methods

In likelihood-based methods, we have to specify a probability distribution for the death

counts. Examples in this category include the method of maximum likelihood estimation

(MLE) considered by Wilmoth (1993) and implemented later by Brouhns et al. (2002),

and the method of generalized linear models (GLM) employed by Renshaw and Haberman

(2006). All these methods assume that the observed number of deaths is a realization

of a Poisson distribution with mean equal to the expected number of deaths under the

Lee-Carter model; that is,

Dx,t ∼ Poisson(Ex,t exp(ax + bxkt)), (2.9)
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where Dx,t and Ex,t are the number of deaths and exposures-to-risk at age x and time t,

respectively.

In the method of MLE, we obtain estimates of the model parameters by maximizing

the log-likelihood function, which is given by

lp =
∑
x,t

(Dx,t(ax + bxkt)− Ex,t(exp(ax + bxkt)) + c, (2.10)

where c is a constant that is free of the model parameters. The maximization can be

accomplished via a standard Newton’s method.

By differentiating both sides of equation (2.10), we can immediately see that the ob-

served and fitted number of deaths over time are equal when the algorithm converges. This

implies that the ad hoc re-estimation of kt required for the SVD method is not required

here.

Having estimated the model parameters, we can project future values of kt by a properly

identified ARIMA process. The s-period ahead forecast of mx,t is again given by equation

(2.2). The interval forecast of mx,t cannot be computed analytically, but it may be obtained

by using a parametric bootstrap (Brouhns et al., 2005), which we now summarize.

1. Simulate N realizations from the Poisson distribution with mean equal to the fitted

number of deaths under the Lee-Carter model. In the illustration presented in later

sections, we use the transformed rejection method (Hörmann, 1993) to generate the

Poisson random numbers.

2. For each of these N realizations:

(a) re-estimate the model parameters ax, bx and kt using MLE;

(b) specify a new ARIMA process for the re-estimated kt;

(c) compute future values of mx,t using the re-estimated ax and bx, and the simu-

lated future values of kt under the newly specified ARIMA process.

3. Step (2) gives an empirical distribution of mx,T+s for all x and s. The 2.5th and the

97.5th percentiles of the empirical distribution respectively gives the lower and upper

limit of the 95% interval forecast of mx,T+s.
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It is noteworthy that the above algorithm allows both the sampling fluctuation in

the model parameters and the stochastic error in the projection of kt to be included in the

interval forecast. Furthermore, the algorithm does not require the assumption of normality

and this makes an asymmetric confidence interval possible.

Koissi et al. (2005) also proposed a very similar method, known as residual bootstrap-

ping, to compute the interval forecast of mx,t. The details of this method are omitted in

this review.

In the method of GLM, we use the log-link in modeling the “responses” Dx,t. The

linear model can be written as

ln(Dx,t) = ln(Ex,t) + ax + bxkt, (2.11)

where ln(Ex,t) is the offset. As usual, parameters ax, bx and kt are unobservable and have

to be estimated by the following algorithm.

1. Set arbitrary starting values of bx.

2. Treat bx as a known covariate; estimate ax and kt.

3. Treat ax and kt as known covariates; estimate bx.

4. Repeat steps (2) and (3) until the deviance converges.

Steps (2) and (3) can be performed easily using S-plus. Methods of GLM and MLE

give the same parameter estimates if the same constraints for parameter uniqueness are

chosen. Mean forecasting of mx,t is identical to that in MLE, and interval forecasting can

also be achieved by bootstrapping.

2.2.3 Problems Associated with the Existing Approaches

The non-likelihood-based methods are purely mathematical. In particular, in SVD, values

of kt obtained from the first right singular vector are often illegitimate and thus require fur-

ther adjustment through an ad hoc procedure. Interval forecasting is quite straightforward,

but it requires very strong assumptions. First, even though an analytic formula for the

variance of forecast error of ln(mx,t) is available, co-variances between the error terms and
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the model parameter estimates are ignored to avoid the mathematical complexities. This

would inevitably deflate the variance of the forecast error and make the interval forecast

narrower than it should be. Second, as the methods specify no probabilistic distribution

during model parameter estimation, normality has to be assumed in the computation of

the interval forecast. Inter alia, the assumption of normality rules out the possibility of an

asymmetric interval forecast.

The existing likelihood-based methods assume that the observed number of deaths is a

realization of a Poisson distribution. In this setting, interval forecasts and standard errors

of parameters can be estimated by bootstrapping, although it is computationally intensive.

The bootstrap explicitly reflects the statistical dependency between the model parameters

in the interval forecast, and it also allows a simultaneous consideration of parameter un-

certainty and the stochastic uncertainty arises from the process of kt. Moreover, we can

obtain asymmetric interval forecasts as they are based on the percentiles of the simulated

empirical distribution rather than normality. The interval widths are however close to that

obtained by non-likelihood-based methods since there is no change in the effective number

of parameters. Finally, the likelihood-based methods may give a marginally better fit as

the ad hoc re-estimation of kt is not required.

Nevertheless, there are several drawbacks associated with the existing likelihood-based

methods. In assuming Poisson models, we are imposing the mean-variance equality re-

striction on the variable Dx,t. In practice, however, the variance can be greater than the

mean, and this situation is commonly known as overdispersion. McCullagh and Nelder

(1989) pointed out that overdispersion is commonplace and therefore it should be assumed

to be present to some extent unless it is shown to be absent. Cox (1983) also pointed out

that there is a possible loss of efficiency if a single parameter distribution is used when

overdispersion exists. If overdispersion exists, the assumption of Poisson death counts will

lead us to overestimating the degree of precision of the mortality projection.

2.3 The Proposed Extension

In this section we attempt to loosen the original model structure carefully so that restric-

tions on the movement of future death rates can be reduced without relinquishing the
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desirable properties we stated in Section 2.1.

Motivated by the mean-variance equality restriction in the original likelihood-based

estimation methods, we begin with the probability distribution assumed for the number of

deaths. Recall that in the original likelihood-based methods, we assume that Dx,t follows

a Poisson distribution, and that individuals within each age-period cell are homogeneous.

However, other than age and time, there are various factors affecting human mortality; for

example, ethnicity, education, occupation, marital status and obesity (Brown and McDaid,

2003). These factors may divide the exposures-to-risk in each age-period cell into clusters

that differ in their likelihood of death. The presence of clustering will not only violate

the assumption of homogeneity, but also induce extra variation that is not reflected in the

interval forecasts computed by the previous methods.

To account for the possibility of clustering, we segregate each age-period cell into Nx,t

clusters of equal size, where Nx,t is assumed to be non-random. This implies that the ith

cluster will have Ex,t/Nx,t exposures-to-risk and Dx,t(i) deaths, where i = 1, ..., Nx,t. The

total number of deaths, Dx,t, can therefore be expressed as

Dx,t = Dx,t(1) + Dx,t(2) + ... + Dx,t(Nx,t). (2.12)

We assume that Dx,t(i)s are independently distributed, and

Dx,t(i)|zx(i) ∼ Poisson

(
zx(i)

Ex,t

Nx

exp(ax + bxkt)

)
, (2.13)

where zx(i) is a random variable accounting for the heterogeneity of individuals. Note that

zx(i) is age-specific and that it varies from cluster to cluster. When zx(i) > 1, individuals

in cluster i are more frail than the overall, and similarly when 0 < zx(i) < 1, individuals in

cluster i are less frail. Although any probability distribution with a positive support can be

a candidate distribution for zx(i), we assume here that zx(i) follows a gamma distribution

for tractability:

zx(i) ∼ Gamma(ι−1
x , ιx). (2.14)

In fact, gamma distributions are often utilized in modeling heterogeneity; for example,

see Hougaard (1984), Vaupel et al. (1979), and Wang and Brown (1998). We follow the

usual parameterization of the gamma distribution with E[zx(i)] = 1 and Var[zx(i)] = ιx,
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where ιx > 0. It can be easily shown that

E[Dx,t(i)] =
Ex,t

Nx,t

exp(ax + bxkt), (2.15)

which will be denoted as µx,t. Also, we have

E[Dx,t] = Ex,t exp(ax + bxkt), (2.16)

which means our extension still complies with the Lee-Carter specification. Furthermore,

we can show that the unconditional distribution of Dx,t(i) can be written as

Pr[Dx,t(i) = y] =
Γ(y + ι−1

x )

y!Γ(ι−1
x )

(
µx,t

µx,t + ι−1
x

)y (
ι−1
x

µx,t + ι−1
x

)ι−1
x

. (2.17)

By letting αx = ιx/Nx, equation (2.17) immediately leads to

Pr[Dx,t = y] =
Γ(y + α−1

x )

y!Γ(α−1
x )

(
Nxµx,t

Nxµx,t + α−1
x

)y (
α−1

x

Nxµx,t + α−1
x

)α−1
x

. (2.18)

This means that Dx,t follows a negative binomial distribution unconditionally.

It is interesting to note that the negative binomial distribution has another statistical

interpretation. In more detail, we may assume that

Dx,t|wx ∼ Poisson(wxEx,t exp(ax + bxkt)), (2.19)

where wx is a random variable that captures part of the variations not explained by the

Poisson distribution, such as the random error in recording the age at death. If we assume

further that

wx ∼ Gamma(α−1
x , αx), (2.20)

then the unconditional distribution of Dx,t is the same as that specified by equation (2.18).

Summing up, the introduction of gamma-distributed heterogeneity in age-period cells

is equivalent to the assumption that Dx,t follows a negative binomial distribution instead

of a Poisson one. More importantly, we have

Var[Dx,t] = E[Dx,t] + αx{E[Dx,t]}2, (2.21)
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which means that the extension explicitly allows for overdispersion via the dispersion pa-

rameters αx’s. In other words, the assumption of the mean-variance equality is not required,

and consequently measures of uncertainty under the proposed extension can capture a large

part of the variation that is ignored in the original model. Note that the limiting case

αx → 0 yields a Poisson distribution.

Furthermore, the proposed extension gives additional parameters (αxs) to the model

without altering the structure specified by equation (2.1). This introduces more flexibility

without affecting the desirable features such as the linearity in kt and the stability of the

age-pattern of mortality over time.

We may use maximum likelihood to estimate the model parameters. The log-likelihood

function is given by

lnb =
∑
x,t

{[
Dx,t−1∑

i=0

ln

(
1 + αxi

αx

)]
+ Dx,t ln(αxD̃x,t)

−(Dx,t + α−1
x ) ln(1 + αxD̃x,t)

}
+ c, (2.22)

where D̃x,t = Ex,t exp(ax + bxkt), and c is a constant that is free of ax, bx, kt and αx.

We may maximize lnb by a standard Newton’s procedure as shown below.

a(v+1)
x = a(v)

x −
∑

t(Dx,t − α
(v)
x g

(v)
x,t )∑

t(−α
(v)
x g

(v)
x,t )/(1 + α

(v)
x D̂

(v)
x,t )

,

b(v+1)
x = b(v)

x ,

k
(v+1)
t = k

(v)
t ,

α(v+1)
x = α(v)

x ; (2.23)

b(v+2)
x = b(v+1)

x −
∑

t(Dx,tk
(v+1)
t − α

(v+1)
x k

(v+1)
t g

(v+1)
x,t )∑

t(−α
(v+1)
x k

(v+1)2

t g
(v+1)
x,t )/(1 + α

(v+1)
x D̂

(v+1)
x,t )

,

a(v+2)
x = a(v+1)

x ,

k
(v+2)
t = k

(v+1)
t ,

α(v+2)
x = α(v+1)

x ; (2.24)
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k
(v+3)
t = k

(v+2)
t −

∑
x(Dx,tb

(v+2)
x − α

(v+2)
x b

(v+2)
x g

(v+2)
x,t )∑

x(−α
(v+2)
x b

(v+2)2
x g

(v+2)
x,t )/(1 + α

(v+2)
x D̂

(v+2)
x,t )

,

a(v+3)
x = a(v+2)

x ,

b(v+3)
x = b(v+2)

x ,

α(v+3)
x = α(v+2)

x ; (2.25)

α(v+4)
x = α(v+3)

x −

∑
t

{
f

(v+3)
x,t − g

(v+3)
xt + r

(v+3)
x,t + Dx,t

α
(v+3)
x

}
∑

t

{
h

(v+3)
x,t − Dx,t+2r

(v+3)
x,t α

(v+3)
x

α
(v+3)2
x

+
(

2

α
(v+3)2
x

+ g
(v+3)
x,t

)(
ˆDx,t

(v+3)

1+α
(v+3)
x D̂

(v+3)
x,t

)} ,

a(v+4)
x = a(v+3)

x ,

b(v+4)
x = b(v+3)

x ,

k
(v+4)
t = k

(v+3)
t ; (2.26)

where D̂
(v)
x,t = Ex,t exp(a

(v)
x + b

(v)
x k

(v)
t ); and f

(v)
x,t , g

(v)
x,t , h

(v)
x,t and r

(v)
x,t are defined respectively

by

f
(v)
x,t =

Dx,t−1∑
i=0

(
i

1 + α
(v)
x i

− 1

α
(v)
x

)
, (2.27)

g
(v)
x,t = D̂

(v)
x,t

(
Dx,t +

1

α
(v)
x

)(
1 + α(v)

x D̂
(v)
x,t

)−1

, (2.28)

h
(v)
x,t =

Dx,t−1∑
i=0

(
−i2

(1 + α
(v)
x i)2

− 1

α
(v)2
x

)
, (2.29)

r
(v)
x,t =

1

α
(v+3)2
x

ln(1 + α(v+3)
x D̂

(v+3)
x,t ). (2.30)

As with the standard Lee-Carter, we normalize bx and kt to sum to unity and zero, re-

spectively. The iteration stops when the change in the log-likelihood function is sufficiently

small, say 10−6. Usually, the rate of convergence is slower than that in the Poisson-based
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MLE. A simple approach for achieving faster convergence is using the SVD or Poisson ML

estimates as the starting values. Finally, we can use parametric bootstrapping to obtain

interval forecasts of mx,t. The required generation of negative binomial random numbers

is fairly easy (see Ross, 2002).

Renshaw and Haberman (2005) proposed another method to handle over-dispersion in

the Lee-Carter model. They assume that Dx,t follows the Poisson distribution given by

equation (2.9). They keep E[Dx,t] = Ex,t exp(ax + bxkt) as before, but they set Var[Dx,t] =

φE[Dx,t] to relax the mean-variance equality. The scale parameter φ can be estimated by

the ratio of the residual deviance and its degree of freedom, given by (X − 1)(T − 2),

where X is the total number of age groups. The advantage of this method is that we

can circumvent the assumption of a probability distribution for the unobserved hetero-

geneity. Nevertheless, there are several problems associated with this approach. First, the

relationship between E[Dx,t], Var[Dx,t] and the probability function of Dx,t is internally in-

consistent. Second, as the dispersion parameter is not involved in the estimating equations,

ML estimates of model parameters remain unchanged. In other words, the goodness-of-

fit is not improved for certain. Third, as only a single dispersion parameter is used, the

percentage increase in Var[Dx,t] is the same for all ages. This is unrealistic as the increase

should be age-specific. For instance, variations at the advanced ages tend to be higher

due to the inaccuracy of reported age at death and the sampling error when the number

of deaths and exposures-to-risk are small. Fourth, the dispersion parameter may not be

integrated into the bootstrapping of interval forecasts.

2.4 An Example

This section evaluates the performance of our proposed extension using Canadian popu-

lation mortality data, provided by the Human Mortality Database (HMD). The required

data, that is, Ex,t and Dx,t, are given for x = 0, 1, ..., 99, and t = 1921, 1922, ..., 2001. We

use the Coale-Kisker method (Coale and Guo, 1989) to smooth the death rates beyond age

85. The issue of modeling old-age mortality will be discussed in more detail in Chapter 4.

Through a graphical analysis of residuals, Koissi et al. (2005) have shown that the

method of Poisson-based MLE provides a better fit than the methods of SVD and WLS. We
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shall therefore focus on the comparison between the Poisson-based MLE and our proposed

generalization.

2.4.1 Parameter Estimates

Figures 2.1 and 2.2 show that the influence of the extension on the base age pattern ax

and the relative speed of improvement bx is minor. Figure 2.3 suggests that the linearity

in the time-varying component is preserved.

Figure 2.4 shows that the estimates of αx are especially high at the advanced ages, indi-

cating a high level of heterogeneity within cells. For example, the elderly may be classified

by their activities of daily living (ADL) limitations (Kassner and Jackson, 1998), which

may be closely related to their mortality. From another point of view, this observation is

also consistent with the empirical fact that vital statistics at the extreme ages are subject

to significant recording and sampling errors (see, e.g., Bourbeau and Desjardins, 2002).

2.4.2 Goodness-of-fit

Table 2.1 gives a formal evaluation of the goodness-of-fit. The significantly higher log-

likelihood suggests that our proposed extension provides a better fit. Nevertheless, under

the principal of parsimony, we should make use of the least possible number of parameters

for adequate representations, and it is therefore inappropriate to base the conclusion only

on the change in the log-likelihood, given that we have introduced additional parameters

(αx’s). To account for the extra parameters, we can use the following model selection

criteria:

1. The Akaike Information Criterion (AIC) (Akaike, 1974), defined by l − j, where l is

the log-likelihood and j is the number of parameters. The AIC merits the increase in

log-likelihood, but penalizes for the introduction of additional parameters. Models

with a higher value of AIC are more preferable.

2. Schwarz-Bayes Criterion (SBC) (Schwarz, 1978), defined by l − 0.5j ln(n), where n

is the number of observations. The intuitions of SBC and AIC are similar. Again,

we prefer models with a higher SBC.
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3. Likelihood-ratio test (LRT) (see Klugman et al. 2004). The null hypothesis of

LRT is that there is no significant improvement in the more complex model. Let l1

be the log-likelihood of under Poisson MLE, and l2 be the log-likelihood under our

proposed extension. The test statistic is 2(l2−l1). Under the null hypothesis, the test

statistic has a chi-square distribution, with degrees of freedom equal to the number

of additional parameters.

The values of the AIC and the SBC are presented in Table 2.1. The p-values of the

LRTs are less than 10−6. All three criteria support the use of our proposed extension.

Furthermore, as shown in Figures 2.5 and 2.6, the increased flexibility seems capable of

correcting the under-fit manifested near the forecast origin, particularly at the young ages.

However, the relaxed model structure has no discernible harm to the projected age pattern

of mortality, as shown in Figure 2.7.

2.4.3 Interval Forecasts

Finally, we obtain the interval forecasts by parametric bootstrapping, and the results are

presented graphically in Figures 2.5 and 2.6. Notice that the percentage increase in the

interval width is proportional to αx. On average, the increase in width at the younger ages

(0-40) is around 6 percent and that at the higher ages (75 and over) is over 100 percent.

This agrees with our previous assertion that the mean-variance equality restriction in the

Poisson MLE has lead us to understating the variations, mostly at the higher ages.

Readers should bear in mind that no matter how the structure is relaxed, model risk

still exists. The proposed extension has not taken into account the possibility of future

structural changes, and it has not eliminated the need for model parameter re-calibration

when future rates are realized.
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Male

Female

Fig. 2.1. Estimate of parameter ax.
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Fig. 2.2. Estimate of parameter bx.



26

Male

Female

Fig. 2.3. Estimate of parameter kt.
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Fig. 2.4. Estimate of parameter αx.
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Age 0

Fig. 2.5. The fit (1921-2001) and the projection (2002-2051) of ln(mx,t) at
representative ages, Poisson-based MLE and the proposed extension, male.
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Age 20

Fig. 2.5. (cont’d) The fit (1921-2001) and the projection (2002-2051) of ln(mx,t) at
representative ages, Poisson-based MLE and the proposed extension, male.
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Age 40

Fig. 2.5. (cont’d) The fit (1921-2001) and the projection (2002-2051) of ln(mx,t) at
representative ages, Poisson-based MLE and the proposed extension, male.
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Age 95

Fig. 2.5. (cont’d) The fit (1921-2001) and the projection (2002-2051) of ln(mx,t) at
representative ages, Poisson-based MLE and the proposed extension, male.
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Age 0

Fig. 2.6. The fit (1921-2001) and the projection (2002-2051) of ln(mx,t) at
representative ages, Poisson-based MLE and the proposed extension, female.
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Age 20

Fig. 2.6. (cont’d) The fit (1921-2001) and the projection (2002-2051) of ln(mx,t) at
representative ages, Poisson-based MLE and the proposed extension, female.
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Age 40

Fig. 2.6. (cont’d) The fit (1921-2001) and the projection (2002-2051) of ln(mx,t) at
representative ages, Poisson-based MLE and the proposed extension, female.
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Age 95

Fig. 2.6. (cont’d) The fit (1921-2001) and the projection (2002-2051) of ln(mx,t) at
representative ages, Poisson-based MLE and the proposed extension, female.
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Male

Female

Fig. 2.7. Projected age pattern of mortality in 2051,
Poisson-based MLE and the proposed extension.
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Poisson-based MLE The Proposed Extension

Number of Parameters 279 379

Log-likelihood −66,021 −45,517

AIC −66,300 −43,896

SBC −67,276 −45,222

Male

Poisson-based MLE The Proposed Extension

Number of Parameters 279 379
Log-likelihood −52,643 −40,748

AIC −52,922 −41,127
SBC −53,898 −42,453

Female

Table 2.1. Comparison of model selection information
for the Poisson-based MLE and the proposed extension.

2.5 Conclusion

In this chapter, we relaxed the original Lee-Carter model by incorporating heterogeneity

in each age-period cell. By assuming that the unobserved heterogeneity follows a gamma

distribution, we demonstrated that the distribution of the number of deaths is negative

binomial. This generalization implicitly introduced an extra parameter vector (the age-

specific dispersion parameters) to the model. As the main specification of the model was

unaltered, the extension retained all the appealing features, including the linearity in the

time-varying component and the stability of age-patterns, of the original version. Given

the more conservative confidence intervals and the improved goodness-of-fit, the proposed

generalization seems to be an attractive alternative to the original version.

For mathematical convenience, we assumed a single parameter gamma distribution for

the unobserved heterogeneity. Although the gamma distribution may be replaced by any

continuous distribution with positive support, the mixture of distributions may not be

carried out analytically. In this case, the ML estimates of model parameters may have
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to be determined by a combination of numerical integrations and the EM algorithm (see

Brillinger, 1986).

