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Abstract

Main focus is to extend the analysis of the ruin related quantities, such as the surplus

immediately prior to ruin, the deficit at ruin or the ruin probability, to the delayed

renewal risk models.

First, the background for the delayed renewal risk model is introduced and two

important equations that are used as frameworks are derived. These equations are

extended from the ordinary renewal risk model to the delayed renewal risk model. The

first equation is obtained by conditioning on the first drop below the initial surplus

level, and the second equation by conditioning on the amount and the time of the first

claim.

Then, we consider the deficit at ruin in particular among many random vari-

ables associated with ruin and six main results are derived. We also explore how the

Gerber-Shiu expected discounted penalty function can be expressed in closed form

when distributional assumptions are given for claim sizes or the time until the first

claim.

Lastly, we consider a model that has premium rate reduced when the surplus level

is above a certain threshold value until it falls below the threshold value. The amount

of the reduction in the premium rate can also be viewed as a dividend rate paid out

from the original premium rate when the surplus level is above some threshold value.

The constant barrier model is considered as a special case where the premium rate is

reduced to 0 when the surplus level reaches a certain threshold value. The dividend

amount paid out during the life of the surplus process until ruin, discounted to the

beginning of the process, is also considered.
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Chapter 1

Background

1.1 Introduction

Much active research has been going on in the area of ruin theory, more specifically

renewal risk processes, since the introduction of the expected discounted penalty func-

tion suggested by Gerber and Shiu in their paper in NAAJ in 1998, which marked an

epoch in the area. It started in the framework of the classical Poisson model where the

inter-claim times have exponential distributions. This model is attractive in the sense

that the memoryless property of the exponential distribution makes calculations easy.

Then the research was extended to ordinary Sparre-Andersen renewal risk models

where the interclaim times have other distributions than the exponential distribution.

Dickson and Hipp (1998, 2001) considered the Erlang-2 distribution, Li and Garrido

(2004a) the Erlang-n distribution, Gerber and Shiu (2005) the generalized Erlang-n

distribution (a sum of n independent exponential distributions with different scale pa-

rameters) and Li and Garrido (2005) looked into the Coxian class distributions. One

difficulty with these models is that we have to assume that a claim occurs at time 0,

1



CHAPTER 1. BACKGROUND 2

which is not the case in usual settings.

The delayed or modified renewal risk model solves this problem by assuming that

the time until the first claim has a different distribution than the rest of the inter-claim

times. Not much research has been done for this model at this stage. Among the first

works was Willmot (2004) where a mixture of a ”generalized equilibrium” distribution

and an exponential distribution is considered for the distribution of the time until

the first claim. Special cases of the model include the stationary renewal risk model

and the delayed renewal risk model with the time until the first claim exponentially

distributed.

The stationary or equilibrium renewal risk model is a special case of the delayed

renewal risk model where the time until the first claim has an equilibrium distribution

of the other inter-claim times’ distribution. The motivation for choosing this distribu-

tion is that it is the limiting distribution of the time until the next claim occurs, i.e.

the forward recurrence time, in an ordinary renewal process. See Karlin and Taylor

(1975) for details. Willmot and Dickson (2003) have looked into the Gerber-Shiu dis-

counted penalty function in general and Willmot et al. (2004) into the deficit at ruin

for this model in particular.

Another special case of the delayed renewal risk model where the time until the

first claim is exponentially distributed is of much interest. This is the simplest delayed

renewal risk model that we consider yet with an important property. Because of the

memoryless property of the exponential distribution, we do not need to know the time

of the last claim before time 0. This model will be explored in chapter 5 of this paper.

Our main focus is to extend the analysis of the ruin related quantities such as the

surplus immediately prior to ruin, the deficit at ruin or the ruin probability to the

delayed renewal risk model. The background for the delayed renewal risk model is
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introduced in section 1.2. In chapter 2, we derive two important equations that will

be used as a framework for later chapters. These equations are extended from the

ordinary renewal risk model to the delayed renewal risk model. The first equation is

obtained by conditioning on the first drop below the initial surplus level in section

2.1, and the second equation by conditioning on the amount and the time of the first

claim in section 2.3. Chapter 3 considers the deficit at ruin in particular among many

random variables associated with ruin and six main results are derived. Chapter 4 and

5 show how the Gerber-Shiu expected discounted penalty function can be expressed

in closed form when distributional assumptions are given for claim sizes and the first

interclaim times, respectively. In chapter 6, we consider a model that has premium

rate reduced when the surplus level is above a certain threshold value until it falls

below the threshold value. The amount of the reduction in the premium rate can

also be viewed as a dividend rate paid out from the original premium rate when the

surplus level is above some threshold value. The constant barrier model is considered

as a special case where the premium rate is reduced to 0 when the surplus level reaches

a certain threshold value. The dividend amount paid out during the life of the surplus

process until ruin, discounted to the beginning of the process, is also considered in

Chapter 6.

1.2 The Delayed Renewal Risk Model

In the delayed renewal risk model, the number of claims process {N(t); t ≥ 0} is

assumed to be a delayed renewal process, with V1 the time until the first claim occurs,

and Vi the time between the (i−1)th and the ith claim for i = 2, 3, 4, .... It is assumed

that {V2, V3, ...} is a sequence of independent and identically distributed (IID) positive

random variables with common distribution function (DF) K(t) = 1−K̄(t) = Pr(V ≤
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t), probability density function (PDF) k(t) and the mean E(V ) =
∫∞

0
vdK(v) < ∞,

where V is an arbitrary Vi for i = 2, 3, 4, .... The random variable V1 is also assumed

to be positive and independent of {V2, V3, ...} but with a (possibly) different DF K1(t)

and PDF k1(t).

If K1(t) = K(t), then the above model becomes the ordinary (or equivalently the

Sparre-Andersen) renewal risk model. Also a special case of the delayed model, the

equilibrium or stationary renewal risk model can be defined if the PDF of the time

until the first claim is k1(t) = ke(t) = K̄(t)/E(V ).

Individual claim sizes {Y1, Y2, ...}, independent of N(t) and {V1, V2, ...}, are posi-

tive IID random variables with DF P (y) = 1 − P̄ (y) = Pr(Y ≤ y), PDF p(y) and

moments E(Y j) =
∫∞
0

yjdP (y) < ∞, where Y is an arbitrary Yi, and Yi is the size

of the ith claim. The associated equilibrium DF is defined as P1(y) = 1 − P̄1(y) =
∫ y

0
P̄ (t)dt/E(Y ).

The surplus of the insurer at time t is defined as

Ut = u + ct−
N(t)∑
i=1

Yi, t ≥ 0, (1.1)

where u = U0 ≥ 0 is the initial surplus, c = (1+θ)E(Y )/E(V ) is the constant premium

rate per unit time received continuously, and θ > 0 is the relative security loading.

Let Td = inf{t : Ut < 0} be the time of ruin, where Td = ∞ if Ut ≥ 0 for all t ≥ 0.

Two important non-negative random variables in connection with the time of ruin are

the deficit at ruin |UTd
| and the surplus immediately prior to ruin UTd

− , where Td
−

is the left limit of Td. The sum of the two random variables, {UTd
− + |UTd

|}, is the

amount of the claim causing ruin. These random variables are depicted in the figure
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below with a sample path of a surplus process.

-t

6

0

u

Ut

UT−d

|UTd
|

Td

Figure 1.1: Graphical representation of the surplus process Ut

For the delayed renewal risk process, the widely known Gerber-Shiu expected dis-

counted penalty function (Gerber and Shiu, 1998) is given by

md
δ(u) = E{e−δTdw(UT−d

, |UTd
|)I(Td < ∞)| U0 = u} (1.2)

where w(x1, x2) is a non-negative function for x1 > 0 and x2 > 0, and I(A) = 1 if A is

true and I(A) = 0 otherwise. The parameter δ may be viewed as a Laplace transform

argument for the time of ruin or as a discount factor. The ruin probability ψd(u) can

be obtained from the above function by letting w(x1, x2) = 1 and δ = 0:
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ψd(u) = E{I(Td < ∞)| U0 = u} = Pr(Td < ∞| U0 = u), u ≥ 0. (1.3)

We also need to introduce the Gerber-Shiu function of the ordinary renewal risk

process since the Gerber-Shiu function in the delayed renewal risk process is expressed

in terms of it. This is natural considering that the delayed renewal risk process fol-

lows an ordinary renewal risk process after its first claim. The Gerber-Shiu function

in the stationary renewal risk process is also introduced because the process is the

most widely used special case of the delayed renewal risk process. The correspond-

ing Gerber-Shiu expected discounted penalty function for the ordinary renewal risk

process and the stationary renewal risk process, respectively, are as follows:

mδ(u) = E{e−δT w(UT− , |UT |)I(T < ∞)| U0 = u}, (1.4)

me
δ(u) = E{e−δTew(UT−e , |UTe |)I(Te < ∞)| U0 = u}. (1.5)

where T and Te are random variables of the time of ruin for the ordinary and the

stationary renewal risk process, respectively.

Some special cases of the Gerber-Shiu function obtained by specifying the penalty

function are widely used in later chapters, particularly when we have information on

the distribution function for the claim sizes. These special cases of the Gerber-Shiu

function allow us to obtain explicit forms in some situations where it is difficult to

analyze the general Gerber-Shiu function md
δ(u). The first special function we consider

is md
δ,s(u) with the penalty function w(x, y) having the form w(x, y) = e−sxw2(y). In
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the delayed renewal risk process it is defined as

md
δ,s(u) = E{e−δTd−sU

T−
d w2(|UTd

|)I(Td < ∞)| U0 = u}. (1.6)

The corresponding functions in the ordinary renewal risk process and the stationary

renewal risk process are

mδ,s(u) = E{e−δT−sUT−w2(|UT |)I(T < ∞)| U0 = u}, (1.7)

me
δ,s(u) = E{e−δTe−sU

T−e w2(|UTe|)I(Te < ∞)| U0 = u}, (1.8)

respectively.

The second special function we consider can be seen as a special function of the

first special function with s = 0. The penalty function is a function of the deficit only,

with no information regarding the surplus prior to ruin. The Gerber-Shiu function in

the delayed renewal risk process reduces to

md
δ,0(u) = E{e−δTdw2(|UTd

|)I(Td < ∞)| U0 = u} (1.9)

and the corresponding functions in the ordinary renewal risk process and the station-

ary renewal risk process are

mδ,0(u) = E{e−δT w2(|UT |)I(T < ∞)| U0 = u}, (1.10)

me
δ,0(u) = E{e−δTew2(|UTe|)I(Te < ∞)| U0 = u}, (1.11)
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respectively.

1.3 Preliminaries

(1)Dickson-Hipp Transform

We will define the Dickson-Hipp transform (Li and Garrido, 2004) which is used often

in later chapters. Let h(x) be a real valued continuous function with Laplace transform

(LT)

h̃(s) =

∫ ∞

0

e−sxh(x)dx. (1.12)

Then a Dickson-Hipp function of h(t) is defined as

hr(x) = Trh(x) = erx

∫ ∞

x

e−rth(t)dt, x ≥ 0 (1.13)

for r that satisfies |h̃(r)| < ∞.

The LT of a Dickson-Hipp function hr(x) is

h̃r(s) =

∫ ∞

0

e−sxhr(x)dx =
h̃(r)− h̃(s)

s− r
(1.14)

by integration by parts.
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We can generalize the definition of Dickson-Hipp transform to functions where they

are not continuous. If H(x) = 1−H̄(x) is a distribution function then a Dickson-Hipp

Stieltjes transform can be defined as

hr(x) = Trh(x) = erx

∫ ∞

x

e−rtdH(t), x ≥ 0, (1.15)

analogous to defining a Laplace Stieltjes transform (LST) as

h̃(s) =

∫ ∞

0

e−sxdH(x). (1.16)

(2)Lundberg Adjustment Coefficient

Let −Rδ be a negative root of the generalized Lundberg’s fundamental equation (de-

fined in the ordinary renewal risk model), i.e. Rδ satisfies

k̃(δ + cRδ)p̃(−Rδ) = 1 (1.17)

or

b̃δ(−Rδ) =
1

φδ

(1.18)

where bδ(u) is the PDF of the discounted ladder-height random variable and φδ =

Ḡδ(0) = E{e−δT I(T < ∞)| U0 = 0}, in the ordinary renewal risk model.

It is shown (Rolski et al., 1999, pp.255-9) that the two equations are equivalent

when δ = 0. In particular, when δ = 0 let κ = R0. Landriault and Willmot (2007)

show the equivalence of the two equations for any non-negative value of δ in section
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3.2 of their paper.

(3)Compound Geometric Convolution

Let function Ḡ(x) = 1 − G(x) =
∑∞

n=1(1 − φ)φnF̄ ∗n(x), x ≥ 0, be a compound

geometric tail and function A(x) = 1 − Ā(x), x ≥ 0, be a distribution function with

A(0) = 0. Then the tail of a compound geometric convolution function W̄ (x) is de-

fined as

W̄ (x) =

∫ ∞

x

dA ∗G(y) = Ā(x) +

∫ x

0

Ḡ(x− y)dA(y), x ≥ 0. (1.19)

Of course, the role of Ā and Ḡ can be interchanged in the above convolution. This

type of convolution is frequently used in chapter 3, when we talk about the deficit at

ruin in particular.

Willmot and Lin (2001, Section 9.3) show that W̄ (x) satisfies a defective renewal

equation

W̄ (x) = φ

∫ x

0

W̄ (x− y)dF (y) + φF̄ (x) + (1− φ)Ā(x). (1.20)

Also, Willmot(2002b) shows that the equilibrium distribution of W (y), denoted by

W1(y), is also a convolution DF with Laplace-Stieltjes transform

w̃1(s) =

∫ ∞

0

e−sydW1(y) = g̃(s){θf̃1(s) + (1− θ)ã1(s)} (1.21)

where

θ =
φ

∫∞
0

F̄ (t)dt

φ
∫∞
0

F̄ (t)dt + (1− φ)
∫∞

0
Ā(t)dt

, (1.22)
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and g̃(s) =
∫∞

0
e−sydG(y), ã1(s) =

∫∞
0

e−sydA1(y) = {1−ã(s)}/{s ∫∞
0

Ā(t)dt}, f̃1(s) =
∫∞
0

e−sydF1(y) = {1− f̃(s)}/{s ∫∞
0

F̄ (t)dt}.

1.4 Laplace Transform of the Time of Ruin in the

Ordinary Model

This section expands the ideas of Willmot and Woo (2007) and Willmot (2007). The

derivation in section 2.1 of Willmot and Woo (2007) can be extended to the case where

some of the weights, pik’s, are negative as long as all the weights sum up to 1 since

none of the arguments necessitate the weights being positive. As a result, the Coxian

class distribution can be expressed in a form of combination of Erlangs. Also, the

expression of the Laplace transform of the time of ruin in Example 3.2 of Willmot

(2007) that is derived for mixture of Erlangs holds for combination of Erlangs as well.

Assume that claims are of countable scale and shape mixture of Erlangs, i.e.,

p(y) =
n∑

i=1

∞∑

k=1

pik
βk

i yk−1e−βiy

(k − 1)!
, y > 0 (1.23)

where n ∈ {2, 3, . . .}, pik ∈ <,
∑n

i=1

∑∞
k=1 pik = 1, and (1.23) is a proper distribution.

Then following the same idea and procedure as in section 2.1 of Willmot and Woo

(2007), since the derivation does not require pik’s to be positive, p(y) can be expressed

in the exact same form;

p(y) =
∞∑

j=1

qj
βj

nyj−1e−βny

(j − 1)!
, y > 0, (1.24)
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where we can assume βn > βi for i = 1, 2, . . . , n− 1 without loss of generality and

qj =
n∑

i=1

j∑

k=1

pik

(
j − 1

k − 1

)
(
βi

βn

)k(1− βi

βn

)j−k; j = 1, 2, . . . . (1.25)

Note that qj’s could be negative but
∑∞

j=1 qj = 1 and thus (1.24) is a combination

of Erlangs.

Now, we follow the idea of Example 3.2 in Willmot (2007). Define the Erlang-j PDF

τj(y) =
β(βy)j−1e−βy

(j − 1)!
, j = 1, 2, . . . , (1.26)

and from (1.24)

p(x + y) =
∞∑

l=1

qlβ
l (x + y)l−1

(l − 1)!
e−β(x+y)

= β−1

∞∑
j=1

τj(y)
∞∑

l=j

qlτl−j+1(x)

= β−1

∞∑
j=1

∞∑

k=1

qj+k−1τk(x)τj(y)

where the last equality is obtained by replacing l by k = l − j + 1.

Thus p(x + y) can be expressed as

p(x + y) =
∞∑

j=1

ηj(x)τj(y), x ≥ 0, y ≥ 0 (1.27)
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where

ηj(x) = β−1

∞∑

k=1

qj+k−1τk(x). (1.28)

Willmot (2007) shows that when p(x + y) admits this factorization the discounted

ladder height PDF bδ(y) satisfies

bδ(y) =
∞∑

j=1

η̃j,δτj(y) (1.29)

where

η̃j,δ =
1

φδ

∫ ∞

0

ηj(x)
fδ(x|0)

P̄ (x)
dx (1.30)

and fδ(x|0) is the discounted defective marginal density of the surplus prior to ruin

(x), given U0 = 0.

He also shows that the Laplace transform of the time of ruin

Ḡδ(u) = E{e−δT I(T < ∞)| U0 = u} (1.31)

satisfies

Ḡδ(u) = e−βu

∞∑
m=0

C̄m,δ
(βu)m

m!
(1.32)

where C̄m,δ =
∑∞

k=m+1 ck,δ and {ck,δ; k = 0, 1, 2, . . .} has compound geometric gener-

ating function

∞∑

k=0

ck,δz
k =

1− φδ

1− φδ

∑∞
j=1 η̃j,δzj

. (1.33)
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Note that ηj(x) and η̃j,δ can be negative and thus the discounted ladder height PDF

bδ(y) is a combination of Erlangs and {ck,δ; k = 0, 1, 2, . . .} has compound geometric

generating function, instead of compound geometric probability generating function.

All the arguments we used also hold for these negative values and the results we

derived are extended to combination of Erlangs from mixture of Erlangs. Thus, the

Laplace transform of the time of ruin when claims are of Coxian-class type, can be

expressed in the form of equation (1.32).



Chapter 2

Two Framework Equations

In this section, we derive two equations that are used as a framework for solving

specific problems. The first equation is derived by conditioning on the first drop

below its initial surplus level (section 2.1) and the second equation by conditioning on

the first claim (section 2.3).

Li and Garrido (2005, Section 6.) show how the defective renewal equation ap-

proach of Gerber and Shiu (1998) can be extended to the ordinary renewal risk process.

In section 2.1, we are going to see how the general form of the defective renewal equa-

tion is modified for the delayed renewal risk process. In section 2.2, we derive another

expression for the distribution function of the ladder-height random variable, in addi-

tion to the one obtained in section 2.1. The former is expressed in terms of the Laplace

transform of the time of ruin and the DF of the ladder-height random variable in the

ordinary renewal process, whereas the latter in terms of the defective joint PDF of the

surplus prior to ruin, the deficit at ruin and the time of ruin, with the distribution of

the claim size.

15
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2.1 Adapted General Defective Renewal Equation

The motivation of the derivation in this section comes from the corresponding deriva-

tion in the classical Poisson model in Gerber and Shiu (1998).

Lemma 2.1 The general form of the modified defective renewal equation in the de-

layed renewal risk process is

mδ
d(u) = φδ

d

∫ u

0

mδ(u−y)bδ
d(y)dy+

∫ ∞

u

∫ ∞

0

w(x+u, y−u)px(y)fδ
d(x| 0)dxdy. (2.1)

In (2.1),

φδ
d =

∫ ∞

0

fδ
d(x| 0)dx (2.2)

and

bδ
d(y) =

∫ ∞

0

px(y){fδ
d(x| 0)

φδ
d

}dx (2.3)

with

fδ
d(x| 0) =

∫ ∞

0

∫ ∞

0

e−δtfd(x, y, t| 0)dtdy (2.4)

where fd(x, y, t|0) is the defective joint PDF of the surplus prior to ruin (x), the deficit

at ruin (y) and the time of ruin (t), given initial surplus 0.

Proof:

By conditioning on the first drop in surplus below its initial level u, we obtain the

following equation. The first term in the equation explains the case where ruin does

not occur in the first drop whereas the second term explains the case where ruin does
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occur due to the first drop. If the first drop is less than u, then ruin does not occur and

the process starts again with an ordinary renewal process since the first claim should

have already occurred by this time, with reduced new initial surplus u− y where y is

the amount of the first drop. If the first drop is greater than u, ruin occurs with the

deficit y − u and the surplus prior to ruin u + x where x is the surplus gained above

the initial level u before the first drop.

md
δ(u) =

∫ u

0

∫ ∞

0

∫ ∞

0

e−δtmδ(u− y)fd(x, y, t| 0)dtdxdy

+

∫ ∞

u

∫ ∞

0

∫ ∞

0

e−δtw(x + u, y − u)fd(x, y, t| 0)dtdxdy

=

∫ u

0

∫ ∞

0

mδ(u− y)fd
δ (x, y| 0)dxdy

+

∫ ∞

u

∫ ∞

0

w(x + u, y − u)fd
δ (x, y| 0)dxdy.

where

fd
δ (x, y| 0) =

∫ ∞

0

e−δtfd(x, y, t| 0)dt. (2.5)

Thus, we can rewrite md
δ(u) as

md
δ(u) = φd

δ

∫ u

0

mδ(u− y)bd
δ(y)dy +

∫ ∞

u

∫ ∞

0

w(x + u, y − u)fd
δ (x, y| 0)dxdy (2.6)

where

φd
δ =

∫ ∞

0

∫ ∞

0

fd
δ (x, y| 0)dxdy (2.7)

and

bd
δ(y) =

1

φd
δ

∫ ∞

0

fd
δ (x, y| 0)dx. (2.8)
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This choice of φd
δ makes bd

δ(y) a probability density function, i.e.,
∫∞

0
bd
δ(y)dy = 1.

Note that φd
δ and bd

δ(y) can be expressed in a different form using the argument of

Gerber and Shiu (1998, p.53). Using the conditional probability formula of Bayes’

rule,

P (A
⋂

B) = P (A) P (B|A), (2.9)

the joint PDF of U(Td−), |U(Td)| and Td at the point (x, y, t) can be written as the

joint PDF of U(Td−) and Td at the point (x, t) multiplied by the conditional PDF

of |U(Td)| at y, given U(Td−) = x and Td = t. The deficit at ruin, |U(Td)|, depends

on the claim sizes and the time of ruin, Td = t, depends on the interclaim times but

since the claim size random variables are independent of the interclaim time random

variables, |U(Td)| does not depend on Td = t. And the conditional PDF of |U(Td)| at

y, given U(Td−) = x is

p(x + y)∫∞
0

p(x + y)dy
=

p(x + y)

P̄ (x)
. (2.10)

Thus,

fd(x, y, t| 0) = f1
d(x, t| 0) px(y) (2.11)

where f1
d(x, t| 0) is the joint PDF of the surplus prior to ruin and the time at ruin,

and px(y) = p(x + y)/P̄ (x).

The discounted joint PDF of the surplus and the deficit becomes
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fd
δ (x, y| 0) =

∫ ∞

0

e−δtfd(x, y, t| 0)dt = px(y)fδ
d(x| 0) (2.12)

where

fd
δ (x| 0) =

∫ ∞

0

e−δtf1
d(x, t| 0)dt (2.13)

is the discounted density of the surplus, given zero initial surplus.

Then,

φδ
d =

∫ ∞

0

∫ ∞

0

px(y)fδ
d(x| 0)dxdy =

∫ ∞

0

fδ
d(x| 0)

∫ ∞

0

px(y)dydx =

∫ ∞

0

fδ
d(x| 0)dx,

(2.14)

bδ
d(y) =

∫∞
0

px(y)fδ
d(x| 0)dx

φδ
d

=

∫ ∞

0

px(y){fδ
d(x| 0)

φδ
d

}dx (2.15)

and the expression for mδ
d(u) in equation (2.6) can be reexpressed as

mδ
d(u) = φδ

d

∫ u

0

mδ(u− y)bδ
d(y)dy +

∫ ∞

u

∫ ∞

0

w(x + u, y − u)px(y)fδ
d(x| 0)dxdy

(2.16)

Q.E.D.

