

Transport Control Protocol (TCP) over

Optical Burst Switched Networks

by

Basem Shihada

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2007

© Basem Shihada, 2007

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract
Transport Control Protocol (TCP) is the dominant protocol in modern communication
networks, in which the issues of reliability, flow, and congestion control must be handled
efficiently. This thesis studies the impact of the next-generation bufferless optical burst-
switched (OBS) networks on the performance of TCP congestion-control implementations
(i.e., dropping-based, explicit-notification-based, and delay-based).

The burst contention phenomenon caused by the buffer-less nature of OBS occurs
randomly and has a negative impact on dropping-based TCP since it causes a false indication
of network congestion that leads to improper reaction on a burst drop event. In this thesis we
study the impact of these random burst losses on dropping-based TCP throughput. We
introduce a novel congestion control scheme for TCP over OBS networks, called Statistical
Additive Increase Multiplicative Decrease (SAIMD). SAIMD maintains and analyzes a
number of previous round trip times (RTTs) at the TCP senders in order to identify the
confidence with which a packet-loss event is due to network congestion. The confidence is
derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The
derived confidence corresponding to the packet loss is then taken in to account by the policy
developed for TCP congestion-window adjustment.

For explicit-notification TCP, we propose a new TCP implementation over OBS
networks, called TCP with Explicit Burst Loss Contention Notification (TCP-BCL). We
examine the throughput performance of a number of representative TCP implementations
over OBS networks, and analyze the TCP performance degradation due to the
misinterpretation of timeout and packet-loss events. We also demonstrate that the proposed
TCP-BCL scheme can counter the negative effect of OBS burst losses and is superior to
conventional TCP architectures in OBS networks.

For delay-based TCP, we observe that this type of TCP implementation cannot detect
network congestion when deployed over typical OBS networks since RTT fluctuations are
minor. Also, delay-based TCP can suffer from falsely detecting network congestion when the
underlying OBS network provides burst retransmission and/or deflection. Due to the fact that
burst retransmission and deflection schemes introduce additional delays for bursts that are
retransmitted or deflected, TCP cannot determine whether this sudden delay is due to
network congestion or simply to burst recovery at the OBS layer. In this thesis we study the
behaviour of delay-based TCP Vegas over OBS networks, and propose a version of
threshold-based TCP Vegas that is suitable for the characteristics of OBS networks. The
threshold-based TCP Vegas is able to distinguish increases in packet delay due to network
congestion from burst contention at low traffic loads.

The evolution of OBS technology is highly coupled with its ability to support upper-layer
applications. Without fully understanding the burst transmission behaviour and the associated
impact on the TCP congestion-control mechanism, it will be difficult to exploit the
advantages of OBS networks fully.

 iv

Acknowledgements

Like many challenges in life, working on a PhD and writing a thesis requires diligence,
perseverance, patience, and discipline – characteristics that don’t come easily to many of us,
and I am not an exception. However, I am very fortunate to have people who encouraged me
to stay on track, finish this thesis, and the entire PhD program, despite many challenges.

This thesis would never have been possible without the help of my supervisor and mentor
Prof. Pin-Han Ho, who stood by me throughout the PhD program. If I acknowledge all Pin-
Han’s ideas, discussions, assistance, and guidance, his name will be all over this thesis. Pin-
Han helped me in a great deal in developing my views, reviewing my work, and evaluating
the topics critically.

I would also like to thank my PhD advisory committee members Prof. M. Tamer Özsu,
Prof. James P. Black, D. R. Cheriton School of Computer Science, for the insightful
discussions and guidance. Also, thanks to Prof. Sagar Naik, department of Electrical and
Computer Engineering, for discussion and kindly offering to read my thesis. Also my
acknowledgement is extended to Prof. Douglas Stinson for assistance, motivation, and
support. Special thanks go to Prof. Black for his effort and assistance in revising the thesis
and clarifying the presentation of the topics. I also would like to thank my external
committee examiner Prof. Hossam Hassanein, School of Computing, Queen’s University, for
accepting to read and evaluate the thesis.

My acknowledgement also goes to Dr. Qiong Zhang, Arizona State University, and Prof.
Jason Jue, University of Texas at Dallas, for their helpful guidance, profound feedback as
well as support throughout the thesis.

On a personal level, I would like to thank my parents, Prof. Abdel-Fattah Shihada and
Suhaila Abu-Saymah, my brother Ibrahim, and my sisters Laila and Manal. Although they
are thousands of miles away, they have always inspired me in this endeavour. I dedicate this
thesis to them.

 v

Contents

Abstract ... iii

Acknowledgements .. iv

Contents ... v

List of Figures ... viii

List of Tables ... x

Chapter 1 Introduction... 1

1.1 TCP over OBS Networks .. 1

1.2 Problem Definition and Motivation .. 2

1.3 Thesis Objectives .. 4

1.4 Thesis Organization... 6

Chapter 2 State of the Art of TCP over OBS Networks .. 7

2.1 Introduction to TCP ... 7

2.2 The Evolution of Optical Switching Technologies ... 10

2.3 Optical Burst Switching (OBS) Networks .. 13

2.3.1 Characteristics of OBS Networks ... 16

2.3.2 Taxonomy of OBS Networks ... 18

2.4 Issues of TCP over OBS.. 19

2.5 Taxonomy of TCP Solutions over OBS .. 21

2.5.1 Link-Layer Solutions .. 21

2.5.2 Congestion Detection with Explicit Notifications .. 22

2.5.3 Congestion Detection without Explicit Notifications ... 22

2.6 Overview of Existing Solutions .. 23

2.6.1 Link-Layer Solutions .. 23

2.6.2 New TCP Congestion Control for OBS Networks ... 29

Chapter 3 Methodology .. 34

3.1 TCP Modeling Notation .. 34

3.2 Simulation Model .. 35

 vi

3.3 Performance Evaluation of Selected TCP Implementations over OBS 37

3.3.1 Performance Evaluation Overview ... 38

3.3.2 TCP Implementations Not Designed for OBS Networks 38

Chapter 4 Statistical AIMD Congestion Control for TCP over OBS Networks 45

4.1 Overview ... 45

4.2 SAIMD over OBS Networks ... 46

4.2.1 Autocorrelation for Determining a Proper Value of N ... 48

4.2.2 SAIMD Congestion Control ... 49

4.2.3 Performance Analysis ... 53

4.2.4 Triple Duplicate (TD) Losses ... 54

4.2.5 For high packet losses (WX < Wm) ... 56

4.2.6 For low burst losses (WX = Wm) ... 57

4.2.7 Timeout (TO) Losses .. 58

4.2.8 SAIMD TCP SACK over OBS Throughput Estimation .. 58

4.3 Numerical Results ... 59

4.4 Conclusion ... 66

Chapter 5 TCP with Dynamic Explicit Burst-Contention Loss over OBS 68

5.1 Overview ... 68

5.2 Dynamic Explicit Burst-Contention Loss Notification (TCP-BCL) 69

5.2.1 OBS Congestion Identification ... 69

5.2.2 OBS Edge Node Congestion Detection & Signalling .. 71

5.3 TCP-BCL Performance analysis ... 74

5.3.1 TCP-BCL in Triple Duplicate (TD) Losses ... 75

5.3.2 Timeout (TO) Losses .. 77

5.3.3 TCP-BCL SACK over OBS Throughput Estimation ... 77

5.4 TCP-BCL Numerical Results .. 78

5.4.1 TCP-BCL Numerical Results ... 78

5.4.2 TCP-BCL Fairness ... 81

5.5 Conclusion ... 83

 vii

Chapter 6 Delay-Based TCP (Vegas) over OBS ... 84

6.1 Threshold-based TCP Vegas over OBS .. 84

6.2 TCP Vegas Performance Modeling over OBS .. 87

6.2.1 TCP Vegas over Barebone OBS ... 88

6.2.2 TCP Vegas over OBS with Burst Retransmission.. 92

6.2.3 Threshold-based TCP Vegas over OBS with Burst Retransmission 96

6.3 Numerical Results ... 98

6.3.1 Threshold-based TCP Vegas over OBS ... 99

6.3.2 Threshold-based TCP Vegas Fairness Evaluation.. 102

6.3.3 Analytical Results ... 104

6.3.4 Threshold-based TCP Vegas Steady State over OBS .. 106

6.4 Conclusion ... 109

Chapter 7 Conclusions & Future Work.. 111

7.1 Contributions of the Thesis ... 111

7.2 Future Research Directions and Open Problems ... 113

7.2.1 Integration of Link-Layer Solutions with TCP ... 114

7.2.2 TCP Convergence Rates for Large Bandwidth-Delay Product Networks 115

7.2.3 Performance Modeling for TCP over OBS Networks .. 116

7.3 Recommendations ... 117

Appendix A Acronyms ... 119

Bibliography .. 122

 viii

List of Figures
Figure 2.1 Evolution of optical switching technologies ... 12

Figure 2.3 OBS edge router architecture .. 14

Figure 2.4 OBS core switch architecture .. 15

Figure 2.5 Taxonomy of TCP solutions over OBS networks ... 23

Figure 2.6 The BAIMD congestion control scheme ... 31

Figure 3.1 NSF OBS simulation topology .. 35

Figure 3.2 TCP Reno, New Reno, SACK, and DSACK throughput in barebone OBS 39

Figure 3.3 TCP Reno, New Reno, SACK, and DSACK throughput in OBS with burst

retransmission ... 39

Figure 3.4 Reno (Eifel), New Reno (Eifel), and SACK (Eifel) throughput over barebone OBS

... 41

Figure 3.5 Reno (Eifel), New Reno (Eifel), and SACK (Eifel) throughput over OBS with

retransmission ... 42

Figure 3.6 TCP Reno, SACK, BTCP (BACK/BNACK), and BAIMD throughput over

barebone OBS and OBS with burst retransmission .. 43

Figure 4.1 TCP RTT distribution histogram ... 48

Figure 4.2 Numbering of RTTs, where RTT(0) denotes the RTT right before a packet-loss

occurs .. 49

Figure 4.3 The relation of zi, ui, and β in the SAIMD scheme. .. 50

Figure 4.4 The SAIMD congestion control scheme. .. 52

Figure 4.5 Evolution of SAIMD TCP SACK congestion window over OBS networks. 54

Figure 4.6 Average TCP RTT delay vs. the burst-contention probability 60

Figure 4.7 Burst-contention probability vs. SAIMD beta value ... 60

Figure 4.8 SAIMD simulation vs. analytical model throughput ... 61

Figure 4.12 Fairness index of Reno, SACK, Reno (SAIMD), and SACK (SAIMD) in a

barebone OBS network ... 65

Figure 4.13 Fairness index of Reno, SACK, Reno (SAIMD), and SACK (SAIMD) in OBS

with burst retransmission .. 66

 ix

Figure 5.1. The relation of zi, ui, and BCL values in the edge node scheme 71

Figure 5.2 Flowchart for TCP-BCL congestion control scheme. .. 73

Figure 5.3 TCP-BCL throughput over OBS networks. ... 79

Figure 5.4 TCP Reno, SACK vs. TCP-BCL throughput over barebone OBS and OBS with

burst retransmission .. 80

Figure 5.5 BTCP, BAIMD, and TCP-BCL throughput over barebone OBS and OBS with

burst retransmission. ... 81

Figure 5.6 Fairness index of TCP-BCL, BAIMD, SACK, and Reno in barebone OBS. 82

Figure 5.7 Fairness index of TCP-BCL, BAIMD, SACK, and Reno in OBS with burst

retransmission ... 82

Figure 6.1 Threshold-based TCP Vegas congestion-control. ... 87

Figure 6.2 Evolution of cwnd for TCP Vegas over a barebone OBS 89

Figure 6.3 Evolution of TCP Vegas cwnd over an OBS networks with burst retransmission 92

Figure 6.4 Markov chain for the state of cwnd ... 95

Figure 6.5 Evolution of threshold-based Vegas cwnd over OBS network with burst

retransmission ... 97

Figure 6.7 Throughput of Vegas, threshold-based Vegas, and SACK over a barebone OBS

... 100

Figure 6.8 Throughput comparison of TCP Vegas, threshold-based Vegas (N=4T), and

SACK over an OBS network with burst retransmission ... 101

Figure 6.9 Throughput comparison of the threshold-based Vegas with fixed N or fixed T

values .. 102

Figure 6.11 Fairness index of Vegas, threshold-based Vegas, SACK, and Reno with varying

T and N values ... 103

Figure 6.12 TCP Vegas throughput over a barebone OBS network 104

Figure 6.13 TCP Vegas throughput over an OBS network with burst retransmission 105

Figure 6.15 Analytical results of the steady-state input rate of threshold-based Vegas while

varying N values ... 108

 x

List of Tables

Table 2.1 Comparison of optical switching technologies ... 12

Table 2.2 TCP solutions over OBS Networks .. 33

Table 3.1 An overview of TCP implementation performance over OBS 44

Table 7.1 Thesis contributions of TCP over OBS .. 113

 1

Chapter 1
Introduction

Optical Burst Switching (OBS) is considered a promising solution for all-optical switching in

Wavelength Division Multiplexing (WDM) networks. OBS has attracted researchers’

attention due to its ability to achieve dynamic and on-demand bandwidth allocation, which

offers improved network economics and enables control and management integration. The

evolution of OBS technology is highly coupled with its ability to support upper-layer

applications. Most of today’s Internet applications use the Transport Control Protocol (TCP)

for maintaining reliable and congestion-tolerant data transmission. Using OBS networks as

an all-optical long-haul backbone switching technology has proven to affect TCP throughput

negatively. Therefore, understanding the burst-transmission behaviour along with the

associated impact on the TCP congestion-control algorithms can contribute to better

exploitation of the advantages of OBS networks.

1.1 TCP over OBS Networks
An OBS network is basically bufferless yet best-effort in nature [3] [14] [91] [94] [97]. The

bufferless and all-optical (AO) natures distinguish OBS networks from traditional packet-

switched networks, which rely on electronic processing [14]. The implementation of OBS

networks requires precise signalling and higher switching speed than current Optical Circuit

Switched (OCS) networks [94] [97]. In order to transmit a burst from the source OBS node

(ingress node) to a certain destination (egress node), a corresponding control packet is

created at the source OBS node and is sent prior to launching the burst [97]. The burst cuts

through the network following the control packet in a one-way (i.e., Tell-and-Go)

transmission scheme.

Although OBS achieves better flexibility and efficiency than OCS networks, OBS suffers

from a burst contention phenomenon which leads to burst drops. Burst contention occurs

when more than one burst simultaneously attempts to traverse through one output port or

wavelength channel [3] [14]. When n bursts contend, n-1 of them are dropped. This is due to

the one-way resource reservation and signalling protocol, where resources are reserved on

 2

the fly (i.e, without acknowledgement or reservation guarantee) and the lack of burst

buffering. Burst retransmission [104] [105], burst deflection routing [37] [68], burst buffering

through Fiber Optic Delay Lines (FDL) [18], burst segmentation [83], and wavelength

conversions [101] are some approaches to dealing with the problem. However, these

mechanisms are not considered to be part of typical OBS networks.

TCP congestion control, which adapts the Additive Increase Multiplicative Decrease

(AIMD) approach, is designed to cope with buffer-oriented Internet Protocol (IP) networks.

However, OBS networks aggregate multiple TCP/IP packets in a single burst. The burst is

transmitted without any buffering delay, delivery guarantee, or processing overhead. The

aggregation of multiple TCP/IP packets in single burst, the bufferless burst transmission, the

burst contention problem, and the proposed burst contention resolution schemes affect TCP

performance. Therefore, modifying TCP congestion control is necessary to cope with the

new burst-transmission characteristics.

1.2 Problem Definition and Motivation
TCP is the most important Internet transport service that is self-regulating (i.e., it adjusts the

transmission rate according to the network congestion status) and maintains fairness (i.e., it

shares the available bandwidth among the flows fairly) for bulk data transfer. In the current

Internet, the underlying optical transport layer is based on SONET and OCS, where the

Quality of Service (QoS) of the provisioned services can be guaranteed [84]. This provides

good support for TCP-based applications. For OBS to be considered as a next-generation

optical Internet backbone, significant efforts must be addressed to devising control and

signalling protocols that support upper-layer services such as TCP [29] [46] [58] [81]. In OBS,

an edge node capable of performing electronic-to-optical (E/O) and optical-to-electric (O/E)

conversion, collects, sorts, and assembles incoming IP packets from the higher layers into

optical data bursts, and disassembles optical data bursts into IP packets destined for it. One

node may correspond to thundered of thousands of TCP senders [29], where hundreds or

thousands of TCP segments are assembled and transported in a single burst. Burst losses in

OBS networks maybe caused not only by the high utilization of network resources, i.e., long-

 3

term congestion, but also by random burst contention that occurs even when network

resource utilization is low. A burst loss due to random contention in the OBS domain may

cause the TCP senders to react improperly to the resultant TCP packet-loss event, i.e., by

cutting the congestion window or even entering the slow-start state. This is the false-

congestion detection phenomenon [98]. False-congestion detection significantly downgrades

TCP throughput in OBS networks and results in unnecessary packet retransmissions and

unnecessary decreases in the transmission rate.

Depending on the number of multiplexed TCP flows and the burst assembly process, TCP

performs differently over OBS networks. In the case where few TCP connections are

multiplexed at the edge node, the probability of having multiple TCP segments from a single

TCP flow assembled in a single burst is high. When a burst contention loss occurs, few TCP

connections will be affected or even trigger a timeout (TO). However, in the case where

millions of TCP connections are multiplexed at the edge node, the probability of multiple

TCP segments from a single connection being assembled in a single burst is very low.

Therefore, a single burst likely contains segments from many individual flows. For example,

assume that 10,000 TCP flows are multiplexed at the edge node. Assume a single burst

contains 1000 TCP segments each belonging to a different flow. When a burst is lost due to

contention, the 1000 flows will eventually cut their congestion windows (cwnd) and each

TCP implementation enters fast retransmission, thus causing a dramatic decrease in the

overall network utilization, which is also called global synchronization problem. This

congestion-detection situation is completely different from traditional IP-based networks

where only one TCP flow is affected by each packet loss. We conclude that burst dropping in

OBS networks wastes routing, assembly, and signalling efforts performed at both the IP-

access and the OBS network and could significantly affect the TCP senders in terms of how

the TCP congestion windows are adjusted. An improper strategy and reaction upon a burst

delay and/or loss event will reduce overall TCP throughput significantly.

In order to cope with the TCP false-congestion detection problem, it has been shown in

 [104] [105] that burst retransmission and burst deflection schemes can reduce burst-loss

probability and hide burst-loss events from the upper TCP layer, thereby eventually reducing

 4

the chances of TCP false congestion detection. With burst retransmission or deflection, bursts

subject to contention can be retransmitted at an OBS edge, or can be deflected to an alternate

route in the OBS network. Hence, burst-contention probability, which is the probability that a

burst experiences random contention at low traffic load, could be much larger than the burst

loss probability, which is the probability that a dropped burst is sensed at the TCP layer.

Although burst deflection and/or retransmission can reduce burst-loss probability, they

introduce additional delay for bursts that are retransmitted or deflected. As we will explain

later, this extra delay affects the throughput of delay-based TCP (because it increases the

TCP round trip time) as well as the behavior of the congestion-detection algorithm.

1.3 Thesis Objectives
OBS introduces many advantages over Wavelength Routed (WR) OCS networks. However,

a few key problems have been identified and are still open, such as burst contention

resolution and end-to-end delay variation. These problems make it challenging to design TCP

extensions for use with OBS networks.

The primary objective of this thesis is to develop a suite of interoperable strategies that

enable TCP congestion control to operate well given the intrinsic characteristics of OBS. In

particular, we identify four important goals.

1. Analyze and prove the negative impacts of burst-loss events on conventional TCP

congestion control, thus on TCP throughput. This is performed through examining a

number of previously reported TCP congestion-control mechanisms, including Reno,

New Reno, SACK, Duplicated SACK (DSACK), FACK, TCP with Eifel, and Burst

TCP (BTCP), in terms of throughput under different burst dropping probabilities and

traffic loads.

2. Propose and analyze a novel congestion-control mechanism for TCP over OBS

networks, called Statistical Additive Increase Multiplicative Decrease (SAIMD).

SAIMD maintains and analyzes a number of previous round trip times (RTTs) at the

TCP senders in order to identify the confidence with which a packet-loss event is due

 5

to network congestion. The confidence is derived by positioning short-term RTT in

the spectrum of long-term historical RTTs. The derived confidence corresponding to

the packet loss is then taken into account by the policy for TCP congestion-window

adjustment. We show through extensive simulation that the proposed scheme can

solve the false-congestion detection problem effectively and outperform conventional

TCP significantly. Also, based on the proposed congestion-control algorithm, a

throughput model is formulated and verified by simulation.

3. Propose and analyze a novel congestion-control scheme, called TCP with Explicit

Burst Contention Loss Notification (TCP-BCL), which is the first study that

integrates the explicit notification mechanism with the Generalized Additive Increase

Multiplicative Decrease approach (GAIMD) over OBS networks. The basic design

principle of the scheme is to tune the congestion-control parameters α and β such that

the congestion window sizes in the corresponding TCP senders can be adjusted to

exploit explicit notification from the OBS edge node. The performance impact on

TCP of false-congestion detection is considered and investigated. An analytical

model is developed for the proposed scheme and is verified through extensive

simulation.

4. Propose and analyze a modified version of delay-based TCP (e.g., TCP Vegas) that

adopts a threshold-based mechanism for identifying network congestion status in

OBS networks. Throughput models are developed for TCP Vegas and threshold-

based Vegas over an OBS network with burst retransmission. Simulation is conducted

to validate the models and to verify the proposed threshold-based TCP Vegas. Based

on the analytical model, a threshold value that results in an optimal steady state TCP

throughput is obtained and verified.

These results provide us with better knowledge and deeper understanding of TCP

behaviour over both the conventional IP-based Internet and OBS backbone networks.

 6

1.4 Thesis Organization
The thesis is organized as follows. Chapter 2 provides a detailed survey of the state of the art

of TCP extensions or modifications in OBS networks. Chapter 3 presents the methodology

used to model and simulate TCP over OBS. It also describes the issues in the design of TCP

schemes in the OBS environment, where the throughput performance under a wide range of

burst-dropping probabilities and traffic loads is examined for a number of previous TCP

enhancements, including Reno, New Reno, SACK, DSACK, FACK, TCP with Eifel, Burst

AIMD (BAIMD), and Burst TCP (BTCP). Chapter 4 presents our congestion-control

mechanism based on TCP statistical RTT, Statistical AIMD (SAIMD). SAIMD is designed

to improve throughput while maintaining friendliness with co-existing TCP flows. Chapter 5

presents our TCP implementation that combines the advantages of the explicit burst-

contention loss notification and the GAIMD congestion control. An analytical model is

developed for the proposed scheme and is verified through extensive simulation. Chapter 6

discusses the issues of delay-based TCP (e.g., TCP Vegas) over OBS networks and

introduces a modified threshold-based TCP Vegas congestion-control scheme that is suitable

for the characteristics of TCP over OBS networks. We show that the proposed threshold-

based TCP Vegas scheme is able to distinguish whether the increase in the RTT is due to

network congestion or due to burst contentions at low traffic loads. Chapter 7 concludes the

thesis and presents open problems, selected directions for further research, and

recommendations.

 7

Chapter 2
State of the Art of TCP over OBS Networks

In this chapter, we provide a comprehensive survey of TCP congestion-control enhancements

in OBS networks. These enhancements aim to mitigate the numerous side-effects of OBS

networks such as the bufferless characteristics of burst transmission.

2.1 Introduction to TCP
The complex Internet infrastructure interconnects millions of communicating devices

through wired and wireless connections. One of the key success factors of today’s Internet

infrastructure is the ability to maintain reliable, self-regulating, and congestion-tolerant

transport to serve the end-user applications. TCP [82], originally designed for military

communication by ARPANET [46] [58] [61], is the most pervasive protocol for the majority

of current Internet-based applications. TCP is the predominant protocol in terms of the traffic

volume (in bytes), consisting up to 90% of the total Internet traffic [29]. The High-

Performance Computing (HPC) networks observed an average share of 83% of TCP traffic,

and for the NETI@Home data, TCP flows are the majority of traffic volume.