In all versions of the Lee-Carter we mentioned, the modeling proceeds in two steps: we

first estimate the model parameters ax, bx, kt and αx (if applicable), and then the estimate

of kt is further modeled by an ARIMA process for extrapolation. Czado et al. (2005)

pointed out that this two-step procedure may give rise to incoherence and they proposed

using the Markov Chain Monte Carlo (MCMC) method that could combine the two steps.

It would be interesting to incorporate our proposed extension with the MCMC method for

a deeper understanding of the uncertainty associated with the parameter estimates and

forecasts.



Chapter 3

Mortality Improvement Scales for

Canadian Insured Lives

3.1 Introduction

In Chapter 1, we reviewed several previous mortality improvement scales. These scales are

purely deterministic in the sense that no measure of uncertainty is given. This chapter

aims to develop improvement scales for Canadian insured lives using stochastic mortality

models. The resultant scales should include a range of possible outcomes, and a probability

attached to that range.

Willekens (1990) suggested that stochastic models for forecasting mortality can be

roughly divided into two categories, namely, extrapolative and process-oriented. A mu-

tual shortcoming of all extrapolative models is an entire reliance on observed past trends

and consequently a lack of information on the forces shaping the changes in mortality.

Nevertheless, the implementation of process-oriented methods is always obscured by the

statistical difficulties in determining the dependencies between causes of death and the

unavailability of the required individual level data − in this study, the available data con-

sist of no information on causes of death and risk factors other than smoker-status. For

that reason, we shall focus on various extrapolative models. These models shall give us

prediction intervals that could allow for a wide range of possible outcomes, so as to cope

with our ignorance of the complex biological mechanisms underlying.

39
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The implementation of extrapolative models is not straightforward, due primarily to

the two limitations in the available Canadian insured lives experience. First, the experience

is available for only 20 policy years (1982-1983 to 2001-2002), which is probably too short

for a direct statistical projection, no matter which model is used. Second, in earlier policy

years, the volume of data with known smoker status is scanty, and there is not even any

smoker breakdown in the ultimate data before policy year 1992-1993. This inevitably

precludes the derivation of improvement scales separately for smokers and non-smokers.

To overcome these problems, we rely additionally on Canadian population mortality

data, which covers a far longer period of 81 calendar years (1921 to 2001) and is much

richer in the number of exposures-to-risk. Given that the Canadian population is highly

insured, the mortality experiences of the general population and insured lives should share

common features. Hence, the simpler approach of fitting solely to the insured lives data is,

in a sense, inefficient. In our proposed methodology, both experiences are projected simul-

taneously by means of a joint model, which consists of four fitting stages. First, we project

Canadian population mortality. Second, we summarize the projection by some tractable

mathematical formulae, which give mortality improvement scales for the general popula-

tion. Third, we search for a persistent parametric relationship between the experiences of

the general population and insured lives. Fourth, based on the parametric relationship, we

modify the results in stage two to obtain improvement scales for Canadian insured lives.

If necessary, these scales are further adjusted for the effects of selection and/or smoker

status.

The flow of this chapter follows the sequence in which the ultimate improvement scales

are derived. In Section 2, we state all sources of data. In Section 3, we introduce various

stochastic models for forecasting mortality. These models are modified to suit our purposes

and then fitted to the mortality experience of the general population. In Section 4, we focus

on the insured lives. We firstly perform a two dimensional graduation to obtain smoothed

insured lives mortality rates, which are then related to the mortality rates of the general

population by an appropriate parametric model. Given this relationship and the results in

Section 3, we obtain mortality improvement scales for the insured lives. In Section 5, we

provide a brief discussion on the effects of duration and smoker status.
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3.2 Sources of Data

Below we list the sources of data to be used in this chapter.

• The general population

The mortality data for the Canadian population are the same as that used in Chapter

2. According to the HMD documentation, there were a few changes in the coverage of

the vital statistics during that period. However, rigorous outlier analyses presented in

the later part of this chapter indicate that the effect of these changes is not significant.

• The insured lives

The insured lives experience was collected from all life insurance companies in Canada

by the Institute of Insurance and Pension Research at the University of Waterloo. It

covers policy years 1982-1983 to 2001-2002. Numbers of deaths and exposures-to-risk

are available for both sexes and all ages up to 99. The data are further segregated

by:

1. sex − male and female;

2. duration − 1, 2, and so on up to 15, and ultimate (16+);

3. smoker status − smoker, non-smoker and indeterminate (no smoker breakdown

in the ultimate data prior to policy year 1992-1993).

In each category, data are given in terms of both the number of lives and the amount

of insurance. We prefer “numbers” to “amounts” as the trends in the “numbers”

data are much more stable.

3.3 Projecting the Mortality Experience of the Gen-

eral Population

In this section, we project the mortality experience of the general population using two

genres of stochastic mortality models, namely, the P-splines regression (Currie et al., 2004)

and the Lee-Carter model (Lee and Carter, 1992). These models are also considered by

the CMIB in projecting the United Kingdom insured lives experience (CMIB, 2005).
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3.3.1 The P-splines Regression

Let us begin with the one-dimensional case. Let Dx,t, µx,t and Ex,t respectively be the

number of deaths, the force of mortality, and the number of exposures-to-risk at age x and

time t. For convenience, we write d′ = {Dx,1, Dx,2, ..., Dx,T}, µ′ = {µx,1, µx,2, ..., µx,T}, and

e′ = {Ex,1, Ex,2, ..., Ex,T}, where T is number of periods in the time-series mortality data.

To model µx,t, we may regress ln(mx,t) against some basis functions B; that is,

ln(µx,t) = Ba + εx,t, (3.1)

where a is the matrix of regression coefficients and εx,t is the error term. In a simple linear

regression, B = {1, t}, and in a B-splines regression, the basis is a collection of K cubic

B-splines, that is, B = {B1(x), B2(x), ..., BK(x)}, where Bi(x), i = 1, 2, ..., K, is a B-spline

formed by joining cubic polynomial pieces smoothly. Therefore, in a B-splines regression,

the fitted value of ln(µx,t) becomes

l̂n(µx,t) =
K∑

i=1

Bi(x)âi. (3.2)

The coefficients can be estimated by maximizing the log-likelihood, l(a;d, e), based on

the assumed distribution for Dx,t. We assume that Dx,t follows a Poisson distribution with

mean Ex,tµx,t.

In fitting a B-splines regression, we usually use a high value of K for a high goodness-

of-fit. This, however, may lead to unwanted overfitting. To deal with this problem, we

can use a P-splines regression (Eilers and Marx, 1996), which restricts the parameters by

a difference penalty on the adjacent coefficients. By incorporating the penalty into the

original log-likelihood, l, we have the following penalized log-likelihood function:

lp(a;d, e) = l(a;d, e)− 1

2
λa′∆′∆a, (3.3)

where ∆ is a difference matrix of order n. The maximization of lp is equivalent to max-

imizing the goodness-of-fit, measured by l, and simultaneously minimizing the nth order

differences between the adjacent coefficients so that the coefficients tend to lie on a degree

n adaptive polynomial. The balance between goodness-of-fit and smoothness is controlled
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by the smoothing parameter, λ. Let P = λ∆′∆ be the penalty matrix. The maximization

of lp gives the following penalized likelihood equation:

B′(d− eµ) = Pa, (3.4)

which can be solved by the scoring algorithm below:

â = (B′ŴB + P)−1(B′ŴBã + B′(d− eµ̃)), (3.5)

where ã, µ̃ and W̃ are the current estimates of a, µ; and W, respectively; â is the updated

estimate of a; W = diag(µ). The approximate variance of the linear predictor is given by

Var(Bâ) ≈ B(B′ŴB + P)
−1

B′. (3.6)

Assuming normality holds, the approximate 95% confidence interval for ln(µx,t) can be

written as

l̂n(µx,t)± 1.96

√
Var(l̂n(µx,t)), (3.7)

where Var(l̂n(µx,t)) is the tth diagonal element in the matrix of Var(Bâ).

In forecasting, we treat future values of Dx,t and Ex,t (t > T ) as missing data. Suppose

that we forecast future death rates in S years from now. Then we have to extend the

original basis matrix B to B∗ that covers T + S years; that is,

B∗ =

[
B 0

B1 B2

]
, (3.8)

where B1 and B2 contain the B-splines that cover the entire domain, {1, 2, ..., T, T +

1, ..., S}. Let V = blockdiag(I;0), where I is an identity matrix of size T and 0 is a S-byS

square matrix of zeros. Then, the scoring algorithm specified by equation (3.5) can be

rewritten as

â = (B′VW̃B + P)−1(B′VW̃Bã + B′V(d− eµ̃)), (3.9)

which enables us to fit and forecast simultaneously. The mean and interval forecast can be

obtained by equations (3.2) and (3.7), respectively.

Note that the above algorithm depends on the choice of K, n and l. Eilers and Marx

(1996) used the following rule of thumb to choose K:

K = max

(
T

4
, 40

)
+ 3. (3.10)
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The choice of n determines the form of the forecast. Setting n = 1 implies no mortality

improvement in the future; setting n = 2 gives a linear forecast; setting n = 3 gives a

quadratic forecast. As neither the consequence of n = 1 nor that of n = 3 seems reasonable,

we set n = 2. Finally, λ is chosen to minimize the Bayesian Information Criterion (BIC)

(Schwarz, 1978), which is defined by

BIC = Dev + ln(n× Tr), (3.11)

where Dev is the deviance, and Tr is the trace of the hat matrix

H = B(B′WB + P)−1B′W. (3.12)

We now move on to the two-dimensional case. Let D = {Dx,t}X×T , M = {mx,t}X×T

and E = {Ex,t}X×T , where X is the total number of age groups. Let Ba and By be the

basis matrices when the P-splines regression is applied to the columns and rows of M,

respectively. It can be shown that the basis matrix for the two-dimensional model is

B = By ⊗Ba, (3.13)

where ⊗ is the Kronecker product operator. Similarly, let Da and Dy be the difference ma-

trices when the P-splines regression is applied to the columns and rows of M, respectively.

It can be shown that the penalty matrix for the two-dimensional model is

P = λaIcy ⊗D′
aDa + λyD

′
yDy ⊗ Ica , (3.14)

where λa and λy are the smoothing parameter in the age dimension and the year dimension,

respectively; ca and cy are the number of columns in Ba and By, respectively. Let vec(Y) be

the operator that converts Y = [y1,y2, ...,yN ] into [y′1,y
′
2, ...,y

′
N ]. To obtain the algorithm

for smoothing and forecasting in the two-dimensional case, we replace B, P and d in the

one-dimensional case by equation (3.13), equation (3.14) and vec(D), respectively.

Figures 3.1 to 3.3 show the P-splines projection of the general population mortality.

The P-splines regression has two attractive features. One is that the interval forecasts are

conservative, and the other is an excellent fit to the data.

Nevertheless, the P-splines behave arbitrarily badly outside the region of the data. At

infancy and older ages, the projection is nonsensical − the mean forecast of m90 exceeds
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1 in no more than 20 years. The projected age pattern is inconsistent with the gener-

ally accepted ones. For males, it is almost flat from age 30 to 70, and there exists an

unexplainable hump at around age 75. Also, for both sexes, there is a anti-intuitive fall

at around age 90, leading to mortality crossovers. These unappealing phenomena may

be attributed to the fundamental assumptions of the model. First, in contrast to other

models, the P-splines regression is two-dimensional in the sense that the entire mortality

surface is allowed to change over time. The high degree of freedom allows the P-splines

to give a high goodness-of-fit and wide confidence intervals. However, as there are fewer

constraints on the behavior of future rates, the age pattern is not stable. Second, as the

P-splines method is regression based, death rates are assumed not to be serially correlated.

No different from other extrapolative methods, the P-splines forecast is a weighted average

of past observations. The inappropriate assumption of independence may lead to an incor-

rect specification of weights so that too much emphasis is placed on recent observations.

In Figures 3.1 and 3.2, we notice that the forecasts are almost totally determined by the

slope of the last 5 (perhaps even fewer) observations. In other words, an abnormality near

the forecast origin could severely distort the entire forecast.

Overall, the P-splines method does an excellent job in smoothing the data but not in

projecting Canadian population mortality. Therefore, we use the P-splines regression for

the purpose of data and parameter graduation, and seek alternative approaches for the

calibration of improvement scales.
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Age 0

Fig. 3.1. The fitted (1921-2001) and the projected (2002-2051) mortality
experience at representative ages, P-splines regression, male.



47

Age 30

Fig. 3.1 (cont’d). The fitted (1921-2001) and the projected (2002-2051) mortality
experience at representative ages, P-splines regression, male.
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Age 80

Fig. 3.1 (cont’d). The fitted (1921-2001) and the projected (2002-2051) mortality
experience at representative ages, P-splines regression, male.
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Age 95

Fig. 3.1 (cont’d). The fitted (1921-2001) and the projected (2002-2051) mortality
experience at representative ages, P-splines regression, male.
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Age 0

Fig. 3.2. The fitted (1921-2001) and the projected (2002-2051) mortality
experience at representative ages, P-splines regression, female.



51

Age 30

Fig. 3.2 (cont’d). The fitted (1921-2001) and the projected (2002-2051) mortality
experience at representative ages, P-splines regression, female.
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Age 80

Fig. 3.2 (cont’d). The fitted (1921-2001) and the projected (2002-2051) mortality
experience at representative ages, P-splines regression, female.
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Age 95

Fig. 3.2 (cont’d). The fitted (1921-2001) and the projected (2002-2051) mortality
experience at representative ages, P-splines regression, female.



54

Male

Female

Fig. 3.3. The projected age pattern of mortality, 2051, P-splines regression, male and female.
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3.3.2 The Lee-Carter Model

In Chapter 2, we provided an in-depth discussion about the Lee-Carter model. We also

pointed out that the traditional model assumption of Poisson death counts imposes the

mean-variance equality restriction, requiring the variance to be less than it really is. To

overcome this problem, we can replace the Poisson death counts with negative binomial

ones. We demonstrated that such a modification can give us more conservative confidence

intervals, but it does not lead to the erratic behaviors found in the P-splines forecasts.

Furthermore, in fitting the Lee-Carter model, we might have smoothed out several dis-

crepant observations. These discrepancies may be due to several non-repetitive exogenous

interventions, such as pandemics or wars, and thus may contain information that is useful

to our projection. To discern how these interventions might have affected the mortality

dynamics and to take account of the abnormalities in the interval forecast, we can conduct

a statistical outlier analysis. Performing an outlier analysis can also help us avoid erro-

neous model specifications due to the masking effect of the outliers (see Tsay, 1986), and

verify the uniformity of the data by statistically testing for an outlier effect at time points

when the coverage of the vital statistics were changed.

The outlier analysis is based on the time-varying parameter kt, which is modeled by an

ARIMA(p,d,q) process:

φ(B)(1−B)dkt = θ(B)at, (3.15)

where B is the backshift operator such that Bskt = kt−s, φ(B) = 1 − φ1B − ... − φpB
p,

θ(B) = 1 − θ1B − ... − θpB
p, and {at} is a sequence of white noise random variables, iid

with mean 0 and constant variance σ2.

If there exists an outlier, the observed series will be a combination of the outlier-free

{kt} and an exogenous intervention effect, denoted by ∆t(T, ω); that is,

k∗t = kt + ∆t(T, ω), (3.16)

where k∗t is the observed series, T and ω are the location and the magnitude of the outlier,

respectively.

We consider four types of outlier, namely, additive outlier (AO), innovational outlier

(IO), level shift (LS) and temporary change (TC).
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• An AO affects only a single observation; that is, ∆t(T, ω) = ωD
(T )
t .

• An IO affects all observations beyond T through the memory of the outlier-free

process; that is, ∆t(T, ω) = θ(B)
φ(B)(1−B)d ωD

(T )
t .

• A LS has a permanent effect; that is, ∆t(T, ω) = ω
1−B

D
(T )
t .

• A TC affects a series at a given time, and its effect decays exponentially according

to a dampening factor, say δ; that is, ∆t(T, ω) = ω
1−δB

D
(T )
t . We take δ = 0.7 as

recommended by Chen and Liu (1993).

In the above expressions, D
(t)
t is an indicator variable which equals 1 when t = T and

zero otherwise. In general, there may be more than one, say m, outliers. This may be

represented by the general outlier model:

k∗t = kt +
m∑

i=1

∆t(Ti, ωi). (3.17)

A complete algorithm for outlier detection and adjustment can be found in Li and

Chan (2005). Table 3.1 shows all the detected outliers in the series of kt for the Canadian

population. Note that the positive ones may be regarded as unexpected mortality dete-

riorations, while the negative ones may be regarded as unexpected improvements. The

detected outliers do not match any of the years when the coverage of the vital statistics is

altered, justifying the integrity of the data.
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Year Magnitude t-statistic Type

Male

1937 5.497 3.69 AO

Female

1926 6.729 4.05 LS

1929 5.271 3.22 TC

1937 6.420 4.51 AO

1954 −4.940 −3.02 TC

Table 3.1. Outliers detected in kt, Canadian population, male and female, 1921-2001

Year Magnitude t-statistic Type

Male

1918 29.444 11.67 AO

1921 −12.471 −3.88 TC

1927 −7.806 −3.09 AO

1936 9.815 3.05 TC

Female

1916 10.117 3.48 LS

1918 30.574 11.87 AO

1921 −11.795 −4.07 TC

1926 7.610 2.94 AO

1927 10.630 3.62 TC

1936 11.531 4.00 TC

1954 −8.059 −2.79 TC

1975 −10.459 −3.61 LS

Table 3.2. Outliers detected in kt, the US population, male and female, 1921-2001
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To learn more about the exogenous interventions, we replicate the exercise using the US

population mortality data from 1901 to 2001. The death rates and the mid-year population

estimates are provided by the National Center for Health Statistics (2004a, 2004b) and the

United States Census Bureau (2004), respectively. Table 3.2 shows all the outliers detected

in the series of kt for the US population. The positive outlier in 1918 is most likely due to

the Spanish flu epidemic, and its additive nature suggests that this deadly epidemic had

only a temporary effect on the mortality dynamics. We refer interested readers to Li and

Chan (2007) for explanations of other detected outliers.

To incorporate the potential recurrence of the detected outliers into the interval fore-

casts, we add the following step to the bootstrap procedure we discussed in Chapter 2: in

each simulation, we sample with replacement from the pool of detected outliers and super-

impose the sampled outliers to simulated sample path of future kt’s. The pool comprises

all outliers in Table 3.1 and those before 1921 in Table 3.2. By allowing the interruptive

events to recur in the future, the interval forecasts can be more conservative and capable

of including more stochastic uncertainty. Note that the outlier analysis does not affect the

estimates of parameters ax, bx and kt. The outlier adjusted forecast is very similar to that

obtained in Chapter 2, except that the confidence intervals are slightly wider.

The derivation of the improvement scales will be based on the Lee-Carter model with

the extensions proposed. However, readers should bear in mind that the model structure

is still strong so that the confidence intervals might not be conservative enough to reflect

the possibility of structural changes in the future.

3.3.3 Summarizing the Projection

Recall that under the Lee-Carter model, we can write the s-step ahead forecast of mx,t as

m̂x,T+s = exp(âx + b̂xk̂T+s), (3.18)

where T is the forecast origin. Substituting mx,T into equation (3.18), we have

m̂x,T+s = m̂x,T exp(b̂x(k̂T+s − k̂T ))

≈ mx,T exp(b̂x(k̂T+s − k̂T )). (3.19)
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Tuljapurkar et al. (2000) found that {kt} typically follows an ARIMA(0,1,0) process.

In this case,

k̂T+s − k̂T = ĉs, (3.20)

where c is the drift term in the ARIMA(0,1,0) process. Let us define the improvement

scale by the percentage reduction of mx,T in s years; that is,

IS(x, s) =
mx,T+s

mx,T

. (3.21)

Then, combining equations (3.18) to (3.21), we have

ÎS(x, s) = exp(ŵxs), (3.22)

where ŵx = b̂xĉ. This expression means that the projection can be reduced from a two

dimensional array of numbers to a vector of parameters (ŵx’s).

We can use parametric bootstrapping to generate the empirical distribution of the

improvement scale. To obtain an algebraic expression of the interval forecast, we have

to make an additional assumption. Given that the uncertainty under an ARIMA(0,1,0)

process is increasing linearly with time and that the width of the interval forecast should

be close to zero at the forecast origin, we approximate the variance of the log of the

improvement scale by a straight line without intercept, illustrated in Figure 3.4. We

denote the slope of this line by vx. Then, an 95% point-wise confidence interval for the

improvement scale can be expressed as[
exp(ŵxs− 1.96

√
v̂xs), exp(ŵxs + 1.96

√
v̂xs)

]
. (3.23)

Note that v̂x has incorporated both parameter and stochastic uncertainty.
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Male

Female

Fig. 3.4. A linear approximation of the variance of the log of
the improvement scale obtained from a parametric bootstrap.
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3.4 Improvement Scales for the Insured Lives

Having obtained a mortality projection for the general population, we now proceed to the

third fitting stage of the joint model: relating the experiences of the general population

and insured lives by a parametric equation. As the relationship has to be reasonably stable

over time, it will be based on the ultimate experience (smoker status combined), which has

the largest exposure base and therefore is less vulnerable to abnormalities.

We firstly use a two-dimensional P-splines regression to graduate the experiences. This

allows us to examine the relationship between the experiences graphically and gives us

a smooth base table (given in the Appendix) on which the ultimate improvement scales

are to be applied. Figures 3.5 and 3.6 show that the experiences are closely related to

each other. It is interesting to note that contrary to common belief, the experience of the

insured lives is not necessarily better than that of the population. Also, the relationships,

for example, males at age 30, are not necessarily in the form of level shifts, indicating that

the experiences might be improving at different rates. This phenomenon should be allowed

for in the specification of the relational model.
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Age 16

Age 30

Fig. 3.5. Comparison of the insured lives and population
experiences at representative ages, male.



