
Multi-User File System Search

by

Stefan Büttcher

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2007

c© Stefan Büttcher, 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

(Stefan Büttcher)

iii

Abstract

Information retrieval research usually deals with globally visible, static document collections.

Practical applications, in contrast, like file system search and enterprise search, have to

cope with highly dynamic text collections and have to take into account user-specific access

permissions when generating the results to a search query.

The goal of this thesis is to close the gap between information retrieval research and

the requirements exacted by these real-life applications. The algorithms and data structures

presented in this thesis can be used to implement a file system search engine that is able to

react to changes in the file system by updating its index data in real time. File changes (in-

sertions, deletions, or modifications) are reflected by the search results within a few seconds,

even under a very high system workload. The search engine exhibits a low main memory

consumption. By integrating security restrictions into the query processing logic, as opposed

to applying them in a postprocessing step, it produces search results that are guaranteed to

be consistent with the access permissions defined by the file system.

The techniques proposed in this thesis are evaluated theoretically, based on a Zipfian model

of term distribution, and through a large number of experiments, involving text collections

of non-trivial size — varying between a few gigabytes and a few hundred gigabytes.

v

Acknowledgements

First and foremost, I would like to thank my supervisor, Charlie Clarke, who did a tremen-

dous job over the past few years, offering guidance whenever I needed it, providing advice

whenever I sought it, and allowing me the academic freedom to pursue the research that I

was most interested in. I owe you big-time.

Thanks to the members of the IR/PLG lab, who created a most enjoyable working

atmosphere. In particular, I would like to thank Richard Bilson, Ashif Harji, Maheedhar

Kolla, Roy Krischer, Ian MacKinnon, Brad Lushman, Thomas Lynam, and Peter Yeung.

Thanks to Gordon Cormack, who taught me by example that it is possible to have a

successful career without ever growing up. Thanks also to the School of Computer Science

for supporting me through the David R. Cheriton graduate student scholarship, and to Mi-

crosoft for supplying us with little toys that ensured a certain level of distraction at all times.

Finally, thanks to the members of my committee, Charlie Clarke, Gordon Cormack,

Alistair Moffat, Frank Tompa, and Olga Vechtomova, who provided valuable feedback that

greatly helped improve this thesis.

vii

Bibliographical Notes

Preliminary versions of the material presented in some parts of this thesis have appeared in

the following publications:

• Stefan Büttcher and Charles L. A. Clarke. Indexing time vs. query-time trade-offs in

dynamic information retrieval systems. In Proceedings of the 14th ACM Conference on

Information and Knowledge Management (CIKM 2005). Bremen, Germany, November

2005. (Chapter 6)

• Stefan Büttcher and Charles L. A. Clarke. A security model for full-text file system

search in multi-user environments. In Proceedings of the 4th USENIX Conference on

File and Storage Technologies (FAST 2005). San Francisco, USA, December 2005.

(Chapter 5)

• Stefan Büttcher and Charles L. A. Clarke. A hybrid approach to index maintenance

in dynamic text retrieval systems. In Proceedings of the 28th European Conference on

Information Retrieval (ECIR 2006). London, UK, April 2006. (Chapter 6)

• Stefan Büttcher and Charles L. A. Clarke. Adding full-text file system search to Linux.

;login: The USENIX Magazine, 31(3):28–33. Berkeley, USA, June 2006. (Chapter 7)

• Stefan Büttcher, Charles L. A. Clarke, and Brad Lushman. Hybrid index maintenance

for growing text collections. In Proceedings of the 29th ACM SIGIR Conference on Re-

search and Development in Information Retrieval (SIGIR 2006). Seattle, USA, August

2006. (Chapter 6)

I would like to thank my co-authors for their assistance and the anonymous reviewers for

their helpful feedback on the issues discussed in these papers.

ix

to my parents

xi

Contents

1 Introduction 1

1.1 What is File System Search? . 3

1.2 Thesis Organization . 5

2 Background and Related Work 9

2.1 Traditional File System Search in UNIX . 10

2.2 Search Queries . 13

2.2.1 Boolean Queries . 13

2.2.2 Ranked Queries . 17

2.2.3 Boolean vs. Ranked Retrieval in File System Search 24

2.2.4 Structural Constraints . 25

2.3 Index Data Structures . 27

2.4 Inverted Indices . 29

2.4.1 Dictionary . 30

2.4.2 Posting Lists . 31

2.4.3 Index Construction . 31

2.4.4 Index Compression . 37

2.5 Index Maintenance . 41

2.5.1 Incremental Index Updates . 41

2.5.2 Document Deletions . 47

2.5.3 Document Modifications . 48

2.6 Applications . 49

3 Evaluation Methodology 51

3.1 Data Sets . 51

3.2 Hardware Configuration & Performance Measurements 53

xiii

4 Index Structures 57

4.1 General Considerations . 58

4.2 Statistical Properties of Inverted Files . 62

4.2.1 Generalized Zipfian Distributions . 63

4.2.2 Long Lists and Short Lists . 68

4.2.3 Notation . 69

4.3 Index Construction . 70

4.3.1 In-Memory Index Construction: Extensible Posting Lists 71

4.3.2 Merge-Based Index Construction: The Final Merge Operation 73

4.3.3 Performance Baseline . 75

4.4 Memory Requirements . 76

4.4.1 Dictionary Compression . 77

4.4.2 Interleaving Posting Lists and Dictionary Entries 78

4.5 Document-Centric vs. Schema-Independent Inverted Files 81

4.5.1 Query Flexibility . 82

4.5.2 Query Processing Performance . 83

4.6 Summary . 84

5 Secure File System Search 87

5.1 The UNIX Security Model . 88

5.1.1 File Permissions . 88

5.1.2 Traditional File System Search in UNIX 89

5.2 A File System Search Security Model . 90

5.3 Enforcing Security by Postprocessing . 92

5.3.1 Exploiting Relevance Scores . 94

5.3.2 Exploiting Ranking Results . 98

5.3.3 Exploiting Support for Structural Constraints 104

5.4 Integrating Security Restrictions into the Query Processor 105

5.5 Performance Evaluation . 109

5.6 Query Optimization . 111

5.7 Discussion . 115

6 Real-Time Index Updates 119

6.1 General Considerations and Terminology . 120

6.2 Merge-Based Update . 122

6.2.1 Index Partitioning . 125

xiv

6.3 In-Place Update . 134

6.3.1 File-System-Based Update . 135

6.3.2 Partial Flushing . 137

6.3.3 In-Place vs. Merge-Based Update . 140

6.4 Hybrid Index Maintenance . 141

6.4.1 Hybrid Index Maintenance with Contiguous Posting Lists 142

6.4.2 Hybrid Index Maintenance with Non-Contiguous Posting Lists 145

6.4.3 Implementing the In-Place Index . 148

6.4.4 Complexity Analysis . 149

6.4.5 Experiments . 152

6.4.6 Hybrid vs. Non-Hybrid Index Maintenance 157

6.5 File Deletions . 160

6.5.1 Utilizing Security Restrictions to Delay Index Updates 160

6.5.2 Collecting Garbage Postings . 162

6.5.3 Performance Trade-offs and Garbage Collection Policies 164

6.5.4 Experiments . 167

6.6 File Modifications . 170

6.6.1 Append Indexing Strategies . 171

6.6.2 Experiments . 174

6.7 Meeting Real-Time Requirements . 177

6.8 Discussion . 182

7 Interaction with the Operating System 185

7.1 File System Notification . 186

7.1.1 Essential File System Events . 186

7.1.2 Event Notification in Linux: dnotify and inotify 187

7.1.3 An Alternative to inotify: fschange 188

7.2 Dealing with Different File Types . 190

7.3 Temporal Locality in File Systems . 190

7.4 Scheduling Index Updates . 192

8 Conclusion 195

xv

List of Tables

2.1 Space requirements: Dictionary vs. posting lists 37

2.2 Dictionary compression: Impact on dictionary size and lookup time 40

3.1 Overview of the collections used in the experiments 52

3.2 Overview of the SBFS collection . 54

4.1 Locality axes in file system search . 58

4.2 Predicting the vocabulary size via Zipf’s law 66

4.3 Comparing realloc and grouping for in-memory posting lists 72

4.4 Merging compressed indices without decompressing posting lists 75

4.5 Index construction performance baseline . 76

4.6 Compressing the in-memory dictionary . 77

4.7 Memory requirements of incomplete dictionaries 81

4.8 Query processing performance baseline . 84

6.1 Number of tokens seen vs. number of unique terms seen 121

6.2 Impact of memory resources on update performance 134

6.3 Effect of partial flushing for different threshold values 139

6.4 Impact of garbage collection on merge performance 163

7.1 File age statistics for SBFS . 191

xvi

List of Figures

2.1 Screenshot of Searchmonkey . 11

2.2 Boolean search query with Microsoft Live Search 14

2.3 File system search with Apple’s Spotlight . 25

2.4 File system search with Wumpus . 26

2.5 Sort-based in-memory dictionary . 30

2.6 Index construction – Simplified view . 32

2.7 Sort-based index construction . 35

2.8 In-place index update . 42

2.9 Dynamizing off-line index construction: The No Merge strategy 45

4.1 Desktop search engine, returning documents stored on removed media 60

4.2 Search-as-you-type query in Copernic Desktop Search 61

4.3 Validating Zipf’s law . 67

4.4 Using Zipf’s law to predict vocabulary size for GOV2 68

4.5 Managing in-memory postings data: Linked list with grouping 71

4.6 Interleaving postings and dictionary entries 78

5.1 File permissions in UNIX . 88

5.2 Approximating the number of files containing T ∗ 100

5.3 Exploiting ranking results: Approximation errors 103

5.4 Search engine components involved in secure query processing 105

5.5 Secure GCL operator tree . 106

5.6 Example queries: Secure query processing with GCL 107

5.7 Secure query processing: Performance results 109

5.8 Secure GCL operator tree (with file independence assumption) 111

5.9 Example queries: Search results with file independence assumption 112

5.10 Secure GCL operator tree (optimized) . 114

5.11 Secure query processing: Performance results (optimized) 115

xvii

6.1 Combined insertion/query sequence for TREC 122

6.2 Merge-based index maintenance for TREC (incremental) 123

6.3 Logarithmic Merge . 128

6.4 Indexing and query performance with multiple index partitions 130

6.5 Combined insertion/query sequence for GOV2 131

6.6 Merge-based index maintenance for GOV2 (incremental) 132

6.7 Relative query performance of different merging strategies 133

6.8 In-place index maintenance for TREC (incremental) 136

6.9 In-place update with partial flushing . 140

6.10 HIMC: Development of long lists . 153

6.11 Contiguous hybrid index maintenance . 154

6.12 HLMNC: Development of long lists . 156

6.13 Non-contiguous Hybrid Logarithmic Merge 158

6.14 Hybrid Logarithmic Merge: List fragments per query term 159

6.15 Command sequence to measure the impact of garbage postings 161

6.16 Impact of uncollected garbage postings on query performance 162

6.17 Index updates for a dynamic collection in steady state (Immediate Merge) 168

6.18 Index updates for a dynamic collection in steady state (Log. Merge) 169

6.19 Append operation causing address space conflict 171

6.20 Append command sequence . 175

6.21 Update and query performance for Append updates 176

6.22 Real-time index updates (asynchronous index maintenance) 180

7.1 File system event notification with fschange 189

xviii

List of Algorithms

1 Intersecting two sorted lists using galloping search 16

2 In-memory index construction . 33

3 Decoding routine for byte-aligned integer compression 39

4 Merging a set of inverted indices . 74

5 Constructing a secure GCL operator tree (optimized) 113

6 Logarithmic Merge . 127

7 In-place update with partial flushing . 138

8 Hybrid Immediate Merge with contiguous posting lists 144

9 Hybrid Logarithmic Merge with non-contiguous posting lists 146

xix

Chapter 1

Introduction

Over the last decade, Web search engines like Altavista1 and Google2 have dramatically

changed the way in which we access information. Billions of documents published on the

Internet are now accessible to a searcher within a matter of seconds — thanks to vast numbers

of high-performance index servers operating in the data centers of the major Web search

companies, and thanks to elaborate ranking functions that ensure that the searcher is only

presented those documents that are most likely to match his or her information need.

Surprisingly, for the contents of a user’s own file system, the situation has been quite

different for a long time. While a random document on the World Wide Web could be found

through a short sequence of key-strokes and mouse clicks, finding a misplaced document on

one’s private desktop computer could be a frustrating and time-consuming endeavor. Existing

interfaces allowing to search the contents of the local file system usually did not allow the

user to specify search constraints regarding the contents of a matching file, but only regarding

some outward criteria (meta-data), such as the file name. Search interfaces that did allow the

user to specify content-related criteria, on the other hand, like UNIX’s grep utility (or the

traditional Windows search mechanism), were unbearably slow and easily required several

minutes to locate the file in question — unless the file was stored in a special format, such as

PDF3, in which case the search was condemned to be unsuccessful from the very beginning.

To some extent, the situation has changed with the recent advent of various desktop search

engines, such as Copernic/Google/MSN/Yahoo! desktop search or Apple’s Spotlight system.

These programs build a full-text index for the contents of the computer’s file system, em-

ploying special input filters for file formats like PDF. The index is kept up-to-date, reflecting

1http://www.altavista.com/ (accessed 2007-03-01)
2http://www.google.com/ (accessed 2007-03-01)
3http://www.adobe.com/products/acrobat/adobepdf.html (accessed 2007-08-01)

1

2 Multi-User File System Search

the contents of the ever-changing file system. It allows a user to find a misplaced file within

seconds instead of minutes, thus closing the gap between Web search and local desktop search.

Unfortunately, virtually nothing has been published about the internals of desktop search

engines. Moreover, they are usually targeting a very specific scenario: a single-user desktop

computer system containing a very limited amount of indexable data, perhaps a few hundred

megabytes. It is unclear whether they can be extended to be used in multi-user environments

or for file systems that contain substantial amounts of indexable data.

The problems posed by file system search may seem trivial compared to those present in

Web search, as the amounts of data that need to be dealt with are so much smaller. This

impression, however, is not entirely accurate. The main challenge of Web search does in fact

stem from the vast amounts of data that need to be processed by the search engine. The

difficulty of file system search, on the other hand, stems from the scarcity of computational

resources available to manage the task at hand. While a Web search engine typically runs

in parallel on thousands of computers dedicated to just this specific purpose, a file system

search engine only runs on a single machine. Moreover, it has to share all its resources –

CPU, main memory, and hard drive bandwidth – with other processes running on the same

hardware. Under these circumstances, building and maintaining an index for a multi-gigabyte

text collection becomes a challenging task.

In this thesis, I propose a set of algorithms and data structures that can be used to

implement a highly scalable file system search engine — scaling from a single-user desktop

computer to a multi-user search environment, and scaling from a small collection of private

e-mail messages and personal notes to a document collection comprising several gigabytes

of text. The search engine can update its index in real time. It enables users to perform

low-latency search tasks, identifying and returning to the user a set of matching documents

in under a second — for a text collection that can be regarded representative of the contents

of a medium-size file system. The techniques proposed for constructing and maintaining a

full-text index for a dynamic text collection scale even further and can easily handle hundreds

of gigabytes of text. At that point, however, sub-second search operations become difficult.

The methods presented and examined are part of the publicly available Wumpus4 search

engine. Wumpus is an experimental file system search engine and multi-user information

retrieval system that serves as a proof of concept for the methods put forward in this thesis.

While most design decisions made are motivated by the specific requirements of file system

search, the results obtained are applicable to other applications as well. Real-time index

updates, for example, are a desirable feature for any search engine that needs to deal with a

4http://www.wumpus-search.org/ (accessed 2007-07-01)

Chapter 1 — Introduction 3

dynamic text collection. Multi-user security restrictions, on the other hand, are not only useful

in file system search, but are essential in collaborative work environments that are targeted

by typical enterprise search engines (e.g., Microsoft SharePoint5, Google Search Appliance6,

and FAST Enterprise Search7).

1.1 What is File System Search?

I view file system search from the UNIX8 perspective and, more specifically, from the

GNU/Linux9,10 point of view. As such, it is more general than desktop search. While

desktop search is only concerned with the data owned by a single user, UNIX file system

search needs to explicitly take into account the existence of multiple users, dozens or even

hundreds, as supported by every UNIX installation. While desktop search usually focuses on

certain parts of the data stored in the file system, such as a user’s e-mail, recently accessed

Web documents, and the contents of the My Documents folder in Windows, file system search

needs to cover a broader spectrum, providing efficient access also to man pages, header files,

kernel sources, etc.. In essence, a file system search engine ought to be able to index all data

in the file system that allow a meaningful textual representation.

Moreover, in contrast to a desktop search engine, a file system search engine should allow

other applications to make use of its search functionalities. For example, if the search engine

enables the user to search her collection of e-mails, then it no longer makes sense for an e-mail

client to maintain its own search infrastructure. Instead, the mail client should provide the

user with a search interface that, in the background, contacts the file system search engine

and utilizes its index structures in order to produce the search results. The actual presenta-

tion of the search results may be application-specific, but the underlying search operation is

performed in a centralized way that can be leveraged by many different applications. Ideally,

file system search should be an operating system service, similar to opening a file or sending

a message across a network (although not necessarily realized in the kernel).

This point of view is similar in spirit to the path adopted by Windows Vista11 and Apple’s

Mac OS X Tiger12. In both systems, full-text search is viewed as an integral component of

the user interface that should be available in every possible context.

5http://www.microsoft.com/sharepoint/ (accessed 2007-03-02)
6http://www.google.com/enterprise/ (accessed 2007-03-02)
7http://www.fastsearch.com/ (accessed 2007-03-15)
8http://www.unix.org/ (accessed 2007-03-02)
9http://www.gnu.org/ (accessed 2007-03-02)

10http://www.linux.org/ (accessed 2007-03-02)
11http://www.microsoft.com/windows/products/windowsvista/ (accessed 2007-03-01)
12http://www.apple.com/macosx/tiger/ (accessed 2007-03-02)

4 Multi-User File System Search

Requirements of File System Search

The general search scenario outlined above leads to a set of five fundamental requirements

that should be met by any file system search engine and that are addressed in this thesis.

Requirement 1: Low Latency Query Processing

Whenever a user submits a query to the search engine, the search results should be returned

within at most a few seconds, preferably less, similar to what users of Web search engines are

accustomed to.

Requirement 2: Query Flexibility

The set of query operations provided by the search engine should be flexible enough for the

search engine to be accessed by the user indirectly, through a third-party application, such as

an e-mail client. In order for this to be possible, the query language provided by the search

engine needs to be as flexible and expressive as possible without sacrificing query performance

beyond reason.

Requirement 3: Index Freshness

Whenever possible, the current version of the index, and thus the results to a search query,

should reflect the contents of the file system. Changes in the file system – file deletions,

creations, and modifications – need to be propagated to the search engine’s index structures

in real time.

Requirement 4: Non-Interference

The search engine should not interfere with the normal operation of the computer system.

For example, neither excessive disk space usage nor excessive main memory usage are accept-

able. In addition, the search engine should only exhibit significant CPU or disk activity if

this activity does not derogate the performance of other processes running in the system.

Requirement 5: Data Privacy

If the computer system is accessed by multiple users, then the search engine must respect

the security restrictions defined by the file system. For example, if user A submits a search

query, then the results to that query may only contain information about a file F if A has

read permission for F .

Obviously, some of these requirements work against each other. A more general query lan-

guage makes it possible to specify search operations that are more expensive to carry out.

Overly tight constraints on the freshness of the search engine’s index will force the index to

interfere with other processes running on the same machine. As always, the challenge lies

Chapter 1 — Introduction 5

in finding the “right” point in each such trade-off. That point, however, may very well be

different from system to system and even from user to user.

Main Research Question

The main research question underlying this thesis is how to meet the basic requirements

outlined above in a highly dynamic, multi-user search environment.

How can we guarantee a certain degree of index freshness if the contents of the file system

are continuously changing? How can we ensure that the search results to a query submitted

by user A can never depend on the contents of user B’s private files? In what ways does

the interaction between the five different requirements affect the decisions that must be made

when designing a multi-user file system search engine?

1.2 Thesis Organization

The next chapter provides an overview of related work in the area of file system search and

in the greater context of information retrieval. I present a summary of commonly used search

operations, index structures, and index maintenance strategies that can be used to keep the

index synchronized with a changing text collection.

Chapter 3 provides the experimental and methodological framework adhered to in my ex-

periments. It describes the hardware and software configuration as well as the text collections

used in the experiments.

In Chapter 4, I discuss how exactly the search engine’s index structures should be inte-

grated into the file system. I propose to use device-specific schema-independent inverted files

as the basic data structures of the search engine. I then present a statistical model, based

on Zipf’s law [117] that can be used to approximate certain properties of inverted files. This

model is made use of extensively throughout Chapter 4 and Chapter 6 and is shown to yield

very accurate estimates of the actual characteristics of inverted files.

The material in Chapter 4 can be used to build a search engine for a single-user file

system whose index structures are updated periodically, maybe once per day. The two main

contributions of the chapter are related to memory management aspects of the search engine.

To reduce the memory consumption caused by the search engine’s dictionary, containing an

entry for every keyword found in the text collection, I propose an interleaving scheme that

keeps most dictionary entries in the on-disk index and only holds a very small number of

entries in main memory. To improve memory utilization during index construction, I propose

a novel way of arranging postings in the extensible posting lists used in most state-of-the-art

6 Multi-User File System Search

in-memory indexing methods. The method is a combination of linked lists and controlled

pre-allocation.

In Chapter 5, the results from Chapter 4 are extended into the domain of multi-user search

environments. I present a discussion of security issues that arise if the same index is shared

by multiple users with different file access privileges. After giving a proper definition of what

it means for a file to be searchable in the context of multi-user file system search, I show

that the näıve way to enforce security restrictions – as a postprocessing step, performed after

an otherwise unaltered query processing procedure – can be exploited by a user to obtain

information about files for which she does not have search permission. This shortcoming is

rectified by a modified query processing strategy that is guaranteed to produce secure search

results and that is only marginally slower than the postprocessing approach. In fact, if the

user’s visibility of the file system (i.e., the relative number of files searchable or readable) is

small, then the new query processing strategy may even lead to higher query performance

than the postprocessing approach.

In Chapter 6 is concerned with efficient, real-time index updates. Focusing first on in-

cremental text collections, allowing the insertion of new files into the collection, but not the

deletion or modification of existing files, I propose Logarithmic Merge, an index mainte-

nance strategy that partitions the on-disk index into sub-indices of exponentially increasing

size. Logarithmic Merge offers indexing performance close to that of the index construc-

tion method for static collections evaluated in Chapter 4, while providing query performance

close to that of more costly index update mechanisms. This method is then extended by

combining it with an in-place update strategy for long lists, resulting in a hybrid index main-

tenance strategy with asymptotically optimal (i.e., linear) index maintenance disk complexity.

I show how the security restrictions described in the previous chapter can almost effort-

lessly be used by the search engine to support file deletions, by combining them with a lazy

garbage collection strategy that conveniently integrates into the methods proposed for in-

cremental index updates. I also discuss how the index structures need to be changed if the

search engine has to offer efficient support for file append operations, indexing only the new

data that have been appended to an existing file, and not re-indexing the entire file. If the

file system contains large amounts of data in append-only files, such as UNIX system log files

(/var/log/*), then this is an essential performance aspect of the index maintenance process.

The chapter concludes with a list of changes that need to be made to the search engine to

turn its amortized index maintenance complexity into actual real-time update performance.

With these modifications in place, the search engine is able to react to every file update event

within a few seconds, even when the update load is very high.

Chapter 1 — Introduction 7

Chapter 7 puts the index update strategies proposed in Chapter 6 into the proper context

of file system search. I examine existing file system notification mechanisms available in

Linux, detailing what events must trigger notifications to the search engine and what specific

information the operating system needs to convey to the indexing process. I point out some

deficiencies of the existing implementations (dnotify and inotify) and present an alternative

solution, fschange. I also discuss how the specific properties of file system search affect some

decisions regarding the index structures chosen and the index update strategies employed by

the search engine.

Conclusions, as well as possible directions for future work, are given in the final chapter

of the thesis.

Chapter 2

Background and Related Work

In order to be able to search a text collection, such as the contents of a file system, in an

efficient and convenient manner, a set of tools must be available that allow the user to express a

search query and find all parts of the text collection matching the search constraints specified

by the query. Depending on the size of the collection and the performance requirements

defined by the user or the application, special data structures might or might not be necessary

to realize search operations on a given text collection.

This chapter provides a brief summary of the traditional UNIX search paradigm (Sec-

tion 2.1), followed by a discussion of what search operations are commonly supported by

search applications and information retrieval systems and might be useful and desirable in

the context of file system search (Section 2.2). The discussion covers Boolean queries and

several types of ranked queries, including query processing strategies for each query type.

Naturally, the type of search operation to be supported by the search engine defines what

index data structure should be used. After a short discussion of what search data structures

are best suited for different kinds of search operations (Section 2.3), I give an overview of

inverted indices, the de-facto standard data structure for keyword-based search operations

(Section 2.4). This includes a summary of related work in the areas of index construction and

index compression.

In Section 2.5, I review known update strategies for inverted indices, covering the three

different update operations that can be witnessed in dynamic search environments: document

insertions, document deletions, and document modifications.

Finally, I provide a summary of existing file system search engines and point out simi-

larities and dissimilarities between file system search and two closely related fields: desktop

search and enterprise search (Section 2.6).

9

10 Multi-User File System Search

2.1 Traditional File System Search in UNIX

Traditional file system search in UNIX is based on the find/grep paradigm:

• The find utility, part of the GNU findutils package1, can be used to obtain a list of

files or directories that match certain external criteria (meta-data), like file name, size,

or modification time.

• The grep2 utility can be used to match the contents of a file (or multiple files) against

a regular expression.

In combination, find and grep can be used to specify highly complex search criteria. For

example, a list of all files in or below the user’s home directory whose name ends with “.pdf”

can be obtained by issuing the command:

find $HOME -type f -name *.pdf

A list of all Java source files that are dealing with I/O exceptions and that have been accessed

within the last 24 hours can be obtained by executing the command:

find $HOME -type f -atime 0 -name *.java | xargs grep -l IOException

(here, the xargs utility, also part of the GNU findutils package, transforms its input to

command-line parameters sent to grep).

A more convenient and user-friendly way of searching the contents of files in the file

system is provided by Searchmonkey3, a graphical application that mostly offers the same

functionality as find/grep (see Figure 2.1), but presents the results to a search query in a

way that makes it easier to browse them, especially for less experienced users.

Both the command-line version and the graphical version of the traditional UNIX search

paradigm share the same two shortcomings:

1. Because no index data structure is maintained, it might be necessary to scan the entire

file system in order to obtain a list of files matching a given set of external criteria.

Depending on the size of the file system, this procedure can easily take several minutes.

2. Furthermore, in order to obtain a list of files matching a certain content-related criterion

(in the example in Figure 2.1, the requirement that a file contains the string “BM25”),

all candidate files need to be read from disk. Depending on the number and the sizes

of the candidate files, this procedure may very well take several hours to complete.

1http://www.gnu.org/software/findutils/ (accessed 2007-05-15)
2http://www.gnu.org/software/grep/ (accessed 2007-05-15)
3http://searchmonkey.sourceforge.net/ (accessed 2007-05-15)

Chapter 2 — Background and Related Work 11

Figure 2.1: Searchmonkey, a graphical alternative to find/grep.

The first shortcoming is addressed by the locate utility. Like find, locate is part of the

GNU findutils package. locate periodically scans the entire file system (running an updatedb

process, usually once per day) and builds a database containing the names of all files in the file

system. By using this database, a file whose name matches a certain criterion (e.g., “∗.cpp”)

can be found much faster than by performing an exhaustive scan of the entire file system.

Unfortunately, locate does not take a user’s file permissions into account when it processes

a search query. This allows an arbitrary user to obtain a list of files found in a different user’s

directory — a deficiency that is remedied by the slocate4 utility. slocate is a secure version

of locate that offers the same functionality, but takes user permissions into account when

processing a query. After generating a list of files matching the query, slocate removes from

this list all files that cannot be seen by the user, according to the standard UNIX file system

security model.

The second shortcoming of the find/grep paradigm, having to read the actual contents of

all candidate files from disk, is not addressed by any of the traditional UNIX search utilities.

The main reason for this deficiency seems to be that, when find/grep came into existence,

reading file contents from disk during a search operation was not as grave a performance

problem as it is nowadays. The throughput/capacity ratio was in favor of throughput, and

reading the entire content of a hard disk was an operation that could be performed within a

matter of minutes. With modern hard drives, this is no longer the case.

4http://slocate.trakker.ca/ (accessed 2007-01-11)

12 Multi-User File System Search

Hard Drive Characteristics: Capacity vs. Speed

The throughput of a hard disk drive is essentially determined by two factors: its storage

density and its rotational velocity. The higher the storage density, measured in bits per

square inch, and the higher the rotational velocity, measured in revolutions per minute, the

greater the hard drive’s data throughput (other factors, such as the average radius of a disk

track, also play a role, but seem to have remained more or less constant over the past decade).

Obviously, there are some limits to the maximum rotational velocity at which a hard

drive may run. Lee et al. [64], for instance, discuss how increasing the rotational velocity of

a hard drive is related to a higher generation of contamination particles on the disk platter.

Consequently, the rotational speed of a typical consumer hard drive has only increased by

about a factor 2 (from 4,200 to 7,200 rpm) within the last 10 years. Instead of raising the

rotational velocity, hard drive manufacturers have concentrated on increasing the density

with which data can be stored on a hard disk, from 3 gigabits per square inch in 19955 to a

remarkable 179 gigabits per square inch in 20056. New technologies, such as perpendicular

recording, will allow storage densities beyond the terabit-per-square-inch mark [73].

Increasing the storage density of a hard disk has two immediate effects: it increases the

hard drive’s storage capacity, and it increases its throughput. These two aspects of the hard

drive’s performance, however, are not affected in the same way. Because data are stored in

two dimensions on a disk platter, but are read and written in only one dimension, an increase

in storage density by a factor 4 approximately decreases the throughput of the hard drive by

a factor 2 — relative to its storage capacity.

As a result, while the capacity of a typical consumer hard drive has grown by about a

factor 50 over the last 10 years, the sequential read/write performance has only increased by

about a factor 10. Hence, reading the entire content of a hard drive in a long sequential read

operation now takes 5 times as long as 10 years ago, usually several hours. For random access,

the ratio is even less favourable: The duration of a random disk seek could be reduced by

only 50% over the last 10 years, implying that random disk access (e.g., opening and reading

all files that potentially match a search query) now is more expensive than ever.

A detailed overview of different performance aspects of hard disk drives is given by

Ruemmler and Wilkes [96] and also by Ng [82]. What is important here, however, is the

insight that a search infrastructure which requires an exhaustive scan of the file system in

order to process a search query no longer represents a feasible solution. In order to realize

efficient full-text search, a content index needs to be built that contains information about

5http://www.littletechshoppe.com/ns1625/winchest.html (accessed 2007-01-25)
6http://en.wikipedia.org/wiki/Computer storage density (accessed 2007-01-25)

Chapter 2 — Background and Related Work 13

all occurrences of potential search terms within the file system, reducing (i) the amount of

data read from disk and (ii) the number of random disk access operations performed while

processing a query.

Before I can move on to discuss how such an index could look like and what data structures

have been proposed for this purpose in the past, I first need to examine what types of search

operations have to be supported by the index, because this directly affects which specific data

structure should be chosen. For now, let us assume that an index simply provides the search

engine with fast access to the list of all occurrences of a given term. The exact information

contained in such a list, and the way in which the information is encoded, will be discussed

later.

2.2 Search Queries

As we have seen in the previous section, regular expressions can effectively be used to search

the contents of a file system. Indeed, regular expression search is older than UNIX itself and

was first proposed by Ken Thompson, one of the fathers of UNIX, in 1968 [106]. However,

while regular expressions are undoubtedly a powerful search tool and are very useful for certain

applications, such as code search7, they might actually be more powerful than necessary for

the purposes of file system search. In addition, regular expressions do not provide a satisfying

mechanism for ranking search results by predicted relevance.

The predominant type of search query in many applications is the keyword query. In a

keyword query, the search constraints are not represented by a regular expression, but by a

set of search terms, the keywords. The user has a set of words in mind that best describe the

document(s) she is looking for, and she sends these words to the search engine. The search

engine then processes the given query by matching it against a set of documents or files. The

keywords in a given search query can be combined in a number of different ways, for example

according to the rules defined by Boolean algebra [14].

2.2.1 Boolean Queries

A Boolean search query [46] allows the user to combine keywords using one of the operators

“∧” (AND), “∨” (OR), and “¬” (NOT). For example, the search query

“keyword” ∧ (“query” ∨ “search”) ∧ (¬ “retrieval”)

7http://www.google.com/codesearch (accessed 2007-01-25)

14 Multi-User File System Search

Figure 2.2: Boolean search query with Microsoft Live Search. Clearly, there are many
documents in the index that contain one or two of the three query terms, only a single doc-
ument that contains all three: “endomorphic”, “polynomial”, and “arachnophobia” (implicit
Boolean AND).

matches all documents containing the term “keyword” and one of the terms “query” and

“search” (or both), but not the term “retrieval”. The Boolean operator that is most commonly

used in keyword search is the AND operator, building the conjunction of two or more query

terms. In fact, this operator is so common that, if a query just consists of a set of keywords,

without any explicit operators, many search engines (and basically all Web search engines)

automatically assume that these keywords are meant to be combined via the AND operator

(see Figure 2.2 for an example).

The original version of Boolean document retrieval, with its three basic operators, has

experienced many extensions, most notably the introduction of proximity operators [78].

Processing Boolean Queries

Because of the high prevalence of conjunctive Boolean queries in search engines, it is important

to provide efficient support for this type of query.

Chapter 2 — Background and Related Work 15

Suppose the search engine needs to process a conjunctive Boolean query Q, consisting

of two query terms Q1 and Q2. Further suppose that it has already obtained two lists of

document identifiers DQ1 and DQ2 from its index, representing the documents containing Q1

and Q2, respectively. DQ1 and DQ2 contain document identifiers in an arbitrary order, not

necessarily sorted. Let m := |DQ1 | and n := |DQ2 |, m ≤ n w.l.o.g.. Then the intersection of

the two lists, denoted as DQ1∧Q2 , can be computed with

Θ(m · log(m) + n · log(m))

comparison operations, by first sorting DQ1 and then performing a binary search for every

element in DQ2 on the now-sorted list DQ1 . The time complexity of this procedure can be

improved by performing the intersection through hash table lookup instead of sort-based

comparison, leading to a total expected complexity of Θ(m + n). However, the fundamental

limitation of this approach remains the same: Every element in each list has to be inspected

at least once, implying a lower bound of Ω(m + n).

Now suppose that the elements of DQ1 and DQ2 are stored in the search engine’s index

in ascending order. Then their intersection can be computed more efficiently. A Θ(m + n)

algorithm can be realized trivially, by simultaneous linear probing of both input lists (“co-

sequential processing”), similar to the procedure employed in the merge step of the mergesort

algorithm. If m is much smaller than n, then a faster solution is possible. Like before, for

each element in DQ1 a binary search on DQ2 is performed, but now the search engine can

make use of the information that DQ1 [i] < DQ1 [i + 1] when selecting the interval from DQ2

on which the binary search for DQ1 [i + 1] takes place. The resulting algorithm, called SvS, is

discussed by Demaine et al. [38]. SvS has a worst-case complexity of Θ(m · log(n)). Thus, if

m ∈ o
(

n
log(n)

)
, then SvS is faster than linear probing. If m ∈ ω

(
n

log(n)

)
, and in particular if

m ∈ Ω(n), it is slower.

SvS can be improved by choosing the sub-interval of DQ2 dynamically by performing a

local galloping search (iteratively doubling the size of the search interval before each binary

search operation). This algorithm is discussed by Demaine et al. [37]. It is very similar

to a solution to the unbounded search problem presented by Bentley and Yao [11]. The

application of galloping search to the problem of intersecting two sorted lists is shown in

Algorithm 1. The algorithm computes the intersection of two lists of length m and n, m ≤ n,

using Θ
(
m · log(n

m)
)

comparisons (worst-case complexity). For all m, this is at least as fast

as linear probing with its Ω(m + n) time complexity. It is strictly faster than linear probing

if m ∈ o(n).

16 Multi-User File System Search

Algorithm 1 Compute the intersection of two lists L1 and L2 by galloping search. The result
is stored in the output parameter resultList.

Require: L1.length > 0 ∧ L2.length > 0
Require: L1 and L2 are sorted in increasing order
1: let L1[i] :=∞ for i > L1.length, L2[i] :=∞ for i > L2.length by definition
2: L1.position← 1, L2.position← 1 // set position in both lists to beginning of list
3: candidate← L1[L1.position]
4: L1.position← L1.position + 1
5: currentList← L2 // start off by searching L2 for an occurrence of candidate
6: while candidate <∞ do
7: if currentList[currentList.position] ≤ candidate then
8: // try to find a range lower . . . (lower + delta) such that
9: // currentList[lower] ≤ candidate ≤ currentList[lower + delta]

10: lower← currentList.position
11: delta← 1
12: while currentList[lower + delta] < candidate do
13: delta← delta× 2
14: end while
15:

16: // perform a binary search for candidate on currentList[lower . . . upper]
17: upper← lower + delta
18: while lower < upper do
19: if currentList[b(lower + upper)/2c] < candidate then
20: lower← b(lower + upper)/2c+ 1
21: else
22: upper← b(lower + upper)/2c
23: end if
24: end while
25: if currentList[lower] = candidate then
26: resultList.append(candidate)
27: currentList.position← lower + 1
28: else
29: currentList.position← lower
30: end if
31: end if
32:

33: // swap the roles of the two lists L1 and L2

34: candidate← currentList[currentList.position]
35: currentList.position← currentList.position + 1
36: if currentList = L1 then
37: currentList← L2

38: else
39: currentList← L1

40: end if
41: end while

Chapter 2 — Background and Related Work 17

Regardless of the actual algorithm employed, performing a binary search on the sorted list

DQ2 usually only gives an improvement over the linear algorithm if the input lists are stored

in main memory. If the lists are larger than the available amount of main memory, binary

search in many cases will not offer a substantial speed advantage. In that case, however, it

is even more important that the elements of both lists are sorted in some predefined order.

Every other arrangement would necessarily lead to a non-sequential disk access pattern,

jumping back and forth on disk, and probably slowing down the whole query processing

procedure dramatically.

Even though the discussion presented so far has been limited to the case of intersecting

lists of document identifiers in the context of Boolean retrieval, the same techniques can be

used to resolve phrase queries if the search engine has access to an index that contains fully

positional information about all term occurrences in the collection.

It is clear from the discussion that, if we want the search engine to process Boolean queries

efficiently, then it is crucial that the list of all occurrences for a given term be stored in the

index pre-sorted, preferably in the same order in which they appear in the text collection. In

fact, this kind of index layout is not only required for Boolean queries, but also for phrase

queries, proximity operators, structural query constraints, and for query optimizations in

the context of ranked queries. This will have to be taken into account when choosing the

underlying data structure of the search engine.

2.2.2 Ranked Queries

Pure Boolean queries perform remarkably well in some applications, such as legal search [108]

and search operations on small text collections, but tend to be of limited use when the number

of search results matching a given query becomes large. In this situation, the search engine

must provide a way of ranking matching documents according to their predicted relevance to

the given query. Lee [65] discusses how extended Boolean models, such as fuzzy set theory,

can be used to rank the results to a search query. Clarke and Cormack [28] apply their

shortest-substring retrieval framework to rank matching documents based on the length of

the shortest passage that matches a given Boolean query.

As an alternative to the above approaches, Boolean query constraints and result ranking

techniques may be viewed as two logically independent components of the search process. In

a first step, Boolean search is used to find an initial set of candidate documents. In a second

step, all matches found in the first step are ranked according to their predicted relevance to

the query.

18 Multi-User File System Search

Salton et al. [98] [99] propose to use a vector space model to rank search results based on

their similarity to the query. In their approach, the search query and all documents in the

collection are treated as vectors from an n-dimensional vector space, where n is the number

of different terms in the text collection. The similarity between a document and the search

query is usually measured by their cosine distance, that is, the angle between the two vectors

in the n-dimensional space:

cos(^(~x, ~y)) =
~xT ~y

||~x|| · ||~y||
. (2.1)

Thus, if both the query and the document are represented by unit vectors ~x and ~y, then the

score of a document is simply the value of the inner product: ~xT ~y.

When the vector space model is used to rank search results, it is usually (though not

necessarily) assumed that the Boolean query is a disjunction of all query terms. That is, every

document containing at least one of the query terms is a potential candidate for retrieval.

Probabilistic Retrieval

The basic vector space model does not provide a theoretically satisfying way of assigning

document scores based on how frequent a given query term is in the collection and how

often it occurs in a given document. For example, in the original formulation of the vector

space model, a document containing two occurrences of a query term Q1 would receive the

same score as a document that contains one occurrence of Q1 and one occurrence of Q2

(assuming both query terms are assigned the same weight). This shortcoming is rectified by

the probabilistic approach to document retrieval [93]. Motivated by Robertson’s probability

ranking principle [92], which states that documents should be returned in order of probability

of relevance to the query, probabilistic retrieval methods try to estimate this probability for

each document, based on statistics available from the text corpus.

The predominant ranking function in the family of probabilistic retrieval methods, and

the only probabilistic retrieval method used in this thesis, is Okapi BM25 [95] [94]. Given a

query Q = {Q1, . . . , Qn}, the BM25 score of a document D is:

score(D,Q) =
∑

Q∈Q

log

(
|D|

|DQ|

)
·

fD(Q) · (k1 + 1)

fD(Q) + k1 · (1− b + b · |D|/avgdl)
, (2.2)

where D is the set of all documents, DQ is the set of documents containing the term Q, fD(Q)

is the number of occurrences of the query term Q in the document D, |D| is the length of

the document D (number of tokens), and avgdl is the average length of a document in the

collection.

Chapter 2 — Background and Related Work 19

The parameter k1 determines the fan-out of the within-document term frequency; b spec-

ifies the weight of the document length normalization component in BM25. The two param-

eters are usually set to their default values (k1, b) = (1.2, 0.75).

The first factor in Equation 2.2 is referred to as the inverse document frequency (IDF)

component, while the second factor is referred to as the term frequency (TF) component.

Consequently, BM25 is sometimes called a TF-IDF retrieval method.

Equation 2.2 is only one instance of a large class of functions covered under the name

BM25. An in-depth analysis of this general class of ranking functions is provided by Spärck

Jones et al. [59].

Language Modeling

A language modelM is a probability distribution on a set of lexical objects, such as terms or

term n-grams. The most common form is the unigram language model, defining a probability

distribution on all terms over a given alphabet, e.g., Unicode:

M : V → [0, 1], T 7→ Pr(T | M) ;
∑

T∈V

(Pr(T | M)) = 1, (2.3)

where V is the set of all white-space-free Unicode strings. If built from a text collection C

according to the maximum likelihood estimate, the probability of each term is simply its

relative frequency in the collection:

Pr(T | M) =
fC(T)∑
x fC(x)

, (2.4)

where fC(T) is T ’s collection frequency — the number of times it occurs in C.

The language modeling approach to information retrieval, as first proposed by Ponte and

Croft [87], interprets each document D as a representative of a unigram language modelMD

and assigns a relevance value score(D,Q) to the document, depending on how likely it is for

the search query Q to be generated from the language model MD.

Several variations of the language modeling approach exist, including but not limited to

multiple-Bernoulli models [77] and multinomial models [105]. Within the scope of this thesis,

I limit myself to the case of multinomial language models employing Bayesian smoothing

with Dirichlet priors, analyzed by Zhai and Lafferty [116]. In this particular method, the

probability of a term T according to the document model MD is defined as:

Prµ(T | MD) =
fD(T) + µ · Pr(T | C)∑

x fD(x) + µ
, (2.5)

20 Multi-User File System Search

where fD(T) is the number of times T appears in the document D, and C is the language

model of the entire text collection (e.g., all files in the file system), usually computed according

to the maximum likelihood heuristic. µ is a free parameter, realizing implicit document length

normalization, and is normally chosen as µ = 2000.

Given a query Q = {Q1, . . . , Qn}, the relevance score of a document D then is:

score(D,Q) =
∏

Q∈Q

Prµ(Q | MD) =
∏

Q∈Q

fD(Q) + µ · Pr(Q | C)∑
x fD(x) + µ

. (2.6)

The higher the probability of the query being generated from the language model MD, the

greater the score that the document receives.

Proximity Ranking and Passage Retrieval

The ranking methods described above have in common that they rank documents purely

based on the number of occurrences of each query term in a document and in the entire

collection, without taking into account the relationship between different query terms, such

as the distance between two query term occurrences in the same document. For this reason,

they are sometimes referred to as bag-of-words retrieval models.

One essential limitation of bag-of-words retrieval functions is that they can only rank and

return entire documents. For example, if a user is searching the contents of a set of PDF

documents, then the ranking function is always applied on an entire PDF document. This

approach has two shortcomings. First, the document that a user is looking for might not be

relevant to the search query in its entirety, but only partially. This can lead to a sub-optimal

ranking of the search results. Second, a matching document might be very long, maybe a

few hundred pages. In that case, reporting the entire document back to the user is probably

not going to be of much help. Therefore, it is desirable to use a retrieval method that, in

addition to ranking the matching documents, also returns information about the exact part

of a matching document that best represents the information need expressed by the query.

One such method is the QAP algorithm presented by Clarke et al. [33]. Given a query

Q = {Q1, . . . , Qn} and a text passage P of length l, containing one or more query terms,

P ’s relevance score is determined based on its probability of containing the query term(s) by

chance. If Q′ ⊆ Q is the set of query terms that appear in P , then the probability of their

occurring by pure chance is:

Pr(Q′ | length(P) = l) =
∏

Q∈Q′

(1− (1− Pr(Q | C))l) ≈
∏

Q∈Q′

l · Pr(Q | C), (2.7)

Chapter 2 — Background and Related Work 21

where Pr(Q | C) is Q’s probability of occurrence according to the collection-wide unigram

language model, built according to the maximum likelihood estimate: Pr(Q | C) = fC(Q)
|C| .

The score of the passage P is usually computed as the query-specific information content of

the passage:

score(P,Q) = −
∑

Q∈(Q∩P)

(
log

(
fC(Q)

|C|

)
+ log(l)

)
. (2.8)

QAP finds the highest-scoring passage in each matching document and returns it to the

user (where a passage is an arbitrary-length sequence of tokens). Documents may be ranked

according to the score of their highest-scoring passage, but may also be ranked according

to some other criterion. In the latter case, QAP is run as a postprocessing step on a small

number of documents (the top k search results) returned by some other ranking function

(e.g., BM25) in order to find passages that can be used to construct query-specific document

summaries (snippets).

As an alternative to Clarke’s method, Büttcher et al. [22] and Rasolofo and Savoy [89]

discuss how term proximity features can be integrated directly into the BM25 scoring function.

Without further modifications, however, these methods cannot be used for passage retrieval.

Other alternatives are explored by de Kretser and Moffat [36].

Query-Independent Ranking

Sometimes it can be useful to combine the query-specific score of a document with a query-

independent score component that represents the general importance of the document. Such

query-independent evidence of a document’s relevance can be integrated fairly easily into the

language modeling approach, by defining prior probabilities for document relevance (usually

referred to as document priors) [63]. It is known that query-independent score components

are essential for effective navigational Web search, such as homepage finding [62]. They are

assumed to form the basis of most commercial Web search engines (e.g., Kleinberg’s HITS

algorithm [61] and Google’s PageRank [85]).