TCP congestion-control mechanisms can be classified into three categories: (1) dropping-

based (e.g., TCP Reno [81] and TCP SACK [56]), (2) delay-based (e.g., TCP Vegas [9], Fast

TCP [36] [39]), and (3) explicit-notification-based (e.g., XCP [42]). These congestion-control

mechanisms are basically used at the TCP sender to determine whether the network is

congested and the transmission rate should be reduced accordingly, while the receiver is

totally reactive to the transmission protocol.

Dropping-based TCP protocol implementations such as TCP Reno simply take a packet

(or TCP segment) loss as an indication of network congestion [64]. These TCP protocol

stacks follow the Additive Increase Multiplicative Decrease (AIMD) window-based

congestion-control mechanism for regulating data transmission and maintaining network

bandwidth usage. At each TCP sender, the AIMD scheme is comprised of four stages: (1)

slow start, (2) congestion avoidance, (3) fast retransmission, and (4) fast recovery [81].

 8

At the slow-start stage, the TCP sender has just started, or restarted the transmission due to

a timeout (TO) event. The congestion window (cwnd) is initialized to the size of one segment

for dropping-based TCP (e.g., Reno, SACK). The size of the cwnd is increased linearly for

each successfully delivered (acknowledged) segment. The linear growth continues until

either it exceeds the receiver’s advertised congestion window (rwnd) or a packet-loss event

occurs, which leads the TCP sender to enter the congestion-detection stage. Note that a TCP

sender senses network congestion either when a packet timeout occurs or when triple-

duplicated acknowledgments (TD) are received. Either case reflects packet loss or out-of-

order packet delivery. When a timeout occurs, which indicates heavy congestion, cwnd is set

to one segment, and TCP returns to the slow-start stage, followed by the congestion-

avoidance stage. In the triple duplicate case, which indicates light congestion, TCP enters the

fast-retransmission stage by taking half of the sender’s cwnd as the slow start threshold

ssthresh and setting cwnd to ssthresh plus three segments. Then the sender attempts to

retransmit the missing segments and increments cwnd by one segment. After receiving an

acknowledgment for the second data segment, cwnd is set to ssthresh.

The delay-based TCPs, in particular TCP Vegas, estimate the available bandwidth and the

congestion status by measuring the delay of each transmitted packet in terms of round trip

time (RTT). The performance of Fast TCP, which enhances TCP Vegas throughput over

high-speed large-bandwidth networks, has been evaluated in [36] [39], as we describe in the

 Chapter 6.

TCP Vegas modifies TCP Reno in the slow start, congestion avoidance, and

retransmission stages. TCP Vegas determines the congestion status in the network through

comparing the estimated and the actual throughputs. TCP Vegas first computes the BaseRTT,

which is the minimum measured RTT, (i.e., the summation of the propagation delay and the

queuing delay). The expected throughput can thus be derived as,

cwndexpected
BaseRTT

= (2.1)

Second, the actual throughput is calculated for every round as,

 9

cwndactual
RTT

= , (2.2)

 where RTT is the most recent measured RTT. The sender then computes:

() , 0

()

(1).

Diff expected actual BaseRTT where Diff
cwnd cwnd BaseRTT

BaseRTT RTT
BaseRTTcwnd

RTT

= − >

= −

= −

 (2.3)

Obviously, Diff is non-negative, and is used to adjust the next cwnd size. Vegas defines two

threshold values, α and β, for controlling cwnd size:

.
1

1

⎪
⎩

⎪
⎨

⎧

>−
≤≤

<+
=

β
βα

α

diffcwnd
diffcwnd

diffcwnd
cwnd

 (2.4)

If Diff < α, Vegas increases cwnd linearly in the next round. If Diff > β Vegas decreases

cwnd linearly in the next round. Otherwise, Vegas leaves cwnd unchanged.

TCP Vegas congestion avoidance aims to maintain the expected number of backlog

packets in the network between α and β bytes. If the actual throughput is smaller than the

expected throughput, then it is likely that the network is congested. Thus, the TCP sender

reduces the transmission rate. However, if the actual throughput is close to the expected

throughput, the TCP flow may not be utilizing the available bandwidth properly, and thus the

rate should be increased.

In slow start, TCP Vegas initializes the cwnd to the size of two segments and increases

cwnd exponentially every other round. TCP Vegas exits slow start when cwnd reaches the

slow-start threshold, denoted by γ. Between the two consecutive rounds, cwnd is unchanged,

which ensures a valid comparison between the expected and actual throughputs.

 10

In the fast retransmission stage, when the sender receives an acknowledgement (ACK), it

records the clock and calculates the estimated RTT using the current time and the timestamp

recorded for the associated packet. Vegas decides whether to retransmit the packet based on

the following two heuristics: First when a duplicated ACK is received, Vegas checks if the

difference between the current time and the timestamp recorded for the associated packet is

greater than the TO-threshold value. If so, it retransmits the packet without waiting for the

remaining incoming duplicate ACKs. The second heuristic is applied when an ACK is

received. If it is the first or second ACK after a retransmission, Vegas then checks if the time

spent since the packet was sent is larger than the TO-threshold value. If so, Vegas retransmits

the packet. This retransmission approach catches any other packet that may have been lost

prior to the retransmission without waiting for a duplicated ACK. Hence, the Vegas

retransmission mechanism reduces the time to detect a lost packet from the third to the first

or the second duplicate ACK. After packet retransmission is triggered by a duplicated ACK,

cwnd is reduced by 25% (instead of 50% in Reno), only if the time since the last-window size

reduction is more than the current RTT.

The third category is explicit notification-based TCP. In this category, TCP with Explicit

Loss Notification (ELN) [1] and Explicit Congestion Notification (ECN) [25] are the two

representative approaches. TCP implementations in this category rely on explicit information

received from the network to identify suspicious packet losses that cause unnecessary packet

retransmissions. They can distinguish among packet losses due to congestion, contention,

link failure, or other reasons. Packet retransmission starts as soon as the ELN/ECN is

received in the round following a packet loss.

In the following two sections, we discuss the evolution of optical switching technologies,

along with a detailed illustration of OBS network architecture and the burst transmission

characteristics.

2.2 The Evolution of Optical Switching Technologies

Optical backbones based on WDM are the most common carriers in modern communication

networks. Several switching technologies have been proposed to take advantage of the high

transmission capacity of fiber optics. Early approaches followed OCS, where point-to-point

 11

lightpaths are established for a relatively long period of time [46]. OCS follows the store and

forward approach where each optical switch performs optical-to-electrical-to-optical (O/E/O)

conversions. However, the rapid increase in user demands and traffic engineering

requirements have imposed several limitations on the adoption of OCS. First, the task of

Routing and Wavelength Assignment (RWA), which optimizes the assignment of

wavelengths to all users, is NP-Hard [4] [46] [80]. Second, due to its quasi-static nature, OCS

cannot easily support dynamic traffic variation or frequent connection requests.

Due to the ubiquity of IP, much research has addressed the integration of IP with WDM

networks. Optical Packet Switching (OPS) [46] has been proposed to support this integration,

where the optical core can be taken as an extension of the IP layer. With OPS, each optical

packet consists of header and data payload and is launched into the optical network. As

packet arrives at an optical switch, the header is converted and read in the electronic domain

to configure the switch fabric, while the data is buffered optically in a fiber delay line (FDL)

 [12] [18] [30] [107] until the switch configuration is completed. OPS follows an all-optical

(AO) buffer-oriented transmission approach. OPS can successfully solve the inadequacy and

inefficiency of the OCS technology in terms of bandwidth provisioning, dynamics, and

capacity utilization. However, the technical barrier before such highly synchronized systems

can be commercialized is the high cost of all-optical buffer facilities and the dimensioning of

these delay lines.

OBS has attracted the attention of researchers due to its ability to achieve more dynamic

and on-demand bandwidth allocation than OCS. It also offers improved network economy

and enables control and management integration [3] [14] [63] [91]. Compared with OPS, OBS

is more practical to implement, and combines the best of OCS and OPS networks.

With OBS, a data burst is formed at the edge node by assembling multiple incoming

packets with same destination and/or QoS requirements. To transfer the burst to the

destination, a corresponding control packet that contains both the burst size and the burst

arrival time is created at the network edge node, and is sent prior to the launch of the burst

 [91] [100]. Since the bursts cut-through each intermediate node in the network core while the

control packets are subject to processing at each core node, a certain amount of offset time

 12

must be imposed between launching control packets and the corresponding bursts. The

calculation of the offset time has to consider the upper bound on the number of hops and

nodal processing delay. OBS follows an AO transmission approach. Figure 2.1 highlights the

evolution of the optical switching technologies.

1st Generation 2 nd Generation 3rd Generation
O/E/O AO

Large Granularity (point -to-point)

WDM
OXC OBS OPS

Medium Granularity Small Granularity

1st Generation 2 nd Generation 3rd Generation
O/E/O AO

Large Granularity (point -to-point)

WDM
OXC OBS OPS

Medium Granularity Small Granularity

Figure 2.1 Evolution of optical switching technologies

With its out-of-band signalling mechanism, OBS provides complete separation between

control and data domains that can yield better network manageability and flexibility. Since

the launched bursts cut through the network core without any buffering, the bursts can be

subject to a minimum amount of delay. Table 2.1 summarizes the characteristics of the three

different switching schemes.
Property Optical Circuit Switching Optical Packet Switching Optical Burst Switching

Bandwidth Low High High

Setup latency High Low Low

Switching speed Slow Fast Medium

Processing overhead Low High Low

Traffic adaptively Low High High

Table 2.1 Comparison of optical switching technologies

 13

2.3 Optical Burst Switching (OBS) Networks
The implementation of OBS networks requires precise signalling and higher switching

speed than that required by OCS. The edge nodes are capable of performing electronic-

optical (E/O) and optical-electric (O/E) conversion to collect/sort/assemble IP packets, ATM

cells, SONET frames, or any other types of traffic packets from the upper layers into optical

bursts, and disassemble the optical bursts at the destination edge nodes. The edge nodes are

also responsible for signalling and routing in the OBS network. The core nodes (i.e., optical

switches), on the other hand, respond to configuration requests from the edge nodes to

forward bursts in an AO manner [3] [14] [90] [91] [100]. Figure 2.2 presents the OBS network

architecture. Several burst-assembly algorithms have been proposed and later discussed in

Section 2.3.1.2.

Src
1

Src
i

Src
2

Destination
1

Destination
2

Destination
3

Destination
j

Edge node buffer

Core Node

Edge Node

Ctrl Packet

Control Channel

Data Burst
Offset
time

Figure 2.2 Optical burst switching network architecture

 14

Figure 2.3 OBS edge router architecture

A burst contains several other fields when assembled at the edge node. Figure 2.3

illustrates the burst assembly process as well as the burst format. A burst consists of Guard

Preamble (Guard-B) and Guard Postamble (Guard-E) fields that prevent the uncertainty of

data burst arrival time and data burst duration due to clock drifts between different core

nodes. The payload consists of the assembled data packets. Payload Type (PT), Payload

Length (PL), and Number of Packets (NOP) represent the type of data, data length, and

number of packets assembled in the burst, respectively. The offset of padding indicates the

first byte of padding. The Optical Layer Information (OLI) includes some information for

performance monitoring and forward error correction obtained from the communication

channels [91].

A typical OBS core node (switch) consists of two layers. The upper layer is responsible

for processing control packets and configuring the switching fabric. In this layer, control

packets are processed, switching resources are reserved, and freed after each burst exits the

switch. The switch matrix control unit, the port forwarding table, and the link scheduling

module are also maintained in the upper layer. The lower layer is responsible for AO burst

transport functionality. The lower layer consists of optical ports, wavelengths, and optical-to-

optical connections. Figure 2.4 illustrates the generic OBS core switch architecture.

 15

Figure 2.4 OBS core switch architecture

In both Figure 2.3 and Figure 2.4, the offset-time delay between the control header and the

data burst is shown. As indicated earlier, the offset time is set to ensure that the switch fabric

is fully configured before the arrival of the burst. Determining the proper offset time is

fundamental to the functionality of OBS [50] [62] [91]. Several approaches were proposed to

elongate the offset time to achieve specific QoS differentiation purposes. A fixed offset-time

algorithm proposed in [91] suggested calculating the offset time based on the summation of

the total nodal processing time plus the switch-fabric configuration time at all the

intermediate core nodes. In order to implement this algorithm, the edge node maintains the

total number of hops in the route (path). Finally, wavelength-routed OBS offset time (WR-

OBS-Offset), presented in [50], obtains the offset time from a centralized resource scheduler

 [100].

In the literature, two resource-reservation protocols for OBS have been investigated

widely: explicit [69] [97] and implicit [94] approaches. The Just-In-Time (JIT) resource-

reservation protocol introduced in [100] follows an explicit reservation approach. Upon

receiving the control packet at the first core node, an acknowledgement packet is generated

and returned to the edge node. Once the edge node receives this packet, the data burst is

launched after a delay estimated by the response time for the control packet. The control

 16

message continues traveling on hop-by-hop basis, followed by the data burst, until the

destination is reached. Once the burst leaves the edge node, a tear-down packet is sent back

along the same route to release reserved resources.

The Just-Enough-Time (JET) resource-reservation protocol introduced in [97] uses delayed

reservation with implicit resource release. The intermediate core nodes traversed by a data

burst can automatically release the reserved switching fabric shortly after the burst leaves the

switch, because each intermediate node is informed of the departure time of the data burst

when the control packet sets up the path. Therefore, each intermediate node does not need an

explicit notification to release the resources [20].

Channel scheduling is another important mechanism for enabling OBS transmission and

improving link throughput [92]. Several approaches were reported in the literature. The

Latest Available Unscheduled Channel with Void Filling (LAUC-VF) simply maintains

single scheduling horizon for each channel [3]. Only channels whose horizons precede burst

arrival can be considered available. Link void is defined as the unused (wasted) gaps between

two successive scheduled bursts. The Min-Starting Void (SV) algorithm [92] was proposed

as an enhancement to LAUC-VF, which schedules a data burst in O(log n) time, where n is

the total number of void intervals. Furthermore, the SV algorithm minimizes the new voids

generated from the time gap between the end of a new reservation and an existing

reservation.

2.3.1 Characteristics of OBS Networks

The bufferless nature of OBS networks results in two major transmission characteristics that

distinguish them from others, which are (1) random burst contention losses and (2) assembly

and resource-reservation delay.

2.3.1.1 Random Burst Contention Losses

Contention occurs when two or more packets try to access the same output port

simultaneously. In IP-based networks with electronic processing, contended packets can be

stored temporarily in the electronic memory buffers of the intermediate IP routers instead of

being dropped immediately. Except for extreme cases such as buffer overflow, the packet is

 17

delivered hop by hop until it reaches the destination. This is not the case in OBS networks.

As a compromise between OCS and OPS networks, OBS achieves some amount of statistical

multiplexing by using JIT or JET resource reservation schemes, while buffering the data

bursts only at the edge nodes. However, due to the one-way signalling mechanism, the lack

of global scheduling, and the lack of optical/electric buffering, burst contention results in

immediate dropping even when the network is lightly loaded [14]. These are referred to as

random burst contention losses and they impose a significant impact on the upper-layer

protocols (e.g., TCP), especially for those that take packet losses as the only indication of

network congestion. In contrast to random burst contention losses, the network could be

subject to persistent network congestion, where high utilization lasts for a long time and

more burst contention occurs. It is hard to distinguish between random burst contention

losses and persistent congestion losses.

2.3.1.2 Assembly (Burstification) and Resource Reservation Delay

As mentioned earlier, four categories of burst assembly algorithms have been proposed

 [3] [14] [91]. The first are time-based, in which a timer is set after the beginning of each new

assembly cycle. All packets with a common destination edge node arriving within a specific

period of time are assembled into a single burst. The second set of algorithms is length-

based, where a burst-length threshold is set. With these algorithms, the burst-length threshold

serves as the minimum burst length before the burst leaves the edge node. The third set of

algorithms combines the time and the burst-length algorithms, where the bursts are

assembled and sent either when the burst-length exceeds the threshold or the timer expires.

The last set of algorithms are adaptive, where a dynamic adaptive threshold on the burst

length is set to optimize the overall performance for certain QoS-sensitive traffic [14] [35]

 [102] [103]. Traffic traversing an OBS network must experience burstification and burst

resource reservation delays. These delays affect delay-sensitive data and delay-sensitive

transport protocols such as TCP Vegas.

 18

2.3.2 Taxonomy of OBS Networks

OBS networks can be classified based on the resource-reservation and signalling mechanisms

as implicit [97] or explicit [94] OBS. They can also be classified based on the burst assembly

mechanisms as time-based, burst-length-based, mixed, and optimized-burst-size-based OBS

networks [3] [14] [91]. Since burst-contention and resolution schemes play a vital role in the

deployment of TCP over OBS, we classify OBS networks according to whether a burst-

contention-resolution mechanism is employed in the OBS network, as either barebone OBS

or OBS with Burst-Contention-Resolution (BCR).

2.3.2.1 Barebone OBS

In barebone OBS, a burst-control packet is sent to reserve the intermediate switching fabric.

After a predefined offset time, the data burst cuts through on a certain path until it reaches the

destination. As mentioned earlier, two major resource-reservation protocols in OBS networks

are Just-In-Time (JIT) and Just-Enough-Time (JET). Since neither scheme guarantees

channel availability, two or more data bursts may attempt to access a common output port

simultaneously. One of the bursts must be dropped while the other is delivered. The dropped

bursts are lost since barebone OBS does not employ any buffering, burst retransmission,

burst deflection, or burst-contention-resolution mechanisms.

2.3.2.2 OBS with Burst Contention Resolution (BCR)

Burst contention resolution could involve retransmission at the edges [104] [105], burst

deflection [37] [68], optical buffering [18], burst segmentation [83], or wavelength

conversion [101] at the core switches.

With burst retransmission, deflection, or buffering, the data bursts subject to contention in

the OBS core can be retransmitted from the edge node, deflected to an alternate route (i.e., an

alternate output port), or buffered using FDL at the core node, respectively. Note that burst

contention constitutes a significant portion of the total burst losses in OBS networks. With

burst segmentation, the contended bursts can be segmented so that the overlapped segments

are discarded at the core node, while the rest of the bursts can be transmitted successfully.

With wavelength conversion, optical data flows on a certain wavelength can be converted to

 19

another, which can effectively reduce the resource segmentation and result in a better chance

of successfully forming a data path.

These burst-contention-resolution schemes have been proven to increase the transmission

reliability and throughput effectively at the expense of introducing extra overhead,

complexity, and cost, as discussed in detail later.

2.4 Issues of TCP over OBS

It has been shown that the burstification process at the OBS edge nodes has significant

impact on the performance of TCP Reno [19]. Based on the access-network bandwidth and

the assembly-algorithm thresholds, TCP flows are classified into three categories: fast,

medium, and slow. In a fast flow, all transmitted segments of the congestion window are

assembled into a single burst. On the other hand, medium and slow flows have some

proportion of the congestion window segments assembled in a single burst. For medium to

slow flows, a performance penalty is introduced on the TCP sending rate due to the assembly

delay, but aggregating multiple TCP segments due to burst assembly increases TCP

throughput performance [19] [99]. When a burst is lost, a fast TCP flows detects the segment

loss through a TO, and returns to slow start since the TCP segments of the entire cwnd are

lost, which indicates severe network congestion [98]. However, the medium and slow TCP

flows enter fast retransmission since only some of the cwnd segments are lost [98].

2.4.1.1 Multiple TCP-Segment Loss

In OBS networks, TCP performance is significantly affected by random burst losses [19] [98]

 [99], which cause unnecessary congestion window cuts. Hundreds or thousands of TCP

segments could be assembled and transported together in a single burst. At the occurrence of

burst loss and depending on the TCP flow speed [19], TCP suffers from False TO (FTO) [98]

or performs unnecessary fast retransmission [19] [98] as a response on burst losses due to

random contention.

2.4.1.2 Packet Reordering

In a multi-buffer burstification, where the bursitification scheme maintains several assembly

 20

buffers for each destination, out-of-order burst delivery may occur when segments of a TCP

session are assembled in two or more bursts that are sent in a different order from that of the

arrival of the TCP segments [8]. The frequency of out-of-order delivery depends on the time

and burst-length thresholds, the traffic shape, and the QoS criteria defined in the burst-

assembly algorithm. Optical buffering in the form of FDL, burst retransmission, and burst

deflection can also cause out-of-order delivery. Buffered, retransmitted, and deflected bursts

are subject to extra delay compared to subsequent bursts.

The out-of-order burst delivery eventually causes the TCP sender to fall into “packet

retransmission ambiguity,” since the TCP receiver will issue TD ACKs assuming that there

exists a sequence of missing packets. Depending on the number of packets assembled in a

single burst, TD ACKs can take place in a single round. The frequency of the false TD

ACKs problem is expected to affect the sender dramatically, particularly in the presence of a

large number of TCP packets assembled in a single burst. The higher number of false TD

ACKs causes the sender’s cwnd to remain much smaller, which significantly throttles the

throughput.

2.4.1.3 Slow Convergence

In OCS networks, the lightpaths are static in nature, last for a long period of time, span a long

distance, and serve in backbone networks. In such long-haul networks, TCP suffers severely

from very long convergence times. The TCP slow-convergence problem worsens in the

presence of a high diversity of RTTs for bursts due to buffering and signalling delays [108].

Similar to conventional OCS networks, TCP over OBS with linear increase of cwnd for each

successful segment-delivery round takes a significant amount of time to utilize the available

bandwidth, while the multiplicative decrease for each packet loss is a critical response to

random burst-contention losses and persistent network congestion. Note that it is necessary to

maintain a large cwnd to achieve high throughput, which can only happen when an extremely

low packet-loss rate is seen, such as 10-8. This is unlikely in the presence of random burst-

contention losses.

 21

2.5 Taxonomy of TCP Solutions over OBS

In bufferless OBS networks, TCP senders must not blindly consider data loss to be an

indication of network congestion; instead, TCP senders should attempt to collect further

information that distinguishes between random burst contention and persistent network

congestion. This category of TCP implementations may require extra signalling efforts

between the TCP senders and the OBS network [98], and/or within the OBS network [21]

 [104] [105].

TCP solutions over OBS networks fall into three categories [70]: (1) link-layer solutions

(or solutions maintained at the OBS network), (2) modifications or enhancements based on

explicit notifications from the OBS layer, and (3) newly designed TCP mechanisms that do

not require explicit notifications .

In the first category, the solutions require an implementation of additional supporting

functions at either the OBS edge or core nodes. Two problems arise in this category. First,

these schemes break the end-to-end semantics of TCP, and second, they introduce additional

control overhead, which may impair the applicability of TCP congestion-control schemes.

The solutions in the second category overcome these problems by exchanging extra

signalling with intermediate network devices or OBS nodes. However, the price is paid in the

effectiveness of the scheme, since it is difficult for the intermediate network devices to

provide extra signalling for each TCP flow. Finally, the third category of solutions includes

totally new transport protocols that cope with the underlying burst transport behaviours

without exchanging explicit information. We briefly describe the three categories.

2.5.1 Link-Layer Solutions

There have been several solutions proposed to increase the burst-transmission reliability in

the OBS network in order to improve TCP throughput performance. These schemes typically

adopt mechanisms such as adaptive burstification [14], forward error correction (FEC), burst-

contention resolution schemes, automatic repeat request (ARQ) retransmissions [104] [105],

and others. The main advantage of employing link-layer solutions is hiding the (non-

congestion) burst loss from the TCP senders, so that the layered structure of network

protocols is followed. To achieve link-layer transmission reliability, burst retransmission,

 22

burst deflection, and burst buffering using FDLs are among the widely recognized

approaches. These approaches contribute to the reduction of TCP cwnd fluctuation and

consequently improve TCP throughput at the expense of introducing additional delay and

control overhead.

2.5.2 Congestion Detection with Explicit Notifications

TCP senders can be informed of the channel conditions and the actual cause of the packet-

loss events, e.g., congestion, contention, packet corruption, or other possible hardware

component failure, through explicit notifications. The explicit notifications assist TCP

senders to retransmit the lost segments without affecting cwnd for losses due to any reason

other than network congestion. This category comprises the TCP implementations with

explicit congestion notifications (ECN) or loss notifications (ELN) such as BTCP (Burst

ACK/Burst Negative ACK) [98] and TCP with burst contention loss notification (TCP-BCL)

 [72] [75].

