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Abstract

This thesis studies the non-linear (Barkas) effects on stopping of fast moving molecular ions
through solids. We model the solid target by a rigid lattice of positive ion cores surrounded by
a gas of electrons. To model the electron gas we use a hydrodynamic model with a Thomas-
Fermi-von Weizsäcker expression for the internal energy. The disturbance to the charge density
and velocity profile of the gas due to the intruder is assumed small and a perturbation expansion
is used. The gas is assumed to be initially at rest.

A derivation for the first and second order stopping force on an projectile due to the induced
charge density of the target is given. Structure factors are introduced to capture the physics
relating to the structure of the projectile and to allow maximum flexibility and generalization.

The second order stopping force is calculated using a novel ”holepunch” integration method
and is compared to other available methods.

Results are obtained for the case of a dicluster of protons which are colinear with their direc-
tion of motion as well as for a dicluster of protons which are randomly oriented incident on an
aluminum target and compared to the single proton case.
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B.1 Thomas-Fermi Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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Chapter 1

Introduction

1.1 Motivation

Since the beginning of the 20th century, the study of the interaction between atomic projec-
tiles and various target media has been studied extensively. Beginning with the famous studies
conducted by Rutherford at the turn of the century, experimental and theoretical methods have
dramatically increased in sophistication and precision. The interest in these projectile-target
interactions goes far beyond probing fundamental physical processes. The field has also been
fueled by ongoing fusion research as well as materials modification.

One method of controlled fusion is to implode an inertial confinement fusion pellet by bom-
bardment from a beam of light ions [1]. However, to properly design the target for optimal
performance one requires a description of deposition of energy into the pellet. Ideally, this de-
position model should be flexible enough to describe results for a wide range of target materials
as well as projectile ions. Furthermore, fairly recently, the potential of initiating fusion reaction
in solids has been suggested and discussed [2, 3]. In these studies, rather than using a beam of
light ions as projectiles, clusters of molecules are used. Again however, a firm theoretical under-
standing of the underlying processes would be of great use and benefit for further exploration of
fusion methods.

On the other hand, the use of bombardment of solid targets by ion beams has long been
studied for their ability to leave ion tracks [4] through the solid. This idea may be extended to
high energy beams of clusters, for example in [5]. This area has received a great deal of attention

1



2
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THROUGH SOLIDS

Figure 1.1: Ion Tracks

recently due to its applicability to the creation of carbon nanotubes [6]. Once again, the key issue
is to understand how energy is deposited as the ion (or cluster) traverses the solid target.

What is more is that when a beam of ions is used to bombard a target, the distances between
consecutive ions are so large that the excitations which occur in the target have sufficient time
to relax before the following ion. This is not so for clusters of ions where the intermolecular
distance of the projectile does not allow the medium to relax before being excited again by
another ion. This effect was shown by Brandt, Ratkowski and Ritchie ([7]) who showed that H+

2

and H+
3 lost more energy per proton than isolated protons.

These physical applications are examples of why energy deposition is of interest, specifically
in recent years. One particular aspect of this issue is the consideration of how much energy is
lost by the projectile per unit distance of travel through the target. This quantity is called the
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Figure 1.2: Potential distribution from a 400 keV proton traversing carbon (~ωp = 25.0eV).
Distances are shown in units of λ = 14.5Å [9].

stopping force and in some works the stopping power. The stopping force is what we consider
in this work.

The full dynamical picture of a projectile’s interaction with the electron ’sea’ may be replaced
by a simplified picture of a swift moving projectile through an electron gas. As this projectile
travels through the gas it induces an electron density ’wake’ behind it [8], much like a boat on the
surface of a lake (Figure 1.2). This wake will then alter the electric field acting on the projectile,
effectively slowing it down. This is clear from Figure 1.2 where the slope of the plot is directly
related to the stopping force which would be experienced by an ion behind the leading ion. Even
for single ion projectiles this interaction may be quite complex. Most work considers only the
linear wake (proportional to the charge on the projectile). What’s more is that for a cluster of ions
transversing the electron gas, the wakes may constructively and destructively interfere. Many
different attempts have been made to give a description of this system in a rigorous fashion.

Within the area of stopping force, there are many sub-areas and methods to understanding
the problem. One method in particular is to use a perturbative approach by assuming the pro-
jectile causes only a small disturbance in the overall charge density profile of the target. This
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small disturbance causes only a small change in the equilibrium electric potential throughout the
system.

This approach can be a very helpful simplification in an attempt to solve the system. How-
ever, the system can still be very complex for general projectiles and targets. Work has been done
previously to calculate the stopping force by a single ion as a projectile to first order in the pertur-
bation expansion. This work was furthered by studying the second order correction to stopping
force of a single ion [10, 11]. This second order correction is called the Barkas effect, which was
named after W.H. Barkas who first experimentally discovered the charge-sign dependence on the
stopping force of an ion [12, 13, 14]. The first order approximation provides no such dependance
since results in this regime are quadratically dependent on the charge of the projectile.

As shown in Figure 1.3 there is clearly a non-linear effect on the potential that the projectile
induces in the medium. The first-order approximation, g(1) is defined through,

Φ
(1)
ind(R) =

e1ωp
v

g(1)(R) , (1.1)

with R = r − vt, v as the projectile speed, e1 as the charge on projectile. Similarly, for the
second order correction,

Φ
(2)
ind(R) =

e1ωp
v

πe1eωp
mv3

g(2)(R) , (1.2)

with m as the mass of the electron, e as the charge on an electron and ωp is the plasma frequency.
We see in Figure (1.3) the difference between the first order induced potential and the second

order induced potential. It is the purpose of this work to explore how the stopping force is effected
by these differences in linear (first order) and non-linear (second order) induced potentials.

While non-linear effects in stopping of single ions have been studied over the years, only a
few studies appeared on such effects on stopping of clusters and all the studies were all limited to
slow diclusters [15, 16, 17]. The stopping of fast clusters was always treated in the literature by
linear theories [18, 19, 20]. Part of the motivation of the present work is to remedy this situation
and analyze the non-linear effects in the stopping of fast clusters in solids.

1.2 Physical Model

The purpose of this work is to expand upon previous work carried out in the single ion case,
particularily in the medium to high speed regime. Our work specifically deals with ion clusters
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Figure 1.3: Contour plot of the reduced first and second order induced potentials for a static
electron gas with (2πv2/~ωp) = 4. The z direction points in the direction of projectile velocity
and the ρ direction is perpendicular to it. The projectile is located at (z, ρ) = (0, 0). The
coordinates are given in units of the adiabatic distance ( v

ωp
)[10].

of at most two ions, and these may be treated as small perturbations when compared to the charge
density profile of the target.

As a fast cluster (having a speed in excess of the Bohr speed) travels through a solid it is
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subject to many complex interactions with the target medium. As it passes through the first few
layers of atoms in the target the projectile loses all of its valence shell electrons. This usually
happens on the time scale of about 1 fs. Despite this striping, the charge state of the constituent
ions is quickly (≈1fs) equilibrated [21]. As the projectile penetrates further into the target the
electronic excitations in the target exhibit strong interference effects due to the close proximity
of constituent ions. This is called the vicinage effect [22] and it is the constructive interference
that comes from the vicinage effect which gives rise to the enhanced energy loses. If the projec-
tile continues to penetrate the target then the dynamically screened inter-ionic forces and elastic
scattering of constituent ions off the target ions will cause the projectile’s ions to spatially dis-
perse. This effect is called the Coulomb explosion [7]. These competing mechanisms give rise to
increasing inter-ionic distances ([18, 19]) which develop over a time scale of about 10 fs. As the
inter-ionic distance grows, the effect on the stopping force due to the vicinage effect diminishes
and becomes quite small after several 10 fs [20]. On the time scales under consideration, it is
reasonable to treat the target as a lattice of rigid positive atomic cores surrounded by a ’sea’ of
electrons. Since the atomic cores are much heavier than their valence electron counterparts, the
overwhelming dynamical response of the medium due to the intruder is from the valence elec-
trons. It is also reasonable to neglect the effect of the Coulomb explosion in sufficiently thin
targets and treat the clusters of as rigid over the entire region.

Regarding the microscopic description of the dynamical response of the electron gas in the
target, some earlier models which have been considered include the hydrodynamic model [23],
many body perturbation methods using the random phase approximation (RPA) [24, 25], an
extension of Lindhard’s method for an electron gas [10] and a time dependent Hartree self-
consistent-field method [11]. As pointed out in [11], all of the aforementioned models have
self-consistent fields and obey conservation laws up to second order in the magnitude of the
charge of the projectile. Further, it is shown that for single ions with medium to large speeds,
the hydrodynamic model (with suitable choices for the internal energy and in the case of a static
electron gas) reproduces the results other models, as shown in Figures 1.4 and 1.5 for the first-
and second- order stopping forces. Since this is precisely the regime targeted by this work and
since the hydrodynamic model is computationally the most straightforward, it offers the best
opportunity to extend the exploration of stopping force of ion clusters.

Of course a classical fluid approach to the case of an electron gas would not be reasonable
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Figure 1.4: Comparison of proton stopping forces through a solid with Wigner-Seitz radius (rs)
of 2.07 a.u. The solid line (—–) is calculated using the TFW hydrodynamic model. The dashed
line ( ) is calculated using the random phase approximation [11].

since the electrons are clearly outside the domain of classical physics. The quantum nature of
the system enters through the expression for the internal energy, Eint[n],

Eint[n] = U [n] +G[n] , (1.3)

where n is the electron number density of the gas, U is the classical coulomb energy, and G is
the rest. It is the choice of G which specifies the quantum nature of the gas. In many studies G is
defined as the sum of the kinetic energy per particle of a degenerate Fermi gas and a correction
term due to von Weizsäcker. Thus,

G[n] = TTF [n] + TW [n] . (1.4)

This approximation for the energy G is called the Thomas-Fermi-Weizsäcker model and is dis-
cussed in appendix B.
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Figure 1.5: Coefficient of the Barkas correction term at medium to high speeds for a proton
through an electron gas with Wigner-Seitz radius (rs) of 2.07 a.u.. The dotted line (· · · ) is
calculated using the random phase approximation [26]. The dashed line ( ) is calculated using
the TFW hydrodynamic model with a static electron gas [10]. The x’s denote the calculations
carried out using the TFW model with c0 = 0 (or in this work α = 0) and η = ωp/10. · indicates
calculations done with η = 0+ and c20 = 1/3k2

F [11].

1.3 Outline

The work contained here focuses on two specific cases of ion cluster interaction with an electron
gas. The first is the case of a colinear di-cluster consisting of two protons aligned in the direction
of the cluster’s velocity. The second case is a randomly oriented cluster of two protons.

Chapter 2 deals exclusively with the derivation of stopping force using the hydrodynamic
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model. We shall see how expressions for the first order and second order stopping forces come
about naturally from a perturbation expansion. The important thing will be to notice how the
second order correction to the stopping force will indeed have a dependency on Z3, and thus will
inherently depend on the sign of the charge. This is the aforementioned Barkas effect.

In the third chapter we shall discuss the methods used to calculate the first and second order
stopping force for both the colinear cluster and randomly oriented di-cluster. These will include
discussion about the numerical integration methods. Due to the appearance of singularities in
the integrand, special care needs to be taken when integrating over certain regions. What’s more
is that, in the case of the second order correction, regular numerical integration methods prove
to be completely unreliable. This section will discuss a novel approach to circumventing these
issues and obtaining accurate, reliable results.

Chapter 4 will provide justification and verification of the methods we used which were
described in chapter 3.

Chapter 5 will be dedicated to presenting and discussing the results and how they compare to
previous results. Although the complexity of the calculations and unavailability of experimental
data limit somewhat the ability to independently check the results, this section will discuss the
clever way one can argue that the results are indeed a reliable description of the physical process.

Finally a short conclusion will be given, outlining the work done, its place amongst the work
done by others and possibilities for future work.

Throughout the work we shall use atomic units and Gauss’ electrostatic units, ie: m = ~ =

e = 1 and 4πε0 = 1, where e is the proton charge.





Chapter 2

Stopping Force

In this chapter we describe the general formalism of stopping force. We begin by describing the
derivation of the expression for the stopping force, and then move on to outlining the hydrody-
namic model of a static electron gas and how it can be used to calculate the stopping force of a
charged projectile moving through a static electron gas.

2.1 Stopping Force

Consider a charged projectile moving through a static electron gas with a velocity v(r, t). As the
projectile moves through the gas it experiences forces due to the interaction of the projectile’s
charges with the electrons in the gas. The stopping force is defined to be the force that the
projectile experiences in the direction of motion. Thus,

S = −v̂ · F , (2.1)

where F is the force experienced by the projectile due to the polarization of the electron gas and
v̂ = v/‖v‖.

We describe the projectile by a charge density ρext(r, t) where r is the position vector in the
laboratory coordinate system. Again, we assume that the cluster is rigid and doesn’t experience
Coulomb explosion or any other deformation during its travel through the gas. As pointed out,
this is an acceptable assumption provided that the time scale of transversal of the gas is small
relative to the time scale of the deformation. Thus, the charge density of the projectile remains

11
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constant and has no explicit time dependence. The electric force experienced by the projectile
over a differential volume element d3r at position r is,

dF = −ρext(r, t)~∇Φind(r, t)d
3r , (2.2)

where Φind is the electrostatic potential induced by the polarization of the medium due to the
presence of the external charge ρext(r, t) at r and time t. It is important to realize that this
electrostatic potential is due to contributions from the background positive ion cores and from
the electron gas. By integrating over all r space we can find the total stopping force,

S =
1

‖v‖

∫
d3r ρext(r, t)v · ~∇Φind(r, t) . (2.3)

The task now is to describe Φind(r, t) in a self consistent manner. To this end, we use the
hydrodynamic model.

2.2 Hydrodynamic Model

In this section we derive the hydrodynamic equations for an inhomogenous electron gas using
variational principles.

We begin by characterizing the gas by the electron number density n(r, t) and the hydrody-
namical velocity, u(r, t). Further, we assume the flow to be irrotational, and hence may introduce
a velocity potential, ψ(r, t), such that

u(r, t) = −
−→
∇ψ(r, t) . (2.4)

We can write the Hamiltonian for this system as,

H[n(r, t), ψ(r, t)] = Hkinetic +Hint +HCoul +Hext +H+ , (2.5)

where the Hkinetic , Hint , HCoul , Hext , H+ are the contributions to the total energy made by the
macroscopic motion of the electrons, the energy due to the internal kinetic energy of the gas, the
Coulomb energy from electron-electron interactions, the energy due to external forces and the
energy due to the positive ion cores respectively.
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From considering 2.4 we can write the macroscopic motion contribution as,

Hkinetic =

∫
d3r

1

2
|
−→
∇ψ|2 n(r, t) , (2.6)

the internal energy as,
Hint[n(r, t)] = G[n(r, t)] , (2.7)

the Coulomb term,

HCoul =
1

2

∫
d3r

∫
dr′

n(r, t)n(r′, t)

|r− r′|
, (2.8)

and the external contribution as,

Hext = −
∫
d3rn(r, t)φext(r, t) , (2.9)

where φext(r, t) is the potential due to the external projectile moving through the gas,

φext(r, t) =

∫
d3r′

ρext(r, t)

|r− r′|
, (2.10)

andG is a functional to be described in a subsequent section. The contribution due to the positive
ion cores, H+, is given by,

H+ = −
∫
d3rn(r, t)V+(r) . (2.11)

Thus, the total energy of the system is then given by,

H[n(r, t), ψ(r, t)] =

∫
d3r

1

2
|
−→
∇ψ|2n(r, t) +G[n(r, t)]

+
1

2

∫
d3r

∫
d3r′

n(r, t)n(r′, t)

|r− r′|
−
∫
d3rn(r, t)φext(r, t)

−
∫
d3rn(r, t)V+(r) . (2.12)

where V+ is the electrostatic potential produced by the positive ion cores.
Now, by treating ψ and n as conjugate variables, we can appeal to the variational principle,

δ

∫ t2

t1

Ldt = 0 , (2.13)

to obtain the equations of motion. The Lagrangian, L, in 2.13 is given by,
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L =

∫
d3rn(r, t)

dψ(r, t)

dt
−H[n(r, t), ψ(r, t)] , (2.14)

with normalization constraint, ∫
d3rn(r, t) = N , (2.15)

where N is the total number of electrons.
By using the Euler-Lagrange equations,

∂

∂t

∂L

∂ψ′
− ∂L

∂ψ
= 0 , (2.16)

∂

∂t

∂L

∂n′
− ∂L

∂n
= 0 , (2.17)

where ψ′ = ∂ψ
∂t

and n′ = ∂n
∂t

, we can obtain partial differential equations describing the evolution
of n and ψ.