Inspired by the success of PageRank, Bhagwat and Polyzotis [12] propose FileRank, a

method that – similar to PageRank, but to be used in the context of file system search instead

of Web search – estimates the query-independent importance of a file. The file rank of a given

file F depends on three components: the content that F shares with other files (“content

overlap link”), the overlap between F ’s name and the name of other files (“name overlap

link”), and the overlap between F ’s name and the content of other files (“name reference

link”). Unfortunately, Bhagwat and Polyzotis neither give a sound theoretical justification

for their particular ranking function, nor do they provide experimental support showing that

22 Multi-User File System Search

their method is actually able to produce high-quality search results. It seems appropriate to

remain suspicious.

What appears more promising is to include the type of a matching file as a feature in the

ranking function. Similar to the method proposed by Yeung et al. [115], the search engine

could exploit user interaction, such as click-through, to build a model of file types that a user

is more likely or less likely to be interested in. This information can then be used at query

time to adjust the score that a particular file receives.

Processing Ranked Queries

When processing a ranked search query, it is reasonable to assume that the user is not

interested in a complete ranking of all matching documents, but only in the top k documents,

for some small value of k, say k = 20. For most bag-of-words ranking functions, such as Okapi

BM25 and multinomial language models, a search query can then be processed in two different

ways: following a document-at-a-time approach, or following a term-at-a-time approach.

A term-at-a-time query processing strategy fetches each query term’s posting list (i.e.,

the list of all its occurrences) from the index, one list at a time, starting with the least-

frequent term (which also carries the greatest weight), and computes the contribution of

each list element to the score of the document it refers to. This results in a set of partial

document scores, stored in in-memory accumulators. If the number of matching documents –

documents with non-zero accumulators – is small, then this method works well without any

further modifications. However, if the number of matching documents exceeds the amount

of memory that can be allocated for in-memory accumulators, then accumulator pruning

strategies need to be applied.

Moffat and Zobel [81] present two strategies (Quit and Continue) that can rank docu-

ments using a limited, pre-defined amount of space for in-memory score accumulators, usually

between 1% and 5% of the number of documents in the collection. The Quit strategy stops

execution as soon as the accumulator limit is reached. The Continue strategy allows existing

accumulators to be updated after the limit is reached, but does not allow new accumulators

to be created.

Lester et al. [67] notice that the Continue strategy suffers from accumulator bursts that

can result in a number of in-memory accumulators that exceed the pre-defined limit by a large

margin. They propose an adaptive pruning technique that does not exhibit this shortcoming

and that offers a better efficiency-vs.-effectiveness trade-off than Continue.

If each posting list is stored in a contiguous region of the hard disk, then the term-at-

a-time approach leads to high query processing performance, since it only requires a single

Chapter 2 — Background and Related Work 23

random disk access (i.e., disk seek) per query term. Unfortunately, if the scoring function

makes use of term proximity features, then the score of a document is no longer just the sum

of each query term’s contribution. Thus, the query cannot be processed in a term-at-a-time

fashion. The search engine has to resort to a document-at-a-time strategy.

A document-at-a-time query processing strategy loads all lists into memory and arranges

them in a priority queue, such as a Min-Heap, sorted by the position of the next term occur-

rence in each list (alternative approaches are explored by Vo and Moffat [4]). By repeatedly

removing the first element from the posting list that is currently at the beginning of the

priority queue, the postings for all query terms can be inspected in the order in which they

occur in the collection, and exact document scores for all documents containing at least one

query term can be computed on the fly. In order for this to be possible, however, the postings

in each list need to be stored in the index pre-sorted in collection order.

If the query terms’ posting lists are small enough to be loaded entirely into main memory,

then document-at-a-time query processing requires the same number of disk seeks as the term-

at-a-time approach. If, however, lists are too long to be loaded into RAM completely, the

query processor can only load partial posting lists into memory and needs to switch back and

forth between the different lists in order to fetch more postings for the respective query term.

In that case, term-at-a-time methods are usually more efficient than the document-at-a-time

approach.

The most important query optimization technique for document-at-a-time query proces-

sors is the MaxScore heuristic due to Turtle and Flood [109]. The main assumption behind

MaxScore is that the search engine does not report all matching documents back to the

user, but only the k top-scoring documents. Suppose a set of documents is to be ranked

according to their BM25 scores for the query {“information”, “retrieval”}. Further suppose

that the IDF weights of the two query terms are

w(“information”) = 2.06 and w(“retrieval”) = 5.51

and that, while processing the query, the kth-best document seen so far has received the

BM25 score sk = 4.6. If BM25 is executed with default parameters (k1, b) = (1.2, 0.75),

then the maximum score that can be achieved by a document that only contains the term

“information” is at most

smax(“information”) = w(“information”) · (k1 + 1) = 2.06 · 2.2 = 4.532 (2.9)

(cf. Equation 2.2). Therefore, the query processor no longer needs to consider documents

24 Multi-User File System Search

that only contain the term “information”, but not the term “retrieval”. For longer queries,

this technique can be generalized to eliminate the n least-weight query terms instead of just

a single one.

MaxScore can be applied to most ranking functions, including all three functions de-

scribed above (BM25, QAP, LM with Dirichlet smoothing). In the experiments reported on

by Turtle and Flood, MaxScore can save up to 50% of the total query execution cost when

the search engine only needs to return the top 10 documents to the user.

In order for MaxScore to be truly advantageous, the search engine has to be able to

skip parts of a posting list and jump directly to the next posting that refers to a potentially

top-scoring document. This is usually realized in a fashion that is very similar to the galloping

search described when discussing Boolean queries. At the index level, it can be supported by

inserting synchronization points into each posting list, as suggested by Moffat and Zobel [81].

Like in the case of Boolean queries, this optimization requires that the elements of a given

posting list be stored in the index in the order in which they appear in the collection.

2.2.3 Boolean vs. Ranked Retrieval in File System Search

Appropriate query types and ranking techniques in the context of desktop and file system

search have not been studied very well yet. It is therefore not entirely clear which retrieval

strategy – Boolean retrieval or relevance ranking – yields the best results in this new context.

Preliminary results do, however, indicate that pure Boolean retrieval, not taking any statisti-

cal information into account when ranking a set of matching documents, leads to low-quality

search. For their Stuff I’ve Seen desktop search engine, Dumais et al. [39] report that the

majority of the users chose to order search results either by their creation/modification date

(recent files first) or by their relevance score (using a variant of Okapi BM25).

Among the commercial desktop search engines, there seems to be disagreement regarding

the best way to rank search results. While Google’s and Microsoft’s products perform some

sort of statistical relevance ranking, Apple’s Spotlight simply presents the search results in

alphabetical order (see Figure 2.3 for an example).

I simulated a search task in which a user is trying to locate a document that she had read

some time ago and that had been misplaced somewhere in the vastness of her file system. The

document in question is a research paper on the use of term proximity features in document

retrieval, and she remembers that it contains the two keywords “term” and “proximity”.

Figure 2.3 shows the results to her search query, as produced by Spotlight (applying a Boolean

AND and ranking by file name). In contrast, Figure 2.4 shows the search results produced

by the Wumpus search engine (applying a Boolean OR and ranking documents according

Chapter 2 — Background and Related Work 25

Figure 2.3: File system search with Apple’s Spotlight. Search query: “term proximity”.
Search results are ranked alphabetically, without taking their relevance into account.

to their BM25TP [22] score, a variant of BM25). By comparing the two figures, it is clear

that, without relevance ranking, the user might need to spend some time browsing the search

results until she finally finds the paper she was interested in. With relevance ranking, on the

other hand, it is likely that the document in question is one of the top three documents shown

in Figure 2.4.

Although this example can only be considered anecdotal evidence of the necessity of

relevance ranking techniques, it does indicate that there are in fact some search scenarios in

which the application of statistical ranking techniques can improve the quality of the search

results dramatically. Since relevance ranking in general is rather unlikely to degrade the

quality of the search results, compared to a pure Boolean approach, it seems appropriate for

any file system search engine to support it by default.

2.2.4 Structural Constraints

Sometimes, it is useful to be able to specify certain structural constraints that a document

needs to satisfy in order to match the given query. For example, a user might be interested

in e-mails coming from a University of Waterloo e-mail address that are not concerned with

26 Multi-User File System Search

Figure 2.4: File system search with Wumpus. Search query: “term proximity”. Search
results are ranked by their predicted relevance to the query (using BM25TP [22]).

fee payment:

((“〈email〉” · · · “〈/email〉”) B ((“〈from〉” · · · “〈/from〉”) B “uwaterloo.ca”))

6B ((“〈subject〉” · · · “〈/subject〉) B “fee*”)

(where “B” denotes containment relationship, and “· · · ” denotes followed-by). Many such re-

quirements can be expressed using XML-based query languages, such as XPath8 and XQuery9.

A more light-weight way of enforcing structural constraints was introduced by the Pat alge-

bra [97] and improved upon by Clarke et al. [30] [31]. Their GCL query language is based

on the shortest-substring paradigm, stating that a result to a search query (including inter-

mediate results) must never contain a substring that also matches the query. GCL supports

operators for containment, followed-by, Boolean AND, and Boolean OR.

In this thesis, a set of seven GCL operators is made use of. Let A and B be GCL

expressions, and let IA and IB denote the set of intervals (text passages) matching A and B,

8http://www.w3.org/TR/xpath (accessed 2007-02-14)
9http://www.w3.org/TR/xquery (accessed 2007-02-14)

Chapter 2 — Background and Related Work 27

respectively. Then:

• A · · ·B matches all intervals starting with some IA ∈ IA and ending with some IB ∈ IB;

• A ∨B matches every interval I ∈ (IA ∪ IB);

• A ∧B matches every interval I that contains two sub-intervals IA ∈ IA and IB ∈ IB;

• A B B matches every interval IA ∈ IA that contains an interval IB ∈ IB;

• A 6B B matches every interval IA ∈ IA that does not contain an interval IB ∈ IB;

• A C B matches every interval IA ∈ IA that is contained in an interval IB ∈ IB;

• A 6C B matches every interval IA ∈ IA that is not contained in an interval IB ∈ IB.

For details on these operators, see Clarke et al. [31]. Note that the notation used here is

slightly different from the one chosen by Clarke.

For flexibility reasons, implementations of the GCL text retrieval framework are usually,

though not necessarily, based on a schema-independent index (cf. Section 2.4). Because the

structure of the text collection – explicitly encoded in a schema-dependent index – can easily

be reconstructed at query time by using a combination of GCL operators, using a schema-

independent index results in more powerful query semantics.

The result of a GCL query is a list of index extents (i.e., passages of arbitrary length in the

indexed text collection), without any explicit ranking. If the application employing the GCL

framework requires a ranked list of matches (e.g., the top k documents), then the ranking

step is performed outside the GCL retrieval framework, according to explicitly specified rules,

such as probabilistic retrieval [95] [94] or Clarke’s shortest-substring ranking method [28] that

unifies Boolean queries and ranked retrieval within the GCL framework.

GCL forms the basis of the security-aware query processor described in Chapter 5. Like

in the case of Boolean queries and ranked queries, the performance of the GCL operators

relies on the fact that all postings for a given term are stored in the index in collection order.

2.3 Index Data Structures

Over the last 30 years, various data structures for efficient full-text search have been proposed:

• The inverted index [53] is the dominant data structure used to realize keyword-based

search operations. For every term in a given text collection, the inverted index contains

a list of all its occurrences, sorted by their position in the collection. Depending on the

granularity of the index, it might either contain lists of exact word positions, or just

lists of document identifiers, representing the documents in which a given term appears.

28 Multi-User File System Search

• A suffix tree [110] for a given text collection is a search tree with the special property

that every path from the tree’s root to one of its leaves corresponds to a unique suffix of

the text collection. Hence, every path from the tree’s root to one of its nodes corresponds

to a substring of the collection. Suffix trees, therefore, can be used to realize efficient

phrase queries and in this respect are more flexible than inverted files, which only

support single-term lookups.

If used for keyword search, however, suffix trees have two essential limitations. First,

they are usually larger than inverted indices and less efficient when stored on disk.

Second, they produce result lists that are sorted in lexicographical order and not in the

order in which they appear in the text collection. While the first limitation to some

extent can be addressed through more complicated encodings [60] [72] [27], the second

limitation remains, and renders suffix trees impractical for Boolean search queries (cf.

Section 2.2.1).

• A suffix array [52] [75] is an array of pointers into the text collection. Each pointer cor-

responds to a unique suffix of the collection. The pointers are sorted in lexicographical

order of their respective suffixes. Hence, phrase queries can be supported via a binary

search operation on the list of suffixes. When used for keyword search applications,

suffix arrays essentially have the same limitations as suffix trees.

• In a signature file [42], every term T is represented by a vector s(T) ∈ {0, 1}n, for

some n ∈ N. Likewise, each document in the text collection is represented by a vector

s(D) ∈ {0, 1}n, its signature:

s(D)[i] = max
T∈D
{s(T)[i]}. (2.10)

That is, s(D) is the Boolean OR of the signatures of all terms found in the document.

Searching for a document containing a term T ∗ is realized by searching for a document

signature s(D∗), such that

s(D∗)[i] ≥ s(T ∗)[i] for 1 ≤ i ≤ n. (2.11)

This operation can be realized fairly efficiently by means of bit slicing [41].

Similar to a Bloom filter [13], a signature file cannot be used to produce definite matches,

but only to rule out non-matching documents. That is, there is always the chance of false

positives that need to be eliminated by inspecting the actual document reported back

as a potential match. Moreover, because it does not contain any positional information,

a signature file cannot be used for phrase searches or search operations that take the

proximity of query terms into account.

Chapter 2 — Background and Related Work 29

Zobel et al. [120] argue that signature files offer inferior performance compared to in-

verted files and that inverted files are the data structure of choice. Carterette and

Can [24] argue in the opposite direction, pointing out applications in which signature

files might be appropriate.

Given that suffix trees and suffix arrays do not store the list of occurrences of a given term

in the order in which they appear in the text collection (and in fact cannot do so without

substantially increasing the amount of redundancy in the index), it is impossible to use the

query processing strategies presented in Section 2.2 if the search engine is based on a suffix

tree or suffix array. Therefore, under the assumption that the main focus in the context of

file system search is on efficient support for keyword queries, including phrase queries and

Boolean queries, the indexable contents of the file system are best represented by an inverted

index. A discussion of whether this assumption actually holds or whether other types of

queries need to be supported as well, is given in Section 4.1.

2.4 Inverted Indices

The inverted index [53] [119] (also referred to as inverted file or postings file) is the fundamental

data structure employed by most text search engines. The inverted index for a given text

collection realizes a mapping from each term T to a list of T ’s occurrences within the collection.

The list of T ’s occurrences in the collection is called the term’s inverted list (or its posting

list); each element of such a list is called a posting.

Based on the amount of information stored in an inverted index, and based on the structure

of the index, we can distinguish between four different types of inverted files:

• In a docid index, each posting is a simple integer — a numeric document identifier

representing a single document.

• A frequency index contains postings of the form (docid, tf), the document that a term

appears in and the number of times it appears in that document (the term frequency).

• Postings in a document-centric positional index are of the form

(docid, tf, 〈 p1, . . . , ptf 〉),

where the pi are the word positions of all occurrences of the given term within the

document referred to by docid.

30 Multi-User File System Search

Figure 2.5: Sort-based dictionary with secondary array to reduce internal fragmentation.
The per-term pointer overhead of the additional level of indirection is between 3 and 7 bytes
(32-bit/64-bit pointers).

• A schema-independent index contains word-level occurrence information, just like

a positional index, but does not make explicit reference to documents in the collec-

tion. Instead, each posting is a simple integer, encoding the word position of a term

occurrence, relative to the very beginning of the text collection.

For the same reasons that already ruled out signature files (no support for phrases; no support

for proximity queries), docid indices and frequency index are not appropriate for use in file

system search. The question of whether a document-centric positional index or a schema-

independent index is the better data structure for full-text file system search – both support

phrase queries and proximity search operations – shall be postponed until Chapter 4. For now,

I assume that we are dealing with schema-independent indices exclusively. Thus, whenever I

refer to an inverted index, I mean a schema-independent inverted file.

In addition to the data stored in the posting lists, an inverted index consists of a dictionary,

providing a mapping from each term to the position of its posting list in the index, and a

document map that can be used to translate the contents of the posting lists back into their

original context, that is, into textual document identifiers, file names, or URLs.

2.4.1 Dictionary

The mapping from terms to the position of their respective posting list is realized through the

dictionary. If the dictionary is stored in memory, it is usually implemented as a hash table

or a sort-based lookup data structure, such as a binary search tree or a sorted array.

If the dictionary is implemented as a sorted array of all terms, then it is essential that

all terms occupy an equal amount of space in the search array (otherwise, binary search

Chapter 2 — Background and Related Work 31

operations may become quite complicated). Because terms are of different lengths, this may

lead to internal fragmentation (a term uses less space than allocated). This problem is usually

dealt with by introducing one level of indirection, as shown in Figure 2.5. The search array

does not contain the dictionary terms themselves, but fixed-size (32-bit or 64-bit) pointers

into a secondary array that contains the actual term strings. If each pointer consumes 4

bytes, then the per-term overhead of this method is 3 bytes (adding 4 bytes for the pointer,

but also saving 1 byte per term because explicit term delimiters are no longer necessary). On

the other hand, internal fragmentation is eliminated entirely.

This way of storing terms in the dictionary is sometimes referred to as the dictionary-as-

a-string approach [114, Section 4.1], because all terms are stored as one long string, possibly

interleaved by file pointers (as shown in the figure).

It is not uncommon for a search engine to maintain two different dictionaries, one for

index construction the other for query processing. In that case, the indexing-time dictionary,

needed to perform a large number of extremely low-latency dictionary lookups, is usually

based on a hash table implementation, while the query-time dictionary is sort-based.

2.4.2 Posting Lists

Posting lists may be stored either in memory or on disk. Within the context of file system

search, it is unreasonable to assume that all postings can be stored in the computer’s main

memory. Instead, the majority of all postings data will typically be stored on disk. In order

to minimize disk access latency, it is then advisable to store each list in a contiguous region

of the hard disk.

Random access into a term’s on-disk posting list, useful for query optimizations like gal-

loping search and MaxScore (cf. Section 2.2), is facilitated by maintaining a local index for

the contents of the list. This can be realized either by arranging each posting list in a static

B-tree, or by employing a simple two-level search data structure that contains the value and

the file position of every j-th posting in the list (typically, 28 ≤ j ≤ 216) [81]. Because these

entries into a posting list are normally used in conjunction with index compression techniques,

they are also referred to as synchronization points.

2.4.3 Index Construction

A text collection can be thought of as a sequence of term occurrences — tuples of the form

(term, position),

32 Multi-User File System Search

Input text:

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

Token sequence (in collection order):

(“how”, 1), (“much”, 2), (“wood”, 3), (“would”, 4), (“a”, 5), (“woodchuck”, 6),

(“chuck”, 7), (“if”, 8), (“a”, 9), (“woodchuck”, 10), (“could”, 11), (“chuck”, 12),

(“wood”, 13)

Token sequence (in index order):

(“a”, 5), (“a”, 9) (“chuck”, 7), (“chuck”, 12), (“could”, 11), (“how”, 1), (“if”, 8),

(“much”, 2), (“wood”, 3), (“wood”, 13), (“woodchuck”, 6), (“woodchuck”, 10),

(“would”, 4)

Figure 2.6: The main task of an index construction process is to rearrange the token sequence
that constitutes the text collection — to transform it from collection order into index order
(here for a schema-independent representation of the text collection, without any explicit
structure).

where position is the word count from the beginning of the collection, and term is the term that

occurs at that position. Figure 2.6 shows an example text collection under this interpretation.

Naturally, when a text collection is read in a sequential manner, these tuples are ordered by

their second component, their position in the collection. The task of constructing an index

is to change the ordering of the tuples so that they are sorted by their first component,

the term they refer to (ties are broken by the second component). Once the new order has

been established, and postings are stored on disk or in memory in this new order, creating a

proper index (adding the additional data structures described in the previous sections) is a

comparatively easy task.

Index construction methods can be divided into two categories: in-memory index con-

struction, and disk-based index construction. In-memory index construction methods build

an index for a given text collection entirely in main memory and can therefore only be

used if the text collection is small relative to the amount of available main memory. They

do, however, form the basis for more sophisticated, disk-based index construction methods.

Disk-based methods can be used to build indices for very large collections, much larger than

the available amount of main memory.

Chapter 2 — Background and Related Work 33

Algorithm 2 In-memory index construction algorithm, making use of two abstract data
types: in-memory dictionary and extensible postings lists.

1: currentPosting← 1
2: while there are more tokens to be processed do
3: T ← next input token
4: obtain dictionary entry for T ; create new entry if necessary
5: append new posting currentPosting to the posting list for term T
6: currentPosting← currentPosting + 1
7: end while
8: sort dictionary entries in lexicographical order
9: for each term T in the dictionary do

10: write T ’s inverted list to disk
11: end for
12: write the dictionary to disk

In-Memory Index Construction

An in-memory index construction algorithm relies on the availability of two fundamental data

structures:

• an in-memory dictionary that can be used to efficiently find the memory address of the

posting list for a given term;

• an extensible list data structure that provides efficient support for append operations

and that is used to accumulate the postings for a given term in memory.

If these two data structures are available, then the index construction process is straightfor-

ward (cf. Algorithm 2).

The dictionary can be realized by any data structure that supports efficient lookup and

insertion operations, such as a binary tree or a hash table. However, Zobel et al. [118] make

a strong case for hash tables with linear chaining and move-to-front heuristic. The move-

to-front heuristic moves a dictionary entry to the front of its respective chain whenever it is

accessed, thus ensuring that frequent terms (like “the”) stay close to the front of their chain.

According to the experiments discussed in [118], such a hash table is between 3 and 5 times

faster than a binary search tree, even if the number of slots in the table is considerably smaller

than the number of terms in the dictionary.

Unfortunately, hash tables have the disadvantage that vocabulary terms are not stored in

lexicographical order. This complicates the processing of prefix queries, such as “inform∗”,

matching all words starting with “inform”. Thus, if the same dictionary is used to construct

the index and to process search queries, a hash table might not be the best choice. Heinz et

34 Multi-User File System Search

al. [56] therefore suggest to use a burst trie instead of a hash table. A burst trie is a hybrid

data structure, consisting of a number of binary search trees, arranged in a trie. All terms in

the same binary tree share a common prefix, as defined by the path from the trie’s root node

to the root of the binary tree. A binary tree is burst into two or more different trees when

it becomes too large (hence the name of the data structure). Because, in a burst trie, terms

are arranged in lexicographical order, prefix search operations can be supported efficiently.

Regarding their performance in an index construction task, Heinz et al. [56] report that burst

tries are about 25% slower than move-to-front hash tables and have very similar memory

requirements.

The second aspect of in-memory index construction, the extensible in-memory posting

lists required by Algorithm 2 can be realized in various different ways. Fox [44], for example,

proposes not to use extensible lists at all, but to employ a two-pass indexing strategy. The

first pass is used to gather collection statistics and to determine the size of each term’s posting

list. In the second pass, the space allocated for each list is filled with postings data. The

disadvantage of this two-pass indexing method is that the collection needs to be read twice,

adversely affecting indexing performance and rendering the method unusable in environments

where real-time (or near-real-time) index updates are required.

In a single-pass index construction method, the final size of the inverted list for a given

term is unknown, and each list actually has to be extensible. One possibility then is to use

a linked list data structure (cf. Moffat and Bell [79]). However, this increases the overall

memory requirements of the indexing process by about 100%. As an alternative, an initial

buffer might be allocated for each list. Whenever the capacity of the buffer is reached, its

size is increased by relocating the data in the buffer to a new memory location, where there

is more space for the term’s postings. This is the strategy employed by Heinz and Zobel [55].

In their implementation, which uses realloc10 to relocate in-memory posting lists11, a user-

defined pre-allocation factor k is set such that, whenever a list is relocated, the new buffer

is k times as large as the old buffer (Heinz and Zobel use k = 2). This guarantees that the

total number of relocations per list is logarithmic in the total size of the list, and the number

of bytes copied during relocation operations is linear in the size of the list.

Sort-Based Index Construction

The main limitation of the in-memory index construction method outlined above is that it

cannot be used to create an index that is larger than the available amount of main memory.

10http://www.gnu.org/software/libc/manual/html node/Changing-Block-Size.html (accessed 2007-02-22)
11Justin Zobel, private communication (August 2005)

Chapter 2 — Background and Related Work 35

Figure 2.7: Sort-based index construction with global term IDs. Main memory is large
enough to hold 5 (termID, position) tuples at a time. (1)→(2): sorting blocks of size ≤ 5 in
memory, one at a time. (2)→(3): merging sorted blocks into bigger block.

With sort-based index construction, the size of the index is not limited by the available

amount of main memory. Conceptually, sort-based indexing solves the problem of creating

an inverted file in the simplest way possible: for every incoming tuple of the form

(term, position),

a new tuple of the form

(termID, position)

is written to disk. An in-memory dictionary is used to translate each term into a unique

numerical termID value. After the entire collection has been read from disk, a disk-based

sorting algorithm is used to re-arrange the on-disk tuples from their original collection order

into their target index order. This is done by loading up to M tuples into memory at a time

(where M is defined by the amount of main memory available to the indexing process) and

sorting them in memory. After all dN/Me such blocks have been sorted, a final sequence

of sorted tuples is produced by merging the dN/Me blocks in a multi-way merge operation.

This procedure is shown in Figure 2.7.

After the (termID, position) tuples that represent the text collection have been brought

from their original collection order into their new index order, creating a proper index, adding

a dictionary and some other auxiliary data structures, is straightforward.

36 Multi-User File System Search

The sort-based index construction described above has several shortcomings, such as its

excessive disk space requirements. Most of these shortcomings can be (and have been) ad-

dressed. For example, Moffat and Zobel [80] employ compression techniques to reduce the

amount of disk space consumed by the M -tuple blocks. Moffat and Bell [79] describe an

in-situ merge mechanism that can be used in the last phase (i.e., (2)→(3) in the figure) to

create the final index using only a constant amount of temporary disk space, reducing space

requirements even further.

The only limitation that seems unsolvable is that, in order to transform each incoming

term into a termID, the complete vocabulary of the text collection has to be kept in memory.

For a collection comprising many millions of different terms, this can easily exceed the amount

of memory that the indexing process is allowed to use.

Merge-Based Index Construction

Merge-based indexing methods avoid the high memory requirements seen in sort-based index

construction by not using globally unique term identifiers at all. Each vocabulary term is its

own identifier. When building an index for a given text collection, a merge-based indexing

algorithm starts like the in-memory indexing method described above, constructing an index

in main memory. When it runs out of main memory, however, the indexing process transfers

the entire in-memory index to disk and releases all memory resources it had allocated to

build the index. It then continues processing input data, building another in-memory index.

This procedure is repeated several times, until the entire collection has been indexed, and

the indexing process has created a set of independent on-disk indices, each representing a

small part of the whole collection. After the collection has been indexed, all these sub-

indices are combined through a multi-way merge operation, resulting in the final index for

the collection. Because the posting lists in each sub-index are sorted in lexicographical order

(cf. Algorithm 2), this operation is straightforward. Like in the case of sort-based indexing,

the in-situ merge method described by Moffat and Bell [79] can be used to virtually eliminate

temporary storage space requirements while building the index.

Heinz and Zobel [55] report that their merge-based index construction method is about

50% faster than a carefully tuned sort-based indexing algorithm. In addition, merge-based

index construction can build an index using an arbitrarily small amount of main memory,

because it does not need to maintain a global in-memory dictionary. Moreover, with in-

memory index construction (and thus with merge-based index construction), it is possible to

compress incoming postings on-the-fly, increasing memory efficiency and reducing the number

of sub-indices created during the index construction process.

Chapter 2 — Background and Related Work 37

Collection Postings (uncompressed) Dictionary (uncompressed)

SBFS 7.8 GB (91.5%) 738.7 MB (8.5%)

TREC 6.1 GB (99.2%) 52.9 MB (0.8%)

GOV2 324.6 GB (99.6%) 1288.0 MB (0.4%)

Table 2.1: Space requirements of the two main components of an inverted index – dictionary
and posting lists – for three different text collections: SBFS (contents of a file system; 1.0
billion tokens, 28.7 million distinct terms), TREC (newswire articles; 824 million tokens,
2.1 million distinct terms) and GOV2 (Web pages; 43.6 billion tokens, 49.5 million distinct
terms). Assuming 64-bit integers for all references (postings and pointers).

2.4.4 Index Compression

A main advantage of inverted indices is that they are highly compressible. This is especially

important in the context of file system search, where all data structures should be as light-

weight as possible so that they do not interfere with the normal usage of the computer system.

As explained above, an inverted file consists of two main components: the dictionary and

the posting lists. Table 2.1 gives an impression of the relative size of the two components in

indices created for three different text collections. It can be seen that, for all three collections,

the combined size of the uncompressed posting lists is over 90% of the total size of the (un-

compressed) index. Index compression techniques therefore usually focus on the compression

of the posting lists, ignoring the comparatively small dictionary.

Compressing the data found in the index’s posting lists serves two different purposes.

First, it decreases the storage requirements of the index. Second, it reduces the I/O overhead

at query time and thus potentially increases the search engine’s query processing performance.

Compressing Posting Lists

In an inverted index – be it a docid index, a positional index, or a schema-independent

index – the elements of a given list are usually stored in their original collection order (possibly

with the exception of index layouts that are explicitly tailored towards efficient processing of

ranked queries [86], although, even in those cases, counterexamples exist [3]). For example,

the beginning of the posting list for the term “the” in the TREC collection is:

70, 80, 98, 700, 738, 751, 758, 773, 781, 791, 814, . . .

38 Multi-User File System Search

Because postings are stored in strictly increasing order, this sequence can be transformed into

an equivalent sequence of positive integers:

70, 10, 18, 602, 38, 13, 7, 15, 8, 10, 23, . . .

This new representation makes it possible to apply general integer encoding techniques to the

problem of index compression [40] [45]. [51] [101]

Integer encoding schemes can be divided into two groups: parametric and non-parametric.

Elias’s γ code [40] is an example of a non-parametric coding scheme. The γ code for a positive

integer n consists of two components: a selector λ(n) = dlog2(n) + 1e, indicating the length

of the integer n as a binary number, encoded in unary, and the body — n itself, encoded as

a λ-bit binary number. Because the most-significant bit of the body is implicitly encoded in

the selector, it may be omitted in the body. Thus, the γ code for a positive integer n is of

size 2 · blog2(n)c+ 1 bits.

Golomb codes [51] are examples of parametric codes. They are based on the assumption

that the integers to be encoded (that is, the gaps in a posting list) roughly follow a geometric

distribution:

Pr(d = k) ≈ p · (1− p)k−1, p ∈ (0, 1).

Within the context of information retrieval, this is equivalent to the assumption that the

occurrences of a given term are independent of each other and are scattered across the text

collection according to a uniform distribution. A Golomb code has a single parameter b. The

code word for a positive integer n consists of two components: dn/be, encoded as a unary

number, followed by n mod b, encoded as a dlog2(b)e-bit or dlog2(b)− 1e-bit binary number.

Choosing b =
⌈
− log(2−p)

log(1−p)

⌉
minimizes the expected code length [48].

The LLRUN method described by Fraenkel and Klein [45] is another example of a para-

metric encoding scheme. LLRUN is very similar to Elias’s γ method, except that the selector

λ is not stored in unary, but using a minimum-redundancy Huffman code [57].

All three methods – γ, Golomb, and LLRUN – have in common that they produce un-

aligned codes. That is, the code word for a given posting may commence at an arbitrary

bit position and does not necessarily coincide with a byte boundary. This may require more

complicated decoding routines and thus may have an adverse effect on the search engine’s

query processing performance. Williams and Zobel [112] and Scholer et al. [100] examine a

very simple byte-aligned encoding scheme, referred to as vByte. Each byte of a vByte code

word contains 7 data bits and a continuation flag. The latter indicates whether this byte is

the last byte of the current code word or whether there are more to follow.

Chapter 2 — Background and Related Work 39

Algorithm 3 Decoding a sequence of vByte-encoded postings. Input parameters: com-
pressed, an array of byte values, and length, the number of postings in the decoded list.
Output parameter: uncompressed, a buffer to hold the uncompressed postings.

1: let uncompressed[−1] := 0, by definition
2: inputPosition ← 0
3: outputPosition ← 0
4: while outputPosition < length do
5: delta← 0
6: repeat
7: delta← (delta× 128) + (compressed[inputPosition] mod 128)
8: inputPosition← inputPosition + 1
9: until compressed[inputPosition− 1] < 128

10: uncompressed[outputPosition]← uncompressed[outputPosition] + delta
11: outputPosition← outputPosition + 1
12: end while

vByte can be decoded very efficiently, as shown in Algorithm 3. Williams and Zobel [112]

demonstrate that byte-aligned postings compression, compared to an uncompressed index

organization, usually improves the storage requirements as well as the query processing per-

formance of the search engine.

More recently, Vo and Moffat [1] [2] have discussed word-aligned codes that lead to both

better compression effectiveness and higher decoding throughput than vByte.

Dictionary Compression

Even though the vast majority of all data in an inverted index are postings data, it is some-

times still beneficial to apply compression techniques to the dictionary as well — either

because the number of distinct terms in the collection is very large, or because the memory

resources available for the dictionary are very limited.

Consider again Figure 2.5, showing a sort-based in-memory dictionary organization. For

this type of dictionary, there are three points at which space can be saved: the memory

references in the primary search array, the file pointers in the secondary array, and the term

strings themselves.

The pointer overhead in the primary array can be reduced by combining adjacent terms

into groups of k, for a reasonable value of k (e.g., 1 < k ≤ 256). This decreases the pointer

overhead by a factor k−1
k . On the other hand, dictionary entries now can no longer be accessed

through a pure binary search operation. Instead, a term is found by performing an initial

binary search, followed by a linear scan of up to k dictionary entries.

The space occupied by the file pointers in the secondary array can be reduced by applying

40 Multi-User File System Search

Group size No compression Front coding Front coding + vByte

1 42.4 MB / 2.6 µs

4 36.4 MB / 2.4 µs 27.7 MB / 2.3 µs 17.3 MB / 2.2 µs

16 34.9 MB / 2.7 µs 24.0 MB / 2.7 µs 11.0 MB / 2.7 µs

64 34.5 MB / 4.9 µs 23.1 MB / 4.3 µs 9.4 MB / 5.5 µs

Table 2.2: Total dictionary size and average dictionary lookup latency for different dictionary
compression methods (using data from the TREC collection). Combining terms into groups,
compressing term strings by front coding, and compressing file pointers using vByte can
reduce the total memory requirements by up to 78%.

any of the integer coding techniques describe above. Assuming that on-disk posting lists are

stored in the index according to the lexicographical ordering of their respective terms, the

distance between two lexicographically consecutive posting lists is usually small and can be

represented using far less than 64 bits.

Finally, the space consumption of the term strings themselves can be decreases by applying

a technique known as front coding [16]. Front coding exploits the fact that terms are stored

in lexicographical order and thus are likely to share a non-trivial prefix. A term can then be

encoded by storing the length of the prefix the term has in common with the previous term,

followed by the term’s suffix. For example, the term sequence

“wunder”, “wunderbar”, “wunderbox”, “wunderboxes”, “wunderbundel”

from Figure 2.5 would be represented as:

(0, 6, “wunder”), (6, 3, “bar”), (7, 2, “ox”), (9, 2, “es”), (7, 5, “undel”).

Usually, the first two components of each tuple (i.e., length of prefix and length of suffix) are

stored in 4 bits each. The combination (0,0) can serve as an escape sequence to deal with

terms whose suffix is longer than 15 bytes.

Table 2.2 shows that a combination of front coding (for the term strings) and vByte (for

the file pointers) can decrease the dictionary’s memory consumption by up to 78%. At the

same time, the average lookup latency only exhibits a slight increase — 114%, due to the

additional decoding operations and the sequential search necessary within each block. While

this increase in lookup latency would have a disastrous effect on indexing performance, it is

negligible for query performance, as the per-query-term lookup time of 5.5 µs only accounts

for a tiny fraction of the total time it takes to process a search query. This further motivates

the use of two different dictionaries, one for indexing, the other for query processing.

Chapter 2 — Background and Related Work 41

Compressed In-Memory Index Construction

Index compression cannot only be applied to static inverted lists, but also to the extensible

posting lists used during the index construction process. Integrating compression into the

indexing process is relatively easy. For each term T in the search engine’s dictionary, an

integer field T.lastPosting is maintained, containing the value of the last posting for the term

T . Whenever a new posting P has to be added to T ’s extensible posting list, it is not stored

in its raw form, but as a delta value: ∆(P) = P − T.lastPosting, using one of the integer

coding schemes outlined above.

Because the number of distinct terms is small compared to the number of postings, in-

creasing the per-term storage overhead by a small amount (8 bytes) is worth the effort and

pays off in terms of greatly reduced storage requirements for the in-memory index.

2.5 Index Maintenance

Unlike some other text collections, the contents of a file system are not static. For example,

new files are being created and existing files removed from the file system almost continually.

This has the effect that the index, after it has been created, soon becomes obsolete, because

it does not properly reflect the contents of the file system any more.

The task of keeping an existing index structure synchronized with the changing contents

of a text collection is referred to as index maintenance. It usually requires the search engine

to address the following three aspects of a dynamic text collection:

document insertions – a new document is added to the collection and needs to be indexed

by the search engine;

document deletions – a document is removed from the collection, and the search engine

has to take measures to ensure that the deleted document is not reported back to the

user as a search result;

document modifications – the contents of a document are changed, either completely or

partially, and the search engine needs to make sure that it does not return the old

version of the document in response to a search query.

2.5.1 Incremental Index Updates

The vast majority of all published work in the area of dynamic text collections focuses on

incremental text collections, supporting document insertions, but neither deletions nor modifi-

cations. When new documents enter the collection, they have to be indexed, and the resulting

42 Multi-User File System Search

Figure 2.8: In-place index update with pre-allocation. At the end of the on-disk list for term
3, there is not enough room for the new postings. The list has to be relocated.

postings data have to be appended to the appropriate inverted lists in the existing (on-disk)

index.

Cutting and Pedersen [35] were among the first who studied this problem in-depth. Start-

ing from an index layout based on a B-tree [8] [9], they find that it leads to better update

performance if the available main memory is spent on buffering incoming postings rather than

on caching pages of the on-disk B-tree. That is, instead of applying updates immediately to

the on-disk index, postings are buffered in memory and are added to the on-disk index as a

whole as soon as a predefined memory utilization threshold is reached. This way, the ratio

between the number of postings and the number of distinct terms involved in the physical

index update (#postings
#terms), which – according to Zipf [117] – grows with Θ(log(#postings)), is

improved. Expensive list updates can therefore be amortized over a larger number of postings.

Since Cutting’s seminal paper in 1990 (and possibly even before that), virtually every

index maintenance algorithm has followed the same general strategy — buffering postings

in memory for a while and eventually adding them to the existing index in one big physical

update operation [15] [25] [29] [69] [68] [70]. [103] [107] Regarding the exact way in which

buffered postings are combined with the existing index, one can distinguish between two

different families of update strategies: in-place and merge-based.

In-Place Index Update

An in-place index update strategy usually stores each inverted list in a contiguous region of

the disk and leaves some free space at the end of each list. Whenever postings accumulated

Chapter 2 — Background and Related Work 43

in memory have to be combined with the existing on-disk inverted index, they are simply

appended at the end of the respective list. Only if there is not enough space left for the

new postings, the entire list is relocated to a new place, where there is enough space for the

incoming postings. This general procedure is shown in Figure 2.8.

Tomasic et al. [107] discuss list allocation policies that determine how much space at the

end of an on-disk inverted list should be reserved for future updates and under what circum-

stances a list should be relocated. Viewing the parameters of their in-place update strategies

as a trade-off between index maintenance performance and query processing performance,

Tomasic et al. conclude that inverted lists do not necessarily have to be kept in a contigu-

ous region of the disk. However, discontiguous update strategies should only be used if the

search engine’s query load is very small. If query performance is important, on-disk post-

ing lists should be kept contiguous, and space should be allocated employing a proportional

pre-allocation strategy that reserves at least k · n bytes of index space for an on-disk posting

list occupying n bytes. In the long run, this guarantees that a list L is relocated O(log(|L|))

times. Tomasic et al. recommend k = 1.1.

Shieh and Chung [102] follow a statistical approach to predict the future growth of an

inverted list based on behavior observed in the past. Their method leads to a number of

list relocations close to that caused by proportional pre-allocation with k = 2, but the space

utilization of the inverted file is similar to the utilization achieved by k = 1.2.

The main limitation of in-place index maintenance is the large number of disk seeks

associated with list relocations. Lester et al. [70] discuss various optimizations to the original

in-place strategy, including a very thorough discussion of how to manage the free space in

an in-place-managed index. They recommend that very short lists be kept directly in the

search engine’s dictionary (realized through an on-disk B+-tree) instead of the postings file.

By updating the on-disk dictionary in a sequential fashion whenever the system runs out of

memory, short lists can be updated without requiring additional disk seeks.

Chiueh and Huang [25] present an interesting alternative to the above techniques. In their

method, an on-disk inverted lists can either be updated when the system runs out of memory

or when it is accessed during query processing. This kind of piggybacking has the advantage

that it can save up to 1 disk seek per list update. However, it is not clear whether in practice

it actually makes a difference. Chiueh and Huang’s experimental results indicate that it does

not.

44 Multi-User File System Search

Merge-Based Index Update

In contrast to the in-place update strategies described so far, Cutting’s original method [35]

is merge-based. Whenever their system runs out of memory, the in-memory index data are

combined with the existing on-disk index in a sequential manner, resulting in a new on-disk

index that supersedes the old one. By reading the old index and writing the new index strictly

sequentially, merge update avoids costly disk seeks and can be performed comparatively

quickly.

Cutting and Pedersen use a B-tree to store dictionary entries and postings. The gen-

eral method, however, also works for other index organizations. Merge-based index mainte-

nance, therefore, is very similar to the merge-based index construction method discussed in

Section 2.4.3. The difference is that the in-memory index is merged immediately with the

existing on-disk index whenever the system runs out of memory. I refer to this basic version

of merge-based update as Immediate Merge.

The main shortcoming of Immediate Merge is that it requires the entire on-disk index to

be read from and written back to disk every time the system runs out of memory. Hence, when

indexing a text collection containing N tokens with a memory limit of M postings, the total

number of postings written to disk during index construction/maintenance is approximately

d N
M e∑

k=1

k ·M ∈ Θ

(
N2

M

)
. (2.12)

This is an essential limitation, especially in the context of file system search, where M is

usually rather small.

As an alternative to Immediate Merge, the merge-based index construction method from

Section 2.4.3 could be treated as if it were an on-line index maintenance method. As pointed

out before, the temporary in-memory index created by hash-based in-memory inversion is

immediately queriable. Therefore, queries can be processed even during the index construction

process, by concatenating the posting list found in the sub-indices stored on disk and the in-

memory index that is currently being built.

This method, which I refer to as the No Merge update strategy, is shown in Figure 2.9.

It cures Immediate Merge’s quadratic update complexity, but potentially introduces a very

large number of disk seeks during query processing. Each query term’s posting list needs to

be assembled by concatenating the sub-lists found in the N
M independent sub-indices.

Lester et al. [68] propose a set of update strategies that represent less extreme points in

this trade-off between indexing performance and query processing performance. Within their

Chapter 2 — Background and Related Work 45

Figure 2.9: Transforming off-line merge-based index construction into an on-line index main-
tenance strategy. The posting list for each query term is fetched from the in-memory index
being currently built and from the on-disk sub-indices created earlier. The final inverted list
is constructed by concatenating the sub-lists.

general framework of geometric partitioning, they describe two different ways to limit the

number of on-disk index partitions, and thus the amount of fragmentation in each on-disk

posting list.

In their first method, they require that the number of index partitions not exceed a

predefined partition threshold p. Similar to the partitioning scheme found in a constant-

height B-tree T (where the amount of data found at depth k is N (k+1)/(h+1), h = height(T),

and N is the amount of data found at depth h, i.e., T ’s leaf nodes), the index maintenance

complexity is optimized if the relative size of the p on-disk sub-indices is kept close to a

geometric progression (hence the name of their method):

size(Ik)

M
≈ size(Ik−1) ·

(
N

M

)1/p

(for 1 < k ≤ p) (2.13)

size(I1) ≈

(
N

M

)1/p

, (2.14)

where size(Ik) denotes the number of postings stored in index Ik. The resulting disk com-

plexity then is:

Θ

(
N ·

(
N

M

)1/p
)

.

In their second method, Lester et al. do not impose an explicit bound on the number of

46 Multi-User File System Search

index partitions, but require that index partition i either be empty or contain between

M · ri−1 and M · (r − 1) · ri−1 (2.15)

postings (r ≥ 2). For a collection comprising N tokens, this leads to a maximum number of

on-disk index partitions no bigger than

⌈
logr

(
N

M

)⌉
.

Merging on-disk indices in such a way that requirement 2.15 is always satisfied leads to a

total index maintenance complexity of

Θ

(
N · log

(
N

M

))
.

Derivations of these bounds can be found in [68].

The case where r = 2 has independently been described and analyzed in [18]. It is referred

to as Logarithmic Merge, in analogy to the logarithmic method described by Bentley and

Saxe [10] (and because of its asymptotical complexity). Accordingly, the case where the

number of partitions is limited to p = 2 is referred to as Sqrt Merge.

Although unpublished, Logarithmic Merge reportedly has been used in the Altavista12

Web search engine since the mid-1990s13. It is also employed by the open-source search engine

Lucene14.

In-Place vs. Merge Update

Intuitively, it seems that in-place update with proportional pre-allocation leads to better

results than merge-based index maintenance. Assuming a pre-allocation factor k = 2, each

posting in a list of length l is relocated at most dlog2(l)e times, and the average number of

postings relocated per list is at most

dlog2(l)e∑

i=1

2i = 2dlog2(l)e+1 − 1 ≤ 4 · l. (2.16)

This implies a linear disk complexity, which is only rivalled by the No Merge strategy.

However, proportional in-place update keeps on-disk lists contiguous and thus leads to dra-

12http://www.altavista.com/ (accessed 2007-02-22)
13Anonymous reviewer, private communication (July 2005)
14http://lucene.apache.org/ (accessed 2007-02-22)

Chapter 2 — Background and Related Work 47

matically better query performance than No Merge.

Unfortunately, in recent years, nobody has actually been able to come up with an imple-

mentation of in-place update that performs better than merge update. In fact, nobody has

even found an implementation that, for a realistic buffer size (memory limit), leads to better

update performance than Immediate Merge with its quadratic disk complexity (cf. Lester

et al. [69] [70]).

Hence, merge update, because it minimizes the number of disk seeks during index mainte-

nance, appears to lead to strictly better performance than in-place update, at least if on-disk

posting lists are required to be stored in a contiguous fashion.

