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Abstract

We introduce several new algorithms for compensating intra channel nonlinearities in light-

wave systems through electronic predistortion. These were optimized and modeled assum-

ing realistic conditions at Nortel and were found to be insensitive to normal environmental

and design fluctuations in commercial systems. We also present an upper bound on system

performance that agrees well with measured results.
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Chapter 1

INTRODUCTION

In this chapter we will briefly overview the elements and impairments of optical fiber

communication links relevant to this thesis. We then briefly outline the thesis.

1.1 Optical Fiber Networks

1.1.1 Historical Perspective

While coaxial and microwave systems can operate at high bit rates the repeater spacing (∼
1 km) is small due to the large losses at high frequencies. As a result, the cost of operation

is high. Lightwave systems were consequently recognized already in the 1950s as a potential

replacement as the magnitude of the bit rate-distance product, BL, is several orders larger

in such systems.[3]. Indeed, lightwave systems have exhibited a rapidly increasing bit rate-

distance product over the last decades due to continual improvements and refinements

and now constitute the primary choice for medium and long haul communication systems,

including global communication at very high bit rates.

The first multimode lightwave systems operated at 0.8µm, with a repeater spacing of

about 10 km. The repeater spacing increased significantly when InGaAsP semiconduc-

tor lasers enabled communication in the 1.3µm wavelength range for which the fiber loss

is far smaller. In this region, the material dispersion is small but the modal dispersion

of multimode fibers was high. Accordingly, single mode fiber systems became necessary.

1



2 Electronic Pre-Compensation of Intra-Channel Nonlinearities

Further, the attenuation of the fiber was further reduced by operation at the minimum ab-

sorption point near 1.55µm in place of 1.3µ. While the dispersion of normal fibers is larger

at this longer wavelength, dispersion shifted fibers were developed, which enabled a re-

peater spacing of 70 km. Coherent lightwave systems permit even longer spacing. Further,

complicated and expensive electronic repeaters were replaced by optical fiber amplifiers,

which combined with dispersion compensation techniques enable all optical networks and

electronic signal regeneration was completely removed. This revolutionary change was ac-

companied by multichannel operation based on wavelength division multiplexing (WDM)

technology. [3].

In summary, the main milestones of lightwave systems were:

1. Communication grade optical fibers and coherent optical sources (0.8µm lasers).

2. InGaAsP laser sources operating at 1.3µm and implementation of single mode fibers.

3. 1.55µm operation and dispersion shifted fibers.

4. Optical fiber amplifiers and WDM systems.

1.1.2 Coherent Systems and IMDD systems

Most lightwave systems currently employ IM/DD (intensity modulation direct detection),

which means that the amplitude of the laser source is modulated directly by the bit stream.

Such direct amplitude modulation is referred to as intensity modulation and the corre-

sponding receiver is a square law detector that outputs a signal that is proportional to

the light signal intensity, thus eliminating phase information. This is also termed direct

detection and yields a simple modulation and detection procedure that leads to low system

cost and complexity.

Alternatively, coherent systems have been developed that employ a wide range of

modulation-demodulation methods as in radio communication systems. Here the detec-

tion process mixes a carrier with the detected signal in order to preserve both amplitude

and phase information. Coherent systems possess greater receiver sensitivity, that is less

received power is required for low-error transmission but can be more affected by noise and
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of course are far more complex and expensive.[3]. We will accordingly not consider such

systems in this thesis.

1.1.3 Long and Short Haul

Optical fiber communication links are best suited for long haul transmission because of the

long repeater spacing and low repeater (amplifier) station cost. The large fiber bandwidth,

however, is increasingly attractive for short haul (< 10 km) communication systems that

are becoming markedly closer to commercial acceptance.

1.1.4 WDM

While the theoretical bandwidth of optical fibers is close to ∼ 10 THz, communication sys-

tem electronics and photonics cannot be designed to utilize this bandwidth operating with

a single source, which is effectively restricted at present to a bit rate of 40 Gb/s requiring

a ∼ 40 GHz bandwidth. However, the large bandwidth can be utilized by transmitting

many data channels simultaneously using multiplexing techniques. Such multiplexing is

generally performed both in the time domain (TDM) to combine low-frequency signals

onto one 10 or 40Gb/s channel and in the frequency domain through frequency division

multiplexing which combines light from many individual lasers operating at these wave-

lengths. Such frequency division multiplexing is termed wavelength division multiplexing,

WDM, in optical communications.

1.1.5 Optical Network Architecture

In this section we describe optical network architectures, which fall into three principle

categories:

1. Point to point links.

2. Broadcast links.

3. Local area networks.
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Point to point links implement a simple architecture with the communication link

connecting two stations in either long or short haul applications. A short haul system

might connect two workstations in a building but transmit a very high-speed signal. In a

long haul system, the signal must be amplified every ∼ 100 km, which can be done even

over many WDM channels because of the large fiber amplifier bandwidth. The network is

then simply a transmitter followed by consecutive fiber spans joined by optical amplifiers.

A broadcast network broadcasts information from a single source to multiple recipients

in the manner of cable TV. Such networks are employed, for example, in intra city commu-

nications. While fibers are not particularly cost-effective for such applications, the large

optical bandwidth can be employed to transmit a very large number of channels such as

high definition TV channels compared to coaxial cables. Such networks implement either

a hub topology resembling short haul point to point systems or a bus topology. In the bus

topology a single fiber link is employed that is accessed through taps that transmit only a

portion of the optical power to the subscriber. The number of subscribers is then limited

by the power available in the fiber, but amplifiers can increase the power periodically to

augment the number of potential subscribers.

Local Area Networks, LANs connect large numbers of users in small (< 10 km) areas

such as a company or an university in such a manner that each user has random access

to the network. That is, in contrast with the broadcast systems, in which the data flows

from one source to a number of recipients, each user can randomly access the network to

transmit or receiver data. The main topologies are the bus, ring, and star topology.

This thesis is restricted to long haul WDM point-to-point optical fiber communication

networks with IM/DD modulation.

1.2 Optical Networks Elements

We now introduce each element or component of the optical network of importance in this

thesis.
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1.2.1 Optical Fibers

Optical fibers achieve an extremely high bandwidth with low attenuation through total

internal reflection. This means that for a certain range of large incidence angles the light

propagating in a medium with higher refractive index does not propagate an appreciable

distance into the lower refractive index media [11]. Thus dielectric waveguides can be

fabricated from doped silica. These can be either multimode, which means that several

modes with different spatial and angular patterns and therefore propagation velocities can

be guided by the fiber. The differing velocities of these modes, however, leads to multimode

dispersion and therefore relatively low data rates. A single mode fiber that only propagates

one mode (neglecting polarization effects) can however be fabricated that largely eliminates

this limitation.

The three main fiber impairments are loss, chromatic dispersion, and nonlinearity.

These are described in detail in the next section.

1.2.2 Optical Transmitters

An optical transmitter converts the raw data it receives into a modulated optical signal and

launches it into the fiber. Every transmitter contains both an electronic and an optical

component. In the electronic subsystem, the raw data is processed and encoded. The

processed data is converted to an analog form and applied to the laser or modulator. A

modulator can be employed to modulate the optical signal it receives form the optical

source in both amplitude and in some cases phase. The optical sources in most high-

performance systems is a semiconductor laser while modulators are typically Mach-Zehnder

interferometers.

1.2.3 Optical Receivers

An optical receiver converts an optical signal into to the electrical domain and often further

processes it to generate output data. A photodetector converts the signal into electrical

current that is generally proportional to the signal intensity. Such photodetectors are

typically pn junctions that generate electrons from absorbed photons. Sophisticated junc-

tion geometries generate less noise and possess a higher quantum efficiency, defined as the
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number of electrons emitted for each photon. The receiver can process the received signal

through appropriate filters that remove noise and minimize intersymbol interference. A

decision circuit samples the filtered electrical signal and compares the output with a given

threshold to determine if the symbol was a 1 or a 0.

An important measure of the receiver quality is its sensitivity, which is the minimum

SNR (signal power to noise power ratio) at the input of the receiver required for satisfactory

operation. A measure of the performance of a system is its bit error rate, BER, which is

generally defined as the average probability of incorrect bit identification [3]. For each

system, a maximum BER is defined above which the system is said to be failed or outed.

The receiver sensitivity is the minimum SNR required to ensure a BER below the threshold

value. A typical value of BER threshold in optical systems is 10−9, or 10−3 if error correction

codes are used.

1.2.4 Optical Amplifiers

When the power of the optical signal propagating in the fiber decreases below a certain limit

due to loss, it must be increased to a higher level and possibly filtered through repeaters

formed from optical amplifiers and regenerators. Regenerators transfer the signal back to

the electrical domain, reconstruct the original signal waveform and retransmit it through a

separate transmitter module. Such components are generally high cost and system specific

since an upgrade with higher bit rate generally requires a new regenerator. Further, each

wavelength channel normally demands a separate regenerator. Large bandwidth optical

fiber amplifiers, on the other hand, are not system specific, can be employed in multichannel

systems, and are simple and relatively inexpensive. However, contrary to regenerators,

they introduce additional noise that accumulates with an increased number of amplifiers.

Further, the gain of the amplifiers is not wavelength-independent, impacting the link design

process.

We consider only erbium doped fiber amplifiers, EDFA, below. The EDFA is currently

the most widely employed optical amplifier since it is an all-fiber device and therefore simple

to implement, does not introduce crosstalk in WDM systems and because the main EDFA

component, namely the pump laser, is compact, reliable and can emit high power.[19] In

the following we therefore briefly summarize EDFA properties.
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EDFA

An EDFA is a length of typical fiber doped with erbium ions. The signal to be amplified is

input into the EDFA together with the optical pump light through a wavelength selective

coupler. A second wavelength selective coupler at the output separates the signal from the

pump. Thus the main components are an erbium doped fiber, two couplers, two isolators,

and the pump laser. The pump creates a population inversion in the fiber that enables

amplification through stimulated emission. Erbium ions possess three relevant energy

levels; E1, E2, and E3, in ascending order such that the pump laser at wavelength 980 nm is

absorbed by the E1 to E3 transition followed by decay to E2 through spontaneous emission.

However since the life time of the ions in E3 is ∼ 1µs and in E2 is ∼ 10 ms, population

inversion occurs between E2 and E1. Since hc/(E2−E1) falls in the wavelength region of

interest to high-speed communication systems, a communication signal in an EDFA will

be amplified. Further, Stark splitting splits each energy level into several closely-spaced

levels that are nearly equally occupied due to thermalization. As a consequence, such

an amplifier amplifies a wavelength band, although the gain is unequal over the different

wavelengths since the electrons are not evenly distributed in energy.[22].

1.3 Optical Fiber Impairments

1.3.1 Power Loss and Bandwidth

Fiber loss is generally expressed according to the formula

Pout = exp {−αL}Pin (1.1)

in which α is termed the fiber attenuation parameter and L is the fiber length.[19] The

physical origin of fiber loss are material absorption and Rayleigh scattering, which is caused

by light scattering from microscopic inhomogeneities in the glass. Material absorption is

insignificant over the range of 800− 1600 nm but increases rapidly at higher wavelengths

while Rayleigh scattering is inversely proportional to fourth power of the wavelength. The

joint attenuation of the two mechanisms thus has a minima of .2 dB/km at 1550 nm.
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However, other wavelength windows are generally employed, for which the attenuation is

2.5 dB/km at 800 nm, .5 dB/km at 1300 nm, and is dominated by Rayleigh scattering.

The window of operation at 1550 nm is further divided into three bands motivated by

the possible choices of amplifiers within this bandwidth. The lowest band is called the

S-band, in the range 1460− 1530 nm, and is amplified by Raman amplifiers. The C-band,

1530 − 1565 nm, is amplified by standard EDFAs while the L-band, 1565 − 1625 nm, is

employed for high capacity WDM systems as it requires gain shifted EDFAs.[19]. Note

that each band possesses a bandwidth in the order of ∼ 1 THz.

1.3.2 Chromatic Dispersion

Chromatic dispersion arises since different spectral components in a fiber propagate at

different group velocities. In single mode fibers chromatic dispersion has two sources,

namely material and waveguide dispersion. Material dispersion refers to the frequency

dependence of the refractive index of bulk glass while the waveguide dispersion is caused

by group velocity dependence on wavelength in modes of a waveguiding medium of a

frequency-independent refractive index medium. The group velocity dispersion, GVD, is

β2 =
d2β

dω2
= βmaterial

2 + βwaveguide
2 (1.2)

Systems in which β2 < 0 are called anomalous while those with β2 > 0 are termed

normal.

In silica, a transition from normal to anomalous occurs in the 1300 nm window, which

implies that dispersion in this window is low. For the same reason, the 1550 nm window

normally exhibits large dispersion. However, properly designed refractive index profiles

can yield a waveguide dispersion that cancels the material dispersion in this window of

operation. Such fibers are termed dispersion shifted. Alternatively, dispersion compensa-

tion modules can be employed, which are fibers that have the opposite value of the total

dispersion of each fiber span. Thus propagation through the fiber span followed by the

compensation module removes the pulse spreading effect.
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1.3.3 Nonlinearities

As the bit rate and the launch power of communication systems increases, nonlinear ef-

fects become significant. One class of nonlinearities arises due to scattering inside the

fiber. These are principally stimulated Brillouin scattering, SBS, and stimulated Raman

scattering, SRS. Here energy is transferred from one wave, called pump wave, to a second

Stokes wave, due to scattering. A second category of nonlinear effects is created by the

nonlinear dependence of the fiber refractive index on the signal power. These are princi-

pally self-phase modulation, SPM, cross phase modulation, XPM, and four wave mixing.

