
Adaptive Algorithms for Weighted Queries

on Weighted Binary Relations

and Labeled Trees

by
Aleh Veraskouski

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2007
c©Aleh Veraskouski 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Keyword queries are extremely easy for a user to write. They have become a standard way
to query for information in web search engines and most other information retrieval systems
whose users are usually laypersons and might not have knowledge about the database schema
or contained data. As keyword queries do not impose any structural constraints on the
retrieved information, the quality of the obtained results is far from perfect. However, one
can hardly improve it without changing the ways the queries are asked and the methods the
information is stored in the database.

The purpose of this thesis is to propose a method to improve the quality of the information
retrieving by adding weights to the existing ways of keyword queries asking and information
storing in the database. We consider weighted queries on two different data structures:
weighted binary relations and weighted multi-labeled trees. We propose adaptive algorithms
to solve these queries and prove the measures of the complexity of these algorithms in terms
of the high-level operations. We describe how these algorithms can be implemented and
derive the upper bounds on their complexity in two specific models of computations: the
comparison model and the word-RAM model.

Keywords

Adaptive algorithms, keyword queries, binary relations, labeled trees, threshold set,
pertinent set, non-increasing path subset.

iii

Acknowledgements

I’m thankful to everyone who supported me during my master’s studies. I would like to
thank Professor J. Barbay, my supervisor, who guided me throughout my studies. I’m also

thankful to Professor I. Munro and A. Lopez-Ortiz, my reviewers, for their useful
comments and suggestions. And, certainly, I’m thankful to my family for the support and

encouragement I experienced over the years.

iv

Contents

1 Introduction 1

2 Survey of Previous Work 2
2.1 Adaptive Algorithms . 2

2.1.1 Sorting . 2
2.1.2 Convex Hull . 5

2.2 Queries on Binary Relations . 6
2.2.1 Intersection . 6
2.2.2 Threshold . 13

2.3 Queries on Labeled Trees . 15
2.4 Data Structures . 20

2.4.1 Binary Relations . 20
2.4.2 Priority Queues . 21

3 Weighted Queries on Weighted Binary Relations 23
3.1 Basic Definitions . 24
3.2 Threshold Set Problem . 25

3.2.1 Problem Statement . 25
3.2.2 Algorithm . 26
3.2.3 Adaptive Analysis . 29

3.3 Pertinent Set Problem . 32
3.3.1 Problem Statement . 32
3.3.2 Algorithm . 32
3.3.3 Adaptive Analysis . 34

3.4 Implementation . 34

4 Weighted Path Subset Queries on Weighted Labeled Trees 36
4.1 Basic Definitions . 37
4.2 Threshold Path Subset Problem . 38

4.2.1 Problem Statement . 38
4.2.2 Algorithm . 40
4.2.3 Adaptive Analysis . 41

4.3 Pertinent Path Subset Problem . 46

v

4.3.1 Problem Statement . 46
4.3.2 Algorithm . 46
4.3.3 Adaptive Analysis . 48

4.4 Implementation . 48

5 Weighted LCA Queries on Labeled Trees 50
5.1 Basic Definitions . 50
5.2 Threshold LCA Problem . 52

5.2.1 Problem Statement . 52
5.2.2 Algorithm . 53
5.2.3 Adaptive Analysis . 56

5.3 Implementation . 61

6 Conclusion 63
Bibliography . 64

Appendices 69

A Improvements on the algorithm for finding Smallest Lowest Common An-
cestors (SLCAs) 69

vi

List of Figures

2.1 One iteration of the In-place Insertion Sort Algorithm. 3

2.2 An example of the Intersection Problem with the number of keywords k = 3
and the corresponding answer. 6

2.3 The Galloping Search Technique (searching for 85). 8

2.4 Interleaving perfectly vs. totally disjoin ranges of values in the sets. 11

2.5 An example of the Threshold Set Problem with the parameter t = 2 and the
number of keywords k = 3 together with the corresponding answer. 14

2.6 An extract of the XML file (‘books.xml’) and the corresponding tree structure. 15

2.7 An example of XQuery for the XML structure shown in Figure 2.6 and the
corresponding answer. 16

2.8 The meaningful structural relationship among the nodes. 17

2.9 An example of postings lists representation of a weighted binary relation on
two sets. 20

3.1 An example of weighted association between elements of two sets and the
corresponding weighted binary relation. 24

3.2 An example of a weighted query. 25

3.3 An example of the problem instance and the corresponding partition certificate
for µ

R
= 2, µ

Q
= 5, and t = 20, where all three types of intervals are present. 29

3.4 Label movement during the execution of Algorithm 5 and Algorithm 6. . . . 31

4.1 An example of a simple file system. Each node represents a folder and contains
the words associated with it, along with the weight of these associations. . . 37

4.2 The preorder enumeration of the nodes in the tree in Figure 4.1. 38

4.3 An example of weighted query. For the sake of the simplicity of the discussion,
all the keywords have the same weight 1, but the algorithm works the same
in the general case as well. 39

4.4 The encoding of the example in Figure 4.1 using a weighted binary relation.
The null weights are noted by dots for better readability. 43

vii

4.5 An example of the minimal partition-certificate for the weighted tree in Fig-
ure 4.4 and the weighted query in Figure 4.3 with t = 5. This partition-
certificate has all three possible types of intervals. The alternation of the
instance is δ = 4. By symbols ‘∗’ we describe all the nodes that are descen-
dants of the node associated with the current label (this label affects these
nodes as well, unlike in the similar case on binary relations). 44

5.1 An example of the postorder enumeration of the nodes in a tree. 52
5.2 An example of the execution of the Algorithm 11 on the labeled tree provided

in Figure 5.3. 55
5.3 An example of a multi-labeled tree. The gray nodes are in the 2-CA set and

circled nodes are in the 2-LCA set built on the labels {a,b,c}. 57
5.4 The postorder of the nodes of the tree in Figure 5.3 and one of the minimal

2-intervals. 57
5.5 Three types of incoming nodes during filtering. 59
5.6 The global picture of the results of the lemmas. The set of all nodes that

correspond to all minimal t-intervals is a subset of t-CA set but contains t-LCA
set completely. The algorithm finds the corresponding node for each minimal
t-interval and determines whether it is in the t-LCA set or not through filtering. 60

viii

Chapter 1

Introduction

More and more information is produced and stored as digital documents. In order to use this
information effectively, we need ways to selectively retrieve the documents without browsing
the whole corpus of data. Researchers in the information retrieval field considered this
problem and proposed a large number of techniques to do this.

Usually, a user needs to specify the information he is looking for using one of the formal
query languages. Then, a search engine searches for those documents that are relevant to
the specified query and display them to the user. This process narrows the scope of the
information the user deals with and increases his effectiveness.

Simple keyword queries, in which all the keywords present in the query must be found
in the retrieved documents, is one of the popular ways to make such requests. First, these
queries are extremely easy to use and do not require the user to have any additional knowledge
about the database schema or content. Second, they greatly facilitate the writing of schema-
independent queries that can be used on different database schemas without being changed,
which increase the reusability of the queries in the environments with databases of different
schemas and after the database migration from one schema to another.

As keyword queries do not impose any structural constraints on the retrieved information,
the quality of the obtained results is far from perfect. However, one hardly can improve it
without changing the ways the queries are asked and the methods the information is stored.

The purpose of this thesis is to provide new ways of asking keyword queries and storing
information in the database by adding weights to the existing solutions to improve the quality
of the information retrieving. We consider weighted queries on two different data structures:
weighted binary relations and weighted multi-labeled trees. We propose adaptive algorithms
to solve these queries and prove the measures of the complexity of these algorithms in terms
of the high-level operations. We describe how these algorithms can be implemented and
derive the upper bounds on their complexity in two specific models of computations: the
comparison model and the word-RAM model.

The rest of this thesis is organized as follows. In Chapter 2 we give an overview of the
related work. In Chapter 3 we discuss weighted queries on weighted binary relations. In
Chapter 4 and Chapter 5 we consider two different types of weighted queries on weighted
labeled trees. We discuss our results and possible directions for future research in Chapter 6.

1

Chapter 2

Survey of Previous Work

In this chapter we give an overview of previous work related to the research in this thesis. We
start from the notion of an adaptive algorithm and its adaptive analysis in Section 2.1, that
we will use heavily for building and analysing our algorithms. Then, we explain the relevant
work done on querying in binary relations in Section 2.2 and labeled trees in Section 2.3,
which we are extending in the subsequent chapters. Finally, in Section 2.4 we describe how a
number of abstract data types that we use later can be implemented in two different models
of computations.

2.1 Adaptive Algorithms

2.1.1 Sorting

Worst-case analysis is a standard way to analyse the complexity of algorithms. One defines
a function f that shows the dependence between n, the size of the problem instance or input,
and f(n), the complexity of the algorithm in the worst case among all problem instances of
size n. Once this function is found, one can estimate the complexity of the algorithm on a
particular instance and, more importantly, compare different algorithms for solving the same
problem. We term this analysis the classical worst-case analysis.

Consider the Sorting Problem, where one needs to reorder the objects of a given sequence
according to an order defined on them. For the sake of simplicity, we restrict ourselves only
to a strict order, i.e. we assume that there is no equal objects in a sequence.

Definition 2.1.1 Given a sequence of n distinct objects S
in

= (x1, . . . , xn) from an ordered
set, the Sorting Problem is to determine the permutation π(i1, . . . , in) such that ∀i, k, l <

k ⇒ xil < xik and hence reorder S
in

to produce the ordered sequence S
out

= (xi1 , . . . , xin).

Below we show an example of using of the classical worst-case analysis and its drawbacks.
We do this for the Sorting Problem because of its popularity, high intuitiveness, and extensive
research done [27, 41].

2

Consider the well-known sorting algorithm, Insertion Sort. As show in Figure 2.1.1, at
each step the In-place Insertion Sort Algorithm moves the next object of the input to the
left until it gets the correct place in the already sorted part of the input. The algorithm does
this by comparing the object with its left neighbor and exchanging them if they violate the
correct ordering. After the first i iterations are done, the intermediate sequence contains the
first i entries of the input array that are already sorted. After the algorithm has considered
each object in the input, the sequence is completely sorted.

< x

< x

. . .

. . .

x

x> x

> x

Sorted partial result

Sorted partial result

Unsorted data

Unsorted data

At each iteration

becomes

Figure 2.1: One iteration of the In-place Insertion Sort Algorithm.

As the In-place Insertion Sort Algorithm is based on comparing and exchanging objects,
we can estimate its running time by counting the number of comparisons performed to solve
a given instance. We assume that exchanges are free because here an exchange is always
preceded by a comparison.

Consider two instances of the Sorting Problem on integers: S
in
1 = {7, 6, 5, 4, 3, 2, 1} and

S
in
2 = {7, 1, 2, 3, 4, 5, 6}. Both of them are of the same size n = 7 and have the same answer

S0 = {1, 2, 3, 4, 5, 6, 7}.

As S
in
1 is in inverted order, the In-place Insertion Sort Algorithm starts comparing each

object with its left neighbor and exchanges them, until the object appears in the leftmost
position of the array. The algorithm performs 0 + 1 + 2 + 3 + 4 + 5 + 6 = 21 comparisons.

If we consider a similar instance of the arbitrary size n, i.e. if the input has the form S
in
1 =

{n, n−1, . . . , 1}, the In-place Insertion Sort Algorithm performs 0+1+ . . .+(n−1) = Θ(n2)
comparisons.

However, when the algorithm is processing S
in
2 , it performs only two comparisons for

each object, except the first one ’7’, for which it performs only one comparison. In total,
the algorithm performs 1 + 2 + 2 + 2 + 2 + 2 + 2 = 13 comparisons. In the case of a similar
problem instance but of an arbitrary size n, S = {n, 1, . . . , n − 1}, the algorithm performs
2n − 1 = Θ(n) comparisons.

The classical worst-case complexity of the In-place Insertion Sort Algorithm is f(n) =
O(n2) comparisons. However, while the algorithm reaches this quadratic bound when it

deals with the problem instances of the first type S
in
1 , it performs only a linear number of

comparisons to process an instance of the second type S
in
2 . This shows that classical worst-

case analysis, which is based on the size of the instance, does not always correspond to the

3

number of operations the algorithm really performs to obtain the answer, and one needs a
better way to analyse algorithms.

Such an observation was first made by Burge [21] in 1958. He introduced the instance
easiness or presortedness of the sequence – a measure of existing order, a new way to classify
problem instances and to build an adaptive analysis. After being considered by many other
researchers, the concept of presortedness was formalized by Mannila [38] in 1985.

Here, we consider the number of inversions as a measure of presortedness of a problem
instance. The number of inversions in an object sequence with an order defined on them is
the number of pairs of objects that are in the wrong order:

Inv(X) = | {(i, j) | 1 ≤ i < j ≤ n and xi > xj} |

According to the defined inversion measure of presortedness, all the problem instances of

type S
in
1 of size n have Inv(X) = Θ(n2). On the other hand, all the problem instances of

type S
in
2 of size n have presortedness Inv(X) = Θ(n).

For both types of instances described above, the In-place Insertion Sort Algorithm per-
forms Θ(Inv(X)) comparisons, where a problem instance X has presortedness of Inv(X).
The same is true for all other instances of the problem, meaning that the complexity of the
algorithm is linear in terms of the measure of presortedness.

A sorting algorithm is said to be adaptive with respect to a measure of presortedness
if it sorts all sequences, but performs particularly well on those that have a high degree of
presortedness according to the measure. That is, the more presorted the input is, the faster
it should be sorted. Moreover, the algorithm should adapt without knowing the amount of
presortedness in advance.

The number of inversions used in our adaptive analysis is a more adequate measure of
an instance difficulty than the size of the problem that was used in the case of the classical
worst-case analysis. This is also true for most other problems.

Much more research has been done on these issues including defining new measures of
presortedness, analysis of existing and new algorithms with the help of these measures,
carrying out experiments in real environments, and theoretical analysis of the dependencies
between different measures. We refer the reader to the survey by Estivill-Castro and Derick
Wood [27] as well as Petersson and Moffat [41] for a good survey of different measures of
presortedness and a hierarchy of dependencies between them.

A model of computation is the definition of the set of allowable operations for any algo-
rithm and their respective costs. Only after defining a model of computation it is possible to
analyze the computational resources required by the algorithm, such as the execution time
or memory space, and discuss the limitations of algorithms or computers. It is common to
specify a computational model in terms of primitive operations allowed which have unit cost,
or simply unit-cost operations.

A set of primitive operations defines the exact set of actions any algorithm in this compu-
tational model can perform. By assigning costs to the operations, one can determine upper
bounds on the complexity of an algorithm in this model, i.e. how costly is the processing of

4

the problem instances; and prove lower bounds for any algorithm, i.e. what is the minimal
possible cost that any algorithm in this computational model that solves this problem might
have.

One can prove a lower bound on the complexity of any algorithm based on the problem
instance difficulty measure as well. This defines the set of optimal algorithms for a given
problem: those whose upper bound matches this lower bound. No algorithm that works
faster than the lower bound can be developed in a given computational model.

Although there are many models of computation that differ in sets of admissible opera-
tions and the cost of their computation, most researchers that work on sorting (as described
above) and intersection problems (which we will discuss later) use the comparison-based
model of computation, which is based on the number of comparisons an algorithm performs.
This model gives a good approximation of the real environment where large partly-ordered
(as in the case of the Sorting Problem) and ordered (as in the case of an intersection problem)
sets are operated on.

In the comparison-based model of computation, we have an input containing n items,
but the only information the algorithm can get about the items is by comparing pairs of
them, where each comparison returns YES or NO. Each comparison costs 1 unit, but other
operations such as exchanges and moves are free.

2.1.2 Convex Hull

Although, we have discussed the adaptive analysis as it relates to the Sorting Problem, it
has successfully been applied to other problems as well. Finding the convex hull of a set of
points on the plane, which has received considerable attention in computational geometry,
is one of them.

The convex hull of a finite set of points S on the plane is the smallest convex polygon
containing the set. The vertices of this polygon must be points of S. Thus in order to
compute the convex hull of a set S it is necessary to find those points of S that are vertices
of the hull.

The first non-trivial algorithm to solve the Convex Hull Problem was proposed by
Jarvis [35]. It finds the next edge of the convex hull by comparing slopes of the lines
built on the last found vertex and each of the other possible vertices. The complexity of this
algorithm is O(nh), where n is the number of input vertices and h is the number of vertices
in the convex hull.

One more algorithm, Graham’s scan algorithm [30] is based on sorting of all vertices by
the slope they form with a pivot, which is a vertex that is guaranteed to be in the convex
hull. The algorithm scans all the vertices in the sorted order and determines whether a
particular one belongs to the convex hull by checking the angles it forms with its neighbors.
This algorithm has O(n lg n) worst-case running time. Note that as the algorithm has to
process all the vertices in any case, it does not benefit from a small number of vertices in
the output convex hull.

5

Later, Kirkpatrick and Seidel [36] proposed an adaptive algorithm based on the divide-
and-conquer technique with the upper bound of O(n lg h) on its complexity. They also
proved that this is the worst-case lower bound on the running time of any algorithm that
solves this problem if it is measured as a function of both n and h.

Recently, Chan [22] proposed a simple output-sensitive convex hull algorithm in Euclidean
space E2 and its extension to E3, both running in optimal O(n lg h) time and both adaptive.

2.2 Queries on Binary Relations

Keyword queries is one of the most popular ways to query search engines. Usually, the
answer to a keyword query is the list of all documents that contain all the keywords from the
query. In such an interpretation, there is a logical association between the list of documents
and the list of keywords: each document is associated with all the words it contains and
each keyword is associated with all the documents it can be found in.