This is not an absolute result, however. The relative performance of in-place and merge-

based update strategies entirely depends on the operating characteristics of the hard drive(s)

used to store the index. For example, for the experiments that Shoens et al. [103] conducted in

1993, they report an average random access disk latency of 20 ms and a sustained sequential

read transfer rate of 1 MB/sec. In comparison, hard drives used in the experiments described

in this thesis, exhibit a random access latency of about 8 ms and a sequential read throughput

of 50 MB/sec. That is, while the performance of sequential read operations has increased by

a factor 50, random access performance has only improved by a factor 2.5. Hence, in relative

terms, a disk seek in 2007 is 20 times as expensive as it used to be in 1993. This has dramatic

consequences on the performance of disk-seek-intensive in-place update strategies and just

by itself already gives sufficient motivation to thoroughly re-evaluate all results regarding the

relative efficiency of in-place and merge-based update obtained more than 10 years ago.

2.5.2 Document Deletions

The second update operation seen in dynamic text collections is the deletion of existing

documents. In a file system, document deletions are triggered by file deletions. Within the

search engine, deletions are usually dealt with by maintaining an invalidation list, containing

an entry for every deleted document, and applying a postprocessing step to the search results

before returning them to the user [29] [25]. Like in the case of document insertions, deletions

may also be handled by piggybacking them on top of query operations: Whenever a list is

accessed during query processing, all elements referring to documents that no longer exist are

removed from the list, and the list is written back to disk [25].

Ultimately, however, the search engine needs to employ some sort of a garbage collection

policy. Otherwise, not only will query processing become very expensive, but the index will

also consume far more disk space than necessary, potentially interfering with other applica-

tions storing their data on the same hard drive. Apart from my own work [18] [19], I am not

48 Multi-User File System Search

aware of any published results on the efficiency of garbage collection strategies for dynamic

text retrieval systems.

2.5.3 Document Modifications

Document modifications constitute the third type of update operations in the context of a

dynamic search environment. A modification to an existing document is usually treated as

as if deleting the old version of the document and then inserting its new version [25] [18].

While this approach seems appropriate if the document is relatively small or if the amount

of changes made to the document is large compared to its total size, it may cause substantial

performance problems if applied to a large document that only experienced a minor change.

As an extreme example, suppose that the entire text collection consists of only a single

document. In that case, the delete-insert policy will necessarily lead to a quadratic index

maintenance complexity and render the optimizations discussed in the previous section (e.g.,

Logarithmic Merge) essentially useless.

While this extreme case is unlikely to be seen in practice, less extreme, but equally prob-

lematic cases are ubiquitous in file system search. The most prominent examples are e-mail

folders in the mbox file format and system log files. Both file types should be searchable by

a file system search engine, and both file types usually experience very small updates that,

however, accumulate over time.

Lim et al. [71] describe an update strategy that takes partial document modifications into

account. Instead of storing postings of the form (docId, position) in the index, their postings

are of the form (docId, landmarkId, position), where landmarkId refers to a landmark in the

document. This can either be a certain type of HTML/XML tag (e.g., <p>,
), or just

a random word, for instance, every 32nd word in the document. When parts of a document

are changed, postings corresponding to unchanged parts do not need to be updated, because

their position relative to their respective landmark remains unchanged. Lim et al. report that

their method leads to a factor-2-to-3 improvement over a baseline that re-indexes the entire

document.

However, the algorithm does not make updates immediately available for search. Instead,

updates are buffered and applied to the existing index in a manner very similar to Immediate

Merge, implying a quadratic update complexity despite the savings achieved by the landmark

approach. In addition, it requires the search engine to keep the list of landmarks in memory

(or to load it into memory when processing a query). For a large collection, the combined

size of the landmarks can be quite substantial and can easily exceed the amount of memory

available to the search engine.

Chapter 2 — Background and Related Work 49

2.6 Applications

Desktop and File System Search

Desktop search is similar to file system search, but is limited to a single user, as it does not

take security restrictions, such as file permissions, into account when producing the search

results to a given query. A desktop search engine can therefore only be used on a computer

system that is accessed by a very small number of users, preferably a single user.

One of the first publicly available desktop search engines is GLIMPSE15 developed by

Manber et al. [76] [74] in the early 1990s. Although originally referred to as file system search

engine, it has to be considered a desktop search engine in the context of this thesis, since it

does not take into account the possibility of multiple users sharing the data in the file system.

GLIMPSE is different from most other search engines in that it does not maintain a

positional index. Instead, it follows a two-level search paradigm. Within this framework, the

index does not contain exact information about all term occurrences, but only pointers to

file system regions where term occurrences may be found. Such a region typically contains

multiple files, with a total limit of 256 regions in Manber’s original implementation [76].

The first phase in GLIMPSE’s two-level process, based on the incomplete information

found in the index, is followed by a sequential scan of all matching file system regions, similar

to the retrieval procedure employed when using signature files for full-text retrieval (cf. Sec-

tion 2.3). The main motivation behind this approach was to reduce the storage requirements

of the search engine at the cost of a reduced query processing performance. While this was

a sensible design decision in the early 1990s, it is not any more, mainly because disk access

latency (in particular random access, which is necessary for the second phase in the retrieval

process) is a more limiting factor of modern hard drives than their storage capacity.

In the past 3 years, search engine companies have discovered the desktop search market,

and a large number of commercial desktop search systems have followed GLIMPSE:

• October 2004: Copernic Desktop Search (Windows);

• October 2004: Google Desktop Search (Windows);

• December 2004: Ask Jeeves Desktop Search (Windows);

• December 2004: MSN Desktop Search (Windows);

• January 2005: Yahoo!/X1 Desktop Search (Windows);

• early 2005: Beagle Desktop Search (Linux).

15http://webglimpse.net/ (accessed 2007-03-28)

50 Multi-User File System Search

In contrast to GLIMPSE, these systems all maintain positional indices, leading to lower query

response times than the two-level search procedure outlined above. Most of them share a

number of properties that are also required from a file system search engine: continuous (real-

time) index updates, low memory footprint, low storage requirements, and non-interference

with other processes.

Just like GLIMPSE, however, none of these search systems provides explicit support for

multiple users. Every user has her own independent index, containing information about all

files readable by her. Files readable by multiple users are indexed several times, once for each

user — obviously not a very satisfying solution, neither in terms of system performance nor

in terms of memory and storage requirements.

A true multi-user file system search engine is Apple’s Spotlight16 search system, part

of Apple’s Mac OS X Tiger (and later versions). Spotlight integrates into the Mac OS file

system, updating its index structures as files are added to or removed from the file system,

and provides support for multi-user security restrictions. Every file is only indexed once. All

index data are stored in one central index, and security restrictions are applied to a set of

search results before returning them to the user.

Enterprise Search

Enterprise search is another information retrieval application that is similar to file system

search. In a typical enterprise search scenario, a variety of users with different access privileges

submit queries to the search server(s). The search results returned by the engine usually refer

to files created and owned by users different from the one who submitted the query, but

should not refer to any files that are not accessible by her.

These security requirements are usually addressed by a postprocessing step that takes

place after the actual search operation [5]. After the search engine has determined a set

of matching documents for the given query, it checks for each document whether the user’s

access privileges allow her to access that document. If not, the document is removed from

the search results. The postprocessing approach is followed by a large number of enterprise

search systems, such as Coveo Enterprise Search17, Google Search Appliance18 and Microsoft

SharePoint19 [5]. In Chapter 5, I show that it should only be used if the search engine does

not rank matching documents by their statistical relevance to the query. Otherwise, a user

may obtain information about files for which she does not have read permission.

16http://www.apple.com/macosx/features/spotlight/ (accessed 2007-03-28)
17http://www.coveo.com/ (accessed 2007-03-28)
18http://www.google.com/enterprise/ (accessed 2007-03-28)
19http://www.microsoft.com/sharepoint/ (accessed 2007-03-28)

Chapter 3

Evaluation Methodology

3.1 Data Sets

The main focus of this thesis is on performance aspects of full-text file system search. When-

ever possible, I try to validate any theoretical considerations made about the performance of

file system search engines by actual experiments on realistic text collections. For this purpose,

I use the following three collections:

SBFS is the text collection that comprises the contents of all indexable files in Stefan

Büttcher’s file system (as of 2007-01-22). The collection consists of about 300,000 files,

including non-plain-text files, such as PDF and MP3.

TREC is a combination of TREC disks 1-5, a set of collections used to evaluate search

systems in the Text REtrieval Conference (TREC)1. The TREC collection contains a

total of 1.5 million documents.

GOV2 is the result of a Web crawl of the .gov domain, conducted by Clarke [34] in early

2004. It contains a total of 25.2 million documents.

A statistical summary of all three collections is shown in Table 3.1. An additional, more

detailed, summary of SBFS is given by Table 3.2.

SBFS serves as the primary text collection, used in my experiments whenever appropriate.

Unfortunately, it has some limitations: First of all, SBFS is not large enough to show that

the methods discussed here do in fact scale to large collections. For example, a compressed

positional index for SBFS consumes less than 3 GB of disk space, not much more than

the amount of main memory found in a typical consumer PC these days (1 GB). Second,

1http://trec.nist.gov/

51

52 Multi-User File System Search

SBFS collection TREC collection GOV2 collection

Size of collection 14.8 GB 4.8 GB 426.4 GB

Number of files 310,459 15,449 27,204

Number of documents query-dependent 1.5 million 25.2 million

Number of tokens 1.04 billion 823.7 million 43.6 billion

Number of distinct terms 28.7 million 2.1 million 49.5 million

Size of compressed index 2.7 GB 1.4 GB 62.2 GB

Query set n/a TREC 1–500 TREC TB06 Eff.

Terms per query (avg.) n/a 3.7 3.5

Computer system Sempron 2800+ Sempron 2800+ Athlon64 3500+

Table 3.1: Overview of the three text collections used in my experiments. The SBFS collection
is meant to be representative for file system search. GOV2’s main purpose is to show the
scalability of the methods presented in this thesis.

SBFS is not a plain-text collection. Building an index for it requires substantially more time

than building an index for text-only collections, such as TREC and GOV2, because some

of the input files first need to be parsed and converted into plain text before they can be

indexed. Third, because SBFS is not publicly available, it seems appropriate to also use

two publicly-available standard collections, so as to allow other researchers to reproduce the

results presented in this thesis.

GOV2’s main purpose is to demonstrate the scalability of the proposed methods. TREC’s

main purpose is to serve as a convenient substitute for SBFS, being similar in size.

Query performance on the different text collections is measured using a set of standard

search queries. For TREC, search queries are created from the title fields of TREC topics

1–500. For GOV2, a set of 27,204 queries is used, randomly selected from the 100,000 search

queries employed in the efficiency task of the TREC 2006 Terabyte track [23]. The reason for

not using the entire query set is that the GOV2 collection is distributed in 27,204 files. Using

the same number of search queries makes it easier to conduct experiments in which each file

insertion is followed by a search query.

In both cases, TREC and GOV2, queries are processed by the search engine after removing

all stopwords (“the”, “and”, “of”, ...). Removing stopwords from queries before sending them

to the query processor is quite common in information retrieval and is widely assumed not to

harm search quality. However, although stopwords are not used for query processing purposes,

the search engine’s index – in all experiments described in this thesis – still contains full

information about all terms, giving equal treatment to both stopwords and non-stopwords.

Chapter 3 — Evaluation Methodology 53

3.2 Hardware Configuration & Performance Measurements

In my experiments, I use two different computer systems:

• A desktop computer equipped with an AMD Sempron 2800+ processor (32-bit, 1.6

GHz), 768 MB RAM, and two 80 GB SATA hard drive (7,200 rpm).

• A workstation based on an AMD Athlon64 3500+ processor (64-bit, 2.2 GHz) with 2GB

RAM and several 300 GB SATA hard drives (7,200 rpm).

Using two different computers for the experiments, although potentially introducing an addi-

tional element of confusion, has the advantage that it allows me to demonstrate the scalability

of the methods presented in two directions: scalability to large text collections (essential for

general applicability), and scalability to low-memory computer systems (essential for appli-

cability in file system search). The latter is covered by using the desktop computer with its

comparatively small main memory; the former is covered by conducting experiments with the

rather large GOV2 collection which, unfortunately, is too large for the desktop’s hard disk

and thus requires the experiments to be performed on the more powerful 64-bit workstation.

All experiments discussed in this thesis that are related to SBFS or the TREC collection

were conducted on the 32-bit AMD Sempron desktop PC. Experiments related to the larger

GOV2 collection were conducted on the 64-bit AMD Athlon64 workstation.

Implementation and Measurements

Unless explicitly stated otherwise, all performance results presented were obtained using the

Wumpus2 search engine, an experimental file system search engine and multi-user information

retrieval system. Wumpus is freely available for download under the terms of the GNU Gen-

eral Public License (GPL). Because most of Wumpus’s internal computations, such as index

pointer arithmetic and document score computations, are realized using 64-bit integer arith-

metic, the performance difference between the 32-bit desktop PC and the 64-bit workstation

are larger than what can be expected from their raw CPU frequency numbers.

Search queries are processed by Wumpus in a document-at-a-time fashion, employing an

aggressive pre-fetching strategy. Whenever the search engine detects sequential access to the

contents of a given posting list, it automatically loads the next few megabytes of that list into

main memory. In many cases, this means that the list is loaded into memory in its entirety,

thus reducing the potential savings achieved by query optimization strategies. Despite this

2http://www.wumpus-search.org/ (accessed 2007-04-30)

54 Multi-User File System Search

Total number of files 310,459

Plain text 141,597

HTML 110,644

XML 26,268

PDF 1,585

Postscript 1,656

man pages 5,771

E-mail messages 22,307

Table 3.2: Overview of the contents of the SBFS collection.

problem, the policy leads to excellent results in practice because it helps keep the number of

disk seeks, switching back and forth between posting lists, very low.

Aggregate performance statistics, such as the total time to build an index for collection X,

are usually obtained through the UNIX time command. Finer-grained performance figures

are realized by Wumpus’s built-in timing mechanisms, utilizing the gettimeofday and times

system calls to keep track of wall-clock time and CPU time, respectively.

Accessing the Text Collections

When indexing non-plain-text files from the SBFS collection, Wumpus uses external conver-

sion programs to extract the text from the input files:

• For Adobe’s PDF3 format, text extraction is realized by the pdftotext utility that is

part of the Xpdf package4.

• Postscript files are converted to text by transforming them to PDF first (using the

ps2pdf utility that comes with Ghostscript5) and then extracting the text from the

PDF file via pdftotext.

• man pages are rendered into plain text by GNU Troff6 before being sent to the index.

All other file formats (plain text, HTML, XML, MP3) are recognized and parsed by Wumpus’s

built-in filters that do not require the execution of external helper programs.

3http://www.adobe.com/products/acrobat/adobepdf.html (accessed 2007-01-31)
4http://www.foolabs.com/xpdf/ (accessed 2007-01-31)
5http://www.ghostscript.com/ (accessed 2007-01-31)
6http://www.gnu.org/software/groff/ (accessed 2007-01-31)

Chapter 3 — Evaluation Methodology 55

The two plain-text collections TREC and GOV2 are split up into small files of manageable

size before indexing. The 25.2 million documents in GOV2 are accessed as distributed, divided

into 27,204 files in 273 directories. The 1.5 million documents in the TREC collection are

divided into 15,449 files containing 100 documents each. When an index is built for TREC

or GOV2, the files for the respective collection are parsed and processed in random order.

Index Storage

In most of my experiments, I assume that the index for a given text collection is too large

to be completely stored in primary memory and that the majority of the index data need

to be stored in secondary memory. My experimental setup is based on the assumption that

secondary storage is realized by some number of hard disk drives and that these hard drives

exhibit the same general performance characteristics already pointed out in Section 2.1. That

is, I assume that hard drives are not true random access devices, but that reading two

consecutive blocks can be performed much faster than reading two blocks that are located in

different regions of the disk.

While this certainly holds for all types of hard disks, it may not necessarily hold for future

storage devices, such as solid-state drives7 which exhibit virtually no seek latency. Some of the

methods proposed in this thesis will need to be re-evaluated if a major shift takes place from

currently used hard drives to flash-memory-based solid-state drives. Such a shift, however, is

unlikely to happen very soon, as the price/capacity ratio for solid-state drives is still about

50 times higher than for traditional magnetic hard disk drives (as of May 2007).

For practicality reasons (available storage space), text data and index data are stored on

different hard drives in all my experiments.

Operating System Support

Whenever I refer to an on-disk inverted index, I silently assume that the index is stored

as an ordinary file in the file system. The file system implementation used in the ex-

periments is ext38, as implemented in the Linux 2.6.* operating system available from

http://www.kernel.org/. For some experiments, I also use the older ext2 file system (es-

sentially ext3 without journalling) and Hans Reiser’s Reiser49 file system, as implemented in

Linux 2.6.20-rc6-mm3.

7http://en.wikipedia.org/wiki/Solid state drive (accessed 2007-03-15)
8http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html (accessed 2007-02-01)
9http://www.namesys.com/v4/v4.html (accessed 2007-03-01)

56 Multi-User File System Search

Storing the index as a regular file in the file system has the disadvantage that the amount

of file fragmentation found in the index cannot be controlled by the search engine, but is

entirely up to the operating system. The contiguity of on-disk posting lists will play a major

role in the discussion of Chapter 6.

The reader should be advised that, whenever I claim that a list is stored in a contiguous

fashion, this claim is based on the assumption that the file system implementation stores each

file in a contiguous region of the hard disk, i.e., that there is no difference between logical

and physical contiguity. Obviously, this assumption is wrong. However, it seems reasonable

to assume that most modern file system implementations employ their own strategies to

reduce file fragmentation and that these strategies are sufficiently effective to make the error

introduced by the incorrect file contiguity assumption negligible. Moreover, the alternative –

storing all index data in raw disk partitions directly managed by the search engine – would

complicate index access and index maintenance beyond reason and would also make the

results obtained less applicable to real-life file system search (who keeps a spare disk partition

around, just for the purpose of storing an index on it?). I therefore decided to utilize the

existing file system implementation as the low-level storage infrastructure.

Chapter 4

Index Structures

In this chapter, I investigate what index structures are appropriate for efficient file system

search. I discuss how the index is best integrated into the file system and what type of index

should be used (Section 4.1). I argue that a file system search engine should maintain multiple

independent indices, one for each mount point in the file system, instead of a single index

structure covering all storage media connected to the computer.

Based on the assumption that the term distribution in the file system is approximately

Zipfian [117] (Section 4.2), I then examine some statistical properties of inverted indices, the

preferred data structure for keyword search. The results obtained form the foundation for

statistical performance analyses carried out later in this chapter and in Chapter 6.

I explore what strategies lead to the best results when building the content index for a

file system (Section 4.3) and discuss how to keep the memory consumption of the search

engine low so that it does not interfere with the normal operation of the computer system

(Section 4.4). Finally, I present a comparison of schema-independent and document-centric

positional indices in terms of query performance and storage requirements, showing that a

document-centric positional index usually leads to higher query processing performance than

a schema-independent one, but that the performance difference is highly dependent on the

nature of the search queries to be processed (Section 4.5).

This chapter is not concerned with real-time index updates (which are the topic of Chap-

ter 6). Instead, it provides a comparative baseline for the methods discussed in Chapter 6.

Taken together with Chapter 2, the techniques described in this chapter can be used to build

a file system search engine that maintains its index structures by periodically scanning the file

system and re-building the index from scratch, similar to the behavior exhibited by locate1

and its updatedb indexing process.

1http://www.gnu.org/software/findutils/ (accessed 2007-02-28)

57

58 Multi-User File System Search

Device axis

local global

U
se

r
a
x
is local a separate index for each user on each

storage device
per-user indices; each per-user index
covers all storage devices

global device-specific indices, each contain-
ing data for all users

a single, system-wide index covering
all users and all storage devices

Table 4.1: The two main locality axes in multi-user multi-device file system search.

4.1 General Considerations

Before we can start delving into the details of how to build an index for the contents of a file

system, two basic questions need to be answered:

• How should the index be embedded into the file system?

• Exactly what type of index should be used to facilitate search operations?

Let me start with the first question. In a typical UNIX installation, the file system contains

files belonging to more than just a single user. Similarly, the file system usually spans across

multiple mount points, representing different, independent storage devices. These two aspects

define two independent locality axes (the user axis and the device axis, as shown in Table 4.1).

For each axis, it needs to be decided whether data should be stored locally or globally along

that axis.

The user and the device axis are not the only locality axes in file system search. Other

axes, such as the time axis, exist and do play a role. The user and the device axis, however,

are the most important ones.

The User Axis: A Single, Global Index to Be Accessed by All Users

Most existing desktop search tools maintain per-user indices. While this is obviously accept-

able in single-user search environments, in pure desktop search environments (i.e., without

the option to search the entire file system), and in environments with a small number of users

and very little shared content (this is the case in a typical Windows system), it is not a good

idea in a true multi-user file system search environment. Maintaining per-user indices, where

each index only contains information about files that may be searched by the respective user,

leads to two types of problems:

Chapter 4 — Index Structures 59

1. Redundancy: Many files (such as man pages and other documentation files) can be

accessed by all users in the system. All these files have to be independently indexed for

each user in the system, leading to a massive storage overhead in systems with more

than a handful of users.

2. Performance: If per-user indices are used, then even a single chmod or chown operation,

changing file permissions or file ownership, can trigger a large number of disk operations

because the respective file needs to be completely re-indexed (or data need to be copied

from one user’s index to another user’s index) each time a user executes chown. If real-

time index updates are required, then even in a system with only two users this can

potentially be exploited to realize a denial-of-service attack on the indexing service.

Together, these two problems violate Requirements 3 (index freshness) and 4 (non-

interference) from Chapter 1. The only way to eliminate them is to use a single index

that is shared by all users in the system, instead of maintaining a large number of per-user

indices. This global index is maintained by a process with superuser rights that can add new

information to the index when new files are created and remove data from the index when

files are deleted. chmod and chown operations can then be dealt with by simply updating

index meta-data, without the need to re-index the file content.

Of course, to guarantee data privacy (Requirement 5), the global index, because it contains

information about all indexable files in the system, may never be accessed directly by a user.

Instead, whenever a user submits a search query, it is sent to the indexing service (running with

superuser rights). The indexing service then processes the query, fetching all necessary data

from the index, and returns the search results to the user. It applies all security restrictions

that are necessary to make the search results consistent with the user’s view of the file system,

not revealing any information about files that may not be accessed by the user who submitted

the query. The problem of applying user-specific security restrictions to the search results is

non-trivial, but can be solved (doing so is the topic of Chapter 5).

The Device Axis: Local, Per-Device Indices

When experimenting with various desktop search systems for Windows, I noticed that most

of them had problems with removable media. They either refused to index data on removable

media altogether, or they added information about files on removable media to the index, but

removing the medium from the system later on was not reflected by the index. Search results

still referred to files on a USB stick, for example, even after the device had been unplugged.

An example is shown in Figure 4.1.

60 Multi-User File System Search

Figure 4.1: Copernic Desktop Search, returning documents matching the query “index prun-
ing”. Two of the three files matching the query are stored on a USB stick that has been
removed from the system: “Quick preview is not available.”

If index data are stored in a global, system-wide index, it is not clear how to deal with

removable media. Should the index data be removed from the index immediately after the

medium is removed from the system? If not, how long should the indexing service wait until

it removes the data? Should external hard drives be treated as removable media?

The only feasible solution is to maintain per-device indices. In Linux, for instance, this

means that each storage device (/dev/hda, /dev/hdb, etc.) will get its own local index

that only contains information about files on that particular device. Whenever a device is

removed from the file system, the indexing process associated with that device is terminated.

Whenever a device is added to the file system, a new indexing process is started for the new

device (or not, depending on parameter settings). Search queries are processed by combining

the information found in the individual per-device indices and returning the search results,

which may refer to several different devices, to the user.

For network file systems, such as NFS2 mounts, this means that the index is not kept

on the client side, but on the server that contains physical storage device. This requires

additional communication between the NFS server and the client when processing a search

query. It thus represents a potential bottleneck in situations where an NFS server is accessed

2http://nfs.sourceforge.net/ (accessed 2007-08-01)

Chapter 4 — Index Structures 61

Figure 4.2: Search-as-you-type prefix query in Copernic Desktop Search. The term “geomet-
ric” matches the search query “geome”.

by a large number of clients and where many users want to search for data on the server. On

the other hand, this is the only way to allow the index for the NFS mount to be updated in

real-time, as it is impossible for an NFS client to be informed of all changes that take place

in a remote file system. In addition, keeping index data for an NFS mount on the client-

side may cause substantial index data duplication, violating Requirement 4 from Chapter 1

(“non-interference”).

Keyword Queries vs. Search-as-You-Type Queries

The discussion in Section 2.3 has made it clear that an inverted index is the preferred index

data structure for keyword queries. However, is the typical query in file system search really a

keyword query? The opinions on this matter seem to vary. While the desktop search engines

released by Google and Microsoft are keyword-based, Apple’s Spotlight, Yahoo!/X1, and

Copernic Desktop Search support search-as-you-type queries in which the query can match

part of a word in a document (see Figure 4.2 for an example).

While search-as-you-type queries seem to gain popularity (they are, for example, also sup-

ported by the Firefox Web browser when searching the contents of a Web page), it is not clear

62 Multi-User File System Search

whether they actually add any important functionality. Furthermore, they require slightly

more complicated index data structures and/or query processing strategies than keyword

queries.

Conceptually, search-as-you-type is no different from prefix queries, with a new prefix

query sent off to the search engine whenever a new character is typed into the search box,

perhaps after a short period of inactivity. If the search engine is based on an inverted index,

then a prefix query requires the engine to fetch from the index the posting lists for all terms

starting with the given prefix and to merge them into a single list. This operation can be

rather costly, depending on the number of terms matching the query and the length of their

posting lists. If realized through a multi-way merge operation with a heap, the worst-case

complexity of the merge operation is:

Θ

(
log(n) ·

n∑

i=1

Li

)
,

where n is the number of terms matching the prefix query, and Li is the length of the posting

list for the i-th matching term.

Therefore, if search-as-you-type queries need to be supported, then the inverted index

might not be the optimal data structure; a suffix tree might lead to better results. Alter-

natively, a slight variation of the inverted index could be employed. One such variant is

proposed by Bast et al. [6] [7]. In their index, the terms in the search engine’s dictionary are

split into groups. All terms in the same group share a common prefix. They also share a list

in the inverted index, corresponding to the list of all occurrences by any of the terms in a

given group. Additional information is added to each such list that enables the search engine

at query time to decide which posting in the combined list corresponds to which term in the

dictionary. Bast’s index structure can also be used to realize an auto-completion feature for

partially specified query terms.

This variation of the original inverted index is sufficiently close to the original version so

that I can ignore the problem of prefix queries and focus on pure keyword queries instead.

Most of the issues associated with building and updating an inverted index translate directly

to Bast’s version of the inverted index.

4.2 Statistical Properties of Inverted Files

Throughout Chapters 4 and 6 of my thesis, I make extensive use of statistical properties

of inverted files. In particular, I propose that partitioning the terms in the search engine’s

Chapter 4 — Index Structures 63

vocabulary into frequent terms and infrequent terms in many cases is a good idea, as it can

reduce the storage requirements of the dictionary and also improve the performance of the

search engine’s index maintenance process. In this section, I lay the statistical baseplate for

the analyses carried out later in this thesis.

4.2.1 Generalized Zipfian Distributions

It is widely assumed (e.g., [35], [49], [104]) that terms in a collection of text in a natural

language roughly follow a generalized Zipfian distribution [117]:

f(Ti) ≈
[c

iα

]
, (4.1)

where Ti is the i-th most frequent term, f(Ti) is the collection frequency of Ti, i.e., the number

of times the term appears in the collection (“[· · ·]” denotes rounding to the nearest integer);

c and α are collection-specific constants. In his original work, Zipf [117] postulated α = 1.

The assumption that terms in a text collection follow a Zipfian distribution is quite com-

mon in information retrieval, especially when modeling the number and the length of posting

lists in an inverted index. In the context of index maintenance, for instance, Cutting and

Pedersen [35] make the same assumption when discussing whether the available main mem-

ory should be used as a cache for an on-disk B-tree data structure or as temporary buffer for

incoming postings.

Equation 4.1 is equivalent to the assumption that the probability of an occurrence of the

term Ti, according to a unigram language model, is

Pr(Ti) =
c

N · iα
, (4.2)

where N is the total number of tokens in the text collection. In order for this probability

distribution to be well-defined, the following equation needs to hold:

∞∑

i=1

Pr(Ti) =
c

N · iα
= 1. (4.3)

Because N and c are constants, this implies the convergence of the sum

∞∑

i=1

1

iα

and thus requires that α be greater than 1. If α > 1, then the sum’s value is given by

64 Multi-User File System Search

Riemann’s Zeta function ζ(α) and can be approximated in the following way:

∞∑

i=1

1

iα
≈ γ +

∫ ∞

1

1

xα
dx = γ +

1

α− 1
, (4.4)

where

γ = − lim
n→∞

(
ln(n)−

n∑

i=1

1

i

)
≈ 0.577216 (4.5)

is the Euler-Mascheroni constant [111]. The quality of the approximation in (4.4) depends on

the value of the collection-specific parameter α. For realistic values (α < 1.4), the approxi-

mation error is less than 1%. The integral representation of Riemann’s Zeta function is far

more accessible to analysis than its representation as a sum. I therefore exclusively use the

former when modeling the term distribution in a given text collection.

As a notational simplification, I refer to the term γ + 1
α−1 as γ∗

α. From this definition, it

follows that the value of the constant c in equations 4.1 ff. is:

c =
N

γ∗
α

and thus f(Ti) =
N

γ∗
α · i

α
, (4.6)

where N again is the number of tokens in the text collection.

Estimating the Size of the Active Vocabulary

The above definition of the term frequency function f assumes an infinite vocabulary. Obvi-

ously, a finite text collection only contains terms from a finite subset of this infinite vocabulary.

Sometimes, it is useful to obtain an estimate of the number of terms that actually appear

in a text collection of size N , that is, the size of the collection’s active vocabulary. One

such estimate is provided by Heaps’s law [54], which states that V (N), the size of the active

vocabulary for a text collection with N tokens, is:

V (N) = k ·Nβ . (4.7)

Unfortunately, it is not clear whether Heaps’s law is consistent with the generalized form of

Zipf’s law. That is, it is possible that there are no parameters α, β and k, such that

k·Nβ∑

i=1

N

γ∗
α · i

α
≡ N, (4.8)

where N is a free variable. Moreover, there is no theoretical justification for equation 4.7.

Chapter 4 — Index Structures 65

To make sure that Heaps and Zipf play well together, I will try to derive V (N) directly

from the definition of the Zipfian term distribution. Modeling the number of distinct terms

in the active vocabulary of a text collection is straightforward. The probability that the i-th

most frequent term in the collection’s infinite vocabulary actually appears in the collection

is:

Pr[Ti ∈ V(N)] = 1−

(
1−

1

γ∗
α · i

α

)N

. (4.9)

Hence, the expected size of the collection’s active vocabulary is:

E[V (N)] =
∞∑

i=1

1−

(
1−

1

γ∗
α · i

α

)N

. (4.10)

Unfortunately, this sum does not appear to have a closed-form solution. Thus, it might be

difficult to use this representation for further computations.

Fortunately, it is possible to obtain an approximation of V (N) by not considering all terms

in the universe, but only the set of terms for which Zipf’s rule (rounded to the nearest integer)

predicts a non-zero number of occurrences. That is, the set of terms Ti with f(Ti) ≥ 0.5:

f(Ti) ≥ 0.5 ⇔
N

γ∗
α · i

α
≥ 0.5 ⇔ i ≤

(
2N

γ∗
α

)1/α

. (4.11)

This leads to the following approximation of the number of terms in the active vocabulary of

a collection of size N :

V ′(N) =

⌊(
2N

γ∗
α

)1/α
⌋

. (4.12)

It turns out that this is exactly as predicted by Heaps’s law, with parameters

k =

(
2

γ∗
α

)1/α

and β =
1

α
.

Hence, assuming a generalized Zipfian distribution for the terms in a given text collection is

consistent with estimating the size of the collection’s vocabulary according to Heaps’s law.

If it is in fact valid to model term occurrences according to a Zipfian distribution, then this

implies that the size of a text collection’s vocabulary does not grow linearly with the size of

the collection, but considerably slower:

V (N) ∈ Θ(N1/α). (4.13)

66 Multi-User File System Search

SBFS collection TREC collection GOV2 collection

Zipf parameter α = 1.12 α = 1.22 α = 1.34

Predicted size of vocabulary 30.1 million 9.4 million 57.1 million

Actual size of vocabulary 28.7 million 2.1 million 49.5 million

Table 4.2: Using Zipf’s law to predict the size of the active vocabulary for three different
text collections. For SBFS and GOV2, the prediction is very accurate (error < 16%).

Validation

It is not completely undisputed whether the distribution of terms in a text collection can

be accurately modeled by a Zipfian distribution. Williams and Zobel [113], for example,

argue (and provide experimental support) that the active vocabulary of a collection grows

linearly with the number of tokens in the collection, contradicting equation 4.13. I therefore

experimentally validate the assumption that a text collection can in fact be accurately modeled

by a Zipfian distribution.

Figure 4.3 shows the rank/frequency curves in log/log-scale for the three collections used

in my experiments and the curves for the corresponding Zipfian distributions. In each case,

the distribution parameter α was chosen in such a way that the area between the two curves

(after the log-log transformation) is minimized. As can be seen from the figure, both SBFS

and GOV2 can be represented rather accurately by a Zipfian distribution. For the TREC

collection, the approximation is not quite as good, mainly because the long tail on the right-

hand side of the plot deviates from the distribution predicted by Zipf.

Table 4.2 shows the size of the active vocabulary for all three collections, comparing the

actual size of the vocabulary with the size predicted by modeling it according to a Zipfian dis-

tribution with appropriate parameter α. For SBFS and GOV2, the estimate is very accurate

(relative error for SBFS: 5%; GOV2: 15%). For TREC, however, the model overestimates

the number of unique terms in the collection dramatically, by about 450%. The reason for

this could be that the documents in the TREC collection are newswire articles. These articles

have a controlled vocabulary, missing colloquial language and exhibiting a small number of

typos.

Finally, Figure 4.4 shows the size of the active vocabulary for 1-gigatoken, 2-gigatoken,

... prefixes of the GOV2 collection (files sorted in lexicographical order). It can be seen that

the Zipfian distribution (here with parameter α = 1.34) more or less accurately predicts the

number of distinct terms in each prefix of the collection. The reason why the curve for GOV2

is not convex is that the collection is quite heterogeneous. While the beginning of GOV2, when

Chapter 4 — Index Structures 67

108

107

106

105

104

103

102

101

107106105104103102101

N
um

be
r

of
 o

cc
ur

re
nc

es

Term rank

(a) SBFS collection (3.1 x 105 files, 1.0 x 109 tokens)

Term distribution in collection
Zipf distribution (alpha = 1.12)

108

107

106

105

104

103

102

101

106105104103102101

N
um

be
r

of
 o

cc
ur

re
nc

es

Term rank

(b) TREC collection (1.5 x 106 documents, 8.2 x 108 tokens)

Term distribution in collection
Zipf distribution (alpha = 1.22)

109

108

107

106

105

104

103

102

101

107106105104103102101

N
um

be
r

of
 o

cc
ur

re
nc

es

Term rank

(c) GOV2 collection (2.5 x 107 documents, 4.4 x 1010 tokens)

Term distribution in collection
Zipf distribution (alpha = 1.34)

Figure 4.3: Validating Zipf’s law experimentally. For each of the three text collections, a
Zipf parameter α is determined that minimizes the area between the Zipf curve (after the
log/log transformation) and the actual term distribution curve, as defined by the respective
collection.

68 Multi-User File System Search

60

50

40

30

20

10

45403530252015105N
um

be
r

of
 d

is
tin

ct
 te

rm
s

se
en

 (
x

10
6)

Number of tokens seen (x 109)

Number of distinct terms for a growing collection (GOV2)

Actual number (GOV2)
Actual number (GOV2, randomized)

Predicted by Zipf (alpha = 1.34)

Figure 4.4: Using Zipf to predict the number of distinct terms seen in various prefixes of
the GOV2 collection, simulating the scenario of a growing text collection. As can be seen,
modeling the collection by Zipfian distribution leads to a very accurate approximation of the
number of distinct terms.

processing the collection in crawl order, is dominated by HTML files, documents towards the

end (> 34 billion tokens seen) tend to be PDF and PostScript files. These file types, however,

tend to contain more noise than HTML documents, mainly due to text extraction problems.

If documents are indexed in random order, this artifact disappears.

Combining the evidence presented above, I conclude that term occurrences in a text

collection do in fact follow a generalized Zipfian distribution with some collection-specific

parameter α > 1. While the TREC collection is a bit of an outlier, both SBFS and GOV2

allow an accurate approximation of various collection characteristics.

4.2.2 Long Lists and Short Lists

For many aspects of creating and maintaining an inverted index, it is useful to distinguish

between frequent terms and infrequent terms and thus between long posting lists and short

posting lists. This is done by choosing a threshold value, ϑ. Then, by definition, all posting

lists containing more than ϑ entries are long, while all lists containing fewer than ϑ entries

are short.

Under the assumption that the term distribution in a text collection can be modeled by a

generalized Zipfian distribution, I now derive an approximation of the number of terms in a

text collection of size N whose posting list contains more than ϑ entries, denoted as L(N, ϑ).

Chapter 4 — Index Structures 69

From the definition of the Zipfian term frequency function f(Ti) in equation 4.6, we know:

f(Ti) > ϑ ⇔ iα <
N

γ∗
α · ϑ

⇔ i <

(
N

γ∗
α · ϑ

)1/α

.

Hence, we have

L(N, ϑ) =

⌊ (
N

γ∗
α · ϑ

)1/α
⌋
∈ Θ

(
N1/α

ϑ1/α

)
. (4.14)

The total number of postings found in these lists, denoted as L̂(N, ϑ), then is

bL(N,ϑ)c∑

i=1

f(Ti) =
N

γ∗
α

·

bL(N,ϑ)c∑

i=1

1

iα

≈
N

γ∗
α

·

(
γ +

∫ L(N,ϑ)

1
x−α dx

)

=
N

γ∗
α

·

(
γ +

(
(L(N, ϑ))1−α

1− α
−

1

1− α

))

= N −
N

γ∗
α · (α− 1)

·

(
N

γ∗
α · ϑ

) 1−α
α

= N −N1/α ·
ϑ(1−1/α)

(α− 1)(γ∗
α)1/α

. (4.15)

It immediately follows that the total number of postings found in short lists (lists containing

no more than ϑ entries), denoted as Ŝ(N, ϑ), is

Ŝ(N, ϑ) = N − L̂(N, ϑ)

=
N1/α · ϑ(1−1/α)

(α− 1)(γ∗
α)1/α

∈ Θ
(
ϑ(1−1/α) ·N1/α

)
. (4.16)

In other words, the relative number of postings found in short lists converges to zero, as N

marches towards infinity. The speed of convergence depends on the Zipf parameter α.

4.2.3 Notation

Later in this thesis, I will make use of the results obtained above. I therefore introduce the

following notation to refer to various statistical properties of an inverted index:

• V (N), the size of the active vocabulary of a text collection containing N tokens:

V (N) ≈

(
2N

γ∗
α

)1/α

∈ Θ
(
N1/α

)
.

70 Multi-User File System Search

• L(N, ϑ), the number of long lists (> ϑ entries) in an index for a collection of size N :

L(N, ϑ) ≈

(
N

γ∗
α · ϑ

)1/α

∈ Θ

((
N

ϑ

)1/α
)

.

• S(N, ϑ), the number of short lists (≤ ϑ entries) in an index for a collection of size N :

S(N, ϑ) = V (N)− L(N, ϑ)

≈

(
2N

γ∗
α

)1/α

−

(
N

γ∗
α · ϑ

)1/α

∈ Θ
(
N1/α

)
.

• L̂(N, T), the total number of postings found in long lists:

L̂(N, ϑ) ≈ N −
N1/α · ϑ(1−1/α)

(α− 1)(γ∗
α)1/α

∈ Θ(N).

• Ŝ(N, ϑ), the total number of postings found in short lists:

Ŝ(N, ϑ) = N − L̂(N, ϑ)

≈
N1/α · ϑ(1−1/α)

(α− 1)(γ∗
α)1/α

∈ Θ
(
ϑ(1−1/α) ·N1/α

)
.

This notation will be used in the following section to estimate the amount of internal

fragmentation in the extensible posting lists used in hash-based in-memory construction, and

in Section 4.4 to obtain an approximation of the memory requirements of the search engine’s

in-memory dictionary.

4.3 Index Construction

In Section 2.4.3, I have provided a general discussion of different index construction meth-

ods, coming to the conclusion that a merge-based approach, in combination with hash-based

in-memory inversion, leads to the best indexing performance. I now investigate two par-

ticular aspects of this process. First, I examine possible implementations of the extensible

in-memory posting lists used in in-memory index construction. Second, I discuss how the

final merge phase in merge-based index construction can be sped up by merging compressed

lists, eliminating the need to decompress posting lists during the merge operation.

Chapter 4 — Index Structures 71

Figure 4.5: Grouping consecutive postings when maintaining extensible in-memory posting
lists, here with parameters (init, k, limit) = (4, 2, 12).

4.3.1 In-Memory Index Construction: Extensible Posting Lists

From Table 3.1 in Chapter 3, it is clear that the amount of indexable data in a file system

easily exceeds the available main memory and a fortiori the main memory that can reasonably

be allocated to the indexing process. Hence, pure in-memory index construction techniques

cannot be applied when building a content index for the file system. Nonetheless, because in-

memory indexing methods form the basis of every merge-based index construction algorithm

(cf. Section 2.4.3), it is worth discussing possible optimizations.

Dictionary organization for in-memory index construction have been thoroughly discussed

by Heinz et al. [56] [118]. A last remaining question is how to organize the in-memory

posting lists. Two competing strategies are (a) to use linked lists, adding a pointer for every

posting, and (b) to use resizable arrays (realized through realloc or a similar mechanism)

[55]. If resizable arrays are used, they are normally managed according to a proportional

pre-allocation strategy. Initially, space is reserved for a small number of postings, denoted

as init (e.g., init = 4). Whenever the free space in a given list is exhausted, new space is

allocated:

snew = max{sold + init, dk · solde}, (4.17)

where sold is the old size of the array, and snew is its new size, after reallocation.

The linked-list approach increases the memory consumption of the indexing process by

50%-100%, depending on the relative size of postings and pointers. The realloc approach, on

the other hand, suffers from internal fragmentation (if the pre-allocation factor is too large)

or decreased indexing performance because of costly list relocations (if the pre-allocation

factor is chosen too small). For a pre-allocation factor k, the expected amount of internal

fragmentation is approximately k−1
2k . Choosing k = 1.2, for instance, is expected to lead to

an internal fragmentation of 8.3% (k = 1.3: 11.5%).

As an alternative to linked lists and realloc, it is possible to combine the two strategies,

resulting in a technique referred to as grouping [20]. Like in the case of realloc, an initial

buffer holding up to init postings is reserved for each list. However, whenever the buffer space

72 Multi-User File System Search

Realloc Grouping

k = 1.1 1.2 1.3 1.1 1.2 1.3

Indexing time (total) 27.6 sec 25.8 sec 25.2 sec 21.5 sec 22.4 sec 21.9 sec

Indexing time (CPU) 23.7 sec 21.5 sec 20.7 sec 18.0 sec 18.0 sec 18.1 sec

Internal fragmentation 5.2% 8.8% 12.1% 4.4% 4.4% 4.5%

Table 4.3: Relative performance of extensible in-memory posting lists, realized through
realloc (init = 4) and through linked lists with grouping (init = 4, limit = 128). Because
of its simplistic memory allocation procedure, grouping is between 15% and 30% faster than
realloc. Text collection being indexed: 100,000 random documents from TREC (45 million
postings in total).

is exhausted, the list is not relocated. Instead, a new buffer is allocated, according to the rule

snew = min{limit, max{init, d(k − 1) · stotale}}, (4.18)

where limit is a pre-defined upper bound (e.g., limit = 128), and stotal is the total number

of postings accumulated so far for the given term. Different posting buffers allocated for the

same term are organized in a linked list. That is, each buffer holds a pointer to the next

buffer for the given term. This procedure is visualized by Figure 4.5. By keeping the value

of the limit parameter small, internal fragmentation in long lists can be virtually eliminated.

According to Zipf’s law, this means that the average internal fragmentation of all lists is kept

low as well. Compared to the initial linked-list approach (which is equivalent to the parameter

setting init = limit = 1), the relative pointer overhead is drastically reduced, to 1
init

for short

lists and 1
limit

for long lists.

The relative amount of internal fragmentation in the extensible posting lists can be esti-

mated via Zipf’s law:

relFrag ≈
1

N

V (N)∑

i=1

max{init, min{limit, f(Ti) · (k − 1)}}

2
(4.19)

=
1

N

(2N/γ∗
α)1/α∑

i=1

max{init, min{limit, N/(γ∗
α · i

α) · (k − 1)}}

2
(4.20)

(assuming that, on average, 50% of the pre-allocated space is unused). For α = 1.22 (TREC),

N = 45 million, init = 4, limit = 128, and k = 1.2, the estimated amount of fragmentation is

4.8%. For the same value of k, the expected amount of fragmentation in the case of realloc

would be 8.3% (= k−1
2k).

Chapter 4 — Index Structures 73

Table 4.3 shows the experimental results obtained for the two memory management strate-

gies, realloc and grouping, by indexing 100,000 random documents from the TREC collec-

tion. As expected, realloc leads to higher internal fragmentation than grouping. In order

for the former to achieve a fragmentation level close to that of the latter, the pre-allocation

parameter k needs to be reduced so far that reallocations and copy operations become a major

bottleneck, increasing realloc’s CPU time by up to 32% compared to grouping (k = 1.1; 23.7

sec vs. 18.0 sec). The data points in the row labeled “Internal fragmentation” include unused

list space as well as the pointer overhead caused by the pointers in the grouping approach.

Both pre-allocation strategies, grouping and realloc, can be combined with on-the-fly

index compression, encoding postings as delta values before they are appended to the respec-

tive list. If on-the-fly index compression is applied, however, then the encoding performance

of the compression algorithm employed may become a bottleneck of the index construction

process. Simple byte-aligned methods, such as vByte [100], seem to be an appropriate choice.

4.3.2 Merge-Based Index Construction: The Final Merge Operation

After a set of on-disk sub-indices for the given text collection has been created by repeatedly

invoking an in-memory index construction algorithm, they need to be merged into the final

index for the collection. Because posting lists are stored in the sub-indices according to some

predefined, static ordering, usually the lexicographical ordering of their respective terms, this

merge operation can be performed very efficiently, as shown in Algorithm 4.

Because of the way in which merge-based indexing partitions the text collection when

creating the set of sub-indices, we know that for every term T :

inputIndices[j].list(T).lastPosting < inputIndices[k].list(T).firstPosting ∀ j < k (4.21)

(assuming inputIndices[i].list(T).lastPosting = −∞, and inputIndices[i].list(T).firstPosting =

+∞ if T does not appear in inputIndices[i]). That is, the list segments found in different

sub-indices are well-ordered and non-overlapping. Therefore, they can be merged by simply

concatenating them, as shown in the algorithm.