The latter two effects exists in multichannel systems only as they arise from nonlinear gen-

eration of harmonics of the channel frequencies that introduce signal distortion. In XPM,

the distortion yields nonlinear cross talk between two channels, while four wave mixing

generates a cross talk in a third channel from the interaction between two channels. The

effect of XPM and four wave mixing is significantly reduced by increasing the wavelength

separation between channels or by proper wavelength positioning of the channels. SPM

is an intra channel effect that causes intensity proportional phase modulation, this phase

modulation interacts with dispersion inducing amplitude modulation that is a source of

penalty in present communication systems. This thesis considers exclusively SPM, which

will therefore be examined in detail in the subsequent. Other nonlinear effects are not

of relevance to the thesis since the system of interest here is designed to minimize these

nonlinearities. However, it should be noted that dispersion and SPM can interact in long

haul systems with inline amplifiers and the resulting effects can accumulate with overall

length to generate the principal source of pulse distortion.

1.4 Thesis Outline

In the second chapter, 2, self-phase modulation (SPM) is described and the propagation

equation for the electric field in the presence of SPM is derived. We then discuss the

simplifications required to implement our numerical solutions to the propagation equation

and present our computational procedure.

The third chapter, 3, presents a discussion of electronic precompensation which we

employ to compensate for distortion caused by self-phase modulation. We describe the
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mathematical basis and the hardware required by the precompensator and finally examine

its application to chromatic dispersion.

In chapter 4 the Nortel next generation modem (NGM) transmission system that is

employed for precompensation is examined. We present the system block diagram and

discuss the relevant blocks.

The next chapter, 5, examines an algorithm for implementing SPM compensation.

Simplifications of this algorithm are discussed and the different methods are compared.

Chapter 6 presents a statistical sensitivity analysis based on a model of physical fluctu-

ations in the optical link. Designs that minimize the effect of these variations are further

introduced.



Chapter 2

SELF-PHASE MODULATION

Self-phase modulation (SPM) is a nonlinear optical effect arising from the interaction

of light with matter. The Kerr effect changes the refractive index of bulk media with

optical intensity. Accordingly, for a train of pulses of light traveling in a certain medium,

the refractive index of the medium changes with the pulse amplitude, causing both pure

amplitude modulation and a phase modulation that can as well be partially converted to

amplitude modulation in the presence of chromatic dispersion.

In this chapter self-phase modulation will be overviewed and the nonlinear propagation

equation derived. This equation cannot in general be analytically solved, so numerical

techniques will be discussed instead, including those employed in this thesis.

2.1 Qualitative Description

Self-phase modulation introduce an intensity dependent added phase to the transmitted

pulses. Given the fact that the presence of chirp sometimes amplifies the distortion in-

troduced by chromatic dispersion[19], we find that the SPM induced, intensity dependent

chirp will also react with the chromatic dispersion and introduce further distortion to the

transmitted pulses.

To understand the physical effect of the Kerr nonlinearity, consider the case that anom-

alous chromatic dispersion is present; that is, the second differential of the propagation

constant with respect to frequency is negative. Then for a pulse traveling in the medium,

11
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the red shifted components of the pulse will, in general, travel slower than the blue shifted

components. However, since the SPM-induced phase is linearly proportional to pulse inten-

sity, and the time derivative of the leading part of the pulse is negative, the SPM-induced

phase red-shifts the leading part of the pulse and blue-shifts the trailing part. Thus self-

phase modulation here causes the leading and trailing parts of the pulse to approach each

other.

The magnitude of SPM-induced chirp principally depends on the power level of the

signal and its second derivative with respect to time. Thus SPM distortion is important

for either high power or rapid pulse rates.

2.2 Wave Equation

Light propagation is governed by Maxwell’s equations from which we will here derive the

equation for light inside a fibre including nonlinear effects. Maxwell’s equations are[11]

∇ ·D = ρ (2.1)

∇ ·B = 0 (2.2)

∇×H =
∂D

∂t
+ j (2.3)

∇× E = −∂B

∂t
(2.4)

where E and H are the electric and magnetic fields, respectively, and D and B are the

electric and magnetic flux densities, respectively, j is the current density vector and finally

ρ is the charge density. In the case of propagation in dielectrics such as optical fibres, j = 0

and ρ = 0.

We can combine the equations together using the constitutive relations [9]

D = εoE + P (2.5)

B = µoH + M (2.6)

Here εo is the free space permittivity, µo is the free space permeability, P is the in-

duced electric polarization, and M is the induced magnetic polarization. Since silica is a

nonmagnetic material, M = 0.
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Employing the constitutive equations in Maxwell’s equation yields [1]

∇×∇× E = − 1

c2

∂2E

∂t2
− µo

∂2P

∂t2
(2.7)

after noting that µoεo = 1/c2 with c the speed of light in free space. The induced electric

polarization, P, is in general a complex function of E that we accordingly approximate

below.

2.2.1 Electric Polarization

Optical fibers operate in the wavelength range .5–2 µm that is far from the resonant ab-

sorption peaks of electronic transitions, so that a simple phenomenological relation between

P and E can be employed (see Eq. 2.9). In the absence of magnetic dipoles and assuming

negligible higher order multipole effects, the system response to electric field is dominated

by the electric dipole, and is therefore local[21, 1]; that is, P(r) at r = r1 depends only on

E(r1). In the linear case we then obtain[21]

P(r, t) = εo

∫ ∞

−∞
χ(1)(t− t′) · E(r, t′)dt′ (2.8)

in which χ(1) is the linear susceptibility. At sufficiently low powers, this equation reproduces

linear wave propagation, further, for larger powers, P can be expanded into a power series

in E [21]

P(r, t) = εo

∫ ∞

−∞
χ(1)(t− t′) · E(r, t′)dt′

+ εo

∫ ∞

−∞
χ(2)(t− t1, t− t2) : E(r, t1)E(r, t2)dt1dt2

+ εo

∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3)

...E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3 (2.9)

+ ...

such that the first term represents the linear contribution and the other terms are the

nonlinear terms, i.e.
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P = PL + PNL (2.10)

where terms constituting PNL are, in the frequency domain[21],

P(n)(ω) = εoχ
(n)(ω1, ω2, ...., ωn)

...E(ω1)E(ω2).....E(ωn) (2.11)

and n represents the nonlinear order. For materials with inversion symmetry such as silica

glass, all even order nonlinearities vanish [4]. For the remaining discussion, only the lowest

(third) order non-zero term will be retained

PNL ≈ εo

∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3)

...E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3 (2.12)

Another valid approximation here is to consider the temporal variation of χ(3) to be

of zero width, i.e delta-dirac distributed, the atom response to input pulse occurs on a

scale of less than 100fs, much larger than optical fluctuations and hence it does not

respond to those variations. Average power variations in the signal occurring at modern

communication bit rates are, however, much larger than 100fs. Thus the response of the

material to the incoming field can be regarded as instantaneous [1, 19, 8] with nonlinear

and linear electronic polarizations

PNL(r, t) ≈ εoχ
(3)...E(r, t)E(r, t)E(r, t) (2.13)

and

PL(r, t) ≈ εoχ
(1)E(r, t) (2.14)

respectively.

2.2.2 Slowly Varying Envelope Approximation

We now solve Eq. 2.7 for field propagation in a piecewise homogenous single-mode fiber.

We assume that the field is quasi-monochromatic field with
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∆ω

ωo

¿ 1 (2.15)

where ωo is the center frequency of the propagating field and ∆ω is the bandwidth, and

weakly guiding, ∆n/n << 1. The vector wave equation can be replaced by the scalar

wave equation, 2.7, which can then be solved perturbatively by considering PNL as a small

perturbation to PL. We then employ the slowly-varying-envelope approximation. Given

the piecewise homogeneity of the fiber and 2.10, Eq. 2.7 becomes

∇2E− 1

c2

∂2E

∂t2
= µo

∂2PL

∂t2
+ µo

∂2PNL

∂t2
(2.16)

From the weakly guiding nature of the fiber and the quasi-monochromatic property of

the optical field, we can write the electric field and the linear and nonlinear polarization

as

E(r, t) =
1

2
x̂[Ē(r, t)exp(−iωot) + c.c] (2.17)

PL(r, t) =
1

2
x̂[P̄L(r, t)exp(−iωot) + c.c] (2.18)

PNL(r, t) =
1

2
x̂[P̄NL(r, t)exp(−iωot) + c.c] (2.19)

in which c.c. stands for complex conjugate, x̂ is the polarization unit vector. Ē(r, t),

P̄L(r, t) and P̄NL(r, t) are the slowly varying parts of the electric field, linear and nonlinear

electronic polarization respectively[1].

Substituting Eq. 2.17 in Eq. 2.13 we find

PNL(r, t) =
1

2
x̂[

εo

4
χ(3)Ē3(r, t)exp(−3iωot) + c.c]

+
1

2
x̂[εo

3

4
χ(3)|Ē(r, t)|2Ē(r, t)exp(−iωot) + c.c] (2.20)

Since the 3ω0 term is not phase matched to the propagating field, we obtain after

comparing with Eq. 2.19

P̄NL(r, t) = εoεNLĒ(r, t) (2.21)
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with

εNL =
3

4
χ(3)|Ē(r, t)|2 (2.22)

Rearranging 2.16 then yields

∇2E =
1

c2

∂2

∂t2
(E +

1

εo

PL +
1

εo

PNL) (2.23)

After substituting 2.17 2.18 2.19 2.21, 2.14 we arrive at

∇2Ē(r, t)exp(−iωot) =
1

c2

∂2

∂t2
(εtĒ(r, t)exp(−iωot)) (2.24)

where

εt = (1 + χ(1) + εNL) (2.25)

This yields the nonlinear scalar wave equation if only the first order nonlinearity is

retained and the instantaneous response approximation is applied.

While 2.24 would normally be Fourier transformed, since εNL contains temporal varia-

tion this step does not lead to the standard simplifications. Therefore, as noted above, the

contribution of εNL is examined perturbatively[2, 1]. To first order, we have

∇2Ẽ(r, ω − ωo) =
εt(ω)

c2
(iω)2Ẽ(r, ω − ωo)

= −εt(ω)

c2
ω2Ẽ(r, ω − ωo) (2.26)

after replacing the Fourier transform of time derivatives by iω and noting that the transform

of a function multiplied by a temporal exponential leads to a frequency shift in the function.

2.26 can now be solved through separation of variables. That is, we assume that

Ẽ(r, ω − ωo) possesses the following form [1, 2]

Ẽ(r, ω − ωo) = F (x, y)Ã(z, ω − ωo) exp iβoz (2.27)

in which the rapid variations in the propagation direction, z, are segregated into the

exponential term, according to the slowly varying amplitude approximation, while the
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rapid temporal variations are associated with the exp iωot term, consistent with the quasi-

monochromatic approximation. In other words, higher order derivatives with respect to

t or z are neglected, as already evident when εNL was considered constant when Fourier

transforming.

Substituting 2.27 into 2.26, and employing

k2
o =

(ωo

c

)2

(2.28)

∂2

∂z2
(Ã(z, ω − ωo) exp iβoz) =

∂

∂z
{∂Ã(z, ω − ωo)

∂z
exp iβoz + iβoÃ(z, ω − ωo) exp iβoz}

= exp iβoz{∂2Ã(z, ω − ωo)

∂z2
+ 2iβo

∂Ã(z, ω − ωo)

∂z
−β2

oÃ(z, ω − ωo)} (2.29)

yields

∇2(F (x, y)Ã(z, ω − ωo) exp iβoz) = −εt(ω)

c2
ω2F (x, y)Ã(z, ω − ωo) exp iβoz (2.30)

Ã(z, ω − ωo) exp iβoz∇2
trF (x, y) + F (x, y)

∂2

∂z2
(Ã(z, ω − ωo) exp iβoz)

= −εt(ω)(
ω

c
)2F (x, y)Ã(z, ω − ωo) exp iβoz (2.31)

Substituting in 2.26, dividing by F (x, y)Ã(z, ω − ωo) exp iβoz and rearranging, yields

two separate equations with a common eigenvalue, β̄2(ω). The wave equation accordingly

adopts the form

∇2
trF (x, y) + (εt(ω)k2

o − β̄2(ω))F (x, y) = 0 (2.32)

2iβo
∂Ã(z, ω − ωo)

∂z
+ (β̄2(ω)− β2

o)Ã(z, ω − ωo) = 0 (2.33)

We now solve the first equation for the value of this eigenvalue in a first order ap-

proximation for which εNL is set to zero and then this value is employed in the second

equation. The solution for F (x, y) then will be identical to the standard solution for single

mode fibers and the 0 order eigenvalue β̄(0)(ω) will exhibit the standard dispersion relation.
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Subsequently we include εNL again and correct the lowest-order estimate. In this order,

F (x, y) is unchanged while the eigenvalue is corrected according to[14]

β̄(1)(ω) = β̄(0)(ω) + δβ (2.34)

with

δβ =
ko

2n

∫
x,y

εNL|F (x, y)|2dxdy
(∫

x,y
|F (x, y)|2dxdy

)2 (2.35)

and

n =
√

1 + χ(1) (2.36)

We have assumed χ(1)is real, so that material losses are absent.

Substituting the above expressions into 2.33 and applying the following approximations

β̄(ω) ≈ β̄(1)(ω) = β̄(0)(ω) + δβ (2.37)

β̄2(ω)− β2
o = (β̄(ω) + βo)(β̄(ω)− βo)

≈ 2βo(β̄(ω)− βo) (2.38)

the last of which is a consequence of both the weakly guiding and the quasi-monochromatic

approximations, and further applying the latter approximation to neglect higher order

terms in a Taylor expansion of β̄(0)(ω) (the linear propagation constant) around ωo, so

that,

β̄(0)(ω) ≈ βo + (ω − ωo)β1 +
1

2
(ω − ωo)

2β2 (2.39)

where β1is the reciprocal of the group velocity and β2 is the group velocity dispersion, we

obtain

i
∂Ã(z, ω − ωo)

∂z
+ {(ω − ωo)β1 +

1

2
(ω − ωo)

2β2 + δβ}Ã(z, ω − ωo) = 0 (2.40)

Inverse Fourier transforming and replacing all instances of (ω − ωo) by the temporal

differential
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i
∂A(z, t)

∂z
+ iβ1

∂A(z, t)

∂t
− β2

2

∂2A(z, t)

∂t2
+ δβA(z, t) = 0 (2.41)

and substituting2.28, 2.22 and 2.27 into 2.35 yields

δβ = γ|A(z, t)|2 (2.42)

with

γ =
ωon2

cAeff

(2.43)

n2 =
3χ(3)

8n
(2.44)

Aeff =

(∫
x,y
|F (x, y)|2dxdy

)2

∫
x,y
|F (x, y)|4dxdy

(2.45)

Here δβ was considered constant when the wave equation is Fourier transformed ac-

cording to our first order approximation. The radial frequency in γ has further been

approximated by the center frequency.

