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Abstract

In this thesis, we examined some Dirichlet type problems of the form:

4u = 0 in Rn

u = f on ψ = 0,

and we were particularly interested in finding entire solutions when entire data was

prescribed. This is an extension of the work of D. Siegel, M. Mouratidis, and M.

Chamberland, who were interested in finding polynomial solutions when polynomial

data was prescribed. In the cases where they found that polynomial solutions always

existed for any polynomial data, we tried to show that entire solutions always existed

given any entire data. For half space problems we were successful, but when we com-

pared this to the heat equation, we found that we needed to impose restrictions on the

type of data allowed. For problems where data is prescribed on a pair of intersecting

lines in the plane, we found a surprising dependence between the existence of an entire

solution and the number theoretic properties of the angle between the lines. We were

able to show that for numbers α with ω1 finite according to Mahler’s classification of

transcendental numbers, there will always be an entire solution given entire data for

the angle 2απ between the lines. We were also able to construct an uncountable, dense

set of angles of measure 0, much in the spirit of Liouville’s number, for which there will

not always be an entire solution for all entire data. Finally, we investigated a problem

where data is given on the boundary of an infinite strip in the plane. We were unable

to settle this problem, but we were able to reduce it to other a priori more tractable

problems.
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Chapter 1

Introduction

1.1 Origins of the Problem

According to Whittaker and Watson in chapter 18 of [23], Laplace first introduced the

equation

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0

in a 1787 memoir on the motion of Saturn’s rings. This was republished later in [21],

Laplace’s five volume work on celestial mechanics, in which he showed that many of

the potential functions used in mathematical physics will always satisfy this equation.

Therefore, being able to find explicit solutions to this equation and to understand the

properties shared by all solutions would lead to advances in virtually all of the physical

sciences. This equation would also be the starting point for other areas of both pure

and applied mathematics such as potential theory and harmonic analysis.

It was not until later that a systematic study of solutions to Laplace’s equation

began. A stereotypical problem which was investigated was the Dirichlet problem. For

a region D with boundary ∂D, it was asked whether or not, for a given function f , we

1



CHAPTER 1. INTRODUCTION 2

could find a function u which satisfied:

4u = 0 in D

u = f on ∂D.

Some general results on the solvability of this system were found, such as existence

and uniqueness of the solution u for a bounded domain D with smooth boundary ∂D

and continuous boundary data f . For a discussion of the history and more modern

development of these types of problems, see [2], specifically section 1.3 and chapter 6.

Perhaps the first and most detailed account of solutions to Laplace’s equation was

the 1879 work [20], which is of particular interest to us. Here, the preliminary section

on kinematics deals with the spherical harmonics, given in spherical coordinates by:

rnPm
n (cosφ) cosnθ and rnPm

n (cosφ) sinnθ.

Using the surprising fact that these are in fact polynomials in the usual Cartesian

coordinates x, y, and z, the tools are developed to show that if S denotes the unit ball

in three dimensions, then the boundary value problem

4u = 0 in S

u = f on ∂S

will always possess a polynomial solution for any polynomial data f , where the solution

u will have the same degree as the data f . Although this result is not stated explicitly

in [20], it was certainly well within the reach of the authors.

1.2 Extensions of Boundary Value Problems

The previous boundary value problem may also be written in this form:

4u = 0 for x2 + y2 + z2 < 1

u = f on x2 + y2 + z2 − 1 = 0.
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However, since we were interested in the existence of polynomial solutions, the restric-

tion on the domain was unnecessary. Therefore, the problem may be rephrased as:

4u = 0 in R3

u = f on x2 + y2 + z2 − 1 = 0.

This means that we are not dealing with a strict boundary value problem anymore.

We are rather taking a function defined on a certain set and asking whether or not we

can find a harmonic extension of this function to the entire space. With this in mind,

it is then possible to choose different ways to prescribe our data. It is convenient to

still refer to the set of points where we are prescribing data as the “boundary surface”,

although this will not always technically be a surface or the boundary of a connected

region. This is not a cause for concern, however, since we will be interested in solutions

defined on the whole space. For example, the problem we shall investigate in chapter

5 is:

4u = 0 in R2

u = f on y ±mx = 0.

Here, we shall still refer to the pair of lines y±mx = 0 as a boundary surface, although

they are, strictly speaking, just curves which do not divide the plane into an “inside”

and an “outside”. In general, our notion of a boundary surface will be the zero set of

some multivariate polynomial.

1.3 Polynomial Problem on Quadric Surfaces

In 1954, Brelot and Choquet were able to generalize the result for the polynomial

problem on the unit sphere to an arbitrary ellipsoid in n dimensions by proving the

remarkable fact that any polynomial divisor of a harmonic polynomial cannot have a
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constant sign. This result can be found as lemma 3 in [6], and its proof only makes use

of the orthogonality of spherical harmonics over the unit ball, using the standard L2

inner product.

The next step in the evolution of this problem was the beginning of the classification

of surfaces. We can write the boundary surface for Dirichlet’s problem in the form

ψ = 0, for some function ψ. For example, the sphere would be represented by ψ =

x2
1 + · · ·+ x2

n − 1. A surface represented by ψ would then be labelled as either “good”

or “bad” according to whether the problem:

4u = 0 in some domain

u = f on ψ = 0

would always possess a polynomial solution given any polynomial data f . Specifically,

a “good” surface would always possess such a polynomial solution, whereas a “bad”

surface would not.

This classification began in [9], where Siegel and Chamberland classified the quadric

curves in the plane. Perhaps the most interesting results were the cases of hyperbolas

and intersecting lines, given by

ψ =
x2

a2
− y2

b2
± 1 and ψ =

x2

a2
− y2

b2
,

respectively, for some choice of constants a and b. The determining factor as to whether

these surfaces were good or bad turned out to be the angle between the asymptotes of

the hyperbola and the angle between the intersecting lines. If these angles were rational

multiples of π, then the corresponding surface would be bad. Otherwise, the surface

would be good. In chapter 5, we will consider an extension to this problem which

requires even more number theory to settle, and which represents the most interesting

result from our work.

This classification of surfaces was continued in three dimensions in [16], where it
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was discovered that it was sometimes necessary for the polynomial solution u to have

a larger degree than the polynomial data f . More examples of this phenomenon were

found in [17], where the classification of quadric surfaces in three dimensions was nearly

completed. The obstruction to completing this work stemmed from the intricate argu-

ments involving the linear algebra of polynomial spaces, where determining whether a

surface was good or bad reduced to a question about the properties of roots of orthog-

onal polynomials. In particular, knowledge about whether two Legendre polynomials

can share any non-zero roots would be helpful, and this will be briefly explored in

chapter 7.

1.4 Extensions of the Polynomial Problem

A natural step to take is to ask the following question. Suppose we have a boundary

surface given by ψ = 0 in Rn, and suppose that the problem

4u = 0 in Rn

u = f on ψ = 0

always has a polynomial solution u for any polynomial data f . Is it then true that this

problem will always possess an entire solution u given any entire data f? Initially, one

might simply hope to be able to use the linearity of the problem to break the entire

data f into homogeneous polynomials, solve each of these problems, and then add the

corresponding solutions back together. In practice, however, it turns out to be very

difficult to show that these formal solutions actually converge. The only boundary

where this approach has been successful is the ellipsoid in n dimensions, which was

proved by Khavinson and Shapiro in [13]. The proof depended in an essential way on

the fact that the ellipsoid plus its interior is a compact set, and so for other boundaries

in which we may be interested, we will need to develop some new tools.
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Another extension to the polynomial problem is [5], where the authors looked at

prescribing rational data on curves in the plane to see when the solution would also be

a rational function. They proved that the disk was the only bounded domain with this

property.

There are also other algebraic approaches to the problem that may be taken. For

example, E. Fischer introduced an inner product on the space of polynomials under

which the operations of partial differentiation and multiplication by the indeterminates

are adjoint. An intuitive development of this inner product can be found in [18], and

it can be seen in use in the latter part of [13]. These methods lead to a quick proof

that the Dirichlet problem on the ellipsoid will always have a polynomial solution given

polynomial data, but they have the added advantage of being able to generalize to

differential operators other than the Laplacian.

1.5 Outline of Main Results

Our work will focus on the first extension to the polynomial problem mentioned above.

Suppose for a surface given by ψ = 0, the problem

4u = 0 in Rn

u = f on ψ = 0

always has a polynomial solution u given any polynomial data f . Then, we wish to

determine whether this problem will always possess an entire solution u given any entire

data f . The boundaries which we shall deal with will all be unbounded.

In chapter 3, we will start with a half space problem in n dimensions. We will

prescribe data on the boundary xn = 0 and see if this can be extended to an entire

harmonic function in all of Rn. Our strategy will be a direct approach, and we will

construct a formal series solution and try to demonstrate convergence. This problem
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was investigated in [12], where the Neumann problem was settled with some advanced

machinery. We have taken a more elementary approach and have solved the Dirichlet,

Neumann, and Cauchy problems in theorem 3.4.4, theorem 3.4.5, and theorem 3.4.6,

respectively. While the solution to the Neumann problem is not new, and the solutions

to the Dirichlet and Cauchy problems were well within the reach of these techniques as

well, we have fleshed out the elementary arguments alluded to in [12].

In chapter 4, we will provide a nice contrast to the results from chapter 3. It will

again be a half space problem, but this time in only two dimensions. We will also

be considering the heat equation rather than Laplace’s equation, as this will lead to

complications not found in the work in chapter 3. The new results from this chapter

are theorem 4.4.1 and theorem 4.4.2, which describe the polynomial problem and the

corresponding problem for entire functions.

Chapter 5 contains the most interesting results. We will look at the case of two

intersecting lines in the plane, where the angle between them is an irrational multiple

of π. The problem is known to always have a polynomial solution given any polynomial

data, but trying to extend this search to entire functions reveals a surprising dependence

on the number theoretic properties of the angle between the lines. In particular, the

positive results in proposition 5.5.2 and theorem 5.6.2 are new.

In chapter 6, we will investigate an infinite strip in two dimensions, but will un-

fortunately be unable to settle the problem for entire functions. The work is included

because it turned up many interesting questions and techniques.

Finally, chapter 7 will provide a summary of the open problems which this work

has created. While we were unable to solve these problems, there were some promising

ideas which may still prove useful.

Before getting to these results, we will first need to review some basic facts about

entire functions, and about entire harmonic functions in particular. This will be the
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focus of the next chapter.



Chapter 2

Entire Functions

We begin our search for entire solutions to Laplace’s equation by gathering some in-

formation regarding entire functions themselves. Starting with functions of a single

variable, we will move to functions of many variables, and record the results which we

shall need in later chapters. We will then gather some facts about entire harmonic

functions in particular.

2.1 Basic Properties

We will begin with functions of a single variable. For simplicity, all power series will be

given about the origin. Also, we will restrict ourselves to working with real variables

unless otherwise noted, although the definitions and properties of entire functions which

we shall need are the same whether we are working with real or complex variables.

If we have a function f which is analytic at the origin, we can write it as a power

series with a positive radius of convergence:

f(x) =
∞∑

n=0

fnx
n,

where the fn are constants. The function f will be called entire if, in fact, it has an

9
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infinite radius of convergence. This can be turned into a statement about the coefficients

fn by using Hadamard’s formula, for example, as found in [15]:

radius of convergence =

(
lim sup

n→∞
|fn|1/n

)−1

.

Therefore, f will be entire if and only if

lim sup
n→∞

|fn|1/n = 0.

This can be turned into a more convenient form for use in inequalities by the following

basic lemma.

Lemma 2.1.1 Let {an} be a sequence of real numbers for n ≥ 0. Then

lim sup
n→∞

|an|1/n = 0

if and only if for every R > 0, we can find a constant CR > 0 such that

|an| ≤
CR

Rn

for each n ≥ 0.

Proof: First, suppose that

lim sup
n→∞

|an|1/n = 0.

Pick any R > 0. Then, we can find an N > 0 such that for all n > N , we have:

|an|1/n ≤ 1

R
=⇒ |an| ≤

1

Rn
.

Next, we define

CR = max{R0|a0|, R1|a1|, . . . , RN |aN |, 1}.

Then, with this choice of CR, we see that

|an| ≤
CR

Rn
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for all n ≥ 0.

Next, suppose that for every R > 0, we can find a constant CR > 0 such that

|an| ≤
CR

Rn

for all n ≥ 0. Pick any R > 0. Then, by taking the nth root of the above inequality,

we get

|an|1/n ≤ (CR)1/n

R
.

Therefore:

lim sup
n→∞

|an|1/n ≤ lim sup
n→∞

(CR)1/n

R
=

1

R
.

However, since this will be true for any R > 0, we must have that

lim sup
n→∞

|an|1/n = 0.

�

Suppose that we have two entire functions, f and g. Writing each as a power series,

it is straightforward to show that the sum f + g and product fg will also be entire

functions. Also, in the proof found in [15] that the composition of analytic functions is

analytic, the estimates derived are also sufficient to show that the composition of entire

functions is entire. Finally, since convergent power series can be differentiated term by

term, we have the following formula for the kth derivative of an entire function. It can

be proved by repeatedly differentiating the series and re-indexing. If f(x) is given by:

f(x) =
∞∑

n=0

fnx
n,

then the kth derivative of f is given by:

f (k)(x) =
∞∑

n=0

(n+ 1)kfn+kx
n, (2.1)

where (n+ 1)k denotes the Pochhammer symbol, or rising factorial:

(n+ 1)k = (n+ 1)(n+ 2) · · · (n+ k).
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If k = 0, the empty product is assumed to have the value of 1.

Next, in order to look at entire functions of many variables, we will need to review

the very useful multi-index notation. A multi-index α in n dimensions is an ordered

n-tuple of non-negative integers:

α = (α1, α2, . . . , αn).

Addition and subtraction of multi-indices are performed componentwise. Scalar multi-

plication by non-negative integers is defined in the natural way:

cα = (cα1, cα2, . . . , cαn).

Next, if we let

x = (x1, x2, . . . , xn) ∈ Rn,

then we also have the following notational conveniences:

|α| = α1 + · · ·+ αn,

α! = (α1!)(α2!) · · · (αn!), and

xα = xα1
1 x

α2
2 · · ·xαn

n .

Also, for two multi-indices α and β, we will say that α ≥ β if and only if αi ≥ βi for

each 1 ≤ i ≤ n. Finally, if f is a function of n variables, then we can denote partial

derivatives as follows:

Dαf =
∂|α|f

∂xα1
1 ∂x

α2
2 · · · ∂xαn

n

.

Since we will always be dealing with entire functions, we are guaranteed that the order

of the derivatives is unimportant.

Suppose that f is an analytic function of n variables. Then, using this multi-index

notation, we can very compactly write down a power series about the origin:

f(x) =
∑

α

fαx
α,
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where we now have a sequence of coefficients indexed by multi-indices. As with func-

tions of a single variable, this function will be called entire if this series converges

everywhere. We also have similar bounds for the coefficients of entire functions of n

variables. The following proposition will establish these bounds by making use of the

fact that
(

n
k

)
≤ 2n for any positive integer n and any integer k such that 0 ≤ k ≤ n.

Proposition 2.1.2 Suppose we have a function f given by the following series:

f(x) =
∑

α

fαx
α.

Then f is entire if and only if for each R > 0, we can find a constant CR > 0 such

that:

|fα| ≤
CR

R|α|

for each multi-index α.

Proof: First, suppose that f is entire. In particular, for each R > 0, this means

that the above series will converge at the point xR = (R,R, . . . , R). Since the terms

of a convergent series must be bounded, let us denote this bound by CR. For each

multi-index α, we then have:

|fαx
α
R| = |fαR

α1Rα2 · · ·Rαn| ≤ CR =⇒ |fα| ≤
CR

R|α| .

Next, let us suppose that for each R > 0, we can find a constant CR > 0 such that

|fα| ≤
CR

R|α|

for each multi-index α. In particular, we can certainly find a constant C3R > 0 such

that

|fα| ≤
C3R

(3R)|α|
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for each multi-index α. For each x ∈ Rn such that |x| ≤ R, we then have the following

estimate:

∑
α

|fα||xα| ≤
∑

α

C3R

(3R)|α|
R|α|

= C3R

∑
α

1

3|α|
.

Finally, by lemma 3.7.3 in [7], there will be
(

n+k−1
k

)
multi-indices α over Rn such that

|α| = k, so we can finish our estimation as follows:

∑
α

|fα||xα| ≤ C3R

∑
α

1

3|α|

= C3R

∞∑
k=0

∑
|α|=k

1

3k

= C3R

∞∑
k=0

(
n+ k − 1

k

)
1

3k

≤ C3R2n−1

∞∑
k=0

(
2

3

)k

,

which is finite. Therefore, since this was true for all |x| ≤ R and R can be chosen as

large as we wish, the series:

f(x) =
∑

α

fαx
α

is absolutely convergent for all x ∈ Rn. Since absolute convergence implies convergence,

the series for f must converge for all x ∈ Rn, and so f is an entire function. �

Finally, as with entire functions of a single variable, entire functions of n variables

may be differentiated as many times as we please to yield other entire functions. If we

let

f(x) =
∑

α

fαx
α,

then by repeated differentiation and re-indexing, we get the following formula:

Dβf =
∑

α

(α+ 1)βfα+βx
α, (2.2)
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where we have used a multi-index shorthand for a product of Pochhammer symbols:

(α+ 1)β = (α1 + 1)β1(α2 + 1)β2 · · · (αn + 1)βn .

2.2 Entire Harmonic Functions

We will now focus our attention on entire harmonic functions, with a specific interest

in entire harmonic functions in the plane, or R2.

