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Abstract 
Transport Control Protocol (TCP) is the dominant protocol in modern communication 
networks, in which the issues of reliability, flow, and congestion control must be handled 
efficiently. This thesis studies the impact of the next-generation bufferless optical burst-
switched (OBS) networks on the performance of TCP congestion-control implementations 
(i.e., dropping-based, explicit-notification-based, and delay-based).  

The burst contention phenomenon caused by the buffer-less nature of OBS occurs 
randomly and has a negative impact on dropping-based TCP since it causes a false indication 
of network congestion that leads to improper reaction on a burst drop event. In this thesis we 
study the impact of these random burst losses on dropping-based TCP throughput. We 
introduce a novel congestion control scheme for TCP over OBS networks, called Statistical 
Additive Increase Multiplicative Decrease (SAIMD). SAIMD maintains and analyzes a 
number of previous round trip times (RTTs) at the TCP senders in order to identify the 
confidence with which a packet-loss event is due to network congestion. The confidence is 
derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The 
derived confidence corresponding to the packet loss is then taken in to account by the policy 
developed for TCP congestion-window adjustment.  

For explicit-notification TCP, we propose a new TCP implementation over OBS 
networks, called TCP with Explicit Burst Loss Contention Notification (TCP-BCL). We 
examine the throughput performance of a number of representative TCP implementations 
over OBS networks, and analyze the TCP performance degradation due to the 
misinterpretation of timeout and packet-loss events. We also demonstrate that the proposed 
TCP-BCL scheme can counter the negative effect of OBS burst losses and is superior to 
conventional TCP architectures in OBS networks.  

For delay-based TCP, we observe that this type of TCP implementation cannot detect 
network congestion when deployed over typical OBS networks since RTT fluctuations are 
minor. Also, delay-based TCP can suffer from falsely detecting network congestion when the 
underlying OBS network provides burst retransmission and/or deflection. Due to the fact that 
burst retransmission and deflection schemes introduce additional delays for bursts that are 
retransmitted or deflected, TCP cannot determine whether this sudden delay is due to 
network congestion or simply to burst recovery at the OBS layer. In this thesis we study the 
behaviour of delay-based TCP Vegas over OBS networks, and propose a version of 
threshold-based TCP Vegas that is suitable for the characteristics of OBS networks. The 
threshold-based TCP Vegas is able to distinguish increases in packet delay due to network 
congestion from burst contention at low traffic loads.  

The evolution of OBS technology is highly coupled with its ability to support upper-layer 
applications. Without fully understanding the burst transmission behaviour and the associated 
impact on the TCP congestion-control mechanism, it will be difficult to exploit the 
advantages of OBS networks fully. 
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Chapter 1 
Introduction 

 

Optical Burst Switching (OBS) is considered a promising solution for all-optical switching in 

Wavelength Division Multiplexing (WDM) networks. OBS has attracted researchers’ 

attention due to its ability to achieve dynamic and on-demand bandwidth allocation, which 

offers improved network economics and enables control and management integration. The 

evolution of OBS technology is highly coupled with its ability to support upper-layer 

applications. Most of today’s Internet applications use the Transport Control Protocol (TCP) 

for maintaining reliable and congestion-tolerant data transmission. Using OBS networks as 

an all-optical long-haul backbone switching technology has proven to affect TCP throughput 

negatively. Therefore, understanding the burst-transmission behaviour along with the 

associated impact on the TCP congestion-control algorithms can contribute to better 

exploitation of the advantages of OBS networks.  

 

1.1 TCP over OBS Networks 
An OBS network is basically bufferless yet best-effort in nature  [3] [14] [91] [94] [97]. The 

bufferless and all-optical (AO) natures distinguish OBS networks from traditional packet-

switched networks, which rely on electronic processing  [14]. The implementation of OBS 

networks requires precise signalling and higher switching speed than current Optical Circuit 

Switched (OCS) networks  [94] [97]. In order to transmit a burst from the source OBS node 

(ingress node) to a certain destination (egress node), a corresponding control packet is 

created at the source OBS node and is sent prior to launching the burst  [97]. The burst cuts 

through the network following the control packet in a one-way (i.e., Tell-and-Go) 

transmission scheme.  

Although OBS achieves better flexibility and efficiency than OCS networks, OBS suffers 

from a burst contention phenomenon which leads to burst drops. Burst contention occurs 

when more than one burst simultaneously attempts to traverse through one output port or 

wavelength channel  [3] [14]. When n bursts contend, n-1 of them are dropped. This is due to 

the one-way resource reservation and signalling protocol, where resources are reserved on 
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the fly (i.e, without acknowledgement or reservation guarantee) and the lack of burst 

buffering. Burst retransmission  [104] [105], burst deflection routing  [37] [68], burst buffering 

through Fiber Optic Delay Lines (FDL)  [18], burst segmentation  [83], and wavelength 

conversions  [101] are some approaches to dealing with the problem. However, these 

mechanisms are not considered to be part of typical OBS networks.  

TCP congestion control, which adapts the Additive Increase Multiplicative Decrease 

(AIMD) approach, is designed to cope with buffer-oriented Internet Protocol (IP) networks. 

However, OBS networks aggregate multiple TCP/IP packets in a single burst. The burst is 

transmitted without any buffering delay, delivery guarantee, or processing overhead. The 

aggregation of multiple TCP/IP packets in single burst, the bufferless burst transmission, the 

burst contention problem, and the proposed burst contention resolution schemes affect TCP 

performance. Therefore, modifying TCP congestion control is necessary to cope with the 

new burst-transmission characteristics.  

 

1.2 Problem Definition and Motivation 
TCP is the most important Internet transport service that is self-regulating (i.e., it adjusts the 

transmission rate according to the network congestion status) and maintains fairness (i.e., it 

shares the available bandwidth among the flows fairly) for bulk data transfer. In the current 

Internet, the underlying optical transport layer is based on SONET and OCS, where the 

Quality of Service (QoS) of the provisioned services can be guaranteed  [84]. This provides 

good support for TCP-based applications. For OBS to be considered as a next-generation 

optical Internet backbone, significant efforts must be addressed to devising control and 

signalling protocols that support upper-layer services such as TCP  [29] [46] [58] [81]. In OBS, 

an edge node capable of performing electronic-to-optical (E/O) and optical-to-electric (O/E) 

conversion, collects, sorts, and assembles incoming IP packets from the higher layers into 

optical data bursts, and disassembles optical data bursts into IP packets destined for it. One 

node may correspond to thundered of thousands of TCP senders  [29], where hundreds or 

thousands of TCP segments are assembled and transported in a single burst. Burst losses in 

OBS networks maybe caused not only by the high utilization of network resources, i.e., long-
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term congestion, but also by random burst contention that occurs even when network 

resource utilization is low. A burst loss due to random contention in the OBS domain may 

cause the TCP senders to react improperly to the resultant TCP packet-loss event, i.e., by 

cutting the congestion window or even entering the slow-start state. This is the false-

congestion detection phenomenon  [98]. False-congestion detection significantly downgrades 

TCP throughput in OBS networks and results in unnecessary packet retransmissions and 

unnecessary decreases in the transmission rate.   

Depending on the number of multiplexed TCP flows and the burst assembly process, TCP 

performs differently over OBS networks. In the case where few TCP connections are 

multiplexed at the edge node, the probability of having multiple TCP segments from a single 

TCP flow assembled in a single burst is high. When a burst contention loss occurs, few TCP 

connections will be affected or even trigger a timeout (TO). However, in the case where 

millions of TCP connections are multiplexed at the edge node, the probability of multiple 

TCP segments from a single connection being assembled in a single burst is very low. 

Therefore, a single burst likely contains segments from many individual flows. For example, 

assume that 10,000 TCP flows are multiplexed at the edge node. Assume a single burst 

contains 1000 TCP segments each belonging to a different flow. When a burst is lost due to 

contention, the 1000 flows will eventually cut their congestion windows (cwnd) and each 

TCP implementation enters fast retransmission, thus causing a dramatic decrease in the 

overall network utilization, which is also called global synchronization problem. This 

congestion-detection situation is completely different from traditional IP-based networks 

where only one TCP flow is affected by each packet loss. We conclude that burst dropping in 

OBS networks wastes routing, assembly, and signalling efforts performed at both the IP-

access and the OBS network and could significantly affect the TCP senders in terms of how 

the TCP congestion windows are adjusted. An improper strategy and reaction upon a burst 

delay and/or loss event will reduce overall TCP throughput significantly.  

In order to cope with the TCP false-congestion detection problem, it has been shown in 

 [104] [105] that burst retransmission and burst deflection schemes can reduce burst-loss 

probability and hide burst-loss events from the upper TCP layer, thereby eventually reducing 
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the chances of TCP false congestion detection. With burst retransmission or deflection, bursts 

subject to contention can be retransmitted at an OBS edge, or can be deflected to an alternate 

route in the OBS network. Hence, burst-contention probability, which is the probability that a 

burst experiences random contention at low traffic load, could be much larger than the burst 

loss probability, which is the probability that a dropped burst is sensed at the TCP layer. 

Although burst deflection and/or retransmission can reduce burst-loss probability, they 

introduce additional delay for bursts that are retransmitted or deflected. As we will explain 

later, this extra delay affects the throughput of delay-based TCP (because it increases the 

TCP round trip time) as well as the behavior of the congestion-detection algorithm.   

 

1.3 Thesis Objectives 
OBS introduces many advantages over Wavelength Routed (WR) OCS networks. However, 

a few key problems have been identified and are still open, such as burst contention 

resolution and end-to-end delay variation. These problems make it challenging to design TCP 

extensions for use with OBS networks. 

The primary objective of this thesis is to develop a suite of interoperable strategies that 

enable TCP congestion control to operate well given the intrinsic characteristics of OBS. In 

particular, we identify four important goals. 

 

1. Analyze and prove the negative impacts of burst-loss events on conventional TCP 

congestion control, thus on TCP throughput. This is performed through examining a 

number of previously reported TCP congestion-control mechanisms, including Reno, 

New Reno, SACK, Duplicated SACK (DSACK), FACK, TCP with Eifel, and Burst 

TCP (BTCP), in terms of throughput under different burst dropping probabilities and 

traffic loads.  

2. Propose and analyze a novel congestion-control mechanism for TCP over OBS 

networks, called Statistical Additive Increase Multiplicative Decrease (SAIMD). 

SAIMD maintains and analyzes a number of previous round trip times (RTTs) at the 

TCP senders in order to identify the confidence with which a packet-loss event is due 
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to network congestion. The confidence is derived by positioning short-term RTT in 

the spectrum of long-term historical RTTs. The derived confidence corresponding to 

the packet loss is then taken into account by the policy for TCP congestion-window 

adjustment. We show through extensive simulation that the proposed scheme can 

solve the false-congestion detection problem effectively and outperform conventional 

TCP significantly. Also, based on the proposed congestion-control algorithm, a 

throughput model is formulated and verified by simulation. 

3. Propose and analyze a novel congestion-control scheme, called TCP with Explicit 

Burst Contention Loss Notification (TCP-BCL), which is the first study that 

integrates the explicit notification mechanism with the Generalized Additive Increase 

Multiplicative Decrease approach (GAIMD) over OBS networks. The basic design 

principle of the scheme is to tune the congestion-control parameters α and β such that 

the congestion window sizes in the corresponding TCP senders can be adjusted to 

exploit explicit notification from the OBS edge node. The performance impact on 

TCP of false-congestion detection is considered and investigated. An analytical 

model is developed for the proposed scheme and is verified through extensive 

simulation.  

4. Propose and analyze a modified version of delay-based TCP (e.g., TCP Vegas) that 

adopts a threshold-based mechanism for identifying network congestion status in 

OBS networks. Throughput models are developed for TCP Vegas and threshold-

based Vegas over an OBS network with burst retransmission. Simulation is conducted 

to validate the models and to verify the proposed threshold-based TCP Vegas. Based 

on the analytical model, a threshold value that results in an optimal steady state TCP 

throughput is obtained and verified. 

 

These results provide us with better knowledge and deeper understanding of TCP 

behaviour over both the conventional IP-based Internet and OBS backbone networks.  
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1.4 Thesis Organization 
The thesis is organized as follows.  Chapter 2 provides a detailed survey of the state of the art 

of TCP extensions or modifications in OBS networks.  Chapter 3 presents the methodology 

used to model and simulate TCP over OBS. It also describes the issues in the design of TCP 

schemes in the OBS environment, where the throughput performance under a wide range of 

burst-dropping probabilities and traffic loads is examined for a number of previous TCP 

enhancements, including Reno, New Reno, SACK, DSACK, FACK, TCP with Eifel, Burst 

AIMD (BAIMD), and Burst TCP (BTCP).  Chapter 4 presents our congestion-control 

mechanism based on TCP statistical RTT, Statistical AIMD (SAIMD). SAIMD is designed 

to improve throughput while maintaining friendliness with co-existing TCP flows.  Chapter 5 

presents our TCP implementation that combines the advantages of the explicit burst-

contention loss notification and the GAIMD congestion control. An analytical model is 

developed for the proposed scheme and is verified through extensive simulation.  Chapter 6 

discusses the issues of delay-based TCP (e.g., TCP Vegas) over OBS networks and 

introduces a modified threshold-based TCP Vegas congestion-control scheme that is suitable 

for the characteristics of TCP over OBS networks. We show that the proposed threshold-

based TCP Vegas scheme is able to distinguish whether the increase in the RTT is due to 

network congestion or due to burst contentions at low traffic loads.  Chapter 7 concludes the 

thesis and presents open problems, selected directions for further research, and 

recommendations.  
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Chapter 2 
State of the Art of TCP over OBS Networks 

 

In this chapter, we provide a comprehensive survey of TCP congestion-control enhancements 

in OBS networks. These enhancements aim to mitigate the numerous side-effects of OBS 

networks such as the bufferless characteristics of burst transmission.  

  

2.1 Introduction to TCP 
The complex Internet infrastructure interconnects millions of communicating devices 

through wired and wireless connections. One of the key success factors of today’s Internet 

infrastructure is the ability to maintain reliable, self-regulating, and congestion-tolerant 

transport to serve the end-user applications. TCP  [82], originally designed for military 

communication by ARPANET  [46] [58] [61], is the most pervasive protocol for the majority 

of current Internet-based applications. TCP is the predominant protocol in terms of the traffic 

volume (in bytes), consisting up to 90% of the total Internet traffic  [29]. The High-

Performance Computing (HPC) networks observed an average share of 83% of TCP traffic, 

and for the NETI@Home data, TCP flows are the majority of traffic volume. 

TCP congestion-control mechanisms can be classified into three categories: (1) dropping-

based (e.g., TCP Reno  [81] and TCP SACK  [56]), (2) delay-based (e.g., TCP Vegas  [9], Fast 

TCP  [36] [39]), and (3) explicit-notification-based (e.g., XCP  [42]). These congestion-control 

mechanisms are basically used at the TCP sender to determine whether the network is 

congested and the transmission rate should be reduced accordingly, while the receiver is 

totally reactive to the transmission protocol. 

Dropping-based TCP protocol implementations such as TCP Reno simply take a packet 

(or TCP segment) loss as an indication of network congestion  [64]. These TCP protocol 

stacks follow the Additive Increase Multiplicative Decrease (AIMD) window-based 

congestion-control mechanism for regulating data transmission and maintaining network 

bandwidth usage. At each TCP sender, the AIMD scheme is comprised of four stages: (1) 

slow start, (2) congestion avoidance, (3) fast retransmission, and (4) fast recovery  [81].  



 

 8 

At the slow-start stage, the TCP sender has just started, or restarted the transmission due to 

a timeout (TO) event. The congestion window (cwnd) is initialized to the size of one segment 

for dropping-based TCP (e.g., Reno, SACK). The size of the cwnd is increased linearly for 

each successfully delivered (acknowledged) segment. The linear growth continues until 

either it exceeds the receiver’s advertised congestion window (rwnd) or a packet-loss event 

occurs, which leads the TCP sender to enter the congestion-detection stage. Note that a TCP 

sender senses network congestion either when a packet timeout occurs or when triple-

duplicated acknowledgments (TD) are received. Either case reflects packet loss or out-of-

order packet delivery. When a timeout occurs, which indicates heavy congestion, cwnd is set 

to one segment, and TCP returns to the slow-start stage, followed by the congestion-

avoidance stage. In the triple duplicate case, which indicates light congestion, TCP enters the 

fast-retransmission stage by taking half of the sender’s cwnd as the slow start threshold 

ssthresh and setting cwnd to ssthresh plus three segments. Then the sender attempts to 

retransmit the missing segments and increments cwnd by one segment. After receiving an 

acknowledgment for the second data segment, cwnd is set to ssthresh.  

The delay-based TCPs, in particular TCP Vegas, estimate the available bandwidth and the 

congestion status by measuring the delay of each transmitted packet in terms of round trip 

time (RTT). The performance of Fast TCP, which enhances TCP Vegas throughput over 

high-speed large-bandwidth networks, has been evaluated in  [36] [39], as we describe in the 

 Chapter 6.  

TCP Vegas modifies TCP Reno in the slow start, congestion avoidance, and 

retransmission stages. TCP Vegas determines the congestion status in the network through 

comparing the estimated and the actual throughputs. TCP Vegas first computes the BaseRTT, 

which is the minimum measured RTT, (i.e., the summation of the propagation delay and the 

queuing delay). The expected throughput can thus be derived as, 

cwndexpected
BaseRTT

=      (2.1) 

 

Second, the actual throughput is calculated for every round as, 
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cwndactual
RTT

= ,     (2.2) 

 where RTT is the most recent measured RTT. The sender then computes:   

 

( ) , 0
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(1 ).

Diff expected actual BaseRTT where Diff
cwnd cwnd BaseRTT

BaseRTT RTT
BaseRTTcwnd

RTT

= − >

= −

= −

  (2.3) 

 

Obviously, Diff is non-negative, and is used to adjust the next cwnd size. Vegas defines two 

threshold values, α and β, for controlling cwnd size: 
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    (2.4) 

 

If Diff < α, Vegas increases cwnd linearly in the next round. If Diff  > β Vegas decreases 

cwnd linearly in the next round. Otherwise, Vegas leaves cwnd unchanged.  

TCP Vegas congestion avoidance aims to maintain the expected number of backlog 

packets in the network between α and β bytes. If the actual throughput is smaller than the 

expected throughput, then it is likely that the network is congested. Thus, the TCP sender 

reduces the transmission rate. However, if the actual throughput is close to the expected 

throughput, the TCP flow may not be utilizing the available bandwidth properly, and thus the 

rate should be increased.  

In slow start, TCP Vegas initializes the cwnd to the size of two segments and increases 

cwnd exponentially every other round. TCP Vegas exits slow start when cwnd reaches the 

slow-start threshold, denoted by γ. Between the two consecutive rounds, cwnd is unchanged, 

which ensures a valid comparison between the expected and actual throughputs.  
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In the fast retransmission stage, when the sender receives an acknowledgement (ACK), it 

records the clock and calculates the estimated RTT using the current time and the timestamp 

recorded for the associated packet. Vegas decides whether to retransmit the packet based on 

the following two heuristics: First when a duplicated ACK is received, Vegas checks if the 

difference between the current time and the timestamp recorded for the associated packet is 

greater than the TO-threshold value. If so, it retransmits the packet without waiting for the 

remaining incoming duplicate ACKs. The second heuristic is applied when an ACK is 

received. If it is the first or second ACK after a retransmission, Vegas then checks if the time 

spent since the packet was sent is larger than the TO-threshold value. If so, Vegas retransmits 

the packet. This retransmission approach catches any other packet that may have been lost 

prior to the retransmission without waiting for a duplicated ACK. Hence, the Vegas 

retransmission mechanism reduces the time to detect a lost packet from the third to the first 

or the second duplicate ACK. After packet retransmission is triggered by a duplicated ACK, 

cwnd is reduced by 25% (instead of 50% in Reno), only if the time since the last-window size 

reduction is more than the current RTT. 

The third category is explicit notification-based TCP. In this category, TCP with Explicit 

Loss Notification (ELN)  [1] and Explicit Congestion Notification (ECN)  [25] are the two 

representative approaches. TCP implementations in this category rely on explicit information 

received from the network to identify suspicious packet losses that cause unnecessary packet 

retransmissions. They can distinguish among packet losses due to congestion, contention, 

link failure, or other reasons. Packet retransmission starts as soon as the ELN/ECN is 

received in the round following a packet loss.  

In the following two sections, we discuss the evolution of optical switching technologies, 

along with a detailed illustration of OBS network architecture and the burst transmission 

characteristics.  

2.2 The Evolution of Optical Switching Technologies 

Optical backbones based on WDM are the most common carriers in modern communication 

networks. Several switching technologies have been proposed to take advantage of the high 

transmission capacity of fiber optics. Early approaches followed OCS, where point-to-point 
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lightpaths are established for a relatively long period of time  [46]. OCS follows the store and 

forward approach where each optical switch performs optical-to-electrical-to-optical (O/E/O) 

conversions. However, the rapid increase in user demands and traffic engineering 

requirements have imposed several limitations on the adoption of OCS. First, the task of 

Routing and Wavelength Assignment (RWA), which optimizes the assignment of 

wavelengths to all users, is NP-Hard  [4] [46] [80]. Second, due to its quasi-static nature, OCS 

cannot easily support dynamic traffic variation or frequent connection requests.  