Note that φδ
d ≤ φ0

d = ψd(0) and bδ
d(y) is a mixture PDF over x of px(y). Also,

bδ
d(y) has the same mixture form as in the ordinary renewal risk model (Willmot,

2007) but with different mixing weights. The mixing weights in bδ(y) shown in Will-

mot (2007) are discounted density of the surplus in the ordinary renewal process, i.e.,
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bδ(y) =
∫∞
0

px(y){fδ(x| 0)
φδ

}dx.

Equation (2.1) is not a renewal equation since mδ
d(u) is expressed in terms of

mδ(u) but we name it ”general defective renewal equation adapted to the delayed

renewal risk process” because the logic and the form of the equation are similar to

those of the corresponding equation in the ordinary renewal risk process.

The general form of bδ
d(y) we just derived is very useful in obtaining the explicit

PDF of bδ
d(y) in some special cases, as we can see from the following examples.

Example 2.1.1 Exponential claim size distribution

In the special case where p(y) = βe−βy, it is easy to see that

px(y) =
p(x + y)

P̄ (x)
=

βe−β(x+y)

e−βx
= βe−βy (2.17)

and

bδ
d(y) =

∫ ∞

0

px(y){fδ
d(x| 0)

φδ
d

}dx = βe−βy

∫ ∞

0

{fδ
d(x| 0)

φδ
d

}dx = βe−βy. (2.18)

Thus, px(y) = bδ
d(y) = p(y). ♣

Example 2.1.2 Combination of Erlangs with countable scale and shape pa-

rameters for the claim size distribution

More generally, let’s assume the claim sizes have a distribution with PDF of the form

p(y) =
k∑

i=1

∞∑
j=1

aij
βi(βiy)j−1e−βiy

(j − 1)!
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where aij’s are weights that could be negative or positive but
∑k

i=1

∑∞
j=1 aij = 1. This

includes a combination of exponentials when aij = 0 for j ≥ 2 and also an Erlang

mixture with single scale parameter when k = 1.

Then

bδ
d(y) =

k∑
i=1

∞∑
j=1

aij
d(δ)

βi(βiy)j−1e−βiy

(j − 1)!

where

aij
d(δ) =

1

φδ
d

∞∑
m=j

aim

(m− j)!

∫ ∞

0

(βix)m−jfδ
d(x| 0)

eβixP̄ (x)
dx.

To show this, we begin with p(x + y) to derive px(y) and use it to obtain the form of

bd
δ(y).

p(x + y) =
k∑

i=1

∞∑
m=1

aim
βi

m(x + y)m−1e−βi(x+y)

(m− 1)!

=
k∑

i=1

∞∑
m=1

aim
βi

me−βi(x+y)

(m− 1)!

m−1∑
j=0

(
m− 1

j

)
xm−1−jyj

=
k∑

i=1

∞∑
m=1

aim
βi

me−βi(x+y)

(m− 1)!

m∑
j=1

(
m− 1

j − 1

)
xm−jyj−1

=
k∑

i=1

∞∑
j=1

βi
jyj−1e−βiy

(j − 1)!

∞∑
m=j

aim
(βix)m−j

(m− j)!
e−βix

=
k∑

i=1

∞∑
j=1

{e−βix

∞∑
m=j

aim
(βix)m−j

(m− j)!
}βi(βiy)j−1e−βiy

(j − 1)!

and this leads to

px(y) =
p(x + y)

P̄ (x)
=

k∑
i=1

∞∑
j=1

aij
∗(x)

βi(βiy)j−1e−βiy

(j − 1)!
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where

aij
∗(x) =

e−βix

P̄ (x)

∞∑
m=j

aim
(βix)m−j

(m− j)!
.

Thus,

bδ
d(y) =

∫ ∞

0

{
k∑

i=1

∞∑
j=1

aij
∗(x)

βi(βiy)j−1e−βiy

(j − 1)!
}{fδ

d(x| 0)

φδ
d

}dx

=
k∑

i=1

∞∑
j=1

aij
d(δ)

βi(βiy)j−1e−βiy

(j − 1)!

where

aij
d(δ) =

1

φδ
d

∫ ∞

0

aij
∗(x)fδ

d(x| 0)dx =
1

φδ
d

∫ ∞

0

fδ
d(x| 0){e−βix

P̄ (x)

∞∑
m=j

aim
(βix)m−j

(m− j)!
}dx

=
1

φδ
d

∞∑
m=j

aim

(m− j)!

∫ ∞

0

(βix)m−jfδ
d(x| 0)

eβixP̄ (x)
dx

Notice that px(y) is a PDF of the same form as p(y) but with aij replaced by a∗ij(x),

and that bd
δ(y) is also of the same form but with aij replaced by ad

ij(δ). ♣

As shown in the examples, the form of bd
δ(y) in (2.3) makes bd

δ(y) to have the same

form of distribution as the original claim size distribution. This mixing representation

of bd
δ(y) also preserves the DFR property. If p(y) is DFR, the residual lifetime distri-

bution px(y) is also DFR. Noting that bd
δ(y) is a mixture of px(y) over x, it preserves

the DFR property (p.10, Willmot and Lin, 2001).
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2.2 Another Expression for bd
δ(y)

Let Ḡd
δ(u) be the Laplace transform of the time of ruin in the delayed renewal process,

i.e.

Ḡd
δ(u) = E{e−δTdI(Td < ∞)| U0 = u}. (2.19)

Using equation (2.1) with the argument w(x, y) = 1, we obtain an equation for Ḡd
δ(u),

expressed in terms of Ḡδ(u), the Laplace transform of the time of ruin in the ordinary

renewal process and Bd
δ (y), the DF of the ladder-height random variable in the delayed

renewal process.

Ḡd
δ(u) = φd

δ

∫ u

0

Ḡδ(u− t)bd
δ(t)dt + φd

δB̄
d
δ (u). (2.20)

Out of this equation we get an expression for B̄d
δ (u) that is simpler than the one we

obtained in the previous section.

Lemma 2.2 B̄d
δ (u) satisfies

B̄d
δ (u) =

φδB̄δ(u)− Ḡd
δ(u)

φd
δ

+ φδ

∫ u

0

Ḡd
δ(u−t)

φd
δ

dBδ(t)

φδ − 1
(2.21)

Proof:

Taking Laplace transforms on both sides of (2.20), we obtain

∫ ∞

0

e−suḠd
δ(u)du = φd

δ b̃
d
δ(s)

∫ ∞

0

e−suḠδ(u)du + φd
δ{

1− b̃d
δ(s)

s
} (2.22)

and isolating b̃d
δ(s), we get
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b̃d
δ(s) =

s
∫∞
0 e−suḠd

δ(u)du

φd
δ

− 1

s
∫∞
0

e−suḠδ(u)du− 1
. (2.23)

It is convenient to work in terms of the tail, so we rearrange (2.23) to get

1− b̃d
δ(s)

s
=

∫∞
0

e−suḠδ(u)du−
∫∞
0 e−suḠd

δ(u)du

φd
δ

s
∫∞
0

e−suḠδ(u)du− 1
. (2.24)

Noting that

Ḡδ(u) =
∞∑

n=1

φδ
n(1− φδ)B̄δ

∗n
(u) (2.25)

where Bδ(u) is a distribution function of the ladder-height random variable in the

ordinary renewal process (Willmot and Lin, 2001),
∫∞
0

e−suḠδ(u)du can be expressed

as

∫ ∞

0

e−suḠδ(u)du =
1

s
{1− 1− φδ

1− φδ b̃δ(s)
} (2.26)

and again

s

∫ ∞

0

e−suḠδ(u)du− 1 =
φδ − 1

1− φδ b̃δ(s)
. (2.27)

Substituting (2.27) into (2.24) gives

1− b̃d
δ(s)

s
=

∫∞
0

e−suḠδ(u)du−
∫∞
0 e−suḠd

δ(u)du

φd
δ

φδ−1

1−φδ b̃δ(s)

=
(φd

δ

∫∞
0

e−suḠδ(u)du− ∫∞
0

e−suḠd
δ(u)du)(1− φδ b̃δ(s))

φd
δ(φδ − 1)
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Expanding the numerator of the right hand side and inverting the Laplace-Stieljes

transform we get

B̄d
δ (u) =

[φd
δḠδ(u)− Ḡd

δ(u)− φδφ
d
δ

∫ u

0
Ḡδ(u− t)bδ(t)dt + φδ

∫ u

0
Ḡd

δ(u− t)bδ(t)dt]

φd
δ(φδ − 1)

=
Ḡδ(u)− φδ

∫ u

0
Ḡδ(u− t)bδ(t)dt

φδ − 1
− Ḡd

δ(u)− φδ

∫ u

0
Ḡd

δ(u− t)bδ(t)dt

φd
δ(φδ − 1)

=
φδB̄δ(u)

φδ − 1
− Ḡd

δ(u)− φδ

∫ u

0
Ḡd

δ(u− t)bδ(t)dt

φd
δ(φδ − 1)

Q.E.D.

Note that rearrangement of (2.21) will give the defective renewal equation for

Ḡd
δ(u). This will be shown and discussed in detail in section 3.1.

In particular, when δ = 0, (2.21) simplifies to

B̄d
0(u) =

ψ(0)B̄0(u)− ψd(u)
ψd(0)

+ ψ(0)
∫ u

0
ψd(u−t)
ψd(0)

b0(t)dt

ψ(0)− 1
(2.28)

as

Ḡd
0(u) = E{I(Td < ∞)|U0 = u} = ψd(u) (2.29)

and

φd
0 =

∫ ∞

0

∫ ∞

0

∫ ∞

0

fd(x, y, t|0)dxdydt = ψd(0). (2.30)
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B̄d
0(u) is not in a nice simple form and involves the ruin probabilities of both the

ordinary and the delayed renewal risk process but is a useful form in solving other

problems such as obtaining the asymptotic formula for the proper distribution of the

deficit as we will see in Chapter 3. But when ψd(u) can be expressed in terms of ψ(u),

the expression of B̄d
0(u) will only involve ψ(u) and we can obtain an explicit expression

for B̄d
0(u) if ψ(u) has explicit form, as can be seen in the next example.

Example 2.2.1 k1(t) specified as in Willmot (2004)

Let

k1(t) = q
e−αt

∫∞
t

eαyk(y)dy∫∞
0

eαyK̄(y)dy
+ (1− q)αe−αt, t ≥ 0 (2.31)

where α > 0 if 0 ≤ q < 1, and −∞ < α < ∞ if q = 1. Motivation for this choice of

k1(t) can be found in Willmot (2004).

It is shown that the ruin probability in this case satisfies

ψd(u) =
k1(0)E(V )

1 + θ

∫ u

0

ψ(u− y)p1(y)dy +

∫ ∞

u

e−α(t−u)/cρ(t)dt (2.32)

where

ρ(t) =
α

c
ψ(t) +

k1(0)

c
P̄ (t)− αk1(0)E(V )

c(1 + θ)

∫ t

0

ψ(t− y)p1(y)dy. (2.33)

Then

ψd(0) =

∫ ∞

0

e−αt/cρ(t)dt = Tα
c
ρ(0) (2.34)



CHAPTER 2. TWO FRAMEWORK EQUATIONS 27

and from (2.28)

B̄d
0(u) =

1

ψ(0)− 1
[ψ(0)B̄0(u)− β(u) + ψ(0)

∫ u

0

β(u− t)b0(t)dt] (2.35)

where

β(u) =
k1(0)E(V )

(1 + θ)Tα
c
ρ(0)

∫ u

0

ψ(u− y)p1(y)dy +
Tα

c
ρ(u)

Tα
c
ρ(0)

. (2.36)

We can see that our interest now narrows down to obtaining the ruin probability

for the ordinary process. It is entirely expressed in terms of the quantities from the

ordinary process.

Suppose that the claim amount distribution is a hyperexponential (or a mixture

of exponentials) with a tail of the form

P̄ (y) = qe−λy + (1− q)e−βy, y ≥ 0,

where 0 < q < 1, and without loss of generality we can assume λ < β. With this

assumption, Willmot (2002a) shows that the ruin probability in the ordinary renewal

process is explicitly expressed as

ψ(u) = C1e
−r1u + C2e

−r2u, u ≥ 0, (2.37)

where r1 and r2 are the two distinct positive roots of the Lundberg equation k̃(cr)p̃(−r) =

1 which satisfies 0 < r1 < λ < r2 < β, and

C1 =
r2(λ− r1)(β − r1)

λβ(r2 − r1)
, C2 =

r1(r2 − λ)(β − r2)

λβ(r2 − r1)
. (2.38)
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After some tedious calculation,

k1(0)E(V )

1 + θ

∫ t

0

ψ(t− y)p1(y)dy

=
k1(0)

c

∫ t

0

{C1e
−r1(t−y) + C2e

−r2(t−y)}{qe−λy + (1− q)e−βy}dy

=
k1(0)

c
{A1e

−r1t + A2e
−r2t + B1e

−λt + B2e
−βt} (2.39)

where

A1 =
C1{qβ + (1− q)λ− r1}

(λ− r1)(β − r1)
=

r2{qβ + (1− q)λ− r1}
λβ(r2 − r1)

, (2.40)

A2 =
C2{qβ + (1− q)λ− r2}

(λ− r2)(β − r2)
=
−r1{qβ + (1− q)λ− r2}

λβ(r2 − r1)
, (2.41)

B1 = q
C1r2 + C2r1 − (C1 + C2)λ

(λ− r1)(λ− r2)
= − q

λ
, (2.42)

and

B2 = (1− q)
C1r2 + C2r1 − (C1 + C2)β

(β − r1)(β − r2)
= −(1− q)

β
. (2.43)

Using (2.39),

ρ(t) = (
α

c
C1 − αk1(0)

c2
A1)e

−r1t + (
α

c
C2 − αk1(0)

c2
A2)e

−r2t

+(
k1(0)

c
q − αk1(0)

c2
B1)e

−λt + (
k1(0)

c
(1− q)− αk1(0)

c2
B2)e

−βt}, (2.44)

and

Tα
c
ρ(u) = e

αu
c

∫ ∞

u

e−
αt
c ρ(t)dt

= (
αC1 − αk1(0)

c
A1

α + cr1

)e−r1u + (
αC2 − αk1(0)

c
A2

α + cr2

)e−r2u

+(
k1(0)q − αk1(0)

c
B1

α + cλ
)e−λu + (

k1(0)(1− q)− αk1(0)
c

B2

α + cβ
)e−βu. (2.45)
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Thus, from (2.32), the ruin probability is

ψd(u) = (
αC1 + r1k1(0)A1

α + cr1

)e−r1u + (
αC2 + r2k1(0)A2

α + cr2

)e−r2u

+(
k1(0)q + λk1(0)B1

α + cλ
)e−λu + (

k1(0)(1− q) + βk1(0)B2

α + cβ
)e−βu.

Willmot (2002a) also shows that the ladder-height distribution has tail

B̄0(u) = q1e
−λu + (1− q1)e

−βu (2.46)

where

q1 =
β(λ− r1)(r2 − λ)

(β − λ)(λβ − r1r2)
. (2.47)

Since we have explicit expressions for ψ(u), ψd(u), and b0(u), (2.28) can be ex-

pressed in explicit form in the case where claims are of hyperexponential. We can see

that B̄d
0(u) is expressed as sum of exponential terms. ♣

2.3 Equation Conditioning on the First Claim

There is another expression for md
δ(u) that is used often as a framework for solving

more specified problems. By conditioning on the time(t) and the amount(y) of the first

claim, we can write md
δ(u) as follows. Assume the time of the first claim is t. Then the

accumulated surplus up to that time point is u + ct. Thus ruin occurs if the amount

of the first claim is greater than u + ct with the surplus prior to ruin being u + ct,

the deficit at ruin y − u− ct, and thus the Gerber-Shiu discounted function becomes

e−δtw(u + ct, y − u− ct). Otherwise ruin does not occur and the process would start

again as an ordinary renewal process with new reduced initial surplus u + ct− y and

thus the Gerber-Shiu discounted function in this case is e−δtmδ(u+ ct−y). Therefore,
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md
δ(u) =

∫ ∞

0

e−δt{
∫ u+ct

0

mδ(u + ct− y)p(y)dy

+

∫ ∞

u+ct

w(u + ct, y − u− ct)p(y)dy}k1(t)dt,

i.e.

md
δ(u) =

∫ ∞

0

e−δtσδ(u + ct)k1(t)dt (2.48)

where

σδ(t) =

∫ t

0

mδ(t− y)p(y)dy +

∫ ∞

t

w(t, y − t)p(y)dy. (2.49)

Note that σδ(t) is the same as in the ordinary renewal risk process since it does

not involve k1(t).

We can also breakdown σδ(t) into

σδ(t) =

∫ t

0

mδ(t− y)p(y)dy + α(t) (2.50)

where

α(t) =

∫ ∞

t

w(t, y − t)p(y)dy. (2.51)

Then α(t) is a function which does not depend on δ.

With a change of variable from t to r = u + ct, md
δ(u) can be rewritten as
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md
δ(u) =

∫ ∞

u

e−δ( r−u
c

)σδ(r)k1(
r − u

c
)
dr

c

=
1

c

∫ ∞

u

e−δ( t−u
c

)σδ(t)k1(
t− u

c
)dt. (2.52)

Usually (2.52) is used more often than (2.48) as the form of the function k1(t) is as-

sumed and we can substitute t−u
c

in the function.

In the stationary renewal risk model, using equation (2.52), Willmot and Dickson

(2003) show that the Gerber-Shiu discounted penalty function me
δ may be expressed as

me
δ(u) =

1

1 + θ

∫ u

0

mδ(u− t)dP1(t) + q(u) (2.53)

where

q(u) = e(δ/c)u

∫ ∞

u

e−(δ/c)t{τ(t)− δ

c(1 + θ)

∫ t

0

mδ(t− y)dP1(y)}dt

and

τ(t) =
1

(1 + θ)E(Y )

∫ ∞

t

w(t, y − t)p(y)dy.

When δ = 0, the Gerber-Shiu function simplifies further to

me
0(u) =

1

1 + θ

∫ u

0

m0(u−t)dP1(t)+
1

(1 + θ)E(Y )

∫ ∞

u

∫ ∞

t

w(t, y−t)p(y)dydt. (2.54)



Chapter 3

The Deficit at Ruin in the General

Delayed Model

In section 1.2, we have introduced several quantities that are associated with ruin.

The deficit at ruin, in particular, is our focus for this chapter. Willmot (2007) has

studied the discounted moments of the deficit in the ordinary Sparre Andersen model

and Willmot et al. (2004) have studied the proper distribution of the deficit, stochastic

decomposition of the residual lifetime of Le (the maximal aggregate loss in the sta-

tionary model) involving the deficit, and asymptotic distribution of the proper deficit

in the case of the stationary renewal risk model. These results are extended to the

delayed renewal risk model.

If w(x, y) = w2(y), a function of deficit only, mδ
d(u) in equation (2.6) simplifies to

mδ
d(u) = φδ

d

∫ u

0

mδ(u− y)bd
δ(y)dy +

∫ ∞

u

w2(y − u)

∫ ∞

0

fd
δ (x, y| 0)dxdy

= φδ
d

∫ u

0

mδ(u− y)bd
δ(y)dy + φδ

d

∫ ∞

u

w2(y − u)bd
δ(y)dy. (3.1)

32



CHAPTER 3. THE DEFICIT IN THE GENERAL DELAYED MODEL 33

The analysis of the deficit at ruin starts with this nice simpler equation.

3.1 Laplace Transform of the Time of Ruin

As already introduced in section 2.2, if w2(x2) = 1, then

mδ
d(u) = Ḡd

δ(u) = E{e−δTdI(Td < ∞)| U0 = u}

satisfies

Ḡd
δ(u) = φδ

d

∫ u

0

Ḡδ(u− y)bd
δ(y)dy + φδ

dB̄d
δ (u). (3.2)

Equation (3.2) can be rewritten as

Ḡd
δ(u) = φδ

dΛ̄δ(u) (3.3)

where

Λ̄δ(u) =

∫ u

0

Ḡδ(u− y)bd
δ(y)dy + B̄d

δ (u) (3.4)

is a tail of a compound geometric convolution.

Note that this can also be written as

Λ̄δ(u) = Pr{Lδ + Xd
δ > u} (3.5)

where Xd
δ has DF Bd

δ (x) = Pr{Xd
δ ≤ x} and is independent of Lδ, where Lδ satisfies

Pr{Lδ > x} = Ḡδ(x).

Thus, the Laplace transform representation, in PDF form, of (3.4) is

λ̃δ(s) = b̃d
δ(s)E(e−sLδ). (3.6)
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When δ = 0, (3.4) simplifies to

Λ̄0(u) =

∫ u

0

ψ(u− t)bd
0(t)dt + B̄d

0(u) = Pr{L + Xd > u} (3.7)

where Xd has DF Bd
0(x) = Pr{Xd ≤ x} and is independent of maximal aggregate loss

L in the ordinary renewal risk process.

Willmot and Lin (2001) show that a tail of a compound geometric convolution

satisfies a defective renewal equation, as discussed in section 1.3 of this paper. This,

in turn, implies that Ḡd
δ(u) satisfies a defective renewal equation since it is just a

matter of multiplying by the constant φδ
d = Ḡd

δ(0) which is less than 1.

The explicit form of the defective renewal equation can be obtained as follows.

Take Laplace transforms on both sides of (3.2) to obtain

∫ ∞

0

e−suḠd
δ(u)du = φd

δ{
1− 1−φδ

1−φδ b̃δ(s)

s
}b̃d

δ(s) + φd
δ

1− b̃d
δ(s)

s
.

Now we multiply by {1− φδ b̃δ(s)} to get

{1− φδ b̃δ(s)}
∫ ∞

0

e−suḠd
δ(u)du = φd

δ

1− φδ b̃δ(s)− b̃d
δ(s) + φδ b̃

d
δ(s)

s

= φd
δ{φδ

1− b̃δ(s)

s
+ (1− φδ)

1− b̃d
δ(s)

s
},

and thus
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∫ ∞

0

e−suḠd
δ(u)du = φδ b̃δ(s)

∫ ∞

0

e−suḠd
δ(u)du + φd

δ{φδ
1− b̃δ(s)

s
+ (1− φδ)

1− b̃d
δ(s)

s
}.

(3.8)

Inverting the Laplace transform gives us

Ḡd
δ(u) = φδ

∫ u

0

Ḡd
δ(u− y)bδ(y)dy + φd

δ{φδB̄δ(u) + (1− φδ)B̄
d
δ (u)}. (3.9)

We already know in the ordinary renewal risk process that 0 < φδ < 1 and bδ(y) is a

PDF (see Willmot, 2007). This implies that (3.9) is a defective renewal equation for

Ḡd
δ(u).

For the solution of the renewal equation, asymptotic estimate and bounds can be

obtained using the results in Willmot, Cai and Lin (2001). If κ > 0 satisfies the

Lundberg condition

b̃δ(−κ) =
1

φδ

, (3.10)

then the Cramer-Lundberg asymptotic formula yields

Ḡd
δ(u) ∼ φd

δ

∫∞
0

eκy{B̄δ(y) + (1/φδ − 1)B̄d
δ (y)}dy∫∞

0
yeκybδ(y)dy

e−κu, u →∞, (3.11)

and the bounds are

σL(u)ψL(u)e−κu ≤ Ḡd
δ(u) ≤ σU(u)ψU(u)e−κu (3.12)
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where

ψU(u) = φd
δ{1 + (1/φδ − 1) sup

0≤z≤u,B̄δ(z)>0

B̄d
δ (z)

B̄δ(z)
}, u ≥ 0,

ψL(u) = φd
δ{1 + (1/φδ − 1) inf

0≤z≤u,B̄δ(z)>0

B̄d
δ (z)

B̄δ(z)
}, u ≥ 0,

σU(u) = sup
0≤z≤u,B̄δ(z)>0

eκzB̄δ(z)∫∞
z

eκybδ(y)dy
, u ≥ 0,

σL(u) = inf
0≤z≤u,B̄δ(z)>0

eκzB̄δ(z)∫∞
z

eκybδ(y)dy
, u ≥ 0.