One standard way of generating harmonic functions in the plane is to take either

the real or imaginary part of a complex analytic function. In a sense, this is the only

way to generate them since a harmonic function in a simply connected planar domain

will be the real part of a complex analytic function in that domain. For a proof, see

theorem 1.1.3 in [2]. The following proposition shows us that this behaves as expected

with respect to entire functions.

Proposition 2.2.1 Let f(z) be an entire function of the complex variable z. Then, if

we let z = x+ iy and write the real and imaginary parts of f as

f(z) = v(x, y) + iw(x, y),

then both v and w are entire harmonic functions in the plane.

Proof: Since f is entire, we know that we can write:

f(z) =
∞∑

n=0

fnz
n,

where for each R > 0, we can find a constant C2R > 0 such that

|fn| ≤
C2R

(2R)n
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for all n ≥ 0. To get the real and imaginary parts, we substitute z = x+ iy and expand

using the Binomial Theorem:

f(x+ iy) =
∞∑

n=0

fn(x+ iy)n

=
∞∑

n=0

n∑
k=0

fn

(
n

k

)
xn−k(iy)k.

Therefore, the coefficients of v and w will be binomial coefficients multiplied by the

coefficients of f , and we can bound the coefficient of xn−kyk by:∣∣∣∣(nk
)
fn

∣∣∣∣ ≤ 2n|fn| ≤ 2n C2R

(2R)n
=
C2R

Rn
,

which is exactly the power of R we need since (n − k) + k = n. Since this is true for

all R > 0, this ensures that both v and w will be entire. That they are both harmonic

follows from the Cauchy-Riemann equations. �

Next, it is well known that if a harmonic function u in the plane is analytic at the

origin, then it has a local expansion in polar coordinates there:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) . (2.3)

Proofs of this statement can be found in books like [2] and [3]. However, we would

like to know more detailed information about the coefficients an and bn if we also know

that u is an entire harmonic function. With a little work, we will in fact be able to

show that these coefficient sequences satisfy similar bounds to the coefficient sequences

considered in the previous section.

First, we will suppose that u is entire and show that both an and bn can be bounded

in a very familiar way. We begin with a small lemma.

Lemma 2.2.2 Let α1 and α2 be non-negative integers with α1 + α2 = n. Then:

(cos θ)α1(sin θ)α2 =
n∑

i=0

ai cos iθ +
n∑

i=1

bi sin iθ,

for some real numbers ai and bi.
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Proof: We will proceed by induction on n. If n = 0, then α1 = α2 = 0 and the

statement is trivial. So, suppose that the statement is true for all α1 + α2 = n. Then,

if α1 + α2 = n+ 1, at least one of α1 or α2 will be greater than 0. First, suppose that

it is α1 which is greater than 0:

(cos θ)α1(sin θ)α2 = (cos θ)α1−1(sin θ)α2 cos θ =

(
n∑

i=0

ai cos iθ +
n∑

i=1

bi sin iθ

)
cos θ,

by the induction hypothesis. Then, we can continue:

(cos θ)α1(sin θ)α2 =
n∑

i=0

ai cos iθ cos θ +
n∑

i=1

bi sin iθ cos θ

=
n∑

i=1

ai

2
(cos(i+ 1)θ + cos(i− 1)θ)

+
n∑

i=1

bi
2

(sin(i+ 1)θ + sin(i− 1)θ) .

The result now follows from re-indexing the above sums and taking care of the negative

indices. The argument is virtually identical if we instead assume that it is α2 which is

greater than 0, and so we are done. �

Using this lemma, we can show that the coefficients of u in equation (2.3) satisfy

normal looking bounds for entire functions.

Proposition 2.2.3 Let u be an entire harmonic function in the plane. Then, we can

express u in polar coordinates as:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) ,

where for every R > 0, we can find a constant CR > 0 such that:

|an| ≤
CR

Rn
and |bn| ≤

CR

Rn
,

for each n ≥ 0, and where b0 = 0 by convention.
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Proof: Since u is entire, we know we can write

u =
∑

α

cαx
α1yα2 ,

where the sum is taken over all multi-indices α = (α1, α2), and where we know that for

any R > 0, we can find a CR > 0 such that

|cα| ≤
CR

R|α|

for each multi-index α. Also, this sum will be absolutely and uniformly convergent on

compact sets. By letting x = r cos θ and y = r sin θ, we have:

u =
∑

α

cα(r cos θ)α1(r sin θ)α2 =
∑

α

cαr
|α|(cos θ)α1(sin θ)α2 .

Since u converges absolutely and uniformly on all compact sets, this will certainly be

true on the unit circle. Therefore, the sum:

w(θ) = u(1, θ) =
∑

α

cα(cos θ)α1(sin θ)α2

will be absolutely and uniformly convergent for all θ ∈ [−π, π], and will define a con-

tinuous, 2π-periodic function there.

Now, since u is an entire harmonic function, it will certainly be analytic in a neigh-

bourhood of the origin. Therefore, we know that it can be written in the form:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) .

Evaluating this series along the unit circle and comparing it with what we had before

gives:

∑
α

cα(cos θ)α1(sin θ)α2 = w(θ) = u(1, θ) =
a0

2
+

∞∑
n=1

(an cosnθ + bn sinnθ) .

Since w is smooth and 2π-periodic, it will have a pointwise convergent Fourier series.

Therefore, we can get our desired estimates on the coefficients of u by estimating the
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Fourier coefficients of w. First, we know:

an =
1

π

∫ π

−π

w(θ) cosnθdθ

=
1

π

∫ π

−π

∑
α

cα(cos θ)α1(sin θ)α2 cosnθdθ.

However, since the sum for w is uniformly convergent, we may interchange the order of

summation and integration to write:

an =
1

π

∑
α

cα

∫ π

−π

(cos θ)α1(sin θ)α2 cosnθdθ.

However, by lemma 2.2.2, we know that these integrals will be 0 by the orthogonality

of the sine and cosine functions unless we have |α| ≥ n. This leads to:

an =
1

π

∑
|α|≥n

cα

∫ π

−π

(cos θ)α1(sin θ)α2 cosnθdθ.

Now, we can use some simple bounds to proceed:

|an| ≤
1

π

∑
|α|≥n

|cα|
∫ π

−π

|(cos θ)α1(sin θ)α2 cosnθ| dθ

≤ 1

π

∑
|α|≥n

|cα|
∫ π

−π

dθ

≤ 2
∑
|α|≥n

|cα|.

Next, since u is an entire function, for any R > 1, we can find a constant C2R > 0 such

that:

|cα| ≤
C2R

(2R)|α|
,
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for all multi-indices α. Using this, we can keep working away at our bound for an:

|an| ≤ 2
∑
|α|≥n

|cα|

= 2
∞∑

k=n

∑
|α|=k

|cα|

≤ 2C2R

∞∑
k=n

∑
|α|=k

1

(2R)k

= 2C2R

∞∑
k=n

k + 1

(2R)k

≤ 4C2R

∞∑
k=n

(
1

R

)k

= 4C2R

(
1

R

)n
R

R− 1
,

where we know that the geometric series converges since we chose R > 1. Therefore,

for any R > 1, we can find a constant C ′
R > 0 depending on R but independent of n

such that

|an| ≤
C ′

R

Rn

for all n ≥ 0. This can be trivially extended to be true for any R > 0, and we can

perform a similar calculation for bn. Therefore, if u is harmonic and entire, we can

write

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) ,

where for any R > 0, we can find a constant CR > 0 such that:

|an| ≤
CR

Rn
and |bn| ≤

CR

Rn

for all n ≥ 0, with the convention that b0 = 0. �

Next, we will show that if the coefficient bounds are satisfied that we in fact have

an entire harmonic function.
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Proposition 2.2.4 Let u be harmonic, and suppose that we can write:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) ,

where for any R > 0, we can find a constant CR > 0 such that

|an| ≤
CR

Rn
and |bn| ≤

CR

Rn

for all n ≥ 0, with the convention that b0 = 0. Then, u is an entire function.

Proof: Our strategy will be to make use of the facts that rn cosnθ = < ((x+ iy)n) and

rn sinnθ = = ((x+ iy)n). Because of the bounds we have on an and bn, the sum for

u will be absolutely and uniformly convergent on compact sets. So, we can rearrange

terms to write:

u =
a0

2
+

∞∑
n=1

an< ((x+ iy)n) +
∞∑

n=1

bn= ((x+ iy)n) .

Now, we can use the Binomial Theorem to see:

(x+ iy)n =
n∑

k=0

(
n

k

)
xn−k(iy)k =

n∑
k=0

ik
(
n

k

)
xn−kyk.

So, the coefficients in the polynomials < ((x+ iy)n) and = ((x+ iy)n) are all binomial

coefficients, and so we can bound them all in absolute value by 2n. Note also that these

polynomials will have no monomials in common. So, if we look at the expansion

u =
a0

2
+

∞∑
n=1

an< ((x+ iy)n) +
∞∑

n=1

bn= ((x+ iy)n) ,

we see that the coefficient of each monomial of degree n can be bounded in absolute

value by either 2n|an| or 2n|bn|. Now, since for each R > 0 we can find a constant

CR > 0 such that

|an| ≤
CR

Rn
and |bn| ≤

CR

Rn
,
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each of 2n|an| and 2n|bn| can also be bounded in a similar manner by simply choosing

R to be twice as large as the desired bound. Therefore, we have:

u =
∞∑

n=0

∑
|α|=n

cαx
α1yα2 =

∑
α

cαx
α1yα2 ,

where for each R > 0, we can find a constant CR > 0 such that

|cα| ≤
CR

R|α|

for each multi-index α. Therefore, u is an entire function. �

Putting together the results of the last two propositions, we have the following

result.

Theorem 2.2.5 Let u be a harmonic function in the plane. Then it will be entire if

and only if we can write:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) ,

where for each R > 0, we can find a constant CR > 0 such that

|an| ≤
CR

Rn
and |bn| ≤

CR

Rn

for all n ≥ 0, with the convention that b0 = 0.

Proof: This follows directly from propositions 2.2.3 and 2.2.4. �

Finally, we state the following result, which is a useful companion to the previous

theorem.

Theorem 2.2.6 Let {an} and {bn} be sequences of real numbers for n ≥ 0, with the

assumption that b0 = 0. If for any R > 0, we can find a constant CR > 0 such that:

|an| ≤
CR

Rn
and |bn| ≤

CR

Rn
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for all n ≥ 0, then the function u given by:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ)

is an entire harmonic function.

Proof: First, we will show that the sum is uniformly convergent on all compact sets.

Pick any R > 0. Then, we can find a constant C2R > 0 such that

|an| ≤
C2R

(2R)n
and |bn| ≤

C2R

(2R)n

for all n ≥ 0. Therefore, for each n, we have the following bound in the disk of radius

R:

|rn (an cosnθ + bn sinnθ)| ≤ 2Rn C2R

(2R)n
=
C2R

2n−1
.

Since we know
∞∑

n=1

C2R

2n−1
<∞,

the defining sum for u converges uniformly in every disk, and hence in every compact

set.

Therefore, u will be the uniform limit of harmonic functions everywhere, and will

therefore be a harmonic function in the whole plane by theorem 1.5.1 of [2]. Finally, by

theorem 2.2.5 and the coefficient bounds we are given, we see that it will be an entire

harmonic function in the plane. �



Chapter 3

The Half Space

The first problem on which we will focus our attention is modelled after the classical

Dirichlet problem in the half space. The goal there is to find a harmonic function in

the upper half space (xn > 0) which is equal to a given data function on the boundary

of the half space (xn = 0). However, since we are interested in the pursuit of entire

solutions, restricting the domain of our solution to the upper half space is no longer

necessary. This means that the concrete problem of this chapter is the following: given

an entire function f = f(x1, . . . , xn−1), can we always find an entire function u which

satisfies:

4u = 0 in Rn

u = f when xn = 0?

3.1 Review of the Polynomial Problem

Before turning to the task at hand, we will recall the corresponding problem for poly-

nomial data: given a polynomial f = f(x1, . . . , xn−1), can we always find a polynomial

24



CHAPTER 3. THE HALF SPACE 25

u which satisfies:

4u = 0 in Rn

u = f when xn = 0?

This problem has an affirmative answer, and there are many ways to show it. One is

as follows. First, consider the problem in the plane, or R2. Then, for any polynomial

f(x), we can use a simple formula involving complex variables to construct our solution,

namely, let u = <(f(x + iy)). Clearly, u(x, 0) = f(x). Also, since f is a polynomial,

f(x+ iy) will be a holomorphic function of the complex variable z = x+ iy. Therefore,

it will have a harmonic real part which can be seen to be a polynomial by expanding the

powers of x + iy using the Binomial Theorem. Finally, we can extend this affirmative

answer in the plane to all higher dimensions using a theorem from [17], which states

that if a boundary surface always admits a polynomial solution for any polynomial data

in Rn, then this will be the case in all higher dimensions as well.

3.2 Motivation for the Main Formula

Knowing that the polynomial half space problem will always possess a polynomial

solution given any polynomial data leads us to suspect that the corresponding problem

for entire data will always possess an entire solution. Unlike the polynomial problem,

however, we will now need to deal with issues of convergence. To motivate our technical

work in the next section, we will for the moment throw away these considerations to

get a feel for the kinds of estimates we may need.

Our main strategy will be to take a harmonic function in n variables, expand it as

a power series in the last variable, and then try to make use of any structure that may
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result. We begin by writing our harmonic function u as:

u(x1, . . . , xn) =
∞∑

k=0

fk(x1, . . . , xn−1)x
k
n.

Then, we may formally take the Laplacian of u, which will vanish since u was assumed

to be harmonic. Dropping the notational dependence on the xi for clarity, we have:

0 = 4u = 4

(
∞∑

k=0

fkx
k
n

)

=
∞∑

k=0

4fk · xk
n +

∞∑
k=2

fk · k(k − 1)xk−2
n

=
∞∑

k=0

4fk · xk
n +

∞∑
k=0

fk+2 · (k + 2)(k + 1)xk
n

=
∞∑

k=0

(4fk + (k + 2)(k + 1)fk+2)x
k
n.

Since each coefficient must identically vanish, we get the following recurrence relation

between the coefficients of u:

fk+2 = − 1

(k + 2)(k + 1)
4fk.

Therefore, if we make a choice for f0 and f1, the rest of the coefficients will be completely

determined by:

f2k =
(−1)k4kf0

(2k)!
and

f2k+1 =
(−1)k4kf1

(2k + 1)!
.

Substituting this back into our original series for u and grouping the even and odd

terms together, we obtain the following form for our harmonic function u:

u =
∞∑

k=0

(−1)k4kf0

(2k)!
x2k

n +
∞∑

k=0

(−1)k4kf1

(2k + 1)!
x2k+1

n . (3.1)

Note also that on setting xn = 0 we recover f0, which still remains an arbitrary function

of x1, . . . , xn−1. So, if we wish to use this formula to show that the half space problem
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will always have an entire solution given any entire data, we need to build up some

estimates on the repeated application of the Laplacian operator on entire functions.

This formula can also be found in section 9.1 of [12], where it is mentioned that problems

of this nature can be solved directly by estimating derivatives, which is the strategy we

shall adopt.

3.3 Bounds on Repeated Laplacians

Throughout this section, we will be working over Rn. We first need some inequalities

dealing with multi-indices.

Lemma 3.3.1 Let β be a multi-index. Then:

(2β)!

β!
≤ 22|β|β!.

Proof: By expanding out the factorials, we have:

(2β)!

β!
=

(2β1)!

β1!
· · · (2βn)!

βn!

=
(2β1)!

β1!β1!
· · · (2βn)!

βn!βn!
β1! · · · βn!

=

(
2β1

β1

)
· · ·
(

2βn

βn

)
β!

≤ 22β1 · · · 22βnβ! = 22|β|β!

�

Lemma 3.3.2 Let α and β be multi-indices. Then (α+ 1)2β ≤ 2|α+2β|(2β)!, where:

(α+ 1)2β = (α1 + 1)2β1 · · · (αn + 1)2βn .
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Proof: Here, we convert the Pochhammer symbols into the corresponding factorials,

and then bound using binomial coefficients as before:

(α+ 1)2β = (α1 + 1)2β1 · · · (αn + 1)2βn

=
(α1 + 2β1)!

α1!
· · · (αn + 2βn)!

αn!

=
(α1 + 2β1)!

α1!(2β1)!
· · · (αn + 2βn)!

αn!(2βn)!
(2β1)! · · · (2βn)!

=

(
α1 + 2β1

α1

)
· · ·
(
αn + 2βn

αn

)
(2β)!

≤ 2α1+2β1 · · · 2αn+2βn(2β)!

= 2|α+2β|(2β)!

�

Lemma 3.3.3 Let α and β be multi-indices with |β| = k ≥ 0. Then:

k!

β!
(α+ 1)2β ≤ (k!)2 · 2|α|+4k.

Proof: We can combine the results from lemmas 3.3.1 and 3.3.2:

k!

β!
(α+ 1)2β ≤ k!

β!
2|α+2β|(2β)!

= k! · 2|α|+2k · (2β)!

β!

≤ k! · 2|α|+2k · 22kβ!

≤ (k!)2 · 2|α|+4k,

since |β| = k =⇒ β! ≤ k!. �

Lemma 3.3.4 Let α and β be multi-indices with |β| = k ≥ 0. Suppose that R > 1 and

that |xi| ≤ R for each i = 1, . . . , n. Also, let {fγ} be a sequence of real numbers indexed

by multi-indices, and suppose for each S > 0 that we can find a constant CS > 0 such

that:

|fγ| ≤
CS

S|γ|
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for each multi-index γ. Then for each S > 0:∣∣∣∣k!β!
(α+ 1)2βfα+2βx

α

∣∣∣∣ ≤ (k!)2 · CS ·
(

4R

S

)|α|+2k

.