In order to minimize disk I/O activity, the sub-indices created in the first phase of merge-

based index compression are stored on disk in compressed form. In particular, all posting

lists are stored in compressed form. Algorithm 4 seems to suggest that, in order to perform

the final merge operation, the individual list segments needs to be decompressed before they

can be concatenated. However, this is not necessary. Suppose posting lists are compressed

using one of the gap compression techniques described in Section 2.4.4. Conceptually, a

74 Multi-User File System Search

Algorithm 4 Final merge procedure in merge-based index construction. Input parameters:
inputIndices[1..n], an array of n index iterators, returning lists in the respective index, one at
a time. Output parameter: outputIndex.

1: sort inputIndices[1..n] by inputIndices[i].currentTerm,
using inputIndices[i].currentList.firstPosting to break ties

2: // inputIndices[1..n] has heap property now
3: currentTerm← nil
4: outputList← ∅
5: while inputIndices[1].currentTerm 6= nil do
6: if inputIndices[1].currentTerm 6= currentTerm then
7: outputIndex.addPostings(currentTerm, outputList)
8: outputList.clear()
9: currentTerm← inputIndices[1].currentTerm

10: end if
11: assert(outputList.length = 0 ∨ outputList.last < inputIndices[1].currentList.first)
12: outputList.appendList(inputIndices[1].currentList)
13: inputIndices[1].advanceToNextTerm()
14: restore heap property by moving inputIndices[1] down the tree
15: end while
16: outputIndex.addPostings(currentTerm, outputList)

gap-compressed posting list L, comprising |L| elements, can be thought of as a tuple

L = (|L|, L1, 〈∆L(2), . . . , ∆L(|L|)〉),

where ∆L(i) = Li−Li−1. By sacrificing a little bit of compression and encoding L|L| directly

(or through the difference L|L| − L1) instead of storing ∆L(|L|), it is possible to provide

efficient access to the first and the last element of the compressed list:

L = (|L|, L1, L|L|, 〈∆L(2), . . . , ∆L(|L| − 1)〉).

Using this new representation of compressed posting lists, it is possible to concatenate two

lists P and Q (P|P | < Q1) without the need to decompress them first:

P ◦Q = (|P |+ |Q|, P1, Q|Q|, 〈∆P (2), . . . , ∆P (|P |), Q1 − P|P |, ∆Q(2), . . . , ∆Q(|Q| − 1)〉).

This makes the final merge operation in merge-based index construction very light-weight, as

partial posting lists no longer need to be decompressed, but may simply be copied from the

input indices to the output index. In order for this to be as efficient as possible, however, all

lists must be encoded using a byte-aligned compression method, such as vByte [100].

Chapter 4 — Index Structures 75

Collection Merging decompressed lists Merging compressed lists

Total time CPU time Total time CPU time

SBFS 279.5 .. 282.3 sec 168.8 .. 171.0 sec 241.7 .. 243.7 sec 116.8 .. 118.0 sec

TREC 104.4 .. 106.1 sec 62.7 .. 62.9 sec 84.0 .. 88.7 sec 27.7 .. 28.3 sec

GOV2 96.1 .. 97.6 min 28.3 .. 28.6 min 80.2 .. 83.8 min 14.4 .. 14.6 min

Table 4.4: Performance improvement achieved by merging lists without prior decompression.
Posting lists are stored on disk in compressed form (vByte). All performance figures represent
95% confidence intervals, obtained by running each experiment 6 times.

Table 4.4 shows the time consumed by the final merge operation when indexing the

three different text collections, assuming that all on-disk posting lists are stored in vByte-

compressed form. By merging posting lists in their compressed form, without prior decom-

pression, CPU time can be decreased by between 31% (SBFS) and 61% (TREC). As a result,

the CPU utilization during the final merge operation is below 50% for all three collections.

The relative CPU time, compared to the total time of the merge operation, is lowest for

SBFS and highest for GOV2, suggesting that there might be a relationship between the CPU

utilization and the collection’s Zipf parameter α. And indeed, this is the case. A smaller α

value leads to a greater number of unique terms and thus a higher CPU utilization. Comparing

term strings is more costly than copying compressed postings.

4.3.3 Performance Baseline

Based on the optimizations achieved for the in-memory indexing part and the final merge

part of merge-based index construction, I can now present an index construction performance

baseline. Table 4.5 shows the indexing performance for all three text collections achieved by

a merge-based index construction process, assuming that:

• the in-memory indexing process employs a move-to-front hash table for dictionary

lookups and linked lists with grouping for extensible posting lists;

• incoming postings are compressed using vByte [100] before being appended to the re-

spective posting list (on-the-fly compression);

• all on-disk posting lists (intermediate indices and final index) are stored in compressed

form, using vByte;

• in the final merge operation, lists are concatenated without prior decompression.

It is interesting to see that, while reading and parsing the input files takes between 37%

and 54% of the total time for GOV2 and TREC, respectively, the indexing process spends

76 Multi-User File System Search

Text collection Reading/parsing input Indexing Merging Total

SBFS 69.2 min 13.0 min 4.2 min 86.3 min

TREC 8.5 min 5.9 min 1.4 min 15.8 min

GOV2 139.1 min 148.7 min 82.9 min 371.7 min

Table 4.5: Index construction baseline, following a merge-based approach extending upon
hash-based in-memory inversion. Memory limit: 32 MB for SBFS and TREC; 256 MB for
GOV2.

over 80% of its time reading input files when building an index for SBFS. The reason for

this is the large number of PDF and PS files in the SBFS collection. These files require

external conversion tools, and the associated parsing routines can be very costly. Thus,

when indexing the contents of the file system, the bottleneck does not seem to be the actual

index construction process, but the external conversion programs that are responsible for

transforming the input files into a format that can be processed by the indexer.

For all three text collections, however, it seems computationally feasible to update the

index by scanning the collection once a day and building a new index for it. As long as

the computer system is idling for at least a few hours every day, this approach appears to

constitute a valid update strategy. Its deficiency, of course, is that it allows the index to be

inconsistent with the contents of the changing text collection for up to 24 hours.

4.4 Memory Requirements

After the index has been created, it needs to be accessed whenever a user submits a search

query. Every index access has to go through the search engine’s dictionary, which translates

query terms into addresses of on-disk posting lists (cf. Section 2.4.1). In order for this pro-

cedure to be as efficient as possible, it is desirable to keep the dictionary in main memory at

all times.

Unlike in enterprise search and Web search, however, a file system search engine does not

run on a dedicated search server. Instead, it has to share all its resources with user applications

that run on the same machine as the search engine. This implies that the search engine’s

memory requirements should be kept as low as possible (Requirement 4 from Chapter 1). It

then seems sensible to reduce the size of the search engine’s dictionary as far as possible, so

as to minimize the impact that the file system search engine has on other processes running

in the system.

Chapter 4 — Index Structures 77

Compression method SBFS TREC GOV2

None 598.5 MB 42.4 MB 1047.7 MB

Front coding + vByte (group size: 256) 157.1 MB 9.1 MB 243.5 MB

Front coding + vByte + LZ (group size: 256) 116.6 MB 5.6 MB 163.8 MB

Table 4.6: Total size of a sort-based in-memory dictionary when dividing dictionary entries
into groups of 256 terms each and applying dictionary compression techniques to each group.

4.4.1 Dictionary Compression

One way to decrease the memory requirements of the search engine’s dictionary is to apply

dictionary compression techniques, as discussed in Section 2.4.4. Table 4.6 summarizes the

savings that can be achieved by storing the in-memory dictionary in compressed form, follow-

ing the dictionary-as-a-string approach, compressing terms by front coding and storing file

pointers (positions of on-disk posting lists) in vByte-encoded form. Both techniques, front

coding and vByte, are applied to groups of dictionary entries, comprising 256 terms each.

One shortcoming of the combination of front coding and vByte is that they do not take the

bigger context of the data being compressed into account, but only encode a dictionary entry

by giving reference to its immediate predecessor. This can be remedied by running a standard,

general-purpose compression algorithm over each of the 256-term dictionary blocks after they

have been compressed by the combination of front coding and vByte. The row labeled “Front

coding + vByte + LZ” demonstrates the additional savings that can be obtained by following

this path (utilizing the LZ implementation that is part of the zlib3 compression library). For

the TREC collection, for instance, the total memory requirement of the dictionary can be

reduced by 38% over the compression achieved by front coding + vByte, leading to a total

saving of 87% compared to an uncompressed dictionary.

Unfortunately, these savings are insufficient to keep the search engine’s dictionary in main

memory. For both SBFS and GOV2, with their large number of unique terms (SBFS: 28.7

million, GOV2: 49.5 million), the compressed dictionary still exhibits a memory consumption

in excess of 100 MB. Presumably, few users are willing to permanently dedicate 150 MB (in-

memory dictionary + buffers for the indexing process) of their computer’s memory resources

to the search engine.

A possible solution to this problem is to store the dictionary on disk instead of in main

memory. However, at query time this causes an additional disk seek for each query term,

because now the term’s dictionary entry as well as its posting list need to be fetched from disk.

Since we do not know how many query terms there are or how costly a disk seek is compared

3http://www.zlib.net/ (accessed 2007-08-01)

78 Multi-User File System Search

Figure 4.6: Interleaving posting lists and dictionary entries in the on-disk index. By keeping
a term’s dictionary entry close to its posting list, only a single disk seek is necessary to access
both.

to the length of each query term’s posting list (cf. Requirement 2 from Chapter 1), this extra

disk seek might or might not have a disastrous impact on query processing performance.

4.4.2 Interleaving Posting Lists and Dictionary Entries

Fortunately, the extra disk seek per query term can be avoided by storing each term’s dic-

tionary entry on disk, right before the term’s posting list. This way, both can be accessed in

one sequential read operation, without the need for an additional disk seek. However, how

is the search engine going to find a term’s dictionary entry under these new circumstances?

The idea is to still keep some dictionary entries in memory, but not all of them.

Consider the on-disk index layout shown in Figure 4.6, representing a fragment of the

inverted file for a hypothetical text collection. For each term in the collection, the index

contains a term descriptor and a posting list. The term descriptor contains the term itself, and

also some meta-data that are useful for accessing its posting list (e.g., a set of synchronization

points for the posting list). It is stored in the on-disk index, immediately preceding the

postings.

Because all terms and posting lists in the inverted file are sorted in lexicographical order,

it is not necessary to keep the dictionary entry for every term in main memory. Suppose a user

submits the query “homerism” to the search engine. The search engine might not know the

exact index position of the posting list for “homerism”, but maybe it knows the index position

of “homeric” and “homerville”. Then it can quickly find the posting list for “homerism”, by

performing a linear scan of the index data between “homeric” and “homerville” (929 bytes in

the example).

As long as the distance between two terms for which the search engine has an in-memory

dictionary entry is not too large, this operation can be performed very efficiently and only

adds a negligible overhead to the total cost of processing a search query. For example, if the

hard drive can deliver 50 MB/sec in a sequential read operation, and the distance between the

on-disk data for two consecutive in-memory dictionary entries is guaranteed to be less than

Chapter 4 — Index Structures 79

64 KB, then the overhead per query term is less than 1.3 ms — a substantial improvement

over the 8-10 ms that, on average, would be caused by an additional disk seek.

The incomplete in-memory dictionary that is necessary to provide efficient index access

in the manner outlined above can be constructed incrementally, while the search engine is

creating the inverted index. A new entry is added to the dictionary whenever the on-disk

distance between the new term being added to the index and the term referred to by the last

in-memory dictionary entry exceeds a predefined threshold B (e.g., B = 64 KB).

In the following, I refer to the index data stored between the two points in the on-disk

inverted file defined by two consecutive in-memory dictionary entries as an index segment. Let

B denote the block size of the index, i.e., the minimum size of each index segment. Based on

the rules described above, it is clear that each index segment contains at least B bytes. Some

segments, however, might contain more than B bytes, for example whenever the segment

contains a posting list that consumes more than B bytes of index space.

Because each segment contains at least B bytes, the total number of in-memory dictionary

entries for an inverted file consuming size(I) bytes of disk space cannot be more than size(I)
B .

If B = 216, then this leads to no more than 2.69 GB / 64 KB = 44,095 dictionary entries for

the SBFS collection — a dramatic improvement over the memory requirements exhibited by a

complete in-memory dictionary, containing entries for all 28.7 million terms in the collection.

However, this upper bound is not very tight. Using Zipf’s law, a tighter bound on the

number of in-memory dictionary entries may be obtained. Suppose postings are stored in the

on-disk index in compressed form, with each posting consuming p bytes on average. Suppose

further that there is a per-term storage overhead of o bytes, caused by the term string itself

and some term-specific meta-data. Now note that for each in-memory dictionary entry there

can be at most one posting list with more than B
p entries in the index segment referred to

by the dictionary entry. Employing the notation established in Section 4.2, this results in

L(N, B
p) entries for these long lists. I refer to this set of dictionary entries as L:

|L| = L(N,
B

p
) ∈ O

((
N

B

)1/α
)

. (4.22)

L covers a major part of the on-disk index. There are, however, some remaining segments

that do not contain any of the terms from L. To estimate the combined amount of data

stored in those index segments, I need to model the average size of their postings, based on

the compression scheme employed. Suppose the posting lists in the index are compressed using

vByte. Then the byte-size of the posting list for the i-th most frequent term, Ti, including

80 Multi-User File System Search

term-specific meta-data, can be approximated as

size(Ti) = o + f(Ti) ·
log2(N/f(Ti))

7
(4.23)

= o +
N

γ∗
α · i

α
·
log2(γ

∗
α · i

α)

7
, // using the definition of f(Ti) (4.24)

because each gap δ in Ti’s posting list requires about log2(δ) bits to be represented as a

binary number, and vByte uses 7 bits per byte to store this information. With the additional

definition

q :=

(
N · p

γ∗
α ·B

)1/α

(4.25)

(i.e., f(Tq) = B
p), the total amount of data stored in on-disk index segments not covered by

L is approximately

V (N)∑

i=q

o +
N

γ∗
α · i

α
·
log2(γ

∗
α · i

α)

7
(4.26)

≤
log2(2 ·N)

7
·

V (N)∑

i=q

o +
N

γ∗
α · i

α
// using (4.12) (4.27)

=
log2(2 ·N)

7
·

(
o · S

(
N,

B

p

)
+ Ŝ

(
N,

B

p

))
// definition of S and Ŝ (4.28)

∈ O
(
log(N) ·

(
N1/α + N1/α ·B1−1/α

))
// since o and p are constant (4.29)

= O
(
log(N) ·N1/α ·B1−1/α

)
. (4.30)

The number of in-memory dictionary entries for those data then is at most:

O

(
log(N) ·N1/α ·B1−1/α

B

)
= O

(
log(N) ·

(
N

B

)1/α
)
⊆ O

((
N

B

)1/α+ε
)

. (4.31)

Combining (4.22) and (4.31), the total number of in-memory dictionary entries, for the whole

index, is bounded in the following way:

dictionary entries ∈ O

((
N

B

)1/α
)

+O

((
N

B

)1/α+ε
)

= O

((
N

B

)1/α+ε
)

. (4.32)

That is, the main memory requirements of the search engine’s dictionary are strictly sub-

linear in the size of the collection. The magnitude of the difference depends on the value

of the Zipf parameter α. For small α (e.g., SBFS), the difference between linear growth

Chapter 4 — Index Structures 81

Collection Number of terms Index size Number of dictionary entries

proportional Zipf approx. actual

SBFS 28.7 million 2.69 GB 44,095 32,601 30,351

TREC 2.1 million 1.39 GB 22,749 12,625 8,492

GOV2 49.5 million 62.18 GB 1,018,741 125,958 112,227

Table 4.7: Reducing memory consumption by using an incomplete dictionary, containing one
entry per index segment. Size of each index segment: ≥ 64 KB.

and actual growth will be relatively small. For larger α (e.g., GOV2), the difference will be

greater.

Table 4.7 shows the size of the resulting in-memory dictionaries for the three text col-

lections, using equation 4.26 to estimate the combined size of the short posting lists, and

assuming a segment size of 64 KB (resulting in a query-time overhead of at most 1-2 ms per

query term). The column labeled “proportional” refers to the simplistic approximation of

the number of dictionary entries obtained by dividing the size of the index by the segment

size. The column labeled “Zipf approx.” refers to the approximation obtained by applying

Zipf’s law. The column labeled “actual” refers to the actual number of in-memory dictionary

entries for the given segment size (B = 64 KB).

It can be seen that the proposed dictionary organization leads to a very small memory

footprint. Even for the GOV2 collection with its 49.5 million distinct terms, the incomplete in-

memory dictionary does not consume more than a few megabytes. The size of the incomplete

dictionary can be decreased even further, by using the same compression techniques as for

the complete dictionary. This way, the size of the incomplete dictionary for GOV2 can be

reduced to 927 KB (front coding + vByte; group size: 256 terms).

The approximation of the number of dictionary entries in the incomplete dictionary ob-

tained through the application of Zipf’s law is remarkably accurate for SBFS (error: 7.4%)

and GOV2 (error: 12.2%). Only for the TREC collection, the number of dictionary entries is

greatly overestimated; the error stems from the fact that TREC’s active vocabulary is much

smaller than predicted by Zipf (cf. Table 4.2).

4.5 Document-Centric vs. Schema-Independent Inverted Files

Thus far, I have assumed that the index being created for a given text collection is a schema-

independent one. The results obtained, however, both about statistical properties of inverted

files and about performance optimizations in the index construction process, can just as easily

82 Multi-User File System Search

be applied to document-centric positional indices, containing explicit reference to the inherent

structure of the text collection.

4.5.1 Query Flexibility

One of the main requirements in file system search is query flexibility (Requirement 2 from

Chapter 1). We do not know the users’ exact search needs, and we do not know what kind of

search operation a third-party application might want to carry out, utilizing the infrastructure

provided by the search engine. Hence, a content index with predefined document boundaries,

such as a document-centric positional index, that is targeting a very specific type of retrieval

operation (document retrieval) might be too restrictive in the context of general-purpose file

system search.

Consider, for instance the mbox file format that is used by many e-mail clients to store

their messages. An mbox file contains a sequence of e-mail messages. Normally, the messages

in such a file would be treated as independent documents. It is, however, possible that a user

is looking for the mbox file itself, or a thread of messages within a file, maybe remembering

some of the keywords that the file contains — in different e-mails. This perfectly legitimate

search operation would be very difficult to realize with a document-centric index, because the

definition of what constitutes a document, and thus can be retrieved by the search engine,

may not be changed after the index has been created.

A schema-independent index makes it possible to redefine the concept of a document on

a per-query basis. For some queries, a document might be a file; for others it might be an

e-mail message; for even others, it might be something completely different, maybe a passage

in a PDF document. Because a schema-independent index makes no assumptions about what

the unit of retrieval is going to be, it offers the greatest flexibility at query time. For this

reason, I choose to exclusively use schema-independent indices in all experiments described

in this thesis.

The great versatility of the schema-independent approach to text retrieval does, however,

carry an unwanted piece of baggage: reduced query performance. If the unit of retrieval

targeted by a search query is in fact always the same for all queries (i.e., the text collection

is a document collection in a very strong sense), then a document-centric index, explicitly

taking into account the special structure of the text collection, may lead to greatly reduced

query response times.

Chapter 4 — Index Structures 83

4.5.2 Query Processing Performance

Consider again the relevance ranking functions listed in Section 2.2.2: Okapi BM25 [94],

language modeling [116], and others. All these ranking functions are statistical. They require

access to the text collection’s global term statistics in order to rank a set of matching search

results according to their relevance to the search query. BM25, for instance, needs access

to the number of documents containing each query term. In a document-centric index, this

information can be precomputed and be stored in the term’s header data in the on-disk index,

or maybe even in the in-memory dictionary. With a schema-independent index, because any

reference to “documents” is meaningless until the actual query is received by the search

engine, this information cannot be precomputed. It has to be calculated on-the-fly after the

query has been received. These calculations can be rather costly.

Recall from Section 2.2.2 the calculation of the BM25 score for a document D relative to

a keyword query Q:

scoreBM25(D,Q) =
∑

Q∈Q

log

(
|D|

|DQ|

)
·

fD(Q) · (k1 + 1)

fD(Q) + k1 · (1− b + b · |D|/avgdl)
. (4.33)

Before scoreBM25(D,Q) can be computed, the query processor needs to obtain two pieces

of information: |DQ|, the number of documents containing Q (for each query term Q), and

avgdl, the average length of a document in the collection. Assuming documents are delimited

by XML-style markup of the form
<doc> · · · </doc>,

the value of avgdl can be obtained by evaluating all text passages matching the GCL expression

“〈doc〉” · · · “〈/doc〉”

and computing their average length. Similarly, |DQ| can be computed via the GCL expression

(“〈doc〉” · · · “〈/doc〉”) B Q.

For the large number of documents found in the text collections used in my experiments

(TREC: 1.5 million documents; GOV2: 25.2 million documents), these operations can be

very CPU-intensive. They also diminish the effect of query optimization strategies like MaxS-

core [109], because now all documents (or, rather, all postings corresponding to the document

delimiters “〈doc〉” and “〈/doc〉”) need to be visited no matter what, just to compute avgdl.

Table 4.8 shows performance results obtained for query processing with a schema-

independent index for each of the three collections. It compares the pure schema-independent

approach with a semi-document-centric approach in which all statistics (term weights and

84 Multi-User File System Search

Collection Query set Stat’s pre-computed On-the-fly

Q
A

P TREC TREC topics 1-500 151 ms/query 285 ms/query

GOV2 TREC TB 2006 efficiency 3,022 ms/query 3,982 ms/query

B
M

25 TREC TREC topics 1-500 97 ms/query 577 ms/query

GOV2 TREC TB 2006 efficiency 1,876 ms/query 4,923 ms/query

Table 4.8: Query processing performance for schema-independent indices. The performance
varies greatly, depending on the amount of query-relevant information precomputed and
stored in the index.

average document length) are pre-computed, and the results to the GCL query “〈doc〉” · · ·

“〈/doc〉” are kept in an in-memory cache for fast access, avoiding the costly re-combination

of “〈doc〉” and “〈/doc〉” for every query. The underlying index structure is still schema-

independent, but is enriched with extensive caching of information that is shared among

queries. While a true document-centric index can be expected to achieve a performance level

that is even a little higher than that of the semi-document-centric approach, the differences

are likely to be small.

It can be seen from the table that the performance gap between document-centric and

schema-independent retrieval varies greatly, depending on the type of query executed by the

search engine. While, for QAP queries, the slowdown is not excessively dramatic (using

a schema-independent index decreases query performance by about 100%) on the TREC

collection, the document-centric approach is almost 6 times as fast as the schema-independent

one if BM25 queries are processed by the search engine. The statistics used by QAP (and

also by ranking functions based on the language modeling approach) are less expensive to

compute than for BM25.

Therefore, if search operations and ranking functions are chosen wisely, the slowdown

caused by the overhead of computing term statistics and document boundaries on-the-fly

may be acceptable. Moreover, there is no real alternative to a schema-independent index. A

document-centric index – as pointed out above – does not offer the degree of flexibility that

is desirable for file system search.

4.6 Summary

This chapter was mainly concerned with static inverted indices and how to integrate them into

the file system. Taken by itself, its applicability to file system search is limited. However, it

provides the foundation for the following two chapters on secure file system search (Chapter 5)

and real-time index updates (Chapter 6).

Chapter 4 — Index Structures 85

In addition to the optimizations for hash-based and merge-based index construction laid

out in Section 4.3, the main points of this chapter are:

• In a multi-user environment, it is essential to have multiple users share the same in-

dex. Otherwise, indexing overhead and storage requirements of the search engine are

no longer bounded by the total size of the indexable data in the file system. This

requirement will raise certain security issues in Chapter 5.

• The dictionary interleaving technique from Section 4.4.2 can be used to decrease the

memory requirements of an inverted index to under a megabyte, even for very large

text collections containing millions of different terms. Dictionary interleaving leads to

a minor slowdown at query time, because slightly more data need to be read from disk.

However, this slowdown is negligible compared to the other costs that accrue during

query processing.

Interleaving dictionary entries with on-disk posting lists is only possible if all posting

lists are stored in some predefined order (e.g., lexicographical). This has implications

for the competitiveness of index update strategies that allow on-disk lists to be stored

in random order (in-place update, Section 6.3).

• The derivation of some statistical properties of inverted files (Section 4.2) shows that

the size of the vocabulary and the total number of postings found in short posting lists

both are sub-linear in the total size of the collection. This result has already been made

use of in Section 4.4.2 and will be made use of again in the analysis of hybrid index

maintenance in Chapter 6.

Chapter 5

Secure File System Search

In the previous chapter, I have argued that, for performance and storage efficiency reasons,

it is essential to have multiple users share the same index. This way, a file only needs to be

indexed once, even if it can be accessed by multiple users. I now discuss the security issues

that arise under such circumstances.

If multiple users store files in the same file system, and all index data are stored in one

central index that is shared by all users, then clearly there must be mechanisms in the search

engine that ensure that the results to a search query submitted by user A do not contain any

information about files that may only be searched by user B. In order to address this problem

in a proper way, it first needs to be defined what it means for a file to be searchable by a user.

Basic security restrictions, in the form of file access permissions, are already present in every

UNIX file system implementation, but it is not entirely clear how these access permissions

can be extended to the domain of file system search.

After a brief review of the UNIX security model (Section 5.1), I describe a file system

search security model that is based on the UNIX security model and that defines under what

exact circumstances a given file is searchable by a given user (Section 5.2). I present several

possible implementations of the security model, some based on a postprocessing approach,

others making use of structural constraints expressible within the GCL query framework.

I then show that, under the assumption that the search engine ranks matching documents

by their statistical relevance to the query, the implementations based on the postprocessing

approach are insecure, allowing an arbitrary user to obtain information about the contents of

files for which she does not have read permission (Section 5.3). A GCL-based implementation,

which does not exhibit this insecurity, is discussed and evaluated in Sections 5.4 and 5.5.

Opportunities for performance optimizations are identified and examined in Section 5.6.

87

88 Multi-User File System Search

owner group others

Read x x

Write x

eXecute x x

Figure 5.1: File permissions in UNIX (example). Owner permissions override group per-
missions; group permissions override others. Access is either granted or denied explicitly (in
the example, a member of the group would not be allowed to execute the file, even though
everybody else is).

5.1 The UNIX Security Model

The UNIX security model [91] [90] is an ownership-based model with discretionary access

control that has been adopted by many operating systems. Every file is owned by a certain

user. This user (the file owner) can associate the file with a certain group (a set of users) and

grant access permissions to all members of that group. She can also grant access permissions

to the group of all users in the system (others). Privileges granted to other users can be

revoked by the owner later on.

5.1.1 File Permissions

UNIX file permissions can be represented as a 3×3 matrix, as shown in Figure 5.1. When a

user wants to access a file, the operating system searches from left to right for an applicable

permission set. If the user is the owner of the file, the leftmost column is used to check

whether the user is allowed to access the file. If the user is not the owner, but member of the

group associated with the file, the second column is taken. Otherwise, the third column is

taken. This can, for instance, be used to grant read access to all users in the system except

for those who belong to a certain group.

File access privileges in UNIX fall into three different categories: Read, Write, and

eXecute. The semantics of these privileges are different depending on whether they are

granted for a file or a directory. For files,

• the read privilege entitles a user to read the contents of a file;

• the write privilege entitles a user to change the contents of the file or to append data

at the end of the file;

• the execute privilege entitles a user to run the file as a program.

Chapter 5 — Secure File System Search 89

For directories,

• the read privilege allows a user to read the contents of the directory, which includes file

names and attributes of all files and subdirectories within that directory;

• the write privilege allows a user to add files to the directory, to remove files from it, and

to change the names of files in the directory;

• the execute privilege allows a user to access files and subdirectories within the directory.

The UNIX security model makes it possible to grant a group of users U read access to a

specific file without revealing any information about other files in the same directory, by

granting execute permission for the directory and letting the members of U know the name

of the file. Because the directory is not readable, only users who know the name of the file

are able to access it (note that, even without read permission for a directory, a user can still

access all files in it; she just cannot use ls to search for them).

Extensions to the basic UNIX security model, such as access control lists (ACLs) [43],

have been implemented in various operating systems (e.g., Windows, Linux, MacOS). An

ACL is a list of rules associated with a file or directory that allows the owner to define

access permissions for specific users or groups of users. This overcomes the limitation of the

traditional UNIX security model which only allows to distinguish between owner, group, and

others. The maximum number of rules that may be defined for any given file depends on the

file system implementation and varies between 32 (ext2) and several thousand (JFS).

Despite the advantages offered by ACLs, the simple owner/group/others model is still the

dominant security paradigm. In many Linux distributions, for example, file system support

for ACLs is disabled by default, and has to be explicitly activated for each mount point

separately.

5.1.2 Traditional File System Search in UNIX

Regardless of whether file permissions are defined according to the basic UNIX security model

or via access control lists, the end result is the same: a global, system-wide security matrix

that defines for every user U and every object O in the file system (file or directory) the

access privileges for O that have been granted to U — a subset of {R, W, X}. Access control

lists, just like the traditional model, do not provide a mechanism to define whether a file is

searchable by a user. Thus, the UNIX security model needs to be extended so that it takes

searchability into account.

90 Multi-User File System Search

Recall from Section 2.1 the traditional UNIX find/grep search paradigm, using find to

specify a set of external criteria, and using grep to define constraints regarding the contents

of a matching file. This search paradigm implicitly defines a file system search security model.

A file can only be searched by a user if:

1. the file can be found in the file system’s directory tree and

2. the file’s contents may be read by the user.

Let us assume that the base directory for a find operation is the file system’s root directory.

Then, in terms of file permissions, condition 1 means that there has to be a path from the

root directory to the file in question, and the user needs to have both the read privilege and

the execute privilege for every directory along this path. This is because, in order to find out

that a file exists, the user needs to be able to read the directory listing of the file’s parent

directory; in order to find out that the parent directory exists, the user needs to be able to

read the directory’s parent directory; and so on. Finally, condition 2 requires the user to have

the read privilege for the actual file.

Because UNIX allows a file to be linked from multiple directories (i.e., to have multiple

hard links pointing to it), the traditional UNIX find/grep search paradigm implicitly defines

the following security model.

Definition: File Searchability According to find/grep

A file F is searchable by a user U if and only if:

1. There is at least one path from the root directory to F , such that U has the

read and execute privilege for all directories along this path.

2. U has been granted read privilege for F .

The same definition is also used by slocate1, a security-aware version of the locate2 utility

program (locate and slocate can be thought of as fast versions of find, relying on a

periodically updated index containing the names of all files and directories in the file system).

5.2 A File System Search Security Model

While the security model implicitly defined by find/grep seems to be appropriate in many

scenarios, it has a significant shortcoming: It is not possible to grant search permission for a

1http://slocate.trakker.ca/ (accessed 2007-03-06)
2http://www.gnu.org/software/findutils/ (accessed 2007-03-06)

Chapter 5 — Secure File System Search 91

single file without revealing information about other files in the same directory. In order to

make a file searchable to other users, the owner has to give them the read privilege for the

file’s parent directory; this reveals file names and attributes of all other files within the same

directory. It is, however, desirable to be able to treat all files in the file system independently

of each other when defining file searchability — just like the read privilege for a file F1 is not

contingent on the read privilege for a different file F2. The find/grep security model does

not meet this requirement.

This suggests a slight modification of the definition of searchable. Instead of insisting that

there is a path for which the searching user has full read and execute privilege, we now only

insist that there is a path from the file system’s root directory to the file in question such that

the user has the execution privilege for every directory along this path. Unfortunately, this

new definition conflicts with the traditional use of the read and execution privileges, in which

this constellation is usually used to give read permission to all users who know the exact file

name of the file in question (cf. Section 5.1). While this is a less severe limitation than the

make-the-whole-directory-visible problem discussed above, it still is somewhat unsatisfactory.

The only completely satisfying solution would be the introduction of an explicit fourth

access privilege, the search privilege, in addition to the existing three. Since this is very

unlikely to happen, as it would probably break most existing UNIX software, I decided to

base my definition of searchable on a combination of read and execute, as motivated above.

Definition: File Searchability in Wumpus

A file F is searchable by a user U if and only if:

1. There is a path from the file system’s root directory to F such that U has

the execute privilege for all directories along this path.

2. U has been granted the read privilege for F .

Based on this definition, search permissions can be granted and revoked, just like the other

permission types, by modifying the respective read and execute privileges.

The resulting file system search security model is not necessarily based on the basic own-

er/group/others UNIX security model. It can easily be applied to more complicated models,

including, for example, access control lists, as long as the set of access privileges (R, X) stays

the same. The model only requires a user to have certain privileges; it does not make any

assumptions about where these privileges come from. Moreover, once it has been established

what exactly it means for a file to be searchable by a user, the details of the definition become

92 Multi-User File System Search

irrelevant. Thus, the possible implementations of the file system search security model dis-

cussed in the remainder of this chapter are applicable in any environment in which there are

some files that may be searched by a given user and other files that may not. This includes

enterprise search scenarios, such as the one described by Bailey et al. [5].

Any implementation of the file system search security model needs to fulfill two essential

requirements:

• Every file that is searchable by a user U is a potential search result and must be returned

to the user if it matches the query.

• The search engine’s response to a search query submitted by U may not contain any

information, either explicit or implicit, about files not searchable by U .

Several possible implementations of the security model are presented in the following sec-

tions. The first two implementations (based on a postprocessing approach) do not meet the

requirements stated above; the following two implementations (based on query integration

via structural query constraints) do meet the requirements.

5.3 Enforcing Security by Postprocessing

In Section 2.2.3, I have demonstrated by example that it is highly desirable for the search

engine to provide some sort of relevance ranking and to present the search results to the user

in decreasing order of predicted relevance to the query.

Suppose the search engine does rank search results by their expected relevance. The

question then is how the statistical information necessary to perform the relevance ranking

should be obtained by the search engine. Two fundamentally different approaches exist. The

engine may either use global, system-wide term statistics extracted from all files in the system,

or it may use term statistics obtained exclusively from the set of files searchable by the user

who submitted the query.

The first approach has the advantage that term statistics can be obtained more efficiently

and may even be cached by the search engine, improving query performance substantially

(cf. Section 4.5). Precomputing user-specific versions of these statistics, separately for each

user in the system, is not feasible, due to the potentially very large number of users. Unfortu-

nately, using global term statistics, as I will show later in this chapter, leads to insecurities in

the search engine that can be exploited by an arbitrary user to reach a very accurate estimate

of the statistics used to rank the search results, allowing her to obtain information about the

contents of files for which she does not have read permission.

Chapter 5 — Secure File System Search 93

If global term statistics are used to rank documents by their statistical relevance, then a

possible implementation of the security model defined in the previous section is based on the

well-known postprocessing approach (cf. Bailey et al. [5]). Whenever a query is submitted

by a user U , it is processed as usual, without taking U ’s identity and access privileges into

account. After the query has been processed, all search results referring to files that are not

searchable by U (according to the file system search security model) are removed from the

final list before the results are returned to the user.

The final postprocessing step in this general approach to security-aware query processing

can be realized in two different ways.

Implementation 1: �������

The search engine can obtain information about security permissions by accessing each file

referenced in the search results (for instance, by issuing a stat system call) and ensuring – at

query time – that the file is searchable by the user who submitted the query. Depending

on the number of files in the search results, and depending on the percentage of the files

searchable by the user, this might or might not be a viable solution.

Recall the essence of my discussion of existing techniques for file system search in UNIX

(Section 2.1). I pointed out that, compared to hard disk capacity and disk throughput for

sequential read/write operations, random disk seeks have become more and more costly over

the last decade. Therefore, the traditional find/grep paradigm, I concluded, no longer

represents an attractive method of full-text search.

The same logic applies here. Individually accessing each matching file is an extremely

expensive operation that, in total, can easily take several seconds. This is particularly prob-

lematic if the number of matching files that the user has the search privilege for is small

compared to the total number of matching files. Suppose the user U who submitted a query

to the search engine has the search privilege for 50% of all files in the file system. Suppose

further the search engine does not return a complete ranking of all documents matching the

query, but only the top 10, according to some relevance ranking function. Then, on average,

the search engine needs to check access privileges for 20 files in order to find the top 10 files

that are searchable by U . If, however, U may only search 5% of all files in the file system,

then the postprocessing step may require hundreds of file access operations, just to find 10

files that may be searched by the user.

94 Multi-User File System Search

Implementation 2: Caching File Permissions

As an alternative to the stat-based implementation, the search engine can maintain cached

information about file access privileges. This seems natural, since the search engine needs to

maintain some file-specific information, such as file names, creation dates, etc., in any case.

Compared to the first implementation, the postprocessing step now can be performed

much faster, because the security information for all indexed files is stored in a small re-

gion of the hard disk, requiring only a small number of disk seeks. If the total size of these

security-related meta-data is small, it might even be possible to permanently cache them in

main memory. Whether this is actually a sensible way of consuming precious memory re-

sources depends on the characteristics of the file system. If basic UNIX security restrictions

(i.e., owner/group/others) are used exclusively, it seems tolerable. The per-file overhead then

is no more than 6 bytes (2 bytes for owner and group ID each, 2 bytes for R/W/X access

privileges). However, if file owners make extensive use of ACLs with several thousand entries

(as permitted by JFS), then permanently storing all security meta-data in main memory is

certainly not feasible.

In the following, I show that the postprocessing approach, using global term statistics to pro-

duce and rank search results, is insecure, as it allows an arbitrary user to obtain information

about files for which she does not have read permission.

5.3.1 Exploiting Relevance Scores

Let us assume that the search engine employs some sort of statistical relevance ranking

(cf. Section 2.2) to sort search results before returning them to the user. Let us further

assume that the search engine reports the exact relevance scores back to the user, and that

these scores are based on global term statistics, i.e., on the contents of all files in the file

system. Then a random user U will be able to deduce from the search results exact file-

system-wide term statistics for an arbitrary search term. Depending on the actual ranking

function employed by the search engine, this information may include the number of files that

a term appears in or the number of times that the term occurs in the file system.

One might argue that revealing to an unauthorized user the number of files that contain

a certain term is only a minor problem. I disagree and give two example scenarios in which

the ability to infer term statistics is highly undesirable and can have disastrous effects on file

system security:

• An industrial spy knows that the company she is spying on is developing a new chemical

process. She starts monitoring term frequencies for certain chemical compounds that

Chapter 5 — Secure File System Search 95

are likely to be involved in the process. After some time, this will have given her enough

information to tell which chemicals are actually used in the process — without reading

any files.

• The search system can be used as a covert channel to transfer information from one

user account to another, circumventing security mechanisms like file access logging.

For all calculations performed in this section and the next, I assume that the number of files

in the system is sufficiently large so that the creation or removal of a single file does not cause

a substantial alteration of the collection statistics. This assumption is not necessary, but it

simplifies some of the calculations.

BM25: Computing the Number of Files Containing a Given Term

Suppose the search system uses a system-wide index and implements Okapi BM25 to perform

relevance ranking on files matching a search query. After all files matching a user’s query

have been ranked by BM25, files that may not be searched by the user are removed from the

list. The remaining files, along with their relevance scores, are presented to the user.

Recall from Chapter 2 that, for a given ranked search queryQ := {Q1, . . . , Qn}, a sequence

of n query terms, the BM25 score for a file F is:

scoreBM25(Q, F) =

n∑

i=1

log

(
|F|

|FQi |

)
·

(1 + k1) · fF (Qi)

fF (Qi) + k1 ·
(
(1− b) + b · |F |

avgfl

) , (5.1)

where:

• F is the set of indexable files in the file system;

• FQi is the set of files containing the term Qi;

• fF (Qi) is the number of times that Qi occurs in F ;

• |F | is the length of the file F , measured in tokens;

• avgfl the the average file length in the file system, i.e., the average number of tokens

found in an indexable file;

• k1 and b are free parameters. For the purpose of the argument presented here, I assume

that their values are known. This assumption is not necessary; by submitting just two

additional search queries, it is possible to obtain the values of both k1 and b.

96 Multi-User File System Search

I start by showing how an arbitrary user, called Eve3, can compute the values of the unknown

parameters |F| (the number of files in the file system) and avgfl (the average file length in

tokens) in Equation 5.1. For this purpose, Eve generates two unique terms T1 and T2 (for

example, with the help of a random number generator) that do not appear in any file. She

then creates three new files F1, F2, and F3:

• F1 contains only the term T1;

• F2 consists of two occurrences of the term T1;

• F3 contains only the term T2.

Now, Eve sends two queries to the search engine: {T1} and {T2}. For the former, the engine

returns F1 and F2; for the latter, it returns F3. For the scores of F1 and F3, Eve knows that

score(F1) = log

(
|F|

2

)
·

(1 + k1)

1 + k1 · ((1− b) + b
avgfl

)
, (5.2)

because T1 occurs in two files, and because it occurs a single time in F1, and

score(F3) = log

(
|F|

1

)
·

(1 + k1)

1 + k1 · ((1− b) + b
avgfl

)
, (5.3)

because T2 occurs in one file, and because it occurs a single time in F3. Dividing (5.2) by

(5.3) results in

score(F1)

score(F3)
=

log
(
|F|
2

)

log
(
|F|
1

) ⇔
score(F1)

score(F3)
= 1−

1

log2 |F|
(5.4)

and thus

|F| = 2

“

score(F3)
score(F3)−score(F1)

”

. (5.5)

Now that Eve knows |F|, the number of files in the file system, she proceeds to compute the

second unknown: avgfl, the average file length. Using equation (5.3), she obtains:

avgfl =
b

X − 1 + b
, (5.6)

where

X =
(1 + k1) · log(|F|)− score(F3)

score(F3) · k1
. (5.7)

3In cryptography, Eve is the canonical name for an eavesdropper, a user that is sitting on the line and
trying to get her hands on some data that are not meant to be read by her.

Chapter 5 — Secure File System Search 97

Since she now knows all parameters of the BM25 scoring function, Eve creates another file

F4, which contains the term T ∗ that she is interested in, and submits the query {T ∗}. The

search engine returns F4 along with score(F4). This information is used by Eve to construct

the final equation

score(F4) =
(1 + k1) · log

(
|F|

|FT∗ |

)

1 + k1 ·
(
(1− b) + b

avgfl

) , (5.8)

in which |FT ∗ | is the only unknown. Eve can therefore easily calculate its value. In the

end, after submitting only three queries to the search engine, she knows the number of files

containing T ∗:

|FT ∗ | = |F| · 2−Y ·score(F4), (5.9)

where

Y =
1 + k1 · ((1− b) + b

avgfl
)

1 + k1
. (5.10)

To avoid small changes in |F| and avgfl, the file F4 can be created before the first query is

submitted to the system.

Language Modeling: Computing the Number of Occurrences of a Given Term

If the search engine’s ranking function is based on a language modeling approach instead

of BM25, then Eve cannot determine the number of files containing the term T ∗. She can,

however, find out how often T ∗ occurs in the entire file system.

Recall from Chapter 2 that, for a given ranked query Q = {Q1, . . . , Qn}, containing n

query terms, the relevance score of the file F , according to a language modeling approach

with Dirichlet smoothing, is:

scoreLMD(Q, F) =

n∏

i=1

fF (Qi) + µ · Pr(Qi|F)

|F |+ µ
, (5.11)

where

• fF (Qi) is the number of occurrences of Qi within F ;

• |F | is the length of the file F , measured in tokens;

• Pr(Qi|F) is the unigram probability of Qi according to the language model defined by

all files in the file system, estimated using the maximum likelihood heuristic;

• µ is a free parameter.

98 Multi-User File System Search

In order to determine the total number of occurrences of the term T ∗ in the file system, Eve

generates a unique term T1 and two new files F1 and F2:

• F1 consists of a single occurrence of T1;

• F2 contains one occurrence of T1 and T ∗ each.

She then submits a search query {T1}, for which the search engine returns F1 and F2, with

scores:

score(F1) =
1 + µ · Pr(T1|F)

1 + µ
, (5.12)

score(F2) =
1 + µ · Pr(T1|F)

2 + µ
. (5.13)

Dividing (5.12) by (5.13) results in

µ =
2 · score(F2)− score(F1)

score(F1)− score(F2)
(5.14)

and thus

Pr(T1|F) = score(F1) +
(score(F1)− 1) · (score(F1)− score(F2))

2 · score(F2)− score(F1)
. (5.15)

Submitting the query {T ∗}, Eve can obtain the value of Pr(T ∗|F) in the same way. Combining

the information, she then computes the total number of occurrences of T ∗ as:

fT ∗ = 2 ·
Pr(T ∗|F)

Pr(T1|F)
. (5.16)

If the search engine computes relevance scores using a different incarnation of the language

modeling approach, for example, employing Jelinek-Mercer smoothing [58] (linear interpola-

tion) instead of Dirichlet smoothing, Eve can proceed in essentially the same way, performing

only slightly different calculations.

5.3.2 Exploiting Ranking Results

The above argument has made it clear that, if file system search security is enforced by

following the postprocessing approach, then the relevance scores of the matching files must

not be revealed to the user. Otherwise, the security of the system will be compromised,

because the relevance scores, based on global term statistics, make it possible to reverse-

engineer the scoring process and to compute exact term statistics.

Chapter 5 — Secure File System Search 99

I now show that, even if the relevance scores are not made available to the user (Eve)

who submits a search query, she will still be able to obtain a very good approximation of the

global term statistics, by carefully analyzing the order in which matching files are returned

by the search engine. This implies that the postprocessing approach is inherently insecure

and should not be used. The accuracy of the approximation that can be achieved by the

procedure described here depends on the number of files Fmax that Eve may create without

drawing the attention of the system administrator. Let us assume Fmax = 2000.

My discussion of the method employed by Eve is limited to the case where BM25 [94] is

used to score matching files, but the general idea can be applied to other scoring functions as

well (e.g., language modeling or QAP).

Eve starts by creating a file F0, containing only a single occurrence of T ∗, the term she is

interested in. She then generates a unique term T1 and creates 1,000 files F1 . . . F1000, each

containing a single occurrence of T1. After doing this, she submits the ranked query

{T ∗, T1}

to the search engine. Since BM25 performs a Boolean OR to determine the set of matching

files, the search engine returns F0 as well as F1 . . . F1000, ranked according to their BM25

scores. If, in the response to Eve’s query, the file F0 appears before any of the other files

(F1 . . . F1000), then she knows that

score(F0) ≥ score(F1) ⇒ log

(
|F|

|FT ∗ |

)
≥ log

(
|F|

|FT1 |

)
(5.17)

(cf. equation 5.1) and thus:

|FT ∗ | ≤ 1000 = |FT1 |. (5.18)

That is, T ∗ occurs in at most 1,000 files. Eve can now perform a binary search, adjusting the

number of files containing the term T1, until she knows the exact value of |FT ∗ |.

If, on the other hand, F0 appears after the other files (F1 . . . F1000) in the ranking produced

by the search engine, Eve knows that |FT ∗ | ≥ 1000. It might be that this information is

sufficient for her purposes. However, if she needs a better approximation, she can achieve

that, too.