Due to the ubiquity of IP, much research has addressed the integration of IP with WDM 

networks. Optical Packet Switching (OPS)  [46] has been proposed to support this integration, 

where the optical core can be taken as an extension of the IP layer.  With OPS, each optical 

packet consists of header and data payload and is launched into the optical network. As 

packet arrives at an optical switch, the header is converted and read in the electronic domain 

to configure the switch fabric, while the data is buffered optically in a fiber delay line (FDL) 

 [12] [18] [30] [107] until the switch configuration is completed. OPS follows an all-optical 

(AO) buffer-oriented transmission approach. OPS can successfully solve the inadequacy and 

inefficiency of the OCS technology in terms of bandwidth provisioning, dynamics, and 

capacity utilization. However, the technical barrier before such highly synchronized systems 

can be commercialized is the high cost of all-optical buffer facilities and the dimensioning of 

these delay lines.  

OBS has attracted the attention of researchers due to its ability to achieve more dynamic 

and on-demand bandwidth allocation than OCS. It also offers improved network economy 

and enables control and management integration  [3] [14] [63] [91]. Compared with OPS, OBS 

is more practical to implement, and combines the best of OCS and OPS networks.  

With OBS, a data burst is formed at the edge node by assembling multiple incoming 

packets with same destination and/or QoS requirements. To transfer the burst to the 

destination, a corresponding control packet that contains both the burst size and the burst 

arrival time is created at the network edge node, and is sent prior to the launch of the burst 

 [91] [100]. Since the bursts cut-through each intermediate node in the network core while the 

control packets are subject to processing at each core node, a certain amount of offset time 
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must be imposed between launching control packets and the corresponding bursts. The 

calculation of the offset time has to consider the upper bound on the number of hops and 

nodal processing delay. OBS follows an AO transmission approach. Figure  2.1 highlights the 

evolution of the optical switching technologies. 
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Medium Granularity Small Granularity 
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Figure  2.1 Evolution of optical switching technologies 

 

With its out-of-band signalling mechanism, OBS provides complete separation between 

control and data domains that can yield better network manageability and flexibility. Since 

the launched bursts cut through the network core without any buffering, the bursts can be 

subject to a minimum amount of delay. Table  2.1 summarizes the characteristics of the three 

different switching schemes. 
Property  Optical Circuit Switching Optical Packet Switching Optical Burst Switching 

Bandwidth Low High High 

Setup latency High Low Low 

Switching speed Slow Fast Medium  

Processing overhead  Low High Low 

Traffic adaptively  Low High High  

Table  2.1 Comparison of optical switching technologies 
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2.3 Optical Burst Switching (OBS) Networks 
The implementation of OBS networks requires precise signalling and higher switching 

speed than that required by OCS. The edge nodes are capable of performing electronic-

optical (E/O) and optical-electric (O/E) conversion to collect/sort/assemble IP packets, ATM 

cells, SONET frames, or any other types of traffic packets from the upper layers into optical 

bursts, and disassemble the optical bursts at the destination edge nodes. The edge nodes are 

also responsible for signalling and routing in the OBS network. The core nodes (i.e., optical 

switches), on the other hand, respond to configuration requests from the edge nodes to 

forward bursts in an AO manner  [3] [14] [90] [91] [100]. Figure  2.2 presents the OBS network 

architecture. Several burst-assembly algorithms have been proposed and later discussed in 

Section  2.3.1.2.  
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Figure  2.2 Optical burst switching network architecture 
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Figure  2.3 OBS edge router architecture 

 

A burst contains several other fields when assembled at the edge node. Figure  2.3 

illustrates the burst assembly process as well as the burst format. A burst consists of Guard 

Preamble (Guard-B) and Guard Postamble (Guard-E) fields that prevent the uncertainty of 

data burst arrival time and data burst duration due to clock drifts between different core 

nodes. The payload consists of the assembled data packets. Payload Type (PT), Payload 

Length (PL), and Number of Packets (NOP) represent the type of data, data length, and 

number of packets assembled in the burst, respectively. The offset of padding indicates the 

first byte of padding. The Optical Layer Information (OLI) includes some information for 

performance monitoring and forward error correction obtained from the communication 

channels  [91]. 

A typical OBS core node (switch) consists of two layers. The upper layer is responsible 

for processing control packets and configuring the switching fabric. In this layer, control 

packets are processed, switching resources are reserved, and freed after each burst exits the 

switch. The switch matrix control unit, the port forwarding table, and the link scheduling 

module are also maintained in the upper layer. The lower layer is responsible for AO burst 

transport functionality. The lower layer consists of optical ports, wavelengths, and optical-to-

optical connections. Figure  2.4 illustrates the generic OBS core switch architecture. 
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Figure  2.4 OBS core switch architecture 

 

In both Figure  2.3 and Figure  2.4, the offset-time delay between the control header and the 

data burst is shown. As indicated earlier, the offset time is set to ensure that the switch fabric 

is fully configured before the arrival of the burst. Determining the proper offset time is 

fundamental to the functionality of OBS  [50] [62] [91]. Several approaches were proposed to 

elongate the offset time to achieve specific QoS differentiation purposes. A fixed offset-time 

algorithm proposed in  [91] suggested calculating the offset time based on the summation of 

the total nodal processing time plus the switch-fabric configuration time at all the 

intermediate core nodes. In order to implement this algorithm, the edge node maintains the 

total number of hops in the route (path). Finally, wavelength-routed OBS offset time (WR-

OBS-Offset), presented in  [50], obtains the offset time from a centralized resource scheduler 

 [100].  

In the literature, two resource-reservation protocols for OBS have been investigated 

widely: explicit  [69] [97] and implicit  [94] approaches. The Just-In-Time (JIT) resource-

reservation protocol introduced in  [100] follows an explicit reservation approach. Upon 

receiving the control packet at the first core node, an acknowledgement packet is generated 

and returned to the edge node. Once the edge node receives this packet, the data burst is 

launched after a delay estimated by the response time for the control packet. The control 
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message continues traveling on hop-by-hop basis, followed by the data burst, until the 

destination is reached. Once the burst leaves the edge node, a tear-down packet is sent back 

along the same route to release reserved resources.  

The Just-Enough-Time (JET) resource-reservation protocol introduced in  [97] uses delayed 

reservation with implicit resource release. The intermediate core nodes traversed by a data 

burst can automatically release the reserved switching fabric shortly after the burst leaves the 

switch, because each intermediate node is informed of the departure time of the data burst 

when the control packet sets up the path. Therefore, each intermediate node does not need an 

explicit notification to release the resources  [20].  

Channel scheduling is another important mechanism for enabling OBS transmission and 

improving link throughput  [92]. Several approaches were reported in the literature. The 

Latest Available Unscheduled Channel with Void Filling (LAUC-VF) simply maintains 

single scheduling horizon for each channel  [3]. Only channels whose horizons precede burst 

arrival can be considered available. Link void is defined as the unused (wasted) gaps between 

two successive scheduled bursts. The Min-Starting Void (SV) algorithm  [92] was proposed 

as an enhancement to LAUC-VF, which schedules a data burst in O(log n) time, where n is 

the total number of void intervals. Furthermore, the SV algorithm minimizes the new voids 

generated from the time gap between the end of a new reservation and an existing 

reservation.  

 

2.3.1 Characteristics of OBS Networks 

The bufferless nature of OBS networks results in two major transmission characteristics that 

distinguish them from others, which are (1) random burst contention losses and (2) assembly 

and resource-reservation delay. 

2.3.1.1 Random Burst Contention Losses 

Contention occurs when two or more packets try to access the same output port 

simultaneously. In IP-based networks with electronic processing, contended packets can be 

stored temporarily in the electronic memory buffers of the intermediate IP routers instead of 

being dropped immediately. Except for extreme cases such as buffer overflow, the packet is 
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delivered hop by hop until it reaches the destination. This is not the case in OBS networks. 

As a compromise between OCS and OPS networks, OBS achieves some amount of statistical 

multiplexing by using JIT or JET resource reservation schemes, while buffering the data 

bursts only at the edge nodes. However, due to the one-way signalling mechanism, the lack 

of global scheduling, and the lack of optical/electric buffering, burst contention results in 

immediate dropping even when the network is lightly loaded  [14]. These are referred to as 

random burst contention losses and they impose a significant impact on the upper-layer 

protocols (e.g., TCP), especially for those that take packet losses as the only indication of 

network congestion. In contrast to random burst contention losses, the network could be 

subject to persistent network congestion, where high utilization lasts for a long time and 

more burst contention occurs. It is hard to distinguish between random burst contention 

losses and persistent congestion losses.    

2.3.1.2 Assembly (Burstification) and Resource Reservation Delay  

As mentioned earlier, four categories of burst assembly algorithms have been proposed 

 [3] [14] [91]. The first are time-based, in which a timer is set after the beginning of each new 

assembly cycle. All packets with a common destination edge node arriving within a specific 

period of time are assembled into a single burst. The second set of algorithms is length-

based, where a burst-length threshold is set. With these algorithms, the burst-length threshold 

serves as the minimum burst length before the burst leaves the edge node. The third set of 

algorithms combines the time and the burst-length algorithms, where the bursts are 

assembled and sent either when the burst-length exceeds the threshold or the timer expires. 

The last set of algorithms are adaptive, where a dynamic adaptive threshold on the burst 

length is set to optimize the overall performance for certain QoS-sensitive traffic  [14] [35] 

 [102] [103]. Traffic traversing an OBS network must experience burstification and burst 

resource reservation delays. These delays affect delay-sensitive data and delay-sensitive 

transport protocols such as TCP Vegas.     
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2.3.2 Taxonomy of OBS Networks 

OBS networks can be classified based on the resource-reservation and signalling mechanisms 

as implicit  [97] or explicit  [94] OBS. They can also be classified based on the burst assembly 

mechanisms as time-based, burst-length-based, mixed, and optimized-burst-size-based OBS 

networks  [3] [14] [91]. Since burst-contention and resolution schemes play a vital role in the 

deployment of TCP over OBS, we classify OBS networks according to whether a burst-

contention-resolution mechanism is employed in the OBS network, as either barebone OBS 

or OBS with Burst-Contention-Resolution (BCR).   

2.3.2.1 Barebone OBS  

In barebone OBS, a burst-control packet is sent to reserve the intermediate switching fabric. 

After a predefined offset time, the data burst cuts through on a certain path until it reaches the 

destination. As mentioned earlier, two major resource-reservation protocols in OBS networks 

are Just-In-Time (JIT) and Just-Enough-Time (JET). Since neither scheme guarantees 

channel availability, two or more data bursts may attempt to access a common output port 

simultaneously. One of the bursts must be dropped while the other is delivered. The dropped 

bursts are lost since barebone OBS does not employ any buffering, burst retransmission, 

burst deflection, or burst-contention-resolution mechanisms. 

2.3.2.2 OBS with Burst Contention Resolution (BCR) 

Burst contention resolution could involve retransmission at the edges  [104] [105], burst 

deflection  [37] [68], optical buffering  [18], burst segmentation  [83], or wavelength 

conversion  [101] at the core switches.  

With burst retransmission, deflection, or buffering, the data bursts subject to contention in 

the OBS core can be retransmitted from the edge node, deflected to an alternate route (i.e., an 

alternate output port), or buffered using FDL at the core node, respectively. Note that burst 

contention constitutes a significant portion of the total burst losses in OBS networks. With 

burst segmentation, the contended bursts can be segmented so that the overlapped segments 

are discarded at the core node, while the rest of the bursts can be transmitted successfully. 

With wavelength conversion, optical data flows on a certain wavelength can be converted to 
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another, which can effectively reduce the resource segmentation and result in a better chance 

of successfully forming a data path.  

These burst-contention-resolution schemes have been proven to increase the transmission 

reliability and throughput effectively at the expense of introducing extra overhead, 

complexity, and cost, as discussed in detail later.  

2.4 Issues of TCP over OBS 

It has been shown that the burstification process at the OBS edge nodes has significant 

impact on the performance of TCP Reno  [19]. Based on the access-network bandwidth and 

the assembly-algorithm thresholds, TCP flows are classified into three categories: fast, 

medium, and slow. In a fast flow, all transmitted segments of the congestion window are 

assembled into a single burst. On the other hand, medium and slow flows have some 

proportion of the congestion window segments assembled in a single burst. For medium to 

slow flows, a performance penalty is introduced on the TCP sending rate due to the assembly 

delay, but aggregating multiple TCP segments due to burst assembly increases TCP 

throughput performance  [19] [99]. When a burst is lost, a fast TCP flows detects the segment 

loss through a TO, and returns to slow start since the TCP segments of the entire cwnd are 

lost, which indicates severe network congestion  [98]. However, the medium and slow TCP 

flows enter fast retransmission since only some of the cwnd segments are lost  [98].  

2.4.1.1 Multiple TCP-Segment Loss 

In OBS networks, TCP performance is significantly affected by random burst losses  [19] [98] 

 [99], which cause unnecessary congestion window cuts. Hundreds or thousands of TCP 

segments could be assembled and transported together in a single burst. At the occurrence of 

burst loss and depending on the TCP flow speed  [19], TCP suffers from False TO (FTO)  [98] 

or performs unnecessary fast retransmission  [19] [98] as a response on burst losses due to 

random contention.  

2.4.1.2 Packet Reordering  

In a multi-buffer burstification, where the bursitification scheme maintains several assembly 
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buffers for each destination, out-of-order burst delivery may occur when segments of a TCP 

session are assembled in two or more bursts that are sent in a different order from that of the 

arrival of the TCP segments  [8]. The frequency of out-of-order delivery depends on the time 

and burst-length thresholds, the traffic shape, and the QoS criteria defined in the burst-

assembly algorithm. Optical buffering in the form of FDL, burst retransmission, and burst 

deflection can also cause out-of-order delivery. Buffered, retransmitted, and deflected bursts 

are subject to extra delay compared to subsequent bursts.  

The out-of-order burst delivery eventually causes the TCP sender to fall into “packet 

retransmission ambiguity,” since the TCP receiver will issue TD ACKs assuming that there 

exists a sequence of missing packets. Depending on the number of packets assembled in a 

single burst, TD ACKs can take place in a single round.  The frequency of the false TD 

ACKs problem is expected to affect the sender dramatically, particularly in the presence of a 

large number of TCP packets assembled in a single burst. The higher number of false TD 

ACKs causes the sender’s cwnd to remain much smaller, which significantly throttles the 

throughput. 

2.4.1.3 Slow Convergence 

In OCS networks, the lightpaths are static in nature, last for a long period of time, span a long 

distance, and serve in backbone networks. In such long-haul networks, TCP suffers severely 

from very long convergence times. The TCP slow-convergence problem worsens in the 

presence of a high diversity of RTTs for bursts due to buffering and signalling delays  [108]. 

Similar to conventional OCS networks, TCP over OBS with linear increase of cwnd for each 

successful segment-delivery round takes a significant amount of time to utilize the available 

bandwidth, while the multiplicative decrease for each packet loss is a critical response to 

random burst-contention losses and persistent network congestion. Note that it is necessary to 

maintain a large cwnd to achieve high throughput, which can only happen when an extremely 

low packet-loss rate is seen, such as 10-8. This is unlikely in the presence of random burst-

contention losses.  
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2.5 Taxonomy of TCP Solutions over OBS    

In bufferless OBS networks, TCP senders must not blindly consider data loss to be an 

indication of network congestion; instead, TCP senders should attempt to collect further 

information that distinguishes between random burst contention and persistent network 

congestion. This category of TCP implementations may require extra signalling efforts 

between the TCP senders and the OBS network  [98], and/or within the OBS network  [21] 

 [104] [105].  

TCP solutions over OBS networks fall into three categories  [70]: (1) link-layer solutions 

(or solutions maintained at the OBS network), (2) modifications or enhancements based on 

explicit notifications from the OBS layer, and (3) newly designed TCP mechanisms that do 

not require explicit notifications .  

In the first category, the solutions require an implementation of additional supporting 

functions at either the OBS edge or core nodes. Two problems arise in this category. First, 

these schemes break the end-to-end semantics of TCP, and second, they introduce additional 

control overhead, which may impair the applicability of TCP congestion-control schemes. 

The solutions in the second category overcome these problems by exchanging extra 

signalling with intermediate network devices or OBS nodes. However, the price is paid in the 

effectiveness of the scheme, since it is difficult for the intermediate network devices to 

provide extra signalling for each TCP flow. Finally, the third category of solutions includes 

totally new transport protocols that cope with the underlying burst transport behaviours 

without exchanging explicit information. We briefly describe the three categories. 

2.5.1 Link-Layer Solutions 

There have been several solutions proposed to increase the burst-transmission reliability in 

the OBS network in order to improve TCP throughput performance. These schemes typically 

adopt mechanisms such as adaptive burstification  [14], forward error correction (FEC), burst-

contention resolution schemes, automatic repeat request (ARQ) retransmissions  [104] [105], 

and others. The main advantage of employing link-layer solutions is hiding the (non-

congestion) burst loss from the TCP senders, so that the layered structure of network 

protocols is followed. To achieve link-layer transmission reliability, burst retransmission, 
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burst deflection, and burst buffering using FDLs are among the widely recognized 

approaches. These approaches contribute to the reduction of TCP cwnd fluctuation and 

consequently improve TCP throughput at the expense of introducing additional delay and 

control overhead.  

2.5.2 Congestion Detection with Explicit Notifications 

TCP senders can be informed of the channel conditions and the actual cause of the packet-

loss events, e.g., congestion, contention, packet corruption, or other possible hardware 

component failure, through explicit notifications. The explicit notifications assist TCP 

senders to retransmit the lost segments without affecting cwnd for losses due to any reason 

other than network congestion. This category comprises the TCP implementations with 

explicit congestion notifications (ECN) or loss notifications (ELN) such as BTCP (Burst 

ACK/Burst Negative ACK)  [98] and TCP with burst contention loss notification (TCP-BCL) 

 [72] [75].  

2.5.3 Congestion Detection without Explicit Notifications 

In TCP congestion detection where no explicit notification is deployed, TCP maintains and 

analyzes a number of previous RTTs at the TCP senders in order to determine if a packet-loss 

event is due to persistent congestion or random-burst contention. Such sender-side 

congestion-control schemes include Burst TCP with Burst Length Estimation (BTCP with 

BLE)  [98], and our work on Burst AIMD (BAIMD)  [73], Statistical AIMD (SAIMD) 

 [71] [74], and Threshold-based TCP Vegas  [76] [77] [78]. TCP Selective Acknowledgment 

(SACK), Duplicated SACK (DSACK), and TCP Forward acknowledgement (FACK), also 

work over OBS networks without explicit signalling  [98] [99]. These schemes were not 

originally proposed for OBS networks. However, their throughput performance is examined 

in  Chapter 3 to gain a deeper understanding of their behaviour over OBS networks. Since 

SAIMD and the threshold-based TCP Vegas were originally proposed for OBS networks, 

they are discussed in dedicated chapters.  

 



 

 23 

 

Figure  2.5 Taxonomy of TCP solutions over OBS networks 

 

In the case of fast TCP flows, a contended burst that is delivered successfully is subject to 

additional delay due to the contention-resolution mechanism. The additional delay is 

inevitably added to the RTT for all the TCP segments assembled in that burst. The sender 

detects a sudden increase in the RTT of the segments, and interprets the delay as an 

indication of network congestion. This fatally impairs the TCP throughput due to 

unnecessary TO retransmissions followed by slow start at the TCP senders. Threshold-based 

TCP Vegas, a sender-side TCP implementation that does not require any explicit 

notifications, was proposed to cope with these problems. Figure  2.5 illustrates TCP solutions 

appropriate or designed for OBS networks. 
 

2.6 Overview of Existing Solutions 
This section surveys dropping-based (e.g., Reno), delay-based (e.g., Vegas), and explicit–

notification-based (e.g., ELN/ECN) TCP implementations in the presence of the link-layer 

solutions and the new TCP congestion-control schemes proposed for OBS networks.  

 

2.6.1 Link-Layer Solutions 

2.6.1.1 Solution Based on Burstification Processes  

It has been shown that the delay caused by burst assembly increases TCP RTT which 

potentially reduces TCP throughput and leads to the slow convergence problem  [14] [19] [99]. 
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In  [19], the authors examined the performance of TCP Reno in the presence of various burst-

assembly algorithms at OBS edge nodes. The authors showed that for medium to slow TCP 

flows, significant performance degradation is induced because the assembly delay becomes 

very large with respect to the inter-arrival times of the TCP segments. On the other hand, the 

aggregation of multiple TCP segments in fast TCP flows is less influenced by the assembly 

delay. 

Cao et al.  [14] proposed an Adaptive-Assembly-Period (AAP) algorithm and investigated 

the impact of the algorithm parameters (burst assembly time, burst size, and the adaptive-

assembly queue-length thresholds) on the performance of both TCP and UDP traffic over 

OBS networks. They showed that the adaptive-assembly algorithm helps TCP to achieve the 

best throughput performance. 

The simulation-based study in  [32] took TCP Reno as a dominant TCP, and examined 

various burst-assembly delays and burst sizes. The study concluded that TCP Reno fails to 

deal with burst losses when each burst contains a large number of TCP segments assembled 

from a single TCP flow. 