2.5.3 Congestion Detection without Explicit Notifications

In TCP congestion detection where no explicit notification is deployed, TCP maintains and

analyzes a number of previous RTTs at the TCP senders in order to determine if a packet-loss

event is due to persistent congestion or random-burst contention. Such sender-side

congestion-control schemes include Burst TCP with Burst Length Estimation (BTCP with

BLE) [98], and our work on Burst AIMD (BAIMD) [73], Statistical AIMD (SAIMD)

 [71] [74], and Threshold-based TCP Vegas [76] [77] [78]. TCP Selective Acknowledgment

(SACK), Duplicated SACK (DSACK), and TCP Forward acknowledgement (FACK), also

work over OBS networks without explicit signalling [98] [99]. These schemes were not

originally proposed for OBS networks. However, their throughput performance is examined

in Chapter 3 to gain a deeper understanding of their behaviour over OBS networks. Since

SAIMD and the threshold-based TCP Vegas were originally proposed for OBS networks,

they are discussed in dedicated chapters.

 23

Figure 2.5 Taxonomy of TCP solutions over OBS networks

In the case of fast TCP flows, a contended burst that is delivered successfully is subject to

additional delay due to the contention-resolution mechanism. The additional delay is

inevitably added to the RTT for all the TCP segments assembled in that burst. The sender

detects a sudden increase in the RTT of the segments, and interprets the delay as an

indication of network congestion. This fatally impairs the TCP throughput due to

unnecessary TO retransmissions followed by slow start at the TCP senders. Threshold-based

TCP Vegas, a sender-side TCP implementation that does not require any explicit

notifications, was proposed to cope with these problems. Figure 2.5 illustrates TCP solutions

appropriate or designed for OBS networks.

2.6 Overview of Existing Solutions
This section surveys dropping-based (e.g., Reno), delay-based (e.g., Vegas), and explicit–

notification-based (e.g., ELN/ECN) TCP implementations in the presence of the link-layer

solutions and the new TCP congestion-control schemes proposed for OBS networks.

2.6.1 Link-Layer Solutions

2.6.1.1 Solution Based on Burstification Processes

It has been shown that the delay caused by burst assembly increases TCP RTT which

potentially reduces TCP throughput and leads to the slow convergence problem [14] [19] [99].

 24

In [19], the authors examined the performance of TCP Reno in the presence of various burst-

assembly algorithms at OBS edge nodes. The authors showed that for medium to slow TCP

flows, significant performance degradation is induced because the assembly delay becomes

very large with respect to the inter-arrival times of the TCP segments. On the other hand, the

aggregation of multiple TCP segments in fast TCP flows is less influenced by the assembly

delay.

Cao et al. [14] proposed an Adaptive-Assembly-Period (AAP) algorithm and investigated

the impact of the algorithm parameters (burst assembly time, burst size, and the adaptive-

assembly queue-length thresholds) on the performance of both TCP and UDP traffic over

OBS networks. They showed that the adaptive-assembly algorithm helps TCP to achieve the

best throughput performance.

The simulation-based study in [32] took TCP Reno as a dominant TCP, and examined

various burst-assembly delays and burst sizes. The study concluded that TCP Reno fails to

deal with burst losses when each burst contains a large number of TCP segments assembled

from a single TCP flow.

2.6.1.2 Burst Contention Recovery

As one of the link-layer solutions, BCR can be implemented in the OBS layer in order to

reduce random burst-contention losses, thereby improving the transmission reliability of

OBS networks. BCR schemes include burst retransmission [104] [105], burst deflection

routing [37] [68] [105], FDLs [18], and burst segmentation [83]. Among the three schemes,

FDLs achieve BCR by providing limited buffering time for each contended burst. In general,

1 ms of buffering time requires a fiber with 200 km of length. The buffered bursts suffer from

signal dispersion and require signal amplification, which complicates the core node

architecture and functionality. On the other hand, burst retransmission and deflection also

introduce significant delay.

With burst retransmission, an OBS edge node stores a copy of each launched burst for

possible retransmission. As the control packet traverses the core nodes, an intermediate node

that fails to reserve the resource notifies the OBS edge. Upon receiving the failure

notification, the edge node retransmits the stored copy of the contending burst, preceded by

 25

the corresponding control packet. The retransmitted burst experiences extra retransmission

delay, between the initial control packet transmission and the last notification received for the

corresponding burst. If the network is lightly loaded, the retransmission scheme has a good

chance of successfully delivering the contended bursts without involving the TCP

retransmission mechanisms. The studies in [104] and [105] showed that the retransmission

scheme can reduce the burst-loss probability compared with barebone OBS at low traffic

loads. The authors also showed that retransmitting lost bursts from edge nodes prevents

dropping-based TCP from falling into false congestion detection. However, when the

network is heavily loaded, the retransmitted bursts may still be dropped and finally lead to a

timeout at the TCP senders. Therefore, the maximum number of retransmission attempts for

a single burst and the timeout threshold at the senders must be defined precisely and subject

to further research.

With burst deflection, a burst is first routed through its primary path. In the event of burst

contention, the burst is dynamically rerouted and redirected to an alternate path segment

starting at the core node where the burst encounters contention. Since the primary path is

usually the shortest path, data bursts following an alternate path segment suffer from longer

propagation delay [37] [68]. The study in [104] investigated burst retransmission along with

deflection routing, and showed that burst deflection can reduce burst-loss probability

significantly at low traffic loads. As with burst retransmission, additional delay caused by

burst deflection affects delay-based TCPs. If the network is heavily congested, deflection

may worsen the congestion situation by consuming more resources at other network

switches, which leads to fatal impairment of TCP throughput.

2.6.1.3 TCP with Burst Acknowledgement

In [21], a TCP throughput model is introduced that incorporates the burst acknowledgment

mechanism. The authors propose an error-recovery mechanism for electronic buffering at the

edge nodes in order to improve throughput. However, this mechanism consumes extra

memory space at the edge node for buffering a copy of all bursts for a certain time. Since the

amount of additional memory can be large, the scheme is subject to practical implementation

problems. For example, let the edge node switching capacity be c, the number of IP packets

 26

be k, the average assembling granularity be M, and the burst dropping probability be p. The

required extra memory space for buffering the bursts is c × (RTTburst + p × (RTTburst + k×M)),

where RTTburst includes the burst assembly time and the burst offset time. Furthermore, the

scheme cannot prevent TCP senders from TO or TD indications since cwnd can be decreased

in response to the longer buffering delays.

2.6.1.4 TCP Decoupling

As we mentioned earlier, explicit congestion notifications enable network devices to signal

congestion explicitly to the TCP sender, and hence allow the sender to decouple its

congestion control from segment-loss recovery. In [95], a TCP decoupling approach is

introduced. In this approach, the edge node controls the burst-contention probability at the

OBS network bottleneck link by taking advantage of the TCP self-clocking property: a new

segment is injected into the network only after an old one has left. The authors proposed

using a TCP management packet, called TCP decoupling packet, to control the burst

transmission rate. The rate is controlled through the arrival of the TCP decoupling packets. In

this scheme, a virtual circuit (VC) is established for each source-destination pair in the OBS

network. The VC is then controlled by the TCP congestion control located at the OBS edge

node such that the sending rate never exceeds the link capacity. The OBS edge node uses the

TCP ACK packets to control the timing of the burst transmission.

Given the simulation parameters provided in [95], the authors demonstrated an

improvement to TCP throughput by avoiding unnecessary burst losses. The overall link

utilization increased from 50% to 62% and the packet dropping probability decreased from

50% to 30%. However, this approach requires maintaining a record of the launched bursts,

burst launch time, and the corresponding TCP segments for each source and destination pair.

This approach complicates the OBS edge node architecture and functionality by

manipulating the TCP packets in the OBS network.

2.6.1.5 Fixed-Point Feedback

The fixed-point approach that incorporates TCP’s feedback mechanism aims to compute the

expected steady state TCP input rate under a certain network load. In OBS, the fixed-point

 27

approach consists of four phases. First, the TCP input rate is determined. Second, the

corresponding burst distribution is computed. Third, the resultant OBS burst loss is obtained.

Finally, the expected TCP sending rate is calculated based on the burst loss obtained in the

third phase. In [13], such a fixed-point method was adopted to compute TCP steady state

throughput in OBS networks. The method works only for barebone OBS by taking advantage

of a two-dimensional Markov chain [31] for modelling a single OBS link, where burst

contention is the only source of burst loss. Through successively applying the TCP

throughput function and the resultant OBS burst loss, a fixed-point rate of TCP over OBS can

be reached. This method can compute the expected steady-state TCP input rate in the OBS

network at the expense of the edge node exchanging explicit notifications between the edge

and the core node, based on information such as the burst losses, RTT variation, the number

of output wavelengths at each output port, etc. Currently, the fixed-point feedback

mechanism is used for theoretical analysis rather than practical implementation at the TCP

layer.

2.6.1.6 Retransmission-Count Based Dropping Policy (RCDP)

In [68] and [69] a dropping policy, called the Retransmission-Count Based Dropping Policy

(RCDP), is introduced, which aims to improve TCP throughput. The dropping policy is

deployed at the OBS edge node and takes the number of burst retransmissions attempts into

consideration, where bursts that have been retransmitted less are dropped. Clearly, burst

retransmission takes time that might eventually cause a timeout to be triggered at the TCP

senders. The authors proposed to add a retransmission count (RC) field in the control packet

with an initial value of 1. In the event of burst contention, the core node compares the control

headers of the contending bursts and drops those with lower RC values. Bursts with larger

RC values are given higher priority since their TCP packets have already experienced

relatively longer delay. Once a burst is dropped, a corresponding negative acknowledgement

(NACK) and the RC value are sent back to the OBS edge node, which then increments the

RC field and retransmits the burst. The number of retransmission attempts follows a

predefined retransmission policy. The study aims to increase the transmission chances of the

 28

TCP packets which have experienced the longest time in the OBS network. However, the

study has not addressed fairness of the policy. Also, the preemption of reserved resources by

bursts with larger RC values may have a negative influence on the flows, if they have already

launched the corresponding data burst.

2.6.1.7 Burst Delivery, Scheduling, and Fairness

In OBS, packets belonging to a flow that traverses many hops tend to have a higher chance of

being dropped than packets in flows with fewer hops. Therefore, TCP flows with more hops

may not be able to probe the available bandwidth as effectively as the ones with fewer hop.

This raises a fairness trade-off between burst delay and losses. Fairness of burst delivery in

OBS network is a complex issue that has been subject to extensive research efforts. A

common problem of these studies that the schemes never consider the types of packets

assembled in the data burst. In [88] a merit-based channel allocation algorithm using JET

signalling is proposed. A merit value is defined to rank each burst according to the length of

the route or the potential delay. In [59], a wavelength continuity approach is introduced. This

scheme performs backward reservation similar to that defined in Multi-Protocol Label

Switching (MPLS). Within this scheme, a control packet traverses from the source to the

destination through the predefined path. The destination sends a reservation packet to reserve

switching fabric at each intermediate core node backward in parallel with the assembly of the

data burst at the source.

Link scheduling algorithms play a vital role in maintaining fairness among bursts. In [40], a

batch scheduling algorithm is proposed to maintain optimal link scheduling in terms of the

scheduled bursts, which reduces the burst losses. This approach takes into consideration the

burst size, arrival time, and link status, to maximize the number of scheduled bursts.

However, these batch scheduling algorithms did not consider the burst fairness factor while

performing burst scheduling. In [106], two schemes for improving fairness in OBS are

presented. The authors first proposed a weighting function for evaluating free channels based

on the number of hops between source and destination edge nodes. The second approach

enhances the random early discard (RED) scheme, where a burst that makes fewer hops has a

higher dropping probability than one with more. In [50], the authors proposed a new channel-

 29

reservation protocol called virtual fixed offset time (VFO). Unlike previously proposed

scheduling algorithms, VFO schedules bursts in the order of their arrival instead of the order

of the corresponding control packets, which increases the chances of burst delivery [49].

We observe that all these link scheduling or signalling algorithms demonstrated a reduction

in the burst dropping probability, thus, increasing the overall network throughput. However,

they introduced extra switching-architecture complexity and additional burst delay.

2.6.2 New TCP Congestion Control for OBS Networks

2.6.2.1 BTCP (BLE, BACK, BNACK)

The study in [98] investigated TCP false timeout detection due to random burst-contention

loss under a wide range of traffic loads. Three solutions were proposed. The first, called

BTCP with burst length estimation (BLE), is based on estimating the number of TCP packets

assembled in the burst without the knowledge of the burst assembly algorithm deployed at

the OBS edge node. In addition to the cwnd, a burst congestion window burst_wd is also

maintained. If the first loss is a TD, then burst_wd = cwnd/2 (i.e., this is an indication that the

packets are assembled over many bursts). However, if the first loss is a TO, then TCP sender

first compares cwnd with burst_wd. If cwnd ≤ burst_wd and burst_wd > 3, the TCP sender

considers this TO a false TO. It halves cwnd and performs fast retransmission for the missing

segments. When cwnd > burst_wd or burst_wd ≤ 3, the sender considers this a true TO event

and initiates normal TCP retransmission.

In the second approach, called BTCP with burst acknowledgement (BACK), each TCP

packet is acknowledged by a TCP agent located at the OBS edge nodes. This approach can

effectively prevent TCP from detecting false TO; however, the end-to-end TCP semantics are

violated since ACKs reach TCP senders before the actual completion of packet delivery. The

last approach in [98], called BTCP with burst negative acknowledgement, maintains a TCP

agent at each OBS core node. Whenever a burst is dropped, the TCP agent disassembles the

burst and sends a burst negative ACK (BNACK) to the corresponding TCP sender. The

missing segments and the network congestion state are exchanged explicitly between the

 30

TCP senders and the OBS core nodes. In general, reducing the extra control overhead and

implementation complexity are challenges when attempting to deploy these solutions.

2.6.2.2 Burst AIMD (BAIMD)

The BAIMD [73] scheme is based on the framework of Generalized Additive Increase

Multiplicative Decrease (GAIMD) [11] [89] [96] for cwnd adjustment. Two parameters are

defined: α and β, for the additive increment and the reduction ratio for cwnd at each TCP

sender. Unlike conventional TCP, where α and β are set to 1 and 0.5, BAIMD determines the

two parameters dynamically in such a way that cwnd is increased by α segments for each

acknowledged packet in a round and is decreased multiplicatively by β (0.5<β < 1) for any

packet-loss event.

With BAIMD, the sender is not notified explicitly of the burst assembly mechanism and the

reasons for burst losses. Each sender treats a packet-loss event as a congestion loss.

Obviously, this could lead to an overestimation of network congestion by incorrectly halving

cwnd for every segment drop. To compensate for this overestimation, BAIMD senders

determine the values of α and β dynamically using burst-level status (i.e., the estimated

traffic load in the OBS network) such that the summarized effect of the burst-drop event is

estimated. The scheme aims to achieve the best throughput for the competing flows. For

example, if a burst is lost when the network load is low, the lost packets are considered due

to random burst contention, and the multiplicative factor is set to 0.5<β<1. Otherwise, β is

set to 0.5 when network load is heavy and the burst dropping is due to congestion.

One of the most important advantages of BAIMD is simplicity, as no burst-level window is

maintained at the TCP senders, and no explicit notification specific to each launched TCP

segment is exchanged between the OBS edge and the TCP senders. The scheme maintains

clean separation between the control signalling at the TCP senders and OBS edge nodes.

Most notably, BAIMD senders use the RTT of each launched segment along with the number

of TOs as references for sensing the network load. For example, data bursts are subject to

extra buffering delay at the OBS edge nodes in response to serious network congestion. Thus,

RTT increases substantially. On the other hand, if a data burst is dropped due to random burst

contention in barebone OBS, the RTT remains unchanged. Thus, it is considered an

 31

indication of low network load. Figure 2.6 illustrates the functionality of the proposed

scheme.

Figure 2.6 The BAIMD congestion control scheme

BAIMD estimates the multiplicative factor β through estimating the traffic load at the OBS

layer. BAIMD defines a threshold load value cgstl for computing the multiplicative factor.

When a packet loss occurs at time t and all the connected TCPs as well as BAIMD are

notified either through TD or TO, the maximum link capacity has been reached at that

moment. In the congestion state (i.e., the load is 6.0≥cgstl), the BAIMD senders behave

similar to conventional TCP senders with β = 0.5. Otherwise, β is set to cgstl−= 1β where,

6.00 << cgstl . Once β is computed, BAIMD uses the GAIMD congestion control mechanism

 32

to obtain the sending rate α as follows. In the presence of TD loss, 3(1) (1)α β β= − + ,

while in the case of TO loss, 24 (1)
3

α β= − [11] [89] [96]. Table 2.2 summarizes the TCP over

OBS schemes.

In the following chapter we present our methodology for evaluating TCP over OBS. This

includes a detailed analysis on the used simulation topology, simulation parameters,

performance evaluation assumptions, performance evaluation parameters, TCP modeling

notations, and the TCP implementations examined.

 33

Schemes
Solution

Category

OBS

Type

Devices Involved

Explicit

Notifications

Problem Addressed

TCP

source

OBS

edge

OBS

core

Random

Burst

Losses

Slow

Convergence

Adaptive
Assembly Period

(AAP)

link-layer Barebone
BCR

 √ √

Burst
Retransmission

link-layer BCR √ √ √

Deflection
Routing

link-layer BCR √ √

FDLs link-layer BCR √ √

Burst
Segmentation

link-layer BCR √ √

Wavelength
Conversions

link-layer BCR √ √

Retransmission-
Count Dropping

link-layer BCR √ √ √ √

TCP with Burst
Acknowledgement

link-layer Barebone

BCR
√ √ √ √ √

TCP Decoupling link-layer Barebone
BCR

√ √ √

BTCP with Burst
Length Estimation

without
Signalling

Barebone
BCR

√

BTCP with Burst
ACK

Signalling Barebone/

BCR
√ √ √ √

BTCP with burst
NACK

Signalling Barebone

BCR
√ √ √ √ √

Burst AIMD without
Signalling

Barebone
BCR

√ √ √ √ √

Table 2.2 TCP solutions over OBS Networks

 34

Chapter 3
Methodology

In this chapter we present the methodology used for studying TCP throughput over OBS

networks through the rest of this thesis. We explain the modeling notation and the simulation

parameters.

3.1 TCP Modeling Notation

In this section, we present the notation used in modeling TCP over OBS networks. In both

 Chapter 4 and Chapter 5, we have selected TCP SACK [54] as for our modeling since it has

been widely deployed in current operating systems and has shown better throughput

performance over OBS networks than TCP Reno and New Reno [98] [99].

p : Burst dropping probability

cp : Burst contention probability

ncp : Probability of no burst contention

srp : Probability of a burst contended but successfully retransmitted through burst

retransmission

α , β : Vegas throughput thresholds in packets

BaseRTT : Minimum measured RTT

R : Expected RTT without burst retransmission

rRTT : Expected RTT with burst retransmission

b : Number of packets that are acknowledged by receiving an ACK

B : TCP throughput in packets per second

H : Expected number of packets submitted during a TO period

RTT : average round trip time

TOP : TCP timeout period

TDP : TCP triple duplicate period

 35

RTO : Retransmission timeout
TOZ : Duration of a sequence of TOs

A : Duration of a sequence of consecutive successful rounds

X : Number of consecutive successful rounds

Y : Number of packets sent before TD or TO expiration

W : Current congestion window size in segments

0W : TCP cwnd in Vegas stable state

mW : TCP maximum window size

S : Number of segments belonging to a single TCP flow being assembled in the

current burst
Q : Ratio between the probability of TO loss and TD loss

aB : IP-access bandwidth

bT : Burst assembly time

In the next section we present the simulation model including network topology, link

capacity, burstification process, etc.

3.2 Simulation Model

In our simulation model, we used the NS-2 network simulator [27] [87] for evaluating TCP

throughput performance over OBS networks. The NSF network topology is implemented as

shown in Figure 3.1. The distances shown are in km.

Figure 3.1 NSF OBS simulation topology

 36

Data bursts are generated at the ingress edges (i.e., ingress nodes are the OBS edge source

nodes) and traverse through the core nodes with a minimum of four hops before reaching

their egress destinations (i.e., egress nodes are the OBS destination edge nodes). Depending

on the number of competing TCP flows, the burst dropping probability varies between 10-5

and 10-1. TCP flows are classified into fast, medium, and slow flows as in [19]. For a fast

flow, all segments from the sending window are assembled into a single data burst. A burst

loss causes fast flows to timeout. For a slow flow, one segment from the sending window is

included in a given data burst. Therefore, the loss of the data burst results in a loss of a single

packet. For a medium flow, the number of segments assembled into a single burst ranges

between the fast and the slow flows. The burst loss causes medium flows to generate TD. In

our simulations, TCP speed is controlled by the maximum congestion-window size (Wm), the

TCP segment length (L), the IP-access bandwidth (Ba), and the burst assembly time (Tb) as

follows,

Fast flow .m
b

a

W L T
B

≤ (3.1)

Medium flow .m
b

a a

W LL T
B B

< < (3.2)

Slow flow b
a

L T
B

> (3.3)

In this thesis, we focus on fast and medium flows, which are of more practical interest in

high-speed networks with relatively high assembly time. Therefore, the mixed time/length-

based burst assembly algorithm is used where the maximum burst length is set to 50 KB to

generate fast and medium flows simultaneously. The TCP maximum congestion window

ranges from 10 to 104 segments. The core nodes implement the Latest Available

Unscheduled Channel with Voice Filling (LAUC-VF) channel scheduling algorithm [91].

One fiber link of 8 wavelengths operating at 10 Gbps is used between adjacent nodes, with a

10 ms propagation delay. One bi-directional control channel is allocated along each link.

Control-packet processing time is set to 1 µs at both core and edge nodes. The offset time is

set to 6 μs which is sufficient for bursts to traverse a minimum of 4 hops. A File Transfer

 37

Protocol (FTP) is used for generating TCP traffic with a 1 KB average packet size. TCP

throughput is obtained over a simulation period that ranges from 103 to 104 seconds.

The TCP senders and receivers are attached to the OBS edge nodes. Burst losses occur at

the OBS core network due to burst contention. Burst retransmission and deflection routing

have been implemented. In our simulation, we examined the TCP throughput over barebone

OBS, OBS with burst retransmission, and OBS with burst deflection routing. If the

contended burst contends again after the second retransmission attempt, the burst will be

dropped. Similarly, if the deflected burst contends after reaching the second node, it will be

dropped. In the simulation, RTT increases due to buffering delay at the edge nodes, burst

retransmission, and burst deflection.

For the purpose of examining TCP fairness, we use Jain’s fairness index which is defined

as 2 2
1 1

()
n n

i ii i
B n B

= =∑ ∑ , where n is the number of competing flows and Bi is the throughput of

the ith flow. The competing flows share the same source and destination. During simulation,

the fairness index is obtained to compare flows with similar congestion-control

implementations.

In the next section, we evaluate the throughput performance of TCP implementations

under a range of burst dropping probabilities. This simulation study is essential to understand

the throughput level in the presence of burst losses that affect multiple segments from a

single TCP flow.

3.3 Performance Evaluation of Selected TCP Implementations over OBS

In this section, a number of TCP implementations and enhancements which target problems

similar to the ones encountered in OBS networks are analyzed. Furthermore, an extensive

simulation is performed to evaluate the throughput performance of TCP Reno, New Reno,

SACK, DSACK, FACK, TCP with Eifel, BTCP, and BAIMD over the simulation model

presented in Section 3.2.

 38

3.3.1 Performance Evaluation Overview

In this section we give an overview of a number of previously reported TCP enhancements

and their design principles/premises. TCP SACK detects the loss of multiple packets in a

single round trip. The block information in an ACK allows the sender to retransmit the lost

packets at once. TCP New Reno [28] is similar to SACK, in which partial ACKs are

exchanged between the sender and destination to indicate the loss of multiple packets in one

transmission round. TCP with duplicated SACK (DSACK) [26] reports the reception of

duplicated packets so that the sender is informed constantly of which segments are received

at the destination. With TCP Forward Acknowledgment (FACK) [55], the TCP sender

maintains the number of packets received by the receiver through the segment sequence

number. Burst TCP (BTCP) [98], TCP Eifel [52] [53], TCP with Explicit Loss Notification

 [1], and TCP with Explicit Congestion Notification [1] were developed to identify suspicious

timeouts that cause unnecessary retransmissions. Furthermore, TCP ELN/ECN distinguishes

among packet losses due to congestion, contention, link failure, and other reasons.

The TCP implementations which address the problem of slow convergence, such as Fast

TCP [36] [39], High Speed TCP (HSTCP) [79], and Scalable TCP (STCP) [24] are kept for

future work since they are not in the scope of this thesis.