63

Age 50

Age 80

Fig. 3.5 (cont’d). Comparison of the insured lives and population
experiences at representative ages, male.
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Age 16

Age 30

Fig. 3.6. Comparison of the insured lives and population
experiences at representative ages, female.
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Age 50

Age 80

Fig. 3.6 (cont’d). Comparison of the insured lives and population
experiences at representative ages, female.
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Given the properties of the relationships, the Brass-type model (Brass, 1975) seems to

be appropriate for relating the mortality experiences of the general population and insured

lives. This model has been widely applied to situations where the required mortality data

are limited, deficient or even non-existent. For instance, the United Nations (1997) recom-

mended the use of the Brass-type model in relating the mortality of a specific population

to a mortality standard calibrated by the vital statistics of various low-mortality countries.

Also, Brouhns et al. (2002) used the Brass-type model to relate the experiences of the

Belgian annuitants and the whole Belgian population. The model can be expressed as

ln(m∗
x,t) = h1,x + h2,x ln(mx,t) + εx,t, (3.24)

where m∗
x,t is the central death rate of the ultimate insured lives experience, mx,t is the

central death rate of the general population (the reference population), h1,x and h2,x are

age-specific parameters, which are assumed to be invariant over time, and εx,t is the error

term, which is assumed to be normally distributed with mean zero and constant variance

σ2
ε,x.

In contrast to the practice of fitting parallel mortality surfaces (see, e.g., Currie et al.,

2004), the Brass-type model allows m∗
x,t and mx,t to vary at different rates and directions,

specified by parameter h2,x. Assuming that mx,t is decreasing over time, the effect of

parameter h2,x can be segregated into the following five cases:

1. h2,x > 1: the experience of the insured lives is improving faster than that of the

general population;

2. h2,x = 1: the experiences of the general population and insured lives are moving at

the same speed;

3. 0 < h2,x < 1: the experience of the insured lives is improving more slowly than that

of the population;

4. h2,x = 0: the insured lives experience shows no improvement;

5. h2,x < 0: the insured lives experience is deteriorating.
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The parameters in equation (3.24) can be estimated readily by the principle of least

squares. Figure 3.7 shows the estimates of h2,x. The variance of ĥ2,x is relatively high

when x is greater than 90, as both m∗
x,t and mx,t are more volatile at the extreme ages. For

example, for males, the variance of ĥ2,96 is 0.1054, giving an approximate 95% confidence

interval of [−0.9175, 0.3811] for ĥ2,96.

We observe that the estimates of h2,x for males are negative when x ≥ 94, indicating

that for males of age 93 and higher, the insured lives and general population mortality

experiences tend to change in different directions. Nevertheless, standard t-tests indicate

that these estimates are not significantly less than zero. Therefore, we replace them by

zero to avoid any anti-intuitive mortality projections.

Fig. 3.7. Estimates of parameter h2,x, male and female.

The relationship can be used to estimate ln(m∗
x,T+s) and ln(m∗

x,T ). Furthermore, by

differencing the estimates, we obtain

l̂n(m∗
x,T+s)− l̂n(m∗

x,T ) = ĥ2,x(l̂n(mx,T+s)− ln(mx,T )), (3.25)
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which gives

ÎS
∗
(x, s) = exp(ĥ2,x)ÎS(x, s), (3.26)

where ÎS
∗
(x, s) is the estimate of the improvement scale for the insured lives. Note that

parameter h1,x, which measures the amount of parallel shifts, is irrelevant to the scales.

Finally, recall that under the Lee-Carter,

ÎS(x, s) = exp(ŵxs), (3.27)

which can be combined with equation (3.26) to obtain

ÎS
∗
(x, s) = exp(ẑxs), (3.28)

where ẑx = ĥ2,xŵx. In other words, the mortality improvement of the insured lives can be

summarized by a single parameter vector (ẑx’s). Having smoothed out the bumps in the

crude estimates of zx by a B-splines regression, we obtain the improvement scales applicable

to the insured lives experience. The graduated estimates of zx are shown in Figure 3.8 and

are provided in the Appendix.

We now turn to the measure of uncertainty. Assuming that the model specified by

equation (3.24) is correct, the true value of IS∗(x, s) can be written as

ln(IS∗(x, s)) = (ĥ2,x + η2,x)(l̂n(IS(x, s)) + ιx,s) + εx,2001+s − εx,2001, (3.29)

where η2,x and ιx,s denote the error in estimating h2,x and ln(IS(x, s)), respectively. Hence,

the forecast error of the ln(IS∗(x, s)) can be expressed as

Ex,s = η2,x l̂n(IS(x, s)) + ιx,sĥ2,x + η2,xιx,s + εx,2001+s − εx,2001. (3.30)

Assuming independence between η2,x and ιx,s, and using the results in Section 3.3.3,

the variance of the forecast error can be written as

σ2
E,x,s ≈ σ2

η,2,x(ŵxs)
2 + (ĥ2

2,x + σ2
η,2,x)v̂xs + 2σ2

ε,x, (3.31)

where σ2
η,2,x is the error variance of ĥ2,x. We can easily estimate σ2

η,2,x by the principle of

least squares. By letting u1,x = 2σ2
ε,x, u2,x = (ĥ2

2,x + σ2
η,2,x)v̂x, and u3,x = σ2

η,2,xŵ
2
x, equation

(3.31) can be simplified further to

σ2
E,x,s = u1,x + u2,xs + u3,xs

2. (3.32)



69

Finally, on the basis of the above results, we have the following approximate 95%

point-wise confidence interval for the insured lives improvement scale:[
exp(ẑxs− 1.96

√
û1,x + û2,xs + û3,xs2), exp(ẑxs + 1.96

√
û1,x + û2,xs + û3,xs2)

]
. (3.33)

As before, we smooth the crude estimates of parameters u1,x, u2,x, and u3,x by B-splines

regressions. The graduated estimates of these parameters are shown in Figures 3.9 to 3.11,

and are provided in the Appendix.

At the younger ages, the value of u3,x is negligibly small. However, towards the advanced

ages, parameter σ2
η,2,x, the variance of ĥ2,x, becomes larger, resulting in parameter u3,x

no longer being negligible. Figures 3.12 and 3.13 compare the interval forecast of m∗
x,t

with and without the third term in equation (3.32). We observe that before age 80,

the third term has no material effect on the interval forecasts. Given this observation,

parameter u3,x for x < 80 may be excluded from the model for a more parsimonious model

specification. Nevertheless, beyond age 80, the third term contributes significantly to the

interval forecasts, particularly in the distant future. Therefore, for x ≥ 80, parameter u3,x

must be considered to avoid understating the uncertainty associated with the mortality

projection.

To illustrate the use of the scales, we consider the forecast of m80 (male, ultimate,

composite smoker/non-smoker) in 2021. From the Appendix, we get m80 = 0.063156 in

2001, z80 = −0.019931, u1,80 = 0.000924, u2,80 = 0.001597, and u3,80 = 6.23× 10−6. Hence,

the best estimate and the confidence interval of m80 in 2021 is 0.063156×exp(−0.019931×
20) = 0.042393 and 0.063156 × [0.464329, 0.970370] = [0.029325, 0.061265], respectively.

Note that the improvement scales we obtained are different from the older ones in that

those scales applied to qx’s instead of mx’s. In case the base table is given in terms of qx’s,

we may make use of the assumption of a constant force of mortality in fractional ages to

obtain forecasts of qx’s; that is,

qx,T+s = 1− (1− qx,T )ÎS
∗
(x,s). (3.34)

The corresponding interval forecast can be obtained by replacing ÎS
∗
(x, s) with the

upper and lower limits in expression (3.33).

To access the performance of the improvement scales, we conduct an ex post analysis in

which the joint model is fitted to the mortality data prior to year 1993; the forecast based
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on the restricted fitting period is compared with the actual experience from 1993 to 2001.

In addition, we compare our forecasts with those derived from the improvement scales

provided in (1) the Society of Actuaries Group Annuity Mortality Table (GAMT), (2) the

Society of Actuaries 2001 Valuation Basic Experience Table (VBT) and (3) the Institute

of Actuaries “92” Series Base Table. Figures 3.14 and 3.15 show all the comparisons.
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Male

Female

Fig. 3.8. Estimates of parameter zx, male and female.
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Male

Female

Fig. 3.9. Estimates of parameter u1,x, male and female.
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Male

Female

Fig. 3.10. Estimates of parameter u2,x, male and female.
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Male

Female

Fig. 3.11. Estimates of parameter u3,x, male and female.
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Age 30

Age 60

Fig. 3.12. Interval forecast of ln(mx,t) with and
without the third term in equation (3.32), male.
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Age 80

Age 90

Fig. 3.12 (cont’d). Interval forecast of ln(mx,t) with
and without the third term in equation (3.32), male.
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Age 30

Age 60

Fig. 3.12. Interval forecast of ln(mx,t) with
and without the third term in equation (3.32), female.
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Age 80

Age 90

Fig. 3.13 (cont’d). Interval forecast of ln(mx,t) with
and without the third term in equation (3.32), female.
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Age 16

Age 30

Fig. 3.14. Ex post analysis of the improvement scales, male.
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Age 60

Age 90

Fig. 3.14 (cont’d). Ex post analysis of the improvement scales, male.
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Age 16

Age 30

Fig. 3.15. Ex post analysis of the improvement scales, female.
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Age 60

Age 90

Fig. 3.15 (cont’d). Ex post analysis of the improvement scales, female.
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3.5 Further Considerations

3.5.1 The Effect of Duration

Recall that the insured lives experience is segregated by duration 1, 2,..., 15 and ultimate

(16+). Denote the central death rate, the number of deaths and the number of exposures-

to-risk at duration d by md
x,t, Dd

x,t and Ed
x,t, respectively. In this section, we aim to derive

a relationship between m16+
x,t and md

x,t , for d = 1, 2, ..., 15.

This problem has been considered by various researchers, for example, Currie and

Waters (1991), Panjer and Tan (1995), and Renshaw and Haberman (1997). We apply

Renshaw and Haberman’s methodology.

In contrast to the Lee-Carter assumptions, we assume here that Ex,t is random, but

Dd
x,t is not. Define a random variable Y d

x,t =
Ed

x,t

Dd
x,t

, and assume that E(Y d
x,t) = 1

md
x,t

and

Var(Y d
x,t) =

φ

 
1

md
x,t

!2

Dd
x,t

. This gives
(

1
md

x,t

)2

as the variance function, Dd
x,t as the prior weight

and φ as the scale parameter. Using the variance stabilizing transformation Qd
x,t = ln(Y d

x,t),

we have E(Qd
x,t) ≈ ln

(
1

md
x,t

)
and Var(Qd

x,t) ≈
φ

Dd
x,t

, which is free of E(Qd
x,t). This is

particularly useful in situations when there is a paucity of data. Denote the graduated

ultimate central death rates by m̃16+
x,t , and let Zd

x,t = Q16+
x,t −Qd

x,t. Then,

E(Zd
x,t) ≈ ln(md

x,t)− ln(m16+
x,t ), (3.35)

and

Var(Zd
x,t) ≈ φ

(
Dd

x,t + D16+
x,t

Dd
x,tD

16+
x,t

)
. (3.36)

Let vd
x,t = ln(md

x,t)− ln(m16+
x,t ). We estimate vd

x,t for each t and d by a linear predictor

with
Dd

x,t+D16+
x,t

Dd
x,tD

16+
x,t

as the prior weights. If the mortality selection process is effective, we shall

anticipate that v0
x,t ≤ v1

x,t ≤ ...v15
x,t ≤ 0 for fixed x and t.

In Figure 3.16 we observe that vd
x,t, the log of the select to ultimate mortality ratio,

fluctuates unsystematically for fixed t and d. This motivates us to use a linear predictor

in the form of v̂d
x,t = θ̂d

t .

The estimate of θd
t and its standard error can be computed readily by the principle of

weighted least squares. Analysis of residuals (not shown) supports the choice of this form
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of linear predictor. Finally, we carry out the following procedures to diagnose the behavior

of θd
t over time.

1. For each d, we sum Ed
x,t and Dd

x,t over t = 1982, 1983, ..., 2001. Using this summation,

we arrive at an authoritative value of θd
t . This value is denoted by θd and is assumed

to be invariant over time.

2. For each t, we estimate θd
t and its standard error. Then, we use the usual t-test to

test the null hypothesis: θd
t = θd. Rejection of the null hypothesis implies that θd

t

may be dependent on time.

The above is illustrated in Figure 3.17. For all d, the null hypothesis is not rejected,

suggesting that we may assume that θd
t is invariant over time.

Then, by equation (3.35), we have

m̂d
x,t = m̃16+

x,t exp(θd), (3.37)

for all x, t, and d. It follows that

ISd(x, s) = IS16+(x, s), (3.38)

where ISd(x, s) and IS16+(x, s) are the improvement scales for d = 0, 1, ..., 15, and the

ultimate duration, respectively. Equivalently, there is no strong evidence to support the

provision of separate scales for different durations.
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d = 6

d = 11

Fig. 3.16. Trends of vd
x,t over age for selected values of d, male, policy year 2001-2002.

The solid line represents the linear predictor θ̂d
t .
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d = 6

d = 11

Fig. 3.17. Trends of θ̂d
t over age for selected values of d, male, policy years 1982-1983 to

2001-2002. The solid line represents the linear predictor θ̂d.
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3.5.2 The Effect of Smoker Status

Parametric models have been used in modeling the relationship between the mortality of

different smoker statuses. For instance, in the graduation of Canadian individual insurance

mortality experience from 1986 to 1992, Panjer and Tan (1995) modeled the relationship

by an age-specific ratio, which is defined as follows:

qx = r(x)q∗x, (3.39)

where

r(x) = 1 + l1(105− x)l2xl3 , (3.40)

and l1, l2 and l3 are constants that are free of x. In this specification, r(x) tends to 1

at the youngest and highest ages and reaches a maximum at a certain intermediate age.

Also, r(x) is assumed to be the same for all durations. Graphical analyses suggest that

the model gives a good fit to Canadian individual insurance mortality experience.

If the linkage specified by equation (3.39) is persistent over time, then the same scale

can be applied to different smoker statuses, due to the cancellation of r(x)1. If any of

the parameters is time-varying, r(x) may not be canceled and separate scales for different

smoker statuses are required. Unfortunately, it is difficult to trend the parameters in

equation (3.39) due to the paucity of data: most of the data collected in the beginning of

the 1990s are of unknown smoker status; for example, in policy year 1992-1993, the number

of exposures-to-risk with identified smoker status accounts for no more than two percent

of the aggregate number of exposures-to-risk (see Table 3.3). Consequently, estimates of

parameters in the earlier years tend to be highly volatile, and may not be comparable

to the more recent ones, which are based on a much richer number of exposures-to-risk.

Therefore, the data available at this moment do not allow us to draw a conclusion on

the time-varying behavior of the parameters, and we shall revisit this problem when more

information is available.

1We assume that equation (3.39) is applicable to both qx and mx.
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Smoker Non-smoker Unclassified

Male

1992-1993 12,802 20,300 1,616,410

1996-1997 25,531 23,194 1,538,654

2001-2002 146,829 317,862 1,447,933

Female

1992-1993 1,617 10,057 663,043

1996-1997 21,869 8,482 775,397

2001-2002 111,637 220,350 830,030

Table 3.3. Number of exposures-to-risk segregated by
smoker status, ultimate, male and female.

3.6 Conclusion

In the first part of this chapter, we examined Canadian population mortality, using 81 years

of data up to 2001. We compared the P-splines regression with the Lee-Carter methodology.

We concluded that the P-splines regression was highly suitable for graduation, but less

useful for projecting future mortality due to an over-emphasis on the most recent mortality

trends.

However, the Lee-Carter method in its original form is very restrictive. We have adapted

it to allow for over-dispersion by using the negative binomial distribution in place of the

Poisson distribution. This was supported by the model diagnostics, and resulted in some-

what wider confidence intervals. Also, we performed an outlier analysis to explore shocks

and structural shifts in Canadian population mortality. The evidence for such shocks is

not very strong. However, there is a clear highly significant shock in the US data from the

1918 flu pandemic. To allow for the possibility of future epidemics, the detected outliers

were included in the bootstrap procedure for estimating the uncertainty in the mortality

projection.

On the basis of the Lee-Carter methodology, we proposed a mortality improvement

formula that is multiplicative in the central death rates, which is equivalent to saying it is
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exponential in the survival probabilities.

Finally, we discussed the selection effect, and concluded that there is no evidence to ap-

ply different improvement factors for different durations. We also considered smoker/non-

smoker issues, and explained why the data on smoker/non-smoker differential mortality is

far too sparse for any conclusions.



Chapter 4

Threshold Life Tables and Their

Applications

4.1 Introduction

Since World War II, mortality improvement in developed countries has largely been a

product of society’s extending life among the old rather than improving mortality among

the young. The steady improvement of old-age mortality has led to a rapid emergence

of supercentenarians. The number of supercentenarians in the International Database

of Longevity (IDL) has been increasing exponentially since the mid-1970s (Robine and

Vaupel, 2002). Although this tendency may be subject to an upward bias due to the

possible omission of earlier cases and unanticipated age exaggerations, the growth of the

supercentenarian population is indisputable, posing great challenges to actuaries as well as

planners of age-based entitlement programs.

From an actuarial viewpoint, the emergence of supercentenarians gives rise to so-called

low-frequency-high-severity (LFHS) losses in businesses concerned with life contingencies.

Prime examples include life annuity portfolios and defined-benefit (DB) pension plans in

which the loss severity is proportional to the lifetime of the annuitant or the pensioner.

Reverse mortgages are another example. Roughly speaking, a reverse mortgage is a loan

that enables senior homeowners to convert part of their equity in their home into a stable

income stream without having to sell their home or take on a new regular mortgage pay-

90
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ment. The loan is paid off by the proceeds of the sale of the property when the homeowner

either dies or moves out. In other words, a prolonged life time may result in a severe loss

due to the lengthened income stream and the reduced present value of the property.

A reliable model of old-age mortality is therefore crucial in the valuation of the these

and similar businesses. Unfortunately, problems associated with the available data make

the modeling difficult. Specifically, the number of deaths and exposures-to-risk dwindle

at the advanced ages, leading to tremendous sampling errors and highly volatile crude

death rates. It is also well known that ages at death are often misreported. Today’s

supercentenarians were of course born more than 100 years ago, when record-keeping was

not as exhaustive as it is today. Huge effort is required to validate their age at death

(see, e.g., Bernard and Vaupel, 1999; Bourbeau and Desjardins, 2002), and it is often

impossible to confirm or disprove the accuracy in the absence of documentary evidence.

Without reliable measurements of mortality at the advanced ages, actuaries sometimes

close life tables at an arbitrarily chosen age, say 100, by setting the probability of death

at that particular age as one. The effect of an early closure on the aggregate loss may

be insubstantial in terms of expectation, but certainly not in terms of variance and risk

measures as the odds of an extreme loss are largely determined by the tail of the assumed

survival distribution.

Recent developments in extreme value theory (EVT) may offer an attractive solution

to the problem. The major contribution of this study − the threshold life table − is a

systematic integration of the EVT to the parametric modeling of mortality. More specifi-

cally, we use the asymptotic distribution of the exceedances over a threshold to model the

survival distribution beyond a particular age, the threshold age, which is chosen to ensure

that the tail of the fitted distribution is consistent with the usual parametric graduation for

the earlier ages. This strategy allows us to rationally extrapolate the survival distribution

to the extreme ages without the need of mortality data of the supercentenarians, and to

statistically determine the appropriate end point of a life table.

The threshold life table is further extended to a dynamic version by using the Lee-

Carter model for stochastic mortality forecasting. This gives us a more comprehensive

picture of life contingencies: the dynamic version takes account of both mortality risk,

which arises from the randomness of the age at death, and longevity risk, which originates



92

from the uncertainty in the trend of mortality improvement. The dynamic threshold life

tables are finally utilized to study the joint impact of mortality and longevity risk on the

risk measures of a life annuity portfolio and on the highest attained age, commonly referred

to as omega in the actuarial literature.

The rest of the chapter is organized as follows: Section 2 defines the notation and

describes the data used throughout our discussion. Section 3 provides a brief review of

previous work on the modeling of old-age mortality. Section 4 defines the threshold life

table and details how the model parameters and the threshold age may be estimated.

Section 5 considers applications to risk measures and omega. Section 6 concludes.

4.2 Notation and Data

The following notation is used throughout this chapter:

• X : the age at death random variable, assumed to be continuous.

• f(x) : the probability density function of X;

• F (x) : the distribution function of X;

• s(x) = 1− F (x) : the survival function;

• µ(x) = f(x)/(1− F (x)) : the force of mortality;

• dx : the number of deaths between ages x and x + 1;

• Ex : the number of exposures-to-risk between ages x and x + 1; in practice, Ex is

approximated by the mid-year population at age x;

• lx : the number of survivors to age x;

• mx = dx/Ex : the central rate of death at age x;

• qx = dx/lx : the probability of death between ages x and x + 1, conditioning on

survival to age x.
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The subscript t may be appended to dx, Ex, lx, mx and qx when they are considered

to be varying with time; for example, mx,t refers to the central rate of death at age x in

calender year t. For detailed interpretations of the above notation, we refer readers to

Chapter 3 of Bowers et al. (1997).

Crude data should be preferred over abridged rates in modeling old-age mortality.

Although raw death counts for the Canadians are quite exhaustive, raw census population

counts for Canadians are right-censored at age 90; that is, the coverage of raw census

population counts by single year of age ceases at age 89. According to the Human Mortality

Database documentation (Wilmoth et al., 2005), most of the unknown population counts

beyond age 89 are estimated by using the extinct cohort method. With this method, the

population size, P (x, t), for a cohort at age x last birthday at the beginning of year t is

estimated by summing all future deaths for the cohort. Mathematically,

P (x, t) =
ω−x−1∑

i=0

[DU(x + i, t + i) + DL(x + i + 1, t + i)] , (4.1)

where DL(x, t) is the number of lower-triangle deaths recorded among those aged [x, x+1)

in year t, DU(x, t) is the number of upper-triangle deaths recorded among those age [x, x+1)

in year t, and ω is the assumed limiting age of the cohort. Figure 4.1 illustrates the extinct

cohort method: P (ω − 1, t) is the sum of the death counts in triangles 1 and 2, while

P (ω − 2, t− 1) is the sum of the death counts in triangles 1 to 4.