A binary relation is an association of elements of one set with elements of another set. As
a binary relation is a many-many association it is a good choice to express the dependency
between documents and keywords.

2.2.1 Intersection

The Intersection Problem often arises when a user is querying a search engine. If a search
engine is asked for the web pages that contain all of the entered keywords it has to compute
the intersection of the ordered sequences with document references corresponding to these
keywords.

A1 → 2 5 7 20 23 27 34 38
A2 → 1 3 4 5 20 23 29 33
A3 → 5 6 7 14 15 16 20 22

→ 5 20 = I

Figure 2.2: An example of the Intersection Problem with the number of keywords
k = 3 and the corresponding answer.

Definition 2.2.1 Given k ordered sequences A1, A2, . . . , Ak of sizes n1, n2, . . . , nk summing
up to n, the Intersection Problem consists of computing their intersection I = A1∩A2∩ . . .∩
Ak.

As the number of pages in the World Wide Web is growing rapidly, the sizes of the
sorted sets of references are constantly increasing. The number of queries to search engines
is increasing induced by the increase of the number of internet and search engine users [40].
The faster a search engine answers user queries, the more of them it can serve using the

6

same hardware. The speed of intersection algorithms has strong economical importance in
this environment.

A number of intersection algorithms have been proposed in the research literature. We
present those of them that are related to our research, their theoretical analysis, and their
performance in practice.

Basic Algorithms

The standard algorithm for solving the Intersection Problem in practice is the SvS Algo-
rithm (Algorithm 1) [26]. The SvS Algorithm repeatedly intersects the two smallest sets:
it performs a binary search in the unexplored portion of the larger set for each element of
the smaller set. After two smallest sets were intersected, the algorithm replaces the second
set with the next smallest one and intersects them once again. It keeps doing this until
the largest set is processed or no elements are left in the first set. Because intersections
only make sets smaller, as the algorithm progresses with several sets, the time to do each
intersection effectively decreases. In particular, the algorithm benefits greatly if the set sizes
vary widely and can perform poorly if the set sizes are all approximately the same.

Algorithm 1 SvS (A1, . . . , Ak).

Sort the sets by size and rename them to A1, . . . , Ak with A1 to be the smallest;
for each set Ai, i = 2 to k do

Set l = 1;
for all e ∈ A1 in increasing by value order do

Perform a binary search for e in Ai between l and |Ai|;
if e is not found, remove it from A1;
Set l to the location of the smallest element in Ai that is greater than e;

end for
end for

Demaine et al. [25] introduced the Adaptive Algorithm (Algorithm 2). It is based on
galloping search in the ordered sets: to locate an element the algorithm starts at the begin-
ning of an array and double the index of the queried location until it overshoots the queried
element, then it does a binary search between the last two locations considered during the
galloping search until it finds the element or proves that there is no such element in the set
(Figure 2.3).

The Adaptive Algorithm takes the smallest element in the current set whose status in
the intersection is unknown and searches for it in all the other sets simultaneously: it does
only one step of the doubling search in a set and then proceeds to the next set in the round-
robin order. After the algorithm jumps over the element while performing doubling search,
it performs complete binary search for this element in the region bounded by the last two
probes of the doubling search. After the algorithm has determined whether the current
element is in the output or not, it proceeds to the next element in the last set where the
search for this element was performed.

7

Algorithm 2 Adaptive (A1, . . . , Ak).

Set e = A1[1]; i = 1; occur = 0; li = pi = 1,∀i = {1, . . . , k};
loop

i = i + 1; if i > k then i = 1;
li = li + pi; pi = pi ∗ 2; (one step of doubling search for e in Ai)
if Ai[li] > e then

Perform a binary search for e in Ai between li − pi and li;
Set li to the location of the smallest element in Ai that is greater than e;
if e was found then
occur = occur + 1;
if occur = k then output e;

end if
if e was outputted or was not found in Ai then
occur = 0; pi = 1,∀i = {1, . . . , k};
Set e to the first element in Ai larger than e; (e = Ai[li])
Exit loop if there is no such an element;

end if
end if

end loop

15 30 51 71 81 89 98

Doubling Search

Binary Search

7

Figure 2.3: The Galloping Search Technique (searching for 85).

8

The Sequential Algorithm (Algorithm 3) for solving the Intersection Problem proposed
by Barbay and Kenyon [11, 12] is similar to the Adaptive Algorithm, except that it cycles
through the sets performing one entire doubling search at a time in each of them, opposed
to a single doubling search step in the Adaptive Algorithm.

Algorithm 3 Sequential (A1, . . . , An).

Set e = A1[1]; i = 1; occur = 0; li = 1,∀i = {1, . . . , k};
loop

i = i + 1; if i > k then i = 1;
Perform a doubling search for e in Ai starting from li;
Perform a binary search for e in Ai between two last probes of the doubling search;
Set li to the location of the smallest element in Ai that is greater than e;
if e was found then
occur = occur + 1;
if occur = k then output e;

end if
if e was outputted or was not found then
occur = 0;
Set e to the first element in Ai larger than e; (e = Ai[li])
Exit loop if there is no such an element;

end if
end loop

In their experimental study [26] Demaine et al. combined the best properties of the
SvS and the Adaptive Algorithm to derive a new one, which they denoted as the Small
Adaptive (Algorithm 4). For each element in the smallest set, the Small Adaptive Algorithm
performs one full galloping search in the second smallest set. If a common element is found,
a new search is performed in the remaining sets to determine if the element is indeed in the
intersection of all sets, otherwise the algorithm advances to the next element of the smallest
set. In addition, the Small Adaptive algorithm repeatedly re-sorts the sets in the increasing
according to the sizes of the unexamined intervals order, to minimize the time spent for the
search.

Although each of the described above algorithms has a linear worst case time, there is a
subset of instances for each of them where it performs better than the others. The Adaptive
Algorithm performs well on those instances that have small proofs [25]. The same is true
for the Sequential Algorithm. The SvS Algorithm performs especially well when the sizes of
the sets are very different. The Small Adaptive Algorithm performs similarly to SvS as long
as no element is found to be in the intersection of the two sets, otherwise it does additional
checks in the other sets. Note that the Small Adaptive Algorithm and the SvS Algorithm
are the only ones taking advantage of the difference of sizes of the sets, and that the Small
Adaptive Algorithm is the only one which takes advantage of how this size varies as the
algorithm eliminates elements.

9

Algorithm 4 Small Adaptive (A1, . . . , An).

Sort the sets by size and rename them to A1, . . . , An with A1 to be the smallest;
Set e = A1[1]; i = 1; occur = 0; li = 1,∀i = {1, . . . , k};
loop

i = i + 1; if i > k then i = 1;
Perform a doubling search for e in Ai starting from li;
Perform a binary search for e in Ai between two last probes of the doubling search;
Set li to the location of the smallest element in Ai that is greater than e;
if e was found then
occur = occur + 1;
if occur = k then output e;

end if
if e was outputted or was not found then

Resort arrays by |Aj| − lj,∀j = {1, . . . , k};
i = 1;
Set e to the first element in A1 larger than e; (e = Ai[li])
Exit loop if there is no such an element;

end if
end loop

Theoretical Analysis

To express the complexity of an algorithm one needs to define a measure of complexity. A
common model in use in the field is the comparison model of computation, in which any
algorithm can use elements of the sets in an atomic fashion, either through a comparison or
data movement.

As search engines work with large data sets, the running time is usually dominated by
external memory accesses. The number of comparisons generally shows high correlation
with the number of external input and output operations and is considered to be a good
approximation of the real world performance.

This cost metric does not always accurately predict running time because of caching ef-
fects and data-structuring overhead. However, in most cases data structures are very simple,
and memory access patterns have similar regularities. Moreover, comparisons counting is
good because of the reproducibility and because they may be directly compared with the
theoretical results [26].

For the Intersection Problem on two sets of size n, the classical worst-case analysis shows
that on instances where ranges of values interleave perfectly (Figure 2.4a), any algorithm
has to do at least Ω(n) comparisons. On the other hand, if all elements of one set are less
than any elements of the another set (Figure 2.4b), the problem can be solved by only one
search in a sorted array, which has log2 n + O(1) as its upper and lower bounds in terms of
comparisons [25].

10

1 3 5 7 9 11 13

2 4 6 8 10 12 14

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Figure 2.4: Interleaving perfectly vs. totally disjoin ranges of values in the sets.

Clearly, there is a huge gap between the complexities of Ω(n) and log2 n + O(1), and one
needs to estimate the algorithm’s running time in a better way. One may use an adaptive
analysis that ties a specific measure of the complexity of an instance with the number of
comparisons done by the algorithm to solve this instance.

Demaine et al. [25] addressed this problem and proposed the adaptive algorithms that
solves the intersection, union, and difference problems on ordered sets in the comparison
model and introduced an adaptive analysis for these algorithms.

They defined a notion of the proof for a particular problem as a finite set of inequalities
such that all instances that satisfy them have the same solution to the problem. They
considered the binary encoding of any proof and the difficulty D(X), which is the smallest
encoding length over all proofs for a particular instance. They introduced a lower bound on
the complexity of the algorithm, which is the length of the shortest binary encoding of any
valid proof.

They considered the worst-case value of the ratio of the running time of an algorithm
solving a particular problem instance to the difficulty of this instance or scaled running time.
This approach allows the running time to be large for difficult instances, but enforces it to be
small for easy ones, which is extremely important because it greatly depends on the specifics
of the problem instance.

worst-case ratio = max{
Time(X)

D(X)
}

An algorithm that minimizes the worst-case scaled running time is a natural definition of
an optimal adaptive algorithm. Scaled running time is similar to a “competitive ratio”, which
measures the quality of the output of an approximation algorithm, instead of its running
time, relative to the optimal one.

They proved that for the Intersection Problem the scaled running time of their Adaptive
Algorithm is Θ(kG/D), where k is the number of sets to intersect, G is the gap cost, a
parameter charactering the proof, and D is the difficulty of the problem.

Later, Barbay and Kenyon [11] introduced the Sequential Algorithm for the Intersec-
tion Problem. They used a different measure of difficulty, based on the non-deterministic
complexity of the instance, which appears to be easier than the one by Demaine et al. .

Any algorithm for the Intersection Problem must certify that the output is correct; i.e.
all the elements of the output are really elements of all the sets, and no element of the

11

intersection has been omitted by exhibiting some inequalities which imply that there can be
no other element in the intersection.

The partition-certificate of a problem instance is a certain structure that contains a set I,
the intersection, as well as all the comparison information required to certify that no other
elements are in this intersection. Barbay and Kenyon [11] defined the difficulty of a problem
instance as the size of the smallest partition-certificate δ = #I + minP #P , where #I is the
number of elements in the intersection, and #P is the number of comparisons needed to
verify the non-existence of any other elements in the intersection.

They proved a lower bound of Ω(δ
∑

i log(ni/δ)) comparisons on average for any random-
ized algorithm that solves the Intersection Problem, where ni is the size of the ordered set
Ai and show that the complexity of the Sequential Algorithm matches this lower bound.

Experiments

The complexity of the algorithm in theory and its actual running time might differ greatly in
practice, depending on the way the analysis was made and the algorithm was implemented.
To find how good the proposed measure of difficulty is, i.e. whether it catches the complexity
of an algorithm in real applications, one should perform a set of experiments. The situations
when the superior algorithms according to the theory perform not better or even worse than
their competitors are not rare.

Demaine et al. [26] carried out the experiments on a 114-megabyte subset of the World
Wide Web using a query log from Google (5000 entries). They compared two algorithms:
the SvS Algorithm, which is used in some of the search engines, and the Adaptive Algorithm,
which is the theoretically optimal one according to their adaptive measure of difficulty [25].

They concluded that the standard SvS Algorithm outperforms the optimal Adaptive
Algorithm on many instances, albeit the minority of them. Moreover, the results show that
the Adaptive Algorithm performs frequently better than the SvS only when the number of
sets is small.

While the Adaptive Algorithm is wasting time cycling through the sets, SvS gains a
significant advantage because the intersection of the smallest two sets is very small and may
even be empty. Therefore SvS often terminates after the first pass, having only two sets
examined, while adaptive constantly examines all k of them.

While the SvS and the Adaptive Algorithm perform differently and outperform each other
on different instances, Demaine et al. designed an algorithm to compromise between these
two ones in order to obtain the one to be better than both for any number of sets. They
decomposed the differences between these algorithms into main techniques and examined
their combinations.

The Small Adaptive Algorithm applies a galloping binary search to see how the first
element of the smallest set fits into the second-smallest set. If the element is in the second-
smallest set, the algorithm checks next whether this element is in the third-smallest set and
so on until it determines whether it is in the answer or not (Algorithm 4).

The Small Adaptive Algorithm does not increase the work from the SvS Algorithm be-
cause it just moves some of the comparisons ahead in the schedule of SvS. The advantage,

12

though, is that this action may eliminate a large number of elements from sets and so will
change their relative sizes.

An attempt to use Hwang-Lin merging algorithm [33] for intersection of two random
sets, which combines the virtues of binary insertion and linear merging, or to alternate the
set from which the candidate element comes from, was not successful – it did not make the
results better. Demaine et al. carried out additional investigation and concluded that the
Small Adaptive Algorithm appears to be the best algorithm for computing set intersection
on the considered data set.

However, some questions remained open. In the situation when the theoretically optimal
algorithm appears not to be best one in practice, one may ask about whether there exists a
faster algorithm, and whether there is a better analysis that can strongly link the theoretical
and practical results. One more problem was that the corpus of text data used was small
which made it not representative enough.

Barbay et al. [13] summarized and performed practical testing of all algorithms above
on much larger web crawl than the one used before and applied several new techniques to
increase the speed of the algorithms on the given data set. They considered the replacement
of the binary and doubling search by the interpolation and extrapolation search.

An Interpolation Search for an element of value e in an array A on the range a to b
estimates the position of the next element of a given range by the values on the borders of
this range as given by the formula:

I(a, b) =
e − A[a]

A[b] − A[a]
+ a

An Extrapolation Search [13], in fact, is an extension of interpolation one, where positions
of the probes used to estimate the position of the next element as well as the position of
the next element can be beyond the interval [a, b]. In their studies, the Extrapolate Ahead
Algorithm, which derives the expected position of the next element based on the value in
the current position and the position that is further ahead by l elements, appeared to be the
most successful extrapolation technique comparing to several others considered.

Barbay et al. [13] concluded that the Small Adaptive Algorithm is superior to all other
tested ones even on the large data set. Moreover, they showed how to improve this algorithm
by using the Extrapolate Ahead Technique. The resulting Extrapolate Ahead Small Adaptive
Algorithm, which is a variation of the Small Adaptive Algorithm that at each step computes
the position of the next comparison using the values of elements at distance l of each other,
outperforms all other tested algorithms and performs the best when l = lg ni.

2.2.2 Threshold

Although the Intersection Problem is widely used for information retrieving, sometimes, it
is too restrictive. If a user types in too many words, the most relevant web pages might
not contain all of them and will be excluded from the result of the search. By providing
more information to a search engine, a user restricts himself from getting potentially the

13

best documents. This might be corrected by relaxing requirements the query imposes to the
documents in the answer.

Barbay and Kenyon [11] suggested to use the Threshold Set Problem which is a relaxation
of the Intersection Problem. Given a keyword query from a user, the answer to the Threshold
Set Problem with a parameter t is a set of objects such that each of them contains at least
t keywords from the query.

A1 → 2 5 7 20 23 27 34 38
A2 → 1 3 4 5 20 23 29 33
A3 → 5 6 7 14 15 16 20 22

→ 5 7 20 23 = I

Figure 2.5: An example of the Threshold Set Problem with the parameter t = 2
and the number of keywords k = 3 together with the corresponding answer.

Definition 2.2.2 Given k ordered sequences A1, A2, . . . , Ak of sizes n1, n2, . . . , nk summing
to n, the t - Threshold Set Problem consists of computing the set of elements that are present
in at least t out of the k sets.

Tt = {x :
∑

i

1|(x ∈ Ai) ≥ t}, where 1|(x ∈ Ai) =

{

1, if x belongs to Ai

0, otherwise

The k-threshold Set Problem is the Intersection Problem, i.e. one needs to find a set of
all objects that are presented in all k ordered sets defined by the query. The 1-Threshold
Set Problem is the Union Problem [25], the answer to which is the set of all the elements
that are presented in at least one set in the input. The t-Threshold Set Problem with
t ∈ {2, . . . , k − 1}) is the compromise between intersection and union problems.

Barbay and Kenyon [11] presented an algorithm for solving the Threshold Set Problem,
which is very similar to their Sequential Algorithm for solving the Intersection Problem, and
proved an upper bound of O(tδ log k log k) on its complexity, where δ is the difficulty of a
problem instance, i.e. the size of the smallest partition-certificate. In the following work [12]
they presented a simpler algorithm based on the same ideas with a better upper bound of
O(δ

∑

i log(ni/δ + 1) + δk log(k − t + 1)) on its complexity. As the Threshold Set Problem
is the relaxation of the Intersection Problem, the lower bound of Ω(δ

∑

i log(ni/δ)) [11] for
the latter is true for the former as well.

Barbay and Kenyon [12] proposed an extension of the t-threshold set, an opt-threshold
set, which is the answer to the t-threshold problem for the largest t for which this answer
is not empty. It is always defined, because the 1-threshold is a union and is never empty,
unless the input is empty.

The opt-threshold set is a more adequate answer to a simple keyword user query than a t-
threshold set: when some elements match all k words of the query, opt-threshold corresponds

14

to the intersection; otherwise, it corresponds to the set of elements maximizing the number
of words matched.

No exact algorithms for solving opt-threshold Problem was provided, except the trivial
ones. Further in this thesis the Opt-Threshold Problem is denoted as the Pertinent Set
Problem.