3.3.2 TCP Implementations Not Designed for OBS Networks

Figure 3.2 shows the results of the competition among Reno, New Reno, SACK, DSACK,

and FACK, in terms of throughput under barebone OBS. It is clear that TCP SACK, FACK,

and DSACK out-perform Reno and New Reno due to the fact that the senders are designed to

handle the dropping of a whole block of data segments in a single round, which matches the

requirements of OBS well.

New Reno achieved the lowest throughput since it halves cwnd every time a segment is lost

and successfully retransmitted, which could lead to dramatic reduction of cwnd in a single

round. This implies that the more TCP Reno packets are assembled in a single burst, the

lower the Reno throughput in the presence of burst dropping.

 39

Figure 3.2 TCP Reno, New Reno, SACK, and DSACK throughput in barebone OBS

Figure 3.3 TCP Reno, New Reno, SACK, and DSACK throughput in OBS with burst

retransmission

 40

From Figure 3.2 we observe that FACK outperforms SACK since it maintains explicit

measurements of the total number of packets outstanding in the network. TCP FACK senders

maintain two variables called snd.fack and retran_data representing the forward-most

packets received by the receiver at the transmission and the retransmission phases. With the

two variables, the senders can determine the exact segment block that has been dropped in

the network or received by the receiver. In contrast, SACK and Reno can only estimate the

number of packets still in the network by assuming that each TD received is for only one

segment. Since FACK determines the exact number of lost packets in the network, it can

exploit the full network capacity, while recovering from segment loss and mitigating rate

fluctuation, by sending a chunk of segments at once. Given these features, FACK may be the

best fit to OBS networks since a data burst may contain a block of FACK segments or only

one segment. In either situation, TCP FACK senders handle the correct number of missing

segments with the most appropriate adjustment to the sending rate.

In order to examine the performance of the TCP implementations in the presence of out-of-

order burst delivery, we enabled burst retransmission at the ingress nodes. If the contended

burst fails at the second retransmission attempt, it is dropped. Figure 3.3 shows the

performance of TCP Reno, New Reno, SACK, DSACK, and FACK in response to out-of-

order delivery in OBS with burst retransmission. With DSACK, the TCP senders can undo

the halving of cwnd when receiving the second copy of a segment caused by out-of-order

burst delivery. From the figure, DSACK has the best ability to recover from the out-of-order

delivery [5] [21] [66].

 41

Figure 3.4 Reno (Eifel), New Reno (Eifel), and SACK (Eifel) throughput over barebone OBS

We tested the effect of integrating the Eifel algorithm [67] with traditional TCP

implementations for detecting suspicious timeouts. In this experiment, a TCP timestamp

facility is enabled [38]. In order to observe the response of the Eifel algorithm upon any

suspicious timeout due to sudden packet delay, we chose to delay intentionally every TCP

packet launched in the network at the 100th, 600th, and 800th seconds of the simulation time

for 100 ms, 200 ms, and 100 ms respectively at core node 8 in Figure 3.1.

Figure 3.4 and Figure 3.5 show the comparison among TCP Reno (Eifel), New Reno

(Eifel), and SACK (Eifel) in barebone OBS and OBS with retransmission, respectively. It is

clear that the Eifel algorithm has successfully improved the performance of Reno, New Reno

and SACK by identifying the retransmission ambiguity due to the inserted delay events.

 42

Figure 3.5 Reno (Eifel), New Reno (Eifel), and SACK (Eifel) throughput over OBS with
retransmission

Among TCP enhancement schemes not specifically designed for OBS, TCP SACK,

FACK, and DSACK outperform all the other schemes by best addressing the issue of

multiple segment losses, at the expense of being unable to identify suspicious timeouts. We

also observe that the integration of Eifel can greatly improve the throughput performance for

the three TCP implementations by identifying suspicious timeouts caused by sudden delays

and out-of-order delivery.

3.3.2.1 TCP Implementations Designed for OBS Networks

We also evaluated and compared the throughput performance of the recently proposed TCP

implementations designed for OBS networks, including BAIMD [73] and BTCP

BACK/BNACK [98]. TCP Reno and SACK are taken for comparison since they achieve

higher throughput than New Reno in OBS networks [98]. Figure 3.6 shows the throughput of

TCP Reno, SACK and BAIMD under barebone OBS and OBS with retransmission. Under a

wide range of burst-dropping events (i.e., due to a mix of random burst contention and

 43

network congestion), BAIMD achieves the best performance among all traditional TCP

implementations. Recall that BAIMD derives dynamically β corresponding to the

congestion-burst dropping rate to achieve a stable cwnd adjustment upon each burst loss

event.

Figure 3.6 TCP Reno, SACK, BTCP (BACK/BNACK), and BAIMD throughput over

barebone OBS and OBS with burst retransmission

In Figure 3.6, we also examine BTCP with BACK/BNACK and BAIMD. With BTCP, a

TCP agent is placed at the ingress node to enable the explicit loss notification facility and

ACKs for the BTCP senders. The simulation results show that BTCP yields slightly better

performance than TCP Reno, New Reno, and SACK, but is still much worse than BAIMD.

We observe that BAIMD outperforms all the other schemes due to its ability to identify the

network status intelligently when a burst is lost and determine the corresponding

transmission parameters α and β to achieve a stable sending rate and relevant congestion

control.

 44

Table 3.1 summarizes the TCP implementations examined and the resultant throughput

performance over OBS networks. The simulation results show that conventional TCP

implementations fail to maintain a high throughput level in the presence of burst losses that

contain multiple segments from a single TCP flow.

From the TCP variants listed in Table 2.2 and Table 3.1, we observe that the most

important characteristics and abilities that a congestion-control mechanism in TCP over OBS

should have are following: (1) the ability to handle multiple TCP segment-loss events in a

single round trip, (2) the ability to identify suspicious TOs and burst losses under low traffic

load, and (3) the ability to compensate for out-of-order delivery in the OBS layer. The

following chapters investigate these characteristics of TCP congestion-control mechanisms

over OBS. In this context, novel TCP congestion-control mechanisms are proposed to deal

with various burst-transmission characteristics.

Table 3.1 An overview of TCP implementation performance over OBS

Schemes

Suspicious

TOs

Packet

reordering

Multiple packet losses in

a single RTT

Reno (Eifel) √

New Reno (Eifel) √

SACK (Eifel) √ √

DSACK √ √

FACK √

BTCP (BACK,
BNACK)

√ √ √

BAIMD √ √ √

 45

Chapter 4
Statistical AIMD Congestion Control for TCP over OBS Networks

This chapter introduces a novel congestion-control scheme for TCP over OBS networks,

called Statistical Additive Increase Multiplicative Decrease (SAIMD). SAIMD maintains and

analyzes a number of previous RTTs at the TCP senders in order to identify the confidence

with which a packet-loss event is due to network congestion. The confidence is derived by

positioning short-term RTT in the spectrum of long-term historical RTTs. The derived

confidence corresponding to the packet loss is then used by the policy for congestion-

window adjustment. SAIMD only requires statistical information about RTTs measured at a

TCP sender, which achieves a clean separation between the TCP and OBS layers. We show

through extensive simulation that the proposed scheme can solve the false-congestion-

detection problem effectively and outperform conventional TCP significantly. Also, based on

the proposed congestion-control algorithm, a throughput model is formulated and verified

through simulation.

4.1 Overview

When OBS is deployed as the underlying switching technology, TCP congestion control is

subject to great challenge. A number of TCP implementations have been proposed for

detecting and controlling network congestion in various network environments, including

mobile wireless networks [16], ad hoc networks [17], and optical networks [23] [44] [93].

Each TCP enhancement has its own design premises, and could be very effective in one

circumstance while being much outperformed in another. It has also been proven that joint

consideration of the characteristics of the whole network environment in the design of the

TCP modifications or extensions is necessary [2]. These facts are especially salient when

TCP is extended to OBS networks, where multiple TCP segments can be lost when the OBS

network is not congested.

The GAIMD scheme proposes to reduce the “saw-tooth” behaviour of TCP for multimedia

applications [11] [96]. Instead of increasing cwnd by one for successful packet delivery and

 46

decreasing it by half for a packet-loss event, GAIMD increases cwnd additively by α

segments when no packet is lost in a single round-trip, and decreases multiplicatively by β if

a TD packet-loss event occurs. In order to ensure TCP friendliness among competing

GAIMD flows, α and β can be set as explained in [11] [96]. Since SAIMD aims to address

the unnecessary reduction of cwnd, we focus on the multiplicative decrease parameter β ,

while α is set to 1.

4.2 SAIMD over OBS Networks

The SAIMD scheme adopts the framework of GAIMD to enhance the responsiveness of TCP

to any burst-loss event that is not caused by congestion. In SAIMD, when a data burst is lost,

the corresponding TCP senders will be notified by a TD or TO. In either case, instead of

halving cwnd or even throttling to slow-start stage, TCP senders reduce cwnd by the

multiplicative factor β. The factor β is determined dynamically by positioning the short-term

RTT statistics in the spectrum of long-term historical RTTs. Here, “statistics” refers to mean,

standard deviation, and correlation function as described below.

SAIMD introduces two parameters, M and N. The parameter M is the number of

consecutive RTTs measured for the long-term statistics. M should be sufficiently large that

the derived statistics (i.e., the mean and standard deviation) represent the intrinsic

characteristics of the network topology, routing policy, and traffic distribution/pattern. The

parameter N is the number of consecutive RTTs measured prior to a packet loss for the short-

term statistics. The average of the N RTTs, denoted by avg_RTT_N, is compared with the

average of the M RTTs, denoted by avg_RTT_M, in a TCP session, in order to determine

whether the packet-loss event is due to network congestion or due to random burst contention

in a lightly-loaded OBS network. In a packet-loss event caused by random burst contention,

avg_RTT_N is expected to be close to avg_RTT_M. A larger avg_RTT_N suggests that a

packet-loss event is more likely due to network congestion.

The relationship between avg_RTT_M and avg_RTT_N is based on the following

observations. In TCP over OBS networks, packet loss is caused by random burst-contention

losses in the OBS core or network congestion in the IP access networks or OBS core. The

 47

difference between random burst contention and network congestion is that network

congestion is high resource utilization for a longer period. In the high resource-utilization

state, the RTT of each packet is much higher than that in the low-utilization state. This is due

to the longer queuing delay in the IP access network. Also, in an OBS core with contention-

resolution schemes such as burst retransmission [104] [105] and deflection [37] [68], bursts

will have a higher probability of being retransmitted or deflected, which results in a longer

average burst delay.

We further quantify the relation between the long-term and short-term statistics in order to

define the confidence with which a packet loss is due to network congestion. We assume that

the M consecutive RTTs are random with a mean avg_RTT_M and a variance Var(RTT). We

also assume they can be modeled approximately as a Normal distribution. To validate this

assumption, we analyze 14,000 consecutive TCP RTTs resulting from running a simulation

for 103 seconds, with a Chi-square test under the following two network scenarios: one is a

barebone OBS network, where delay variation takes place in IP access networks and burst

assembly; the other scenario is an OBS network with burst deflection, where delay variation

takes place in the IP access networks, burst assembly at the OBS edge nodes, and burst

deflection due to longer routes. The null hypothesis in the Chi-square test is: “the distribution

of the M RTTs cannot be modeled as normal N(μ,σ), where _ _avg RTT Mμ = , and

()M Var RTTσ = ⋅ ”. The derived distributions in both network scenarios are shown in

Figure 4.1. The simulation experimental parameters are given in Section 3.2. We found that

the null hypothesis can be rejected at a 5% confidence level, which validates our assumption

that the M consecutive RTTs can be modeled approximately as a Normal distribution.

 48

Figure 4.1 TCP RTT distribution histogram

4.2.1 Autocorrelation for Determining a Proper Value of N

Selecting a proper value of N is important, since the N RTTs are expected to provide

sufficient information about the short-term network status when a packet is lost. If N is

chosen too small or too large, the short-term network status may not be represented

accurately. Our approach in selecting N employs an autocorrelation function with effective

sample data size:

0

(0,) [(0) . (0)]
1 () () , 0N

i

R N E RTT RTT N

RTT i RTT i N N
M =

= +

= ⋅ ⋅ + >∑

where RTT(i) is the RTT of the ith packet. The autocorrelation function reflects how well a

set of random variables are related to each other. Figure 4.2 shows the numbering of RTTs.

The autocorrelation function can reflect the smoothness of the process. (0,)R N has the

maximum value when N = 0. Also, the stronger correlation within a group of RTTs, the

larger the value of (0,)R N outcome [33]. In our scheme, the value of N is selected such

that (0,) (0,0) %R N R γ= ⋅ , where γ is the first-order autocorrelation threshold that determines

 49

N based on the autocorrelation function. In other words, we benefit from the autocorrelation

property to determine the effective sample size N, where
(1)
(1)

N M γ
γ

−
=

+ .

Figure 4.2 Numbering of RTTs, where RTT(0) denotes the RTT right before a packet-loss

occurs

In order to represent the short-term network status well, N RTTs should have a strong

correlation with each other. Hence, the value of γ should be close to 1. In our study, γ is

90%.

4.2.2 SAIMD Congestion Control

After N is selected based on the approach in the previous subsection, the value of

avg_RTT_N can be obtained. Then, we define the confidence with which the current packet-

loss event of a TCP session is due to network congestion by positioning avg_RTT_N in the

Normal distribution spectrum of the M RTTs (shown in Figure 4.1). The derived confidence

is used to adjust β dynamically at a TCP sender so that it represents the current network

status.

For positioning avg_RTT_N in the Normal distribution spectrum, a function

()i conf iz RTT u= is defined, where ui is the confidence level. The ()conf iRTT u returns an RTT

value (denoted by zi) which is larger than a proportion ui (10 ≤< iu) of all RTTs in the

Normal distribution curve. A one-to-one mapping between ui and zi exists, as shown in the

following expression:

 50

0

() ()
i

i i j
j

u cdf z pmf z
=

= = ∑

)(izcdf and)(izpmf denote the cumulative density function and probability mass function in

the RTT spectrum given the RTT value of zi [33]. The one-to-one mapping between ui and zi

is shown in Figure 4.3. In this figure, for example, if the RTT is higher than the mean RTT

with ui = 90% confidence, then the RTT value of zi is in the range of 100 to 120 ms.

Figure 4.3 The relation of zi, ui, and β in the SAIMD scheme.

The proposed policy for adjusting β is as follows. When avg_RTT_N is smaller than

1 1()confz RTT u= , a low confidence of network congestion is indicated, which yields no

adjustment of the cwnd in response to packet loss, (i.e., β = 1). When

 51

avg_RTT_N> ()n conf nz RTT u= (1nu u>), it is a strong indication of network congestion.

Hence, the TCP sender cuts cwnd by half, (i.e., β = 0.5) in response to a packet loss. When

avg_RTT_N falls in the interval 1[,]nz z , ()if uβ = , where 1

1

() 1
2()

i
i

n

u uf u
u u

−
= −

−
. That is, we

chose to set β according to the piecewise linear function of Figure 4.3, parameterized by u1

and un. Note that u1 and un are two parameters given in advance in order to distinguish

network congestion from random burst contention in a lightly loaded OBS network. In this

study, u1 and un are set to 50% and 90%, respectively. The policy-based cwnd adjustment

scheme can be summarized in the following equation:

1

1

0.5 _ _ ()

() () _ _ ()

1 () _ _

conf n

i conf n conf

conf

avg RTT N RTT u

f u RTT u avg RTT N RTT u

RTT u avg RTT N

β

⎧ >
⎪

= > >⎨
⎪ ≥⎩

 (4.1)

The dynamic adjustment of β based on the confidence level iu is illustrated in Figure 4.3. The

flow chart for SAIMD is shown in Figure 4.4.

We now discuss two extreme cases for SAIMD. Note that the adjustment of β will only be

trigged if a TCP sender detects a TD segment loss. The first extreme case is that a TCP

sender starts the data transmission while the network is congested. In this case, the measured

RTTs are large at the beginning of the TCP session and the avg_RTT_N and avg_RTT_M

obtained by the TCP sender are very close. Hence, β will be close to 1. For a TD segment

loss, cwnd will not be reduced enough. SAIMD will then cause persistent congestion in the

network and TO segment losses will occur. The TCP sender then enters a slow-start phase

and sets cwnd to 1. As a result, the network congestion will be relieved. The second extreme

case is when there is no RTT variation in a network, which is expected to be rare. In this

case, the avg_RTT_N and avg_RTT_M obtained by the TCP sender are also very close. As a

result, cwnd will not be reduced enough in response a TD. Instead, the TCP flow will timeout

as a response to persistent congestion.

 52

Figure 4.4 The SAIMD congestion control scheme.

SAIMD scheme is particularly suitable for high-bandwidth TCP flows that operate for a

relatively long period of time with a large cwnd. These flows are expected to take an

important role in applications such as grid computing. Depending on the number of TCP

segments in a contended burst, these flows may either trigger a TO or cut cwnd in half as a

response to receiving TDs. Once there is a false-congestion detection event which leads to

TO or TD, the time required to increase cwnd (most likely additively) to its previous value

could be very long, which impairs the TCP performance and the desired application scenario.

Compared with conventional AIMD-based TCP, SAIMD incurs additional overhead for

maintaining the M RTTs and computing the autocorrelation and confidence intervals for the

N RTTs. The cost can be traded off against the long convergence time in recovery from slow

 53

start caused by false congestion detection. Faster recovery is essential for those high-

bandwidth flows that may otherwise take hours to recover from a single TO. Note that the

computation for the autocorrelation and confidence interval is required only when a segment

loss event occurs, and the computation complexity is almost constant regardless of M and N.

In addition, SAIMD is intended mainly for long and high-bandwidth TCP flows, rather than

short ones such as those of HTTP web services; thus, the resultant additional overhead to the

whole network is expected to be negligible.

One potential approach for enhancing SAIMD to cope with the above problems is to

exchange information with the OBS domain. This information can accurately describe the

network condition and the reasons for burst losses. In Chapter 5, we modify TCP congestion-

control algorithm to exploit the advantages of explicit information exchange between TCP

and the OBS domain.

4.2.3 Performance Analysis

In order to gain deeper understanding of SAIMD throughput performance, in this section we

develop an analytic model for SAIMD over OBS networks. The model notations are

presented in Section 3.1. In our model, we define a round as starting when the sender emits

the current cwnd (in segments) and lasting until either it receives an acknowledgement or the

TO expires. We also define a TD loss as a packet loss detected by triple duplicates and define

a TO loss as a packet-loss detected after the sender times out.

We obtain the SAIMD TCP SACK throughput in an OBS network for both TD and TO

losses by summing the number of packets sent during TD and TO periods, divided by the

duration of the periods,

[] []
[] []
E Y Q E HB

E TDP Q E TOP
+ ×

=
+ × (4.2)

In the following two sections, we derive E[Y], E[TDP], E[TOP], E[H], and Q in the presence

of TD and TO losses respectively.

 54

4.2.4 Triple Duplicate (TD) Losses

As per the model in [60] [99], suppose that the (ci+1)th burst is the first burst lost in the ith

TDP, TDPi, and that the first lost segment is number (ai+1). As shown in Figure 4.5, hi

additional segments will be sent in the same round after the (ci+1)th burst is sent and lost.

After receiving TD, the TCP sender retransmits all the missing segments contained in the lost

burst in the next round. Therefore, in the next round, SW
iX − new segments will be sent,

where
iXW is the cwnd size in the iX th round of TDPi. After recovering all the segments lost

in the burst, a new round TDPi+1 starts with cwnd cut by a factor of β.

Figure 4.5 Evolution of SAIMD TCP SACK congestion window over OBS networks.

The total number of segments transmitted successfully during TDPi is Yi = ai + hi + .SW
iX −

E[h] is approximately equal to][][XWEE β , since iXi Wh ≤≤0 and the cwnd is reduced by β

for every TD loss. Thus, we have

SWEEaEYE X −++=][)1][(][][β (4.3)

 55

where S is the number of segments belonging to the TCP flow assembled in the current burst.

As per Equation 4.1, β is a function of the avg_RTT_N and the confidence level ui.

Considering Figure 4.5, we derive][βE as follows,

()

1
1

1
1 1

1 1

1 1
1 1

1 11 1

1 ()
[] () () ()

2
1 ()

= 1
2() 2

1 2 ()
()

2 2() 2()

n
n

i i
i

n
i n

i i
i n

n n
n n i i i

i i
i in n

cdf z
E cdf z f z pmf z

u u cdf z
u u u

u u
u u u u u u

u u u
u u u u

β β
=

−
=

−
−

= =

−
= = + ⋅ +

⎡ ⎤− −
+ − ⋅ − +⎢ ⎥−⎣ ⎦

− − −
= + + − +

− −

∑

∑

∑ ∑

 (4.4)

where)(izcdf and)(izpmf denote the cumulative density function and probability mass

function in the RTT spectrum given the RTT value of zi [33]. Since β has pmf pβ, then an

alternative way for solving E[β] can be through historical collection of the β values, which

yields:

[] ()i i
i

E pββ β β β= = ∑ (4.5)

where)(ip ββ is the probability of the distinct values iβ to exist in the random process.

In order to derive E[a], we consider a random process {ci}, which is the average number of

bursts sent in TDPi until the first burst loss. Assume that burst contentions in OBS networks

occur independently. The probability of c = k (or the case where k–1 bursts are successfully

delivered before a burst loss is encountered) can be written as:
1[] (1)kP c k p p−= = − ⋅ (4.6)

Given that ai transmitted segments implies Sci transmitted bursts, ai = Sci, we have,

p
SppkScESaE

k

k∑
∞

=

− =−==
1

1)1(][][(4.7)

By substituting Equation 4.7 into Equation 4.3, we have

 56

1[] (1) []X
pE Y E W S

p
β −

= + + (4.8)

4.2.5 For high packet losses (WX < Wm)

In the presence of high packet losses, cwnd will remain less than the maximum size Wm.

Recall that b denotes the number of packets that are acknowledged by receiving an ACK.

During TDPi, cwnd increases between
1iXWβ

−
and .

iXW Since the increase in cwnd is linear

with slope 1/b, thus,

b
X

WW i
XX ii

+=
−1

β (4.9)

By solving Equation 4.9 for iX and talking the expectation, we have

[] (1) []XE X b E Wβ= − (4.10)

Since Yi can be derived by adding the numbers of segments sent in each of iX successful

rounds, plus the additional (SW
iX −) segments in the next round of iX as shown in

Figure 4.5, we have:

SW
b

X
W

X

SWbkWY

ii

i

i

i

X
i

X
i

X
bX

k Xi

−+−+=

−++=

−

−∑ −

=

)12(
2

)(

1

1

1/

0

β

β

By substituting Equation 4.9, we have

SWWW
X

Y
ii XXiX

i
i −+−+=

−
)1(

2 1
β

since the behavior and the size of XW is depending largely on β , we assume a certain level of

correlation existing between both variables. Thus, after substituting Equation 4.10, we get

2 2(1) [] (1) []

[] []
2

X X
X

b E W b E W
E Y E W S

β β− − −
= + − (4.11)

By combining Equation 4.11 and Equation 4.8, we have,

 57

2
2(1) [] () [] 0

2 2 2X X
b b b SE W E W

p
β β β−

+ − − − =

E[WX] can be then obtained as

2
2

2

(1) (1) 2 (1)()
2 2

[]
(1)X

b b Sb
p

E W
b

β β ββ β

β

− − −
− + − +

=
−

 (4.12)

By substituting Equation 4.12 into Equation 4.8, we obtain E[Y] as,

2
2(1) (1) 2 (1)()

2 2 1[]
(1)

b b Sb
p pE Y S

pb

β β ββ β

β

− − −
− + − +

−
= +

−
 (4.13)

Also, by substituting Equation 4.12 into Equation 4.10, we obtain E[X] as,

2
2(1) (1) 2 (1)()

2 2
[]

1

b b Sb
p

E X

β β ββ β

β

− − −
− + − +

=
+

 (4.14)

E[TDP] is then obtained as

2
2

[] ([] 1)

(1) (1) 2 (1)2 ()
2 2

(1)
1

E TDP RTT E X

b b Sb
p

RTT

β β ββ β

β

= +

− − −
− + − +

= +
+

 (4.15)

4.2.6 For low burst losses (WX = Wm)

For a very low burst loss probability, the cwnd size will most likely be at the maximum, Wm,

before a burst loss event occurs. From Equation 4.8 we can obtain,

1[] (1) m
pE Y W S

p
β −

= + + (4.16)

During each TDP, cwnd increases linearly from βWm to Wm for)(mm WW β− rounds and

then stays at Wm for))((mmi WWX β−− rounds, hence we can obtain the number of segments

that are transmitted before a TD loss as
2()

()
2

m m
m i m m i

W W
W X W W h

β
β

−
+ − + − . On the other

 58

hand, from Equation 4.7, the total number of segments that are successfully transmitted

before a packet-loss is S/p. Hence we have
2()

()
2

m m
m i m m i

W W SW X W W h
p

β
β

−
+ − + − = (4.17)

By solving Equation 4.17 for iX and talking the expectation, we can obtain E[X] as

2(1 2)
[] (1)

2
m

m
m

W SE X W
W p

β β
β β

− +
= − − + + (4.18)

The duration of the TDP is obtained as,

 2

[] ([] 1)

(1 2)
((1) 1)

2
m

m
m

E TDP RTT E X

W SRTT W
W p

β β
β β

= +

− +
= − − + + +

 (4.19)

4.2.7 Timeout (TO) Losses

The behavior of TCP SAIMD for a TO loss is the same as that of TCP SACK. Hence, the

analysis of TO losses is same as the analysis in [19]. From [99], we have

p
pREHE
−

=−=
1

1][][, (4.20)

p
pfRTOTOPE

−
=

1
)(][, (4.21)

where 65432 32168421)(pppppppf ++++++= . A TO occur when all bursts are lost in

the last iX round with probability p(Wx). Since a TD is followed by a TO with probability

p(Wx) or followed by another TD with probability 1-p(Wx), then,

1 1
[()] [()] [] .