While the contaminated data have a relatively smaller impact on the application of

the Lee-Carter model, the impact on the analysis of the highest attained age and the

pattern of extreme-age mortality can be significant. Also, as the extinct cohort method

requires an assumption about the limiting age, the appropriateness of using the data derived

by the extinct cohort method to predict the highest attained age is highly questionable.

Therefore, instead of the Canadian population, we apply the theoretical results in this

chapter to populations where mortality data are more complete. Specifically, we consider

Japan and the Scandinavian countries, that is, Denmark, Finland, Norway and Sweden.

For these countries, raw death and population counts by single year of age are available up

to and including age 99. The required data for this chapter are obtained from the Human

Mortality Database (2005).
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Fig. 4.1. Illustration of the extinct cohorts method via a Lexis diagram.

4.3 Previous Research on Modeling Old-age Mortal-

ity

Over the past few decades, actuaries and demographers have suggested various methods

to model old-age mortality. We summarize below those that are commonly used.

4.3.1 Cubic Polynomial Extrapolation

In analyzing Canadian individual insurance mortality experience, Panjer and Russo (1992)

and Panjer and Tan (1995) used a cubic polynomial to extrapolate the survival distribution

beyond age 100. The estimation consists of three stages.
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In stage one, graduated death probabilities, denoted by qgrad
x , were obtained by the

Whittaker-Henderson method (see London, 1985). In stage two, Makeham’s Second Law

was fitted to the graduated mortality rates by minimizing the weighted least squares equa-

tion,

WLS =
99∑

x=z

Ex(µ
grad
x − a− bx− cdx)2, (4.2)

subject to the constraint that µgrad
z = a − bz − cdz, where µgrad

z = − ln(1 − qgrad
x ), and

z equals 40 and 44 for males and females, respectively. In the final stage, the mortality

function beyond age 99 was assumed to follow a cubic polynomial of the form:

qgrad
x+99 = ax3 + bx2 + cx + d, (4.3)

where x ≥ 99. The parameters of the function can be derived using the following con-

straints: qpoly
99 = qgrad

99 , q
′poly
99 = q

′grad
99 , q

′′poly
99 = q

′′grad
99 and qpoly

105 = 1.

4.3.2 The Heligman-Pollard Model

Heligman and Pollard (1980) proposed the following eight-parameter formula to describe

the mortality for the entire life-span:
qx

1− qx

= A(x+B)C

+ D exp(−E(ln x− ln F )2) + GHx, (4.4)

where A(x+B)C
, D exp(−E(ln x − ln F )2), and GHx represent early childhood mortality,

accidental mortality and senescent mortality, respectively. In addition, the component

GHx may be interpreted as the discrete version of the Gompertz law of mortality.

While the estimation of model parameters can be performed easily by minimizing the

weighted sum of squared errors, formulated in a similar manner as equation (4.2), there

is strong empirical evidence that old-age mortality is not Gompertzian (see, e.g., Olshan-

sky, 1997). Hence, the Heligman-Pollard model may not be ideal for describing old-age

mortality.

4.3.3 The Coale-Kisker Method

The Coale-Kisker method (Coale and Guo, 1989; Coale and Kisker, 1990) has been widely

applied to the mortality data of various developed countries. This method assumes that
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mortality rates increase at a varying rate instead of a constant rate as the Gompertz curve

assumes. Let us suppose that we begin the Coale-Kisker extrapolation at age 85. We

define

k(x) = k(x− 1)−R, x ≥ 84, (4.5)

where k(x) = ln( mx

mx−1
) and R is a constant. Extending the formula up to x = 110 and

summing, we have

k(85) + ... + k(110) = 26k(84)− (1 + 2 + ... + 26)R. (4.6)

Solving for R, we obtain

R =
26k(84) + ln(m84)− ln(m110)

351
. (4.7)

To determine R, Coale and Kisker (1990) assumed that m110 = 1.0 for males, based on

the fact that there are almost no survivors at age greater than 110. They also assumed that

m110 = 0.8 for females so as to avoid imposing a crossover of male and female mortality at

age 110.

4.3.4 The Relational Model of Mortality

The relational model (Himes et al., 1994) consists of a “standard” life table − for ages 45

to 99 − calibrated from 82 different mortality schedules observed in several low-mortality

countries. The “standard” is made useful at higher ages by fitting a straight line to the

logits of the death rates from age 80:

logit(ms
x) = α + βx, (4.8)

where logit(ms
x) = ln

(
ms

x

1−ms
x

)
, and ms

x denotes the “standard” central rate of death at age

x. Equation (4.8) can be used to produce the “standard” death rates for ages 100 and

beyond.

Then we can extrapolate any life table by relating it to the extended “standard” sched-

ule through a logit regression:

logit(mx) = δ + γlogit(ms
x), (4.9)

where δ and γ are the regression coefficients, and mx’s are the central death rates in the

life table that we intend to extrapolate.
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4.4 The Threshold Life Table

We begin with an exploratory graphical analysis of a typical pattern of the central rate

of death. Figure 4.2 indicates that the rate of increase after age 85 is much more rapid

than before. The modeling of the age pattern of mortality is usually done in a piece-

wise approach. First, a parametric graduation is applied to the death rates at earlier

ages to smooth out irregularities and to obtain a summary of the age pattern by a few

parameters. Then the graduated rates are extrapolated to the advanced ages, perhaps

by using one of the four methodologies we reviewed in the last section. These methods,

however, require an assumption on either the age at which the life table is closed (the

cubic polynomial extrapolation and the Coale-Kisker method), or the trajectory of old-

age mortality, without any scientific justification (the relational model and the Heligman-

Pollard model). Furthermore, all these methods demand a subjective decision on the age

at which the extrapolation begins.

Fig. 4.2. Central rate of death from age 65,
the Japanese population mortality experience, 2003.
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The threshold life table is also a piece-wise approach. It retains the parametric grad-

uation for smoothing death rates at earlier ages, but the mathematical extrapolation is

replaced by a statistical distribution, justified by the EVT. The fitted statistical distribu-

tion determines the appropriate end point of the life table, if any. Moreover, the age at

which the modeling switches from parametric graduation to extreme value distribution can

be chosen in a statistical way without the need of any subjective decision.

Let Z = Y − d|Y > d be the conditional exceedances over the threshold d. The

Balkema-de Haan-Pickands Theorem (Balkema and de Haan, 1994) states that, under

some regulatory conditions, the limiting distribution of Z is a generalized Pareto (GP) as

d approaches the right-hand end support of Y . This important result in EVT provides a

theoretical justification of the threshold life table, which is defined as follows:

for x ≤ N ,

F (x) = 1− exp

(
− B

ln C
(Cx − 1)

)
; (4.10)

for x > N ,

F (x) = 1− p

(
1 + γ

(
x−N

θ

))−1/γ

, (4.11)

where p = F (N) and N is known as the threshold age. In other words, we assume that the

survival distribution is Gompertzian before the threshold age, and the exceedances over

the threshold age follow a generalized Pareto distribution, according to the Balkema-de

Haan-Pickands Theorem. To ensure that F is a proper distribution function, we require

B > 0, C > 0, and θ > 0. It is noteworthy that such a construction guarantees that F

is continuous at the threshold age, but that the smoothness of F (x) during the transition

requires a careful choice of the threshold age.

The usual Hill’s plot (Hill, 1975; Mason, 1982) is not applicable in the selection of the

threshold age, due partly to the fact that the mortality data is highly censored, as we

know only the number of deaths in different age intervals but not the precise age at death

for each individual. Hill’s estimator is however not designed for censored data. Moreover,

the use of Hill’s plot requires eyeballing and this is infeasible in the simulation studies we

are going to conduct in later sections. Finally, Hill’s plot focuses only on the tail of the

distribution, and this contradicts our objective of producing a model suitable for the entire

life-span.
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We propose two methods of choosing the threshold age. In both, the threshold age

is chosen in the process of parameter estimation to ensure that the tail (the generalized

Pareto part) and the body (the Gompertz part) are consistent with each other. In the

following discussion, we assume that the coverage of the mortality data reaches the open

age group 100 and above, and that the mortality data from age 65 are used.

• Method 1: maximum likelihood estimation

The likelihood function for the threshold life table can be written as

L(B, C, γ, θ; N) =
99∏

x=65

(
s(x)− s(x + 1)

s(65)

)dx
(

s(100)

s(65)

)l100

. (4.12)

For age x = 65, ..., 99, the data are interval-censored, which means the contribution

to the likelihood function is s(x)− s(x+1) per individual. Similarly, for age 100, the

data are right-censored, which gives s(100) as the contribution per individual. Each

term in equation (4.12) is divided by s(65) to acknowledge the left-truncation at age

65. We can easily show that the logarithm of equation (4.12) can be decomposed as

the sum of two components, l1(B, C; N) + l2(γ, θ; N), where

l1(B, C; N) =
N−1∑
x=65

dx ln[s(x)− s(x + 1)] + lN ln[s(N)]− l65 ln[s(65)], (4.13)

where s(x) = exp
( −B

ln C
(Cx − 1)

)
, and

l2(γ, θ; N) =
99∑

x=N

dx ln

[
s(x)

s(N)
− s(x + 1)

s(N)

]
+ l100 ln

[
s(100)

s(N)

]
, (4.14)

where s(x)
s(N)

=
(
1 + γ

(
x−N

θ

))−1/γ
.

This observation suggests that for fixed N , parameter estimation for the Gompertz

part and the generalized Pareto part can be done separately by maximizing l1 and

l2, respectively. The choice of N relies on the maximization of the profile likelihood:

lp(N) = l
(
B̂(N), Ĉ(N), γ̂(N), θ̂(N); N

)
, (4.15)
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where l = ln(L); B̂(N),Ĉ(N),γ̂(N) and θ̂(N) are the maximum likelihood estimates

of B, C, γ and θ for fixed N , respectively. The process of threshold age and model

parameter estimation can be summarized by the following algorithm:

1. For N = 98,

(a) find the values of B and C that maximize l1;

(b) find the values of γ and θ that maximize l2;

(c) compute the value of the profile likelihood, lp.

2. Repeat Step (1) for N = 97, 96, ..., 85.

3. Find the value of N that gives the maximum profile log-likelihood.

The value of N obtained in step (3) is the optimal threshold age. The maximum

likelihood estimates of B, C, γ and θ under the optimal threshold age are the ultimate

model parameter estimates.

In fitting the threshold life table to period (static) mortality experience, the required

dx’s and lx’s can be computed by constructing a hypothetical cohort based on the

static qx’s. Let us assume an arbitrary number, say 100,000, for the size of radix (l0).

Then dx and lx can be computed by the following recursive relations: dx = lxqx and

lx+1 = lx−dx. We can easily show that the ML parameter estimates are independent

of the size of the radix chosen.

• Method 2: weighted least squares estimation

If the mortality data are given in terms of mx’s, then the method of weighted least

squares can be readily applied. Let us rewrite the threshold life table in terms of the

force of mortality:

for x ≤ N ,

ln(µ(x)) = ln(B) + (ln C)x; (4.16)

for x > N ,

ln(µ(x)) = − ln(θ)− ln

[
1 + γ

(
x−N

θ

)]
. (4.17)
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Under the assumption of a constant force of mortality for fractional ages, mx may be

considered the best estimate of µ(x). This relation suggests that we may estimate the

model parameters by minimizing the sum of squared errors, SSE, defined as follows:

SSE = SSE1 + SSE2, (4.18)

where

SSE1 =
N−1∑
x=65

Ex [ln(mx)− ln(B)− (ln(C))x]2 , (4.19)

and

SSE2 =
99∑

x=N

Ex

[
ln(mx) + ln(θ) + ln

(
1 + γ

(
x−N

θ

))]2

. (4.20)

The squared errors are weighted by the number of exposures-to-risk to allow for a

better fit for ages with larger risk exposures1. Similar to Method 1, the parameters

in the Gompertz part and the generalized Pareto part can be estimated separately

given a fixed value of N . The estimation process can be summarized by the following

algorithm:

1. For N = 98,

(a) find the values of B and C that minimize SSE1;

(b) find the values of γ and θ that minimize SSE2;

(c) compute the value of the total sum of squared errors, SSE.

2. Repeat Step (1) for N = 97, 96, ..., 85.

3. Find the value of N that gives the minimum SSE.

The value of N obtained in step (3) is the optimal threshold age, and the estimates

of B, C, γ, and θ under the optimal threshold age are the ultimate model parameter

estimates.

1An equal weight of 1 yields a similar result.
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Figure 4.3 depicts the fitted threshold life tables for the 1897 birth cohort in Japan

and the Scandinavian countries. Although the model specification does not guarantee

smoothness at the threshold age, we observe that the body and tail of the fitted distribution

join with each other smoothly. This effect is because the proposed methods of threshold

age and model parameter estimation emphasize the overall goodness-of-fit. We also observe

an excellent fit over the entire life span. Beyond the threshold age, the death probability

extends progressively to 1 at the end point of the life table, which is determined statistically

by the fitted distribution. Detailed discussion on the end point is deferred to the later

section that deals with the prediction of the highest attained age.

Japan, N = 93

Fig. 4.3. Fitted threshold life tables for the 1897 birth
cohort in Japan and the Scandinavian countries.
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Denmark, N = 92

Finland, N = 92

Fig. 4.3 (cont’d). Fitted threshold life tables for the 1897 birth
cohort in Japan and the Scandinavian countries.
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Norway, N = 93

Sweden, N = 95

Fig. 4.3 (cont’d). Fitted threshold life tables for the 1897 birth
cohort in Japan and the Scandinavian countries.
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4.5 Applications

4.5.1 Risk Measures

We consider a simple portfolio of a single premium life annuity with unit annual benefit

sold to a life-aged-65 in 2003. Valuations are based on the following assumptions:

1. mortality follows the Japanese population experience;

2. the interest rate is fixed at 5% per annum effective;

3. there is only one premium (the net single premium) payable at age 65;

4. no allowance is made for profit and expense.

We evaluate the present value random variable by four different methods. The first

two consider mortality risk only and the other two take account of both mortality and

longevity risk.

• Method 1

We use the static death rates in year 2003 and close the life table at age 100; that

is, we assume that q100 = 1. To simulate the age at death (curtate future life time,

K(65)), we generate z from the Uniform (0,1) distribution; then we can obtain the

simulated age at death by the following equation:

K(65) = sup

{
y :

y∏
x=65

(1− qx) > z

}
, (4.21)

where qx is the death probability from the static survival distribution. The present

value of the portfolio can be expressed as

PV =
1− 1.05−(K(65)+1)

0.05/1.05
. (4.22)

We repeat the simulation 10,000 times to obtain an empirical loss distribution from

which the mean, variance, value-at-risk (VaR) and conditional tail expectation (CTE)

of the loss are calculated.
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• Method 2

We use the static death rates in year 2003, and model these death rates by a threshold

life table, which extends the rates to the extreme ages. The evaluation of the loss is

similar to that in Method 1 except that the qx’s in equation (4.21) are replaced by

those obtained from the fitted threshold life table.

• Method 3

We use the cohort death rates for the cohort born in 1938 (aged 65 in 2003). To

take longevity risk into account, we simulate 10,000 Lee-Carter mortality scenarios,

based the historical mortality data from 1950 to 2003, by the parametric bootstrap-

ping method mentioned in Chapter 2. For each of these scenarios, we compute the

projected cohort death rates: q65,2003, ..., q99,2037. Here, we do not extrapolate the

rates and assume that q100,2038 = 1. Given the projected cohort death rates in each

mortality scenario, we generate an empirical loss distribution from which we derive

the risk measures for the loss.

• Method 4

We model the cohort death rates in Method 3 by a threshold life table, which extrap-

olates the rates up to a certain extreme age. The generation of the required empirical

loss distribution is based on the extended cohort death rates.

Figure 4.4 provides a graphical illustration of the above four methods. In Table 4.1, we

observe that different methods yield significantly different risk measures. The difference

between the risk measures obtained by Methods 1 and 2 indicates that the consideration

of extreme-age mortality has revealed a large part of variability that is neglected if the life

table is closed too early. The comparison between Methods 3 and 4 suggests that the effect

of extreme-age mortality is amplified by the uncertainty about future mortality.

It is noteworthy that if the number of contracts in the portfolio is sufficiently large, the

variance of the loss per contract will tend to zero in Methods 1 and 2 but not in Methods

3 and 4, since Methods 3 and 4 have taken account of the non-diversifiable longevity risk.
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Fig. 4.4. Distinction between the four methods of valuation.

Mean Variance 95% VaR 95% CTE

Method 1 -0.0316 36.777 8.3301 8.7125

Method 2 -0.0112 40.950 8.7809 10.014

Method 3 -0.0749 40.190 8.7228 10.228

Method 4 0.0533 43.114 9.0421 11.532

Table 4.1. Estimated mean, variance, 95% VaR
and 95% CTE of the loss using different methods.

4.5.2 The Highest Attained Age

Suppose that n members of a birth cohort survive to age x0; then, when all these n

members have died, there will be a highest value, say Mn, among their ages at death; and

prior to realization, Mn can be regarded as a random variable with a certain probability

distribution.
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Rigorous statistical modeling of the highest attained age (omega) was pioneered by

Thatcher (1999), who predicted omegas for several cohorts using the classical extreme

value theory. At the outset, Thatcher assumed that the age-at-death random variable

follows a three-parameter logistic distribution:

µ(x) =
α exp(βx)

1 + α exp(βx)
+ γ. (4.23)

According to classical extreme value theory, the distribution function of the highest at-

tained age, Mn, can be expressed as

FMn(x) =

{
1− exp

(
−
∫ x

x0

µ(t)dt

)}n

. (4.24)

Combining equations (4.23) and (4.24), Thatcher obtained the following closed form ex-

pression for the distribution function of Mn:

FMn(x) =

[
1− exp

(
γ(x0 − x) + β−1 ln

(
1 + α exp(βx0)

1 + α exp(βx)

))]n

. (4.25)

The choice of x0 is arbitrary, and n can be approximated by the mid-year population

estimate for the cohort at age x0.

Li and Chan (2007) extended the work of Thatcher (1999) by considering the impact of

mortality improvement on the highest attained age. First, they extrapolated the historical

period death rates to age 150 by the relational model proposed by Himes et al. (1994).

Given this matrix of extrapolated death rates, they obtained a Lee-Carter mortality projec-

tion from which cohort life tables for different birth cohorts were computed. Finally, they

derived the distribution function of omega for each cohort using classical extreme value

theory. The model they used is identical to that specified by equation (4.24). However, the

distribution function of Mn must be calculated numerically as the extrapolation of death

rates was performed in a non-parametric manner.

Similar to our proposed methodology, Han (2005) modeled the exceedance Z = X −
N |X > N over the threshold age N by a generalized Pareto distribution. Han fitted

generalized Pareto distributions to period life tables for the United States population from

1901 to 1999, resulting in a trend of estimated omega. This trend was further modeled by a

linear regression from which omegas in the future may be obtained. Han’s method, however,
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merits re-consideration for a number of reasons. First, the threshold ages were chosen in

a completely arbitrary manner, leading to possible inconsistency with the age-pattern at

earlier ages. Second, the application to historical period life tables is inappropriate since

the highest attained age makes sense only if it is referenced to a particular birth cohort.

Third, the use of a linear regression in the prediction of future omegas has totally ignored

the impact of future changes in the age-pattern of mortality on the highest attained age.

Watts et al. (2006) modeled the highest attained age directly by using the Generalized

Extreme Value (GEV) distribution:

FMn(x) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
}

, (4.26)

where µ is the location parameter, σ is the scale parameter, and ξ is the shape parameter.

The GEV distribution was fitted to the ten highest ages at death in each year from 1980

to 2000. To acknowledge the fact that mortality data are not time homogeneous, they

assumed that µ and the logarithm of σ were linear functions of time, leading to the following

likelihood function:

L =
2000∏

t=1980

exp

−
[
1 + ξ

(
z

(10)
t − µ(t)

σ(t)

)]−1/ξ


10∏
k=1

σ(t)−1

[
1 + ξ

(
z

(k)
t − µ(t)

σ(t)

)]−1/ξ−1
 , (4.27)

where z
(k)
t is the kth largest age at death in year t, µ(t) = µ0+µ1t, and σ(t) = exp(σ0+σ1t).

Model parameters were estimated by maximizing L. The distribution of Mn in year s

were obtained by substituting µ and σ in equation (4.26) by µ(s) and σ(s) respectively.

Problems associated with this method include: (1) the assumption of linearity in the

location parameter implicitly preset a linear trajectory of omega; (2) this direct approach

requires precise data about the highest age at death, which is heavily subject to the problem

of misreporting − it was shown that the right-hand-end support of the distribution of Mn

would change from infinite to finite upon removal of an outlier.

Recall that in the threshold life table, the exceedance Y = X − N |X > N over the
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threshold age N is assumed to follow a generalized Pareto distribution:

FY (y) = 1−
(
1 + γ

y

θ

)−1/γ

, (4.28)

where y > 0. The value of γ determines the precise type of distribution. If γ > 0, then

Y follows a Pareto distribution; if γ = 0, then Y follows an exponential distribution; if

γ < 0, then Y follows a beta distribution, which has a finite right-hand-end support, given

by −θ/γ. Equivalently speaking, when parameter γ is significantly less than zero (which

is experienced when threshold life tables are fitted to the mortality rates for various birth

cohorts), the theoretical end point of the threshold life table is N − θ/γ, which is strictly

greater than N since θ > 0 and γ < 0.

We let Yi, i = 1, 2, ..., n, be a sequence of exceedances over the threshold age and

assume that Yi follows the generalized Pareto distribution specified by equation (4.28)

independently. Also, we define Mn = max{Yi, i = 1, 2, ..., n}. If γ < 0, then the distribution

function of Mn can be expressed as

FMn(y) =


0, y < 0

[FY (y)]n, 0 ≤ y < −θ/γ.

1, y ≥ −θ/γ

(4.29)

If follows that when n tends to infinity, the distribution of Mn degenerates at −θ/γ.