Proof: We will make use of lemma 3.3.3 and the given bounds on fγ and xi:∣∣∣∣k!β!
(α+ 1)2βfα+2βx

α

∣∣∣∣ =
k!

β!
(α+ 1)2β |fα+2β| |xα|

≤ (k!)2 · 2|α|+4k · CS

S|α|+2k
·R|α|

≤ (k!)2 · CS ·
4|α|+2k ·R|α|+2k

S|α|+2k

= (k!)2 · CS ·
(

4R

S

)|α|+2k

�

Lemma 3.3.5 Let 0 < r < 1
2
. Then the sum:∑

|β|=k

∑
α

r|α+2β|

converges, where the sum runs over all multi-indices α and β such that |β| = k ≥ 0.

Proof: Note that for any k ≥ 0, there are
(

n+k−1
k

)
multi-indices β such that |β| = k by

lemma 3.7.3 of [7]. Then, for any N > 0, we can make the following estimate:∑
|β|=k

∑
|α|≤N

r|α+2β| =
∑
|β|=k

r2k ·
∑
|α|≤N

r|α|

=

(
n+ k − 1

k

)
r2k

N∑
s=0

∑
|α|=s

rs

=

(
n+ k − 1

k

)
r2k

N∑
s=0

(
n+ s− 1

s

)
rs

≤
(
n+ k − 1

k

)
r2k

N∑
s=0

2n−1(2r)s

≤
(
n+ k − 1

k

)
2n−1r2k

∞∑
s=0

(2r)s

=

(
n+ k − 1

k

)
2n−1r2k 1

1− 2r
,
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where the last sum converges since 0 < 2r < 1. Since this bound is independent of N

and we are summing positive terms, the sum

∑
|β|=k

∑
α

r|α+2β|

must converge. �

Now, we are in a position to prove our estimate regarding the repeated application

of the Laplacian operator to an entire function in Rn.

Proposition 3.3.6 Let f be an entire function given by the series:

f =
∑

α

fαx
α.

Then, for any S > 0, we can find a constant CS > 0 such that if we write:

4kf =
∑

α

fα,kx
α,

we have the following estimate for all k ≥ 1 and all multi-indices α:

|fα,k| ≤ CS2n−1(k!)2

(
8

S

)|α|+2k

.

Proof: Let ∂1, . . . , ∂n be the usual partial derivative operators on Rn, and note that

since f is entire, they will all commute with each other. Therefore, we may use the

Multinomial Theorem to write:

4k =
(
∂2

1 + · · ·+ ∂2
n

)k
=
∑
|β|=k

k!

β!
∂2β1

1 · · · ∂2βn
n =

∑
|β|=k

k!

β!
D2β.

Then, given the series for f , we can use equation (2.2) to write:

D2βf =
∑

α

(α+ 1)2βfα+2βx
α

for any multi-index β. Therefore, we have:

4kf =
∑
|β|=k

k!

β!
D2βf =

∑
|β|=k

∑
α

k!

β!
(α+ 1)2βfα+2βx

α.
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We will now show that this series is absolutely convergent on compact subsets which

will permit us to rearrange the terms in the series. Suppose that each |xi| ≤ R for

some R > 1 for each i = 1, . . . , n. Also, since f is entire, for any S > 0, we can find a

constant CS > 0 such that

|fα| ≤
CS

S|α|

for each multi-index α. Therefore, by lemma 3.3.4, we have∣∣∣∣k!β!
(α+ 1)2βfα+2βx

α

∣∣∣∣ ≤ (k!)2 · CS

(
4R

S

)|α+2β|

.

Since we can pick S large enough so that 4R
S
< 1

2
, we see that:

∑
|β|=k

∑
α

∣∣∣∣k!β!
(α+ 1)2βfα+2βx

α

∣∣∣∣ ≤ (k!)2 · CS ·
∑
|β|=k

∑
α

(
4R

S

)|α+2β|

,

where we know by lemma 3.3.5 that this sum converges. Therefore, the series for 4kf

converges absolutely on compact subsets, and we may rearrange the series to get:

4kf =
∑

α

∑
|β|=k

k!

β!
(α+ 1)2βfα+2β

xα.

So, we can make the identification:

fα,k =
∑
|β|=k

k!

β!
(α+ 1)2βfα+2β.
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We can now use lemma 3.3.3 and the fact that f is entire to complete our estimate:

|fα,k| ≤
∑
|β|=k

∣∣∣∣k!β!
(α+ 1)2βfα+2β

∣∣∣∣
=

∑
|β|=k

k!

β!
(α+ 1)2β |fα+2β|

≤
∑
|β|=k

(k!)2 · 2|α|+4k · CS

S|α|+2k

=

(
n+ k − 1

k

)
(k!)2 · CS ·

2|α|+4k

S|α|+2k

≤ 2n−1(k!)2 · CS ·
2k · 2|α|+4k

S|α|+2k

≤ CS2n−1(k!)2 2|α|+2k · 4|α|+2k

S|α|+2k

= CS2n−1(k!)2

(
8

S

)|α|+2k

.

�

3.4 Main Results

Using our estimates from proposition 3.3.6, we can prove the two crucial facts that we

need in order to solve the half-space problem.

Proposition 3.4.1 Let f be an entire function in x1, . . . , xn, and define:

u =
∞∑

k=0

(−1)k4kf

(2k)!
y2k.

Then, u is an entire function in x1, . . . , xn, y which satisfies u = f when y = 0 and

∂u
∂y

= 0 when y = 0.

Proof: By proposition 3.3.6, we can write

4kf =
∑

α

fα,kx
α
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where for any S > 0, we can find a constant CS > 0 such that

|fα,k| ≤ CS2n−1(k!)2

(
8

S

)|α|+2k

for all k ≥ 1 and all multi-indices α. Therefore, we can formally expand u as a power

series in its variables:

u =
∞∑

k=0

∑
α

(−1)kfα,k

(2k)!
xαy2k.

Now, using our estimate for fα,k, we can estimate the coefficient of xαy2k:∣∣∣∣(−1)kfα,k

(2k)!

∣∣∣∣ ≤ CS2n−1 (k!)2

(2k)!

(
8

S

)|α|+2k

≤ CS2n−1

(
8

S

)|α|+2k

,

since (k!)2

(2k)!
≤ 1. Since S can be chosen to be arbitrarily large and

|α|+ 2k = |(α1, . . . , αn, 2k)|

is the norm of the multi-index of the monomial under consideration, we see that the

series will converge, so our expansion was justified. Also, by these estimates, we see

that u is an entire function. Finally, we can see directly from the series that u = f

when y = 0 and that ∂u
∂y

= 0 when y = 0. �

Proposition 3.4.2 Let f be an entire function in x1, . . . , xn, and define:

u =
∞∑

k=0

(−1)k4kf

(2k + 1)!
y2k+1.

Then, u is an entire function in x1, . . . , xn, y which satisfies u = 0 when y = 0 and

∂u
∂y

= f when y = 0.

Proof: By proposition 3.3.6, we can write

4kf =
∑

α

fα,kx
α

where for any S > 0, we can find a constant CS > 0 such that

|fα,k| ≤ CS2n−1(k!)2

(
8

S

)|α|+2k



CHAPTER 3. THE HALF SPACE 34

for all k ≥ 1 and all multi-indices α. Therefore, we can formally expand u as a power

series in its variables:

u =
∞∑

k=0

∑
α

(−1)kfα,k

(2k + 1)!
xαy2k+1.

As before, we will estimate the coefficient of xαy2k+1 using our estimate for fα,k:∣∣∣∣(−1)kfα,k

(2k + 1)!

∣∣∣∣ ≤ CS2n−1 (k!)2

(2k + 1)!

(
8

S

)|α|+2k

≤ CS2n−1

(
8

S

)|α|+2k

=

(
CS2n−1S

8

)(
8

S

)|α|+2k+1

,

since (k!)2

(2k+1)!
≤ 1. Since S can be chosen to be arbitrarily large and |α| + 2k + 1 =

|(α1, . . . , αn, 2k+1)| is the norm of the multi-index of the monomial under consideration,

we see that the series will converge, so our expansion was justified. Also by these

estimates, we see that u will again be an entire function. Finally, we see from the series

that u = 0 when y = 0 and ∂u
∂y

= f when y = 0. �

Finally, we note the following fact, which was the motivation behind the above

constructions.

Proposition 3.4.3 Let f be an entire function in x1, . . . , xn, and define:

u =
∞∑

k=0

(−1)k4kf

(2k)!
y2k and

w =
∞∑

k=0

(−1)k4kf

(2k + 1)!
y2k+1.

Then, both u and w are harmonic.

Proof: First, consider u. By proposition 3.4.1, we know that it will be an entire

function, and so term by term differentiation is justified. Remembering that f is not a

function of y, we can split the action of the Laplacian into the variables x1, . . . , xn and
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y to see:

4u =
∞∑

k=0

(−1)k4k+1f

(2k)!
y2k +

∞∑
k=1

(−1)k4kf

(2k − 2)!
y2k−2

=
∞∑

k=0

(−1)k4k+1f

(2k)!
y2k +

∞∑
k=0

(−1)k+14k+1f

(2k)!
y2k

=
∞∑

k=0

(−1)k4k+1f

(2k)!
y2k −

∞∑
k=0

(−1)k4k+1f

(2k)!
y2k = 0.

Next, consider w. By proposition 3.4.2, we know that it too will be an entire function,

and so we can perform a similar calculation:

4w =
∞∑

k=0

(−1)k4k+1f

(2k + 1)!
y2k+1 +

∞∑
k=1

(−1)k4kf

(2k − 1)!
y2k−1

=
∞∑

k=0

(−1)k4k+1f

(2k + 1)!
y2k+1 +

∞∑
k=0

(−1)k+14k+1f

(2k + 1)!
y2k+1

=
∞∑

k=0

(−1)k4k+1f

(2k + 1)!
y2k+1 −

∞∑
k=0

(−1)k4k+1f

(2k + 1)!
y2k+1 = 0.

�

We are now in a position to easily prove our main results for half space problems.

To pin down terminology, we will let the coordinates of Rn be x1, . . . , xn, where this

will be the domain of our boundary data, and we will let the coordinates of Rn+1 be

x1, . . . , xn, y, where this will be the domain of our solutions. We then have three main

results.

Theorem 3.4.4 Let f be an entire function on Rn. Then the Dirichlet type problem

4u = 0 in Rn+1

u = f on y = 0

has an entire solution u.

Proof: We define

u =
∞∑

k=0

(−1)k4kf

(2k)!
y2k.
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By proposition 3.4.3, we know that u is harmonic. By proposition 3.4.1, we know that

u is entire and u = f when y = 0. So, u is our desired entire solution. �

Theorem 3.4.5 Let g be an entire function on Rn. Then the Neumann type problem

4u = 0 in Rn+1

∂u

∂y
= g on y = 0

has an entire solution u.

Proof: We define

u =
∞∑

k=0

(−1)k4kg

(2k + 1)!
y2k+1.

By proposition 3.4.3, we know that u is harmonic. By proposition 3.4.2, we know that

u is entire and satisfies the boundary conditions. Therefore, it is our desired solution.

�

Theorem 3.4.6 Let f and g be entire functions on Rn. Then the Cauchy type problem

4u = 0 in Rn+1

u = f on y = 0

∂u

∂y
= g on y = 0

has a unique, entire solution u.

Proof: We define

u =
∞∑

k=0

(−1)k4kf

(2k)!
y2k +

∞∑
k=0

(−1)k4kg

(2k + 1)!
y2k+1.

By proposition 3.4.3, we see that u is the sum of two harmonic functions and is thus

harmonic. By propositions 3.4.1 and 3.4.2, we see that u is the sum of two entire

functions, and so u is entire. Also by propositions 3.4.1 and 3.4.2, we see that u
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satisfies the boundary conditions. Therefore, it is an entire solution to our problem. To

see that it is unique, suppose that we have two solutions, u1 and u2, to our problem.

Then, the difference w = u1 − u2 satisfies:

4w = 0 in Rn+1

w = 0 on y = 0

∂w

∂y
= 0 on y = 0.

However, w is entire, and so we may write it as a series in y with coefficients which are

functions of x1, . . ., xn. Since we may differentiate entire functions term by term, we

may follow the derivation in section 3.2 to write w in the form of equation (3.1):

w =
∞∑

k=0

(−1)k4kw0

(2k)!
y2k +

∞∑
k=0

(−1)k4kw1

(2k + 1)!
y2k+1,

for some functions w0 and w1. However, by applying our boundary conditions, we see

that w0 ≡ w1 ≡ 0, and so w = 0. This means that our two solutions u1 and u2 were in

fact equal, and so our half space problem has a unique, entire solution. �



Chapter 4

The Heat Equation

This chapter deviates slightly from our main topic, but it serves as a nice comparison to

the half space results of the previous chapter. The source of the deviation comes from

considering the heat equation rather than Laplace’s equation, but the main thrust of

exploration will be the same: the search for entire solutions on a half space given entire

data. Concretely, we will be examining whether for any entire function f , we can find

an entire function u which satisfies the following one dimensional heat problem:

ut = uxx in R2

u(x, 0) = f(x).

4.1 Conditions for Entire Solutions

In the paper [14], Kovalevskaya made a thorough study of analytic solutions to the heat

equation given analytic initial conditions. In particular, she constructed the following

entire function where the solution converges nowhere:

f(x) =
∞∑

k=0

xk

(k!)
1
3

.

38
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So, unlike Laplace’s equation, the heat equation will not have an entire solution for all

entire functions f given as data. However, we can impose conditions on our entire data

to ensure that we have an entire solution. Suppose that our entire data is given to us

as a power series:

f(x) =
∞∑

k=0

fkx
k.

Then, we will show in the remainder of this chapter that the following conditions

are both necessary and sufficient for the existence of an entire solution to our one

dimensional heat problem:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0.

Therefore, the existence of an entire solution depends only upon the rate of decay of

the Taylor coefficients of the data.

4.2 Necessity of the Conditions

Proposition 4.2.1 Suppose that we have an entire function u(x, t) which satisfies the

following one dimensional heat problem:

ut = uxx in R2

u(x, 0) = f(x),

where f(x) is also an entire function. Then:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0.

Proof: Since u is entire, this permits us to write it as a power series in t:

u(x, t) =
∞∑

k=0

uk(x)t
k,
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where the functions uk(x) need to be determined. We begin by calculating some deriva-

tives of our solution:

ut =
∞∑

k=1

uk(x)kt
k−1 =

∞∑
k=0

(k + 1)uk+1(x)t
k

uxx =
∞∑

k=0

u′′k(x)t
k

Since we know ut = uxx, we equate coefficients of tk to obtain the relation

(k + 1)uk+1(x) = u′′k(x).

This gives us u1(x) = u′′0(x), u2(x) = 1
2!
u

(4)
0 (x), and in general, we have:

uk(x) =
1

k!
u

(2k)
0 (x).

Finally, we can use our initial condition to completely determine our solution. Since

we know u(x, 0) = f(x), we see that:

f(x) = u(x, 0) = u0(x).

Therefore, if we start by assuming that we have an entire solution to our heat problem,

then it must have the form:

u(x, t) =
∞∑

k=0

f (2k)(x)
tk

k!
. (4.1)

The next step will be to obtain a series solution about the origin for our solution,

using the above expansion as a starting point. Since f is an entire function, we can

write it as a series:

f(x) =
∞∑

n=0

fnx
n,

for some coefficients fn. We may also differentiate it 2k times using equation (2.1):

f (2k)(x) =
∞∑

n=0

(n+ 1)2kfn+2kx
n,



CHAPTER 4. THE HEAT EQUATION 41

where (n+1)2k denotes the usual Pochhammer symbol, or rising factorial. Substituting

this back into our entire solution gives:

u(x, t) =
∞∑

k=0

∞∑
n=0

(n+ 1)2k

k!
fn+2kx

ntk =
∞∑

k=0

∞∑
n=0

(n+ 2k)!

n!k!
fn+2kx

ntk.

We will now impose the condition that u is entire. For any R > 0, we can find a

constant CR > 0 such that: ∣∣∣∣(n+ 2k)!

n!k!
fn+2k

∣∣∣∣ ≤ CR

Rn+k

for all n, k ≥ 0. In particular, we can set n = 0 and n = 1 to obtain the following

necessary conditions:∣∣∣∣(2k)!k!
f2k

∣∣∣∣ ≤ CR

Rk
and

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ ≤ CR

Rk+1
.

Taking the kth and (k + 1)st roots of the above inequalities, we get:

lim sup
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k ≤ lim sup
k→∞

(CR)
1
k

R
=

1

R
and

lim sup
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

≤ lim sup
k→∞

(CR)
1

k+1

R
=

1

R
.

However, since this is true for all R > 0, our conditions can be stated equivalently as:

lim sup
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim sup
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0.

However, since both of these expressions are non-negative, this is the same as saying:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0.

So, assuming that we have an entire solution to our heat problem leads to the above

necessary conditions. �

The proof of the above proposition also leads to the following corollary.
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Corollary 4.2.2 The heat problem:

ut = uxx in R2

u(x, 0) = f(x)

has at most one entire solution.

Proof: Suppose that we can find two entire solutions, u1 and u2, to our heat problem.

Then, the function w = u1 − u2 will be entire and will satisfy:

wt = wxx in R2

w(x, 0) = 0.

So, following the proof of proposition 4.2.1, we can write w in the form of equation

(4.1):

w(x, t) =
∞∑

k=0

v(2k)(x)
tk

k!
,

for some function v. However, by applying our initial condition, we see that v ≡ 0, and

so w = u1−u2 ≡ 0. Therefore, u1 = u2, and so our heat problem can have at most one

entire solution. �

4.3 Sufficiency of the Conditions

In order to demonstrate the sufficiency of the conditions, we will first need a technical

lemma.