Eve first deletes all files that she has created so far. She then generates two more unique

terms T2 and T3. She creates 1,000 files F ′
1 . . . F ′

1000, each containing the two terms T1 and T2,

and 999 files F ′
1001 . . . F ′

1999, each containing a single occurrence of the term T3. She finally

creates one last file, F ′
0, containing one occurrence of T ∗ and T3 each. After she has created

100 Multi-User File System Search

Figure 5.2: Relative BM25 score of F ′
0 (containing T ∗ and T3) and F ′

1 (containing T1 and T2)
as the number of files containing T3 is reduced. Initially, score(F ′

0) is smaller than score(F ′
1),

because T ∗ appears in more files than the other terms and thus has smaller IDF weight. After
d deletions, score(F ′

0) is greater than score(F ′
1).

these 2,000 files, Eve submits the query

{T ∗, T1, T2, T3}

to the search system. All 2,000 files she has created match the query. The relevance scores

of the files F ′
0 . . . F ′

1000 are:

score(F ′
0) = C ·

(
log

(
|F|

|FT ∗ |

)
+ log

(
|F|

|FT3 |

))
, (5.19)

because F ′
0 contains T ∗ and T3, and

score(F ′
i) = C ·

(
log

(
|F|

|FT1 |

)
+ log

(
|F|

|FT2 |

))
(5.20)

(for 1 ≤ i ≤ 1000), because all the F ′
i ’s contain T1 and T2. The constant C, which is the same

for all files created, is the BM25 length normalization component for a file of length 2:

C =
1 + k1

1 + k1 ·
(
(1− b) + 2·b

avgfl

) . (5.21)

Eve now subsequently deletes one of the files F ′
1001 . . . F ′

1999 at a time, starting with F ′
1999,

and re-submits her query to the search engine, until F ′
0 appears before F ′

1 in the list of

matching files (i.e., score(F ′
0) ≥ score(F ′

1)). Suppose this happens after d deletions. Because

score(F ′
1) = C · 2 · log

(
|F|

1000

)
, (5.22)

Chapter 5 — Secure File System Search 101

she then knows that

log

(
|F|

|FT ∗ |

)
+ log

(
|F|

1000− d

)
≥ 2 · log

(
|F|

1000

)
≥ log

(
|F|

|FT ∗ |

)
+ log

(
|F|

1000− d + 1

)
,

(5.23)

and thus

− log(|FT ∗ |)− log(1000− d) ≥ −2 · log(1000) ≥ − log(|FT ∗ |)− log(1000− d + 1), (5.24)

which implies
10002

1000− d
≥ |FT ∗ | ≥

10002

1000− d + 1
. (5.25)

The general procedure is visualized in Figure 5.2. Just like in the first case, where |FT ∗ |

was smaller than 1000, Eve can realize her quest for |FT ∗ | through a binary search, reducing

the number of search queries that need to be submitted to about 10.

Example

Suppose the term that Eve is interested in occurs in |FT ∗ | = 9,000 files. Throughout the

process of approximating |FT ∗ |, the score of F ′
1 remains constant:

score(F ′
1) = C · 2 · log(|F|)− C · log(1000)− C · log(1000) (5.26)

≈ C · (2 · log(|F|)− 13.8155). (5.27)

After deleting 888 files, F ′
0’s score is:

score(F ′
0) = C · 2 · log(|F|)− C · log(9000)− C · log(112) (5.28)

≈ C · (2 · log(|F|)− 13.8235). (5.29)

After deleting 889 files, its score is:

score(F ′
0) = C · 2 · log(|F|)− C · log(9000)− C · log(111) (5.30)

≈ C · (2 · log(|F|)− 13.8145). (5.31)

Hence, after deleting 888 files, F ′
0 is ranked lower than F ′

1. After the 889th file is deleted, F ′
0

is ranked higher than F ′
1. Therefore, Eve can conclude that

log(|FT ∗ |) + log(112) ≥ 2 · log(1000) ≥ log(|FT ∗ |) + log(111). (5.32)

102 Multi-User File System Search

She obtains the following bounds: 8929 ≤ |FT ∗ | ≤ 9009. She also knows that the relative

error of her approximation is at most (9009−8929)/2
8929 ≈ 0.45%.

Generalization

The method described above provides an approximation of the following form:

(Fmax/2)
2

(Fmax/2)− d
≥ |FT ∗ | ≥

(Fmax/2)
2

(Fmax/2)− d + 1
, (5.33)

where Fmax is the maximum number of files Eve may create without raising suspicion. Ob-

viously, if |FT ∗ | increases, then the quality of the approximation deteriorates. For example,

if |FT ∗ | = 9,000 and Fmax = 2,000 (as before), then the approximation error is guaranteed

to be at most 0.45%. However, if T ∗ is rather frequent and appears in, say, |FT ∗ | = 160,000

files, then the approximation error may be as large as 8.3%, making it difficult to obtain a

reliable estimate.

This problem can be addressed by generalizing the method and storing more than 2 terms

in each file, as follows:

• Pick an integer t, the number of terms to store in each file.

• Generate 2t− 1 unique terms T1, . . . , T2t−1.

• Create Fmax/2 files, each containing the terms T1, . . . , Tt.

• Create Fmax/2− 1 files, each containing the terms Tt+1, . . . , T2t−1.

• Create a single file containing one occurrence each of T ∗ and Tt+1, . . . , T2t−1.

• Proceed as before.

Depending on the values of |FT ∗ |, Fmax, and t, Eve can obtain an approximation of the form:

(Fmax)
t

(Fmax − d)t−1
≥ |FT ∗ | ≥

(Fmax)
t

(Fmax − d + 1)t−1
. (5.34)

Guaranteed approximation errors (upper bounds) for various values of t and |FT ∗ | are shown

in Figure 5.3. Using the generalized method, the approximation error stays well below 1%

for Fmax = 2,000, even if T ∗ appears in a very large number of files (e.g., |FT ∗ | = 100,000).

Chapter 5 — Secure File System Search 103

1.4%

1.2%

1.0%

0.8%

0.6%

0.4%

0.2%

 160000 80000 40000 20000 10000 5000 2500 1250

A
pp

ro
xi

m
at

io
n

er
ro

r
(u

pp
er

 b
ou

nd
)

Number of files containing T*

(a) Fmax = 2000

2 terms per file
3 terms per file
4 terms per file
5 terms per file

10%

9%

8%

7%

6%

5%

4%

3%

2%

1%

 160000 80000 40000 20000 10000 5000 2500 1250

A
pp

ro
xi

m
at

io
n

er
ro

r
(u

pp
er

 b
ou

nd
)

Number of files containing T*

(b) Fmax = 500

2 terms per file
3 terms per file
4 terms per file
5 terms per file

Figure 5.3: Guaranteed approximation error (upper bound) when calculating |FT ∗ |, the
number of files containing a given term T ∗; storing 2, 3, 4, or 5 terms per file (original
method: 2 terms per file). The quality of the approximation depends on Fmax, the maximum
number of files that may be created by a user without raising suspicion.

104 Multi-User File System Search

5.3.3 Exploiting Support for Structural Constraints

So far, we have only seen how to exploit ranking results in order to calculate (or approximate)

the number of files that contain a particular term. While this already is undesirable, the

situation is even worse if the search system allows relevance ranking for more complicated

queries, such as Boolean queries, phrases, or structural queries, like those supported by GCL.

If the search engine supports GCL-type structural query constraints and enforces security

restrictions by following the postprocessing approach, then it is comparatively trivial for a

user to infer information about files that are not accessible by her. By creating a file of the

form

T1 T2 T3

(containing the three terms T1, T2, and T3) and submitting the query

T2 C ((T1 · · · “interesting phrase”) ∨ (“interesting phrase” · · · T3)),

it is possible to determine whether the “interesting phrase” appears somewhere in the file

system. Since T2 lies within a file that is searchable by the user, the security subsystem of

the search engine – only invoked after the query has been processed – has no way of knowing

that the search result depends on information that is stored outside that file.

But even if the search engine does not offer support for full-blown structural constraints,

it is still possible to go beyond single-term statistics. If, for instance, the search system

allows phrase queries of arbitrary length, then it might be possible to infer the entire content

of a file — depending on how exactly ranking for phrases is realized in the search engine.

Assume phrases are treated as if they were atomic terms, and assume we know that a certain

file contains the phrase “A B C”. We then try all possible terms D and and calculate the

number of files which contain “A B C D” until we have found a D that gives a non-zero

result. We then continue with the next term E. This way, it is possible to construct the

entire content of a file using a finite number of search queries (although this might take a long

time). Some a-priori knowledge about the contents of the file in question, or even a simple

n-gram language model [26] [47] can be used to predict the next word and thus increase the

efficiency of this method.

In general, the more powerful the search engine’s query language, and the more features

it uses to rank the search results, the more detailed is the information that Eve can obtain

by following a method similar to the one outlined above.

Chapter 5 — Secure File System Search 105

Sub-Index 1

Index Manager

Sub-Index 2 Sub-Index n.....

Security Manager

Query Processor

User 1

User 2

User m

User m-1

Figure 5.4: The three components of the search engine that are involved in secure query
processing: index manager (providing access to the query terms’ posting lists), security man-
ager (applying security restrictions to all posting lists), and query processor (matching and
scoring documents).

5.4 Integrating Security Restrictions into the Query Processor

Motivated by the shortcomings of the postprocessing approach described in the previous

section, I now describe how GCL-type structural query constraints can be used to apply

security restrictions to all search results in a reliable manner — by integrating the security

restrictions into the query processing procedure instead of applying them as a postprocessing

step.

When a search query is submitted by a user U , three main components of the search

engine are involved in processing that query (as shown in Figure 5.4):

• The index manager provides access to a set of posting lists stored in the in-memory

index and to the on-disk indices.

• The security manager applies security restrictions to all posting lists, making sure that

they do not contain any information related to files that are not searchable by U .

• The query processor performs a sequence of relevance computations and orders the set

of matching documents by their relevance to the given query.

106 Multi-User File System Search

GCL query:

(<doc> · · · </doc>) B ((mad ∧ cow) C [3])

Operator tree:
B

· · ·

C

<doc> FU

C

</doc> FU

C

∧

C

mad FU

C

cow FU

[3]

Figure 5.5: Integrating security restrictions into the query processing. GCL query and
resulting operator tree with security restrictions applied to all posting lists (GCL containment
operator “C”), for textual query “return all documents in which ‘mad’ and ‘cow’ appear within
3 words”.

In the course of processing a query, the query processor requests posting lists from the index

manager and uses the information found in these lists to perform the actual search operation.

However, every posting list that is sent back to the query processor has to pass the security

manager, which applies user-specific restrictions to the list. As a result, the query processor

only ever sees those parts of a posting list that lie within files that are searchable by the user

who submitted the query. Since the query processor’s response to a search query now is solely

dependent on the parts of the posting lists that correspond to files searchable by the user,

the results are guaranteed to be consistent with the user’s view of the file system and cannot

violate any file permissions.

Applying user-specific security restrictions can be realized in a lazy-evaluation fashion, by

utilizing the operations provided by the GCL retrieval framework [31], as follows. The search

engine’s security manager maintains a list of index extents, corresponding to all files in the

system, and represented by the GCL expression

<file> · · · </file>

(the actual expression used within the search engine is slightly different, so as to avoid conflicts

with XML documents containing <file> or </file> tags, but for readability reasons I use

the above notation). Whenever the search engine receives a query from a user U , the security

manager is asked to compute a list FU of all index extents that correspond to files whose

content is searchable by U (using the security model’s definition of searchable). FU is a sub-

Chapter 5 — Secure File System Search 107

Figure 5.6: Query results for two example queries (“<doc> · · · </doc>” and “mad ∧ cows”)
with security restrictions applied. Only postings from files that are searchable by the user
are considered by the query processor.

list of the GC-list defined by “<file> · · · </file>” and represents the user’s view of the file

system at the moment when the search engine receives the query. Changes to the file system

taking place while the query is being processed are ignored; the same list FU is used to process

the entire query. Constructing the list FU does not involve any inverted index operations, as

the GC-list FU is generated from the security manager’s internal data structures, and not from

the index. It does, however, require a sequential scan of the internal file list of the security

manager, containing one entry for every indexed file — an operation with time complexity

Θ(|F|), where F is the set of all indexed files.

The query processor, while it is processing the query, never contacts the index manager

directly when requesting a posting list for a query term T . Instead, it sends its request to the

security manager, which forwards it to the index. After receiving the posting list LT from

the index, and before returning it to the query processor, the security manager transforms

the original, unrestricted list LT into a security-restricted list LT,U :

LT,U ≡ (LT C FU).

The GCL operator tree that results from adding security restrictions to a given GCL

search query is shown in Figure 5.5. Their effect on query results is shown in Figure 5.6.4

The query processor never accesses LT directly, but only the restricted version LT,U .

Hence, it is impossible for it to produce query results that depend on the content of files that

are not searchable by U . If term statistics need to be obtained in order to rank the matching

documents after a query has been processed, then these statistics are also computed by

accessing LT,U , and not LT . Thus, the search results produced only depend on files searchable

by U ; they cannot be used to obtain any information about files not searchable by U .

Because all GCL operators support lazy evaluation, it is not necessary to apply the security

restrictions to the entire posting list when only a small portion of the list is used to process

a query. This is important for query processing performance (e.g., MaxScore [109]).

4At first sight, it might not make a lot of sense that the documents in Figure 5.6 span across multiple files.
However, keep in mind that the search engine, based on a schema-independent retrieval framework, has no
notion of documents whatsoever, and it is entirely up to each application (e-mail client, word processor, ...)
how to organize its data.

108 Multi-User File System Search

Limitations

One drawback of the current implementation of the security model is that, in order to ef-

ficiently generate the list of index extents representing all files searchable by a given user

(FU), the security manager needs to keep some information about every indexed file in main

memory. This information includes the file’s i-node ID, its start and end address in the in-

dex address space, its owner, permissions, etc.; in total, it consumes 32 bytes per indexed

file. For file systems with a few million indexable files, the amount of main memory required

to keep this information in RAM may exceed the amount of RAM that the user or system

administrator is willing to allocate to the search engine.

Alternatively, all security meta-data may be kept on disk. However, this is not a very

satisfying solution, either, as it would make sub-second query response times difficult to

achieve. At this point, keeping the meta-data in memory and applying compression techniques

similar to the ones discussed in Section 2.4.4 seems to be the best solution.

Applicability to Index Updates

It is worth pointing out that this implementation of the security model has the nice property

that it automatically supports index update operations. When a file is deleted from the file

system, this file system change has to be reflected by the search results. Without a security

model, every file deletion would either require an expensive physical update of the internal

index structures (updating the posting lists of all terms that appeared in the now-deleted

file), or the application of a postprocessing step – similar to the one discussed in the previous

section – in which all query results that refer to deleted files are removed from the final result

list (cf. Chiueh and Huang [25]). The postprocessing approach would have the same problems

as the one from Section 5.3: it would use term statistics that do not reflect the user’s actual

view of the file system.

By integrating the security restrictions into the core query processing logic, file deletions

are immediately supported by the search engine, because the corresponding index address

range, associated with the expression

<file> · · · </file>,

is automatically removed from the security manager’s internal representation of the file sys-

tem. This way, it is possible to keep the index up-to-date at minimal cost. Updates to the

actual index data, which are very expensive, may be delayed and applied in batches. Doing

so is the topic of Section 6.5.

Chapter 5 — Secure File System Search 109

 500

 400

 300

 200

 100

 100 90 80 70 60 50 40 30 20 10

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

Visibility (%)

(a) QAP

Postprocessing
Query integration

 1000

 800

 600

 400

 200

 100 90 80 70 60 50 40 30 20 10

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

Visibility (%)

(b) BM25

Postprocessing
Query integration

Figure 5.7: Performance comparison: Query integration using GCL operators vs. postpro-
cessing approach. Time per query for the optimized integration is between 50% and 171%,
compared to postprocessing. The actual time depends on the scoring function employed and
on the relative number of files searchable by the user.

5.5 Performance Evaluation

I experimentally evaluated the performance of the query integration approach from the pre-

vious section and the second implementation of the postprocessing approach (keeping cached

meta-data in the search engine), using the TREC corpus as the test collection. See Chapter 3

for a description of the corpus and the search queries used.

The 1.5 million documents in the collection were split into 15,449 files, and each of the

500 search queries was run against the index built for the collection (using QAP [32] and

BM25 [94] to score and rank the set of matching documents). For both scoring functions, I

conducted several experiments, with different percentages of searchable files in the file system.

110 Multi-User File System Search

Starting with the situation in which all 15,449 files are searchable by the user who submits

the queries, collection visibility was gradually reduced, from 100% down to 5% (by marking

a random fraction, p, of all files as readable). At each visibility level, all 500 queries were

evaluated; between each consecutive pair of experiments, the operating system’s disk cache

was emptied, by reading large amounts of random data from the file system.

For each query, the search engine is asked to identify the top 20 documents according

to the respective scoring function. When the GCL-based implementation is used, this is

straightforward. For the postprocessing implementation, however, the situation is a bit more

complicated. In order to be able to report the top 20 searchable results back to the user, the

search engine needs to keep track of a large number of top-ranking documents, because not

all of them will be searchable by the user. In the experiments, I configured the search engine

so that it produced a set of k top-ranking documents, where k was chosen in such a way that

the probability that at least 20 of out of the k documents were searchable by the user was at

least 99%:

Pr[#visible in top k ≥ 20] = 1−
19∑

i=0

pi · (1− p)k−i ·

(
k

i

)
≥ 0.99. (5.35)

At visibility level p = 0.2, for instance, the search engine needs to keep track of the top

k = 153 documents in order to meet the requirement.

This has consequences for query processing performance. First, maintaining a large set of

top documents requires more complex book-keeping operations than maintaining a small set

of top documents (updating the Min-Heap that contains the top k search results requires

Θ(log(k)) operations on average). Second, the MaxScore [109] heuristic becomes less effec-

tive as k gets larger, since more document scores need to be computed before a query term

can be removed from the priority queue used in the document-at-a-time query processing

strategy employed by the search engine (cf. Section 2.2.2).

The performance results obtained under these circumstances are shown in Figure 5.7. As

expected, if the percentage of searchable files is large, then the postprocessing approach yields

better performance than query integration. For QAP and 100% visibility, query integration

increases average response time by 35% compared to postprocessing (BM25: 71%). However,

as the number of searchable files in the collection is decreased, query processing time drops

for the query integration approach, since fewer documents have to be examined and fewer

relevance scores have to be computed. For the postprocessing approach, on the other hand,

query performance remains about constant or is even slightly increased, which is consistent

with the expectation. For a visibility level of 5%, query integration reduces the average time

per query by 45% (QAP) and 50% (BM25), respectively.

Chapter 5 — Secure File System Search 111

GCL query:

(<doc> · · · </doc>) B ((mad ∧ cow) C [3])

Operator tree:
C

B

C

· · ·

C

<doc> FU

C

</doc> FU

FU

C

C

C

∧

C

mad FU

C

cow FU

FU

C

[3] FU

FU

FU

Figure 5.8: New operator tree, following the file independence assumption. The tree corre-
sponds to the one shown in Figure 5.5, but with security restrictions applied to every tree
node.

5.6 Query Optimization

Although the GCL-based implementation of the security model does not exhibit an excessively

decreased performance, it is nevertheless slower than the postprocessing approach if more

than 50% of the files can be searched by the user. The slowdown is caused by applying

the security restrictions (. . . C FU) not only to every query term, but also to the document

delimiters (<doc> and </doc>) used in the TREC collection. These document delimiters, just

like ordinary query terms, need to be fetched from the index and are therefore subject to the

same security restrictions as the actual query terms.

Obviously, in order to guarantee consistent query results, it is only necessary to apply

them to either the documents (in which case the scoring function will ignore all occurrences

of query terms that lie outside searchable documents) or the query terms (in which case

unsearchable documents would not contain any query terms and therefore receive a score of

0). However, this optimization would be very specific to the concrete query type (TF/IDF

relevance ranking) used in the experiments described here.

112 Multi-User File System Search

Figure 5.9: Query results for two example queries (“<doc> · · · </doc>” and “mad ∧ cows”)
with revised security restrictions applied. Even though <doc> in file 2 and </doc> in file 4 are
visible to the query processor, they are not considered valid results, since they are in different
files.

In order to address the problem of redundant security restrictions in a more general way,

a new constraint is introduced: file independence. Assuming that files in the file system can

be indexed by the search engine in any order, their relative order in the index address space

may be a random permutation. Hence, issuing queries that produce GC-lists spanning across

multiple files has no meaningful interpretation any longer, not even for intermediate search

results.

It is therefore possible to adjust the secure GCL operator tree in such a way that security

restrictions are applied to every node of the original, unsecure tree so that every search result

(including every intermediate result), must reside completely within one file. The resulting

operator tree is shown in Figure 5.8. The effect that the file independence constraint has on

the search results is exemplified by Figure 5.9.

Obviously, applying security restrictions to every single node is overkill. However, the

new tree can serve as a starting point for query optimization and can be transformed into

a simpler, equivalent form. Recall the semantics of the seven GCL operators {· · · , ∨, ∧, B,

6B , C, 6C } from Section 2.2.4. For two arbitrary GCL expressions E1 and E2, the following

equivalences hold:

1. ((E1 C FU) · · · (E2 C FU)) C FU ≡ (E1 · · ·E2) C FU

2. ((E1 C FU) ∨ (E2 C FU)) C FU ≡ (E1 ∨ E2) C FU

3. ((E1 C FU) ∧ (E2 C FU)) C FU ≡ (E1 ∧ E2) C FU

4. ((E1 C FU) B (E2 C FU)) C FU ≡ (E1 B E2) C FU

5. ((E1 C FU) 6B (E2 C FU)) C FU ≡ (E1 6B E2) C FU

However:

6. ((E1 C FU) C (E2 C FU)) C FU 6≡ (E1 C E2) C FU

7. ((E1 C FU) 6C (E2 C FU)) C FU 6≡ (E1 6C E2) C FU

Chapter 5 — Secure File System Search 113

Algorithm 5 Constructing a secure GCL operator tree. Security restrictions are moved up
in the tree as far as possible, following the file independence assumption. Input: A GCL
expression E and a list of searchable files FU . Output: A secure GCL expression EU .

procedure makeSecure(E, FU):
1: E ← makeAlmostSecure(E, FU)
2: return (E C FU)

procedure makeAlmostSecure(E, FU):
3: if E.leftChild = nil then
4: // this is a leaf node; by definition, it is almost secure
5: return E
6: end if
7: E.leftChild← makeAlmostSecure(E.leftChild, FU)
8: E.rightChild← makeAlmostSecure(E.rightChild, FU)
9: if (E.operator = C) ∨ (E.operator =6C) then

10: // in order to make this expression almost secure, restrictions need to be
11: // applied to the container component of the containment expression
12: E.rightChild← (E.rightChild C FU)
13: end if
14: return E

Equivalences 1 through 5 hold because each of the five operators {· · · ,∨,∧, B, 6 B } is

monotonic. That is, if an index extent E matches the expression E1 � E2 (where “�” is

one of the five operators), then the extents matching E1 and E2 from which E was formed

by applying the GCL operator are always covered by E . Therefore, applying the security

restrictions exclusively to the top-most level of the respective operator tree does not affect

the outcome of the search operation.

The operators {C, 6C }, however, are non-monotonic. For example, the GCL query

“term” C (<doc> · · · </doc>)

may evaluate to an index extent that is smaller than the input extent matching the subex-

pression <doc> · · · </doc>. This phenomenon has already been exploited in Section 5.3.3 to

obtain information about arbitrary phrase occurrences if security restrictions are enforced by

means of postprocessing.

It is unclear which strategy yields the best results for general GCL queries. However, for

typical ranked queries, finding a set of matching documents by applying a Boolean OR (GCL

operator “∨”), good performance is achieved by moving the security restrictions as far up

in the tree as possible. This procedure is formalized by Algorithm 5. The algorithm takes

a GCL expression E and a user-specific restriction list FU ; it produces a security-restricted

GCL expression EU in a bottom-up fashion.

114 Multi-User File System Search

GCL query:

(<doc> · · · </doc>) B ((mad ∧ cow) C [3])

Operator tree:
C

B

· · ·

<doc> </doc>

C

∧

mad cow

C

[3] FU

FU

Figure 5.10: GCL query and resulting operator tree with optimized security restrictions
applied to the operator tree.

Algorithm 5 makes use of the concept of an almost secure operator tree. A GCL tree is

almost secure if it can be made secure by applying a single security restriction operator at the

root node of the tree. A basic GCL expression (corresponding to a single term or a phrase)

is always almost secure. A compound expression is almost secure if one of the following two

requirements holds:

• the root node’s operator is one of {· · · ,∨,∧, B, 6B } and both subtrees (left and right)

are almost secure;

• the root node’s operator is one of {C, 6C }, the left subtree (containee) is almost secure,

and the right subtree (container) is secure.

The first requirement is enforced by lines 7–8. The second requirement is enforced by lines

9–12. The secure GCL operator tree produced by the algorithm, for the same search query as

before, is shown in Figure 5.10. It contains two instances of the security restriction operator.

The one at the root node of the operator tree is necessary to make the tree secure. The

one applied to the subexpression “[3]” (matching all index extents of length 3) is not strictly

necessary; it is an artifact of Algorithm 5.

I evaluated the performance of this new implementation of the secure query processing

strategy, employing the move-to-top heuristic in order to reduce the total number of appli-

cations of the security restriction operator. The experimental results obtained are shown in

Figure 5.11.

Chapter 5 — Secure File System Search 115

 500

 400

 300

 200

 100

 100 90 80 70 60 50 40 30 20 10

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

Visibility (%)

(a) QAP

Postprocessing
Query integration (optimized)

 1000

 800

 600

 400

 200

 100 90 80 70 60 50 40 30 20 10

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

Visibility (%)

(b) BM25

Postprocessing
Query integration (optimized)

Figure 5.11: Performance comparison – query integration using GCL operators (optimized)
vs. postprocessing approach. Compared to postprocessing, the average time per query for the
optimized query integration is between 47% and 108%, depending on ranking function and
visibility.

The security restrictions applied by the new implementation are very light-weight. Com-

pared to the postprocessing approach, the slowdown for a file visibility level p = 1 is only 6%

for QAP and 8% for BM25. At visibility level p = 0.05, the new implementation is more than

twice as fast as postprocessing, for both QAP and BM25.

5.7 Discussion

I have investigated the security issues that arise in the context of multi-user file system

search, when the search engine’s index is shared and accessed by multiple users. I have shown

that enforcing security restrictions by means of postprocessing leads to vulnerabilities that

116 Multi-User File System Search

may be exploited by an arbitrary user to gain information about files she is not allowed to

read. This problem applies not only to file system search, but also to related areas, such

as enterprise search, where the same index is also queried by a variety of users with diverse

access privileges. As most enterprise search engines employ a postprocessing step of some

sort to remove results not accessible by the user who submitted the query [5], they are most

likely amenable to attacks similar to the ones described in Section 5.3. However, this is only

speculation, as I did not have access to any of these systems to verify my claim.

Contrary to what I have suggested in previous work [17], Apple’s Spotlight search engine

is not affected by the postprocessing problem, since it does not order the search results by

their expected relevance to the query before returning them to the user (cf. Section 2.2.3).

While this is good news from a security perspective, it also reduces the usability of their

search engine.

The alternative implementation of the security model – integrating it into the query

processing logic by utilizing the structural operators provided by the GCL retrieval frame-

work – fixes the security problem. As a side-effect, it also leads to better query performance,

because the search engine never even computes retrieval scores for documents not searchable

by the user. Only at a very high visibility level, close to 100%, postprocessing results in lower

query response times than query integration. For true multi-user file systems, however, such

a high visibility level is not realistic.

The limitation of the query integration approach is that it requires the search engine

to hold a copy of all security-related meta-data in memory. If the file system exclusively

uses traditional UNIX file permissions (i.e., no ACLs), then this is not too unrealistic. Every

indexed file will require approximately 10 bytes of memory (2 bytes each for owner, group, and

permission vector; about 4 bytes for vByte-encoded [100] start and end address), which seems

tolerable for a file system containing a few million files. For very large file systems, however,

containing dozens of millions of files, the resulting memory requirements might exceed the

limit that the users of the system are willing to sacrifice. Also, if users define more complicated

access permissions, for example through access control lists, memory consumption may easily

be greater than 10 bytes per file, as the upper limit on the number of rules in an ACL can

be very large.

Even if all security-related meta-data may be kept in memory at all times, they still

represent a performance bottleneck. Whenever the search engine receives a new query, it

needs to determine group membership for the user U who submitted the query and construct

the user-specific security list FU , requiring time Ω(|FU |). Holding FU in a cache is certainly

possible, but not very realistic in a true multi-user environment.

Chapter 5 — Secure File System Search 117

An alternative to the proposed method of enforcing security restrictions is to store the lists

FU in the index and to treat them like ordinary index terms. Unfortunately, this introduces

a whole range of problems related to updating these lists. Not only would a single chmod

operation need to be propagated to |U| different posting lists (where U is the set of all users

in the system); the new implementation would also require the search engine to maintain

an explicit invalidation list, containing information about obsolete index data and used for

lazy deletion (discussed in more detail in Section 6.5). In the current implementation, this

is realized through the security framework. If the security framework itself is based upon

ordinary posting lists, then this is no longer possible.

All in all, despite the shortcomings pointed out above, the implementation of the security

model suggested in this chapter seems to be the best trade-off. For medium-sized file systems,

containing only a few million indexable files, it leads to reasonable results, in terms of both

memory consumption and query performance.

Chapter 6

Real-Time Index Updates

In Chapter 4, I have described several performance optimizations for inverted files. Taken

together, the techniques laid out allow a file system search engine to efficiently build, and peri-

odically update, an index for the contents of the file system and to provide low-latency search

operations to the users. The memory consumption of the search engine’s index structures is

very low, thanks to the interleaved dictionary representation proposed in Section 4.4.2. In

this chapter, I extend the techniques from Chapter 4, discussing how the index, after it has

been built, can be kept up-to-date and consistent with the continuously changing contents of

the file system.

The first part of the chapter focuses on incremental updates, allowing new files to be

added to the collection, but not allowing existing files to be deleted or modified. It compares

merge-based (Section 6.2) and in-place (Section 6.3) index update strategies and quantify the

trade-off between update performance and query response time that arises by dividing the

on-disk index into several index partitions, each containing parts of the total index data. I

propose a family of hybrid index maintenance strategies — a mixture of in-place and merge-

based update, where long lists are updated in-place, while short lists are maintained using a

merge strategy (Section 6.4). Hybrid index maintenance combines the advantages of in-place

update (small number of postings transferred from/to disk) and merge-based update (largely

sequential disk access pattern during update operations).

In the second part of the chapter, I attend to file deletions and file modifications. I

study garbage collection strategies that, in conjunction with the secure query processing

framework described in the previous chapter, can be used to realize support for deletion

operations (Section 6.5). I then investigate possible mechanisms that can be integrated into

the search engine to provide support for partial document modifications, in particular those

of the Append class (Section 6.6).

119

120 Multi-User File System Search

The methods presented up to, and including, Section 6.6 do not actually meet any strict

real-time requirements, as all update operations are only guaranteed to have low amortized

complexity. In Section 6.7, I therefore describe a small set of modifications that can be made

to the search engine in order to change the amortized nature of all index update operations

into actual real-time index updates.

6.1 General Considerations and Terminology

When new documents are added to an existing text collection, the search engine’s internal

index structures need to be updated, so as to reflect the new situation. If the index is stored in

main memory, then this is a relatively easy task (as demonstrated in Section 4.3). If the index

is stored on a hard disk, however, realizing efficient index updates can be quite challenging. A

file F that is added to the file system can be very small, yet at the same time contain hundreds

of different terms. If an in-place update strategy is chosen, then updating the inverted lists

for all terms appearing in F requires a large number of disk seeks. Their total time can

easily take a hundred or even a thousand times longer than the initial event that triggered

the index update (i.e., the creation of F). For this reason, it is absolutely crucial to buffer

index information for incoming documents in main memory and to apply all updates to the

on-disk index structures in a larger batch, as already pointed out in Section 2.5.

Accumulating updates in memory has two effects. First, it reduces the relative number

of on-disk inverted lists that need to be updated. Two different files, although they might be

independent of each other, are likely to share some common terms (Zipf’s law). Therefore,

the ratio
#lists to be updated

#postings to be added

shrinks as more updates are buffered in memory. For the three text collections used in my

experiments, this effect is shown in Table 6.1.

Second, accumulating updates in memory increases the number of on-disk inverted lists

that need to be updated and thus allows the index maintenance process to schedule on-disk

updates in a more efficient way, reducing the seek distance between two on-disk list updates.

The second effect can even be observed if the newly added documents do not share any

common terms.

The drawback of buffering index data for incoming files in main memory is that these data

might not be immediately accessible to the search engine’s query processing routines and that

the user has to wait until the next update of the on-disk index structures before new files

become visible in the search results. Fortunately, this deficiency can be cured by employing

Chapter 6 — Real-Time Index Updates 121

Text collection SBFS TREC GOV2

k (tokens seen) ×106 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

Unique terms seen ×103 22.6 134.2 270.6 10.8 34.3 90.4 8.0 33.3 147.6

Tokens per term 4.4 7.5 37.0 9.2 29.2 110.7 12.5 30.0 67.7

Table 6.1: Indexing the first k = 105, 106, 107 tokens from all three text collections. The
ratio #terms seen / #tokens seen (“tokens per term”) shrinks as k gets bigger.

the hash-based in-memory indexing method from Section 2.4.3 (and its variation in discussed

in Section 4.3.1) to organize incoming postings data in main memory. The extensible posting

lists employed by hash-based indexing can immediately be used for query processing purposes.

By concatenating a term’s on-disk list with the list found in memory, the search engine always

has access to the most recent version of each term’s posting list.

Because in-memory index construction can be performed very efficiently, the procedure

outlined above allows for near-instantaneous index updates. Every now and then, however,

the inverted lists constructed in memory do need to be combined with the existing on-disk

index. This batch update operation is very costly in terms of disk activity. The main focus

of the first part of this chapter, therefore, is to reduce the search engine’s disk activity during

these on-disk update cycles.

Every strategy for combining in-memory index data with the existing on-disk structures

represents a performance trade-off. Search queries can be processed most efficiently if the on-

disk inverted list for every term in the index is stored in a contiguous region of the hard disk

(minimizing disk seeks). However, enforcing contiguity can be expensive. Sometimes, when

appending in-memory postings to an on-disk inverted list, there is not enough free space at

the list’s current position on disk. In that case, the entire list needs to be read from disk and

written to a new location. As the text collection, and therefore the on-disk index, grows, the

performance degradation caused by such a copy operation becomes more and more grave, up

to a point where it might no longer be feasible to guarantee the contiguity of on-disk posting

lists.

Terminology

In some rare cases, when comparing two different index maintenance strategies A and B, it

turns out that A leads to both better update performance as well as better query performance

than B. I shall then say that A dominates B. This is an unusual situation, however. In most

cases, two strategies A and B do in fact represent different trade-off points, where one strategy

allows faster updates, while the other leads to more efficient processing of search queries.

122 Multi-User File System Search

@addfile trec/chunks/trec.04093

@rank[qap][count=20][id=215] “〈doc〉”· · · “〈/doc〉” by “unexplained”, “highway”, “accidents”

@addfile trec/chunks/trec.08966

@rank[qap][count=20][id=8] “〈doc〉”· · · “〈/doc〉” by “rail”, “strikes”

@addfile trec/chunks/trec.14707

@rank[qap][count=20][id=104] “〈doc〉”· · · “〈/doc〉” by “oil”, “spills”

.....

Figure 6.1: Beginning of the combined insertion/query sequence for the TREC collection
used in my experiments. The command sequence is meant to simulate a fully dynamic search
environment, where index update operations are interleaved with search operations. It con-
sists of 15,449 @addfile and 15,449 @rank commands (random queries selected from TREC
topics 1-500).

6.2 Merge-Based Update

The Immediate Merge and No Merge strategies introduced in Section 2.5.1 represent two

extreme points in the trade-off between index maintenance and query processing performance.

Immediate Merge combines the in-memory index with the on-disk index by merging them

in a sequential fashion, resulting in a new on-disk inverted file that replaces the old one.

Because the new index is created from scratch, one list at a time, all its posting lists will

be stored on disk in a contiguous fashion, optimizing query performance. The No Merge

strategy is targeting the other end of the spectrum. By creating a separate on-disk inverted

file every time the search engine’s in-memory update buffers are exhausted, fragmentation is

maximized, leading to a large number of disk seeks when processing a search query. Indexing

performance, on the other hand, is optimal, because postings are never relocated after they

have been written to disk.

I analyzed the performance of both methods, No Merge and Immediate Merge, in

a dynamic search environment, where the search engine has to deal with file insertions and

search operations at the same time. Such an environment is simulated by the command

sequence shown in Figure 6.1. One after the other, each of the 15,449 files comprising the

TREC collection is indexed. After every file insertion operation, a random search query from

the TREC query set (cf. Chapter 3) is processed.

The performance results obtained through measurement are shown in Figure 6.2. Plot (a)

depicts the per-file indexing time for No Merge and Immediate Merge. Each file added to

the index contains 100 TREC documents. The vast majority of all files (94.5%) requires less

than 100 ms to be indexed. A very small number of insertions, however, triggers a physical

Chapter 6 — Real-Time Index Updates 123

1000

100

10

1

0.1

0.01
 100 90 80 70 60 50 40 30 20 10

T
im

e
pe

r
in

se
rt

io
n

(s
ec

on
ds

)

% indexed

(a) Indexing performance (per file)

Immediate Merge
No Merge

 60

 50

 40

 30

 20

 10

 100 90 80 70 60 50 40 30 20 10

A
cc

um
ul

at
ed

 in
de

xi
ng

 ti
m

e
(m

in
ut

es
)

% indexed

(b) Cumulative index maintenance overhead

Immediate Merge (total)
Immediate Merge (CPU)

No Merge (total)
No Merge (CPU)

 1200

 1000

 800

 600

 400

 200

 100 90 80 70 60 50 40 30 20 10

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

% indexed

(c) Query processing performance

No Merge
Immediate Merge

Figure 6.2: Index maintenance and query processing performance for TREC, measured as the
collection grows (100% =̂ 1.5 million documents, 824 million tokens). Space for in-memory
buffers: 32 MB. Hardware used: AMD Sempron 2800+ desktop PC (32-bit CPU, 768 MB
RAM).

124 Multi-User File System Search

index update (search engine runs out of memory). For No Merge, this means that the

in-memory posting lists have to be sorted in lexicographical order and written to disk. This

operation takes about 1.6 seconds on average. For Immediate Merge, each physical index

update also requires the search engine to combine the in-memory index data with the on-disk

inverted file. The time required to carry out this re-merge task grows linearly with the size of

the on-disk index (note that the vertical axis in Figure 6.2(a) is in logarithmic scale), starting

at 3 seconds for the first merge operation, and gradually increasing to 67 seconds for the last

one.

Plot (b), just like (a), shows the time spent on indexing operations, but cumulative instead

of per file. While No Merge can build and update the index in linear time, Immediate

Merge exhibits a quadratic time complexity, requiring a total of 56 minutes to index the

collection (compared to a total of 16 minutes in the case of No Merge).

The quadratic complexity of Immediate Merge is caused by the fact that it needs to

read and write the entire on-disk index whenever the search engine runs out of main memory.

Let N denote the total size of the collection (number of postings in the index at the end of

the experiment) and M the number of postings that can be accumulated in RAM before the

in-memory buffers are exhausted. Then the total number of postings written to disk is

D(N, M) =

bN/Mc∑

i=1

i ·M = M ·
bN/Mc · bN/M + 1c

2
∈ Θ

(
N2

M

)
. (6.1)

Figure 6.2(b) also shows the cumulative CPU time consumed by both strategies. Thanks

to the optimization from Section 4.3.2 (merging posting lists without prior decompression),

Immediate Merge’s CPU utilization is around 35%, proving that the bottleneck of this

strategy is its disk activity.

It might be possible to slightly decrease disk activity by applying better index compression

techniques than the vByte [100] method used here. However, this does not solve the problem

in general and also introduces new intricacies due to the need of re-compressing posting lists

during a merge operation. This indicates that there is a limit for Immediate Merge’s update

performance that cannot be overcome. If M is small compared to N , then there might be

better update strategies than Immediate Merge.

Plot 6.2(c), finally, shows the query performance achieved by both strategies in the dy-

namic environment simulated by the given command sequence: time per search query, aver-

aged over a sliding window covering 300 queries. Not surprisingly, No Merge performs much

worse than Immediate Merge. Towards the end of the experiment, a search query takes 3

times longer to be processed with No Merge than with Immediate Merge. This is caused

Chapter 6 — Real-Time Index Updates 125

by the large number of inverted files maintained by No Merge. In total, 78 independent

on-disk indices are created. For every query term, the search engine needs to visit each of

these indices, resulting in 78 disk seeks per query term.

What is surprising here, however, is that the difference in query performance between the

two update strategies only becomes apparent after 40% of the TREC collection have been

indexed. Before that, the average time per query is essentially the same for both. This can

be explained by the relative magnitude of the index and the main memory of the computer

used to run the experiment. The final index for TREC consumes 1.4 GB; the computer used

to conduct the experiment is equipped with 768 MB of RAM. Thus, up until the half-way

point, most index operations required during query processing are cached by the operating

system.

Nonetheless, if M is small compared to N , then the number of disk seeks performed during

query processing will be very large. At the end of the experiment (100% indexed), an average

query takes about 230% longer with No Merge than with Immediate Merge (1200 ms vs.

360 ms).

6.2.1 Index Partitioning

The general problem of updating an inverted file is very similar to the problem of providing

efficient lookup operations for a growing set of integer numbers (or any other kind of totally

ordered objects). That is, the implementation needs to support an insert(x) operation, adding

a new integer x to the existing set, and a find(x) operation returning the smallest integer i in

the set such than i ≥ x.

Suppose the data structure used to maintain the set is a simple contiguous array, suffi-

ciently large and stored in main memory. Then there are two extreme update strategies:

1. A new element is inserted into the set by appending it to the existing array, increasing

the size of the array by 1. This can be realized in constant time, assuming sufficient

space is available at the end of the array. However, because the elements of the set may

appear in arbitrary order in the array, a search operation on this array has a worst-case

time complexity of Θ(n).

2. The complexity of search operations can be reduced by ensuring that the elements of

the set are always stored in the array in increasing order. An element of the set can

then be found by a binary search operation, requiring Θ(log(n)) steps. Inserting a new

element, however, requires the relocation of n array elements in the worst case and thus

exhibits a time complexity of Θ(n).

126 Multi-User File System Search

Translated back into the context of text retrieval, strategy 1 corresponds to No Merge,

while strategy 2 corresponds to Immediate Merge (assuming a buffer size M = 1 in both

cases).

Bentley and Saxe [10] present an algorithm that achieves an amortized insertion com-

plexity of Θ(log(n)) and a worst-case search complexity of O(log2(n)), as follows. Instead of

maintaining a single sorted array, as in Strategy 2, the algorithm maintains a family of arrays

A0, A1, A2, Each array Ai is either empty, or it contains 2i elements, in sorted order. For

a set of n integers, the algorithm maintains at most dlog2(n+1)e arrays. A lookup operation

on this data structure can be realized by a sequence of O(log2(n)) binary search operations,

one for each array Ai, with total time complexity

Clookup(n) ≤

blog2(n)c∑

i=0

log2(2
i) =

blog2(n)c∑

i=0

i ∈ O
(
log2(n)

)
. (6.2)

When a new element has to be inserted, it is appended to the array A0. If that leads to

a situation in which |A0| > 1, then A0 is sorted and merged with A1. If this causes A1 to

contain more than 2 elements, then A1 is merged with A2 and so forth, until there are no

more violations of the constraint Ai ≤ 2i.

Now consider the total complexity of all insertion operations. After inserting n elements

into the data structure, each element has participated in at most dlog2(n + 1)e merge oper-

ations (because there are at most dlog2(n + 1)e non-empty arrays). Therefore, the combined

complexity of all insertion operations is

C∗
insert(n) ≤ n · dlog2(n + 1)e ∈ O(n · log(n)), (6.3)

and the amortized complexity per insertion operation is:

Cinsert ∈ O(log(n)). (6.4)

The worst-case complexity of an insertion operation, however, is still Θ(n); this happens, for

example, when adding a new element to a set containing 2k − 1 elements (for some positive

integer k). Overmars and van Leeuwen [84] present a variation of Bentley’s scheme that

exhibits the same lookup performance as before, but that achieves a O(log2(n)) worst-case

(i.e., non-amortized) insertion complexity.

The general technique described above is referred to as the logarithmic method. It can be

directly applied to the task of updating an inverted index for a growing text collection, result-

Chapter 6 — Real-Time Index Updates 127

Algorithm 6 On-line index construction with Logarithmic Merge. Building a schema-
independent index for a potentially infinite text collection.

1: let I0 denote the search engine’s in-memory index
2: let Ig denote the on-disk index partition of generation g
3: I0 ← ∅ // initialize in-memory index
4: currentPosting← 1
5: while there are more tokens to index do
6: T ← next token
7: I0.addPosting(T, currentPosting)
8: currentPosting← currentPosting + 1
9: if I0 contains more than M − 1 postings then

10: I ← {I0}
11: g ← 1
12: while Ig is not empty do
13: I ← I ∪ {Ig}
14: g ← g + 1
15: end while
16: Ig ← mergeIndices(I)
17: delete every index I ∈ I
18: I0 ← ∅ // re-initialize in-memory index
19: end if
20: end while

ing in the Logarithmic Merge update strategy (Algorithm 6). Where Bentley’s method

maintains a set of arrays of exponentially increasing size (i.e., 20, 21, . . . , 2k), Logarithmic

Merge maintains a set of on-disk indices Ij , containing M · 2j postings each, where M is

the number of postings that may be buffered in memory. Therefore, in analogy to the above

analysis, the total number of postings transferred from and to disk when building an index

for a text collection containing N postings, is:

D(N, M) ∈ Θ

(
N · log

(
N

M

))
. (6.5)

This is substantially better than the quadratic disk complexity of Immediate Merge. The

set of index partitions maintained by Logarithmic Merge, over a sequence of index update

cycles, is shown in Figure 6.3.

Lester et al. [68] generalize this scheme by allowing more general constraints on the relative

size of the individual on-disk inverted files. As an additional point of comparison, I will use

the variant of their geometric partitioning method in which they allow at most two on-disk

128 Multi-User File System Search

Figure 6.3: Index structures over time, with Logarithmic Merge as update strategy,
assuming that the search engine can buffer M postings in RAM before it runs out of memory.
Each cylinder represents a separate inverted file on disk.

inverted files to exist in parallel. This method has a total disk update complexity of

D(N, M) ∈ Θ

(
N ·

√
N

M

)
(6.6)

when building an index for a collection of size N (see [68] for an analysis). I shall refer to it

as Sqrt Merge.

Both index partitioning strategies, Logarithmic Merge and Sqrt Merge, lead to a

situation in which on-disk inverted lists are no longer stored in contiguous regions of the disk.

Therefore, although they exhibit an improved update performance, compared to Immediate

Merge, we can expect to see a reduced query processing performance, due to the additional

disk seeks that need to be performed to fetch all segments of a query term’s posting list

from the individual index partitions. This slowdown, however, is likely to be relatively small,

because the number of separate index partitions is tightly controlled in both cases.

Implementation Details

The actual implementation of Logarithmic Merge used in my experiments is slightly dif-

ferent from Algorithm 6. Instead of assigning a fixed generation label to each index partition,

generation numbers are computed dynamically, based on the byte size of each partition. The

adjustment is necessary because the search engine also provides support for document dele-

tions (Section 6.5). In the presence of deletions, merging two inverted files containing x and

y postings, respectively, no longer results in a new inverted file containing x + y postings,

Chapter 6 — Real-Time Index Updates 129

as some of the postings involved in the merge operation might refer to files that have been

deleted. Such postings will not show up in the target index, making it possible that a partition

of generation g + 1 might contain fewer postings than one of generation g.