Lin (1996) has analyzed σU(u) and σL(u) for many reliability classes.

The asymptotic estimate is helpful in observing the behavior of large u’s, whereas

the bounds give insight into the behavior of small u’s.

3.2 Discounted kth Moment of the Deficit

If w2(x2) = xk
2, then mδ

d(u) = rd
k,δ(u) = E{e−δTd|UTd

|kI(Td < ∞)| U0 = u} satisfies

rd
k,δ(u) = φδ

d

∫ u

0

rk,δ(u− t)bd
δ(t)dt + φδ

d

∫ ∞

u

(y − u)kbd
δ(y)dy (3.13)

Now, let µk,δ =
∫∞

0
ykdBδ(y) where Bδ(y) is the ladder-height DF in the ordinary

renewal risk process. Also define the kth order equilibrium DF Bd
k,δ(y) = 1− B̄d

k,δ(y)

recursively by

Bd
k,δ(y) =

∫ y

0
B̄d

k−1,δ(t)dt∫∞
0

B̄d
k−1,δ(t)dt

, k = 1, 2, ..., (3.14)
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where Bd
0,δ(y) = Bd

δ (y), as long as
∫∞
0

B̄d
k−1,δ(t)dt < ∞. Then Hesselager et al. (1998)

show that the representation in (3.14) could be rewritten as

B̄d
k,δ(y) =

∫∞
y

(t− y)kbd
δ(t)dt∫∞

0
tkbd

δ(t)dt
, k = 1, 2, ... (3.15)

If we define the DF of the compound geometric convolution Hk,δ(u) = 1− H̄k,δ(u) by

H̄k,δ(u) =

∫ u

0

Ḡδ(u− y)dBk,δ(y) + B̄k,δ(u) (3.16)

where Bk,δ(y) is the kth order equilibrium DF of the ladder-height DF Bδ(y) in the

ordinary renewal risk process, Willmot (2007) shows that

rk,δ(u) =
φδµk+1,δ

(1− φδ)(k + 1)
hk+1,δ(u) (3.17)

where hk+1,δ(u) is the density of Hk+1,δ(u).

Using equation (3.17) and (3.15), (3.13) results in

rd
k,δ(u) =

φδ
dφδµk+1,δ

(1− φδ)(k + 1)

∫ u

0

hk+1,δ(u−t)bd
δ(t)dt+φδ

d{
∫ ∞

0

ykbd
δ(y)dy}B̄d

k,δ(u). (3.18)

From Theorem 4.1 of Willmot (2007), the above equation can be expressed in terms
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of stop loss moments. Hence,

rd
k,δ(u) = φd

δ

∫ u

0

rk,δ(u− y)bd
δ(y)dy + φd

δ

∫ ∞

u

(y − u)kbd
δ(y)dy

=
φd

δ

1− φδ

vk(u)− φδφ
d
δ

1− φδ

k∑
j=0

(
k

j

)
µk−j,δvj(u)

+φd
δ

∫ ∞

u

(y − u)kbd
δ(y)dy (3.19)

where

vj(u) =

∫ u

0

∫ ∞

u−y

(t− (u− y))jdGδ(t)b
d
δ(y)dy (3.20)

=

∫ u

0

[Ḡj,δ(u− y)

∫ ∞

0

tjdGδ(t)]b
d
δ(y)dy (3.21)

since the tail of the kth order equilibrium DF of Gδ(y), Ḡk,δ(y) satisfies

Ḡk,δ(y) =

∫∞
y

(t− y)kdGδ(t)∫∞
0

tkdGδ(t)
(3.22)

and thus

vj(u) =

∫ ∞

0

tjdGδ(t) ·
∫ u

0

Ḡj,δ(u− y)bd
δ(y)dy. (3.23)

The Laplace transform of vj(u) can be obtained as

ṽj(s) =

∫ ∞

0

tjdGδ(t)b̃
d
δ(s)

j∑

k=1

pk(j){1− g̃δ(s)b̃k,δ(s)

s
} (3.24)
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using corollary 4.1. of Willmot (2002b), i.e.

g̃j,δ(s) = g̃δ(s)

j∑

k=1

pk(j)b̃k,δ(s) (3.25)

where {p1(j), p2(j), . . . , pj(j)} is a discrete probability measure and b̃k,δ(s) is the

Laplace transform of the kth equilibrium density of bδ(y).

Example 3.2.1 Erlang mixture claim size distribution

When claim sizes are of mixed Erlang type, i.e.

p(y) =
∞∑

j=1

aj
β(βy)j−1e−βy

(j − 1)!
, (3.26)

Willmot (2007) shows that the stop-loss moments of the compound geometric distri-

bution satisfy

∫ ∞

u

(t− u)jdGδ(t) = e−βu

∞∑
m=0

γm,j
(βu)m

m!
(3.27)

where γm,j = β−j
∑∞

n=1 cm+n,δΓ(j + n)/Γ(n) and again cn,δ is defined by (1.33) in

section 1.4, except that {cn,δ; n = 0, 1, 2, ...} now has compound geometric probabil-

ity generating function, instead of compound geometric generating function, since the

mixing weights in the ladder-height DF are all positive and sum to 1, i.e.,

C(z) =
∞∑

n=0

cn,δz
n = P{Q(z)}, (3.28)

where P(z) is the probability generating function of the geometric distribution and

Q(z) is the probability generating function of the mixing weights for Erlangs in the
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ladder-height distribution.

Also, bd
δ(y) is known in this case from example 2.1.2 with k = 1.

bd
δ(y) =

∞∑

l=1

ad
l (δ)

β(βy)l−1e−βy

(l − 1)!
(3.29)

where {ad
1(δ), a

d
2(δ), . . .} are constants depending on δ.

Thus, substitution of (3.27) and (3.29) into equation (3.21) gives

vj(u) =

∫ u

0

e−β(u−y)

∞∑
m=0

γm,j
βm(u− y)m

m!

∞∑

l=1

ad
l (δ)

βlyl−1e−βy

(l − 1)!
dy

= e−βu

∞∑
m=0

γm,j

∞∑

l=1

ad
l (δ)

βm+l

m!(l − 1)!

∫ u

0

(u− y)myl−1dy.

Using Beta type integration,
∫ u

0
(u−y)myl−1dy = um+lΓ(m+1)Γ(l)/Γ(m+ l+1), vj(u)

becomes

vj(u) = e−βu

∞∑
m=0

γm,j

∞∑

l=1

ad
l (δ)

(βu)m+l

(m + l)!

= e−βu

∞∑
m=0

γm,j

∞∑
r=m+1

ad
r−m(δ)

(βu)r

r!

= e−βu

∞∑
r=1

r−1∑
m=0

γm,ja
d
r−m(δ)

(βu)r

r!

= e−βu

∞∑
r=1

Bj,r(δ)
(βu)r

r!
(3.30)

where Bj,r(δ) =
∑r−1

m=0 γm,ja
d
r−m(δ). The second equality is obtained from changing

variables by letting r = m + l and the third equality from changing order of summa-

tions.
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Also the last term in equation (3.19) can be simplified in the case of Erlang mixture

claim sizes.

∫ ∞

u

(y − u)kbd
δ(y)dy =

∫ ∞

0

xkbd
δ(x + u)dx

=

∫ ∞

0

xk

∞∑

l=1

ad
l (δ)

βl(x + u)l−1e−β(x+u)

(l − 1)!
dx

=
∞∑

l=1

ad
l (δ)e

−βu βl

(l − 1)!

∫ ∞

0

xk(x + u)l−1e−βxdx.

The integral
∫∞
0

xk(x + u)l−1e−βxdx can be evaluated as

∫ ∞

0

xk(x + u)l−1e−βxdx =
l−1∑
i=0

(
l − 1

i

)
ul−1−i

∫ ∞

0

xk+ie−βxdx

=
l−1∑
i=0

(
l − 1

i

)
ul−1−i (k + i)!

βk+i+1
.

And thus,

∫ ∞

u

(y − u)kbd
δ(y)dy =

∞∑

l=1

ad
l (δ)e

−βu

l−1∑
i=0

(k + i)!βl−k−i−1ul−1−i

i!(l − 1− i)!

= e−βu

∞∑

l=1

ad
l (δ)

l−1∑
i=0

(k + i)!

βki!

(βu)l−i−1

(l − i− 1)!

= e−βu

∞∑

l=1

ad
l (δ)

l−1∑
r=0

(k + l − r − 1)!

βk(l − r − 1)!

(βu)r

r!

= e−βu

∞∑
r=0

∞∑

l=r+1

ad
l (δ)

(k + l − r − 1)!

βk(l − r − 1)!

(βu)r

r!

= e−βu

∞∑
r=0

Ak,r(δ)
(βu)r

r!
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where Ak,r(δ) =
∑∞

l=r+1 ad
l (δ)(k + l − r − 1)!/(βk(l − r − 1)!).

Therefore,

rd
k,δ(u) =

φd
δ

1− φδ

e−βu

∞∑
r=1

Bk,r(δ)
(βu)r

r!

− φd
δφδ

1− φδ

k∑
j=0

(
k

j

)
µk−j,δe

−βu

∞∑
r=1

Bj,r(δ)
(βu)r

r!

+φd
δe
−βu

∞∑
r=0

Ak,r(δ)
(βu)r

r!

= e−βu

∞∑
r=1

[
φd

δ

1− φδ

Bk,r(δ)− φd
δφδ

1− φδ

k∑
j=0

(
k

j

)
µk−j,δBj,r(δ)]

(βu)r

r!

+e−βu

∞∑
r=0

[φd
δAk,r(δ)]

(βu)r

r!

= e−βu

∞∑
r=0

Dk,r(δ)
(βu)r

r!

where

Dk,r(δ) =





φd
δAk,0(δ) r = 0

φd
δ

1−φδ
Bk,r(δ)− φd

δφδ

1−φδ

∑k
j=0

(
k
j

)
µk−j,δBj,r(δ) + φd

δAk,r(δ) r = 1, 2, ...
,

(3.31)

which is a damped exponential series.♣
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3.3 Discounted Distribution Function of the Proper

Deficit

When w2(x2) = I(x2 > y), the Gerber-Shiu expected discounted penalty function

becomes the discounted defective survival function of the deficit.

Then, mδ
d(u) = Ḡd

δ(u, y) = E{e−δTdI(|UTd
| > y)I(Td < ∞)| U0 = u} satisfies

Ḡd
δ(u, y) = φδ

d

∫ u

0

Ḡδ(u− t, y)bd
δ(t)dt + φδ

d

∫ ∞

u

I(t− u > y)bd
δ(t)dt

= φδ
d

∫ u

0

Ḡδ(u− t, y)bd
δ(t)dt + φδ

d

∫ ∞

u+y

bd
δ(t)dt

i.e.

Ḡd
δ(u, y) = φδ

d

∫ u

0

Ḡδ(u− t, y)bd
δ(t)dt + φδ

dB̄d
δ (u + y). (3.32)

Further, if we let δ = 0, then

m0
d(u) = Ḡd(u, y) = E{I(|UTd

| > y)I(Td < ∞)| U0 = u} (3.33)

satisfies

Ḡd(u, y) = ψd(0)

∫ u

0

Ḡ(u− t, y)bd
0(t)dt + ψd(0)B̄d

0(u + y) (3.34)

where ψd(0) = φd
0 is the ruin probability in the delayed renewal risk process with initial

surplus 0.

Equation (3.34) can also be argued probabilistically. When the first drop below

its initial surplus level occurs it may cause ruin. Otherwise ruin does not occur and
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the process starts again in the ordinary renewal risk process with initial surplus u− t

where t < u. If ruin occurs, for the deficit to be greater than y when the initial surplus

is u, the drop amount should be greater than u + y. The first term in (3.34) explains

the case where ruin does not occur on the first drop and the second term explains the

case where ruin occurs. Since the argument conditions on the first drop below initial

surplus level, the probability for the occurrence of it is multiplied.

Theorem 3.1 The discounted proper distribution function of the deficit, Ḡd
δ,u(y), is

expressed as

Ḡd
δ,u(y) =

Ḡd
δ(u, y)

Ḡd
δ(u)

=
Ḡδ(0)

∫ u

0
B̄δ,u−t(y)B̄δ(u− t)dΛδ(t) + (1− Ḡδ(0))B̄d

δ,u(y)B̄d
δ (u)

Ḡδ(0)
∫ u

0
B̄δ(u− t)dΛδ(t) + (1− Ḡδ(0))B̄d

δ (u)
,(3.35)

where Bδ,t(x) = 1 − B̄δ,t(x) is the residual lifetime DF of Bδ(x), i.e., B̄δ,t(x) =

B̄δ(t + x)/B̄δ(t).

When δ = 0, the proper distribution function of the deficit, Ḡd
u(y), is

Ḡd
u(y) =

Ḡd(u, y)

ψd(u)

=
ψ(0)

∫ u

0
B̄0,u−t(y)B̄0(u− t)dΛ0(t) + (1− ψ(0))B̄d

0,u(y)B̄d
0(u)

ψ(0)
∫ u

0
B̄0(u− t)dΛ0(t) + (1− ψ(0))B̄d

0(u)
. (3.36)
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Proof:

The Laplace transform of Ḡδ(u), in PDF form, can be written as

g̃δ(s) = E(e−sLδ) =
1− φδ

1− φδ b̃δ(s)
(3.37)

where φδ = Ḡδ(0) and using Proposition 2.1. of Willmot (2002a) we obtain

Ḡδ(u, y) =
φδ

1− φδ

∫ u

0−
B̄δ(u + y − t)dGδ(t) (3.38)

where Gδ(t) = 1− Ḡδ(t) = P (Lδ ≤ t).

Using equation (3.38), we want to rewrite (3.32) in terms of simpler functions

Bδ(x), Bd
δ (x) and Gδ(x).

The LT of
∫ u

0
Ḡδ(u− t, y)bd

δ(t)dt in equation (3.32) is

∫ ∞

0

e−su

∫ u

0

Ḡδ(u− t, y)bd
δ(t)dtdu = b̃d

δ(s)

∫ ∞

0

e−suḠδ(u, y)du. (3.39)

Using (3.38),

∫ ∞

0

e−suḠδ(u, y)du =
φδ

1− φδ

∫ ∞

0

e−suB̄δ(u + y)du

∫ ∞

0

e−sudGδ(u)

=
φδ

1− φδ

E(e−sLδ)

∫ ∞

0

e−suB̄δ(u + y)du.
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Thus, equation (3.39) becomes

∫ ∞

0

e−su

∫ u

0

Ḡδ(u− t, y)bd
δ(t)dtdu = b̃d

δ(s)
φδ

1− φδ

E(e−sLδ)

∫ ∞

0

e−suB̄δ(u + y)du

= λ̃δ(s)
φδ

1− φδ

∫ ∞

0

e−suB̄δ(u + y)du.

By inversion of the LT, we have

∫ u

0

Ḡδ(u− t, y)bd
δ(t)dtdu =

φδ

1− φδ

∫ u

0

B̄δ(u + y − t)dΛδ(t) (3.40)

and thus equation (3.32) becomes

Ḡd
δ(u, y) = φd

δ

φδ

1− φδ

∫ u

0

B̄δ(u + y − t)dΛδ(t) + φd
δB̄

d
δ (u + y). (3.41)

The discounted ruin probability can be obtained by letting y = 0,

Ḡd
δ(u) = Ḡd

δ(u, 0) = φd
δ

φδ

1− φδ

∫ u

0

B̄δ(u− t)dΛδ(t) + φd
δB̄

d
δ (u). (3.42)

If we denote the discounted proper distribution function of the deficit by Ḡd
δ,u(y), it is

expressed as
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Ḡd
δ,u(y) =

Ḡd
δ(u, y)

Ḡd
δ(u)

=
φδ

∫ u

0
B̄δ(u + y − t)dΛδ(t) + (1− φδ)B̄

d
δ (u + y)

φδ

∫ u

0
B̄δ(u− t)dΛδ(t) + (1− φδ)B̄d

δ (u)

=
φδ

∫ u

0
B̄δ,u−t(y)B̄δ(u− t)dΛδ(t) + (1− φδ)B̄

d
δ,u(y)B̄d

δ (u)

φδ

∫ u

0
B̄δ(u− t)dΛδ(t) + (1− φδ)B̄d

δ (u)
. (3.43)

Q.E.D.

Note that the discounted proper distribution function of the deficit, Gd
δ,u(y) is a

mixture of the residual lifetime DF’s Bδ,t(y) for 0 < t < u and of Bd
δ,u(y). The proper

distribution function of the deficit in the delayed renewal risk model has the same form

as in the stationary renewal risk model (see Willmot et al., 2004, eq.(2.5), p.245), with

the change of the ladder-height DF of the stationary model, which is the equilibrium

DF of the claim sizes (P1(y)), replaced by that of the delayed model.

The associated probability density function can be obtained by taking the deriva-

tive of Ḡd
δ,u(y) with respect to y.

Corollary 3.2 The discounted probability density function of the proper deficit is

gd
δ,u(y) =

φδ

∫ u

0
bδ,u−t(y)B̄δ(u− t)dΛδ(t) + (1− φδ)b

d
δ,u(y)B̄d

δ (u)

φδ

∫ u

0
B̄δ(u− t)dΛδ(t) + (1− φδ)B̄d

δ (u)
, (3.44)

which is a mixture of residual lifetime probability densities bδ,u−t(y) and bd
δ,u(y).

We can identify the proper distribution function of the deficit easily using the mix-

ture representations above in some special cases.
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Example 3.3.1 Exponential claim size distribution

When claim sizes are exponentially distributed, i.e., p(y) = βe−βy, we know from Ex-

ample 2.1.1 that bd
δ(y) also has the same exponential distribution and it is easy to see

that

Ḡd
δ,u(y) =

φδ

∫ u

0
B̄δ(u + y − t)dΛδ(t) + (1− φδ)B̄

d
δ (u + y)

φδ

∫ u

0
B̄δ(u− t)dΛδ(t) + (1− φδ)B̄d

δ (u)

=
φδ

∫ u

0
e−β(u+y−t)dΛδ(t) + (1− φδ)e

−β(u+y)

φδ

∫ u

0
e−β(u−t)dΛδ(t) + (1− φδ)e−βu

= e−βy.

Thus, the discounted proper distribution function of the deficit in this example has

the same exponential distribution as the claim size distribution function, regardless of

the first interclaim time distribution function. ♣

Example 3.3.2 Coxian - Class claim size distribution

More generally, let’s assume that the claim sizes have a distribution function of Coxian

- class with PDF of the form as in Example 2.1.2. Then we also know from the same

Example that

bd
0(y) =

k∑
i=1

r∑
j=1

aij
d(0)

βi(βiy)j−1e−βiy

(j − 1)!

where
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aij
d(0) =

1

φ0
d

r∑
m=j

aim

(m− j)!

∫ ∞

0

(βix)m−jf0
d(x| 0)

eβixP̄ (x)
dx.

Then bd
0(x + y) satisfies

bd
0(x + y) =

k∑
i=1

r∑
j=1

aij
d(0)

βj
i (x + y)j−1e−βi(x+y)

(j − 1)!

=
k∑

i=1

r∑
j=1

aij
d(0)

βj
i

(j − 1)!
e−βi(x+y)

j−1∑
m=0

(j − 1)!

m!(j −m− 1)!
xj−m−1ym

=
k∑

i=1

r∑
j=1

aij
d(0)e−βix

j−1∑
m=0

(βix)j−m−1

(j −m− 1)!

βi(βiy)me−βiy

m!

=
k∑

i=1

r∑
j=1

aij
d(0)e−βix

j∑
m=1

(βix)j−m

(j −m)!

βi(βiy)m−1e−βiy

(m− 1)!

and changing the order of summation between j and m gives

bd
0(x + y) =

k∑
i=1

r∑
m=1

r∑
j=m

aij
d(0)e−βix

(βix)j−m

(j −m)!

βi(βiy)m−1e−βiy

(m− 1)!

=
k∑

i=1

r∑
j=1

r∑
m=j

aim
d(0)e−βix

(βix)m−j

(m− j)!
(
βi(βiy)j−1e−βiy

(j − 1)!
),

i.e.

bd
0(x + y) =

k∑
i=1

r∑
j=1

αd
ij(x)(

βi(βiy)j−1e−βiy

(j − 1)!
) (3.45)
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where

αd
ij(x) = e−βix

r∑
m=j

aim
d(0)

(βix)m−j

(m− j)!
. (3.46)

And by the analogy between bd
0(y) and b0(y),

b0(x + y) =
k∑

i=1

r∑
j=1

αij(x)(
βi(βiy)j−1e−βiy

(j − 1)!
) (3.47)

where

αij(x) = e−βix

r∑
m=j

aim(0)
(βix)m−j

(m− j)!
. (3.48)

From equation (3.44),

gd
u(y) =

ψ(0)
∫ u

0
b0(u− t + y)dΛ0(t) + (1− ψ(0))bd

0(u + y)

ψ(0)
∫ u

0
B̄0(u− t)dΛ0(t) + (1− ψ(0))B̄d

0(u)
, (3.49)

and substitution of (3.45) and (3.47) into (3.49) leads to

gd
u(y)

=
ψ(0)

∫ u

0

∑k
i=1

∑r
j=1 αij(u− t)τij(y)dΛ0(t) + (1− ψ(0))

∑k
i=1

∑r
j=1 αd

ij(u)τij(y)

ψ(0)
∫ u

0
B̄0(u− t)dΛ0(t) + (1− ψ(0))B̄d

0(u)

=
k∑

i=1

r∑
j=1

{ψ(0)
∫ u

0
αij(u− t)dΛ0(t) + (1− ψ(0))αd

ij(u)

ψ(0)
∫ u

0
B̄0(u− t)dΛ0(t) + (1− ψ(0))B̄d

0(u)
}τij(y)
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where

τij(y) =
βi(βiy)j−1e−βiy

(j − 1)!
,

i.e.

gd
u(y) =

k∑
i=1

r∑
j=1

Cij(u)
βi(βiy)j−1e−βiy

(j − 1)!
(3.50)

where

Cij(u) =
ψ(0)

∫ u

0
αij(u− t)dΛ0(t) + (1− ψ(0))αd

ij(u)

ψ(0)
∫ u

0
B̄0(u− t)dΛ0(t) + (1− ψ(0))B̄d

0(u)
. (3.51)

Therefore, gd
u(y) is of the same form as the claim size distribution, which is Coxian

- class, with weights changed. ♣

As already shown in section 2.1 for bd
δ(y), the mixture representation of gd

δ,u(y)

in (3.44) also makes gd
δ,u(y) to have the same form of distribution as the discounted

ladder-height distributions bd
δ(y) and bd

δ(y), which in turn makes gd
δ,u(y) to have the

same form of distribution as the original claim size distribution. Also with the same

logic already mentioned at the end of section 2.1 for bd
δ(y), mixing representation of

gd
δ,u(y) also preserves the DFR property if bd

δ(y) and bd
δ(y) are DFR (p.10, Willmot and

Lin, 2001). Thus, if the claim size distribution p(y) has DFR property, the discounted

ladder-height distributions bd
δ(y) and bd

δ(y) do as well (section 2.1) and so does the

discounted proper distribution of the deficit gd
δ,u(y).
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3.4 Asymptotic Distribution of the Proper Deficit

In this section we will examine what will happen when the DF of the proper deficit is

asymptotic in the initial surplus u. We can guess that it will be a mixture represen-

tation as in Section 3.3 but with simpler mixing weights, since the weights in Section

3.3 are functions of u and these should converge for an asymptotic formula to exist.

It is not straightforward to take the limit of u from the proper distribution derived

in Section 3.3, so we follow the idea of Theorem 2.3 in Willmot, Dickson, Drekic and

Stanford (2004).