Lemma 4.3.1 Let R > 0, and let k and m be integers such that k ≥ 1 and 0 ≤ m ≤ k.

Then:

Rm(k −m+ 1) · · · k
(2m)!

≤ eRek,

where for m = 0, the empty product in the numerator is understood to be 1.
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Proof: We will only need the fact that for m ≥ 0, we have:

m!m! ≤ (2m)! =⇒ 1

(2m)!
≤ 1

m!m!
.

This gives us the following estimate:

Rm(k −m+ 1) · · · k
(2m)!

≤ Rmkm

(2m)!

≤ Rm

m!

km

m!

≤

(
∞∑

m=0

Rm

m!

)(
∞∑

m=0

km

m!

)
= eRek

�

We now present a pair of similar lemmas dealing with the slight difference between

the conditions on even and odd coefficients.

Lemma 4.3.2 Suppose that for all R > 0, we can find a constant CR > 0 such that:

|f2k| ≤
CR

Rk

k!

(2k)!

for all k ≥ 0. Then, for all R > 0, we can find a constant DR > 0 such that:

|f2k| ≤
DR

Rk+m

(k −m)!(2m)!

(2k)!

for all k ≥ 0 and for all integers m such that 0 ≤ m ≤ k.

Proof: We know that for any R > 0, we can find a constant CR > 0 such that

|f2k| ≤
CR

Rk

k!

(2k)!

for all k ≥ 0. In particular, for any R > 0, we can find a constant CeR > 0 such that

|f2k| ≤
CeR

(eR)k

k!

(2k)!
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for all k ≥ 0. We can then make use of lemma 4.3.1. For any k ≥ 1 and 0 ≤ m ≤ k we

have:

|f2k| ≤
CeR

(eR)k

k!

(2k)!

=
CeR

(eR)k+m
· (k −m)!(2m)!

(2k)!
· (eR)m(k −m+ 1) · · · k

(2m)!

=
CeR

(eR)k+m
· (k −m)!(2m)!

(2k)!
· e

mRm(k −m+ 1) · · · k
(2m)!

≤ CeR

(eR)k+m
· (k −m)!(2m)!

(2k)!
· emeRek

=
CeRe

R

Rk+m

(k −m)!(2m)!

(2k)!

=
C ′

R

Rk+m

(k −m)!(2m)!

(2k)!
,

where we have collected the R dependence into C ′
R. To finish the proof, we must only

include the case where k = 0 and m = 0, which requires the choice:

DR = max{C ′
R, |f0|}.

With this choice, we have that

|f2k| ≤
DR

Rk+m

(k −m)!(2m)!

(2k)!

for all k ≥ 0 and 0 ≤ m ≤ k. �

Lemma 4.3.3 Suppose that for all R > 0, we can find a constant CR > 0 such that:

|f2k+1| ≤
CR

Rk+1

k!

(2k + 1)!

for all k ≥ 0. Then, for all R > 0, we can find a constant DR > 0 such that:

|f2k+1| ≤
DR

Rk+m+1

(k −m)!(2m+ 1)!

(2k + 1)!

for all k ≥ 0 and for all integers m such that 0 ≤ m ≤ k.
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Proof: We proceed exactly as in the proof of the previous lemma, using lemma 4.3.1

along the way. For all R > 0, we can find a constant CeR > 0 such that:

|f2k+1| ≤
CeR

(eR)k+1

k!

(2k + 1)!

for all k ≥ 0. Then, for any integers k ≥ 1 and 0 ≤ m ≤ k, we can estimate as follows:

|f2k+1| ≤
CeR

(eR)k+1

k!

(2k + 1)!

=
CeR

(eR)k+m+1
· (k −m)!(2m+ 1)!

(2k + 1)!
· (eR)m(k −m+ 1) · · · k

(2m+ 1)!

≤ CeR

(eR)k+m+1
· (k −m)!(2m+ 1)!

(2k + 1)!
· e

mRm(k −m+ 1) · · · k
(2m)!

≤ CeR

(eR)k+m+1
· (k −m)!(2m+ 1)!

(2k + 1)!
· emeRek

=
CeR

(eR)k+m+1
· (k −m)!(2m+ 1)!

(2k + 1)!
· e

k+m+1eR

e

=
CeRe

R

e

1

Rk+m+1
· (k −m)!(2m+ 1)!

(2k + 1)!

=
C ′

R

Rk+m+1

(k −m)!(2m+ 1)!

(2k + 1)!
,

where we have collected the R dependence into C ′
R. Again, to complete the proof, we

must only include the case where k = 0 and m = 0, so we make the choice:

DR = max{C ′
R, |f1|R}.

With this choice, we have that

|f2k+1| ≤
DR

Rk+m+1

(k −m)!(2m+ 1)!

(2k + 1)!

for all k ≥ 0 and 0 ≤ m ≤ k. �

We are now in a position to perform our main estimation. In the following propo-

sition, note that for each particular coefficient fm, there will be multiple choices of n

and k such that n+2k = m. So, we will be getting multiple bounds on each coefficient.

While this means that some of the estimates may not be as sharp as possible, this is
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the form that we will need in our final proof of the sufficiency of the conditions on the

coefficients of f to guarantee the existence of an entire solution.

Proposition 4.3.4 Suppose that the following limits hold:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0.

Then, for all R > 0, we can find a constant CR > 0 such that:∣∣∣∣(n+ 2k)!

n!k!
fn+2k

∣∣∣∣ ≤ CR

Rn+k

for all n ≥ 0 and k ≥ 0.

Proof: First, since we have

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = 0,

we can use lemma 2.1.1 to see that for any R > 0, we can find a constant AR > 0 such

that: ∣∣∣∣(2k)!k!
f2k

∣∣∣∣ ≤ AR

Rk
=⇒ |f2k| ≤

AR

Rk

k!

(2k)!

for all k ≥ 0. Therefore, by lemma 4.3.2, for any R > 0 we know that we can find a

constant A′R > 0 such that:

|f2k| ≤
A′R
Rk+m

(k −m)!(2m)!

(2k)!

for all k ≥ 0 and 0 ≤ m ≤ k. Similarly, since

lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0,

lemma 2.1.1 tells us that for any R > 0, we can find a constant BR > 0 such that∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ ≤ BR

Rk+1
=⇒ |f2k+1| ≤

BR

Rk+1

k!

(2k + 1)!

for all k ≥ 0. Therefore, by lemma 4.3.3, for each R > 0 we can find a constant B′
R > 0

such that

|f2k+1| ≤
B′

R

Rk+m+1

(k −m)!(2m+ 1)!

(2k + 1)!
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for all k ≥ 0 and 0 ≤ m ≤ k. Let CR = max{A′R, B′
R}. Then, we have:

|f2k| ≤
CR

Rk+m

(k −m)!(2m)!

(2k)!
and

|f2k+1| ≤
CR

Rk+m+1

(k −m)!(2m+ 1)!

(2k + 1)!

for all k ≥ 0 and 0 ≤ m ≤ k. To complete the argument, we make the change of

variables k′ = k−m and n = 2m in the first inequality, and k′ = k−m and n = 2m+1

in the second inequality. Then, both inequalities get transformed to:

|fn+2k′| ≤
CR

Rn+k′

(k′)!n!

(n+ 2k′)!
,

and the conditions that k ≥ 0 and 0 ≤ m ≤ k get transformed into k′ ≥ 0 and n ≥ 0.

Removing the primes for clarity, this means that for any R > 0, we have found a

constant CR > 0 such that ∣∣∣∣(n+ 2k)!

n!k!
fn+2k

∣∣∣∣ ≤ CR

Rn+k

for all k ≥ 0 and n ≥ 0. �

We can now demonstrate the sufficiency of our conditions for ensuring that our one

dimensional heat problem has an entire solution.

Proposition 4.3.5 Let f be an entire function, and consider the problem:

ut = uxx in R2

u(x, 0) = f(x) =
∞∑

n=0

fnx
n.

If the following conditions on f are satisfied:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0,

then this problem will have a unique, entire solution u.
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Proof: By proposition 4.3.4, for any R > 0, we can find a constant CR > 0 such that:∣∣∣∣(n+ 2k)!

n!k!
fn+2k

∣∣∣∣ ≤ CR

Rn+k

for all n ≥ 0 and k ≥ 0. Therefore, if we construct the double series:

u(x, t) =
∞∑

k=0

∞∑
n=0

(n+ 2k)!

n!k!
fn+2kx

ntk,

then this will define an entire function. It remains to show that this function solves our

heat problem.

Since we are dealing with an entire power series, we can differentiate term by term

to get:

ut =
∞∑

k=1

∞∑
n=0

(n+ 2k)!

n!(k − 1)!
fn+2kx

ntk−1 =
∞∑

k=0

∞∑
n=0

(n+ 2k + 2)!

n!k!
fn+2k+2x

ntk

ux =
∞∑

k=0

∞∑
n=1

(n+ 2k)!

(n− 1)!k!
fn+2kx

n−1tk =
∞∑

k=0

∞∑
n=0

(n+ 2k + 1)!

n!k!
fn+2k+1x

ntk

uxx =
∞∑

k=0

∞∑
n=1

(n+ 2k + 1)!

(n− 1)!k!
fn+2k+1x

n−1tk =
∞∑

k=0

∞∑
n=0

(n+ 2k + 2)!

n!k!
fn+2k+2x

ntk

So, our function satisfies ut = uxx. Finally, we have:

u(x, 0) =
∞∑

n=0

n!

n!
fnx

n =
∞∑

n=0

fnx
n = f(x).

Therefore, we have constructed an entire solution to our heat problem, thereby showing

the sufficiency of the conditions on the coefficients of f . The uniqueness of this solution

follows directly from corollary 4.2.2. �

4.4 Comparison with Laplace’s Equation

We can now state our results and compare them to those of the previous chapter. First,

we show that the heat equation will always have a polynomial solution given polynomial

initial conditions. More information about these heat polynomials can be found in [8].
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Theorem 4.4.1 The one dimensional heat problem:

ut = uxx in R2

u(x, 0) = f(x)

will have a unique polynomial solution u for any polynomial data f .

Proof: Since the power series for f will have only finitely many terms, the conditions:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0

will be satisfied. Therefore, following the proof of proposition 4.3.5, we see that the

function:

u(x, t) =
∞∑

k=0

∞∑
n=0

(n+ 2k)!

n!k!
fn+2kx

ntk

is well defined and will be a solution to our heat problem. However, because the

coefficients of f are eventually all 0, this will be a finite sum and will give us our

desired polynomial solution. Since polynomials are entire functions, we can apply

corollary 4.2.2 to see that this solution must be unique. �

Theorem 4.4.2 Let f be an entire function. Then the one dimensional heat problem:

ut = uxx in R2

u(x, 0) = f(x)

will have an entire solution u if and only if:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0.

When this solution exists, it is unique.

Proof: The necessity of the conditions was proved in proposition 4.2.1, and the suf-

ficiency was shown in proposition 4.3.5. Once again, if a solution exists, uniqueness

follows from corollary 4.2.2. �
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We have now observed a phenomenon which did not occur in the previous chapter.

The half space heat problem in two dimensions always possessed a polynomial solution

given polynomial data, but the existence of an entire solution given entire data depended

on the decay rate of the Taylor coefficients of the data. As we shall see in the next

chapter where showing convergence of our solution turns into a very delicate matter,

even Laplace’s equation is not always free from these types of complications.

4.5 Unification of the Conditions

As it stands, we have separate conditions to ensure entire solutions for even and odd

coefficients of our data. While in practice this poses no difficulties, it is aesthetically

less than optimal. In this final section, we will show that these two conditions can in

fact be unified into a single condition on our data, namely:

lim
n→∞

∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

= 0.

On substituting n = 2k into this limit, we immediately obtain our condition for even

coefficients. On substituting n = 2k + 1, we note that
⌊

n
2

⌋
= k, and:

lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1/2

= 0.

This suggests that we need the following straightforward lemma.

Lemma 4.5.1 Let g(k) be a function defined on the non-negative integers such that

g(k) ≥ 0 for all k ≥ 0. Then:

lim
k→∞

g(k)
2k+2
2k+1 = 0 ⇔ lim

k→∞
g(k) = 0.

Proof: First, suppose that

lim
k→∞

g(k) = 0.
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Then, we can find a constant M ≥ 0 such that g(k) ≤M for all k ≥ 0. Therefore:

0 ≤ g(k)
2k+2
2k+1 = g(k) · g(k)

1
2k+1 ≤ g(k) ·M

1
2k+1 .

However, by letting k tend to infinity, this means

lim
k→∞

g(k)
2k+2
2k+1 = 0.

Next, suppose that

lim
k→∞

g(k)
2k+2
2k+1 = 0.

This means that we must have

lim sup
k→∞

g(k) = c <∞.

For the sake of contradiction, suppose that c > 0. Now, we will pick

ε = min

(
c2

4
, 1

)
> 0.

Therefore, there is a constant K > 0 such that

g(k)
2k+2
2k+1 ≤ ε

for all k ≥ K. However, this means that

g(k) ≤ ε
2k+1
2k+2 ≤

√
ε ≤ c

2

for all k ≥ K. This cannot be true since

lim sup
k→∞

g(k) = c > 0,

and so we must have that

lim sup
k→∞

g(k) = 0 =⇒ lim
k→∞

g(k) = 0

since g(k) ≥ 0 for all k ≥ 0, establishing our equivalence. �

We can now show that our two conditions can be unified into a single statement.
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Proposition 4.5.2 Let {fn} be a sequence of real numbers for n ≥ 0. Then:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0

if and only if:

lim
n→∞

∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

= 0.

Proof: First, suppose that:

lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0,

and consider ∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

.

Then, if we let n = 2k and look at the subsequence of even coefficients, we have:

lim
n→∞,n even

∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

= lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k = 0.

If we let n = 2k + 1 and look at the subsequence of odd coefficients, we have:

lim
n→∞,n odd

∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

= lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1/2

= lim
k→∞

(∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

) 2k+2
2k+1

= 0

by lemma 4.5.1. Therefore, since both of the even and odd subsequences of∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

tend to 0 as n→∞, we must have that:

lim
n→∞

∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

= 0.
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Next, suppose that

lim
n→∞

∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

= 0.

Then, both of the even and odd subsequences must also tend to 0 as n→∞. Setting

n = 2k gives us:

0 = lim
n→∞,n even

∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

= lim
k→∞

∣∣∣∣(2k)!k!
f2k

∣∣∣∣ 1k .
Setting n = 2k + 1 gives us:

0 = lim
n→∞,n odd

∣∣∣∣∣ n!⌊
n
2

⌋
!
fn

∣∣∣∣∣
2
n

= lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1/2

= lim
k→∞

(∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

) 2k+2
2k+1

.

Therefore, by lemma 4.5.1, this means that

lim
k→∞

∣∣∣∣(2k + 1)!

k!
f2k+1

∣∣∣∣ 1
k+1

= 0,

establishing the equivalence between our two conditions. �

Note that there are actually many different ways that we could have unified our

conditions on even and odd coefficients. For example, if we desired the growth condition

to be a smooth function of n, we could have just as well chosen:

lim
n→∞

∣∣∣∣∣ Γ(1 + n)

Γ
(
1 + n

2

)fn

∣∣∣∣∣
2
n

= 0.

However, demonstrating that this is an equivalent condition requires a bit more tech-

nical work and does not really offer any tangible improvements over what we have

done.



Chapter 5

Intersecting Lines in Two

Dimensions

The next problem on which we will focus is a Dirichlet type problem in the plane. We

are again searching for entire harmonic functions, but now we are prescribing values

on a pair of intersecting lines through the origin given by y = ±mx, or by θ = ±θ0 in

polar coordinates. Specifically, we are asking whether we can find an entire function u

in the plane which satisfies:

4u = 0 in R2

u = f on θ = ±θ0,

where f is a given entire function. The existence of such a function u will turn out to

depend on the nature of the angle θ0 in a rather unexpected way. Angles for which

there will always be an entire solution for any entire data will be called “good”, while

angles for which we can find data such that the problem has no entire solution will be

called “bad”.

54
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5.1 Review of the Polynomial Problem

First, let us recall the corresponding polynomial problem. This asks when we can find

a polynomial u such that:

4u = 0 in R2

u = f when θ = ±θ0,

where f is our given polynomial data. In [9], it is shown that this problem will always

possess a polynomial solution for any polynomial data if θ0 is not a rational multiple

of π. If θ0 is a rational multiple of π, then it is possible to construct polynomial data

for which the problem has no polynomial solution.

5.2 Potential Series Solution

In this section, we will develop a series expansion for a solution to our problem which

will help us determine when such a solution exists. We note first the following fact.

Lemma 5.2.1 Let f be an entire function in the plane. If r and θ are the standard po-

lar coordinates in the plane, then evaluating f along θ = ±θ0 will yield entire functions

of r.

Proof: Since f is entire, we can write

f =
∑

α

cαx
α1yα2 ,

where the sum is taken over all multi-indices α = (α1, α2), and where for any R > 0,

we can find a constant CR > 0 such that

|cα| ≤
CR

R|α|
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for all multi-indices α. This means that for any R > 0, we can certainly find a constant

C2R > 0 such that

|cα| ≤
C2R

(2R)|α|

for all multi-indices α. Now, along θ = θ0 we have that x = r cos θ0 and y = r sin θ0.

Making these substitutions into our expression for f gives:

f
∣∣∣
θ=θ0

=
∑

α

cα(r cos θ0)
α1(r sin θ0)

α2 =
∑

α

cα(cos θ0)
α1(sin θ0)

α2r|α|

=
∞∑

n=0

∑
|α|=n

cα(cos θ0)
α1(sin θ0)

α2

 rn.