From 2.14 and 2.12 we obtain,

∂L

∂ψ′
= n , (2.18)

∂L

∂ψ
=
−→
∇ · (n

−→
∇ψ) , (2.19)

∂L

∂n′
= 0 , (2.20)

∂L

∂n
=
∂ψ

∂t
− δG

δn
− 1

2
|
−→
∇ψ|2 + Φ(r, t) . (2.21)

We immediately can see that G is the term which brings in the quantum effects as the rest of the
terms are purely of classical nature.

We have also defined Φ(r, t) in 2.21 to encapsulate the total electrostatic potential,

Φ(r, t) = −
∫
d3r′

n(r′, t)

|r− r′|
+ φext(r, t) + V+(r) , (2.22)

which one can see obeys the Poisson equation for the total charge,

∇2Φ(r, t) = −4π[ρext(r, t) + n+ − n(r, t)] , (2.23)

where n+ is the number density of the positive ion cores.
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Thus, upon substitution back into the Euler-Lagrange equations we obtain,

∂n

∂t
=
−→
∇ · (n

−→
∇ψ) , (2.24)

∂ψ

∂t
+ ηψ =

δG

δn
+

1

2
|
−→
∇ψ|2 − Φ(r, t) , (2.25)

where the term ηψ was added by hand to introduce friction into the system.
We easily identify 2.24 as the continuity equation for a classical fluid and 2.25 as the Bernoulli

equation. If we set G = 0 this set of equations becomes just the evolution equations for a classi-
cal fluid. It is in this light that we can see that the quantum nature of the system enters through
G exclusively, as will be mentioned in Appendix A.

Our method of approach is to assume that the charge density of our projectile will be small
compared to the charge density of the electron gas. This allows us to perturbatively expand the
charge density about the equilibrium charge density, n0. Note that when in equilibrium, n0 = n+.
Expanding about n0,

n(r, t) = n0 + λn1(r, t) + λ2n2(r, t) + . . . . (2.26)

Since we are assuming our charged projectile will induce only a small change in the charge
density of the electron gas, we can assume that the velocity field of the gas may also be expanded
about its equilibrium value u0,

u(r, t) = u0 + λu1(r, t) + λ2u2(r, t) + . . . . (2.27)

We shall consider only the case of a static gas, and thus it’s at rest in equilibrium, ie, u0 = 0.
Thus,

u(r, t) = λu1(r, t) + λ2u2(r, t) + . . . , (2.28)

which, in its potential form is,

ψ(r, t) = λψ1(r, t) + λ2ψ2(r, t) + . . . . (2.29)

Thus,
u(r, t) = −~∇(λψ1(r, t) + λ2ψ2(r, t) + . . .) . (2.30)
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Likewise we shall see that we may write,

δG

δn
=

(
δG

δn

)
0

+ λ

(
δG

δn

)
1

+ λ2

(
δG

δn

)
2

+ . . . . (2.31)

We can use these expansions in the continuity equations and the momentum (Bernoulli) equa-
tion.

2.2.1 Continuity Equation

From the continuity equation (2.24) we have that,

∂n

∂t
+ ~∇ · (nu) = 0 , (2.32)

Substituting in our perturbation expansions 2.26 and 2.30,

∂

∂t

(
n0 + λn1 + λ2n2

)
+ ~∇ ·

(
(n0 + λn1 + λ2n2)(−~∇(λψ1 + λ2ψ2))

)
= 0 (2.33)

which, when we collect like powers of λ gives,

λ

(
∂n1

∂t
− n0∇2ψ1

)
+ λ2

(
∂n2

∂t
− n0∇2ψ2 − ~∇ · (n1

~∇ψ1)

)
= 0 . (2.34)

Thus, our expressions for the first and second order continuity equation is,

First Order: ∂n1

∂t
− n0∇2ψ1 = 0 (2.35)

Second Order: ∂n2

∂t
− n0∇2ψ2 − ~∇ · (n1

~∇ψ1) = 0 . (2.36)

We now turn our attention to the momentum equation.

2.2.2 Momentum Equation

As outlined in the previous section, we use the perturbation expansions 2.26 and 2.30 in the
momentum equation, 2.25. However, first we take the gradient of both sides of 2.25,

~∇
(
∂ψ

∂t
+ ηψ

)
= ~∇

(
δG

δn
+

1

2
|
−→
∇ψ|2 − Φ(r, t)

)
, (2.37)
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which gives,
∂u

∂t
+ u · ~∇u = −~∇Φ− ~∇

(
δG

δn

)
− ηu . (2.38)

As in the previous section we substitute our expansion 2.30 into 2.38,

∂

∂t

(
~∇(λψ1 + λ2ψ2 + . . .)

)
− ~∇(λψ1 + λ2ψ2 + . . .) · ~∇(~∇λψ1 + λ2~∇ψ2 + . . .)

= ~∇Φ + ~∇
(
δG
δn

)
− η~∇(λψ1 + λ2ψ2 + . . .) . (2.39)

Taking the divergence of both sides,

~∇ ·
[
∂

∂t

(
~∇(λψ1 + λ2ψ2 + . . .)

)
− ~∇(λψ1 + λ2ψ2 + . . .) · ~∇(~∇λψ1 + λ2~∇ψ2 + . . .)

]
= ∇2Φ + ~∇ ·

[
~∇
(
δG

δn

)
− η~∇(λψ1 + λ2ψ2 + . . .)

]
.(2.40)

Using our knowledge from Poisson’s equation 2.23 and our expansion 2.26 for n we obtain,

~∇ ·
[
∂

∂t

(
~∇(λψ1 + λ2ψ2 + . . .)

)
− ~∇(λψ1 + λ2ψ2 + . . .) · ~∇(~∇λψ1 + λ2~∇ψ2 + . . .)

]
= −4π[ρext(r, t)− λn1(r, t)− λ2n2(r, t) + . . .] + ~∇ ·

[
~∇
(
δG

δn

)
− η~∇(λψ1 + λ2ψ2 + . . .)

]
.(2.41)

where we have used the fact that at equilibrium, n+ = n0.
Once again, as in the previous section, we collect like terms of λ and neglect terms which are

higher than second order. This gives,

First Order: − ∂
∂t
∇2ψ1 = −4π (ρext − n1)−∇2

(
δG
δn

)
1
+ n∇2ψ1 (2.42)

Second Order: − ∂
∂t
∇2ψ2 + 1

2
∇2(~∇ψ1)

2 = 4πn2 −∇2
(
δG
δn

)
2

(2.43)

It is worth pointing out here that, if we return to 2.38 and define the total material derivative
of the velocity of a fluid flow to be,

Du

Dt
=
∂u

∂t
+ u · ~∇u . (2.44)

Then by multiplying 2.38 by n on both sides we obtain,

n

(
∂u

∂t
+ u · ~∇u

)
= −nE− ~∇

(
δG

δn

)
− ηnu , (2.45)
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And thus,
Dp

Dt
= F = Fe + Ff + Fint (2.46)

where we have identified Fe = −nE as the electric force per unit volume, Fint = −~∇
(
δG
δn

)
n

as the internal interaction force per unit volume, Ff = −ηnu as the frictional force per unit
volume, and p as the momentum per unit volume of the fluid. This description clearly allows
one to see that 2.45 is nothing more than Newton’s Second Law.

2.2.3 Internal Energy

In section 2.2 we mentioned the contribution by the internal energy to the total energy of he
system. We claimed that the internal energy was a functional of the electron density and called
this functional, G. The model we use for G is the so called ”Thomas-Fermi-Weizsäcker” model.

The Thomas-Fermi-Weizsäcker model gives the internal energy of an electron gas as,

G[n] =

∫
d3rn(r, t)

(
3

10

(
3π2n

)2/3
+

1

8

(~∇n)2

n2

)
(2.47)

The first term is the Thomas-Fermi kinetic energy and the second term is the von Weizsäcker
correction. The internal energy enters into our expression for stopping force through its func-
tional derivative, δG

δn
.

From variational calculus the functional derivative of a functionalF [p] =
∫
d3rf(r, p, ~∇p,∇2p, . . .)

with respect to a function p is defined to be [27],

δF [p]

δp
=
∂f

∂p
− ~∇ · ∂f

∂(~∇p)
+∇2 ∂f

∂(∇2p)
− . . . . (2.48)

In our case we have G[n] =
∫
d3r f(n, ~∇n) where

f(n, ~∇) =
3

10

(
3π2
)2/3

n5/3 +
1

8

(~∇n)2

n
. (2.49)

Thus, we have,

δG

δn
=

(
∂

∂n
− ~∇ · ∂

∂(~∇n)

)(
3

10

(
3π2
)2/3

n5/3 +
1

8

(~∇n)2

n

)
, (2.50)
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which ultimately yields,

δG

δn
=

1

2

(
3π2n

)2/3
+

1

8

(~∇n)2

n2
− 1

4

∇2n

n
. (2.51)

As indicated from 2.31 we are able to write 2.51 as a perturbation expansion. This occurs
naturally when we use our expansion for n (ie: 2.26) in our functional derivative for G. This
substitution gives,

n2/3 =
(
n0 + λn1 + λ2n2

)2/3
≈ n

2/3
0 + λ

2

3

n1

n
1/3
0

+ λ2n
2/3
0

(
2

3

n2

n0

− 1

9

n2
1

n2
0

)
,

‖ ~∇n ‖2

n2
=

λ2~∇n1 · ~∇n1

(n0 + λn1 + λ2n2)
2

≈ λ2
~∇n1 · ~∇n1

n2
0

∇2n

n
=

∇2 (n0 + λn1 + λ2n2)

n0 + λn1 + λ2n2

≈ λ
∇2n1

n0

+ λ2

(
∇2n2

n0

− n1∇2n1

n2
0

)
As done before, we gather the terms together with respect to powers of λ, excluding terms

higher than second order. In this way we can write, as desired,

δG

δn
=

(
δG

δn

)
0

+ λ

(
δG

δn

)
1

+ λ2

(
δG

δn

)
2

(2.52)

where, (
δG

δn

)
0

=
3

2
α , (2.53)(

δG

δn

)
1

= α
n1

n0

− β
∇2n1

n0

, (2.54)(
δG

δn

)
2

= α

(
n2

n0

− 1

6

n2
1

n2
0

)
+
β

2

(
~∇n1

n0

)2

− β
∇2n2

n0

+ β
n1∇2n1

n0

, (2.55)
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where α = 1
3
(3πn0)

2/3 and β = 1
4
.

2.3 Stopping Force On A Cluster

Having developed the hydrodynamic equations in first and second order, in this section we further
develop our expression for the stopping force. We use a perturbation approach here to enable us
to make a connection with the hydrodynamic equations developed above.

From our expression for the stopping force, 2.3, we have,

S =
1

‖v‖

∫
d3r ρext(r)v · ~∇Φind(r, t) . (2.56)

Now the induced potential is given by the expression,

Φind(r, t) =

∫
d3r′

ρind(r
′, t)

|r− r′|
, (2.57)

with ρind being the charge density of the electron gas which is induced by the disturbing projec-
tile. Since this disturbance is small, we again expand,

ρind(r, t) = λρ
(1)
ind(r, t) + λ2ρ

(2)
ind(r, t) + . . . . (2.58)

Thus,

Φind(r, t) =
∫
d3r′

λρ
(1)
ind(r′,t)+λ2ρ

(2)
ind(r′,t)+...

|r−r′| , (2.59)

= λΦ
(1)
ind(r, t) + λ2Φ

(2)
ind(r, t) + . . . . (2.60)

We now write the stopping force as its own expansion,

S = λS1 + λ2S2 + . . . , (2.61)

where,

Si =
1

‖v‖

∫
d3r ρext(r, t)v · ~∇Φ

(i)
ind(r, t) , (2.62)

and,

Φ
(i)
ind(r, t) =

∫
d3r′

ρ
(i)
ind(r

′, t)

|r− r′|
. (2.63)
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Now, in light of the above formulation of the hydrodynamic model, the induced charge den-
sity ρind is nothing more than the negative variation from equilibrium of the electron charge
density, n. Thus,

ρ
(i)
ind(r, t) = −ni(r, t) . (2.64)

We will use the Fourier Transform to remove the ~∇ operator in 2.62 and turn it into an algebraic
equation.

The Fourier Transform, F , of a scalar quantity, A(r, t) is defined by,

A(r, t) =

∫
d3k

(2π)3

dω

2π
Ã(k, ω)eık·r−ıωt ,

and its inverse transform,

Ã(k, ω) =

∫
d3r dtA(r, t)e−ık·r+ıωt , (2.65)

= F [A(r, t)] . (2.66)

Thus,

Φ
(i)
ind(r, t) =

∫
d3k

(2π)3

dω

2π
Φ̃

(i)
ind(k, ω)eık·r−ıωt , (2.67)

and,
~∇Φ

(i)
ind(r, t) = −ı

∫
d3k

(2π)3

dω

2π
kΦ̃

(i)
ind(k, ω)eık·r−ıωt . (2.68)

Now, from 2.64 and the definition of the Fourier Transform we have that,

Φ̃ind(k, ω) =
∫
d3r dtΦind(r, t)e

−ık·r+ıωt , (2.69)

=
∫
d3r dt

∫
d3r′

ρ
(i)
ind(r′,t)

|r−r′| e
−ık·r+ıωt (2.70)

= −
∫
d3r dt

∫
d3r′ ni(r

′,t)
|r−r′| e

−ık·r+ıωt (2.71)

= −4π
k2 ñi(k, ω) . (2.72)

Hence, 2.62 becomes,

Si = − ı

v

∫
d3r ρext(r, t)

∫
d3k

(2π)3

dω

2π

4π

k2
ñi(k, ω) (k · v) eık·r−ıωt (2.73)

Clearly we can see that the ith order stopping force depends crucially on the Fourier Trans-
form of the ith electron density in our hydrodynamic model, ñi(k, ω).
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2.3.1 Electron Density

In the above sections it was shown that the stopping force depended on ñ which is the fourier
transfrom of the electron density in our hydrodynamic model of the electron gas.