Theorem 3.3 The asymptotic distribution of the proper deficit is

lim
u→∞

Ḡd
u(y) = lim

u→∞
Ḡu(y) =

∫∞
0

eκtB̄0(y + t)dt∫∞
0

eκtB̄0(t)dt
=

∫∞
0

eκtB̄0,t(y)B̄0(t)dt∫∞
0

eκtB̄0(t)dt
. (3.52)

Proof:

Multiplying by eκu where κ is the adjustment coefficient defined as in Section 1.3 and

taking the limit as u →∞ on both sides of the equation (3.34), we obtain

lim
u→∞

eκuḠd(u, y) = ψd(0) lim
u→∞

eκu

∫ u

0

Ḡ(u− t, y)dBd
0(t) + ψd(0) lim

u→∞
eκuB̄d

0(u + y).

(3.53)

By Lundberg’s inequality in the ordinary renewal risk model,

eκuḠ(u, y) ≤ eκuψ(u) ≤ 1, (3.54)

and by dominated convergence, equation (3.53) can be rewritten as
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lim
u→∞

eκuḠd(u, y) = ψd(0)

∫ ∞

0

{ lim
u→∞

eκuḠ(u, y)}eκtdBd
0(t) + ψd(0) lim

u→∞
eκuB̄d

0(u + y).

(3.55)

By equation (2.28),

lim
u→∞

eκuB̄d
0(u) = lim

u→∞
eκu

ψ(0)B̄0(u)− ψd(u)
ψd(0)

+ ψ(0)
∫ u

0
ψd(u−t)
ψd(0)

dB0(t)

ψ(0)− 1
(3.56)

and since (1.18) holds,

lim
u→∞

eκuB̄0(u) ≤ lim
u→∞

∫ ∞

u

eκydB0(y) = 0, (3.57)

the first term in equation (3.56) disappears and the equation reduces to

lim
u→∞

eκuB̄d
0(u) =

ψ(0)

{ψ(0)− 1}ψd(0)

∫ ∞

0

{ lim
u→∞

eκuψd(u)}eκtdB0(t)

− 1

{ψ(0)− 1}ψd(0)
lim

u→∞
eκuψd(u).

The Lundberg’s adjustment coefficient, κ satisfies b̃0(−κ) = 1
ψ(0)

and limu→∞ eκuψd(u)

is a constant (Willmot and Lin (2001), Theorem 11.4.3). These lead to

lim
u→∞

eκuB̄d
0(u)

=
ψ(0)

{ψ(0)− 1}ψd(0)

1

ψ(0)
lim

u→∞
eκuψd(u)− 1

{ψ(0)− 1}ψd(0)
lim

u→∞
eκuψd(u)

= 0.
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Also,

0 ≤ lim
u→∞

eκuB̄d
0(u + y) ≤ lim

u→∞
eκuB̄d

0(u) = 0 (3.58)

implies that

lim
u→∞

eκuB̄d
0(u + y) = 0. (3.59)

Now, equation (3.55) becomes

lim
u→∞

eκuḠd(u, y) = ψd(0)b̃d
0(−κ){ lim

u→∞
eκuḠ(u, y)} (3.60)

and since

Ḡd
u(y) =

Ḡd(u, y)

Ḡd(u, 0)
, (3.61)

lim
u→∞

Ḡd
u(y) =

limu→∞ eκuḠd(u, y)

limu→∞ eκuḠd(u, 0)
=

limu→∞ eκuḠ(u, y)

limu→∞ eκuḠ(u, 0)
= lim

u→∞
Ḡu(y). (3.62)

Q.E.D.

Theorem 3.3 shows that the asymptotic distribution of the proper deficit as the

initial surplus u goes to ∞ in the delayed renewal risk model is still of the same mix-

ture form as in the ordinary or the stationary renewal risk model, independently of

the distribution of the first interclaim time. This is because large u implies large t,

and as the initial surplus u gets large, the effect of the assumed distribution for the

time until the first claim becomes insignificant. Also note that the asymptotic DF of

the proper deficit is a mixture of the residual lifetime DF’s B0,t(y) for t ≥ 0 as in the



CHAPTER 3. THE DEFICIT IN THE GENERAL DELAYED MODEL 55

previous section but with much simpler mixing weights.

3.5 Stochastic Decomposition of the Residual Life-

time of Ld
δ

Let Ld be the maximal aggregate loss in the delayed renewal risk model and ϕd(u) =

1−ψd(u) be the distribution function of Ld. Let’s extend this to the case where δ > 0

and define Ld
δ to be a random variable with DF Gd

δ(u) = 1− Ḡd
δ(u)

Theorem 3.4 The conditional survival function of Ld
δ satisfies

P (Ld
δ > u + y|Ld

δ > u) = P (Lδ + Xd
δ,u > y) (3.63)

for y ≥ 0, where Xd
δ,u is a random variable statistically independent of Lδ with distri-

bution function Gd
δ,u(y).

Proof:

We will first give probabilistic proof in the case when δ = 0 for better understanding of

the equation, where the interpretation is clear. In much the same way as in Theorem

2.2 of Willmot et al. (2004) we can argue as follows. Suppose the initial surplus level

is u + y. The event {Ld ≤ u + y} can be divided into two mutually exclusive and

exhaustive events {Ld ≤ u} and {u ≤ Ld ≤ u + y}. The probability of the first event

is ϕd(u) and the surplus always remains above y. For the second event to happen,

the surplus level should fall below level y at some point in time to a level y − t ≥ 0

with probability dGd(u, t) but then ruin should not occur after that with probability
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ϕ(y − t). Hence,

ϕd(u + y) = ϕd(u) +

∫ y

0

ϕ(y − t)dGd(u, t), (3.64)

and equivalently,

1− ψd(u + y) = 1− ψd(u) +

∫ y

0

(1− ψ(y − t))dGd(u, t), (3.65)

and

ψd(u + y) = ψd(u)−
∫ y

0

dGd(u, t) +

∫ y

0

ψ(y − t)dGd(u, t). (3.66)

Divide both sides with ψd(u) to get

ψd(u + y)

ψd(u)
= 1−

∫ y

0

dGd
u(t) +

∫ y

0

ψ(y − t)dGd
u(t) (3.67)

= Ḡd
u(y) +

∫ y

0

ψ(y − t)dGd
u(t), (3.68)

which is (3.63) when δ = 0.

Now, we will give an analytic proof which can be applied for all values of non-

negative δ, by following the idea of Theorem 2.1. in Willmot and Cai (2004).

Divide both sides of (3.41) by φd
δ to obtain

Ḡd
δ(u, y)

φd
δ

=
φδ

1− φδ

∫ u

0

B̄δ(u + y − t)dΛδ(t) + B̄d
δ (u + y)

= B̄d
δ (u + y) +

φδ

1− φδ

B̄δ(y){
∫ u

0

B̄δ,y(u− t)dΛδ(t)}

where B̄δ,y(t) is the residual lifetime tail of B̄δ(t) defined by
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B̄δ,y(t) =
B̄δ(y + t)

B̄δ(y)
. (3.69)

And interchanging the role of Bδ,y and Λδ in the convolution,

Ḡd
δ(u, y)

φd
δ

= B̄d
δ (u + y) +

φδ

1− φδ

B̄δ(y){
∫ u

0

Λ̄δ(u− t)dBδ,y(t) + B̄δ,y(u)− Λ̄δ(u)}

= B̄d
δ (u + y) +

φδ

1− φδ

{
∫ u

0

Λ̄δ(u− t)dtBδ(y + t) + B̄δ(u + y)− Λ̄δ(u)B̄δ(y)}

= B̄d
δ (u + y) +

φδ

1− φδ

{
∫ u+y

y

Λ̄δ(u + y − t)dBδ(t) + B̄δ(u + y)− Λ̄δ(u)B̄δ(y)}.

Since (3.3) holds, equation (3.9) is equivalent to

Λ̄δ(u) = φδ

∫ u

0

Λ̄δ(u− y)bδ(y)dy + φδB̄δ(u) + (1− φδ)B̄
d
δ (u). (3.70)

and using (3.70) with u replaced by u + y leads to

φδ{
∫ u+y

y

Λ̄δ(u + y − t)dBδ(t) + B̄δ(u + y)}

= φδ{
∫ u+y

0

Λ̄δ(u + y − t)dBδ(t) + B̄δ(u + y)} − φδ

∫ y

0

Λ̄δ(u + y − t)dBδ(t)

= Λ̄δ(u + y)− (1− φδ)B̄
d
δ (u + y)− φδ

∫ y

0

Λ̄δ(u + y − t)dBδ(t).
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Thus,

Ḡd
δ(u, y)

φd
δ

= B̄d
δ (u + y) +

1

1− φδ

{Λ̄δ(u + y)− (1− φδ)B̄
d
δ (u + y)} (3.71)

− φδ

1− φδ

{
∫ y

0

Λ̄δ(u + y − t)dBδ(t) + Λ̄δ(u)B̄δ(y)}

=
1

1− φδ

Λ̄δ(u + y)

− φδ

1− φδ

{
∫ y

0

Λ̄δ(u + y − t)dBδ(t) + Λ̄δ(u)B̄δ(y)} (3.72)

Divide both sides of (3.72) by Λ̄δ(u) and this results in

Ḡd
δ,u(y) =

1

1− φδ

Ḡd
δ(u + y)

Ḡd
δ(u)

− φδ

1− φδ

{
∫ y

0

Ḡd
δ(u + y − t)

Ḡd
δ(u)

dBδ(t) + B̄δ(y)}. (3.73)

It follows by taking LT that

1− E(e−sXd
δ,u)

s
= { 1

1− φδ

− φδ

1− φδ

b̃δ(s)}
∫ ∞

0

e−sy Ḡd
δ(u + y)

Ḡd
δ(u)

dy − φδ

1− φδ

1− b̃δ(s)

s
,

(3.74)

and rearranging that

∫ ∞

0

e−sy Ḡd
δ(u + y)

Ḡd
δ(u)

dy =

1−E(e
−sXd

δ,u )
s

+ φδ

1−φδ

1−b̃δ(s)
s

1−φδ b̃δ(s)
1−φδ

=
1− φδ − (1− φδ)E(e−sXd

δ,u) + φδ − φδ b̃δ(s)

s(1− φδ b̃δ(s))

=
1− g̃δ(s)E(e−sXd

δ,u)

s
.

By the uniqueness of the LT, the theorem is proved.

Q.E.D.
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As a result of equation (3.63), the mean and the moments of the discounted

(proper) deficit can be calculated as in the following corollary.

Corollary 3.5 The mean of the discounted proper deficit is

E(Xd
δ,u) = E(Lδ + Xd

δ,u)− E(Lδ) =

∫ ∞

0

(
Ḡd

δ(u + y)

Ḡd
δ(u)

− Ḡδ(y))dy. (3.75)

When δ = 0, this simplifies to

E(Xd
u) = E(L + Xd

u)− E(L) =

∫ ∞

0

(
ψd(u + y)

ψd(u)
− ψ(y))dy, (3.76)

the same form as in the ordinary or the stationary renewal risk model.

The second and higher moments can be calculated recursively, i.e.

E{(Xd
u)n} = E{(L + Xd

u)n} −
n−1∑

k=0

(
n

k

)
E{(Xd

u)k}E(Ln−k), (3.77)

since E{(Xd
u)kLn−k} = E{(Xd

u)k}E(Ln−k) by independence of Xd
u and L.

3.6 Joint Distribution of the Surplus and the Deficit

Let δ be non-negative and w(x, y) = e−sx−zy. Then the Gerber-Shiu expected dis-

counted penalty function, md
δ(u) in this case, can be expressed in terms of the dis-

counted joint distribution of the surplus and the deficit, i.e.



CHAPTER 3. THE DEFICIT IN THE GENERAL DELAYED MODEL 60

md
δ(u) = E{e−δTd−sU

T−
d
−z|UTd

|
I(Td < ∞)|U0 = u} =

∫ ∞

0

e−sx

∫ ∞

0

e−zyfd
δ (x, y|u)dydx

(3.78)

where fd
δ (x, y|u) is the discounted joint distribution of the surplus and the deficit in

the delayed renewal risk process.

On the other hand, we can obtain alternative expression for md
δ(u) in this case

using the equations in Section 2.3. Using equation (2.49),

σδ(u + ct) =

∫ u+ct

0

mδ(u + ct− y)p(y)dy +

∫ ∞

u+ct

w(u + ct, y − u− ct)p(y)dy

=

∫ u+ct

0

mδ(v)p(u + ct− v)dv +

∫ ∞

u+ct

e−s(u+ct)e−z(y−u−ct)p(y)dy

=

∫ u+ct

0

∫ ∞

0

e−sx

∫ ∞

0

e−zyfδ(x, y|v)dydxp(u + ct− v)dv

+e−s(u+ct)

∫ ∞

0

e−zyp(y + u + ct)dy

=

∫ ∞

0

e−sx

∫ ∞

0

e−zy{
∫ u+ct

0

fδ(x, y|v)p(u + ct− v)dv}dydx

+e−s(u+ct)

∫ ∞

0

e−zyp(y + u + ct)dy

and thus from equation (2.48),
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md
δ(u) =

∫ ∞

0

e−δtσδ(u + ct)k1(t)dt

=

∫ ∞

0

e−δt

∫ ∞

0

e−sx

∫ ∞

0

e−zy{
∫ u+ct

0

fδ(x, y|v)p(u + ct− v)dv}dydxk1(t)dt

+e−su

∫ ∞

0

e−δte−sct

∫ ∞

0

e−zyp(y + u + ct)dyk1(t)dt

=

∫ ∞

0

e−sx

∫ ∞

0

e−zy{
∫ ∞

0

e−δt

∫ u+ct

0

fδ(x, y|v)p(u + ct− v)dvk1(t)dt}dydx

+e−su

∫ ∞

0

e−δ x
c e−sx

∫ ∞

0

e−zyp(y + u + x)k1(
x

c
)
1

c
dydx

=

∫ ∞

0

e−sx

∫ ∞

0

e−zy{
∫ ∞

0

e−δt

∫ u+ct

0

fδ(x, y|v)p(u + ct− v)dvk1(t)dt}dydx

+

∫ ∞

u

e−sx

∫ ∞

0

e−zyp(x + y)k1(
x− u

c
)e−δ(x−u

c
) 1

c
dydx. (3.79)

Comparing (3.78) with (3.79), we obtain

fd
δ (x, y|u) =





∫∞
0

∫ u+ct

0
fδ(x, y|v)p(u + ct− v)dvk1(t)e

−δtdt

for 0 ≤ x < u
∫∞

0

∫ u+ct

0
fδ(x, y|v)p(u + ct− v)dvk1(t)e

−δtdt + 1
c
p(x + y)e−δ(x−u

c
)k1(

x−u
c

)

for x ≥ u

.

(3.80)

Once we have the discounted joint density of the surplus and the deficit in the ordinary

renewal risk process, we can solve for the discounted joint density of the surplus and

the deficit in the delayed renewal risk process.

The discounted marginal defective density of the surplus can be easily obtained

from the above equation by integrating with respect to the deficit y, which is
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fd
δ (x|u) =

∫ ∞

0

fd
δ (x, y|u)dy

=





∫∞
0

∫ u+ct

0
fδ(x|v)p(u + ct− v)dve−δtk1(t)dt

for 0 ≤ x < u
∫∞
0

∫ u+ct

0
fδ(x|v)p(u + ct− v)dve−δtk1(t)dt + 1

c
P̄ (x)e−δ(x−u

c
)k1(

x−u
c

)

for x ≥ u

.

From Gerber and Shiu (1998, p.53) we know that the following holds in the ordi-

nary renewal risk process;

fδ(x, y|v) = fδ(x|v)
p(x + y)

P̄ (x)
(3.81)

and thus

fd
δ (x|u) =





∫∞
0

∫ u+ct

0
fδ(x, y|v) P̄ (x)

p(x+y)
p(u + ct− v)dve−δtk1(t)dt

for 0 ≤ x < u
∫∞

0

∫ u+ct

0
fδ(x, y|v) P̄ (x)

p(x+y)
p(u + ct− v)dve−δtk1(t)dt + 1

c
P̄ (x)e−δ(x−u

c
)k1(

x−u
c

)

for x ≥ u

,

i.e.

fd
δ (x|u) = fd

δ (x, y|u) P̄ (x)
p(x+y)

or fd
δ (x, y|u) = fd

δ (x|u)p(x+y)

P̄ (x)
. (3.82)
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The same relationship between the discounted joint density of the surplus and the

deficit and the discounted marginal density of the surplus holds in the delayed renewal

risk process as in the ordinary renewal risk process.

Example 3.6.1 Exponential claim sizes and Coxian class interclaim times

in stationary model

In the stationary renewal risk model with δ = 0, from equation (2.54), f e(x, y|u) can

be written as

f e(x, y|u) =
1

1 + θ

∫ u

0

f(x, y|u− z)dP1(z) +

∫ ∞

u

1

(1 + θ)E(Y )

∫ ∞

t

w(t, z − t)p(z)dzdt

(3.83)

Using the expression of f(x, y|u) when interclaim times have a Coxian distribution

in section 7. of Li and Garrido (2005) with the assumption of exponential claim sizes

(p(y) = βe−βy), we can show

f(x, y|u) =





βe−β(x+y)e−Rδu
∑n

j=1 bj
β−Rδ

Rδ+ρj
(eRδx − e−ρjx), 0 ≤ x < u

βe−β(x+y)
∑n

j=1 bje
−ρjx(

β+ρj

Rδ+ρj
eρju − β−Rδ

Rδ+ρj
e−Rδu), x ≥ u

. (3.84)

Thus after substitution and simplification

f e(x, y|u) =





1
(1+θ)

βe−β(x+y)
∑n

j=1 bj
β

R0+ρj
(eR0x − e−ρjx)e−R0u, 0 ≤ x < u

1
(1+θ)

βe−β(x+y){∑n
j=1 bje

−ρjx β
R0+ρj

(eρju − e−R0u) + β}, x ≥ u
.

(3.85)

Note that the deficit at ruin is also exponential and is independent of the surplus

immediately prior to ruin, for both ordinary and stationary renewal risk models, when
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claims follow exponential distribution. This also holds for the delayed renewal risk

model as well as with penalty function w(x, y) = e−sxw2(y) where w2(y) is an arbitrary

function of deficit at ruin. This is shown in Section 4.1.

The marginal densities are

f e(x|u) =

∫ ∞

0

f e(x, y|u)dy

=





1
(1+θ)

e−βx
∑n

j=1 bj
β

R0+ρj
(eR0x − e−ρjx)e−R0u, 0 ≤ x < u

1
(1+θ)

e−βx{∑n
j=1 bje

−ρjx β
R0+ρj

(eρju − e−R0u) + β}, x ≥ u

and

ge(y|u) =

∫ ∞

0

f e(x, y|u)dx

=
1

(1 + θ)
βe−βye−R0u.

Also when the initial surplus is 0,

f e(x, y|0) =
1

(1 + θ)
βe−β(x+y){

n∑
j=1

bje
−ρjx β

R0 + ρj

+ β}. (3.86)

♣



Chapter 4

Distributional Assumptions for

Claim Sizes

We have made assumptions about the distributions of the claim sizes and the inter-

claim times in the examples of the previous chapters for specific expressions of interest.

This and the next chapter deal with more general penalty functions and Gerber-Shiu

functions and provides comprehensive and unified results. In Chapter 4, assumptions

are made for DF’s of the claim sizes with arbitrary DF’s of the interclaim times, and

vice versa in Chapter 5. These chapters also provide insight into the nice properties

of assumed distributions used for derivation.

4.1 Exponential Claim Sizes

4.1.1 Delayed Renewal Risk Process

When claim amounts follow an exponential distribution, bδ
d(y) = p(y) = βe−βy for

y > 0 as shown in Example 2.1.1.

65
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Also when w(x, y) = w2(y), using equation (3.1), mδ
d(u) satisfies

mδ,0
d(u) = φδ

d

∫ u

0

mδ,0(u− y)(βe−βy)dy + φδ
d

∫ ∞

u

w2(y − u)(βe−βy)dy

= φδ
d

∫ u

0

mδ,0(u− y)(βe−βy)dy + φδ
d

∫ ∞

0

w2(t)βe−β(t+u)dt

= φδ
d

∫ u

0

mδ,0(u− y)(βe−βy)dy + φδ
de−βuE{w2(Y )}

where E{w2(Y )} =
∫∞

0
w2(y)p(y)dy.

In the ordinary renewal risk process, Willmot (2007) shows that

mδ,0(u) = φδE{w2(Y )}e−β(1−φδ)u (4.1)

or

mδ,0(u) = (1− Rδ

β
)E{w2(Y )}e−Rδu (4.2)

where −Rδ is a negative root of the generalized Lundberg’s fundamental equation

defined as in section 1.3, i.e. Rδ satisfies

k̃(δ + cRδ) =
1

p̃(−Rδ)
= 1− Rδ

β
, (4.3)

and Rδ = β(1− φδ).

Thus, mδ,0
d(u) becomes
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md
δ,0(u) = φd

δ(1−
Rδ

β
)E{w2(Y )}

∫ u

0

e−Rδ(u−y)βe−βydy + φδ
de−βuE{w2(Y )}

= φδ
de−RδuE{w2(Y )}

∫ u

0

(β −Rδ)e
−(β−Rδ)ydy + φδ

de−βuE{w2(Y )}

= φδ
de−RδuE{w2(Y )}[1− e−(β−Rδ)u] + φδ

de−βuE{w2(Y )}

i.e.

md
δ,0(u) = φδ

dE{w2(Y )}e−Rδu. (4.4)

But conditioning on the amount and the time of the first claim, we get

md
δ,0(u) =

∫ ∞

0

e−δtσδ(u + ct)k1(t)dt (4.5)

where

σδ(t) =

∫ t

0

mδ,0(t− y)dP (y) +

∫ ∞

t

w2(y − t)dP (y) = E{w2(Y )}e−Rδt (4.6)

after some simple algebra.

Now, substitute equation (4.4) and (4.6) into (4.5) to get

φd
δE{w2(Y )}e−Rδu =

∫ ∞

0

e−δtE{w2(Y )}e−Rδ(u+ct)k1(t)dt (4.7)

and this leads to the result that
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φδ
d =

∫ ∞

0

e−(δ+cRδ)tk1(t)dt = k̃1(δ + cRδ) (4.8)

i.e.

mδ,0
d(u) = k̃1(δ + cRδ)E{w2(Y )}e−Rδu. (4.9)

Note that when claims are exponentially distributed,

mδ,0(u) = φδE{w2(Y )}e−Rδu (4.10)

in the ordinary renewal risk process and

mδ,0
d(u) = φδ

dE{w2(Y )}e−Rδu (4.11)

in the delayed renewal risk process and thus the ratio of the two functions are not a

function of u but just a constant;

mδ,0
d(u)

mδ,0(u)
=

φδ
d

φδ

=
k̃1(δ + cRδ)

k̃(δ + cRδ)
. (4.12)

When w2(Y ) = 1, (4.9) becomes

Ḡd
δ(u) = k̃1(δ + cRδ)e

−Rδu. (4.13)

Note that (4.13) also satisfies (3.2) and equating Laplace transforms of (4.13) and

(3.2) yields

φd
δ

s + Rδ

=
φd

δφδ

s + Rδ

b̃d
δ(s) + φd

δ

1− b̃d
δ(s)

s
(4.14)
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from which it follows that

b̃d
δ(s)(

1

s
− φδ

s + Rδ

) =
1

s
− 1

s + Rδ

(4.15)

and using φδ = 1− Rδ

β
, b̃d

δ(s) reduces to

b̃d
δ(s) =

β

s + β
, (4.16)

which immediately yields that

bd
δ(y) = βe−βy. (4.17)

Define

Gd(u, y) = Pr(|UTd
| ≤ y, Td < ∞| U0 = u), (4.18)

then with w2(x) = I(x ≤ y),

E{w2(Y )} =

∫ ∞

0

I(x ≤ y)dP (x) = P (y) (4.19)

and with δ = 0, md
0,0(u) = Gd(u, y) is obtained from (4.9), i.e.