2.6.1.2 Burst Contention Recovery 

As one of the link-layer solutions, BCR can be implemented in the OBS layer in order to 

reduce random burst-contention losses, thereby improving the transmission reliability of 

OBS networks. BCR schemes include burst retransmission  [104] [105], burst deflection 

routing  [37] [68] [105], FDLs  [18], and burst segmentation  [83]. Among the three schemes, 

FDLs achieve BCR by providing limited buffering time for each contended burst. In general, 

1 ms of buffering time requires a fiber with 200 km of length. The buffered bursts suffer from 

signal dispersion and require signal amplification, which complicates the core node 

architecture and functionality. On the other hand, burst retransmission and deflection also 

introduce significant delay. 

With burst retransmission, an OBS edge node stores a copy of each launched burst for 

possible retransmission. As the control packet traverses the core nodes, an intermediate node 

that fails to reserve the resource notifies the OBS edge. Upon receiving the failure 

notification, the edge node retransmits the stored copy of the contending burst, preceded by 
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the corresponding control packet. The retransmitted burst experiences extra retransmission 

delay, between the initial control packet transmission and the last notification received for the 

corresponding burst. If the network is lightly loaded, the retransmission scheme has a good 

chance of successfully delivering the contended bursts without involving the TCP 

retransmission mechanisms. The studies in  [104] and  [105] showed that the retransmission 

scheme can reduce the burst-loss probability compared with barebone OBS at low traffic 

loads. The authors also showed that retransmitting lost bursts from edge nodes prevents 

dropping-based TCP from falling into false congestion detection. However, when the 

network is heavily loaded, the retransmitted bursts may still be dropped and finally lead to a 

timeout at the TCP senders. Therefore, the maximum number of retransmission attempts for 

a single burst and the timeout threshold at the senders must be defined precisely and subject 

to further research.  

With burst deflection, a burst is first routed through its primary path. In the event of burst 

contention, the burst is dynamically rerouted and redirected to an alternate path segment 

starting at the core node where the burst encounters contention. Since the primary path is 

usually the shortest path, data bursts following an alternate path segment suffer from longer 

propagation delay  [37] [68]. The study in  [104] investigated burst retransmission along with 

deflection routing, and showed that burst deflection can reduce burst-loss probability 

significantly at low traffic loads. As with burst retransmission, additional delay caused by 

burst deflection affects delay-based TCPs. If the network is heavily congested, deflection 

may worsen the congestion situation by consuming more resources at other network 

switches, which leads to fatal impairment of TCP throughput.  

2.6.1.3 TCP with Burst Acknowledgement  

In  [21], a TCP throughput model is introduced that incorporates the burst acknowledgment 

mechanism. The authors propose an error-recovery mechanism for electronic buffering at the 

edge nodes in order to improve throughput. However, this mechanism consumes extra 

memory space at the edge node for buffering a copy of all bursts for a certain time. Since the 

amount of additional memory can be large, the scheme is subject to practical implementation 

problems. For example, let the edge node switching capacity be c, the number of IP packets 
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be k, the average assembling granularity be M, and the burst dropping probability be p. The 

required extra memory space for buffering the bursts is c × (RTTburst + p × (RTTburst + k×M)), 

where RTTburst includes the burst assembly time and the burst offset time. Furthermore, the 

scheme cannot prevent TCP senders from TO or TD indications since cwnd can be decreased 

in response to the longer buffering delays.  

2.6.1.4 TCP Decoupling  

As we mentioned earlier, explicit congestion notifications enable network devices to signal 

congestion explicitly to the TCP sender, and hence allow the sender to decouple its 

congestion control from segment-loss recovery. In  [95], a TCP decoupling approach is 

introduced. In this approach, the edge node controls the burst-contention probability at the 

OBS network bottleneck link by taking advantage of the TCP self-clocking property: a new 

segment is injected into the network only after an old one has left. The authors proposed 

using a TCP management packet, called TCP decoupling packet, to control the burst 

transmission rate. The rate is controlled through the arrival of the TCP decoupling packets. In 

this scheme, a virtual circuit (VC) is established for each source-destination pair in the OBS 

network. The VC is then controlled by the TCP congestion control located at the OBS edge 

node such that the sending rate never exceeds the link capacity. The OBS edge node uses the 

TCP ACK packets to control the timing of the burst transmission.  

Given the simulation parameters provided in  [95], the authors demonstrated an 

improvement to TCP throughput by avoiding unnecessary burst losses. The overall link 

utilization increased from 50% to 62% and the packet dropping probability decreased from 

50% to 30%. However, this approach requires maintaining a record of the launched bursts, 

burst launch time, and the corresponding TCP segments for each source and destination pair. 

This approach complicates the OBS edge node architecture and functionality by 

manipulating the TCP packets in the OBS network.  

2.6.1.5 Fixed-Point Feedback  

The fixed-point approach that incorporates TCP’s feedback mechanism aims to compute the 

expected steady state TCP input rate under a certain network load. In OBS, the fixed-point 
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approach consists of four phases. First, the TCP input rate is determined. Second, the 

corresponding burst distribution is computed. Third, the resultant OBS burst loss is obtained. 

Finally, the expected TCP sending rate is calculated based on the burst loss obtained in the 

third phase. In  [13], such a fixed-point method was adopted to compute TCP steady state 

throughput in OBS networks. The method works only for barebone OBS by taking advantage 

of a two-dimensional Markov chain  [31] for modelling a single OBS link, where burst 

contention is the only source of  burst loss. Through successively applying the TCP 

throughput function and the resultant OBS burst loss, a fixed-point rate of TCP over OBS can 

be reached. This method can compute the expected steady-state TCP input rate in the OBS 

network at the expense of the edge node exchanging explicit notifications between the edge 

and the core node, based on information such as the burst losses, RTT variation, the number 

of output wavelengths at each output port, etc. Currently, the fixed-point feedback 

mechanism is used for theoretical analysis rather than practical implementation at the TCP 

layer.  

2.6.1.6 Retransmission-Count Based Dropping Policy (RCDP)  

In  [68] and  [69] a dropping policy, called the Retransmission-Count Based Dropping Policy 

(RCDP), is introduced, which aims to improve TCP throughput. The dropping policy is 

deployed at the OBS edge node and takes the number of burst retransmissions attempts into 

consideration, where bursts that have been retransmitted less are dropped. Clearly, burst 

retransmission takes time that might eventually cause a timeout to be triggered at the TCP 

senders. The authors proposed to add a retransmission count (RC) field in the control packet 

with an initial value of 1. In the event of burst contention, the core node compares the control 

headers of the contending bursts and drops those with lower RC values. Bursts with larger 

RC values are given higher priority since their TCP packets have already experienced 

relatively longer delay. Once a burst is dropped, a corresponding negative acknowledgement 

(NACK) and the RC value are sent back to the OBS edge node, which then increments the 

RC field and retransmits the burst. The number of retransmission attempts follows a 

predefined retransmission policy. The study aims to increase the transmission chances of the 
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TCP packets which have experienced the longest time in the OBS network. However, the 

study has not addressed fairness of the policy. Also, the preemption of reserved resources by 

bursts with larger RC values may have a negative influence on the flows, if they have already 

launched the corresponding data burst. 

2.6.1.7 Burst Delivery, Scheduling, and Fairness  

In OBS, packets belonging to a flow that traverses many hops tend to have a higher chance of 

being dropped than packets in flows with fewer hops. Therefore, TCP flows with more hops 

may not be able to probe the available bandwidth as effectively as the ones with fewer hop. 

This raises a fairness trade-off between burst delay and losses. Fairness of burst delivery in 

OBS network is a complex issue that has been subject to extensive research efforts. A 

common problem of these studies that the schemes never consider the types of packets 

assembled in the data burst. In  [88] a merit-based channel allocation algorithm using JET 

signalling is proposed. A merit value is defined to rank each burst according to the length of 

the route or the potential delay. In  [59], a wavelength continuity approach is introduced. This 

scheme performs backward reservation similar to that defined in Multi-Protocol Label 

Switching (MPLS). Within this scheme, a control packet traverses from the source to the 

destination through the predefined path. The destination sends a reservation packet to reserve 

switching fabric at each intermediate core node backward in parallel with the assembly of the 

data burst at the source.  

Link scheduling algorithms play a vital role in maintaining fairness among bursts. In  [40], a 

batch scheduling algorithm is proposed to maintain optimal link scheduling in terms of the 

scheduled bursts, which reduces the burst losses. This approach takes into consideration the 

burst size, arrival time, and link status, to maximize the number of scheduled bursts. 

However, these batch scheduling algorithms did not consider the burst fairness factor while 

performing burst scheduling. In  [106], two schemes for improving fairness in OBS are 

presented. The authors first proposed a weighting function for evaluating free channels based 

on the number of hops between source and destination edge nodes. The second approach 

enhances the random early discard (RED) scheme, where a burst that makes fewer hops has a 

higher dropping probability than one with more. In  [50], the authors proposed a new channel-
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reservation protocol called virtual fixed offset time (VFO). Unlike previously proposed 

scheduling algorithms, VFO schedules bursts in the order of their arrival instead of the order 

of the corresponding control packets, which increases the chances of burst delivery  [49].  

We observe that all these link scheduling or signalling algorithms demonstrated a reduction 

in the burst dropping probability, thus, increasing the overall network throughput. However, 

they introduced extra switching-architecture complexity and additional burst delay.  

2.6.2 New TCP Congestion Control for OBS Networks 

2.6.2.1 BTCP (BLE, BACK, BNACK)  

The study in  [98] investigated TCP false timeout detection due to random burst-contention 

loss under a wide range of traffic loads. Three solutions were proposed. The first, called 

BTCP with burst length estimation (BLE), is based on estimating the number of TCP packets 

assembled in the burst without the knowledge of the burst assembly algorithm deployed at 

the OBS edge node. In addition to the cwnd, a burst congestion window burst_wd is also 

maintained. If the first loss is a TD, then burst_wd = cwnd/2 (i.e., this is an indication that the 

packets are assembled over many bursts). However, if the first loss is a TO, then TCP sender 

first compares cwnd with burst_wd. If cwnd ≤ burst_wd and burst_wd > 3, the TCP sender 

considers this TO a false TO. It halves cwnd and performs fast retransmission for the missing 

segments. When cwnd > burst_wd or burst_wd ≤ 3, the sender considers this a true TO event 

and initiates normal TCP retransmission.  

In the second approach, called BTCP with burst acknowledgement (BACK), each TCP 

packet is acknowledged by a TCP agent located at the OBS edge nodes. This approach can 

effectively prevent TCP from detecting false TO; however, the end-to-end TCP semantics are 

violated since ACKs reach TCP senders before the actual completion of packet delivery. The 

last approach in  [98], called BTCP with burst negative acknowledgement, maintains a TCP 

agent at each OBS core node. Whenever a burst is dropped, the TCP agent disassembles the 

burst and sends a burst negative ACK (BNACK) to the corresponding TCP sender. The 

missing segments and the network congestion state are exchanged explicitly between the 
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TCP senders and the OBS core nodes. In general, reducing the extra control overhead and 

implementation complexity are challenges when attempting to deploy these solutions. 

2.6.2.2 Burst AIMD (BAIMD) 

The BAIMD  [73] scheme is based on the framework of Generalized Additive Increase 

Multiplicative Decrease (GAIMD)  [11] [89] [96] for cwnd adjustment. Two parameters are 

defined: α and β, for the additive increment and the reduction ratio for cwnd at each TCP 

sender. Unlike conventional TCP, where α and β are set to 1 and 0.5, BAIMD determines the 

two parameters dynamically in such a way that cwnd is increased by α segments for each 

acknowledged packet in a round and is decreased multiplicatively by β (0.5<β < 1) for any 

packet-loss event.  

With BAIMD, the sender is not notified explicitly of the burst assembly mechanism and the 

reasons for burst losses. Each sender treats a packet-loss event as a congestion loss. 

Obviously, this could lead to an overestimation of network congestion by incorrectly halving 

cwnd for every segment drop. To compensate for this overestimation, BAIMD senders 

determine the values of α and β dynamically using burst-level status (i.e., the estimated 

traffic load in the OBS network) such that the summarized effect of the burst-drop event is 

estimated. The scheme aims to achieve the best throughput for the competing flows. For 

example, if a burst is lost when the network load is low, the lost packets are considered due 

to random burst contention, and the multiplicative factor is set to 0.5<β<1. Otherwise, β is 

set to 0.5 when network load is heavy and the burst dropping is due to congestion. 

One of the most important advantages of BAIMD is simplicity, as no burst-level window is 

maintained at the TCP senders, and no explicit notification specific to each launched TCP 

segment is exchanged between the OBS edge and the TCP senders. The scheme maintains 

clean separation between the control signalling at the TCP senders and OBS edge nodes. 

Most notably, BAIMD senders use the RTT of each launched segment along with the number 

of TOs as references for sensing the network load. For example, data bursts are subject to 

extra buffering delay at the OBS edge nodes in response to serious network congestion. Thus, 

RTT increases substantially. On the other hand, if a data burst is dropped due to random burst 

contention in barebone OBS, the RTT remains unchanged. Thus, it is considered an 
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indication of low network load.  Figure  2.6 illustrates the functionality of the proposed 

scheme. 

 

 
Figure  2.6 The BAIMD congestion control scheme 

 

BAIMD estimates the multiplicative factor β through estimating the traffic load at the OBS 

layer. BAIMD defines a threshold load value cgstl  for computing the multiplicative factor. 

When a packet loss occurs at time t and all the connected TCPs as well as BAIMD are 

notified either through TD or TO, the maximum link capacity has been reached at that 

moment. In the congestion state (i.e., the load is 6.0≥cgstl ), the BAIMD senders behave 

similar to conventional TCP senders with β = 0.5. Otherwise, β is set to cgstl−= 1β where, 

6.00 << cgstl . Once β is computed, BAIMD uses the GAIMD congestion control mechanism 
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to obtain the sending rate α as follows. In the presence of TD loss, 3(1 ) (1 )α β β= − + , 

while in the case of TO loss, 24 (1 )
3

α β= −   [11] [89] [96]. Table  2.2 summarizes the TCP over 

OBS schemes.  

In the following chapter we present our methodology for evaluating TCP over OBS. This 

includes a detailed analysis on the used simulation topology, simulation parameters, 

performance evaluation assumptions, performance evaluation parameters, TCP modeling 

notations, and the TCP implementations examined.  
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Schemes 
Solution 

Category 

OBS 

Type 

Devices Involved 

Explicit 

Notifications 

Problem Addressed 

TCP 

source 

OBS 

edge 

OBS 

core 

Random 

Burst 

Losses 

Slow  

Convergence 

Adaptive 
Assembly Period 

(AAP) 
 

link-layer Barebone 
BCR 

 √    √ 

Burst 
Retransmission 

 
link-layer BCR  √ √  √  

Deflection  
Routing 

 
link-layer BCR   √  √  

FDLs link-layer BCR   √  √  

Burst 
Segmentation 

 
link-layer BCR   √  √  

Wavelength 
Conversions 

 
link-layer BCR   √  √  

Retransmission-
Count Dropping  
 

link-layer BCR  √ √  √ √ 

TCP with Burst 
Acknowledgement  

 
link-layer Barebone 

BCR 
√ √ √ √ √  

TCP Decoupling link-layer Barebone 
BCR 

√ √   √  

BTCP with Burst 
Length Estimation 

 

without 
Signalling  

Barebone 
BCR 

√      

BTCP with Burst 
ACK 

 
Signalling  Barebone/ 

BCR 
√ √  √ √  

BTCP with burst 
NACK 

 
Signalling  Barebone 

BCR 
√ √ √ √ √  

Burst AIMD without 
Signalling 

Barebone 
BCR 

√ √ √  √ √ 

         

Table  2.2 TCP solutions over OBS Networks 
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Chapter 3 
Methodology 

In this chapter we present the methodology used for studying TCP throughput over OBS 

networks through the rest of this thesis. We explain the modeling notation and the simulation 

parameters. 

3.1 TCP Modeling Notation 

In this section, we present the notation used in modeling TCP over OBS networks. In both 

 Chapter 4 and  Chapter 5, we have selected TCP SACK  [54] as for our modeling since it has 

been widely deployed in current operating systems and has shown better throughput 

performance over OBS networks than TCP Reno and New Reno  [98] [99]. 

 
p  : Burst dropping probability  

cp  : Burst contention probability  

ncp  : Probability of no burst contention 

srp  : Probability of a burst contended but successfully retransmitted through burst 

retransmission  

α , β  : Vegas throughput thresholds in packets 

BaseRTT  : Minimum measured RTT 

R  : Expected RTT without burst retransmission 

rRTT  : Expected RTT with burst retransmission 

b  : Number of packets that are acknowledged by receiving an ACK  

B  : TCP throughput in packets per second 

H  : Expected number of packets submitted during a TO period 

RTT  : average round trip time 

TOP  : TCP timeout period 

TDP  : TCP triple duplicate period 
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RTO  : Retransmission timeout 
TOZ  : Duration of a sequence of TOs 

A  : Duration of a sequence of consecutive successful rounds 

X  : Number of consecutive successful rounds  

Y  : Number of packets sent before TD or TO expiration  

W  : Current congestion window size in segments  

0W  : TCP cwnd  in Vegas stable state  

mW  : TCP maximum window size 

S  : Number of segments belonging to a single TCP flow being assembled in the 

current burst 
Q  : Ratio between the probability of TO loss and TD loss 

aB  : IP-access bandwidth  

bT  : Burst assembly time 

 

In the next section we present the simulation model including network topology, link 

capacity, burstification process, etc.  

3.2 Simulation Model 

In our simulation model, we used the NS-2 network simulator  [27] [87] for evaluating TCP 

throughput performance over OBS networks. The NSF network topology is implemented as 

shown in Figure  3.1. The distances shown are in km. 

 
Figure  3.1 NSF OBS simulation topology 
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Data bursts are generated at the ingress edges (i.e., ingress nodes are the OBS edge source 

nodes) and traverse through the core nodes with a minimum of four hops before reaching 

their egress destinations (i.e., egress nodes are the OBS destination edge nodes). Depending 

on the number of competing TCP flows, the burst dropping probability varies between 10-5 

and 10-1. TCP flows are classified into fast, medium, and slow flows as in  [19]. For a fast 

flow, all segments from the sending window are assembled into a single data burst. A burst 

loss causes fast flows to timeout. For a slow flow, one segment from the sending window is 

included in a given data burst. Therefore, the loss of the data burst results in a loss of a single 

packet. For a medium flow, the number of segments assembled into a single burst ranges 

between the fast and the slow flows. The burst loss causes medium flows to generate TD. In 

our simulations, TCP speed is controlled by the maximum congestion-window size (Wm), the 

TCP segment length (L), the IP-access bandwidth (Ba), and the burst assembly time (Tb) as 

follows, 

Fast flow   .m
b

a

W L T
B

≤      (3.1) 

Medium flow  .m
b

a a

W LL T
B B

< <     (3.2) 

Slow flow  b
a

L T
B

>      (3.3) 

In this thesis, we focus on fast and medium flows, which are of more practical interest in 

high-speed networks with relatively high assembly time. Therefore, the mixed time/length-

based burst assembly algorithm is used where the maximum burst length is set to 50 KB to 

generate fast and medium flows simultaneously. The TCP maximum congestion window 

ranges from 10 to 104 segments. The core nodes implement the Latest Available 

Unscheduled Channel with Voice Filling (LAUC-VF) channel scheduling algorithm  [91]. 

One fiber link of 8 wavelengths operating at 10 Gbps is used between adjacent nodes, with a 

10 ms propagation delay. One bi-directional control channel is allocated along each link. 

Control-packet processing time is set to 1 µs at both core and edge nodes. The offset time is 

set to 6 μs which is sufficient for bursts to traverse a minimum of 4 hops. A File Transfer 
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Protocol (FTP) is used for generating TCP traffic with a 1 KB average packet size. TCP 

throughput is obtained over a simulation period that ranges from 103 to 104 seconds.  

The TCP senders and receivers are attached to the OBS edge nodes. Burst losses occur at 

the OBS core network due to burst contention. Burst retransmission and deflection routing 

have been implemented. In our simulation, we examined the TCP throughput over barebone 

OBS, OBS with burst retransmission, and OBS with burst deflection routing. If the 

contended burst contends again after the second retransmission attempt, the burst will be 

dropped. Similarly, if the deflected burst contends after reaching the second node, it will be 

dropped. In the simulation, RTT increases due to buffering delay at the edge nodes, burst 

retransmission, and burst deflection.  

For the purpose of examining TCP fairness, we use Jain’s fairness index which is defined 

as 2 2
1 1

( )
n n

i ii i
B n B

= =∑ ∑ , where n is the number of competing flows and Bi is the throughput of 

the ith flow. The competing flows share the same source and destination. During simulation, 

the fairness index is obtained to compare flows with similar congestion-control 

implementations. 

In the next section, we evaluate the throughput performance of TCP implementations 

under a range of burst dropping probabilities. This simulation study is essential to understand 

the throughput level in the presence of burst losses that affect multiple segments from a 

single TCP flow. 