Next, by using our knowledge about the cα, we can bound the coefficient of rn as

follows:∣∣∣∣∣∣
∑
|α|=n

cα(cos θ0)
α1(sin θ0)

α2

∣∣∣∣∣∣ ≤ C2R

∑
|α|=n

1

(2R)n
=
C2R(n+ 1)

(2R)n
≤ 2C2R

(
1

R

)n

.

Since this is true for all R > 0, we see that f evaluated on θ = θ0 will in fact be an

entire function of r. Similarly, we have that f evaluated on θ = −θ0 will be an entire

function of r. �

In light of the previous lemma, let us make the following definitions regarding our

data in polar coordinates along the two rays θ = ±θ0:

f(r, θ0) =
∞∑

n=0

f (+)
n rn and (5.1)

f(r,−θ0) =
∞∑

n=0

f (−)
n rn, (5.2)

where we must have that f
(+)
0 = f

(−)
0 , since f only has a single value at the origin.

Also, for any R > 0, we can find a constant CR > 0 such that∣∣f (+)
n

∣∣ ≤ CR

Rn
and

∣∣f (−)
n

∣∣ ≤ CR

Rn

for each n ≥ 0. We can now prove a necessary condition for the existence of an entire

solution to our intersecting lines problem.
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Proposition 5.2.2 Suppose that we can find an entire function u which satisfies:

4u = 0 in R2

u = f on θ = ±θ0,

where f is a given entire function. Then, we can write:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) ,

where we have the following equations for the coefficients:

a0 = 2f
(+)
0 ,

an cosnθ0 =
f

(+)
n + f

(−)
n

2
, and

bn sinnθ0 =
f

(+)
n − f

(−)
n

2
.

Proof: Suppose that our intersecting lines problem has an entire solution u. By theorem

2.2.5, we know that we can write:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) ,

where for any R > 0, we can find a constant CR > 0 such that

|an| ≤
CR

Rn
and |bn| ≤

CR

Rn
.

By evaluating u on θ = ±θ0, we obtain the following two equalities:

f(r, θ0) = u(r, θ0) =⇒
∞∑

n=0

f (+)
n rn =

a0

2
+

∞∑
n=1

rn (an cosnθ0 + bn sinnθ0)

f(r,−θ0) = u(r,−θ0) =⇒
∞∑

n=0

f (−)
n rn =

a0

2
+

∞∑
n=1

rn (an cosnθ0 − bn sinnθ0) .

By adding and subtracting these equations, we get:

∞∑
n=0

(
f

(+)
n + f

(−)
n

2

)
rn =

a0

2
+

∞∑
n=1

rnan cosnθ0

∞∑
n=0

(
f

(+)
n − f

(−)
n

2

)
rn =

∞∑
n=1

rnbn sinnθ0
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So, by matching coefficients of the powers of r, we see that

a0 = 2f
(+)
0

an cosnθ0 =
f

(+)
n + f

(−)
n

2

bn sinnθ0 =
f

(+)
n − f

(−)
n

2

for n ≥ 1, which was our goal. �

Already, we can see some problems on the horizon for angles θ0 which are rational

multiples of π. If either cosnθ0 or sinnθ0 vanish for a particular value of n, then it

might not be possible for the coefficient equations of proposition 5.2.2 to be true. This

will be dealt with in the next section.

Assuming for the moment that cosnθ0 and sinnθ0 do not vanish for any value of

n ≥ 1, we can rearrange the coefficient equations to get:

an =
f

(+)
n + f

(−)
n

2 cosnθ0

and bn =
f

(+)
n − f

(−)
n

2 sinnθ0

for n ≥ 1. So, assuming an entire solution u exists, it must have the above coefficients,

and so we must have a unique solution. Whether or not these coefficients decay quickly

enough will determine whether or not entire solutions actually exist, and this will

depend on our ability to bound the denominators of the coefficients.

5.3 Rational Multiples of π

We will first dispatch the case where θ0 is a rational multiple of π by giving examples

of entire data for which the intersecting lines problem has no entire solution. Our

strategy will be to assume the existence of such an entire solution, and then obtain

a contradiction from proposition 5.2.2. In fact, we will be able to succeed in this

endeavour using only polynomial data.
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Proposition 5.3.1 Let θ0 be a rational multiple of π such that 0 < θ0 <
π
2
. Then,

there exists an entire function f such that there is no entire function u which satisfies

the intersecting lines problem:

4u = 0 in R2

u = f on θ = ±θ0.

Proof: Note that since 0 < θ0 <
π
2
, both cos θ0 and sin θ0 will be non-zero. Also, since

θ0 is a rational multiple of π, we will fix notation so that we can write θ0 = p
q
π, where p

and q are relatively prime integers. The proof consists of taking cases based on whether

q is even or odd.

First, suppose that q is odd and let:

f = rq sin θ = rq−1r sin θ =
(
x2 + y2

) q−1
2 y.

Then, f is a polynomial, and so is certainly entire. Next, we notice that:

f
∣∣∣
θ=±θ0

= ±rq sin θ0 =⇒ f (±)
q = ± sin θ0.

Therefore, assuming that we can find an entire solution u to the intersecting lines

problem with this data, proposition 5.2.2 tells us the form of the series that it must

have. Examining the coefficient bq tells us:

bq sin qθ0 =
f

(+)
q − f

(−)
q

2
= sin θ0.

However, this means that

0 6= sin θ0 = bq sin qθ0 = bq sin pπ = 0,

a contradiction. Therefore, the intersecting lines problem has no entire solutions for

this particular choice of data.



CHAPTER 5. INTERSECTING LINES IN TWO DIMENSIONS 60

Next, suppose that q is even and write q = 2q′. Then, for the fraction p
q

to be in

lowest terms, p must be odd, or p = 2p′ + 1. However, we then have:

cos q′θ0 = cos q′
2p′ + 1

2q′
π = cos

(
p′π +

π

2

)
= 0.

This will be the basis for our contradictions. We now need two further cases depending

on whether q′ is even or odd. First, suppose that q′ is even, and let:

f = rq′ =
(
x2 + y2

) q′
2 ,

which is a polynomial and hence an entire function. Since there is no θ dependence,

note that f
(±)
q′ = 1. Assuming that the intersecting lines problem has an entire solution,

proposition 5.2.2 tells us that the coefficient aq′ must satisfy:

aq′ cos q′θ0 =
f

(+)
q′ + f

(−)
q′

2
= 1.

However, this means that

1 = aq′ cos q′θ0 = 0,

a contradiction. Next, suppose that q′ is odd and let:

f = rq′ cos θ = rq′−1r cos θ =
(
x2 + y2

) q′−1
2 x,

which is a polynomial and so an entire function. Now, evaluating f on our two lines

gives us:

f
∣∣∣
θ=±θ0

= rq′ cos θ0 =⇒ f
(±)
q′ = cos θ0.

Assuming that the intersecting lines problem has an entire solution, proposition 5.2.2

tells us that the coefficient aq′ must satisfy:

aq′ cos q′θ0 =
f

(+)
q′ + f

(−)
q′

2
= cos θ0.

However, this means that

0 6= cos θ0 = aq′ cos q′θ0 = 0,
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a contradiction.

So, in all cases, if θ0 is a rational multiple of π, we can construct entire data for

which the intersecting lines problem has no entire solutions. �

5.4 Preliminary Bounds on the Denominator

With the results for θ0 being a rational multiple of π settled in the last section, we

can now turn to the more interesting case of when θ0 is not a rational multiple of π.

For this section, we will fix the notation of θ0 = απ, where α is irrational. Then, we

know that both sinnθ0 and cosnθ0 will never vanish for any n ≥ 1. However, since

nθ0 = nαπ, both of these quantities will get arbitrarily close to 0 infinitely often since

α can be approximated arbitrarily well by rational numbers. Using this as a starting

point, we can derive the following two estimates, given here as propositions 5.4.1 and

5.4.2.

Proposition 5.4.1 Let α be an irrational number such that

0 < θ0 = απ <
π

2
.

For n ≥ 1, if we define

q(n) = min
m∈Z

∣∣∣α− m

n

∣∣∣ ,
then we have the following inequalities:

1

π

1

nq(n)
≤ 1

| sinnαπ|
≤ 1

2

1

nq(n)

for all n ≥ 1.

Proof: We know that the value of q(n) will be achieved for a particular value of m, so

we can define the function p(n) by:

q(n) =

∣∣∣∣α− p(n)

n

∣∣∣∣ .
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In particular, note that q(n) < 1
2n

. Therefore, we can write:

nq(n)π = |nαπ − p(n)π|,

where 0 < nq(n)π < π
2
. Taking the sine of both sides gives:

sinnq(n)π = sin |nαπ − p(n)π|.

Next, on the interval (−π/2, π/2), we know that sin |x| = | sin x|, so we have:

sinnq(n)π = sin |nαπ − p(n)π| = | sin(nαπ − p(n)π)| = | sinnαπ|,

since p(n) is an integer. Finally, on the interval (0, π/2), we know by the concavity of

the sine function that

2

π
x ≤ sin x ≤ x,

so we can write:

2

π
nq(n)π ≤ sinnq(n)π ≤ nq(n)π.

Therefore, since sinnq(n)π = | sinnαπ|, we have arrived at our upper and lower bounds:

1

π

1

nq(n)
≤ 1

| sinnαπ|
≤ 1

2

1

nq(n)
.

�

Proposition 5.4.2 Let α be an irrational number such that

0 < θ0 = απ <
π

2
.

For n ≥ 1, if we define

qe(n) = min
m∈Z

∣∣∣∣α− 2m+ 1

2n

∣∣∣∣ ,
then we have the following inequalities:

1

π

1

nqe(n)
≤ 1

| cosnαπ|
≤ 1

2

1

nqe(n)

for all n ≥ 1.
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Proof: Apart from the slightly different form of our rational approximation to α, the

proof follows the same course as the previous proposition. We know that the value of

qe(n) will be achieved at a particular value of m, so we can define the function pe(n)

by:

qe(n) =

∣∣∣∣α− 2pe(n) + 1

2n

∣∣∣∣ .
Note that we again have 0 < qe(n) < 1

2n
. Therefore, we have

nqe(n)π =

∣∣∣∣nαπ − 2pe(n) + 1

2
π

∣∣∣∣ =
∣∣∣nαπ − pe(n)π − π

2

∣∣∣ ,
where 0 < nqe(n)π < π

2
. Taking the sine of both sides and making use of the fact that

sin |x| = | sin x| on the interval (−π/2, π/2), we have:

sinnqe(n)π = sin
∣∣∣nαπ − pe(n)π − π

2

∣∣∣
=

∣∣∣sin(nαπ − pe(n)π − π

2

)∣∣∣
=

∣∣∣sin(nαπ − π

2

)∣∣∣
= | cosnαπ|,

since pe(n) is an integer. Finally, by the concavity of sinx on the interval (0, π/2), we

can write

2

π
x ≤ sin x ≤ x

for all x in this interval. Therefore:

2nqe(n) ≤ sinnqe(n)π ≤ nqe(n)π.

Since we know that sinnqe(n)π = | cosnαπ|, we can rearrange the above inequalities

to get our final result:

1

π

1

nqe(n)
≤ 1

| cosnαπ|
≤ 1

2

1

nqe(n)

for all n ≥ 1. �
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Returning to the equations of proposition 5.2.2, we see that in order to get an upper

bound on our coefficients by making use of the above propositions, we will need to be

able to bound

q(n) = min
m∈Z

∣∣∣α− m

n

∣∣∣ and qe(n) = min
m∈Z

∣∣∣∣α− 2m+ 1

2n

∣∣∣∣
away from 0 in terms of n.

5.5 Algebraic Multiples of π

In order to produce an initial infinite set of angles θ0 which make our intersecting lines

problem always have an entire solution given any entire data, we need to borrow a few

more ideas from number theory. Recall that a number α is called algebraic if it is the

root of a polynomial with integer coefficients, or if p(α) = 0, where:

p(x) = a0 + a1x+ · · ·+ anx
n,

and each ai is an integer. The set of real algebraic numbers is infinite, countable, and

has Lebesgue measure 0. However, one interesting property of algebraic numbers is the

following approximation result.

Theorem 5.5.1 Let α be a real algebraic number. Then, there exists an integer d > 0

and a constant K > 0 such that: ∣∣∣α− m

n

∣∣∣ ≥ K

nd

for all integers m and n with n > 0.

This result is standard, and the proof can be found in [11]. Being able to bound

rational approximations away from 0 in this manner turns out to be one way to ensure

that our intersecting lines problem always has an entire solution given entire data, as

the next proposition shows.
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Proposition 5.5.2 Let θ0 = απ be an angle between 0 and π
2
, where α is irrational.

Suppose that we can find constants K and d such that∣∣∣α− m

n

∣∣∣ ≥ K

nd

for all integers m and n with n > 0. Then given any entire function f , we can find a

unique, entire function u which satisfies:

4u = 0 in R2

u = f on θ = ±θ0.

Proof: Using our lower bound on rational approximations to α, we can estimate:

q(n) = min
m∈Z

∣∣∣α− m

n

∣∣∣ ≥ K

nd

for all n ≥ 1. Also, we have:

qe(n) = min
m∈Z

∣∣∣∣α− 2m+ 1

2n

∣∣∣∣ ≥ K

(2n)d
=
K

2d

1

nd

for all n ≥ 1. Putting these estimates into the upper bounds in propositions 5.4.1 and

5.4.2 gives us:

1

| sinnαπ|
≤ 1

2

1

nq(n)
≤ 1

2

nd

nK
=

1

2K
nd−1 and

1

| cosnαπ|
≤ 1

2

1

nqe(n)
≤ 1

2

2dnd

nK
=

2d−1

K
nd−1.

Following equations (5.1) and (5.2), we let

f(r,±θ0) =
∞∑

n=0

f (±)
n rn,

where for any R > 0, we can find a constant CR > 0 such that:

|f (±)
n | ≤ CR

Rn
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for all n ≥ 0. Then, using the coefficient formulas in proposition 5.2.2, we can make

the following estimates:

|an| =

∣∣∣∣∣f (+)
n + f

(−)
n

2 cosnαπ

∣∣∣∣∣
≤ 1

2

(
|f (+)

n |+ |f (−)
n |
) 1

| cosnαπ|

≤ CR

Rn

2d−1

K
nd−1

≤ 2d−1CR

K

(
2d−1

R

)n

and

|bn| =

∣∣∣∣∣f (+)
n − f

(−)
n

2 sinnαπ

∣∣∣∣∣
≤ 1

2

(
|f (+)

n |+ |f (−)
n |
) 1

| sinnαπ|

≤ CR

Rn

1

2K
nd−1

≤ CR

2K

(
2d−1

R

)n

.

Since K and d are constants which depend only upon α, and since we may choose R

to be arbitrarily large, we see that the conditions of theorem 2.2.6 are satisfied for our

sequence of coefficients. Therefore, the function defined by:

u = f
(+)
0 +

∞∑
n=1

rn

(
f

(+)
n + f

(−)
n

2 cosnθ0

cosnθ +
f

(+)
n − f

(−)
n

2 sinnθ0

sinnθ

)
is an entire harmonic function in the plane. To see that it satisfies our intersecting lines

problem, we must now only show that it takes on the right values on the lines θ = ±θ0.

First, we have:

u(r, θ0) = f
(+)
0 +

∞∑
n=1

rn

(
f

(+)
n + f

(−)
n

2
+
f

(+)
n − f

(−)
n

2

)

= f
(+)
0 +

∞∑
n=1

f (+)
n rn

= f(r, θ0).



CHAPTER 5. INTERSECTING LINES IN TWO DIMENSIONS 67

Next, using the fact that f
(+)
0 = f

(−)
0 since f has only a single value at the origin, we

have:

u(r,−θ0) = f
(+)
0 +

∞∑
n=1

rn

(
f

(+)
n + f

(−)
n

2
− f

(+)
n − f

(−)
n

2

)

= f
(−)
0 +

∞∑
n=1

f (−)
n rn

= f(r,−θ0).

Therefore, we have constructed an entire harmonic function which satisfies our inter-

secting lines problem. Finally, since the coefficients were completely determined by the

data, this solution must be unique. �

In particular, note that the combination of theorem 5.5.1 and proposition 5.5.2 tells

us that angles of the form θ0 = απ where α is algebraic will all guarantee that the

intersecting lines problem will always have a unique, entire solution given any entire

data. While this is encouraging, we must bear in mind that the set of real algebraic

numbers has Lebesgue measure 0. Therefore, while we have shown that there are

infinitely many angles θ0 which will guarantee an entire solution given any entire data,

the set of such angles is still small, in some sense. We remedy this situation in the

next section, however, with the introduction of a little machinery from transcendental

number theory.

5.6 Extension of the Positive Results

In 1932, Mahler introduced a classification of all complex numbers into four disjoint

sets, which are labelled A, S, T , and U . The idea was based on a generalization of the

concept of approximation of a number by rationals. In this exposition, we will follow

the notation of Baker, as given in [4].
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Given a polynomial with integer coefficients,

p(x) = a0 + a1x+ · · ·+ anx
n,

we define the height of p(x) to be:

max{|a0|, |a1|, . . . , |an|}.

In particular, note that for fixed values of n and h, there are only finitely many such

polynomials of degree at most n with height at most h. So, given any complex number

α, there will be a polynomial p(x) with degree at most n and height at most h such

that |p(α)| is minimized. We then define the quantity ω(n, h) by the following relation:

|p(α)| = 1

hnω(n,h)
,

with the convention that ω(n, h) = ∞ if p(α) = 0. Of course, the most interesting

situations happen when α is transcendental, or when we are guaranteed that p(α) will

never vanish. Further to this, we define the quantities ωn by:

ωn = lim sup
h→∞

ω(n, h),

so we are allowing polynomials with larger and larger heights. Next, we define:

ω = lim sup
n→∞

ωn.