Including the optical loss, which is proportional to the imaginary part of χ(1) adds an

additional term to 2.41, which now becomes

i
∂A(z, t)

∂z
+ iβ1

∂A(z, t)

∂t
− β2

2

∂2A(z, t)

∂t2
+ γ|A(z, t)|2A(z, t) + i

α

2
A(z, t) = 0 (2.46)

Finally we perform the substitution

T = t− z

vg

= t− β1z (2.47)

z = z (2.48)

to arrive at a frame of reference in which the envelope of the signal is stationary. After

this transformation we arrive at the desired propagation equation
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∂A(z, T )

∂z
= −i

β2

2

∂2A(z, T )

∂T 2
− α

2
A(z, T ) + iγ|A(z, T )|2A(z, T ) (2.49)

Despite the numerous approximations, Eq. 2.49 explains nonlinear effects with sufficient

accuracy for the calculations of this thesis. However, it should be noted that as a result

of the quasi-monochromatic approximation pulses of light of width T ≤ 100 fs, cannot be

described with our technique [1] as different equations then apply.[10]

2.3 Numerical Solution

Analytic methods cannot be employed to solve Eq. 2.49 except for certain specific input

fields. While numerous numerical algorithms are available to solve the equation numer-

ically, perhaps the most frequently employed is the split-step Fourier method (SSF) [1],

which we accordingly analyze in this section.

2.3.1 Split-Step Fourier Transform Procedure

Rewriting the propagation equation of propagation as

∂A(z, T )

∂z
= (D̂(T ) + N̂(z, T ))× A(z, T ) (2.50)

with

D̂(T ) = − i

2
β2

∂2

∂T 2
− α

2
(2.51)

N̂(z, T ) = iγ|A(z, T )|2 (2.52)

we find a formal solution[14],

A(z, T ) = exp {
∫ z

0

(D̂(T ) + N̂(ζ, T ))dζ} × A(0, T ) (2.53)

If the integral in the above equation is performed
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D̂t(z, T ) = D̂(T )z (2.54)

N̂t(z, T ) =

∫ z

0

N̂(ζ, T )dζ (2.55)

the solution becomes,

A(z, T ) = exp {D̂t(z, T ) + N̂t(z, T )} × A(0, T ) (2.56)

However, in this case the exponent contains the sum of two non-commuting operators

and cannot therefore be separated into two simple exponentials. We accordingly apply the

Baker-Hausdorff formula[5],

exp (X̂) exp (Ŷ ) = exp (X̂ + Ŷ +
1

2
[X̂, Ŷ ] +

1

12
[X̂ − Ŷ , [X̂, Ŷ ]] + ....) (2.57)

and retain only a limited number of terms from the expansion.

In the split-step Fourier (SSF) method higher-order commutators in the BCH identity

are neglected by noting that if the length of the fiber segment is sufficiently short, these

terms are small compared to the lowest-order term. Accordingly, the SSF method divides

the link into small segments, such that the lowest-order expansion is valid in each. This

yields

A(z + h, T ) = exp {D̂t(h, T ) + N̂t(h, T )} × A(z, T ) (2.58)

≈ exp {D̂t(h, T )} exp {N̂t(h, T )} × A(z, T ) (2.59)

= exp {D̂t(h, T )}{exp {N̂t(h, T )} × A(z, T )} (2.60)

and the solution for the full fiber results after repeated alternate application of these two

operators. Accordingly, a trade-off exists between accuracy, achieved by minimizing h, and

efficiency which is degraded by the increased number of numerical operations.

To apply the first operator in the above formula, we simply evaluate the integral in Eq.

2.55. By neglecting variation in the propagation direction, the result is simply
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N̂t(h, T ) =

∫ z+h

z

N̂(ζ, T )dζ (2.61)

≈ ihγ|A(z, T )|2 (2.62)

The dispersion part is then evaluated in the Fourier domain where each ∂
∂T

is replaced

by iω. Thus,

exp {D̂t(h, T )}× ≡ F−1{exp (hD̂(ω))F{ (2.63)

Finally the equation relating the envelope at z + h to the envelope at z is

A(z + h, T ) = exp (−αh

2
)F−1{exp { i

2
hβ2ω

2}F{exp (ihγ|A(z, T )|2)A(z, T )}} (2.64)

Importantly, while the main numerical operation in the SSF method is the Fourier

transform, the numerical efficiency[17] is excellent, leading to a highly efficient numerical

method.

We can if desired, further enhance the accuracy of the method by applying the following

symmetric form[7],

A(z + h, T ) = exp {D̂t(
h

2
, T )}{exp {N̂t(h, T )}{exp {D̂t(

h

2
, T )} × A(z, T )}} (2.65)

This expression yields a zero coefficient for the first commutator in the Baker-Hausdorff

expansion so that the error resulting from separating the two terms in the exponent is

reduced.



Chapter 3

ELECTRONIC PRE-DISTORTION

3.1 Introduction

Chromatic fiber dispersion constitutes a primary source of distortion in high bit rate long-

haul optical communication systems. While this effect is often equalized with dispersion

compensating fiber with a length that yields the negative of the dispersion of the com-

munication link, this adds expense, introduces excess losses, and reduces the flexibility in

network planning because of the increased component count. Instead, we here examine

electronic pre-distortion, (EPD), a process in which the channel response is inverted, and

applied through fast digital signal processing circuitry, to the signal at the transmitter.

Because the channel response varies in both phase and amplitude, a phase and amplitude

modulator is required. Since both a fast DSP and a complex modulator are present, this

form of EPD has not been previously employed. However, recent progress led to an ex-

periment in which transmission over more than five thousand kilometers without optical

compensation was achieved[12]. In this context, it should be noted that if the compen-

sator is placed at the receiver as opposed to the transmitter, for intensity (i.e. incoherent)

detection systems, phase information will be lost after detection and hence electronic com-

pensation will be less effective.

23
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Figure 3.1: Frequency Content of the Signal s(t)

3.2 Mathematical Formulation

3.2.1 Band-Pass Signals and Systems

Signals formed by carrier modulation are termed band-pass signals. If the signal bandwidth

is much smaller than the carrier frequency, it is further called a narrowband band-pass

signal. We will study such signals in which the carrier frequency is the frequency of the

unmodulated laser light. In this section we represent such signals mathematically.

Consider a real-valued narrowband band-pass signal s(t) with a carrier frequency fc.

The frequency content of such a signal is shown in Fig. 3.1. A signal that contains the

positive part of the frequency content is

S+(f) = 2u(f)S(f) (3.1)

where S(f) and u(f) are the Fourier transforms of s(t) and the unit step function, respec-

tively. The inverse Fourier transform of 3.1 yields

s+(t) =

∫ ∞

−∞
S+(f)exp(i2πft)df

= F−1[2u(f)] ? F−1[S(f)] (3.2)

where ? represents convolution. Further,

F−1[2u(f)] = δ(t) + i
1

πt
(3.3)
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Substituting 3.3 in 3.2 yields

s+(t) = [δ(t) + i
1

πt
] ? s(t)

= s(t) + i
1

πt
? s(t) (3.4)

where the second term in 3.4 is purely imaginary. The low-pass signal is obtained by

translating the frequency spectrum of s+(t) by fc, that is

Sl(f) = S+(f + fc) (3.5)

or

sl(t) = s+(t)e−i2πfct (3.6)

The subscript l indicates low-pass. Inserting 3.4 in 3.6 and rearranging yields

s(t) + i
1

πt
? s(t) = sl(t)exp(i2πfct) (3.7)

Taking the real part of both sides of the above equation yields the desired relation

between the band-pass signal and its low-pass (envelope) representation

s(t) = <{sl(t)e
(i2πfct)} (3.8)

Note as well that

S(f) =

∫ ∞

−∞
s(t) exp (−i2πft)dt =

∫ ∞

−∞
<{sl(t) exp (i2πfct)} exp (−i2πft)dt

=
1

2

∫ ∞

−∞
[sl(t) exp (i2πfct) + s∗l (t) exp (−i2πfct)] exp (−i2πft)dt

=
1

2
[Sl(f − fc) + S∗l (−f − fc)] (3.9)

Repeating the above procedure for the channel transfer function, h(t) reproduces the

above answer, i.e.

h(t) = 2<{hl(t) exp (i2πfct)} (3.10)
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Note that this only applies to linear channels. The factor 2, which has been introduced

for convenience, alters relation 3.9 into

H(f) = [Hl(f − fc) + H∗
l (−f − fc)] (3.11)

3.2.2 Band-Pass System Response

The response of a band-pass system, h(t), to a band-pass signal, s(t), can be expressed as

r(t) =

∫ ∞

−∞
s(τ)h(t− τ)dτ (3.12)

or, in the frequency domain,

R(f) = S(f)H(f) (3.13)

Since this response is itself a band-pass signal, it can be represented by a low-pass

equivalent rl(t). We will now establish a relationship between the low-pass equivalents

sl(t), hl(t), and rl(t). Inserting 3.9 and 3.11 into 3.13 we find

R(f) =
1

2
[Sl(f − fc) + S∗l (−f − fc)][Hl(f − fc) + H∗

l (−f − fc)] (3.14)

Since all signals are narrowband, the cross terms vanish, yielding

R(f) =
1

2
[Sl(f − fc)Hl(f − fc) + S∗l (−f − fc)H

∗
l (−f − fc)] (3.15)

From 3.9,

R(f) =
1

2
[Rl(f − fc) + R∗

l (−f − fc)] (3.16)

while 3.15 and 3.16 yield

Rl(f) = Hl(f)Sl(f) (3.17)

which is the desired result. Accordingly, we can ignore modulation-induced frequency

shifts and analyze the signal envelopes only.[18]
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3.2.3 Linear Impulse Response

For a linear optical fiber, ignoring losses and nonlinearity, we can easily derive the following

propagation equation 2.49

∂A(z, T )

∂z
=
−i

2
β2

∂2A(z, T )

∂T 2
(3.18)

in which β2 is the group velocity dispersion and A is the signal envelope(low-pass equiva-

lent), c.f. Sec.2.2.2. Fourier transforming yields

∂A(z, ω)

∂z
=

−i

2
β2F [

∂2A(z, T )

∂T 2
]

=
−i

2
β2(iω)2A(z, ω)

=
i

2
β2ω

2A(z, ω) (3.19)

which has the formal solution

A(L, ω) = exp {
∫ L

0

[
i

2
β2ω

2]dz}A(0, ω) (3.20)

in which L and ω denote the link length and the low modulation frequency. Evaluating

the integral yields

A(L, ω) = exp (
i

2
Lβ2ω

2)A(0, ω) (3.21)

Thus the transmitted low-pass signal is A(0, ω), the received low-pass signal is A(L, ω),

and the low-pass response is exp ( i
2
Lβ2ω

2).

3.3 Linear Dispersion Precompensation

From 3.22, we have

Rl(f) = Hl(f)Sl(f) (3.22)
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where in our case Hl(f) is the optical fiber response, that distorts the signal. This distortion

can be removed by inverting the channel response, that is

Rl(f) = Hl(f)Hl(f)−1Sl(f)

= Sl(f) (3.23)

Equation 3.23 is fundamental relationship for the dispersion precompensation. Accord-

ingly, we will now examine first the manner in which the optical channel response can be

inverted and then the application of such a signal to a laser carrier.

3.3.1 Base-Band Filtering

From 3.21 we observe that the optical channel possesses an equivalent low-pass response

given by exp ( i
2
Lβ2ω

2), which is simply inverted as exp (−i
2

Lβ2ω
2). Accordingly, we need

only to construct a filter with this response. Besides dispersion precompensation, other

filters are normally applied to the optical signal to implement spectral shaping and receiver

transfer function precompensation. Cascading these filters with dispersion precompensa-

tion leads to

H(ω) = Htx(ω)Hl(f)−1

= Htx(ω) exp (
−i

2
Lβ2ω

2)

= Htx(ω) cos
Lβ2ω

2

2
− iHtx(ω) sin

Lβ2ω
2

2
= M(ω) + iN(ω) (3.24)

in which all filtering functions besides dispersion precompensation are collected into Htx(ω)

M(ω) = Htx(ω) cos
Lβ2ω

2

2

N(ω) = −Htx(ω) sin
Lβ2ω

2

2
(3.25)

Generally the input data signal is complex (for 2D modulation). Expressing the input

accordingly as Iin(t) + iQin(t) leads to
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Iout(t) + iQout(t) = h(t) ? [Iin(t) + iQin(t)] (3.26)

or in the frequency domain,

Iout(ω) + iQout(ω) = H(ω)[Iin(ω) + iQin(ω)]

= [M(ω) + iN(ω)][Iin(ω) + iQin(ω)]

= M(ω)Iin(ω)−N(ω)Qin(ω) + i[N(ω)Iin(ω) + M(ω)Qin(ω)]

(3.27)

Figure 3.2: Complex filtering of a 2D modulated signal in which four FIR filters produce

the complex output.

This transformation can be realized with four FIR filters as demonstrated in Fig. 3.2.