3.3 Performance Evaluation of Selected TCP Implementations over OBS  

In this section, a number of TCP implementations and enhancements which target problems 

similar to the ones encountered in OBS networks are analyzed. Furthermore, an extensive 

simulation is performed to evaluate the throughput performance of TCP Reno, New Reno, 

SACK, DSACK, FACK, TCP with Eifel, BTCP, and BAIMD over the simulation model 

presented in Section  3.2.  
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3.3.1 Performance Evaluation Overview 

In this section we give an overview of a number of previously reported TCP enhancements 

and their design principles/premises. TCP SACK detects the loss of multiple packets in a 

single round trip. The block information in an ACK allows the sender to retransmit the lost 

packets at once. TCP New Reno  [28] is similar to SACK, in which partial ACKs are 

exchanged between the sender and destination to indicate the loss of multiple packets in one 

transmission round. TCP with duplicated SACK (DSACK)  [26] reports the reception of 

duplicated packets so that the sender is informed constantly of which segments are received 

at the destination. With TCP Forward Acknowledgment (FACK)  [55], the TCP sender 

maintains the number of packets received by the receiver through the segment sequence 

number. Burst TCP (BTCP)  [98], TCP Eifel  [52] [53], TCP with Explicit Loss Notification  

 [1], and TCP with Explicit Congestion Notification  [1] were developed to identify suspicious 

timeouts that cause unnecessary retransmissions. Furthermore, TCP ELN/ECN distinguishes 

among packet losses due to congestion, contention, link failure, and other reasons. 

The TCP implementations which address the problem of slow convergence, such as Fast 

TCP  [36] [39], High Speed TCP (HSTCP)  [79], and Scalable TCP (STCP)  [24] are kept for 

future work since they are not in the scope of this thesis.  

3.3.2 TCP Implementations Not Designed for OBS Networks 

Figure  3.2 shows the results of the competition among Reno, New Reno, SACK, DSACK, 

and FACK, in terms of throughput under barebone OBS. It is clear that TCP SACK, FACK, 

and DSACK out-perform Reno and New Reno due to the fact that the senders are designed to 

handle the dropping of a whole block of data segments in a single round, which matches the 

requirements of OBS well.  

New Reno achieved the lowest throughput since it halves cwnd every time a segment is lost 

and successfully retransmitted, which could lead to dramatic reduction of cwnd in a single 

round. This implies that the more TCP Reno packets are assembled in a single burst, the 

lower the Reno throughput in the presence of burst dropping. 
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Figure  3.2 TCP Reno, New Reno, SACK, and DSACK throughput in barebone OBS 

 

 
Figure  3.3 TCP Reno, New Reno, SACK, and DSACK throughput in OBS with burst 

retransmission 
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From Figure  3.2 we observe that FACK outperforms SACK since it maintains explicit 

measurements of the total number of packets outstanding in the network. TCP FACK senders 

maintain two variables called snd.fack and retran_data representing the forward-most 

packets received by the receiver at the transmission and the retransmission phases. With the 

two variables, the senders can determine the exact segment block that has been dropped in 

the network or received by the receiver. In contrast, SACK and Reno can only estimate the 

number of packets still in the network by assuming that each TD received is for only one 

segment. Since FACK determines the exact number of lost packets in the network, it can 

exploit the full network capacity, while recovering from segment loss and mitigating rate 

fluctuation, by sending a chunk of segments at once. Given these features, FACK may be the 

best fit to OBS networks since a data burst may contain a block of FACK segments or only 

one segment. In either situation, TCP FACK senders handle the correct number of missing 

segments with the most appropriate adjustment to the sending rate. 

In order to examine the performance of the TCP implementations in the presence of out-of-

order burst delivery, we enabled burst retransmission at the ingress nodes. If the contended 

burst fails at the second retransmission attempt, it is dropped. Figure  3.3 shows the 

performance of TCP Reno, New Reno, SACK, DSACK, and FACK in response to out-of-

order delivery in OBS with burst retransmission. With DSACK, the TCP senders can undo 

the halving of cwnd when receiving the second copy of a segment caused by out-of-order 

burst delivery. From the figure, DSACK has the best ability to recover from the out-of-order 

delivery  [5] [21] [66]. 
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Figure  3.4 Reno (Eifel), New Reno (Eifel), and SACK (Eifel) throughput over barebone OBS 

 

We tested the effect of integrating the Eifel algorithm  [67] with traditional TCP 

implementations for detecting suspicious timeouts. In this experiment, a TCP timestamp 

facility is enabled  [38]. In order to observe the response of the Eifel algorithm upon any 

suspicious timeout due to sudden packet delay, we chose to delay intentionally every TCP 

packet launched in the network at the 100th, 600th, and 800th seconds of the simulation time 

for 100 ms, 200 ms, and 100 ms respectively at core node 8 in Figure  3.1. 

Figure  3.4 and Figure  3.5 show the comparison among TCP Reno (Eifel), New Reno 

(Eifel), and SACK (Eifel) in barebone OBS and OBS with retransmission, respectively. It is 

clear that the Eifel algorithm has successfully improved the performance of Reno, New Reno 

and SACK by identifying the retransmission ambiguity due to the inserted delay events. 
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Figure  3.5 Reno (Eifel), New Reno (Eifel), and SACK (Eifel) throughput over OBS with 
retransmission 

 

Among TCP enhancement schemes not specifically designed for OBS, TCP SACK, 

FACK, and DSACK outperform all the other schemes by best addressing the issue of 

multiple segment losses, at the expense of being unable to identify suspicious timeouts. We 

also observe that the integration of Eifel can greatly improve the throughput performance for 

the three TCP implementations by identifying suspicious timeouts caused by sudden delays 

and out-of-order delivery.  

3.3.2.1 TCP Implementations Designed for OBS Networks 

We also evaluated and compared the throughput performance of the recently proposed TCP 

implementations designed for OBS networks, including BAIMD  [73] and BTCP 

BACK/BNACK  [98]. TCP Reno and SACK are taken for comparison since they achieve 

higher throughput than New Reno in OBS networks  [98]. Figure  3.6 shows the throughput of 

TCP Reno, SACK and BAIMD under barebone OBS and OBS with retransmission. Under a 

wide range of burst-dropping events (i.e., due to a mix of random burst contention and 
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network congestion), BAIMD achieves the best performance among all traditional TCP 

implementations. Recall that BAIMD derives dynamically β corresponding to the 

congestion-burst dropping rate to achieve a stable cwnd adjustment upon each burst loss 

event.  

 

 
Figure  3.6 TCP Reno, SACK, BTCP (BACK/BNACK), and BAIMD throughput over 

barebone OBS and OBS with burst retransmission 
 

In Figure  3.6, we also examine BTCP with BACK/BNACK and BAIMD. With BTCP, a 

TCP agent is placed at the ingress node to enable the explicit loss notification facility and 

ACKs for the BTCP senders. The simulation results show that BTCP yields slightly better 

performance than TCP Reno, New Reno, and SACK, but is still much worse than BAIMD. 

We observe that BAIMD outperforms all the other schemes due to its ability to identify the 

network status intelligently when a burst is lost and determine the corresponding 

transmission parameters α and β to achieve a stable sending rate and relevant congestion 

control.  
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Table  3.1 summarizes the TCP implementations examined and the resultant throughput 

performance over OBS networks. The simulation results show that conventional TCP 

implementations fail to maintain a high throughput level in the presence of burst losses that 

contain multiple segments from a single TCP flow. 

From the TCP variants listed in Table 2.2 and Table  3.1, we observe that the most 

important characteristics and abilities that a congestion-control mechanism in TCP over OBS 

should have are following: (1) the ability to handle multiple TCP segment-loss events in a 

single round trip, (2) the ability to identify suspicious TOs and burst losses under low traffic 

load, and (3) the ability to compensate for out-of-order delivery in the OBS layer. The 

following chapters investigate these characteristics of TCP congestion-control mechanisms 

over OBS. In this context, novel TCP congestion-control mechanisms are proposed to deal 

with various burst-transmission characteristics.  

 

 

 

Table  3.1 An overview of TCP implementation performance over OBS 

 

 

 

Schemes 

 

Suspicious  

TOs 

Packet 

reordering 

Multiple packet losses in 

a single RTT 

Reno (Eifel) √   

New Reno (Eifel) √   

SACK (Eifel) √  √ 

DSACK  √ √ 

FACK   √ 

BTCP (BACK, 
BNACK) 

 
√ √ √ 

BAIMD √ √ √ 
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Chapter 4 
Statistical AIMD Congestion Control for TCP over OBS Networks 

This chapter introduces a novel congestion-control scheme for TCP over OBS networks, 

called Statistical Additive Increase Multiplicative Decrease (SAIMD). SAIMD maintains and 

analyzes a number of previous RTTs at the TCP senders in order to identify the confidence 

with which a packet-loss event is due to network congestion. The confidence is derived by 

positioning short-term RTT in the spectrum of long-term historical RTTs. The derived 

confidence corresponding to the packet loss is then used by the policy for congestion-

window adjustment. SAIMD only requires statistical information about RTTs measured at a 

TCP sender, which achieves a clean separation between the TCP and OBS layers. We show 

through extensive simulation that the proposed scheme can solve the false-congestion-

detection problem effectively and outperform conventional TCP significantly. Also, based on 

the proposed congestion-control algorithm, a throughput model is formulated and verified 

through simulation.  

4.1 Overview 

When OBS is deployed as the underlying switching technology, TCP congestion control is 

subject to great challenge. A number of TCP implementations have been proposed for 

detecting and controlling network congestion in various network environments, including 

mobile wireless networks  [16], ad hoc networks  [17], and optical networks  [23] [44] [93]. 

Each TCP enhancement has its own design premises, and could be very effective in one 

circumstance while being much outperformed in another. It has also been proven that joint 

consideration of the characteristics of the whole network environment in the design of the 

TCP modifications or extensions is necessary  [2]. These facts are especially salient when 

TCP is extended to OBS networks, where multiple TCP segments can be lost when the OBS 

network is not congested.  

The GAIMD scheme proposes to reduce the “saw-tooth” behaviour of TCP for multimedia 

applications  [11] [96]. Instead of increasing cwnd by one for successful packet delivery and 
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decreasing it by half for a packet-loss event, GAIMD increases cwnd additively by α 

segments when no packet is lost in a single round-trip, and decreases multiplicatively by β if 

a TD packet-loss event occurs. In order to ensure TCP friendliness among competing 

GAIMD flows, α and β can be set as explained in  [11] [96]. Since SAIMD aims to address 

the unnecessary reduction of cwnd, we focus on the multiplicative decrease parameter β , 

while α is set to 1. 

4.2 SAIMD over OBS Networks 

The SAIMD scheme adopts the framework of GAIMD to enhance the responsiveness of TCP 

to any burst-loss event that is not caused by congestion. In SAIMD, when a data burst is lost, 

the corresponding TCP senders will be notified by a TD or TO. In either case, instead of 

halving cwnd or even throttling to slow-start stage, TCP senders reduce cwnd by the 

multiplicative factor β. The factor β is determined dynamically by positioning the short-term 

RTT statistics in the spectrum of long-term historical RTTs. Here, “statistics” refers to mean, 

standard deviation, and correlation function as described below.  

SAIMD introduces two parameters, M and N. The parameter M is the number of 

consecutive RTTs measured for the long-term statistics. M should be sufficiently large that 

the derived statistics (i.e., the mean and standard deviation) represent the intrinsic 

characteristics of the network topology, routing policy, and traffic distribution/pattern. The 

parameter N is the number of consecutive RTTs measured prior to a packet loss for the short-

term statistics. The average of the N RTTs, denoted by avg_RTT_N, is compared with the 

average of the M RTTs, denoted by avg_RTT_M, in a TCP session, in order to determine 

whether the packet-loss event is due to network congestion or due to random burst contention 

in a lightly-loaded OBS network. In a packet-loss event caused by random burst contention, 

avg_RTT_N is expected to be close to avg_RTT_M. A larger avg_RTT_N suggests that a 

packet-loss event is more likely due to network congestion.  

The relationship between avg_RTT_M and avg_RTT_N is based on the following 

observations. In TCP over OBS networks, packet loss is caused by random burst-contention 

losses in the OBS core or network congestion in the IP access networks or OBS core. The 
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difference between random burst contention and network congestion is that network 

congestion is high resource utilization for a longer period. In the high resource-utilization 

state, the RTT of each packet is much higher than that in the low-utilization state. This is due 

to the longer queuing delay in the IP access network. Also, in an OBS core with contention-

resolution schemes such as burst retransmission  [104] [105] and deflection  [37] [68], bursts 

will have a higher probability of being retransmitted or deflected, which results in a longer 

average burst delay.  

We further quantify the relation between the long-term and short-term statistics in order to 

define the confidence with which a packet loss is due to network congestion. We assume that 

the M consecutive RTTs are random with a mean avg_RTT_M and a variance Var(RTT). We 

also assume they can be modeled approximately as a Normal distribution. To validate this 

assumption, we analyze 14,000 consecutive TCP RTTs resulting from running a simulation 

for 103 seconds, with a Chi-square test under the following two network scenarios: one is a 

barebone OBS network, where delay variation takes place in IP access networks and burst 

assembly; the other scenario is an OBS network with burst deflection, where delay variation 

takes place in the IP access networks, burst assembly at the OBS edge nodes, and burst 

deflection due to longer routes. The null hypothesis in the Chi-square test is: “the distribution 

of the M RTTs cannot be modeled as normal N(μ,σ), where _ _avg RTT Mμ = , and 

( )M Var RTTσ = ⋅ ”. The derived distributions in both network scenarios are shown in  

Figure  4.1. The simulation experimental parameters are given in Section  3.2. We found that 

the null hypothesis can be rejected at a 5% confidence level, which validates our assumption 

that the M consecutive RTTs can be modeled approximately as a Normal distribution. 
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Figure  4.1 TCP RTT distribution histogram 

4.2.1 Autocorrelation for Determining a Proper Value of N 

Selecting a proper value of N is important, since the N RTTs are expected to provide 

sufficient information about the short-term network status when a packet is lost. If N is 

chosen too small or too large, the short-term network status may not be represented 

accurately. Our approach in selecting N employs an autocorrelation function with effective 

sample data size: 

0

(0, ) [ (0) . (0 )]
1 ( ) ( ) , 0N

i

R N E RTT RTT N

RTT i RTT i N N
M =

= +

= ⋅ ⋅ + >∑  

where RTT(i) is the RTT of the ith packet. The autocorrelation function reflects how well a 

set of random variables are related to each other. Figure  4.2 shows the numbering of RTTs. 

The autocorrelation function can reflect the smoothness of the process. (0, )R N has the 

maximum value when N = 0. Also, the stronger correlation within a group of RTTs, the 

larger the value of (0, )R N outcome  [33]. In our scheme, the value of N is selected such 

that (0, ) (0,0) %R N R γ= ⋅ , where γ is the first-order autocorrelation threshold that determines 
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N based on the autocorrelation function. In other words, we benefit from the autocorrelation 

property to determine the effective sample size N, where 
(1 )
(1 )

N M γ
γ

−
=

+ . 

 

 
Figure  4.2 Numbering of RTTs, where RTT(0) denotes the RTT right before a packet-loss 

occurs 
 

In order to represent the short-term network status well, N RTTs should have a strong 

correlation with each other. Hence, the value of γ  should be close to 1. In our study, γ  is 

90%.  

4.2.2 SAIMD Congestion Control 

After N is selected based on the approach in the previous subsection, the value of 

avg_RTT_N can be obtained. Then, we define the confidence with which the current packet-

loss event of a TCP session is due to network congestion by positioning avg_RTT_N in the 

Normal distribution spectrum of the M RTTs (shown in Figure  4.1). The derived confidence 

is used to adjust β dynamically at a TCP sender so that it represents the current network 

status.  

For positioning avg_RTT_N in the Normal distribution spectrum, a function 

( )i conf iz RTT u=  is defined, where ui is the confidence level. The ( )conf iRTT u  returns an RTT 

value (denoted by zi) which is larger than a proportion ui ( 10 ≤< iu ) of all RTTs in the 

Normal distribution curve. A one-to-one mapping between ui and zi exists, as shown in the 

following expression: 
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0

( ) ( )
i

i i j
j

u cdf z pmf z
=

= = ∑  

)( izcdf and )( izpmf denote the cumulative density function and probability mass function in 

the RTT spectrum given the RTT value of zi  [33]. The one-to-one mapping between ui and zi 

is shown in Figure  4.3. In this figure, for example, if the RTT is higher than the mean RTT 

with ui = 90% confidence, then the RTT value of zi is in the range of 100 to 120 ms.  

 
Figure  4.3 The relation of zi, ui, and β in the SAIMD scheme. 

 

The proposed policy for adjusting β is as follows. When avg_RTT_N is smaller than 

1 1( )confz RTT u= , a low confidence of network congestion is indicated, which yields no 

adjustment of the cwnd in response to packet loss, (i.e., β = 1). When 
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avg_RTT_N> ( )n conf nz RTT u=  ( 1nu u> ), it is a strong indication of network congestion. 

Hence, the TCP sender cuts cwnd by half, (i.e., β = 0.5) in response to a packet loss. When 

avg_RTT_N falls in the interval 1[ , ]nz z , ( )if uβ = , where 1

1

( ) 1
2( )

i
i

n

u uf u
u u

−
= −

−
. That is, we 

chose to set β according to the piecewise linear function of Figure  4.3, parameterized by u1 

and un. Note that u1 and un are two parameters given in advance in order to distinguish 

network congestion from random burst contention in a lightly loaded OBS network. In this 

study, u1 and un are set to 50% and 90%, respectively. The policy-based cwnd adjustment 

scheme can be summarized in the following equation: 

 

1

1

0.5        _ _ ( )

( )    ( ) _ _ ( )

1          ( ) _ _

conf n

i conf n conf

conf

avg RTT N RTT u

f u RTT u avg RTT N RTT u

RTT u avg RTT N

β

⎧ >
⎪

= > >⎨
⎪ ≥⎩

    (4.1) 

 

The dynamic adjustment of β based on the confidence level iu is illustrated in Figure  4.3. The 

flow chart for SAIMD is shown in Figure  4.4. 

We now discuss two extreme cases for SAIMD. Note that the adjustment of β will only be 

trigged if a TCP sender detects a TD segment loss. The first extreme case is that a TCP 

sender starts the data transmission while the network is congested. In this case, the measured 

RTTs are large at the beginning of the TCP session and the avg_RTT_N and avg_RTT_M 

obtained by the TCP sender are very close. Hence, β will be close to 1. For a TD segment 

loss, cwnd will not be reduced enough. SAIMD will then cause persistent congestion in the 

network and TO segment losses will occur. The TCP sender then enters a slow-start phase 

and sets cwnd to 1. As a result, the network congestion will be relieved. The second extreme 

case is when there is no RTT variation in a network, which is expected to be rare. In this 

case, the avg_RTT_N and avg_RTT_M obtained by the TCP sender are also very close. As a 

result, cwnd will not be reduced enough in response a TD. Instead, the TCP flow will timeout 

as a response to persistent congestion.  
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Figure  4.4 The SAIMD congestion control scheme.  

 

SAIMD scheme is particularly suitable for high-bandwidth TCP flows that operate for a 

relatively long period of time with a large cwnd. These flows are expected to take an 

important role in applications such as grid computing. Depending on the number of TCP 

segments in a contended burst, these flows may either trigger a TO or cut cwnd in half as a 

response to receiving TDs. Once there is a false-congestion detection event which leads to 

TO or TD, the time required to increase cwnd (most likely additively) to its previous value 

could be very long, which impairs the TCP performance and the desired application scenario.   

Compared with conventional AIMD-based TCP, SAIMD incurs additional overhead for 

maintaining the M RTTs and computing the autocorrelation and confidence intervals for the 

N RTTs. The cost can be traded off against the long convergence time in recovery from slow 
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start caused by false congestion detection. Faster recovery is essential for those high-

bandwidth flows that may otherwise take hours to recover from a single TO. Note that the 

computation for the autocorrelation and confidence interval is required only when a segment 

loss event occurs, and the computation complexity is almost constant regardless of M and N. 

In addition, SAIMD is intended mainly for long and high-bandwidth TCP flows, rather than 

short ones such as those of HTTP web services; thus, the resultant additional overhead to the 

whole network is expected to be negligible. 

One potential approach for enhancing SAIMD to cope with the above problems is to 

exchange information with the OBS domain. This information can accurately describe the 

network condition and the reasons for burst losses. In  Chapter 5, we modify TCP congestion-

control algorithm to exploit the advantages of explicit information exchange between TCP 

and the OBS domain.   

4.2.3 Performance Analysis 

In order to gain deeper understanding of SAIMD throughput performance, in this section we 

develop an analytic model for SAIMD over OBS networks. The model notations are 

presented in Section  3.1. In our model, we define a round as starting when the sender emits 

the current cwnd (in segments) and lasting until either it receives an acknowledgement or the 

TO expires. We also define a TD loss as a packet loss detected by triple duplicates and define 

a TO loss as a packet-loss detected after the sender times out.  