X XW W
S S

X XQE p W E p W E p p
− −

= = ≈ (4.22)

4.2.8 SAIMD TCP SACK over OBS Throughput Estimation

In the case of WX < Wm, we can obtain the SAIMD throughput by substituting Equations

4.13, 4.15, 4.20, 4.21, and 4.22 into Equation 4.2, which yields

 59

2
2

2
2

1

(1) (1) 2 (1)()
2 2 1

(1)(1)

(1) (1) 2 (1)2 ()
2 2 ()(1))

11

X

X

W
S

W
S

b b Sb
p p pS

p pbB
b b Sb

p f pRTT p RTO
p

β β ββ β

β

β β ββ β

β

−

− − −
− + − +

−
+ +

−−
=

− − −
− + − +

+ +
−+

 (4.23)

In the case of WX = Wm, TCP SAIMD throughput can be obtained by substituting Equations

4.16, 4.19, 4.20, 4.21, and 4.22 into Equation 4.2, which yields

1

2 1

(1)(1)
1

(1 2) ()((1) 1))
2 1

m

m

W
S

m

W
m S

m
m

p S pW
p pB

W S f pRTT W p RTO
W p p

β

β ββ β

+

−

−
+ + +

−
=

− +
− − + + + +

−

 (4.24)

4.3 Numerical Results

To verify the proposed Statistical AIMD scheme, simulation is conducted using the

simulation parameters presented in Section 3.2. The mixed time/length-based burst-assembly

algorithm is adopted, where the burst timeout threshold is 500 ms and the maximum burst

length is 50KB. TCP Wm ranges from 10 to 30 segments. The access bandwidth is set to 100

Mbps. From Equations 3.1 - 3.3, the selected parameters generate fast and medium flows.

SAIMD is triggered after 30 RTT samples (i.e., collecting 30 samples is sufficient to obtain

a Normal distribution of RTTs). Burst retransmission and deflection routing have been

enabled. In our simulation, we examined the TCP throughput over barebone OBS, OBS with

burst retransmission, and OBS with burst deflection routing. In the simulation, RTT increases

due to buffering delay at the edge nodes, burst assembly delay, burst retransmission, and

deflection.

In Figure 4.6, we show the relationship between the average TCP RTT and the packet-loss

probability. Since there is no significant RTT change resulting from higher burst loss

probability, in this figure we show RTT values corresponding to a maximum of 10-3 burst

 60

contention probability. It is notable that a significant amount of extra delay was incurred by

the retransmitted and deflected bursts.

Figure 4.6 Average TCP RTT delay vs. the burst-contention probability

Figure 4.7 Burst-contention probability vs. SAIMD beta value

 61

In Figure 4.7 we show the calculated β values for SAIMD at various packet-loss

probabilities.

Figure 4.8 compares the results from the analytical model with those obtained by the

simulation. The two agree closely.

Figure 4.8 SAIMD simulation vs. analytical model throughput

Figure 4.9 shows the throughput performance of SACK/SACK(SAIMD) and

Reno/Reno(SAIMD) flows in barebone OBS. The throughput of conventional TCP SACK

and Reno is reduced dramatically even when the burst loss rates are quite low because the

AIMD (1,0.5) senders always take a burst loss event as due to congestion, which may

unnecessarily halve cwnd. On the other hand, the SAIMD SACK senders have achieved a

37% throughput increase because SAIMD does not react rigidly to a burst loss as a

congestion loss at this low packet-loss probability. Instead, the factor β is manipulated in

each TCP sender to guarantee a smaller cwnd reduction in response to any packet loss from a

random burst contention. SAIMD enhances the TCP SACK and Reno throughputs by

approximately 31%.

 62

Figure 4.9 Throughput of TCP Reno/(SAIMD), TCP SACK/(SAIMD) in the barebone OBS

Figure 4.10 shows the throughput of TCP SACK/SACK(SAIMD) and

Reno/Reno(SAIMD), with burst retransmission. Retransmission has successfully reduced the

overall burst loss probability at the expense of longer RTT for TCP senders (as shown in

Figure 4.6).

 63

Figure 4.10 Throughput of TCP Reno/(SAIMD), TCP SACK/(SAIMD) in OBS with burst

retransmission

Through integrating burst retransmission with SAIMD in the TCP flow-control process, we

observe significant improvements in TCP SACK and Reno throughput of 81%. In

Figure 4.11, we consider OBS with deflection routing. The simulation result shows that

SAIMD achieves the best throughput performance. Using SAIMD can improve the TCP

SACK and Reno throughput by 72% in the presence of burst deflection routing.

 64

Figure 4.11 Throughput of TCP Reno/(SAIMD), TCP SACK/(SAIMD) in the OBS network

with burst deflection

We also examine fairness among Reno, SACK, Reno (SAIMD), and SACK (SAIMD).

Figure 4.12 shows the fairness index of TCP flows by Reno, SACK, and Reno (SAIMD), and

SACK (SAIMD), over barebone OBS network. SAIMD has a much better fairness index

than traditional AIMD in Reno and SACK. This is due to the fact that the SAIMD

congestion-control mechanism has successfully and accurately identified burst contention

and congestion, which better assists the SAIMD flows to remain close to the equilibrium.

 65

Figure 4.12 Fairness index of Reno, SACK, Reno (SAIMD), and SACK (SAIMD) in a

barebone OBS network

The fairness index was also examined with retransmission, as shown in Figure 4.13. Note

that burst retransmission is an effective approach for enhancing the overall network

throughput by hiding burst-loss events in the OBS domain. The simulation results

demonstrate that SAIMD fairness with burst retransmission is better than SACK and Reno.

These two experiments prove that SAIMD can maintain a friendly relationship with the other

TCPs.

 66

Figure 4.13 Fairness index of Reno, SACK, Reno (SAIMD), and SACK (SAIMD) in OBS

with burst retransmission

4.4 Conclusion

In this chapter, a novel Statistical Additive Increase Multiplication Decrease (SAIMD)

framework for TCP congestion control in OBS carrier networks is proposed and examined.

SAIMD aims to mitigate the vicious effect of TCP false congestion due to the lack of

buffering in the OBS domain. The scheme collects and analyzes historical RTTs and adjusts

β according to the statistics of the collected RTTs at the occurrence of any segment-loss

event. Analysis was conducted to evaluate the TCP throughput using the proposed scheme.

Simulations were conducted to validate the proposed TCP throughput model and to evaluate

the proposed congestion-control mechanism, by comparing it with conventional AIMD-based

TCP Reno and SACK under different network scenarios, such as OBS networks with burst

retransmission or burst deflection routing. Simulation results showed that the proposed

SAIMD mechanism can outperform conventional TCP implementations significantly. We

conclude that the superiority of SAIMD comes from a better understanding of the underlying

 67

burst-transmission behaviour, through the analysis of collected RTT information. SAIMD is

particularly beneficial to high-bandwidth and fast TCP flows, in which a false congestion-

detection event caused by burst contention could lead to serious impairment of TCP

performance.

With SAIMD, the sender does not require explicit knowledge of the burst assembly

mechanism or the reasons for burst losses, which in some cases (recall Section 4.2.2) results

in an inaccurate estimation of network congestion. In the following chapter, we exploit the

advantages of information exchange between TCP senders and the OBS domain under

various burst transmission conditions.

 68

Chapter 5
TCP with Dynamic Explicit Burst-Contention Loss over OBS

In this chapter, a novel TCP congestion-control scheme with dynamic explicit Burst-

Contention Loss notifications in OBS networks is proposed. The scheme, called TCP-BCL,

aims to handle various OBS burst conditions that negatively affect TCP throughput

performance and fairness. Based on GAIMD, the basic design principle is to tune the

congestion control parameters α and β so that the congestion-window sizes in the

corresponding TCP senders can be adjusted appropriately with an explicit notification from

the OBS edge node.

5.1 Overview

We observed through the previous TCP performance evaluation studies that most TCP

implementations have some limitations and are affected negatively by the bufferless nature of

OBS. Based on the amount of asynchronous bursty bandwidth demand at each ingress and

egress node pair, the scheme attempts to ensure that decreasing the cwnd occurs only in the

event of true network congestion. The idea was used by [1] for wireless communication,

where ELN achieves state leakage between the lower layer and the TCP layer, similar to the

approaches proposed in [98]. With ELN, the cause of each burst loss is reported to the TCP

sender, whether due to congestion or other link-transmission conditions. In this way, the TCP

sender adjusts cwnd according to the network status of the lower layer. In this chapter, we

solve the false-congestion detection problem in TCP over OBS networks and avoid

unnecessary cwnd reduction by introducing a novel congestion-detection scheme that

measures the utilization along each route (path) in the OBS network and adjusts cwnd based

on the utilization and burst-dropping information carried in the explicit notification

messages. This is the first study that integrates the explicit notification facilities with

GAIMD over OBS networks.

 69

5.2 Dynamic Explicit Burst-Contention Loss Notification (TCP-BCL)

TCP-BCL attempts to improve TCP performance over OBS networks without losing TCP

fairness. In terms of the design premise and novelty, the scheme takes the best of BTCP [98]

and BAIMD [73], where the GAIMD window-based congestion-control paradigm and the

mechanisms of explicit notification and/or signalling between the TCP and OBS layers are

both used.

5.2.1 OBS Congestion Identification

In traditional packet-switched networks, IP packets are stored and forwarded at each

intermediate node by reference to the routing table. In such a switching paradigm, network

congestion causes buffer overflow, and a packet-drop event can serve as a clear indication of

network congestion. The situation is different in OBS networks, where each data burst cuts

through the pre-configured intermediate core nodes. Therefore, it is important to quantify

congestion in such an environment.

In the OBS domain, congestion occurs at ingress and/or egress edge nodes. In general, an

ingress node receives the incoming packets and forms data bursts. However, packets may

arrive in a bursty manner, with a much higher arrival rate than the ingress node can deal with.

This could cause the node to drop bursts due to buffer overflow. Similarly, egress nodes may

receive a huge number of data bursts, which are buffered for disassembly. We refer to

congestion at the network edge nodes as edge congestion. In addition to edge congestion,

path congestion is defined as congestion in the network core nodes.

There are two possible approaches to detecting path congestion. The first is to delegate the

congestion-detection process to the core nodes. The edge nodes receive explicit signals from

the core switches indicating link congestion. A similar approach is proposed in BTCP with

BACK/BNACK [98]. It is notable that this approach may not be very practical, since it

increases the signalling and computation overhead at the core nodes. Therefore, in the

following paragraphs, we introduce a novel mechanism for detecting congestion along an

OBS route/path statistically, at the edge node. This approach does not introduce any

additional signalling overhead at the core nodes. Path congestion is measured by how

 70

congested the route in the OBS network is, which is an important index for the upper-layer

TCP senders using the route to adjust their congestion windows.

In our scheme, each OBS ingress edge node maintains long-term and short-term statistics

along each route initiated at it. Whenever a burst-drop event occurs along a route, the ingress

node determines if the route is in congestion by correlating the long-term and short-term

statistics. Specifically, let the parameter M be the number of launched bursts along the route

used to obtain the long-term statistics, where M should be sufficiently large in order to fully

represent the intrinsic characteristics of the network topology, routing policy, traffic pattern,

etc. The outcome of the M burst deliveries is kept as a 1 × M vector with each entry being

0 or 1, representing a burst-drop event or successful delivery, respectively. Let the parameter

N be the number of launched bursts for evaluating the short-term burst-drop rate, which is

generally small; and let the average short-term burst-drop rate of the previous N burst

deliveries of the current burst-drop event be noted as avg_b_N.

The main idea proposed scheme is to position the value of avg_b_N in the spectrum of

long-term burst-drop rates formed by the M burst deliveries. To achieve this, the outcomes of

the M burst deliveries are divided into M
N

⎢ ⎥
⎢ ⎥⎣ ⎦

 segments each containing the outcomes of

consecutive N burst deliveries. Thus, a vector θ of a size 1 M
N

⎢ ⎥× ⎢ ⎥⎣ ⎦
 is obtained, where each

entry, θi, i = 1 to M
N

⎢ ⎥
⎢ ⎥⎣ ⎦

, keeps the number of burst drops of the i-th small segment of the M

burst deliveries. With the vector, we can obtain the average burst-drop rate for the M burst

deliveries (avg_b_M) and the variance of each entry in the vector θ (var_b_M). If avg_b_N is

larger than avg_b_M, it is possible that the route in the OBS core is subject to random burst

contention, and the corresponding TCP senders should not take the current burst drop

seriously in the adjustment of cwnd. On the other hand, with comparable avg_b_N and

avg_b_M, we can expect that the current burst-drop event is more likely an indication of

congestion along the route in the OBS domain. In this case, the corresponding TCP senders

should cut their congestion windows in order to relieve the network congestion.

 71

To quantify the relationship between avg_b_N and avg_b_M, the OBS ingress edge first

derives the spectrum of θ, which is a histogram of θ as shown in Figure 5.1; then the ingress

edge positions the avg_b_N corresponding to the current burst-drop event in the spectrum in

order to identify how likely it is that the route in the OBS domain is congested.

BCL

Probability

1

z1 zn

u1 un 10

zi

zi-1 zi+1

ui

Burst Loss Rate

Confidence

1θ ⎢ ⎥= × ⎢ ⎥⎣ ⎦
M
N

f(ui)

0.5

Figure 5.1. The relation of zi, ui, and BCL values in the edge node scheme

The following section explains the approach taken by the edge node to determine the burst

loss as congestion or random contention loss.

5.2.2 OBS Edge Node Congestion Detection & Signalling

With avg_b_N and the spectrum formed by θ, we define the confidence with which the

current burst-loss event is due to network congestion by positioning avg_b_N in the

spectrum. A function ()i conf iz BL u= is defined, where ui is the confidence level, and zi is the

 72

burst-drop rate corresponding to a confidence level of ui (10 ≤< iu) in the spectrum formed

by θ. In other words, we have a one-to-one mapping between ui and zi as shown in the

following expression:

0

() () for 1
i

i i j
j

Mu cdf z pmf z i
N=

⎢ ⎥= = ≤ ≤ ⎢ ⎥⎣ ⎦
∑

Let the terms)(izcdf and)(izpmf denote the cumulative density function and probability

mass function in the burst losses spectrum given the burst loss value of zi, respectively. The

dynamic determination of network condition based on the confidence level ui by the edge

node is illustrated in Figure 5.1.

Based on the derived network statistics along the route, the proposed approach for

distinguishing between congestion and random-burst contention is as follows. Let u1 and un

be two pre-defined confidence thresholds. The value of avg_b_N is evaluated every time a

burst-loss occurs. If avg_b_N is smaller than 1 1()confz BL u= , a high confidence of random

burst contention loss is indicated. In this case, the OBS edge node will send a BCL

notification to the corresponding TCP senders with a value of 1. The TCP senders ignore the

segment-loss event, keep cwnd unchanged, and retransmit the lost segments. On the other

hand, when avg_b_N > ()n conf nz BL u= (1nu u>), it is taken as a strong indication of network

congestion along the route. Hence, the OBS edge node keeps quiet. Therefore, the TCP

senders cut their congestion windows by half in response to the current segment-drop event.

When avg_b_N falls in the interval 1[,]nz z , the BCL is set to f(ui) and is sent back to the TCP

senders, where 1

1

() 1
2()

i
i

n

u uf u
u u

−
= −

−
. The TCP senders will set their β values equal to f(ui).

Note that u1 and un are two parameters given in advance in order to distinguish the route

status between congestion and random contention. In this study, u1 and un are set to 50% and

90%, respectively. However, the values of u1 and un can be set by the network administrators

based on the traffic and network engineering characteristics. The policy-based adjustment

scheme can be summarized in the following equation:

 73

1

1

() () _ _ ()

1 () _ _
i conf n conf

conf

f u BL u avg b N BL u
BCL

BL u avg b N
β

> >⎧⎪= = ⎨ ≥⎪⎩

The adjustment of BCL values based on the confidence level ui is illustrated in Figure 5.1.

The flowchart for the proposed TCP-BCL scheme is shown in Figure 5.2. The two

parameters M and N are custom-designed, and in this study, M and N are chosen to be 500

and 10, respectively. In other words, the current network congestion status is determined by

the position of the previous 10 burst deliveries in the spectrum formed by the previous 500

burst deliveries. Finding optimal values of N and M is an open problem that is left for future

research. The scheme is expected to be stable since any increase of avg_b_N will be

positively fed back by shifting the spectrum formed by θ farther to the right.

W=W+1

BCL indication
for β

No

For every TCP
packet sent

W=βW
W=W+1

contention
loss

Packet loss
occur ?

Yes

β=BLconf(zi)
α=1β=α=1

does not change

potential congestion
 loss

Yes

BCL received?
W=0.5W
W=W+1 No

congestion loss

Figure 5.2 Flowchart for TCP-BCL congestion control scheme.

 74

In order to enable explicit burst contention notification, an agent is placed at each OBS

ingress edge node, and is responsible for determining the network status (such as link

utilization) when a burst-drop event is encountered. The agent sends BCL notifications to the

corresponding TCP senders if the burst-drop event is judged due to contention. In other

words, TCP-BCL has the TCP senders take every segment-loss event as due to congestion

when a BCL is not received. This distinguishes our scheme from BTCP in [98] since TCP-

BCL only signals the dropped bursts at low link utilization, while with BTCP, the TCP agent

reports every burst-drop event. Hence, the number of notifications in TCP-BCL is less than

in BTCP. Furthermore, our design can significantly reduce the intra-domain signalling and

core node processing overhead.

Another important feature of the proposed scheme is that it is designed for those TCP flows

with high bandwidth and long duration, which serve as a building block in many emerging

networking scenarios such as grid computing applications. It is clear that the performance of

such TCP flows is very sensitive to false congestion identification since it could take hours

for such a flow to return to the original rate with the current additive increase framework.

Our scheme solves the false congestion identification problem with reasonable additional

overhead incurred at the OBS edge nodes.

5.3 TCP-BCL Performance analysis

In this section, we analyze the throughput performance of the TCP-BCL flows in OBS

networks. Once again, we obtain the TCP-BCL SACK throughput in OBS network for both

TD and TO with Equation 4.2. It is worth recalling that TCP-BCL uses the GAIMD

congestion control mechanism. The relation between α and β for ensuring friendliness among

TCP flows in the case of triple-duplicate ACKs is obtained from [11] as:

 β
β

α
+
−

=
1

)1(3
 (5.1)

while in the case of timeout,

)1(
3
4 2βα −= (5.2)

 75

In the following two sections, we derive E[Y], E[TDP], E[TOP], E[H], and Q in the presents

of TD and TO losses respectively.

5.3.1 TCP-BCL in Triple Duplicate (TD) Losses

Using Equations 4.2 to 4.8 derived in Section 4.2.3, in the following sections we derive the

throughput model under high and low packet losses.

5.3.1.1 For high packet losses (WX < Wm)

In the presence of high packet-loss probability, the congestion window will remain less than

the maximum size Wm. Recall that b denotes the number of packets that are acknowledged by

receiving an ACK. During the TDPi, cwnd increases between
1iXWβ

−
and

iXW . Since the

increase in cwnd is linear with slope α/b,

1i i

i
X X

X
W W

b
α

β
−

= + (5.3)

Solving for Xi, we have

(1) []
[] Xb E W

E X
β
α

−
= (5.4)

Since Yi can be derived by summing the number of segments sent in Xi successful rounds

and the additional (SW
iX −) segments in the next round of iX as shown in Figure 4.5, we

have:

1

1

/ 1

0
()

(2 1)
2

i

i i

i i

X b
i X Xk

i i
X X

bY W k W S

X X
W W S

b

β
α

α
β

−

−

−

=
= + + −

= + − + −

∑

By substituting Equation 5.3, we have

SWWW
X

Y
ii XXiX

i
i −+−+=

−
)1(

2 1
β

after substituting Equation 5.4, we get

 76

2 2(1) [] (1) []
[] []

2
X X

X
b E W b E W

E Y E W S
β β

α
− − −

= + − (5.5)

By combining Equation 5.5 and Equation 4.8, we have,

2
2(1) [] () [] 0

2 2X X
b b b SE W E W

p
β β β

α α
− −

+ − − =

E[WX] can be then obtained as
2

2

2

(1) (1) 2 (1)()
2 2

[]
(1)X

b b Sb
p

E W
b

β β α βαβ αβ

β

− − −
− + − +

=
−

 (5.6)

By substituting Equation 5.6 into Equation 4.8, we obtain E[Y] as,
2

2(1) (1) 2 (1)()
2 2 1[]

(1)

b b Sb
p pE Y S

b p

β β α βαβ αβ

β

− − −
− + − +

−
= +

−
 (5.7)

Also, by substituting Equation 5.6 into Equation 5.4, we obtain E[X] as,
2

2(1) (1) 2 (1)()
2 2

[]
1

b b Sb
p

E X

β β α βαβ αβ

β

− − −
− + − +

=
+

 (5.8)

E[TDP] is then obtained as

2
2

[] ([] 1)

(1) (1) 2 (1)2 ()
2 2

(1)
1

E TDP RTT E X

b b Sb
p

RTT

β β α βαβ αβ

β

= +

− − −
− + − +

= +
+

 (5.9)

5.3.1.2 For low burst losses (WX = Wm)

For a very low burst loss probability, cwnd will most likely remain at the maximum Wm,

before a burst loss event occurs. From Equation 4.8 we can obtain,

1[] (1) m
pE Y W S

p
β −

= + + (5.10)

During each TDP, cwnd increases linearly from βWm to Wm for)(mm WW β− rounds and

then stays at Wm for (())i m mX W Wα β− − rounds, hence we can obtain the number of

segments that are transmitted before a TD loss as
2()

()
2

m m
m i m m i

W W
W X W W h

β
α β

−
+ − + − . On

 77

the other hand, from Equation 4.6, the total number of segments that are transmitted

successfully before a packet loss is αS/p. Hence we have
2()

()
2

m m
m i m m i

W W SW X W W h
p

β
α β

−
+ − + − = (5.11)

Solving for Xi, we can obtain
2(1) (1 2)

[]
2

m m

m

W W SE X
W p

β β β β
α α α α

− − +
= − + + (5.12)

The duration of the TDP is obtained as,

2

[] ([] 1)

(1) (1 2)
(1)

2
m m

m

E TDP RTT E X

W W SRTT
W p

β β β β
α α α α

= +

− − +
= − + + +

 (5.13)

5.3.2 Timeout (TO) Losses

The behaviour of TCP-BCL for a TO loss is same as that of TCP SACK. Hence, the analysis

of TO losses is same as the analysis in [99]. TCP-BCL transmits the same number of packets

between two TOs as traditional TCP. However, for TCP-BCL, the packet retransmission

starts as soon as the BCL is received, which is the RTT after the loss round. Thus, TCP-BCL

waits for TOP= RTT/p. From [99], we have:

p
pREHE

−
=−=

1
1][][, (5.14)

(())[]
(1)

RTT f pE TOP
p p

=
− , (5.15)

where 65432 32168421)(pppppppf ++++++= , and similar to Equation 4.22

.])[(
1−

≈ S
W

X

X

pWEQ (5.16)

5.3.3 TCP-BCL SACK over OBS Throughput Estimation

In the case of WX < Wm, we can obtain the TCP-BCL throughput by substituting Equations

5.10, 5.9, 5.14, 5.15, and 5.16 into Equation 4.2, which yields

 78

2
2

2
2

1

(1) (1) 2 (1)()
2 2 1

(1) (1)

(1) (1) 2 (1)2 ()
2 2 (())(1))

1 (1)

X

X

W
S

W
S

b b Sb
p p pS

b p pB
b b Sb

p RTT f pRTT p
p p

β β α βαβ αβ

β

β β α βαβ αβ

β
−

− − −
− + − +

−
+ +

− −
=

− − −
− + − +

+ +
+ −

 (5.17)

In the case of WX = Wm, TCP-BCL throughput can be obtained by substituting Equations 5.9,

5.13, 5.14, 5.15, and 5.16 into Equation 4.2, which yields

1

2 1

(1)(1)
1

(1) (1 2) (())(1))
2 (1)

m

m

W
S

m

W
m m S

m

p S pW
p pB

W W S RTT f pRTT p
W p p p

β

β β β β
α α α α

+

−

−
+ + +

−
=

− − +
− + + + +

−

 (5.18)

5.4 TCP-BCL Numerical Results

In this section, we evaluate the throughput performance of TCP-BCL over OBS. We

compare TCP-BCL throughout with BTCP and BAIMD as well as the TCPs that were

originally designed for general packet-switched networks, including TCP Reno and SACK.