For the case of 1D modulation, Qin(t) = 0, and one branch in Fig. 3.2 suffices, as illustrated

in Fig. 3.3.
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Figure 3.3: FIR filter with 2N + 1 taps, T/2 spaced.
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3.3.2 Carrier Modulation

To employ the low-pass signal for carrier modulation and produce the desired transmission

signal, we obtain from 3.8, with sl(t) = Iout(t) + iQout(t),

s(t) = <{sl(t) exp (j2πfct)} = <{[Iout(t) + iQout(t)][cos 2πfct + i sin 2πfct]}
= Iout(t) cos 2πfct−Qout(t) sin 2πfct (3.28)

which can be realized with two Mach-Zehnder interferometers and a laser source together

with a π/2 phase delay arranged as in Fig. in Fig. 3.4.



32 Electronic Pre-Compensation of Intra-Channel Nonlinearities

Figure 3.4: 2D modulation of a monochromatic source. The laser output is split into two

branches, one of which leads the other by π/2. The two paths are combined each path is

modulated with its corresponding signal(Iout or Qout), yielding the result of Eq.3.28.



Chapter 4

NEXT GENERATION MODEMS

4.1 Introduction

In this chapter we analyze Nortel’s Next Generation Modulator (NGM) [25] [24]. The

modulator is an optical component that implements full dispersion compensation at the

transmitter. For this thesis, we have simulated, incorporated and characterized the appli-

cation of this component to the self-phase modulation compensation. Our design is guided

by both physical and commercial constraints, and hence the features of the compensator

within the context of a full transmission system will be examined carefully in this chapter.

We start with a general system-level description of the card, including a general theory

of operation.

4.2 NGM Layout

The next generation modulator consists of an ASIC called the Warp chip, two driver am-

plifiers, Mach-Zehnder modulators, and a laser source. A generic functional block diagram

of a NGM transmitter is provided in Figure4.1. The digital processing of the signal is per-

formed by the Warp chip, and the result is then converted to an analog signal in the DACs,

low pass filtered to restrict the signal to within an assigned bandwidth and then fed to the

driver amplifiers. The resulting voltages are then applied to the Mach-Zehnder modulator

33
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electrodes. The CW laser light is divided equally into two branches by a Y-junction, one of

which is phase shifted by π/2 to enable the required complex modulation of the previous

chapter3.3.2.

Figure 4.1: NGM block diagram. Blocks that are integrated into the Warp chip, are

inside the yellow box. Other connections are implemented through a motherboard bus

architecture. A microprocessor that performs DSP calculations is absent from the figure.

The Warp chip receives binary that is coded according to the specific requirements

of the communication system application. The encoded signal is then applied to an FIR

filter that additionally automatically upsamples the signal, as will be detailed later in

this section. The linearizing function provides a nonlinear lookup table that provides a

nonlinear mapping for the dual drive modulation in which one Mach-Zehnder modulator
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is employed in place of two. The peaking filter finally precompensates distortions from the

DAC’s and LPF’s.

The two main sources of noise present in the precompensator are quantization and

clipping noise. The output signal must be confined to certain limits, leading to clipping,

but compressing the signal to avoid this effect yields quantization noise. Thus the function

of process blocks one and two is to implement an optimal trade-off between these two

effects. In particular, we apply the adjustments for SPM compensation in the FIR filter

while the linearizer is responsible for signal clipping.

4.3 NGM Operation

The NGM possesses a further microprocessor block that together with accompanying feed-

back loops is responsible for allocating data to the programable digital processing blocks

inside the Warp chip in an optimum fashion. The microprocessor employs a stored pro-

gram/algorithm to calculate these optimum values based on the state of the feedback

signals. The particular feedback parameter, relevant to this study is the net dispersion

of the link. From 3.2.3, the desired precompensation formula is quadratic in frequency

and we therefore require a single feedback parameter. The NGM determines the value of

this parameter based on bit-error-rate information fed back from the receiver. The value

chosen is the value of the total dispersion that minimizes the bit error rate. The algorithm

is designed to find this minima with the least number of iterations.

4.4 Nonlinear Table

As stated earlier, while the laser carrier is normally modulated by two Mach-Zehnder

modulators each with single drive, these can be more inexpensively replaced by a dual

drive single Mach-Zehnder modulator. However, as will be explained below, this limits the

signal extent. Here, we quantify the extent of the signal by assigning each entry of the

signal to a point in the complex plane. This yields a scatter diagram, as in Fig. 4.2 which

shows a normalized complex base-band signal after dispersion precompensation filtering.

With two Mach-Zehnder modulators, the laser can be modulated with a signal located
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anywhere in the whole complex plane (cartesian modulation), while with a dual drive single

Mach-Zehnder (polar modulation) the extent of the signal is limited.
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Figure 4.2: A scatter diagram of a normalized complex base-band signal (after removing the

DC component). The x-axis represents the real, I, and the y-axis represents the imaginary,

Q, part.

For a dual drive Mach-Zehnder the output field is[23]

Eout =
Ein

2
(eiφ1 + eiφ2) (4.1)

Since the complex exponential is periodic, Eout is limited to a certain space in the complex

(IQ) plane. Thus, the nonlinear table is divided into two parts. The first is to provide a

nonlinear mapping between the complex Eout and the real values of φ1 & φ2 such that the
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output of the nonlinear table can be applied at the Mach-Zehnder modulators. Secondly,

the nonlinear table clips its input to within the limits of the accessible complex modulation

space. Further, any modulation near the origin of the complex plane will be vulnerable to

phase noise and will need large drive for the origin cross over and is therefore also clipped.
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Figure 4.3: Modulation area. Any point outside the ellipse is clipped to the corresponding

maximum amplitude.

A typical example of the accessible complex space is shown in Fig. 4.3. That is,

the nonlinear table function clips any input points outside this space, and then applies a

nonlinear transformation to produce φ1 & φ2.

4.1 is inverted according to appendix B, yielding

φ1 = θ + arccos A (4.2)

φ2 = θ − arccos A (4.3)
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where

Eout/Ein = A exp (iθ) (4.4)

We must determine the permissible limits between which the SPM compensator will

not clip the signal. These limits will be described using polar coordinates. The clipping

radius ρmax(θ) is plotted for a typical case in Fig. 4.3 with −π/2 < θ < π/2, (note that

the real part entering the nonlinear table is always positive). For every point in the signal

with a radius ρ =
√

I2 + Q2 > ρmax(θ), with θ = arctan Q/I, ρ is clipped to ρmax(θ).

4.5 Finite Impulse Response Filter

As mentioned in 3.3.1, precompensation can be applied through finite impulse response,

FIR, filters. In NGM and the current application we will employ 1D modulation, which

requires two instead of four filters. These two FIR filters and the NGM must accomplish

the following requirements:

1. Spectral shaping of the input bit sequence.

2. Precompensation of the receiver filter.

3. Dispersion precompensation.

4. Self-Phase modulation precompensation.

The NGM operates at 2 samples per bit which is the minimum rate satisfying the Nyquist

criterion. Since the binary data arrives at a sampling rate of one sample per bit, upsam-

pling is required. Accordingly, zeros are added between samples. Instead of applying this

upsampler together with a T/2 spaced filter, NGM applies the architecture illustrated in

Fig. 4.4 and Fig. 4.5. Here the input is split into two branches with a relative T/2 delay.

Each branch contains a T spaced filter after which the two branches are combined to yield

the equivalent effect (to standard T/2 spaced filter) without upsampling and with a delay

time T , leading to significant cost savings. One of the filters is termed an odd filter as

it produces the nT/2 samples with n odd, c.f. Fig.4.4, while the even filter produces the

nT/2 samples with n even, as in Fig.4.5.
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Figure 4.4: The original design is shown above, highlighting the unnecessary even taps for

the odd samples. The lower figure demonstrates that less costly equipment can produce

the same level of processing.
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Figure 4.5: As in the previous figure but for the even samples
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Figure 4.6: A block diagram of the odd/even FIR filter in the NGM. The zero count is

omitted for simplicity.



42 Electronic Pre-Compensation of Intra-Channel Nonlinearities

A schematic diagram of the actual FIR filter inside the NGM is shown in Fig. 4.6.

This FIR filter has 152 taps, corresponding to 76 taps for each one of the even/odd filters.

A Random Access Memory (RAM) which enables self-phase modulation (SPM) compen-

sation, is centered between the filter taps. The RAM replaces the center 12 taps, and

therefore possesses a memory size of 212 = 4096Bytes. Without SPM compensation, the

RAM cells are populated by a dot product of each address with the taps the RAM replaces,

which yields the same action as the taps it replaced. The actual application of the RAM

to SPM compensation will be the topic of the succeeding chapter.



Chapter 5

SELF-PHASE MODULATION

COMPENSATION IN NGM

5.1 Introduction

Self-phase modulation is a nonlinear distorting effect that limits the power level in optical

communication links. As a result, network designers must employ expensive low noise

equipment to ensure a reasonable optical signal to noise ratio at the receiver.

Unlike chromatic dispersion, SPM is a nonlinear process and cannot be inverted by

linear filtering. A lookup table that provides unconditioned compensation can however be

employed to compensate for SPM. Nortel’s NGM is equipped with such a lookup table and

can therefore compensate for SPM through EPD.

In this chapter we describe in detail the inclusion of SPM compensation in NGM. We

confine our analysis to single channel links, as WDM systems are examined in chapter 6.

5.2 Previous Work

In previous work, it was established that lookup table based SPM compensation can enable

a 2 ∼ 3 dB increase in launch power [25] in an NGM system compared with a non SPM

compensated system.

43
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In the following part we implement SPM compensation in NGM, propose an improved

algorithm and optimize it.

5.3 Nonlinear EPD in NGM

5.3.1 Nonlinear EPD Basic Concept

Electronic pre-distortion applies the inverse of the communication link response through

electronic filtering to eliminate link induced distortion so that

Y (f) = H−1(f)X(f) (5.1)

in which Y (f) is the output of the EPD filter, X(f) is the input, and H(f) is the link

response, all in the frequency domain. This equation is valid in the baseband domain as

described in chapter 3 for amplitude modulation transmission.

Since SPM is a nonlinear process both the link response and its inverse, are nonlinear.

Therefore Eq. 5.1 becomes

Y (f) = H−1(f,X)X(f) (5.2)

where H in this case is a function of X as well as frequency. Inverse Fourier transforming

yields

y(t) =

∫ ∞

−∞
h−1(t− τ, x)x(τ)dτ (5.3)

We limit our analysis to discrete time quantized signals with N samples per bit period,

T , and M quantization levels. Eq. 5.3 then becomes

y(nT/N) = Σm=∞
m=−∞h−1((n−m)T/N, x)x(mT/N) (5.4)

where n is the sample index. We subsequently ignore the factor T/N for convenience.

In practical communication links, the link response requires a finite time, so that we

can assume that h−1 is non-zero only between −K to K. That is, all values of h−1 except

the 2K (without the zero count) within this interval are ignored so that

y(n) = Σm=n+K
m=n−Kh−1(n−m,x)x(m) (5.5)
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Clearly, 5.5 implies that for a nonlinear EPD filter, with the functional form h−1(n, x),

the filter values must change according to the input signal. This can be accomplished by

a lookup table for which an input array, [x(n−K)...x(n + K)] is employed as an address

to generate the corresponding output, y(n), i.e.

y(n) = LUT ([x(n−K)...x(n + K)]) (5.6)

with

LUT ([x(n−K)...x(n + K)]) = Σm=n+K
m=n−Kh−1(n−m,x)x(m) (5.7)

The right hand side of this equation filters a data stream with the inverse of the link

response, which constitutes the fundamental equation for Nonlinear EPD. For a M level

quantization of x and 2K input values, the lookup table requires a maximum of M2K

elements. In general, to compensate for a nonlinear response of 2K/N bauds, a lookup

table of 2K inputs and M2K entries is necessary.

To evaluate the lookup table entries the inverse response of the given link must be

computed and substituted in Eq. 5.7. The link parameters are read into a microcomputer

that evaluates the inverse link response and thus the lookup table entries. Hence nonlinear

EPD requires

1. A lookup table.

2. Microprocessor.

3. a priori knowledge of necessary link parameters.

5.3.2 Nonlinear Optical Channel Response-Back Propagation

While that the right hand side Eq. 5.7 represents the vector x filtered with the inverse

of the full (nonlinear) optical link response, c.f. 5.5, the inverse of the nonlinear optical

link, h−1, cannot be evaluated in a closed form for SPM, since the differential propagation

equation that includes SPM, Eq. 2.49, is nonlinear and cannot in general be integrated

analytically. Accordingly, we employ the concept of optical phase conjugation (OPC).

In particular, when a beam of modulated light that passed through a link is phase

conjugated and then retraverses the same link, the distortion imparted by the forward
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propagation is removed by the reverse propagation (See appendix C). Thus a signal that

is propagated through a certain link and phase conjugated is equivalent to a signal that is

filtered with the inverse response of the link, which corresponds to the right hand side of

Eq. 5.7.

OPC, however, is only approximate in the presence of attenuation. We therefore modify

our formalism through a “back propagation” technique, which means that we solve the

propagation equation in reverse time, replacing γ, β2 and α with −γ, −β2 and −α. The

initial condition is then to the desired output envelope, x. The solution of 2.49 for these

conditions is detailed in appendix C.

5.3.3 Required Link Parameters

In long haul communications the link is divided into segments called spans, each of which

is preceded with an amplifier. We thus employ the split step fourier transform method

to evolve the pulse through a span, readjust its power and repeat this process for the

following span. The required input parameters for each link are then the group velocity

dispersion β2, loss α, γ in Eq. 2.43, the span lengths, ~L, and the optical output power

of the amplifiers, ~P . These application space parameters will be collectively represented

below by the vector ~S = [γ, β2, α, ~P , ~L].

5.3.4 NGM Capabilities

The EPD filter in NGM employs a binary input (M = 2) with a single sample per bit

(N = 1). Because of the binary input, a simple RAM can store the lookup table. NGM is

equipped with a RAM with a 12 bits input (2K = 12) that therefore can store 212 = 4096

entries. Thus this NGM can maximally compensate for nonlinear links with a response

that is spread over 12 bauds. The NGM also contains a microprocessor that stores link pa-

rameters and computes the required RAM entries. The algorithm for this will be discussed

in the following section.