We obtain the SAIMD TCP SACK throughput in an OBS network for both TD and TO 

losses by summing the number of packets sent during TD and TO periods, divided by the 

duration of the periods, 

[ ] [ ]
[ ] [ ]
E Y Q E HB

E TDP Q E TOP
+ ×

=
+ ×      (4.2) 

In the following two sections, we derive E[Y], E[TDP], E[TOP], E[H], and Q in the presence 

of TD and TO losses respectively. 



 

 54 

4.2.4 Triple Duplicate (TD) Losses 

As per the model in  [60] [99], suppose that the (ci+1)th burst is the first burst lost in the ith 

TDP, TDPi, and that the first lost segment is number (ai+1). As shown in Figure  4.5, hi 

additional segments will be sent in the same round after the (ci+1)th burst is sent and lost. 

After receiving TD, the TCP sender retransmits all the missing segments contained in the lost 

burst in the next round. Therefore, in the next round, SW
iX −  new segments will be sent, 

where 
iXW is the cwnd size in the iX th round of TDPi. After recovering all the segments lost 

in the burst, a new round TDPi+1 starts with cwnd cut by a factor of β.  

 

 
Figure  4.5 Evolution of SAIMD TCP SACK congestion window over OBS networks. 

 

The total number of segments transmitted successfully during TDPi is Yi = ai + hi + .SW
iX −  

E[h] is approximately equal to ][][ XWEE β , since iXi Wh ≤≤0 and the cwnd is reduced by β 

for every TD loss. Thus, we have  

SWEEaEYE X −++= ][)1][(][][ β     (4.3) 
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where S is the number of segments belonging to the TCP flow assembled in the current burst. 

As per Equation 4.1, β is a function of the avg_RTT_N and the confidence level ui. 

Considering Figure  4.5, we derive ][βE  as follows,  

 

( )

1
1

1
1 1

1 1

1 1
1 1

1 11 1

1 ( )
[ ] ( ) ( ) ( )

2
1 ( )

= 1
2( ) 2

1 2 ( )
( )

2 2( ) 2( )

n
n

i i
i

n
i n

i i
i n

n n
n n i i i

i i
i in n
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E cdf z f z pmf z

u u cdf z
u u u

u u
u u u u u u

u u u
u u u u

β β
=

−
=

−
−

= =

−
= = + ⋅ +

⎡ ⎤− −
+ − ⋅ − +⎢ ⎥−⎣ ⎦

− − −
= + + − +

− −

∑

∑

∑ ∑

      (4.4) 

 

where )( izcdf  and )( izpmf  denote the cumulative density function and probability mass 

function in the RTT spectrum given the RTT value of zi  [33]. Since β has pmf pβ, then an 

alternative way for solving E[β] can be through historical collection of the β values, which 

yields: 

[ ] ( )i i
i

E pββ β β β= = ∑              (4.5) 

where )( ip ββ is the probability of the distinct values iβ  to exist in the random process.  

In order to derive E[a], we consider a random process {ci}, which is the average number of 

bursts sent in TDPi until the first burst loss. Assume that burst contentions in OBS networks 

occur independently. The probability of c = k (or the case where k–1 bursts are successfully 

delivered before a burst loss is encountered) can be written as: 
1[ ] (1 )kP c k p p−= = − ⋅     (4.6) 

Given that ai transmitted segments implies Sci transmitted bursts, ai = Sci, we have,  

p
SppkScESaE

k

k∑
∞

=

− =−==
1

1)1(][][    (4.7) 

By substituting Equation 4.7 into Equation 4.3, we have 
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1[ ] ( 1) [ ]X
pE Y E W S

p
β −

= + +     (4.8) 

4.2.5 For high packet losses (WX < Wm) 

In the presence of high packet losses, cwnd will remain less than the maximum size Wm. 

Recall that b denotes the number of packets that are acknowledged by receiving an ACK. 

During TDPi, cwnd increases between 
1iXWβ

−
and .

iXW  Since the increase in cwnd is linear 

with slope 1/b, thus,  

b
X

WW i
XX ii

+=
−1

β      (4.9) 

By solving Equation 4.9 for iX and talking the expectation, we have  

[ ] (1 ) [ ]XE X b E Wβ= −     (4.10) 

Since Yi can be derived by adding the numbers of segments sent in each of iX  successful 

rounds, plus the additional ( SW
iX − ) segments in the next round of iX as shown in      

Figure  4.5, we have:  

SW
b

X
W

X

SWbkWY

ii

i

i

i

X
i

X
i

X
bX

k Xi

−+−+=

−++=

−

−∑ −

=

)12(
2

)(

1

1

1/

0

β

β

 

By substituting Equation 4.9, we have 

SWWW
X

Y
ii XXiX

i
i −+−+=

−
)1(

2 1
β  

since the behavior and the size of XW is depending largely on β , we assume a certain level of 

correlation existing between both variables. Thus, after substituting Equation 4.10, we get  

 
2 2(1 ) [ ] (1 ) [ ]

[ ] [ ]
2

X X
X

b E W b E W
E Y E W S

β β− − −
= + −    (4.11) 

By combining Equation 4.11 and Equation 4.8, we have, 
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2
2(1 ) [ ] ( ) [ ] 0

2 2 2X X
b b b SE W E W

p
β β β−

+ − − − =  

E[WX] can be then obtained as    

2
2

2

( 1) ( 1) 2 (1 )( )
2 2

[ ]
(1 )X

b b Sb
p

E W
b

β β ββ β

β

− − −
− + − +

=
−

     (4.12) 

By substituting Equation 4.12 into Equation 4.8, we obtain E[Y] as, 

2
2( 1) ( 1) 2 (1 )( )

2 2 1[ ]
(1 )

b b Sb
p pE Y S

pb

β β ββ β

β

− − −
− + − +

−
= +

−
      (4.13) 

Also, by substituting Equation 4.12 into Equation 4.10, we obtain E[X] as,  

2
2( 1) ( 1) 2 (1 )( )

2 2
[ ]

1

b b Sb
p

E X

β β ββ β

β

− − −
− + − +

=
+

        (4.14) 

E[TDP] is then obtained as  

2
2

[ ] ( [ ] 1)

( 1) ( 1) 2 (1 )2 ( )
2 2

( 1)
1

E TDP RTT E X

b b Sb
p

RTT

β β ββ β

β

= +

− − −
− + − +

= +
+

   (4.15) 

 

4.2.6 For low burst losses (WX = Wm) 

For a very low burst loss probability, the cwnd size will most likely be at the maximum, Wm, 

before a burst loss event occurs. From Equation 4.8 we can obtain,  

1[ ] ( 1) m
pE Y W S

p
β −

= + +     (4.16) 

During each TDP, cwnd increases linearly from βWm to Wm for )( mm WW β−  rounds and 

then stays at Wm for ))(( mmi WWX β−−  rounds, hence we can obtain the number of segments 

that are transmitted before a TD loss as 
2( )

( )
2

m m
m i m m i

W W
W X W W h

β
β

−
+ − + − . On the other 
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hand, from Equation 4.7, the total number of segments that are successfully transmitted 

before a packet-loss is S/p. Hence we have  
2( )

( )
2

m m
m i m m i

W W SW X W W h
p

β
β

−
+ − + − =     (4.17) 

By solving Equation 4.17 for iX and talking the expectation, we can obtain E[X] as  

2(1 2 )
[ ] (1 )

2
m

m
m

W SE X W
W p

β β
β β

− +
= − − + +    (4.18) 

The duration of the TDP is obtained as,  

 2

[ ] ( [ ] 1)

(1 2 )
( (1 ) 1)

2
m

m
m

E TDP RTT E X

W SRTT W
W p

β β
β β

= +
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       (4.19) 

4.2.7 Timeout (TO) Losses 

The behavior of TCP SAIMD for a TO loss is the same as that of TCP SACK. Hence, the 

analysis of TO losses is same as the analysis in  [19]. From  [99], we have  

p
pREHE
−

=−=
1

1][][ ,    (4.20) 

p
pfRTOTOPE

−
=

1
)(][ ,    (4.21) 

where 65432 32168421)( pppppppf ++++++= . A TO occur when all bursts are lost in 

the last iX round with probability p(Wx). Since a TD is followed by a TO with probability 

p(Wx) or followed by another TD with probability 1-p(Wx), then,  

1 1
[ ( )] [ ( )] [ ] .

X XW W
S S

X XQE p W E p W E p p
− −

= = ≈   (4.22) 

4.2.8 SAIMD TCP SACK over OBS Throughput Estimation 

In the case of WX < Wm, we can obtain the SAIMD throughput by substituting Equations 

4.13, 4.15, 4.20, 4.21, and 4.22 into Equation 4.2, which yields 
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   (4.23) 

 

In the case of WX = Wm, TCP SAIMD throughput can be obtained by substituting Equations 

4.16, 4.19, 4.20, 4.21, and 4.22 into Equation 4.2, which yields 
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  (4.24) 

4.3 Numerical Results 

To verify the proposed Statistical AIMD scheme, simulation is conducted using the 

simulation parameters presented in Section  3.2. The mixed time/length-based burst-assembly 

algorithm is adopted, where the burst timeout threshold is 500 ms and the maximum burst 

length is 50KB. TCP Wm ranges from 10 to 30 segments. The access bandwidth is set to 100 

Mbps. From Equations 3.1 - 3.3, the selected parameters generate fast and medium flows.   

SAIMD is triggered after 30 RTT samples (i.e., collecting 30 samples is sufficient to obtain 

a Normal distribution of RTTs). Burst retransmission and deflection routing have been 

enabled. In our simulation, we examined the TCP throughput over barebone OBS, OBS with 

burst retransmission, and OBS with burst deflection routing. In the simulation, RTT increases 

due to buffering delay at the edge nodes, burst assembly delay, burst retransmission, and 

deflection.  

In Figure  4.6, we show the relationship between the average TCP RTT and the packet-loss 

probability. Since there is no significant RTT change resulting from higher burst loss 

probability, in this figure we show RTT values corresponding to a maximum of 10-3 burst 
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contention probability. It is notable that a significant amount of extra delay was incurred by 

the retransmitted and deflected bursts.  

 
Figure  4.6 Average TCP RTT delay vs. the burst-contention probability 

 
Figure  4.7 Burst-contention probability vs. SAIMD beta value 
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In Figure  4.7 we show the calculated β values for SAIMD at various packet-loss 

probabilities. 

Figure  4.8 compares the results from the analytical model with those obtained by the 

simulation. The two agree closely.   

 
Figure  4.8 SAIMD simulation vs. analytical model throughput 

 

Figure  4.9 shows the throughput performance of SACK/SACK(SAIMD) and 

Reno/Reno(SAIMD) flows in barebone OBS. The throughput of conventional TCP SACK 

and Reno is reduced dramatically even when the burst loss rates are quite low because the 

AIMD (1,0.5) senders always take a burst loss event as due to congestion, which may 

unnecessarily halve cwnd. On the other hand, the SAIMD SACK senders have achieved a 

37% throughput increase because SAIMD does not react rigidly to a burst loss as a 

congestion loss at this low packet-loss probability. Instead, the factor β is manipulated in 

each TCP sender to guarantee a smaller cwnd reduction in response to any packet loss from a 

random burst contention. SAIMD enhances the TCP SACK and Reno throughputs by 

approximately 31%.  



 

 62 

 
Figure  4.9 Throughput of TCP Reno/(SAIMD), TCP SACK/(SAIMD) in the barebone OBS 

 

Figure  4.10 shows the throughput of TCP SACK/SACK(SAIMD) and 

Reno/Reno(SAIMD), with burst retransmission. Retransmission has successfully reduced the 

overall burst loss probability at the expense of longer RTT for TCP senders (as shown in 

Figure  4.6). 
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Figure  4.10 Throughput of TCP Reno/(SAIMD), TCP SACK/(SAIMD) in OBS with burst 

retransmission 
 

 

Through integrating burst retransmission with SAIMD in the TCP flow-control process, we 

observe significant improvements in TCP SACK and Reno throughput of 81%. In         

Figure  4.11, we consider OBS with deflection routing. The simulation result shows that 

SAIMD achieves the best throughput performance. Using SAIMD can improve the TCP 

SACK and Reno throughput by 72% in the presence of burst deflection routing.  
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Figure  4.11 Throughput of TCP Reno/(SAIMD), TCP SACK/(SAIMD) in the OBS network 

with burst deflection 
 

We also examine fairness among Reno, SACK, Reno (SAIMD), and SACK (SAIMD). 

Figure  4.12 shows the fairness index of TCP flows by Reno, SACK, and Reno (SAIMD), and 

SACK (SAIMD), over barebone OBS network. SAIMD has a much better fairness index 

than traditional AIMD in Reno and SACK. This is due to the fact that the SAIMD 

congestion-control mechanism has successfully and accurately identified burst contention 

and congestion, which better assists the SAIMD flows to remain close to the equilibrium.    
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Figure  4.12 Fairness index of Reno, SACK, Reno (SAIMD), and SACK (SAIMD) in a 

barebone OBS network 
 

The fairness index was also examined with retransmission, as shown in Figure  4.13. Note 

that burst retransmission is an effective approach for enhancing the overall network 

throughput by hiding burst-loss events in the OBS domain. The simulation results 

demonstrate that SAIMD fairness with burst retransmission is better than SACK and Reno. 

These two experiments prove that SAIMD can maintain a friendly relationship with the other 

TCPs.   
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Figure  4.13 Fairness index of Reno, SACK, Reno (SAIMD), and SACK (SAIMD) in OBS 

with burst retransmission 
 

4.4 Conclusion 

In this chapter, a novel Statistical Additive Increase Multiplication Decrease (SAIMD) 

framework for TCP congestion control in OBS carrier networks is proposed and examined. 

SAIMD aims to mitigate the vicious effect of TCP false congestion due to the lack of 

buffering in the OBS domain. The scheme collects and analyzes historical RTTs and adjusts 

β according to the statistics of the collected RTTs at the occurrence of any segment-loss 

event. Analysis was conducted to evaluate the TCP throughput using the proposed scheme. 

Simulations were conducted to validate the proposed TCP throughput model and to evaluate 

the proposed congestion-control mechanism, by comparing it with conventional AIMD-based 

TCP Reno and SACK under different network scenarios, such as OBS networks with burst 

retransmission or burst deflection routing. Simulation results showed that the proposed 

SAIMD mechanism can outperform conventional TCP implementations significantly. We 

conclude that the superiority of SAIMD comes from a better understanding of the underlying 
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burst-transmission behaviour, through the analysis of collected RTT information. SAIMD is 

particularly beneficial to high-bandwidth and fast TCP flows, in which a false congestion-

detection event caused by burst contention could lead to serious impairment of TCP 

performance.  

With SAIMD, the sender does not require explicit knowledge of the burst assembly 

mechanism or the reasons for burst losses, which in some cases (recall Section  4.2.2) results 

in an inaccurate estimation of network congestion. In the following chapter, we exploit the 

advantages of information exchange between TCP senders and the OBS domain under 

various burst transmission conditions.   
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Chapter 5 
TCP with Dynamic Explicit Burst-Contention Loss over OBS  

 

In this chapter, a novel TCP congestion-control scheme with dynamic explicit Burst-

Contention Loss notifications in OBS networks is proposed. The scheme, called TCP-BCL, 

aims to handle various OBS burst conditions that negatively affect TCP throughput 

performance and fairness. Based on GAIMD, the basic design principle is to tune the 

congestion control parameters α and β so that the congestion-window sizes in the 

corresponding TCP senders can be adjusted appropriately with an explicit notification from 

the OBS edge node.  

5.1 Overview 

We observed through the previous TCP performance evaluation studies that most TCP 

implementations have some limitations and are affected negatively by the bufferless nature of 

OBS. Based on the amount of asynchronous bursty bandwidth demand at each ingress and 

egress node pair, the scheme attempts to ensure that decreasing the cwnd occurs only in the 

event of true network congestion. The idea was used by  [1] for wireless communication, 

where ELN achieves state leakage between the lower layer and the TCP layer, similar to the 

approaches proposed in  [98]. With ELN, the cause of each burst loss is reported to the TCP 

sender, whether due to congestion or other link-transmission conditions. In this way, the TCP 

sender adjusts cwnd according to the network status of the lower layer. In this chapter, we 

solve the false-congestion detection problem in TCP over OBS networks and avoid 

unnecessary cwnd reduction by introducing a novel congestion-detection scheme that 

measures the utilization along each route (path) in the OBS network and adjusts cwnd based 

on the utilization and burst-dropping information carried in the explicit notification 

messages. This is the first study that integrates the explicit notification facilities with 

GAIMD over OBS networks. 
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5.2 Dynamic Explicit Burst-Contention Loss Notification (TCP-BCL) 

TCP-BCL attempts to improve TCP performance over OBS networks without losing TCP 

fairness. In terms of the design premise and novelty, the scheme takes the best of BTCP  [98] 

and BAIMD  [73], where the GAIMD window-based congestion-control paradigm and the 

mechanisms of explicit notification and/or signalling between the TCP and OBS layers are 

both used. 

5.2.1 OBS Congestion Identification 

In traditional packet-switched networks, IP packets are stored and forwarded at each 

intermediate node by reference to the routing table. In such a switching paradigm, network 

congestion causes buffer overflow, and a packet-drop event can serve as a clear indication of 

network congestion. The situation is different in OBS networks, where each data burst cuts 

through the pre-configured intermediate core nodes. Therefore, it is important to quantify 

congestion in such an environment.  

In the OBS domain, congestion occurs at ingress and/or egress edge nodes. In general, an 

ingress node receives the incoming packets and forms data bursts. However, packets may 

arrive in a bursty manner, with a much higher arrival rate than the ingress node can deal with. 

This could cause the node to drop bursts due to buffer overflow. Similarly, egress nodes may 

receive a huge number of data bursts, which are buffered for disassembly. We refer to 

congestion at the network edge nodes as edge congestion. In addition to edge congestion, 

path congestion is defined as congestion in the network core nodes.  

There are two possible approaches to detecting path congestion. The first is to delegate the 

congestion-detection process to the core nodes. The edge nodes receive explicit signals from 

the core switches indicating link congestion. A similar approach is proposed in BTCP with 

BACK/BNACK  [98]. It is notable that this approach may not be very practical, since it 

increases the signalling and computation overhead at the core nodes. Therefore, in the 

following paragraphs, we introduce a novel mechanism for detecting congestion along an 

OBS route/path statistically, at the edge node. This approach does not introduce any 

additional signalling overhead at the core nodes. Path congestion is measured by how 
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congested the route in the OBS network is, which is an important index for the upper-layer 

TCP senders using the route to adjust their congestion windows.  

In our scheme, each OBS ingress edge node maintains long-term and short-term statistics 

along each route initiated at it. Whenever a burst-drop event occurs along a route, the ingress 

node determines if the route is in congestion by correlating the long-term and short-term 

statistics. Specifically, let the parameter M be the number of launched bursts along the route 

used to obtain the long-term statistics, where M should be sufficiently large in order to fully 

represent the intrinsic characteristics of the network topology, routing policy, traffic pattern, 

etc. The outcome of the M burst deliveries is kept as a 1 × M vector with each entry being 

0 or 1, representing a burst-drop event or successful delivery, respectively. Let the parameter 

N be the number of launched bursts for evaluating the short-term burst-drop rate, which is 

generally small; and let the average short-term burst-drop rate of the previous N burst 

deliveries of the current burst-drop event be noted as avg_b_N.   

The main idea proposed scheme is to position the value of avg_b_N in the spectrum of 

long-term burst-drop rates formed by the M burst deliveries. To achieve this, the outcomes of 

the M burst deliveries are divided into M
N

⎢ ⎥
⎢ ⎥⎣ ⎦

 segments each containing the outcomes of 

consecutive N burst deliveries. Thus, a vector θ of a size 1 M
N

⎢ ⎥× ⎢ ⎥⎣ ⎦
 is obtained, where each 

entry, θi, i = 1 to M
N

⎢ ⎥
⎢ ⎥⎣ ⎦

, keeps the number of burst drops of the i-th small segment of the M 

burst deliveries. With the vector, we can obtain the average burst-drop rate for the M burst 

deliveries (avg_b_M) and the variance of each entry in the vector θ (var_b_M). If avg_b_N is 

larger than avg_b_M, it is possible that the route in the OBS core is subject to random burst 

contention, and the corresponding TCP senders should not take the current burst drop 

seriously in the adjustment of cwnd. On the other hand, with comparable avg_b_N and 

avg_b_M, we can expect that the current burst-drop event is more likely an indication of 

congestion along the route in the OBS domain. In this case, the corresponding TCP senders 

should cut their congestion windows in order to relieve the network congestion.  
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To quantify the relationship between avg_b_N and avg_b_M, the OBS ingress edge first 

derives the spectrum of θ, which is a histogram of θ as shown in Figure  5.1; then the ingress 

edge positions the avg_b_N corresponding to the current burst-drop event in the spectrum in 

order to identify how likely it is that the route in the OBS domain is congested.  
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Figure  5.1. The relation of zi, ui, and BCL values in the edge node scheme 

 

The following section explains the approach taken by the edge node to determine the burst 

loss as congestion or random contention loss.  