Mathematically,

lim
n→∞

FMn(y) =

{
0, y < −θ/γ

1, y ≥ −θ/γ.
(4.30)

In other words, if the number of survivors (n) at the threshold age is sufficiently large,

the highest attainable age of these survivors (and hence all members of the cohort) con-

verges (in probability) to ω = N − θ
γ
, the theoretical end point of the threshold life table.

Note that the variability in the estimate of ω is inherited from those in the estimates

of θ and γ. Hence, the asymptotic variance of ω̂, the estimate of ω, can be computed by

using the delta method:

Var(ω̂) =
[

∂ω
∂γ

∂ω
∂θ

]
[I(γ, θ)]−1

[
∂ω
∂γ
∂ω
∂θ

]
, (4.31)
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where I(γ, θ) is the information matrix in estimating γ and θ. Assuming normality holds,

the approximate 95% confidence interval for ω can be written as[
ω̂ − 1.96

√
Var(ω̂), ω̂ + 1.96

√
Var(ω̂)

]
. (4.32)

Table 4.2 shows the predicted omegas for the 1897 birth cohort in Japan and the

Scandinavian countries.

To predict the omegas for cohorts born in later years, we require an estimate of future

death rates; for example, the prediction of omega for the cohort born in 1931 requires

q65,1996, q66,1997, ..., q99,2020. The values of q65,1996,..., q72,2003 can be obtained from the

data provided by the Human Mortality Database, while those of q73,2004, ..., q99,2020 may

be derived from a Lee-Carter mortality projection, based on the historical death rates.

An accurate projection of senescent mortality requires a sufficiently lengthy time-series of

exhaustive and uncontaminated mortality data. However, the data for the Scandinavian

countries do not satisfy these criteria; for instance, the raw population counts for Denmark

are right-censored at age 90 prior to year 1975. We shall therefore examine the impact of

the year of birth on the highest attained age for Japanese population only.

On the basis of the historical mortality experience of the Japanese population from

1950 to 2003, we obtain a Lee-Carter mortality projection from which cohort life tables

for years of birth 1901 to 1941 are derived. Then for each birth cohort, we model the

death probabilities by a threshold life table whose end point is the predicted omega for

that particular cohort. Finally, we compute the confidence intervals for the omegas using

equations (4.31) and (4.32). Figure 4.5 graphically illustrates our methodology.

Table 4.3 shows the predicted omegas for selected birth cohorts. Moving down the

column, we observe that the improvement of mortality has a positive effect on the highest

attained age. Over the period of analysis, the average increase in the predicted highest

attained age is approximately 0.15 years per annum. Also, we observe that the width of

the confidence interval increases with the year of birth. This trend is because the continual

mortality improvement allows more people to survive to the open age group, leading to

more uncertainty about the tail of the survival distribution.

We can further incorporate the uncertainty in mortality improvement into the proba-

bility distribution of omega by the following algorithm:
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1. Generate N mortality scenarios by a parametric bootstrap (see Chapter 2).

2. For each scenario:

(a) derive the cohort death rates for the birth cohort in which we are interested;

(b) estimate the omega of the cohort by fitting a threshold life table to the cohort

death rates.

3. Obtain an empirical distribution of omega for the birth cohort.

Table 4.4 compares the predicted omega for the cohort born in 1941 with and without

considering the uncertainty in mortality improvement. While the best estimates are similar,

the standard error is significantly larger if the uncertainty about future mortality is taken

into account. Note that the confidence intervals are obtained by different methods: the one

without considering the uncertainty in mortality improvement is based on the asymptotic

normality of the maximum likelihood estimates, while the other one is obtained from the

percentiles of the empirical distribution, which is permitted to be skewed.

Country Predicted omega

Japan 112.4605 (108.7544, 116.1580)

Denmark 108.2390 (106.1907, 110.2871)

Finland 109.0127 (106.4956, 111.5297)

Norway 112.5596 (109.1448, 115.9747)

Sweden 111.9840 (106.9487, 117.0193)

Table 4.2. Predicted omegas for the 1897 birth
cohort in Japan and the Scandinavian countries.
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Fig. 4.5. Graphical illustration of the methodology used in predicting
omegas for various cohorts of the Japanese population.

Year of birth Attained age in year 2006 Predicted omega

1901 105 113.4477 (109.4321, 115.3740)

1911 95 114.6435 (109.0398, 120.1731)

1921 85 115.0247 (107.8065, 122.2430)

1931 75 119.9964 (110.0398, 132.1508)

1941 65 121.0953 (107.0769, 132.9158)

Table 4.3. Predicted omegas for various cohorts of the Japanese population.
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Uncertainty in mortality improvement No Yes

The best estimate 121.0953 119.4668

Standard error 6.0309 15.7407

95% confidence interval (107.0769, 132.9158) (108.5603, 170.0000)

Table 4.4. Predicted omega for the cohort born in year 1941, Japanese population,
with and without considering the uncertainty in mortality improvement.

4.6 Conclusion

The tail behavior of the survival function has long been a controversial issue. There are

three schools of thought on the subject. The first one argues that qx may reach one at a

finite age (e.g., Vincent, 1951). The second belief is that qx may tend to 1 asymptotically

as age increases (e.g., Gompertz, 1825; Heligman and Pollard, 1980). And the third view

suggests that qx may converge to a limit which is strictly less than 1 as age increases (e.g.,

Thatcher , 1999). In fact, these three possibilities are provided for in our model. In the

threshold life table, the form of the tail is determined by the model parameters, and hence,

the data. We have demonstrated that if γ < 0, then qx = 1 when x = N − θ/γ. We can

also easily show that if γ > 0, then qx tends asymptotically to 1, and that if γ = 0, then

the tail is exponential, implying that qx tends to a limit that is less than 1.

Although mortality data among the oldest-old are crucial to the analysis of the highest

attained age, the question on how much we should rely on the crude data remains open.

Unverified ages at death obtained from government agencies are often exaggerated, leading

to a positive bias and possibly an unwanted kurtosis in the predicted distribution of the

highest attained age. Watts et al. (2006) provided an excellent illustration. On the

other hand, the use of verified mortality data is not an alternative, as the number of

validated supercentenarians in Japan is too scanty for statistical inferences of any kind2.

Until sufficient validated data among the oldest-old are available, a minimal extrapolation,

either mathematical or statistical, is apparently the only feasible solution.

2See Robine and Vaupel (2002) for the number of verified supercentenarians in different countries.
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The accuracy of the predicted omegas is highly dependent on the validity of the as-

sumptions used. The predicted omegas in this study would tend to be accurate if the

underlying survival distribution belongs to the peaks-over-threshold domain of attraction3.

Similarly, the omegas predicted by Li and Chan (2007), for example, would tend to be accu-

rate if the relational model (see Section 4.3.4) they used is appropriate. These conditions,

unfortunately, can never be verified.

Finally, readers should be cautious about the model risk entailed in the analysis. The

Lee-Carter mortality forecast relies on the long-term stability of the mortality index, which

is highly aggregated. Consequently, the model could have smoothed out the unusually rapid

decline of old age mortality rates since the 1970s, and this would likely affect the forecast

of the highest attained age.

3A distribution function F belongs to the peaks-over-threshold domain of attraction if and only if
nF̄ (anx + bn) → − ln(W (x)) as n → ∞, for all x, where W is the distribution function of a generalized
Pareto random variable, for some sequence of real numbers {an} and {bn} (see Embrechts et al., 1997).
This assumption is not overly restrictive and is satisfied by many commonly encountered distributions
including normal, lognormal, gamma, Pareto, Gompertz and Weibull (see Zelterman, 1993).



Chapter 5

On Pricing and Hedging the

No-Negative-Equity-Guarantee in

Equity Release Mechanisms

5.1 Introduction

In the World Bank Report on Averting the Old Age Crisis (The World Bank, 1994), it

is suggested that financial security for the old should be based on three pillars. These

are (1) a publicly managed system with mandatory participation and the limited goal of

reducing poverty among the old, (2) a privately managed mandatory savings system, and

(3) a voluntary savings system. Working together, these three pillars would ensure against

the many risks of old age.

In the United Kingdom, issues with an increasing dependency ratio have resulted in

government policies being formulated to reduce the proportion of pension provided by the

public sector. The state pension reforms proposed in the White Paper “Personal accounts:

a new way to save” will promote a reduced reliance on pension credit and ensure that the

pension credit is targeted towards those who need it (Department for Work and Pension,

2006). On the other hand, defined benefit schemes are in decline, with many being closed

to new entrants and even new contributions. Also, levels of contributions from employers

tend to fall when they move to other schemes. The weakening of the first two pillars

116
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means that the general population will have to make material increases to their private

savings if they are to achieve the same level of retirement income. Nevertheless, there is

a strong inertia towards saving for retirement. Independent research commissioned by the

Association of British Insurers showed that Britain has an annual aggregate savings gap

of approximately £27 billion. This represents the difference between what people should

be saving to fund a reasonable retirement and what they are actually saving.

For many people, the savings gap could be bridged by participating in home equity

release mechanisms (ERMs), which enables a householder to draw down part of the eq-

uity in the house. Such mechanisms are particularly helpful to the so-called “asset-rich,

cash-poor” pensioners who receive low incomes but own homes of fairly substantial value.

Sodha (2005) estimated that in Britain, of those who were retired, 10.2 percent had an

income below the “Modest but Adequate” standard (£157 per week before housing costs),

but owned more than £100,000 of housing wealth. The UK equity release market has been

expanding rapidly since the early 1990s. It is now at the level of £1.1 billion new loans per

annum, which is five times what it was five years ago. The potential for further growth is

justified by the massive property wealth owned by pensioners. The aggregate unmortgaged

property wealth owned by the 65+ age group is around £1,100 billion (Institute of Actuar-

ies, 2005a). An extensive study conducted by the Institute of Actuaries (ibid.) concluded

that the UK equity release market could grow several times its current size over the next

few years if the large mortgage providers enter the market. We expect equity release to

become a core financial product, and an integral part of retirement provision for many.

Among various types of equity release products, fixed interest lifetime mortgages, or

roll-up mortgages, are the most popular in the market today. Under a roll-up mortgage,

the borrower is advanced a lump sum of money by the provider, and interest on the

amount advanced is compounded at a fixed rate. The capital and interest are repaid

from the property sale proceeds when the borrower dies, sells the house, or moves out of

the house permanently. Of course, given that the value of the property when the loan is

repaid is uncertain, shortfall in the home sales proceeds relative to the mortgage repayable

is possible. However, most roll-up mortgages are equipped with a no-negative-equity-

guarantee (NNEG) which protects the borrower by capping the redemption amount of the

mortgage at the lesser of the face amount of the loan and the sale proceeds of the home.
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The NNEG in roll-up mortgages is analogous to the guaranteed minimum death ben-

efit (GMDB) offered in unit-linked insurance. In both guarantees, there is only limited

diversification amongst each cohort of contracts, and this means that traditional determin-

istic valuation with some margins in the assumptions will be inadequate (see Hardy, 2003).

Nevertheless, stochastic and financial economics methods of valuation are hampered by the

complexity in modeling house price dynamics. Strong autocorrelation and varying volatil-

ity effects in house price returns have rendered the classical Black-Scholes formula, which

assumes the returns on the underlying asset follow a geometric Brownian motion, inappro-

priate. In this study, we first search for a stochastic volatility process that can reasonably

model house price returns. Under the identified stochastic volatility process, however, there

exists more than one equivalent risk-neutral probability measure, and therefore the price

of the NNEG is not unique. This phenomenon is often known as market incompleteness.

The core part of this study is an investigation into the pricing formula, and the hedging

and capital reserving strategies for the NNEG in such an incomplete market.

The remainder of this chapter is organized as follows. Section 2 provides a brief de-

scription of various types of equity release products available in the market. In Section

3, we discuss the risks associated with equity release and how they may be inter-related.

We begin Section 4 with an in-depth analysis of house price dynamics. Then we value

the NNEG and develop appropriate hedging and capital reserving strategies. Section 5

concludes this chapter.

5.2 Different Types of Equity Release Products

There are a wide variety of products that are currently available, or used to be available,

in the UK equity release market. Below we provide a synopsis of the key features of each

of these products.

• Roll-up mortgages

In a roll-up mortgage, a lump sum is loaned to the homeowner. Interest on the loan

rolls up and is added to the outstanding debt, which is cleared by the sale of the house

when the homeowner dies, sells the house or moves out of the house permanently.
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The roll-up rate is often fixed, but some providers offer variable interest schemes in

which the roll-up rate is linked to a standard variable rate, usually with a cap.

• Fixed-repayment life time mortgages

Fixed-repayment life time mortgages are similar to roll-up mortgages. However, the

face amount of the loan is fixed regardless of the length of the loan, and is based on

the life expectancy of the borrower when the loan is taken out.

• Home Reversion Schemes

In a home reversion scheme, the homeowner sells his/her house to the provider in

return for a lump sum, which depends on the value of the house and the life ex-

pectancy of the homeowner when the loan is taken out. The (original) homeowner is

entitled to live in the house for life, but he/she is responsible for keeping the house

well maintained and repaired.

• Shared Appreciation Mortgages

In a shared appreciation mortgage (SAM), the bank advances a percentage of the

value of the property. There is no interest payment required. The loan repayment

is the original loan plus a multiple of the capital appreciation in the property value

on the percentage advanced on the loan. SAMs used to be very successful, but they

have been withdrawn due to the providers’ inability to raise funds from long-term

institutional investors (see Institute of Actuaries, 2001).

• Home Income Plans

In a home income plan, the homeowner is offered a regular lifetime income instead

of a lump sum. The income could be arranged on an increasing basis − typically 3%

to 5% increase per annum, or linked to the retail price inflation index.

• Drawdown mortgages

Drawdown mortgages are a variant of roll-up mortgages. Instead of taking out a

lump sum, the homeowner had approval to draw down payments up to a predefined

borrowing limit. The timing and amount of cash advances is at the homeowner’s

discretion.
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The equity release market has seen a significant shift from reversion products to mort-

gage products over the past decade. In 2005, roll-up mortgages accounted for over 95% of

the total equity release sales (Safe Home Income Plans, 2006a). In the following sections,

we shall restrict ourselves to considering the issues regarding roll-up mortgages.

5.3 Risks Associated with Equity Release Mechanisms

ERMs expose product providers to a combination of demographic and financial risks. In

the following we describe briefly the nature of these risks and discuss how they may be

inter-related.

• Mortality/longevity risk

Mortality losses may be incurred if the homeowners’ mortality is either lighter or

heavier than expected. Heavier mortality will shorten the duration of the roll-up,

reducing the period for which a profit margin is earned. On the other hand, excess

longevity will effectively increase the value of the NNEG through the extension of

the “time to maturity” and the increase of the “exercise price” of the guarantee.

• Morbidity risk

The nature of the providers’ exposure to morbidity risk is similar to that of mortality

risk.

• Early-redemption risk

Early-redemptions may occur due to a change in personal circumstances, such as

marriage and divorce, or due to a voluntary decision, such as remortgaging. Remort-

gaging is most likely to occur following a decline in interest rates when cheaper new

mortgages are available in the market. This implies that in addition to the adverse

impact on profitability, the providers are likely to suffer an interest rate loss if they

have raised funds at a fixed rate of interest, or if they have a variable cost of capital

and have swapped out their interest rate exposure. The providers may be able to

mitigate remortgaging risk through the use of early-redemption penalties.
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• House price inflation risk

The NNEG can go “deep in the money” in a prolonged period of stagnant or very

low house price growth.

• Interest rate risk

The fixed roll-up rate may fall behind the providers’ (floating rate) cost of funding.

Exposures to such risk may be managed by entering into an interest rate swap.

• Moral hazard risk

Given that the risk of house price inflation is borne by the provider, the borrower may

be reluctant to maintain his/her home, particularly when the NNEG becomes “in

the money”. This is likely to result in a depreciation of the property value, reducing

the profit of the provider.

• Other risks

The providers are inevitably exposed to other risks, such as operational risk and

reputational risk, that cannot be modeled easily.

Note that it is the NNEG that has exposed the product providers to the risks of (low)

house price inflation and increased longevity. A better understanding of the NNEG is

therefore of crucial importance in the risk management for equity release products. In

particular, an implementation of appropriate hedging and capital reserving strategies for

the NNEG may allow the providers to mitigate a significant portion of the demographic

and financial risks associated with ERMs.

5.4 The No-Negative-Equity-Guarantee

5.4.1 Overview

Roll-up mortgages generally come with a NNEG. This means that, regardless of what

happens to house prices or interest rates, the borrower will never be forced out of his/her

home, but will be allowed to live there until he/she dies or goes into long-term care. Jon

King, the chairman of Safe Home Income Plans (SHIP), offered an succinct explanation of

the importance of NNEG to the equity release market:
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“The SHIP no negative equity guarantee is a vital cornerstone of equity release

products, providing customers with absolute peace of mind that whatever hap-

pens to property prices, their home is protected. There will be no cost to them

or their estate if their property experiences negative equity, nor will they lose

their right to live there. The guarantee, alongside all of the other SHIP product

guidelines, is designed to protect a vulnerable category of consumer making a

very important decision about a long term product, and to ensure that their

experience of equity release is a happy one.” Jon King, in SHIP (2005).

The SHIP code of practice mandates members of SHIP to provide the NNEG feature in

their equity release products. Also, since it is hard, if not impossible, to establish whether

the borrower will be in a financial position that allows him/her to top up the potential

shortfall, omission of the NNEG is practically unfeasible.

From the providers’ point of view, provision of a NNEG is equivalent to writing the

borrower a series of European put options on the mortgaged property. To illustrate, let us

suppose that the amount of cash advanced is X0 and that the borrower will have to repay

the loan at an unknown future time T . The amount repayable (XT ) will be the sum of

the principal and the interest accrued at a fixed roll-up rate, u, compounded continuously;

that is, XT = X0 exp(uT ). If house price inflation is strong enough so that at time T , the

value of the mortgaged property (ST ) exceeds the amount repayable, then the provider will

receive XT without further financial obligations. However, in the unfortunate case that the

property sale proceeds cannot fully cover the amount repayable, the provider will obtain

only ST , due to the NNEG. Equivalently speaking, the provider will receive a amount XT

plus the payoff from the NNEG:

−max[XT − ST , 0], (5.1)

which is precisely the payoff (from the writer’s perspective) of an European put option

with strike price XT . Note that T is random when the mortgage is written. Therefore, in

effect, by offering a NNEG in a roll-up mortgage, the provider has written a series of put

options with different times to maturity. It is noteworthy that mortality improvement will

result in a more valuable NNEG due to the increase in both the time to maturity1 and the

1The value of an European put option does not necessarily increase with the time to maturity if the
strike price is fixed. However, for a straight Black-Scholes framework, the value of a put option will be
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strike price of the option.

The nature of the NNEG is identical to that of the guaranteed maturity death benefit

(GMDB) feature, which is commonly offered in unit-linked insurance in Britain, segre-

gated fund contracts in Canada, and variable annuities in the United States. The GMDB

feature guarantees the policyholder a specific sum of money on death, regardless of the

performance of the underlying index or fund. The guaranteed death benefit may be fixed,

or may increase at a fixed rate, which is analogous to the roll-up rate in a NNEG. In

both features, the financial risks involved cannot be diversified, since any change in the

stock index or property market would affect the entire cohort of policies at the same time.

The risk management for these features should be done by a stochastic or financial eco-

nomics approach, rather than traditional deterministic methods that rely on the law of

large numbers.

5.4.2 The Dynamics of House Price Returns

We mentioned that the NNEG can be regarded as a series of European put options with

the mortgaged property being the underlying asset. However, unlike put options on listed

stocks, the underlying asset of the NNEG is unique and is infrequently traded, leaving us

no historical prices to base our analysis on. To deal with this problem, we resort to a

consideration of house price indices that reflect the changes in residential property prices

within a particular geographical region. Examples include the Halifax Bank House Price

Index, the Nationwide House Price Index, the HM Land Registry data and the Investment

Property Databank Property Index. We refer interested readers to Booth and Marcato

(2004) for a comprehensive review of the pros and cons of these indices.

In this study, we use the Nationwide House-Price Index (Nationwide Building Society,

2006), which is available on a quarterly basis from 1952 Q4 to 2006 Q1 (213 observations),

and is not seasonally adjusted. The index is derived from the average purchase price of

the properties in Nationwide’s own mortgage portfolio, which is composed of residential

properties all over Britain, with a bias towards the south of England. To prevent the

geographical bias from affecting the index, regional weightings in the index are based on

an increasing function of the time to maturity if the the strike price increases at a rate greater than the
risk-free interest rate.
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figures from the Department of the Environment, Transport and the Region, instead of

the actual composition of Nationwide’s portfolio. In contrast to valuation-based indices,

the Nationwide House-Price index is solely based on purchase prices, and is independent

of subjective valuations. In other words, we should expect the index to be free from

the problem of valuation smoothing, and we should not be required to perform any de-

smoothing procedure prior to modeling.

Nevertheless, readers should keep in mind that changes in the index and changes in

the price of the actual underlying property are not likely to be identical, no matter how

reliable the index is. This means that the providers are exposed to basis risk, which will

be discussed in the section about hedging and capital reserving strategies.

The Institute of Actuaries (2005b) pointed out two important characteristics of the

Nationwide House-Price Index:

1. there exists a (very) strong positive autocorrelation effect;

2. the volatility varies with time.

The first characteristic can be observed directly from the plot of the logarithmically

transformed return series. In Figure 5.1, we observe that in the log return series, large

changes tend to follow large changes, and small changes tend to follow small changes. This

phenomenon is commonly known as volatility clustering. In addition, the log returns seem

to be correlated with the changes in the volatility. Specifically, the volatility tends to rise

in response to higher than expected returns and fall in response to lower than expected

returns. This relationship is often referred to as the leverage effect. The presence of

the leverage effect suggests that we should consider stochastic processes that permit the

volatility to respond asymmetrically to positive and negative innovations.

The second characteristic can be confirmed by checking qualitatively for correlation in

the log return series. Figure 5.2 displays the sample autocorrelation function (ACF) of the

log returns, along with the upper and lower confidence bounds, based on the assumption

that all autocorrelations are zero beyond lag zero. We observe that the correlation is strong

in magnitude, and that the correlation effect is persistent: the sample ACF does not cut

off until the eighth lag.
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Fig. 5.1. House Price Quarterly Returns, 1953 Q1 - 2006 Q1.