The simulation parameters presented in Section 3.2 were used. The mixed time/length-based

burst-assembly algorithm is adopted, where the burst timeout threshold is 100 ms and the

maximum burst length is 50KB. TCP Wm is set to 128 segments. The access bandwidth is set

to 100 Mbps.

5.4.1 TCP-BCL Numerical Results

Figure 5.3 compares the analytical results obtained from Equation 5.17 and Equation 5.18

and the simulation results obtained for TCP-BCL fast flows. It is notable that the simulation

results match the analytical results.

 79

Figure 5.3 TCP-BCL throughput over OBS networks.

Figure 5.4 shows the throughput performance by TCP-BCL, TCP Reno and SACK under

barebone OBS and OBS with burst retransmission. It is worth nothing that if the contended

burst fails after the second transmission attempt, the burst will be dropped. BCL notifications

are not sent to the TCP senders that have segments in contended bursts that are retransmitted

successfully. It is clear that TCP-BCL outperforms the two conventional TCP schemes

significantly.

 80

Figure 5.4 TCP Reno, SACK vs. TCP-BCL throughput over barebone OBS and OBS with
burst retransmission

In Figure 5.5, TCP-BCL is compared with BAIMD and BTCP. TCP-BCL still achieves

higher throughput than the other two by combining the best features of BTCP and BAIMD.

The explicit notifications inform the TCP-BCL senders of a specific OBS-domain channel

status, so the two control parameters can be adjusted appropriately in response to the burst-

dropping event

Through the simulation studies, we verified that TCP-BCL can solve the false-congestion-

detection problem well and achieve better throughput than all the other TCP implementations

based on AIMD. The overhead incurred is the explicit notification when a burst loss is

determined to be due to random contention. With the aid of explicit notifications and

implementation of the TCP agent at the OBS edges, TCP-BCL can outperform BAIMD and

BTCP (BACK/BNACK) solidly. In addition, it can effectively maintain fairness among

competing AIMD flows and awareness of non-congestion burst dropping by manipulating

the α and β values in the TCP senders. This suggests TCP-BCL can serve as a candidate TCP

implementation for the future Internet with OBS infrastructure.

 81

Figure 5.5 BTCP, BAIMD, and TCP-BCL throughput over barebone OBS and OBS with
burst retransmission.

5.4.2 TCP-BCL Fairness

In this section, fairness among TCP-BCL, BAIMD, SACK, and Reno is examined.

Figure 5.6 shows the fairness index of flows by TCP-BCL, BAIMD, and TCP Reno. We can

see TCP-BCL has a much better fairness index than BAIMD. This is due to the fact that the

congestion control mechanism of BAIMD does not rely on explicit signalling between the

TCP senders and the OBS edge nodes, which causes an underestimation of network

congestion. Thus, it results in selecting larger values of β while keeping α at 1.

 82

Figure 5.6 Fairness index of TCP-BCL, BAIMD, SACK, and Reno in barebone OBS.

Figure 5.7 Fairness index of TCP-BCL, BAIMD, SACK, and Reno in OBS with burst

retransmission

 83

The fairness index is also examined in Figure 5.7 while enabling burst retransmission. The

simulation results show that the throughput of TCP-BCL is close to SACK and BAIMD,

which verifies that TCP-BCL maintains a friendly relation with the other TCPs.

5.5 Conclusion

In this chapter, we proposed a new TCP implementation in IP over OBS networks, called

TCP with Explicit Burst-Contention Loss Notification (TCP-BCL), attempting to combine

the best enhancements of BAIMD and BTCP with (BACK/NACK). Through simulation and

analytical modeling, we demonstrated that TCP-BCL can counter the negative effects of the

lack of buffers in OBS, and is a better candidate in OBS networks than the conventional

AIMD architecture. We have shown the superiority of the proposed scheme in terms of

throughput, link utilization, and fairness.

After analyzing the throughput performance of dropping-based TCP over OBS networks

with explicit and non-explicit notification, we extend our study to cover the second largest

TCP category, which is the delay-based. In the following chapter, we analyze the effects of

the OBS transmission characteristics on delay-based TCPs. For this purpose, we have chosen

TCP Vegas since it is the most common implementation of delay-based TCP.

 84

Chapter 6
Delay-Based TCP (Vegas) over OBS

In this chapter we investigate the behaviour of delay-based TCP Vegas over barebone OBS

and OBS with burst retransmission. We evaluate the impacts of extra delay introduced by

burst retransmission on TCP Vegas. A novel scheme based on TCP Vegas is proposed, which

adopts a threshold-based mechanism for determining network congestion in OBS networks

with burst retransmission. Analytical models for the throughput of TCP Vegas and threshold-

based TCP Vegas are formulated and are further validated through simulation [76] [77] [78].

To verify the effectiveness of the proposed threshold-based TCP Vegas, simulation is

conducted to compare the proposed scheme with conventional TCP implementations. We

observe a significant improvement in terms of TCP throughput for threshold-based TCP

implementation over OBS networks with burst retransmission.

6.1 Threshold-based TCP Vegas over OBS

Delay-based TCP implementations, such as TCP Vegas [10] and Fast TCP [36] [39], measure

the delay of each packet transmission to estimate available bandwidth and congestion status

in networks. The performance of Fast TCP has been evaluated in [36] [39] and can be

considered a high-speed TCP Vegas. Recalling Section 2.1, TCP Vegas modifies Reno in the

congestion avoidance, slow start, and retransmission phases.

There are several issues when conventional TCP Vegas congestion control is adopted in

OBS networks. Given the physical route between the source and destination OBS edges, the

delay experienced in the OBS domain is primarily the sum of burst assembly delays and link

propagation delays, which do not vary with the network traffic load. Hence, conventional

TCP Vegas cannot effectively detect network congestion in the OBS domain. Furthermore, in

the event that all the packets in a single congestion window are assembled into a single burst,

the TCP Vegas sender may suffer from the false-congestion-detection problem if the burst is

lost in the OBS domain due to random contention, which will fatally impair TCP throughput.

 85

When TCP Vegas runs over OBS networks with burst retransmission, the false-congestion-

detection problem can be mitigated significantly. However, although burst retransmission

hides some burst-loss events from the upper TCP, it incurs extra delay. This additional delay

enlarges the RTTs perceived by the TCP sender for the packets in the retransmitted bursts.

Hence, we are motivated to further enhance conventional TCP Vegas, so that TCP senders

can tell whether the increase in RTTs is due to network congestion, or due to retransmission

in lightly-loaded OBS networks.

We observe that as the IP access network becomes congested, TCP Vegas will detect the

increase in RTTs due to queuing delay and packet loss. If the OBS network becomes heavily

loaded, burst contention events happen frequently. Thus, TCP Vegas would often detect RTT

increases. If neither the IP access network nor the OBS network are congested, random burst

contention losses occur less frequently. Hence, TCP Vegas senders can only detect network

congestion (in both OBS and IP access networks) if RTTs increase frequently.

Based on these observations, we propose a threshold-based TCP Vegas scheme to

distinguish between network congestion and random burst contention loss at low traffic

loads. A new parameter, T, is the threshold on the number of packets with longer RTT than

the minimum RTT measured in the previous N rounds. The parameter is used to evaluate the

extra delay caused by burst retransmission, and can be manipulated adaptively in order to

mitigate the impact of false congestion identification [76] [78].

More specifically, TCP Vegas measures the RTT for each packet launched and keeps track

of the minimum measured RTT of the previous N consecutive packets. Let)(iMinRTT be

the minimum measured RTTs of i (0 < i < N) consecutive packets. In the ith round, if the

measured RTT of the ith packet is larger than)1(−iMinRTT , it means that the ith packet was

once queued in the access network and/or assembled in a burst that was retransmitted. A

counter that keeps the number of packets whose RTTs are larger than their)1(−iMinRTT

will then be increased by 1. If the number of TCP packets whose RTTs are larger than their

)1(−iMinRTT is under the threshold T, the TCP sender will stay with the actual throughput

calculated based on)1(−iMinRTT , even if the measured RTT increases. If the number of

 86

TCP packets whose RTTs are larger than their)1(−iMinRTT exceeds the threshold T, it

means that the network is congested. Hence threshold-based Vegas recognizes the network

congestion and calculates the actual throughput as usual.

The basic idea behind threshold-based TCP Vegas is to reduce the sensitivity of TCP

Vegas to the increases in RTTs caused by burst retransmission in the OBS domain. Instead of

changing cwnd, the sensitivity of TCP Vegas can also be reduced by decreasing α or

increasing β. However, changing α and β makes it difficult for TCP Vegas as to estimate the

available bandwidth in the networks.

In threshold-based TCP Vegas, both N and T should be chosen much larger than the

number of packets from a single TCP Vegas connection that are assembled into a burst, so

that TCP Vegas is able to detect the frequency of retransmission in the OBS domain based on

the record of a number of bursts. In general, packets from a TCP connection assembled in the

same burst have the same measured RTT. By analyzing the variation pattern of historical

RTTs, TCP Vegas can obtain the number of packets from a TCP Vegas connection that are

assembled into a burst. T and N can also affect TCP performance. N should be much larger

than T so that exceeding the threshold T implies a high probability of actual network

congestion. Hence, we take N = kT where k > 1. The TCP throughput performance is

evaluated according to different values of T and N the following section. Figure 6.1

summarizes the proposed threshold-based TCP Vegas.

 87

Figure 6.1 Threshold-based TCP Vegas congestion-control.

6.2 TCP Vegas Performance Modeling over OBS

In this section, we analyze the throughput of the proposed threshold-based TCP Vegas over

OBS networks with burst retransmission. We assume that the access bandwidth of a TCP

flow is high enough that all TCP packets in a single congestion window are assembled in a

burst. Such a TCP flow is referred to as a fast TCP flow. Fast TCP flows will not trigger

triple duplicates since packets in an entire congestion window are lost due to a burst loss. We

assume that the burst assembly delay is fixed, and the occurrences of burst losses and

contentions are independent based on a given and fixed burst dropping probability and burst

contention probability. The Burst dropping probability is the probability that a burst is

dropped, and is usually much lower than the burst contention probability, defined as the

probability that a burst experiences contention [104] [105]. This assumption is justified as

some of the contended bursts can reach their destinations successfully after being

retransmitted. Thus, the burst dropping probability is always lower than the burst contention

probability.

 88

 We first analyze the throughput of TCP Vegas over barebone OBS networks based on the

analytical model proposed in [65], followed by the analysis of TCP Vegas over OBS

networks with burst retransmission. Last, we analyze the throughput of the proposed

threshold-based TCP Vegas over OBS networks with burst retransmission by integrating the

two previous models. The notations used are presented in Section 3.1.

In the analysis, a TCP round refers to the period during which all packets in the congestion

window are sent and the first ACK for one of the packets in the congestion window is

received. Since with fast TCP flows, TCP duplicates will never be triggered, multiple

successful rounds will be followed by one or more lossy rounds. Therefore, we obtain the

throughput of TCP Vegas fast flows as follows:

][][
][][

TOPEAE
HEYEB

+
+

= (6.1)

6.2.1 TCP Vegas over Barebone OBS

In this section, TCP Vegas throughput over a barebone OBS is analyzed. In a barebone OBS,

random burst contention results in an immediate burst loss since no burst retransmission is

implemented. With the assumption that the IP access network is not congested, RTT would

be very close to BaseRTT.

 Figure 6.2 shows the evolution of cwnd for TCP Vegas over a barebone OBS networks.

The evolution of cwnd can be partitioned into the following periods: (1) the slow start period,

the duration from A to B in Figure 6.2, in which cwnd starts at 2 and doubles every other

round until it reaches the expected slow-start threshold. (2) The transition period from B to

C. Since RTT is close to BaseRTT, Diff calculated based on Equation 2.3 will be a very small

value less than α. Hence, in the transition period, cwnd increases by 1 every RTT, until TCP

Vegas reaches the stable state, .βα ≤≤ Diff (3) The loss-free period that includes a series of

consecutive successful rounds from C to D, during which Vegas is in the stable state (cwnd

remains unchanged) and no burst loss occurs. (4) The TO period, which may include

consecutive timeout events. The duration from slow start to the first encountered TO period

(or the beginning of slow start of the next sequence of rounds) is referred to as the slow-start-

 89

to-slow-start (SS2SS) period [65]. We assume that the burst dropping probability is low

enough that there is no burst loss during the slow start period or the transition period.

Figure 6.2 Evolution of cwnd for TCP Vegas over a barebone OBS

In Figure 6.2, W0 is the congestion-window size when Vegas is in the stable state,

i.e. .βα ≤≤ Diff Since TCP Vegas adjusts the backlog packets in the network between α and

β, the expected value of Diff is estimated as 2
βα +

based on [65]. By applying Equation 2.3,

we have

 2
)1(0

βα +
=−=

R
BaseRTTWDiff , (6.2)

By solving for 0W , we have,

⎟
⎠
⎞

⎜
⎝
⎛

−
×

+
= max0 ,

2
min W

BaseRTTR
RW βα

. (6.3)

We now calculate the TCP Vegas throughput by computing the expected number of

packets transmitted in the period from A to D. In the slow start period from A to B, cwnd

doubles every other round until it reaches the slow start threshold, W0/2 since the expected

 90

cwnd when the TO occurs is W0 [65]. Thus, based on Equation 17 in [65], the number of

packets sent in the period from A to B, ,ABY is

4222 0

0

log
4

log

0

−== ∑
=

W

W

i

i
ABY , (6.4)

and the duration of the slow start phase is

 RWR
W

AAB)2(log2)
4

log
(2 0

0 −== , (6.5)

where R is the expected RTT.

In the transition period from B to C, let the average number of packets transmitted be YBC

and the duration of that period be ABC. Based on Equation 18 in [65], YBC can be obtained by

aggregating the number of packets sent when cwnd increases from W0/2 to W0-1 as follows:

0

0

21 0 0
/ 2

3
8 4

W
BC i W

W W
Y i

−

=
= = −∑ . (6.6)

Since cwnd increases by 1 for each RTT during the transition period, the expected duration of

this period is,

RWABC)
2

(0= . (6.7)

We then calculate the average number of packets transmitted in the loss-free period from C

to D (denoted by YCD) and the duration of that period (denoted as ACD). We assume a

Bernoulli burst-loss model, where the random variable X is geometrically distributed

with ppkX k)1()Pr(−== , where k = 0,1,2,3….

Hence, the number of rounds during the loss-free period, ,lossfreeS is

0

(1) (1) /k
lossfree

k
S k p pk p p

∞

=

= − = −∑ . (6.8)

Then the duration of the loss-free period is

lossfreeCD RSA = (6.9)

 91

Since cwnd is equal to W0 during the loss-free period from C to D, the number of packets

sent in this period is:

 lossfreeCD SWY 0= . (6.10)

In the TO period, since the timeout process of TCP Vegas is similar to TCP Reno, based on

Equations 14 and 16 in [19], we have the mean duration for successive TOs as

 []
p

pfRTOTOPE
−

=
1

)(
, (6.11)

where 65432 32168421)(pppppppf ++++++= , and

 p
pHE
−

=
1

][. (6.12)

We then have the average number of packets sent during the consecutive successful

rounds: CDBCAB YYYYE ++=][, and the duration of successful rounds:

CDBCAB AAAAE ++=][. By substituting Equations 6.3 - 6.12 into Equation 6.1, we obtain

TCP Vegas throughput over a barebone OBS networks as follows:

 TOPAAA
HEYYY

B
CDBCAB

CDBCAB
barebone +++

+++
=

][
. (6.13)

 92

6.2.2 TCP Vegas over OBS with Burst Retransmission

We now analyze TCP Vegas throughput over an OBS network with burst retransmission.

Recall that burst retransmission can greatly improve burst loss probability, but it causes

longer RTTs for the retransmitted bursts. Figure 6.3 shows the evolution of cwnd for TCP

Vegas over an OBS network with burst retransmission.

Figure 6.3 Evolution of TCP Vegas cwnd over an OBS networks with burst retransmission

We assume that retransmitted bursts that successfully reach their destination experience an

average round trip delay, RTTr. We further identify two types of successful rounds as

follows: (1) rounds that experience contention but are retransmitted successfully, and (2)

rounds that do not experience burst contention. We have the probability of a successful round

that experiences contention but is successfully retransmitted as:

 p
ppp c

sr −
−

=
1 . (6.14)

The SS2SS period is partitioned into 4 periods: (1) the slow start period from A to B, (2)

the transition period from B to C, (3) the loss-free period from C to G, where rounds may

 93

suffer longer RTTs due to burst retransmission, (4) the TO period. In Figure 6.3, the slow-

start period, the transition period, and the TO period are similar to those in Figure 6.2. In this

section, we focus on the analysis of the loss-free period from C to G.

The probability of a successful round that does not experience burst contention can be

calculated as

p
pp c

nc −
−

=
1
1

. (6.15)

Since TCP Vegas reaches stable state at point C, the value of Diff calculated at point C is

)1(0 R
BaseRTTWDiff C −= . (6.16)

During the period from C to G, consider a round with the equal to 0W (see the point D in

Figure 6.3). If the round is retransmitted successfully in the OBS domain, all the packets sent

in this round will experience a longer delay, .rRTT Hence, the Diff calculated at the point D

is

)1(0
r

D RTT
BaseRTTWDiff −= . (6.17)

If βα ≤≤ DDiff , TCP Vegas will leave cwnd unchanged from C to G. Hence, by

inverting Equation 6.17, we can obtain the range of RTTr for which cwnd remains constant,

that is,

0 01 (/) 1 (/)r
BaseRTT BaseRTTRTT

W Wα β
≤ ≤

− − .

If β>DDiff , then cwnd decreases by 1. If multiple consecutive rounds are retransmitted in

the OBS network, Diff will keep decreasing for each of the consecutive rounds due to the

decrease in cwnd, until Diff reaches ,β (the duration from D to E in Figure 6.3). After Diff

reaches ,β cwnd remains unchanged for future consecutive rounds retransmitted in the OBS

domain (see the duration from E to F in Figure 6.3). Let '0W be the lower bound of cwnd

from C to G. We have Diff at the point E as,

β≤−=)1('0
r

E RTT
BaseRTTWDiff .

 94

Then we have

 ⎥⎥
⎤

⎢⎢
⎡

−
=

BaseRTTRTTr
RTTW rβ'0 . (6.18)

Note that for a round with a longer delay RTTr when DDiff α> , cwnd will remain

unchanged, because if ,max0 WW = cwnd has already reached the maximum window size. If

,max0 WW < then α≥CDiff and .rRTTR < Thus, we have α≥≥ CD DiffDiff from Equations

6.16 and 6.17.

For any non-retransmitted round during the loss-free period, if 0Wcwnd < , cwnd increases

by 1 and .)1(α<−=
R

BaseRTTcwndDiff For example, during the period from F to G in

Figure 6.3, cwnd increases by 1 for each non-retransmitted round until it reaches 0W .

We conclude that cwnd ranges between 0W and '0W . For each round, if 00 ' WcwndW <≤ ,

cwnd either increases by 1 if the round does not experience contention, or decreases by 1 if

the round is retransmitted in the OBS domain. If '0Wcwnd = , cwnd remains unchanged if the

round is retransmitted in the OBS domain, and increases by 1 if the round does not

experience contention. If 0Wcwnd = , cwnd deceases by 1 if the round is retransmitted in the

OBS domain, and remains unchanged if the round does not experience contention.

 Since the probability that a round is successfully retransmitted is srp and the probability

that a round does not experience contention is ncp , we model the state of cwnd as a Markov

Chain shown in Figure 6.4 [31]. Let iπ be the probability that iWcwnd −= 0 . We solve

for iπ by local balance as follows.

2

`()0 0
`

` `0 0 () ()0 0 0 0

1 0 1 0

2 1 2 1 0

0(1)

()

...

()

sr

nc

sr sr

nc nc

W Wsr

ncW W W W

p
nc sr p

p p
nc sr p p

p
nc srW W p

p p

p p

p p

π π π π

π π π π π

π π π π−

− −− −

= ⇒ =

= ⇒ = =

= ⇒ =

 95

Figure 6.4 Markov chain for the state of cwnd

Since ∑
−

=

=
`
00

0
0 1)(

WW

i

i

nc

sr

p
p π , we obtain

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≠
−

−

=
+−

== +−
−

=
∑ .,

1

)(1

,,
1

1

)(

1 1

`
00

0

0
`

00
`

00

ncsr

nc

sr

WW

nc

sr

ncsr

WW

i

i

nc

sr ppif

p
p

p
p

ppif
WW

p
p

π
 (6.19)

Then, iπ can be obtained using the local balance equations. The expected congestion-

window size from C to G can be obtained as

].)[(

...)1(][
'

0
0

)'(
`

01000

00

00

i

WW

i

WWCG

iW

WWWWE

π

πππ

∑
−

=

−

−=

++−+=

For the case when)1()1(
00 W

BaseRTTRTT
W

BaseRTT r
βα

−≤≤− , cwnd remains unchanged from

C to G and then 0][WWE CG = .

During the period from C to G, the number of rounds is lossfreeS and the expected cwnd

is][CGWE . Hence, the number of packets sent during the period from C to G is:

 lossfreeCGCG SWEY][= . (6.20)

The duration between C and G includes the rounds that are retransmitted with delay RTTr,

and the rounds that are not subject to contention with delay R. Hence, we have

lossfreersrncCG SRTTpRpA)(+= . (6.21)

 96

From Equations 6.4, 6.6, and 6.20, we obtain E[Y] as

 CGBCAB YYYYE ++=][, (6.22)

 and from Equations 6.5, 6.7, and 6.21, we obtain E[A] as

CGBCAB AAAAE ++=][. (6.23)

We then obtain TCP Vegas throughput over OBS networks with burst retransmission by

substituting Equations 6.11, 6.12, 6.21, and 6.23 in Equation 6.1:

.
][

TOPAAA
HEYYY

B
CGBCAB

CGBCAB
ret +++

+++
= (6.24)

6.2.3 Threshold-based TCP Vegas over OBS with Burst Retransmission

Based on the two analytical models, we can analyze the throughput of threshold-based Vegas

flows over OBS with burst retransmission. Figure 6.5 illustrates the evolution of cwnd during

the time when N consecutive packets are sent using threshold-based TCP Vegas. While the

number of TCP packets whose RTTs are larger than the current MinRTT is under the threshold

T, TCP Vegas stays with MinRTT for calculating Diff. Hence, the cwnd evolution of

threshold-based TCP is similar to that of TCP Vegas over a barebone OBS, where

R MinRTT= . Thus, the throughput before reaching T, denoted as ,'bareboneB can be

calculated based on Equation 6.13, where

⎟
⎠
⎞

⎜
⎝
⎛

−
×

+
= max0 ,

2
min W

BaseRTTMinRTT
RW βα

.