The link parameters, ~S, required by the microprocessor to evaluate the inverse channel

response are however not always accurately measured at the transmitter side of the link.

Later in this chapter we accordingly propose an algorithm that reduces significantly the
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required quantity of a priori information. At first, however, we assume that the entire ~S

has been determined and that the link is uniform so that the parameters are identical for

all spans in the link. Since NGM can be treated as an instance of nonlinear EPD, we can

then employ NGM hardware to precompensate SPM.

5.3.5 NGM Limitations

The available RAM size in NGM limits the use of the SPM compensation to channels with

a response width of 12 bauds. For optical fiber links, the response width is dependent

on the total dispersion of the link, which is in turn directly proportional to the total link

length. For example consider G.625 fiber; for 80 km per span, and at a center wavelength

1.55 µm the total spread due to dispersion is 80 km ×17 ps/nm/km = 1360 ps/nm. For

10 Gb/sec transmission and therefore a ∼ 0.08 nm bandwidth, this spread will be ∼ 110

ps or ∼ 1.1 baud per span. The RAM size therefore limits the compensation reach to 10

spans in this case.

Besides the RAM size, the bandwidth of NGM and NGM clipping necessarily limit the

maximum compensation gain.

Other general limitations are:

• Bit patter dependance.

• DSP calculation power.

• Sensitivity to change of ~S.

We address the first two points in this chapter and the last point in the following

chapter.

5.4 SPM Precompensation Algorithm in NGM

5.4.1 EPD Filter Details

Fig. 5.1 shows the schematic diagram of the nonlinear EPD filter in NGM, divided into a

linear FIR filter with taps and a lookup table (that implements the nonlinear compensa-
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tion), which as previously noted accepts the binary data vector ~x and output y.

Figure 5.1: A block diagram of the odd/even FIR filter in the NGM. The RAM employed

a lookup table is shown together with x samples addressing the RAM.

The linear (chromatic dispersion) compensation is less expensive and complex to im-

plement than nonlinear compensation. Accordingly, we seek to combine a reasonably sized

RAM covering 12 bauds for high power medium range operation, with a reasonably size

FIR filter covering 76 bauds, enabling low power long range operation.

The center 12 taps of the linear FIR filter are replaced by the RAM yielding the output

y(n) = Σn−7
m=n−38h

e
F (n−m)x(m) + Re([x(n− 6)....x(n + 6)])

+Σn+38
m=n+7h

e
F (n−m)x(m) (5.8)

y(n + 1/2) = Σn−7
m=n−38h

o
F (n−m)x(m) + Ro([x(n− 6)....x(n + 6)])

+Σn+38
m=n+7h

o
F (n−m)x(m) (5.9)

(5.10)
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Here n = 1, 2, 3...., m 6= 0 and hF is the filter response in which the superscript indicates

the even/odd correspondence The RAM, R, has two functions as it implements the 12

center taps in the linear case, and nonlinear filtering in the nonlinear case. The linear

contribution is,

R
e/o
L (~xR(n)) = Σn+6

m=n−6h
e/o
F (n−m)x(m) (5.11)

where ~xR(n) = [x(n− 6)...x(n + 6)] is the RAM input vector.

The final RAM values are obtained by summing the linear and nonlinear contributions

Re/o = R
e/o
L + R

e/o
NL (5.12)

hF is the linear filtering that contains the linear inverse (dispersion contribution) of the

optical channel, c.f. chapter 3, as well as spectral shaping and receiver filter inversion.

hF (t) = F−1{H−1
Rx(f)H−1

L (f)HS(f)} (5.13)

he
F = hF (k) (5.14)

ho
F = hF (k + 1/2) (5.15)

in which k = −38,−37, ...,−1, 1, ..., 37, 38, H−1
Rx is the inverse of the receiver response,

H−1
L = exp (−i

2
Lβ2ω

2) represents the inverse of the optical channel and HS is the spectral

shaping function, often chosen to be a sinc function.

H−1
Rx and HS are provisioned. NGM scans the unknown parameter D = β2L to find its

optimum value Dopt and then employs it to evaluate H−1
L .

5.4.2 Nonlinear RAM Evaluation

In the previous sections we have explained the manner in which the RAM and filter tap val-

ues are populated for linear operation. We now implement a nonlinear SPM compensating

filter. We first rewrite Eqs. 5.8 and 5.9 in the form

y(n) = ỹ(n) + Re
NL(~xR(n)) (5.16)

y(n + 1/2) = ỹ(n + 1/2) + Ro
NL(~xR(n)) (5.17)
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where

ỹ(n) = Σn−7
m=n−38h

e
F (n−m)x(m) + Re

L(~xR(n))

+Σn+38
m=n+7h

e
F (n−m)x(m) (5.18)

ỹ(n + 1/2) = Σn−7
m=n−38h

o
F (n−m)x(m) + Ro

L(~xR(n))

+Σn+38
m=n+7h

o
F (n−m)x(m) (5.19)

These equations describe the relation between the NGM EPD filter output y(n) and

the input x(n). We will employ this relation to evaluate the nonlinear RAM entries in a

numerical program. We accordingly rearrange Eqs. 5.16 and 5.17 as

Re
NL(~xR(n)) = y(n)− ỹ(n) (5.20)

Ro
NL(~xR(n)) = y(n + 1/2)− ỹ(n + 1/2) (5.21)

Since to every possible value of the input vector ~xR we can associate a corresponding

entry address, we can view the unknowns as the RAM entries that must be obtained from

~xR, ~y and ~̃y, where the last two vectors are functions of the components of ~xR. The RAM

then possess a minimum of 212 = 4096 entries, so this calculation must be performed at

least 4096 times. This can be done in a single computation by constructing an artificial

input array ~xA, evaluating the associated vectors ~y and ~̃y and finally substituting these

values into 5.20 and 5.21 for each entry. Clearly for ~xA to possess at least 4096 entries, all

4096 RAM entries must be populated. Further, ~xA must yield a minimum of 4096 different

combinations of the ~xR that span all possible 12 (the length of ~xR) bit values. This can

be done with e.g. a maximal length pseudo random bit sequence generator of order 12.

(PRBS, see appendix A)

To evaluate ~̃y we substitute ~xA into Eqs. 5.18 and 5.19 after determining R
e/o
L and hF

from the value of Dopt. Further, ~y is calculated from ~xA and ~S through back propagation as

described before. Back propagation does not directly yield the data vector ~xA as spectral

shaping and receiver filter inversion must first be applied to the input signal ~xA. We term

the resulting signal ~yo, with

yo(n) = Σn+33
m=n−33h

o−e
F (n−m)xA(m) (5.22)

yo(n + 1/2) = Σn+33
m=n−33h

o−o
F (n−m)xA(m) (5.23)
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for n = 1, 2, ...212 and k = −33,−32, ..., 31, 32 and

ho
F (t) = F−1{H−1

Rx(f)HS(f)} (5.24)

ho−e
F = ho

F (k) (5.25)

ho−o
F = ho

F (k + 1/2) (5.26)

Signal conditioning is further applied before and after back propagation to enhance the

performance as will be described shortly.

Finally, we substitute ~y, ~̃y, n and ~xA in Eqs. 5.20 and 5.21 and to obtain the desired

nonlinear RAM that compensates for the optical link characterized by ~S. Since n =

1, 2, 3....212, the address [x(n− 38)....x(n + 38)] at the input of the EPD filter can refer to

indexes of x that are either negative or larger than 212. In these cases we act as if x is

periodically extended such that e.g. x(1+212) = x(1). Fig. 5.2 summarizes this procedure

and the SPM compensation algorithm.

5.4.3 Algorithm Modification

Increasing PRBS order

We now consider Fig. 5.2, which relates to a 215 maximum length sequence with 215−12 = 8

instances of each ~xR. Each instance is extended differently outside the 12 bit window.

Ideally if two pulse streams share the same 12 bit address, they will map to same value

of a corresponding value of ~y − ~̃y. In practice, however, if the response exceeds 12 bits,

two streams with the same 12 bit address will yield different values for ~y− ~̃y if the address

occurs with different neighboring pulse sequences. Substituting the new values of ~xA, ~y,

and ~̃y in Eqs. 5.20 and 5.21 therefore yields a cluster of 8 values for each address. We

employ the arithmetic mean of these values as the nonlinear contribution of the address in

order to reduce the bit pattern dependence and simultaneously the overall penalty.

Clipping Reduction

As mentioned in chapter 4, due to the finite dynamic range of analog to digital samplers,

our signal is confined to a portion of the complex plane. In the absence of SPM com-

pensation, the data is optimally centered within the complex plane by determining the
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Figure 5.2: Algorithm for populating EPD filter with linear and nonlinear corrections.
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best compromise between clipping and quantization noise. After SPM compensation, this

optimization is however largely removed due to the phase rotation bias of the modulated

field waveform associated with SPM.

The nonlinear table is designed to optimize the performance of NGM which employs

differential drive modulation. It centers and scales the signal in the IQ plane in order

to minimize clipping of the optical electric field. This optimization is generic for linear

dispersion compensation and is nearly unchanged over a wide range of dispersion values.

SPM precompensation introduces a phase rotation of the signal in the IQ plane since SPM

is an intensity dependent phase term, leading to additional clipping in the nonlinear table.

If the signal is rotated in IQ plane, however, the clipping can be minimized, preserving

the signal fidelity without affecting the phase-insensitive square law detector. The chosen

rotation angle is the RMS of the sample’s rotation and, as we will find presently, equals the

αc parameter of section 5.6. Fig. 5.3 displays a non SPM compensated signal before and

after correction from the nonlinear table in the complex plane for an 8× 87km G.625 fiber

system and 3dBm launch power. Note that the blue circles are the signal values before

nonlinear table is applied and red x’s are after. Fig. 5.4 is the same as 5.3 but with SPM

compensation included in the FIR filter before the prerotation. Finally Fig. 5.5 is the

same as 5.4 but with the prerotation included.

Aliasing Noise

While we sample at 2 SPB in constructing the RAM values, SPM yields a frequency

spread and therefore constitutes a potential source of aliasing noise in numerical back

propagation. While the test signal is often upsampled to a higher SPB before optical phase

conjugation and then filtered to remove the signal components beyond the bandwidth and

downsampled back to 2 SPB, we have found that for the relevant power levels, this aliasing

noise is negligible. Therefore, we can significantly reduce the DSP power by performing

the numerical processing at 2 SPB.

Figs. 5.6, 5.7, and 5.8 illustrate these considerations by displaying the performance

with and without aliasing noise. The performance difference is less than 0.05 dB.
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Figure 5.3: Signal scatter diagram before (blue circles) and after (red cross) the nonlinear

lookup table is applied for a system with 8 87 km spans, and a 3 dBm launch power in the

absence of SPM compensation.
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Figure 5.4: As in the previous figure but with SPM compensation in the absence of pre-

rotation.
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Figure 5.5: As in Fig. 5.3 with both SPM compensation and prerotation
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5.5 Application Space

To determine the compensation efficiency, we modified the software program employed

by Nortel for NGM system testing. This program simulates the card and the fiber link,

including all optical filters and receiver effects. The output of the simulation is the optical

signal to noise ratio, ROSNR, required for a given bit error rate, BER. The maximum

acceptable BER for the current level of forward error correction (FEC)is 3× 10−3.

We first tested our algorithm for ideal, medium reach systems. in which the fiber

parameters (G.652 fiber) are uniform throughout the link and the length of all spans is 87

km. The power level at the output of each amplifier is identical for all the amplifiers and

is adjusted for each calculation. For greater powers, the SPM distortion increases and we

therefore expect the ROSNR to grow with launch power, as is verified by a plot of ROSNR

versus launch power. The optimum launch power is the power at which the slope of this

curve is unity so that the marginal improvement in ROSNR delivered to the receiver is

equal to the marginal SPM impairment. The SPM compensation increases optimum launch

powers. Accordingly, we employ this derivative as a measure of the gain measure in units

of dB.

Figs. 5.6, 5.7, and 5.8 display the ROSNR in dB versus optical launch power in dBm

for 8, 6, and 4 span systems. From these figures, the gain is approximately 2 ∼ 3 dB while

the aliasing noise is within a 0.05 dB range, so that no upsampling is required. Finally, in

Fig. 5.9, we plot the ROSNR versus launch power for SPM compensated with and without

prerotation (see the previous section). This figure indicates that prerotation enhances the

ROSNR by more than 2 dB.

5.6 Reduction of Parameters of OPC

We now simplify the back propagation algorithm in order to reduce of the number of

required link parameters in ~S, to a single dimensionless parameter, αc. defined as

αc = γ ×
N∑

i=1

P (i)× Leff (i) (5.27)

with
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Figure 5.6: The required optical signal to noise ratio, ROSNR, for 10−3 bit error rate

transmission versus launch power for an eight 87 km span G.625 system and (a) no SPM

compensation, SPM compensation with (b) and without (c) removal of aliasing noise.
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Figure 5.7: As in the previous figure but for a six 87 km span G.625 system.
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Figure 5.8: As in Fig. 5.6 but for a four 87 km span G.625 system.
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Figure 5.9: As in Fig. 5.6 but for a six 87 km span G.625 system in the presence of SPM

compensation with and without prerotation.
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γ Nonlinearity parameter, see equation 2.43

Leff (i) Effective length [19] of span i

N Number of spans in the link

P (i) Average channel power launched into span i

The link is modeled as a single span that introduces a nonlinear phase αc, over one

split step (the number of steps can be increased in a tradeoff between accuracy and DSP

power). Defining

D̂ =
−i

2
×Dopt × ω2 (5.28)

Psig = 〈|~yo|2〉 =
1

T
×

∫

T

|~yo|2dt (5.29)

A =
~yo

√
Psig

× exp−iαc (5.30)

in which Dopt is the optimum dispersion, ω is the radial frequency and λ is the wavelength,

our algorithm then can be expressed as

B = F−1{exp
D̂

2
F{A}} (5.31)

C = F−1{exp D̂F{A}} (5.32)

N̂ = −i× αc × 1

4
× {|A|2 + 2× |B|2 + |C|2} (5.33)

~y =
√

Psig × F−1{exp
D̂

2
× F{exp N̂ ×B}} (5.34)

Here A is the normalized prerotated signal, B and C are the result of linear propagation

of A over a half and a full link distance respectively, that is they represent the normalized

prerotated signals at the beginning, middle, and the end of bulk material for exclusively

linear propagation. From A,B and C, we employ trapezoidal integration [17] to calculate

the average of the linear signal over the fiber. Weighting with αc yields the approximate
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nonlinear operator, where the approximation enters in that we have employed only linear

propagation to determine the variables that enter the nonlinear phase contribution. This is

valid in regimes where chromatic dispersion is the dominant process, as in our current study.