Fig. 5.2. Sample ACF of the House Price Returns.
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Unfortunately, there is little discussion on the subject of house price index modeling

in the actuarial literature. In Britain, a few stochastic real estate investment models have

been proposed for modeling commercial real estate performance. These include the Wilkie

(1995) model that describes the logarithm of the property yield, P (t), as a function of

a mean value, PMU , a first-order auto-regressive parameter, PA, and a random term,

PSD.N(0, 1):

ln P (t) = ln PMU + PA.(ln P (t− 1)− ln PMU) + PSD.N(0, 1). (5.2)

Booth and Marcato (2004) extended the Wilkie model by introducing several parameters

that relate the property yield to equity and bond yields. In the US, Calhoun (1996)

expressed the logarithm of the price of an individual house by the sum of (1) a market

price index, (2) a random term that describes the relationship between the individual

house price and the market price index and (3) another random term that represents the

idiosyncratic features of individual houses.

Unfortunately, the existing models do not allow for the varying volatility and leverage

effects that are seen in the Nationwide House-Price Index. An alternative model specifica-

tion is therefore necessary.

We first use the Box-Jenkins (1976) approach to identify an appropriate linear time-

series process for the log return series. An ARMA(1,3) model gives an excellent fit. Figure

5.3 plots the sample ACF of the residuals. We observe that the residuals are uncorrelated,

indicating that the fitted ARMA(1,3) model is able to capture most of the autocorrelation

effect in the log return series. Figure 5.4 plots the sample ACF of the squared residuals. We

observe that the squared residuals are significantly correlated. This observation suggests

that, even though the residuals are largely uncorrelated, the variance process exhibits some

correlations. This phenomenon is known as conditional heteroscedasticity in the time-

series literature. We can further quantify the preceding qualitative checks by using formal

hypothesis tests to test for the null hypothesis that the squared innovations are not serially

correlated. The Ljung-Box Portmanteau test statistic2 (Ljung and Box, 1978) gives a p-

2The Ljung-Box Portmanteau test statistic tests for the null hypothesis H0 : ρ1 = ρ2 = ... = ρm = 0
against the alternative hypothesis H1 : ρi 6= 0 for some i ∈ {1, 2, ...,m}, where ρi is lag-i autocorrelation
in the raw return series. The selection of m may affect the performance of the test statistic. Tsay (2002)
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value of 0.0015. This p-value supports the conclusion that conditional heteroscedasticity

exists.

recommended the use of m ≈ ln(T ), where T is the total number of observations. Following Tsay’s
recommendation, we use m = 5 ≈ ln(213).
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Fig. 5.3. Sample ACF of the residuals of the fitted ARMA(1,3) model.

Fig. 5.4. Sample ACF of the squared residuals of the fitted ARMA(1,3) model.
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The above analysis indicates that a conditional heteroscedastic time-series model is ap-

propriate for modeling the house-price index. A conditional heteroscedastic model consists

of one sub-model for the conditional mean process and another for the conditional variance

process. The ARMA(R,M) conditional mean model is applicable to all conditional het-

eroscedastic models. Let Yt = ln(St/St−1), where St is the value of the house price index

at time t. The ARMA(R,M) conditional mean model for the log returns can be expressed

as

Yt = c +
R∑

i=1

φiYt−i −
M∑

j=1

θjat−j + at,

where c is the drift term. The coefficients φi’s and θj’s govern the relative emphasis on the

previous Yt’s and at’s, respectively. We require the polynomials 1−φ1B−φ2B
2−...−φRBR

and 1 − θ1B − θ2B
2 − ... − θMBM have no common factors, and have zeros lying outside

the unit circle to ensure stationarity. We assume that the innovations, at’s, are normally

distributed with mean zero and variance ht. Given the information up to and including

time t− 1, the variance of Yt is simply ht. The serial dependence of ht is then captured by

a conditional variance model. Typical conditional variance models include:

• The ARCH(Q) model

The ARCH(Q) model proposed by Engle (1982) is the simplest conditional variance

model. It assumes that

ht = k +

Q∑
j=1

βja
2
t−j. (5.3)

The basic idea of ARCH models is that the serial dependence of ht can be described

by a simple quadratic function of the previous innovations. The weights on the

previous innovations are determined by the coefficients βj’s. We require that the

drift term, k, is strictly positive and that βj ≥ 0 for j = 1, 2, ..., Q to ensure that the

conditional variance is always positive. Also, βj, j = 1, 2, ..., Q, must satisfy some

regularity conditions to ensure that the unconditional variance of at is finite.

• The GARCH(P ,Q) model

Although ARCH models are simple, they often require many parameters to describe
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the evolution of ht adequately. To solve this problem, Bollerslev (1986) extended the

ARCH(Q) to the GARCH(P ,Q) model, which is defined as follows:

ht = k +
P∑

i=1

αiht−i +

Q∑
j=1

βjat−j. (5.4)

The GARCH(P ,Q) model allows the conditional variance to be dependent on both

the previous innovations and the previous conditional variances. This flexibility al-

lows us to use fewer parameters for adequate modeling. For instance, a volatility

process that requires an ARCH(9) model may be well described by a GARCH(1,2)

model. The dependency on the previous conditional variances is governed by the

coefficient αi’s. As in the ARCH model, we require k > 0, αi ≥ 0 for i = 1, 2, ..., P

and βi ≥ 0 for j = 1, 2, ..., Q to ensure that ht > 0 for all t. We also require∑max{P,Q}
i=1 (αi + βi) < 1 so that the unconditional variance of at is finite.

• The EGARCH(P ,Q) model

To overcome some weaknesses of the GARCH model in handling financial time-series,

Nelson (1991) proposed the exponential GARCH (EGARCH) model, which is based

on the weighted innovation g(εt) = κεt + λ[|εt| − E(|εt|)], where εt = at/
√

ht, and κ

and λ are real constants. Since both εt and |εt|−E(|εt|) are zero-mean sequences with

continuous distributions, E[g(εt)] = 0. Also, it can be shown that E(|εt|) =
√

2/π.

Having defined the weighted innovation, we can express the EGARCH(P ,Q) model

as

ln(ht) = k +
P∑

i=1

αi ln(ht−i) +

Q∑
j=1

βjg(εt). (5.5)

The model uses the usual ARMA parameterization to describe the evolution of ln(ht).

Analogous to the ARMA model, we require the polynomials 1− α1B − α2B
2 − ...−

αP BP and 1+β1B +β2B
2 + ...+βQBQ have no common factors and have zeros lying

outside the unit circle. The EGARCH model differs from the GARCH in a number of

ways. First, it models the logarithm of conditional variance to relax the constraints

that are required in GARCH to ensure the positiveness of ht. Second, it allows for

the leverage effect. This property can be visualized immediately from the following
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reparameterization:

log(ht) = k +
P∑

i=1

αi log(ht−i) +

Q∑
j=1

β∗j [|εt−j| − E(|εt−j|)] +

Q∑
j=1

γjεt−j, (5.6)

where β∗j = λβj and γj = κβj. The leverage parameters γj’s explicitly enable the

conditional variance to respond asymmetrically to positive and negative innovations.

A detailed description of these conditional heteroscedastic models can be found in

Tsay (2002). We choose the EGARCH model to take advantage of its ability to handle the

leverage effect found in the dynamics of the house price index. Specifying the order of an

EGARCH model is not easy. However, lower order EGARCH models are sufficient in most

applications, and we use the simplest form of EGARCH(1,1) for parsimony. Very often, the

use of a volatility model can reduce the ARMA order, since the conditional variance model

may explain away part of the autocorrelation effect in the historical returns. Nevertheless,

we found that an ARMA(1,3) representation is still necessary for an adequate fit.

Table 5.1 shows that all parameters of the jointly estimated ARMA(1,3)-EGARCH(1,1)

model are highly significant. One can check the adequacy of a fitted EGARCH model by

examining the series of standardized innovations, ãt = at/
√

ht. The sample ACF of {ãt}
shown in Figure 5.5 indicates that the ARMA-EGARCH model does an excellent job in

modeling the autocorrelation effect in the historical returns. Also, the comparison of the

sample ACF of {ã2
t} shown in Figure 5.6 to that of the squared innovations prior to fit-

ting the conditional variance model suggests that the EGARCH representation sufficiently

explains the heteroscedasticity in the raw returns. Again, we can quantify the preceding

qualitative checks by using the Ljung-Box Portmanteau test. The Ljung-Box test statistic

for the standardized shocks {ãt} gives a p-value of 0.3877 and that of {ã2
t} gives a p-value

of 0.8786. These p-values further confirm the explanatory power of the fitted ARMA-

EGARCH model.
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Fig. 5.5. Sample ACF of the standardized innovations of
the fitted ARMA(1,3)-EGARCH(1,1) model.

Fig. 5.6. Sample ACF of the squared standardized innovations of
the fitted ARMA(1,3)-EGARCH(1,1) model.
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Parameter Value Standard Error t-statistic

c 0.02278 0.00566 4.02550

φ1 0.66736 0.05766 11.5732

θ1 0.82166 0.06170 13.3169

θ2 0.79242 0.06732 11.7710

θ3 0.68304 0.04813 14.1912

k −1.20180 0.39607 −3.03440

α1 0.84939 0.05004 16.9748

β∗1 0.36924 0.09052 4.07920

γ1 0.17941 0.06222 2.88340

Table 5.1. Parameter estimates of the fitted
ARMA(1,3)-EGARCH(1,1) model.

5.4.3 Identification of an Equivalent Martingale Measure

In Section 5.4.1, we demonstrated the equivalence between the payoff function of a NNEG

and that of an European put option. Therefore, a natural starting point for placing a

value on the NNEG is to price the NNEG using the classical Black-Scholes option pricing

methodology. A key assumption in the Black-Scholes formula is that the returns on the

underlying asset follow a geometric Brownian motion (GBM). Under a GBM, the returns

have a constant volatility over time, and are Markovian; that is, future returns depend

only on the current return, but not on previous returns. These properties imply that

the GBM assumption is not applicable to the house price returns in which the effects

of autocorrelation and volatility clustering are very strong. While the ARMA-EGARCH

model is more appropriate for modeling the dynamics of the house price index, the use of

the ARMA-EGARCH model would lead to market incompleteness.

Market completeness refers to the situation that the payoff of an option can be obtained

as the terminal value of a self-financing portfolio. Hence, by the principle of no arbitrage,

the price of the option at any time before the maturity date must be the value of the

replicating portfolio at that time. Equivalently speaking, under a complete market, there
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exists one and only one equivalent martingale (risk-neutral) probability measure, and the

unique price of any option is given by its expected discounted payoff at the maturity date

under the martingale measure. On the other hand, if a market is incomplete, there exists

more than one equivalent martingale measure, and this implies that there are a range of

no-arbitrage prices for an option. Therefore, one critical issue in this study is to identify

an equivalent martingale that gives an economically consistent and justifiable price for the

NNEG.

The identification of a unique equivalent martingale measure under an incomplete mar-

ket can be performed in various ways. Rubinstein (1976) adopted the equilibrium or utility

maximization-based approach. Föllmer and Sodermann (1986), Föllmer and Scheweizer

(1991) and Schweizer (1996) identified a unique equivalent measure by minimizing the

variance of the hedging loss. This method was later applied to the valuation of equity

indexed annuities by Lin and Tan (2003). Gerber and Shiu (1994) suggested a feasible

way to choose an equivalent martingale measure using an Esscher transform, introduced

by Esscher (1932). The option price chosen by the Esscher transform can be justified by

maximizing the expected power utility of an economic agent.

In recent years, researchers have begun to study conditional heteroskedastic models

for option pricing due to their superior performance in describing various types of asset

returns. Duan (1995) was the first to provide a solid theoretical foundation for option

valuation in the GARCH framework. Duan’s results are primarily based on the utility

maximization approach, and the concept of a locally risk neutral relationship (LRNVR)

in which the conditional variances under the physical and risk-neutral measures are equal.

Siu et al. (2004) utilized the concept of a conditional Esscher transform introduced by

Bühlmann et al. (1996) to identify an equivalent martingale measure when asset returns

follow a GARCH model. The advantage of using a conditional Esscher transform is that

different distributions, such as a translated gamma, can be assumed for the GARCH in-

novations. Under the conditional normality assumption for the GARCH innovations, their

pricing result is consistent with that of Duan. Given that the statistical distribution of the

cumulative return is unknown for all GARCH specifications, analytical formulae for pricing

European options are not available. Researchers have tried to speed up the valuation of

European options under conditional heteroskedastic models by developing analytical ap-
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proximations. Heston and Nandi (2000) developed a numerical technique to obtain prices

of European options when the dynamics of the conditional variance are driven by a GARCH

process. Duan et al. (1999, 2006) developed analytical European option pricing formulae

when the dynamics of the conditional variance are governed by a GARCH, EGARCH or

GJR-GARCH (Glosten et al., 1993) process.

Nevertheless, in previous studies of option pricing under GARCH, the conditional mean

was assumed to follow a GARCH-in-mean specification, instead of an ARMA process that

we found to be highly suitable for describing the autocorrelation effects in the house price

returns. To overcome this problem, we extend the work of Siu et al. (2004) slightly to

obtain an equivalent martingale measure when the returns in the physical measure are

governed by an ARMA-GARCH process.

Let (Ω,F , P) be a complete probability space, where P is the data-generating probability

measure. We assume that all economic activities take place at time t, where t ∈ T and

T is the time index set {0, 1, ..., T}. Also, let Φ = {Φt}t∈T be the natural filtration such

that, for each t ∈ T , Φt contains all market information up to and including time t, and

that ΦT = F .

Let us assume that, under P, the log house price returns, {Yt}t∈T , follow a ARMA(R,M)-

EGARCH(P,Q) process with Gaussian innovations. It follows that, under P, Yt|Φt−1 ∼
N(µt, ht), where µt = c +

∑R
i=1 φiYt−i −

∑M
j=1 θjat−j + at, and ht is specified by equation

(5.6). Note that µt and ht are non-random given Φt−1.

Following Bühlmann et al. (1996), we define a sequence {Zt}t∈T with Z0 = 1, and for

t ≥ 1,

Zt =
t∏

k=1

exp(λkYk)

E(exp(λkYk)|Φk−1)
, (5.7)

for some constants λ1, λ2, ..., λt. It can be shown easily that {Zt}t∈T is a martingale.

Let Pt be the restriction of the measure P on the information Φt, for each t ∈ T \{0},
where PT = P. The fact that {Zt}t∈T is a martingale allows us to construct a family of

measures {P̃t}t∈T such that dP̃t = ZtdPt and P̃t = P̃t+1|Φt, and a probability measure

P̃ = P̃T on the sample space (Ω,F). Let A be an open interval on the real line, and IA(Yt)
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be the indicator function for the event {Yt ∈ A}. The conditional distribution

P̃t(Yt ∈ A|Φt−1) = EPt

[
IA(Yt)

exp(λtYt)

EPt(exp(λtYt))
|Φt−1

]
(5.8)

is called the conditional Esscher transform. Substituting (−∞, y], where y is a real number,

for A in equation (5.8), we obtain the following distribution function of Yt given Φt−1 under

the measure P̃t:

FP̃t
(y; λt|Φt−1) =

∫ y

−∞ exp(λtx)dFPt(x|Φt−1)

EPt(exp(λYt)|Φt−1)
. (5.9)

It immediately follows that the moment generating function of Yt given Φt−1 under the

measure P̃t is given by

EP̃t
[exp(Ytz); λt|Φt−1] =

EPt [exp(Yt(z + λt))|Φt−1]

EPt [exp(Yt(λt))|Φt−1]
. (5.10)

Using equation (5.10) and the fact that Yt|Φt−1 ∼ N(µt, ht), we have

EP̃t
[exp(Ytz); λt|Φt−1] = exp

(
(µt + htλt) z +

1

2
htz

2

)
. (5.11)

To construct a risk-neutral probability measure Q which is equivalent to the data-

generating measure P on the sample space (Ω,F), we choose a sequence of conditional

Esscher parameters {λq
t}t∈T \{0} such that the following set of equations are satisfied:

EP̃t
[exp(Yt); λ

q
t |Φt−1] = exp(r), t ∈ T \{0}, (5.12)

where r is the risk-free interest rate. We refer interested readers to Bühlmann et al. (1996)

for a detailed proof. Substituting λq
t into equation (5.11), we obtain

EQt [exp(Ytz)|Φt−1] = exp

((
r − 1

2
ht

)
z +

1

2
h2

t

)
, (5.13)

where Qt is the restriction of Q on the information Φt, and QT = Q. Hence, under Q,

Yt|Φt−1 ∼ N(r − 1/2ht, ht), or equivalently, Yt = µt + at and at ∼ N(−µt + r − 1/2ht, ht).

In other words, the dynamics of Yt under the equivalent risk-neutral measure are the same

as that under the physical measure, except that the distribution of at is translated by an

amount of −µt + r − 1/2ht.
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Finally, under the equivalent martingale measure Q, the time t, t ∈ T , the price of an

option that gives a payoff VT at maturity is given by

Vt = EQ[exp(−r(T − t))VT |Φt]. (5.14)

5.4.4 Pricing the NNEG

The underlying property in an NNEG is analogous to a dividend paying stock. This is

because the total return from a property can be viewed as the sum of its capital growth and

its rental income net of insurance and maintenance costs. Such rental income is sometimes

referred to as imputed rent by economists. To simplify the analysis, we assume that the

rental yield of the underlying property is constant over time.

Recall that in offering a NNEG, the provider has written a series of European put

options with different times to maturity. We let P (t, S0, X0, u, r, g) be the value of each of

these options at time zero, where t is the time to maturity, S0 is the value of the mortgaged

property at time zero, X0 is the amount of loan advanced, u is the roll-up rate, r is the

risk-free interest rate, and g is the rental yield. Then, using discrete annual time steps,

the value of a NNEG in a portfolio of roll-up mortgages sold to persons who are aged x at

inception can be expressed as

VNNEG =
ω−x−1∑

k=0

kpxqx+kP

(
k +

1

2
+ δ, S0, X0, u, r, g

)
, (5.15)

where δ is the average delay in time from the point of home exit until the actual sale of

the property, ω is the highest attained age, kpx is the probability that a borrower who is

aged x at inception survives to age x + k, and qx+k is the probability that a borrower who

is aged x at inception dies in the time interval k to k + 1 given that he/she has survived

to age x + k. We assume that all home exits occur at mid-year. Therefore, the time to

maturity is k + 1/2 + δ.

Furthermore, if we assume that the house price returns follow a ARMA-GARCH pro-

cess, then P
(
k + 1

2
+ δ, S0, X0, u, g

)
is given by

e−r(k+ 1
2
+δ)EQ


X0e

u(k+ 1
2
+δ) − S0e

 
−g(k+ 1

2
+δ)+

Q4(k+1
2+δ)

t=0 Yt

!
, 0

+
 , (5.16)
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where Q is the equivalent martingale measure we identified in Section 5.4.3. The expecta-

tion in expression (5.16) can be evaluated numerically using Monte Carlo simulations.

The key assumptions that we have made for the purpose of illustration are as follows:

• The average delay in time from the point of home exit until the actual sale of the

property is six months.

• The risk-free interest rate is 4.75% per annum, compounded continuously.

• The roll-up rate is 7.50% per annum, compounded continuously.

• The rental yield is 2% per annum, compounded continuously.

• The amount of cash advanced is £30,000.

• The following two sets of life tables are used:

1. Period life tables derived from English and Welsh population mortality in 2003.

2. Cohort life tables constructed from the Lee-Carter projection of English and

Welsh population mortality.

For both life tables, mortality rates for ages 100 and above are estimated by the

threshold life table technique suggested in Chapter 4. The required data are provided

by the Human Mortality Database (2005).

• Death is the only mode of decrement. The impact of long-term care incidence on the

NNEG values are discussed later in Section 5.4.5.

• The initial house values are equal to the minimum permitted values shown in Table

5.2. These values are broadly in line with the products that are currently available

in the UK equity release market.

Age at inception 60 70 80 90

Initial house value £176,500 £111,000 £81,000 £60,000

Table 5.2. Minimum initial house values.
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The resultant NNEG values, expressed as a percentage of the cash advanced, are dis-

played in Tables 5.3 to 5.6. For readers’ information, we compute also the NNEG values

using the classical Black-Scholes methodology by replacing P
(
k + 1

2
+ δ, S0, X0, u, g

)
in

equation (5.15) with

X0e
((u−r)(k+ 1

2
+δ))N(−d2)− S0e

(−g(k+ 1
2
+δ))N(−d1), (5.17)

where d1 =
ln
�

S0
X0

�
+
�
r−g−u+σ2

2

�
(k+ 1

2
+δ)

σ
√

k+ 1
2
+δ

, and d2 = d1 − σ
√

k + 1
2

+ δ.

Model \ Age at inception 60 70 80 90

EGARCH 13.27% 7.98% 3.02% 1.25%

GBM 9.83% 6.13% 2.51% 1.17%

Table 5.3. NNEG costs as a percentage of the cash advanced,
period life table (2003), male.

Model \ Age at inception 60 70 80 90

EGARCH 19.09% 10.22% 3.63% 1.43%

GBM 13.54% 7.57% 2.96% 1.28%

Table 5.4. NNEG costs as a percentage of the cash advanced,
projected cohort life table, male.

Model \ Age at inception 60 70 80 90

EGARCH 23.97% 14.75% 5.71% 2.27%

GBM 17.03% 10.73% 4.44% 1.87%

Table 5.5. NNEG costs as a percentage of the cash advanced,
period life table (2003), female.
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Model \ Age at inception 60 70 80 90

EGARCH 33.72% 19.27% 7.02% 2.58%

GBM 23.92% 13.94% 5.37% 2.09%

Table 5.6. NNEG costs as a percentage of the cash advanced,
projected cohort life table, female.

Note that each term on the right hand side of equation (5.15) reflects the relative

importance of the age at death (x + k) to the aggregate cost of the NNEG. Figures 5.7

and 5.8 illustrate this relationship for a NNEG written to borrowers who were aged 60 and

80 at inception, respectively. Even at old ages, where the mortality rate is very low, the

contribution is significant as the option price for the longer lived is so high. Therefore, the

tail of the assumed survival distribution is highly crucial to the valuation of a NNEG. In

particular, if the assumed life table is closed too early, say, at age 100, the NNEG could

be seriously underpriced.