Deletions are taken into account by using the raw byte size of each index partition as the

exclusive criterion to determine whether a merge operation needs to be performed or not. In

particular, the following restriction is enforced:

size(Ik+1) > 1.5 · size(Ik) ∀ k. (6.7)

The inter-partition growth factor q = 1.5 was chosen somewhat arbitrary. It does, however,

need to be considerably smaller than 2, because merging two index partitions Im and In

results in a partition Ip with size(Ip) < size(Im) + size(In), due to term overlap between Im

and In.

Experiments

As before, I had the search engine build an index for the TREC collection, indexing documents

and processing search queries in an interleaved fashion (cf. Figure 6.1), but this time allowing

the engine to maintain more than just a single on-disk inverted file at a time. The results are

depicted in Figure 6.4.

Plot 6.4(a) shows that both partitioning schemes, Logarithmic Merge and Sqrt

Merge, exhibit a substantially better index maintenance performance than Immediate

Merge. The total indexing time for Logarithmic Merge is 18.9 minutes (Sqrt Merge:

23.0 minutes), compared to an indexing performance baseline of 15.9 minutes achieved by

static indexing (cf. Table 4.5). That is, the total overhead is only 3 minutes (+19%). At the

same time, however, query performance is dramatically improved compared to No Merge,

as shown in plot 6.4(b). When 100% of the collection have been indexed, Logarithmic

Merge processes queries more than 3 times as fast as No Merge.

What is surprising about the experimental results is that there is virtually no difference

between the query performance of Immediate Merge, Sqrt Merge, and Logarithmic

Merge. This is unexpected, as the search engine needs to perform more disk seeks when

processing a query from a partitioned index than from a single, non-partitioned index. At first

blush, it is not entirely clear what exactly causes this abnormal behavior, but disk caching

effects (because the index is only twice as large as the amount of RAM available to the

operating system, and because the number of distinct search queries is rather small) are the

most likely explanation.

130 Multi-User File System Search

 60

 50

 40

 30

 20

 10

 100 90 80 70 60 50 40 30 20 10

A
cc

um
ul

at
ed

 in
de

xi
ng

 ti
m

e
(m

in
ut

es
)

% indexed

(a) Cumulative index maintenance overhead

Immediate Merge
Sqrt Merge

Logarithmic Merge
No Merge

 1200

 1000

 800

 600

 400

 200

 100 90 80 70 60 50 40 30 20 10

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

% indexed

(b) Query processing performance

No Merge
Logarithmic Merge

Sqrt Merge
Immediate Merge

Figure 6.4: Indexing the TREC collection with interleaved query operations (command
sequence from Figure 6.1). Index maintenance performance and query performance of different
merge update strategies. In-memory update buffers: 32 MB.

I repeated the experiment with the larger GOV2 collection, so as to reduce the impact

that the operating system’s disk cache has on the search engine’s query performance. The

final index for GOV2 consumes 62 GB of disk space, 30 times more than the main memory

installed in the 2-GB workstation hosting the collection. A fragment from the command

sequence used for the revised experiment, comprising 27,204 update and query operations in

total, is given by Figure 6.5.

The results obtained for GOV2 are shown in Figure 6.6. As before, the index partitioning

schemes exhibit a total indexing overhead close to that of the No Merge strategy:

• No Merge: 309 minutes;

• Logarithmic Merge: 517 minutes (+67%);

Chapter 6 — Real-Time Index Updates 131

@addfile gov2/GX148/01.txt

@rank[qap][count=20][id=85987] “〈doc〉”· · · “〈/doc〉” by “cherry”, “juice”

@addfile gov2/GX066/63.txt

@rank[qap][count=20][id=11851] “〈doc〉”· · · “〈/doc〉” by “radios”, “work”

@addfile gov2/GX008/63.txt

@rank[qap][count=20][id=16231] “〈doc〉”· · · “〈/doc〉” by “population”, “florida”, “cities”

.....

Figure 6.5: Beginning of the combined insertion/query sequence for the GOV2 collection
used in my experiments. This sequence is similar to the one shown in Figure 6.1, but for
GOV2 instead of TREC. It consists of 27,204 @addfile and 27,204 @rank commands.

• Sqrt Merge: 1262 minutes (+308%).

Immediate Merge, on the other hand, is not competitive at all, requiring 9491 minutes (158

hours) to build an index for the text collection.

The difference between Logarithmic Merge and Sqrt Merge is greater than before,

because the relative size of the in-memory buffers (256 MB), compared to the total size of

the index (62 GB), is smaller than in the case of TREC (32 MB vs. 1.4 GB).

The query processing performance achieved by the different update policies is shown in

plot 6.6(b). As before, No Merge has substantially lower query performance than the other

strategies, requiring up to 300% more time per query than Immediate Merge. Regarding

the relative performance of Immediate Merge and index partitioning, it can be seen that

the difference is relatively small, as the three curves are virtually indistinguishable.

Figure 6.7 provides a different view of the relative query performance of the three up-

date strategies, making it easier to see the exact differences. Plot 6.7(b) shows the absolute

time difference per query, while plot 6.7(c) shows the relative query slowdown compared to

Immediate Merge, both computed over a sliding window covering 150 search queries. By

comparing the two plots to 6.7(a), it can be seen that the performance gap between par-

titioned and non-partitioned index is directly correlated to the number of partitions in the

on-disk index. The sudden drop for Logarithmic Merge shortly before the 40% mark, for

example, is caused by a merge operation reducing the number of active index partitions from

7 to 1. Before the re-merge operation, Logarithmic Merge can be expected to perform 6

additional disk seeks per query term (compared to Immediate Merge). The GOV2 query

sequence contains 3.5 terms per query on average. Assuming an average disk seek latency of

8 ms, the expected slowdown is therefore: 6× 3.5× 8ms = 168ms. The actual slowdown seen

in the experiments is 154 ms.

132 Multi-User File System Search

 2500

 2000

 1500

 1000

 500

 100 90 80 70 60 50 40 30 20 10

A
cc

um
ul

at
ed

 in
de

xi
ng

 ti
m

e
(m

in
ut

es
)

% indexed

(a) Index maintenance performance

Immediate Merge
Sqrt Merge

Logarithmic Merge
No Merge

 12000

 10000

 8000

 6000

 4000

 2000

 100 90 80 70 60 50 40 30 20 10

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

% indexed

(b) Query processing performance

Immediate Merge
Sqrt Merge

Logarithmic Merge
No Merge

Figure 6.6: Index maintenance and query processing performance for GOV2, measured as the
collection grows (100% =̂ 25.2 million documents, 43.6 billion tokens). Space for in-memory
buffers: 256 MB.

The average per-query slowdown caused by the two index partitions maintained by Sqrt

Merge hovers around 5% for the most time. The Logarithmic Merge strategy, usually

maintaining 2–7 index partitions, leads to a slowdown between 10% and 20% for most queries.

It is interesting that, while the absolute slowdown for Logarithmic Merge tends to increase

(because of the growing number of index partitions), the relative slowdown shrinks. This is

because the overall query cost increases approximately linearly with the size of the collection,

but the slowdown introduced by Logarithmic Merge only increases logarithmically.

Table 6.2 shows the impact that the amount of main memory available to the search engine

has on index maintenance performance. In contrast to the other two update policies, Loga-

rithmic Merge’s update performance is largely unaffected by available memory resources.

Reducing the size of the in-memory buffers from 1024 MB to 32 MB only increases the main-

Chapter 6 — Real-Time Index Updates 133

 8

 7

 6

 5

 4

 3

 2

 1

5040302010N
um

be
r

of
 a

ct
iv

e
in

de
x

pa
rt

iti
on

s

% indexed

(a) Number of active index partitions

Logarithmic Merge
Sqrt Merge

+300

+200

+100

 0

-100
 50 40 30 20 10T

im
e

di
ffe

re
nc

e
pe

r
qu

er
y

(m
s)

% indexed

(b) Absolute query slowdown (compared to Immediate Merge)

Logarithmic Merge
Sqrt Merge

Immediate Merge

+50%

+40%

+30%

+20%

+10%

0%

-10%
 50 40 30 20 10

T
im

e
di

ffe
re

nc
e

pe
r

qu
er

y
(%

)

% indexed

(c) Relative query slowdown (compared to Immediate Merge)

Logarithmic Merge
Sqrt Merge

Immediate Merge

Figure 6.7: Query performance of Immediate Merge, Sqrt Merge, and Logarithmic

Merge for a growing text collection (GOV2). The relative performance (plots (b) and (c))
depends on the number of active index partitions maintained by the search engine (plot (a)).

134 Multi-User File System Search

32 MB 64 MB 128 MB 256 MB 512 MB 1024 MB

Immediate Merge 158.2 77.9 38.6

Sqrt Merge 21.0 15.3 12.4

Logarithmic Merge 9.8 9.4 8.9 8.6 8.5 8.0

No Merge 5.3 5.3 5.1 5.1 5.1

Table 6.2: The impact of memory resources on update performance, for various update
strategies. Total indexing time when building a schema-independent index for GOV2. All
numbers in hours.

tenance overhead by 22%, from 8.0 hours to 9.8 hours. The method is therefore especially

attractive in environments with scarce memory resources, such as file system search.

6.3 In-Place Update

The main shortcoming of the Immediate Merge update policy described and analyzed

above is the necessity to copy the entire on-disk index during every physical index update,

leading to the quadratic complexity seen in the experiments. The gravity of this problem

can be reduced by maintaining multiple index partitions, as done by Sqrt Merge and

Logarithmic Merge. But even with a partitioned index, the search engine copies posting

lists back and forth even though the majority of the postings are not affected by the updates

to the text collection. Moreover, dividing the on-disk index into multiple partitions decreases

query performance, as shown in my experiments.

The typical in-place index update policy stores each on-disk posting list in a contiguous

region of the disk [102] [69] [70] (although there are exceptions to this general rule [107]),

pre-allocating some empty space at the end of each list. Whenever in-memory index data

have to be combined with the on-disk index, the new postings can simply be appended at

the end of the respective list, without the need to copy the entire list. Only when the free

space at the end of a given list is insufficient to hold the new postings from the in-memory

index, the entire list is relocated to a new position, pre-allocating again some free space at

the end of its new location. The consensus regarding possible pre-allocation strategies is that

best performance results are obtained when following a proportional overallocation strategy

[103] [66] or by using historical information about the growth of each posting list to make a

pre-allocation decision based on its predicted growth in the future [102].

The advantage of the basic in-place update strategy with proportional pre-allocation is

that it leads to a linear number of postings transferred to/from disk (asymptotically optimal).

Its main limitation is its inability to deal with large numbers of very short lists. Each list

Chapter 6 — Real-Time Index Updates 135

relocation requires a disk seek. Thus, if many lists need to be moved around during a physical

index update, the in-place strategy, despite the small amount of data transferred from/to disk,

will be very inefficient.

Lester et al. [70], therefore, recommend giving special treatment to very short posting lists.

Instead of storing them in the postings file, Lester’s implementation keeps short lists (up to

512 bytes) directly in the search engine’s dictionary (realized by a B+-tree). This method,

although it increases update performance, has the disadvantage that it is likely to inflate the

dictionary so much that it does not fit into main memory any more. On the other hand, the

same may happen to the dictionary for any text collection of realistic size (cf. Section 4.4).

Surprisingly, even with all such optimizations integrated, in-place update is still outper-

formed by the comparatively simple Immediate Merge strategy, except when the search

engine’s in-memory buffers are very small. Lester [66, Chapter 4] attributes this to the large

number of random disk accesses required by in-place index update and the fact that the time

it takes to perform a disk seek is approximately linear in the distance travelled by the disk’s

read/write head. Thus, as the index becomes larger and larger, the time spent on disk seeks

(necessary to conduct list relocations), increases approximately linearly with the size of the

index.

6.3.1 File-System-Based Update

Despite its limitations, in-place index maintenance – from a developer’s point of view –

represents an interesting alternative to merge update. For example, if it were possible to store

every inverted list in a separate file in the file system, realizing list updates through simple

file append operations, then this would dramatically simplify the design and implementation

of the search engine.

Hans Reiser, the main developer of the ReiserFS1 and Reiser42 file systems, and well

known for his bold statements, motivates this approach in his own, distinctive words:

When filesystems aren’t really designed for the needs of the storage layers above

them, and none of them are, not Microsoft’s, not anybody’s, then layering re-

sults in enormous performance loss. The very existence of a storage layer above

the filesystem means that the filesystem team at an OS vendor failed to listen to

someone, and that someone was forced to go and implement something on their

own. 3

1http://www.namesys.com/X0reiserfs.html (accessed 2007-03-04)
2http://www.namesys.com/v4/v4.html (accessed 2007-03-04)
3http://www.namesys.com/whitepaper.html (accessed 2007-03-04)

136 Multi-User File System Search

 800

 700

 600

 500

 400

 300

 200

 100

 100 90 80 70 60 50 40 30 20 10

A
cc

um
ul

at
ed

 in
de

xi
ng

 ti
m

e
(m

in
ut

es
)

% indexed

(a) Index maintenance performance

In-Place (ext3)
In-Place (ext2)

In-Place (Reiser4)
Immediate Merge

No Merge

 1400

 1200

 1000

 800

 600

 400

 200

 100 90 80 70 60 50 40 30 20 10

A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(m
s)

% indexed

(b) Query processing performance

In-Place (ext2)
In-Place (Reiser4)
Immediate Merge

No Merge

Figure 6.8: Index maintenance and query processing performance for TREC, measured as
the collection grows (100% =̂ 1.5 million documents, 824 million tokens). File-system-based
update is not competitive with merge-based update.

As crazy as it may sound, this suggestion is not entirely absurd. Pre-allocation strategies,

for example, similar to those found in in-place index update, are standard components of file

system implementations. Giving special treatment to infrequent terms with very short lists,

as suggested by Lester et al. [70], is done in a similar way by Reiser4, which stores very small

files directly in the directory tree instead of allocating a full disk block for their storage.

I repeated the first experiment from Section 6.2 (cf. Figure 6.1), this time using the file

system implementation as the exclusive storage layer. All index data are stored in a single

directory, containing one file for each posting list. The name of each file is equal to the

term whose posting list it contains. Hence, the search engine does not need to maintain an

explicit dictionary, but can rely on the lookup functionality provided by the file system. The

Chapter 6 — Real-Time Index Updates 137

experiment was repeated three times, using a different file system implementation each time:

ext2, ext3, and Reiser4. Figure 6.8 shows the results obtained under the new circumstances.

At first sight, the outcome is not surprising. In terms of update performance, Reiser4 is

about 15 times slower than Immediate Merge, ext2 is about 15 times slower than Reiser4,

and ext3 is even slower than ext2, due to the additional journal activity. On the query side,

the situation is no different. Reiser4 is clearly outperformed by Immediate Merge, and

ext2 is even slower than No Merge. ext3, not shown here, leads to approximately the same

query performance as ext2. Obviously, the file system appears to be struggling with the large

number of files that need to be maintained and periodically updated. It is unable to keep file

fragmentation and lookup overhead at a low level.

However, it has to be pointed out that for small text collections, containing only a couple

hundred million tokens, a file-system-based index implementation might actually be a feasible

solution. After indexing the first 20% of the TREC collection (165 million tokens), for in-

stance, the time difference between Reiser4 and Immediate Merge is only 10 minutes (14.6

minutes vs. 4.2 minutes; +246%). Thus, all in all, Reiser4 performs remarkably well, espe-

cially compared to other file system implementations, and might represent a fairly efficient

index storage layer for small file systems. It just does not scale quite as well as custom index

implementations.

6.3.2 Partial Flushing

One of the two main reasons for buffering postings in memory before applying them to the

on-disk index, as a batch update operation, is that accumulating index data in memory

decreases the ratio

#lists to be updated

#postings to be added

(cf. Section 6.1). Since the disk seeks performed during such a batch index update represent

the main performance limitation of in-place update, it makes sense to think about techniques

that can decrease this ratio without increasing the memory consumption of the search engine.

One such technique, partial flushing, is motivated by the Zipfian term distribution found in

most natural-language text corpora. The main idea is that, while the majority of all posting

lists are very short, the majority of all postings is found in long lists. For example, of all

2.1 million posting lists in an index for the TREC collection, 2.0 million (95.5%) contain less

than 100 elements each. The total number of postings found in “long” lists (containing at

least 100 postings), on the other hand, is 814 million (98.8%). Hence, if the main objective

138 Multi-User File System Search

Algorithm 7 In-place update with partial flushing. Building a schema-independent index
for a potentially infinite text collection. Input parameters: ϑ ≥ 1, the long-list threshold;
ω ∈ (0, 1), the efficiency criterion, used to determine when partial flushing is no longer
beneficial.
1: IM ← ∅ // initialize in-memory index
2: ID ← ∅ // initialize on-disk index
3: currentPosting← 1
4: ω′ ← 1.0 // assume the last partial flush reduced memory consumption by 100%
5: while there are more tokens to index do
6: T ← next token
7: IM .addPosting(T, currentPosting)
8: currentPosting← currentPosting + 1
9: if IM contains more than M − 1 postings then

10: for each term T in IM and its posting list LT do
11: if (LT .length ≥ ϑ) or (ω′ < ω) then
12: ID.addPostings(T, LT) // add long list LT to on-disk index ID

13: remove T and LT from IM

14: end if
15: end for
16: ω′ ← 1− # of postings in IM

M
17: end if
18: end while

is to reduce the total number of list updates performed, then it makes sense to not transfer

all in-memory posting lists to disk when the indexing process runs out of memory, but only

some of them, namely all lists containing more than a certain number ϑ of postings (for some

reasonable ϑ).

The effectiveness of this method depends on the characteristics of the text collection (Zipf

parameter α — greater α means more strongly skewed distribution and greater savings),

the “long list” threshold ϑ, and the total size of the search engine’s memory buffers. When

indexing the TREC collection (α ≈ 1.22) with 32 MB for in-memory posting buffers and a

partial flushing threshold ϑ = 256, the first application of partial flushing, taking place after

indexing 10.6 million tokens, reduces the search engine’s memory consumption by 59%. The

second application reduces the memory consumption by 47%, the third by 38%, and so forth.

The savings achieved by each subsequent partial flush are smaller than those attained by

the previous one, since the relative number of postings in short lists (containing fewer than ϑ

postings each) increases. Moreover, the memory savings realized by flushing long lists is not

quite as large as indicated by the Zipfian term distribution, mainly because of the memory

occupied by the hash-based in-memory dictionary needed for building the in-memory index.

Nonetheless, partial flushing can be used to reduce the total number of on-disk list updates.

Chapter 6 — Real-Time Index Updates 139

Long list threshold 1 16 64 256 1024 4096 16384

Total indexing time (minutes) 817 1290 830 504 466 479 578

Total number of list updates (×106) 11.8 9.5 8.6 8.5 9.3 9.9 10.6

Postings per list update (average) 69.8 86.9 96.1 96.9 88.7 83.3 77.9

Table 6.3: Indexing TREC with in-place index maintenance (Reiser4) and 32 MB for in-
memory buffers. Using a long-list threshold ϑ = 1024, partial flushing decreases the number
of on-disk list updates by 21% and the total index maintenance time by 43%.

Because the gains caused by partial flushing diminish at each subsequent application of

the partial flushing technique, it makes sense to impose a limit on the number of partial

flushings that may be performed in a row. In my implementation, this is realized by defining

an efficiency criterion ω. If the relative memory savings achieved by the previous application

of partial flushing are less than ω, then the following index update cycle will transfer the

entire in-memory index to disk, not just the postings found in long lists. This procedure is

formalized in Algorithm 7.

With ϑ = 256, ω = 0.15, and a memory limit of 32 MB, 5 partial flush operations on

average are performed between two consecutive complete update operations.

Experiments

I repeated the experiment from before (Figure 6.1), this time employing the partial flushing

strategy to reduce the total number of on-disk list updates in the in-place update policy

realized through Reiser4. The partial flushing efficiency criterion was set to ω = 0.15.

Table 6.3 shows that, with ϑ = 256, the total number of list updates can be reduced by

28%, from 11.8 million to 8.5 million. As a result, the total indexing time is decreased by

38%, from 817 minutes to 504 minutes. Surprisingly, partial flushing does not always help.

If the threshold ϑ is too small (≤ 64), indexing performance is worse than without partial

flushing. This may be explained by the fact that Reiser4 stores short lists directly in the

directory tree and not in separate disk blocks. Choosing ϑ too small essentially forces the

file system to read most parts of the directory tree (in a sequential manner, similar to a re-

merge operation), making it difficult to attain any savings by skipping parts of the directory

structure in a physical index update cycle.

What is also interesting is that too small a threshold ϑ does not even reduce the number

of list updates to be performed. For example, ϑ = 16 leads to a greater number of list

updates than ϑ = 256. While partial flushing reduces the list update activity for short lists,

it increases the number of list updates performed on long lists. If ϑ is chosen too small, this

140 Multi-User File System Search

 800

 700

 600

 500

 400

 300

 200

 100

 100 90 80 70 60 50 40 30 20 10

A
cc

um
ul

at
ed

 in
de

xi
ng

 ti
m

e
(m

in
ut

es
)

% indexed

Index maintenance performance

In-Place (Reiser4, no PF)
In-Place (Reiser4, PF: theta=256)

In-Place (Reiser4, PF: theta=1024)
Immediate Merge

Figure 6.9: In-place update with partial flushing, employing the file system as the exclusive
storage layer. When building an index for the TREC collection, a wide range of threshold
values ϑ lead to improved index maintenance performance compared to the baseline (Reiser4,
no partial flushing).

may lead to an overall increase of the number of list updates carried out (for ϑ = 16, the

number of list update operations is increased by 12% compared to ϑ = 256).

Figure 6.9 shows the indexing performance of partial flushing for ϑ = 256 and ϑ = 1024

in comparison to pure in-place update and the Immediate Merge strategy. It emphasizes

that, while partial flushing can lead to substantial savings over the original in-place strategy,

its performance is still not even close to that achieved by Immediate Merge.

Although it is unclear what exact effect partial flushing would have on highly optimized

implementations of in-place update (e.g., [102], [70]), it is highly unlikely that such imple-

mentations would not benefit from it at all. This claim is further supported by the results

obtained for contiguous hybrid index maintenance in Section 6.4.

6.3.3 In-Place vs. Merge-Based Update

The question whether in-place or merge-based index update strategies lead to the best per-

formance in dynamic text retrieval systems is vividly debated in the literature. Theoretically,

in-place update with proportional pre-allocation exhibits an asymptotically linear disk com-

plexity, because each posting – on average – is relocated at most a constant number of times.

In practice, unfortunately, the large number of disk seeks triggered by list relocations trans-

forms the linear complexity into a quadratic one, since each disk seek, on average, requires

time linear in the size of the index [66].

Chapter 6 — Real-Time Index Updates 141

Lester et al. [69] [70] show that, despite this limitation, in-place update may lead to better

indexing performance than Immediate Merge — if the memory resources of the search

engine are very limited and on-disk index updates have to be carried out frequently. However,

this line of argumentation does not take into account that, under these circumstances, the

search engine’s dictionary will most likely be too large to fit completely into main memory.

With a merge-maintained index, the memory consumption of the search engine’s dictio-

nary is very low, thanks to the dictionary interleaving technique described in Section 4.4.2.

If the system uses an in-place-updated index instead, the interleaving technique cannot be

employed any more. Posting lists are relocated continually, and there is no predefined, global

ordering on the terms in the index that can be utilized to find the index position of a term’s

posting list. The search engine, therefore, needs to maintain an explicit dictionary, containing

the exact on-disk position of every posting list.

If memory resources are scarce, then this constitutes a significant disadvantage of in-place

update. The search engine needs to store an explicit dictionary on disk and thus, at query

time, requires an additional disk seek per query term. It is then no longer appropriate to

compare in-place update to Immediate Merge. Instead, it must be compared to Sqrt

Merge, the variant of geometric partitioning [68] in which the search engine maintains two

independent index partitions and thus, at query time, performs two random disk accesses per

query term.

Unfortunately, in-place update is not even close to being competitive with Sqrt Merge.

I therefore conclude that, in most cases, in-place update is not an interesting option. It should

only be used if the number of unique terms in the index is very small.

6.4 Hybrid Index Maintenance

The main shortcoming of in-place update is its inability to deal with large numbers of posting

lists. The main shortcoming of merge-based index maintenance, on the other hand, is its

need to copy large portions of existing posting lists even though they have not changed. It

is possible to combine the advantages of both approaches into a family of update strategies

referred to as hybrid index maintenance.

Hybrid index maintenance divides the on-disk index into two sections. The first section is

updated according to a merge strategy and contains short posting lists (i.e., lists containing

fewer than ϑ postings, for some threshold ϑ). The second section is updated using an in-place

strategy; it contains long lists (i.e., lists containing ϑ postings or more).

The idea to distinguish between frequent terms and infrequent terms is not new:

142 Multi-User File System Search

• Cutting and Pedersen [35] conducted experiments with a merge update strategy based

on B+-trees in which they move posting lists into a secondary index once they become

too long to be stored in a single block of the B+-tree (a technique referred to as puls-

ing). However, their motivation was primarily ease of implementation, and not update

performance.

• Shoens et al. [103] [107] investigated dividing the set of posting lists in the index into

short lists and long lists. Short lists are stored in fixed-size buckets, with multiple lists

sharing the same bucket, while long lists are updated according to an in-place strategy

with pre-allocation. However, in their method, the marking of a list as long is triggered

by a bucket overflow, which is only loosely related to the length of the given list.

To my knowledge, despite the existence of this previous work, the idea has never been fully

expanded. Consequently, its performance has never been properly analyzed, in particular not

on modern hardware (recall from Section 2.5.1 that hard drive characteristics have changed

considerably over the last 15 years). Moreover, the method has never been used in conjunction

with the novel index partitioning schemes developed in the past few years (cf. Section 6.2.1).

Based on whether they store each on-disk posting list in a contiguous or in a non-

contiguous fashion, hybrid index maintenance strategies can be divided into two categories.

These are examined in the following sections.

6.4.1 Hybrid Index Maintenance with Contiguous Posting Lists

Consider the Immediate Merge update strategy and in-place update with proportional pre-

allocation. Both strategies, keeping on-disk posting lists in contiguous regions of the hard

drive, lead to the same query performance (assuming that the dictionary is kept in memory

or interleaved with posting lists). However, Immediate Merge, due to its sequential disk

access pattern, exhibits better update performance.

Let us compare the update performance of the two competing strategies on a list-by-list

basis. Suppose the hard drive provides a read/write bandwidth of b bytes/second and can

carry out a random disk access in r seconds (worst-case). If the search engine, during an

on-disk update operation, encounters a posting list that is bigger than b · r bytes, then it will

achieve better performance by updating this list in-place than by updating it according to

Immediate Merge.

Why is that? Suppose that the list in question has total size of si and si+1 bytes after the

completion of the i-th and (i+1)-th update cycle, respectively. If it is updated by merging the

existing list with the incoming postings, then the corresponding index maintenance overhead

Chapter 6 — Real-Time Index Updates 143

caused by the search engine’s disk activity during the (i + 1)-th re-merge update is:

Di+1 =
si + si+1

b
, (6.8)

where si corresponds to reading the old list from disk, and si+1 corresponds to writing the

new list into the inverted file that is the result of the re-merge operation.

If, on the other hand, the list is updated in-place, the disk overhead during the (i + 1)-th

update cycle is:

Di+1 = 2 · r +
si+1 − si

b
, (6.9)

where the term 2 · r stems from the necessity to seek to the on-disk position of the list and

also to seek back to the original location. The second seek is not always necessary in pure

in-place index maintenance, but is required when combining re-merge and in-place into a

hybrid strategy.

The above analysis ignores some details of in-place update. For instance, it does not

take into account the possibility that the list might need to be relocated during the update.

Nonetheless, it does indicate that there is a point at which, for an individual list L, it becomes

more efficient to update L in-place than to include it in a global re-merge operation. According

to equations 6.8 and 6.9, this point is reached when si > b · r. For a typical consumer hard

drive (r ≈ 10 ms, b ≈ 50 MB/s), this happens for a list size of approximately 0.5 MB (≈

250,000 postings).

This line of argumentation immediately leads to the definition of Hybrid Immediate Merge

with contiguous posting lists (HIMC). The HIMC strategy starts off exactly like its non-

hybrid counterpart Immediate Merge. However, whenever – during a re-merge update – it

encounters a list L containing more than ϑ postings, for some predefined threshold ϑ, the list

is marked as long and moved from the merge-maintained index into the in-place index. After

that, the search engine always updates L in-place.

Every on-disk posting list is stored in a contiguous region of the hard disk: short lists

reside entirely within the merge-updated index, while long lists exclusively reside in the in-

place index — hence the name of the method. A more formal definition of HIMC is given by

Algorithm 8. In the algorithm, the set of long lists is kept track of by the variable L, updated

whenever a given list exceeds the threshold ϑ (lines 14–17).

Partial Flushing

Since HIMC utilizes an in-place index to maintain long on-disk posting lists, the partial

flushing technique from Section 6.3.2 can be applied here as well. In addition to the long list

144 Multi-User File System Search

Algorithm 8 On-line index construction according to Hybrid Immediate Merge with
contiguous posting lists (HIMC). Input parameter: long list threshold ϑ.

1: let Imerge denote the primary on-disk index (merge-maintained, initially empty)
2: let Iinplace denote the secondary on-disk index (updated in-place, initially empty)
3: Imem ← ∅ // initialize in-memory index
4: currentPosting← 1
5: L ← ∅ // the set of long lists is empty initially
6: while there are more tokens to index do
7: T ← next token
8: Imem.addPosting(T, currentPosting)
9: currentPosting← currentPosting + 1

10: if Imem contains more than M − 1 postings then
11: // merge Imem and Imerge by traversing their lists in lexicographical order
12: I ′merge ← ∅ // create new on-disk index
13: for each term T ∈ (Imem ∪ Imerge) do
14: if (T ∈ L) ∨ (Imem.getPostings(T).length + Imerge.getPostings(T).length > ϑ)

then
15: Iinplace.addPostings(T, Imerge.getPostings(T))
16: Iinplace.addPostings(T, Imem.getPostings(T))
17: L ← L ∪ {T}
18: else
19: I ′merge.addPostings(T, Imerge.getPostings(T))
20: I ′merge.addPostings(T, Imem.getPostings(T))
21: end if
22: end for
23: Imerge ← I ′merge // replace old on-disk index with new one
24: Imem ← ∅ // re-initialize the in-memory index
25: end if
26: end while

threshold ϑ, a partial flushing threshold ϑPF needs to be chosen. When the indexing process

runs out of memory, the lists for all terms with more than ϑ postings in total and more than

ϑPF postings in the in-memory index are transferred to disk. All other lists remain in memory.

As before (cf. Section 6.3.2), the procedure is repeated until the relative memory savings

achieved by a partial flush sink under a cut-off threshold ω, at which point the entire in-

memory index, including all short lists, is written to disk.

Limitations of Contiguous Hybrid Index Maintenance

While the hybridization of Immediate Merge is straightforward, as demonstrated above,

hybridizing the index partitioning schemes from Section 6.2.1 turns out to be more difficult.

Equation 6.8 does not hold when the search engine maintains more than one index partition,

Chapter 6 — Real-Time Index Updates 145

because a merge operation then no longer necessarily involves all postings for a given term.

With Logarithmic Merge, for example, the total number of postings transferred

to/from disk for a particular posting list L is:

DL ∈ Θ

(
log

(
N

M

)
· L.length

)
(6.10)

(where N is the size of the collection, and M is the size of the in-memory update buffers).

The expected number of postings read/written, for that list, during a single merge operation,

then is:

E[DL] ∈ Θ

(
M

N
· log

(
N

M

)
· L.length

)
, (6.11)

since the total number of merge operations performed is bN/Mc.

In contrast to Equation 6.8, the disk overhead caused by the list L suddenly depends

on two additional parameters: the total size of the text collection, and the amount of main

memory available to the search engine. Therefore, it is no longer possible to optimize update

performance by choosing a fixed threshold ϑ. However, even with Logarithmic Merge, it is

still the case that the search engine, when it encounters a list fragment containing more than

ϑ postings, should move this fragment from the merge-maintained to the in-place-updated

part of the on-disk index. But a firm distinction between short lists and long lists is not

possible any more. This insight leads to the second variant of hybrid index maintenance.

6.4.2 Hybrid Index Maintenance with Non-Contiguous Posting Lists

Hybrid index maintenance with non-contiguous posting lists allows a given on-disk posting

list to consist of multiple parts: one part resides in the in-place section of the index; one

or more parts (depending on whether the base strategy is Immediate Merge or one of the

index partitioning schemes) reside in the merge-maintained index section.

Consider again the non-hybrid update strategy Immediate Merge. Suppose that, after

k re-merge operations, a posting list L reaches the point where it makes sense to transfer

it to the in-place index (L.length > ϑ), because seeking to the on-disk position of the list

and appending new postings can be done more quickly than reading and writing all L.length

postings in every update cycle. Now, in the (k + 1)-th re-merge operation, we can expect

approximately ϑ
k new postings for the given term. Contiguous hybrid index maintenance

would transfer these new postings into the in-place index. However, k might be very large,

and ϑ
k thus might be rather small. Consequently, the random disk access required to update

the list in-place may easily take longer than just copying the ϑ
k new postings as part of a

146 Multi-User File System Search

Algorithm 9 On-line index construction according to Hybrid Logarithmic Merge with
non-contiguous posting lists (HLMNC). Input parameter: long list threshold ϑ.

1: let Ig denote the on-disk index of generation g
2: let Iinplace denote the search engine’s in-place index (initially empty)
3: I0 ← ∅ // initialize in-memory index
4: currentPosting← 1
5: L ← ∅ // the set of long lists is empty initially
6: while there are more tokens to index do
7: T ← next token
8: I0.addPosting(T, currentPosting)
9: currentPosting← currentPosting + 1

10: if I0 contains more than M − 1 postings then
11: I ← {I0} ; g ← 1
12: while Ig is not empty do
13: I ← I ∪ {Ig} ; g ← g + 1
14: end while
15: Ig ← ∅ // create primary target index of merge operation
16: for each term T in I do
17: targetIndex← Ig

18: if ∃ x : (T, x) ∈ L then
19: if (I.getPostings(T).length > ϑ) ∧ (x ≤ g) then
20: targetIndex← Iinplace

21: L ← (L \ {(T, x)}) ∪ {(T, 0)}
22: else
23: L ← (L \ {(T, x)}) ∪ {(T, max{x, g})}
24: end if
25: else
26: if (I.getPostings(T).length > ϑ) ∧ (argmaxk{Ik is not empty} ≤ g) then
27: targetIndex← Iinplace

28: L ← L ∪ {(T, 0)} // mark T as having postings in Iinplace

29: end if
30: end if
31: targetIndex.addPostings(T, I.getPostings(T))
32: end for
33: delete every index I ∈ I
34: I0 ← ∅ // re-initialize in-memory index
35: end if
36: end while

sequential re-merge operation.

Non-contiguous hybrid index maintenance starts like an ordinary non-hybrid update strat-

egy. Like the contiguous variant, whenever it encounters a posting list that is longer than a

predefined threshold ϑ, it transfers this list from the merge-maintained section of the index

into the in-place section. However, it differs from the contiguous version in how it treats

Chapter 6 — Real-Time Index Updates 147

such a list after the transfer. In the non-contiguous version, there is no clear distinction

between terms with long lists and terms with short lists. Instead, the decision whether a

set of postings from a given posting list should be transferred to the in-place index depends

entirely on the length of the list fragment participating in the current merge operation. If less

than ϑ postings from a “long” list participate in a merge event, then these postings will not

be transferred to the in-place index, but will remain in the merge-maintained index section

instead.

The method can be combined with any merge-based update strategy, including various

index partitioning schemes. Algorithm 9, for example, shows the hybridization of the Loga-

rithmic Merge update strategy.

Implementation Details

The details of Algorithm 9 might not be immediately perspicuous. In contrast to Algorithm 8,

the set L, keeping track of all terms with postings in the in-place index, now contains elements

of the form (string, integer), and not simple strings any more.

For each term T with postings in the in-place index section, there is an element in L,

indicating the identity of the biggest inverted file in the merge-maintained index section that

contains postings for T . If there is an index partition that is not involved in the current

merge operation and that contains any of T ’s postings, then we must not move the postings

to the in-place index (checked in line 19 of the algorithm). Similarly, for a term that does

not have any postings in the in-place section, the algorithm only transfers its postings if all

merge-maintained index partitions are involved in the merge operation (line 26).

This restriction is necessary because it is absolutely crucial that the postings in every

posting list are stored in increasing order within each index partition, including the in-place

section of the index. If the restriction x ≤ g were not enforced in line 19, then it could happen

that, for some term T , a set of postings {p1, . . . , pn} is added to the in-place index and, in a

later merge operation, another set of postings {p′1, . . . , p
′
n′} is added for the same term — with

p′1 < pn. This would violate the ordering constraint for that term. In Section 6.6, which is

concerned with file modifications, I discuss the impact that non-ordered posting lists can have

on the search engine’s update and query performance.

Variations

Non-contiguous hybrid index maintenance increases the amount of list fragmentation by split-

ting a posting list into a short part and a long part. It is possible to go a step further and

to loosen the contiguity constraint on posting list fragments in the in-place section. Instead

148 Multi-User File System Search

of storing the long part of a posting list in a contiguous fashion, the in-place index might

be allowed to store this part itself in several, non-contiguous chunks. This procedure can be

expected to improve update performance, but is likely to harm query efficiency.

In my experiments, I use two different variants of non-contiguous hybrid index mainte-

nance. The first variant, denoted as XNC (e.g., HLMNC), enforces the contiguity of all list

fragments in the in-place section. The second variant, denoted as XNC(A) (e.g., HLMNC(A)),

does not enforce their contiguity. Instead, whenever new postings are transferred to the in-

place index section, they are simply appended at the end of the existing index, improving

update performance, but increasing list fragmentation (the subscript (A) stands for append).

Expectations

Non-contiguous hybrid index maintenance can be expected to lead to better update perfor-

mance than the contiguous variant. However, because it sometimes increases the degree of

fragmentation found in the on-disk posting lists, it may lead to lower query performance.

Compared to the basic Immediate Merge policy, for many terms the search engine main-

tains two on-disk list fragments (instead of one) if it uses HIMNC to realize index updates.

However, this is not the case for all instantiations of this method. Suppose the search

engine employs HLMNC to maintain its on-disk index. Now consider a term T , and suppose

T , on average, appears 300,000 times in each indexing buffer load, while the system’s long

list threshold is set to ϑ = 106. Then T is highly unlikely to ever make it into an on-disk

index partition of generation 3 (or higher), since, on average, such a partition would contain

4 × 300,000 = 1.2 million postings for T . List fragmentation for this term, therefore, will be

lower with HLMNC than with the non-hybrid Logarithmic Merge strategy.

6.4.3 Implementing the In-Place Index

Both variants of hybrid index maintenance, contiguous and non-contiguous, rely on the avail-

ability of an efficient in-place update implementation. This seems to indicate that hybrid

index maintenance suffers from the same limitations as a plain in-place update strategy.

However, this is not so. The main performance bottlenecks in in-place update all stem from

the large number of index terms that a realistic search engine has to deal with — 30 million

in the case of SBFS, and almost 50 million for GOV2. In hybrid index maintenance, this

is no longer a problem. Even for the comparatively large GOV2 collection, a rather small

long-list threshold of ϑ = 50,000 only leads to 20,114 long lists (after the whole collection

has been indexed). This greatly reduces the number of random disk accesses that need to be

Chapter 6 — Real-Time Index Updates 149

performed during an in-place update cycle. It also simplifies dictionary data structures and

free space management.

In the implementation used in my experiments, the dictionary is realized through an

uncompressed in-memory hash table. Disk space is allocated in large chunks (multiples of 1

MB, assigned according to proportional pre-allocation with k = 2), and free space is kept track

of by means of a simple array, supporting search operations for free index regions through a

straightforward linear scan.

6.4.4 Complexity Analysis

I now analyze the theoretical complexity of hybrid index maintenance. More specifically, I

determine the number of disk write operations (measured by the number of postings writ-

ten to disk) necessary to index a text collection of a given size. Since the number of read

operations carried out during merge operations is bounded from above by the number of

write operations (nothing is read twice), this allows me to calculate the total number of disk

operations performed during index update activity (up to a constant factor).

I analyze the update complexity of HIMNC and HLMNC, showing that HLMNC requires

only Θ(N) disk operations to construct an index for a text collection of size N . Asymp-

totically, this is the optimal indexing performance and is only rivalled by the No Merge

strategy used in off-line index construction (which provides uncompetitive query performance

if used in an on-line environment). The analysis is based on the assumption that the term

distribution can be expressed as a generalized Zipf distribution [117], i.e., that the number of

times the i-th most frequent word appears in the text collection is inversely proportional to

iα (for some α). I will use the notation established in Section 4.2.3.

The results obtained in this section are not applicable to the contiguous version of hybrid

index maintenance (e.g., HIMC), because the total disk activity in that case is dominated by

disk seeks, not by write operations. For non-contiguous hybrid index maintenance, however,

because the search engine transfers approximately ϑ
2 postings per disk seek, counting the

number of postings written to disk can be expected to yield an accurate approximation of the

true update performance.

An Analysis of HIMNC

Consider the Hybrid Immediate Merge strategy with non-contiguous posting lists

(HIMNC). When building an index for a collection containing N tokens, HIMNC per-

forms a total of bN
M c merge operations, where M is the number of postings that may be

buffered in main memory. In every such merge operation, HIMNC transfers all long posting

150 Multi-User File System Search

lists (containing at least ϑ postings) it encounters to the in-place section of the on-disk index.

For the merge-updated part of the on-disk index, which is the result of this merge operation,

this means that it does not contain any lists that are longer than ϑ postings. Now, consider

the merge-updated index section after the k-th merge operation, i.e., after k ·M tokens have

been indexed. This inverted file contains two types of lists:

1. genuine short lists, each having ≤ ϑ postings;

2. short parts of long lists, each having ≤ ϑ postings.

The latter happens if, for instance, the posting list for a term was moved from the merge-

maintained to the in-place-maintained part of the index in the (k− 1)-th re-merge operation,

and fewer than ϑ postings have been accumulated for that term between the (k − 1)-th and

the k-th merge operation.

It is easy to give a lower bound for the number of postings P̂ stored in the merge-

maintained section of the index after the k-th index update cycle (using the notation from

Section 4.2.3):

P̂ (k ·M, ϑ) ≥ Ŝ(k ·M, ϑ) (6.12)

∈ Ω

(
ϑ ·

(
k ·M

ϑ

)1/α
)

(6.13)

(counting only lists of type 1). Similarly, we have the following upper bound:

P̂ (k ·M, ϑ) ≤ Ŝ(k ·M, ϑ) + ϑ · L(k ·M, ϑ) (6.14)

∈ O
(
ϑ1−1/α · (k ·M)1/α

)
+ ϑ · O

((
k ·M

ϑ

)1/α
)

(6.15)

(counting lists of both types, 1 and 2, and upper-bounding lists of type 2 by ϑ postings). It

follows that

P̂ (k ·M, ϑ) ∈ Θ
(
ϑ1−1/α · (k ·M)1/α

)
. (6.16)

Under the chosen complexity model, this is also the number of disk write operations necessary

to create the particular index. Since, for a text collection of size N , the number of postings

written to the in-place section of the index is

L̂(N, ϑ) ∈ Θ(N), (6.17)

Chapter 6 — Real-Time Index Updates 151

the total number of disk operations needed to build an inverted index for such a collection is:

Θ(N) (in-place part)

+

b N
M

c∑

k=1

Θ
(
ϑ(1−1/α) · (k ·M)1/α

)
(merge part)

= Θ

(
ϑ(1−1/α) ·

N (1+1/α)

M

)
. (6.18)

For α = 1.34 (GOV2) and constant threshold ϑ, this results in a total index update disk

complexity of Θ(N1.75

M), clearly better than the Θ(N2

M) complexity of non-hybrid Immediate

Merge.

An Analysis of HLMNC

Now consider the Hybrid Logarithmic Merge strategy with non-contiguous posting lists

(HLMNC). After M postings have been added to the index, two on-disk inverted files are

created:

• a merge-maintained inverted file containing Ŝ(M, ϑ) postings;

• an in-place-maintained inverted file containing L̂(M, ϑ) postings.

I refer to the merge-maintained inverted file, created after M tokens have been added, as an

index of generation 0.

After the first on-disk inverted file has been created, whenever 2k ·M tokens have been

added to the collection (for some integer k), HLMNC merges k + 1 inverted indices (k on-

disk indices, plus the in-memory index), resulting in a new inverted file of generation k.

However, because the search engine is following a hybrid strategy, all long lists (≥ ϑ postings)

encountered during this merge operation are moved into the in-place section of the index

instead of the primary target index of the merge operation.

Using the same argument as before (for HIMNC), I can give a Θ-bound for the number of

postings P̂ in this new merge-maintained inverted file of generation k:

P̂ (2k ·M, ϑ) ∈ Θ
(
ϑ1−1/α · (2k ·M)1/α

)
. (6.19)

152 Multi-User File System Search

Therefore, the total number of disk write operations D(k) performed during merge operations,

before and including the creation of this new inverted file of generation k, is:

D(k) = P̂ (2k ·M, ϑ) + 2 ·D(k − 1) (6.20)

=
k∑

i=0

2k−i · P̂ (2i ·M, ϑ) (6.21)

∈ 2k ·
k∑

i=0

2−i ·Θ
(
ϑ(1−1/α) · (2i ·M)1/α

)
(6.22)

(using equation 6.19). Hence, we have:

D(k) ∈ Θ

(
ϑ(1−1/α) · 2k ·M1/α ·

k∑

i=0

(2
1
α
−1)i

)
(6.23)

= Θ
(
ϑ(1−1/α) · 2k ·M1/α

)
(6.24)

⊆ O
(
ϑ(1−1/α) · 2k ·M

)
. (6.25)

For a text collection of size N = 2k · M , the number of disk operations spent on adding

postings to the in-place part of the index is L̂(N, ϑ) ∈ Θ(N). Thus, the total number of disk

operations needed to build an inverted index for a text collection of size N is:

Θ(N) (for the in-place part)

+ O
(
ϑ(1−1/α) ·N

)
(for the merge part).

Since ϑ is a constant, this means we need Θ(N) disk operations to build the index. HLMNC’s

disk complexity is asymptotically optimal. It is also practical (as opposed to the in-place up-

date strategy, which, too, is asymptotically optimal, but impractical, due to the large number

of random disk accesses), because HLMNC’s update overhead is dominated by sequential data

transfers, not by disk seeks.

6.4.5 Experiments

To evaluate the actual update and query performance of hybrid index maintenance, I repeated

the experiment from before (command sequence shown in Figure 6.5), indexing all files in

GOV2, and processing search queries in an interleaved fashion.

Chapter 6 — Real-Time Index Updates 153

100%

80%

60%

40%

20%

 50 40 30 20 10

 5000

 4000

 3000

 2000

 1000

F
ra

ct
io

n
of

 p
os

tin
gs

 in
 in

-p
la

ce
 in

de
x

N
um

be
r

of
 li

st
s

in
 in

-p
la

ce
 in

de
x

% indexed

Development of terms with long lists

Postings (l.h. scale)
Lists (r.h. scale)

Figure 6.10: Indexing a random 50% of the GOV2 collection with HIMC. Development over
time: number of long lists and number of postings in long lists. Hybrid threshold: ϑ = 106.
Memory limit: 256 MB.