2.3 Queries on Labeled Trees

The Extensible Markup Language (XML) is a W3C-recommended general-purpose markup
language [20], the main purpose of which is to facilitate the sharing of data across different
applications.

XML provides a text-based means to use a tree-based structure to store information.
It combines all information described as text with markup that stores the hierarchy and
dependences between pieces of information. Moreover, XML is also designed in a way to be
reasonably readable by a person without specialized knowledge.

Although XML is very general, a number of formally defined specialized languages based
on XML (such as RSS, XHTML, MusicXML, and others) are defined. While a particular
system may rely on the specific characteristics of a particular language, all these sustems are
able to understand and work with the data stored in XML.

〈 book 〉
〈 title 〉 SQL 〈 /title 〉
〈 allauthors 〉
〈 author 〉 K.Klein 〈 /author 〉
〈 author 〉 D.Klein 〈 /author 〉

〈 /allauthors 〉
〈 year 〉 2000 〈 /year 〉
〈 chapter 〉
〈 head 〉 Origins 〈 /head 〉
〈 section 〉

. . .
〈 /section 〉

〈 /chapter 〉
〈 /book 〉

→

book

title

SQL

allauthors

author

K.Klein

author

D.Klein

year

2000

chapter

head

Origins

section

. . .

Figure 2.6: An extract of the XML file (‘books.xml’) and the corresponding tree
structure.

There are a number of commonly used XML extensions, such as XPath, XQuery, XML
Namespaces, XPointer, and others, that facilitate data searching and retrieving. XQuery [17]
is a query language for querying collections of XML data. It provides flexible query possibil-
ities to extract data from documents in the World Wide Web and access collections of XML
files in the way which is similar to accessing databases.

15

XQuery:

for $book in doc(‘books.xml’)
where $book/year = ’2000’
and $book/allauthors/author = ’K.Klein’
return $book/title

the answer:
SQL

Figure 2.7: An example of XQuery for the XML structure shown in Figure 2.6 and
the corresponding answer.

While the initial versions of XQuery support only highly-structured queries, many re-
searchers noticed the necessity to make them unstructured. There are two main reasons
to do this: first, most of the users are laypersons and do not know neither query language
semantics nor database schema and, second, most of the highly-structured queries become
useless if the schema of the database is changed, as in the case when one attempts to apply
the same query to different databases with different schemas.

Query languages such as XML-QL, Lorel, XQL, Quilt, and others were introduced in the
scientific literature to permit more flexible queries. All these languages support some sort of
schema wildcards that allow the user to specify only partial paths to the data. We refer the
reader to Bonifati and Ceri’s comparative analysis of these languages [19].

Although such an approach gives much more flexibility and requires less knowledge from
the user composing a query, sometimes, the solution they produce is not precise enough.
Another approach to relax querying is to use structure-free queries, such as keyword queries,
i.e. the queries that do not depend on the schema of the data storage at all.

Schmidt et al. [45] exploited the tree structure of XML documents to give a powerful
way to query databases with whose content the users are familiar, but without requiring
knowledge of tags and hierarchies, by means of a meet operator.

A meet operator determines the Lowest Common Ancestor (LCA) or Nearest Common
Ancestor (NCA) of nodes in the XML syntax tree [2, 3, 4, 32]. The LCA of two nodes is
the deepest ancestor of both of them: lca(x1, x2) is the node x that is an ancestor of both
of them, such that there is not other node x′ that has the same property and for which x is
an ancestor. The result of meet operation is equal to the LCA in the case of two nodes.

Schmidt et al. extended the notion of the meet operator to the case of a number of subsets
of nodes of the XML tree, each of which has only nodes of the same type, i.e. the nodes that
have the same rooted path built on structure nodes of the tree. They augmented queries
with this operator in order to narrow the scope the information is retrieved.

They demonstrated that the operator can be implemented efficiently: they implemented
it on top of the Monet XML module [44] within the Monet database server [18] and tested
it on two XML sources: a description of multimedia data items and DBLP bibliography.
They found out that the execution time of the meet operator is insignificant comparing to

16

n2

n1 n

n1 n2 n
′

2

n
′

n

n2n1

(a) (b) (c)

Figure 2.8: The meaningful structural relationship among the nodes.

the execution time of the full-text search involved in the query and that meet scales well
with respect to distance of the objects.

In addition, Schmidt et al. proposed a way to improve the quality of the results to the
queries by incorporating two additional restrictions: a maximum distance that says how
many edges may lie between two input objects, and the type of results, i.e. for each nodes
that is a candidate for the output set, its type should be compared to the types allowed to
be output.

The first approach does not take any additional computation time and might be quite
useful. The second one requires some additional evaluation over the requirements imposed
on the possible types of the output nodes. Nevertheless, both of the approaches require
extensive knowledge about XML structure that might not be in place.

Li et al. [37] extended XQuery to Schema-Free XQuery by adding an additional function
mlcas that helps to narrow the tree context from which nodes are outputted to the meaningful
one. Their Meaningful Lowest Common Ancestor Structure (MLCAS) is based on the idea
for a node to ‘meaningfully relate’ to other nodes in the XML tree.

Figure 2.8 gives an example of which nodes ‘meaningfully’ relate to others and which are
not. A node and its descendant (a) meaningfully relate to each other as they often relate to
the same entity: usually a descendant represents a subpart of entity or a feature of it. Two
nodes that are descendants of the same ancestor (b) meaningfully relate to each other as
they represent the same entity either. However, if a node has an alternative ‘step-brother’
(c), it does not meaningfully relate to it, because the first brother is of the same type and
represents the same type of information, which is more relevant.

A new mlcas function in XQuery language allowed Li et al. to impose the mentioned
structural relationship on the results of the query without making it more complex for a
user. They proposed a way to incorporate it into the existing XQuery without burdening a
user too much: he needs only to add the word mlcas to the query to make it be processed
in the mlcas-aware way, but a user might not add it and will have a query processed in the
original way.

Li et al. proposed two algorithms for computing MLCAS [37]. The first one is slower
but can be easily implemented using the standard operators that most of the XML search

17

engines support. The second algorithm is more efficient but, on the other hand, requires a
non-standard operator: stack-based structural join [1] to be supported by a search engine.

Consider an XML tree and m keywords involved into the Schema-Free XQuery. For each
keyword ei there is a list of nodes of length ni associated with it. The basic idea of the first
algorithm is the total enumeration of all possible vectors of size m each having a node of the
mth set put to the mth position, building rooted paths for each of these nodes in the same
vector, and merging these paths into a tree such that its leafs are nodes from this vector.
Then, for any pair of trees, the algorithm eliminates the one whose root is an ancestor (in the
original database tree) of the root of the other, as it conflicts with the definition of MLCAS.
The roots of the remaining trees are returned as the MLCAS.

They showed that the time complexity of the straightforward implementation of this
algorithm is O(hmΠm

i=1ni), where h is the maximum height of the XML data tree.

The second algorithm developed by them is more efficient but requires an additional
operator that is not commonly supported. The algorithm is inspired by the stack-based
family of algorithms for structural join. They claimed that the time complexity of the stack-
based MLCAS algorithm is O(hΣm

i=1ni + Πm
i=1ni), where h denotes the height of the XML

data tree.

Li et al. implemented Schema-Free XQuery using the Timber [34] native XML database
and evaluated the system on two aspects: search quality in terms of search accuracy and
completeness on standard and heterogeneous XML benchmarks and search performance,
where they measured the overhead caused by evaluating schema-free queries versus schema-
aware queries.

To evaluate the relative strength of Schema-Free XQuery, they compared it with two
previously known techniques that allow search over XML documents without knowledge of
XML schema: Meet [45] and XSEarch [24]. While Meet returns the subtree rooted by LCA
for the set of keywords given in the query as the answer to the query, XSEarch is better for a
pure keyword-based search as it distinguishes tag names from textual content and determines
meaningful relationships among nodes in a better way.

While in the experiment Schema-Free XQuery achieves perfect precision and recall for
all the queries (all the results returned were correct and all the possible correct results were
returned), Meet and XSearch perform poorly on many of the queries. They often produce
results that are correct but too inclusive: unrelated elements are returned along with the
meaningful ones.

Experiments with performance showed that the stack-based MLCAS algorithm is up to
16 times faster than the basic MLCAS computation using standard operators. Moreover,
Schema-Free XQuery queries evaluated with the stack-based algorithm incur an overhead no
more than 3 times the execution time of an equivalent schema-aware query.

Xu and Papakonstantinou [46] considered the problem of keyword search in XML trees.
They use the notion of Smallest Lowest Common Ancestor (SLCA), which is essentially
the same as the notion of Meaningful Lowest Common Ancestor (MLCAS) introduced by
Li et al. [37], to define the answer to such queries and propose new algorithms to perform

18

pure keyword search. They measured the complexity of the proposed algorithms in terms of
number of disk accesses and performed experiments with their implementation.

They used the conventional label-ordered tree model to represent XML trees, where all
the nodes are enumerated in preorder and each of them is labeled with a tag, and present two
new algorithms: the Indexed Lookup Eager Algorithm and the Scan Eager Algorithm. Both
of which are based on several properties of the preorder enumeration of nodes and definitions
of the lowest common ancestor and the smallest lowest common ancestor in a labeled tree.

The Indexed Lookup Eager Algorithm is based on a number of structural properties that
holds for the SLCA. These properties allow scanning through the sets of nodes in increasing
in preorder order and finding all the SLCA in the already scanned parts of the tree. By the
time the algorithm completes the scanning of all the sets of nodes associated with keywords
from the query, it has all the SLCAs in this tree for this query found.

The only difference between the Scan Eager algorithm and the Indexed Lookup Eager
algorithm is that the former uses a simple scanning in the lists of nodes ordered in preorder
instead of binary search.

Both of these algorithms are non-blocking, i.e. they produce part of the answers quickly
so that users do not have to wait long to see the first few answers. Moreover, if a user is
interested in any correct answer or is satisfied with any of a few first answers, one can reduce
the total execution time dramatically by stopping the algorithm after it produced the first
result.

The complexity of the Indexed Lookup Eager Algorithm is O(|S1|kd log |S|) where |S1|
is the minimum and |S| is the maximum size of keyword lists S1 through Sk. The com-
plexity of the Scan Eager Algorithm is O(k|S1|+ d

∑k
2 |Si|) or O(kd|S|). The complexity of

Stack is O(d
∑k

i=1 |Si|) since both the number of lca operations and the number of Dewey

number comparisons are
∑k

i=1 |Si|. Some improvements on these algorithms are proposed in
Appendix A.

To perform practical evaluation of the newly proposed algorithms, Xu and Papakon-
stantinou implemented them in a XKSearch system. Also they implemented the stack-based
sort-merge algorithm (DIL) in XRANK described by Guo et al. [31] and denoted here as the
Stack Algorithm, which also uses Dewey numbers.

Xu and Papakonstantinou evaluated Scan Eager, Indexed Lookup Eager, and Stack algo-
rithms on the DBLP data. The analytical results match with the theoretical ones and show
that the Indexed Lookup Eager algorithm outperforms other algorithms when the keywords
have different frequencies, while the Scan Eager Algorithm appears to be better in the case
where the keywords have similar frequencies.

The idea of using the full-text search in querying XML-based data sources is very useful
and is becoming so popular that the support of it was incorporated in the latest version of
XML and XQuery specifications [5].

The work described in Chapter 4 extends the idea of full-text search on multi-labeled
trees. It introduces a new type of queries and provides new algorithms to answer them.

19

2.4 Data Structures

Although representation and implementation issues of the abstract data types used by us
are out of the scope of this thesis, we provide a brief overview of the results obtained in this
direction because they explicitly affect the possibility of an effective implementation of the
algorithms we propose.

2.4.1 Binary Relations

Postings Lists

A binary relation between two sets R : [σ] × [n] → {0, 1} can be encoded as the sequence
of pairs from this relation, ordered in some convenient manner. If we have a set of labels,
each of which is associated with a subset of objects, we can encode this by the sorted lists
of references to objects for each label.

A weighted binary relation R : [σ]×[n] → {0, . . . , µ
R
}, i.e. the one with weights associated

with each pair, can be encoded as a list of postings lists that for each label α contains all the
objects that are associated with this label (have R(α, x) > 0) in increasing order together
with these weights (see Figure 2.9).

R 1 2 3 4 5 6 . . . n
1 0 0 2 0 0 5
2 4 0 0 1 0 0
. .
σ 0 2 0 0 0 3

→

1 (3, 2) (6, 5)

2 (1, 4) (4, 1)

α · · · · · · (x,R[α, x]) . . .

σ (2, 2) (6, 3)

Figure 2.9: An example of postings lists representation of a weighted binary relation
on two sets.

Consider a pair (α, x) of a binary relation R where both sets are ordered. Further, we
will need the possibility to find the pair with a given label α and the smallest object x′ larger
than x, s.t. R(α, x′) > 0. We denote this operation by α-successor of the object x if we
consider x as the possible answer and strict α-successor if we do not.

The same operation but in backward direction, i.e. the finding the pair with a given label
α and the largest object x′ smaller than x, s.t. R(α, x′) > 0, we call α-predecessor of the
object x if we consider x as the possible answer and strict α-successor if we do not.

Lemma 2.4.1 Consider a weighted binary relation R : [σ]× [n] → {0, . . . , µ
R
} implemented

as a list of postings lists, a label α ∈ [σ], and an object x ∈ [n]. Let nα be the number of
objects associated with each label α, then one can support the search for the α-successor of
x in time O(lg nα) and the search for the α-successors of all objects in an ordered subset of
size d in time O(d lg(nα/d)) in the comparison model. One can support the searches for the
strict α-successor, the α-predecessor, and the strict α-predecessor of x in the same time as
well.

20

Proof 2.4.1 A simple binary search finds the α-successor of x in O(lg nα) comparisons. A
sequence of doubling searches finds a sequence of α-successors of d consecutive objects in
O(d lg(nα/d)) comparisons [42]. The other operators are supported using the same technique.
⊓⊔

Succinct Encoding

A weighted binary relation can also be encoded as a set of compressed bit-vectors [39, 43].
Such encodings take advantage of a small index and a word parallelism of the word-RAM
model.

The succinct encoding proposed by Barbay et al. [10] supports the search for the insertion
rank of a particular element in O(lg lg σ) time.

Lemma 2.4.2 Consider a weighted binary relation R : [σ]× [n] → {0, . . . , µ
R
} implemented

as a succinct encoding where σ < n, a label α ∈ [σ] and an object x ∈ [n]. One can
search for the α-successor of x in time O(lg lg σ) in the word-RAM model, with word size
Θ(lg max{σ, n}). One can support the searches for the strict α-successor of x, α-predecessor
of x, and strict α-predecessor of x in time O(lg lg σ) as well.

Proof 2.4.2 The succinct encoding [10] supports the rank and select operators on the rows
of the matrix in time O(lg lg σ), on the positive entries in the rows of the matrix representing
the weighted binary relation. One can search for the α-successor, α-predecessor, strict α-
successor or strict α-predecessor of an object in time O(lg lg σ) using these operators. The
other operators are supported using the same technique. ⊓⊔

2.4.2 Priority Queues

There are a number of different ways to implement a priority queue abstract data type.
We consider only two of them: a complete binary tree implemented by an array and the
advanced tree structure described by Andersson and Thorup [6].

The classical heap implementation of the priority queue based on an array representing
a full binary tree requires logarithmic time to insert an element in and to find and retrieve
the minimal element from the priority queue.

The advanced structure described by Andersson and Thorup [6] is based on the expo-
nential search trees that use the benefits of the word-RAM model. This structure supports
general insertion and deletion of an element in O((lg lg k)2) time amortized and search for
the minimal element in constant time in the word-RAM model.

Considering the variety of data-structures that one can use to implement binary relations,
labeled trees, and priority queues, each of them with a different trade-off between the space
used and the time required to search in it, we express the complexity of our algorithms
in the number of high-level operations such as α-successor and α-predecessor searches, and
priority queue operations. Then we infer the final complexity of each algorithm for each

21

data-structure we consider. One can do the same for any other data structure that supports
the mentioned operations required by our algorithms.

22

Chapter 3

Weighted Queries on Weighted
Binary Relations

In this chapter we deal with weighted queries on weighted binary relations to solve the problem
of retrieving relevant documents from a large data storage using keywords. While weights
in binary relations allow us to express the degree of dependence between keywords and
documents in the data storage more precisely, weights in queries differentiate the importance
of each keyword for the result.

We consider the Threshold Set Problem to find all those documents that are relevant
enough according to the given weighted binary relation, weighted query, and a threshold
value. We provide an adaptive algorithm to solve this problem and find such set of docu-
ments. We analyse presented algorithm through introducing an adaptive measure of difficulty
and proving the upper bound on the number of high-level operations this algorithm performs.

Then, we explain the shortcomings of the provided approach coming from the inability
to set the threshold value manually precise enough in advance and introduce the Pertinent
Set Problem, which is free of them. We change our algorithm for the Weighted Threshold
Set Problem to deal with the pertinent case and prove the upper bound on the number of
high-level operations this algorithm performs in the worst case as well.

Finally, we describe two ways the presented algorithms can be implemented and de-
rive the upper bounds on their complexity in comparison-based and word-RAM models of
computations.

The chapter is organized as follows. In Section 3.1 we provide the basic definitions that
the reader will need in the subsequent sections. In Section 3.2 we introduce the Threshold Set
Problem and provide an algorithm to solve it followed by its adaptive analysis. In Section 3.3
we introduce the Pertinent Set Problem and an algorithm to solve it as well as its analysis.
In Section 3.4 we show how one can implement these algorithms in practice and derive the
upper bounds on the complexity of these implementations.