Finally, we let ν = k, where k is the smallest integer such that ωk = ∞. If ωk is finite

for all k, then we let ν = ∞. A number α will then belong to one of the sets A, S, T ,

or U according to the behaviour of these quantities:

α ∈ A ⇔ ω = 0, ν = ∞,

α ∈ S ⇔ 0 < ω <∞, ν = ∞,

α ∈ T ⇔ ω = ∞, ν = ∞, and

α ∈ U ⇔ ω = ∞, ν <∞.
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Roughly speaking, for an irrational number α, a larger value of ω means that α can be

better approximated by rationals.

In [4], it is then shown that the set A is just the usual set of algebraic numbers.

Therefore, A has Lebesgue measure 0 since the set of algebraic numbers is countable. It

is also shown that both T and U have Lebesgue measure 0. So, in fact, most numbers

are S numbers. We will now use that fact to show that in the same sense, most angles

θ0 = απ will guarantee that the intersecting lines problem has an entire solution given

any entire data.

Proposition 5.6.1 Let α be an irrational number such that 0 < α < 1
2
, i.e. 0 < θ0 =

απ < π
2
. Also, suppose that for this α, we have that ν > 1, or that ω1 is finite. Then,

we can find constants K and d such that:∣∣∣α− m

n

∣∣∣ ≥ K

nd

for all integers m and n with n > 0.

Proof: Since we know that

ω1 = lim sup
h→∞

ω(1, h) <∞,

we can find a constant H > 0 such that

sup{ω(1, h) : h ≥ H} ≤ ω1 + 1.

Bearing this in mind, we define:

M = max{1, ω(1, 1), . . . , ω(1, H − 1), ω1 + 1},

so we have ω(1, h) ≤M for all h ≥ 1, and M ≥ 1. In particular:

hω(1,h) ≤ hM =⇒ 1

hM
≤ 1

hω(1,h)



CHAPTER 5. INTERSECTING LINES IN TWO DIMENSIONS 70

for all h ≥ 1. Now, let p(x) = hx − k, where h and k are integers with h > 0 and

0 ≤ k ≤ h. Then, the height of p(x) is h, and so by the definition of ω(1, h), we have:

|p(α)| ≥ 1

h1·ω(1,h)
≥ 1

hM
.

Substituting in our choice of p(x) and rearranging, we are left with:

|hα− k| ≥ 1

hM
=⇒

∣∣∣∣α− k

h

∣∣∣∣ ≥ 1

hM+1

for all h ≥ 1 and 0 ≤ k ≤ h. Finally, we need to extend this inequality to be true for

all h ≥ 1 and all integers k. To see that this is true, note that since 0 < α < 1
2
,∣∣∣∣α− k

h

∣∣∣∣ ≥ 1

h

if k < 0 or k > h. Also, since h ≥ 1 and M ≥ 1, we know

hM ≥ 1 =⇒ hM+1 ≥ h =⇒ 1

h
≥ 1

hM+1
.

Putting these two facts together, we have that∣∣∣∣α− k

h

∣∣∣∣ ≥ 1

hM+1

for all h ≥ 1 and for all integers k. Switching notation to that of proposition 5.5.2, we

have found constants K = 1 and d = M + 1 such that∣∣∣α− m

n

∣∣∣ ≥ K

nd

for all integers m and n with n > 0. �

In the previous section, we proved that angles which are algebraic multiples of π

will always guarantee that the intersecting lines problem will have an entire solution

given any entire data. We can now extend this result to a much larger set, in terms of

Lebesgue measure.
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Theorem 5.6.2 Consider the intersecting lines problem:

4u = 0 in R2

u = f on θ = ±θ0,

where 0 < θ0 <
π
2
. Then, the set of angles θ0 which guarantee that we can find an entire

solution u given any entire data f has full measure, i.e. has measure π
2
.

Proof: Let α be an irrational number such that 0 < α < 1
2
, or 0 < θ0 = απ < π

2
. Also,

suppose that for this α, we know ν > 1, or that ω1 is finite. Then, by proposition 5.6.1,

we know that we can find constants K and d such that∣∣∣α− m

n

∣∣∣ ≥ K

nd

for all integers m and n such that n > 0. Therefore, by proposition 5.5.2, we know that

for this particular θ0 = απ, the intersecting lines problem will always have a unique,

entire solution given any entire data. To prove our theorem, note that the only angles

which remain are those of the form θ0 = απ where α is irrational and ν ≤ 1, or θ0 = απ

where α is rational. However, we know that if ν ≤ 1 then α ∈ U which has measure 0,

and we know that the rational multiples of π also have measure 0. So, all of the angles

which may not guarantee entire solutions given entire data live inside a set of measure

0. Therefore, the set of angles which do guarantee entire solutions given entire data

must have full measure, or measure π
2
. �

5.7 An Example with No Entire Solution

Up until this point, the only examples of angles where we constructed entire data for

which the intersecting lines problem did not have an entire solution have been the

rational multiples of π. In theorem 5.6.2, the possibility arose that there may be more
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such angles, namely certain transcendental multiples of π. In this section, we will

construct uncountably many of them.

Referring back to propositions 5.4.1 and 5.4.2, we see that the success of this con-

struction will depend on our ability to find numbers which can be approximately ex-

tremely well by rational numbers. To this end, we prove the following proposition,

which was inspired by Liouville’s number, which is defined as:

α =
∞∑

n=1

1

10n!
.

The proof that α is transcendental found in [4] is the motivation behind the construction

in the next proposition.

Proposition 5.7.1 Let h be a function such that for any C > 0, we know that h(n) >

Cn for sufficiently large integers n. Then, we can construct uncountably many irrational

numbers α such that the inequality ∣∣∣α− a

b

∣∣∣ < 1

h(b)

has infinitely many coprime integer solutions (a, b).

Proof: First, we will demonstrate how to construct one of these numbers. We will use

the same form as Liouville’s number, but instead of using n! in the exponent in the

denominator, we will replace it by an initially unknown, increasing function from the

natural numbers to the natural numbers:

α =
∞∑

k=1

1

10g(k)
.

Note that the function g(n) determines the decimal expansion of the number α. Now,

given a function h, we wish to construct the function g and hence the number α such

that the following inequality: ∣∣∣α− a

b

∣∣∣ < 1

h(b)
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has infinitely many integer solutions (a, b) where a and b are relatively prime. To this

end, we define the following sequences of integers:

an = 10g(n)

n∑
k=1

1

10g(k)
and bn = 10g(n).

Note that since we will construct g to be increasing, each an is congruent to 1 modulo

10. Therefore, each pair (an, bn) is relatively prime. Next, note that we have the

following approximations:∣∣∣∣α− an

bn

∣∣∣∣ =

∣∣∣∣∣α−
n∑

k=1

1

10g(k)

∣∣∣∣∣
=

∞∑
k=n+1

1

10g(k)

≤ 1

10g(n+1)

(
1 +

1

10
+

1

100
+ · · ·

)
=

10

9

1

10g(n+1)
.

We can guarantee that these sequences of integers will be our desired solutions by

imposing the condition that:∣∣∣∣α− an

bn

∣∣∣∣ ≤ 10

9

1

10g(n+1)
<

1

h(bn)
=

1

h (10g(n))
. (5.3)

This condition will give us a recursive definition for g which can be found by rearranging:

10

9

1

10g(n+1)
<

1

h (10g(n))
⇔ g(n+ 1) >

log
(

10
9
h
(
10g(n)

))
log 10

.

Thus, we can take g(1) to be any positive integer, and then let:

g(n+ 1) = max

(⌈
log
(

10
9
h
(
10g(n)

))
log 10

⌉
+ 1, g(n) + 1

)
.

This insures that g is increasing and that inequality (5.3) is satisfied. Since g(1) is

arbitrary, given the function h, we can construct at least countably many numbers α

such that the inequality: ∣∣∣α− a

b

∣∣∣ < 1

h(b)
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has infinitely many coprime integer solutions (a, b). Next, we will show that each such

α which we have constructed is irrational.

Let α be any number constructed by the above process, and let g(n) be the corre-

sponding function used in the construction. We will now make use of the fact that a

number is rational if and only if its decimal expansion is eventually repeating. Since

we know that for any constant C, h(n) > Cn for sufficiently large n, we can make the

particular choice of

h
(
10g(n)

)
> 9 · 10N−1 · 10g(n)

for each N ≥ 1, for sufficiently large n. Multiplying through by 10
9

gives:

10

9
h
(
10g(n)

)
> 10g(n)+N .

We can then take the logarithm of both sides and then add 1 to obtain:

log
(

10
9
h
(
10g(n)

))
log 10

+ 1 > g(n) +N + 1.

However, by the definition of g(n), we know that

g(n+ 1) ≥
log
(

10
9
h
(
10g(n)

))
log 10

+ 1 > g(n) +N + 1.

Since this is true for each N ≥ 1 for n sufficiently large, we see that

sup
n

(g(n+ 1)− g(n)) = ∞.

Therefore, α cannot possibly have a repeating decimal expansion, and so it must be

irrational.

Finally, we will show that this construction technique will produce uncountably

many such numbers α. Since the choice of g(1) was arbitrary, we know that there are

at least countably many such numbers α, so suppose that these are all of them, and

label them α1, α2, · · · . We will now proceed to construct an α in the same manner as

above for which we can find infinitely many coprime integer solutions to:∣∣∣α− a

b

∣∣∣ < 1

h(b)
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and which is not in our list. For each i, let ki be the position of the ith 1 in αi. Then,

define the function g(n) recursively by g(1) = k1 + 1, and:

g(n+ 1) = max

(⌈
log
(

10
9
h
(
10g(n)

))
log 10

⌉
+ 1, g(n) + 1, kn+1 + 1

)
.

This means that g(n) is increasing, and if we let:

α =
∞∑

n=1

1

10g(n)
,

then as before, α will be irrational, and we will be able to find infinitely many coprime

integer solutions to: ∣∣∣α− a

b

∣∣∣ < 1

h(b)
.

However, for each n ≥ 1, the position of the nth 1 in α is greater than or equal to kn +1,

which is strictly greater than kn, or the position of the nth 1 in αn. Therefore, α 6= αn

for any n, and so there must be uncountably many such α. �

Finally, we will give an example of entire data f for which we can construct uncount-

ably many angles θ0 such that the intersecting lines problem has no entire solutions.

As our data, we will choose f = yex, and we will leave our angle θ0 = απ undetermined

for the moment. Evaluating f on θ = θ0 gives:

f
∣∣∣
θ=θ0

= r sin θ0

∞∑
n=0

(r cos θ0)
n

n!
=

∞∑
n=1

(cos θ0)
n−1 sin θ0

(n− 1)!
rn.

Similarly, we have:

f
∣∣∣
θ=−θ0

= −
∞∑

n=1

(cos θ0)
n−1 sin θ0

(n− 1)!
rn.

This means that

bn =
f

(+)
n − f

(−)
n

2 sinnθ0

=
1

sinnθ0

(cos θ0)
n−1 sin θ0

(n− 1)!
.

Now, since we know that

1

| sinnθ0|
=

1

| sinnαπ|
≥ 1

π

1

nq(n)
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where

q(n) = min
m∈Z

∣∣∣α− m

n

∣∣∣ ,
we arrive at the following lower bound:

|bn| =
| cos θ0|n−1| sin θ0|

(n− 1)!

1

| sinnθ0|
≥ | cos θ0|n−1| sin θ0|

(n− 1)!

1

πnq(n)
=
| cos θ0|n−1| sin θ0|

πn!q(n)
.

Now, suppose that u is an entire solution to our intersecting lines problem with the

data as chosen above. We can write:

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) .

Then, pick any R > 0. We should be able to find a constant CR > 0 such that

|bn| ≤
CR

Rn

for all n ≥ 1. However, this means that:

| cos θ0|n−1| sin θ0|
πn!q(n)

≤ |bn| ≤
CR

Rn

for all n ≥ 1. We can rearrange this to see that

q(n) ≥ | cos θ0|n−1| sin θ0|Rn

CRπn!

for all n ≥ 1. We will now construct a number α and hence our angle θ0 so that this

statement is not true. To this end, define the function h(n) by:

h(n) = πn!.

Clearly, for any constant K > 0, we have h(n) > Kn for all sufficiently large n.

Therefore, by proposition 5.7.1, we can construct uncountably many irrational numbers

α such that the inequality ∣∣∣α− m

n

∣∣∣ < 1

h(n)
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has infinitely many solutions in coprime integers. Pick any such α, let the sequence of

the denominators of these solutions be given by n1, n2, n3, . . ., and let θ0 = απ. This

means that

q(nk) ≤
1

h(nk)

for all k ≥ 1, and so:

| cos θ0|nk−1| sin θ0|Rnk

CRπnk!
≤ q(nk) ≤

1

h(nk)
=

1

πnk!

for each k ≥ 1. Now, this can be rearranged to get:

|R cos θ0|nk tan θ0 ≤ CR

for each k ≥ 1. However, since this must be true for any R > 0, we can certainly

choose an R such that |R cos θ0| > 1. Then, the above inequality will not be true for

k sufficiently large, and so it will not be the case that for any R > 0, we can find a

constant CR > 0 such that

|bn| ≤
CR

Rn

for each n ≥ 1. Therefore, for any of our constructed angles and the given data, the

intersecting lines problem does not have an entire solution.

5.8 Density of Bad Angles

To summarize our work on the intersecting lines problem thus far, we have found that

the existence of entire solutions given any entire data depends on the angle between

the lines and the x-axis. We found a set of angles of full measure for which the problem

will always possess an entire solution given entire data. For angles which are rational

multiples of π, we found that there will not always be entire solutions. However,

the corresponding problem will not always possess a polynomial solution given any

polynomial data, and so this is not really a case of interest. What we wish to investigate
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now are the rest of the bad angles, of which we constructed uncountably many in the

previous section.

We know that the set of angles which will not always guarantee us an entire solution

will be uncountable and have Lebesgue measure 0. We will now show that this set of

angles is also dense in [0, π/2].

Proposition 5.8.1 The set of angles θ0 = απ with α irrational for which the problem

4u = 0 in R2

u = f on θ = ±θ0

does not have an entire solution u for all entire data f is dense in [0, π/2].

Proof: We will make extensive use of our example in the previous section, where for

the data f = yex, we constructed uncountably many angles for which the intersecting

lines problem did not have an entire solution. For this proof, fix θ0 = απ to be any one

of those angles constructed in the manner of proposition 5.7.1. Our strategy will then

be to show that for all rational numbers of the form:

s =
p

10q

where p is an integer and q is a positive integer, the intersecting lines problem with the

angle (s + α)π will fail to have an entire solution for the same data, f = yex. Since

rational numbers of this form are dense in the real numbers, this will show that the set

of angles which do not always guarantee us an entire solution will have a dense subset,

and hence be dense itself.

Let

s =
p

10q
,
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where p is any integer and q is any positive integer. Choose any q′ > q and let n = 10q′ .

Then, note that ns is an integer, and:

|sin (n (s+ α)π)| = |sinnsπ · cosnαπ + cosnsπ · sinnαπ|

= |cosnsπ · sinnαπ|

= |sinnαπ| .

Now, let θ0 = (s+ α)π, and suppose that the problem

4u = 0 in R2

u = yex on θ = ±θ0

has an entire solution u. Since it is entire, we know that we are able to write

u =
a0

2
+

∞∑
n=1

rn (an cosnθ + bn sinnθ) ,

where for every R > 0, we can find a constant CR > 0 such that

|an| ≤
CR

Rn
and |bn| ≤

CR

Rn

for all n ≥ 0. As before, we have an explicit formula for the coefficients, and our

particular interest lies with the bn:

bn =
1

sinnθ0

(cos θ0)
n−1 sin θ0

(n− 1)!
.

Also as before, we can find infinitely many coprime integer solutions to the inequality∣∣∣α− m

n

∣∣∣ < 1

πn!
.

Let the sequence of denominators of these solutions be n1, n2, . . . , and note by the

construction technique of proposition 5.7.1 that these integers will all be powers of 10.
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Therefore, for sufficiently large k, nks will be an integer, and we will have

|bnk
| =

1

| sinnkθ0|
| cos θ0|nk−1| sin θ0|

(nk − 1)!

=
1

| sin (nk (r + α)π) |
| cos θ0|nk−1| sin θ0|

(nk − 1)!

=
1

| sinnkαπ|
| cos θ0|nk−1| sin θ0|

(nk − 1)!

≥ | cos θ0|nk−1| sin θ0|
πnk!q(nk)

≥ | cos θ0|nk−1| sin θ0|,

since

q(nk) = min
m∈Z

∣∣∣∣α− m

nk

∣∣∣∣ ≤ 1

πnk!
.

Now, pick any R such that |R cos θ0| > 1. Then, we should be able to find a constant

CR > 0 such that

|bn| ≤
CR

Rn

for all n ≥ 0. Using our above bound, this means:

| cos θ0|nk−1| sin θ0| ≤
CR

Rnk
=⇒ |R cos θ0|nk | tan θ0| ≤ CR,

which will be false for sufficiently large k. Therefore, the problem

4u = 0 in R2

u = yex on θ = ±θ0

will not have an entire solution u, and so the angle

θ0 =
( p

10q
+ α

)
π

will be bad. Since p and q were arbitrary, we have shown the existence of a dense subset

of bad angles, and so the set of bad angles itself must also be dense. �



Chapter 6

The Infinite Strip in Two

Dimensions

This chapter is somewhat different from the previous chapters in that we were unable to

determine whether or not our problem always possessed an entire solution given entire

data. However, the search led to many interesting ideas and related questions, and we

will discuss them here. The specific question that we were interested in answering was:

given any entire functions f and g, can we construct an entire function u which satisfies

4u = 0 in R2

u = f on y = 0

u = g on y = 1?