Contiguous Hybrid Index Maintenance

I evaluated the performance of HIMC and compared it to its non-hybrid counterpart, Imme-

diate Merge. Due to time constraints (each experiment would have taken more than 3 days

to finish), only the first 50% of the total command sequence were processed.

Figure 6.10 shows how the number of terms and the number of postings in the in-place

index section develop as the index grows. After 35% of GOV2 have been indexed, more than

80% of all postings are stored in the in-place section. At the same time, however, the total

number of terms that are maintained in-place remains comparatively low, just above 2,000

after 50% of the collection have been processed.

The fact that the majority of all postings are maintained according to the Inplace strat-

egy has an impact on the performance of the re-merge operations carried out in the merge-

maintained index section. Figure 6.11(a) shows the cumulative index maintenance overhead

for Immediate Merge and HIMC (with and without partial flushing). With a threshold

value ϑ = 106, HIMC reduces the maintenance overhead by 46% (compared to the non-hybrid

baseline), from 39.7 hours to 21.3 hours. Applying partial flushing with a PF threshold

ϑPF = 216 results in a further reduction, down to 16.5 hours (-23%).

Plot 6.11(b) compares HIMC’s query performance with that of the non-hybrid update

strategy Immediate Merge. Both strategies lead to approximately the same query per-

formance, which could be expected, given that both maintain all on-disk lists in contiguous

regions of the hard disk. The fact that HIMC is able to process queries slightly faster than

154 Multi-User File System Search

 3000

 2500

 2000

 1500

 1000

 500

 50 40 30 20 10C
um

ul
at

iv
e

in
de

xi
ng

 ti
m

e
(m

in
ut

es
)

% indexed

(a) Index maintenance performance

Immediate Merge
HIMC (ϑ = 106)

HIMC with partial flushing (ϑ = 106)

+15%

+10%

+5%

0%

-5%

-10%
 50 40 30 20 10

T
im

e
di

ffe
re

nc
e

pe
r

qu
er

y
(%

)

% indexed

(b) Relative query slowdown (compared to Immediate Merge)

Immediate Merge
HIMC (ϑ = 1,000,000)

 3000

 2500

 2000

 1500

 1000

 500

∞4.02.01.00.50.250.1250.0630.031

T
ot

al
 in

de
xi

ng
 ti

m
e

(m
in

ut
es

)

Threshold value (x 106)

(c) Impact of long list threshold ϑ

HIMC
HIMC with partial flushing

Figure 6.11: Indexing a random 50% of the GOV2 collection with hybrid and non-hybrid
index maintenance (Immediate Merge vs. HIMC; memory limit: 256 MB). The variant with
partial flushing employs a PF threshold ϑPF = 216, transferring all lists to disk that contain at
least ϑ postings in total and for which there are at least ϑPF postings in the current in-memory
index.

Chapter 6 — Real-Time Index Updates 155

Immediate Merge (about 1–2% on average), stems from two sources:

• HIMC’s in-memory dictionary provides more efficient lookup operations than Immedi-

ate Merge’s interleaved on-disk dictionary.

• Under some circumstances, the on-disk index implementation employed by Immediate

Merge creates more than a single on-disk dictionary entry for a given term, resulting in

one or more additional disk seek at query time. This only happens for a small number

of terms, but has a visible impact on the results obtained here.

All in all, however, the performance difference is very small, and we may assume that both

update strategies lead to equivalent query performance. This result is different from previous

work [21], in which I characterized HIMC as an indexing performance vs. query performance

trade-off. The difference to these earlier results stems from the fact that, in the earlier work,

I used a different implementation of the in-place index, completely relying on the file system

implementation to enforce contiguity of posting lists. In the experiments presented here,

contiguity is assured by a custom implementation of the in-place index.

Plot 6.11(c), finally, shows the update performance achieved by various long list thresholds

ϑ. The optimal update performance is achieved for ϑ around 250,000. This is consistent with

the rule of thumb that a list should be moved to the in-place index section when it becomes

long enough so that reading it from disk requires more time than performing a single disk

seek. For a typical consumer hard drive, this point is reached at 0.5 MB (approximately

125,000–250,000 vByte-compressed postings). With ϑ = 250,000, HIMC decreases the overall

update overhead by 52% compared to Immediate Merge, and by 66% if partial flushing is

enabled (a 44% performance improvement over HIMC without partial flushing). It can be

seen that HIMC is largely insensitive to small variations of the threshold parameter ϑ. All

values between ϑ = 62,500 and ϑ = 500,000 lead to approximately the same performance.

Since HIMC exhibits the same query performance as Immediate Merge, but achieves an

update performance that is more than twice as high as that of the non-hybrid strategy, we

can say that HIMC dominates Immediate Merge. There is no (performance-related) reason

to choose Immediate Merge over HIMC.

Non-Contiguous Hybrid Index Maintenance

The non-contiguous version of hybrid index maintenance was evaluated using the same com-

mand sequence as before. The results for HIMNC are not shown here, because they are

completely in line with what is suggested by the complexity analysis in the previous section.

HIMNC leads to better update performance than Immediate Merge, but is dominated by

156 Multi-User File System Search

100%

80%

60%

40%

20%

 100 90 80 70 60 50 40 30 20 10

 5000

 4000

 3000

 2000

 1000

F
ra

ct
io

n
of

 p
os

tin
gs

 in
 in

-p
la

ce
 in

de
x

N
um

be
r

of
 li

st
s

in
 in

-p
la

ce
 in

de
x

% indexed

Development of terms with long lists

Postings (l.h. scale)
Lists (r.h. scale)

Figure 6.12: Indexing 100% of the GOV2 collection with HLMNC. Development over time:
number of long lists and number of postings in long lists. Hybrid threshold: ϑ = 106. Memory
limit: 256 MB.

Sqrt Merge. While both provide approximately the same query performance, Sqrt Merge

exhibits a far more benign update complexity than HIMNC.

The hybridization of Logarithmic Merge, HLMNC, is more interesting. Figure 6.12

shows how the number of postings and the number of distinct terms in the in-place index

section develop over time if HLMNC is used to update the on-disk index structures. In contrast

to the development shown in Figure 6.10, the two curves are not smooth any longer. Instead,

re-merge operations (combining all on-disk index partitions into a single inverted file) are

clearly visible at the 5%, 10%, 20%, 40%, and 80% marks. According to Algorithm 9, new

terms may only be added to the in-place section if they do not appear in any index partition

in the merge-maintained section. This usually is only the case after a complete re-merge.

Despite this little edginess, the general development is similar to that shown in Figure 6.10,

with 80% of all postings in the in-place index section after 40% of GOV2 have been indexed.

Figure 6.13 compares the two variants of non-contiguous Hybrid Logarithmic Merge,

HLMNC and HLMNC(A) (both defined in Section 6.4.2), to their non-hybrid counterpart.

Plots 6.13(a) and 6.13(b) show their update performance, both in absolute terms and relative

to the update performance of Logarithmic Merge. HLMNC can build an index for GOV2

about 9% faster than Logarithmic Merge (531 minutes vs. 488 minutes). HLMNC(A), be-

cause it does not enforce the contiguity of posting lists in the in-place index section, performs

even better, building the index in 450 minutes — 18% faster than Logarithmic Merge.

From 6.13(b), it can be seen that the relative performance advantage of HLMNC and

HLMNC(A) over Logarithmic Merge increases as the index grows. This is in line with the

Chapter 6 — Real-Time Index Updates 157

complexity analysis from Section 6.4.4, which showed that both methods can build the index

in a time that is strictly better than Θ(N · log(N/M)).

Figure 6.13(c) depicts the relative query performance of the three methods. It shows that

HLMNC(A) leads to a query response time that is up to 5% higher than that of Logarithmic

Merge. This is not entirely unexpected, as HLMNC(A) does not enforce the contiguity of

inverted lists in the in-place index section. List fragmentation, therefore, is higher than with

Logarithmic Merge, and this is reflected by the method’s query processing performance.

What is surprising, however, is the fact that HLMNC, although it enforces contiguity of

all lists in the in-place section, also leads to weaker query performance than Logarithmic

Merge. In Section 6.4.2, I argued that list fragmentation should be lower with HLMNC than

with Logarithmic Merge. This claim is supported by experimental results, depicted in

Figure 6.14, which show that the average number of list fragments per query term is lower with

HLMNC. For example, after 75% of GOV2 have been indexed, the on-disk list for an average

query term consists of 0.5 fragments less with HLMNC than with Logarithmic Merge.

One could expect that this reduced degree of fragmentation would be reflected by the

search engine’s query processing performance. However, as can be seen from Figure 6.13(c),

this is not so. HLMNC is slower than Logarithmic Merge. One possible explanation for

this contradiction could be that the operating system’s file system implementation, unbe-

knownst to the search engine, introduces fragmentation into the engine’s on-disk inverted

files. Regrettably, this explanation is inconsistent with the fact that HIMC, which employs

the same in-place index structure as HLMNC, achieves the same (or even slightly better) query

performance as Immediate Merge.

I do not have an explanation for the anomaly shown in Figure 6.13(c). This is unfortu-

nate, as the theoretical considerations from Sections 6.4.2 and 6.4.4 indicated that HLMNC

might dominate Logarithmic Merge, leading to both better update and better query per-

formance. However, despite this result, HLMNC and HLMNC(A) still have their right to exist,

settling between Logarithmic Merge and No Merge in the update performance vs. query

performance trade-off spectrum.

6.4.6 Hybrid vs. Non-Hybrid Index Maintenance

Hybrid index maintenance represents an interesting alternative to its non-hybrid, merge-

based counterpart. However, especially for the non-contiguous version, it is not always clear

which alternative is actually better. For example, when processing a search query, HIMNC

can be expected to lead to two random disk accesses per query term. This is the same as

Sqrt Merge, but Sqrt Merge achieves a better update performance than HIMNC.

158 Multi-User File System Search

 600

 500

 400

 300

 200

 100

 100 90 80 70 60 50 40 30 20 10C
um

ul
at

iv
e

in
de

xi
ng

 ti
m

e
(m

in
ut

es
)

% indexed

(a) Index maintenance performance

Logarithmic Merge
HLMNC (ϑ = 106)

HLMNC(A) (ϑ = 106)
No Merge

+20%

+10%

0%

-10%

-20%
 100 90 80 70 60 50 40 30 20 10

R
el

at
iv

e
ov

er
he

ad
 (

%
)

% indexed

(b) Relative update performance (compared to Log. Merge)

Logarithmic Merge
HLMNC (ϑ = 106)

HLMNC(A) (ϑ = 106)

+15%

+10%

+5%

0%

-5%
 100 90 80 70 60 50 40 30 20 10

T
im

e
di

ffe
re

nc
e

pe
r

qu
er

y

% indexed

(c) Relative query slowdown (compared to Logarithmic Merge)

Logarithmic Merge
HLMNC (ϑ = 106)

HLMNC(A) (ϑ = 106)

Figure 6.13: Indexing 100% of the GOV2 collection with hybrid and non-hybrid index mainte-
nance (Logarithmic Merge vs. HLMNC and HLMNC(A); memory limit: 256 MB). Relative
query and update performance.

Chapter 6 — Real-Time Index Updates 159

+0.4

+0.2

0.0

-0.2

-0.4

-0.6
 100 90 80 70 60 50 40 30 20 10

Li
st

 fr
ag

m
en

ts
 p

er
 q

ue
ry

 te
rm

% indexed

Random access overhead at query time (relative to Log. Merge)

Logarithmic Merge
HLMNC (ϑ = 106)

Figure 6.14: Number of list fragments per query term, for Logarithmic Merge and
HLMNC. Apart from a small anomaly around 80%, the number of list fragments for a random
query term is consistently lower with HLMNC than with Logarithmic Merge, indicating
that the former might lead to better query performance than the latter.

However, there are two situations in which hybrid index maintenance is in fact superior

to a non-hybrid merge-based update strategy. If we classify a search system by the rela-

tive magnitude of its update and query load, then the applications for which hybrid index

maintenance represents an interesting solution are found on both ends of the spectrum:

• If the system’s workload predominantly stems from processing search queries, then each

on-disk posting list should be stored in a contiguous region of the disk, implying that

Immediate Merge is an appropriate maintenance strategy. However, as has become

apparent from the experiments, HIMC leads to the same query performance as Imme-

diate Merge (no list fragmentation), but offers greatly improved update performance.

It should therefore always be preferred over Immediate Merge.

• If the system’s workload predominantly stems from index update operations, then Log-

arithmic Merge is an attractive update policy, because it keeps the index maintenance

overhead very low. As shown in the experiments, HLMNC exhibits better update per-

formance than Logarithmic Merge (up to 9% faster), while its query performance

is only slightly reduced, within 3% of Logarithmic Merge. This makes the method

attractive in environments with extremely high update load and relatively little query

load.

160 Multi-User File System Search

6.5 File Deletions

In addition to file insertions, a file system usually also supports deletions (special-purpose

backup file systems are among the rare exceptions). The update strategies described so far

completely ignore this aspect of a dynamic search environment.

Published work on support for document deletions is scarce. Typically, deletions are

dealt with in a delayed fashion. When a document is deleted, the corresponding postings are

not immediately removed from the index, but only once a critical mass is exceeded or when

the physical index update operation can be piggybacked on top of another index operation.

The system described by Chiueh and Huang [25], for instance, maintains a delete table,

realized by a binary search tree stored in main memory. Each deleted document receives

an entry in this table. Whenever their search engine processes a query, the set of resulting

documents is checked against the contents of the delete table, removing all search results

referring to documents that have been deleted. In their implementation, a physical index

update, integrating the information found in the delete table into the on-disk index structures,

can be carried out

• during query processing: the posting list for each query term is adjusted to be consistent

with the current contents of the delete table; the modified posting list is written back

to disk;

• in a batch update: when the search engine runs out of memory (after a number of

document insertions) and the in-memory index data have to be combined with the

on-disk index, deletions are applied to all posting lists in the index.

As already pointed out in Section 5.5, the postprocessing approach employed by Chiueh and

Huang has the disadvantage that document scores are computed for documents that no longer

exist. Moreover, because the search engine does not know in advance how many of the top

k documents identified are still alive, query optimization strategies like MaxScore [109]

become less effective.

6.5.1 Utilizing Security Restrictions to Delay Index Updates

Fortunately, the security mechanisms set out in Chapter 5 can directly be applied to the

problem of document deletions, having the same properties as before. Whenever a file F is

deleted, it is – by definition – no longer searchable by any user. Within the search engine, this

is guaranteed by removing F from the file table maintained by the search engine’s security

manager. As a result, postings referring to F are no longer visible to the query processing

Chapter 6 — Real-Time Index Updates 161

@removefile trec/chunks/trec.00673

@rank[qap][count=20][id=215] “〈doc〉”· · · “〈/doc〉” by “unexplained”, “highway”, “accidents”

@addfile trec/chunks/trec.00673

@rank[qap][count=20][id=8] “〈doc〉”· · · “〈/doc〉” by “rail”, “strikes”

@removefile trec/chunks/trec.01257

@rank[qap][count=20][id=104] “〈doc〉”· · · “〈/doc〉” by “oil”, “spills”

@addfile trec/chunks/trec.01257

.....

Figure 6.15: Command sequence used to measure the impact of garbage postings on query
performance. Starting from a complete index for the TREC collection, documents are removed
and re-inserted.

module. A retrieval score for F is never even computed, eliminating the problems caused by

the postprocessing approach.

However, the search engine can only rely on the mechanisms provided by the security

subsystem for so long. Ultimately, because the number of garbage postings in the index

keeps growing as more and more files get deleted, the search engine needs to start a garbage

collection process that removes all obsolete postings from the index. Otherwise, because

garbage postings must still be read from disk when processing a query (even though they are

not considered for ranking purposes), query performance is likely to deteriorate beyond any

acceptable limit.

I examined the effect that uncollected garbage postings in the on-disk index have on

query processing performance. After building an index for the TREC collection (823 million

postings), a random file was deleted from the index and then immediately re-inserted. After

each such index update event (file deletion, file insertion), a random query from the TREC

query set was processed by the search engine, returning the top 20 search results. By re-

inserting each file immediately after its deletion, the amount of non-garbage postings data

in the index is kept constant, and the number of garbage postings in the index is the only

variable factor. A fragment from the corresponding command sequence, comprising 50,000

search queries and update operations, is given by Figure 6.15.

Figure 6.16 shows the outcome of this experiment. Not unexpectedly, as the number of

garbage postings increases, query processing becomes less efficient, due to the disk overhead

associated with reading postings that are never used during query processing.

However, when increasing the total number of postings in the index by 150% (from 0.8

billion to 2.0 billion), the average time per search query grows by only 70% (from 340 ms to

162 Multi-User File System Search

 1000

 800

 600

 400

 200

1.21.00.80.60.40.20.0

T
im

e
pe

r
qu

er
y

(m
s)

Number of garbage postings in index (x 106)

Query performance with growing amount of garbage postings

Mean time per query

Figure 6.16: Average query processing performance (averaged over a sliding window covering
500 queries) for an increasing the number of garbage postings in the index. The amount of non-
garbage postings in the index is kept constant. Starting from a complete index for the TREC
collection (823 million postings), documents are removed and re-inserted (cf. Figure 6.15).
New postings are folded into the existing index by Immediate Merge (memory buffers: 32
MB).

580 ms). This is because garbage postings do not contribute to document scores and thus

carry a very light computational weight. Nonetheless, at some point all postings corresponding

to deleted documents will need to be removed from the index, as they do not only harm

query performance (violating Requirement 1 from Chapter 1), but also artificially increase

the storage requirements of the search engine beyond its actual needs (violating Requirement

4). Such a garbage collection process is computationally expensive. Hence, it should be

integrated into other index update operations, so as to reduce the overhead.

6.5.2 Collecting Garbage Postings

The process of removing garbage postings from an existing posting list is very similar to the

process of computing the intersection of two sorted lists of integers (cf. Algorithm 1). Each

indexed file Fi corresponds to an index address range [si, ei], subject to the constraint

si ≤ ei < si+1 ≤ ei+1 ∀ 1 ≤ i < |F|, (6.26)

where |F| is the number of active files in the index, and ei − si + 1 is the number of tokens

found in file Fi. When starting a garbage collection process, the search engine’s index manager

obtains the sequence

F := [si, ei]1≤i≤|F| (6.27)

Chapter 6 — Real-Time Index Updates 163

Merge method SBFS TREC GOV2

Without GC (compressed) 241.7 .. 243.7 sec 84.0 .. 88.7 sec 80.2 .. 83.8 min

Without GC (uncompressed) 279.5 .. 282.3 sec 104.4 .. 106.1 sec 96.1 .. 97.6 min

With GC (binary search) 395.8 .. 398.3 sec 170.4 .. 172.4 sec 129.1 .. 129.8 min

With GC (galloping search) 310.1 .. 312.4 sec 123.8 .. 128.9 sec 102.8 .. 106.7 min

Number of files in index 310,459 15,449 27,204

Table 6.4: Duration of the final merge operation in merge-based index construction, with and
without built-in garbage collection. All numbers represent 95% confidence intervals, obtained
by repeating each experiment 6 times.

from the security manager. It then processes each posting lists L in the index, one at a time,

computing the intersection between L and and the file intervals in F :

L′ = {p ∈ L | ∃ [s, e] ∈ F : s ≤ p ≤ e}. (6.28)

This intersection operation can be realized through iterated binary search, finding an interval

[s, e] ∈ F for each posting p in the given posting list. Alternatively, a galloping search

procedure very similar to the one shown in Algorithm 1 may be employed.

To quantify the exact overhead of the garbage collection process, I had the search engine

build complete indices for SBFS, TREC, and GOV, using the merge-based index construction

technique outlined in Chapter 4. However, in contrast to the experiments from Chapter 4,

the final merge procedure was adjusted slightly so that the search engine applied its garbage

collection mechanism to every posting list visited during the final merge. Because no files had

been deleted prior to the final merge, the garbage collection process did not actually remove

any postings from the index. It merely checked whether all postings in the index belonged to

files that were still alive.

The results of this experiment are shown in Table 6.4. It can be seen that integrating the

garbage collector into the original merge procedure leads to a substantial slowdown of the

merge operation. When using galloping search to perform the set intersection operations, the

time needed to perform the final merge for the TREC collection increases from 86 seconds to

126 seconds on average (+46%). For SBFS, the slowdown is a bit more moderate, from 243

seconds to 311 seconds on average (+28%). The slowdown is caused by two components of the

garbage collection procedure: (1) decompressing compressed posting lists, and (2) running

the set intersection algorithm. As can be seen from the table, the two components contribute

about equally to the total garbage collection overhead.

164 Multi-User File System Search

The reason for the rather large differences between the overhead seen for the individual text

collections is the great number of unique terms in SBFS (28.7 million) compared to TREC (2.1

million), making the performance baseline (merging without garbage collection and without

decompression) perform worse for SBFS than for TREC (note that both collections contain

approximately the same number of postings).

Table 6.4 also shows that the garbage collection implementation based on iterated binary

search performs much worse than the one based on galloping search. This is not surprising.

According to Zipf’s law, the vast majority of all postings appears in long lists. For those

lists, however, because their postings appear in almost every file, galloping search runs in

time O(|L|), as opposed to O(|L| · log(|F|) for binary search (here, |L| denotes the number of

postings in the posting list being processed by the garbage collector).

It is possible that the performance of the garbage collection procedure could be slightly

improved by switching from galloping search to a linear scanning algorithm whenever postings

from a list are found to appear in a large number of files. However, it is not clear how the opti-

mal transition threshold should be chosen. Moreover, it would complicate the implementation

and also is unlikely to lead to substantial savings compared to galloping search.

6.5.3 Performance Trade-offs and Garbage Collection Policies

Postings that belong to deleted files put the designer of a file system search engine into a

dilemma. Leaving too many garbage postings in the index increases disk space consump-

tion and query response times. Applying garbage collection too eagerly, on the other hand,

increases the index maintenance overhead, even if the garbage collector is integrated into a

routinely scheduled merge update operation, as shown above.

In previous work [19], I have characterized this as a trade-off between query processing

performance and index maintenance performance. However, this characterization is not en-

tirely accurate. Leaving garbage postings in the index does not only harm query performance,

but also index maintenance performance, as all such postings are read from and written to

disk during every physical update cycle. It may therefore make sense to remove garbage

postings from the index even though their impact on query processing performance might

still be tolerable. Consequently, any garbage collection policy should consist of two different

components — one aiming at high index maintenance performance, the other ensuring that

query performance stays at an acceptable level and is not excessively affected by garbage

postings in the index.

Chapter 6 — Real-Time Index Updates 165

A Garbage Collection Policy

The following two-tiered garbage collection policy has been implemented in Wumpus. It

assumes that the search engine is based on a merge-maintained index with one or more index

partitions.

1. Garbage collection based on a global threshold

A pre-defined garbage threshold ρ ∈ (0, 1] is used to determine when the amount of

garbage postings in the index has come to a point at which the resulting query slowdown

is no longer tolerable. Whenever this threshold is reached, the search engine initiates

a re-merge operation, combining all index partitions into a single inverted file and

removing all garbage postings from the index.

2. On-the-fly garbage collection

A pre-defined garbage threshold ρ′ ∈ (0, 1] (ρ′ ≤ ρ) is used to determine when it is

sensible to integrate the garbage collection mechanism into an index update operation

(merge operation) in order to improve index maintenance performance, not taking the

garbage postings’ impact on query performance into account.

Whenever two or more index partitions are merged, and the relative number of garbage

postings in these partitions is greater than ρ′, the garbage collector is integrated into

the merge process.

Rule 1 is aiming for high query performance. Rule 2 is aiming for high update performance,

trying to combine the disk activity exhibited by ordinary merge operations and by the garbage

collector, and to reduce the amount of garbage postings copied around during merge opera-

tions.

Whether, in the presence of rule 2, rule 1 is still necessary or not depends on the char-

acteristics of the text collection and on the exact index update strategy employed by the

search engine. Suppose Immediate Merge is used to fold incoming postings data into the

on-disk index. If the search engine operates in a steady state, and document deletions occur

at approximately the same rate as insertions, then rule 2 is likely to be able to replace rule 1

altogether, as the amount of garbage postings accumulated between two re-merge operations

will be small. If, however, the collection exhibits periodic bursts of document deletions, in

which a large portion of the postings in the index becomes obsolete, then rule 1 will still be

necessary, as rule 2 alone would only remove the garbage data from the index when the next

merge operation takes place (i.e., when the incoming postings data exceed the amount of

available main memory). Query response time and index storage requirements, in that case,

166 Multi-User File System Search

would be unreasonably high, for a potentially unlimited period of time (violating Requirement

1 and Requirement 4 from Chapter 1).

But even if the system operates in a steady state, it might be necessary to enforce rule 1

in addition to rule 2. Suppose the search engine employs Logarithmic Merge to update

its index. Because of the exponentially increasing size of the individual index partitions

(cf. Figure 6.3), the oldest partition, referred to as Iold, holds at least 50% of the postings in

the index. Unfortunately, Iold is very rarely involved in any update operations (after all, this

is the very idea behind index partitioning). Therefore, while rule 2 is applied over and over

again, removing garbage data from the younger index partitions, garbage postings will keep

accumulating in Iold, increasing query response time and index storage requirements.

Hence, both rules, 1 and 2, are in fact necessary and need to be enforced by the search

engine. They complement each other well and, in combination, can be used to realize efficient

support for document deletions.

Optimal Threshold Values

In the case of the global threshold ρ, it is difficult to pinpoint the optimal value, since its

purpose is to limit the impact of garbage postings on query performance, and its optimal value

depends on user preferences. For the local threshold ρ′, however, targeting index maintenance

performance, it is possible to identify an optimum that does not depend on user preferences.

The parameter’s optimal value is influenced by a number of external factors. It depends on

the relative performance of the garbage collection mechanism, compared to an ordinary merge

operation without garbage collection, and on the amount of garbage postings accumulated

between two merge events.

Suppose the search engine operates in steady state, using Immediate Merge to realize

on-disk index updates, and maintaining p live (i.e., non-garbage) postings in the index. Let

g denote the total number of garbage postings in the index, and ∆g the number of garbage

postings accumulated between two merge events. Because the system is in steady state, we

have ∆g ≈M , where M is the number of postings that can be buffered in memory. Assume the

application of the garbage collector increases the time required to perform a merge operation

by a factor q (e.g., q = 1.46 for TREC, cf. Table 6.3). Finally, suppose the search engine uses

an on-the-fly garbage threshold ρ′, but no global threshold ρ.

The search engine integrates the garbage collector into a merge operation if and only if

g

p + g
≥ ρ′ ⇔ g ≥

p · ρ′

1− ρ′
. (6.29)

Chapter 6 — Real-Time Index Updates 167

Hence, the number of merge operations performed between two applications of the garbage

collector is

m =

⌈
p · ρ′

∆g · (1− ρ′)

⌉
− 1 (6.30)

(not including the merge operation with activated garbage collector itself). The total index

maintenance overhead of these m merge events, plus the last merge event, which includes the

activation of the garbage collector, then is

OG = c ·

(
q · (p + (m + 1) ·∆g) +

m∑

k=1

(p + k ·∆g)

)
(6.31)

(where c is a constant translating the postings in the index into a time value). The average

overhead per merge event is

O
(avg)
G = c ·

q · (p + (m + 1) ·∆g) +
∑m

k=1(p + k ·∆g)

m + 1
. (6.32)

By computing this overhead for various threshold values ρ′, it is possible to identify ρ′opt ≈ 0.1

as the optimal parameter value for the TREC collection with 32 MB for the in-memory index

buffers (corresponding to 10.6 million postings). However, a large range of threshold values

(0.04 ≤ ρ′ ≤ 0.2) leads to reasonable results, causing a total index maintenance overhead

within 4% of the optimal value. This result is also confirmed by my experiments.

6.5.4 Experiments

I repeated the experiment from Figure 6.16, this time with the two-tiered garbage collection

policy in place. After building a full index for the TREC collection, random documents were

removed and re-inserted, as defined by the command sequence shown in Figure 6.15.

Figure 6.17 shows the results obtained when using Immediate Merge, for various garbage

collection thresholds ρ′ (as discussed before, the second threshold, ρ, has no effect when

Immediate Merge is used for a collection in steady state). From plot 6.17(a) it can be seen

that eager garbage collection (ρ′ = 0) performs worst at first. After a certain point, though,

this role is taken over by no garbage collection (ρ = 1). Because, in the latter case, the index

keeps growing, the cumulative index update time with ρ′ = 1 ascends quadratically (like

in the case of incremental text collections), while the other threshold values lead to linear

growth.

The two threshold values ρ′ = 0.05 and ρ′ = 0.2 result in almost the same update perfor-

mance, with ρ′ = 0.05 having a slight lead, implying that the garbage collection mechanism

168 Multi-User File System Search

 300

 250

 200

 150

 100

 50

 0
5040302010

C
um

ul
at

iv
e

in
de

x
up

da
te

 ti
m

e
(m

in
ut

es
)

Index update operations performed (x 103)

(a) Index update performance for different thresholds rho’

rho’ = 0.00
rho’ = 0.05
rho’ = 0.20
rho’ = 1.00

+30%

+20%

+10%

0%

5040302010

A
ve

ra
ge

 s
lo

w
do

w
n

pe
r

qu
er

y

Index update operations performed (x 103)

(b) Query performance for different thresholds rho’

rho’ = 1.00
rho’ = 0.20
rho’ = 0.05

Figure 6.17: Index updates for a dynamic collection (TREC) in steady state. Index mainte-
nance strategy: Immediate Merge. Global garbage collection threshold: ρ = 1 (i.e., never).
On-the-fly garbage collection threshold: variable. In-memory update buffers: 32 MB.

is relatively robust against small variations in the threshold parameter ρ′ — provided that

extreme cases (ρ′ = 0 or ρ′ = 1) are avoided.

Plot 6.17(b) shows the query processing performance achieved by three different threshold

values, relative to the query-optimal baseline value ρ′ = 0. Garbage collection activity is

clearly visible, with one peak in the line for ρ′ = 0.2 after every fourth peak in the line for

ρ′ = 0.05. As expected, for a garbage threshold ρ′ = 0.2, the maximum slowdown seen in the

experiments remains just under 20%.

As a last experiment, I re-ran the command sequence from Figure 6.15 against a search

engine configuration employing Logarithmic Merge instead of Immediate Merge. Be-

cause a merge operation carried out by Logarithmic Merge usually only affects a small

Chapter 6 — Real-Time Index Updates 169

 8

 7

 6

 5

 4

 3

 2

 1

5040302010N
um

be
r

of
 a

ct
iv

e
in

de
x

pa
rt

iti
on

s

Index update operations performed (x 103)

(a) Number of index partitions over time

Log. Merge (rho’ = 0.0, rho = 1.0)

+50%

+40%

+30%

+20%

+10%

0%

5040302010

A
ve

ra
ge

 s
lo

w
do

w
n

pe
r

qu
er

y

Index update operations performed (x 103)

(b) Relative query performance (compared to Imm. Merge, rho’=0.0)

Log. Merge (rho’ = 0.0, rho = 1.0)
Log. Merge (rho’ = 1.0, rho = 0.2)

Figure 6.18: Index updates for a dynamic collection in steady state. Index maintenance
strategy: Logarithmic Merge. Comparing two approaches: using ρ exclusively (ρ′ = 1)
vs. using ρ′ exclusively (ρ = 1).

part of the entire index, the threshold parameter ρ can no longer be ignored. Figure 6.18

shows the results obtained by comparing two different garbage collection strategies:

• making exclusive use of the global threshold ρ;

• making exclusive use of the (local) on-the-fly garbage collection threshold ρ′.

It can be seen that, even if garbage postings are collected very eagerly (by setting ρ′ = 0),

query performance keeps decreasing if the local threshold ρ′ is used as the only garbage

collection criterion. Setting ρ = 1, as done in the experiment, allows garbage postings to pile

up in the older index partitions, since these partitions are rarely involved in a merge operation.

The relative query slowdown seen under these circumstances depends on the nature of the

170 Multi-User File System Search

most recent merge operations. The greatest decrease in query time it witnessed immediately

after a complete re-merge, reducing the number of active index partitions to 1.

Controlling the amount of garbage data in the index through the global threshold ρ, on the

other hand, proves to be an effective way of keeping query performance close to the optimum

(Immediate Merge with ρ′ = 0). Both query performance and update performance can,

however, be slightly improved by also using a local threshold ρ′ in addition to the global one

(not shown in the figure).

6.6 File Modifications

Thus far, I have only covered file insertions and file deletions. Research in the field of dynamic

text collections usually focuses on these two types of operations and assumes that file mod-

ifications can be realized as a combination of delete and insert operations. This assumption

may stem from the area of digital libraries, where document modifications are a rather rare

phenomenon. In file system search, the situation is different. A large number of files that a

user could be interested in searching are inherently dynamic and grow over time, through a

series of append operations. Prominent examples are:

• system log files (e.g., /var/log/messages);

• e-mail folders, realized by files in the mbox format, each containing a sequence of e-mail

messages.

While it might be argued that individual messages in an mbox file should be treated as

independent documents, the same is clearly not the case for system log files. Treating every

line in /var/log/messages as a separate document substantially limits the usability of the

search engine for certain search operations. Hence, it is important to associate all postings

for a given file with a contiguous region of the index address space.

Unfortunately, as shown in Figure 6.19, this might not always possible, since the address

space region immediately following that assigned to the original contents of a file might already

be occupied by another file. Re-indexing the whole file (i.e., treating the append operation as

a delete/insert sequence) is one way to make sure that the file receives a contiguous region of

the index address space. Alas, a system log file can easily contain several megabytes of text.

The new data added at the end of the file, on the other hand, may be as little as a few bytes

— a single line in the log file. Therefore, treating an append modification as a sequence of

delete and re-insert is bound to lead to extremely low indexing performance — quadratic in

the number of append operations. This is rather unfortunate, as the primary focus of the first

Chapter 6 — Real-Time Index Updates 171

Figure 6.19: A file append operation causing an address space conflict. Old data and new
data in file 1 should be assigned adjacent address space regions to be able to retrieve data
from both parts of the file at the same time. Unfortunately, the address space after file 1 is
already occupied by file 2.

part of this chapter had been to move away from Immediate Merge’s quadratic indexing

complexity.

While file modifications in general can be more complex than simple append operations,

append operations are by far the most common modification operations in a typical file system.

Whenever a file is changed in a text editor, for example, the editor will usually write the entire

file back to disk — even though only a small portion of the data in the file might have been

changed. In such a case, it might be possible to slightly reduce the indexing overhead, by

performing a diff4 operation to find out which parts of a file need to be re-indexed, as done

by Lim et al. [71]. However, as can be seen from Table 4.5 (Chapter 4), the reading and

parsing overhead accounts for a large portion of the total workload of the indexing process,

making it questionable whether substantial savings can be obtained by following this road.

6.6.1 Append Indexing Strategies

I decided to restrict myself to the case of true append operations, where it is clear from the

operating system’s file access pattern that no existing data were modified, and where only

4http://www.gnu.org/software/diffutils/ (accessed 2007-04-07)

172 Multi-User File System Search

the new data need to be read from disk, parsed, and indexed. I implemented and evaluated

three different Append indexing strategies, as follows.

Re-Indexing

The re-indexing approach treats a file modification as a deletion that is followed by an in-

sertion. This strategy can be expected to lead to high query performance and very low

update performance. It serves as the baseline against which the two other implementations

are compared.

Dynamic Address Space Transformations

When indexing the new text added to an existing file through an append operation, it might

not be possible to assign the new postings an address space range that immediately follows

that assigned to the existing postings for the file. However, there is plenty of room at the end

of the address space, after the last file in the index. Therefore, instead of assigning the new

data an address range that neighbors that of the old data, the old data can be relocated to

a new place where there is sufficient address space to harbor both the old and the new text.

Of course, this relocation of the file’s postings to a new index address is only virtual. All

postings keep their original value. At query time, however, the posting list for each query

term is adjusted in order to reflect the new position of each file in the address space. Such an

address space transformation can be achieved by maintaining a set T of transformation rules

{Ti}1≤i≤|T |, Ti = (sourcei, destinationi, sizei) (6.33)

and by updating each posting p of a query term’s posting list according to the transformation

rules in T :

pnew =





p− sourcei + destinationi : if ∃ Ti ∈ T : sourcei ≤ p < sourcei + sizei;

p : otherwise.
(6.34)

In the example from Figure 6.19, for instance, a single transformation rule T1 is needed to

move the index data for file 1 to the free address space after file 2:

T1 = (0, n + m, n). (6.35)

The new data from file 1 may then be indexed as usual, starting at index address 2n + m.

The transformation set T can be stored in a binary search tree to allow for efficient update

Chapter 6 — Real-Time Index Updates 173

operations. Applying T to a posting list L requires all of L’s postings to be in memory

and can be done by an operation similar to a galloping search used for list intersection

(cf. Algorithm 1), followed by a sort operation to re-establish the original low-to-high ordering

of the postings in the list. In the implementation used in my experiments, the sorting step is

realized by radix sort, operating on 64-bit postings.

The search engine’s indexing routines are completely oblivious to the append operation

and treat it as an ordinary indexing operation, emitting a sequence of postings starting at the

end of the used portion of the address space. The strategy can therefore be expected to lead

to very high index maintenance performance. Query performance, on the other hand, can

be expected to be comparatively poor. In addition, the requirement that each query term’s

posting list needs to be loaded into memory and decompressed prior to query processing may

be a limitation if the index is very large compared to the amount of available main memory.

Also, note that this strategy requires a number of transformation rules Ti that is linear

in the number of append operations carried out. If the file system exhibits a high append

update frequency, then this can lead to problems for both query performance and memory

requirements. The transformation set T should therefore periodically be integrated into the

actual index data, either by adjusting all posting lists or by re-indexing all affected files.

Non-Monotonic Posting Lists

The third strategy is based on the idea that it is possible to keep old and new postings in a

contiguous region of the address space by reserving more space than actually needed when

first indexing a given file. This is similar to the proportional pre-allocation strategy used in

in-place index update (cf. Section 2.5.1). When the search engine indexes (or re-indexes) a

file F , containing |F | tokens, it allocates an address space range with enough room for k · |F |

postings (in my experiments, I use k = 3).

In the example from Figure 6.19, file 1 would receive an address space range of size 3n,

and file 2 would receive an address space range starting at 3n and ending at 3n + 3m. When

the new data appended to file 1 need to be indexed, their postings can be inserted into the

unused range starting at address n and ending at address 3n− 1.

Whenever the range assigned to a given file is exhausted because too much text has been

appended to an existing file, the entire file is re-indexed, with its postings starting at a new

index address at the end of the used portion of the address space. This leads to a logarithmic

number of re-index operations and a total indexing complexity that is linear in the size of the

file, just like in the case of in-place index update with proportional pre-allocation.

174 Multi-User File System Search

As simple as this strategy might seem, it leads to a fundamental problem: the postings

in a given posting list are no longer monotonically increasing. This is problematic because

many components of the search engine rely on this very fact. Hence, in order to realize append

operations by reserving some free address space at the end of every indexed file, the following

major changes to the search engine are necessary:

• If the search engine employs a compressed in-memory index construction strategy, then

the compression method used to encode incoming postings for a given term needs to be

adjusted, allowing for the fact that the difference between two consecutive postings for

the same term may be negative.

In my experiments, the search engine used vByte [100] to compress incoming postings.

A delta value of 0 was used to indicate a violation of the monotonicity constraint and

to use index offset zero as the point of reference when decoding the following posting.

• When transferring postings from memory to disk (after the indexing process runs out of

memory), the postings for each term first need to be decompressed and re-sorted (using

radix sort in my current implementation), then compressed again.

• Posting lists now always need to be decompressed during index merge operations. Be-

cause postings are added to the index in a non-monotonic fashion, it is no longer possible

to merge a set of partitions by concatenating their list segments. Instead, a true multi-

way merge operation needs to be performed.

• When processing a search query, the postings for each query term, as found in the

in-memory index (used to buffer incoming postings before transferring them to disk)

need to be sorted first. Again, this necessitates prior decompression and thus requires

the in-memory list for each query term to fit completely into main memory (note that

this is not the same as in the case of dynamic address space transformation, where the

entire list for each query term needed to fit into main memory).

In addition to these major changes to the indexing / query processing logic of the search

engine, several minor changes are necessary, for example to the implementation of the search

engine’s index-to-text map, which also assumes monotonicity of incoming postings.

6.6.2 Experiments

I evaluated all three Append strategies by having the search engine build an index for the

TREC collection in the following way. The collection was split into 100 sub-collections. One

Chapter 6 — Real-Time Index Updates 175

@system cat trec/chunks/trec.05326 >> trec/part.91

@update APPEND trec/part.91

@rank[qap][count=20][id=435] “〈doc〉”· · · “〈/doc〉” by “sun”, “beds”, “safe”

@system cat trec/chunks/trec.13366 >> trec/part.73

@update APPEND trec/part.73

@rank[qap][count=20][id=303] “〈doc〉”· · · “〈/doc〉” by “osteoporosis”

.....

Figure 6.20: Fragment from the Append command sequence used in the experiments.

after the other, each of the 15,449 files in the collection was appended to a random sub-

collection. The search engine then was notified of the append operation, and a search query

was processed against the new contents of the index. A fragment from the actual command

sequence used is given by Figure 6.20. The sequence is not meant to be representative of

a typical file system search scenario. Instead, it is used to explore the performance of the

different strategies under extreme conditions, where the file system is updated exclusively

through append operations.

For all three configurations, the garbage collection thresholds were set to ρ = 0.4 (global

threshold) and ρ′ = 0.1 (on-the-fly threshold). Logarithmic Merge was used as the index

update strategy. The results obtained are shown in Figure 6.21. Plot 6.21(a) depicts the

cumulative time spent on index updates. Plot 6.21(b) depicts the average time per query,

computed over a sliding window covering 150 search queries.

As expected, the re-indexing strategy leads to unacceptable index maintenance perfor-

mance, even worse than Immediate Merge. Its query performance stays relatively high,

also as expected, only slightly worse than in the original experiments from Section 6.2, due to

garbage postings in the index and interference of index update operations with search queries

(both are competing for the operating system’s disk cache).

Dynamic address space translation, conversely, leads to very high update performance,

close to that of Logarithmic Merge in the original, non-Append experiments. Its query

performance, however, is not competitive at all. On average, a query takes 4 times as long

to be processed as with the re-indexing strategy — 1.6 seconds per query when 100% of the

collection have been indexed.

The third strategy, pre-allocating index address space and maintaining non-monotonic

posting lists, represents an interesting trade-off between the two extremes. The index main-

tenance overhead is approximately three times as large as in the case of the transformation

strategy, for the reasons listed above. Perhaps surprisingly, however, query performance is

176 Multi-User File System Search

 120

 100

 80

 60

 40

 20

 100 90 80 70 60 50 40 30 20 10 0

C
um

ul
at

iv
e

m
ai

nt
en

an
ce

 o
ve

rh
ea

d
(m

in
)

% indexed

(a) Index maintenance performance

Re-indexing
Non-monotonic posting lists

Address space transformation

 2000

 1600

 1200

 800

 400

 100 90 80 70 60 50 40 30 20 10 0

T
im

e
pe

r
qu

er
y

(m
s)

% indexed

(b) Query processing performance

Re-indexing
Non-monotonic posting lists

Address space transformation

Figure 6.21: Update and query performance for three different Append update strategies.

quite a bit lower than in the case of re-indexing, with a relative slowdown between 50%

(around 70% indexed) and 100% (at 100% indexed).

The query slowdown stems from two sources. First, the postings in the in-memory index

need to be decompressed and sorted before the query can be processed. Second, the query

processor requires random access to all posting lists: the MaxScore [109] heuristic can only

be employed if parts of a query term’s posting list may be skipped; the lists for “〈doc〉”

and “〈/doc〉” need to support random access in order to efficiently find the document that

a particular posting refers to. If the search engine maintains a set of n independent index

partitions, as is the case if Logarithmic Merge is employed to realize on-disk index updates,

then a random list access to a term’s posting list requires n binary search operations, one for

each index partition, because the individual index partitions no longer form a partitioning of

the used portion of the address space (they may overlap).

Chapter 6 — Real-Time Index Updates 177

The relationship between the number of independent index partitions and the query

slowdown can be seen from Figure 6.21, where the re-merge operation at around 70% indexed

(corresponding to a small jump in the cumulative indexing time) results in a reduced query

response time, from 710 ms down to 490 ms per query.

All in all, the address space pre-allocation strategy seems to be the best choice. Re-

indexing is definitely not an option, because of its unbearably low update performance. Ad-

dress space transformation, on the other hand, leads to very low query performance and

exhibits substantial memory requirements (due to the necessity to load the query terms’

posting lists completely into main memory — in uncompressed form). The relatively low

update performance of the pre-allocation strategy, although undesirable, is unlikely to cause

severe problems in the context of file system search. As we have seen in Section 4.3.3 (Ta-

ble 4.5), converting the input files to plain text tends to be the main bottleneck when indexing

real file system data. Hence, the additional overhead introduced here is not much greater than

the one already present due to external constraints.

6.7 Meeting Real-Time Requirements

In the previous sections of this chapter, I have demonstrated that it is possible to have the

search engine provide efficient support for index update operations – insertions, deletions,

modifications – exacted by a fully dynamic text collection. These update operations, how-

ever, only feature a benign amortized complexity; the worst-case complexity of each update

operation can still be very high. For example, if Logarithmic Merge is used as the sarch

engine’s index update policy, then it is guaranteed that the system requires O(N · log(N))

disk operations to build an index for a dynamic collection containing N tokens. But it is

not guaranteed that each token can be indexed in time O(log(N)). Instead, indexing a single

token may require a very long time, if the token is unlucky enough to cause the search engine

to run out of memory.

Figure 6.2(a), for example, shows that the vast majority of all file insertions for the TREC

collection can be carried out in under a second. Every now and then, however, the search

engine needs to perform a physical index update, transferring postings from memory to disk.

The duration of this operation depends on the update strategy chosen. For No Merge, it

takes between 1 and 2 seconds. For Immediate Merge (and all other merge-based update

strategies), it may take up to several minutes.

178 Multi-User File System Search

Asynchronous Index Maintenance

In order to achieve true real-time index updates, the search engine needs to be modified so

that garbage collection and index merging procedures are no longer integrated into index

update operations (insert/delete), but are carried out in an asynchronous fashion.

Asynchronous index maintenance is realized by a low-priority background process that

takes care of all disk-intensive index maintenance tasks. As this background process is not

time-critical, it will get interrupted whenever the search engine has to respond to a document

insertion/deletion or to an incoming search query, ensuring low query response time and low

update latency.

Equipping the search engine with the ability to perform asynchronous index maintenance

requires the following changes to its update procedures:

1. During an insert operation: When the indexing process runs out of memory, it creates a

new on-disk index partition, but does not perform a merge operation. Instead, it starts

a background process that takes care of merging index partitions (if necessary).

2. During a delete operation: If the critical amount of garbage postings ρ is exceeded, the

search engine starts a background process that removes all garbage postings from the

index.

3. The background process periodically checks for other system activity and immediately

puts itself to sleep if such activity is detected.

4. The index maintenance procedures write data to the file system in very small chunks (a

few hundred kilobytes). They do so without making use of the operating system’s disk

caching facilities (by opening files in mode O DIRECT or O SYNC).