First Order Electron Density

We begin by taking the Fourier Transform of the first order continuity equation, 2.35,

F
(
∂n1

∂t

)
−F

(
n0∇2ψ1

)
= 0 . (2.74)

From the definition of the Fourier Transform, we have,

F
(
∂n1

∂t

)
= (−ıω)ñ1(k, ω) . (2.75)

Likewise,

F
(
n0∇2ψ1

)
= (−k2)n0ψ̃1(k, ω) , (2.76)

Thus, in Fourier space, the continuity equation becomes,

− ıωñ1(k, ω) + n0k
2ψ̃1(k, ω) = 0 . (2.77)

From 2.77 can solve for ψ1,

ψ̃1(k, ω) =
ıωñ1

k2n0

. (2.78)

Now performing the Fourier Transform of the first order momentum equation, 2.42,

F
(
− ∂

∂t
∇2ψ1

)
= F

(
4π (n1 − ρext)−∇2

(
δG

δn

)
1

)
+ F

(
−~∇ηu

)
, (2.79)

we obtain,

ıω(−k2)ψ̃1 = 4π (ñ1 − ρ̃ext) + k2

(
α
ñ1

n0

− β
−k2ñ1

n0

)
+ η

(
−k2ψ̃1

)
. (2.80)

Substituting our value for ψ̃1 and identifying the plasma frequency, ωp, as,

ω2
p = 4πn0 , (2.81)



CHAPTER 2. STOPPING FORCE 23

we arrive at, (
−ω2 + ω2

p + αk2 + βk4 − ıωη
)
ñ1 = ω2

pρ̃ext . (2.82)

We simplify this expression by introducing a new function N(k, ω) (which is related to the
dielectric function)

N(k, ω) = βk4 + αk2 − ω2 + ω2
p − ıωη , (2.83)

which allows us to write the first order electron density as,

ñ1(k, ω) =
ω2
p

N(k, ω)
ρ̃ext(k, ω) (2.84)

Note that the Fourier Transfrom of the dielectric function of the electron gas in the hydrody-
namic model is,

ε(k, ω) =

[
1−

ω2
p

N(k, ω)

]−1

. (2.85)

Second Order Electron Desnity

To find the second order electron density we begin by performing the Fourier Transform on the
2nd order continuity equation 2.36,

F
(
∂n2

∂t
− n0∇2ψ2

)
−F

(
~∇ · (n1

~∇ψ1)
)

= 0 , (2.86)

which gives,
− ıωñ2 + n0k

2ψ̃2 − ık · F(n1
~∇ψ1) = 0 . (2.87)

The last term has been considered separately, since one must be careful when applying the
Fourier Transform to a product of functions. When taking the Fourier Transform of products of
functions we must apply the convolution theorem. Thus,

F(n1
~∇ψ1) = ı

∫∞
−∞ ñ1(k

′, ω′)(k′ − k)ψ̃1(k− k′, ω − ω′)dk′ dω′ , (2.88)

= F(n1) ∗ F(~∇ψ1) . (2.89)

Thus, the transformed, second order continuity equation becomes,

− ıωñ2 + n0k
2ψ̃2 −F(n1) ∗ F(~∇ψ1) = 0 . (2.90)
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Likewise, we transform the second order momentum equation, 2.43,

F
(
− ∂

∂t
∇2ψ2

)
+ F

(
1

2
∇2(~∇ψ1)

2

)
= F (4πn2)−F

(
∇2

(
δG

δn

)
2

)
. (2.91)

From which we obtain the following parts,

F
(
− ∂

∂t
∇2ψ2

)
= −ıωk2ψ̃2 , (2.92)

F
(

1

2
∇2(~∇ψ1)

2

)
= −1

2
k2F(~∇ψ1)∗̇F(~∇ψ1) , (2.93)

F (4πn2) = 4πñ2 , (2.94)

F
(
∇2

(
δG

δn

)
2

)
= −k2F

(
δG
δn

)
2
, (2.95)

where the ∗̇ reminds us that we are taking the convolution of transformations of two vector
quantities that have been dotted together.

Now, using 2.55 the Fourier Transform of 2.95 is,

F
(
δG

δn

)
2

= F
[
α

(
n2

n0

− 1

6

n2
1

n2
0

)
+

β

2n2
0

((~∇n1)
2 − 2n0∇2n2 + 2n1∇2n1)

]
, (2.96)

= α

(
ñ2

n0

− F(n1) ∗ F(n1)

6n2
0

)
+

β

2n2
0

[
F(~∇n1)∗̇F(~∇n1)− 2n0k

2ñ2

+ 2F(n1) ∗ F(∇2n1)
]
. (2.97)

Thus, the two equations we need to solve are,

− ıωñ2 + n0k
2ψ̃2 = F(n1) ∗ F(~∇ψ1) , (2.98)

−ıωk2ψ̃2 − ñ2

[
4π + k2

(
α

n0

− 2n0k
2

)]
=

1

2
k2F(~∇ψ1)∗̇F(~∇ψ1)

+k2

[
β

2n2
0

(F(~∇n1)∗̇F(~∇n1)− α
F(n1) ∗ F(n1)

6n2
0

−2F(n1) ∗ F(∇2n1))
]
. (2.99)

What one should notice about 2.98 and 2.99 is that they are algebraic in the unknown quantities,
ψ̃2 and ñ2.
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To simplify our expression we define the following quantities,

k′′ = k− k′ , (2.100)

ω′′ = ω − ω′ , (2.101)

and introduce suitable delta functions to make the expressions for the convolutions more sym-
metric,

F(C) ∗ F(B) =

∫
d3k′dω′C̃(k− k′, ω − ω′)B̃(k′, ω′) , (2.102)

=

∫
d3k′d3k′′dω′dω′′δ(k− k′ − k′′)δ(ω − ω′ − ω′′)C̃(k′, ω′)B̃(k′′, ω′′) ,

(2.103)

for arbitrary functions B and C.
Further, we define the quantity, W as,

W =
1

2

[
−ωω′′k · k′′k′2 − ωω′k · k′k′′2 − ω′ω′′k2k′ · k′′

+βk2k′2k′′2
(
k′′2 + k′2 + k′ · k′′

)]
, (2.104)

as well as,
A(k,k′,k′′, ω, ω′, ω′′) = W +

α

6
k2k′2k′′2 . (2.105)

These two definitions make the final expression for ñ2 much more compact,

ñ2(k, ω) = n0

∫
d3k′

(2π)4
d3k′′ dω′ dω′′ δ(k− k′ − k′′)δ(ω − ω′ − ω′′)

φext(k
′, ω′)φext(k

′′, ω′′)A(k,k′,k′′, ω, ω′, ω′′)

N(k, ω)N(k′, ω′)N(k′′, ω′′)
, (2.106)

with N defined as in 2.83.

2.3.2 Structure Factor of a Cluster

In the above section we were able to find the first and second order electron densities in Fourier
space. Likewise we wish to describe the charge density of the projectile in Fourier space as well.
We shall find it convenient when formulating a general formula for the stopping force to define
a quantity called the structure factor which captures the physics stemming from the geometrical
configuration of the projectile.
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General First Order Structure Factor, F2

From the definition of the Fourier Transform we have that the external charge density in Fourier
space of a projectile moving at constant velocity v is given by,

ρ̃ext(k, ω) =
∫
d3r dt ρext(r, t) e

−ık·r+ıωt , (2.107)

=
∫
d3r dt ρproj(r− vt) e−ık·r+ıωt , (2.108)

where ρproj is the charge density of the projectile in the projectile’s frame of reference. Note that
in the projectile’s frame of reference, Φind does not change in time.

If we define an auxillary variable, x = r− vt then 2.108 becomes,

ρ̃ext(k, ω) =
∫
d3x dt ρproj(x) e−ık·(x+vt)+ıωt , (2.109)

=
∫
dt eı(ω−k·v)t

∫
d3x ρproj(x)e−ık·x (2.110)

= 2πδ(ω − k · v)ρ̃proj(k) . (2.111)

Returning now to our expression for the stopping force, for the first order calculation we
have,

S1 = − ı

v

∫
d3r ρext(r, t)

∫
d3k

(2π)3

dω

2π

4π

k2
ñ1(k, ω) (k · v) eık·r−ıωt , (2.112)

and from the first order electron density calculation 2.84, we then have,

S1 = − ı

v

∫
d3r ρext(r, t)

∫
d3k

(2π)3

dω

2π

4π

k2

ω2
p

N(k, ω)
ρ̃ext(k, ω) (k · v) eık·r−ıωt . (2.113)

Equation 2.111 brings the first order stopping force to,

S1 = − ı

v

∫
d3r ρext(r, t)

∫
d3k

(2π)3

dω

2π

4π

k2

ω2
p

N(k, ω)
2πδ(ω − k · v)ρ̃proj(k) (k · v) eık·r−ıωt .

(2.114)
Now, the external charge density, ρext(r, t) is just the projectile charge density, which we’ve
already described as ρproj(r− vt) in the projectile’s frame of reference. Thus,

S1 = − ı

v

∫
d3r ρproj(r− vt)

∫
d3k

(2π)3

dω

2π

4π

k2

ω2
p

N(k, ω)
2πδ(ω − k · v)ρ̃proj(k) (k · v) eık·r−ıωt .

(2.115)
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Taking the integration over ω consumes the delta,

S1 = − ı

v

∫
d3r ρproj(r− vt)

∫
d3k

(2π)3

dω

2π

4π

k2

ω2
p

N(k, ω)
2πρ̃proj(k) (k · v) eık·(r−vt) . (2.116)

Recognizing that, ∫
d3r ρproj(r− vt)eık·(r−vt) = ρ̃proj(−k) = ρ̃∗proj(k) , (2.117)

we can pull all the constant terms outside of the integral and write the first order stopping force
as,

S1 = −
ıω2
p

2π2v

∫
d3k

k2
(k · v)

ρ̃proj(k)ρ̃proj(−k)

N(k,k · v)
, (2.118)

It is worthwhile to notice that all the information about the structure of the projectile is
completely contained in the ρ̃proj(k)ρ̃proj(−k) term. Should we change the type of projectile,
the overall expression remains intact. The part of the expression which would change is the
densities. For this reason it is convenient to define the first order structure factor, F2,

F2(k) = ρ̃proj(k)ρ̃proj(−k) = |ρproj(k)|2 , (2.119)

and thus,

S1 = −
ıω2
p

2π2v

∫
d3k

k2
(k · v)

F2(k)

N(k,k · v)
. (2.120)

First Order Structure Factor: Ion

For an ion, the structure factor is given by,

F2(k) = ρ̃ion(k)ρ̃ion(−k) . (2.121)

The charge density for an ion,
ρion(r) = Qδ(r) . (2.122)

and thus,
ρ̃ion(k) = Q . (2.123)

and,
F ion

2 (k) = Q2 . (2.124)
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First Order Structure Factor: Colinear Dicluster

A dicluster is a cluster with two ions separated by distance d. We assume that the dicluster is
aligned so that the displacement vector, D between the two ions is aligned in the direction of
travel. For a colinear dicluster which is static in its frame of reference,

ρcolin(r) = Q1δ(r− r1) +Q2δ(r− r2) , (2.125)

where Qi is the charge on the ith ion, and ri is its position with respect to the moving frame of
the cluster. Thus, in Fourier space,

ρ̃colin(k) =
∫
d3rQ1δ(r− r1) +Q2δ(r− r2)e

−ık·r , (2.126)

= Q1e
−ık·r1 +Q2e

−ık·r2 . (2.127)

Assuming that the cluster is homonuclear, Q1 = Q2 = Q and thus,

ρ̃colin(k) = Qe−ık·r1 +Qe−ık·r2 , (2.128)

= Q
(
e−ık·r1 + e−ık·r2

)
. (2.129)

Using this in our expression for the general structure factor, 2.144, we obtain,

F colin
2 = Q2

(
e−ık·r1 + e−ık·r2

) (
eık·r1 + eık·r2

)
, (2.130)

= Q2(2 + 2 cos(k · (r1 − r2))) , (2.131)

= Q2(2 + 2 cos(k ·D)) . (2.132)

First Order Structure Factor: Randomly Oriented Dicluster

In current experiments one can not resolve the effect of a single dicluster incident on a target.
Instead, beams of diclusters would be used. In this case, the orientation of the projectiles is
completely random. Considering this fact, it is useful to calculate the average stopping force of
a beam of randomly oriented diclusters. To this end, we obtain an expression for the structure
factor for a randomly oriented dicluster.

The average first order stopping force of a cluster is calculated by averaging the first order
stopping force over all cluster orientations. Since, as previously mentioned, the only information
which enters into the stopping force due to the structure of the cluster comes from the cluster
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factor. Thus, in order to obtain the average stopping force one needs only to average the cluster
factor over the possible orientations. Therefore,

F rand
2 = ρrand(k)ρrand(−k) , (2.133)

= 〈Q2(2 + 2 cos(k ·D))〉 , (2.134)

= Q2(2 + 2 〈cos(k ·D)〉) , (2.135)

= Q2
(
2 + 2 sin(kD)

kD

)
(2.136)

General Second Order Structure Factor, F3

In the previous sections we discussed the first order structure factor for various clusters. In this
section we outline the second order structure factors. As before we start out with the expression
for the stopping force, but in this case we will consider the second order expression.

The second order stopping force is given by,

S2 = − ı

v

∫
d3r ρext(r, t)

∫
d3k

(2π)3

dω

2π

4π

k2
ñ2(k, ω) (k · v) eık·r−ıωt . (2.137)

From our expression for ñ2, (2.106), then the second order stopping force becomes,

S2 = − ın0

v

∫
d3r ρext(r, t)

∫
d3k

(2π)3

dω

2π

4π

k2

∫
d3k′

(2π)3

dω′

2π
d3k′′ dω′′ δ(k− k′ − k′′)δ(ω − ω′ − ω′′)

φext(k
′, ω′)φext(k

′′, ω′′)A(k,k′,k′′, ω, ω′, ω′′)

N(k, ω)N(k′, ω′)N(k′′, ω′′)
(k · v) eık·r−ıωt . (2.138)

From Poisson’s equation, and the definition of the Fourier Transform, it may be shown that,

φ̃ext(k, ω) =
4π

k2
ρ̃ext(k, ω) , (2.139)

and from 2.111 the external potential may be written,

φ̃ext(k, ω) =
4π

k2
[2πδ(ω − k · v)ρ̃proj(k)] . (2.140)

Using this in our expression for the second order stopping force, as well as recalling that∫
d3r ρext(r, t)e

ık·(r−vt) =
∫
d3r ρproj(r− vt)eık·(r−vt) (2.141)

= ρ̃proj(−k) , (2.142)
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we may bring 2.138 to,

S2 = − ın0

v

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

4π

k2

4π

k′2
4π

k′′2
(k · v)ρ̃proj(−k)ρ̃proj(k

′)ρ̃proj(k
′′)

δ(k− k′ − k′′)

∫
dω

∫
dω′
∫
dω′′δ(ω − ω′ − ω′′)

δ(ω − k · v)δ(ω′ − k′ · v)δ(ω′′ − k′′ · v)

N(k, ω)N(k′, ω′)N(k′′, ω′′)

A(k,k′,k′′, ω, ω′, ω′′) . (2.143)

Introducing the second order structure factor,

F3(k,k
′,k′′) = ρ̃proj(−k)ρ̃proj(k

′)ρ̃proj(k
′′) , (2.144)

we get,

S2 = − ın0

v

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

4π

k2

4π

k′2
4π

k′′2
(k · v)F3(k,k

′,k′′)δ(k− k′ − k′′)∫
dω

∫
dω′
∫
dω′′δ(ω − ω′ − ω′′)

δ(ω − k · v)δ(ω′ − k′ · v)δ(ω′′ − k′′ · v)

N(k, ω)N(k′, ω′)N(k′′, ω′′)

A(k,k′,k′′, ω, ω′, ω′′) . (2.145)

Second Order Structure Factor: Ion

As above, for an ion,
F ion

3 (k,k′,k′′) = ρ̃ion(−k)ρ̃ion(k
′)ρ̃ion(k

′′). (2.146)

Since the charge density for an ion,

ρion(r) = Qδ(r) . (2.147)

and thus,
ρ̃ion(k) = Q . (2.148)

and,
F ion

3 (k,k′,k′′) = Q3 . (2.149)
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Second Order Structure Factor: Colinear Dicluster

As discussed above, the charge density of a general dicluster is,

ρcolin(r) = Q1δ(r− r1) +Q2δ(r,−r2) , (2.150)

thus, in Fourier space,
ρ̃colin(k) = Q1e

−ık·r1 +Q2e
−ık·r2 (2.151)

Again, if the cluster is homonuclear,

ρ̃colin(k) = Q
(
e−ık·r1 + e−ık·r2

)
(2.152)

Using this in our expression for the general structure factor, 2.144, we obtain,

F colin
3 = Q3

(
e−ık·r1 + e−ık·r2

) (
eık

′·r1 + eık
′·r2
) (
eık

′′·r1 + eık
′′·r2
)

(2.153)

= 2Q3(1 + cos(k · (r1 − r2)) + cos(k′ · (r1 − r2)) + cos(k′′ · (r1 − r2))) , (2.154)

= 2Q3(1 + cos(k ·D) + cos(k′ ·D) + cos(k′′ ·D)) , (2.155)

Second Order Structure Factor: Randomly Oriented Dicluster

F rand
3 = ρrand(−k)ρrand(k

′)ρrand(k
′′) , (2.156)

= 〈2Q3(1 + cos(k ·D) + cos(k′ ·D) + cos(k′′ ·D))〉 , (2.157)

= Q3(1 + 〈cos(k ·D) + cos(k′ ·D) + cos(k′′ ·D)〉) , (2.158)

= 2Q3
(
1 + sin(kD)

kD
+ sin(k′D)

k′D
+ sin(k′′D)

k′′D

)
(2.159)

2.3.3 First Order Stopping Force

We now use our first order cluster factors, F2 in our final expression for the first order stopping
force, 2.120 to obtain an formula for the calculation of the first order stopping force of the various
projectiles under consideration.
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First Order Stopping Force: Ion

Using 2.124 in 2.120 we obtain,

S1 = −
ıω2
pQ

2

2π2v

∫
d3k

k2
(k · v)

1

N(k,k · v)
. (2.160)

First Order Stopping Force: Colinear Dicluster

In the case of the colinear dicluster, we use 2.132 in 2.120 to arrive at,

S1 = −
ıQ2ω2

p

π2v

∫
d3k

k2
(k · v)

1 + cos(k ·D)

N(k,k · v)
. (2.161)

First Order Stopping Force: Randomly Oriented Dicluster

Finally, for the case of a randomly oriented dicluster we insert 2.136 into 2.120 to yield the first
order stopping force for the randomly oriented dicluster,

S1 = −
ıQ2ω2

p

π2v

∫
d3k

k2
(k · v)

(
1 + sin(kD)

kD

)
N(k,k · v)

. (2.162)

2.3.4 Second Order Stopping Force

As in the above subsections, we can use our expressions for the second order structure factors
of our various projectiles, coupled with the second order stopping force formula to obtain the
second order stopping force for an ion, colinear dicluster and randomly oriented dicluster.