Finally the nonlinear operator is applied between the two dispersion steps, consistent with

operator symmetrization, and finally the resulting pulse is multiplied by channel power.

This algorithm is discussed further in appendix D.

In practice, two steps of this technique are generally sufficient, given the non-ideal

behavior of the NGM, such as its clipping and bandwidth limits, Figs. 5.10, 5.11, and

5.12 display ROSNR versus launch power for uncompensated, standard compensated and

compensated with αc, in 8, 6 and 4 span G.625 systems.

In this case, we employ half the value of both Dopt and αc to calculate ~y, after which

the remainder of Dopt and αc is applied with ~y as the new input variable, ~yo. This method

leads to a decreased error and provides additional freedom associated with the division of

Dopt and αc between the two steps, as will be discussed in the following chapter. Each αc

step requires 3 fast Fourier transforms (FFT) and 3 inverse FFTs, which is 20 fewer DSP

operations compared to our previous algorithm.

In Fig. 5.13 we display the ROSNR for uncompensated SPM as a function of the αc of

the link, for 4, 6, and 8 span systems. The ROSNR here reflects the SPM-induced nonlinear

penalty. Since three systems yield similar graphs, αc can be considered a measure of the

system nonlinearity. This observation is further justified by Fig. 5.14, which graphs the

difference between Dopt − Dtotal between the optimally compensated dispersion obtained

with the NGM (some of the SPM penalty can be compensated by dispersion) and the

total channel chromatic dispersion versus αc for different systems. From 5.14 we again

conclude that the dispersion mismatch can be accurately quantified by the value of the αc

parameter.
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Figure 5.10: As in Fig. 5.6 but for an eight 87 km span G.625 system for (a) no SPM

compensation, (b) standard SPM compensation, and (c) a numerical 2 step αc compensator
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Figure 5.11: As in the previous figure but for a six 87 km span G.625 system.
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Figure 5.12: As in Fig. 5.10 but for a four 87 km span G.625 system.
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Figure 5.13: Required optical signal to noise ratio, ROSNR, for a 10−3 bit error rate

transmission versus αc for eight, six and four 87 km span G.625 system. The agreement

between the three graphs indicates that the SPM penalty here depends almost exclusively

on αc.



68 Electronic Pre-Compensation of Intra-Channel Nonlinearities

Figure 5.14: The SPM-induced dispersion mismatch versus αc for eight, six and four 87

km span G.625 system. Again the three curves nearly coincide indicating again that the

SPM penalty again depends primarily on αc in this domain.



Chapter 6

SPM COMPENSATION

SENSITIVITY ANALYSIS

6.1 Introduction

In this chapter, a sensitivity analysis is applied to determine the stability of our mathe-

matical model to changes in its input parameters. This model of the multichannel (WDM)

communication link, includes all practical uncertainties present in real life fiber links and

incorporates link nonuniformities by tracking the optical output power of each amplifier

in the link and the length of each fiber span. Monte Carlo sampling is applied to gener-

ate different realizations of the model variables that are consistent with their underlying

probability density functions. The probability density function of the model output vari-

able is then calculated by evaluating the result of the model for each given realization and

arranging these in a histogram.

In our procedure, the power and length of each span fluctuates around mean values

Po and Lo so that the distribution of performances is dependent on the distribution of

these values. This represents a departure from the behavior of the uniform model that

employs the same parameters Po and Lo for all links. The output of an experiment in the

new model is a probability density function of the ROSNR rather than a single value in

the uniform case. Accordingly, we quantify the quality of the compensation by comparing

the statistical properties (namely the mean, standard deviation and the performance value

69
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at the 95% cumulative probability of occurrence) of a compensated distribution with an

uncompensated one.

Finally, based on an analysis of the new link model, we modify the SPM compensation

algorithm that was optimized for uniform ideal links, and optimize it for the new, more

realistic model. We also investigate the utility of employing a feedback loop to enhance

performance. Conclusions based on a comparison of the different algorithms are finally

given.

6.2 Link Model

Any fiber optic link is characterized by the optical launch power, total length and fiber type.

The actual value of each parameter deviates from the design value for practical reasons so

that in WDM communication systems, the launch power is non-uniform, principally as a

result of spectral ripple in optical amplifiers, polarization dependent loss (PDL) and the

control error of the optical amplifiers. The length of each fiber span can also deviate from

the design value depending on the terrain traversed by the communication link, forcing

designers to use different spacing between spans. Further, even if the same type of fiber is

employed in every span, the fiber parameters fluctuate due to fabrication tolerances.

In this section we model the variations and uncertainties in the optical output power

of each amplifier in the link as well as the length of each span while those of other fiber

parameters are ignored.

6.2.1 Power Variation Model

Spectral Ripple

If the frequency response of the optical amplifiers were flat, all channels would experience an

identical gain. In practice, however, each channel experiences a different gain. For identical

amplifiers this gain nonuniformity is repeated at each span. At any given wavelength the

channel average power will either constantly increase or decrease with position along the

link. The magnitude of this change depends on the difference between the channel gain

and loss per span. We model this by assuming that each amplifier site provides a mean
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gain (in dB), which equals the loss per span, together with a variable gain δ that can have

any channel-dependent value and is between ±∆ where ∆ is the amplitude of the ripple

of the optical amplifier; that is,

Gamp = Lspan + δ (6.1)

where Lspan is the total loss of a span. Thus the gain of each amplifier lies within Lspan±∆.

The optical output power of each amplifier in the link is

P (1) = Pinitial (6.2)

P (2) = Pinitial − Lspan + Gamp (6.3)

P (n) = Pinitial + n{−Lspan + Gamp} (6.4)

in which Pinitial is the initial launch power and n is the span index. Therefore

P (n) = Pinitial + (n− 1)δ (6.5)

In a typical link, channels that will constantly increase in power (δ > 0) are initially

launched with low power and vice versa. This forms the basis of a power equalization

which is used commercially to equalize system performance across channels of optical

communication links. Here Pinitial is chosen to minimize the maximum allowable difference

between different channels powers, i.e.

Pinitial = Po − δ

2
(N − 1) (6.6)

The mean output power of the channels, Po, is the power design parameter and is set

by system designers. This equalization decreases the maximum difference in power from

∆× (n− 1) to half of this value. Substituting Eq.6.6in Eq.6.5, we have

P (n) = Po +
δ

2
(2n−N − 1) (6.7)

Fig. 6.1 displays numerical results for the extreme cases of power evolution in the link

with and without equalization, where Po = 3 dBm for 8 span system with δ = ±1. The

maximum difference without equalization is 14 dBm, while this value is reduced to 7 dBm

with equalization.
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Figure 6.1: Power evolution in an equalized (red circles) and a nonequalized (blue crosses)

link.
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PDL

Since optical amplifiers should ideally compensate for the overall loss of fiber span, Lspan.

Thus any decrease or increase in the expected loss value will result in extra gain or loss

respectively. One such source of power fluctuation is polarization dependent loss (PDL),

which introduces an extra source of loss that is dependent on the polarization of each

channel. The PDL induced in each span results from the combined effect of several PDL

elements (the amplifier and the optical fiber connectors). Each element has a Jones matrix

of the following form after diagonalization(
1 0

0 a

)
(6.8)

Here a(< 1) represents the maximum loss and is the PDL magnitude of the element. The

combined effect of the PDL elements in each span will depend on the loss of each element,

a, and the orientation of each element with respect to the other elements. Thus, the final

magnitude, x, of the PDL can, in principal possess any value from zero up to a maximum

PDL value corresponding to perfect alignment of the PDL vectors of all elements. The

composite Jones matrix of the span is then after diagonalization

JPDL =

(
A 0

0 B

)
(6.9)

The PDL magnitude, x, is given by the ratio B/A. Mathematical models have been

developed to derive a probability distribution of x. From [13], we find that the distri-

bution in x, in decibels (X) for a large number of concatenated PDL elements follows

a Maxwellian distribution. We therefore assume that the PDL in each span, Xn, where

n is the span index, follows a Maxwellian distribution, even though the number of PDL

elements contributing to it is generally low. The Maxwellian distribution in this case

yields a higher probability of occurrence of large Xn values. However since we employ our

model in numerical sensitivity analysis in which the output variable must be reevaluated

numerous times, the ease of computation of the Maxwellian distribution compared to the

exact PDL distribution, is a decisive factor. That the exact distribution overweights large

PDL values implies that we slightly overestimate the effect of system fluctuations on SPM

compensation so that our results can be treated as an upper bound in this regard.
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We also assume that the optical amplifiers are designed to yield equal total output

power for all channels, and that the channel count is large. The constant total output

power forces the amplifiers to adjust their gain to account for average extra loss in all the

channels. But since the channel count is large and the amplifier control circuit is slow, the

additional gain gpdl
n equals the average of all loss values.

gpdl
n = 〈A

2
n + B2

n

2
〉 (6.10)

Thus the overall span Jones matrix becomes

Jpdl
n =

√
gpdl

n An

(
1 0

0 xn

)
(6.11)

From [15], Eq.6.11 yields

Jpdl
n =

√
10

−0.11µpdl
10 ×

√
1

xn

×
(

1 0

0 xn

)
(6.12)

In the above equation µpdl is the mean PDL magnitude in each span Xn. The empirical

relation relating gpdl
n and An to µpdl was employed to derive Eq.6.12.[15]

The two eigenvalues of this matrix in decibels are

λ1 =
Xn

2
− 0.11× µpdl (6.13)

and

λ2 = −Xn

2
− 0.11× µpdl (6.14)

Since the signal polarization can be any value between the two states Eq. 6.13 and Eq.

6.14 with equal probability, any extra gain/loss of a channel due to PDL at the nth span

can be represented by a random variable that is distributed uniformly between these two

eigenvalues so that

Gpdl
n = λ1rn + λ2(1− rn) = Xn(rn − 0.5)− 0.11× µpdl (6.15)

with rn a uniform random variable on [0, 1] This equation is then employed to modify the

old power values P o (Eq. 6.7) (the superscript indicates power values before the PDL
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correction), yielding

P (1) = P o(1) + X1(r1 − 0.5)− 0.11× µpdl (6.16)

P (2) = P o(2) + X1(r1 − 0.5) + X2(r2 − 0.5)− 2× 0.11× µpdl (6.17)

P (n) = P o(n)− n× 0.11× µpdl +
n∑

i=1

Xi(ri − 0.5) (6.18)

Optical Amplifier Control Error

The output of the amplifier control circuits deviates from their nominal output value as a

result of circuit variability. Consequently, the output is best modeled by adding a Gaussian

random variable with zero mean and a standard deviation σcontrol, to the power value at

each site.[20] The average power of any channel that is launched into the nth span, P (n)

is then

P (n) = Po +
δ

2
(2n−N − 1)−n× 0.11×µpdl +

n∑
i=1

Xi(ri− 0.5)+σcontrol×Nn(0, 1) (6.19)

in which Nn(0, 1) denotes a Gaussian random variable with zero mean and unity standard

deviation. Evidently, P (n) is a function of the provisioned average power Po, the amplifier

ripple amplitude ∆, the mean PDL per span µpdl and the standard deviation σcontrol of the

control error as well as on a number of Maxwellian (Xn), uniform(δ and rn), and Gaussian

random variables (Nn(0, 1)).

6.2.2 Span Length

The span length variation can also be modeled as a Gaussian random variable with σlength

standard deviation and a mean length per span Lo, which is the span length design para-

meter, so that so that

L(n) = Lo + σlength ×Nn(0, 1) (6.20)
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6.3 Sensitivity Analysis

We now employ sensitivity analysis to generate the system performance probability den-

sity function. We will compare SPM compensated with uncompensated systems and will

compute the sensitivity of the performance to errors in the precompensation parameter.

We further investigate if the our analysis of the gain of the SPM compensation in the

uniform links is valid for nonuniform links (recall that the gain in the nonuniform links is

the increase in the optimum launch power that is enabled by SPM compensation). The

gain in the uniform case will be found to constitute an upper bound to the gain in the

realistic, nonuniform, case. We will accordingly select the optimum uniform link parame-

ters (namely Po and Lo) to equal the mean of the nonuniform link parameters, and will

determine if the same gain is obtained by comparing the probability distributions of the

compensated and uncompensated system.

6.3.1 Methodology

The NGM system model inputs (i.e. design parameters) are the provisioned launch power,

Po, the provisioned fiber span length, Lo, the number of spans, N , and the compensation

parameters αc and Dopt. Other model parameters are the transmitter and receiver para-

meters (constant for all the tests and irrelevant to our purpose), the fiber parameters (γ,

β2, and α) and the uncertainty parameters (∆, µpdl, σcontrol, and σL). The model output

is defined as the optical signal to noise ratio required to achieve a transmission with a

bit error rate of 10−3. We will further use a single fiber type, G.625, in this study. Its

parameters are listed in table 6.1. The uncertainty parameters are measured by means of

onsite measurements, and are listed in table 6.2.