5.2.2 OBS Edge Node Congestion Detection & Signalling 

With avg_b_N and the spectrum formed by θ, we define the confidence with which the 

current burst-loss event is due to network congestion by positioning avg_b_N in the 

spectrum. A function ( )i conf iz BL u=  is defined, where ui is the confidence level, and zi is the 
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burst-drop rate corresponding to a confidence level of ui ( 10 ≤< iu ) in the spectrum formed 

by θ. In other words, we have a one-to-one mapping between ui and zi as shown in the 

following expression: 

0

( ) ( )     for 1
i

i i j
j

Mu cdf z pmf z i
N=

⎢ ⎥= = ≤ ≤ ⎢ ⎥⎣ ⎦
∑  

Let the terms )( izcdf and )( izpmf denote the cumulative density function and probability 

mass function in the burst losses spectrum given the burst loss value of zi, respectively. The 

dynamic determination of network condition based on the confidence level ui by the edge 

node is illustrated in Figure  5.1. 

Based on the derived network statistics along the route, the proposed approach for 

distinguishing between congestion and random-burst contention is as follows. Let u1 and un 

be two pre-defined confidence thresholds. The value of avg_b_N is evaluated every time a 

burst-loss occurs. If avg_b_N is smaller than 1 1( )confz BL u= , a high confidence of random 

burst contention loss is indicated. In this case, the OBS edge node will send a BCL 

notification to the corresponding TCP senders with a value of 1. The TCP senders ignore the 

segment-loss event, keep cwnd unchanged, and retransmit the lost segments. On the other 

hand, when avg_b_N > ( )n conf nz BL u=  ( 1nu u> ), it is taken as a strong indication of network 

congestion along the route. Hence, the OBS edge node keeps quiet. Therefore, the TCP 

senders cut their congestion windows by half in response to the current segment-drop event. 

When avg_b_N falls in the interval 1[ , ]nz z , the BCL is set to f(ui) and is sent back to the TCP 

senders, where 1

1

( ) 1
2( )

i
i

n

u uf u
u u

−
= −

−
. The TCP senders will set their β values equal to f(ui).  

Note that u1 and un are two parameters given in advance in order to distinguish the route 

status between congestion and random contention. In this study, u1 and un are set to 50% and 

90%, respectively. However, the values of u1 and un can be set by the network administrators 

based on the traffic and network engineering characteristics. The policy-based adjustment 

scheme can be summarized in the following equation: 
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1

1

( )    ( ) _ _ ( )

1          ( ) _ _
i conf n conf

conf

f u BL u avg b N BL u
BCL

BL u avg b N
β

> >⎧⎪= = ⎨ ≥⎪⎩
 

 

The adjustment of BCL values based on the confidence level ui is illustrated in Figure  5.1. 

The flowchart for the proposed TCP-BCL scheme is shown in Figure  5.2. The two 

parameters M and N are custom-designed, and in this study, M and N are chosen to be 500 

and 10, respectively. In other words, the current network congestion status is determined by 

the position of the previous 10 burst deliveries in the spectrum formed by the previous 500 

burst deliveries. Finding optimal values of N and M is an open problem that is left for future 

research. The scheme is expected to be stable since any increase of avg_b_N will be 

positively fed back by shifting the spectrum formed by θ farther to the right. 
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Figure  5.2  Flowchart for TCP-BCL congestion control scheme. 
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In order to enable explicit burst contention notification, an agent is placed at each OBS 

ingress edge node, and is responsible for determining the network status (such as link 

utilization) when a burst-drop event is encountered. The agent sends BCL notifications to the 

corresponding TCP senders if the burst-drop event is judged due to contention. In other 

words, TCP-BCL has the TCP senders take every segment-loss event as due to congestion 

when a BCL is not received. This distinguishes our scheme from BTCP in  [98] since TCP-

BCL only signals the dropped bursts at low link utilization, while with BTCP, the TCP agent 

reports every burst-drop event. Hence, the number of notifications in TCP-BCL is less than 

in BTCP. Furthermore, our design can significantly reduce the intra-domain signalling and 

core node processing overhead.  

Another important feature of the proposed scheme is that it is designed for those TCP flows 

with high bandwidth and long duration, which serve as a building block in many emerging 

networking scenarios such as grid computing applications. It is clear that the performance of 

such TCP flows is very sensitive to false congestion identification since it could take hours 

for such a flow to return to the original rate with the current additive increase framework. 

Our scheme solves the false congestion identification problem with reasonable additional 

overhead incurred at the OBS edge nodes. 

5.3 TCP-BCL Performance analysis  

In this section, we analyze the throughput performance of the TCP-BCL flows in OBS 

networks. Once again, we obtain the TCP-BCL SACK throughput in OBS network for both 

TD and TO with Equation 4.2. It is worth recalling that TCP-BCL uses the GAIMD 

congestion control mechanism. The relation between α and β for ensuring friendliness among 

TCP flows in the case of triple-duplicate ACKs is obtained from  [11] as: 

 β
β

α
+
−

=
1

)1(3
      (5.1) 

while in the case of timeout,  

)1(
3
4 2βα −=       (5.2) 
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In the following two sections, we derive E[Y], E[TDP], E[TOP], E[H], and Q in the presents 

of TD and TO losses respectively. 

5.3.1 TCP-BCL in Triple Duplicate (TD) Losses 

Using Equations 4.2 to 4.8 derived in Section  4.2.3, in the following sections we derive the 

throughput model under high and low packet losses. 

5.3.1.1 For high packet losses (WX < Wm) 

In the presence of high packet-loss probability, the congestion window will remain less than 

the maximum size Wm. Recall that b denotes the number of packets that are acknowledged by 

receiving an ACK. During the TDPi, cwnd increases between 
1iXWβ

−
and 

iXW . Since the 

increase in cwnd is linear with slope α/b,  

1i i

i
X X

X
W W

b
α

β
−

= +      (5.3) 

Solving for Xi, we have  

(1 ) [ ]
[ ] Xb E W

E X
β
α

−
=     (5.4) 

Since Yi can be derived by summing the number of segments sent in Xi successful rounds 

and the additional ( SW
iX − ) segments in the next round of iX as shown in Figure  4.5, we 

have:  

1

1

/ 1

0
( )

(2 1)
2

i

i i

i i

X b
i X Xk

i i
X X

bY W k W S

X X
W W S

b

β
α

α
β

−

−

−

=
= + + −

= + − + −

∑
 

By substituting Equation 5.3, we have 

SWWW
X

Y
ii XXiX

i
i −+−+=

−
)1(

2 1
β  

after substituting Equation 5.4, we get  
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2 2(1 ) [ ] (1 ) [ ]
[ ] [ ]

2
X X

X
b E W b E W

E Y E W S
β β

α
− − −

= + −     (5.5) 

By combining Equation 5.5 and Equation 4.8, we have, 

2
2(1 ) [ ] ( ) [ ] 0

2 2X X
b b b SE W E W

p
β β β

α α
− −

+ − − =  

E[WX] can be then obtained as    
2

2

2

( 1) ( 1) 2 (1 )( )
2 2

[ ]
(1 )X

b b Sb
p

E W
b

β β α βαβ αβ

β

− − −
− + − +

=
−

     (5.6) 

By substituting Equation 5.6 into Equation 4.8, we obtain E[Y] as, 
2

2( 1) ( 1) 2 (1 )( )
2 2 1[ ]

(1 )

b b Sb
p pE Y S

b p

β β α βαβ αβ

β

− − −
− + − +

−
= +

−
     (5.7) 

Also, by substituting Equation 5.6 into Equation 5.4, we obtain E[X] as,  
2

2( 1) ( 1) 2 (1 )( )
2 2

[ ]
1

b b Sb
p

E X

β β α βαβ αβ

β

− − −
− + − +

=
+

       (5.8) 

E[TDP] is then obtained as  

2
2

[ ] ( [ ] 1)

( 1) ( 1) 2 (1 )2 ( )
2 2

( 1)
1

E TDP RTT E X

b b Sb
p

RTT

β β α βαβ αβ

β

= +

− − −
− + − +

= +
+

      (5.9) 

5.3.1.2 For low burst losses (WX = Wm) 

For a very low burst loss probability, cwnd will most likely remain at the maximum Wm, 

before a burst loss event occurs. From Equation 4.8 we can obtain,  

1[ ] ( 1) m
pE Y W S

p
β −

= + +     (5.10) 

During each TDP, cwnd increases linearly from βWm to Wm for )( mm WW β−  rounds and 

then stays at Wm for ( ( ))i m mX W Wα β− −  rounds, hence we can obtain the number of 

segments that are transmitted before a TD loss as
2( )

( )
2

m m
m i m m i

W W
W X W W h

β
α β

−
+ − + − . On 
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the other hand, from Equation 4.6, the total number of segments that are transmitted 

successfully before a packet loss is αS/p. Hence we have  
2( )

( )
2

m m
m i m m i

W W SW X W W h
p

β
α β

−
+ − + − =     (5.11) 

Solving for Xi, we can obtain  
2(1 ) (1 2 )

[ ]
2

m m

m

W W SE X
W p

β β β β
α α α α

− − +
= − + +    (5.12) 

The duration of the TDP is obtained as,  

2

[ ] ( [ ] 1)

(1 ) (1 2 )
( 1)

2
m m

m

E TDP RTT E X

W W SRTT
W p

β β β β
α α α α

= +

− − +
= − + + +

      (5.13) 

5.3.2 Timeout (TO) Losses 

The behaviour of TCP-BCL for a TO loss is same as that of TCP SACK. Hence, the analysis 

of TO losses is same as the analysis in  [99]. TCP-BCL transmits the same number of packets 

between two TOs as traditional TCP. However, for TCP-BCL, the packet retransmission 

starts as soon as the BCL is received, which is the RTT after the loss round. Thus, TCP-BCL 

waits for TOP= RTT/p. From  [99], we have: 

p
pREHE

−
=−=

1
1][][ ,     (5.14) 

( ( ))[ ]
(1 )

RTT f pE TOP
p p

=
− ,     (5.15) 

where 65432 32168421)( pppppppf ++++++= , and similar to Equation 4.22 

.])[(
1−

≈ S
W

X

X

pWEQ      (5.16) 

5.3.3 TCP-BCL SACK over OBS Throughput Estimation 

In the case of WX < Wm, we can obtain the TCP-BCL throughput by substituting Equations 

5.10, 5.9, 5.14, 5.15, and 5.16 into Equation 4.2, which yields 
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2
2

2
2

1

( 1) ( 1) 2 (1 )( )
2 2 1

(1 ) (1 )

( 1) ( 1) 2 (1 )2 ( )
2 2 ( ( ))( 1) )

1 (1 )

X

X

W
S

W
S

b b Sb
p p pS

b p pB
b b Sb

p RTT f pRTT p
p p

β β α βαβ αβ

β

β β α βαβ αβ

β
−

− − −
− + − +

−
+ +

− −
=

− − −
− + − +

+ +
+ −

   (5.17) 

 

In the case of WX = Wm, TCP-BCL throughput can be obtained by substituting Equations 5.9, 

5.13, 5.14, 5.15, and 5.16 into Equation 4.2, which yields 

1

2 1

(1 )( 1)
1

(1 ) (1 2 ) ( ( ))( 1) )
2 (1 )

m

m

W
S

m

W
m m S

m

p S pW
p pB

W W S RTT f pRTT p
W p p p

β

β β β β
α α α α

+

−

−
+ + +

−
=

− − +
− + + + +

−

  (5.18) 

5.4 TCP-BCL Numerical Results 

In this section, we evaluate the throughput performance of TCP-BCL over OBS. We 

compare TCP-BCL throughout with BTCP and BAIMD as well as the TCPs that were 

originally designed for general packet-switched networks, including TCP Reno and SACK. 

The simulation parameters presented in Section  3.2 were used. The mixed time/length-based 

burst-assembly algorithm is adopted, where the burst timeout threshold is 100 ms and the 

maximum burst length is 50KB. TCP Wm is set to 128 segments. The access bandwidth is set 

to 100 Mbps.  

5.4.1 TCP-BCL Numerical Results  

Figure  5.3 compares the analytical results obtained from Equation 5.17 and Equation 5.18 

and the simulation results obtained for TCP-BCL fast flows. It is notable that the simulation 

results match the analytical results.  
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Figure  5.3 TCP-BCL throughput over OBS networks. 

Figure  5.4 shows the throughput performance by TCP-BCL, TCP Reno and SACK under 

barebone OBS and OBS with burst retransmission. It is worth nothing that if the contended 

burst fails after the second transmission attempt, the burst will be dropped. BCL notifications 

are not sent to the TCP senders that have segments in contended bursts that are retransmitted 

successfully. It is clear that TCP-BCL outperforms the two conventional TCP schemes 

significantly. 
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Figure  5.4 TCP Reno, SACK vs. TCP-BCL throughput over barebone OBS and OBS with 
burst retransmission 

 
In Figure  5.5, TCP-BCL is compared with BAIMD and BTCP. TCP-BCL still achieves 

higher throughput than the other two by combining the best features of BTCP and BAIMD. 

The explicit notifications inform the TCP-BCL senders of a specific OBS-domain channel 

status, so the two control parameters can be adjusted appropriately in response to the burst-

dropping event 

Through the simulation studies, we verified that TCP-BCL can solve the false-congestion-

detection problem well and achieve better throughput than all the other TCP implementations 

based on AIMD. The overhead incurred is the explicit notification when a burst loss is 

determined to be due to random contention. With the aid of explicit notifications and 

implementation of the TCP agent at the OBS edges, TCP-BCL can outperform BAIMD and 

BTCP (BACK/BNACK) solidly. In addition, it can effectively maintain fairness among 

competing AIMD flows and awareness of non-congestion burst dropping by manipulating 

the α and β values in the TCP senders. This suggests TCP-BCL can serve as a candidate TCP 

implementation for the future Internet with OBS infrastructure. 
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Figure  5.5 BTCP, BAIMD, and TCP-BCL throughput over barebone OBS and OBS with 
burst retransmission. 

 

5.4.2 TCP-BCL Fairness 

In this section, fairness among TCP-BCL, BAIMD, SACK, and Reno is examined.       

Figure  5.6 shows the fairness index of flows by TCP-BCL, BAIMD, and TCP Reno. We can 

see TCP-BCL has a much better fairness index than BAIMD. This is due to the fact that the 

congestion control mechanism of BAIMD does not rely on explicit signalling between the 

TCP senders and the OBS edge nodes, which causes an underestimation of network 

congestion. Thus, it results in selecting larger values of β while keeping α at 1.   
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Figure  5.6  Fairness index of TCP-BCL, BAIMD, SACK, and Reno in barebone OBS. 

 

 
Figure  5.7 Fairness index of TCP-BCL, BAIMD, SACK, and Reno in OBS with burst 

retransmission 
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The fairness index is also examined in Figure  5.7 while enabling burst retransmission. The 

simulation results show that the throughput of TCP-BCL is close to SACK and BAIMD, 

which verifies that TCP-BCL maintains a friendly relation with the other TCPs.   

5.5 Conclusion 

In this chapter, we proposed a new TCP implementation in IP over OBS networks, called 

TCP with Explicit Burst-Contention Loss Notification (TCP-BCL), attempting to combine 

the best enhancements of BAIMD and BTCP with (BACK/NACK). Through simulation and 

analytical modeling, we demonstrated that TCP-BCL can counter the negative effects of the 

lack of buffers in OBS, and is a better candidate in OBS networks than the conventional 

AIMD architecture. We have shown the superiority of the proposed scheme in terms of 

throughput, link utilization, and fairness.   

After analyzing the throughput performance of dropping-based TCP over OBS networks 

with explicit and non-explicit notification, we extend our study to cover the second largest 

TCP category, which is the delay-based. In the following chapter, we analyze the effects of 

the OBS transmission characteristics on delay-based TCPs. For this purpose, we have chosen 

TCP Vegas since it is the most common implementation of delay-based TCP. 

 



 

 84 

Chapter 6 
Delay-Based TCP (Vegas) over OBS 

In this chapter we investigate the behaviour of delay-based TCP Vegas over barebone OBS 

and OBS with burst retransmission. We evaluate the impacts of extra delay introduced by 

burst retransmission on TCP Vegas. A novel scheme based on TCP Vegas is proposed, which 

adopts a threshold-based mechanism for determining network congestion in OBS networks 

with burst retransmission. Analytical models for the throughput of TCP Vegas and threshold-

based TCP Vegas are formulated and are further validated through simulation  [76] [77] [78]. 

To verify the effectiveness of the proposed threshold-based TCP Vegas, simulation is 

conducted to compare the proposed scheme with conventional TCP implementations. We 

observe a significant improvement in terms of TCP throughput for threshold-based TCP 

implementation over OBS networks with burst retransmission. 

6.1 Threshold-based TCP Vegas over OBS 

Delay-based TCP implementations, such as TCP Vegas  [10] and Fast TCP  [36] [39], measure 

the delay of each packet transmission to estimate available bandwidth and congestion status 

in networks. The performance of Fast TCP has been evaluated in  [36] [39] and can be 

considered a high-speed TCP Vegas. Recalling Section  2.1, TCP Vegas modifies Reno in the 

congestion avoidance, slow start, and retransmission phases.  

There are several issues when conventional TCP Vegas congestion control is adopted in 

OBS networks. Given the physical route between the source and destination OBS edges, the 

delay experienced in the OBS domain is primarily the sum of burst assembly delays and link 

propagation delays, which do not vary with the network traffic load. Hence, conventional 

TCP Vegas cannot effectively detect network congestion in the OBS domain. Furthermore, in 

the event that all the packets in a single congestion window are assembled into a single burst, 

the TCP Vegas sender may suffer from the false-congestion-detection problem if the burst is 

lost in the OBS domain due to random contention, which will fatally impair TCP throughput. 
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When TCP Vegas runs over OBS networks with burst retransmission, the false-congestion-

detection problem can be mitigated significantly. However, although burst retransmission 

hides some burst-loss events from the upper TCP, it incurs extra delay. This additional delay 

enlarges the RTTs perceived by the TCP sender for the packets in the retransmitted bursts. 

Hence, we are motivated to further enhance conventional TCP Vegas, so that TCP senders 

can tell whether the increase in RTTs is due to network congestion, or due to retransmission 

in lightly-loaded OBS networks. 

We observe that as the IP access network becomes congested, TCP Vegas will detect the 

increase in RTTs due to queuing delay and packet loss. If the OBS network becomes heavily 

loaded, burst contention events happen frequently. Thus, TCP Vegas would often detect RTT 

increases. If neither the IP access network nor the OBS network are congested, random burst 

contention losses occur less frequently. Hence, TCP Vegas senders can only detect network 

congestion (in both OBS and IP access networks) if RTTs increase frequently.  

Based on these observations, we propose a threshold-based TCP Vegas scheme to 

distinguish between network congestion and random burst contention loss at low traffic 

loads. A new parameter, T, is the threshold on the number of packets with longer RTT than 

the minimum RTT measured in the previous N rounds. The parameter is used to evaluate the 

extra delay caused by burst retransmission, and can be manipulated adaptively in order to 

mitigate the impact of false congestion identification  [76] [78].  

More specifically, TCP Vegas measures the RTT for each packet launched and keeps track 

of the minimum measured RTT of the previous N consecutive packets. Let )(iMinRTT  be 

the minimum measured RTTs of i (0 < i < N) consecutive packets. In the ith round, if the 

measured RTT of the ith packet is larger than )1( −iMinRTT , it means that the ith packet was 

once queued in the access network and/or assembled in a burst that was retransmitted. A 

counter that keeps the number of packets whose RTTs are larger than their )1( −iMinRTT  

will then be increased by 1. If the number of TCP packets whose RTTs are larger than their 

)1( −iMinRTT  is under the threshold T, the TCP sender will stay with the actual throughput 

calculated based on )1( −iMinRTT , even if the measured RTT increases. If the number of 
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TCP packets whose RTTs are larger than their )1( −iMinRTT  exceeds the threshold T, it 

means that the network is congested. Hence threshold-based Vegas recognizes the network 

congestion and calculates the actual throughput as usual.  

The basic idea behind threshold-based TCP Vegas is to reduce the sensitivity of TCP 

Vegas to the increases in RTTs caused by burst retransmission in the OBS domain. Instead of 

changing cwnd, the sensitivity of TCP Vegas can also be reduced by decreasing α or 

increasing β. However, changing α and β makes it difficult for TCP Vegas as to estimate the 

available bandwidth in the networks.  

In threshold-based TCP Vegas, both N and T should be chosen much larger than the 

number of packets from a single TCP Vegas connection that are assembled into a burst, so 

that TCP Vegas is able to detect the frequency of retransmission in the OBS domain based on 

the record of a number of bursts. In general, packets from a TCP connection assembled in the 

same burst have the same measured RTT. By analyzing the variation pattern of historical 

RTTs, TCP Vegas can obtain the number of packets from a TCP Vegas connection that are 

assembled into a burst. T and N can also affect TCP performance. N should be much larger 

than T so that exceeding the threshold T implies a high probability of actual network 

congestion. Hence, we take N = kT where k > 1. The TCP throughput performance is 

evaluated according to different values of  T and N the following section. Figure  6.1 

summarizes the proposed threshold-based TCP Vegas. 
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Figure  6.1 Threshold-based TCP Vegas congestion-control. 