23

3.1 Basic Definitions

In practice, one often needs to express a dependence between elements of two sets of objects:
some elements of the first set are associated with some elements of the second set. In the
general case, each object can be associated with another independently from the associations
between itself and other objects or between other objects in these sets, a non-negative integer
value.

A binary relation is an easy way to define such an association. A binary relation on two
sets does not have any restrictions on what items of the first set can be associated with the
items of the second one. Here we define weighted binary relations, i.e. binary relations where
each association of two elements is augmented with a weight.

Definition 3.1.1 Consider a set of labels [σ], a set of documents [n], and a positive integer
µ

R
. A weighted binary relation R is a function R : [σ] × [n] → {0, . . . , µ

R
} that associates

an integer value R(α, x) with each pair formed by a label α ∈ [σ] and a document x ∈ [n].

3

4
2

3

1

2

1

4

1

2

3

4

1

2

3

4

5

→

R 1 2 3 4 5
1 3 0 0 4 0
2 4 3 1 0 0
3 0 0 0 0 0
4 0 2 1 0 4

Figure 3.1: An example of weighted association between elements of two sets and
the corresponding weighted binary relation.

If µ
R

= 1, a weighted binary relation reduces to an unweighted (or boolean) binary
relation [11].

In practice, a binary relation can be used to represent an index in a search engine. A
search engine usually stores references to all the documents that contain a particular word
from the set of all words the user can type in. In this situation, weights may express the
importance of a given word in the document: for example, whether the word is in the title,
in the text, or in the footnote.

Keyword queries are a popular way for a user to ask for information. These queries
consist of keywords, by which a user expresses what he is looking for. Usually, the answer
to this query is related to these keywords in some way. For example, one can require the
retrieved documents to contain all these words.

24

However, usually not all the keywords in a query are equally important. While some of
them are very specific and point to the revel ant documents, others are more general and
appear in the documents not relevant to the query as well.

Here we consider weighted queries. While simple queries treat each keyword as equally
important, weighted queries associate a weight with each keyword to say which of them are
more important and which are less. One can use this to facilitate the calculation of the
relevance of documents: a document associated with a few very important keywords might
be more relevant than the one associated with a huge amount of less ones.

Definition 3.1.2 Consider a set of labels [σ] and a positive integer µ
Q
. A weighted query

is a function Q : [σ] → {0, . . . , µ
Q
}, mapping α ∈ [σ] to a weight Q(α) ∈ {0, . . . , µ

Q
}.

3 2 5 1 5
how to build a shuttle

Figure 3.2: An example of a weighted query.

Keyword queries are a convenient way to build a request: it does not require any special
knowledge about the data storage from the user. This is especially important when most of
the users are ad hocs as in the case of the most publicly used search engines.

Associating weights with keywords in queries brings much more flexibility to the system.
They, if used explicitly by a user, can help him define the degree of relevance of each word to
the query. On the other hand, a system can use weights automatically to adjust the search
results to a specific user, i.e. to make the search personalized, like Google does nowadays [29].

To impose more structure on the sets of documents under consideration, we require
them to be ordered. This ordering does not restrict usability of the sets in any way, but is
critical for efficient implementation of search in these sets. All the implementation issues are
discussed in Section 3.4.

3.2 Threshold Set Problem

3.2.1 Problem Statement

For any query entered by a user, there are more relevant and less relevant documents in
the data storage. In order to differentiate them, we define a notion of relativeness of an
document to the specified query and show how to search and retrieve the most relevant ones.

In line with the common approach, the more keywords from the query are associated
with a document, the more relevant this document is to the query. In the case of a weighted
query, the documents associated with the keywords of greater weights are more relevant than
those associated with low-weighted keywords. We use the notion of score of a document,
which is a weighted sum of the weights of all keywords from the query associated with the
document, to expresses the measure of its relativeness to a given query.

25

Definition 3.2.1 Consider a weighted binary relation R : [σ] × [n] → {0, . . . , µ
R
} and a

weighted query Q : [σ] → {0, . . . , µ
Q
}. The score of a document x for Q on R is the sum

of the keyword’s α weight Q(α) multiplied by the weight of its association R(α, x) to the
document x over all labels:

score(R,Q, x) =
∑

α∈[σ]

Q(α)R(α, x).

Note that if µ
Q

is quite large, even documents associated only with the very low-weighted
keywords in the query may contribute a large weight to the total sum, if the weight of the
corresponding association is large enough.

As all the documents in the storage have a particular relevance to a given query expressed
in terms of the integer value score, one can define a set of ’relevant enough’ documents he
wants to retrieve by setting a threshold for the value of score. In this case, the problem of
solving weighted queries on weighted binary relations will be to find all the documents that
have the score of at least a given threshold value.

Definition 3.2.2 Consider a weighted binary relation R : [σ]×[n] → {0, . . . , µ
R
}, a weighted

query Q : [σ] → {0, . . . , µ
Q
}, and a non-negative integer t. The threshold set answering Q

on R with threshold t is the set of all documents of score of at least t for Q on R:

Thres(R,Q, t) = {x ∈ [n], score(R,Q, x) ≥ t}

The problem of finding such threshold set is defined as the Threshold Set Problem.

In the case where µ
Q

= µ
R

= 1, the definition matches the one for unweighted (simple)
queries on unweighted (boolean) binary relations. If µ

R
= 1 and t is equal to the sum of

the label weights in Q, i.e. t =
∑

∀α Q(i), the threshold set corresponds to the result of a
traditional keyword query – the intersection of the sets of documents associated with the
labels from the query.

3.2.2 Algorithm

To proceed further, we introduce some operations on binary relations that our algorithm will
use. These operations are very common in the literature in the field [10] and there are a lot
of different ways to support them that depend on the way the weighted binary relation is
encoded. We will discuss some of these ways in Section 3.4.

Definition 3.2.3 Consider the ordered sets [σ] and [n], a weighted binary relation R : [σ]×
[n] → {0, . . . , µ

R
}, an arbitrary label α ∈ [σ], and an arbitrary document x ∈ [n].

• The α-successor of x, denoted by label successor(α, x), is the smallest document y
larger or equal to x, such that R(α, y) > 0.

• The strict α-successor of x, denoted by label ssuccessor(α, x), is the smallest docu-
ment y larger than x, such that R(α, y) > 0.

26

Our algorithm, formally described as Algorithm 5 and Algorithm 6, is inspired by the
algorithm for unweighted threshold set queries on unweighted binary relations proposed by
Barbay and Kenyon [12].

Algorithm 5 scans through the set of all documents in increasing order executing an
iteration for those of them that might be in the threshold set. At each iteration it checks
whether the current document x is in the threshold set or not by calculating the score value
of x. Once the decision on the current document is made, the algorithm advances to the
next possible candidate document, which is determined by Algorithm 6.

Algorithm 5 operates with k labels of positive weights from the query Q distributed
among three sets: a YES-set, a MAYBE-set, and a NO-set. For any current document x, YES-set
contains labels that are associated with x, NO-set contains labels that are not associated with
it, and MAYBE-set contains labels that were not checked yet. Each label appears in exactly
one of these sets at any given moment.

The algorithm makes a decision regarding the current document x based on the value that
the labels that are currently in YES-set add to the score value and the labels in the MAYBE-set
may potentially add to the score value. If the decision cannot be made at the moment,
additional computation follows and more labels from MAYBE-set are moved to either YES-set
or NO-set. The algorithm continue doing this until the decision is made. It is guaranteed to
make a final decision before there will be no more labels in MAYBE-set to retrieve.

We use the notions of weight and optimistic weight of a set of labels in the formal de-
scriptions of Algorithm 5 and Algorithm 6. We use weight to denote the cumulative weight
a subset of labels gives to the score by being associated with the current document. On the
other hand, we use the notion of the optimistic weight to estimate the upper bound of the
value of score that a given subset of labels can potentially contribute to a given document.

WEIGHT(S, x) =
∑

α∈S

Q(α)R(α, x)

WEIGHTOPT(S) = µ
R

∑

α∈S

Q(α)

We use the notion X ← α ← Y in the description of the algorithms to represent the
operation of moving a label α from set Y to set X. Omitting α, as in the case X ← Y ,
means that we move all the labels from set Y to set X.

Algorithm 6 advances x to the next value in the following way. First, it discards all
the labels from YES-set to MAYBE-set. Then the algorithm starts moving labels from MAYBE-
set to NO-set one by one until the optimistic weight of MAYBE-set is about to drop below
the threshold value t. Then it sets x to the lowest document greater than the current x,
associated with at least one label in NO-set.

Note that Algorithm 5 is non-blocking. It outputs a document from the threshold set
immediately after it finds it. If a user needs only the first few documents from the threshold
set, as in the case of most search engines, the algorithm does not have to compute the entire
threshold set – it can stop processing after retrieving enough documents to display to a user,
a number that is often very small.

27

Algorithm 5 Answering Threshold Set Queries (R,Q, t)

x = −∞, NO = YES = ∅, MAYBE = {∀α|Q(α) > 0};
Advance(x, YES, NO, MAYBE) (Algorithm 6);
while x < +∞ do

α ← the next label from MAYBE in round-robin order;
if label successor(α, x) = x then
YES ← α ← MAYBE;
if WEIGHT(YES, x) ≥ t then Output x;

else
NO ← α ← MAYBE; (using the result from label ssuccessor(α, x) and pushing to the
priority queue)

end if
if t ≤ WEIGHT(YES, x) or WEIGHT(YES, x) + WEIGHTOPT(MAYBE) < t then
Advance(x, YES, NO, MAYBE) (Algorithm 6);

end if
end while

Algorithm 6 Advance(x, YES, NO, MAYBE)

MAYBE ← YES; (YES = ∅;)
while WEIGHTOPT(MAYBE) ≥ t do

α ← MAYBE in round-robin order;
NO ← α ← MAYBE (label ssuccessor(α, x)-operator);

end while
Find S ⊂ NO of labels, such that xnext = label ssuccessor(α, x) is the same and minimal;
YES ← S ← NO; (at most σ priority queue pops)
x = xnext;

28

3.2.3 Adaptive Analysis

Any algorithm that solves the Threshold Set Problem has to certify the correctness of its
output, i.e. to present a certificate that guarantees that the answer is correct. A certificate
can be defined in different ways. Here we define it as a partition of the problem instance
with specific properties.

Definition 3.2.4 Consider a weighted binary relation R : [σ]×[n] → {0, . . . , µ
R
}, a weighted

query Q : [σ] → {0, . . . , µ
Q
}, and a non-negative integer t. A partition-certificate is a

partition (Ii)i∈[δ] of the set [n] of objects, such that for any i ∈ [δ], one of the three options
is true:

• Ii is a single document {x} with score(R,Q, x) ≥ t (a positive singleton);

• Ii is an interval that has a set S ⊆ [σ] of labels, such that µ
R

∑

α/∈S Q(α) < t and
∑

x∈Ii
R(x, α) = 0, ∀α ∈ S (a negative interval)

• Ii is a single document {x} with score(R,Q, x) < t, but does not have a set S ⊆ [σ]
of labels, such that

∑

x∈Ii
R(x, α) = 0, ∀α ∈ S and µ

R

∑

α/∈S Q(α) < t (a negative
singleton).

Keywords Weights 1 2 3 4 5 6 7 8 9
how 3 → 1 0 1 2 2 1 0 0 1
build 5 → 2 0 0 0 1 2 2 1 1

shuttle 5 → 2 2 0 2 2 0 0 2 1

Figure 3.3: An example of the problem instance and the corresponding partition
certificate for µ

R
= 2, µ

Q
= 5, and t = 20, where all three types of intervals are

present.

In the partition-certificate presented in Figure 3.3 there are two positive singletons: {1}
and {5} (with score({1}) = 23, score({5}) = 21, both are greater than threshold t = 20).
{2, 3, 4} and {6, 7} are negative intervals: the first does not have a word ’build’ which prevents
the score of any document inside the interval to be more than 16, the second one has the
same problem with a word ’shuttle’. {8} and {9} are negative singletons: their potential
maximum score is 20 and 26 respectively, but real score is only 15 and 18.

There are a lot of ways to define the difficulty of an intersection instance, such as the
minimal encoding size of a certificate [25], the minimal number of comparisons [11], or the
size of signatures [9]. Here to measure the difficulty of a problem instance we define its
alternation, the size of its smallest partition-certificate.

Definition 3.2.5 Consider a weighted binary relation R : [σ]×[n] → {0, . . . , µ
R
}, a weighted

query Q : [σ] → {0, . . . , µ
Q
}, and a non-negative integer t. The alternation of Q on R with

threshold t is the size δ of the smallest partition-certificate of the instance.

29

We use alternation as our measure of difficulty for the adaptive analysis of the Algorithm 5
that solves the Threshold Set Problem. We derive the complexity of Algorithm 5 processing
a specific instance as a function of the alternation of this instance, i.e. its ’hardness’.

We consider YES-set and MAYBE-set represented by a list abstract data type (ADT),
because we only need to push and pop labels in and out in FIFO order. And we consider
NO-set represented by a priority queue ADT, because we need to push elements and pop
those that have the smallest value of label ssuccessor(α, x) with regard to the current
document x.

We assume that the functions WEIGHT and WEIGHTOPT do not take more than a constant
time to compute. In fact, this can be easily done. One should keep the last values of WEIGHT
and WEIGHTOPT functions for all sets. Each time a labels is pushed in or pop out of the set,
these function values are updated. This does not take more than a constant time for each
push and pop and does not affect the total complexity of the algorithm.

We express our results in the number of searches performed (label ssuccessor(α, x)
operations) on the weighted binary relation and the number of priority queue operations
(inserts as well as finding and removing the minimal element). The ways these operations
can be supported and the final complexity of the algorithm in that cases will be discussed
in the subsequent section.

In the formulation of all following theorems, we refer to α-successor and strict α-successor
operations as search operations.

Theorem 3.2.1 Consider a weighted binary relation R : [σ]× [n] → {0, . . . , µ
R
}, a weighted

query Q : [σ] → {0, . . . , µ
Q
}, and a non-negative integer t. There is an algorithm that

computes the threshold set for Q on R with threshold-value of t in O(δk) search and priority
queue operations, where δ is the alternation of the instance and k is the number of labels of
positive weight in Q.

Proof 3.2.1 Algorithm 5 starts from the first document and scans through the remaining
ones in increasing order. It jumps over some of them to speed up the process. For each
document under consideration, the algorithm explicitly determines whether this document
is in the threshold set or not. Thus, to show the correctness of the algorithm we only need
to show that no documents skipped by Algorithm 6 is in the threshold set.

Consider the moment when Algorithm 5 is jumping from the current value of x to the
next value of x, which we denote as x′. It sets x′ to the smallest document greater then x
which is associated with a label in NO-set, skipping all the documents between x and x′ which,
nevertheless, might have labels in MAYBE-set associated with them. However, even if all the
labels from MAYBE-set are associated with an element between x and x′, their cumulative
weight of

∑

α∈MAYBE Q(α) combined with the highest possible value of an association µ
R

will
not be enough to quality this document for the threshold set, because WEIGHTOPT(MAYBE) < t,
which follows from the condition Algorithm 6 exists its main loop.

During processing of a positive or negative singleton, Algorithm 5 performs at most k
iterations of the main loop to move enough labels from MAYBE-set to YES-set in order to
decide whether x is in the threshold set or not. Each iteration takes at most O(1) search

30

and priority queue operations, resulting in O(k) for any singleton in total. Once the decision
is made, Algorithm 6 jumps to the next candidate document x. Algorithm 6 performs at
most O(k) search and priority queue operations as well. Hence, the total complexity of
processing any singleton is O(k).

During the processing of a negative interval, Algorithm 5 might have to jump to the next
candidate document x more than once. We analyse it by putting an upper bound on the
number of operations the algorithm performs in this situation.

Algorithm 5 moves labels only from MAYBE-set to either YES-set or NO-set. Algorithm 6,
on the other hand, move labels from YES-set to MAYBE-set, from MAYBE-set to NO-set, and
from NO-set to YES-set in the mentioned order.

MAYBE

YES NO

S

Algorithm 5

Algorithm 6

Figure 3.4: Label movement during the execution of Algorithm 5 and Algorithm 6.

However, during the processing of the same interval of a partition certificate, the algo-
rithm does not move any labels belonging to S (Definition 3.2.4), which is the subset of
NO-set, to YES-set because the α-successor of this label is out of the current interval and
will be processed only during processing of the the next one. While the algorithm retrieves
labels from MAYBE-set in round-robin order, it cannot retrieve any label from MAYBE-set for
the second time until all the labels from subset S appear in set NO, which effectively means
that the next element x will be outside of the current interval and the next iteration will be
done on the next interval. While it takes a constant number of operations for the algorithm
to move each label from MAYBE-set back to MAYBE-set, it needs O(k) search and priority queue
operations to complete this interval of the partition-certificate.

As the algorithm spends O(k) operations to process each interval, and the instance has δ
intervals, the total complexity of the algorithm is O(δk) search and priority queue operations.
⊓⊔

31

3.3 Pertinent Set Problem

3.3.1 Problem Statement

The threshold set for unweighted queries on unweighted binary relations is a compromise
between the intersection (t = k) and the union (t = 1) of k sets: it requires the parameter t
to specify what compromise is desired. The threshold set for weighted queries on weighted
binary relations, discussed in the previous section, gives a possibility to show the importance
of each word in the query and its relevance in the storage.

However, in most applications, defining a proper threshold value explicitly is very im-
practical: any predetermined threshold value can result in either very many partly relevant
documents or no documents at all, depending on what labels are associated with what doc-
uments and with what weights.

The Pertinent Set is a solution to this problem: we define it as a set of the documents
that give the highest score value, i.e. the most relevant documents to a given query. We
formalize this notion and define the problem of finding it, the smallest non-empty threshold
set.

The pertinent score for a given binary relation is the maximum score obtained by at least
one document.