Note that we can pose the question using only one function as our entire data. If we

let:

h(x, y) = (1− y)f(x) + yg(x),

81
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then h(x, 0) = f(x) and h(x, 1) = g(x), and our infinite strip problem becomes:

4u = 0 in R2

u = h on y(y − 1) = 0.

6.1 Review of the Polynomial Problem

Suppose that we restrict ourselves to looking at polynomial data. Then, we can show

that the infinite strip problem will always have a polynomial solution. Our boundary

surface is given by the polynomial y(y − 1) = y2 − y = 0, and this has a leading order

term of y2. Since this does not change sign, we can use lemma 3 of [6] by Brelot and

Choquet to say that our boundary polynomial is not a harmonic divisor. Therefore,

using the operator method from [16] and [17], we see that the polynomial problem in

the infinite strip will always possess a polynomial solution.

6.2 An Initial Simplification

Our first step in searching for entire solutions will be to make a slight simplification of

the problem. The initial formulation of the infinite strip problem involved prescribing

data on both of the lines y = 0 and y = 1. However, we will show that being able to

prescribe data on just one of these lines is enough.

Proposition 6.2.1 Suppose that for any entire function f , we can find an entire func-

tion u which satisfies:

4u = 0 in R2

u = f on y = 0

u = 0 on y = 1.
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Then, for any entire functions f and g, we can find an entire function u which satisfies:

4u = 0 in R2

u = f on y = 0

u = g on y = 1.

Proof: Given an entire function f , we know that we can find an entire function u which

satisfies:

4u = 0 in R2

u = f on y = 0

u = 0 on y = 1.

Then, the function v(x, y) = u(x, 1− y) will also be entire, and it will satisfy:

4v = 0 in R2

v = 0 on y = 0

v = f on y = 1.

We can then construct a solution to the full infinite strip problem by finding an entire

function v which satisfies:

4v = 0 in R2

v = f on y = 0

v = 0 on y = 1,

and an entire function w which satisfies:

4w = 0 in R2

w = g on y = 0

w = 0 on y = 1.
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Then, the function u(x, y) = v(x, y) + w(x, 1 − y) will be an entire function which

satisfies:

4u = 0 in R2

u = f on y = 0

u = g on y = 1.

�

Note that there is nothing special about us choosing the line y = 0 as the line where

we prescribe data. With the simple transformation y 7→ 1 − y, we could have just as

easily chosen the line y = 1. Also note that we can never guarantee uniqueness for

these problems, as the entire function u = eπx sin πy satisfies:

4u = 0 in R2

u = 0 on y = 0

u = 0 on y = 1.

6.3 Reformulation as an Infinite Differential Oper-

ator

Our first attempt will be to consider the infinite strip problem where we prescribe data

on the line y = 1:

4u = 0 in R2

u = 0 on y = 0

u = f on y = 1.

Following our success with the half space problems, we will try to write our solution u

as a series in y with coefficients which are functions of x. Again, assuming u is entire
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leads to the following series:

u =
∞∑

k=0

(−1)kg
(2k)
0 (x)

(2k)!
y2k +

∞∑
k=0

(−1)kg
(2k)
1 (x)

(2k + 1)!
y2k+1.

However, since we know that u = 0 when y = 0, this means that g0 ≡ 0, or

u =
∞∑

k=0

(−1)kg
(2k)
1 (x)

(2k + 1)!
y2k+1.

By evaluating this on y = 1 and using our other boundary condition, we arrive at:

f(x) =
∞∑

k=0

(−1)kg
(2k)
1 (x)

(2k + 1)!
. (6.1)

This is a differential equation which depends upon all of the derivatives of the unknown

function, and it can be written in a slightly more compact form. We know that the

power series for the sinc function is:

sinc(x) =
sin x

x
=

∞∑
k=0

(−1)kx2k

(2k + 1)!
.

So, if we replace the variable x by the derivative operator D, we obtain a differential

operator:

sinc(D) =
∞∑

k=0

(−1)kD2k

(2k + 1)!
,

which acts on the space of entire functions in the natural way. Therefore, equation

(6.1) can be written as:

sinc(D)g1 = f. (6.2)

The homogeneous version of these types of problems were considered in [19] by Ritt. For

this non-homogeneous problem, we are guaranteed that the left hand side of equation

(6.2) is well-defined by the following proposition.

Proposition 6.3.1 Let g be an entire function. Then sinc(D)g is an entire function.

Proof: Since g is entire, we can write it as

g(x) =
∞∑

n=0

gnx
n.
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We can also differentiate it as many times as we please by using equation (2.1) to get

the following series:

g(2k)(x) =
∞∑

n=0

(n+ 1)2kgn+2kx
n.

Formally substituting this into the series for sinc(D)g, we have:

sinc(D)g =
∞∑

k=0

(−1)kg(2k)(x)

(2k + 1)!

=
∞∑

k=0

∞∑
n=0

(−1)k

(2k + 1)!
(n+ 1)2kgn+2kx

n

=
∞∑

k=0

∞∑
n=0

(−1)k

2k + 1

(n+ 2k)!

n!(2k)!
gn+2kx

n

=
∞∑

k=0

∞∑
n=0

(−1)k

2k + 1

(
n+ 2k

n

)
gn+2kx

n.

To finish the proof, we will show that this series is absolutely convergent on compact

subsets, rearrange the series to get expressions for the coefficients of sinc(D)g, and then

estimate them to show that in fact this will define an entire function.

First, pick any R > 1. Since g is entire, we can find a constant C3R > 0 such that

|gn| ≤
C3R

(3R)n

for all n ≥ 0. Then, for |x| ≤ R, we have the following estimate:∣∣∣∣ (−1)k

2k + 1

(
n+ 2k

n

)
gn+2kx

n

∣∣∣∣ =
1

2k + 1

(
n+ 2k

n

)
|gn+2k||x|n

≤ 1

2k + 1
2n+2k C3R

(3R)n+2k
Rn

≤ 1

2k + 1
2n+2k C3R

(3R)n+2k
Rn+2k

=
C3R

2k + 1

(
2

3

)n+2k

≤ C3R

(
2

3

)n+2k

.
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However, this means that:

∞∑
k=0

∞∑
n=0

∣∣∣∣ (−1)k

2k + 1

(
n+ 2k

n

)
gn+2kx

n

∣∣∣∣ ≤
∞∑

k=0

∞∑
n=0

C3R

(
2

3

)n+2k

= C3R

∞∑
k=0

(
2

3

)2k

·
∞∑

n=0

(
2

3

)n

,

which is finite. Therefore, the formal sum for sinc(D)g is absolutely convergent for all

x on compact subsets. This permits us to rearrange the series to obtain:

sinc(D)g =
∞∑

k=0

∞∑
n=0

(−1)k

2k + 1

(
n+ 2k

n

)
gn+2kx

n

=
∞∑

n=0

(
∞∑

k=0

(−1)k

2k + 1

(
n+ 2k

n

)
gn+2k

)
xn.

Finally, we will estimate these coefficients to show that sinc(D)g is entire.

For any R > 1, we can find a constant C2R > 0 such that

|gn| ≤
C2R

(2R)n

for all n ≥ 0, since g is entire. This allows us to bound the coefficient as follows:∣∣∣∣∣
∞∑

k=0

(−1)k

2k + 1

(
n+ 2k

n

)
gn+2k

∣∣∣∣∣ ≤
∞∑

k=0

1

2k + 1

(
n+ 2k

n

)
|gn+2k|

≤
∞∑

k=0

2n+2k C2R

(2R)n+2k

=
∞∑

k=0

C2R

Rn+2k

=
C2R

Rn

∞∑
k=0

1

R2k

=
C2R

Rn
· R2

R2 − 1

=
C ′

R

Rn
,

where we know that this geometric series converges since R > 1, and where we have

collected simple R dependence into C ′
R. Therefore, for every R > 1, we have found a
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constant C ′
R > 0 such that∣∣∣∣∣

∞∑
k=0

(−1)k

2k + 1

(
n+ 2k

n

)
gn+2k

∣∣∣∣∣ ≤ C ′
R

Rn

for all n ≥ 0. Since this can be trivially extended to be true for all R > 0, we see that

sinc(D)g will be an entire function. �

Based on this proposition, we see that the operator sinc(D) maps entire functions

to entire functions. The question now becomes whether or not this map is surjective.

The importance of this question is shown in the next theorem.

Theorem 6.3.2 Consider the infinite strip problem:

4u = 0 in R2

u = 0 on y = 0

u = f on y = 1,

where f is an entire function. Then, we will always be able to find an entire solution

u given any entire data f if and only if the operator sinc(D) is a surjective map from

the space of entire functions to itself.

Proof: First, suppose that for every entire function f , we can find an entire function

u which satisfies the infinite strip problem with f as data. This can be written as a

series in y as:

u(x, y) =
∞∑

k=0

(−1)kg(2k)(x)

(2k + 1)!
y2k+1.

Note that we can recover the function g:

g(x) =
∂u

∂y

∣∣∣
y=0

.

Therefore, g will be an entire function, and by evaluating u on y = 1, we see that

sinc(D)g = f . Since f was chosen arbitrarily, the map sinc(D) is surjective.
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Next, suppose that the map sinc(D) is surjective. Let f be any entire function, and

let g be such that sinc(D)g = f . Then, consider the function

u =
∞∑

k=0

(−1)kg(2k)(x)

(2k + 1)!
y2k+1.

By proposition 3.4.2, we know this this will be an entire function, and by proposition

3.4.3 we know that it will be harmonic. Evaluating along y = 0 clearly gives 0, and

evaluating along y = 1 gives:

u(x, 1) =
∞∑

k=0

(−1)kg(2k)(x)

(2k + 1)!
= sinc(D)g = f.

Therefore, u is an entire function which satisfies the infinite strip problem with f given

as data. Since f was arbitrarily chosen, the infinite strip problem will have an entire

solution for any entire data. �

Unfortunately, we were unable to determine whether or not the operator sinc(D)

was surjective. Other unanswered questions related to infinite differential operators

will be discussed in chapter 7.

6.4 Reformulation as a Difference Equation

It may be possible to view the question of the surjectivity of the sinc(D) operator in

a different light. Through a series of transformations which preserve entire functions,

we can arrive at a difference equation instead of a differential equation, although the

sacrifice to be made is that we must now allow complex variables. However, the proof

of proposition 6.3.1 still works if the real variable x is replaced by the complex variable

z, and so sinc(D) will map complex entire functions to complex entire functions. Let

us start with the following equation, where f and g are complex entire functions:

sinc(D)g = f =⇒
∞∑

k=0

(−1)k

(2k + 1)!
g(2k)(z) = f(z).
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Differentiating with respect to z gives us:

∞∑
k=0

(−1)k

(2k + 1)!
g(2k+1)(z) = f ′(z) =⇒ sin(D)g(z) = f ′(z).

Next, we can convert the sin(D) into an exponential form:

eiD − e−iD

2i
g(z) = f ′(z) =⇒ eiDg(z)− e−iDg(z) = 2if ′(z).

We can now make use of a form of Taylor’s Theorem which states that eaDg(z) =

g(z + a):

g(z + i)− g(z − i) = 2if ′(z).

Finally, we will perform a series of simple scale changes and relabellings to bring this

into a nice form. First, we let g2(z) = g(2iz) and 2if ′(z) = f2(z). Our equation then

becomes:

g2

(
z

2i
+

1

2

)
− g2

(
z

2i
− 1

2

)
= f2(z).

Then, we make the change of variable w = z
2i

, which brings us to:

g2

(
w +

1

2

)
− g2

(
w − 1

2

)
= f2(2iw).

Finally, we let g3(w) = g2

(
w − 1

2

)
, which gives us:

g3(w + 1)− g3(w) = f2(2iw).

Reclaiming our original letters, being able to find a complex entire function g which

satisfies

g(z + 1)− g(z) = f(z) (6.3)

for any complex entire function f will mean that the sinc(D) operator is surjective,

since we can just invert through our series of transformations.

This problem has been studied before, and in particular, it is at the heart of al-

gorithms for indefinite summation in modern computer algebra systems, which can be
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found in [22]. We will show how to solve equation (6.3) for polynomials f and g, but we

were unable to extend these results to entire functions. A discussion of the difficulties

can be found in chapter 7.

If f is a polynomial, the most direct way to solve equation (6.3) is to make use of

a different basis of the space of polynomials. First, we will define some notation for a

falling factorial:

(x)k = x(x− 1)(x− 2) · · · (x− k + 1),

with the convention that (x)0 = 1. For each k, (x)k will have degree k, and so we can

use these as a basis for polynomials. The coefficients for this change of basis are the

well known Stirling numbers of the second kind, denoted by:{
n

k

}
,

where n and k are non-negative integers with k ≤ n. A description of their properties

can be found in [10]. In particular, the change of basis is given by:

xn =
n∑

k=0

{
n

k

}
(x)k.

The reason for choosing this basis is the following formula, which is a discrete analog

of the derivative:

(x+ 1)k − (x)k = (x+ 1)x · · · (x− k + 2)− x(x− 1) · · · (x− k + 1)

= x(x− 1) · · · (x− k + 2)(x+ 1− (x− k + 1))

= kx(x− 1) · · · (x− k + 2)

= k(x)k−1.

Therefore, suppose that we are given a polynomial f(x), and we wish to solve equation

(6.3). Then, if we write f(x) as:

f(x) =
N∑

n=0

fnx
n,
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we can perform a change of basis to obtain

f(x) =
N∑

n=0

fnx
n

=
N∑

n=0

n∑
k=0

fn

{
n

k

}
(x)k

=
N∑

k=0

(
N∑

n=k

fn

{
n

k

})
(x)k.

So, using the discrete derivative property of the falling factorial, we can write down a

solution directly:

g(x) =
N∑

k=0

1

k + 1

(
N∑

n=k

fn

{
n

k

})
(x)k+1.

Note that this solution will not be unique, since we may add an arbitrary constant, just

like with indefinite integration. In fact, the processes of applying a difference operator

to a function and trying to solve equation (6.3) share many algebraic properties with

the usual operations of differentiation and integration, and an explanation of some of

these similarities can be found in [22].

As straightforward as solving equation (6.3) was for polynomials, extending the

solution to entire functions proved to be difficult. This will be discussed in chapter 7.

6.5 A Formula with Complex Variables

Our lack of success in the previous sections might lead us to think that the infinite strip

problem might not always possess an entire solution given any entire data. After our

experience with the heat equation, we might suspect that the infinite strip problem will

only possess an entire solution if the given data satisfies some sort of growth condition.

In this section, we will give some compelling evidence which suggests that this is not

the case by finding explicit solutions for data which seems to grow as quickly as we

please.



CHAPTER 6. THE INFINITE STRIP IN TWO DIMENSIONS 93

Suppose we have an entire complex function which satisfies the following conditions:

f(z + 2i) = f(z) for all z (6.4)

f(z) = f(z) for all z. (6.5)

Note that this second condition is the same as that used to extend a complex analytic

function across the real axis when it is real valued there. Then, if we consider the

problem:

4u = 0 in R2

u = f on y = 0

u = 0 on y = 1,

we can write down a solution in a very compact way:

u(x, y) = < ((1 + i(x+ iy))f(x+ iy)) . (6.6)

Certainly, this will be an entire function by proposition 2.2.1. Also, it will be harmonic.

To see that it satisfies the boundary conditions, we first note two facts. First, on y = 0,

we have:

f(x+ iy) = f(x− iy) =⇒ f(x) = f(x) =⇒ f(x) ∈ R.

Next, on y = 1, we can perform the same calculation, also making use of the periodicity

of f to see:

f(x+ i) = f(x− i) = f(x+ i) =⇒ f(x+ i) ∈ R.

Therefore, on y = 0 we have

u(x, 0) = < ((1 + ix)f(x)) = f(x),

and on y = 1 we have

u(x, 1) = < ((1 + i(x+ i))f(x+ i)) = f(x+ i)− f(x+ i) = 0.
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So, equation (6.6) works as claimed.

As particular examples of functions which satisfy conditions (6.4) and (6.5), we will

consider towers of exponentials. Denoting ex by exp(x) for clarity, look at the functions:

f(x) = exp(πx), f(x) = exp(exp(πx)), f(x) = exp(exp(exp(πx))), . . .

These will all satisfy the periodicity condition (6.4) due to the innermost exp(πx), and

they will all satisfy condition (6.5) because they are complex analytic functions which

assume real values on the real axis. However, by using equation (6.6), we see that we

can find solutions to the infinite strip problem for data which can grow seemingly as

quickly as we please.

So, we should not be discouraged by our lack of success in the previous sections, as

it does not appear to be the case that a growth condition on the data for the infinite

strip problem will determine the existence of an entire solution.



Chapter 7

Summary of Open Problems

We will conclude our exposition with some unanswered questions which have arisen

as a result of our work. Although it is somewhat unsatisfying to have so many loose

ends, each of the following problems has generated interesting methods which may yet

produce results.

7.1 Regarding Legendre Polynomials

In chapter 1, we remarked that the difficulties in completing the classification of quadric

surfaces in three dimensions for the polynomial problem were related to questions about

the roots of orthogonal polynomials. Problems of this sort were mentioned briefly in

[1], where the authors voiced the opinion that settling these questions would very likely

be non-trivial.