Second Order Stopping Force: Ion

From 2.149 we see that,
F ion

3 (k,k′,k′′) = Q3 , (2.163)

and, when this is used in 2.145 we get,

S2 = − ın0Q
3

v

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

4π

k2

4π

k′2
4π

k′′2
(k · v)δ(k− k′ − k′′)∫

dω

∫
dω′
∫
dω′′δ(ω − ω′ − ω′′)

δ(ω − k · v)δ(ω′ − k′ · v)δ(ω′′ − k′′ · v)

N(k, ω)N(k′, ω′)N(k′′, ω′′)

A(k,k′,k′′, ω, ω′, ω′′) . (2.164)
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Second Order Stopping Force: Colinear Dicluster

For the case of a colinear dicluster we use the structure factor given by 2.155 in 2.145, giving,

S2 = − ın0Q
3

v

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

4π

k2

4π

k′2
4π

k′′2
(k · v) [1 + cos(k ·D) + cos(k′ ·D) + cos(k′′ ·D)]

δ(k− k′ − k′′)

∫
dω

∫
dω′
∫
dω′′δ(ω − ω′ − ω′′)

δ(ω − k · v)δ(ω′ − k′ · v)δ(ω′′ − k′′ · v)

N(k, ω)N(k′, ω′)N(k′′, ω′′)

A(k,k′,k′′, ω, ω′, ω′′) . (2.165)

Second Order Stopping Force: Randomly Oriented Dicluster

We conclude this section by inserting the randomly oriented dicluster structure factor, 2.159 into
2.145 to obtain the second order stopping force for a randomly oriented dicluster,

S2 = − ın0Q
3

v

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

4π

k2

4π

k′2
4π

k′′2
(k · v)

[
1 +

sin(kD)

kD
+

sin(k′D)

k′D
+

sin(k′′D)

k′′D

]
δ(k− k′ − k′′)

∫
dω

∫
dω′
∫
dω′′δ(ω − ω′ − ω′′)

δ(ω − k · v)δ(ω′ − k′ · v)δ(ω′′ − k′′ · v)

N(k, ω)N(k′, ω′)N(k′′, ω′′)

A(k,k′,k′′, ω, ω′, ω′′) . (2.166)





Chapter 3

Calculation of Stopping Force

As outlined in the introduction and motivation, it is our intention to calculate the second order
stopping force of an ion, colinear dicluster and randomly oriented dicluster traversing a metal.
The preceding chapter described the development of the formulas for the first and second order
stopping force in all three cases. This chapter outlines how the calculations were carried out.
We employ two separate strategies, one for each of the first and second order calculations. As
we shall see, the second order calculation is much more complex and will need some clever
considerations and techniques.

Unless otherwise noted, from this point on we are considering the ions in the cluster to be
protons, so that Q = 1.

3.1 General Strategy

In this section we describe the general strategies that were carried out for each of the first and
second order calculations of the stopping force. We begin with the strategy for the first order
stopping force.

35
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3.1.1 First Order Strategy

To get a feel for the type of calculation we shall be carrying out, we recall the formula for the
first order stopping force in the case of a single ion projectile given by 2.160,

Sion1 = −
ıω2
p

2π2v

∫
d3k

k2
(k · v)

1

N(k,k · v)
. (3.1)

To simplify the manipulation of the integral, we introduce the scalar variable ω = k ·v which
may be included explicitly by using the Dirac delta. Thus,

Sion1 = −
ıω2
p

2π2v

∫
d3k

k2

∫ ∞

−∞
dω δ(ω − k · v)ω

1

N(k, ω)
. (3.2)

To exploit the spherical symmetry of the setup we carry out the integration over spherical
coordinates, k = [k, ϕ, θ] which has the added benefit of removing the k2 singularity in the
denominator. This is also convenient since one can see from 2.83 that N depends only on the
magnitude of the vector k. Choosing the z-axis in the direction of travel,

Sion1 = −
ıω2
p

2π2v

∫ ∞

0

dk

∫ ∞

−∞
dω ω

1

N(k, ω)

∫ 2π

0

dϕ

∫ π

0

dθ sin θ δ(ω − kv cos θ) . (3.3)

We now change to a more convenient variable, τ = cos θ,

Sion1 = −
ıω2
p

πv

∫ ∞

0

dk

∫ ∞

−∞
dω ω

1

N(k, ω)

∫ 1

−1

dτ
1

kv
δ(
ω

kv
− τ) . (3.4)

From the properties of the Dirac delta the final integral over τ is in fact nothing more than a
Heaviside function, ∫ 1

−1

dτ δ(
ω

kv
− τ) = H(k2v2 − ω2) , (3.5)

which has the effect of restricting the ω inetegral to values between −kv and kv. This follows
since only values of ω in this range will give a positive argument to the Heaviside function.
Therefore, our simplified formula is,

Sion1 = −
ıω2
p

πv2

∫ ∞

0

dk

k

∫ kv

−kv
dω

ω

N(k, ω)
. (3.6)
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The crucial step now comes from the realization that the stopping force must be real. Since
<[N(ω)] is an even function of ω and =[N(ω)], the contribution to the integral which comes
from the real part vanishes. Thus, the stopping force is indeed real. This also will provide a
valuable check when performing out computations. We can thus replace 1

N
by =

[
1
N

]
,

Sion1 =
ω2
p

πv2

∫ ∞

0

dk

k

∫ kv

−kv
dω ω=

[
1

N(k, ω)

]
. (3.7)

One sees that,

=
[

1

N(k,−ω)

]
= −=

[
1

N(k, ω)

]
, (3.8)

which, when coupled with the odd symmetry of the single ω term, gives an overall even symmetry
to the integrand, and thus,

Sion1 =
2ω2

p

πv2

∫ ∞

0

dk

k

∫ kv

0

dω ω=
[

1

N(k, ω)

]
. (3.9)

Now, from our expression for N (2.83) we find that,

=
[

1

N(k, ω)

]
=

ωη

(βk4 + αk2 − ω2 + ωp)2 + ω2η2
, (3.10)

Letting Γ = |ω|η, ω2
k = βk4 + αk2 + ω2

p and x = ω2 − ω2
k then we can write,

=
[

1

N(k, ω)

]
= π

Γ
π

x2 + Γ2
. (3.11)

The benefit of doing this is that we now take the frictionless limit. Assuming that the friction
goes to zero, then η → 0 and thus Γ → 0. From the definition of the Dirac delta,

lim
Γ→0

Γ
π

x2 + Γ2
= δ(x) . (3.12)

Thus, taking the limit allows us to write,

=
[

1

N(k, ω)

]
= π sign(ω)δ(ω2 − ω2

k) , (3.13)

= π sign(ω)

[
δ(ω − ωk)

2ωk
+
δ(ω + ωk)

2ωk

]
. (3.14)
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Since ωk is strictly positive and the integration is only over a positive range of ω values, this
expression simplifies to,

=
[

1

N(k, ω)

]
=

π

2ωk
δ(ω − ωk) . (3.15)

We note that this constitutes the so-called plasmon-pole approximation describing projectile en-
ergy loss due to excitation of the collective plasma oscillations in the electron gas with the dis-
persion relation,

ω = ωk =
√
ω2
p + αk2 + βk4 . (3.16)

Using this expression in 3.9 gives,

Sion1 =
2ω2

p

πv2

∫∞
0

dk
k

∫ kv
0
dω ωk

π
2ωk

δ(ω − ωk) , (3.17)

=
ω2

p

v2

∫∞
0

dk
k

∫ kv
0
dω δ(ω − ωk) . (3.18)

Now, from the definition of the Dirac delta,∫ kv

0

dω δ(ω − ωk) =

{
1, if ωk < kv

0, if ωk > kv
. (3.19)

This integral then puts a restriction on the values that k can take. Only values of k that satisfy
ωk < kv contribute to the k integral. Thus, the k integral is bounded by k1 and k2 which are the
solutions of,

βk4 − (v2 − α)k2 + ω2
p = 0 . (3.20)

Treating this as a quadratic equation in k2 the solution is given by,

k2
1,2 =

1

2β

[
v2 − α±

√
(v2 − α)2 − 4βω2

p

]
. (3.21)

This brings our stopping formula to,

Sion1 =
ω2
p

v2

∫ k2

k1

dk

k
, (3.22)

which, after carrying out the integration, gives,

Sion1 =
ω2
p

v2
ln
k2

k1

, (3.23)
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where ki is defined from 3.21.
We can now find the find the stopping force of an ion, given v, ωp, β and α, by numerically

solving for k1,2 and using them in 3.23.
We use the above approach for the ion case, and generalize it to the case of clusters. W

recall that the only change in the expressions for the different projectiles is brought about by the
modification of the cluster factor, F2. If we assume that the structure factor depends only on the
magnitude of k then we may start from 2.120 and follow the exact same procedure as in the ion
case, arriving at the general formula,

S1 =
ω2
p

v2

∫ k2

k1

dk

k
F2(k) , (3.24)

with k1,2 given by 3.21.
Thus, for the case of the randomly oriented dicluster (which is spherically symmetric) we

conclude that,

S1 = 2
ω2
p

v2

∫ k2

k1

dk

k

(
1 +

sin(kD)

kD

)
.

= 2
ω2
p

v2

[
ln

(
k2

k1

)
+ Ci(k2D)− sin(k2D)

k2D
− Ci(k1D) +

sin(k1D)

k1D

]
, (3.25)

where Ci is the cosine integral, Ci(x) =
∫
dx cos(x)

x
.

For the case of the colinear dicluster we recall 2.162,

S1 = −
ıω2
p

π2v

∫
d3k

k2
(k · v)

1 + cos(k ·D)

N(k,k · v)
. (3.26)

Since D is colinear with v then we can write,

D =
D

v
v , (3.27)

and hence,

k ·D =
D

v
k · v , (3.28)

Our first order stopping force for a colinear dicluster then becomes,

S1 = −
ıω2
p

π2v

∫
d3k

k2
(k · v)

1 + cos(D
v

k · v)

N(k,k · v)
. (3.29)
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Again, introducing ω as before, changing to spherical coordinates with the z-axis aligned
with v, exploiting the low friction limit, we arrive at,

S1 = 2
ω2
p

v2

∫ k2

k1

dk

k

[
1 + cos

(
D

v
ωk

)]
, (3.30)

with k1,2 given as before.
The strategy to compute the integral in 3.30 numerically is to do the following,

1. Specify a relative tolerance value and number of intervals, m

2. Provide an initial value for the integral, in this case, zero.

3. Discretize k from k1 to k2 into m intervals

4. Evaluate the integrand at each value of k

5. Use Simpson’s Rule to sum the array of integrand values

6. Compare the relative difference between the current value and the previous value

7. While the relative difference is above the predefined value, double m and repeat steps 3-6

3.1.2 Second Order Integration Strategy

Owing to the increase in complexity of the second order electron density over its first order
counterpart, the calculation of the second order stopping force is much more complicated than
the first order calculation.

We recall the expression for the second order stopping force of a general projectile, 2.145,

S2 = − ın0

v

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

4π

k2

4π

k′2
4π

k′′2
(k · v)F3(k,k

′,k′′)δ(k− k′ − k′′)∫
dω

∫
dω′
∫
dω′′δ(ω − ω′ − ω′′)

δ(ω − k · v)δ(ω′ − k′ · v)δ(ω′′ − k′′ · v)

N(k, ω)N(k′, ω′)N(k′′, ω′′)

A(k,k′,k′′, ω, ω′, ω′′) . (3.31)



CHAPTER 3. CALCULATION OF STOPPING FORCE 41

In order to perform the calculation we must cast it in a form so that numerical integration may
be carried out. To this end, we integrate out the Dirac delta’s by integrating over every variable
except k and k′,

S2 = −
ıω2
p

4π4v

∫
d3k

k2

(k · v)

N(k,k · v)

∫
d3k′

k′2(k− k′)2
F3(k,k

′,k− k′)

A(k,k′,k− k′,k · v,k′ · v, (k− k′) · v)

N(k′,k′ · v)N(k− k′, (k− k′) · v)
. (3.32)

To do the six dimensional integration we must use some clever tricks. The first is to divide
the task into two separate integrations. We define,

F (k) =

∫
d3k′

k′2(k− k′)2
F3(k,k

′,k− k′)
A(k,k′,k− k′,k · v,k′ · v, (k− k′) · v)

N(k′,k′ · v)N(k− k′, (k− k′) · v)
, (3.33)

which would then leave us only to do the integral,

S2 = −
ıω2
p

4π4v

∫
d3k

k2

(k · v)

N(k,k · v)
F (k) . (3.34)

Further simplifying the computation is the fact that one may show that F (k) is indeed cylin-
drically symmetric, and thus may be written,

F (k) = F̃ (%, z) , (3.35)

where % is the the magnitude of the radial vector from the z-axis. One may further show that in
fact,

F̃ (%, z) = F̃ (%,−z) . (3.36)

What’s more, as shown in Appendix C, F̃ is real. This is a crucial development since it allows
us to follow the simplification made for the first order stopping force calculation. Namely, that
since the stopping force must be real, and since F̃ is also real, then the only way to ensure that
the overall stopping force is real is that if the real part of 1

N(k,k·v)
vanishes. Considering then the

imaginary part of 1
N(k,k·v)

,

=
[

1

N(k,k · v)

]
=

π

2ωk
[δ(k · v − ωk) + δ(k · v + ωk)] , (3.37)
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with ωk as given above.
If we use cylindrical coordinates, k = [%, θ, z] to carry out the integration over k with the

z-axis chosen to coincide with the direction of motion, then k · v = vz and thus,

=
[

1

N(k,k · v)

]
=

π

2ωk
[δ(vz − ωk) + δ(vz + ωk)] . (3.38)

With these manipulations our second order calculation becomes,

S2 =
2πω2

p

4π4v

∫ ∞

0

d%%

∫ ∞

−∞

dz

%2 + z2

πvz

2ωk
[δ(vz − ωk) + δ(vz + ωk)] F̃ (%, z) . (3.39)

Since F̃ is even with respect to z then this simplifies to,

S2 =
ω2
p

2π2v2

∫ ∞

0

d%%

∫ ∞

0

dz

%2 + z2
F̃ (%, z) δ(z − ωk

v
) . (3.40)

At this point we still have a two dimensional integration to do after, of course, doing the inte-
gration over k′. However, the existence of the Dirac delta is of enormous use to us in simplifying
the integration.

The first effect of the Dirac delta is to tie % to z. In this way, for a given % there exist only
two values of z which satisfy the Dirac delta condition. Thus, the integration doesn’t range over
an infinite quarter plane, but rather over only a one dimensional slice of this space. Specifically,
for a given %, the only permissible values of z must satisfy,

z −

√
β(%2 + z2)2 + α(%2 + z2) + ω2

p

v
= 0 . (3.41)

What is more, the above equation also restricts the values of %. Again, since the stopping
force must be real, any solution to 3.41 must be real. Given a fixed value for the speed v, only a
certain range of % values yields a real solution. In fact, by rearranging 3.41,

βz4 + (2β%2 + α− v2)z2 + (α%2 + β%4 + ω2
p) = 0 , (3.42)

which gives the solution,

z2 =
−(2β%2 + α− v2)±

√
(2β%2 + α− v2)2 − 4β(α%2 + β%4 + ω2

p)

2β
. (3.43)
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For these solutions to be real we must have,

(2β%2 + α− v2)2 − 4β(α%2 + β%4 + ω2
p) ≥ 0 . (3.44)

which restricts the range of %. With these considerations we have that,

S2 =
ω2
p

2π2v2

∫ %max(v)

0

d%

[
%

%2 + z2
1

F̃ (%, z1) +
%

%2 + z2
2

F̃ (%, z2)

]
. (3.45)

This encourages the following calculation strategy:

1. Choose v

2. Discretize % into m subintervals over the interval [0, %max(v)]

3. For each %i, i ∈ [1,m] solve 3.43 for the two positive values of z1 and z2

4. Substitute %i, v, zij, j ∈ [1, 2] into F̃ (%, z)

5. Integrate over k′ to get F̃ (%i, zij)

6. Integrate over % using Simpson’s Rule.

The only step in the above strategy that requires development is step 5. To this point we have
assumed only that the integration could somehow be carried out over k′-space and called this
result F (k). The purpose of the next section is to explain how, given fixed values for % and z
(provided by steps 2 and 3) we can integrate to arrive at the numerical value for F̃ (%, z).