6.2 TCP Vegas Performance Modeling over OBS 

In this section, we analyze the throughput of the proposed threshold-based TCP Vegas over 

OBS networks with burst retransmission. We assume that the access bandwidth of a TCP 

flow is high enough that all TCP packets in a single congestion window are assembled in a 

burst. Such a TCP flow is referred to as a fast TCP flow. Fast TCP flows will not trigger 

triple duplicates since packets in an entire congestion window are lost due to a burst loss. We 

assume that the burst assembly delay is fixed, and the occurrences of burst losses and 

contentions are independent based on a given and fixed burst dropping probability and burst 

contention probability. The Burst dropping probability is the probability that a burst is 

dropped, and is usually much lower than the burst contention probability, defined as the 

probability that a burst experiences contention  [104] [105]. This assumption is justified as 

some of the contended bursts can reach their destinations successfully after being 

retransmitted. Thus, the burst dropping probability is always lower than the burst contention 

probability. 
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   We first analyze the throughput of TCP Vegas over barebone OBS networks based on the 

analytical model proposed in  [65], followed by the analysis of TCP Vegas over OBS 

networks with burst retransmission. Last, we analyze the throughput of the proposed 

threshold-based TCP Vegas over OBS networks with burst retransmission by integrating the 

two previous models. The notations used are presented in Section  3.1. 

In the analysis, a TCP round refers to the period during which all packets in the congestion 

window are sent and the first ACK for one of the packets in the congestion window is 

received. Since with fast TCP flows, TCP duplicates will never be triggered, multiple 

successful rounds will be followed by one or more lossy rounds. Therefore, we obtain the 

throughput of TCP Vegas fast flows as follows: 

][][
][][

TOPEAE
HEYEB

+
+

=      (6.1) 

6.2.1 TCP Vegas over Barebone OBS  

In this section, TCP Vegas throughput over a barebone OBS is analyzed. In a barebone OBS, 

random burst contention results in an immediate burst loss since no burst retransmission is 

implemented. With the assumption that the IP access network is not congested, RTT would 

be very close to BaseRTT.  

     Figure  6.2 shows the evolution of cwnd for TCP Vegas over a barebone OBS networks. 

The evolution of cwnd can be partitioned into the following periods: (1) the slow start period, 

the duration from A to B in Figure  6.2, in which cwnd starts at 2 and doubles every other 

round until it reaches the expected slow-start threshold. (2) The transition period from B to 

C. Since RTT is close to BaseRTT, Diff calculated based on Equation 2.3 will be a very small 

value less than α. Hence, in the transition period, cwnd increases by 1 every RTT, until TCP 

Vegas reaches the stable state, .βα ≤≤ Diff  (3) The loss-free period that includes a series of 

consecutive successful rounds from C to D, during which Vegas is in the stable state (cwnd 

remains unchanged) and no burst loss occurs. (4) The TO period, which may include 

consecutive timeout events. The duration from slow start to the first encountered TO period 

(or the beginning of slow start of the next sequence of rounds) is referred to as the slow-start-
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to-slow-start (SS2SS) period  [65]. We assume that the burst dropping probability is low 

enough that there is no burst loss during the slow start period or the transition period.  

 

 
Figure  6.2 Evolution of cwnd for TCP Vegas over a barebone OBS 

 

In Figure  6.2, W0 is the congestion-window size when Vegas is in the stable state, 

i.e. .βα ≤≤ Diff  Since TCP Vegas adjusts the backlog packets in the network between α and 

β, the expected value of Diff is estimated as 2
βα +

based on  [65]. By applying Equation 2.3, 

we have   

         2
)1(0

βα +
=−=

R
BaseRTTWDiff ,   (6.2) 

By solving for 0W , we have, 

⎟
⎠
⎞

⎜
⎝
⎛

−
×

+
= max0 ,

2
min W

BaseRTTR
RW βα

.         (6.3) 

We now calculate the TCP Vegas throughput by computing the expected number of 

packets transmitted in the period from A to D. In the slow start period from A to B, cwnd 

doubles every other round until it reaches the slow start threshold, W0/2 since the expected 
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cwnd when the TO occurs is W0  [65]. Thus, based on Equation 17 in  [65], the number of 

packets sent in the period from A to B, ,ABY  is 

4222 0

0

log
4

log

0

−== ∑
=

W

W

i

i
ABY ,     (6.4) 

and the duration of the slow start phase is  

             RWR
W

AAB )2(log2)
4

log
(2 0

0 −== ,   (6.5) 

where R is the expected RTT. 

In the transition period from B to C, let the average number of packets transmitted be YBC 

and the duration of that period be ABC. Based on Equation 18 in  [65], YBC can be obtained by 

aggregating the number of packets sent when cwnd increases from W0/2 to W0-1 as follows:  

0

0

21 0 0
/ 2

3
8 4

W
BC i W

W W
Y i

−

=
= = −∑ .    (6.6) 

Since cwnd increases by 1 for each RTT during the transition period, the expected duration of 

this period is,  

RWABC )
2

( 0= .                                    (6.7) 

We then calculate the average number of packets transmitted in the loss-free period from C 

to D (denoted by YCD) and the duration of that period (denoted as ACD). We assume a 

Bernoulli burst-loss model, where the random variable X is geometrically distributed 

with ppkX k)1()Pr( −== , where k = 0,1,2,3…. 

Hence, the number of rounds during the loss-free period, ,lossfreeS is 

                    
0

(1 ) (1 ) /k
lossfree

k
S k p pk p p

∞

=

= − = −∑ .          (6.8) 

Then the duration of the loss-free period is 

lossfreeCD RSA =                                    (6.9) 
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Since cwnd is equal to W0 during the loss-free period from C to D, the number of packets 

sent in this period is: 

             lossfreeCD SWY 0= .                       (6.10) 

In the TO period, since the timeout process of TCP Vegas is similar to TCP Reno, based on 

Equations 14 and 16 in  [19], we have the mean duration for successive TOs as  

    [ ]
p

pfRTOTOPE
−

=
1

)(
,                          (6.11) 

where 65432 32168421)( pppppppf ++++++= , and  

      p
pHE
−

=
1

][  .                           (6.12) 

We then have the average number of packets sent during the consecutive successful 

rounds: CDBCAB YYYYE ++=][ , and the duration of successful rounds: 

CDBCAB AAAAE ++=][ . By substituting Equations 6.3 - 6.12 into Equation 6.1, we obtain 

TCP Vegas throughput over a barebone OBS networks as follows: 

 

     TOPAAA
HEYYY

B
CDBCAB

CDBCAB
barebone +++

+++
=

][
.               (6.13) 
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6.2.2 TCP Vegas over OBS with Burst Retransmission 

We now analyze TCP Vegas throughput over an OBS network with burst retransmission. 

Recall that burst retransmission can greatly improve burst loss probability, but it causes 

longer RTTs for the retransmitted bursts. Figure  6.3 shows the evolution of cwnd for TCP 

Vegas over an OBS network with burst retransmission. 

 
Figure  6.3 Evolution of TCP Vegas cwnd over an OBS networks with burst retransmission 

 

We assume that retransmitted bursts that successfully reach their destination experience an 

average round trip delay, RTTr. We further identify two types of successful rounds as 

follows: (1) rounds that experience contention but are retransmitted successfully, and (2) 

rounds that do not experience burst contention. We have the probability of a successful round 

that experiences contention but is successfully retransmitted as:  

   p
ppp c

sr −
−

=
1 .         (6.14) 

The SS2SS period is partitioned into 4 periods: (1) the slow start period from A to B, (2) 

the transition period from B to C, (3) the loss-free period from C to G, where rounds may 
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suffer longer RTTs due to burst retransmission, (4) the TO period. In Figure  6.3, the slow-

start period, the transition period, and the TO period are similar to those in Figure  6.2. In this 

section, we focus on the analysis of the loss-free period from C to G. 

The probability of a successful round that does not experience burst contention can be 

calculated as 

p
pp c

nc −
−

=
1
1

.                                             (6.15)     

Since TCP Vegas reaches stable state at point C, the value of Diff calculated at point C is  

  )1(0 R
BaseRTTWDiff C −= .                        (6.16) 

During the period from C to G, consider a round with the equal to 0W (see the point D in 

Figure  6.3). If the round is retransmitted successfully in the OBS domain, all the packets sent 

in this round will experience a longer delay, .rRTT  Hence, the Diff calculated at the point D 

is  

    )1(0
r

D RTT
BaseRTTWDiff −= .                     (6.17) 

If βα ≤≤ DDiff , TCP Vegas will leave cwnd unchanged from C to G. Hence, by 

inverting Equation 6.17, we can obtain the range of RTTr for which cwnd remains constant, 

that is, 

0 01 ( / ) 1 ( / )r
BaseRTT BaseRTTRTT

W Wα β
≤ ≤

− − . 

If β>DDiff , then cwnd decreases by 1. If multiple consecutive rounds are retransmitted in 

the OBS network, Diff will keep decreasing for each of the consecutive rounds due to the 

decrease in cwnd, until Diff  reaches ,β (the duration from D to E in Figure  6.3). After Diff 

reaches ,β  cwnd remains unchanged for future consecutive rounds retransmitted in the OBS 

domain (see the duration from E to F in Figure  6.3).  Let '0W be the lower bound of cwnd 

from C to G. We have Diff at the point E as, 

β≤−= )1('0
r

E RTT
BaseRTTWDiff . 
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Then we have 

                ⎥⎥
⎤

⎢⎢
⎡

−
=

BaseRTTRTTr
RTTW rβ'0 .                   (6.18) 

 

Note that for a round with a longer delay RTTr when DDiff α> , cwnd will remain 

unchanged, because if ,max0 WW =  cwnd has already reached the maximum window size. If 

,max0 WW < then α≥CDiff and .rRTTR <  Thus, we have α≥≥ CD DiffDiff  from Equations  

6.16 and 6.17.  

For any non-retransmitted round during the loss-free period, if 0Wcwnd < , cwnd increases 

by 1 and .)1( α<−=
R

BaseRTTcwndDiff  For example, during the period from F to G in  

Figure  6.3, cwnd increases by 1 for each non-retransmitted round until it reaches 0W . 

We conclude that cwnd ranges between 0W  and '0W . For each round, if 00 ' WcwndW <≤ , 

cwnd either increases by 1 if the round does not experience contention, or decreases by 1 if 

the round is retransmitted in the OBS domain. If '0Wcwnd = , cwnd remains unchanged if the 

round is retransmitted in the OBS domain, and increases by 1 if the round does not 

experience contention. If 0Wcwnd = , cwnd deceases by 1 if the round is retransmitted in the 

OBS domain, and remains unchanged if the round does not experience contention. 

     Since the probability that a round is successfully retransmitted is srp and the probability 

that a round does not experience contention is ncp , we model the state of cwnd as a Markov 

Chain shown in Figure  6.4  [31]. Let iπ be the probability that iWcwnd −= 0 . We solve 

for iπ by local balance as follows. 
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Figure  6.4 Markov chain for the state of cwnd 
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Then, iπ can be obtained using the local balance equations. The expected congestion-

window size from C to G can be obtained as 
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For the case when )1()1(
00 W

BaseRTTRTT
W

BaseRTT r
βα

−≤≤− , cwnd remains unchanged from 

C to G and then 0][ WWE CG = . 

During the period from C to G, the number of rounds is lossfreeS and the expected cwnd 

is ][ CGWE . Hence, the number of packets sent during the period from C to G is: 

          lossfreeCGCG SWEY ][= .                                     (6.20) 

The duration between C and G includes the rounds that are retransmitted with delay RTTr, 

and the rounds that are not subject to contention with delay R. Hence, we have 

lossfreersrncCG SRTTpRpA )( += .                             (6.21) 
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From Equations 6.4, 6.6, and 6.20, we obtain E[Y] as 

               CGBCAB YYYYE ++=][ ,                                          (6.22) 

 

 and from Equations 6.5, 6.7, and 6.21, we obtain E[A] as     

CGBCAB AAAAE ++=][ .                                       (6.23) 

 

We then obtain TCP Vegas throughput over OBS networks with burst retransmission by 

substituting Equations 6.11, 6.12, 6.21, and 6.23 in Equation 6.1: 

 

.
][

TOPAAA
HEYYY

B
CGBCAB

CGBCAB
ret +++

+++
=                        (6.24) 

6.2.3 Threshold-based TCP Vegas over OBS with Burst Retransmission 

Based on the two analytical models, we can analyze the throughput of threshold-based Vegas 

flows over OBS with burst retransmission. Figure  6.5 illustrates the evolution of cwnd during 

the time when N consecutive packets are sent using threshold-based TCP Vegas. While the 

number of TCP packets whose RTTs are larger than the current MinRTT is under the threshold 

T, TCP Vegas stays with MinRTT for calculating Diff. Hence, the cwnd evolution of 

threshold-based TCP is similar to that of TCP Vegas over a barebone OBS, where 

R MinRTT= . Thus, the throughput before reaching T, denoted as ,'bareboneB  can be 

calculated based on Equation 6.13, where  

 

⎟
⎠
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BaseRTTMinRTT
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Figure  6.5 Evolution of threshold-based Vegas cwnd over OBS network with burst 

retransmission 
 

After the number of TCP packets whose RTTs are larger than the current MinRTT reaches T 

(after SS2SSk  in Figure  6.5), cwnd evolution is similar to that of TCP Vegas over OBS 

networks with burst retransmission. Hence, the throughput after reaching T, ,'retB  can be 

calculated based on Equation 6.24.   

Let 1S  be the expected number of SS2SS periods before reaching T and let 2S  be the 

expected number of SS2SS periods after reaching T. We know that the expected number of 

consecutive successful rounds in an SS2SS period is .)1(][ ppXE −=  Hence, the total 

number of rounds before reaching T is ])[( 1 XES , and then the number of rounds that are 

retransmitted and experience extra delay is )][( 1 srpXES . On the other hand, when the 

threshold T is reached, the number of rounds that are retransmitted is approximately 0T W  

since the expected cwnd when the TO occurs is W0 . We have ,/][ 01 WTpXES sr = and then 

⎥
⎥

⎤
⎢
⎢

⎡
=

srpXEW
TS

][0
1 .           (6.25) 

In each SS2SS period before reaching T, the number of packets sent is )( CDBCAB YYY ++ from 

Figure  6.2. Then, the total number of packets sent before reaching the threshold is 

).(1 CDBCAB YYYS ++ Since the total number of packets measured is less than N, the total 

number of packets sent after reaching the threshold T is      [N – S1(YAB + YBC + YCD)], where 
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N > S1(YAB + YBC + YCD). Since the number of packets sent is )( CGBCAB YYY ++  in each 

SS2SS period after reaching T, we can obtain the number of SS2SS periods sent after reaching 

T as 
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     (6.26) 

     Hence, we obtain the throughput during the time when N consecutive packets are sent as  
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=−                (6.27) 

We assume that the number of consecutive packets N is large enough, such that the 

throughput of the N consecutive packets can represent the throughput of an entire TCP 

session. Then, the throughput during the time when N consecutive packets are sent can 

approximate the throughput of an entire TCP session.  

6.3 Numerical Results 

In this section we present the numerical results obtained from both the analytical models. In 

order to obtain precise protocol performance results, we limit the network complexity as well 

as the parameter space to a multi-hop network as shown in Figure  6.6, where the distances 

between the nodes are in km. The edge nodes, E1 and E2, are connected to the network core 

nodes with a 10 ms link propagation delay. Each link consists of one bi-directional control 

channel for control signalling and a single fiber link for data-burst transfer. Each data link 

consists of 8 wavelengths operating at a transmission rate of 10 Gbps. The mixed time/length 

based burst assembly algorithm is adopted, where the burst timeout threshold is set to 500 

ms, and the maximum burst length is set to 50 KB. The control-header processing time is set 

to be 1 μs. The core nodes implement the LAUC-VF channel scheduling algorithm  [91]. In 

the burst retransmission mechanism, bursts subject to any contention are allowed to be 

retransmitted only once in order to have the best chance of meeting the timeout threshold. In 

order to simulate the random burst contention phenomena, different contention probabilities 
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are imposed at the burst scheduling phase. The random burst contention probability pc ranges 

between 10-5 and 10-2. The average RTT in the simulation is approximately 110 ms. 

  In the simulation, TCP senders and receivers are attached to the OBS edge nodes E1 and 

E2 respectively. In order to simulate fast TCP flows, a high access bandwidth is allocated to 

each flow. The packet delay in the access network is set to be constant so that burst 

retransmission delay is the only reason for longer-round trip times. The FTP application 

generates TCP segments with an average size of 1KB. In all experiments, the maximum 

window size of TCP is 104 segments. We select 600α =  and 800β =  for both TCP Vegas 

and threshold-based Vegas to utilize the bandwidth capacity quickly and efficiently. The 

TCP throughput is obtained over a simulation period of 103 seconds. Results in the following 

sections are based on simulation unless stated otherwise. 

  

 
 

Figure  6.6 The network topology adopted in the simulation 

6.3.1 Threshold-based TCP Vegas over OBS 

In the following experimental studies, we compare the throughput of conventional TCP 

Vegas, threshold-based Vegas, and loss-based TCP SACK (i.e., TCP SACK performs better 

than other existing loss-based TCP implementations in OBS networks  [98]).  

Figure  6.7 shows the throughput of TCP Vegas, threshold-based Vegas, and SACK over the 

barebone OBS network. Note that the burst contention probability is equal to the burst loss 

probability in the barebone OBS network. Threshold-based Vegas uses various values of the 
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threshold T from 100 to 400, while the number of consecutive TCP packets N is chosen to be 

4T. We see that threshold-based TCP Vegas with different N and T values and conventional 

TCP Vegas with N = 0 and T = 0 perform very similar, such that their throughput plots 

overlap. This is due to the fact that the round-trip time does not vary significantly in the 

barebone OBS network, and T and N can not enhance the threshold-based Vegas. We can 

also see that the TCP Vegas versions perform much better than loss-based TCP SACK in the 

barebone OBS network.  

 
Figure  6.7 Throughput of Vegas, threshold-based Vegas, and  SACK over a barebone OBS 

 

Figure  6.8 compares the throughput of TCP Vegas, threshold-based Vegas, and TCP 

SACK over the OBS network with burst retransmission. Note that, with one attempt at 

retransmission, the burst loss probability in the simulation is much smaller than the burst 

contention probability. We observe that threshold-based Vegas performs much better than 

conventional Vegas and TCP SACK. For example, when the burst contention probability is 

10-4, TCP Vegas with T = 300 improves the throughput by 73% compared to conventional 

Vegas. We can also see that, with a higher threshold, threshold-based Vegas performs better.  
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When the burst contention probability is 10-4, the threshold-based Vegas with T = 400 

improves throughput by 82% compared to T = 200. This is because threshold-based Vegas 

with T = 400 more accurately detects the congestion state in the OBS network and delays 

triggering congestion avoidance. 

 
Figure  6.8 Throughput comparison of TCP Vegas, threshold-based Vegas (N=4T), and  

SACK over an OBS network with burst retransmission 

 

Figure  6.9, we examine the effect of T and N on threshold-based Vegas. We observe that, 

with a fixed T, varying N does not result in a major throughput change. For example, with    

T = 200, the throughputs of N = 400 and N = 800 are very close. We can also see that the 

throughput is mainly affected by the value of T. For instance, the throughout of T = 200 

increases 86% compared to the throughput of T = 100 when N = 400. 
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Figure  6.9 Throughput comparison of the threshold-based Vegas with fixed N or fixed T 

values 
 

6.3.2 Threshold-based TCP Vegas Fairness Evaluation 

In this section, we examine the fairness of TCP Vegas, Threshold-based Vegas, SACK and 

Reno. In our simulation, we generate three flows of each TCP version. The competing flows 

share the same source and destination. We then calculate the fairness index for each TCP 

version after obtaining the throughput of each flow.  

Figure  6.10  compares the fairness index of TCP Vegas, threshold-based Vegas, SACK, 

and Reno. It is notable that the fairness index of threshold-based Vegas with larger T value 

results in lower fairness for the other co-existing flows. This result is due to the fact that the 

window-size reduction in threshold-based Vegas is substantially delayed when RTT 

increases. Thus, threshold-based Vegas is given the chance to occupy more link bandwidth at 

the expense of other TCP streams. The fairness index shows that the throughput of threshold-

based Vegas is close to that of SACK and Reno. Also, the throughput is close among 

competing threshold-based Vegas flows while varying T and N values. Thus, we can see that 

threshold-based Vegas can maintain a friendly condition along with other TCP versions. 
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Figure  6.10  Fairness index of Vegas, threshold-based Vegas (N = 4T), SACK, and Reno 

 
Figure  6.11 Fairness index of Vegas, threshold-based Vegas, SACK, and Reno with varying 

T and N values 
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In Figure  6.11we also examine the fairness of the threshold-based Vegas while fixing N 

and varying T. We also observe that varying T has a major impct on the threshold-based 

Vegas throughput and the associated fairness. 

6.3.3 Analytical Results  

In this section, we verify the analytical models proposed in Section  6.2. The analytical results 

yield the TCP throughput under different burst contention probabities pc. Figure  6.12 

compares the throughput of the conventional TCP Vegas obtained from Equation 6.13 to the 

throughput obtained from simulation with different burst contention probability pc. The 

average RTT delay was 110 ms. We can see that the simulation results and the analytical 

results are very close.  