Gd(u, y) = P (y)ψd(u) (4.20)

where

ψd(u) = Ḡd
0(u) = k̃1(cR0)e

−R0u. (4.21)



CHAPTER 4. DISTRIBUTIONAL ASSUMPTIONS FOR CLAIM SIZES 70

Also note that the proper distribution function of the deficit is also exponential, i.e.

Gd(u, y)

ψd(u)
= P (y). (4.22)

Now, let’s consider the function w(x, y) has the form of w(x, y) = e−sxw2(y),

extended from w(x, y) = w2(y). Then the Gerber-Shiu expected discounted penalty

function is defined as

md
δ,s(u) = E{e−δTd−sU

T−
d w2(|UTd

|)I(Td < ∞)| U0 = u} (4.23)

and the solution to this can be found in the following way.

Conditioning on the time (t) and the amount (y) of the first claim, we obtain

md
δ,s(u) =

∫ ∞

0

e−δtσδ,s(u + ct)k1(t)dt (4.24)

where

σδ,s(t) =

∫ ∞

t

w(t, y − t)p(y)dy +

∫ t

0

mδ,s(t− y)p(y)dy. (4.25)

Noting that σδ,s(t) is same for ordinary and delayed renewal processes, we can use the

result already derived in Willmot (2007),
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σδ,s(t) = (E{w2(Y )} − βρ̃δ(s))e
−(β+s)t +

β

φδ

ρ̃δ(s)Ḡδ(t) (4.26)

where

ρ̃δ(s) =
E{w2(Y )}k̃{δ + c(β + s)}

s + βk̃{δ + c(β + s)} . (4.27)

Substitution of (4.26) into (4.24) yields,

md
δ,s(u) = (E{w2(Y )} − βρ̃δ(s))

∫ ∞

0

e−δte−(β+s)(u+ct)dK1(t)

+
β

φδ

ρ̃δ(s)

∫ ∞

0

e−δtḠδ(u + ct)dK1(t)

= (E{w2(Y )} − βρ̃δ(s))e
−(β+s)uk̃1{δ + c(β + s)}

+βρ̃δ(s)k̃1(δ + cRδ)e
−Rδu

=
E{w2(Y )}sk̃1{δ + c(β + s)}

s + βk̃{δ + c(β + s)} e−(β+s)u

+
E{w2(Y )}βk̃{δ + c(β + s)}

s + βk̃{δ + c(β + s)} k̃1(δ + cRδ)e
−Rδu,

i.e.

md
δ,s(u) = E{w2(Y )}[a(δ, s)k̃1{δ + c(β + s)}e−(β+s)u

+(1− a(δ, s))k̃1{δ + cβ(1− φδ)}e−β(1−φδ)u] (4.28)

where

a(δ, s) =
s

s + βk̃{δ + c(β + s)} . (4.29)
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md
δ,s(u) can be viewed as an weighted average of E{w2(Y )}k̃1{δ + c(β + s)}e−(β+s)u

and E{w2(Y )}k̃1{δ + cβ(1− φδ)}e−β(1−φδ)u.

Example 4.1.1 Assumption of exponential distributions for interclaim times

In addition to the assumption of exponential claim sizes, assume that the interclaim

times also follow exponential distributions; k1(t) = λ1e
−λ1t and k(t) = λe−λt. Then

using (4.28) and (4.29), it is easy to see that

md
δ,s(u) = λ1E{w2(Y )}[ βλ

cs2 + (λ + δ + cβ)s + βλ
· e−β(1−φδ)u

λ1 + δ + cβ(1− φδ)

+
cs2 + (λ + δ + cβ)s

cs2 + (λ + δ + cβ)s + βλ
· e−(β+s)u

λ1 + δ + c(β + s)
].

When λ1 = λ, md
δ,s(u) further reduces to

md
δ,s(u) =

λE{w2(Y )}
cs2 + (λ + δ + cβ)s + βλ

[(β −Rδ)e
−Rδu + se−(β+s)u] (4.30)

and this coincides with the formula derived in Example 3.1 in Willmot (2007).

We know that the deficit and the surplus at ruin are independent of each other

when claims are from exponential distribution. This implies that the LT of the dis-

counted surplus at ruin is

Eδ{e
−sU

T−
d |U0 = u} =

λ

cs2 + (λ + δ + cβ)s + βλ
[(β −Rδ)e

−Rδu + se−(β+s)u] (4.31)
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where the expectation is taken with respect to the defective PDF of the discounted

surplus when the initial surplus is u, fd
δ (x|u). This is shown when δ = 0 in the follow-

ing. From Willmot (2005, p.24), the marginal defective density of the surplus is

f(x|u) =
λ(1 + θ)

cθ
e−βx




{ψ(u− x)− ψ(u)}, x < u

{1− ψ(u)}, x > u
, (4.32)

and from Klugman et al. (2004), the exact ruin probability can be obtained with

exponential claims in classical Poisson model, which is

ψ(u) =
1

1 + θ
e−

θ
1+θ

βu. (4.33)

Then,

E{e−sU
T−

d |U0 = u} =

∫ ∞

0

e−sxf(x|u)dx

=
λ

cθ
{
∫ u

0

e−(s+β)x(e−
θ

1+θ
β(u−x) − e−

θ
1+θ

βu)dx

+

∫ ∞

u

e−(s+β)x(1 + θ − e−
θ

1+θ
βu)dx}

=
λ

cθ
{( 1 + θ

(1 + θ)s + β
− 1

s + β
)e−

θ
1+θ

βu

+(
1 + θ

s + β
− 1 + θ

(1 + θ)s + β
)e−(s+β)u}

=
λ

c
{ β

(1 + θ)s2 + (2 + θ)βs + β2
e−

θ
1+θ

βu

+
(1 + θ)

(1 + θ)s2 + (2 + θ)βs + β2
e−(s+β)u}. (4.34)

Using c = (1+θ)λ
β

and R0 = θ
1+θ

β, (4.34) becomes

E{e−sU
T−

d |U0 = u} =
λ

cs2 + (λ + cβ)s + βλ
[(β −R0)e

−R0u + se−(β+s)u], (4.35)
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which is (4.31) when δ = 0. ♣

Alternatively, md
δ,s(u) can be rewritten as

md
δ,s(u) = ρ̃δ(s)

k̃1(δ + c(β + s))

k̃(δ + c(β + s))
se−(β+s)u + ρ̃δ(s)βk̃1(δ + cRδ)e

−Rδu

i.e., using (4.13),

md
δ,s(u) = ρ̃δ(s){ k̃1(δ + c(β + s))

k̃(δ + c(β + s))
se−(β+s)u + βḠd

δ(u)}. (4.36)

4.1.2 Special Case : Stationary Renewal Risk Process

Using the generalized Lundberg equation (4.3), the Laplace transform of the equilib-

rium inter-claim time distribution may be expressed as

k̃e(δ + cRδ) =
1− k̃(δ + cRδ)

(δ + cRδ)E(V )
=

Rδ

βE(V )(δ + cRδ)
, (4.37)

and with βE(V ) = (1 + θ)/c, (4.37) may be reexpressed as

k̃e(δ + cRδ) =
1

1 + θ

cRδ

δ + cRδ

. (4.38)

For the stationary process, (4.9) thus becomes

me
δ,0(u) =

E{w2(Y )}
1 + θ

cRδ

δ + cRδ

e−Rδu. (4.39)
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When δ = 0, (4.39) becomes

me
0,0(u) =

E{w2(Y )}
1 + θ

e−R0u, (4.40)

whereas when w2 = 1, (4.39) becomes

Ḡe
δ(u) =

1

1 + θ

cRδ

δ + cRδ

e−Rδu. (4.41)

The stationary ruin probability is

ψe(u) = Ḡe
0(u) =

1

1 + θ
e−R0u, (4.42)

which agrees with a known result (See Willmot and Lin (2001), p.230) and also with

the exact ruin probability with exponential claims in classical Poisson model.

As explored in this section, assumption of exponential claim sizes gives great simpli-

fication to many functions derived from the Gerber-Shiu expected discounted penalty

function, even in the delayed renewal risk model. We can easily obtain exact values

for these functions, when assumptions for the time until the first claim and for the

interclaim times are made, not worrying about the bounds and asymptotics.
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4.2 Infinite Mixture of Erlangs with Single Scale

Parameter

Assume that the distribution of the claim sizes is of the form

p(y) =
∞∑

j=1

qj
β(βy)j−1e−βy

(j − 1)!
, y ≥ 0 (4.43)

where
∑∞

j=1 qj = 1.

Finite mixtures of Erlangs are special cases of the Coxian-class, but infinite mix-

tures of the above form do not belong to Coxian-class. One example of this is the sum

of two Chi-square distributions, where it can be expressed as an infinite mixture of

Erlang but not in a form of Coxian-class distribution.

4.2.1 Delayed Renewal Risk Process

From Example 2.1.2 we know that px(y) = p(x + y)/P̄ (x) is of the form

px(y) =
∞∑

j=1

η∗j (x)
β(βy)j−1e−βy

(j − 1)!
=

∞∑
j=1

η∗j (x)τj(y) (4.44)

where

η∗j (x) =
e−βx

P̄ (x)

∞∑
m=j

qm
βxm−j

(m− j)!
(4.45)

and

τj(y) =
β(βy)j−1e−βy

(j − 1)!
. (4.46)
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Also, since p(x + y) = P̄ (x)px(y) =
∑∞

j=1 P̄ (x)η∗j (x)τj(y),

p(x + y) =
∞∑

j=1

ηj(x)τj(y) (4.47)

where ηj(x) = P̄ (x)η∗j (x).

As in the previous section, assume that the penalty function is of the form w(x, y) =

e−sxw2(y). Willmot (2007) has shown that, in the ordinary renewal risk process,

mδ,s(u) satisfies

mδ,s(u) = e−su

∞∑
j=1

b̃j,δ(s){τj(u) +
∞∑

k=0

(
s

β
)k

∞∑
n=1

cn,δ

1− φδ

(
n + k − 1

k

)
τn+k+j(u)} (4.48)

where

b̃j,δ(s) =

∫ ∞

0

e−sx fδ(x|0)

P̄ (x)

∫ ∞

0

w2(y)P̄ (x + y)η∗j (x + y)dydx, (4.49)

and a probability distribution {c0,δ, c1,δ, c2,δ, ...} is defined in terms of the compound

geometric probability generating function

∞∑
n=0

cn,δz
n =

1− φδ

1− φδ

∑∞
j=1 η̃j,δzj

(4.50)

with η̃j,δ =
∫∞
0

η∗j (x)fδ(x|0)
φδ

dx.

Using equation (2.1) with w(x, y) = e−sxw2(y),

md
δ,s(u) = φd

δ

∫ u

0

mδ,s(u− y)bd
δ(y)dy + vd

δ,s(u) (4.51)
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where

bd
δ(y) =

∫ ∞

0

px(y){fd
δ (x|0)

φd
δ

}dx =

∫ ∞

0

{
∞∑

j=1

η∗j (x)τj(y)}{fd
δ (x|0)

φd
δ

}dx

=
∞∑

j=1

{
∫ ∞

0

η∗j (x)
fd

δ (x|0)

φd
δ

dx}τj(y) =
∞∑

j=1

η̃d
j,δτj(y) (4.52)

with η̃d
j,δ =

∫∞
0

η∗j (x)
fd

δ (x|0)

φd
δ

dx

and

vd
δ,s(u) = e−su

∫ ∞

0

e−sxfd
δ (x|0)

∫ ∞

u

w2(y − u)px(y)dydx

= e−su

∫ ∞

0

e−sxfd
δ (x|0)

∫ ∞

0

w2(y)
p(x + y + u)

P̄ (x)
dydx

= e−su

∞∑
j=1

b̃d
j,δ(s)τj(u) (4.53)

with b̃d
j,δ(s) =

∫∞
0

e−sx fd
δ (x|0)

P̄ (x)

∫∞
0

w2(y)ηj(x + y)dydx.

Note that bd
δ(y) and vd

δ,s(u) are sums of damped exponential series.

Now, using (4.48) and (4.52),
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∫ u

0

mδ,s(u− y)bd
δ(y)dy =

∫ u

0

e−s(u−y)

∞∑
j=1

b̃j,δ(s){τj(u− y)

+
∞∑

k=0

(
s

β
)k

∞∑
n=1

cn,δ

1− φδ

(
n + k − 1

k

)
τn+k+j(u− y)}

×
∞∑

m=1

η̃d
m,δτm(y)dy

= e−su

∞∑
j=1

b̃j,δ(s)
∞∑

m=1

η̃d
m,δ{

∫ u

0

esyτj(u− y)τm(y)dy

+
∞∑

k=0

(
s

β
)k

∞∑
n=1

cn,δ

1− φδ

(
n + k − 1

k

)

∫ u

0

esyτn+k+j(u− y)τm(y)dy} (4.54)

Using the beta-type integral,

∫ u

0

esyτj(u− y)τm(y)dy =
βj+me−βu

(j − 1)!(m− 1)!

∫ u

0

esy(u− y)j−1ym−1dy

=
βj+me−βu

(j − 1)!(m− 1)!

∞∑
i=0

si

i!

∫ u

0

(u− y)j−1ym+i−1dy

=
βj+me−βu

(j − 1)!(m− 1)!

∞∑
i=0

si

i!

(j − 1)!(m + i− 1)!

(j + m + i− 1)!
uj+m+i−1

=
∞∑
i=0

(
s

β
)i

(
m + i− 1

i

)
τj+m+i(u), (4.55)
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and thus

∫ u

0

mδ,s(u− y)bd
δ(y)dy = e−su

∞∑
j=1

b̃j,δ(s)
∞∑

m=1

η̃d
m,δ

∞∑
i=0

(
s

β
)i

(
m + i− 1

i

)

×{τj+m+i(u) +
∞∑

k=0

(
s

β
)k

∞∑
n=1

cn,δ

1− φδ(
n + k − 1

k

)
τm+i+n+k+j(u)}. (4.56)

Finally,

md
δ,s(u) = φd

δe
−su

∞∑
j=1

b̃j,δ(s)
∞∑

m=1

η̃d
m,δ

∞∑
i=0

(
s

β
)i

(
m + i− 1

i

)

×{τj+m+i(u) +
∞∑

k=0

(
s

β
)k

∞∑
n=1

cn,δ

1− φδ

(
n + k − 1

k

)
τm+i+n+k+j(u)}

+e−su

∞∑
j=1

b̃d
j,δ(s)τj(u), (4.57)

which is in a form of damped exponential series.

When s = 0, the penalty function becomes w(x, y) = w2(y) and

md
δ,0(u) = φd

δ

∞∑
j=1

b̃j,δ(0)
∞∑

m=1

η̃d
m,δ{τj+m(u) +

∞∑
n=1

cn,δ

1− φδ

τj+m+n(u)}+
∞∑

j=1

b̃d
j,δ(0)τj(u)

= φd
δ

∞∑
j=1

b̃j,δ(0)
∞∑

m=1

η̃d
m,δ

∞∑
n=0

cn,δ

1− φδ

τj+m+n(u) +
∞∑

j=1

b̃d
j,δ(0)τj(u) (4.58)

the second line follows since c0,δ = 1− φδ from (4.50).
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Let l = m + n and interchange the order of summation to get,

∞∑
m=1

η̃d
m,δ

∞∑
n=0

cn,δ

1− φδ

τj+m+n(u) =
∞∑

m=1

η̃d
m,δ

∞∑

l=m

cl−m,δ

1− φδ

τj+l(u)

=
∞∑

l=1

l∑
m=1

η̃d
m,δ

cl−m,δ

1− φδ

τj+l(u). (4.59)

Substituting this into the following expression and letting n = l + j,

∞∑
j=1

b̃j,δ(0)
∞∑

m=1

η̃d
m,δ

∞∑
n=0

cn,δ

1− φδ

τj+m+n(u)

=
∞∑

j=1

b̃j,δ(0)
∞∑

l=1

l∑
m=1

η̃d
m,δ

cl−m,δ

1− φδ

τj+l(u)

=
∞∑

j=1

∞∑
n=j+1

n−j∑
m=1

b̃j,δ(0)η̃d
m,δ

cn−m−j,δ

1− φδ

τn(u)

=
∞∑

n=2

n−1∑
j=1

n−j∑
m=1

b̃j,δ(0)η̃d
m,δ

cn−m−j,δ

1− φδ

τn(u). (4.60)

Thus,

md
δ,0(u) =

∞∑
n=2

{
n−1∑
j=1

n−j∑
m=1

b̃j,δ(0)φd
δ η̃

d
m,δ

cn−m−j,δ

1− φδ

}τn(u) +
∞∑

j=1

b̃d
j,δ(0)τj(u)

= e−βu

∞∑
i=0

Rd
i,δ

(βu)i

i!
(4.61)
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where

Rd
i,δ =





βb̃d
1,δ(0) for i = 0

β[b̃d
i+1,δ(0) +

∑i
j=1

∑i+1−j
m=1 b̃j,δ(0)φd

δ η̃
d
m,δ

ci+1−m−j,δ

1−φδ
] for i = 1, 2, 3, ...

(4.62)

Thus, md
δ,0(u) is a damped exponential series, as in the ordinary renewal process.

4.2.2 Special Case : Stationary Renewal Risk Process

Let δ = 0 in the Gerber-Shiu function in the stationary renewal risk process; me
0(u) =

E{w(UT−e , |UTe|)I(Te < ∞)|U0 = u}. In this case, from (2.54) we know that

me
0(u) =

1

1 + θ

∫ u

0

m0(u− y)p1(y)dy +
1

(1 + θ)E(Y )

∫ ∞

u

∫ ∞

t

w(t, y − t)p(y)dydt.

(4.63)

Also let w(x, y) = e−sxw2(y) as before. Then the double integration in the second

term is

∫ ∞

u

∫ ∞

t

w(t, y − t)p(y)dydt =

∫ ∞

u

∫ ∞

t

e−stw2(y − t)p(y)dydt

=

∫ ∞

u

e−st

∫ ∞

0

w2(y)p(y + t)dydt.
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Using (4.47), a property of Erlang mixtures, we obtain

∫ ∞

u

∫ ∞

t

w(t, y − t)p(y)dydt =
∞∑

j=1

∫ ∞

0

w2(y)τj(y)dy

∫ ∞

u

e−stηj(t)dt

=
∞∑

j=1

Ej[w2(Y )]

∫ ∞

u

e−st−βt

∞∑
m=j

qm
(βt)m−j

(m− j)!
dt

=
∞∑

j=1

Ej[w2(Y )]
∞∑

m=j

qmβm−j

(β + s)m−j+1
×

∫ ∞

u

(β + s)m−j+1tm−je−(β+s)t

(m− j)!
dt

=
∞∑

j=1

Ej[w2(Y )]
∞∑

m=j

qmβm−je−(β+s)u ×

m−j∑

k=0

(β + s)k−m+j−1uk

k!

= e−su

∞∑
j=1

Ej[w2(Y )]
∞∑

k=0

k∑
q=0

(
k

q

)
βqsk−quk

k!
e−βu ×

∞∑

m=k+j

qmβm−j(β + s)j−m−1

= e−su

∞∑
j=1

Ej[w2(Y )]
∞∑

k=0

k∑
q=0

(su)k−q

(k − q)!
×

∞∑

m=k+j

qmβm−j(β + s)j−m−1τq+1(u) (4.64)

Now, using the form of m0,s in Willmot (2007) when claims are of mixed Erlang
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type, the integral in the first term of (4.63) is

∫ u

0

m0,s(u− y)P̄ (y)dy

=

∫ u

0

e−s(u−y)

∞∑
i=1

b̃i,0(s){τi(u− y)

+
∞∑

l=0

(
s

β
)l

∞∑
n=1

cn,0

1− φ0

(
n + l − 1

l

)
τn+l+i(u− y)}

∞∑
j=1

qj

j−1∑

k=0

βkyk

k!
e−βydy

= e−su

∞∑
j=1

qj

j−1∑

k=0

∞∑
i=1

b̃i,0(s){
∫ u

0

esyτi(u− y)
βkyk

k!
e−βydy

+
∞∑

l=0

(
s

β
)l

∞∑
n=1

cn,0

1− φ0

(
n + l − 1

l

) ∫ u

0

esyτn+l+i(u− y)
βkyk

k!
e−βydy

Using beta-type integral (4.55), we obtain

∫ u

0

esyτi(u− y)
βkyk

k!
e−βydy =

1

β

∞∑

h=0

(
s

β
)h

(
k + h

h

)
τi+k+h+1(u).

Thus,

∫ u

0

m0,s(u− y)P̄ (y)dy

=
1

β
e−su

∞∑
j=1

qj

j−1∑

k=0

∞∑
i=1

b̃i,0(s)
∞∑

h=0

(
s

β
)h

(
k + h

h

)
{τi+k+h+1(u)

+
∞∑

l=0

(
s

β
)l

∞∑
n=1

cn,0

1− φ0

(
n + l − 1

l

)
τn+l+i+k+h+1(u)} (4.65)
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Therefore, using (4.65) and (4.64) we obtain

me
0,s(u)

=
1

(1 + θ)E(Y )
{
∫ u

0

m0,s(u− y)P̄ (y)dy +

∫ ∞

u

∫ ∞

t

e−stw2(y − t)p(y)dydt

=
e−su

β(1 + θ)E(Y )
[
∞∑

j=1

qj

j−1∑

k=0

∞∑
i=1

b̃i,0(s)
∞∑

h=0

(
s

β
)h

(
k + h

h

)
×

{τi+k+h+1(u) +
∞∑

l=0

(
s

β
)l

∞∑
n=1

cn,0

1− φ0

(
n + l − 1

l

)
τn+l+i+k+h+1(u)}+

∞∑
j=1

Ej[w2(Y )]
∞∑

k=0

k∑
q=0

(su)k−q

(k − q)!

∞∑

m=k+j

qmβm−j(β + s)j−m−1τq+1(u) (4.66)

When s = 0, the penalty function w(x, y) = w2(y) is a function of the deficit only,

and the Gerber-Shiu function simplifies to

me
0,0(u) =

e−βu

(1 + θ)E(Y )

∞∑
j=1

qj[

j−1∑

k=0

∞∑
i=1

b̃i,0(0)
∞∑

n=0

cn,0

1− φ0

(βu)n+i+k

(n + i + k)!

+

j∑
m=1

Em[w2(Y )]

j−m∑

k=0

βk−1uk

k!
]. (4.67)

Further simplification by letting w2(y) = 1 leads us to the ruin probability

ψe(u) =
e−βu

(1 + θ)E(Y )

∞∑
j=1

qj

j−1∑

k=0

[
∞∑
i=1

b̃i,0(0)
∞∑

n=0

cn,0

1− φ0

(βu)n+i+k

(n + i + k)!
+ (j − k)

βk−1uk

k!
].

(4.68)

Note that ψe(u) is a compound geometric convolution, which is already known

from Willmot and Dickson (2003) by

ψe(u) =
1

1 + θ

∫ u

0

ψ(u− y)dPe(y) +
1

1 + θ
P̄e(u), (4.69)

and that b̃i,0(0) can be evaluated easily when interclaim times are of Coxian-type, as

mentioned in Example 3.2 of Willmot (2007).
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4.3 Coxian Class

In this section, assume that the claim size distribution p(y) belongs to the Coxian

class, i.e. the Laplace transform p̃ is of the form

p̃(s) =
λ∗ + sβ(s)∏n

i=1(s + λi)
(4.70)

with λ∗ =
∏n

i=1 λi for λi > 0 and β(s) is a polynomial of degree n− 2 or less.

Li and Garrido (2005) show that if λ1, λ2, ..., λn are distinct then, using partial

fractions,

p̃(s) =
λ∗ + sβ(s)∏n

i=1(s + λi)
=

n∑
i=1

ai

s + λi

, (4.71)

where ai = (λ∗ − λiβ(−λi))/
∏n

j=1,j 6=i(λj − λi).