Alternatively, we can express the NNEG values as a yield cost per annum. Let y be

the annual yield cost, compounded continuously. If the option expires at a future time t,

then the present value of the NNEG margin is given by

M(t,X0, u, r, y) = e−rtX0

(
eut − e(u−y)t

)
. (5.18)

The annual yield cost y is derived so as to produce the expected present value of the NNEG

margin equal to the monetary cost of the NNEG; that is, we solve the following equation

for y:

ω−x−1∑
k=0

kpxqx+k

[
P

(
k +

1

2
+ δ, S0, X0, u, r, g

)
−M

(
k +

1

2
+ δ,X0, u, r, y

)]
= 0. (5.19)

Tables 5.7 to 5.10 show the NNEG values, expressed as an annual yield cost, for different

genders and ages at inception.
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Fig. 5.7. Contribution to the aggregate NNEG cost at different ages at death,
male, aged 60 at inception.

Fig. 5.8. Contribution to the aggregate NNEG cost at different ages at death,
male, aged 80 at inception.
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Model/Age 60 70 80 90

EGARCH 0.33% 0.37% 0.28% 0.25%

GBM 0.24% 0.28% 0.24% 0.23%

Table 5.7. NNEG costs as an annual yield cost,
period life table (2003), male.

Model/Age 60 70 80 90

EGARCH 0.43% 0.46% 0.34% 0.28%

GBM 0.30% 0.33% 0.27% 0.25%

Table 5.8. NNEG costs as an annual yield cost,
projected cohort life table, male.

Model/Age 60 70 80 90

EGARCH 0.48% 0.55% 0.43% 0.38%

GBM 0.33% 0.40% 0.33% 0.31%

Table 5.9. NNEG costs as an annual yield cost,
period life table (2003), female.

Model/Age 60 70 80 90

EGARCH 0.62% 0.68% 0.51% 0.41%

GBM 0.42% 0.47% 0.38% 0.33%

Table 5.10. NNEG costs as an annual yield cost,
projected cohort life table, female.



143

5.4.5 Modeling Long-Term Care Assumptions

In Section 5.4.4, all numerical illustrations are based on the assumption that death is the

only mode of decrement. This section examines the impact of another mode of decrement

− long-term care − on the NNEG prices. Long-term care incidence and mortality have

strong interactions; for instance, people moving into a residential long-term care facility are

generally less healthy that those remaining in their own homes. Hence, the incorporation

of long-term care incidence into the pricing framework requires an additional model that

quantifies such interactions. This objective may be fulfilled by using a multiple state model.

Our multiple state model can be represented conveniently by the diagram in Figure

5.9. The boxes represent the three possible states that a borrower can be in at any time

and the arrows indicate the possible transitions between these states. We interpret being

in state 1 as living in the mortgaged property, being in state 2 as living in a residential

long-term care facility, and being in state 3 as dead. Transfer to either one of the other

two states is possible for states 1 and 2, but not for state 3; that is, state 3 is absorbing.

Furthermore, we assume that transitions can occur at most once in a year.

More precisely, we let {S(x); x = 60, ..., ω−1}3 be a discrete time, time inhomogeneous

Markov chain with a finite state space {1, 2, 3}. We interpret the statement “S(x) = 1”,

for example, to mean “the borrower is in state 1 at age x”. We let

pgh
x = P [S(x + 1) = h|S(x) = g] g, h = 1, 2, 3; x = 60, ..., ω − 1. (5.20)

The process is time (age) inhomogeneous since we assume pgh
x depends on x, the age of

the borrower. Also, the process is Markov since we assume the value of pgh
x is unchanged if

we are given any information about the behavior of the process before age x. By definition,

p31
x = p32

x = 0 for all x; and also,

3∑
h=1

pgh
x = 1 g = 1, 2, 3; x = 60, ..., ω − 1. (5.21)

As a result, for each age, the effective number of parameters is four.

In the ideal case, the free parameters should be estimated by using longitudinal data

from extensive household surveys that follow the same cohort of lives and record infor-

mation on disabilities. Unfortunately, such longitudinal data are not available in Britain.

3In modeling the NNEG, we require transition probabilities for age 60 and above only.
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Previous mathematical analyses of the long-term care demand in the UK are based on

either some small scale household surveys (e.g., Scott et al., 2001) or some extensive long-

term care studies conducted in other countries (e.g., Rickazen and Walsh. 2002). The

former approach may lead to high sampling error in estimating the transition rates, while

the latter approach may not truly reflect the situation in Britain. To avoid these problems,

we adopt an alternative method that makes use of the following information:

1. period life tables for the English and Welsh population in 2001;

2. population counts for the English and Welsh population on 1 January 2001;

3. number of residents (non-staff) in communal establishments in England and Wales

in 2001; these numbers are based on the 2001 census in England and Wales.

Items (1) and (2) are provided by the Human Mortality Database (2005), while item (3) is

provided by the Office of National Statistics (2007). Figures in item (3) are given by age

groups. To compute the number of residents in communal establishments by single year

of age, we disaggregate the raw numbers by the method proposed by Boot et al. (1967).

Then we estimate the age-specific long-term care prevalence rates by dividing, for each

age, the number of residents in communal establishments by the population count.

Let us define the following notation:

• lx: the total number of people aged x last birthday on 1 January 2001;

• hx: the number of people aged x last birthday on 1 January 2001 not living in

long-term care facilities;

• cx: the number of people aged x last birthday on 1 January 2001 living in long-term

care facilities;

• qx: the probability of death between ages x and x+1 in 2001, conditional on survival

to age x;

• γx: the long-term care prevalence rate at age x in 2001.
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Assuming that the population is closed in 2001 and that the long-term care prevalence

rates remain unchanged through 2002, we have the following system of linear equations for

x = 60, ..., ω − 1:

hxp
13
x + cxp

23
x = lxqx; (5.22)

hxp
12
x + cx(1− p21

x − p23
x ) = lx(1− qx)γx+1; (5.23)

hx(1− p12
x − p13

x ) + cxp
21
x = lx(1− qx)(1− γx+1), (5.24)

where γω = 0. It is easy to see that one of above equations is redundant. Therefore,

we require two more equations concerning the pgh
x ’s to obtain a unique solution. First,

we employ the Rickayzen and Walsh (2002) model for extra mortality for different levels

of OPCS (Office of Population, Census and Surveys) disability categories. The model

expresses the death probability for someone aged x, x ≥ 50, in disability category n,

n = 1, 2, ..., 10, as

qx +
0.20

1 + 1.150−x

Max(n− 5, 0)

5
, (5.25)

where qx is the probability of death between ages x and x + 1 for the overall population.

Nuttall et al. (1994) classify people with disability categories 9 and 10 as having an ongoing

long-term care need. Therefore, we assume that people in long-term care facilities have

the same amount of extra mortality as people with a disability catagory 9. As a result, we

have the following equation for computing p23
x ’s:

p23
x = qx +

0.16

1 + 1.150−x
x = 60, ...ω − 1. (5.26)

Second, we compute p21
x ’s by using the parameterized transition intensities between dis-

ability states calculated from the United States National Long-Term Care Study (NLTCS)

in 1982 and 1984 (Pritchard, 2006)4. We borrow p21
x ’s but not other pgh

x ’s from the tran-

sition probability matrices based on the US NLTCS data for the reason that among all

pgh
x ’s, p21

x ’s should be the least likely to be affected by the mortality differentials between

Britain and the US.
4Pritchard’s multiple state model consists of seven states; they are (1) healthy, (2) 1 ADL only (inability

to perform one activity of daily living), (3) 1-2 ADLs, (4) 3-4 ADLs, (5) 5-6 ADLs, (6) institutionalized,
and (7) dead. We let p21

x be the probability that an individual aged x moves from state 6 to either one of
the first five states in one year.



146

Given p21
x ’s and equations (5.22) to (5.26), we can estimate the remaining transition

probabilities for year 2001. Figures 5.10 and 5.11 show the estimated transition probabili-

ties.

The next step is to project the transition rates for year 2001 to the future. Given

that residents in long-term care facilities generally have one or more limiting long-term

illness, huge effort is required to raise the likelihood of moving from state 2 to state 1. For

this reason, we assume that p21
x ’s remain unchanged over time. However, the likelihood

of moving to state 3 is, of course, dependent on the mortality of the general population.

Therefore, we assume that for all age, both p13
x and p23

x reduce at the same rate as that

specified in the Lee-Carter projection of future qx.

The likelihood of moving to state 1 from state 2 is unlikely to remain stationary. Future

trends in long-term care incidence will depend on a number of different factors; for example,

• health status − the population of Britain has been living longer, but the extra years

have not necessarily been lived in good health; over the past 20 years, the life ex-

pectancy has been increasing at a faster rate than the healthy life expectancy (ex-

pected years of life in good or fairly good health) (Office of National Statistics, 2004),

• government policy − if government policy emphasizes home care, then the tendency

to move to a long-term care facility may be reduced,

• supply of long-term care places − long-term care incidence rates may rise if there are

more long-term care places available; incidence rates may also increase if long-term

care insurance becomes more popular.

Given the uncertainty about the factors affecting long-term care incidence and the

absence of time-series data regarding p12
x ’s, it is hard to legitimately predict the magnitude,

and even the direction, of future changes in p12
x ’s. In this study, we consider the following

three scenarios:

1. p12
x ’s are reduced by 30%;

2. p12
x ’s remain unchanged;

3. p12
x ’s are increased by 30%.
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Finally, the projected values of p11
x ’s and p22

x ’s can be calculated by equation (5.21).

To compute the NNEG values based on the multiple state model, we replace kpxqx+k

in equation (5.15) by (
k−1∏
j=0

p̃11
x+j

)
(1− p̃11

x+k), (5.27)

where p̃11
x+k is the projected value of p11

x+k for persons who were aged x at inception.

Tables 5.10 and 5.11 present the NNEG values under different assumptions about the

future trend in p12
x ’s. These values are based on the ARMA-EGARCH pricing framework.

All model assumptions except decrement are the same as those in Section 5.4.4.

Fig. 5.9. Multiple state model for modeling long-term care incidence and mortality.
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Fig. 5.10. Estimates of transition probabilities, male.
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Fig. 5.11. Estimates of transition probabilities, female.
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Age at inception Without LTC5 p12
x ↓ 30% p12

x unchanged p12
x ↑ 30%

60 19.09% 17.13% 15.77% 13.88%

70 10.22% 9.21% 8.10% 7.17%

80 3.63% 3.28% 2.71% 2.26%

90 1.43% 1.40% 1.08% 0.83%

Table 5.10 NNEG costs as a percentage of cash advanced
under different decrement assumptions, male.

Age at inception Without LTC p12
x ↓ 30% p12

x unchanged p12
x ↑ 30%

60 33.72% 28.26% 23.42% 19.64%

70 19.27% 16.24% 13.05% 10.59%

80 7.02% 6.23% 4.67% 3.52%

90 2.58% 2.37% 2.19% 1.61%

Table 5.11 NNEG costs as a percentage of cash advanced
under different decrement assumptions, female.

5.4.6 Hedging and Capital Reserving Strategies for the NNEG

Recall that the actual underlying asset (the mortgaged property) of the NNEG is unique

and infrequently traded. In practice, however, we can apply dynamic hedging to the NNEG

by forming a hedge portfolio which has a price sensitivity profile similar to that of the

NNEG liability. More specifically, the hedge portfolio and the NNEG liability should have

similar deltas (and possibly gammas). Possible assets for forming a hedge portfolio include

residential property index funds and real estate income trusts (REITs). These assets are

traded, and the dynamics of their returns should be close to that of the Nationwide house

price index − the proxy for the true underlying asset.

5“Without LTC” refers to the simplest case that death is the only mode of decrement.



151

Unfortunately, there is not much choice of residential property index funds, since most

property index funds listed on the London Stock Exchange are tied to commercial rather

than residential properties. In addition, the UK REIT market is still in its infancy: the

first UK residential REIT, the HBOS residential REIT, was just launched in early 2007,

giving us little historical data for the required stochastic modeling.

Even if we are able to find suitable assets for constructing a hedge portfolio, dynamic

hedging will not be perfect due to (1) discrete hedging error, (2) transaction cost, (3)

longevity risk and (4) basis risk. These factors may give rise to additional costs on the top

of the hedge portfolio for dynamic hedging. Such additional costs, which we call unhedged

liability, can be handled by an actuarial approach − using stochastic simulations, we

generate an empirical distribution of the unhedged liability; then the upper 95th percentile

of the empirical distribution, for example, gives the amount of risk capital required for

cushioning against the unhedged liability. In the following we discuss and quantify each

of the factors affecting the unhedged liability by using a hypothetical hedge portfolio that

consists of a risk-free bond and a risky asset that is perfectly correlated with the Nationwide

house price index. To keep the illustration simple, we compute hedge costs using the

classical Black-Scholes formula and perform stochastic simulations on the basis of the log-

normal model in the physical measure.

• Discrete hedging error

The Black-Scholes-Merton approach assumes continuous trading. However, continu-

ous trading is impossible in practice. When we relax the assumption of continuous

trading, discrete hedging error is introduced. With discrete time steps, between which

the hedge portfolio is not adjusted, the hedge portfolio may not be self-financing. As

a result, additional funds may be required when the hedge portfolio is rebalanced.

We let Hc(t) be the value of the hedge at time t, given that the borrower survives at

time t; then according to the pricing framework in Section 5.15, we have

Hc(t) =
ω−x−t−1∑

k=0

kpx+t qx+t+kP

(
k +

1

2
+ δ, St, X0e

ut, u, g

)
, (5.28)

where x is the age at issue. Note that Hc(0) equals the NNEG value at inception.
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According to the Black-Scholes-Merton framework, the hedge portfolio, given that

the borrower survives at time t, consists of

1. ∆c
t units of the risky asset, and

2. Hc(t)−∆c
tSt dollar amount of risk-free bonds, where ∆c

t = ∂Hc(t)
∂St

.

Let us assume that the hedge portfolio is rebalanced yearly. Immediately before

rebalancing at time t + 1, the hedge portfolio from time t will have accumulated to

Hc(t + 1−) = ∆c
tSt+1 + (Hc(t)−∆c

tSt)e
r + ∆c

tSt+1g. (5.29)

Recall that the NNEG may be interpreted as a portfolio of put options with different

times to maturity. At time 1 from inception, qx units of the put options will expire,

while the remaining units will have a total value of pxH
c(1). Therefore, the funds

required at time 1 are

qx(X0e
u − S1)

+ + pxH
c(1), (5.30)

which means the hedging error at time 1 can be written as

HE1 = qx(X0e
u − S1)

+ + pxH
c(1)−Hc(1−). (5.31)

After rebalancing at time 1, we hold a hedge portfolio of pxH
c(1). Inductively, the

hedging error at time 2 is given by

HE2 = px

[
(qx+1X0e

2u − S2)
+ + px+1H

c(2)−Hc(2−)
]
, (5.32)

and in general, the hedging error at time t, t = 2, 3, ..., ω − x, can be expressed as

HEt =

(
t−2∏
k=0

px+k

)[
(qx+t−1X0e

ut − St)
+ + px+t−1H

c(t)−Hc(t−)
]
. (5.33)

We are interested in the empirical distribution of the present value of the hedging

errors. Such an empirical distribution can be generated using the following procedure:

1. simulate a large number of sample paths using the stochastic model for {St}
under the physical measure;
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2. for each sample path, calculate the hedging error at time points when the hedge

portfolio is rebalanced, and compute the present value of the hedging errors.

Note that equation (5.28) assumes that all home exits occur in mid-year. We can

relax this assumption by allowing home exits to occur in the middle of any fraction,

say 1/m, of a year; this generalizes equation (5.28) to

Hc(t) =

m(ω−x−t)−1∑
k=0

k
m

px+t qx+t+ k
m

P

(
k + 1

2

m
+ δ, St, Keut, u, g

)
. (5.34)

By adjusting equations (5.29) to (5.33) accordingly, we can obtain hedging errors

based on different rebalancing frequencies.

Table 5.12 shows the percentiles of the empirical distributions for different ages at

inception. The numbers, expressed as a ratio of the present value of hedging errors to

the NNEG value, are based on the assumption that the hedge portfolio is rebalanced

quarterly.

• Transaction cost

A transaction cost is incurred whenever the hedge portfolio is rebalanced. We assume

transaction costs of τ times the value of the risky assets that have to be traded when

the hedge portfolio is rebalanced. Let us assume again that the hedge portfolio is

rebalanced yearly. At time 1, we require a short position of qx units of the risky asset

if the options expiring at time 1 are in the money; we also require a short position

of −px∆
c
1 units of the risky asset for hedging the options not maturing at time 1.

Therefore, the transaction cost at time 1 is given by

TC1 = τS1

∣∣px∆
c
1 + qxI{X0eu−S1>0}(−1)−∆c

0

∣∣ .
Inductively, we have the following expression for the transaction cost at time t, t =

2, 3, ..., ω − x:

TCt =

(
t−2∏
k=0

px+k

)
τSt

∣∣∣∣∣ px+t−1∆
c
t + qx+t−1I{X0eut−St>0}(−1)−∆c

t−1

∣∣∣∣∣ .
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The above expressions can be generalized easily to a version applicable to hedging

with more frequent rebalancing. To incorporate transaction costs into the empirical

distribution of the unhedged liability, we can simply add the transaction costs to their

corresponding hedging errors in Step 2 of the procedure for generating the unhedged

liability distribution.

Table 5.13 shows for different ages at inception the percentiles of the empirical dis-

tributions, with consideration of transaction costs. The numbers are based on a

quarterly rebalanced hedge portfolio, and on the assumption that τ = 0.2% per an-

num. Again, the numbers are expressed as a ratio of the unhedged liability to the

NNEG value.

• Longevity risk

In Section 5.4.4, we have demonstrated that mortality assumptions play a crucial

role in the valuation of the NNEG. The small sample risk which arises from random

departures from the assumed survival distribution can be mitigated effectively by

diversification. However, the providers are also exposed to longevity risk, that is, the

uncertainty about the future mortality improvement. Such risk is non-diversifiable.

In the ideal case, the providers could lay off some longevity risk exposures at a

reasonably low cost by using mortality-linked securities, exemplified by the European

Investment Bank (EIB) longevity bond in which coupon payments are linked to a

survivor index based on the realized mortality experience. However, the longevity

bond market is still at its very early stage so that the required hedging instruments

may not be available. Therefore, for the time-being, we have to resort to actuarial

approaches.

To illustrate the impact of longevity risk, we consider a simple case in which the hedge

portfolio is rebalanced yearly. Let q̃x (p̃x) be the realized conditional probability of

death (survival). The actual number of put options expiring at time 1 is q̃x, which is

not necessarily equal to qx, the assumed conditional probability of death, due to the

uncertainty of future mortality. Therefore, if stochastic mortality is considered, the

hedging error at time 1 becomes

HE1 = q̃x(X0e
u − S1)

+ + p̃xH
c(1)−Hc(1−), (5.35)
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and in general,

HEt =

(
t−1∏
k=0

p̃x+k

)(
q̃x+t−1(S0e

ut − St)
+ + p̃x+t−1H

c(t)−Hc(t−)
)
, (5.36)

for t = 2, 3, ..., ω − 1.

We can incorporate longevity risk into the unhedged liability distribution by the

following procedure:

1. attach, to each of the house price sample paths, a mortality scenario generated

by the parametric bootstrapping method discussed in Chapter 2;

2. treat the death probabilities in each mortality scenario as the realized death

probabilities;

3. compute the hedging errors (and the transaction costs) on the basis of the

realized death probabilities obtained in Step 2.

Table 5.14 shows for different ages at inception the percentiles of the empirical dis-

tributions of the unhedged liability, with consideration of stochastic mortality. As

before, we assume that τ = 0.2% per annum and that the hedge portfolio is rebal-

anced quarterly. The numbers are expressed as a ratio of the unhedged liability to

the NNEG value.

• Basis risk

In the above illustrations, it is assumed that returns on the true underlying asset, the

mortgaged property, are exactly the same as that on its proxy, the Nationwide house

price index. This is unlikely to be true in reality, so the providers are exposed to basis

risk. To incorporate such basis risk into the unhedged liability distribution, we may

base the empirical distribution on sample paths that are simulated via a stochastic

model with a larger volatility parameter, on the grounds that property prices tend

to exhibit greater variations when we drill down to individual housing districts.

Furthermore, as the Nationwide house price index is not a traded security, we are

required to use alternative assets in forming the hedge portfolio. This, obviously, will
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incur additional basis risk, since the returns on the house price index and that on

the assets in the hedge portfolio may not be identical.

Finally, we examine the impact of rebalancing frequency on the unhedged liability dis-

tributions. Table 5.15 depicts the 95th percentiles of the unhedged liability distributions

based on different rebalancing frequencies. We observe that the benefit of moving from

quarterly to monthly is only marginal, particularly for the case in which stochastic mor-

tality is considered. This is because, as we observe in Tables 5.12 to 5.14, the effect of

stochastic mortality outweighs that of discrete hedging errors and that of transaction costs.

Note that the above illustrations can be performed using the ARMA-EGARCH frame-

work instead of the Black-Scholes-Merton. We expect that the unhedged liability based on

the ARMA-EGARCH framework will be even higher, since under the conditional Esscher

transformation, the replicating portfolio is no longer self-financing. When the ARMA-

EGARCH model is assumed, the Greek letters have to be computed by simulations. Such

simulations should be performed using the methods proposed by Broadie and Glasserman

(1996) rather than crude estimation techniques which may produce unreliable estimates.

Age at inception 70th 90th 95th

60 0.0745 0.1444 0.1947

70 0.1154 0.2185 0.2796

80 0.1680 0.3463 0.4628

90 0.2347 0.5512 0.7445

Table 5.12 Selected percentiles of the empirical
distributions of the present value of hedging errors.
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Age at inception 70th 90th 95th

60 0.1312 0.1999 0.2572

70 0.1874 0.2926 0.3527

80 0.2681 0.4514 0.5717

90 0.3456 0.7114 0.9037

Table 5.13. Selected percentiles of the empirical distributions
of the present value of hedging errors and transaction costs.