Definition 3.3.1 Consider a weighted binary relation R : [σ] × [n] → {0, . . . , µ
R
} and a

weighted query Q : [σ] → {0, . . . , µ
Q
}. The pertinent score for Q on R is the maximal score

for Q on R over all documents in [n]:

pertinent score(R,Q) = max
x∈[n]

{score(R,Q, x)}

Having a pertinent score defined, we may define a set of all documents that obtain this
score. Note that it is never empty.

Definition 3.3.2 Consider a weighted binary relation R : [σ] × [n] → {0, . . . , µ
R
} and a

weighted query Q : [σ] → {0, . . . , µ
Q
}. The pertinent set answering Q on R is the set of

documents that have the maximum score for Q on R:

Pert(R,Q) = {x ∈ [σ], score(R,Q, x) = pertinent score(R,Q)}

The problem of finding such pertinent set is defined as the Pertinent Set Problem.

3.3.2 Algorithm

Algorithm 7 for finding the Pertinent Set does not differ much from Algorithm 5 for finding
the Threshold Set. It scans through the set of all documents in the same way and checks
whether a particular document is in the pertinent set or not as it was done by Algorithm 5.
Advancing to the next element is performed in the same way and by the same auxiliary
Algorithm 6.

32

However, while Algorithm 7 is looking for a pertinent set, a set of documents with
maximal value of score (which is not known in advance), it needs to keep a value t⋆, the
maximum value of the score obtained by any of the previous scanned documents, and a set
R of all previously scanned documents that have score value of t⋆.

For each document x under consideration, the algorithm checks its score value score(x),
and adds x to the current pertinent set R if score(x) is equal to t⋆, the score value of all
other documents in R. If the score(x) is greater than t⋆, the algorithm updates t⋆ to this
new value and resets R to the {x}, because x is the only document with this score value so
far.

Algorithm 7 Answering Pertinent Set Queries

x = −∞, NO = YES = ∅, MAYBE = {∀α|Q(α) > 0};
t⋆ = 0, R = ∅;
Advance(x, YES, NO, MAYBE) (Algorithm 6);
while x < +∞ do

α ← the next label from MAYBE in round-robin order;
if label successor(α, x) = x then
YES ← α ← MAYBE;
if WEIGHTOPT(MAYBE) = 0 then

if WEIGHT(YES, x) = t⋆ then
R ← x;

end if
if WEIGHT(YES, x) > t⋆ then

t⋆ = WEIGHT(YES, x);
R = {x};

end if
end if

else
NO ← α ← MAYBE; (using the result from label ssuccessor(α, x) and pushing to the
priority queue)

end if
if t ≤ WEIGHT(YES, x) or WEIGHT(YES, x) + WEIGHTOPT(MAYBE) < t then
Advance(x, YES, NO, MAYBE) (Algorithm 6);

end if
end while
Output t⋆ and R;

Note that unlike Algorithm 5, Algorithm 7 is blocking. It has to scan all the documents
before it gives a user any documents that are in the pertinent set. The reason for this is
that the current pertinent set can be reseted by the algorithm at any moment if it finds a
document with the score greater than the maximum one obtained before, making preliminary
output of documents impossible.

33

3.3.3 Adaptive Analysis

Theorem 3.3.1 Consider a weighted binary relation R : [σ]× [n] → {0, . . . , µ
R
}, a weighted

query Q : [σ] → {0, . . . , µ
Q
}, and a non-negative integer t. There is an algorithm that

computes the pertinent set for Q on R. Once it has found the first document of the pertinent
set, this algorithm performs O(δk) document searches and priority queue operations, where
δ is the alternation of the instance and k is the number of labels of positive weight in Q.

Proof 3.3.1 Once Algorithm 7 has found the first document of the pertinent set, its execu-
tion differs from the execution of Algorithm 5 only in that it continues to check whether the
document under consideration has larger score value than t⋆ (the algorithm does not know
that the t⋆ found is the maximal one).

To perform this check, for each document x under consideration, Algorithm 7 continues
to move labels from MAYBE-set to NO-set or YES-set until MAYBE-set is empty. It retrieves at
most k labels in this way for each document x, the amount that Algorithm 5 is still allowed
to do by Theorem 3.2.1 without increasing of upper bound.

While during processing of each interval Algorithm 7 does not perform more operations
than Algorithm 5 is allowed to do, the complexity of Algorithm 7, after it has found the first
document in the pertinent set, does not differ from the complexity of Algorithm 5. ⊓⊔

Note that before finding the first element of the pertinent set, Algorithm 7 might perform
an amount of operations that does not depend on the alternation of the instance. In the
worst case, the index of the first document in the pertinent set is very large and the algorithm
needs to increase t⋆ up to pertinent score(R,Q) times and put up to n documents to the
temporary pertinent sets before finding the first document from the real pertinent set. The
algorithm might compute a temporary result of size n even though the final result is small
or null.

In practice, it might not be an issue, if the algorithm finds the first element of the
pertinent set and the optimal threshold-value t fast in most cases.

3.4 Implementation

In the previous sections we derived an upper bound on the complexity of the Threshold Set
and the Pertinent Set Algorithms expressed in the number of searches in a binary relation
and priority queue operations (insertions and deletions). There are a number of ways one
can support these primitive operations.

In this section we consider some of the ways a binary relation and a priority queue can
be implemented that were discussed in Section 2.4 and derive exact upper bounds on the
complexity of the Threshold Set and the Pertinent Set Algorithms. We consider two different
ways to implement a binary relation: using postings lists and using a succinct encoding [10],
as well as two ways to implement a priority queue: using a classical heap structure and using
the advanced structure proposed by Andersson and Thorup [6].

34

Corollary 3.4.1 If a binary relation is implemented by postings lists and a priority queue
is implemented by a classical heap structure, the complexity of Algorithm 5 / 6 and Algo-
rithm 7 / 6 is O(δ

∑

α∈[σ] lg(nα/δ) + δk lg k), where t is the sum of the sizes of all postings
lists and k is the number of labels with a positive weight.

Proof 3.4.1 This follows directly from Theorem 3.2.1, Theorem 3.3.1, and Lemma 2.4.1:
at most δ searches are performed in each of postings lists, for documents in increasing order,
and each priority queue operation costs at most O(lg k) comparisons. ⊓⊔

Corollary 3.4.2 If a binary relation is implemented by a succinct encoding and a priority
queue is implemented in the way proposed by Andersson and Thorup, the complexity of
Algorithm 5 / 6 and Algorithm 7 / 6 is O(δk lg lg σ + δk(lg lg k)2) in the RAM model with
word size Θ(lg max{σ, n}), where k is the number of labels with a positive weight.

Proof 3.4.2 This follows directly from Theorem 3.2.1, Theorem 3.3.1, Lemma 2.4.2, and
the priority queue implementation described by Andersson and Thorup [6]. ⊓⊔

After one find other ways to implement binary relations, he can apply Theorem 3.2.1
and Theorem 3.3.1 to derive new upper bounds on the complexity of Algorithm 5 and
Algorithm 7.

35

Chapter 4

Weighted Path Subset Queries on
Weighted Labeled Trees

In this chapter we deal with weighted path subset queries on weighted labeled trees to solve
the problem of retrieving relevant documents from a large tree-like data storage using key-
words. While weights in labeled trees allow to express the degree of dependence between
keywords and their nodes more precisely, weights in queries differentiate the importance of
each keyword for the result.

We consider the Threshold Path Subset Problem to find all those documents that are
relevant enough according to the given weighted binary relation, weighted query, and a
threshold value. We provide an adaptive algorithm to solve this problem and find such set of
documents. We analyse the given algorithm by introducing an adaptive measure of difficulty
and proving an upper bound on the number of high-level operations this algorithm performs.

Then, we explain the shortcomings of the provided approach coming from the inability
to set the threshold value manually precise enough in advance and introduce the Pertinent
Path Subset Problem, which is free of them. We change our algorithm for the Threshold Path
Subset Problem to deal with the pertinent case and prove the upper bound on the number
of high-level operations this algorithm performs in the worst case as well.

Finally, we describe two ways the presented algorithms can be implemented and de-
rive the upper bounds on their complexity in comparison-based and word-RAM models of
computations.

The chapter is organized as follows. In Section 4.1 we provide the basic definitions that
the reader will need in the subsequent sections. In Section 4.2 we introduce the Threshold
Path Subset Problem and provide an algorithm to solve it followed by its adaptive analysis.
In Section 4.3 we introduce the Pertinent Path Subset Problem and an algorithm to solve it
as well as its analysis. In Section 4.4 we discuss how one can implement these algorithms in
practice and derive the upper bounds on the complexity of these implementations.

36

home(3)

Music(2)

Classical(1) Pop(1),
Jazz(1)

Pop(1),
Rock(1)

Video(2)

Rock(1),
Video(1)

Jazz(1) Previews(1)

Figure 4.1: An example of a simple file system. Each node represents a folder and
contains the words associated with it, along with the weight of these associations.

4.1 Basic Definitions

Tree structures are very important in information retrieval. The information stored in a
tree-like structure often has much more useful context than the information stored without
it. This additional structural dependence between pieces of information allows to increase
the quality of the information retrieval.

One of the ways to store information in a tree is by using the multi-labeled tree structure:
a rooted tree that has labels associated with its nodes. While each node represents a piece
of information, linking edges between nodes show the structural dependence between these
pieces.

Following the ideas presented in the previous chapter, we assign weights to the associ-
ations between nodes and labels. This helps to express even more complex context than
unweighted (simple) multi-labeled trees allow.

Definition 4.1.1 Consider a rooted tree T with a set of nodes [n] and a set of labels [σ].
A weighted multi-labeled tree is a rooted tree T with defined weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
} between the set of labels [σ] and the set of nodes [n].

Note that if µ
R

= 1, a weighted multi-labeled tree reduces to a simple (unweighted)
multi-labeled tree described by Barbay et al. [10].

To work with individual nodes in a tree, one needs to assign unique numbers to them, i.e.
to index them. There are many different ways to enumerate nodes in a tree: the common
preorder, postorder, inorder or a quite sophisticated but still very useful DFUDS order [14].

We use preorder ordering to enumerate nodes of a tree in this chapter. As one can convert
an index of the node from one ordering to another, i.e. find indexes of the same node in
different orderings, in constant time, the choice of the ordering does not restrict us.

Here we define the weighted path subset query in the same way the weighted query was
defined in the previous chapter.

37

1

2

3 4 5

6

7 8 9

Figure 4.2: The preorder enumeration of the nodes in the tree in Figure 4.1.

Definition 4.1.2 Consider a set of labels [σ] and a positive integer µ
Q
. The weighted path

subset query is a function Q : [σ] → {0, . . . , µ
Q
}, mapping α ∈ [σ] to a weight Q(α) ∈

{0, . . . , µ
Q
}.

4.2 Threshold Path Subset Problem

4.2.1 Problem Statement

As in the case of weighted binary relations, for any query entered by a user, there are more
relevant and less relevant nodes in the tree-like data storage. In order to differentiate them,
we define a notion of relevance of a node relative to the query and show how to search and
retrieve the most relevant ones.

However, here we need to take the tree structure into account. Commonly, a label that is
associated with a node characterizes not only the node itself but all the nodes of its subtree
as well. To express this we need to propagate the influence of each label to all the nodes in
the subtree.

Given a weighted path subset query Q on a tree T labeled through the relation R, the
path-score of a node x is defined as the sum of maximum values of Q(α)R(α, y) for each node
y which is x or one of its ancestor over all labels α ∈ [σ]. Each label is counted only once,
i.e. a label α contributes only maxy R(α, y) to node x, where y is x or one of its ancestors.

Definition 4.2.1 Consider a weighted multi-labeled tree T , a weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
}, a weighted path subset query Q : [σ] → {0, . . . , µ

Q
}. We define the

path-score of a node x for Q on T and R as

path score(T,R,Q, x) =
∑

α∈[σ]

Q(α) max
y∈{x}∪ancestors(x)

R(α, y)

where ancestors(x) denotes the set of all ancestors of a given node x in T .

The further a node is from the root, the higher path-score it gets: any descendant of the
node x gets path-score of at least the same value as x. We are interested in the closest to
the root nodes – the first ones that get the path-score of at least t, as they are sufficient to
describe the set of all such nodes.

38

Definition 4.2.2 Consider a weighted multi-labeled tree T , a weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
}, a weighted path subset query Q : [σ] → {0, . . . , µ

Q
}, and a non-

negative integer t. The threshold path subset of a weighted path subset query Q with the
threshold t is the set of nodes that have path-score of at least t and do not have any ancestors
with this property, i.e.

ThresTree(T,R,Q, t) =

{x ∈ [n] : path score(T,R,Q, x) ≥ t ∧ ∀y ∈ ancestors(x) ⇒

path score(T,R,Q, y) < t}.

The problem of finding such threshold path subset is defined as the Threshold Path Subset
Problem.

1 1 1 1
Home Music Pop Previews

Figure 4.3: An example of weighted query. For the sake of the simplicity of the
discussion, all the keywords have the same weight 1, but the algorithm works the
same in the general case as well.

In the case where µ
Q

= µ
R

= 1, the definition matches the one for unweighted (simple)
queries on unweighted multi-labeled trees. If µ

R
= 1 and t is equal to the sum of the label

weights in Q, i.e. t =
∑

∀α Q(i), the threshold path subset only those nodes that have all
the labels from the query associated with them or one of their ancestors.

We restrict the problem to the case where the labels are associated with the nodes on
the same root-to-leaf path with non-increasing weights, i.e. there is no node x that has a
label α associated with it with some weight R(x, α) and that has a descendant x′ associated
with the same label with larger weight R(x′, α) > R(x, α).

Definition 4.2.3 A weighted multi-labeled tree T is called a non-increasing weighted multi-
labeled tree if ∀x1, x2 ∈ [n], x1 ∈ ancestors(x2) =⇒ ∄α, α ∈ [σ], s.t. R(α, x1) > 0 ∧
R(α, x2) > 0).

This non-increasing property does not restrict the instances of the problem when µ
R

= 1,
i.e. if a labeled tree is non-weighted, because in this case a tree is non-increasing by definition:
if a node has a label associated with it, it cannot have an ancestor with the same label but
with more weight – the maximum weight is 1.

The multi-labeled tree in Figure 4.1 is non-increasing. Although a label ’Video’ is as-
sociated with two different nodes one of which belongs to the rooted path of the another,
an association with the descendant has weight 1, which is smaller than the association with
the ancestor that has weight 2. If we exchange these weights, the tree will cease to be
non-increasing.

The presence of the non-increasing property makes the contribution of a label α to the
path-score of a node x depend only on the weight of the closest to the root ancestor of

39

the node x associated with the label α, instead of depending on the arbitrary one with the
largest weight of its association with the label α. To solve weighted threshold path subset
queries in the general case, an algorithm would have to compute maxy∈ancestors(x)∪{x} R(α, y)
regularly, which makes it more complex.

Further in this thesis, we assume that weighted multi-labeled trees are non-increasing
ones, unless the other is specified explicitly.

4.2.2 Algorithm

For any label α ∈ [σ] and any node x ∈ [n] we use the same notion of the operations α-
successor of x and strict α-successor of x as for weighted binary relations but with respect
to the preorder defined on the set of nodes [n].

However, our algorithm needs a number of additional operations specific to multi-labeled
trees because of the new structural dependence a tree introduces.

Definition 4.2.4 Consider a weighted multi-labeled tree T and a weighted binary relation
R : [σ] × [n] → {0, . . . , µ

R
}. For a node x ∈ [n] and a label α ∈ [σ] we define:

• the α-ancestor of x, denoted by label ancestor(α, x), is the closest to the root ancestor
y of the node x or node x itself, such that R(α, y) > 0, or ∅ if there is no such node.

• the follower of x, denoted by follower(x), is the node with the smallest preorder rank
greater than x that is not a descendant of x, or ∅ if there is no such node.

The notion of follower(x) correlates with the notion of following(x) in XPath
queries [15, 23]. Basically, follower(x) is the first node in the set following(x) of all
nodes greater than node x in document order, excluding any descendants, attribute, and
namespace nodes.

Our algorithm for answering weighted queries on non-increasing weighted multi-labeled
trees, formally described as Algorithm 8 and Algorithm 9, is inspired by Algorithm 5 and
Algorithm 6 for weighted queries on weighted binary relations described in Section 3.2. The
main difference is that once the next node of the output set is found, Algorithm 8 skips all
the nodes in its subtree, because they are guaranteed not to be in the threshold path subset.

Algorithm 8 scans through the set of nodes in increasing in preorder order. At each
iteration it checks whether the current node x is in the threshold set or not by calculating
the path-score value of x. Once the decision on the current node is made, the algorithm
advances to the next possible candidate node, which is determined by Algorithm 9.

Algorithm 8 operates with k labels of positive weights from the query Q distributed
among YES-set, MAYBE-set, and NO-set in the similar way as Algorithm 5 does. For any
current node x, YES-set contains labels that are associated with at least one node on the
rooted path of x or with a node x itself, NO-set contains labels that are not associated with
any node on the rooted path of x or with itself, and MAYBE-set contains labels that were not
checked yet. Each label appears in exactly one of these sets at any given moment.

40

The algorithm makes a decision regarding the current node x based on the value that
labels that are currently in YES-set bring to the path-score value and labels that are in
MAYBE-set might potentially bring. If the decision cannot be made immediately, additional
computation follows and more labels from MAYBE-set are moved to either YES-set or NO-set.
The algorithm keeps doing this until the decision is made. It is guaranteed to make a final
decision before there will be no more labels in MAYBE-set to retrieve.