Also, if some of the λi are not distinct, then (4.70) can be rewritten as

p̃(s) =
λ∗ + sβ(s)∏k
i=1(s + λi)ni

(4.72)

where λ1, λ2, ..., λk are distinct, λ∗ =
∏k

i=1 λi
ni , and n = n1 + n2 + ... + nk. Using

partial fractions,

p̃(s) =
λ∗ + sβ(s)∏k
i=1(s + λi)ni

=
k∑

i=1

ni∑
j=1

ai,j(
λi

s + λi

)j (4.73)

where

ai,j =
1

λi
j(ni − j)!

dni−j

dsni−j

k∏

m=1,m6=i

λ∗ + sβ(s)

(s + λm)nm
|s=−λi

, (4.74)
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and, hence,

p(y) =
k∑

i=1

ni∑
j=1

ai,j
λi

jyj−1e−λiy

(j − 1)!
. (4.75)

We will assume that p̃(s) is of the form as in (4.72) with λ1, λ2, ..., λk distinct, since

it actually includes (4.71) when all ni’s equal to 1.

Landriault and Willmot (2007) have considered an ordinary renewal risk process

with arbitrary interclaim times and Coxian-distributed claim sizes. When the penalty

function of the Gerber-Shiu is a function of the deficit only, they have shown that the

Gerber-Shiu expected discounted penalty function in this case,

mδ,0(u) = E[e−δT w2(|U(T )|)I(T < ∞)|U0 = u], (4.76)

is

mδ,0(u) =
n∑

l=1

ηle
Rlu (4.77)

where {ηl}n
l=1 satisfy the system of linear equations

n∑

l=1

ηl(
λi

λi + Rl

)j =

∫ ∞

0

w2(x)
λi

jxj−1e−λix

(j − 1)!
dx (4.78)

for i = 1, ..., k and j = 1, ..., ni, and Rl = Rl(δ) for l = 1, ..., n are all the roots on

the left-half complex plane (i.e. Re(Rl(δ)) < 0 for l = 1, 2, ..., n) of the Lundberg’s

generalized fundamental equation, k̃(δ − cs)p̃(s) = 1.
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In the delayed renewal risk process, md
δ,0(u) satisfies

md
δ,0(u) = φd

δ

∫ u

0

mδ,0(u− y)bd
δ(y)dy + φd

δ

∫ ∞

u

w2(y − u)bd
δ(y)dy (4.79)

where bd
δ(y) =

∫∞
0

px(y){fd
δ (x|0)

φd
δ
}dx.

From Landriault and Willmot (2007), when claim sizes are Coxian-distributed, we

know that px(y) is of the form

px(y) =
k∑

i=1

ni−1∑
j=0

bi,j(x)
λj+1

i yje−λiy

j!
(4.80)

where bi,j(x) =
∑ni−j−1

m=0
ai,m+j

P̄ (x)
xm λm

i e−λix

j!
, and hence,

bd
δ(y) =

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

λj+1
i yje−λiy

j!
(4.81)

where b̃d
i,j,δ(s) =

∫∞
0

e−sxbi,j(x)
fd

δ (x|0)

φd
δ

dx.

Using equations (4.77) and (4.81), equation (4.79) becomes
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md
δ,0(u) = φd

δ

∫ u

0

n∑

l=1

ηle
Rl(u−y)

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

λj+1
i yje−λiy

j!
dy

+φd
δ

∫ ∞

u

w2(y − u)
k∑

i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

λj+1
i yje−λiy

j!
dy

= φd
δ

n∑

l=1

ηle
Rlu

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)(

λi

λi + Rl

)j+1

∫ u

0

(λi + Rl)
j+1yje−(λi+Rl)y

j!
dy

+φd
δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

∫ ∞

u

w2(y − u)
λj+1

i yje−λiy

j!
dy

= φd
δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

n∑

l=1

ηle
Rlu(

λi

λi + Rl

)j+1[1−
j∑

h=0

((λi + Rl)u)he−(λi+Rl)u

h!
]

+φd
δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

j∑

h=0

uhλh
i e
−λiu

×
∫ ∞

u

w2(y − u)

(
j

h

)
λj−h+1

i (y − u)j−he−λi(y−u)

j!
dy

= φd
δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

n∑

l=1

ηle
Rlu(

λi

λi + Rl

)j+1[1−
j∑

h=0

((λi + Rl)u)he−(λi+Rl)u

h!
]

+φd
δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

j∑

h=0

(λiu)he−λiu

h!
γi,j−h+1

= φd
δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

n∑

l=1

ηle
Rlu(

λi

λi + Rl

)j+1

+φd
δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

j∑

h=0

(λiu)he−λiu

h!
[γi,j−h+1 −

n∑

l=1

ηl(
λi

λi + Rl

)j−h+1].

By (4.78), the second term on the right hand side disappears and thus
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md
δ,0(u) = φd

δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)

n∑

l=1

ηle
Rlu(

λi

λi + Rl

)j+1

=
n∑

l=1

[ηlφ
d
δ

k∑
i=1

ni−1∑
j=0

b̃d
i,j,δ(0)(

λi

λi + Rl

)j+1]eRlu

=
n∑

l=1

ηd
l e

Rlu (4.82)

where ηd
l = ηlφ

d
δ

∑k
i=1

∑ni−1
j=0 b̃d

i,j,δ(0)( λi

λi+Rl
)j+1.

Note that md
δ,0(u) has the same form of linear combination of eRlu’s, as in the

ordinary renewal risk model.



Chapter 5

Distributional Assumptions for the

Time until the First Claim

In this chapter, we are going to solve md
δ(u) directly from the equation conditioning

on the time and the amount of the first claim, for different distributions of time until

the first claim. We expand the argument from a simple distribution (exponential) to

a more complicated distribution (Coxian class).

5.1 Exponential

Let’s look at the simplest cases, the exponential distribution. Assuming that the time

until the first claim has a exponential distribution in the delayed renewal risk model

seems to be useful and convenient. This is because the memoryless property of the

exponential distribution takes care of the difficulty in observing the last claim before

time 0. When the classical Poisson renewal risk process was extended to the ordinary

Sparre-Andersen renewal risk process this useful property was lost.
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The distribution of the time until the first claim, k1(t), is

k1(t) = λe−λt (5.1)

with a LT of

k̃1(s) =
λ

λ + s
. (5.2)

As introduced in section 2.3, md
δ(u) can be expressed as

md
δ(u) =

∫ ∞

0

e−δtσδ(u + ct)k1(t)dt

=

∫ ∞

0

e−δtσδ(u + ct)λe−λtdt

= λ

∫ ∞

0

e−(λ+δ)tσδ(u + ct)dt

where

σδ(t) =

∫ t

0

mδ(t− y)dP (y) +

∫ ∞

t

w(t, y − t)dP (y). (5.3)

With a change in the variable x = u + ct, md
δ(u) results in

md
δ(u) =

λ

c
e

λ+δ
c

u

∫ ∞

u

e−
λ+δ

c
tσδ(t)dt =

λ

c
Tλ+δ

c
σδ(u). (5.4)

That is, md
δ(u) is a Dickson-Hipp transform of σδ(t). In later section it is necessary

to use the LT of md
δ(u) and invert back to obtain an analytic solution for md

δ(u), but in

the exponential case it is straightforward to obtain an explicit form out of the equation

derived in section 2.3.
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5.2 Combination of Exponentials

The second simplest distribution in this chapter is a combination of exponentials.

It loses the nice memoryless property that the exponential distribution has, but the

explicit form of the Gerber-Shiu expected discounted penalty function can still be

obtained without using LT.

This PDF is of the form

k1(t) =
r∑

i=1

piλie
−λit. (5.5)

where pi’s are real numbers and
∑r

i=1 pi = 1.

Following the same approach as in the previous section we get an explicit solution

expressed as a combination of Dickson-Hipp transforms, i.e.

md
δ(u) =

r∑
i=1

pi(
λi

c
)e

λi+δ

c
u

∫ ∞

u

e−
λi+δ

c
tσδ(t)dt =

r∑
i=1

pi(
λi

c
)Tλi+δ

c

σδ(u). (5.6)

Both (5.4) and (5.6) are expressed in nice simple forms, a Dickson-Hipp transform and

a combination of Dickson-Hipp transforms. If we can obtain an explicit expression for

σδ(t), also can we for md
δ(u) in these cases.

5.3 Coxian Class

Let’s assume that the distribution of the time until the first claim has a PDF of the

form

k1(y) =
r∑

i=1

ni∑
j=1

pij
λi

jyj−1e−λiy

(j − 1)!
(5.7)
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with a LT of

k̃1(s) =
r∑

i=1

ni∑
j=1

pij(
λi

λi + s
)
j

. (5.8)

Now, we are going to solve md
δ(u) directly from the equation conditioning on the time

and amount of the first claim. This method was used in Li and Garrido (2005) for the

ordinary renewal risk model.

Once again using (2.48) and (2.49) introduced in section 2.3,

md
δ(u) =

∫ ∞

0

e−δtσδ(u + ct)k1(t)dt (5.9)

where

σδ(t) =

∫ t

0

mδ(t− y)dP (y) +

∫ ∞

t

w(t, y − t)dP (y).
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Then, the LT of md
δ(u) is

m̃d
δ(s) =

∫ ∞

0

e−su

∫ ∞

0

e−δtσδ(u + ct)k1(t)dtdu

=

∫ ∞

0

e−δtk1(t)

∫ ∞

0

e−suσδ(u + ct)dudt

=

∫ ∞

0

e−δtk1(t)

∫ ∞

ct

e−s(y−ct)σδ(y)dydt

=

∫ ∞

0

e−(δ−cs)tk1(t)

∫ ∞

ct

e−syσδ(y)dydt

=

∫ ∞

0

e−syσδ(y)

∫ y
c

0

e−(δ−cs)tk1(t)dtdy

=

∫ ∞

0

e−stσδ(t)

∫ t
c

0

e−(δ−cs)yk1(y)dydt.
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Note that

∫ t
c

0

e−(δ−cs)yk1(y)dy =
r∑

i=1

ni∑
j=1

pij
λi

j

(j − 1)!

∫ t
c

0

yj−1e−(λi+δ−cs)ydy

=
r∑

i=1

ni∑
j=1

{pij(
λi

λi + δ − cs
)
j

×

∫ t
c

0

(λi + δ − cs)jyj−1e−(λi+δ−cs)y

(j − 1)!
dy}

=
r∑

i=1

ni∑
j=1

[pij(
λi

λi + δ − cs
)
j

×

{1−
j−1∑
m=0

(λi + δ − cs)m( t
c
)
m

e−(λi+δ−cs)( t
c
)

m!
}]

=
r∑

i=1

ni∑
j=1

pij(
λi

λi + δ − cs
)
j

−est

r∑
i=1

e−
λi+δ

c
t

ni∑
j=1

pijλi
j

j−1∑
m=0

(λi + δ − cs)m−j( t
c
)
m

m!

= k̃1(δ − cs)

−est

r∑
i=1

e−
λi+δ

c
t

ni∑
j=1

pijλi
j

j−1∑
m=0

(λi + δ − cs)m−j( t
c
)
m

m!
.
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Therefore,

m̃d
δ(s) =

∫ ∞

0

e−stσδ(t)k̃1(δ − cs)dt

−
∫ ∞

0

σδ(t)
r∑

i=1

e−
λi+δ

c
t

ni∑
j=1

pijλi
j

j−1∑
m=0

(λi + δ − cs)m−j( t
c
)
m

m!
dt

= σ̃δ(s)k̃1(δ − cs)

−
r∑

i=1

ni∑
j=1

pijλi
j

j−1∑
m=0

(λi + δ − cs)m−j

m!cm

∫ ∞

0

tme−
λi+δ

c
tσδ(t)dt

= σ̃δ(s)k̃1(δ − cs)−
r∑

i=1

ni∑
j=1

pijλi
j

j−1∑
m=0

(λi + δ − cs)m−j(−1)mσ̃δ
(m)(λi+δ

c
)

m!cm

= σ̃δ(s)k̃1(δ − cs)

−
r∑

i=1

ni∑
j=1

pij(
λi

λi + δ − cs
)j

j−1∑
m=0

(−λi + δ − cs

c
)m σ̃δ

(m)(λi+δ
c

)

m!
,

i.e.

m̃d
δ(s) = σ̃δ(s)k̃1(δ − cs)−

r∑
i=1

ni∑
j=1

pij

j−1∑
m=0

(−λi

c
)m(

λi

λi + δ − cs
)j−m σ̃δ

(m)(λi+δ
c

)

m!
. (5.10)

Note

(
λi

λi + δ − cs
)j−m =

(−λi/c)
j−m

(j −m− 1)!

(j −m− 1)!

(s− (λi + δ)/c)j−m
(5.11)
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and inverting this gives

(−λi/c)
j−m

(j −m− 1)!
uj−m−1e

λi+δ

c
u. (5.12)

Thus, inverting equation (5.10) gives

md
δ(u) =

∫ u

0

σδ(y)
r∑

i=1

ni∑
j=1

pij
(−λi/c)

j

(j − 1)!
(u− y)j−1e

λi+δ

c
(u−y)dy

−
r∑

i=1

ni∑
j=1

pij

j−1∑
m=0

(
−λi

c
)m σ̃δ

(m)(λi+δ
c

)

m!

(−λi/c)
j−m

(j −m− 1)!
uj−m−1e

λi+δ

c
u

=
r∑

i=1

ni∑
j=1

pij
(−λi/c)

j

(j − 1)!
e

λi+δ

c
u

∫ u

0

σδ(y)(u− y)j−1e−
λi+δ

c
ydy

−
r∑

i=1

ni∑
j=1

pij(
−λi

c
)je

λi+δ

c
u

j−1∑
m=0

σ̃δ
(m)(λi+δ

c
)

m!(j −m− 1)!
uj−m−1,

i.e.

md
δ(u) =

r∑
i=1

ni∑
j=1

pij
(−λi/c)

j

(j − 1)!
e

λi+δ

c
udij(u) (5.13)

where

dij(u) =

∫ u

0

e−
λi+δ

c
yσδ(y)(u− y)j−1dy −

j−1∑
m=0

(
j − 1

m

)
σ̃δ

(m)(
λi + δ

c
)uj−m−1. (5.14)
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When r = 1 and n1 = 1, k1(x) is an exponential distribution and equation (5.13)

becomes

md
δ(u) =

λ

c
e

λ+δ
c

u

∫ ∞

u

e−
λ+δ

c
tσδ(t)dt =

λ

c
Tλ+δ

c
σδ(u), (5.15)

which is the same equation as we derived in section 5.1.

When ni = 1 for all i’s, k1(x) is a combination of exponential distributions and

equation (5.13) reduces to

md
δ(u) =

r∑
i=1

pi(
λi

c
)e

λi+δ

c
u

∫ ∞

u

e−
λi+δ

c
tσδ(t)dt =

r∑
i=1

pi(
λi

c
)Tλi+δ

c

σδ(u), (5.16)

which also coincides with the equation derived in section 5.2.

5.4 Impact of the Dist. of the Time until the First

Claim

In this section, we explore how different distributions of the time until the first claim

have impacts on the ruin probabilities. In particular, we consider short-tail distribu-

tion and long-tail distribution along with the exponential distribution, for the time

until the first claim. The examples we use for the short-tail distribution, which has

coefficient of variation (CV) less than 1 and increasing failure rate (IFR), are sum

of exponentials and Gamma distribution with shape parameter equal to or greater

than 1. For examples of the long-tail distribution, which has CV greater than 1 and

decreasing failure rate (DFR), we use mixture of exponentials and Inverse Gaussian
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distribution. For definitions, see Willmot and Lin (2001) and references therein.

For simplification, we assume that the claims and the interclaim times are of ex-

ponential, i.e., p(y) = βe−βy and k(t) = λeλt. Then from (4.9), by letting δ = 0 and

w2(y) = 1, we know

ψd(u) = k̃1(cκ)e−κu. (5.17)

And with the assumption that k(t) = λeλt, κ can be solved as

κ =
βθ

1 + θ

and the ruin probability in (5.17) is

ψd(u) = k̃1(λθ)e−
βθ
1+θ

u. (5.18)

The first case we consider is k1(t) = λeλt, where the process reduces to the classical

Poisson process. Note that the exponential distribution has both DFR and IFR and

has a CV of 1. In this case, the ruin probability is

ψd(u) =
1

1 + θ
e−

βθ
1+θ

u. (5.19)

The second case we consider is the sum of two exponentials, where the LT of k1(t)

has the form



CHAPTER 5. DIST. ASSUMP. FOR THE TIME UNTIL THE FIRST CLAIM 101

k̃1(s) = (
λ1

λ1 + s
)(

λ2

λ2 + s
), (5.20)

and thus

ψd(u) = (
λ1

λ1 + λθ
)(

λ2

λ2 + λθ
)e−

βθ
1+θ

u. (5.21)

The last case we consider is the mixture of two exponentials, where k1(t) =

qλ1e
−λ1t + (1− q)λ2e

−λ2t and the ruin probability in this case is

ψd(u) = {q λ1

λ1 + λθ
+ (1− q)

λ2

λ2 + λθ
}e− βθ

1+θ
u. (5.22)

To further simplify the calculation, let β = λ = 1 and θ = 0.2. The parameters λ1

and λ2 are also chosen so that the mean of the time until the first claim is 1.

For the sum of two exponentials, λ1 = λ2 = 2. Note that this is Erlang-2 and has

the smallest CV among all the possible combinations of λ’s. The CV is 0.707.

For the mixture of two exponentials, λ1 = 0.2, λ2 = 2 and q = 1/9. The CV in

this case is 2.236.

It can be seen from table 5.1 that the short-tail distribution brings lower ruin

probability and the long-tail distribution higher ruin probability, when the mean of

these distributions are the same. As pointed out in Landriault and Willmot (2007),

this is due to the greater variance of the increment cW1 − Y1 of the surplus process

for long-tail distribution. The greater the variance of this increment, the higher the
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k1(t)

u Exponential Sum of Exponentials Mixture of Exponential

0 0.833333333 0.826446281 0.863636364

0.1 0.819559545 0.812786325 0.849361710

0.5 0.766703679 0.760367285 0.794583813

1 0.705401437 0.699571673 0.731052399

5 0.362165174 0.359172073 0.375334816

10 0.157396336 0.156095540 0.163119839

20 0.029728328 0.029482639 0.030809358

30 0.005614956 0.005568551 0.005819136

50 0.000200308 0.000198652 0.000207592

Table 5.1: Calculation of the ruin probability, ψd(u), for Different Distributions of Time

until the First Claim

probability of ruin. Also the higher ruin probability associated with long-tail distri-

bution can be explained with more probability being shifted to the left for long-tail

distribution. When a long-tail distribution has the same mean as a short-tail distribu-

tion, the probability on small values of the long-tail distribution should be more than

that of the short-tail distribution to relax the effect of the large values of the long-tail

distribution. This can be shown by comparing the values of the cumulative distri-

bution function (CDF). In our case, the CDF of value 1 for mixture of exponentials

(long-tail) is 0.788732 whereas the CDF of value 1 for sum of exponentials (short-tail)

is 0.593994. This translates into the likelihood of earlier claim occurrence for long-tail

distribution and thus higher ruin probability.

The same results can be observed from table 5.2, where Gamma (5, 5) is used
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for short-tail distribution and Inverse Gaussian (1, 0.2) for long-tail distribution, for

the time until the first claim. Gamma (5, 5) has mean of 1, CV of 0.447 and ruin

probability

ψd(u) = (
5

5 + λθ
)5e−

βθ
1+θ

u, (5.23)

and Inverse Gaussian (1, 0.2) has mean of 1, CV of 2.236 and ruin probability

ψd(u) = e[0.2(1−(1+2λθ/0.2)0.5)]e−
βθ
1+θ

u. (5.24)

k1(t)

u Exponential Gamma(5,5) Inverse Gaussian(1,0.2)

0 0.833333333 0.821927107 0.863803332

0.1 0.819559545 0.808341847 0.849525918

0.5 0.766703679 0.756209444 0.794737431

1 0.705401437 0.695746275 0.731193734

5 0.362165174 0.357208048 0.375407380

10 0.157396336 0.155241978 0.163151375

20 0.029728328 0.029321422 0.030815314

30 0.005614956 0.005538101 0.005820261

50 0.000200308 0.000197566 0.000207632

Table 5.2: Calculation of the ruin probability, ψd(u), for Different Distributions of Time

until the First Claim



Chapter 6

Two-Step Premium and

Discounted Dividends

In this chapter, we employ the dividend strategy to the models we have studied. De

Finetti (1957) first proposed this strategy into the insurance risk models. There is

an active on-going research in this topic these days. Lin et al.(2003) have studied

the constant barrier strategy where all the premium is paid out as a dividend as

soon as the surplus level reaches the barrier level, in a classical compound Poisson

model. Lin and Pavlova (2006) have extended this idea to the threshold dividend

strategy model where only part of the premium is paid out as a dividend, instead

of the whole premium being paid out. Other authors have extended the constant

barrier problem from the classical Poisson model to the Sparre Andersen model. Li

and Garrido (2004b) have extended to the model where the interclaim times have

Generalized Erlang (n) distribution and Landriault (2007) studied the case where the

interclaim times follow Coxian distribution. But for the threshold dividend strategy

model not much research has been done outside of the classical Poisson model.
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6.1 Two-Step Premium and Barrier

Our goal is to see how the delayed renewal risk process can be expressed in term of

the ordinary renewal risk process that follow after the first claim, with the presence

of a dividend barrier.

Define Td,b as the time of ruin when the threshold dividend strategy is present

with threshold level b, in the delayed renewal risk process and Tb the corresponding

random variable in the ordinary renewal risk model. Then the Gerber-Shiu expected

discounted penalty function in each case, md
δ(u; b) and mδ(u; b), can be written as

md
δ(u; b) = E{e−δTd,bw(Ub(T

−
d,b), |Ub(Td,b)|)I(Td,b < ∞)|U(0) = u}, (6.1)

and

mδ(u; b) = E{e−δTbw(Ub(T
−
b ), |Ub(Tb)|)I(Tb < ∞)|U(0) = u}, (6.2)

respectively.

We assume that the premium rate is c1 when the surplus level is below the threshold

level b, and the premium rate changes to c2 as soon as the surplus level is above b.

Thus the dividend is paid out in the amount of c1− c2 when the surplus level is above

the threshold level and the surplus process under the threshold dividend strategy,

Ub(t), can be described as

dUb(t) =





c1dt− dS(t) for Ub(t) ≤ b

c2dt− dS(t) for Ub(t) > b
. (6.3)

Figure 6.1 depicts a sample path of the surplus process with a threshold dividend

strategy.
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Figure 6.1: Graphical representation of the surplus process Ub(t)

6.1.1 Threshold Dividend Strategy Model

Let’s now derive an equation for md
δ(u; b) conditioning on the time and the amount of

the first claim. md
δ(u; b) behaves differently depending on whether the initial surplus

level u is above or below b. Thus md
δ(u; b) should be considered in two disjoint cases,

md
δ(u; b) =





md
1(u) for 0 ≤ u ≤ b

md
2(u) for u > b

. (6.4)

The Gerber-Shiu function in the ordinary renewal risk process with threshold div-

idend strategy will also take the same form as above.

mδ(u; b) =





m1(u) for 0 ≤ u ≤ b

m2(u) for u > b
. (6.5)
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When we derive an equation for the threshold dividend strategy conditioning on

the first claim, there is one more step to consider compared to the corresponding

equation without a threshold. Since the premium level changes depending on where

the surplus level is at, we have to consider whether the first claim will occur before

the surplus level reaches the threshold level b or after exceeding it.

Let’s first consider the case 0 ≤ u ≤ b. When u is below the threshold level b,

the premium rate is c1 and if the first claim occurs before the surplus level reaching

b, u + c1t ≤ b and thus t should be in the range of 0 ≤ t ≤ b−u
c1

. Otherwise, i.e.

when t > b−u
c1

, the surplus level will exceed b. Once the surplus level exceeds b, the

premium rate changes to c2, and the accumulated surplus at time t for t > b−u
c1

will

be b+c2(t− b−u
c1

) where t− b−u
c1

is the time elapsed right after the surplus level exceeds b.