For N = 8 span systems with a provisioned span length of Lo = 87 km, we find

from Fig. 5.10 that the optimum launch powers for the uncompensated and compensated

uniform systems are 0 dBm and 3 dBm, respectively. Thus we employ Po = P l
o = 0 dBm

for the low power uncompensated simulation, and Po = P h
o = 3 dBm for the high power

compensated simulation. We employ a single value for the compensation parameter αc for

all realizations and all channels. We therefore term this quantity the global compensation
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parameter αg
c and propose the following definition

αg
c = γ ×N × Po × Loeff (6.21)

with

Loeff =
1− exp {−αLo}

α
(6.22)

By varying αg
c around this nominal value we will test the sensitivity of the performance to

computational error.

In our first test, we vary the optical output power of each optical amplifier in the link,

P (n), and the length of each fiber span, L(n) according to the model in Eqs. 6.19 and

6.20, which yield a N element array of power and lengths, ~P and ~L, for each realization.

For M realizations we therefore create a M × N matrix of power and length values. A

1024 bit array is then created and employed as the transmitter input. From the transmitter

model parameters together with αg
c , we compute the electric field output of the transmitter

ETx. This signal is propagated M times, where M = 1000 in this thesis, through the link

defined by the fiber parameter values and the power and length matrices. Subsequently,

this signal is processed by the receiver model with the assumed receiver parameters. By

also comparing the response of the receiver to the original bit pattern, we determine the

optical signal to noise ratio required for 10−3 bit error rate detection. For every realization

of the link a different ROSNR is obtained and recorded. The simulation thus generates

M values for the ROSNR. These values yield the ROSNR probability density function

once they are arranged in bins and the normalized number of occurrences in each bin is

computed. Note that if ~P and ~L are substituted in Eq. 5.27 the result does not necessarily

equal αg
c . This mismatch together with the nonuniformity of the link, unlike the uniform

link employed in numerical back propagation yields the observed residual SPM penalty.

If we restrict our realizations of ~P and ~L to those that yield the same value of αg
c , such

that

γ ×N × Po × Loeff = γ ×
N∑

i=1

P (i)× Leff (i) (6.23)

in the sensitivity analysis, the measured residual penalty arises solely from the nonunifor-

mity error alone, which we term the nonuniformity test.

The sensitivity analysis procedure can be summarized as follows:
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Parameter NGM system value Unit

β2 −2.1 ps2km−1

γ 1.2× 10−3 m−1W−1

α .2 dB/km

Table 6.1: The G.625 fiber parameters.

Parameter NGM system value Unit

∆ 0.8 dB

µpdl 0.36 dB

σcontrol 0.16 dB

σL 10 km

Table 6.2: The values of the constants in the current application space.

1. Select the values of Po, Lo, N and the fiber type.

2. Select the desired number of realizations M .

3. Employ the design parameters Po, Lo, and N along with uncertainty parameters to

create the M ×N matrices P (n) and L(n).

4. Select a value for αg
c .

5. For nonuniformity test, insure that the condition 6.23 applies.

6. Apply a test bit pattern to the transmitter model and create ETx

7. Employing the power and length matrices and the fiber parameters, propagate ETx

in the fiber link.

8. Employ the receiver model to calculate the ROSNR of each link realization.

9. Employ the M values of ROSNR to compute its probability density function.
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6.3.2 Sensitivity Analysis Results

Following the methodology of section 6.3.1, we now compute the probability density func-

tions of the compensated and uncompensated systems. The results are displayed in Fig.

6.2.
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Figure 6.2: The probability density function (in units of dB−1) of the ROSNR in the

absence and presence of compensation.

Evidently the residual SPM penalty contributes to the tail of the compensated distribu-

tion. The tail of the performance corresponds to the high penalty region, so that a rapidly

decaying probability density function at this region is a primary objective in communi-

cation system design. We must therefore modify the algorithm to ensure that the tails
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Standard 95%

Mean Mean Standard deviation 95% ROSNR

Sensitivity deviation Sensitivity ROSNR Sensitivity

Old 9.2 dB 0.03 dB 0.3 dB 0.02 dB 9.7 dB 0.06 dB

Compensation

No 9.0 dB — 0.2 dB — 9.4 dB —

Compensation

Uniform 9.0 dB — 0 dB — 9.0 dB —

Table 6.3: The statistical properties of compensated, uncompensated and uniform distrib-

utions for a 8 span system.

of the compensated and uncompensated distributions nearly coincide. That is, although

the statistical properties of the compensated and uncompensated distribution are nearly

identical (refer as well to table 6.3), the slow decay of the compensated distribution with

the ROSNR is undesired.

We repeated our sensitivity analysis for different αg
c equal to 0.7αg

c , 0.8αg
c , 0.9αg

c , αg
c ,

and 1.1αg
c . The mean and 95% ROSNR value are displayed in Fig. 6.3 as a function of αg

c

together with the standard deviation, labeled by the y-axis at the right end of the figure.

The x-axis at the top of the figure shows the αg
c value as a percentage of αg

c .

From this figure we can determine the sensitivity of the performance to the choice of αg
c .

Applying a second order fit to all the curves and defining the sensitivity of the performance

measure as the change in the performance value for a 10% change in the value of αg
c , we

obtain the results of table 6.3, which demonstrate that the algorithm is nearly insensitive

to changes in the value of αg
c .

6.3.3 Modified Compensation Algorithm

We now examine the decay in the residual SPM penalty for the compensated distribution

in Fig. 6.2. Since we established that our results are relatively insensitive to αg
c , the most

probable source of error would appear to be the nonuniformity of realistic links. To verify
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Figure 6.3: The mean, standard deviation and the 95% ROSNR value of the probability

density function of the ROSNR versus the global optimization parameter
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this, we rerun the sensitivity analysis while enforcing the condition 6.23, which removes the

mismatch error. The resulting probability density function of the performance is presented

shown in Fig. 6.4.
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Figure 6.4: Probability density function (in units of dB−1) of the nonuniformity penalty

in the presence and absence of compensation

We observe that the distribution has two separated features, a wide peak at high SPM

residual penalty associated with channels with a descending power trend (δ < 0) and a

further, narrow distribution from channels with an ascending profile (δ > 0). In other

words, the SPM penalty increases when the nonlinear phase (the chirp) experiences more

dispersion, so that if the launch power is higher in the earlier spans, the resulting nonlinear

phase is more dispersed than in the case that the high power occurs towards the end of



SPM COMPENSATION SENSITIVITY ANALYSIS 83

Mean Standard deviation 95% ROSNR

Old 9.24 dB 0.17 dB 9.65 dB

Compensation

Modified 9.32 dB 0.04 dB 9.42 dB

Compensation

Table 6.4: Statistical properties of old and modified compensation nonuniformity analysis

results.

the link, creating a higher penalty.

That the penalty of the descending channels is higher than the penalty of the other

channels suggests that the global remedy applied to all the channels should be adjusted

slightly to better compensate the higher penalty channels in order to enhance the overall

performance. Thus instead in place of an uniform link we modify the numerical back propa-

gation process to better compensate the descending power profile. For 2 step compensation

we therefore divide αc into two segments with relative magnitudes xr and 1−xr and divide

Dopt similarly into the two segments with relative lengths 1− xr and xr respectively with

xr = 0.4 in place of xr 6= 0.5. This is an empirical choice as the optimum value depends in

general on the uncertainty parameters. We then repeat the previous calculation and plot

the probability density function of both uncompensated and compensated cases in Fig.

6.5.

Here we find that the two features in Fig. 6.4 approach each other to form a single peak

as shown in Fig. 6.5. Even if the overall mean is slightly higher than the uncompensated

case, the narrowness of the distribution indicates a significantly reduced penalty associated

with the link nonuniformity, c.f. table 6.4.

6.3.4 Modified Compensation Sensitivity Analysis

After reducing the effect of link nonuniformity through the parameter xr we repeat our sen-

sitivity analysis with the modified algorithm. This yields the probability density functions

for the compensated and uncompensated distributions shown in Fig. 6.6.

The statistical properties of the original and the modified algorithms distributions are
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Figure 6.5: The probability density function (in units of dB−1) for a nonuniform penalty

and the modified SPM compensation algorithm in both the presence and absence of com-

pensation
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Figure 6.6: The probability density functions (in units of dB−1) of the ROSNR for uncom-

pensated system and a system compensated according to our modified algorithm
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Standard 95%

Mean Mean Standard deviation 95% ROSNR

Sensitivity deviation Sensitivity ROSNR Sensitivity

Old 9.2 dB 0.03 dB 0.3 dB 0.02 dB 9.7 dB 0.06 dB

Compensation

Modified 9.3 dB 0.04 dB 0.1 dB 0.02 dB 9.5 dB 0.08 dB

Compensation

Table 6.5: The variation of the statistical properties with αg
c , for both the unmodified and

modified compensation algorithms.

compared in table 6.5. From the 95% ROSNR values and a visual inspection of Fig. 6.6

we observe that the tail of the distribution has been suppressed so that the compensated

system decays at a similar rate to the uncompensated system, although at the cost of a

slight increase in the mean of the distribution.

We now determine the sensitivity of the new method to the choice of αg
c by employing

values of αg
c , from 0.7 to 1.1. This yields the values for the mean, standard deviation and

95% ROSNR value of Fig. 6.7.

The sensitivity is slightly degraded in the modified algorithm as shown in table 6.5;

however the loss of performance as a result of this effect is slight.

6.3.5 Optimized Modified Compensation

Closed loop control is a standard method for optimizing communication network perfor-

mance that is employed in the context of NGM to optimize the parameter Dopt. We could

accordingly optimize αc by different feedback-determined αc value for each channel instead

of a single global value. Since we have previously noted that the performance is relatively

insensitive to αg
c , however we expect that the dependence on such a feedback parameter

would be small.

In this section we therefore examine an alternative method for channel optimization.

We will optimize xr for each channel in place of applying one global ratio to all the channels.

In particular, we employ xr = .4 for descending channels and xr = .5 for ascending ones.
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Figure 6.7: The mean, standard deviation and 95% ROSNR value of the probability density

function as a function of the global optimization parameter for the modified compensation

method
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The quantity xr can be more easily optimized than αc as it has only two values and can

even be provisioned.

Applying our sensitivity analysis to the optimized modified compensation algorithm we

obtain the results of Fig. 6.8
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Figure 6.8: Probability density function (in units of dB−1) of ROSNR for both an uncom-

pensated system and a system compensated with optimized xr values, displayed with a

linear scale

Graphed in a logarithmic scale, c.f. Fig. 6.9 we observe that the tails of the probability

distribution functions of the uncompensated and xr compensated distributions are nearly

identical.

The statistical properties of the compensated distribution are listed in table 6.6 together
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Figure 6.9: As in the previous figure but with a logarithmic scale
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Standard 95%

Mean Mean Standard deviation 95% ROSNR

Sensitivity deviation Sensitivity ROSNR Sensitivity

Old 9.2 dB 0.03 dB 0.3 dB 0.02 dB 9.7 dB 0.06 dB

Compensation

Modified 9.3 dB 0.04 dB 0.1 dB 0.02 dB 9.5 dB 0.08 dB

Compensation

Optimized xr 9.1 dB 0.03 dB 0.2 dB 0.01 dB 9.4 dB 0.05 dB

No 9.0 dB — 0.2 dB — 9.4 dB —

Compensation

Uniform 9.0 dB — 0 dB — 9.0 dB —

Table 6.6: A summary of SPM compensation performance for a 8 span system.

with the results of the other compensation algorithms and of the uncompensated case.

Evidently the statistical properties of the optimized modified algorithm agree to within

< ±0.1dB to those of the uncompensated distribution. Further, we observe from Fig. 6.10

and table 6.6 that the method is insensitive to the value of αg
c . Accordingly, a closed loop

is not necessary for SPM compensation.

6.4 4 Span Systems

The power and length variability of short-haul systems is less problematic than in their

long haul counterparts. While our first compensation algorithm yields a performance

very similar to the uncompensated case, we will associate P l
o = 3 dBm P h

o = 6 dBm

with “optimum” launch powers proceeding from Fig. 5.12. The resulting performance is

displayed in Figs. 6.11 and 6.12.

Clearly, the figures and the table 6.7 indicate that the two curves possess nearly identical

statistical properties. Additionally, Fig. 6.13 displays the mean, standard deviation and

the 95% ROSNR value of the probability density function as a function of αg
c . Again,

the performance measures vary very slowly with αg
c indicating that our initial, simple
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Figure 6.10: The mean, standard deviation and 95% ROSNR value of the probability

density function of ROSNR versus the value of the global optimization parameter for

optimized xr compensation.
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Figure 6.11: The probability density function (in units of dB−1) of the ROSNR in both

the absence and presence of compensation for a 4 span system in linear scale.
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Figure 6.12: As in the previous figure but plotted on a logarithmic scale.
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compensation algorithm is sufficient for short haul systems.
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Figure 6.13: The mean, standard deviation and the 95% ROSNR value of probability

density function of ROSNR versus the global optimization parameter



SPM COMPENSATION SENSITIVITY ANALYSIS 95

Standard 95%

Mean Mean Standard deviation 95% ROSNR

Sensitivity deviation Sensitivity ROSNR Sensitivity

Old 8.7 dB 0.04 dB 0.1 dB 0.02 dB 8.9 dB 0.07 dB

Compensation

No 8.7 dB — 0.1 dB — 8.9 dB —

Compensation

Uniform 8.7 dB — 0 dB — 8.7 dB —

Table 6.7: A summary of SPM compensation performance for a 4 span system.

6.5 Conclusions

We have developed methods for SPM compensation that yield a 3 dBm increase in launch

power for 8 and 4 span systems in the presence of realistic power and length variations

in the link. A similar gain is recorded for systems with uniform links, indicating that our

compensation procedures are stable against power and span length fluctuations. We have

also found that the performance varies by < .1 dB for a 10% change in the global compen-

sation parameter. Further, the use of feedback to optimize the compensation parameter αc

appears unnecessary since optimizing xr for each channel only yields an increase in perfor-

mance that of < 0.1 dB compared to the low power performance. Here the optimization of

xr can be provisioned (unlike αc and Dopt) by assigning to it one of two values depending

on whether the channel initial launch power is higher or lower than average launch power.