3.2 Integration Scheme To Find F (k)

3.2.1 Integration Scheme

Having outlined the way in which we shall calculate the second order stopping force one task
remains. Given a structure factor and values for % and z we need to perform the integration,

F (k) =

∫
d3k′

k′2(k− k′)2
F3(k,k

′,k− k′)
A(k,k′,k− k′,k · v,k′ · v, (k− k′) · v)

N(k′,k′ · v)N(k− k′, (k− k′) · v)
. (3.46)
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As mentioned the value for F is cylindrically symmetric, although the same cannot be said
about the integrand. It seems that the most straightforward way to calculate this integral is by
brute force numerical integration over cartesian coordinates. With this in mind we define,

k′ = [k′x, k
′
y, k

′
z] , (3.47)

v = [0, 0, v] , (3.48)

were we have chosen the kz axis to coincide with the z axis of the cylindrical system for k and
both axes colinear with the direction of travel.

Since the value of F is cylindrically symmetric in k-space, we can specify that in the integral
3.46,

k = [%, 0, z] , (3.49)

with the zero simplifying the calculation considerably.
After making these assumptions, and specifying values for % and z we are left with,

F̃ (%, 0, z) =

∫
dk′xdk

′
ydk

′
z

k′2(k− k′)2
F3(k,k

′,k− k′)
A(k,k′,k− k′, zv, k′zv, (z − k′z)v)

N(k′, k′zv)N(k− k′, (z − k′z)v)
. (3.50)

From the structure of the integrand we see that there are points in which singularities may
occur, namely when k′ = 0, when k = k′ and when either of theN(· · · ) functions give zero. The
later singularities may be avoided if we give η a small positive value, this prevents a singularity
from occurring. Provided the value of η is small, we may remain confident that our use of the
limiting assumption which yielded the Dirac delta functions in the above sections may still be
used without losing very much accuracy. The first two singularities are not quite easily handled
and we will need to be careful when performing out integration not to ’step’ on these regions.

Obviously this integral must be performed numerically. What remains is to choose a nu-
merical integrator. Matlab has a function which can perform triple integrals (triplequad), double
integrals (dblquad) and single integrals (quad) numerically using adaptive quadrature. The obvi-
ous choice is to integrate using triplequad, but as we see in the following sections it will not be
the ideal choice. In fact, none of the methods built into Matlab suffices and a novel approach is
needed.

Since for each value of m we need to calculate the value of F twice (one for each z) thus for
each given speed we need to perform the integration in 3.50 2m times. Even for moderate values
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of m (ie, 6) we need twelve calculations of 3.50. Thus, it would be ideal to have a relatively fast
method to calculate F . Further, to numerically calculate this integral we cannot integrate over
infinite space, so we need to truncate our upper and lower bounds for k′x, k

′
y and k′z. Over the

following four sections we evaluate 4 different methods to carry out the numerical integration in
3.50 as well as evaluate adequate bounds of integration and the times required to calculate them.
We analyze the convergence of both the real part of the calculated value as well as the imaginary
part. If we have the imaginary part converging to zero we shall gain confidence that our method
is indeed converging to the correct numerical value.

For the following investigations we assume that % = 1, z = 3, v = 1, ωp = 0.5816 (alu-
minum), α = 0 (static gas case), η = ωp

10
and that the structure factor is that for an ion, F3 = 1.

Triplequad

The first method we shall explore is the triple quad method built into Matlab. The most pressing
issue for this method is that Matlab won’t avoid the singularities mentioned above. Thus, in
order to perform this calculation, we cannot hope to integrate the entire domain in one sweep.
Rather, we must fracture the three dimensional domain into smaller domains, the bounds of
which coming close to the singularities but making sure the singularities do not occur in any of
subregions.

Figure 3.1(a) shows the convergence of real part of F (1, 0, 3) as a function of the bounds of
k′x, k

′
y and k′z. We chose the bounds to be symmetric about zero and identical for each dimen-

sion. As we can see by 30 we are confident of convergence. Similarly figure 3.1(b) shows the
convergence of the imaginary part of F (1, 0, 3). Again, around a boundary value of 30 we see
that the imaginary part is almost zero. This is what we expect, since the integral should be real.
Despite the relatively good results obtained by this method, the problem is that it is extremely
time consuming. As mentioned we may be performing this integration a dozen or more times for
each speed. Figure 3.1(c) shows the computation time for each bound.

Clearly these calculations take too much time to be useful when triplequad is used. Not only
that, it is not a very flexible method to avoid the singularities. For these two crucial reasons we
seek a different method.
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(a) Real part of F (1, 0, 3) calculated using the triple-
quad method at various values for interval endpoints
n, ie, calculated over the region (−n, n)×(−n, n)×
(−n, n)
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(b) Imaginary part of F (1, 0, 3) calculated using the
triplequad method at various values for interval end-
points n, ie, calculated over the region (−n, n) ×
(−n, n)× (−n, n)
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(c) Time required to calculate F (1, 0, 3) using the
triplequad method at various values for interval end-
points n, ie, calculated over the region (−n, n) ×
(−n, n)× (−n, n)

Figure 3.1: Convergence and runtime results for calculating F using the triplequad method
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Double Quad, Single Trapezoidal

The above method relies on computing the three dimensional integral using the native triple-
quad method which is too slow for our purposes. While numerically robust reliable, the quadra-
ture method employed by matlab is what causes the calculation to slow down. There are faster
methods available, such as straightforward integration using the trapezoidal rule. The next two
methods described are a marriage of the built-in methods of matlab and the trapezoidal rule.
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(a) Real part of F (1, 0, 3) calculated using the
doublequad-single trapezoidal method at various val-
ues for interval endpoints n, ie, calculated over the
region (−n, n)× (−n, n)× (−n, n)
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(b) Imaginary part of F (1, 0, 3) calculated using the
doublequad-single trapezoidal method at various val-
ues for interval endpoints n, ie, calculated over the
region (−n, n)× (−n, n)× (−n, n)
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(c) Time required to calculate F (1, 0, 3) using the
doublequad-single trapezoidal method at various val-
ues for interval endpoints n, ie, calculated over the
region (−n, n)× (−n, n)× (−n, n)

Figure 3.2: Convergence and runtime results for calculating F using the Doublequad-Single
Trapezoidal Method
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The first way to combine the two approaches is to discretize one of the dimensions and carry
out numerical integration over that level slice using the matlab function dblquad. This produces
an array of values which may then be integrated itself using the trapezoidal rule. This allows us
to retain part of the robustness and accuracy of the built in quadrature method while speeding up
the calculation.

This method does have another advantage, in that it can deal with the singularity issue much
more transparently than the domain splitting that triplequad required. In this method we simply
offset the discretized values by a very small amount, ensuring that the integrand is never evaluated
at the origin. Further, if we choose the k′y coordinate as the discretized one, the offset also ensures
that the integrand is not evaluated at k = k′. The reason is that we set the second coordinate of
k to zero to simplify the calculation. By offsetting the second coordinate of k we also ensure
k 6= k′.

As with the above test, we analyze the convergence of the real part (Figure 3.2(a)) as well
as the imaginary part (Figure 3.2(b)). From the two plots we see that by the time the endpoints
reach 30, the real part is converging, as is the imaginary part.

We also plot the calculation time for each value of the endpoints (Figure 3.2(c)). Though it
is faster than the triplequad method it is still clearly not fast enough. We next attempt to go one
step further to speed up the process with the aforementioned considerations.

Single Quad, Double Trapezoidal

In this method we discretize two dimensions and perform a single quadrature integration along
a line using matlab’s quad method. After the single integration is finished at each point, we
integrate over the two dimensional array, one dimension at a time, using the trapezoidal rule.
This method again has the benefit of easily dealing with the singularities while also speeding up
the computation.

As with the above methods the convergences of the real and imaginary parts are considered
(Figure 3.3(a) and Figure 3.3(b) respectively). Again we see the convergence to zero for the
imaginary plot and convergence in the real plot after 30. However, again the calculation time is
far too long (Figure 3.3(c)). This prompts us to again consider another method.
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(a) Real part of F (1, 0, 3) calculated using the
singlequad-double trapezoidal method at various val-
ues for interval endpoints n, ie, calculated over the
region (−n, n)× (−n, n)× (−n, n)
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(b) Imaginary part of F (1, 0, 3) calculated using the
singlequad-double trapezoidal method at various val-
ues for interval endpoints n, ie, calculated over the
region (−n, n)× (−n, n)× (−n, n)
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(c) Time required to calculate F (1, 0, 3) using the
singlequad-double trapezoidal method at various val-
ues for interval endpoints n, ie, calculated over the
region (−n, n)× (−n, n)× (−n, n)

Figure 3.3: Convergence and runtime results for calculating F using the Single quad-Double
Trapezoidal Method
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Triple Trapezoidal

In this method we discretize the entire space and use the trapezoidal rule to integrate over each
dimension one at a time. This obviously speeds up the process but at a price. From the above
situations it became clear that setting the endpoints at 30 was sufficient to give adequate conver-
gence. Thus, the entire space is a cube of 603 = 21600 units. Even if we discretize with a fairly
sparse grid (points every 0.25 units) then this requires over 17 million evaluations. Every at-
tempt to make the grid denser requires exponentially more evaluations and memory. We quickly
see (Figure 3.4(a) and Figure 3.4(b)) that we get poor convergence since we are limited by the
density of our grid. The maximum density we could afford was about 350 points per dimension.

The upside was that this method was fairly fast as shown in Figure 3.4(c). This method also
is able to handle the singularities without difficulty. This suggests trying to find a way to increase
the density of the grid without increasing the demand on the memory. Thankfully, such a method
is available by employing some clever tactics.

Holepunch Method

By plotting some level curves of F (1, 0, 3) one discovers that the function has a quite helpful
property. It turns out (not surprisingly) that the majority of contributions to the integral come
within 2 or 3 units in each direction of the location of the singularities. This is useful indeed,
since it allows us to vary the density of the grid in regions where not much ’action’ is happening.
The question to ask is ’how should we vary this grid spacing? ’

Obviously the area around the singularities should receive the densest spacing. At first
thought one However, again the calculation time is far too long (Figure 3.3(c)). This prompts us
to again consider another method. wish to take the 350 points or so and focus a large deal of them
around the singularities while distributing the rest in the less active regions. This is a reasonable
approach but we are still limited by the 350 points. If we concentrate in one area we sacrifice the
density in another area. There is an alternative however, called the holepunch method.

The holepunch method is based on the idea that we can divide the space into regions, perform
integration over each region and sum the totals up. In this way it is not that unlike the original
fracturing of the space that we required when using the triplequad method. However, this method
is different in how it goes about the fracturing.



52
NON-LINEAR EFFECTS ON STOPPING OF FAST MOVING MOLECULAR IONS

THROUGH SOLIDS

0 5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

n

!
[F

(1
,0

,3
)]

(a) Real part of F (1, 0, 3) calculated using the triple
trapezoidal method at various values for interval end-
points n, ie, calculated over the region (−n, n) ×
(−n, n)× (−n, n)
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(b) Imaginary part of F (1, 0, 3) calculated using the
triple trapezoidal method at various values for in-
terval endpoints n, ie, calculated over the region
(−n, n)× (−n, n)× (−n, n)
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(c) Time required to calculate F (1, 0, 3) using the
triple trapezoidal method at various values for in-
terval endpoints n, ie, calculated over the region
(−n, n)× (−n, n)× (−n, n)

Figure 3.4: Convergence and runtime results for calculating F using the Triple Trapezoidal
Method
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(a) Real part of F (1, 0, 3) calculated using the
holepunch method at various values for interval end-
points n, ie, calculated over the region (−n, n) ×
(−n, n)× (−n, n)
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(b) Imaginary part of F (1, 0, 3) calculated using the
holepunch method at various values for interval end-
points n, ie, calculated over the region (−n, n) ×
(−n, n)× (−n, n)
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Figure 3.5: Convergence and runtime results for calculating F using the Holepunch Method
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In the holepunch method regions are ’punched out’ of the integration, and their function
values set to zero. This means that the initial grid set-up doesn’t have to adapt. One can maintain
the original grid spacing over each region, greatly simplifying the actual integration. At areas of
the grid where one wishes it to be denser, the function is set to zero. When the sparser integration
is finished the ’punched out’ region is revisited, this time with a full complement of 350 points,
enabling one to get far greater accuracy in the region. Once all the regions have been integrated
with the density and accuracy desired, the results are summed to give the value of the integral
over the entire space.

The actual ’holepunching’ is carried out by clever use of Heaviside functions. A one dimen-
sional hole can be created from x0 to x1 by using,

hx(x) = |H(x0 − x)−H(x− x1)| , (3.51)

where H is the Heaviside function. Similar functions may be made for the the y and z dimen-
sions,

hy(y) = |H(y0 − y)−H(y − y1)| , (3.52)

hz(y) = |H(z0 − z)−H(z − z1)| . (3.53)

These functions may be summarized as,

hx(x) =

{
0, if x ∈ [x0, x1]

1, otherwise
. (3.54)

hy(y) =

{
0, if y ∈ [y0, y1]

1, otherwise
. (3.55)

hz(z) =

{
0, if z ∈ [z0, z1]

1, otherwise
. (3.56)

Now, the idea is that, should a grid point be inside a box created by these Heaviside functions,
the function is set to zero. We could imagine a ’window function’, w(x, y, z), which would
multiply the integrand by zero if the evaluation point is inside this box, and multiply it by one
if the point lied outside the box. Our task is thus to find a proper formulation for this function
w(x, y, z). This is most easily understood by the use of Venn diagrams (Figure 3.6).
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(a) Venn diagram representation of the one dimen-
sional Holepunch method

(b) Venn diagram representation of the two dimen-
sional Holepunch method

(c) Venn diagram representation of the three dimen-
sional Holepunch method

Figure 3.6: Venn diagram representation of the Holepunch method

In one dimension we imagine the hole punched region as being described by the Venn dia-
gram in Figure 3.6(a). In this case our holepunch function would simply be any of the above one
dimensional adapted Heaviside functions (w(x) = hx(x) for example).

In two dimensions the situation is described in Figure 3.6(b). One may be tempted to try a
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simple addition of two of these one dimensional modified Heaviside functions,

w(x, y) = hx(x) + hy(y) . (3.57)

Certainly if a point were inside the region punched out by hx and hy then w(x, y) would indeed
be zero. However, if the evaluation point was to lie outside both regions then w(x, y) = 2. In
effect, when the integral is calculated, points which were exterior to our ’hole’ would double the
value of the integrand, which is unacceptable. The solution to this dilemma is to subtract off the
two functions multiplied together. Thus,

w(x, y) = hx(x) + hy(y)− hx(x)hy(y) . (3.58)

One may easily convince oneself that this function indeed replicates the situation in Figure 3.6(b).
The form of w should be familiar since it is similar to the counting formula in set theory. It is
through this connection that we make the natural extension to the three dimensional case,

w(x, y, z) = hx(x)+hy(y)+hz(z)−[hx(x)hy(y) + hx(x)hz(z) + hz(z)hy(y)]+hx(x)hy(y)hz(z) .

(3.59)
Indeed this is precisely the formula which represents the situation depicted in Figure 3.6(c) and
thus is the desired ’window’ function.