Algorithm 9 differs from Algorithm 6 in the following way: once it has found a next node x
from the threshold path subset, it jumps directly to the follower x′ of x skipping all the nodes
from its subtree, because they are guaranteed not to be in the threshold path subset. Then
the algorithm discards all the labels α from YES-set that have label successor(α, x) < x′,
because the nodes these labels were associated with were just skipped and nothing can be
assumed about them without making a fresh search (which is done when moving a label
from MAYBE-set to YES-set or NO-set).

We use the notions of weight denoted by WEIGHT and optimistic weight denoted by
WEIGHTOPT of a set of labels in the formal descriptions of Algorithm 8 and Algorithm 9.
We use weight to denote the cumulative weight a subset of labels gives to the path-score by
being associated with the current node or one of its ancestors. On the other hand, we use
the notion of the optimistic weight to estimates the upper bound of the value of path-score
that a given subset of labels can potentially contribute to a given node. For readability, we
assume that label ancestor(α, ∅) = 0.

WEIGHT(S, x) =
∑

α∈S

Q(α)R(α, label ancestor(α, x))

WEIGHTOPT(S) = µ
R

∑

α∈S

Q(α)

Algorithm 9 is the same as Algorithm 6 described in Section 3.2. It advances a node
x to the next value in the following way. First, it discards all the labels from YES-set to
MAYBE-set. Then the algorithm starts moving labels from MAYBE-set to NO-set one by one
until the optimistic weight of MAYBE-set is about to drop below the threshold value t. Then
it sets x to the lowest node greater than the current x, associated with at least one label in
NO-set.

Note that Algorithm 9 is non-blocking (as Algorithm 6 in the previous section). It outputs
each node from the threshold path subset immediately after it finds it.

4.2.3 Adaptive Analysis

We perform an adaptive analysis of the complexities of Algorithm 8 and Algorithm 9 by using
an extension of the alternation as our measure of difficulty, the smallest size of the partition-
certificate that we introduce below. The definition of the partition-certificate is inspired by
the similar structure for the adaptive analysis of the algorithm solving the Threshold Set
Problem, described in Section 3.2. However, its intervals are different.

41

Algorithm 8 Answering Threshold Path SubSet Queries (T,R,Q, t)

x = −∞, NO = YES = ∅, MAYBE = {∀α|Q(α) > 0};
Advance(x, YES, NO, MAYBE) (Algorithm 9);
while x < +∞ do

α ← the next label from MAYBE in round-robin order;
if label ancestor(α, x) 6= ∅ then
YES ← α ← MAYBE;
if WEIGHT(YES, x) ≥ t then

Output x;
x′ = follower(x)
MAYBE ← ∀α, s.t. label successor(α, x) < x′ ← NO;
x = x′;

end if
else
NO ← α ← MAYBE; (using the result from label ssuccessor(α, x) and pushing to the
priority queue)

end if
if t ≤ WEIGHT(YES, x) or WEIGHT(YES, x) + WEIGHTOPT(MAYBE) < t then
Advance(x, YES, NO, MAYBE) (Algorithm 9);

end if
end while

Algorithm 9 Advance(x, YES, NO, MAYBE)

MAYBE ← YES; (YES = ∅;)
while WEIGHTOPT(MAYBE) ≥ t do

α ← MAYBE in round-robin order;
NO ← α ← MAYBE (label ssuccessor(α, x)-operator);

end while
Find S ⊂ NO of labels, such that xnext = label ssuccessor(α, x) is the same and minimal;
YES ← S ← NO; (at most σ priority queue pops)
x = xnext;

42

As before, any algorithm answering a weighted threshold query has to check the correct-
ness of its result. It corresponds to produce a certificate that each node in the answer set
has a path-score of at least the threshold, and that each node that is not in the answer set
either has an ancestor that is in this set or has a path-score smaller than the threshold.

Definition 4.2.5 Consider a weighted multi-labeled tree T , a weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
}, a weighted query Q : [σ] → {0, . . . , µ

Q
}, and a non-negative integer

t. A partition-certificate is a partition I = (Ii)i∈[δ] of size δ on the set of nodes [n], such that
for any i ∈ [δ] one of the next three options is true:

• the node in Ii with the smallest number x = min Ii has path-score of at least t, and the
node y = max Ii + 1 is the follower of the node x (a positive interval);

• Ii is an interval that has a set S ⊆ [σ] of labels, such that µ
R

∑

α/∈S Q(α) < t and
∑

x∈Ii

∑

y∈ancestors(x)∪{x} R(α, y) = 0, ∀α ∈ S (a negative interval);

• Ii is a single node x with path score(x) < t but does not have a set of labels S ⊆ [σ],
such that

∑

x∈Ii

∑

y∈ancestors(x)∪{x} R(α, y) = 0, ∀α ∈ S and µ
R

∑

α/∈S Q(α) < t (a

negative singleton).

The partition-certificate consists of intervals of nodes. Each of them contains either all
nodes from the sub-tree rooted in x that is in the threshold path subset, or a set of the
consecutive nodes that have a set S ∈ [σ] of labels they all lack with enough weight to
guarantee these nodes not to be in the threshold set, or just a single node that is not in the
threshold set but does not get into the second category.

1 2 3 4 5 6 7 8 9
Classical → . . 1
Home → 3

Jazz → . . . 1 . . . 1 .
Music → . 2
Pop → . . . 1 1

Previews → 1
Rock → 1 . 1 . .
Video → 2 1 . .

Figure 4.4: The encoding of the example in Figure 4.1 using a weighted binary
relation. The null weights are noted by dots for better readability.

An instance might admit more than one partition-certificate. As we said, we study the
performance of the algorithm as the function of the size of the smallest one, denoted by
alternation.

43

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Home → 3 → 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Music → . 2 → . 2 ∗ ∗ ∗
Pop → . . . 1 1 → . . . 1 1

Previews → 1 → 1

Figure 4.5: An example of the minimal partition-certificate for the weighted tree
in Figure 4.4 and the weighted query in Figure 4.3 with t = 5. This partition-
certificate has all three possible types of intervals. The alternation of the instance
is δ = 4. By symbols ‘∗’ we describe all the nodes that are descendants of the node
associated with the current label (this label affects these nodes as well, unlike in
the similar case on binary relations).

Definition 4.2.6 Consider a weighted multi-labeled tree T , a weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
}, a weighted query Q : [σ] → {0, . . . , µ

Q
}, and a non-negative integer

t. The alternation of the instance is the smallest size δ of all possible partition-certificates
for the given instance.

As in the case of the previous chapter, we assume that YES-set and MAYBE-set are rep-
resented by a list abstract data type (ADT), because we only need to push and pop la-
bels in and out in FIFO order. We assume that NO-set is represented by a priority queue
ADT, because we need to push elements and pop those that have the smallest value of
label ssuccessor(α, x) with regard to the current node x.

We assume that the functions WEIGHT and WEIGHTOPT do not take more than a constant
time to compute. In fact, this can be easily done. One should keep the last values of WEIGHT
and WEIGHTOPT functions for all sets. Each time a labels is pushed in or popped out of a set,
these function values are updated. This does not take more than a constant time for each
push and pop and does not affect the total complexity of the algorithm.

We express our results in terms of the number of searches (performed by the
label ssuccessor(α, x) and label ancestor(α, x) operators), as well as the number of pri-
ority queue operations (pushes as well as pops). The ways these operations can be supported
and the final complexity of the algorithm in that cases will be discussed in the subsequent
section.

In the formulations of all following theorems, we refer to label ancestor()-ancestor and
follower() operations as advanced tree operations.

Theorem 4.2.1 Consider a weighted multi-labeled tree T , a weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
}, a weighted query Q : [σ] → {0, . . . , µ

Q
}, and a non-negative integer

t. There is an algorithm that computes the threshold set for Q on non-increasing T,R with
threshold-value of t in O(δk) search, priority queue, and advanced tree operations, where δ
is the alternation of the instance and k is the number of labels of positive weight in Q.

44

Proof 4.2.1 Algorithm 8 works in a similar to Algorithm 5 way. It starts from the first
node in the interval under consideration and scans through all the nodes in increasing in
preorder order. It jumps over some nodes to speed up the process. For each node under
consideration, the algorithm explicitly determines whether this node is in the threshold path
subset or not. Thus, to show the correctness of the algorithm we only need to show that all
the nodes skipped by Algorithm 9 are not in the threshold set.

Consider the algorithm is jumping from the current node x to the next node x′. It sets x′

to the smallest node greater then x which is associated with a label in NO-set, skipping all the
intermediate nodes that might have labels in MAYBE-set associated with them. However, even
if all the labels from MAYBE-set are associated with a node between x and x′, their cumulative
weight of

∑

α∈MAYBE Q(α) combined with the highest possible value of an association µ
R

will
not be enough to quality this node for the threshold path subset, because WEIGHTOPT(MAYBE) <
t, which follows from the condition Algorithm 9 exists its main loop.

However, all the nodes skipped by this jump form a subtree of the node x and cannot
be in the threshold path subset by definition of the partition-certificate (Definition 4.2.5).
Because of this, Algorithm 8, unlike Algorithm 5, performs one additional jump from current
node x to its follower follower(x) just after it has qualified node x for threshold path subset.

Algorithm 8 processes a negative singleton in the similar way as Algorithm 5 does. It
performs at most k iterations of the main loop to move enough labels from MAYBE-set to
YES-set in order to decide whether x is in the threshold set or not. Each iteration takes
at most O(1) search, priority queue, and advanced tree operations, resulting in O(k) for
a negative singleton in total. Once the decision is made, Algorithm 9 jumps to the next
candidate node x. Algorithm 9 performs at most O(k) search and priority queue operations
as well. Hence, the total complexity of processing any singleton is O(k).

A positive interval starts with the node that is in the threshold path subset followed by
all the nodes from its subtree. Algorithm 8 processes the first node of the interval spending
the same time as Algorithm 5 does, except additional O(k) advanced tree operations. Before
calling Algorithm 9 the algorithm has to skip to follower(x). This takes one follower oper-
ation and at most O(k) priority queue operations. Hence, the total complexity of processing
a positive interval is O(k).

When processing a negative interval, unlike Algorithm 5, Algorithm 8 might have to
jump to the next candidate node x more than once, we analyse it by consider the way the
algorithm moves labels from one set to another. The algorithm needs O(k) search, priority
queue, and advanced tree operations to complete this interval of the partition-certificate (we
refer a reader to the proof of Algorithm 5 for more details).

As the algorithm spends O(k) to process any interval, and any instance has δ intervals,
the total complexity of the algorithm is O(δk) search and priority queue operations. ⊓⊔

45

4.3 Pertinent Path Subset Problem

4.3.1 Problem Statement

Threshold path subset for weighted queries on weighted multi-labeled trees, discussed in the
previous section, is a proper relaxation of the path subset queries previously introduced [12].
But, as in the case of the threshold set for unweighted queries on unweighted binary relations,
it is not enough in some situations.

In most applications, defining a proper threshold value will bother the user and, moreover,
any predetermined threshold value can result in either very many partly relevant nodes or no
nodes at all, depending on how labels are associated with the nodes and with what weights.

In this section, we consider a solution to this problem inspired by the results obtained
in the previous chapter. The Pertinent Path Subset is the set of the most relevant nodes
to a given query, those that give the highest path-score value. We formalize this notion
and define a new type of query which corresponds to finding the pertinent path subset, the
smallest non-empty threshold path subset.

The pertinent path score for a given tree is the maximum path score obtained by at least
one node in this tree.

Definition 4.3.1 Consider a weighted multi-labeled tree T , a weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
}, and a weighted query Q : [σ] → {0, . . . , µ

Q
}. The pertinent path-

score on T , R, and Q is the maximum path-score of any node x in [n] on T , R, and Q:

pertinent path score(T,R,Q) = max
x∈[n]

{path score(T,R,Q, x)}

Having a pertinent path score defined, we may define a path subset of all nodes that
obtain this path score, which is never empty.

Definition 4.3.2 Consider a weighted multi-labeled tree T , a weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
}, and a weighted query Q : [σ] → {0, . . . , µ

Q
}. The pertinent set

of the weighted unordered subset path query Q on T , R is the set of nodes that have the
maximum path-score on T , R, and Q:

PertT(T,R,Q) =

{x ∈ [σ], path score(T,R,Q, x) = pertinent path score(T,R,Q)}

The problem of finding such pertinent path subset is defined as the Pertinent Path Subset
Problem.

4.3.2 Algorithm

Algorithm 10 for finding a pertinent path subset is similar to Algorithm 7 that finds a
threshold path subset. It scans through the set of all nodes in the same way and checks

46

whether a particular node is in the pertinent path subset or not as it was done by Algo-
rithm 7. Advancing to the next node is performed in the same way and by the same auxiliary
Algorithm 9.

However, while Algorithm 10 is looking for a pertinent path subset, a set of nodes with
maximal value of path-score which is not known in advance, it needs to maintain a value t⋆,
the maximum value of the path-score obtained by any of the previous scanned nodes, and a
set R of all previously scanned nodes that have score value of t⋆.

For each node under consideration x, the algorithm checks the score value path score(x),
and put x to the current pertinent path subset R if path score(x) is equal to t⋆, the path-
score value of all other nodes in R. If the path score(x) is greater than t⋆, the algorithm
updates t⋆ to this new value and resets R to the one node x, because x is the only node with
this score value so far.

Algorithm 10 Answering Pertinent Path SubSet Queries

x = −∞, NO = YES = ∅, MAYBE = {∀α|Q(α) > 0};
t⋆ = 0, R = ∅;
Advance(x, YES, NO, MAYBE) (Algorithm 9);
while x < +∞ do

α ← the next label from MAYBE in round-robin order;
if label ancestor(α, x) 6= ∅ then
YES ← α ← MAYBE;
if WEIGHTOPT(MAYBE) = 0 then

if WEIGHT(YES, x) > t⋆ then
t⋆ = WEIGHT(YES, x);
R = ∅;

end if
if WEIGHT(YES, x) ≥ t⋆ then

R ← x;
x′ = follower(x)
MAYBE ← {∀α, s.t. label successor(α, x) < x′} ← NO;
x = x′;

end if
end if

else
NO ← α ← MAYBE; (using the result from label ssuccessor(α, x) and pushing to the
priority queue)

end if
if t ≤ WEIGHT(YES, x) or WEIGHT(YES, x) + WEIGHTOPT(MAYBE) < t then
Advance(x, YES, NO, MAYBE) (Algorithm 9);

end if
end while

47

Note that as in the case of Algorithm 7, Algorithm 10 is blocking. It has to scan all the
nodes and computer full pertinent path subset in order to give a user any nodes from the
answer pertinent set. The reason for this is that the current pertinent path subset can be
reseted by the algorithm at any moment if it finds a node with the path score greater than
the maximum that each of the nodes found before has, making preliminary output of the
nodes impossible.

4.3.3 Adaptive Analysis

Theorem 4.3.1 Consider a weighted multi-labeled tree T , a weighted binary relation R :
[σ] × [n] → {0, . . . , µ

R
}, and a weighted query Q : [σ] → {0, . . . , µ

Q
}. There is an algorithm

that computes the pertinent path subset of the weighted unordered subset path query Q on
T , R. Once it has found the first node of the pertinent set, this algorithm performs O(δk)
additional search, priority queue, and advanced tree operations, where δ is an alternation
on this instance with t = pertinent path score(T,R,Q) and k is the number of labels of
positive weight in Q.

Proof 4.3.1 Once Algorithm 10 has found the first node of the pertinent path subset, its
execution does not differ from the execution of Algorithm 8, except that it continues to check
whether an node under consideration has larger path-score value than t⋆ (the algorithm does
not know that the t⋆ found is the maximal one).

To make this check, for each node x under consideration, Algorithm 10 continues to move
labels from MAYBE-set to NO-set or YES-set until MAYBE-set is empty. It retrieves at most k
labels in this way for each node x, the amount that Algorithm 8 is still allowed to do by
Theorem 4.2.1 without increasing of upper bound.

As during the processing of each interval Algorithm 10 does not perform more operations
than Algorithm 8 in the worst case, the complexity of Algorithm 10 does not differ from the
complexity of Algorithm 8 after it has found the first node in the pertinent set. ⊓⊔

Note that, as in the case of the algorithm for finding pertinent set for a weighted query
on weighted binary relations, before finding the first node of the pertinent set, Algorithm 10
might perform an amount of operations that does not depend on the alternation of the
instance. In the worst case, the first node from the pertinent path subset is very large and
the algorithm needs to increase t⋆ up to t times and put up to n nodes to the temporary
pertinent sets before finding the first node from the real pertinent path subset set. The
algorithm might compute a temporary result as large as n, even though the final result is
small or null.

4.4 Implementation

In the previous sections we derive an upper bound on the complexity of the Threshold Path
Subset and Pertinent Path Subset Algorithms expressed in the number of searches in a

48

binary relation, a priority queue, and advanced tree operations. There are a number of data
structures to support these operations.

In this section we consider the same ways a binary relation and a priority queue can
be implemented that were discussed in Section 3.4 and derive exact upper bounds on the
complexity of the Threshold Path Subset and the Pertinent Path Subset Algorithms.

Corollary 4.4.1 If a labeled tree is implemented by postings lists and a priority queue is
implemented by a classical heap structure, the complexity of Algorithm 8 / 9 and Algo-
rithm 10 / 9 is O(δ

∑

α∈[σ] lg(nα/δ) + δk lg k), where t is the sum of the sizes of all postings
lists and k is the maximum size of the priority queue.