 97

Figure 6.5 Evolution of threshold-based Vegas cwnd over OBS network with burst

retransmission

After the number of TCP packets whose RTTs are larger than the current MinRTT reaches T

(after SS2SSk in Figure 6.5), cwnd evolution is similar to that of TCP Vegas over OBS

networks with burst retransmission. Hence, the throughput after reaching T, ,'retB can be

calculated based on Equation 6.24.

Let 1S be the expected number of SS2SS periods before reaching T and let 2S be the

expected number of SS2SS periods after reaching T. We know that the expected number of

consecutive successful rounds in an SS2SS period is .)1(][ppXE −= Hence, the total

number of rounds before reaching T is])[(1 XES , and then the number of rounds that are

retransmitted and experience extra delay is)][(1 srpXES . On the other hand, when the

threshold T is reached, the number of rounds that are retransmitted is approximately 0T W

since the expected cwnd when the TO occurs is W0 . We have ,/][01 WTpXES sr = and then

⎥
⎥

⎤
⎢
⎢

⎡
=

srpXEW
TS

][0
1 . (6.25)

In each SS2SS period before reaching T, the number of packets sent is)(CDBCAB YYY ++ from

Figure 6.2. Then, the total number of packets sent before reaching the threshold is

).(1 CDBCAB YYYS ++ Since the total number of packets measured is less than N, the total

number of packets sent after reaching the threshold T is [N – S1(YAB + YBC + YCD)], where

 98

N > S1(YAB + YBC + YCD). Since the number of packets sent is)(CGBCAB YYY ++ in each

SS2SS period after reaching T, we can obtain the number of SS2SS periods sent after reaching

T as

1
1

2

()
, ()

0,

AB BC CD
AB BC CD

AB BC CG

N S Y Y Y
N S Y Y Y

Y Y YS

otherwise

⎧⎡ ⎤− + +
> + +⎪⎢ ⎥⎪ + +⎢ ⎥= ⎨

⎪
⎪⎩

 (6.26)

 Hence, we obtain the throughput during the time when N consecutive packets are sent as

retbarebonebasedthreshold B
SS

S
B

SS
S

B ''
21

2

21

1
+

+
+

=− (6.27)

We assume that the number of consecutive packets N is large enough, such that the

throughput of the N consecutive packets can represent the throughput of an entire TCP

session. Then, the throughput during the time when N consecutive packets are sent can

approximate the throughput of an entire TCP session.

6.3 Numerical Results

In this section we present the numerical results obtained from both the analytical models. In

order to obtain precise protocol performance results, we limit the network complexity as well

as the parameter space to a multi-hop network as shown in Figure 6.6, where the distances

between the nodes are in km. The edge nodes, E1 and E2, are connected to the network core

nodes with a 10 ms link propagation delay. Each link consists of one bi-directional control

channel for control signalling and a single fiber link for data-burst transfer. Each data link

consists of 8 wavelengths operating at a transmission rate of 10 Gbps. The mixed time/length

based burst assembly algorithm is adopted, where the burst timeout threshold is set to 500

ms, and the maximum burst length is set to 50 KB. The control-header processing time is set

to be 1 μs. The core nodes implement the LAUC-VF channel scheduling algorithm [91]. In

the burst retransmission mechanism, bursts subject to any contention are allowed to be

retransmitted only once in order to have the best chance of meeting the timeout threshold. In

order to simulate the random burst contention phenomena, different contention probabilities

 99

are imposed at the burst scheduling phase. The random burst contention probability pc ranges

between 10-5 and 10-2. The average RTT in the simulation is approximately 110 ms.

 In the simulation, TCP senders and receivers are attached to the OBS edge nodes E1 and

E2 respectively. In order to simulate fast TCP flows, a high access bandwidth is allocated to

each flow. The packet delay in the access network is set to be constant so that burst

retransmission delay is the only reason for longer-round trip times. The FTP application

generates TCP segments with an average size of 1KB. In all experiments, the maximum

window size of TCP is 104 segments. We select 600α = and 800β = for both TCP Vegas

and threshold-based Vegas to utilize the bandwidth capacity quickly and efficiently. The

TCP throughput is obtained over a simulation period of 103 seconds. Results in the following

sections are based on simulation unless stated otherwise.

Figure 6.6 The network topology adopted in the simulation

6.3.1 Threshold-based TCP Vegas over OBS

In the following experimental studies, we compare the throughput of conventional TCP

Vegas, threshold-based Vegas, and loss-based TCP SACK (i.e., TCP SACK performs better

than other existing loss-based TCP implementations in OBS networks [98]).

Figure 6.7 shows the throughput of TCP Vegas, threshold-based Vegas, and SACK over the

barebone OBS network. Note that the burst contention probability is equal to the burst loss

probability in the barebone OBS network. Threshold-based Vegas uses various values of the

 100

threshold T from 100 to 400, while the number of consecutive TCP packets N is chosen to be

4T. We see that threshold-based TCP Vegas with different N and T values and conventional

TCP Vegas with N = 0 and T = 0 perform very similar, such that their throughput plots

overlap. This is due to the fact that the round-trip time does not vary significantly in the

barebone OBS network, and T and N can not enhance the threshold-based Vegas. We can

also see that the TCP Vegas versions perform much better than loss-based TCP SACK in the

barebone OBS network.

Figure 6.7 Throughput of Vegas, threshold-based Vegas, and SACK over a barebone OBS

Figure 6.8 compares the throughput of TCP Vegas, threshold-based Vegas, and TCP

SACK over the OBS network with burst retransmission. Note that, with one attempt at

retransmission, the burst loss probability in the simulation is much smaller than the burst

contention probability. We observe that threshold-based Vegas performs much better than

conventional Vegas and TCP SACK. For example, when the burst contention probability is

10-4, TCP Vegas with T = 300 improves the throughput by 73% compared to conventional

Vegas. We can also see that, with a higher threshold, threshold-based Vegas performs better.

 101

When the burst contention probability is 10-4, the threshold-based Vegas with T = 400

improves throughput by 82% compared to T = 200. This is because threshold-based Vegas

with T = 400 more accurately detects the congestion state in the OBS network and delays

triggering congestion avoidance.

Figure 6.8 Throughput comparison of TCP Vegas, threshold-based Vegas (N=4T), and

SACK over an OBS network with burst retransmission

Figure 6.9, we examine the effect of T and N on threshold-based Vegas. We observe that,

with a fixed T, varying N does not result in a major throughput change. For example, with

T = 200, the throughputs of N = 400 and N = 800 are very close. We can also see that the

throughput is mainly affected by the value of T. For instance, the throughout of T = 200

increases 86% compared to the throughput of T = 100 when N = 400.

 102

Figure 6.9 Throughput comparison of the threshold-based Vegas with fixed N or fixed T

values

6.3.2 Threshold-based TCP Vegas Fairness Evaluation

In this section, we examine the fairness of TCP Vegas, Threshold-based Vegas, SACK and

Reno. In our simulation, we generate three flows of each TCP version. The competing flows

share the same source and destination. We then calculate the fairness index for each TCP

version after obtaining the throughput of each flow.

Figure 6.10 compares the fairness index of TCP Vegas, threshold-based Vegas, SACK,

and Reno. It is notable that the fairness index of threshold-based Vegas with larger T value

results in lower fairness for the other co-existing flows. This result is due to the fact that the

window-size reduction in threshold-based Vegas is substantially delayed when RTT

increases. Thus, threshold-based Vegas is given the chance to occupy more link bandwidth at

the expense of other TCP streams. The fairness index shows that the throughput of threshold-

based Vegas is close to that of SACK and Reno. Also, the throughput is close among

competing threshold-based Vegas flows while varying T and N values. Thus, we can see that

threshold-based Vegas can maintain a friendly condition along with other TCP versions.

 103

Figure 6.10 Fairness index of Vegas, threshold-based Vegas (N = 4T), SACK, and Reno

Figure 6.11 Fairness index of Vegas, threshold-based Vegas, SACK, and Reno with varying

T and N values

 104

In Figure 6.11we also examine the fairness of the threshold-based Vegas while fixing N

and varying T. We also observe that varying T has a major impct on the threshold-based

Vegas throughput and the associated fairness.

6.3.3 Analytical Results

In this section, we verify the analytical models proposed in Section 6.2. The analytical results

yield the TCP throughput under different burst contention probabities pc. Figure 6.12

compares the throughput of the conventional TCP Vegas obtained from Equation 6.13 to the

throughput obtained from simulation with different burst contention probability pc. The

average RTT delay was 110 ms. We can see that the simulation results and the analytical

results are very close.

Figure 6.12 TCP Vegas throughput over a barebone OBS network

Figure 6.13 compares the analytical results obtained by Equation 6.24 and the simulation

results. In the experiment, the OBS edge node enables burst retransmission. Bursts are

retransmitted at most once. The average RTT delay in the simulation was 110 ms. Bursts that

 105

are retransmitted experience an average of 100 ms extra delay. We see that the simulation

results match the analytical results very well.

Figure 6.13 TCP Vegas throughput over an OBS network with burst retransmission

Figure 6.14 compares the analytical results obtained by Equation 6.27 and the simulation

results obtained for threshold-based Vegas fast flows. In this experiment we compare T =

100, N = 400 and T=400, N=1600. We can see that the simulation results match the

analytical results.

 106

Figure 6.14 Threshold-based Vegas throughput over an OBS network with burst

retransmission

The analytical model can be used to evaluate the effect of contention probability and

threshold parameters on TCP throughput. The model can also be used to determine the

steady-state operating point of the network when combined with an analytical model that

evaluates burst contention probability, which we present in the following section.

6.3.4 Threshold-based TCP Vegas Steady State over OBS

In previous sections, we assume that the burst contention probability does not change when

the TCP throughput varies. However, if all senders are transferring large files using TCP, the

burst contention probability will be affected by the TCP throughput of the senders. At the

same time, we see that TCP throughput is tightly coupled with the burst contention

probability. Hence, there may exist a steady state at which the TCP throughput and the burst

contention probability are stabilized.

In this section, we apply the analytical model verified in the previous section to analyze the

steady-state throughput of threshold-based Vegas in an OBS network with burst

 107

retransmission. We aim to obtain the proper N and T values which contribute to the expected

steady-state threshold-based Vegas throughput.

The fixed-point method based on the TCP feedback mechanism is adopted from [13]. For a

given burst contention probability, we can first calculate the TCP sending rate based on

Equation 6.27, shown by a dashed line in Figure 6.15. Next, for a given TCP sending rate, we

calculate the corresponding network input load to the OBS network. This load is then used to

calculate the burst contention probability in the OBS network. The solid line in Figure 6.15

plots this relationship between the TCP sending rate and the burst contention probability. The

intersection point of a dashed line and a solid line is a steady state.

In the latter step, given TCP throughput, the burst contention probability in an OBS

network with burst retransmission is obtained as follows. Let the throughput of a TCP flow

from source s to destination d be Ss,d and the size of a TCP packet be pkt. The input load from

a TCP flow is

pktS dsds /,, =ρ

Let cp be the burst contention probability along the path from s to d. Since all the dropped

bursts are able to retransmit only once, we compute the total load including the retransmitted

traffic,

)1(,, cdsds p+=ℜ ρ

We can then compute the total load on link lij to be

∑
∈∀

ℜ=ℜ
)),(|,(

,
dsroutelds
dsij

ij

We assume that the burst arrivals on each link follow a Poisson process [41] [103]. By using

the Erlang-B formula, we can obtain the burst contention probability on link lij as

),(mErlangBp ijij ℜ=

where m is the number of wavelengths on each link. Hence, assuming that links are

independent of one another, we can obtain the burst contention probability along the path

from s to d, 'cp as

 108

 ∏
∈∀

−−=
)),(|,(

)1(1'
dsroutelds

ijc
ij

pp (6.28)

The converged cp and 'cp will be the burst contention probability for the given TCP

throughput. Note that the actual burst loss probability is much smaller than the burst

contention probability due to burst retransmission.

Figure 6.15 shows the analytical results of the steady-state threshold-based Vegas

throughput over OBS with burst retransmission. From the figure, we can see that, when T is

200 and N varies from 800 to 1600, the steady state throughputs of threshold-based Vegas are

identical. This is also true when T is 400 and N varies. These results validate the findings in

Section 6.3.1, where we concluded that the threshold T has a dominant effect on the

throughput.

Figure 6.15 Analytical results of the steady-state input rate of threshold-based Vegas while

varying N values

 109

Figure 6.16 plots analytical results of the steady-state threshold-based Vegas throughput

with fixed N = 1600. From this experiment, we observe that the threshold-based Vegas flows

with T ≥ 400 do not have a significant throughput increase. In the flows where T > 400 and

N > 800, the steady state throughput remains close to the flows with T = 400 and N = 800.

Therefore, we conclude that T = 400 and N = 800 are optimal for obtaining the best

threshold-based throughput.

 Figure 6.16 Analatical results of the steady-state input rate of Threshold-based Vegas while

varying T values

6.4 Conclusion

In this chapter, we investigated the issues of delay-based TCP Vegas over OBS networks by

proposing a threshold-based TCP Vegas mechanism that can effectively detect network

congestion by manipulating a threshold parameter when TCP runs over OBS networks with

burst retransmission. Our simulation results showed that the proposed scheme can

outperform conventional TCP Vegas and TCP SACK significantly. Simulation results show

 110

that the threshold T has a more significant impact on the TCP throughput than N. We also

analyze the throughput performance of a fast threshold-based Vegas source over an OBS

network with burst retransmission. Based on the analytical model, we obtain the steady state

TCP throughput and observe the threshold value that results in an optimal throughput. The

analytical model provides insights regarding the effect on the TCP throughput of burst

contentions and losses in the OBS domain.

 111

Chapter 7
Conclusions & Future Work

In this thesis, we investigated dropping-based, explicit-notification-based, and delay-based

implementations of TCP over OBS networks. A suite of interoperable strategies that can

facilitate TCP congestion-control mechanisms was developed to operate well with the

intrinsic characteristics/behaviours of burst transmission in OBS networks. We studied the

TCP false-congestion-detection problem extensively in bufferless OBS networks, which has

been considered the most serious challenge in achieving efficient TCP performance over

OBS networks. Furthermore, we studied the effect on the delay- and dropping-based TCPs of

deploying burst-contention resolution schemes such as burst retransmission and burst

deflection. The thesis has focused particularly on developing TCP performance modeling

through novel analytical approaches. The thesis also provided a comprehensive framework

and design paradigm for future research in TCP over OBS networks.

7.1 Contributions of the Thesis
The primary contribution of this thesis is the design and implementation of a suite of more

robust TCP congestion-control mechanisms that handle the burst transmission behaviour and

characteristics of OBS networks. More specifically, we made the following contributions.

1. We analyzed the impact on TCP throughput when adopting OBS transmission in both

delay- and dropping-based TCP protocols. A detailed TCP performance evaluation

was conducted under a number of transmission scenarios and network environments

of interest. The negative impact of burst dropping on conventional TCP congestion-

control was demonstrated. Furthermore, the performance of a number of well-known

TCP implementations over OBS networks was examined, including TCP Reno, New

Reno, SACK, DSACK, FACK, Eifel, BAIMD, and BTCP implementations.

2. We developed and evaluated a dropping-based scheme for TCP traffic regulation over

OBS networks, called Statistical Additive Increase Multiplication Decrease

 112

(SAIMD), where a policy-based approach for dynamically adjusting the

multiplicative parameter β at the TCP senders was devised. Through simulations and

analytical evaluation, we showed that SAIMD has better throughput than

conventional TCP Reno and SACK under a wide range of network transmission

conditions. Packet-loss probabilities and burst contention resolution strategies such as

burst retransmission and burst deflection were examined.

3. We redefined the concept of network congestion in bufferless networks. Also, we

proposed an efficient approach for detecting network congestion in OBS networks. In

this context, we developed and analyzed a TCP congestion-control scheme with

dynamic explicit Burst-Contention Loss notifications (TCP-BCL). The proposed

scheme was shown to handle various OBS bursty phenomena that negatively affect

TCP throughput performance and fairness. Under the proposed scheme, the

performance impact on TCP of burst dropping due to random burst contention is

considered and investigated. An analytical model is developed for the proposed

scheme and is verified through extensive simulation.

4. The associated issues of delay-based TCP Vegas in OBS networks have been

examined and analyzed. A novel threshold-based TCP Vegas is introduced, which is

characterized by being able to identify network congestion status effectively through

manipulating a threshold parameter, in the presence of burst retransmission and

deflection in the OBS network. The simulation results showed that threshold-based

TCP Vegas outperforms conventional TCP Vegas and TCP SACK significantly. We

also evaluated different values of T and N thresholds through both simulation and

analytical approaches. The corresponding analytical model is validated through

extensive simulation, and provides insights on the effects of burst contentions and

burst losses on TCP throughput.

 113

Table 7.1 summarizes the achieved contributions categorized by solution category,

supported OBS type, devices involved, and problems addressed.

Schemes

Solution

Category

OBS Type Devices Involved Problems Addressed

N
ot

ifi
ca

tio
n

W
ith

ou
t

N
ot

ifi
ca

tio
n

B
ar

eb
on

e

B
C

R

T
C

P

Se
nd

er

O
B

S
E

dg
e

O
B

S
C

or
e

R
an

do
m

B
ur

st

Fa
ls

e
T

O

B
ur

st

R
eo

rd
er

in
g

Burst AIMD √ √ √ √ √ √

TCP-BCL √ √ √ √ √ √ √ √

TCP-ENG √ √ √ √ √ √ √ √ √

Statistical
AIMD

 √ √ √ √ √

Threshold-based
Vegas

 √ √ √ √ √

Table 7.1 Thesis contributions of TCP over OBS

7.2 Future Research Directions and Open Problems

Although TCP has been subject to extensive research efforts in the past decades, TCP over

OBS is a relatively unexplored research area, with a limited number of studies that have

tackled only some of the unique features of these transmission characteristics. Through a

close analysis of TCP enhancements listed in Chapter 2, we observed that the most important

characteristics and abilities that a congestion-control scheme in TCP over OBS should have

are: (1) be able to handle multiple TCP segment-loss events in one round trip, (2) be able to

identify false TOs and burst losses in low-traffic situations, and (3) be able to compensate for

out-of-order delivery in the OBS domain. In the following section, we identify open

problems in the area of TCP over OBS networks.

 114

7.2.1 Integration of Link-Layer Solutions with TCP

Although with less emphasis on TCP enhancements over OBS, there have been extensive

studies of OBS networks that aim to reduce burst dropping, provide QoS in burst

transmission, conduct a cross-layer design optimization in terms of burst assembly delay,

burst size, and burst delivery, etc. The link-layer schemes, such as adaptive assembly

algorithms [14], burst retransmission [104] [105], burst deflection [37] [68], and FDLs [18],

have contributed successfully to reducing burst-loss probability at the expense of introducing

extra delay and design complexity. It is important to integrate the link-layer solutions with

the mechanisms for TCP throughput and reliability enhancement before OBS can be

deployed practically in the Internet.

We found that reducing the burst-dropping probability may not in all cases result in

significant enhancement to TCP throughput. For example, burst retransmission in OBS

networks can improve TCP performance greatly. However, the persistence of retransmission,

deflection, or segmentation are subject to further considerations since too much persistence

leads to TO in the TCP layer, which significantly throttles the TCP transmission. One of the

most important challenges in tackling this problem is to properly define the TO threshold at

the TCP senders in the presence of various traffic loads at edge and core nodes. The

determination of the threshold value should take into consideration the number of packets

assembled in a single burst. A TCP snooping mechanism similar to schemes proposed for

wireless networks such as ELN [10], JTCP [34], TCP Peach [1], ATCP [51], and TCP

Casablanca [7] can be developed to evaluate the persistence of burst retransmission in

estimating the RTT. This enhancement aims to reduce the risk of having a false TO while

benefiting from burst retransmission or burst deflection.

The research on TCP over OBS presented in BTCP [98], BAIMD [73], TCP-BCL [72] [75],

and SAIMD [71] [74] has successfully mitigated the effects of false congestion detection due

to OBS networks. This work improves the TCP senders’ reaction to each packet-loss event.

However, each scheme suffers from some overhead as well, such as high computation

complexity and/or extra signalling in the OBS network. Also, some of the above schemes

may fail to overcome the problem of losing a large number of packets assembled in single

 115

burst. Furthermore, it is necessary to evaluate the convergence rate of TCP in the presence of

either constant RTT in barebone OBS or different values of RTT due to the deployment of

burst contention resolution schemes.

7.2.2 TCP Convergence Rates for Large Bandwidth-Delay Product Networks

There exists a significant lack of performance evaluations on the TCP modifications

proposed for network environments with large bandwidth-delay products over OBS

networks. Fast TCP [36] [39], Binary Increase Congestion control (BIC) TCP [93], Explicit

Control Protocol (XCP) [23], TCP with Simple Available Bandwidth Utilization Library

(SABUL) [79], High Speed (HSTCP) [24], and Scalable TCP (STCP) [44], are among the

most famous promising solutions. XCP showed stability and efficiency using ECN through

extending ECN and Core Stateless Fair Queue (CSFQ), which made XCP aware of the per-

flow state and buffer-size status. XCP uses Multiplicative Increase Multiplicative Decrease

(MIMD) to control the congestion window and AIMD to maintain fairness [23]. SABUL

introduced a hybrid approach by merging rate-based transmission via the UDP and reliable

retransmission via TCP, where the UDP channel is adopted for transmitting data at high

rates, while the TCP channel is used to resend missing data segments to ensure reliability

 [79].

Depending on the current cwnd, HSTCP uses a(cwnd) and b(cwnd) for computing the next

window size. This scheme is known to be a safe incremental approach [24]. A simulation-

based study of HSTCP over OBS is presented in [108]. Using small burst-assembly delay

and moderate burst dropping, the study shows that HSTCP throughput is affected in several

ways.

Scalable TCP (STCP) is a sender-side TCP that offers a robust mechanism to improve

performance in high-speed wide-area networks using traditional TCP receivers. STCP

increases the cwnd by 0.01 for each acknowledged packet (not in the fast recovery stage),

and cuts the cwnd by 0.875 for each packet-loss event [44].

There exist several proposals that solve the TCP slow-convergence problem over high-

speed networks. There is a need to evaluate burst-assembly delay and burst dropping over

 116

these TCP congestion-control algorithms. There are great opportunities for investigating the

effect of the burst-assembly delay, burst dropping vs. packet aggregation gain on Fast TCP,

Scalable TCP, XCP, and SABUL. It is known that the above schemes can achieve faster

convergence of TCP throughput in large-bandwidth high-delay networks by enlarging their

cwnd quickly. However, with large cwnd, the number of ACKs is decreased significantly. In

the presence of random burst losses that contain a large number of ACK packets, there is

dramatic damage to the TCP ACK-clocking which forces TCP to fall into false detection of

network congestion. Thus, an unnecessarily large number of packets is retransmitted.

Furthermore, ACK losses are expected to affect a large number of TCP senders since the

burst can assemble many ACK packets due to their small size. To our knowledge, the effect

of ACK packet losses over OBS networks has not been addressed in the literature.

7.2.3 Performance Modeling for TCP over OBS Networks

The previously reported TCP over OBS performance modeling technique follows the packet-

oriented approach [19] [71] [72] [74] [75] [77] [99] [105]. Recently, new modeling techniques

have been proposed. In the early 1990’s, the fluid modeling technique proposed in [57] added

new dimensions for modeling a large number of TCP flows. However, the fluid modeling

approach requires strict assumptions, such as (1) having a very large number of TCP flows,

(2) with Poisson arrival of loss events, and (3) with strong correlation among losses in one

RTT but independent of those in other RTTs. Regarding the first assumption, there is no

evidence that the number of TCP flows is sufficiently large at the OBS edge node. In OBS,

since both random burst drops and dropping due to persistent congestion may occur, the

second assumption is subject to further investigation. The third assumption can be justified

partially since, in the barebone OBS, the RTT is more or less fixed. This is because the third

assumption can only hold for TCP flows which can emit their entire cwnd while being

assembled in one burst (e.g., fast flows [19]). We conclude that the fluid model for

evaluating TCP throughput performance over OBS requires significant improvements before

it can be considered applicable.

The synchronization modeling approach proposed in [86] benefits from ACK-clocking to

 117

include the burstiness factor in the fluid model. Note that the fluid model assumes that there

is no burstiness and the TCP rates of different flows are differentiable. Therefore, it may take

infinitely long to converge. The synchronization approach has been used for modeling Fast

TCP and obtaining its stability by [85] and [86]. In order to obtain sufficient analysis of TCP

performance while considering TCP stability, scalability, and responsiveness, the

synchronization modeling approach needs to capture the bufferless nature of OBS links (i.e.,

fixed RTTs), the burst aggregation factors, and the burst-loss distributions.