Thus, when 0 ≤ u ≤ b, md
δ(u; b) can be written as

md
δ(u; b) = md

1(u)

=

∫ b−u
c1

0

e−δt[

∫ u+c1t

0

mδ(u + c1t− y; b)p(y)dy

+

∫ ∞

u+c1t

w(u + c1t, y − u− c1t)p(y)dy]k1(t)dt

+

∫ ∞

b−u
c1

e−δt[

∫ b+c2(t− b−u
c1

)

0

mδ(b + c2(t− b− u

c1

)− y; b)p(y)dy

+

∫ ∞

b+c2(t− b−u
c1

)

w(b + c2(t− b− u

c1

), y − b− c2(t− b− u

c1

))p(y)dy]k1(t)dt

=

∫ b−u
c1

0

e−δtσδ(u + c1t; b)k1(t)dt

+

∫ ∞

b−u
c1

e−δtσδ(b + c2(t− b− u

c1

); b)k1(t)dt (6.6)
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where

σδ(t; b) =

∫ t

0

mδ(t− y; b)p(y)dy +

∫ ∞

t

w(t, y − t)p(y)dy. (6.7)

Change of variables, x = u + c1t in the first term of equation (6.6) and x =

b + c2(t− b−u
c1

) in the second term leads to

md
1(u) =

1

c1

∫ b

u

e
−δ(x−u

c1
)
σδ(x; b)k1(

x− u

c1

)dx

+
1

c2

∫ ∞

b

e
−δ(x−b

c2
+ b−u

c1
)
σδ(x; b)k1(

x− b

c2

+
b− u

c1

)dx (6.8)

When u ≥ b, the surplus level will always stay above the threshold level b until the

first claim occurs. Thus,

md
δ(u; b) = md

2(u) =

∫ ∞

0

e−δtσδ(u + c2t; b)k1(t)dt. (6.9)

Or by change of variable, x = u + c2t

md
2(u) =

1

c2

∫ ∞

u

e
−δ(x−u

c2
)
σδ(x; b)k1(

x− u

c2

)dx. (6.10)

Example 6.1.1 Exponentially distributed first interclaim time

If the first interclaim time is exponentially distributed, i.e. k1(t) = λe−λt, then for
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0 ≤ u ≤ b,

md
1(u) =

λ

c1

e
(λ+δ) u

c1

∫ b

u

e
−(λ+δ) x

c1 σδ(x; b)dx

+
λ

c2

e
{(λ+δ) b

c2
+(λ+δ)u−b

c1
}
∫ ∞

b

e
−(λ+δ) x

c2 σδ(x; b)dx

and for u > b,

md
2(u) =

λ

c2

e
(λ+δ) u

c2

∫ ∞

u

e
−(λ+δ) x

c2 σδ(x; b)dx.♣

Ruin Probability

In this section, the probability of ultimate ruin is studied. Let δ = 0 and the penalty

function w(x, y) = 1 to obtain the ruin probability from equation (6.8) and (6.10).

Then the ruin probability ψd(u; b) satisfies

ψd(u; b) =





ψd
1(u) for 0 ≤ u ≤ b

ψd
2(u) for u > b

, (6.11)

where

ψd
1(u) =

1

c1

∫ b

u

{
∫ x

0

ψ(x− y; b)p(y)dy + P̄ (x)}k1(
x− u

c1

)dx

+
1

c2

∫ ∞

b

{
∫ x

0

ψ(x− y; b)p(y)dy + P̄ (x)}k1(
x− b

c2

+
b− u

c1

)dx (6.12)

and

ψd
2(u) =

1

c2

∫ ∞

u

{
∫ x

0

ψ(x− y; b)p(y)dy + P̄ (x)}k1(
x− u

c2

)dx. (6.13)
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Example 6.1.2 Erlang mixture for the time until the first claim, Exponen-

tial interclaim times, and Exponential claim sizes

Let k1(t) =
∑∞

j=1 qj
λ1(λ1t)j−1e−λ1t

(j−1)!
, k(t) = λe−λt, and p(y) = βe−βy.

Then from section 6. of Lin and Pavlova (2006), we know that

ψ(u; b) =





ψ1(u) = 1− q(b) + q(b)
(1+θ1)

e−ρ1u for 0 ≤ u ≤ b

ψ2(u) = 1
(1+θ2)

[1− q(b) + q(b)e−ρ1b]e−ρ2(u−b) for u > b
. (6.14)

where ρi = θi

1+θi
β for i = 1, 2 and q(b) = (1+θ1)θ2

(θ1−θ2)e−ρ1b+(1+θ1)θ2
.

Equation (6.12) and (6.13) require the evaluation of
∫ x

0
ψ(x−y; b)p(y)dy. Since ψ(u; b)

is a piecewise function, the form of it changes depending on the range of the variable

and thus,
∫ x

0

ψ(x− y; b)p(y)dy =

∫ x−b

0

ψ2(x− y)p(y)dy +

∫ x

x−b

ψ1(x− y)p(y)dy. (6.15)

The first term on the right hand side of (6.15) is evaluated as
∫ x−b

0

ψ2(x− y)p(y)dy

=
β

1 + θ2

[1− q(b) + q(b)e−ρ1b]e−ρ2(x−b)

∫ x−b

0

e−(β−ρ2)ydy

=
β

β − ρ2

1

1 + θ2

[1− q(b) + q(b)e−ρ1b]e−ρ2(x−b)[1− e−(β−ρ2)(x−b)]

= [1− q(b) + q(b)e−ρ1b](e−ρ2(x−b) − e−β(x−b)). (6.16)

And the second term is evaluated as
∫ x

x−b

ψ1(x− y)p(y)dy

= [1− q(b)]

∫ x

x−b

βe−βydy +
q(b)

1 + θ1

e−ρ1xβ

∫ x

x−b

e−(β−ρ1)ydy

= [1− q(b)]e−βx{eβb − 1}+ q(b)e−βx{e(β−ρ1)b − 1} (6.17)
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From (6.16) and (6.17),

∫ x

0

ψ(x− y; b)p(y)dy = {1− q(b)}{e−ρ2(x−b) − e−βx}+ q(b){e−ρ2x−(ρ1−ρ2)b − e−βx}

= {1− q(b)}e−ρ2(x−b) + q(b)e−ρ2x−(ρ1−ρ2)b − e−βx

= e−ρ2(x−b){1− q(b) + q(b)e−ρ1b} − e−βx

= e−ρ2(x−b){(θ1 − θ2)e
−ρ1b + (1 + θ1)θ2e

−ρ1b

(θ1 − θ2)e−ρ1b + (1 + θ1)θ2

} − e−βx

= e−ρ2(x−b)−ρ1b{ θ1(1 + θ2)

(θ1 − θ2)e−ρ1b + (1 + θ1)θ2

} − e−βx

= q(b)
ρ1

ρ2

e−ρ2(x−b)−ρ1b − e−βx

and

{
∫ x

0

ψ(x− y; b)p(y)dy + P̄ (x)} = q(b)
ρ1

ρ2

e−(ρ1−ρ2)be−ρ2x (6.18)

Now, substituting (6.18) into equation (6.12), we obtain

ψd
1(u) = q(b)

ρ1

ρ2

e−(ρ1−ρ2)b{ 1

c1

∫ b

u

e−ρ2xk1(
x− u

c1

)dx +
1

c2

∫ ∞

b

e−ρ2xk1(
x− b

c2

+
b− u

c1

)dx
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The first integration, with the change of variable from x to z = x−u
c1

, is

∫ b

u

e−ρ2xk1(
x− u

c1

)dx

= c1e
−ρ2u

∫ b−u
c1

0

e−c1ρ2zk1(z)dz

= c1e
−ρ2u

∞∑
j=1

qj
λj

1

(λ1 + c1ρ2)j

∫ b−u
c1

0

(λ1 + c1ρ2)
jzj−1e−(λ1+c1ρ2)z

(j − 1)!
dz

= c1e
−ρ2u

∞∑
j=1

qj
λj

1

(λ1 + c1ρ2)j

∞∑

k=j

(λ1 + c1ρ2)
k( b−u

c1
)k

k!
e
−(λ1+c1ρ2)( b−u

c1
)

= c1

∞∑
j=1

qj
λj

1

(λ1 + c1ρ2)j

∞∑

k=j

(λ1

c1
+ ρ2)

k(b− u)k

k!
e
−(

λ1
c1

+ρ2)b+
λ1
c1

u
. (6.19)

And the second integration, with the change of variable from x to z = x−b
c2

+ b−u
c1

,
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is

∫ ∞

b

e−ρ2xk1(
x− b

c2

+
b− u

c1

)dx

= c2e
−ρ2(b− c2

c1
(b−u))

∫ ∞

b−u
c1

e−c2ρ2zk1(z)dz

= c2e
−ρ2(b− c2

c1
(b−u))

∞∑
j=1

qj
λj

1

(λ1 + c2ρ2)j

×
∫ ∞

b−u
c1

(λ1 + c2ρ2)
jzj−1e−(λ1+c2ρ2)z

(j − 1)!
dz

= c2e
−ρ2(b− c2

c1
(b−u))

∞∑
j=1

qj
λj

1

(λ1 + c2ρ2)j

×
j−1∑

k=0

(λ1 + c2ρ2)
k( b−u

c1
)k

k!
e
−(λ1+c2ρ2)( b−u

c1
)

= c2

∞∑
j=1

qj
λj

1

(λ1 + c2ρ2)j

j−1∑

k=0

(λ1 + c2ρ2)
k( b−u

c1
)k

k!

×e
−(

λ1
c1

+ρ2)b+
λ1
c1

u
(6.20)

Finally,

ψd
1(u) = q(b)

ρ1

ρ2

∞∑
j=1

qjλ
j
1{

∞∑

k=j

(λ1 + c1ρ2)
k−j( b−u

c1
)k

k!

+

j−1∑

k=0

(λ1 + c2ρ2)
k−j( b−u

c1
)k

k!
}e−(ρ1+

λ1
c1

)b+
λ1
c1

u
. (6.21)

Also, substituting (6.18) into equation (6.13) and changing the variable from x to
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z = x−u
c2

, we obtain

ψd
2(u) =

1

c2

q(b)
ρ1

ρ2

e−(ρ1−ρ2)b

∫ ∞

u

e−ρ2xk1(
x− u

c2

)dx

= q(b)
ρ1

ρ2

e−(ρ1−ρ2)b

∫ ∞

0

e−ρ2(c2z+u)k1(z)dz

= q(b)
ρ1

ρ2

e−(ρ1−ρ2)b

∞∑
j=1

qj
λj

1

(λ1 + c2ρ2)j
e−ρ2u.♣ (6.22)

6.1.2 Constant Barrier Model

Constant Barrier model is a special case of the threshold dividend strategy model

when c2 = 0 and thus the surplus level can never go above b. Dividends are paid

continuously at rate c1 once the surplus level reaches barrier b, until a new claim

occurs.

In the threshold dividend strategy model, only a proportion of the premium re-

ceived is paid out, whereas in the constant barrier model, the whole amount of the

premium received is paid out as a dividend when the surplus level reaches b. As

pointed out by Lin et al. (2003), the time of ruin is finite and thus the ultimate ruin

probability is 1 in constant barrier model. This is intuitive in a sense that the total

surplus level is always limited at b whereas the total claim amount to be paid increases

to infinity as time goes on. Since there is only one premium rate for this model, we

will use premium rate c instead of c1.

The surplus process, Ub(t), reduces to

dUb(t) =





cdt− dS(t) for Ub(t) < b

−dS(t) for Ub(t) = b
(6.23)
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Figure 6.2: Graphical representation of the surplus process Ub(t) in constant barrier model

and the Gerber-Shiu function, md
δ(u; b) also reduces from (6.6) to

md
δ(u; b) = md

1(u)

=

∫ b−u
c

0

e−δtσδ(u + ct; b)k1(t)dt

+

∫ ∞

b−u
c

e−δtσδ(b; b)k1(t)dt

=
1

c

∫ b

u

e−δ(x−u
c

)σδ(x; b)k1(
x− u

c
)dx

+σδ(b; b)

∫ ∞

b−u
c

e−δtk1(t)dt (6.24)

for 0 ≤ u ≤ b.

md
2(u) does not exist in the constant barrier model since u cannot go above b.
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When u = b,

md
δ(b; b) = σδ(b; b)

∫ ∞

0

e−δtk1(t)dt, (6.25)

and thus

σδ(b; b) =
md

δ(b; b)

k̃1(δ)
. (6.26)

Example 6.1.3 Generalized Erlang (n) distribution for interclaim times af-

ter the first claim

Lin et al.(2003) show that the Gerber-Shiu expected discounted penalty function with

a constant barrier in a classical Poisson model satisfies

mδ(u; b) = mδ(u;∞)− m′
δ(b;∞)

v′(b)
v(u), 0 ≤ u ≤ b (6.27)

where mδ(u;∞) is the corresponding Gerber-Shiu function without a barrier and v(u)

is a function that is a solution to the homogeneous integro-differential equation, which

is part of the nonhomogeneous integro-differential equation satisfied by mδ(u; b),

v′(u) = −λ

c

∫ u

0

v(u− y)p(y)dy. (6.28)

Li and Garrido (2004b) extends the argument to the case where the interclaim

times follow generalized Erlang(n) distribution and show mδ(u; b) can be expressed as
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mδ(u; b) = mδ(u;∞) +
n∑

i=1

ηivi(u) (6.29)

where {vi(u)}n
i=1 are n linearly independent solutions to the homogeneous integro-

differential equation

n∏
j=1

[(1 +
δ

λj

)I− c

λj

D]v(u) =

∫ u

0

v(u− x)p(x)dx (6.30)

if we define I,D to be the identity operator and the differentiation operator, respec-

tively, and ηi’s are chosen to satisfy the boundary conditions,

m
(k)
δ (b; b) = 0, k = 1, 2, ...n. (6.31)

Especially when the claim size Y is rationally distributed, i.e.

p̃(s) =
Qm−1(s)

Qm(s)
, Re(s) ∈ (hY ,∞) (6.32)

where m ∈ N+, hY := inf{s ∈ < : E[e−sY ] < ∞}, Qm is a polynomial of degree m

with leading coefficient 1, Qm−1 is a polynomial of degree m− 1 or less, and Qm and

Qm−1 do not have any common zeros, vi(u)’s satisfy

vi(u) =
n∑

j=1

αije
ρju +

m∑

k=1

βike
−Rku (6.33)

where ρ1, ρ2, ..., ρn are all the roots with positive real parts to the generalized Lund-

berg’s equation
n∏

j=1

[(1 +
δ

λj

)− c

λj

s] = p̃(s) (6.34)
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and −R1,−R2, ...,−Rm are the roots with negative real parts to the equation. Also,

αij =
λ1λ2 · · ·λn

cn

−di(ρj)Qm(ρj)∏m
l=1(Rl + ρj)

∏n
l=1,l 6=j(ρl − ρj)

, (6.35)

βik =
λ1λ2 · · ·λn

cn

di(−Rk)Qm(−Rk)∏n
l=1(Rk + ρl)

∏m
l=1,l 6=k(Rl −Rk)

, (6.36)

and

di(s) =
n−i∑
m=0

Bm+is
m, i = 1, 2, ...n (6.37)

where
∑n

k=0 Bks
k =

∏n
j=1[(1 + (δ/λj))− (c/λj)s].

Thus,

σδ(x; b) =

∫ x

0

mδ(x− y; b)p(y)dy +

∫ ∞

x

w(x, y − x)p(y)dy

=

∫ x

0

{mδ(x− y;∞) +
n∑

i=1

ηivi(x− y)}p(y)dy +

∫ ∞

x

w(x, y − x)p(y)dy

= σδ(x) +
n∑

i=1

ηi

∫ x

0

vi(x− y)p(y)dy

= σδ(x) +
n∑

i=1

ηi

∫ x

0

{
n∑

j=1

αije
ρj(x−y) +

m∑

k=1

βike
−Rk(x−y)}p(y)dy

= σδ(x) +
n∑

i=1

ηi{
n∑

j=1

αij

∫ x

0

eρj(x−y)p(y)dy +
m∑

k=1

βik

∫ x

0

e−Rk(x−y)p(y)dy}

If p(y) = βe−βy, then the claim size Y is rationally distributed with m = 1 and σδ(x; b)
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reduces to

σδ(x; b) = σδ(x)+
n∑

i=1

n∑
j=1

(ηiαij
β

β + ρj

){eρjx−e−βx}+
n∑

i=1

(ηiβi1
β

β −R1

){e−R1x−e−βx}.

(6.38)

When the time until the first claim also follows an exponential distribution, i.e.

k1(t) = λe−λt, md
δ(u; b) can be written as

md
δ(u; b) =

λ

c

∫ b

u

e−(λ+δ)(x−u
c

)σδ(x; b)dx + λσδ(b; b)

∫ ∞

b−u
c

e−(λ+δ)tdt

=
λ

c
e(λ+δ

c
)u

∫ b

u

e−(λ+δ
c

)xσδ(x; b)dx +
λ

λ + δ
σδ(b; b)e

−(λ+δ)( b−u
c

)

=
λ

c
e(λ+δ

c
)u

∫ b

u

e−(λ+δ
c

)xσδ(x; b)dx + md
δ(b; b)e

−(λ+δ)( b−u
c

).

The integration in the first term, with the substitution using equation (6.38), leads

to

∫ b

u

e−(λ+δ
c

)xσδ(x; b)dx =

∫ b

u

e−(λ+δ
c

)xσδ(x)dx

+
n∑

i=1

n∑
j=1

aij[
1

λ+δ
c
− ρj

{e−(λ+δ
c
−ρj)u − e−(λ+δ

c
−ρj)b}

− 1
λ+δ

c
+ β

{e−(λ+δ
c

+β)u − e−(λ+δ
c

+β)b}]

+
n∑

i=1

bi1[
1

λ+δ
c

+ R1

{e−(λ+δ
c

+R1)u − e−(λ+δ
c

+R1)b}

− 1
λ+δ

c
+ β

{e−(λ+δ
c

+β)u − e−(λ+δ
c

+β)b}]



CHAPTER 6. TWO-STEP PREMIUM AND DISCOUNTED DIVIDENDS 120

where we define aij and bi1 to be aij = ηiαij
β

β+ρj
and bi1 = ηiβi1

β
β−R1

.

And finally the Gerber-Shiu function md
δ(u; b) becomes

md
δ(u; b) = md

δ(b; b)e
−(λ+δ

c
)(b−u) +

λ

c
e(λ+δ

c
)u

∫ b

u

e−(λ+δ
c

)xσδ(x)dx

+
n∑

i=1

n∑
j=1

λaij

λ + δ − cρj

{eρju − e−(λ+δ
c

)(b−u)+ρjb}

+
n∑

i=1

λbi1

λ + δ + cR1

{e−R1u − e−(λ+δ
c

)(b−u)+R1b}

−
n∑

i=1

λ(
∑n

j=1 aij + bi1)

λ + δ + cβ
{e−βu − e−(λ+δ

c
)(b−u)−βb}.

Other than the second term, all the rest are in exponential form with respect to u. The

second term needs to be evaluated from the function that comes from the ordinary

process without a barrier, which can be found.♣

6.1.3 Stationary Renewal Risk Model with Threshold Divi-

dend Strategy

When the time until the first claim has an equilibrium distribution, i.e. k1(t) =

K̄(t)
E(V )

, the delayed renewal risk model with threshold dividend strategy reduces to the

stationary renewal risk model with threshold dividend strategy. Let Te,b be the time

of ruin when the threshold dividend strategy is present with threshold level b, in

the stationary renewal risk process. Also the Gerber-Shiu expected discount penalty
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function will be defined as

me
δ(u; b) = E{e−δTe,bw(Ub(T

−
e,b), |Ub(Te,b)|)I(Te,b < ∞)|U(0) = u}, (6.39)

and this will be composed of two functions

me
δ(u; b) =





me
1(u) for 0 ≤ u ≤ b

me
2(u) for u > b

. (6.40)

Theorem 6.1 The two functions, me
1(u) and me

2(u), in a threshold dividend strategy

model can be solved as

me
1(u) = e

− δ
c1

(b−u)
me

1(b) +
1

c1E(V )

∫ b

u

e
− δ

c1
(t−u){σδ(t; b)−m1(t)}dt (6.41)

where

me
1(b) =

1

E(V )

∫ ∞

0

e−δtσδ(b + c2t; b)K̄(t)dt (6.42)

and

me
2(u) = e

− δ
c2

(b−u)
me

2(b) +
1

c2E(V )

∫ u

b

e
− δ

c2
(t−u){m2(t)− σδ(t; b)}dt (6.43)

where me
2(b) = me

1(b).

Proof:

For 0 ≤ u ≤ b, from equation (6.8), we know that
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me
1(u) =

1

c1E(V )

∫ b

u

e
−δ(x−u

c1
)
σδ(x; b)K̄(

x− u

c1

)dx

+
1

c2E(V )

∫ ∞

b

e
−δ(x−b

c2
+ b−u

c1
)
σδ(x; b)K̄(

x− b

c2

+
b− u

c1

)dx. (6.44)

We usually would use Laplace Transform argument to obtain a solution but in the

threshold dividend strategy problem this is not possible for me
1(u) or me

2(u) since these

are only defined with a range that is not (0,∞). In section 7. of Lin et al. (2003)

they show a different way of obtaining a solution in a constant barrier model that

works within the stationary renewal risk settings. Following their idea, we can solve

for me
1(u) and me

2(u) in a threshold dividend strategy model.

First let’s differentiate equation (6.44) with respect to u to get

me
1
′(u) =

δ

c1

me
1(u)− 1

c1E(V )
σδ(u; b)K̄(0)

+
1

c2
1E(V )

∫ b

u

e
−δ(x−u

c1
)
σδ(x; b)k(

x− u

c1

)dx

+
1

c1c2E(V )

∫ ∞

b

e
−δ(x−b

c2
+ b−u

c1
)
σδ(x; b)k(

x− b

c2

+
b− u

c1

)dx

=
δ

c1

me
1(u)− 1

c1E(V )
σδ(u; b) +

1

c1E(V )
m1(u). (6.45)

Changing the variable u to t and multiplying e
− δ

c1
t
on both sides of the equation

lead us to

e
− δ

c1
t
me

1
′(t)− δ

c1

e
− δ

c1
t
me

1(t) =
e
− δ

c1
t

c1E(V )
{m1(t)− σδ(t; b)}. (6.46)
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Notice that the left hand side is equal to d
dt

[e
− δ

c1
t
me

1(t)]. Integrating both sides

from u to b, we get

e
− δ

c1
b
me

1(b)− e
− δ

c1
u
me

1(u) =
1

c1E(V )

∫ b

u

e
− δ

c1
t{m1(t)− σδ(t; b)}dt, (6.47)

and thus the solution to me
1(u) is

me
1(u) = e

− δ
c1

(b−u)
me

1(b) +
1

c1E(V )

∫ b

u

e
− δ

c1
(t−u){σδ(t; b)−m1(t)}dt (6.48)

where

me
1(b) =

1

c2E(V )

∫ ∞

b

e
−δ(x−b

c2
)
σδ(x; b)K̄(

x− b

c2

)dx

=
1

E(V )

∫ ∞

0

e−δtσδ(b + c2t; b)K̄(t)dt

Now, for u > b, from equation (6.10), we know that

me
2(u) =

1

c2E(V )

∫ ∞

u

e
−δ(x−u

c2
)
σδ(x; b)K̄(

x− u

c2

)dx. (6.49)

Applying the same idea as before, differentiate with respect to u to get

me
2
′(u) =

δ

c2

me
2(u)− 1

c2E(V )
σδ(u; b) +

1

c2E(V )
m2(u) (6.50)
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Changing the variable u to t, multiplying e
− δ

c2
t
on both sides of the equation and

moving the first term on the right hand side to the left yields

d

dt
{e− δ

c2
t
me

2(t)} =
e
− δ

c2
t

c2E(V )
{m2(t)− σδ(t; b)}. (6.51)

Integrate both sides with respect to t from b to u, rearrange to isolate for me
2(u)

and we obtain the solution

me
2(u) = e

− δ
c2

(b−u)
me

2(b) +
1

c2E(V )

∫ u

b

e
− δ

c2
(t−u){m2(t)− σδ(t; b)}dt (6.52)

where me
2(b) = me

1(b).