The problem which we attempted was determining whether or not two Legendre

polynomials could have a non-zero root in common. Trying to answer this question

led to the discovery of the following formula. Suppose α 6= 0 is a root of Pn(x), where

Pn(x) is the Legendre polynomial of degree n. Then, for n ≥ 2, we have the following

95
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factorization:

Pn(x) =
1

nPn−1(α)
(x− α)

n−1∑
k=0

(2k + 1)Pk(α)Pk(x).

Note that the factor Pn−1(α) in the denominator is not a cause for concern because the

roots of consecutive orthogonal polynomials are always interleaved. Therefore, since α

is a root of Pn(x), it cannot be a root of Pn−1(x). This factorization formula can be

verified by expanding the right hand side using the three term recurrence relation for

Legendre polynomials:

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0.

However, the argument which was used to discover this factorization uses an interesting

technique which may still prove useful in showing that Legendre polynomials cannot

share non-zero roots. We will illustrate it here.

Computation has shown that if two Legendre polynomials share a non-zero root,

then one of the polynomials must have degree at least 500. So, it is reasonable to con-

jecture that in fact two Legendre polynomials cannot share a non-zero root. Since they

are polynomials with rational coefficients, it is natural to ask about their irreducibility

over the rational numbers, or in particular whether they have any non-zero rational

roots at all. This led us to the following argument.

Suppose α 6= 0 is a rational root of Pn(x). Then, we can write Pn(x) = (x−α)f(x),

where f is a polynomial of degree n− 1. Since there is a unique Legendre polynomial

of each degree, we can use them as a basis of the space of polynomials. This allows us

to write f as:

f(x) =
n−1∑
k=0

fkPk(x),

for some constants fk. Next, we can take the three term recurrence relation for the

Legendre polynomials and rearrange it into the following form for n ≥ 1:

xPn(x) =
n+ 1

2n+ 1
Pn+1(x) +

n

2n+ 1
Pn−1(x).
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Using this and our factorization of Pn(x), we can perform a calculation:

Pn(x) = (x− α)f(x)

= (x− α)
n−1∑
k=0

fkPk(x)

=
n−1∑
k=0

fkxPk(x)− α

n−1∑
k=0

fkPk(x)

= f0xP0(x) +
n−1∑
k=1

fk

(
k + 1

2k + 1
Pk+1(x) +

k

2k + 1
Pk−1(x)

)
− α

n−1∑
k=0

fkPk(x)

= f0P1(x) +
n−1∑
k=1

k + 1

2k + 1
fkPk+1(x) +

n−1∑
k=1

k

2k + 1
fkPk−1(x)− α

n−1∑
k=0

fkPk(x)

=
n−1∑
k=0

k + 1

2k + 1
fkPk+1(x) +

n−1∑
k=1

k

2k + 1
fkPk−1(x)− α

n−1∑
k=0

fkPk(x)

=
n∑

k=1

k

2k − 1
fk−1Pk(x) +

n−2∑
k=0

k + 1

2k + 3
fk+1Pk(x)− α

n−1∑
k=0

fkPk(x)

However, we know that the Legendre polynomials are linearly independent, so we can

equate the coefficients of Pk(x) on both sides of the equation to obtain a system of

equations for the coefficients fk. The coefficient of P0(x) gives us:

0 =
1

3
f1 − αf0 =⇒ f1 = 3αf0.

Next, for 1 ≤ k ≤ n− 2, the coefficient of Pk(x) gives us:

0 =
k

2k − 1
fk−1 − αfk +

k + 1

2k + 3
fk+1.

The coefficient for Pn−1(x) yields:

0 =
n− 1

2n− 3
fn−2 − αfn−1 =⇒ fn−2 = α

2n− 3

n− 1
fn−1.

Finally, the coefficient of Pn(x) gives us:

1 =
n

2n− 1
fn−1 =⇒ fn−1 =

2n− 1

n
.
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Note that this gives us a system of n + 1 equations for our n unknown coefficients

fk. To solve the system, we will take the approach of trying to solve the three term

recurrence relation obtained from the coefficient of Pk(x) for 1 ≤ k ≤ n− 2. By a little

manipulation:

k

2k − 1
fk−1 − αfk +

k + 1

2k + 3
fk+1 = 0

=⇒ k

k − 1
2

fk−1 − 2αfk +
k + 1

k + 3
2

fk+1 = 0

=⇒ k

k − 1
2

fk−1 − 2α
k + 1

2

k + 1
2

fk +
k + 1

k + 3
2

fk+1 = 0

=⇒ krk−1 − α(2k + 1)rk + (k + 1)rk+1 = 0,

where we have set rk = fk

k+ 1
2

. However, this is the three term recurrence relation for

Legendre polynomials, and so we can write the general solution as:

rk = APk(α) +BQk(α),

where Qk(x) is the Legendre function of the second kind. For a description of these

functions, see [23]. Reverting back to our constants fk gives:

fk =

(
k +

1

2

)
(APk(α) +BQk(α)) .

To determine the constants A and B, we will suppose that fk will have this form for

0 ≤ k ≤ n−1, and make use of the other equations in our system for the fk. For k = 0,

this gives us:

f0 =
1

2
(AP0(α) +BQ0(α)) =

A

2
+
Bβ

2
,

where we have defined

β = log

(
1 + α

1− α

)
for convenience. On isolating A, we get:

A = 2f0 −Bβ.
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Next, for k = 1 we can see:

3αf0 = f1 =
3

2
(AP1(α) +BQ1(α))

=
3

2
Aα+

3

2
B

(
αβ

2
− 1

)
=

3

2
α (2f0 −Bβ) +

3

4
Bαβ − 3

2
B

= 3αf0 −
3

4
αβB − 3

2
B.

After cancelling the 3αf0 from both sides, we are left with:

3

4
αβB +

3

2
B = 0.

Now, suppose that B 6= 0. Then, we can cancel it out to obtain αβ = −2. Putting in

the value of β, this means that:

log

(
1 + α

1− α

)
= − 2

α
=⇒ 1 + α

1− α
= e−

2
α .

However, we have now arrived at a contradiction. Since we originally assumed that α

was rational, we see that the left hand side will be rational. However, the right hand

side will be a rational power of e, which is transcendental. Therefore, we must have

B = 0, and:

fk = A

(
k +

1

2

)
Pk(α).

Finally, we will make use of our last equation:

2n− 1

n
= fn−1 = A

(
n− 1

2

)
Pn−1(α).

On solving for A, we obtain:

A =
2

nPn−1(α)
.

As was already noted, the factor Pn−1(α) is okay to appear in the denominator since

consecutive Legendre polynomials cannot share roots. Putting this into our expression

for fk gives:

fk =
2

nPn−1(α)

(
k +

1

2

)
Pk(α) =

1

nPn−1(α)
(2k + 1)Pk(α).
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Putting this back into our factorization of Pn(x) gives us our formula:

Pn(x) = (x− α)f(x) =
1

nPn−1(α)
(x− α)

n−1∑
k=0

(2k + 1)Pk(α)Pk(x).

As was mentioned at the start of this section, this formula can be verified directly using

the three term recurrence relation for the Legendre polynomials for any root α of Pn(x),

without needing the assumption that α is rational. Therefore, our quest to show that

Legendre polynomials do not have non-zero rational roots failed, but we uncovered an

interesting formula along the way.

As an example of how this formula might be used, suppose that α is a non-zero root

of Pn(x). Then, since Pn(x) is either an even or odd function depending on whether

n is even or odd, we must have that −α is also a root of Pn(x). Putting this into our

formula gives:

0 = Pn(−α) =
1

nPn−1(α)
(−2α)

n−1∑
k=0

(2k + 1)Pk(α)Pk(−α).

Due to the fact that Pk(x) will either be even or odd as k is even or odd, we can simplify

this to:
n−1∑
k=0

(−1)k(2k + 1)Pk(α)2 = 0,

for any non-zero root α of Pn(x). This has not been thoroughly pursued.

7.2 Regarding Infinite Differential Operators

In chapter 6, we came across the following equation when trying to solve the infinite

strip problem:

sinc(D)g = f,

where sinc(D) is the differential operator:

sinc(D) =
∞∑

k=0

(−1)kD2k

(2k + 1)!
.
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One approach to try to solve this equation for an entire function g when f is an entire

function is to formally invert the operator. Since sinc(0) 6= 0, we can find a power series

for its reciprocal:

1

sinc(x)
=

∞∑
k=0

ckx
k,

for some constants ck. Therefore, if we define the differential operator:

1

sinc(D)
=

∞∑
k=0

ckD
k,

then by a formal manipulation of power series, we see that

sinc(D)g = f =⇒ g =
1

sinc(D)
f.

However, the power series for the reciprocal of sinc(x) will only have a finite radius of

convergence, and so the corresponding differential operator will not always map entire

functions to entire functions due to failure of convergence of the series. It will correctly

provide solutions for polynomials, though, since convergence will not be an issue.

We can reasonably ask many questions at this point, such as the exact domain of

the 1
sinc(D)

operator. Also, if the decay rate of coefficients of g is known, then it might

be possible to determine estimates for the decay rate of the coefficients of sinc(D)g.

Finally, we can generalize our problem to other differential operators. If we have an

entire function

p(x) =
∞∑

k=0

pkx
k

which does not vanish at the origin, then we may pose the same questions for the

operators p(D) and 1
p(D)

.

In particular, it would be interesting to know conditions on p(x) which would ensure

that p(D) maps entire functions to entire functions. For example, with the given p,

suppose we apply this operator to a function

g(x) =
∞∑

k=0

gkx
k,
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and evaluate the resulting function at the origin. Then, we know that:

g(k)(0) = k!gk,

and so:

p(D)g(0) =
∞∑

k=0

pkD
kg(0)

=
∞∑

k=0

k!pkgk.

Surprisingly, this is the Fischer inner product of entire functions as described in [18]!

Since this inner product is only defined on a restricted class of entire functions, it is

perhaps not surprising that the operators p(D) will not always map entire functions to

entire functions. As a particular example, we may choose:

p(x) = g(x) =
∞∑

k=2

xk

(log k)k
.

The root test shows that this is an entire function, but p(D)g(0) will clearly not con-

verge.

7.3 Regarding Difference Equations

Also in chapter 6, we came across the following difference equation:

g(z + 1)− g(z) = f(z),

where we wished to determine if, given an entire function f , we could find an entire

function g as to make the above true. We showed how to solve this problem for poly-

nomials, but mentioned that we were unable to extend these results to entire functions.

To demonstrate the difficulty, suppose that we are given an entire function f :

f(z) =
∞∑

n=0

fnz
n.



CHAPTER 7. SUMMARY OF OPEN PROBLEMS 103

Then, disregarding questions of convergence for the sake of exploration, we can formally

change our basis to the falling factorials by making use of the Stirling numbers of the

second kind:

f(z) =
∞∑

n=0

fnz
n =

∞∑
n=0

n∑
k=0

fn

{
n

k

}
(z)k.

Proceeding formally again, we can interchange the order of summation to obtain:

f(z) =
∞∑

k=0

(
∞∑

n=k

fn

{
n

k

})
(z)k. (7.1)

It is then a simple matter to write down a solution of the difference equation by making

use of the discrete derivative property of falling factorials:

g(z) =
∞∑

k=0

1

k + 1

(
∞∑

n=k

fn

{
n

k

})
(z)k+1.

We must always keep in mind, however, that we have not proven anything yet.

We cannot avoid the question of convergence forever, and so we will begin with

equation (7.1). To see that the coefficients of (z)k actually make sense, we must bor-

row some facts from combinatorics. In particular, we can make use of the following

generating series for Stirling numbers of the second kind, as found in [10]:

∞∑
n=k

{
n

k

}
zn =

zk

(1− z)(1− 2z) · · · (1− kz)
, (7.2)

where we see by examining the poles of the right hand side that this series will converge

for all |z| < 1
k
. This already poses us problems, since as k → ∞, the radius of

convergence of the series will tend to 0, but it is good enough to make some progress.

Fix a k ≥ 1, and choose an R > k, so that:

1

R
<

1

k
.

Then, since f is an entire function, we can find a constant CR > 0 such that:

|fn| ≤
CR

Rn
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for all n ≥ 0. Therefore, we can estimate:

∞∑
n=k

|fn|
{
n

k

}
≤ CR

∞∑
n=k

{
n

k

}(
1

R

)n

,

which is equation (7.2) with z = 1
R
< 1

k
, and so this will be finite. Since absolute

convergence implies convergence, we see that the coefficients in equation (7.1) will

exist.

To make further progress, we will need some estimates on these coefficients. The

best that we are able to do is the following proposition, which replaces the infinite sum

with a finite sum in terms of function values. We will first need two small lemmas.

Lemma 7.3.1 Let g(x) be a polynomial such that (x−1)k | g(x) for some k ≥ 1. Then

(x− 1)k−1 | g′(x).

Proof: This is a simple consequence of the product rule for derivatives. Since (x−1)k |

g(x), we may write g(x) = (x− 1)kh(x) for some polynomial h(x). We then have:

g′(x) = k(x− 1)k−1h(x) + (x− 1)kh′(x)

= (x− 1)k−1 (kh(x) + (x− 1)h′(x)) ,

so (x− 1)k−1 | g′(x) as stated. �

Lemma 7.3.2 If k is an integer such that k ≥ 1, then:

k∑
j=1

(−1)k−j

(
k

j

)
jn =


(−1)k+1, n = 0

0, n = 1, 2, . . . , k − 1

Proof: Consider the function g(x) = (x−1)k−(−1)k. This has a power series expansion

of:

g(x) =
k∑

j=0

(
k

j

)
xj(−1)k−j − (−1)k

=
k∑

j=1

(−1)k−j

(
k

j

)
xj.
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Denoting the derivative operator by D, we can differentiate this identity and multiply

by x to obtain:

(xD)g(x) = x

k∑
j=1

(−1)k−j

(
k

j

)
jxj−1

=
k∑

j=1

(−1)k−j

(
k

j

)
jxj.

Applying this sequence of operators repeatedly will then give us:

(xD)ng(x) =
k∑

j=1

(−1)k−j

(
k

j

)
jnxj

for all n ≥ 0. Therefore, we see that

(xD)ng(1) =
k∑

j=1

(−1)k−j

(
k

j

)
jn.

In particular, for n = 0, we have:

k∑
j=1

(−1)k−j

(
k

j

)
= g(1) = (−1)k+1.

For n > 0, note that g′(x) = k(x − 1)k−1, or (x − 1)k−1 | g′(x). This also means that

(x−1)k−1 | (xD)g(x). Continuing this process and using the previous lemma, we know

(x− 1)k−2 | D(xD)g(x), so (x− 1)k−2 | (xD)2g(x), and in general we will have

(x− 1)k−n | (xD)ng(x)

for each n = 1, 2, . . ., k − 1. Therefore, (xD)ng(1) = 0 for these n, and this gives us:

k∑
j=1

(−1)k−j

(
k

j

)
jn = (xD)ng(1) = 0,

completing our proof. �

We now can transform the coefficients in (7.1) from an infinite sum to a finite sum.

Proposition 7.3.3 Given an entire function

f(z) =
∞∑

n=0

fnz
n,
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we have the following identity for all k ≥ 1:

∞∑
n=k

fn

{
n

k

}
=

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
f(j).

Proof: There are many explicit formulas for Stirling numbers of the second kind, but

the one which will prove useful to us here can be found in [10]:{
n

k

}
=

1

k!

k∑
j=1

(−1)k−j

(
k

j

)
jn.

This gives us:
∞∑

n=k

fn

{
n

k

}
=

1

k!

∞∑
n=k

k∑
j=1

(−1)k−j

(
k

j

)
fnj

n.

Pick any R > k. Since f is entire, we can find a constant CR > 0 such that

|fn| ≤
CR

Rn

for all n ≥ 0. Therefore, we see that:

k∑
j=1

∣∣∣∣(−1)k−j

(
k

j

)
fnj

n

∣∣∣∣ ≤
k∑

j=1

2kCR

Rn
jn

≤ k2kCR

(
k

R

)n

.

Since R > k, the sum

1

k!

∞∑
n=k

k∑
j=1

(−1)k−j

(
k

j

)
fnj

n

will be absolutely convergent, and so we may rearrange terms as we please. This allows
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us to make the following calculation:

∞∑
n=k

fn

{
n

k

}
=

1

k!

∞∑
n=k

k∑
j=1

(−1)k−j

(
k

j

)
fnj

n

=
1

k!

k∑
j=1

(−1)k−j

(
k

j

) ∞∑
n=k

fnj
n

=
1

k!

k∑
j=1

(−1)k−j

(
k

j

)(
f(j)−

k−1∑
n=0

fnj
n

)

=
1

k!

k∑
j=1

(−1)k−j

(
k

j

)
f(j)− 1

k!

k∑
j=1

k−1∑
n=0

(−1)k−j

(
k

j

)
fnj

n

=
1

k!

k∑
j=1

(−1)k−j

(
k

j

)
f(j)− 1

k!

k−1∑
n=0

fn

k∑
j=1

(−1)k−j

(
k

j

)
jn

=
1

k!

k∑
j=1

(−1)k−j

(
k

j

)
f(j)− 1

k!
f0(−1)k+1

=
k∑

j=0

(−1)k−j

(
k

j

)
f(j),

where we have used the previous lemma and the fact that f0 = f(0). �

Even with this slight simplification of the coefficients in (7.1), we were not able to

justify our rearrangement of the sum to obtain (7.1) or demonstrate convergence on

disks. We are now also in the possession of seemingly contradictory pieces of evidence.

The above sum seems to suggest that the growth of our function f(z) will have an

impact on the convergence of our formal solution, but in section 6.5 of the previous

chapter, we were able to solve the infinite strip problem for data which could grow

extremely rapidly.
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