Proof 4.4.1 Similar to Corollary 3.4.1, except the support for the follower(x) operation.
However, if one keeps a tree structure in the memory, which one is needed to do to preserve
the tree structure information anyway, one can always find the parent and look for the next
child in the tree structure in a constant time, i.e. without influencing the overall complexity
of the algorithm. ⊓⊔

Corollary 4.4.2 If the labeled tree is implemented by a succinct encoding introduced by
Barbay et al. [10] and the priority queue is implemented in the way proposed by Andersson
and Thorup [6], the complexity of Algorithm 8 / 9 and Algorithm 10 / 9 is O(δk lg lg σ +
δk(lg lg k)2) in the RAM model with word size Θ(lg max{σ, n}), where k is the maximum size
of the priority queue.

Proof 4.4.2 Similar to Corollary 3.4.2, except the support for the follower(x) operation.
However, it can be implemented by adding a number of a node descendants to the cur-
rent node number (standard for labeled tree tree nbdesc(x) operation that is supported in
O(lg lg σ) time [10] by the same encoding). ⊓⊔

After one find other ways to implement binary relations, he can apply Theorem 4.2.1
and Theorem 4.3.1 to derive new upper bounds on the complexity of Algorithm 8 and
Algorithm 10.

49

Chapter 5

Weighted LCA Queries on Labeled
Trees

In this chapter we deal with weighted lowest common ancestor (lca) queries on weighted
labeled trees to solve the problem of retrieving relevant documents from a large tree-like
data storage using keywords. While weights in labeled trees allow to express the degree of
dependence between keywords and their nodes more precisely, weights in queries differentiate
the importance of each keyword for the result.

We consider the Threshold LCA Problem to find all those documents that are relevant
enough according to the given weighted binary relation, weighted query, and a threshold
value. We provide an adaptive algorithm to solve this problem and find such set of docu-
ments. We analyse presented algorithm through introducing an adaptive measure of diffi-
culty and proving the upper bound on the number of high-level operations this algorithm
performs. Finally, we describe two ways the presented algorithms can be implemented and
derive the upper bounds on their complexity in comparison-based and word-RAM models of
computations.

The chapter is organized as follows. In Section 5.1 we provide the basic definitions that
the reader will need further. In Section 5.2 we introduce the Threshold LCA Problem and
provide an algorithm to solve it followed by the analysis of its complexity. In Section 5.3 we
discuss how this algorithm can be implemented in practice and derive upper bounds on its
complexity for different implementations.

5.1 Basic Definitions

In this chapter, we deal with simple (unweighted) multi-labeled trees. These trees are similar
to the ones used in Chapter 4, except they have boolean weights associated with pairs of
nodes and labels.

Definition 5.1.1 Consider a rooted tree T with a set of nodes [n] and a set of labels [σ]. A
multi-labeled tree (T,R) is composed of a rooted tree T and a binary relation R : [σ]× [n] →
{0, 1} between the set of labels [σ] and the set of nodes [n].

50

Given two nodes in a multi-labeled tree, one often needs to find a dependency between
them. The notion of the Nearest Common Ancestor (NCA) or Lowest Common Ancestor
(LCA) [2, 3, 16, 32] is widely-used for this purpose.

Definition 5.1.2 Given a rooted tree T , the Lowest Common Ancestor (LCA) of two nodes
x1 and x2 is the node y with the property that it is an ancestor of x1 and x2 and no descendant
of y satisfies this property.

One can define the Lowest Common Ancestor for more nodes in a similar way.

Definition 5.1.3 Given a rooted tree T , the Lowest Common Ancestor of k nodes
{x1, . . . , xk} is the ancestor y of all k nodes, s.t. there is no descendant of y with the
same property.

The concept of the lowest common ancestors is relevant in the case when we have a family
of sets of nodes and want to identify a structural dependency between these sets. To do this,
we can find such nodes that have at least one node from each set in their subtrees. This idea
was used, for example, by Xu and Papakonstantinou [46]. We define it here more formally:

Definition 5.1.4 Consider a multi-labeled tree (T,R). Given a subset of labels S ⊆ [σ],
which define the sets of nodes S1, . . . , S|S|, where each node x ∈ Si is associated with at least
i-th label from the set S, the Common Ancestor set (CA-set) of sets S1, . . . , S|S| is the set of
all nodes, each of which has at least one node from each set Si ∈ {1, . . . , |S|} in its subtree.

As a node is closer to the root, the number of its descendants is larger. We are interested
only in those nodes in the CA set, that are farthest from the root, i.e. in those ones that
have no descendants that are also in the CA set. Xu and Papakonstantinou [46] defined the
set of all such nodes as the set of the Smallest Lower Common Ancestor (SLCA), however
we call it the Lower Common Ancestors (LCA) set due to the linguistic meaning.

Definition 5.1.5 Consider a multi-labeled tree (T,R). Given a subset of labels S ⊆ [σ],
which define the sets of nodes S1, . . . , S|S|, where each node from set Si is associated with the
i-th label from set S, the Lowest Common Ancestor set (LCA set) of sets S1, . . . , S|S| is the
set of all nodes, each of which has at least one node from each set Si in its subtree and does
not have a descendant with the same property.

When dealing with the Threshold and the Pertinent Path Subset Problems in Chapter 4,
the path-score of a node depends on the nodes on its path to the root, which are higher
in the tree. However, the nodes of interest in this chapter are located deeper, so that the
postorder ordering of the nodes of the tree is more convenient for threshold LCA problem
considered below.

Weighted queries used in the previous chapters are convenient for expressing user’s needs.
In this chapter, we define them in a similar way as it was done in Chapter 4.

51

16

9

1 4

2 3

8

5 6 7

15

10 14

11 12 13

Figure 5.1: An example of the postorder enumeration of the nodes in a tree.

Definition 5.1.6 Consider a set of labels [σ]. A weighted LCA query is a function Q :
[σ] → ℜ+, where each label α ∈ [σ] is associated with a non-negative weight Q(α) ≥ 0.

5.2 Threshold LCA Problem

5.2.1 Problem Statement

As in the case of path subset problems, for any query entered by a user, there are more
relevant and less relevant nodes in a multi-labeled tree. In order to differentiate them, we
define a notion of relevance of an object to the query and show how to search and retrieve
the most relevant objects.

While in the path subset queries the pertinence of a node depends on the labels associated
with this node and the nodes on its rooted path, in the case of LCA queries, the pertinence
depends on the labels associated with the nodes in the subtree of a given node.

For a given weighted LCA query Q on a multi-labeled tree (T,R), we define the lca-score
of a node x as the sum of weights of all labels that are associated with at least one node y
from the subtree rooted by x.

Definition 5.2.1 Consider a multi-labeled tree (T,R) and a weighted LCA query Q : [σ] →
ℜ+. We define the lca-score of a node x for Q on T and R as

lca score(T,R,Q, x) =

∑

α∈[σ]

Q(α) 1|(∃y ∈ descendants(x), s.t. R(α, y) = 1)

where descendants(x) denotes the set of all descendants of a given node x together with
node x and 1|(X) = 1 is an indicator whether X is true.

The further a node is from the bottom of the tree, the higher its lca-score: any ancestor of
the node x gets a lca-score of at least the same value as the lca-score of x. We are interested
in the closest to the bottom (or the farthest from the root) nodes – the first ones that get
high enough lca-score, as they are sufficient to describe the set of all such nodes.

52

In previous chapters, we discussed the usefulness of relaxation of search problems in order
to improve search results. By using weighted LCA query Q and setting a threshold t on the
required value of lca-score here, we relax CA and LCA sets to their threshold versions.

Definition 5.2.2 Consider a multi-labeled tree (T,R), a weighted LCA query Q : [σ] → ℜ+,
and a non-negative integer t. The t-CA set of a weighted LCA query Q of threshold t is the
set of nodes that have lca-score of at least t:

ThresCA(T,R,Q, t) = {x ∈ [n] : lca score(T,R,Q, x) ≥ t}

Definition 5.2.3 Consider a multi-labeled tree (T,R), a weighted LCA query Q : [σ] → ℜ+,
and a non-negative integer t. The t-LCA set of a weighted LCA query Q of threshold t is the
subset of t-CA set of nodes that do not have any descendants that are in t-CA set as well,
i.e. they are deepest ones with such property:

ThresLCA(T,R,Q, t) =

{x ∈ ThresCA(T,R,Q, t) : ∀y ∈ ThresCA(T,R,Q, t) ⇒ y /∈ descendants(x)}.

Solving the Threshold LCA Problem consists in finding the t-LCA set of a weighted LCA
query.

5.2.2 Algorithm

For any label α ∈ [σ] and any node x ∈ [n] we use the same notion of the operation α-
successor of x as in Chapter 4 but with respect to the postorder defined on the set of nodes
[n]. In addition, our algorithms require some operations that were not defined previously.

Definition 5.2.4 Consider a multi-labeled tree (T,R) with nodes enumerated in postorder.
For a node x ∈ [n] and a label α ∈ [σ] we define:

• the α-predecessor of x, denoted by label predecessor(α, x), outputs the largest in
preorder node y that is less than node x, such that R(α, y) = 1, or ∅ if there is no such
node.

• the lowest common ancestor (LCA) of x1 and x2, denoted by lca(x1, x2), outputs the
node that is an ancestor of both of them and that does not have any descendant node
with the same property (see Definition 5.1.2).

Our algorithm for solving the Threshold t-LCA Problem starts from the first node in
postorder and scans through the list of all the nodes enumerated in postorder. For each
node x under consideration the algorithm finds the smallest node xright larger than x, such
that all the labels associated with the nodes between x and xright add weight to the lca-score
of their Lowest Common Ancestor of at least t, i.e.

∑

α∈[σ] Q(α) maxy∈{x,...,xright} R(α, y) ≥ t.
Then it finds the largest node xleft with the same property but starting from xright and

53

progressing backward: xleft is the largest node smaller than xright, such that all the labels
associated with the nodes between xleft and xright add weight to the lca-score of their Lowest
Common Ancestor of at least t. The algorithm outputs the lowest common ancestor of these
two nodes lca(xleft, xright) and proceeds further, by setting the current node x to the smallest
successor of node xleft that matches at least one label from the query. The algorithm finishes
when it cannot find the next node xright (see Algorithm 11).

The function WEIGHT(xleft, xright) denotes the weight of all labels associated with the
nodes placed between nodes xleft and xright in postorder including themselves. These nodes
will contribute this weight to the lca-score of their lowest common ancestor (see Defini-
tion 5.1.3), which is the same as the LCA of the leftmost and rightmost nodes (Defini-
tion 5.1.2).

WEIGHT(xleft, xright) =
∑

α∈[σ]

Q(α) max
x∈{xleft,...,xright}

R(α, x)

Algorithm 11 Solving the Threshold t-LCA Problem (T,R,Q, t)
x = x1;
loop

xright ← the first successor of x, s.t. WEIGHT(x, xright) ≥ t;
if xright = +∞ then EXIT;
xleft ← the first predecessor of xright, s.t. WEIGHT(xleft, xright) ≥ t;
output ← lca(xleft, xright)
x ← the next node larger than xleft associated with any label α, s.t. Q(α) > 0;

end loop

To find node xright the algorithm computes nodes xα = label successor(α, x) for each
label α,Q(α) > 0 and builds a min-priority queue from them. Then it retrieves the smallest
set of the nodes such that the sum Q(α) of all corresponding labels is at least t. The
algorithm sets xright to the last retrieved node.

The algorithm finds xleft in a similar way: it computes nodes xα =
label predecessor(α, xright) for each label α,Q(α) > 0 and builds a max-priority queue
from them. Then it retrieves the smallest set of the nodes such that the sum Q(α) of all
corresponding labels is at least t. The algorithm sets xleft to the last retrieved node.

The result of the algorithm solving the Threshold t-LCA Problem is a sequence of nodes.
Any outputted node x is in the t-CA set whose lca-score is of at least t by construction of
the algorithm. However, not all of returned nodes belong to the t-LCA set, because the
algorithm does not check any ancestor-descendant dependencies between outputted nodes.
To remove nodes that are not in the t-LCA set from the output, we need an additional
filtering step.

Our on-line filtering algorithm is inspired by the one provided implicitly by Xu and
Papakonstantinou [46]: it receives nodes from the first algorithm one by one and checks
whether each of them is in the t-LCA set or not. The algorithm stores the most recent
received node as xr and check the relationship between xr and the new node x that comes

54

1 3 42 5 7 86 9 11 1210 13 15 1614

a a a a

a

cc

b

b b

lca(2,2)

= 2

lca(3,7)

= 9

lca(7,8)

= 8

lca(8,10)

= 16

lca(10,11)

= 15

lca(13,13)

= 13

done

Output: 2 89 16 1315

Figure 5.2: An example of the execution of the Algorithm 11 on the labeled tree
provided in Figure 5.3.

55

to the input. If x is an ancestor of xr, x is discarded, because it cannot be in t-LCA set by
definition. If x is a descendant of xr, xr is discarded and replaced by x, because xr cannot
be in t-LCA set. Otherwise, our filtering algorithm sends xr to the output (i.e. confirms
that it is in t-LCA set), and set xr to the newcomer node x. When there is no more nodes
coming to the input, the algorithm outputs xr to the t-LCA set and finishes.

Algorithm 12 Filtering Algorithm (T , t-CA)

xr ← the first node coming to the input;
for each x coming to the input do
xlca = lca(xr, x);
if xlca = xr then

do nothing (discard x)
else if xlca = x then
xr = x

else
output xr;
xr = x

end if
end for
output xr;

5.2.3 Adaptive Analysis

In order to analyse the algorithm, we define a notion of the complexity of the problem
instance that shows which problem instances are easy and which are difficult to solve. To
do this, we highlight the most important parts of the problem instance.

Consider we take xleft and xright and compute the possible additional weight they and
all the nodes between them can contribute to the lca-score value of their common ancestor.
If we increase this interval, the weight will increase or, at least, remain the same. If we
decrease this interval, the weight will decrease or remain the same. We define a notion of
the smallest interval that still contributes enough weight to the lca-score of a node to make
sure it is in the t-CA set.

Definition 5.2.5 Consider a multi-labeled tree (T,R), a weighted LCA query Q : [σ] → ℜ+,
and a non-negative integer t. The Minimal t-interval of the problem instance is an interval
(xleft, . . . , xright) of nodes in postorder, s.t.

∑

α∈[σ] Q(α) maxx∈{xleft,...,xright} R(α, x) ≥ t and
there is no subinterval with the same property.

Each node in the t-LCA set corresponds to a minimal interval that has lca-score of at
least t; note that the inverse is not always true. As the number of the intervals of minimal
size increases the number of nodes in the t-LCA set increases as well. We take the number
of minimal t-intervals as our measure of difficulty of the corresponding problem instance.

56

16

9 15

1 4 8

32 6 75

10 14

1211 13

a

b,c a

a

b

b

a a,c

Figure 5.3: An example of a multi-labeled tree. The gray nodes are in the 2-CA
set and circled nodes are in the 2-LCA set built on the labels {a,b,c}.

1 3 42 5 7 86 9 11 1210 13 15 1614

a a a a

a

cc

b

b b

problem Instance

minimum 2-interval

Figure 5.4: The postorder of the nodes of the tree in Figure 5.3 and one of the
minimal 2-intervals.

57

Definition 5.2.6 Consider a multi-labeled tree (T,R), a weighted LCA query Q : [σ] → ℜ+,
and a non-negative integer t. The difficulty δ of the problem instance is the number of distinct
minimal t-intervals of the given problem instance.

We prove dependency between nodes in the t-CA set, t-LCA set, minimal t-intervals, and
iterations of Algorithm 11. We represent these dependences graphically in Figure 5.6.

Lemma 5.2.1 For a given problem instance defined by a multi-labeled tree (T,R), a weighted
LCA query Q : [σ] → ℜ+, and a non-negative integer t, there is a bijection f1() between the
set of minimal t-intervals and each iteration of Algorithm 11.

Proof 5.2.1 We prove this lemma by considering a function f1() from the set of all minimal
t-intervals to the set of all iterations of the algorithm and proving that it is injective and
surjective, which leads to being bijective.

To prove injectivity of f1() we only need to show that for each two different minimal t-
intervals I1 and I2 the corresponding iterations f1(I1) and f1(I2) of Algorithm 11 are different.
As the intervals has to start from different nodes (otherwise they cannot be different, because
they are minimal), and by the fact that each iteration of the algorithm starts from one of
the successors of the node the previous iteration started, f1() is injective.

To prove surjectivity of f1() we need to show that for each iteration of Algorithm 11,
there exists a minimal t-interval. This is true, because an interval the algorithm comes up
at each iteration has the property that if one removes either the first or the last node from
it, it will have weight less than t by definition of the algorithm, i.e. it is a minimal t-interval
that will certainly have a correspondence in the set of all t-intervals.

From the injectivity and surjectivity of f1(), its bijectivity follows. ⊓⊔

Lemma 5.2.2 For a given problem instance defined by a multi-labeled tree (T,R), a weighted
LCA query Q : [σ] → ℜ+, and a non-negative integer t, there is an injection f2() from t-LCA
set to a set of all minimal t-intervals.

Proof 5.2.2 We prove this by showing that for any pair of different nodes x1, x2 in t-LCA
set, their images f2(x1), f2(x2) in the set of all minimal t-intervals are different.

As nodes x1 and x2 cannot have ancestor-descendant dependency, because an ancestor
is not in t-LCA set in this case, they have totally disjoint subtrees (the trees that do not
have any common node). The minimal t-interval that gives the required weight to the node
has to be inside the interval corresponding to the entire subtree of a node. As the subtrees
of these two nodes do not intersect, the minimal t-intervals do not intersect either, meaning
they cannot be the same. ⊓⊔

Lemma 5.2.3 For a given problem instance defined by a multi-labeled tree (T,R), a weighted
LCA query Q : [σ] → ℜ+, and a non-negative integer t, and assuming that Algorithm 11
outputs all nodes that are in t-LCA set and some or no nodes that are not in t-LCA set but
are in t-CA set, Filter Algorithm 12 outputs all and only nodes from t-LCA set.