Q.E.D.

6.2 Discounted Dividends

One interest that arises in connection with the threshold dividend strategy model is

the value of the dividend payments. For 0 ≤ u ≤ b, dividends will be paid as soon as

the surplus reaches b and for u ≥ b dividends are paid from the beginning at rate ĉ

until the surplus level falls below the threshold level b. Let V (u, b) be the expected

present value of dividend payments at force of interest δ, until ruin occurs in the or-

dinary renewal risk process and V d(u, b) the corresponding quantity in the delayed

renewal risk process. Then as in the previous section, we can see V (u, b) will consist

of two functions, i.e.
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V (u; b) =





V1(u, b) for 0 ≤ u ≤ b

V2(u, b) for u > b
. (6.53)

Also, in the delayed renewal risk process,

V d(u; b) =





V d
1 (u, b) for 0 ≤ u ≤ b

V d
2 (u, b) for u > b

. (6.54)

Since our focus is on the dividend and not the premium rate change above the

threshold level, we will use different notations than the ones used in the previous

section. We denote c as premium rate when the surplus level is below the threshold

level and ĉ as dividend rate that is paid out when the surplus level is above the

threshold level. Then, comparing with the rates used in the previous section, c = c1

and ĉ = c1 − c2.

The Gerber-Shiu function which provides unified approach in analyzing quantities

related to ruin and is used throughout the paper cannot be used for the analysis in this

section since dividends are paid during the survival of the process but the Gerber-Shiu

function conditions on the occurrence of ruin. Thus we need to derive an equation

that is suitable for V d(u, b) and that relates V d(u, b) to V (u, b).

Dickson and Drekic (2006) study V (u, b) in a classical compound Poisson model

with threshold dividend strategy and show that for 0 ≤ u ≤ b, V (u, b) satisfies

V1(u, b) = V (b, b)E[exp{−δTu,b}] (6.55)

and for u ≥ b,
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V2(u, b) =
ĉ

δ
(1− E[e−δT̂u−b ]) + V (b, b)

∫ ∞

0

e−δt

∫ b

0

ŵ(u− b, y, t)E[exp{−δTb−y,b}]dydt

(6.56)

where T̂u is the time to ruin with initial surplus u and premium rate c − ĉ, Tu,b is

the time of the first upcrossing of the surplus process through b from u without ruin

occurring, and ŵ(u, y, t) is the defective density of the time (t) and severity (y) of

ruin, from initial surplus u, when premium rate is c− ĉ.

Landriault (2007) studies V (u, b) in a Sparre Andersen model with the assump-

tion that interclaim times follow Coxian distribution when constant barrier is present.

The approach in this paper is different from the approach used in Dickson and Drekic

(2006). He derives an equation for V (u, b) conditioning on the first claim. We will

follow this idea and apply it to the threshold dividend strategy model in deriving a

relation for V d(u, b) with V (u, b).

6.2.1 Threshold Dividend Strategy Model

Conditioning on the time and the amount of the first claim we obtain the following

equation. Let’s first consider the case 0 ≤ u ≤ b. When u is below the threshold

level b, the surplus will accumulate at a rate of c as long as the surplus level does not

reach the threshold level b. If the first claim occurs before the surplus level reaching

b, it means that t should be in the range of 0 ≤ t ≤ b−u
c

. When the first claim occurs

within the range, no dividends are paid out and the process will start over again with

an ordinary renewal risk process with new initial surplus u + ct − y where y is the

amount of the first claim. Otherwise, i.e. when t > b−u
c

, the surplus level will exceed

b and dividends are paid out at rate ĉ beginning at time b−u
c

. When the first claim
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occurs, the process will start again with the ordinary renewal process with the new

initial surplus b + (c − ĉ)(t − b−u
c

) − y. The ordinary renewal risk process starts as

long as the first claim amount does not bring ruin, i.e. y is less than the accumulated

surplus level at the time of first claim occurrence. Otherwise, when ruin occurs, there

is no more dividends in the later process. Thus, for 0 ≤ u ≤ b,

V d(u, b) = V d
1 (u, b) =

∫ b−u
c

0

e−δt

∫ u+ct

0

V1(u + ct− y, b)p(y)dyk1(t)dt

+

∫ ∞

b−u
c

{e−δ( b−u
c

)ĉā
t− b−u

c
| + e−δt

∫ b+(c−ĉ)(t− b−u
c

)

0

V (b + (c− ĉ)(t− b− u

c
)− y, b)p(y)dy}k1(t)dt (6.57)

where

āt| =
∫ t

0

e−δxdx =
1− e−δt

δ

and the second term on the right hand side can be rewritten as

∫ ∞

b−u
c

e−δ( b−u
c

)ĉā
t− b−u

c
|k1(t)dt =

∫ ∞

b−u
c

e−δ( b−u
c

)ĉ
1− e−δ(t− b−u

c
)

δ
k1(t)dt

=
ĉ

δ
e−δ( b−u

c
)K̄1(

b− u

c
)− ĉ

δ

∫ ∞

b−u
c

e−δtk1(t)dt.

The third term on the right can also be elaborated as
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∫ ∞

b−u
c

e−δt

∫ b+(c−ĉ)(t− b−u
c

)

0

V (b + (c− ĉ)(t− b− u

c
)− y, b)p(y)dyk1(t)dt

=
1

c

∫ ∞

b

e−δ(x−u
c

)

∫ b+(c−ĉ)(x−b
c

)

0

V (b + (c− ĉ)(
x− b

c
)− y, b)p(y)dyk1(

x− u

c
)dx

=
1

c

∫ ∞

b

e−δ(x−u
c

)

∫ b+(c−ĉ)(x−b
c

)

(c−ĉ)(x−b
c

)

V1(b + (c− ĉ)(
x− b

c
)− y, b)p(y)dyk1(

x− u

c
)dx

+
1

c

∫ ∞

b

e−δ(x−u
c

)

∫ (c−ĉ)(x−b
c

)

0

V2(b + (c− ĉ)(
x− b

c
)− y, b)p(y)dyk1(

x− u

c
)dx

Let’s now consider the case where u ≥ b. When the initial surplus level is above b,

dividends are paid from the beginning of the process and when the first claim occurs,

the ordinary renewal process will start. In this situation we don’t have to divide up

the range of the time of the first claim occurrence as before since the surplus process

will always stay above b until we get the first claim. Thus, for u ≥ b,

V d(u, b) = V d
2 (u, b)

=

∫ ∞

0

ĉāt|k1(t)dt +

∫ ∞

0

e−δt

∫ u+(c−ĉ)t

0

V (u + (c− ĉ)t− y, b)p(y)dyk1(t)dt

=
ĉ

δ

∫ ∞

0

(1− e−δt)k1(t)dt

+
1

c− ĉ

∫ ∞

u

e−δ(x−u
c−ĉ

)

∫ x

0

V (x− y, b)p(y)dyk1(
x− u

c− ĉ
)dx

=
ĉ

δ
(1− k̃1(δ)) +

1

c− ĉ

∫ ∞

u

e−δ(x−u
c−ĉ

)

∫ x

x−b

V1(x− y, b)p(y)dyk1(
x− u

c− ĉ
)dx

+
1

c− ĉ

∫ ∞

u

e−δ(x−u
c−ĉ

)

∫ x−b

0

V2(x− y, b)p(y)dyk1(
x− u

c− ĉ
)dx. (6.58)
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6.2.2 Constant Barrier Model

We can reduce the threshold dividend strategy model to the constant barrier model

by letting c = ĉ. Then the initial surplus u can only take values in the range of [0, b]

and the expected discounted dividend V d(u, b) is

V d(u, b) =
1

c

∫ b

u

e−δ(x−u
c

)

∫ x

0

V1(x− y, b)p(y)dyk1(
x− u

c
)dx

+
1

c

∫ ∞

b

e−δ(x−u
c

)

∫ b

0

V (b− y, b)p(y)dyk1(
x− u

c
)dx

+
c

δ
e−δ( b−u

c
)K̄1(

b− u

c
)− 1

δ

∫ ∞

b

e−δ(x−u
c

)k1(
x− u

c
)dx (6.59)

for 0 ≤ u ≤ b.

6.2.3 Stationary Model with Threshold Dividend Strategy

If we reduce the delayed renewal risk process to the stationary renewal risk process,

then our expected discounted dividends in the threshold dividend strategy model can

be written as, for 0 ≤ u ≤ b,

V e(u, b) = V e
1 (u, b) =

1

cE(V )

∫ b

u

e−δ(x−u
c

)

∫ x

0

V1(x− y, b)p(y)dyK̄(
x− u

c
)dx

+
1

cE(V )

∫ ∞

b

e−δ(x−u
c

)

∫ b+(c−ĉ)(x−b
c

)

0

V (b + (c− ĉ)(
x− b

c
)− y, b)

p(y)dyK̄(
x− u

c
)dx

+
ĉ

δE(V )
e−δ( b−u

c
)

∫ ∞

b−u
c

K̄(t)dt− ĉ

cδE(V )

∫ ∞

b

e−δ(x−u
c

)K̄(
x− u

c
)dx,

(6.60)
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and for u ≥ b,

V e(u, b) = V e
2 (u, b)

=
ĉ

δ
(1− 1− k̃(δ)

δE(V )
)

+
1

(c− ĉ)E(V )

∫ ∞

u

e−δ(x−u
c−ĉ

)

∫ x

0

V (x− y, b)p(y)dyK̄(
x− u

c− ĉ
)dx.

(6.61)

We can obtain a solution in the case of the stationary renewal risk model by differ-

entiating the equations given above since the differentiation of K̄(t) gives k(t), which

makes it possible to express some terms in ordinary renewal risk process.

Theorem 6.2 The solutions to V e
1 (u, b) and V e

2 (u, b) are

V e
1 (u, b) = e−

δ
c
(b−u)V e

1 (b, b) +
1

cE(V )

∫ b

u

e−
δ
c
(t−u){

∫ t

0

V1(t− y, b)p(y)dy − V1(t, b)}dt

(6.62)

for 0 ≤ u ≤ b, where

V e
1 (b, b) =

ĉ

δ
(1−1− k̃(δ)

δE(V )
)+

1

(c− ĉ)E(V )

∫ ∞

b

e−δ(x−b
c−ĉ

)

∫ x

0

V (x−y, b)p(y)dyK̄(
x− b

c− ĉ
)dx.

(6.63)
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and

V e
2 (u, b) =

ĉ

δ
(1− e−

δ
c−ĉ

(b−u)) + e−
δ

c−ĉ
(b−u)V e

2 (b, b)

+
1

(c− ĉ)E(V )

∫ u

b

e−
δ

c−ĉ
(t−u){V2(t, b)−

∫ t

0

V (t− y, b)p(y)dy}dt

(6.64)

for u ≥ b, where V e
2 (b, b) = V e

1 (b, b).

Proof:

Differentiate equation (6.60) with respect to u to get

d

du
V e

1 (u, b) =
δ

c
V e

1 (u, b) +
1

cE(V )
V1(u, b)− 1

cE(V )

∫ u

0

V1(u− y, b)p(y)dy (6.65)

for 0 ≤ u ≤ b.

Applying the same method used in the previous section, we change the variable u

to t and multiply e−
δ
c
t on both sides, we obtain

e−
δ
c
t d

dt
V e

1 (t, b)− δ

c
e−

δ
c
tV e

1 (t, b) =
e−

δ
c
t

cE(V )
V1(t, b)− e−

δ
c
t

cE(V )

∫ t

0

V1(t−y, b)p(y)dy. (6.66)

Noticing that d
dt

[e−
δ
c
tV e

1 (t, b)] = e−
δ
c
t d
dt

V e
1 (t, b)− δ

c
e−

δ
c
tV e

1 (t, b) and integrating with re-

spect to t from u to b will lead us to

e
−δ
c

bV e
1 (b, b)−e−

δ
c
uV e

1 (u, b) =

∫ b

u

e−
δ
c
t

cE(V )
V1(t, b)dt−

∫ b

u

e−
δ
c
t

cE(V )

∫ t

0

V1(t−y, b)p(y)dydt.

(6.67)
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Thus, isolating for V e
1 (u, b) gives

V e
1 (u, b) = e−

δ
c
(b−u)V e

1 (b, b) +
1

cE(V )

∫ b

u

e−
δ
c
(t−u){

∫ t

0

V1(t− y, b)p(y)dy − V1(t, b)}dt

(6.68)

for 0 ≤ u ≤ b, where

V e
1 (b, b) =

ĉ

δ
(1− 1− k̃(δ)

δE(V )
)

+
1

(c− ĉ)E(V )

∫ ∞

b

e−δ(x−b
c−ĉ

)

∫ x

0

V (x− y, b)p(y)dyK̄(
x− b

c− ĉ
)dx.(6.69)

For u ≥ b, differentiate equation (6.61) with respect to u, and we get
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d

du
V e

2 (u, b) = − 1

(c− ĉ)E(V )

∫ u

0

V (u− y, b)p(y)dy

+
δ

(c− ĉ)2E(V )

∫ ∞

u

e−δ(x−u
c−ĉ

)

∫ x

0

V (x− y, b)p(y)dyK̄(
x− u

c− ĉ
)dx

+
1

(c− ĉ)2E(V )

∫ ∞

u

e−δ(x−u
c−ĉ

)

∫ x

0

V (x− y, b)p(y)dyk(
x− u

c− ĉ
)dx

= − 1

(c− ĉ)E(V )

∫ u

0

V (u− y, b)p(y)dy

+
δ

c− ĉ
{V e

2 (u, b)− ĉ

δ
(1− 1− k̃(δ)

δE(V )
)}

+
1

(c− ĉ)E(V )
{V2(u, b)− ĉ

δ
(1− k̃(δ))}

=
δ

c− ĉ
V e

2 (u, b) +
1

(c− ĉ)E(V )
V2(u, b)− ĉ

c− ĉ

− 1

(c− ĉ)E(V )

∫ u

0

V (u− y, b)p(y)dy. (6.70)

Changing the variable u to t and multiply e−
δ

c−ĉ
t on both sides,

e−
δ

c−ĉ
t d

dt
V e

2 (t, b)− δ

c− ĉ
e−

δ
c−ĉ

tV e
2 (t, b) =

e−
δ

c−ĉ
t

(c− ĉ)E(V )
V2(t, b)− ĉ

c− ĉ
e−

δ
c−ĉ

t

− e−
δ

c−ĉ
t

(c− ĉ)E(V )

∫ t

0

V (t− y, b)p(y)dy.

Integrating t from b to u and rearranging the terms we get a solution for V e
2 (u, b),

V e
2 (u, b) =

ĉ

δ
(1− e−

δ
c−ĉ

(b−u)) + e−
δ

c−ĉ
(b−u)V e

2 (b, b)

+
1

(c− ĉ)E(V )

∫ u

b

e−
δ

c−ĉ
(t−u){V2(t, b)−

∫ t

0

V (t− y, b)p(y)dy}dt

(6.71)
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for u ≥ b, where V e
2 (b, b) = V e

1 (b, b).

Q.E.D.



Chapter 7

Summary and Highlights

In Chapter 2, we derived two framework equations (2.1) and (2.48) that are used

throughout the later chapters. The former is derived conditioning on the first drop

in surplus below its initial level u, whereas the latter is derived conditioning on the

first claim that occurs in the process. Both of the equation uses the property that

the process starts over again with the ordinary renewal risk process in those points in

time. And thus, these equations show relationship between the delayed and ordinary

renewal risk processes. The widely used stationary renewal risk process is a special

case of the delayed renewal risk process and the results derived in this thesis can all

be applied to the stationary renewal risk process. Section 2.2 expresses the ladder

height distribution Bd
δ (u) in terms of Gd

δ(u) and Bδ(u), where the expression of it is

different from section 2.1. This expression may not be of much interest by itself but

was a useful tool in proving the theorem in section 3.4.

Chapter 3 provides a valuable overview of many quantities and distributions related

to the deficit at ruin in detail; the discounted kth moment of the deficit, the discounted

distribution function of the deficit, the asymptotic distribution of the proper deficit,
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stochastic decomposition of the residual lifetime of Ld
δ which is possible using the

random variable from the discounted DF of the discounted proper deficit, and the

discounted joint distribution of the surplus and the deficit. We also discuss about the

Laplace transform of the time of ruin at the beginning of Chapter 3. It is included in

Chapter 3, since not only can it be obtained by simplifying equation (3.1) which is a

starting point for the chapter but also let us define Λ̄δ(u) which is essential function

used in later sections where we present the DF of the deficit at ruin (section 3.3)

and the stochastic decomposition of the residual lifetime of Ld
δ (section 3.5). The dis-

counted kth moment of the deficit at ruin in delayed renewal risk model (section 3.2)

is an extension of the result in section 4 of Willmot (2007) in the ordinary renewal

risk model. Section 3.3, 3.4 and 3.5 extend the ideas of Willmot et al. (2004) for DF

of the proper deficit, from the stationary renewal risk model to the delayed renewal

risk model. In section 3.3 and 3.5, we further extend the argument to the case where

δ > 0. The discounted joint PDF of the surplus and the deficit at ruin is derived in the

delayed renewal risk process, in section 3.6, and the important relationship between

the joint density of the surplus and the deficit and the marginal density of the surplus,

(3.82), is proved.

We assume particular distributions for claim sizes and derive the general form of

the Gerber-Shiu expected discounted penalty function in Chapter 4. The most general

penalty function that we work with is w(x, y) = e−sxw2(y), which has a useful property

in a sense that the function of the surplus and the function of the deficit is separated.

This is a nice extension of the widely used penalty function w(x, y) = w2(y), since it

contains more information than the penalty function of the deficit only. When claims

are from exponential distribution (section 4.1), md
δ,s(u) is expressed a weighted aver-

age of two exponential terms. When claims are from Erlang mixture of single scale

parameter (section 4.2), md
δ,s(u) is of damped exponential series form.
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In Chapter 5, the distributional assumption is made for the time until the first

claim but the distribution of the claim sizes are left to be arbitrary. When the time

until the first claim is of exponential or combination of exponentials, the derivations

of the Gerber-Shiu function md
δ(u) are straightforward and have simple Dickson-Hipp

transform of σδ(t), or combination of Dickson-Hipp transforms of σδ(t), respectively.

Coxian class distributions are also considered in section 5.3.

Chapter 6 is concerned with the threshold dividend strategy in the delayed renewal

risk process, where part of the premium is paid out as a dividend when the surplus level

reaches the barrier level. Unlike in other chapters, now the Gerber-Shiu function be-

haves differently depending on the surplus level. The general form of the Gerber-Shiu

function in the delayed renewal risk process, in terms of that of the ordinary renewal

risk process, is derived in section 6.1.1. Section 6.1.2 contains the simplified result

for constant barrier model which is a special case of the threshold dividend strategy

model. The stationary renewal risk process with the threshold dividend strategy is

also considered in section 6.1.3. Finally, the values of the dividend payments under

all three models considered in section 6.1 are studied in section 6.2.

One of the difficulties in dealing with the delayed renewal risk model is that the

functions in this model are expressed in terms of the functions from the ordinary re-

newal risk process and thus we can not obtain a renewal equation which is a convenient

tool. But we were able to obtain equation (2.1), where the logic and the form of it is

similar to the defective renewal equation in the ordinary renewal risk process. From

this equation, many subsequent results were derived.



Bibliography

[1] De Finetti, B., 1957. Su un’impostazione alternativa della teoria collettiva del

rischio, Proceedings of the Transactions of the XV International Congress of

Actuaries vol. 2, 433-443.

[2] Dickson, D.C.M., Drekic, S., 2006. Optimal dividends under a ruin probability

constraint, Annals of Actuarial Science 1, II, 291-306.

[3] Dickson, D.C.M., Hipp, C., 1998. Ruin probabilities for Erlang(2) risk process,

Insurance: Mathematics and Economics 22, 251-262.

[4] Dickson, D.C.M., Hipp, C., 2001. On the time to ruin for Erlang(2) risk process,

Insurance: Mathematics and Economics 29, 333-344.

[5] Gerber, H., Shiu, E., 1998. On the time value of ruin, North American Actuarial

Journal 2, 48-78.

[6] Gerber, H., Shiu, E., 2005. The time value of ruin in a Sparre Andersen model,

North American Actuarial Journal 9, 49-69.

[7] Hesselager, O., Wang, S., and Willmot, G.E., 1998. Exponential and scale mix-

tures and equilibrium distributions, Scandinavian Actuarial Journal 125-142.

[8] Karlin, S., Taylor, H., 1975. A first Course in Stochastic Processes, 2nd ed.,

Academic Press, New York.

138



BIBLIOGRAPHY 139

[9] Klugman, S.A., Panjer, H.H., and Willmot, G.E., 2004. Loss Models: from data

to decisions, 2nd ed., Wiley Interscience, New Jersey.

[10] Landriault, D., 2007. On a general class of Sparre Andersen risk models with a

constant dividend barrier, In Progress.

[11] Landriault, D., Willmot, G.E., 2007. On the discounted penalty function in

the renewal risk model with a Coxian claim size distribution, Submitted for

Publication.

[12] Li, S., Garrido, J., 2004a. On ruin for the Erlang(n) risk process, Insurance:

Mathematics and Economics 34, 391-408.

[13] Li, S., Garrido, J., 2004b. On a class of renewal risk models with a constant

dividend barrier, Insurance: Mathematics and Economics 35, 691-701.

[14] Li, S., Garrido, J., 2005. On a general class of renewal risk process: analysis of

the Gerber-Shiu function, Advances in Applied Probability 37, 836-856.

[15] Lin, X.S., 1996. Tail of compound distributions and excess time, Journal of

Applied Probability 33, 184-195.

[16] Lin, X.S., Pavlova, K.P., 2006. The compound Poisson risk model with a thresh-

old dividend strategy, Insurance: Mathematics and Economics 38, 55-80.

[17] Lin, X.S., Willmot, G.E., and Drekic, S., 2003. The classical risk model with

a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty

function, Insurance: Mathematics and Economics 33, 551-566.

[18] Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J., 1999. Stochastic Processes

for Insurance and Finance, John Wiley, Chichester.



BIBLIOGRAPHY 140

[19] Willmot, G.E., 1999. A Laplace transform representation in a class of renewal

queueing and risk processes, Journal of Applied Probability 36, 570-584.

[20] Willmot, G.E., 2002a. Compound geometric residual lifetime distributions and

the deficit at ruin, Insurance: Mathematics and Economics 30, 421-438.

[21] Willmot, G.E., 2002b. On higher-order properties of compound geometric dis-

tributions, Journal of Applied Probability 39, 324-340.

[22] Willmot, G.E., 2004. A note on a class of delayed renewal risk processes, Insur-

ance: Mathematics and Economics 34, 251-257.

[23] Willmot, G.E., 2005. Analysis of the insurer’s surplus and related quantities,

Lecture note for short course in IME 2005.

[24] Willmot, G.E., 2007. On the discounted penalty function in the renewal risk

model with general interclaim times, Insurance: Mathematics and Economics

41, 17-31.

[25] Willmot, G.E., Cai, J., 2004. On applications of residual lifetimes of compound

geometric convolutions, Journal of Applied Probability 41, 802-815.

[26] Willmot, G.E., Cai, J., and Lin X.S., 2001. Lundberg inequalities for renewal

equations, Advances in Applied Probability 33, 674-689.

[27] Willmot, G.E., Dickson, D.C.M., 2003. The Gerber-Shiu discounted penalty

function in the stationary renewal risk model, Insurance: Mathematics and Eco-

nomics 32, 403-411.

[28] Willmot, G.E., Lin, X.S., 2001. Lundberg Approximations for Compound Distri-

butions with Insurance Applications, Springer, New York.



BIBLIOGRAPHY 141

[29] Willmot, G.E., Dickson, D.C.M., Drekic, S., and Stanford D.A., 2004. The

deficit at ruin in the stationary renewal risk model, Scandinavian Actuarial

Journal 2004;4, 241-255.

[30] Willmot, G.E., Woo, J., 2007. On the class of Erlang mixtures with risk theoretic

applications, North American Actuarial Journal 11, 99-118.