Appendix A

Pseudo Random Bit Sequence

A Pseudo Random Bit Sequence, PRBS, as the name implies, is a sequence of bits that

is close to being a true random sequence. A typical example for an order 9 modulo 2

polynomial is [17]

x9 + x4 + x0 (A.1)

Here the + operation represents modulo 2 addition and the value of the bit i is the result

of applying its 9 preceding bits (i− 1, i− 2, .., i− 9) to the polynomial. In order to obtain

the i+1 number in the sequence, we shift the input address by a single bit (i, i−1, .., i−8)

and recalculate from the polynomial and so on.

Repeating this process starting from any initial set of bits (except the zero bit sequence)

yields a sequence of bits that repeats after 2N−1 bits but contains all possible combinations

of N bits. Thus each polynomial of degree N yields a 2N − 1 pseudo random bit sequence

which contains all possible sequences of N bits in an effectively random order.

In this thesis a maximal length PRBS sequence of order 15 is employed generated from

the polynomial

x15 + x14 + x13 + x11 (A.2)
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Appendix B

Dual Drive Mach-Zehnder

In this appendix, we derive the relation between nonlinear table output and input. From

4.1,

Eout =
Ein

2
(ejφ1 + ejφ2)

in which

Eout/Ein = Aejθ

and

Aejθ =
1

2
(ejφ1 + ejφ2) (B.1)

Taking the amplitude of both sides,

2A =
√

(sin φ1 + sin φ2)2 + (cos φ1 + cos φ2)2

=
√

2 + 2(sin φ1 sin φ2 + cos φ1 cos φ2)

=
√

2(1 + cos φ1 − φ2)

or alternatively

2A =

√
4 cos2

φ1 − φ2

2

= 2 cos
φ1 − φ2

2

Thus

φ1 − φ2 = 2 arccos A (B.2)
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Taking the phase of both sides of B.1 now yields

θ = arctan
sin φ1 + sin φ2

cos φ1 + cos φ2

or equivalently

θ = arctan
2 sin φ1+φ2

2
cos φ1−φ2

2

2 cos φ1+φ2

2
cos φ1−φ2

2

= arctan tan
φ1 + φ2

2

Since

φ1 + φ2 = 2θ (B.3)

we finally obtain after combining B.2 & B.3

φ1 = θ + arccos A (B.4)

φ2 = θ − arccos A (B.5)



Appendix C

Back Propagation/Optical Phase

Conjugation

Optical phase conjugation, OPC, can be employed to remove distortion resulting from

propagation through any medium, as was demonstrated by Yariv for perfect reconstruction

of pictorial information propagated through a multimode fiber in [26], and of signals sent

through atmosphere layers in [27]. In particular, if a signal is transmitted through a

medium and is subsequently phase conjugated and retransmitted through the same media,

the signal is restored to its original shape.

Phase conjugation was typically implemented by nonlinear three and four wave mixing

together with appropriate filtering.[28] Such a procedure was also found to compensate

both dispersion [29] and nonlinear distortion [16], including both dispersion and self-phase

modulation.[6] To see this, we represent the scalar electric field EF (r, t) as[27]

EF (r, t) = <{ψ(r) exp i(ωt− kz)} (C.1)

in which the subscript indicates forward propagation.

Placing this into the scalar wave equation

∇2E + ω2µε(r)E = 0 (C.2)

we obtain

∇2ψ + [ω2µε(r)− k2]ψ − 2ik
∂ψ

∂z
= 0 (C.3)
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or, complex conjugating,

∇2ψ∗ + [ω2µε(r)− k2]ψ∗ + 2ik
∂ψ∗

∂z
= 0 (C.4)

which is identical to the wave equation of a back propagating field of the form,

EB(r, t) = <{ψ∗(r) exp i(ωt + kz)} (C.5)

A further implication of this result is that the initial signal ψ(x, y, 0) that will generate

a desired signal at the end of the link given by ψ(x, y, L) can be obtained by complex

conjugating the desired signal and employ this as the boundary condition of Eq. C.4.

Then, solving this wave equation for the appropriate link parameters yields the desired

signal ψ(x, y, 0). This process can be performed numerically with DSP techniques instead

of physically, as previously suggested, which avoids the obvious problems associated with

conjugating the signal.

If losses are present, the propagation constant, k, is complex and the above derivation

fails. As a result, the OPC procedure becomes less accurate. However, this limitation can

be removed by back propagation. This corresponds to OPC in which however attenuation

during propagation is replaced by amplification. Thus for forward propagation we obtain

from 2.64

A(z + h, T ) = exp (−αh

2
)F−1{exp { i

2
hβ2ω

2}F{exp (ihγ|A(z, T )|2)A(z, T )}} (C.6)

which is can be inverted to

A(z, T ) = exp (−ihγ|Ã(z + h, T )|2)Ã(z + h, T ) (C.7)

with

Ã(z + h, T ) = F−1{exp {−i

2
hβ2ω

2}F{exp (
αh

2
)A(z + h, T )}} (C.8)

That is, we again start with A(0, T ) and employ C.6 to determine the envelop after a

certain length, A(L, T ). We then proceed to apply C.6 to this value to recover A(0, T ).

Accordingly back propagation is time reversed propagation employing the negative of the

parameters α, β2, and γ. In this manner, we recover A(0, T ), which is the desired signal

multiplied by the inverse response of the link.



Appendix D

Parameter Reduction

D.1 Single Parameter Approximation

To derive the αc approximation in which the parameter set of the fiber is replaced by a

single parameter, we first rewrite Eq. 2.53 as

A(z, T ) = exp {
∫ z

0

(D̂(T ) + N̂(ζ, T ))dζ} × A(0, T ) (D.1)

Further, for back propagation in the absence of loss

D̂(T ) =
i

2
β2

∂2

∂T 2
(D.2)

N̂(z, T ) = −iγ|A(z, T )|2 (D.3)

constitutes the formal solution of the wave equation. If the exponent is approximated

by a symmetrical product of individual exponents as suggested by the second-order BCH

formula. That is,

A(z, T ) = exp {D̂(T )
z

2
}{exp {

∫ z

0

N̂(ζ, T )dζ}{exp {D̂(T )
z

2
}A(0, T )}} (D.4)

We will now approximate the integral in the second operator by noting that the SPM

penalty, is far smaller than the dispersion, c.f. chapter 5. Assuming as well that the pulse
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envelope evolves linearly with propagation distance and incorporating the parameters for

our G.625 non dispersion-managed fiber, we find that a 3 point trapezoidal formula is

sufficiently accurate for our further results.[17] The integration is performed over the whole

link in which we have ignored losses and replaced each span with its effective length, Leff ,

instead of its total length, so that the total effective fiber length is NLeff , i.e.

∫ z

0

N̂(ζ, T )dζ = −iγ

∫ z

0

|A(ζ, T )|2dζ (D.5)

∫ z

0

N̂(ζ, T )dζ = −iγ(
NLeff

4
)(|A(0, T )|2 + 2|A(

z

2
, T )|2 + |A(z, T )|2) (D.6)

Normalizing the envelope yields Eq. 5.33 with

αc = γ ×N × P × Leff (D.7)

or for a general link,

αc = γ ×
N∑

i=1

P (i)× Leff (i) (D.8)

That is, in our present method, we approximate the influence of both loss and dispersion

instead of solely loss on the field appearing in the integral expression in the central operator.

This will lead to a large increase in computational accuracy per step. That only three

operators are required in our subsequent computations can be understood from the fact

that below a somewhat smaller launch power, only one operator is required since dispersion

dominates.

D.2 Error Quantification

We now quantify the error associated with linearizing the nonlinear integral. We expand

the integral in Eq. D.4 in a Taylor series,

ANL(z, T ) = exp {D̂(T )
z

2
}{(1− iγ

∫ z

0

|A(ζ, T )|2dζ + ...){exp {D̂(T )
z

2
}A(0, T )}}

ANL(z, T ) ≈ (1− iγ

∫ z

0

|A(ζ, T )|2dζ + ...){exp {D̂(T )z}A(0, T )}

ANL(z, T ) = AL(z, T )− {iγ
∫ z

0

|A(ζ, T )|2dζ}AL(z, T ) + ... (D.9)
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Since the second term is associated with the leading error, we will examine its squared

magnitude relative to that of the of signal (note that the power of the linear and nonlinear

signals are identical).

Pe =
1

T

∫
|{iγ

∫ z

0

|A(ζ, T )|2dζ}|2|AL(z, T )|2dT (D.10)

or equivalently

Pe = γ2 1

T

∫
{
∫ z

0

|A(ζ1, T )|2dζ1}{
∫ z

0

|A(ζ2, T )|2dζ2}|AL(z, T )|2dT (D.11)

After interchanging the order of integration, and applying the following inequality, which

we have found to be true in numerous simulations,

1

T

∫
‖A(ζ1, T )|2|A(ζ2, T )|2|AL(z, T )|2dT < { 1

T

∫
‖A(ζ1, T )|2dT}{ 1

T

∫
‖A(ζ2, T )|2dT}

{ 1

T

∫
‖AL(z, T )|2dT}

where the right hand side is identical to P 3. This yields, with z = NLeff ,

Pe < γ2

∫ z

0

∫ z

0

P 3dζ1dζ2 = γ2N2L2
effP

3 (D.12)

or

Pe/P < α2
c (D.13)

Thus, the error is second order in αc. For the moderate system powers of interest to

this thesis, we have αc < 0.5, insuring the applicability of this method. The the error

can of course be further reduced by employing an increased number of steps. Further,

the error arising from the third error commutator neglected in this appendix is far smaller.

Accordingly, we will employ the result of this appendix as an upper bound for the expected

system performance. Results for this upper bound for a 8 span system and a single-step

algorithm are compared to the analytic upper bound in Fig. D.1.
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Figure D.1: Analytic upper bound compared to the results of the approximate three-

operator theory



Bibliography

[1] Govind P. Agrawal. Nonlinear Fiber Optics. Academic Press, 1989.

[2] Govind P. Agrawal. The Supercontinuum Laser Source, chapter 3. Springer, 1989.

[3] Govind P. Agrawal. Fiber-Optic Communication Systems. John Wiley, 1997.

[4] Partha P. Banerjee. Nonlinear Optics. Marcel Dekker, 2004.

[5] Erik Eriksen. Properties of higher-order commutator products and the baker-hausdorff

formula. Journal of Mathematical Physics, 9(5), May 1968.

[6] Robert A. Fisher, B. R. Suydam, and D. Yevick. Optical phase conjugation for time-

domain undoing of dispersive self-phase-modulation effects. Optics Letters, 8(12),

December 1983.

[7] J. A. Fleck, J. R. Morris, and M. D. Feit. Time-dependent propagation of high energy

laser beams through the atmosphere. Applied Physics, 10(2), June 1976.

[8] T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley. Self-

modulation, self-steeping, and spectral development of light in small-scale trapped

filaments. Phys. Rev., 177(1), 1969.

[9] John David Jackson. Classical Electrodynamics. John Wiley, 1998.

[10] Yuji Kodama and Akira Hasegawa. Nonlinear pulse propagation in a monomode

dielectric guide. IEEE Journal of Quantum Electronics, 23(5), 1987.

[11] S.G. Lipson, H. Lipson, and D.S. Tannhauser. Optical Physics. Cambridge, 1996.

105



106 Electronic Pre-Compensation of Intra-Channel Nonlinearities

[12] Doug McGhan, Charles Laperle, Alexander Savchenko, Chuandong Li, Gary Mak, and

Maurice O’sullivan. 5120-km rz-dpsk transmission over g.652 fiber at 10 gb/s without

optical dispersion compensation. IEEE Photonic Technology Letters, 18(2), January

2006.

[13] Antonio Mecozzi and Mark Shtaif. The statistics of polarization-dependent loss in

optical communication systems. IEEE Photonic Technology Letters, 14(3), March

2002.

[14] Philip M. Morse and Herman Feshbach. Methods of Theoretical Physics. McGraw-Hill,

1953.

[15] Maurice O’sullivan. Pdl penalty prescription. Technical report, Nortle Networks, 2003.

[16] David M. Pepper and Amon Yariv. Compensation for phase distortions in nonlinear

media by phase conjugation. Optics Letters, 5(2), February 1980.

[17] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes in Pascal. Cambridge, 1989.

[18] John G. Proakis. Digital Communications. McGraw-Hill, 2001.

[19] Rajiv Ramaswami and Kumar N. Sivarajan. Opticla Networks, A Practical Perspec-

tive. Morgan Kaufmann, 2002.

[20] K. F. Riley, M. P. Hobson, and Bence S. J. Mathematical Methods. Cambridge, 1998.

[21] Y. R. Shen. The Principles of Nonlinear Optics. John Wiley, 1984.

[22] Joseph T. Verdeyen. Laser Electronics. Prentice Hall, 1995.

[23] Sheldon Walklin and Jan Conradi. Effect of machzehnder modulator dc extinction

ratio on residual chirp-induced dispersion in 10-gb/s binary and am-psk duobinary

lightwave systems. IEEE Photonics Technology Letters, 9(10), October 1997.

[24] Kuang-Tsan Wu. Modulation formats for next-generation modulator. Technical re-

port, Nortel Networks, 2003.



Parameter Reduction 107

[25] Kuang-Tsan Wu. Investigation of spm compensation using warp. Technical report,

Nortel Networks, 2006.

[26] Amon Yariv. Three-dimensional pictorial transmission in optical fibers. Applied

Physics Letters, 28(2), January 1976.

[27] Amon Yariv. Compensation for atmospheric degradation of optical beam transmission

by nonlinear optical mixing. Optics Communications, 21(1), April 1977.

[28] Amon Yariv. Phase conjugate optics and real-time holography. IEEE Journal of

Quantum Electronics, 14(9), September 1978.

[29] Amon Yariv, Dan Fekete, and David Pepper. Compensation for channel dispersion by

nonlinear optical phase conjugation. Optics Letters, 4(2), February 1979.