58

Proof 5.2.3 We prove the lemma’s statement by proving that all the nodes discarded by
the filtering algorithm are not in t-LCA set and all the nodes it outputs are in t-LCA set.

1

x
r

x

x

x
on-line

x
r

3

2

Figure 5.5: Three types of incoming nodes during filtering.

The filtering algorithm discards nodes only in two cases. First, it discards xr when it
finds that the next coming node is its child, which means that node xr cannot be in the
t-LCA set by definition. Second, it discards the coming node x when it appears to be an
ancestor of node xr, which means it cannot be in the t-LCA set as well.

All the time the filtering algorithm is working, it keeps node xr to be not an ancestor of
any of the nodes in the input (here we use the order the Algorithm 11 outputs the nodes in
t-CA set to the filtering algorithm). The filtering algorithm outputs xr if the coming node
belongs to the next branch of the tree and cannot ban xr from being in t-LCA set as well as
all the subsequent nodes coming. ⊓⊔

Theorem 5.2.1 For a given problem instance defined by a multi-labeled tree (T,R), a
weighted LCA query Q : [σ] → ℜ+, and a non-negative integer t, there is an algorithm
that solves the Threshold t-LCA Problem performing O(kδ) priority queue, label-successor,
label-predecessor operations and O(δ) lca operations.

Proof 5.2.1 The correctness of the algorithm follows from Lemma 5.2.1, Lemma 5.2.2, and
Lemma 5.2.3: the minimal t-interval of any node in the t-LCA set will be presented in the
set of all minimal t-intervals (Lemma 5.2.2), will be found by Algorithm 11 and passed to
the input of the Filtering Algorithm 12 (Lemma 5.2.1) which will output it successfully to
the result set (Lemma 5.2.3).

Each iteration of Algorithm 11 costs O(k) priority queue and label-successor operations
for finding xright, O(k) label-predecessor and priority queue operations for finding xleft, and
one lca operation to determine a node to output to Filtering Algorithm 12, and one lca
operation performed by Filtering Algorithm for every node from the input. As the number
of iterations of Algorithm 11 is δ, the total worst-case complexity is bounded by O(kδ) of
priority queue, label-successor, label-predecessor operations and O(δ) lca operations.

59

!

t-CA

t-LCA

minimal t-interval

main loop

Algorithm

Filtering

t-LCA

t-CA

output

Figure 5.6: The global picture of the results of the lemmas. The set of all nodes
that correspond to all minimal t-intervals is a subset of t-CA set but contains t-
LCA set completely. The algorithm finds the corresponding node for each minimal
t-interval and determines whether it is in the t-LCA set or not through filtering.

60

Lemma 5.2.1 and the definition of the instance difficulty through the number of distinct
minimal t-intervals (Definition 5.2.6) together with the work flow of Algorithm 11 gives the
mentioned worst-case complexity. ⊓⊔

It is natural to add weights to the multi-labeled tree T through making a binary relation
R weighted, as it was done in the case of path subset queries in Chapter 4. However, this
strategy changes the problem greatly and our algorithm cannot be easily adapted to it.

In addition, we cannot put a restriction similar to the one of non-increasing trees used
for solving path subset problem, because the position of the nodes that contribute to the
lca-score of a given node now is too unpredictable: they are not grouped on the same rooted
path as in the case of path subset queries, but are spread across the whole subtree of the
node randomly, thus Algorithm 11 cannot search for the next interval that can contribute
to the t-CA set effectively.

Unlike two previous chapters, the idea of pertinent t-LCA set is not too meaningful here.
The node that has the maximum lca-score is always known – it is the root of the whole tree,
even though it is not always unique. And looking for the nodes with the same lca-score as
the root is trivial: one can easily find the maximal threshold value t⋆, which brings us to
solving of the original Threshold t-LCA Problem.

5.3 Implementation

In the previous sections we derived an upper bound of the complexity of the Threshold
t-LCA Problem solving expressed in the number of priority queue, label-successor, label-
predecessor operations and lca operations. There are a number of data structures to support
these operations.

In this section we consider the same ways a binary relation and a priority queue can be
implemented as the ones discussed in Section 4.4 and derive upper bounds on the worst-case
complexity of the algorithm for solving the Threshold t-LCA Problem.

Corollary 5.3.1 If a multi-labeled tree is implemented by postings lists and a priority queue
is implemented by a classical heap, the complexity of the combination of Algorithm 11 and
Algorithm 12 is O(δ

∑

α∈[σ] lg(nα/δ) + δk lg k + δh), where k is the number of labels α with

Q(α) > 0 and h is the height of the tree.

Proof 5.3.1 One can implement the algorithms in the same way as in Corollary 3.4.1, except
the support for the lca(x1, x2) operation, which can be done by scanning of a rooted path
in time linear in the size of the tree. ⊓⊔

Corollary 5.3.2 If the labeled tree is implemented using the succinct encoding introduced
by Barbay et al. [10] and the priority queue is implemented as proposed by Andersson
and Thorup [6], the complexity of the combination of Algorithm 11 and Algorithm 12 is

61

O(δk lg lg σ + δk(lg lg k)2) in the RAM model with word size Θ(lg max{σ, n}), where k is the
number of labels α with Q(α) > 0.

Proof 5.3.2 One can implement the algorithms in the same way as in Corollary 3.4.2, except
for the support of lca(x1, x2) operation, which can be done in the way proposed by Geary et
al. [28] in O(1) time. ⊓⊔

62

Chapter 6

Conclusion

In this thesis we provided new ways of asking keyword queries and storing information in the
database by adding weights to the existing solutions to improve the quality of the information
retrieving. We considered weighted queries on two different data structures: weighted binary
relations and weighted multi-labeled trees. We proposed adaptive algorithms to solve these
queries and proved the measures of the complexity of these algorithms in terms of the high-
level operations. We described how these algorithms can be implemented and derived the
upper bounds on their complexity in two specific models of computations: the comparison
model and the word-RAM model.

First, we gave a broad overview of the work done in the related areas such as the adaptive
analysis of algorithms and presented some results about queries on binary relations and multi-
labeled trees. Then, taking into account the benefits of the pure keyword search, we extended
it by adding weights to the keywords in the query. These weights allow to specify which
keywords are more or less important in order to increase the relevance of the information
retrieved.

Next, we identified the intuition behind previous work on threshold set queries on binary
relations [11] and applied it in much more general contexts: where weights are associated
with the relation between objects and labels. We applied the threshold set concept to path-
subset [10] and LCA queries and derived algorithms for solving them. In the contexts of
weighted queries and weighted path-subset queries we defined pertinent queries that find the
optimal threshold and are more informative than the queries previously considered, while
being not substantially more expensive to answer.

Finally, we performed an adaptive analysis of all presented algorithms by defining mea-
sures of difficulty of the problems instances. We elaborated on the implementation issues
and derived upper bounds on the complexity of all given algorithms in the specific models.

The concept of weighted threshold and pertinent set queries can be applied to some
other type of schema-free queries on multi-labeled trees, among which we describe three in
particular:

63

• additive path subset queries, which are similar to path-subset queries but with a differ-
ent score function, where for each node x the contribution of its ancestors labeled α
adds up to form its score;

• path subsequence queries, which are similar to path-subset queries but with a required
order on the labels of the query (obviously, the path-score can then be defined in an
additive or non-additive way);

Additive path subset queries is a natural extension of the path subset queries considered
in this thesis. They allow multiply instances of the same label on the same rooted path add
weight to the score of the considered node. They would be very useful in practice because, as
in the case of the file system, if a keyword appears more than once in the path to a file, this
file is more relevant to a query containing this keyword. However, considering such queries
will make our algorithm much more complex: it will not have a bound on the score that a
given label may contribute and will have to consider all occurrences of each label without
skipping them, as it currently does. This will make the algorithm’s complexity to be linear
in the total number of labels, unless one find another way to perform the scanning.

Path subsequence queries is one more possible extension of the path subset queries. By
imposing the order constraints on the label appearance in the rooted path, one can filter out
unnecessary branches of the tree. However, the algorithm should be changed greatly in this
case. Moreover, the adaptive analysis of the algorithm in this situation is an open question
as well.

In addition, as threshold set queries generalize simple keyword queries, for which many
algorithms have been studied [7, 8, 25, 26], many other algorithms should be considered,
some of which could take advantage of properties of the instances other than those described
by the alternation measure of difficulty.

Although the adaptive analysis is finer than the classical worst-case analysis, its value
for a particular application depends of the appropriateness of the corresponding difficulty
measure: some experimentations will be necessary. It is reasonably easy to generate a
weighted index, for instance by assigning different weights to the labels associated with the
links to a web page, in the title or in a simple paragraph. It will be harder to generate
realistic user queries for the threshold set: the users are most often used to using keyword
queries and adapting their queries to the type of results returned: they give a small number
of keywords to avoid receiving a null answer. A possible solution is to consider queries
extended with some labels of small weight, corresponding to the profile of the user: such
queries would help to adjust the answer to the initial keyword query based according to the
user preferences.

64

Bibliography

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, and J. M. Patel. Structural joins: A primitive
for efficient XML query pattern matching.

[2] S. Alstrup. Optimal algorithms for finding nearest common ancestors in dynamic trees.
Technical Report 95-30, Universitetsparken 1, DK-2100 Denmark, 1996.

[3] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A survey
and a new distributed algorithm. In Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 2002.

[4] S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dynamic
trees. In Automata, Languages and Programming, pages 73–84, 2000.

[5] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, M. Holstege, D. McBeath,
M. Rys, and J. Shanmugasundaram. XQuery 1.0 and XPath 2.0 Full-Text. Technical
report, W3C Working Draft, May 2006. http://www.w3.org/TR/xquery-full-text/.

[6] A. A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic searching and
priority queues. In STOC ’00: Proceedings of the thirty-second annual ACM symposium
on Theory of computing, pages 335–342, New York, NY, USA, 2000. ACM Press.

[7] R. A. Baeza-Yates. A fast set intersection algorithm for sorted sequences. In Proceedings
of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 3109
of Lecture Notes in Computer Science (LNCS), pages 400–408. Springer, 2004.

[8] R. A. Baeza-Yates and A. Salinger. Experimental analysis of a fast intersection algo-
rithm for sorted sequences. In Proceedings of 12th International Conference on String
Processing and Information Retrieval (SPIRE), pages 13–24, 2005.

[9] J. Barbay. Optimality of randomized algorithms for the intersection problem. In Pro-
ceedings of the Symposium on Stochastic Algorithms, Foundations and Applications
(SAGA), volume 2827 of Lecture Notes in Computer Science (LNCS), pages 26–38.
Springer, 2003.

[10] J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive searching in succinctly
encoded binary relations and tree-structured documents. In Proceedings of the 17th

65

Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009 of Lecture
Notes in Computer Science (LNCS), pages 24–35. Springer-Verlag, 2006.

[11] J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In Pro-
ceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
390–399. Society for Industrial and Applied Mathematics (SIAM), 2002.

[12] J. Barbay and C. Kenyon. Deterministic algorithm for the t-threshold set prob-
lem. In Proceedings of the 14th International Symposium Algorithms and Computation
(ISAAC), volume 2906 of Lecture Notes in Computer Science (LNCS), pages 575–584.
Springer, 2003.

[13] J. Barbay, A. López-Ortiz, and T. Lu. Faster adaptive set intersections for text search-
ing. In Proceedings of the 5th International Workshop on Experimental Algorithms
(WEA), volume 4007 of Lecture Notes in Computer Science (LNCS), pages 146–157.
Springer Berlin / Heidelberg, 2006.

[14] D. Benoit, E. D. Demaine, J. I. Munro, and V. Raman. Representing trees of higher
degree. In Proceedings of the 6th International Workshop on Algorithms and Data
Structures (WADS), volume 1663 of Lecture Notes in Computer Science (LNCS), pages
169–180. Springer-Verlag, 1999.

[15] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and J. Simon.
XML Path language (XPath) 2.0. Technical report, W3C Working Draft, November
2003. http://www.w3.org/TR/xpath20/.

[16] O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. Comput. Syst. Sci.,
48(2):214–230, 1994.

[17] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon. XQuery
1.0: An XML Query Language. Technical report, W3C Recommendation, January 2007.
http://www.w3.org/TR/2007/REC-xquery-20070123/.

[18] P. A. Boncz and M. L. Kersten. MIL primitives for querying a fragmented world. VLDB
Journal: Very Large Data Bases, 8(2):101–119, 1999.

[19] A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. SIGMOD
Record, 29(1):68–79, 2000.

[20] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan.
Extensible Markup language (XML) 1.1 (Second Edition). Technical report, W3C Rec-
ommendation, September 2006.

[21] W. H. Burge. Sorting, trees, and measures of order. Information and Control, 1(3):181–
197, 1958.

66

[22] Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.
GEOMETRY: Discrete and Computational Geometry, 16, 1996.

[23] J. Clark and S. DeRose. XML Path language (XPath). Technical report, W3C Recom-
mendation, November 1999. http://www.w3.org/TR/xpath/.

[24] S. Cohen. XSearch: A semantic search engine for XML, 2003.

[25] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and
differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 743–752, 2000.

[26] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Experiments on adaptive set intersec-
tions for text retrieval systems. In Proceedings of the 3rd Workshop on Algorithm Engi-
neering and Experiments, volume 2153 of Lecture Notes in Computer Science (LNCS),
pages 5–6, Washington DC, January 2001.

[27] V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM Com-
puting Surveys, 24(4):441–476, 1992.

[28] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor
queries. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1–10, 2004.

[29] Google. www.google.com/history.

[30] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1:132–133, 1972.

[31] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank: Ranked keyword search
over XML documents, 2003.

[32] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13(2):338–355, 1984.

[33] F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly-ordered
sets. SIAM J. Comput., 1(1):31–39, 1972.

[34] H. Jagadish, S. Al-Khalifa, L. Lakshmanan, A. Nierman, S. Paparizos, J. Patel, D. Sri-
vastava, and Y. Wu. Timber: A native XML database, 2002.

[35] R. Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters, 2:18–21, 1973.

[36] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm. SIAM J.
Comput., 15(1):287–299, 1986.

[37] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, 2004.

67

[38] H. Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Trans.
Computers, 34(4):318–325, 1985.

[39] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary.
In Proceedings of the 14th International Workshop on Algorithms and Data Structures
(WADS), volume 1671 of Lecture Notes in Computer Science (LNCS). Springer-Verlag,
2007.

[40] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

[41] O. Petersson and A. Moffat. A framework for adaptive sorting. Discrete Applied Math-
ematics, 59(2):153–179, 1995.

[42] J.-C. Raoult and J. Vuillemin. Optimal unbounded search strategies. In Proceed-
ings of the 7th Colloquium on Automata, Languages and Programming, pages 512–530.
Springer-Verlag, 1980.

[43] K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds.
In Proceedings of the 17th annual ACM-SIAM symposium on Discrete algorithm, pages
1230–1239, 2006.

[44] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage and
retrieval of XML documents. Lecture Notes in Computer Science, 1997:137+, 2001.

[45] A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying XML documents made easy:
Nearest concept queries. In ICDE, pages 321–329, 2001.

[46] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML
databases. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 527–538, New York, NY, USA, 2005. ACM
Press.

68

Appendix A

Improvements on the algorithm for
finding Smallest Lowest Common
Ancestors (SLCAs)

As mentioned in Section 2.3, Xu and Papakonstantinou [46] considered the problem of pure
keyword search in XML trees and presented two algorithms: Indexed Lookup Eager Algorithm
and Scan Eager Algorithm for finding Smallest Lowest Common Ancestor (SLCA). Both of
these algorithms are based on several properties of the preorder enumeration of nodes and
definitions of LCA and SLCA in a labeled tree. They are different only in the way they
perform left match and right match operations.

If we consider all the nodes that have a given label are contained in an ordered set S,
then the left (right) match of v in an ordered set of nodes S is the node of S that has the
largest (smallest) ID that is smaller (greater) than or equal to ID of v.

We propose two modifications to these two most frequent operations of both algorithms.
First, we replace binary search in left match and right match operations by doubling search
described in Section 2.2.1. Second, while the initial algorithms look for the elements in each
set Si in increasing order, we can make them not consider already scanned portion of these
elements by introduction of the cursor that splits arrays on already scanned and not scanned
parts.

Using of doubling search in the implementations of left match and right match opera-
tions remove the difference between Indexed Lookup Eager and Scan Eager Algorithms. A
doubling search performs not worse and in most cases better than the simple scanning of
the ordered set of elements and, in the same time, performs not more than two times worse
than a binary search.

Introduction of the cursor between already scanned and not scanned parts of an ordered
set of elements allows to optimize searching by removing already considered part from the
scope of the future searches. The upper bound on the complexity of such searches was
obtained by Raoult and Vuillemin [42] and is formulated by us in this thesis in Lemma 2.4.1.

69

Xu and Papakonstantinou proved an upper bound O(|S1|kd log |S|) on the complexity of
the Indexed Lookup Eager Algorithm, where |S1| is the minimum and |S| is the maximum
size of keyword lists S1 through Sk. They obtained an upper bound O(k|S1| + d

∑k
2 |Si|) or

O(kd|S|) on the complexity of the Scan Eager Algorithm. Two modification proposed by us
and Lemma 2.4.1 allow to obtain a new upper bound

O(|S1|kd log
|S|

|S1|
)

on the complexity of the improved algorithm.
Both initial algorithms are non-blocking, i.e. they produce part of the answers quickly

so that users do not have to wait long to see the first few answers. Moreover, if a user is
interested in any correct answer or is satisfied with any of a few first answers, one can reduce
the total execution time dramatically by stopping the algorithm after it produced the first
result. Our improvements of these algorithms do not void their non-blocking property.

70