To summarize, the idea is this. We wish to numerically integrate a function which we know
is essentially featureless and slowly changing outside of two relatively small regions. Inside
these regions our function of interest varies wildly and contributes the most to the value of the
integral. We wish to use a version of the three dimensional trapezoid rule due to its speed to
perform the integration. However, due to the 3 dimensional nature of the problem the memory
required to perform such a calculation scales too rapidly with the number of grid points we use.
To get a dense enough grid would require computational resources which are out of the domain
of feasibility. On the other hand, if we use a sparser grid to cover our space we would have large
inaccuracies. The solution is to punch two holes in the function, setting it to zero in the small,
wildly changing, regions. We then use a sparse grid to integrate the large space and use a denser
grid to calculate the integral over the smaller regions and then sum the three values.

Using two test functions we evaluate the accuracy and speed of this method. The results are
in Table 3.1.
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Method f1(x) f2(x)

Result Time (sec) Result Time (sec)

Triplequad 11.1360 120.0630 5.2019 8002.6720
Doublequad-Single Trapz 11.0774 15.14 5.2089 425.6570
Singlequad-Double Trapz 11.1361 309.6720 5.1826 1678.0470
Triple Trapezoidal 11.1367 6.8280 5.1862 18.5630
Holepunch 11.1366 71.8750 5.2302 105.8750

Table 3.1: Comparison of calculated value and runtimes for the three dimensional integration
of f1(x) and f2(x) for the triplequad, doublequad-single trapezoidal, singlequad-double trape-
zoidal, triple trapezoidal and holepunch methods.





Chapter 4

Verification of Method

In this chapter we present the results of the calculations of the stopping force for ions, colinear
diclusters of protons and randomly oriented clusters of protons for in the low d limit. All cal-
culations in this chapter, and following chapters, were carried out using the holepunch method
explained in chapter 3.

4.1 Parameter Values

Further, in this and subsequent chapters we use the following values for our parameters.The
plasma frequency was that of aluminum and calculated through the expression for the Wigner-
Seitz radius, rs,

rs = (
4πn0a

3
0

3
)−1/3 , (4.1)

and thus,

rs = (
ω2
pa

3
0

3
)−1/3 . (4.2)

All calculations are done in atomic units and thus a3
0 = 1 and hence,

ω2
p =

3

r3
s

. (4.3)

The Wigner Seitz radius for aluminum is ralums = 2.07 which gives a final value for the plasma
frequency of ωp = 0.5816.
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The units of distance were also in atomic units, but plots are expressed as multiples, d, of
the equilibrium distance of protons in the H+

2 molecule (which is approx Å). Hence, in atomic
units,

D ≈ d
1.06

0.5219
. (4.4)

We have also used α = 0 which coincides with the case considered by previous authors for single
ions [10, 11].

4.2 Low Limit d Verification

We begin the process of verification of our method by plotting the first order stopping force as
well as the full (first and second order) stopping force in Figure 4.1.

We see that as the speed is increased we have the second order correction suppressed. In the
high speed limit the full stopping force begins to coincide with the first order stopping force. This
result agrees with the results given in [10] as well as in [11]. Having duplicated the established
results for the ion case, we move to the case of diclusters.

One check we use is to plot the first order and full stopping forces against speed for distances
of d = 1, 0.5, 0.25. For the first order case we also include the plot for 4Sion1 . For the full
stopping force plots we include the value for 4Sion1 + 8Sion2 . We do this because when we take
the limit of our expressions of the cluster factors for both the colinear and randomly oriented
case, we arrive at structure factors of 4 in the first order case and 8 in the second order case.
Thus, as the distance between protons is reduced to zero we expect the first order stopping force
to approach 4Sion1 and the full stopping force to approach 4Sion1 + 8Sion2 . The results for the
colinear case are shown in Figure 4.2 and for the random case in Figure 4.3.

We clearly see that for the colinear case, as the distance is reduced the plots for the first order
and full stopping forces approach their expected values. For the randomly oriented case we see
similar behaviour.

Analogously, we plot the first and full stopping forces against d at set speeds of 2, 3, 4 and
5 for both the colinear and randomly oriented cases. As d approaches zero, we expect the first
order stopping force to approach 4Sion1 and the full stopping force to approach 4Sion1 + 8Sion2 .
Since, in the ion case, the stopping force does not depend on d, these limits will be represented
by horizontal lines for each set speed. Our expectation is that, for each speed, the calculated
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Figure 4.1: S1 (thin line) and S1+S2 (thick line) for a single proton through a solid with rs = 2.07

and η = ωp/10 vs speed

values will tend to the horizontal asymptotes as d goes go zero. The results are given in Figure
4.4 for the colinear case, and Figure 4.5 for the randomly oriented case.

Again, as above, we see that the first order and full stopping forces behave, smoothly, as
expected in the low d limit for both the colinear and randomly oriented case.

Having established a good degree of confidence in our method, despite lack of experimental
evidence, we turn our attention specifically to the results we sought initially.
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( ), d = 0.01 (dots), traveling through a solid with
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d = 1 ( ), d = 0.01 (dots), traveling through a
solid with rs = 2.07, η = ωp/10 and α = 0 plotted
against the projectile speed

Figure 4.2: Small d limit of the stopping force of a colinear dicluster of protons plotted against
the projectile speed
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d = 1 ( ),d = 0.01 (dots), traveling through a solid
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tons of interproton distance d = 0.25 (—-), d = 0.5
(· · · ), d = 1 ( ),d = 0.01 (dots), traveling through
a solid with rs = 2.07, η = ωp/10 and α = 0 plotted
against the projectile speed

Figure 4.3: Small d limit stopping force for a randomly oriented dicluster of protons plotted
against the projectile speed
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Figure 4.4: Small d limit of the stopping force for a colinear dicluster of protons plotted against
the interproton distance
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Figure 4.5: Small d limit of the stopping force for a randomly oriented dicluster of protons
plotted against the interproton distance





Chapter 5

Results For Stopping Force On A Dicluster

In this chapter we present the results of carrying out the calculation of stopping force on a colinear
dicluster as well as a randomly oriented dicluster. We perform the calculations as outlined above.
It is worth mentioning again that results are in atomic units as well as Gauss’ electromagnetic
units. Distances are given in units of the equilibrium internuclear separation of H+

2 .

5.1 Results For A Colinear Dicluster

We begin by showing the first order stopping force for a colinear dicluster of protons for distances
d = 1, 2, 3 which is shown in Figure 5.1. We have also plotted twice the stopping force of a
single ion to show the difference between the total stopping force felt by two independent protons
and a cluster. In this way we can see the contribution that interference plays. We immediately see
that the curve which is most similar to the ion case is the d = 1 plot, which makes intuitive sense
since the interference contribution increases with distance to a maximum before decreasing as
the proton separation increases. We see the increased complexity coming from this interference
as d increases to 2 and 3.

In Figure 5.2 we see the full stopping force on a colinear dicluster of protons for distances
of 1, 2 and 3, with an even more pronounced effect of interference. For distances of 2 and 3 we
see that the force the projectile ’feels’ is less that for two independent protons for small speeds.
As the speed is increased the effect of the interference is to increase the force that the projectile
experiences.
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Figure 5.1: S1 for a colinear dicluster of protons of interproton distance d = 1 (thin line),
d = 2 (· · · ), d = 3 ( ) and two independent protons (thick line) traveling through a solid with
rs = 2.07, η = ωp/10 and α = 0 plotted against the projectile speed

An effective way to visualize the effect of interference is to plot the following ratios,

Rcolin
1 =

Scolin1

2Sion1

, (5.1)

and

Rcolin
12 =

Scolin1 + Scolin2

2(Sion1 + Sion2 )
, (5.2)

The more these ratios differ from unity, the more prominent the effect of interference is. These
are shown in Figures 5.3 and 5.4, and show measures of the vicinage effect mentioned earlier.

From the plots we see that at high speeds, the effect on the first order stopping force due to
interference decreases with interproton distance. However, at very low distances this analysis
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Figure 5.2: S1 + S2 for a colinear dicluster of protons of interproton distance d = 1 (thin line),
d = 2 (· · · ), d = 3 ( ) and two independent protons (thick line) traveling through a solid with
rs = 2.07, η = ωp/10 and α = 0 plotted against the projectile speed

breaks down.
The same general pattern is seen in the R case with even more instability in the low speed

regime. Clearly this indicates an increase in complexity of interactions between the cluster and
the electron gas. Similarly we may plot the same quantities against the interproton distance at
fixed speeds, and thus examine the distance dependence of interference effects. These are given
in Figures 5.5 and 5.6.

We see in these plots that in both the first order and full stopping force cases, at higher speeds
the interproton distance plays less and less of a role. We also see that in all cases, as the distance
increases, the stopping force experienced by the cluster decreases. As above, we may also plot
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Figure 5.3: R1 for a colinear dicluster of protons of interproton distance d = 1 (—), d = 2 (· · · ),
d = 3 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and α = 0 plotted against the
projectile speed

the ratios, shown in Figure 5.7 and 5.8.

5.2 Results For A Randomly Oriented Dicluster

In this section we report the findings for the stopping force of a randomly oriented dicluster of
protons at various projectile speeds and interproton distances. As above, we begin by considering
the first order and full stopping forces of the cluster at fixed interproton distances verses the
projectile speed. These are shown in Figures 5.9 and 5.10
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Figure 5.4: R12 for a colinear dicluster of protons of interproton distance d = 1 (—-), d = 2

(· · · ), d = 3 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and α = 0 plotted against
the projectile speed

We again define ratios,

Rrandom
1 =

Srand1

2Sion1

, (5.3)

and

Rrandom
12 =

Srand1 + Srand2

2(Sion1 + Sion2 )
, (5.4)

to help us articulate the effect on stopping force due to interference. These are plotted in Figures
5.11 and 5.12.

Finally, following the format of the above section we plot the dependence of the stopping
force on the interproton distance for fixed speeds. These are shown in Figures 5.13 and 5.14.
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Figure 5.5: S1 for a colinear dicluster of protons of speed v = 2 (thick line), v = 3 (thin line),
v = 4 (· · · ), and v = 5 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and α = 0

plotted against interproton distance

The ratio values for the randomly oriented proton dicluster versus interproton distance is
given in Figures 5.15 and 5.16.

By comparing Figures 5.1 and 5.2 with Figures 5.9 and 5.10 we see that the most prominent
difference is that the random case is much smoother. Both the colinear case and the random case
exhibit a peak near v = 1 and decay with an increase in speed. What is also interesting to note,
is that the peak for d = 1 is much higher in the randomly oriented case, than for the colinear
case. In fact, from Figure 5.1 we notice that the highest stopping force comes from the d = 3

case, rather than the d = 1 case which is seen for randomly oriented clusters in Figure 5.9.
As one would expect, for the randomly oriented case, the peaks of the first order and full
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Figure 5.6: S1 + S2 for a colinear dicluster of protons of speed v = 2 (thick line), v = 3 (thin
line), v = 4 (· · · ), and v = 5 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and α = 0

plotted against interproton distance

stopping forces for higher d values (ie, d = 2, 3) begin to congregate around the value for two
independent ions as shown in Figures 5.9 and 5.10. This is not true however for the colinear case
where a more complex distribution for low speeds is shown (Figures 5.1 and 5.2).

Much like the plots for the stopping forces, the ratios R1 and R12 are much smoother for the
random case (Figures 5.11 and 5.12) than for the colinear case (Figures 5.3 and 5.4). However,
many of the other aspects of the graphs are very similar. Notably in both cases the ratios R1 and
R12 are highest for d = 1, followed by d = 2 and finally by d = 3. Further, in both cases the
ratios begin to plateau at higher speeds (v > 3) and all are above unity.
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Figure 5.7: R1 for a colinear dicluster of protons of speed v = 2 (thick line), v = 3 (thin line),
v = 4 (· · · ), and v = 5 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and α = 0

plotted against interproton distance

When comparing the distance dependence we notice that for the first order and full stopping
force calculations, the same qualitative behaviour occurs for both the colinear (Figure 5.5) case
and the randomly oriented case (Figure 5.13). However, the colinear case has a higher stop-
ping force than the randomly oriented dicluster. This becomes more pronounced as the speed
decreases, with the largest discrepancy occurring for the v = 2 case.

When one considers the ratios R1 and R12 one notices that at large distances, the randomly
oriented cluster experiences higher ratio values for higher speeds (Figures 5.15 and 5.16). This
pattern also occurs for the colinear case as well (Figures 5.7 and 5.8). However, what is inter-
esting to observe is that this pattern doesn’t hold true as d approaches 1 in the case of Rrandom

12

as shown in Figure 5.16. We can here that as d approaches 1, the R12 value for v = 2 crosses
the other three and is in fact the largest at d = 1. This effect isn’t seen for the colinear case
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Figure 5.8: S1 for a colinear dicluster of protons of speed v = 2 (thick line), v = 3 (thin line),
v = 4 (· · · ), and v = 5 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and α = 0

plotted against interproton distance

except in the regions where d is less than 1. Further, from Figure 5.15 we see that this ’layering’
remains very much intact right up to d = 1. This means that the second order correction which
is included in R12 begins to play a role in this case. What’s more is that we see that for the
randomly oriented cluster, the ratios R1 and R12 appear to be shallowing before they reach unity
as d increases. This is not found in the colinear case, as we see from Figures 5.7 and 5.8 that the
v = 2 case crosses unity and even dips below 0.8.

The main results are seen conveniently in Figures 5.17, 5.18, 5.19 and 5.20, in which we can
see clearly the non-linear effects on the stopping force.

In Figure 5.17 we notice that for a colinear dicluster at speeds in excess of around 2 atomic
units, the non-linear effect on the stopping force is one which produces a higher ratio than if we
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Figure 5.9: S1 for a randomly oriented dicluster of protons of interproton distance d = 1 (thin
line), d = 2 (· · · ), d = 3 ( ) and 2 independent protons (thick line) traveling through a solid
with rs = 2.07, η = ωp/10 and α = 0 plotted against projectile speed

had just considered the linear ratio, R1. This holds true for both the case of d = 1 and d = 3

with lower interproton distances yielding the higher ratio.
If we consider the interproton distance dependence in Figure 5.18 we notice that throughout

the entire range of d = 1 to 3 the nonlinear terms again contributed positively to the ratio. As
the interproton distance increased we notice a spreading of the ratio values for the three speeds
considered with the lowest speed v = 2 having the smallest ratio, followed by v = 3 and finally
v = 5 with the highest. We also see that as the distance was increased, both ratios decreased for
all 3 speeds which agrees with the results from Figure 5.17.