7.3 Recommendations

From our study of TCP over OBS, we observe that delay-based TCPs, in particular TCP

Vegas, perform wore than other TCP congestion-control categories. Delay-based TCPs were

proposed to detect network congestion at earlier stages by sensing the RTT fluctuation. In IP

networks, it has been proven that Vegas improved TCP throughput by 30% to 70% compared

to dropping-based TCP (e.g., Reno). However, Vegas cannot detect network congestion in

barebone OBS due to the fixed RTT. Also, Vegas falls into false-congestion detection due to

the sudden increase in RTT when OBS uses burst retransmission or deflection. Therefore, we

conclude that the delay-based TCPs are not suited for OBS networks.

Considering the TCP design requirements presented in Section 7.2, dropping-based TCP, in

particular TCP SACK, is suited best for OBS. Conventional dropping-based TCP does not

require RTT values to perform congestion control. However, collecting historical information

about RTTs can provide further advantages for determining network congestion and burst-

loss status. Maintaining statistical RTTs can be done by TCP senders as in SAIMD, or can be

obtained explicitly from the OBS layer as in TCP-BCL. There is a trade-off among the

various schemes. For example, SAIMD introduces extra computation overhead at the TCP

sender side. On the other hand, TCP-BCL requires extra signalling between the OBS edge

node and the TCP senders. If a burst that contains many packets from different TCP sources

is dropped due to random contention, the edge node is responsible for signalling the affected

senders. This signalling effort complicates the functionality of the edge node, which in many

cases corresponds to hundred of thousands of flows.

 118

In SAIMD, the cost of maintaining historical RTTs and deriving the appropriate β is

nonetheless a trade-off with the long convergence time in recovery from slow-start caused by

false congestion detection in long-lasting high-bandwidth TCP flows. Furthermore, the

computation for the autocorrelation and confidence interval is performed for each loss event

and has a fairly fixed complexity regardless of M and N sizes. Therefore, we do recommend

using SAIMD approach for TCP over OBS since the resultant additional overhead to the

whole network is trivial.

 119

Appendix A
Acronyms

AAP : Adaptive Assembly Period

AIMD : Additive Increase Multiplicative Decrease

AO : All Optical

ARQ : Automatic Repeat Request

ATCP : TCP for Mobile Ad Hoc Networks

BACK : Burst Acknowledgement

BAIMD : Burst Additive Increase Multiplicative Decrease

BCR : Burst Contention Recovery

BIC : Binary Increase Control

BLE : Burst Length Estimation

BNACK : Burst Negative Acknowledgement

BTCP : Burst TCP

burst_wd : Burst Window

CDF : Cumulative Density Function

CSFQ : Core Stateless Fair Queue

cwnd : Congestion Window

DSACK : Duplicated Selective Acknowledgement

E/O : Electrical to Optical

ECN : Explicit Congestion Notification

ELN : Explicit Loss Notification

FACK : Forward Acknowledgement

FDL : Fiber Delay Lines

FEC : Forward Error Correction

FTO : False Timeout

GAIMD : Generalized Additive Increase Multiplicative Decrease

HPC : High-Performance Computing

 120

HSTCP : High Speed TCP

IP : Internet Protocol

JET : Just Enough Time

JIT : Just In Time

JTCP : Jitter-Based Transmission Control Protocol

LAUC-VF : Latest Available Unscheduled Channel with Void Filling

MIMD : Multiplicative Increase Multiplicative Decrease

MPLS : Multi-Protocol Label Switching

NS : Network Simulator

O/E : Optical To Electronic

OBS : Optical Burst Switching

OCS : Optical Circuit Switching

OPS : Optical Packet Switching

PDF : Probability Density Function

PMF : Probability Mass Function

QoS : Quality of Service

RC : Retransmission Count

RCDP : Retransmission-Count Based Dropping Policy

RED : Random Early Discard

RTT : Round Trip Time

rwnd : Receiver Window

SABUL : Simple Available Bandwidth Utilization Library

SACK : Selective Acknowledgement

SAIMD : Statistical Additive Increase Multiplicative Decrease

SONET : Synchronous Optical Networking

STCP : Scalable TCP

SV : Min-Starting Void

TCP : Transport Control Protocol

TCP-BCL : TCP with Burst Contention Loss

TD : Triple Duplicate

 121

TO : Timeout

TOP : Timeout Period

UDP : User Datagram Protocol

VFO : Virtual Fixed Offset Time

WDM : Wavelength Division Multiplexing

WR : Wavelength Routed

 122

Bibliography

[1] I. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach: A new congestion control scheme

for satellite IP networks”, IEEE/ACM transaction on networking, vol. 9, no. 3, pp 307-
321, 2001.H. Balakrishanan,

[2] C. Barakat, E. Alman, and W. Dabbous, “On TCP performance in a heterogeneous
network: a survey”, IEEE Communication Magazine, vol. 38 no. 1 pp. 40-46, 2000.

[3] T. Battestilli, H. Perros, “An introduction to optical burst switching,” IEEE Optical
Communications, vol. 41, pp 510-515, 2003.

[4] G. Bernstein, B. Rajagopalan, D. Saha, “Optical network control: Architecture, Protocol,
and Standards”, Pearson Education Inc., 2004.

[5] S. Bhandarkar and N. Reddy, “Improving the robustness of TCP to non-congestion
events”, internet draft draft-ietf-tcpm-tcp-dcr-01.txt, 2004

[6] S. Bhandarkar, N. Sadry, N. Reddy and N. Vaidya, “TCP-DCR: a novel protocol for
tolerating wireless channel errors”, IEEE Transactions on Mobile Computing, 2004.

[7] S. Biaz and N. Vaidya, “De-Randomizing congestion losses to improve TCP performance
over wired-wireless networks”, IEEE/ACM Transactions on networking, vol. 13, no. 3,
pp. 596-608, 2005.

[8] E. Blanton, M. Allman. “On making TCP more robust to packet reordering”. ACM
Computer Communication Review, vol. 32, no. 1, 2002

[9] L. Brakmo, S. Brakmo, and L. Peterson, “TCP Vegas: New techniques for congestion
detection and avoidance,” Proceedings of SIGCOMM, 1994.

[10] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end congestion avoidance on a global
Internet,” Journal on Selected Area, vol. 13, no. 8, pp. 1465-1480, October 1995.

[11] L. Cai, X. Shen, J. Pan, and J. W. Mark, “Performance analysis of TCP-friendly AIMD
algorithms for multimedia applications”, IEEE Transaction on Multimedia, vol. 7, no. 2,
pp. 339-355, 2005.

[12] F. Callegati, “Optical buffers for variable length packets”, IEEE Communication Letters,
Vol. 4, no. 9, 2000.

 123

[13] C. Cameron, J. Choiy, S. Bilgrami, et al, “Fixed-Point performance analysis of TCP over
optical burst switched networks”, Proceedings of ATNAC, 2004.

[14] X. Cao, J. Li, Y. Chen, and C. Qiao, “Assembling TCP/IP packets in optical burst
switched networks”, Proceedings of IEEE Globecom, 2002.

[15] Y. Chen, C. Qiao, and X. Yu, “An optical burst switching: a new area in optical
networking research,” IEEE Network, vol. 18, no. 5, pp. 16-23, 2004.

[16] X. Chen, H. Zhai, J. Wang, and Y. Fang, ''A Survey on Improving TCP Performance
over Wireless Networks,'' Kluwer Academic Publishers/Springer, Resource Management
in Wireless Networking, vol. 16, pp. 657-695, 2005.

[17] X. Chen, H. Zhai, J. Wang, and Y. Fang, ''TCP Performance over Mobile Ad Hoc
Networks'', Canadian Journal of Electrical and Computer Engineering (CJECE) (Special
Issue on Advances in Wireless Communications and Networking), vol. 29, no. 1/2, pp.
129-134, 2004.

[18] I. Chlamtac, A. Fumagalli, et al., “CORD: Contention Resolution by Delay Lines,” IEEE
Journal on Selected Areas in Communications, vol. 14, no. 5, pp. 1014-1029, 1996.

[19] A. Detti and M. Listanti,” Impact of segment aggregation on TCP Reno flows in optical
burst switching networks, “ Proceedings of IEEE Infocom, 2002.

[20] K. Dolzer, C. Gauger, J. Spth, & S. Bodamer, “Evaluation of reservation mechanisms for
optical burst switching”, International Journal of Electronics and Communications, vol.
55 no. 1, pp. 18–25, 2001.

[21] P. Du, and S. Abe, “TCP Performance Analysis of Optical Burst Switching Networks
with a Burst Acknowledgement Mechanism”, Proceedings of Asia-Pacific Conference on
communication and International Symposium on Multi-Dimensional Mobile
Communication (APCC2004/MDMC2004), August, 2004.

[22] A. Erramilli, M. Roughan, D. Veitch, and W. Willinger, “Self-similar traffic and
network dynamics,” Proceedings of the IEEE, vol. 90, no. 5, pp. 800-819, 2002.

[23] A. Falk, D. Katabi, "XCP Protocol Specification", Internet Draft, February, 2004.

[24] S. Floyd, “High-Speed TCP for large congestion windows”, RFC 3649, Experimental,
December, 2003.

[25] S. Floyd, “TCP and explicit congestion notification”, ACM SIGCOMM Computer
Communication Review, vol. 24, no. 5, pp8-23, 1994.

 124

[26] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension to the selective
acknowledgment (Sack) option to TCP”, RFC 2883, 2000.

[27] S. Floyd, S. McCanne, “Network Simulator,” LBNL public domain software, available
via ftp from ftp.ee.lbl.gov. NS-2 is available at http://www.isi.edu/nsnam/ns/

[28] S. Floyd, T. Henderson, “The New Reno modification to TCP's fast recovery algorithm”.
RFC 2582, 1999.

[29] C. Fraleigh, S. Moon, B. Lyles, et al, “Packet-Level Traffic Measurements from the
Sprint IP Backbone”, IEEE Network, vol. 17 no. 6, pp. 6-16, 2003.

[30] C. Gauger, “Dimensioning of FDL Buffers for Optical Burst Switching Nodes”,
Proceedings of the 6th ONDM, Torino, 2002.

[31] B. V. Gnedenko & I.N. Kovalenko, Introduction to Queuing Theory, Birkhäuser Boston,
1989.

[32] S. Gowda, R. Shenai, K. Sivalingam and H. Cankaya, "Performance evaluation of TCP
over optical burst-switched (OBS) WDM networks", Proceedings of IEEE International
Conference on Communications, pp. 1433-1437, 2003.

[33] J. Gubner, “Probability and random processes for electrical and computer engineers”,
Cambridge University Press, pp 240-262, 2006.

[34] E. H.-K. Wu and M.-Z. Chen, “JTCP: Jitter-based TCP for heterogeneous wireless
networks”, IEEE JSAC, vol. 13, no. 4, pp 757-766, 2004.

[35] J. He, S.-H. Gary Chan, “TCP and UDP performance for internet over optical packet-
switched networks”, Proceedings of IEEE ICC, 2003.

[36] S. Hegde, D. Lapsey, and et. al., “FAST TCP in high-speed networks: An experimental
study,” Workshop on Networks for Grid Applications, 2004.

[37] C. Hsu, T. Liu, and N. Huang, “Performance analysis of deflection routing in optical
burst-switched networks,” Proceedings of IEEE Infocom, 2002.

[38] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high performance”, RFC
1323, 1992.

[39] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture, Algorithms,
Performance,” Proceedings of IEEE Infocom, 2004.

[40] A. Kaheel, and H. Alnuweiri, “Batch scheduling algorithms for optical burst switching
networks”, Proceedings of IFIP Networking, 2005.

 125

[41] A. Kaheel, H. Alnuweiri, F. Gebali, "Analytical Evaluation of blocking probability in
optical burst switching networks", Proceedings of IEEE ICC, France, 2004.

[42] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High Bandwidth-Delay
Product Networks,” Proceedings of ACM SIGCOMM, 2002.

[43] R. Katz, “Explicit loss notification and wireless web performance,” Proceedings of IEEE
Globecom, Internet MiniConference, 1998.

[44] T. Kelly, “Scalable TCP: improving performance in highspeed wide area networks”,
Proceedings of, ACM SIGCOMM, 2003.

[45] L. Kim, S. Lee, and J. Song, “Dropping Policy for Improving the Throughput of TCP
over Optical Burst-Switched Networks”, In the proceedings of ICOIN, 2006.

[46] J. Kurose, and K. Ross, “Computer networking a top-down approach featuring the
Internet” Addison Wesley Longman, third edition, 2004.

[47] Y. Lee, and B. Mukherjee, “Traffic engineering in next-generation optical networks”,
IEEE Communications Surveys and Tutorials, vol. 6, no. 3, 16-33, 2004.

[48] S. Lee, L. Kim, “Drop Policy to Enhance TCP Performance in OBS Networks”, IEEE
Communication Letters, vol. 10, no. 4, 2006.

[49] J. Li, C. Qiao, and Y. Chen, “Recent progress in the scheduling algorithms in optical-
burst-switched networks", Journal of optical networking, vol. 3, no. 3, pp 229-241, 2004.

[50] J. Li, C. Qiao, J. Xu, and D. Xu, ”Maximizing throughput for optical burst switching
networks”, Proceedings of IEEE Infocom, 2004.

[51] J. Liu, and S. Singh, “ATCP: TCP for mobile Ad Hoc networks”, IEEE JSAC, vol. 19,
no. 9, pp 1300-1315, 2001.

[52] R. Ludwig, A. Gurtov, “The eifel response algorithm for TCP”, Internet draft draft-ietf-
tsvwg-tcp-eifel-response-05.txt, 2004.

[53] R. Ludwig, R. Katz, “The eifel algorithm: making TCP robust against spurious
retransmissions”, ACM Computer Communications Review, vol. 30, no. 1, pp. 30-36,
2000.

[54] M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The macroscopic behaviour of the TCP
congestion avoidance algorithm”, Computer Communication Review, vol. 27, no. 3, pp.
67-82, July 1997.

[55] M. Mathis and J. Mahdavi, “Forward Acknowledgment: Refining TCP Congestion
Control”, Proceedings of ACM SIGCOMM, 1996.

 126

[56] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgement
Options,” RFC 2018, 1996.

[57] V. Misra, W.-B. Gong, and D. Towsley, “Fluid based analysis of a network AQM routes
supporting TCP flows with an application to RED,” Proceedings of ACM SIGCOMM,
2000.

[58] W. Noureddine and F. Tobagi, “The transmission control protocol, an introduction to
TCP and a research survey”, Technical Report, July 2002.

[59] I. Ogushi, S. Arakawa, M. Murata, and K. Kitayama "Parallel reservation protocols for
achieving fairness in optical burst switching," Proceedings of IEEE Workshop on High
Performance Switching and Routing, 2001.

[60] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” Proceedings of ACM SIGCOMM, pp. 303-314, 1998.

[61] J. Postel, “Transmission Control Protocol,” RFC 793, Protocol Specification, DARPA
Internet Program, 1981.

[62] C. Qiao, “Labeled optical burst switching for IP-over-WDM integration”, IEEE
Communication Magazine, vol. 38, no. 9, pp. 104-14, 2000.

[63] C. Qiao, M. Yoo “Optical burst switching (OBS), a new paradigm for an optical
internet” Journal of High Speed Networks, vol. 8, pp. 69-84, 1999.

[64] S. Ryu, C.M. Rump, and C. Qiao, “Advances in internet congestion control,” IEEE
Communications Surveys & Tutorials. vol. 5, no. 1, pp 28-39, 2003.

[65] C. Samios and M. K. Vernon, “Modeling the Throughput of TCP Vegas,” Proceedings,
International Conference on Measurement and Modeling of Computer Systems
SIGMETRICS, 2003.

[66] P. Sarolahti, M. Kojo, “F-RTO: an algorithm for detecting spurious retransmission
timeouts with TCP and SCTP”, internet draft draft-ietf-tcpm-frto-01.txt, 2004.

[67] M. Schlager, “Documentation on the eifel algorithm implementation for the network
simulator (NS), 2000, available at http://www-tkn.ee.tu-berlin.de/~morten/eifel/

[68] M. Schlosser, E. Patzak, P. Gelpke, “Impact of deflection routing on TCP performance
in optical burst switching networks”, 7th International conference on Transparent Optical
Networks, 2005.

 127

[69] B. Shihada and P-H. Ho, “A Domain-based resource reservation protocol for next
generation optical burst switching internet,” 5th IASTED Optical Communication Systems
and Networks (OCSN), Canada, 2005.

[70] B. Shihada and P-H. Ho, “Transport Control Protocol (TCP) in Optical Burst Switched
Networks: Issues, Solutions, and Challenges”, Accepted at IEEE Communications
Surveys and Tutorials, 2007

[71] B. Shihada, P-H. Ho, and Q. Zhang, “A Novel Congestion Detection Scheme for TCP
over OBS Networks”, Proceedings of the IEEE Globecome, 2007.

[72] B. Shihada, P-H. Ho, and Q. Zhang, "TCP-ENG: Dynamic Explicit Congestion
Notification for TCP over OBS Networks", Proceedings of 16th IEEE International
Conference on Computer Communications and Networks (ICCCN), 2007

[73] B. Shihada, P-H. Ho, F. Hou, and et. al., “BAIMD: a responsive rate control for TCP
over optical burst switched (OBS) networks,” Proceedings of IEEE International
Conference on Communications (ICC), 2006.

[74] B. Shihada, P-H Ho, and Q. Zhang, “SAIMD: A Congestion Detection Scheme for TCP
over OBS Networks”, submitted to Journal of Lightwave Technology (JLT), March,
2007.

[75] B. Shihada, P-H Ho, X. Jiang, & M. Guo,” TCP-BCL: A Novel TCP Implementation
with Dynamic Explicit Burst-Contention Loss Notification over OBS Networks”,
Submitted to IEEE Transactions on Parallel and Distributed System, April, 2007.

[76] B. Shihada, Q. Zhang, and P-H. Ho “Threshold-based TCP Vegas over Optical Burst
Switched Networks”, Proceedings of 15th IEEE International Conference on Computer
Communications and Networks (ICCCN), 2006.

[77] B. Shihada, Q. Zhang, and P-H. Ho, “Performance Evaluation of TCP Vegas over
Optical Burst Switched Networks”, Proceedings of IEEE Broadnets, the 6th International
Workshop on Optical Burst/Packet Switching (WOBS), 2006.

[78] B. Shihada, Q. Zhang, P-H. Ho, & J. Jue, “A Novel Implementation of TCP Vegas for
Optical Burst Switched Networks”, submitted to the IEEE Journal on Selected Areas in
Communications (JSAC), February, 2007.

[79] H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, Q. Zhang, “Simple Available
Bandwidth Utilization Library for High-Speed Wide Area Networks”, Journal of
Supercomputing, 2004.

 128

[80] J. Soldatos, G. Kormentzas, “On the building blocks of quality of service in
heterogeneous IP networks,” IEEE Communications Surveys & Tutorials, vol. 7, no. 1,
2005.

[81] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms,” RFC 2001, 1997.

[82] W. Stevens, “TCP/IP Illustrated”, Volume 1, Addison Wesley Longman, 1994.

[83] V. Vokkarane, J. Jue, and S. Sitaraman, “Burst segmentation: an approach for reducing
packet-loss in optical burst switched networks”, IEEE International Conference on
Communications (ICC), 2002.

[84] H. Vu, & M. Zukerman, “Blocking probability for priority classes in optical burst
switching networks”, IEEE Communications Letters, vol. 6 no. 5, pp. 214–216, 2000

[85] J. Wang, D. Wei, S. Low, “Modeling and Stability of Fast TCP”, in the proceedings of
IEEE Infocom, pp. 938-948, 2005.

[86] D. Wei, “Congestion control algorithms for high speed long distance TCP connections”,
Master thesis, Caltech, 2004.

[87] B. Wen, N. Bhide, R. Shenai, and K. Sivalingam, "Optical Wavelength Division
Multiplexing (WDM) Network Simulator (OWns): Architecture and Performance
Studies", SPIE Optical Networks Magazine Special Issue on Simulation, CAD, and
Measurement of Optical Networks, 2001.

[88] J. White, R. Tucker, and K. Long, “Merit-based scheduling algorithm for optical burst
switching,” Proceedings of International conference on optical networks, 2002.

[89] J. Widmer, R. Denda, M. Mauve, “A Survey on TCP-Friendly Congestion Control”,
IEEE Network Magazine, special issue on "Control of Best Effort Traffic", vol. 15, no. 3,
pp. 28-37, 2001.

[90] C. Xin, C. Qiao, Y. Ye, and S. Dixit, “A Hybrid Optical Switching Approach,”
Proceedings of IEEE Globecom 2003.

[91] Y. Xiong, M. Vandenhoute, and H. Cankaya, “Control architecture in optical burst-
switched WDM networks,’ IEEE Journal on Selected Areas in Communications, vol. 18,
no. 10, pp. 1838-51, 2000.

[92] J. Xu, C. Qiao, J. Li, and G. Xu, “Efficient channel
scheduling algorithms in optical burst switched networks”, Proceedings of IEEE infocom,
2003.

 129

[93] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control (BIC) for fast
long-distance networks”, Proceeding of IEEE infocom, 2004.

[94] J.Y. Wei and R. I. McFarland, “Just-In-Time signalling for WDM optical burst
switching networks”, Journal of Lightwave Technology, vol. 18, pp. 2019–2037, 2000.

[95] S.Y. Wang, "Using TCP congestion control to improve the performances of optical burst
switched networks," Proceedings of IEEE ICC, 2003.

[96] Y. Yang, S. Lam, “Generalized AIMD congestion control,” University of Texas,
Technical Report TR-2000, 2000.

[97] M. Yoo, C. Qiao, “Just-Enough-Time (JET): A high speed protocol for bursty traffic in
optical networks”, Proceedings of IEEE/LEOS Technology for Global Information
Infrastructure, 1997.

[98] X. Yu, C. Qiao, and Y. Liu, “TCP implementation and false time out detection in OBS
networks,” Proceedings of IEEE Infocom, 2004.

[99] X. Yu, C. Qiao, Y. Liu, and D. Towsley, “Performance evaluation of TCP
implementations in OBS networks,” Technical Report, 2003-13, the State University of
New York at Buffalo, 2003.

[100] X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled bursts in optical
burst switched networks”, Proceedings of Opticomm, 2002.

[101] A. Zalesky, Le Vu Hai, M. Zukerman, Z. Rosberg, and E.W.M Wong, “Evaluation of
limited wavelength conversion and deflection routing as methods to reduce blocking
probability in optical burst switched networks”, Proceedings of IEEE International
Conference on Communications (ICC), 2004.

[102] Q. Zhang, V. M. Vokkarane, B. Chen, and J. P. Jue, “Early drop scheme for
providing absolute QoS differentiation in optical burst-switched networks”, Proceedings
of IEEE High Performance Switching and Routing, 2003.

[103] Q. Zhang, V. Vokkarane, J. Jue, and B. Chen, “Absolute QoS Differentiation in
Optical Burst-Switched Networks,” IEEE Journal on Selected Areas in Communications,
Optical Communications and Networking Series, vol. 22, no. 9, pp. 1781–1795, Nov.
2004.

[104] Q. Zhang, V. Vokkarane, Y. Wang, and J. P. Jue, “Analysis of TCP over Optical
Burst-Switched Networks with Burst Retransmission,” Proceedings of IEEE Globecom,
2005.

 130

[105] Q. Zhang, V. Vokkarane, Y. Wang, and J. P. Jue, “Evaluation of Burst
Retransmission in Optical Burst-Switched Networks,” Proceedings of 2nd International
Conference on Broadband Networks, 2005.

[106] B. Zhou, M. Bassiouni, G. Li, “Improving fairness in optical-burst-switching
networks”, Journal of Optical Networking, vol. 3, no. 4, pp.214, 2004.

[107] X. Zhu, J. Kahn, “Queuing models of optical delay lines in synchronous and
asynchronous optical packet-switching networks”, Optical. Engineering, vol. 42, no. 6,
pp. 1741-1748, 2003.

[108] L. Zhu, N. Ansari, J. Liu,” Throughput of high-speed TCP in optical burst switching
networks”, IEE proceedings Communications, vol. 152, no. 3, pp. 349-352, 2005.