Age at inception 70th 90th 95th

60 0.4774 0.9083 1.1421

70 0.4687 0.8468 1.1922

80 0.5046 0.9639 1.3393

90 0.4813 1.0647 1.4786

Table 5.14. Selected percentiles of the empirical distributions of the present value
of hedging errors and transaction costs, with consideration of stochastic mortality.

Rebalancing Frequency HE only HE + HC HE + HC, with SM

Yearly 1.8208 1.9022 2.0604

Quarterly 0.7445 0.9037 1.4786

Monthly 0.4003 0.6708 1.2240

Table 5.15. 95th percentiles of the empirical distributions of the present value
of (1) hedging errors (HE), (2) hedging errors and hedging costs (HC), and (3)

hedging errors and hedging costs with consideration of stochastic mortality (SM).

5.5 Conclusion

Pricing the NNEG is not easy since the underlying asset, the mortgaged property, is unique

and infrequently traded. Although the Nationwide house price index may be used as
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a proxy for the true underlying asset, the returns on the index demonstrate effects of

varying volatility and autocorrelation, rendering the classical Black-Scholes approach for

option pricing inappropriate. In this study, we have found that the house price returns

can be well described by an ARMA-EGARCH model. On the basis of the fitted ARMA-

EGARCH model, we identified an equivalent martingale measure using the conditional

Esscher transformation and derived a pricing formula for the NNEG. We have found that

the NNEG can be a heavy burden to equity release product providers. Depending on the

borrower’s age at inception and the loan to value ratio, the NNEG can cost in excess of

30% of the cash advanced. The estimated NNEG costs, however, have not taken account of

the basis risk that arises from the discrepancies between the returns on the true underlying

asset and that on its proxy. This risk is likely to further increase the NNEG liability,

primarily because individual house prices tend to be more volatile than the aggregate price

index.

On the other hand, morbidity risk and early redemption risk may lower the NNEG

values, since they reduce the likelihood of survival to the very advanced ages when negative

equity claims are the most likely to occur. In this study, we have developed a multiple

state model to find out how long-term care incidence may impact the NNEG costs. We

have found that the option prices are lowered slightly when long-term care incidence is

considered. To keep the analysis simple, we have not taken account of other modes of

decrement, such as remortgaging. Remortgaging and its interaction with interest rate

assumptions may be considered in future research on equity release mechanisms.

With equity release being no exception, product features drive policyholder behaviors in

many financial products; for example, given that roll-up mortgage purchasers are making a

positive statement about their desire to remain in their own home as long as possible, they

are likely to experience lower long-term care incidence rates than ordinary homeowners.

Likewise, since, in most cases, the mortgaged property has to be liquidated when the

borrower moves into a long-term care facility, we expect those who purchased a roll-up

mortgage to experience a lower probability of moving from the state of living in a long-

term care facility to the state of living at home. In other words, the central decrement

assumptions used in this study may not precisely reflect the actual situation experienced

by purchasers of equity release products. In practice, decrement assumptions should be
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adjusted according to relevant experience studies.

In Section 5.15, we have pointed that the tail of the assumed survival distribution has a

significant impact on the NNEG values. This phenomenon has two important implications.

First, the reduction of mortality rates, particularly at the advanced ages, will considerably

increase the NNEG cost. To cope with future reduction of mortality, equity release product

providers may have to consider lowering the maximum loan to value ratio in order to

maintain the NNEG liability at a manageable level, although this may make the product

less competitive. Second, the providers should take account of their longevity risk exposures

in pricing equity release products and appraise regularly the appropriate level of risk capital

set aside as the portfolio evolves.

We have proposed a combination of dynamic hedging and capital reserving strategies

for managing the risks associated with the NNEG. Dynamic hedging can be practically

performed by forming a hedge portfolio with traded assets that are highly correlated to the

Nationwide house price index. However, no matter how high the correlation is, dynamic

hedging will not be perfect due to discrete hedging errors, transaction costs, longevity

risk and basis risk. The aggregate additional costs on the top of the hedge portfolio for a

practical dynamic hedging strategy are known as unhedged liability. Unhedged liability can

be handled by an actuarial approach that determines the amount of risk capital required for

cushioning against the unhedged liability. In this study, we have illustrated the generation

of the unhedged liability distribution on the basis of the Black-Scholes-Merton framework.

An immediate extension of this study would be an investigation of the unhedged liability

distribution based on the ARMA-EGARCH framework, although such an investigation

may demand a huge computational effort.

In the United States, contracts similar to roll-up mortgages are called reverse mortgages.

The topic of reverse mortgages has been considered by researchers in various fields; for

example, Davidoff and Welke (2004) investigated the risks of selection and moral hazard

in reverse mortgages; Artle and Varaiya (1978) studied the appeal of transferring housing

wealth from the period after death to the period while still alive. The majority of reverse

mortgages in the US are sold via the Home Equity Conversion Mortgage (HECM) program

introduced by the United States Department of Housing and Urban Development in the

late 1980s. Borrowers of reverse mortgages sold via the HECM program have to pay a
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guarantee fee of 2% of the initial property value to the Federal Housing Administration

(FHA), who will top up the shortfall of funds if the property sale proceeds is less than the

outstanding loan balance when the loan is terminated. Therefore, the guarantee fee may

be regarded as the premium for the NNEG. To date, high rates of house price inflation

have left the FHA with few claims to pay. However, it is entirely possible that house price

inflation will slow down. It would be warranted to examine whether or not the fee of 2%

of the initial property value would be sufficient to fund the guarantee in the long run.



Chapter 6

Concluding Remarks and Further

Research

It is hard to conceive that mortality projections without measures of uncertainty would

be acceptable for use in actuarial risk management in the future. While uncertainty can

be effectively forecasted by means of stochastic methodologies, the probability statements

about mortality projections may, to a certain extent, be based on untestable assumptions

and model specification.

In this thesis, we relaxed the structure of the Lee-Carter model by introducing a more

realistic assumption that the death counts follow a Negative Binomial distribution. We

demonstrated that such an assumption is equivalent to presuming the heterogeneity within

each age-period cell follows a gamma distribution. The revised version of the Lee-Carter

model gives a better fit to historical data and captures more uncertainty about future

mortality dynamics.

The model was then utilized in the derivation of mortality improvement scales for

Canadian insured lives. To solve the problem of data insufficiency, we developed a joint

model that could borrow information from the mortality data of the general population.

In addition to the generalization proposed in the previous chapter, we also took account of

shocks and structural shifts in the measures of uncertainty by introducing outliers detected

in the historical data to the bootstrapping procedure.

Due to the lack of old-age mortality data, the improvement scales are available only up

161
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to age 99. To estimate survival probabilities beyond this age, we introduced a method for

actuaries to extrapolate mortality rates and to determine the age at which the life table

should be closed. We also applied this method to the prediction of the highest attained

age for various birth cohorts.

Finally, we studied the valuation of the NNEG offered in most roll-up mortgages. Such

a valuation requires a simultaneous consideration of demographic and financial risks. We

handled mortality risk by the stochastic mortality models we considered, and house-price

inflation risk by an ARMA-EGARCH model. Under the ARMA-EGARCH assumption,

the Black-Scholes formula is no longer applicable, and therefore we resort to the risk-

neutral valuation based on an equivalent martingale measure identified by the conditional

Esscher transformation. The pricing formula is accompanied with some hedging and capital

reserving strategies that are yet to be implemented on the basis of the ARMA-EGARCH

framework.

In addition to the implementation of hedging and capital reserving strategies under the

ARMA-EGARCH assumption, we may also consider the following suggestions for further

research.

• Generalizing the threshold life table to a version for multiple-life.

The threshold life table in Chapter 4 may be generalized to a version that is capable

of describing the statistical dependence between the mortality of two or more lives.

Such a generalization may be performed by considering copulas of different types.

The generalized threshold life table can then be applied to the valuation of the NNEG

so that NNEGs sold to couples can be priced.

• Investigation into the moral hazard risk in equity release mechanisms.

When the NNEG becomes “in the money”, the borrower would have little incentive

to maintain his/her home. The lack of maintenance may lead to a depreciation of

the property value and consequently a reduction of the provider’s profit. The risk of

such problems may be reduced if the contracts are redesigned. For example, Shiller

and Weiss (2000) argued that the moral hazard risk in reverse mortgages might be

reduced if the borrower is penalized for deviations of home selling price from the

value predicted by a house price index and the value of the mortgaged property at
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inception of the contract. It would be interesting to search for alternative contract

designs that can reduce the risk of moral hazard and keep the product attractive to

potential buyers.

• Refitting the stochastic mortality models using alternative data sets.

The joint model for estimating mortality improvement scales may be refitted to

Canadian annuitants mortality experience. The aims of refitting are threefold: (1)

to obtain improvement scales for the annuitants, (2) to test the robustness of our

model, and (3) to obtain a relationship between the mortality of the annuitants and

the general population. Similarly, the model may also be refitted to the mortality

data from the Canada/Quebec Pension Plan.

• Investigation into other equity release products.

Although the UK equity release market is currently dominated by roll-up mortgage

products, the development of other equity release businesses has been fairly strong

in recent years. In FY 2005, home reversions accounted for £54.6 million worth of

new business, up 35% year on year from FY 2004 (£40.5 million) (SHIP, 2006a).

Drawdown mortgage business has also exhibited an impressive growth. Indeed, a

recent SHIP Members Survey (SHIP, 2006b) showed drawdown mortgages as one of

the most popular features for consumers in 2005.

The risk management for these products is rather different from that for roll-up mort-

gages. For instance, home reversion providers are exposed to house price inflation risk

directly rather than via the NNEG, and drawdown mortgage providers are exposed

to the uncertainty about policyholder behaviors, since policyholders are allowed to

draw down either regular or ad hoc amounts. A separate study is needed to analyze

the financial and demographic risks associated with these equity release products.

• Estimating the impact of cohort effect on the mortality improvement scales.

We define a mortality improvement factor as 1− mx,t

mx,t−1
. The contour maps in Figure

6.1 show the mortality improvement factors for the English and Welsh population

(for ease of exposition, we use two contour levels only). Diagonals in the contour

maps, from bottom left to top right, show cells for succeeding ages for the same year
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of birth. The strong diagonal features in the contour maps indicate that the mortality

improvement for some cohorts is exceptionally large (or small). This phenomenon is

known as the cohort effect.

To model the cohort effect, Richards et al. (2005) applied the P-splines regression to

the age-cohort dimension, while Renshaw and Haberman (2006) used the Lee-Carter

model with an additional bilinear term; that is,

ln(mx,t) = ax + bxkt + cxιt−x + εx,t, (6.1)

where ax, bx and kt are the original Lee-Carter parameters, ιt−x is an additional

driving force of mortality improvement due to the cohort effect, cx determines the

sensitivity to ιt−x at different ages, and εx,t is the error term. In the derivation of the

mortality improvement scales in Chapter 3, we have not taken any cohort effect into

account. It would be interesting to explore how the mortality improvement scales in

Chapter 3 may change when a cohort effect is considered.
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Fig. 6.1. Improvement factors based on English
and Welsh population mortality, male and female.1

1Source of data: Human Mortality Database (2005).
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Appendix

Base mortality tables (mx,2001) and mortality improvement scales (zx, u1,x, u2,x, and u3,x)

for the Canadian insured lives, ultimate, composite smoker/non-smoker.

Male Female

Age (x) mx,2001 zx u1,x u2,x mx,2001 zx u1,x u2,x

15 0.000593 -0.029211 0.000005 0.003057 0.000242 -0.014534 0.000006 0.000938

16 0.000613 -0.030018 0.000004 0.003364 0.000249 -0.015623 0.000004 0.001063

17 0.000633 -0.030819 0.000005 0.003598 0.000257 -0.016680 0.000003 0.001198

18 0.000654 -0.031619 0.000007 0.003785 0.000265 -0.017719 0.000002 0.001345

19 0.000675 -0.032421 0.000008 0.003949 0.000273 -0.018757 0.000001 0.001506

20 0.000697 -0.033229 0.000009 0.004115 0.000282 -0.019809 0.000000 0.001682

21 0.000718 -0.034042 0.000010 0.004300 0.000292 -0.020885 0.000000 0.001874

22 0.000739 -0.034853 0.000010 0.004502 0.000302 -0.021982 0.000001 0.002081

23 0.000761 -0.035653 0.000009 0.004714 0.000312 -0.023095 0.000002 0.002300

24 0.000783 -0.036433 0.000009 0.004933 0.000324 -0.024220 0.000004 0.002532

25 0.000806 -0.037184 0.000010 0.005151 0.000336 -0.025351 0.000006 0.002775

26 0.000830 -0.037894 0.000012 0.005362 0.000350 -0.026482 0.000009 0.003026

27 0.000855 -0.038542 0.000015 0.005557 0.000365 -0.027603 0.000012 0.003285

28 0.000881 -0.039107 0.000020 0.005727 0.000381 -0.028706 0.000014 0.003548

29 0.000908 -0.039569 0.000026 0.005861 0.000399 -0.029780 0.000015 0.003813

30 0.000937 -0.039905 0.000034 0.005950 0.000420 -0.030817 0.000015 0.004078

31 0.000968 -0.040103 0.000044 0.005990 0.000443 -0.031806 0.000014 0.004340

178
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Base mortality tables (mx,2001) and mortality improvement scales (zx, u1,x, u2,x, and u3,x)

for the Canadian insured lives, ultimate, composite smoker/non-smoker (cont’d).

Male Female

Age (x) mx,2001 zx u1,x u2,x mx,2001 zx u1,x u2,x

32 0.001001 -0.040161 0.000054 0.005986 0.000468 -0.032738 0.000011 0.004594

33 0.001035 -0.040081 0.000064 0.005944 0.000497 -0.033606 0.000008 0.004836

34 0.001073 -0.039866 0.000071 0.005872 0.000529 -0.034399 0.000005 0.005061

35 0.001113 -0.039516 0.000076 0.005775 0.000565 -0.035108 0.000003 0.005264

36 0.001156 -0.039039 0.000077 0.005657 0.000606 -0.035732 0.000001 0.005443

37 0.001203 -0.038454 0.000075 0.005515 0.000651 -0.036279 0.000001 0.005600

38 0.001255 -0.037780 0.000072 0.005347 0.000702 -0.036758 0.000002 0.005738

39 0.001314 -0.037036 0.000068 0.005149 0.000759 -0.037178 0.000004 0.005861

40 0.001381 -0.036241 0.000064 0.004918 0.000822 -0.037550 0.000006 0.005970

41 0.001457 -0.035409 0.000061 0.004658 0.000892 -0.037875 0.000009 0.006067

42 0.001543 -0.034544 0.000060 0.004382 0.000970 -0.038145 0.000012 0.006152

43 0.001643 -0.033649 0.000061 0.004101 0.001057 -0.038353 0.000016 0.006222

44 0.001757 -0.032729 0.000064 0.003831 0.001154 -0.038489 0.000020 0.006278

45 0.001890 -0.031785 0.000070 0.003584 0.001263 -0.038545 0.000024 0.006318

46 0.002042 -0.030830 0.000081 0.003367 0.001384 -0.038502 0.000027 0.006334

47 0.002218 -0.029884 0.000097 0.003176 0.001520 -0.038328 0.000031 0.006312

48 0.002418 -0.028970 0.000123 0.003009 0.001672 -0.037993 0.000035 0.006236

49 0.002646 -0.028108 0.000159 0.002861 0.001842 -0.037463 0.000041 0.006090

50 0.002905 -0.027321 0.000208 0.002730 0.002033 -0.036708 0.000047 0.005859

51 0.003197 -0.026625 0.000270 0.002614 0.002247 -0.035731 0.000055 0.005546

52 0.003526 -0.026033 0.000340 0.002516 0.002486 -0.034575 0.000063 0.005174

53 0.003896 -0.025557 0.000414 0.002438 0.002753 -0.033287 0.000072 0.004766

54 0.004308 -0.025209 0.000489 0.002381 0.003049 -0.031912 0.000079 0.004349

55 0.004768 -0.025000 0.000559 0.002350 0.003376 -0.030497 0.000085 0.003946

56 0.005279 -0.024941 0.000622 0.002345 0.003739 -0.029084 0.000089 0.003571
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Base mortality tables (mx,2001) and mortality improvement scales (zx, u1,x, u2,x, and u3,x)

for the Canadian insured lives, ultimate, composite smoker/non-smoker (cont’d).

Male Female

Age (x) mx,2001 zx u1,x u2,x mx,2001 zx u1,x u2,x

57 0.005845 -0.025042 0.000677 0.002369 0.004139 -0.027707 0.000092 0.003230

58 0.006472 -0.025312 0.000723 0.002425 0.004580 -0.026404 0.000094 0.002925

59 0.007164 -0.025761 0.000758 0.002515 0.005068 -0.025211 0.000097 0.002660

60 0.007926 -0.026397 0.000782 0.002641 0.005607 -0.024163 0.000101 0.002439

61 0.008767 -0.027179 0.000796 0.002797 0.006200 -0.023270 0.000105 0.002260

62 0.009696 -0.028025 0.000806 0.002971 0.006855 -0.022519 0.000109 0.002118

63 0.010727 -0.028851 0.000815 0.003148 0.007576 -0.021896 0.000114 0.002007

64 0.011874 -0.029571 0.000831 0.003317 0.008370 -0.021386 0.000118 0.001920

65 0.013155 -0.030105 0.000856 0.003463 0.009243 -0.020977 0.000121 0.001851

66 0.014587 -0.030420 0.000891 0.003575 0.010203 -0.020644 0.000122 0.001795

67 0.016184 -0.030524 0.000931 0.003647 0.011261 -0.020362 0.000124 0.001749

68 0.017962 -0.030427 0.000971 0.003668 0.012429 -0.020102 0.000124 0.001708

69 0.019935 -0.030140 0.001007 0.003630 0.013720 -0.019835 0.000125 0.001667

70 0.022119 -0.029671 0.001035 0.003527 0.015152 -0.019535 0.000126 0.001624

71 0.024536 -0.029047 0.001052 0.003366 0.016742 -0.019194 0.000128 0.001575

72 0.027215 -0.028303 0.001059 0.003167 0.018515 -0.018820 0.000131 0.001522

73 0.030190 -0.027473 0.001054 0.002952 0.020497 -0.018420 0.000138 0.001463

74 0.033499 -0.026594 0.001038 0.002739 0.022719 -0.018000 0.000147 0.001398

75 0.037189 -0.025696 0.001011 0.002548 0.025220 -0.017567 0.000161 0.001327

76 0.041305 -0.024768 0.000977 0.002378 0.028040 -0.017111 0.000181 0.001250

77 0.045900 -0.023768 0.000944 0.002212 0.031219 -0.016612 0.000210 0.001169

78 0.051030 -0.022655 0.000920 0.002037 0.034808 -0.016052 0.000250 0.001083

79 0.056759 -0.021388 0.000911 0.001836 0.038860 -0.015410 0.000304 0.000993
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Base mortality tables (mx,2001) and mortality improvement scales (zx, u1,x, u2,x, and u3,x)

for the Canadian insured lives, ultimate, composite smoker/non-smoker (cont’d).

Male Female

Age (x) mx,2001 zx u1,x u2,x u3,x mx,2001 zx u1,x u2,x u3,x

80 0.063156 -0.019931 0.000924 0.001597 6.23×10−6 0.043435 -0.014670 0.000373 0.000901 2.76×10−6

81 0.070280 -0.018304 0.000958 0.001330 6.33×10−6 0.048592 -0.013836 0.000456 0.000807 3.19×10−6

82 0.078176 -0.016558 0.001005 0.001056 6.44×10−6 0.054382 -0.012928 0.000550 0.000713 3.65×10−6

83 0.086884 -0.014746 0.001058 0.000797 6.57×10−6 0.060856 -0.011965 0.000649 0.000621 4.12×10−6

84 0.096432 -0.012921 0.001111 0.000577 6.70×10−6 0.068060 -0.010966 0.000750 0.000534 4.59×10−6

85 0.106916 -0.011131 0.001156 0.000415 6.82×10−6 0.076021 -0.009949 0.000850 0.000451 5.06×10−6

86 0.118414 -0.009406 0.001191 0.000307 6.93×10−6 0.084806 -0.008934 0.000944 0.000375 5.50×10−6

87 0.131010 -0.007762 0.001216 0.000239 7.01×10−6 0.094486 -0.007941 0.001031 0.000307 5.91×10−6

88 0.144792 -0.006216 0.001230 0.000195 7.05×10−6 0.105137 -0.006988 0.001107 0.000247 6.27×10−6

89 0.159854 -0.004786 0.001234 0.000162 7.06×10−6 0.116841 -0.006094 0.001170 0.000196 6.57×10−6

90 0.176297 -0.003486 0.001226 0.000126 7.03×10−6 0.129683 -0.005276 0.001216 0.000155 6.82×10−6

91 0.194224 -0.002313 0.001207 0.000087 6.95×10−6 0.143755 -0.004532 0.001245 0.000123 7.01×10−6

92 0.213749 -0.001258 0.001177 0.000053 6.82×10−6 0.159152 -0.003852 0.001258 0.000098 7.12×10−6

93 0.234986 -0.000308 0.001138 0.000028 6.65×10−6 0.175974 -0.003223 0.001255 0.000080 7.18×10−6

94 0.258060 0.000000 0.001089 0.000020 6.44×10−6 0.194329 -0.002636 0.001237 0.000065 7.18×10−6

95 0.283100 0.000000 0.001031 0.000033 6.19×10−6 0.214326 -0.002082 0.001203 0.000054 7.13×10−6

96 0.310241 0.000000 0.000965 0.000060 5.92×10−6 0.236081 -0.001567 0.001155 0.000045 7.03×10−6

97 0.339623 0.000000 0.000891 0.000090 5.62×10−6 0.259715 -0.001106 0.001093 0.000038 6.91×10−6

98 0.371395 0.000000 0.000812 0.000113 5.31×10−6 0.285354 -0.000710 0.001018 0.000032 6.76×10−6

99 0.405708 0.000000 0.000728 0.000118 4.99×10−6 0.313126 -0.000393 0.000929 0.000026 6.59×10−6