For the randomly oriented case, we see that in Figure 5.19 that at around v = 3 both the
d = 1 and d = 3 clusters undergo an inversion of highest ratio. Below v = 3 the nonlinear
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Figure 5.10: S1 + S2 for a randomly oriented dicluster of protons of interproton distance d = 1

(thin line), d = 2 (· · · ), d = 3 ( ) and 2 independent protons (thick line) traveling through a
solid with rs = 2.07, η = ωp/10 and α = 0 plotted against projectile speed

effects cause an increase in ratio, where as after v = 3 we see that the nonlinear effect actually
reduces the ratio. Further, the d = 3 case undergoes a steady increase in ratios whereas the d = 1

case has relatively flat behaviour with respect to the d = 3 case.
Finally when we look at Figure 5.20 we see that throughout the region d = 1 up to d = 3

the nonlinear effect increases the ratio for the clusters with v = 2 and 5. However, the effect is
reversed for the v = 5 case where the nonlinear effect serves to decrease the ratio. This reflects
our earlier result where we found an inversion after v = 3. Also, with respect to each other, as the
distance is increased we see a general downwards slope of ratio which appears to be approaching
unity. This is expected as each of the ratios should approach 1 as the distance between the protons
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Figure 5.11: R1 for a randomly oriented dicluster of protons of interproton distance d = 1 (—),
d = 2 (· · · ), d = 3 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and α = 0 plotted
against projectile speed

is increased to infinity.
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Figure 5.12: R12 for a randomly oriented dicluster of protons of interproton distance d = 1 (—),
d = 2 (· · · ), d = 3 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and α = 0 plotted
against projectile speed
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Figure 5.13: S1 for a randomly oriented dicluster of protons of speed v = 2 (thick line), v = 3

(thin line), v = 4 (· · · ), and v = 5 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and
α = 0 plotted against interproton distance
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Figure 5.14: S1 + S2 for a randomly oriented dicluster of protons of speed v = 2 (thick line),
v = 3 (thin line), v = 4 (· · · ), and v = 5 ( ) traveling through a solid with rs = 2.07, η = ωp/10

and α = 0 plotted against interproton distance
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Figure 5.15: R1 for a randomly oriented dicluster of protons of speed v = 2 (thick line), v = 3

(thin line), v = 4 (· · · ), and v = 5 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and
α = 0 plotted against interproton distance
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Figure 5.16: R12 for a randomly oriented dicluster of protons of speed v = 2 (thick line), v = 3

(thin line), v = 4 (· · · ), and v = 5 ( ) traveling through a solid with rs = 2.07, η = ωp/10 and
α = 0 plotted against interproton distance
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Figure 5.17: R1 (thin line) compared with R12 (thick line) for a colinear dicluster of protons with
interproton distance of d = 1 as well as R1 (thin dashes) compared with R12 (thick dashes) for a
colinear dicluster of protons with interproton distance of d = 3 vs projectile speed
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Figure 5.18: R1 (thin line) compared with R12 (thick line) for a colinear dicluster of protons
with veclocity of v = 2 as well as R1 (thin dots) compared with R12 (thick dots) for a colinear
dicluster of protons with veclocity of v = 3 and R1 (thin dashes) compared with R12 (thick
dashes) for a colinear dicluster of protons with speed of v = 5 vs interproton distance
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Figure 5.19: R1 (thin line) compared with R12 (thick line) for a randomly oriented dicluster
of protons with interproton distance of d = 1 as well as R1 (thin dashes) compared with R12

(thick dashes) for a randomly oriented dicluster of protons with interproton distance of d = 3 vs
projectile speed
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Figure 5.20: R1 (thin line) compared with R12 (thick line) for a randomly oriented dicluster of
protons with veclocity of v = 2 as well as R1 (thin dots) compared with R12 (thick dots) for a
randomly oriented dicluster of protons with veclocity of v = 3 and R1 (thin dashes) compared
with R12 (thick dashes) for a randomly oriented dicluster of protons with speed of v = 5 vs
interproton distance





Chapter 6

Concluding Remarks

6.1 Summary

In this work we studied the stopping forces experienced by three types of projectiles incident
on the electron gas of aluminum. Specifically we studied the non-linear (second order) stopping
forces of a single ion projectile, a dicluster of protons with their interprotonic axis aligned in the
direction of travel as well as a randomly oriented dicluster of protons. The colinear case and the
randomly oriented case were chosen because they represent two extremes of configuration. It is
expected that in the colinear case, the partner ion would experience the most effect due to the
wake, since it travels directly behind the leading ion. On the other hand the randomly oriented
case ’averaged out’ the effects which would occur at different orientations.

In chapter 2 we outlined the development of the hydrodynamic model by constructing the
Hamiltonian of the system and then appealing to variational calculus and the Euler-Lagrange
equations to establish the equations of motion. These equations turned out to be the continuity
and momentum balance equations of hydrodynamics. The quantum nature of the electron gas
was introduced by using the Thomas-Fermi-Weizsäcker model of the internal energy of the elec-
tron gas. We then proceeded to expand the charge density and the velocity distribution of the
system in a perturbation expansion and separated the resulting equations into first order (linear)
and second order (non-linear) components. These first and second order expressions were solved
to find the first and second order electron density distributions, which we used to obtain a formula
for the first and second order stopping forces experienced by the projectile. The physical nature
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of the projectile was introduced into the stopping force expressions by way of a first and second
order structure factor.

In chapter 3 we described the integration strategy for both the first and second order stopping
forces. The second order calculation was especially difficult since, even in the simplest case, as
it involved integration over a six-dimensional space. To simplify the situation we took the zero
viscosity limit allowing us to introduce delta functions, which consumed two of the integrations.
Using cylindrical symmetry we were able to focus on a three dimensional integration, which was
carried out numerically using a holepunch method to obtain the needed grid density and to avoid
singularities. This method of integration was compared to four other methods and was shown
to have the best combination of speed, scalability and accuracy to tackle the three dimensional
integration.

In chapter 4 and 5 we presented the results obtained from these calculations. Due to the
current lack of independent checks of the method, we presented limiting cases to check the
robustness of the calculations. Having shown the accuracy of the method we proceeded to list
the calculation results for the colinear and randomly oriented case and plot them against the
projectile speed and also against the interproton distance.

6.2 Conclusions

In carrying out our initial investigation of calculation method we found that the most robust
method of integration was completely unreasonable since it took nearly two and half hours per
calculation which must be carried out at least twelve times per independent variable value (v or
d). It became clear from the test of the other three standard methods that the only one which
could perform in the time needed was the triple trapezoid method. However, this method was
found to perform badly as the integration region was extended, due to memory limitations. After
the test of the holepunch method on two trial functions as well as on a typical stopping force
calculation it was found that the accuracy was very close to that of the most robust method and
the time scale comparable to the triple trapezoid method. It would also be reasonable to conclude
that this method would perform equally well on other functions, provided that they were slowly
varying over most of their domains, with a finite number of more rapidly varying regions and/or
non-essential singularities.
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In the small d limit we can conclude that the first order and full stopping force of both the
colinear and randomly oriented dicluster smoothly approached the case of a doubly charged ion
at all explored speeds. What is more is that at these small distances, the speed dependence
of stopping force for both types of projectiles produced a very smooth curve whereas at larger
distances (d = 1, 2, 3) the plots became increasingly ’active’. This leads us to believe that as the
distance between the protons shrinks, the interference becomes less and less noticeable. As d is
increased the effect of the partner particle causes very non-linear behaviour. At higher speeds
however, this effect gets ’washed’ out by the v−2 nature of the stopping force.

We also find that in general, for both the first order and full stopping forces, the closer the
protons were to each other, the stronger was the stopping force. This is especially true at high
speeds.

Further, as the speed is increased the stopping force is decreased. This is true for all interpro-
ton distances and for both colinear and randomly oriented projectiles.

Thus, in the regime of this model (v ≈ 1 − 5 a.u.), the most energy loss occurs for slower
moving particles spaced closely together.

From the ratio plots, we see that as one increases the projectile speed, R1 slowly increases
for both the colinear and randomly oriented case. This indicates that, for first order, the effect
of the partner (vicinage effect) increases with speed. On the other hand, the effect of the partner
proton seems to plateau as the speed increases. This means that, although the overall stopping
force is decreasing (as mentioned above), the effect of speed does not seem to change the effect
of the partner proton. Hence, we conclude that, even at high speeds, this model predicts that
stopping force in the presence of two protons in a cluster will be greater than that of two isolated
protons. Of course (as mentioned above and as seen in the ratio plots) if the interproton distance is
increased, this effect decreases. We clearly see this trend in the ratio plots against the interproton
distance. As the distance is increased we see the ratio decreasing (for both types of clusters)
towards unity. Thus, as the distance is increased to infinity, the stopping forces of the cluster
(both first order and full) tend towards that of two isolated protons.

The main conclusions on the non-linear effect may be summarized from the Figures 5.17 -
5.20 where we concluded the following:

• The nonlinear effect tends to increase the vicinage effect on the stopping force as speed
is increased except in the case of the randomly oriented cluster, which experiences an
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’inversion’ at around v = 3. That is, for randomly oriented clusters traveling at speeds
higher that v = 3 the nonlinearity serves to decrease the vicinage effect.

• As distance is increased the effects of the non-linearity are reduced.

• The nonlinearity seems to have no preference in orientation as it seems to increase the
stopping force in each configuration except in the case of high speeds and for randomly
oriented clusters. In this case the nonlinearity decreases the stopping force.

6.3 Future Work

Obviously one could expand this model to include third order effects. While this might be a nat-
ural extension, it would be a rather difficult one in that the third order continuity and momentum
equations would become that much more complex. The integrations that would be required may
be beyond current computing capabilities. It is also uncertain if interesting physics would be un-
covered as the contributions of higher order terms to the overall value of stopping force decrease
with order. Simply put, the gains of exploring third order effects may come up very short of the
efforts required to compute them.

On the other hand, within this framework one could (in principle) explore any cluster which
satisfies cylindrical symmetry and is such that its presence induces only a small change of charge
density in the electron gas. Some such clusters which may be of interest would include a colinear
dipole, randomly oriented dipole or point dipole.

Further, these calculations were carried out for a static electron gas. One could extend this
model to include non-static electron gases perhaps in the presence of an external electric field
(possibly due to irradiation by a laser [28]).

Finally, within this framework, the plasma frequency used in this model belonged to alu-
minum. With the change of a single parameter, utilizing the existing framework and compu-
tational programs, one could extend this study to other metals such as gold, platinum and so
on.

There are, however, several explorations which could be carried out that were not touched on
in this work such as the self-energy of the projectile caused by its interaction with the target media
as it passes. We also considered the case where the cluster passed through fast enough (or the
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target was thin enough) so that the structure of the cluster was considered to be static. Certainly
it would be worthwhile to consider the dynamical changes in structure (Coulomb explosion) that
the projectile experiences. For that purpose one would need to evaluate the non-linear effects on
the dynamically screened Coulomb force between the constituent ions [20]. Finally, for clusters
or molecules made of heavier atoms (e.g. N2, Cn, etc.) the well-documented vicinage effect on
the ion charge states may be profoundly effected by the non-linearity in the polarization of the
electron gas in the target [29].





Appendix A

Derivation of Hydrodynamic Equations
From Boltzmann’s Equation

A.1 The Boltzman Kinetic Equation

We begin by defining a function, f(r,v, t), called the distribution function. The meaning of
f(r,v, t) is defined through,

f(r,v, t) dxdydzdvxdvydvz (A.1)

as the number of particles at position r, with velocity v, at time t within a volume element
(of phase space) of size dxdydzdvxdvydvz. Clearly then, by integrating over velocity space we
obtain the number density of the particles,

n(r, t) =

∫
v

f(r,v, t)dv , (A.2)

We further demand that f is zero at positive and negative infinity, since it would be unphysical
to allow parcels to approach infinite velocitites.

We define the change in f ,
df

dt
= Icol(f) (A.3)

which is called the kinetic equation. The term on the right is called the collison integral which
takes into account the variation of the distribution function due to pairwise particle interactions.
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Icol describes the effect on f due to the collisions between two particles at a time. Collisions of
more than two particles at a time are possible, but not considered here. Expanding the left hand
side using the chain rule,

df

dt
=

∂f

∂t
+
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t
+
∂f

∂vx

∂vx
∂t

+
∂f

∂vy

∂vy
∂t

+
∂f

∂vz

∂vz
∂t

,

=
∂f

∂t
+ ~∇f · v + ~∇vf · a ,

=
∂f

∂t
+ (v · ~∇)f +

(
a · ~∇v

)
f ,

where ~∇v is the velocity derivative.
Now, from Newtons law we know that a = F

m
where F is the external force, which depends

only on space and time. We thus we have,

df

dt
=
∂f

∂t
+ (v · ~∇)f +

(
1

m
F · ~∇v

)
f .

Defining the total derivative,

D

Dt
=

∂

∂t
+ (v · ~∇) +

1

m
F · ~∇v ,

we may rewrite equation A.3 as,

Df

Dt
=
∂f

∂t
+ (v · ~∇)f +

(
1

m
F · ~∇v

)
f = Icol(f) . (A.4)

This is called the Boltzmann Kinetic Equation (BKE) which describes how the distribution
function changes with time. Since f provides information about how the fluid parcels are dis-
tributed, the BKE tells us how physical properties of the fluid parcels evolve in time.

A.2 Moments of the Boltzmann Kinetic Equation

A.2.1 Moments

Ths distribution function generally contains more information than we need. We’re most inter-
ested in how physical quantities such as the mass density, momentum and kinetic change over
time.
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The nth veloctiy moment of the BKE is found by multiplying the equation by the nth power
of the velocity and then integrating over velocity space.

For example, the zeroth moment of the BKE is,∫
v

v0Df

Dt
dv =

∫
v

v0Icol(f)dv ,

or, ∫
v

∂f

∂t
+ (v · ~∇)f +

(
F · ~∇vf

)
dv =

∫
v

Icol(f)dv .

Likewise, the first and second moments are,∫
v

v ·
(
∂f

∂t
+ (v · ~∇)f +

(
F · ~∇vf

))
dv =

∫
v

v · Icol(f)dv ,∫
v

v2 ·
(
∂f

∂t
+ (v · ~∇)f +

(
F · ~∇vf

))
dv =

∫
v

v2 · Icol(f)dv ,

respectively.
Higher moments may be calculated in an analogous manner. The important thing to note is

that since f obeys the BKE then each moment equation gives a new dynamical equation for the
system. However, only a few moments are of interest. Of particular interest are the moments
associated with the mass density, momentum and kinetic energy. These are related to the zeroth,
first and second moments respectively. We may see how these relationships come about by
noting,

ρ =

∫
v

mfdv , (A.5)

ρu =

∫
v

mvfdv , (A.6)

K =
1

2

∫
v

mv2fdv , (A.7)

where m is the mass of the fluid parcel.
Since ρ, ρu and K are successive velocity moments of f , and since the BKE describes the

evolution of f , we expect successive moments of the BKE to describe the evolution of ρ, ρu and
K. By writing these physical quantities in the above manner we see their close link with the
moments of the BKE.
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However, we limit our discussion to collisionless dynamics by taking Icol = 0. Thus, the
final version of the Boltzmann Kinetic Equation we consider is,

Df

Dt
=
∂f

∂t
+ (v · ~∇)f +

(
1

m
F · ~∇v

)
f = 0 . (A.8)

A.2.2 Zeroth Moment: Conservation of Mass

We begin by looking at the zeroth moment of the Boltzmann Kinetic Equation. Here and in the
following sections we assume that particles are moving with speeds much smaller than the speed
of light (we may neglect relativistic effects and make use of Newton’s law).

From A.8 we have,

Df

Dt
=
∂f

∂t
+ (v · ~∇)f +

(
1

m
F · ~∇v

)
f = 0 .

To find the zeroth moment we multiply by v0 = 1 and integrate over velocity space, yielding,∫
v

∂f

∂t
+ (v · ~∇)f +

(
1

m
F · ~∇vf

)
dv = 0 .

We may interchange the order of differentiation and integration in the first term since the
integration is with respect to v and in phase space, v is independent of t. Therefore, the first term
is, ∫

v

∂f

∂t
dv =

∂

∂t

∫
v

fdv =
∂n

∂t
.

By noting that the integration does not depend on spatial variables (again, in phase space spatial
variables and velocity are independent), we can pull the spatial gradient operator in the second
term outside of the integral. So,∫

v

v · ~∇fdv =

∫
v

~∇f · vdv , (A.9)

= ~∇ ·
∫

v

fvdv , (A.10)

=
(
n~∇ · u

)
,

where we’ve used u = 1
n

∫
v
fdvV to be the average velocity of the parcels (as noted earlier).
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Since F does not explicitly depend on velocity, we can pull the force in the third term outside
of the integration,

1

m

∫
v

F · ~∇vfdv =
F

m
·
∫

v

~∇vfdv = 0 .

Now, since we demanded that the distribution function f be zero at positive and negative
infinity, we see that the above integral vanishes, ie,

1

m

∫
v

F · ~∇vfdv =
F

m
· f |∞−∞ = 0 .

Thus, putting all together we obtain,

∂n

∂t
+ (n~∇ · u) = 0 . (A.11)

If the flow is irrotational then we may write the velocity as the gradient of a velocity potential,
ψ, and thus,

∂n

∂t
+ ~∇ · (n~∇ψ) = 0 . (A.12)

which is the familiar conservation of mass equation first expressed in 2.24

A.2.3 1st Moment: Conservation of Momentum

We now turn our attention to the first moment of the Boltzmann Kinetic Equation by multiplying
A.8 by v1 and again integrating over velocity space. Thus,∫

v

v ·
(
∂f

∂t
+ (v · ~∇)f +

1

m
F · ~∇vf

)
dv = 0

The first term is easy to evaluate, namely,

∫
v

v
∂f

∂t
dv =

∂

∂t

∫
v

fvdv , (A.13)

= n
∂u

∂t
. (A.14)

To simplify the second term we find it useful to note that,
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v · v = (v − u) · (v − u) + u · v + v · u− u · u .