 

Figure  6.12 TCP Vegas throughput over a barebone OBS network 

Figure  6.13 compares the analytical results obtained by Equation 6.24 and the simulation 

results. In the experiment, the OBS edge node enables burst retransmission. Bursts are 

retransmitted at most once. The average RTT delay in the simulation was 110 ms. Bursts that 
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are retransmitted experience an average of 100 ms extra delay. We see that the simulation 

results match the analytical results very well.   

 
Figure  6.13 TCP Vegas throughput over an OBS network with burst retransmission 

 

Figure  6.14 compares the analytical results obtained by Equation 6.27 and the simulation 

results obtained for threshold-based Vegas fast flows. In this experiment we compare T = 

100, N = 400 and T=400, N=1600. We can see that the simulation results match the 

analytical results.  
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Figure  6.14 Threshold-based Vegas throughput over an OBS network with burst 

retransmission 

 

The analytical model can be used to evaluate the effect of contention probability and 

threshold parameters on TCP throughput. The model can also be used to determine the 

steady-state operating point of the network when combined with an analytical model that 

evaluates burst contention probability, which we present in the following section. 

6.3.4 Threshold-based TCP Vegas Steady State over OBS 

In previous sections, we assume that the burst contention probability does not change when 

the TCP throughput varies. However, if all senders are transferring large files using TCP, the 

burst contention probability will be affected by the TCP throughput of the senders. At the 

same time, we see that TCP throughput is tightly coupled with the burst contention 

probability. Hence, there may exist a steady state at which the TCP throughput and the burst 

contention probability are stabilized. 

In this section, we apply the analytical model verified in the previous section to analyze the 

steady-state throughput of threshold-based Vegas in an OBS network with burst 



 

 107 

retransmission. We aim to obtain the proper N and T values which contribute to the expected 

steady-state threshold-based Vegas throughput.  

The fixed-point method based on the TCP feedback mechanism is adopted from  [13]. For a 

given burst contention probability, we can first calculate the TCP sending rate based on 

Equation 6.27, shown by a dashed line in Figure  6.15. Next, for a given TCP sending rate, we 

calculate the corresponding network input load to the OBS network. This load is then used to 

calculate the burst contention probability in the OBS network. The solid line in Figure  6.15 

plots this relationship between the TCP sending rate and the burst contention probability. The 

intersection point of a dashed line and a solid line is a steady state. 

In the latter step, given TCP throughput, the burst contention probability in an OBS 

network with burst retransmission is obtained as follows. Let the throughput of a TCP flow 

from source s to destination d be Ss,d and the size of a TCP packet be pkt. The input load from 

a TCP flow is  

pktS dsds /,, =ρ  

Let cp  be the burst contention probability along the path from s to d. Since all the dropped 

bursts are able to retransmit only once, we compute the total load including the retransmitted 

traffic, 

)1(,, cdsds p+=ℜ ρ  

We can then compute the total load on link lij to be  

∑
∈∀

ℜ=ℜ
)),(|,(

,
dsroutelds
dsij

ij

 

We assume that the burst arrivals on each link follow a Poisson process  [41] [103]. By using 

the Erlang-B formula, we can obtain the burst contention probability on link lij as  

),( mErlangBp ijij ℜ=  

where m is the number of wavelengths on each link. Hence, assuming that links are 

independent of one another, we can obtain the burst contention probability along the path 

from s to d, 'cp  as  
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dsroutelds

ijc
ij

pp     (6.28) 

The converged cp and 'cp  will be the burst contention probability for the given TCP 

throughput. Note that the actual burst loss probability is much smaller than the burst 

contention probability due to burst retransmission.  

Figure  6.15 shows the analytical results of the steady-state threshold-based Vegas 

throughput over OBS with burst retransmission. From the figure, we can see that, when T is 

200 and N varies from 800 to 1600, the steady state throughputs of threshold-based Vegas are 

identical. This is also true when T is 400 and N varies. These results validate the findings in 

Section  6.3.1, where we concluded that the threshold T has a dominant effect on the 

throughput. 

 

 
Figure  6.15 Analytical results of the steady-state input rate of threshold-based Vegas while 

varying N values 
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Figure  6.16 plots analytical results of the steady-state threshold-based Vegas throughput 

with fixed N = 1600. From this experiment, we observe that the threshold-based Vegas flows 

with T ≥ 400 do not have a significant throughput increase. In the flows where T > 400 and  

N > 800, the steady state throughput remains close to the flows with T = 400 and N = 800. 

Therefore, we conclude that T = 400 and N = 800 are optimal for obtaining the best 

threshold-based throughput.    

 

 
 Figure  6.16  Analatical results of the steady-state input rate of Threshold-based Vegas while 

varying T values 
 

6.4 Conclusion 

In this chapter, we investigated the issues of delay-based TCP Vegas over OBS networks by 

proposing a threshold-based TCP Vegas mechanism that can effectively detect network 

congestion by manipulating a threshold parameter when TCP runs over OBS networks with 

burst retransmission. Our simulation results showed that the proposed scheme can 

outperform conventional TCP Vegas and TCP SACK significantly. Simulation results show 
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that the threshold T has a more significant impact on the TCP throughput than N. We also 

analyze the throughput performance of a fast threshold-based Vegas source over an OBS 

network with burst retransmission. Based on the analytical model, we obtain the steady state 

TCP throughput and observe the threshold value that results in an optimal throughput. The 

analytical model provides insights regarding the effect on the TCP throughput of burst 

contentions and losses in the OBS domain.  
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Chapter 7 
Conclusions & Future Work  

In this thesis, we investigated dropping-based, explicit-notification-based, and delay-based 

implementations of TCP over OBS networks. A suite of interoperable strategies that can 

facilitate TCP congestion-control mechanisms was developed to operate well with the 

intrinsic characteristics/behaviours of burst transmission in OBS networks. We studied the 

TCP false-congestion-detection problem extensively in bufferless OBS networks, which has 

been considered the most serious challenge in achieving efficient TCP performance over 

OBS networks. Furthermore, we studied the effect on the delay- and dropping-based TCPs of 

deploying burst-contention resolution schemes such as burst retransmission and burst 

deflection. The thesis has focused particularly on developing TCP performance modeling 

through novel analytical approaches. The thesis also provided a comprehensive framework 

and design paradigm for future research in TCP over OBS networks.   

 

7.1 Contributions of the Thesis 
The primary contribution of this thesis is the design and implementation of a suite of more 

robust TCP congestion-control mechanisms that handle the burst transmission behaviour and 

characteristics of OBS networks. More specifically, we made the following contributions. 

 

1. We analyzed the impact on TCP throughput when adopting OBS transmission in both 

delay- and dropping-based TCP protocols. A detailed TCP performance evaluation 

was conducted under a number of transmission scenarios and network environments 

of interest. The negative impact of burst dropping on conventional TCP congestion-

control was demonstrated. Furthermore, the performance of a number of well-known 

TCP implementations over OBS networks was examined, including TCP Reno, New 

Reno, SACK, DSACK, FACK, Eifel, BAIMD, and BTCP implementations. 

2. We developed and evaluated a dropping-based scheme for TCP traffic regulation over 

OBS networks, called Statistical Additive Increase Multiplication Decrease 
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(SAIMD), where a policy-based approach for dynamically adjusting the 

multiplicative parameter β at the TCP senders was devised. Through simulations and 

analytical evaluation, we showed that SAIMD has better throughput than 

conventional TCP Reno and SACK under a wide range of network transmission 

conditions. Packet-loss probabilities and burst contention resolution strategies such as 

burst retransmission and burst deflection were examined. 

 

3. We redefined the concept of network congestion in bufferless networks. Also, we 

proposed an efficient approach for detecting network congestion in OBS networks. In 

this context, we developed and analyzed a TCP congestion-control scheme with 

dynamic explicit Burst-Contention Loss notifications (TCP-BCL). The proposed 

scheme was shown to handle various OBS bursty phenomena that negatively affect 

TCP throughput performance and fairness. Under the proposed scheme, the 

performance impact on TCP of burst dropping due to random burst contention is 

considered and investigated. An analytical model is developed for the proposed 

scheme and is verified through extensive simulation. 

 

4. The associated issues of delay-based TCP Vegas in OBS networks have been 

examined and analyzed. A novel threshold-based TCP Vegas is introduced, which is 

characterized by being able to identify network congestion status effectively through 

manipulating a threshold parameter, in the presence of burst retransmission and 

deflection in the OBS network. The simulation results showed that threshold-based 

TCP Vegas outperforms conventional TCP Vegas and TCP SACK significantly. We 

also evaluated different values of T and N thresholds through both simulation and 

analytical approaches. The corresponding analytical model is validated through 

extensive simulation, and provides insights on the effects of burst contentions and 

burst losses on TCP throughput.  
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Table  7.1 summarizes the achieved contributions categorized by solution category, 

supported OBS type, devices involved, and problems addressed. 

Schemes 

Solution 

Category 

OBS Type Devices Involved Problems Addressed 
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Burst AIMD  √ √ √ √   √ √  

TCP-BCL √  √ √ √ √  √ √ √ 

TCP-ENG √  √ √ √ √ √ √ √ √ 

Statistical 
AIMD 

 √  √ √   √ √  

Threshold-based 
Vegas 

 √  √ √   √ √  

 

Table  7.1 Thesis contributions of TCP over OBS  

7.2 Future Research Directions and Open Problems   

Although TCP has been subject to extensive research efforts in the past decades, TCP over 

OBS is a relatively unexplored research area, with a limited number of studies that have 

tackled only some of the unique features of these transmission characteristics. Through a 

close analysis of TCP enhancements listed in  Chapter 2, we observed that the most important 

characteristics and abilities that a congestion-control scheme in TCP over OBS should have 

are: (1) be able to handle multiple TCP segment-loss events in one round trip, (2) be able to 

identify false TOs and burst losses in low-traffic situations, and (3) be able to compensate for 

out-of-order delivery in the OBS domain. In the following section, we identify open 

problems in the area of TCP over OBS networks. 
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7.2.1 Integration of Link-Layer Solutions with TCP 

Although with less emphasis on TCP enhancements over OBS, there have been extensive 

studies of OBS networks that aim to reduce burst dropping, provide QoS in burst 

transmission, conduct a cross-layer design optimization in terms of burst assembly delay, 

burst size, and burst delivery, etc. The link-layer schemes, such as adaptive assembly 

algorithms  [14], burst retransmission  [104] [105], burst deflection  [37] [68], and FDLs  [18], 

have contributed successfully to reducing burst-loss probability at the expense of introducing 

extra delay and design complexity. It is important to integrate the link-layer solutions with 

the mechanisms for TCP throughput and reliability enhancement before OBS can be 

deployed practically in the Internet.  

We found that reducing the burst-dropping probability may not in all cases result in 

significant enhancement to TCP throughput. For example, burst retransmission in OBS 

networks can improve TCP performance greatly. However, the persistence of retransmission, 

deflection, or segmentation are subject to further considerations since too much persistence 

leads to TO in the TCP layer, which significantly throttles the TCP transmission. One of the 

most important challenges in tackling this problem is to properly define the TO threshold at 

the TCP senders in the presence of various traffic loads at edge and core nodes. The 

determination of the threshold value should take into consideration the number of packets 

assembled in a single burst. A TCP snooping mechanism similar to schemes proposed for 

wireless networks such as ELN [10], JTCP  [34], TCP Peach  [1], ATCP  [51], and TCP 

Casablanca  [7] can be developed to evaluate the persistence of burst retransmission in 

estimating the RTT. This enhancement aims to reduce the risk of having a false TO while 

benefiting from burst retransmission or burst deflection.  

The research on TCP over OBS presented in BTCP  [98], BAIMD  [73], TCP-BCL  [72] [75], 

and SAIMD  [71] [74] has successfully mitigated the effects of false congestion detection due 

to OBS networks. This work improves the TCP senders’ reaction to each packet-loss event. 

However, each scheme suffers from some overhead as well, such as high computation 

complexity and/or extra signalling in the OBS network. Also, some of the above schemes 

may fail to overcome the problem of losing a large number of packets assembled in single 
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burst. Furthermore, it is necessary to evaluate the convergence rate of TCP in the presence of 

either constant RTT in barebone OBS or different values of RTT due to the deployment of 

burst contention resolution schemes.  

 

7.2.2 TCP Convergence Rates for Large Bandwidth-Delay Product Networks 

There exists a significant lack of performance evaluations on the TCP modifications 

proposed for network environments with large bandwidth-delay products over OBS 

networks. Fast TCP  [36] [39], Binary Increase Congestion control (BIC) TCP  [93], Explicit 

Control Protocol (XCP)  [23], TCP with Simple Available Bandwidth Utilization Library 

(SABUL)  [79], High Speed (HSTCP)  [24], and Scalable TCP (STCP)  [44], are among the 

most famous promising solutions. XCP showed stability and efficiency using ECN through 

extending ECN and Core Stateless Fair Queue (CSFQ), which made XCP aware of the per-

flow state and buffer-size status. XCP uses Multiplicative Increase Multiplicative Decrease 

(MIMD) to control the congestion window and AIMD to maintain fairness  [23]. SABUL 

introduced a hybrid approach by merging rate-based transmission via the UDP and reliable 

retransmission via TCP, where the UDP channel is adopted for transmitting data at high 

rates, while the TCP channel is used to resend missing data segments to ensure reliability 

 [79].  

Depending on the current cwnd, HSTCP uses a(cwnd) and b(cwnd) for computing the next 

window size. This scheme is known to be a safe incremental approach  [24]. A simulation-

based study of HSTCP over OBS is presented in  [108]. Using small burst-assembly delay 

and moderate burst dropping, the study shows that HSTCP throughput is affected in several 

ways. 

Scalable TCP (STCP) is a sender-side TCP that offers a robust mechanism to improve 

performance in high-speed wide-area networks using traditional TCP receivers. STCP 

increases the cwnd by 0.01 for each acknowledged packet (not in the fast recovery stage), 

and cuts the cwnd by 0.875 for each packet-loss event  [44]. 

There exist several proposals that solve the TCP slow-convergence problem over high-

speed networks. There is a need to evaluate burst-assembly delay and burst dropping over 
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these TCP congestion-control algorithms. There are great opportunities for investigating the 

effect of the burst-assembly delay, burst dropping vs. packet aggregation gain on Fast TCP, 

Scalable TCP, XCP, and SABUL. It is known that the above schemes can achieve faster 

convergence of TCP throughput in large-bandwidth high-delay networks by enlarging their 

cwnd quickly. However, with large cwnd, the number of ACKs is decreased significantly. In 

the presence of random burst losses that contain a large number of ACK packets, there is 

dramatic damage to the TCP ACK-clocking which forces TCP to fall into false detection of 

network congestion. Thus, an unnecessarily large number of packets is retransmitted. 

Furthermore, ACK losses are expected to affect a large number of TCP senders since the 

burst can assemble many ACK packets due to their small size. To our knowledge, the effect 

of ACK packet losses over OBS networks has not been addressed in the literature. 

 

7.2.3 Performance Modeling for TCP over OBS Networks 

The previously reported TCP over OBS performance modeling technique follows the packet-

oriented approach  [19] [71] [72] [74] [75] [77] [99] [105]. Recently, new modeling techniques 

have been proposed. In the early 1990’s, the fluid modeling technique proposed in  [57] added 

new dimensions for modeling a large number of TCP flows. However, the fluid modeling 

approach requires strict assumptions, such as (1) having a very large number of TCP flows, 

(2) with Poisson arrival of loss events, and (3) with strong correlation among losses in one 

RTT but independent of those in other RTTs. Regarding the first assumption, there is no 

evidence that the number of TCP flows is sufficiently large at the OBS edge node. In OBS, 

since both random burst drops and dropping due to persistent congestion may occur, the 

second assumption is subject to further investigation. The third assumption can be justified 

partially since, in the barebone OBS, the RTT is more or less fixed. This is because the third 

assumption can only hold for TCP flows which can emit their entire cwnd while being 

assembled in one burst (e.g., fast flows  [19]). We conclude that the fluid model for 

evaluating TCP throughput performance over OBS requires significant improvements before 

it can be considered applicable. 

The synchronization modeling approach proposed in  [86] benefits from ACK-clocking to 
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include the burstiness factor in the fluid model. Note that the fluid model assumes that there 

is no burstiness and the TCP rates of different flows are differentiable. Therefore, it may take 

infinitely long to converge. The synchronization approach has been used for modeling Fast 

TCP and obtaining its stability by  [85] and  [86]. In order to obtain sufficient analysis of TCP 

performance while considering TCP stability, scalability, and responsiveness, the 

synchronization modeling approach needs to capture the bufferless nature of OBS links (i.e., 

fixed RTTs), the burst aggregation factors, and the burst-loss distributions.  

7.3 Recommendations 

From our study of TCP over OBS, we observe that delay-based TCPs, in particular TCP 

Vegas, perform wore than other TCP congestion-control categories. Delay-based TCPs were 

proposed to detect network congestion at earlier stages by sensing the RTT fluctuation. In IP 

networks, it has been proven that Vegas improved TCP throughput by 30% to 70% compared 

to dropping-based TCP (e.g., Reno). However, Vegas cannot detect network congestion in 

barebone OBS due to the fixed RTT. Also, Vegas falls into false-congestion detection due to 

the sudden increase in RTT when OBS uses burst retransmission or deflection. Therefore, we 

conclude that the delay-based TCPs are not suited for OBS networks. 

Considering the TCP design requirements presented in Section  7.2, dropping-based TCP, in 

particular TCP SACK, is suited best for OBS. Conventional dropping-based TCP does not 

require RTT values to perform congestion control. However, collecting historical information 

about RTTs can provide further advantages for determining network congestion and burst-

loss status. Maintaining statistical RTTs can be done by TCP senders as in SAIMD, or can be 

obtained explicitly from the OBS layer as in TCP-BCL. There is a trade-off among the 

various schemes. For example, SAIMD introduces extra computation overhead at the TCP 

sender side. On the other hand, TCP-BCL requires extra signalling between the OBS edge 

node and the TCP senders. If a burst that contains many packets from different TCP sources 

is dropped due to random contention, the edge node is responsible for signalling the affected 

senders. This signalling effort complicates the functionality of the edge node, which in many 

cases corresponds to hundred of thousands of flows. 
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In SAIMD, the cost of maintaining historical RTTs and deriving the appropriate β is 

nonetheless a trade-off with the long convergence time in recovery from slow-start caused by 

false congestion detection in long-lasting high-bandwidth TCP flows. Furthermore, the 

computation for the autocorrelation and confidence interval is performed for each loss event 

and has a fairly fixed complexity regardless of M and N sizes. Therefore, we do recommend 

using SAIMD approach for TCP over OBS since the resultant additional overhead to the 

whole network is trivial.   
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Appendix A 
Acronyms 

   

AAP : Adaptive Assembly Period  

AIMD : Additive Increase Multiplicative Decrease 

AO : All Optical  

ARQ : Automatic Repeat Request  

ATCP : TCP for Mobile Ad Hoc Networks 

BACK : Burst Acknowledgement  

BAIMD : Burst Additive Increase Multiplicative Decrease 

BCR : Burst Contention Recovery  

BIC : Binary Increase Control 

BLE : Burst Length Estimation  

BNACK  : Burst Negative Acknowledgement  

BTCP : Burst TCP 

burst_wd : Burst Window 

CDF : Cumulative Density Function  

CSFQ : Core Stateless Fair Queue  

cwnd : Congestion Window 

DSACK : Duplicated Selective Acknowledgement 

E/O : Electrical to Optical  

ECN : Explicit Congestion Notification 

ELN : Explicit Loss Notification 

FACK : Forward Acknowledgement 

FDL : Fiber Delay Lines 

FEC : Forward Error Correction  

FTO  : False Timeout 

GAIMD : Generalized Additive Increase Multiplicative Decrease 

HPC : High-Performance Computing 
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HSTCP  : High Speed TCP  

IP : Internet Protocol  

JET : Just Enough Time 

JIT : Just In Time 

JTCP : Jitter-Based Transmission Control Protocol 

LAUC-VF : Latest Available Unscheduled Channel with Void Filling  

MIMD : Multiplicative Increase Multiplicative Decrease 

MPLS : Multi-Protocol Label Switching 

NS : Network Simulator 

O/E : Optical To Electronic 

OBS : Optical Burst Switching 

OCS : Optical Circuit Switching 

OPS : Optical Packet Switching  

PDF : Probability Density Function 

PMF : Probability Mass Function  

QoS : Quality of Service  

RC : Retransmission Count  

RCDP : Retransmission-Count Based Dropping Policy  

RED : Random Early Discard 

RTT : Round Trip Time 

rwnd : Receiver Window 

SABUL : Simple Available Bandwidth Utilization Library 

SACK : Selective Acknowledgement 

SAIMD : Statistical Additive Increase Multiplicative Decrease  

SONET : Synchronous Optical Networking 

STCP : Scalable TCP 

SV : Min-Starting Void  

TCP : Transport Control Protocol  

TCP-BCL : TCP with Burst Contention Loss  

TD : Triple Duplicate  
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TO : Timeout 

TOP : Timeout Period  

UDP : User Datagram Protocol  

VFO : Virtual Fixed Offset Time 

WDM : Wavelength Division Multiplexing 

WR : Wavelength Routed 
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