Thus,∫
v

v
(
v · ~∇f

)
dv = ~∇ ·

(∫
v

v · vfdv
)
,

= ~∇ ·
(∫

v

(v − u) · (v − u)fdv + 2u ·
∫

v

vfdv − u · u
∫

v

fdv

)
,

= ~∇ ·
(∫

v

(v − u) · (v − u)fdv + u · u
∫

v

fdv

)
, (A.15)

Defining the pressure tensor P = Pij to be,

P =

∫
v

m(v − u) · (v − u)f(r,v, t) dv ,

where Pij is the average rate at which momentum is transferred in the ith direction across the jth
surface with velocity u. Thus, we may write A.15 as,∫

v

v
(
v · ~∇f

)
dv =

1

m
~∇ ·P + n~∇ · (u · u) .

For the third term, ∫
v

v

(
1

m
F · ~∇v

)
fdv =

F

m
·
∫

v

v~∇vfdv .

Now, integrating by parts,

F

m
·
∫

v

v · ~∇vfdv =
F

m

(
vf |∞−∞ −

∫
v

fdv

)
,

= −nF

m
.

Thus, putting all three terms together we obtain,

∫
v

v ·
(
∂f

∂t
+ (v · ~∇)f +

1

m
F · ~∇vf

)
dv = n

∂u

∂t
+

1

m
~∇ ·P + n~∇ · (u · u)− n

F

m
,

= 0 . (A.16)
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By using the definition of the material derivative, A.16 becomes,

n
Du

Dt
=

1

m

(
nF− ~∇ ·P

)
, (A.17)

which, when multiplied by m on both sides becomes,

Dp

Dt
= nF− ~∇ ·P , (A.18)

which expresses conservation of momentum, as was to be expected. Comparing this expression
to 2.45 and 2.46 one may write,

P = ~∇
(
δG

δn

)
, (A.19)

and in this sense the internal energy of the electron gas may be thought of as a type of ’pressure’
which acts on the fluid.





Appendix B

Thomas-Fermi-Wiezsäcker Model

In this section we describe the derivation of the internal energy of an electron gas using the
Thomas-Fermi-Wiezsäcker model.

We consider a system of N electrons, with the ith electron being located at position ri. We
may write this system’s quantum mechanical state, Ψ, as,

Ψ = Ψ(r1, σ1, r2, σ2, . . . , rN , σN) , (B.1)

where σi is the spin of the ith electron. As it stands, the wave function describing our system is
much too complicated so we appeal to the Hartree-Fock theory to simplify Ψ in terms of single
electron orthonormal wave functions, Ψi. To this end we use the Slater Determinant so that,

ΨHF =
1√
N

∣∣∣∣∣∣∣∣∣∣
ψ1(r1, σ1) ψ1(r1, σ1) . . . ψ1(r1, σ1)

ψ2(r2, σ2) ψ2(r2, σ2) . . . ψ2(r2, σ2)
...

...
...

...
ψN(rN, σN) ψN(rN, σN) . . . ψN(rN, σN)

∣∣∣∣∣∣∣∣∣∣
(B.2)

We also require that, ∫
ψ∗kψld

Nr = δkl , (B.3)

where δkl is the Kronecker delta.
Assuming a time-dependent Hamiltonian, the Schrödiner equation gives the dynamical equa-

tion of the system,
ĤΨ = EΨ , (B.4)

103



104
NON-LINEAR EFFECTS ON STOPPING OF FAST MOVING MOLECULAR IONS

THROUGH SOLIDS

where Ĥ is the Hamiltonian operator and E is the energy eigenvalue.
The average energy, Ē of our system is given by the quantum mechanical expectation value,

Ē[Ψ] =

∫
Ψ∗EΨdNr , (B.5)

=

∫
Ψ∗ĤΨdNr , (B.6)

Thus, in the Hartree-Fock approximation,

ĒHF =

∫
Ψ∗
HF ĤΨHFd

Nr , (B.7)

We make the further assumption that the Schrödinger equation is independent of spin in order
that we may write,

ψi(ri, σi) = φi(ri) . (B.8)

Finally, we assume that each orbital is doubly occupied (closed shell).
We obtain the expression for the Thomas-Fermi kinetic energy before discussing the von

Weizsäcker correction term.

B.1 Thomas-Fermi Kinetic Energy

The Thomas-Fermi kinetic energy comes from considering the kinetic energy term from the
Hamiltonian, which term is given by,

KEi =
‖pi‖2

2m
, (B.9)

which, in the position representation of quantum mechanics, becomes the operator,

K̂Ei = − ~
2m

∇2
i , (B.10)

Thus, the Thomas-Fermi kinetic energy, T , may be written,

THF =
N∑
i=1

∫
φ∗i

(
− ~

2m
∇2
i

)
φld

3r (B.11)
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If we write the spinless two electron density function, n(r, r′), as,

n(r, r′) = 2

N/2∑
i=1

φ∗i (r)φi(r
′) (B.12)

we are lead naturally to the electron number density, n(r),

n(r) = n(r, r) = 2

N/2∑
i=1

φ∗i (r)φi(r) . (B.13)

With these definitions we may write,

THF [n] =

∫ (
− ~

2m
∇2n(r, r′)

)
r′=r

d3r (B.14)

Assuming periodic boundary conditions,

φ(x+ L) = φ(x) (B.15)

we get,

φ(nx, ny, nz) =
e

2πı
L

n·r

L3/2
, (B.16)

where, nx, ny and nz are integers.
With k = 2πn

L
, then

n(r, r′) =
2

L3

∑
k

eiK·(r−r;) (B.17)

Since we are dealing with an electron gas of many electrons, it is safe to make the assumption
that N >> 1 and thus

∑
k ≈

∫
dk. Hence,

n(r, r′) =
2

L3

∫
eik·(r−r;)dn . (B.18)

Since,

d3n = dnx dny dnz , (B.19)

=
L3

(2π)3
dkx dky dkz , (B.20)

=
V

8π3
d3k , (B.21)



106
NON-LINEAR EFFECTS ON STOPPING OF FAST MOVING MOLECULAR IONS

THROUGH SOLIDS

then we conclude,

n(r, r′) =
1

4π3

∫
eik·(r−r;)d3k . (B.22)

We now undertake the task of integrating this equation. Using spherical coordinates,

n(r, r′) =
1

4π3

∫ kF

0

k2dk

∫ 2π

0

∫ π

0

eik·(r−r;) sin θdαdθ . (B.23)

If we consider the case r = r′ then,

n(r) =
1

4π3

∫ kF

0

k2dk

∫ 2π

0

∫ π

0

sinαdαdθ , (B.24)

=
k3
F

3π2
. (B.25)

Thus,
kF = [3π2n(r)]1/3 . (B.26)

Finishing the integration of B.23 we use let k · (r− r′) = ks cosα and thus B.23 becomes,

n(r, r′) =
1

4π3

∫ kF

0

k2dk

∫ 2π

0

dθ

∫ π

0

eiks cosα sinαdα . (B.27)

Now, we change variable, τ = cosα and get,

n(r, r′) =
1

2π2

∫ kF

0

k2dk

∫ 1

−1

eıksτ sinαdτ , (B.28)

=
1

2π2

∫ kF

0

k

ıs

(
eıks − e−ıks

)
dk , (B.29)

= 3n(r)

[
sin(kF s)− cos(kF s)kF s

(kF s)3

]
. (B.30)

We let R = r−r′

2
and s = r1 − r2 when ∇2

r = 1
4
∇2

R +∇2
s +∇R∇s. Hence,

THF [n] =
−~2

2m

∫
∇2

rn(r, r′)d3r ,

=
−~2

2m

∫ (
1

4
∇2

R +∇2
s +∇R∇s

)
3n(r)

[
sin(kF s)− cos(kF s)kF s

(kF s)3

]
s=0

=
−~2

2m

∫
1

4
∇2

Rn(R)− 32n(R)k2
F

15
d3R , (B.31)
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and if we assume that
∫
∇2

Rn(R)dR = 0 then we arrive at the result required. Namely,

THF [n] =
3

10

~
m

∫
(3π2)2/3n5/3(r)d3r . (B.32)

This is the Thomas-Fermi kinetic energy of an electron gas. We now turn our attention to the
’gradient correction’ term, ie, the von Weizsäcker correction.

B.2 von Weizsäcker Correction

It was quickly discovered that the Thomas-Fermi kinetic energy term did not provide an accurate
enough description of the internal energy of an electron gas. A gradient correction term was
suggested by von Weizsäcker in 1935. The derivation is carried out in Parr and Yang [30] and
depends on considering modified plane waves, ψ = (1 + a · r)eık·r. This ultimately leads to the
correction,

Tw[n] =
1

8

∫
d3r

[~∇n(r)]2

n(r)
. (B.33)

There is some discussion, however, about the value for λ when writing down the full Thomas-
Fermi-Weizsäcker term,

G[n] = T + λTw[n] . (B.34)

In this work (as was done originally by von Weizsäcker ) we assume λ to be equal to unity.
However, Parr and Yang obtain a value for λ of 1

9
. Other values have been suggested such as 1

8

as well as empirically fitted values such as 1
5
, 0.186 and 1.4

9
.





Appendix C

Nature of F (k)

In this appendix we prove the stated symmetry properties of F (k) .The proof relies on using the
symmertic properties among k′ and functions of it.

C.1 Preliminaries

Recall the expression for F (k),

F (k) =

∫
d3k′

k′2(k− k′)2
F3(k,k

′,k− k′)
A(k,k′,k− k′,k · v,k′ · v, (k− k′) · v)

N(k′,k′ · v)N(k− k′, (k− k′) · v)
, (C.1)

For notational ease, we make the following definitions,

ω = k · v , (C.2)

ω′ = k′ · v , (C.3)

ωk =
k2

2
, (C.4)

(C.5)

from which we see that,

ω(−k) = −ω , (C.6)

ω′(−k) = −ω′ , (C.7)

ωk = ω−k . (C.8)
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We begin by considering the symmetry properties of N(k, ω). We recall,

N(k, ω) = βk4 + αk2 − ω2 + ω2
p − ıωη , (C.9)

which we can write as,

N(k) = ω2
k + ω2

p − (k · v)2 − ı(k · v)η , (C.10)

Thus, taking the conjugate,

N∗(k) = ω2
k + ω2

p − (k · v)2 + ı(k · v)η ,

= ω2
k + ω2

p − (k · v)2 − ı(−k · v)η ,

= ω2
k + ω2

p − (−k · v)2 − ı(−k · v)η ,

= N(−k) . (C.11)

Further, we assume that,

F3(k,k
′ + k,−k′) = F3(−k,k′,−k− k′) , (C.12)

which, for the clusters that are considered in this work, is a valid assumption. Now looking at
the A(k,k′,k− k′, ω, ω′, ω − ω′) term, we have that,

A(k,k′,k− k′, ω, ω′, ω − ω′) = Q(k,k′,k− k′, ω, ω′, ω − ω′) +
α

6
k2k′2(k− k′)2 . (C.13)

where,

Q(k,k′,k− k′, ω, ω′, ω − ω′) =
1

2

[
−ω(ω − ω′)k · (k− k′)k′2 − ωω′k · k′(k− k′)2

−ω′(ω − ω′)k2k′ · k′′ + βk2k′2(k− k′)2(
(k− k′)2 + k′2 + k′ · (k− k′)

)]
. (C.14)

We may rewrite Q as Q = a+ b+ c with,

a(k,k′,k− k′, ω, ω′, ω − ω′) = ωω′ω2
k−k′ + ωω′′ω2

k′ − ω′ω′′ω2
k − ω′′

2
ωkωk′

−ω′2ωkωk−k′ − ω2ωk′ωk−k′ , (C.15)

b(k,k′,k− k′, ω, ω′, ω − ω′) = ωkωk′ωk−k′ (ωk + ωk′ + ωk−k′) , (C.16)

c(k,k′,k− k′) =
α

6
k2k′2(k− k′)2 . (C.17)
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Now, we consider letting k → −k. Then,

a(−k,k′,−k− k′,−ω, ω′,−ω − ω′) = −ωω′ω2
k+k′ + ω(ω + ω′)ω2

k′ + ω′(ω + ω′)ω2
k ,

−(ω + ω′)2ωkωk′ − ω′2ωkωk+k′ ,

−ω2ωk′ωk+k′ , (C.18)

b(−k,k′,−k− k′,−ω, ω′,−ω − ω′) = ωkωk′ωk+k′ (ωk + ωk′ + ωk+k′) , (C.19)

c(−k,k′,−k− k′) =
α

6
k2k′2(−k− k′)2 . (C.20)

Further, making the substitution, k′ → −k′

a(k,−k′,k + k′, ω,−ω′, ω + ω′) = −ωω′ω2
k+k′ + ω(ω + ω′)ω2

k′ + ω′(ω + ω′)ω2
k ,

−(ω + ω′)2ωkωk′ − ω′2ωkωk+k′ − ω2ωk′ωk+k′ ,

= a(−k,k′,−k− k′,−ω, ω′,−ωω′) , (C.21)

b(k,−k′,k + k′, ω, ω′, ω − ω′) = ωkωk′ωk+k′ (ωk + ωk′ + ωk+k′) ,

= b(−k,k′,−k− k′,−ω, ω′,−ω − ω′) , (C.22)

c(k,−k′,k + k′) =
α

6
k2k′2(k + k′)2 . (C.23)

To simplify expressions, we use the following notation,

a+ = a(k,k′,k− k′, ω, ω′, ω − ω′) , (C.24)

a− = a(−k,k′,−k− k′,−ω, ω′,−ω − ω′) , (C.25)

a′− = a(k,−k′,k + k′, ω,−ω′, ω + ω′) , (C.26)

and similarly for b and c.
The idea of the proof is to show that,

F ∗(k) = F (−k) , (C.27)

and that
F (k) = F (−k) , (C.28)

from which we may conclude that,
F ∗(k) = F (k) . (C.29)
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C.2 Proof of C.27

We take the conjugate of C.1:

F ∗(k) =

∫ k′
1

k′
0

d3k′ F3(k,k
′,k− k′)

a+ b+ c

k′2(k− k′)2N(−k)N(k− k′)
, (C.30)

Now, we make the change of variables,

k′ = −k′ , (C.31)

dk′ = −dk′ , (C.32)

which brings C.30 to,

F ∗(k) = −
∫ k′

0

k′
1

d3k′ F3(−k,k′,−k− k′)
a′− + b′− + c′−

k′2(k + k′)2N(k′)N(k + k′)
,

=

∫ k′
1

k′
0

d3k′ F3(−k,k′,−k− k′)
a− + b− + c−

k′2(k + k′)2N(k′)N(k + k′)
,

= F (−k) . (C.33)

Thus, C.27 is satisfied.

C.3 Proof of C.28

Again we begin with C.1,

F (k) =

∫ k′
1

k′
0

d3k′ F3(k,k
′,k− k′)

a+ b+ c

k′2(k− k′)2N(k)N(k− k′)
, (C.34)
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We consider the transformation: k′ → k′ + k

a(k′ → k′ + k) = ω(ω′ + ω)ω2
k′ + ω(−ω′)ω2

k′+k − (ω′ + ω)(−ω′)ω2
k

−(ω′)2ωkωk′+k − (ω′ + ω)2ωkωk′ − ω2ωk′+kωk′ ,

= ω(ω′ + ω)ω2
k′ − ωω′ω2

k′+k + ω′(ω′ + ω)ω2
k

−ω′2ωkωk′+k − (ω′ + ω)2ωkωk′ − ω2ωk′+kωk′ ,

= a− . (C.35)

b(k′ → k′ + k) = ωkωk′ωk−k′ (ωk + ωk′ + ωk−k′) ,

= ωkωk′+kωk′ (ωk + ωk′+k + ωk′) ,

= b− , (C.36)

c(k′ → k′ + k) =
α

6
k2k′2(k + k′)2 .

= c− . (C.37)

Therefore, making this transformation gives,

F (k) =

∫
d3k′ F3(k,k

′ + k,−k′)
a(k′ → k′ + k) + b(k′ → k′ + k) + c(k′ → k′ + k)

(k′ + k)2k′2N(k′ + k)N(k′)
,

=

∫
d3k′ F3(−k,k′,−k− k′)

a− + b− + c−
(k′ + k)2k′2N(k′ + k)N(k′)

,

= F (−k) . (C.38)

Thus, C.28 is satisfied. Hence we conclude that,

F ∗(k) = F (k) , (C.39)

as required.
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