Points 1 and 2 are immediately obvious from the meaning of the word “asynchronous”.

Point 3 is necessary because most operating systems, by default, do not perform real-time

CPU scheduling. Hence, assigning the background process a low priority is not sufficient to

guarantee that other processes will always be given preference over it. This is particularly

so because the background process exhibits a very high disk I/O level, and many operating

systems will dynamically increase the priority level of such a process, employing techniques

like multi-level feedback queues.

Point 4, finally, is needed because the operating system usually serves write requests

in an asynchronous manner, buffering data in memory and writing them to disk at a later

point. Unfortunately, this means that the background process can interfere with other system

Chapter 6 — Real-Time Index Updates 179

activity even after it has been suspended. By writing data to disk in small chunks, it is

guaranteed that they will not delay disk operations required by index updates or search

queries for too long. By performing only synchronized write operations, the background

process never performs a disk access after it has detected other system activity — minimizing

its impact on other processes.

Experiments

I tested the search engine’s ability to perform real-time updates by splitting the command

sequence from Figure 6.15 into an update sequence (containing @addfile and @removefile

commands) and a query sequence (containing @rank commands). Commands from the update

sequence were assumed to arrive in the system according to an exponential distribution with

mean µU = 100 ms (5 insertions and 5 deletions per second). Commands from the query

sequence were assumed to arrive according to an exponential distribution with mean µQ =

5000 ms (one query every 5 seconds).

After building a complete index for the TREC collection, three processes were started:

a search engine process, an update process, and a query process. The update and query

process’s sole purpose was to send the commands from each sequence to the search engine –

at pre-defined points in time – and to measure the time it took the search engine to respond to

each command. The engine was configured to maintain its on-disk index structures according

to Asynchronous Immediate Merge, and to allow 1 update operation and 4 query operations

to be carried out concurrently (multi-threaded).

The results of this experiment are depicted in Figure 6.7. Plot 6.7(a) shows that, as with

synchronous index maintenance, the majority of all update operations (81.9%) takes less than

100 ms to be carried out. On average, an update operation (insert/delete) is integrated into

the index structures after 119 ms (standard deviation: 287 ms).

Compared to the synchronous case (cf. Figure 6.2), in which the search engine managed

to carry out 94.5% of all update operations in less than 100 ms, the percentage achieved here

(81.9%) may seem low. However, the experimental conditions here are different from the

ones for Figure 6.2. Synchronous index maintenance assumes that an update event always

takes place after the previous event has been processed. When modeling the arrival of update

events according to an exponential distribution, this is no longer the case. In fact, with µU =

100 ms, the time difference between two consecutive update events Ui and Ui+1 is less than

40 ms in 33% of all cases: ∫ 0.04

0
λ · e−λ·xdx ≈ 0.33. (6.36)

180 Multi-User File System Search

10

3

1

0.3

0.1

0.03

0.01
30252015105In

de
x

up
da

te
 la

te
nc

y
(s

ec
on

ds
)

Wall-clock time elapsed (minutes)

(a) Index maintenance performance

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

30252015105Q
ue

ry
 r

es
po

ns
e

tim
e

(s
ec

on
ds

)

Wall-clock time elapsed (minutes)

(b) Query performance

Figure 6.22: Real-time index updates. Performing 10 index updates and 0.2 query operations
per second on a full index for the TREC collection. Index maintenance activity (merging
partitions, collecting garbage postings) takes place in a low-priority background process.

Whenever this happens, achieving a response time below 100 ms becomes very difficult.

Assuming a raw service time of 70 ms per update operation, event Ui+1 would need to wait

30 ms before it could even be forwarded to the search engine (it cannot be processed until Ui

has been finished), leading to a total expected response time of at least 100 ms.

If asynchronous index maintenance is used, then the maximum time required to perform

an update operation no longer depends on the time it takes to carry out a physical index

update. Out of the 18,000 update events that took place during the 30-minute experiment,

not a single one required more than 3 seconds until it was completely processed by the search

engine and all changes had been propagated to the index structures.

Chapter 6 — Real-Time Index Updates 181

Plot 6.7(b) shows that search queries – submitted to the engine concurrently with update

commands, and competing with update and index maintenance operations for disk and CPU –

can still be processed very quickly. 81.7% of all queries are processed in under 1 second. Only

3.1% require more than 2 seconds. The average query response time is 686 ms (standard

deviation: 508 ms).

Adaptivity

As a last comment, it is worth pointing out that with the rather high update arrival rate

(µU = 100 corresponds to 5 insertions per second and thus a total of 134 GB of new text

per day), the search engine’s index maintenance strategy (Immediate Merge) is no longer

able to keep up with the rate at which new index data arrive. On average, the search

engine’s update buffers are exhausted after approximately 200 files insertion, or 40 seconds.

A merge operation takes at least 80 seconds — even longer if executed with integrated garbage

collection (cf. Table 6.4). Therefore, we encounter the interesting situation in which, after

running out of memory the first time, the indexing process runs out of memory a second time

before the background process has finished its merge operation.

Fortunately, this does not cause any problems. The foreground index update task simply

creates a new index partition from the in-memory data, without invoking a new merge oper-

ation. Thus, effectively, the search engine temporarily switches from its original Immediate

Merge strategy to a No Merge policy, by increasing the number of index partitions until

the background process has finished its merge update cycle. Therefore, if the update load

becomes too high, the background process will never run, and the search engine will auto-

matically switch from its original strategy, targeting high query performance, to the more

update-efficient No Merge.

This shows that the index maintenance strategies presented in this chapter can in fact be

used to provide support for real-time index updates, even when the system’s update load is

very high. By realizing all disk-intensive update tasks in a background process, their origi-

nal amortized complexity can effectively be transformed into actual worst-case performance

guarantees (assuming that the system is not permanently under full load, but its idle time is

sufficient for the indexing process to transfer the current in-memory index to disk whenever

it runs out of memory).

It also shows that index partitioning schemes like Logarithmic Merge, although de-

signed with high update performance in mind, may in fact lead to higher query performance

than Immediate Merge when used in an environment with real-time update constraints.

This is because the situation in which the search engine runs out of memory a second time,

182 Multi-User File System Search

before the current background merge operation could be finished, is more likely to occur with

Immediate Merge than with Logarithmic Merge. Therefore, potentially, Immediate

Merge could lead to a larger number of index partitions than Logarithmic Merge — at

least temporarily.

6.8 Discussion

This chapter provides an overview of techniques that can be used to realize high-performance

index updates with low amortized complexity. It covers the three main types of update events

seen in dynamic collections: insertions, deletions, and append operations.

I evaluated various index maintenance strategies, in-place and merge-based. The eval-

uation included index partitioning schemes, such as Logarithmic Merge, that represent

interesting alternatives to the traditional in-place and re-merge update policies with their

strictly contiguous on-disk inverted lists.

With respect to the quest for the optimal index maintenance strategy for incremental text

collections, I have shown that neither candidate (in-place or merge-based) alone deserves the

title “best strategy”. Instead, a combination of the two approaches, hybrid index mainte-

nance, leads to the best results. Under high query load, when on-disk posting lists need to

be stored in a contiguous fashion, Hybrid Immediate Merge with contiguous posting lists

(HIMC) is the method of choice, as it dominates Immediate Merge (same query perfor-

mance, but substantially better update performance). Under high update load, on the other

hand, when index maintenance performance is more important than query performance, Hy-

brid Logarithmic Merge with non-contiguous posting lists (HLMNC or HLMNC(A)) is a

very attractive strategy, as it leads to better update performance than Logarithmic Merge

and better query performance than No Merge. Unfortunately, I was not able to experimen-

tally verify HLMNC’s theoretically suggested dominance over Logarithmic Merge.

Support for document deletions blends nicely into the incremental index update strategies,

thanks to the secure query processing framework from Chapter 5. Postings referring to

deleted documents can be removed from the index in a delayed fashion by executing a garbage

collection procedure. This procedure can either be integrated into regular update tasks (on-

the-fly garbage collection) or carried out separately, whenever the amount of garbage postings

exceeds a predefined threshold. For optimal performance, a combination of both approaches

is necessary.

All techniques presented may relatively painlessly be modified to operate at a low priority

level in the background, resulting in a search engine that supports actual real-time index

Chapter 6 — Real-Time Index Updates 183

updates. When the search engine runs out of memory, the in-memory index is transferred to

disk in a synchronous fashion. However, possible merge operations resulting from the creation

of the new on-disk inverted file, are carried out asynchronously, by a separate process.

It should be possible to reduce the worst-case update latency even further, beyond what is

shown in Section 6.7, by also delegating the construction of the new on-disk inverted file to a

background process. In order for this to be possible, the search engine would need to reserve

a certain amount of main memory that can be used to start building a new in-memory index

(accumulating postings for incoming documents) while the previous in-memory index is being

transferred to disk. Query processing complexity would increase slightly, because posting lists

would potentially need to be fetched from two different in-memory indices instead of only one.

On the other hand, by employing this strategy, it should be possible to guarantee sub-second

update response times (assuming a reasonable update arrive rate).

In addition to all their other benefits, the need for real-time updates is another strong

argument in favor of index partitioning schemes, such as Logarithmic Merge. Most

structural components required by index partitioning (processing queries from two or more

inverted files; merging a set of inverted files) have to be present in the search engine anyway,

in order to support real-time index updates. Hence, the implementational overhead caused

by supporting those schemes is negligible, and there really is no excuse any more for not

supporting them.

A remaining facet that has not been covered yet is the degradation of compression ef-

fectiveness. By removing postings from the index, and not re-claiming the index address

space that these postings used to occupy, the search engine creates gaps in the address space.

These gaps need to be “jumped across” by the ∆-based postings compression scheme. For

example, if a random 50% of all postings are removed from the index, then this may increase

the compression inefficiency of the remaining postings by up to 1 bit per posting.

Fortunately, the actual degradation seen in practice is less than 1 bit per posting, because

many terms exhibit a strong tendency to form clusters. That is, a random occurrence of a

term T is likely to be followed by another occurrence of T , within the same document. Such

clusters are unaffected by the gaps introduced outside the document. Nonetheless, gaps will

keep piling up as more and more data are deleted from the index. One possible way to deal

with this problem is to integrate an address space compaction mechanism into the garbage

collection procedure. In addition to removing postings referring to deleted documents, the

garbage collector would then also adjust the value of the remaining postings, so as to re-claim

unused portions of the index address space.

Chapter 7

Interaction with the Operating

System

A last remaining aspect of file system search that has not yet been addressed is how the search

engine should interact with other components of the computer system that it runs on. For

example, in order to update its index in a timely manner, the search engine somehow needs

to be notified about changes to the file system whenever they take place. Also, the resulting

I/O-intensive index update operations need to be scheduled in a reasonable way, so as to keep

their impact on the performance of other processes running on the same computer as low as

possible. These and other aspects of file system search are the topic of this chapter.

In Section 7.1, I examine several file system notification services for GNU/Linux. I discuss

the existing notification infrastructure found in the Linux kernel (dnotify and inotify) and

argue that there is a set of file system events that are crucial for efficient file system search,

but that are not currently supported by any major operating system.

Section 7.2 discusses the problems arising from the presence of many different file types in

the file system. The greater the set of file types supported by the search engine, the greater is

its utility to the user. At the same time, unfortunately, supporting a large variety of different

file formats also increases the implementation efforts of the search engine developers.

Section 7.3 focuses on some temporal aspects of file systems. I show that the indexable

contents of a file system are typically heavily skewed towards very old files that rarely, if ever,

get changed. I argue that this aspect should be taken into account when building the index.

I finish this chapter with a brief discussion of index update scheduling policies and suspend-

resume index maintenance strategies necessary to react to a sudden system shutdown that

might interrupt an ongoing index maintenance operation (Section 7.4).

185

186 Multi-User File System Search

7.1 File System Notification

In order to be able to update its index structures in real time, the search engine needs a hook

into the operating system that allows it to be notified of all changes that are happening in

the file system. Such event notification services are provided by most operating systems. In

my discussion of existing notification systems, I limit myself to the case of Linux.

7.1.1 Essential File System Events

Obviously, the search engine must be able to be notified of basic file system events, such as file

creations, file deletions, name changes, and modifications to a file’s set of access permissions.

However, a few more, not so obvious, requirements exist:

1. The search engine has to be notified of all changes in the file system without specifically

registering for a particular directory. A notification interface that requires explicit per-

directory registration necessarily leads to a long start-up delay (scanning the entire file

system when the computer is turned on) and also to a number of race conditions that

arise when the contents of a newly created directory change before the search engine

has a chance to register for changes in that directory.

2. When the contents of a file are modified, it is not sufficient to merely inform the search

engine that a change has happened. In order to appropriately react to partial documents

modifications (e.g., append operations), the search engine also needs to know what exact

parts of the file are affected by that change.

3. There needs to be a way to notify the search engine that a user is about to remove

a storage device from the file system. Typically, the search system will keep a small

number of files open for every mount point (so that it does not need to open/close its

index files whenever it has to process a search query). If it is not notified of such a user

intent, it will not close its files, and the device may not be removed from the system

without the risk of data loss.

None of these requirements are met by the current notification interface(s) provided by the

Linux kernel. In Windows, requirement 1 is met by the FindFirstChangeNotification

system call (and related functions), but requirements 2 and 3 are not fulfilled in Windows,

either.

Chapter 7 — Interaction with the Operating System 187

7.1.2 Event Notification in Linux: dnotify and inotify

File system event notification in Linux is traditionally realized through the interface provided

by dnotify. With dnotify, a user process can register to be notified about all changes

taking place in a particular directory by obtaining a handle to the directory and issuing a

special fcntl command. Thereafter, whenever the contents of the directory are changed, the

operating system kernel sends a signal to the process, notifying it of the event.

The main limitation of dnotify is that a process needs to maintain an open file handle

for every directory that it is watching. This design decision was motivated by the originally

intended use of dnotify, aiming at graphical user interfaces, such as file managers, that need

to monitor a small number of directories in order to update the information displayed to the

user. In the context of file system search, however, the indexing process needs to watch an

entire file system, containing thousands of different directories. This is likely to be impossible,

due to a limited number of open file handles per process supported by the operating system.

Apart from the directory in which a file system event took place, dnotify provides virtu-

ally no detailed information about the nature of an event. For instance, if a file is moved from

directory A to directory B, then this results in two different events. With Linux’s preemptive

kernel, however, the two events are not necessarily received by the search engine right after

another, but may instead be separated by some other events. Hence, moving a file from A to

B will cause the search engine to re-index the file instead of just updating some meta-data.

Finally, dnotify sends event notifications to registered processes in the form of system

signals, a rather ugly and inconvenient way of inter-process communication.

Many of the shortcomings of dnotify were eliminated with the advent of inotify1, the

now-standard notification system in Linux. inotify has been in development since 2004 and

became part of the official Linux kernel with the release of Linux 2.6.13 in August 2005. With

inotify, a process no longer needs to keep an open file handle for every directory that it is

watching. After opening a given directory and sending a registration request to the kernel,

the directory may be closed. Hence, the number of directories that can be watched by a

process is no longer limited by the number of open file handles.

inotify also provides more information to user-space processes than dnotify. For ex-

ample, events are time-stamped so that, for a file relocation from directory A to directory B,

the two corresponding events, in A and B, can be re-connected by the search engine.

Regrettably, some of the limitations of dnotify are shared by inotify. For example,

inotify does not provide any information about which part of a file is changed by a write

1http://www.kernel.org/pub/linux/kernel/people/rml/inotify/README (accessed 2007-04-11)

188 Multi-User File System Search

operation. In the case of system log files, this means that the entire log file needs to be

re-parsed (and potentially re-indexed) whenever a single line has been added to the file.

More importantly, however, inotify still requires the watching process to register for each

watched directory separately — exacting an exhaustive scan of the entire file system during

system start-up. This design decision is mainly motivated by security considerations: a user

process should only be notified about events taking place in directories for which it has read

permission. By forcing the process to first open a directory before it can register for event

notification, the operating system can easily make sure that the process has the necessary

permissions. Unfortunately, the concept is only a half-hearted attempt to provide a secure

notification interface. For example, when the access permissions of a directory (or one of its

ancestors in the file system tree) are changed after a process has registered for changes, the

process will still be notified of all events in that directory, even though it might no longer

possess the read privilege for it.

7.1.3 An Alternative to inotify: fschange

Because the need to explicitly and individually register for each watched directory is such a

fundamental limitation of the existing event notification infrastructure, it makes sense to think

about alternatives. fschange2 is such an alternative. It was designed with the specific needs

of file system search and file-system-wide backup systems in mind. In these applications, it is

not necessary to verify the calling process’s access privileges when it registers for notification.

The respective user-space process always runs with super-user privileges and has permission

to read every directory in the file system.

Instead of enforcing security restrictions on a per-directory basis, like inotify, fschange

provides complete event information about the entire file system through a file in the /proc

file system. When a process reads from this file, it receives event descriptions for all events

that changed the status of the file system. Prior registration for specific directories is not

necessary. The file, however, can only be accessed by a process with super-user privileges,

ensuring that the file system’s access permissions are not violated by the notification service.

fschange provides most of the event types supported by dnotify and inotify, plus some

additional ones. Figure 7.1 shows a sequence of user actions affecting the state of the file

system (left-hand side) and the corresponding event lines generated by fschange (right-hand

side). Some details worth pointing out:

2http://stefan.buettcher.org/cs/fschange/ (accessed 2007-04-11)

Chapter 7 — Interaction with the Operating System 189

Figure 7.1: File system event notification with fschange. Left-hand side: User actions.
Right-hand side: fschange events.

• A WRITE event includes information about the first and the last byte inside the file that

were affected by the operation. This information can be used by the search engine to

react to append operations in an appropriate way.

• Changing the name of a file (or its location in the file system) is treated as a single

event, and there is no need for a time-stamping facility that could be used to re-connect

two separate events that originated from the same user action.

• An unsuccessful umount command (“device is busy”) results in an fschange event of

the type UMOUNT REQ. The search engine, when it sees this event, can close all its open

files on the given device.

The third point addresses the unfortunate side-effect of the search engine’s maintaining

open files on all active storage devices. By modifying the umount command so that, after an

unsuccessful attempt to unmount a device, it waits a few seconds and then tries again, it is

possible to allow the search engine to flush all its pending data to disk and close its open

files on the respective device. An unsuccessful unmount attempt can be easily detected by the

search engine from the file access pattern observed by processing the fschange event stream.

In such a case, the engine can re-open its data files for the given mount point and resume its

normal operation.

In the context of file system search, fschange solves all of the shortcomings of Linux’s

existing notification interface. As it does not take user permissions into account, however, it

only complements dnotify and inotify instead of replacing them.

190 Multi-User File System Search

7.2 Dealing with Different File Types

A major implementational hurdle in the development of a file system search engine is the

necessity to support a large number of different file types. Not only does the indexing process

need to be able to extract indexable text data from a variety of input file formats; the search

engine also needs to be able to display the contents of each file in a meaningful fashion when

presenting search results to a user.

This problem is bigger than it seems at first, as there is no standardized set of libraries

that can be used to extract the indexable data from a given file. For this reason, the first

release of Google’s desktop search3, for example, did not include support for Adobe’s PDF

file format, severely limiting the search engine’s utility to many users.

The ability to obtain a textual representation of every file in the file system is such a

fundamental exigency, not only for file system search, but also for other applications, that it

seems reasonable to integrate it into the core file system.

A possible approach could be the one envisioned by Hans Reiser4,5 or by the proponents

of the semantic file system [50]. Within these frameworks, the distinction between files and

directories no longer exists. A file can be accessed like a directory, allowing a process to

effortlessly access various attributes or components of the file. For example, the artist of

an MP3 audio file britney.mp3 could be obtained by reading from britney.mp3/artist.

Similarly, the raw textual representation of a PDF document could be obtained through

thesis.pdf/text. An application that knows how to interpret a certain file type (e.g., Adobe

Acrobat) can register with the operating system to provide a file system plug-in that may be

used to extract the desired information from a given file. This way, it is no longer necessary

to develop a large number of independent text extraction procedures, one for each file type,

or to rely on non-standardized libraries when providing support for various (proprietary) file

types.

7.3 Temporal Locality in File Systems

In Section 4.1, I considered the spatial aspect of a file system — the fact that a typical UNIX

file system consists of more than just a single storage device. I argued that this fact should

be taken into account by dividing the file system’s content index into several sub-indices, one

for each storage device.

3http://desktop.google.com/ (accessed 2007-04-10)
4http://www.namesys.com/v4/v4.html (accessed 2007-04-27)
5http://www.namesys.com/whitepaper.html (accessed 2007-04-27)

Chapter 7 — Interaction with the Operating System 191

File type Last modification

less than 1 day 1–7 days 7–30 days older

Plain text & source code 200 36 525 140,836

HTML 39 103 744 109,758

XML 6 0 0 26,263

PDF 8 3 25 1,549

Postscript 5 1 1 1,649

man pages 0 0 0 5,771

E-mail files 7 6 5 22,289

Total 0.1% 0.0% 0.4% 99.4%

Table 7.1: File age statistics for SBFS. More than 99% of all indexable files in the file system
are older than 30 days. The category e-mail files contains individual e-mail messages, but
also e-mail folders in the mbox format.

In addition to the spatial aspect, a file system also has a number of temporal aspects.

Files can be young or old, and old files are less likely to be changed than younger ones.

Ramakrishnan et al. [88] report that, in a typical office work environment with shared files,

fewer than 10% of all files in the file system are accessed during a given day. About 50% of

the file operations logged in Ramakrishnan’s experiments were file modifications or deletions.

Since there is usually a significant overlap between the files accessed during two subsequent

days, it is unlikely – even over a longer period, like one week – that more than 20% of the

files in the file system are modified.

Ousterhout et al. [83] report that about 50% of all newly-created information is deleted

or overwritten within 5 minutes. This can be explained by a large number of temporary files

(e.g., intermediate files produced by a compiler) and also by typical user behavior: a user

tends to periodically save the file that she is working on, even when she has not finished editing

the file yet. Therefore, many of the write operations seen in Ramakrishnan’s experiments are

likely to refer to the same files, implying that the total number of files modified during a

typical workday is far less than 5% of all files in the file system.

This claim is further supported by the file age statistics for the SBFS collection that are

shown in Table 7.1. It can be seen that more than 99% of all indexable files in the file system

are older than 30 days. Many of those files are part of the operating system environment,

such as man pages (nearly 6,000 files in /usr/share/man) or other system documentation files

(e.g., 25,000 files in various formats in /usr/share/doc). However, the majority of these files

are in fact user-generated (or downloaded) content that has accumulated over the years.

192 Multi-User File System Search

All these files need to be indexed, because they might be targeted by a legitimate search

query. However, only a small fraction of all files are expected to change. This can be taken

into account by maintaining two different indices per storage device. One index, IY , is used to

store information about all young files in the file system, perhaps younger than a week. The

other index, IO contains information about old files. Most file system changes are confined

to young files. Index maintenance operations, therefore, are predominantly limited to the

relatively small index IY and can be carried out much more efficiently than before. IO can

be updated periodically, maybe once per week, without causing any substantial performance

problems.

Dividing the index into two parts also allows the search engine to apply different index

compression techniques to the individual indices. For instance, IO might be compressed using

a slower, but more space-efficient algorithm than the one used for IY . IO’s inverted lists

are decompressed and re-compressed rather infrequently, and choosing a compression scheme

with a more complicated encoding routine than vByte no longer represents a performance

bottleneck.

7.4 Scheduling Index Updates

Requirement 4 from Chapter 1 states that the search engine’s indexing activity should not

interfere with the normal operation of other processes in the system. Typical desktop search

engines meet this requirement by pausing their indexing process as soon as they detect any

system activity. After a short period of system inactivity, usually between 10 and 30 seconds,

the indexing task is resumed.

In Section 6.7, I have shown that it is possible to delegate index maintenance operations

to a low-priority background process so that index updates and search queries can still be pro-

cessed at a very high rate, unaffected by the search engine’s shoveling around large amounts

of index data. The techniques employed to achieve real-time index updates can easily be

adjusted so that the search engine’s indexing activity does not interfere with other processes.

Thus, pausing the indexing process for 15–30 seconds in many cases is not necessary. This

aspect is especially important, since typical user-interactive applications, such as word pro-

cessors, are CPU-bound with very short periods of CPU bursts, while the search engine’s

indexing task is largely I/O-bound (cf. Section 4.3.2). It is therefore unlikely to interfere with

such applications.

What is more interesting than how to interact with other active processes in the system is

how to react to a sudden system shutdown. Suppose the search engine, at some point, needs

Chapter 7 — Interaction with the Operating System 193

to initiate a garbage collection process because the amount of garbage postings in the index

has reached a predefined threshold. Suppose the time necessary to complete this process is

about an hour, but the computer is only turned on for short periods of time, perhaps 30

minutes.

If the search engine employs a merge-based maintenance strategy, then it will have a

hard time ever finishing the garbage collection procedure. If, instead, it maintains its index

structures following an in-place approach or hybrid index maintenance (cf. Section 6.4), then

it is possible to apply the garbage collection mechanism to each inverted list individually.

This is another argument in favor of hybrid index maintenance, because it enables the search

engine to interrupt the garbage collector at any given point in time, without compromising

the consistency of the on-disk index structures. With a purely merge-maintained index, this

is also possible. It would, however, require rather complicated check-pointing mechanisms to

guarantee index consistency and to make the garbage collector properly resume its work after

a system shutdown.

Chapter 8

Conclusion

This thesis has covered a large variety of issues that arise in the context of multi-user file

system search. Taken together, the techniques that I proposed in the previous chapters can

be used to implement a search engine that

• exhibits low memory requirements;

• respects user permissions and always returns search results that are consistent with the

file access privileges defined by the file system;

• updates its index structures in real time, usually within a few seconds after a file system

change is reported to the search engine.

All methods have been implemented and are part of the publicly available Wumpus1 search

engine. The methods have been thoroughly evaluated, to prove their effectiveness in the

context of dynamic multi-user information retrieval systems.

Contributions

The main contributions of this thesis are:

• I developed a way to model some statistical properties of inverted files, including the

number of posting lists below a certain length threshold, and the number of postings

contained in such lists. The model, based on the assumption of a Zipfian term distribu-

tion, was shown to yield an accurate description of the lists in an inverted index. It was

used several times in this thesis, to theoretically demonstrate the usefulness of various

techniques for creating, updating, and organizing an inverted index.

1http://www.wumpus-search.org/ (accessed 2007-04-30)

195

196 Multi-User File System Search

• The interleaved dictionary organization from Section 4.4.2 brings the memory consump-

tion of the index’s lookup data structure to a very low level, sub-linear in the size of the

text collection. This is important in the context of file system search, where memory

resources are scarce. It is also fundamental for the efficiency of the index update strate-

gies in Chapter 6. With the chosen data structure, dictionary maintenance, typically a

non-trivial problem in the design of any update strategy (cf. Lester [66, Chapter 7]),

essentially comes for free, since the dictionary now is part of each inverted file.

• In Chapter 5, I quantified the amount of information that may leak to an unauthorized

user if the search engine follows a postprocessing approach to impose security restrictions

upon its search results. I showed that an arbitrary user, by carefully designing search

queries and analyzing the order in which search results are returned by the search engine,

can obtain a very accurate approximation of the global term statistics of the file system,

including information about files that cannot be read by the user.

• To cure this deficiency, I developed a secure query processing framework, based on

the GCL retrieval model. I discussed possible performance optimizations within this

new framework and showed that, in addition to its security advantages, it also leads to

improved query processing performance compared to the postprocessing approach.

• The hybrid index maintenance strategies from Section 6.4 represent an interesting fam-

ily of index update policies, applicable on both ends of the updates vs. queries workload

spectrum. Hybrid Immediate Merge with contiguous posting lists (HIMC) exhibits

the same query performance as Immediate Merge, but achieves considerably lower

update complexity. Hybrid Logarithmic Merge with non-contiguous posting lists

(HLMNC), based on a theoretical analysis, was shown to lead to lower update com-

plexity than Logarithmic Merge. This result was confirmed through experiments.

HLMNC’s query performance is only slightly weaker than that of Logarithmic Merge,

implying that the method represents a useful trade-off point between No Merge and

Logarithmic Merge.

HIMC is one of the rare cases where one index maintenance strategy actually dominates

another strategy and should always be preferred over it. Regardless of the relative query

and update load of the system, HIMC is always better than Immediate Merge.

• I introduced the concept of partial flushing (Section 6.3.2), a method that transfers only

some posting lists (instead of all of them) to disk when the search engine runs out of

main memory. Partial flushing is motivated by the Zipfian distribution of terms in a

Chapter 8 — Conclusion 197

text collection, where the majority of all postings is found in a rather small number

of posting lists. It can be used in conjunction with any in-place index update policy

(including hybrid strategies). The method was shown to exhibit a greatly reduced index

update overhead compared to an already highly optimized performance baseline. In my

experiments, its update performance was up to 44% higher than that of HIMC without

partial flushing.

• I proposed a set of techniques that can be used to deal with document deletions and

modifications, two aspects that are usually ignored when dynamic text collections are

discussed in the literature.

With respect to file deletions (Section 6.5), I showed that a two-tiered garbage collection

policy, in conjunction with the secure query processing framework from Chapter 5, is

an appropriate instrument to control the amount of garbage postings in the index and

keep both query and update performance at a high level.

In the context of file modifications (Section 6.6), I pointed out the main difficulties

stemming from the necessity to support such operations. Limiting myself to the case

of append operations, I proposed a proportional address space pre-allocation strategy,

similar in spirit to proportional pre-allocation in in-place index update, that results

in low update overhead and that does not increase the search engine’s main memory

consumption.

• My discussion of real-time index updates in Section 6.7 has shown that a small number of

fairly simple modifications to the search engine are sufficient to transform the amortized

complexity of the index maintenance techniques examined in Chapter 6 into real-time

index updates. I am not aware of any previous discussion of actual real-time updates

in the context of text retrieval systems.

• Finally, in Chapter 7, I presented a discussion of index update problems that are specific

to file system search. In particular, I argued that there is a set of file system event

notifications that are crucial to real-time index updates and that are currently not

supported by any event notification system. As an alternative to the existing Linux

notification infrastructure, I proposed fschange, a Linux kernel module that provides

a process with fine-grained information about all content-changing file system events,

without the need to register for specific directories prior to notification.

198 Multi-User File System Search

Applicability in Other Contexts

Many of the techniques presented in this thesis are not only applicable to file system search,

but also to problems that arise in other contexts, both inside and outside the field of infor-

mation retrieval.

For example, real-time index updates are an attractive feature for every search engine,

particularly in such genuine real-time environments as newswire services and on-line auction-

ing environments. Likewise, applying tight security restrictions to the search results produced

by the search engine is important in many scenarios outside of file system search; for instance,

in enterprise search and in any other collaborative work environment.

Variations of the dictionary interleaving scheme proposed in Section 4.4.2 can be used for

every disk-based data repository storing variable-size objects. In fact, a similar approach is

taken by many file system implementations (such as ext22) that try to keep each file’s meta-

data (i-node information) close to the actual file contents so that disk seeks between file data

and meta-data are less costly. Similarly, the incremental update mechanisms from Sections 6.2

and the hybrid update strategies from 6.4 are of possible interest to any application that needs

to maintain a large number of dynamic, variable-size records.

Limitations

In all my experiments, I have assumed that main memory is a scarce resource and thus that

the majority of all index data need to be held in secondary storage. In my experiments,

secondary storage is realized by hard disk drives, and the operational characteristics of hard

drives, in particular the very high cost of random access operations, influenced the design

of many of the data structures presented in this thesis. For example, if disk seeks came for

free, then there would be no need for the interleaved dictionary structure from Section 4.4.2.

Moreover, if fragmented posting lists could be accessed without a severe performance penalty,

then even the most simple index maintenance strategy, No Merge, might lead to good

performance results.

Therefore, if novel storage devices with negligible random access overhead, like flash mem-

ory and solid-state disks, ever become mainstream enough to replace hard disk drives as the

standard means of data storage in computer systems, then many of the techniques proposed

in this thesis will need to be re-evaluated — just like the changing behavior of hard drives over

the last 15 years required a re-evaluation of the index update methods proposed in the early

1990s. However, as I already pointed out in Chapter 3, this is unlikely to happen any time

2http://e2fsprogs.sourceforge.net/ext2.html (accessed 2007-04-29)

Chapter 8 — Conclusion 199

soon, as solid-state storage devices are still astronomically expensive, compared to traditional

magnetic storage.

Future Work

There are several open questions that have not been answered in this thesis. Some are related

to the core algorithms of the search engine; others are concerned with its integration into the

operating system.

First and foremost, optimization strategies for complex GCL queries have not been studied

very well yet. The retrieval framework presented in this thesis provides full support for all

GCL retrieval operators and thus allows the user (or a third-party application) to express a

wide variety of search constraints. However, a comprehensive theory that could be used to

perform query optimizations within this framework does not exist. This became apparent

in Section 5.6, where I employed the (rather simplistic) optimization heuristic to move user-

specific security restriction operators as far up in the GCL operator tree as possible. For the

disjunctive Boolean queries in keyword search (and in my experiments), this seems to be a

reasonable strategy. However, there are cases where different arrangements lead to better

performance results. Consider, for instance, the GCL query

(“peanuts” ∧ “butterflies”) 6B [4]

(i.e., “peanuts” and “butterflies” within at most 3 words) and its secure version

((“peanuts” ∧ “butterflies”) 6B [4]) C FU .

It is quite possible that the user U is an avid admirer of butterflies, but does not have access

to the secret peanut knowledge stored in the file system. In that case, the search engine might

spend a long time identifying all matches for

(“peanuts” ∧ “butterflies”) 6B [4],

only to find out that none of them lies within FU . By re-writing the GCL expression to

(((“peanuts” C FU) ∧ “butterflies”) 6B [4]) C FU ,

the query could have been processed far more efficiently. The optimal GCL operator tree

seems to be closely related to the selectivity of the security restriction predicate FU at each

node in the tree, but it would be nice to have a proper theory at one’s command, to guide

the search engine through the query re-writing procedure.

Another open question is concerned with index consistency issues and the question of how

the search engine should deal with spontaneous system failures. From the rather simplistic

200 Multi-User File System Search

index structure employed by the index partitioning schemes from Section 6.2.1, it seems that

recovering from a system crash might not be infeasible. In particular, the search engine’s

ability to carry out index maintenance operations in the background implies that there will

always be a coherent set of on-disk index partitions, even after a crash.

Nonetheless, it would be nice to have actual robustness guarantees, also involving the

auxiliary components of the search engine, such as its security-related meta-data. One ap-

proach that seems especially promising is to integrate the search engine into the file system’s

journalling activity. A journal entry then would only be cleared after the change has made

it into the persistent part of the search engine’s index structures. When recovering from a

crash, the journal would not only be used to restore the file system’s consistency, but also to

allow the search engine to re-obtain the index information it lost due to the system failure.

This aspect leads to a final question regarding the relationship of file system and search

engine. In all my considerations, I have always assumed that the search engine is running in

a user-space process, outside the core operating system. What if the retrieval system itself

became part of the operating system, and its index structures part of the file system? This

would facilitate the realization of some interesting features, such as the ability to let the index

data for a particular file count towards the file owner’s disk quota, which would be rather

difficult to implement outside the operating system kernel.

Bibliography

[1] Vo Ngoc Anh and Alistair Moffat. Index Compression Using Fixed Binary Code-

words. In Proceedings of the Fifteenth Conference on Australasian Database, pages

61–67, Dunedin, New Zealand, January 2004.

[2] Vo Ngoc Anh and Alistair Moffat. Inverted Index Compression using Word-Aligned

Binary Codes. Information Retrieval, 8(1):151–166, January 2005.

[3] Vo Ngoc Anh and Alistair Moffat. Pruned Query Evaluation Using Precomputed Im-

pacts. In Proceedings of the 29th ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 372–379, Seattle, USA, August 2006.

[4] Vo Ngoc Anh and Alistair Moffat. Pruning Strategies for Mixed-Mode Querying. In

Proceedings of the 15th ACM International Conference on Information and Knowledge

Management, pages 190–197, Arlington, USA, November 2006.

[5] Peter Bailey, David Hawking, and Brett Matson. Secure Search in Enterprise Webs:

Tradeoffs in Efficient Implementation for Document Level Security. In Proceedings of

the 15th ACM International Conference on Information and Knowledge Management,

pages 493–502, Arlington, USA, 2006.

[6] Holger Bast, Christian Worm Mortensen, and Ingmar Weber. Output-Sensitive Au-

tocompletion Search. In Proceedings of the 13th International Conference on String

Processing and Information Retrieval, pages 150–162, Glasgow, Scotland, UK, October

2006.

[7] Holger Bast and Ingmar Weber. Type Less, Find More: Fast Autocompletion Search

With a Succinct Index. In Proceedings of the 29th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 364–371,

Seattle, USA, August 2006. ACM Press.

201

202 Multi-User File System Search

[8] Rudolf Bayer. Binary B-Trees for Virtual Memory. In Proceedings of 1971 ACM-

SIGFIDET Workshop on Data Description, Access and Control, pages 219–235, San

Diego, USA, November 1971.

[9] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large

Ordered Indices. Acta Informatica, 1:173–189, 1972.

[10] Jon L. Bentley and James B. Saxe. Decomposable Searching Problems I: Static-to-

Dynamic Transformations. Journal of Algorithms, 1(4):301–358, 1980.

[11] Jon Louis Bentley and Andrew Chi-Chih Yao. An Almost Optimal Algorithm for

Unbounded Searching. Information Processing Letters, 5(3):82–87, 1976.

[12] Deepavali Bhagwat and Neoklis Polyzotis. Searching a File System Using Inferred

Semantic Links. In Proceedings of the Sixteenth ACM Conference on Hypertext and

Hypermedia, pages 85–87, Salzburg, Austria, September 2005.

[13] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-

munications of the ACM, 13(7):422–426, 1970.

[14] George Boole. The Calculus of Logic. The Cambridge and Dublin Mathematical Journal,

3:183–198, 1848.

[15] Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast Incremental Indexing

for Full-Text Information Retrieval. In Proceedings of 20th International Conference

on Very Large Data Bases (VLDB 1994), pages 192–202, Santiago de Chile, Chile,

September 1994.

[16] Nader H. Bshouty and Geoffrey T. Falk. Compression of Dictionaries via Extensions to

Front Coding. In Proceedings of the Fourth International Conference on Computing and

Information (ICCI 1992), pages 361–364, Washington, DC, USA, 1992. IEEE Computer

Society.

[17] Stefan Büttcher and Charles L. A. Clarke. A Security Model for Full-Text File System

Search in Multi-User Environments. In Proceedings of the 4th USENIX Conference

on File and Storage Technologies (FAST 2005), pages 169–182, San Francisco, USA,

December 2005.

[18] Stefan Büttcher and Charles L. A. Clarke. Indexing Time vs. Query Time Trade-offs in

Dynamic Information Retrieval Systems. In Proceedings of the 14th ACM Conference on

Bibliography 203

Information and Knowledge Management, pages 317–318, Bremen, Germany, November

2005.

[19] Stefan Büttcher and Charles L. A. Clarke. Indexing Time vs. Query Time Trade-offs

in Dynamic Information Retrieval Systems. University of Waterloo Technical Report

CS-2005-31, October 2005.

[20] Stefan Büttcher and Charles L. A. Clarke. Memory Management Strategies for Single-

Pass Index Construction in Text Retrieval Systems. University of Waterloo Technical

Report CS-2005-32, October 2005.

[21] Stefan Büttcher and Charles L. A. Clarke. A Hybrid Approach to Index Maintenance

in Dynamic Text Retrieval Systems. In Proceedings of the 28th European Conference

on Information Retrieval, pages 229–240, London, UK, April 2006.

[22] Stefan Büttcher, Charles L. A. Clarke, and Brad Lushman. Term Proximity Scoring

for Ad-Hoc Retrieval on Very Large Text Collections. In Proceedings of the 29th ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 621–

622, Seattle, USA, August 2006.

[23] Stefan Büttcher, Charles L. A. Clarke, and Ian Soboroff. The TREC 2006 Terabyte

Track. In Proceedings of the 15th Text REtrieval Conference (TREC 2006), Gaithers-

burg, USA, November 2006.

[24] Ben Carterette and Fazli Can. Comparing Inverted Files and Signature Files for Search-

ing a Large Lexicon. Information Processing and Management, 41(3):613–633, 2005.

[25] Tzi-cker Chiueh and Lan Huang. Efficient Real-Time Index Updates in Text Retrieval

Systems. Technical report, SUNY at Stony Brook, NY, USA, August 1998.

[26] Kenneth Church, William Gale, Patrick Hanks, and Donald Hindle. Using Statistics

in Lexical Analysis. In Uri Zernik, editor, Lexical Acquisition: Exploiting On-Line

Resources to Build a Lexicon, pages 115–164, 1991.

[27] David R. Clark and J. Ian Munro. Efficient Suffix Trees on Secondary Storage. In Pro-

ceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA

1996), pages 383–391, Atlanta, USA, January 1996.

[28] Charles L. A. Clarke and Gordon V. Cormack. Shortest-Substring Retrieval and Rank-

ing. ACM Transactions on Information Systems, 18(1):44–78, January 2000.

204 Multi-User File System Search

[29] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J. Burkowski. Fast Inverted

Indexes with On-Line Update. Technical report, University of Waterloo, Waterloo,

Canada, November 1994.

[30] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J. Burkowski. Schema-

Independent Retrieval from Heterogeneous Structured Text. Technical report, Uni-

versity of Waterloo, November 1994.

[31] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J. Burkowski. An Algebra

for Structured Text Search and a Framework for Its Implementation. The Computer

Journal, 38(1):43–56, 1995.

[32] Charles L. A. Clarke, Gordon V. Cormack, Derek I. E. Kisman, and Thomas R. Lynam.

Question Answering by Passage Selection. In Proceedings of the 9th Text REtrieval

Conference, Gaithersburg, USA, November 2000.

[33] Charles L. A. Clarke, Gordon V. Cormack, and Thomas R. Lynam. Exploiting Re-

dundancy in Question Answering. In Proceedings of the 24th ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 358–276, New Orleans,

USA, November 2001.

[34] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. Overview of the TREC 2004

Terabyte Track. In Proceedings of the 13th Text REtrieval Conference, Gaithersburg,

USA, November 2004.

[35] Douglass R. Cutting and Jan O. Pedersen. Optimization for Dynamic Inverted Index

Maintenance. In Proceedings of the 13th ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 405–411, New York, USA, September

1990.

[36] Owen de Kretser and Alistair Moffat. Effective Document Presentation with a Locality-

Based Similarity Heuristic. In Proceedings of the 22nd ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 113–120, Berkeley, USA,

1999.

[37] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive Set Intersections,

Unions, and Differences. In Proceedings of the Eleventh Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA 2000), pages 743–752, San Francisco, USA, January

2000.

Bibliography 205

[38] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Experiments on Adaptive

Set Intersections for Text Retrieval Systems. In Revised Papers from the Third Inter-

national Workshop on Algorithm Engineering and Experimentation (ALENEX 2001),

pages 91–104, Washington, DC, USA, January 2001.

[39] Susan Dumais, Edward Cutrell, JJ Cadiz, Gavin Jancke, Raman Sarin, and Daniel

Robbins. Stuff I’ve Seen: A System for Personal Information Retrieval and Re-use.

In Proceedings of the 26th ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 72–79, Toronto, Canada, 2003.

[40] P. Elias. Universal Codeword Sets and Representations of the Integers. IEEE Transac-

tions on Information Theory, IT-21(2):194–203, 1975.

[41] Christos Faloutsos and Raphael Chan. Fast Text Access Methods for Optical and Large

Magnetic Disks: Designs and Performance Comparison. In Proceedings of the Fourteenth

International Conference on Very Large Data Bases (VLDB 1988), pages 280–293, Los

Angeles, USA, September 1988.

[42] Christos Faloutsos and Stavros Christodoulakis. Signature Files: An Access Method

for Documents and Its Analytical Performance Evaluation. ACM Transactions on In-

formation Systems, 2(4):267–288, 1984.

[43] G. Fernandez and L. Allen. Extending the UNIX Protection Model with Access Control

Lists. In Proceedings of USENIX, pages 119–132, San Francisco, USA, 1988.

[44] Edward A. Fox and Whay C. Lee. FAST-INV: A Fast Algorithm for Building Large

Inverted Files. TR-91-10. Technical report, Virginia Polytechnic Institute and State

University, Blacksburg, USA, March 1991.

[45] Aviezri S. Fraenkel and Shmuel T. Klein. Novel Compression of Sparse Bit-Strings —

Preliminary Report. Combinatorial Algorithms on Words, NATO ASI Series, 12:169–

183, 1985.

[46] Valery I. Frants, Jacob Shapiro, Isak Taksa, and Vladimir G. Voiskunskii. Boolean

Search: Current State and Perspectives. Journal of the American Society for Informa-

tion Science, 50(1):86–95, 1999.

[47] William Gale and Geoffrey Sampson. Good-Turing Frequency Estimation Without

Tears. Journal of Quantitative Linguistics, 2:217–237, 1995.

206 Multi-User File System Search

[48] R. Gallager and D. van Voorhis. Optimal Source Codes for Geometrically Distributed

Integer Alphabets. IEEE Transactions on Information Theory, 21(2):228–230, March

1975.

[49] Alexander Gelbukh and Grigori Sidorov. Zipf and Heaps Laws’ Coefficients Depend on

Language. In Proceedings of the Second Conference on Intelligent Text Processing and

Computational Linguistics (CICLing-2001), pages 332–335, 2001.

[50] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James O’Toole. Semantic

file systems. In Proceedings of the Thirteenth ACM Symposium on Operating System

Principles (SOSP 1991), pages 16–25, October 1991.

[51] Solomon W. Golomb. Run-Length Encodings. IEEE Transactions on Information

Theory, IT-12:399–401, July 1966.

[52] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New Indices for Text:

PAT Trees and PAT Arrays, pages 66–82. Information Retrieval: Data Structures and

Algorithms. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[53] Donna Harman, R. Baeza-Yates, Edward Fox, and W. Lee. Inverted Files. In Infor-

mation Retrieval: Data Structures and Algorithms, pages 28–43, Upper Saddle River,

USA, 1992.

[54] Herbert Stanley Heaps. Information Retrieval: Computational and Theoretical Aspects.

Academic Press, New York, USA, 1978.

[55] Steffen Heinz and Justin Zobel. Efficient Single-Pass Index Construction for Text

Databases. Journal of the American Society for Information Science and Technology,

54(8):713–729, June 2003.

[56] Steffen Heinz, Justin Zobel, and Hugh E. Williams. Burst Tries: A Fast, Efficient Data

Structure for String Keys. ACM Transactions on Information Systems, 20(2):192–223,

2002.

[57] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. In

Proceedings of the Institute of Radio Engineers, volume 40, pages 1098–1101, September

1952.

[58] F. Jelinek and R. Mercer. Interpolated Estimation of Markov Source Parameters from

Sparse Data. In E. S. Gelsema and L. N. Kanal, editors, Pattern Recognition in Practice,

pages 381–402, Amsterdam, The Netherlands, 1980.

Bibliography 207

[59] Karen Spärck Jones, Steve Walker, and Stephen E. Robertson. A Probabilistic Model

of Information Retrieval: Development and Comparative Experiments (parts 1 and 2).

Information Processing and Management, 36(6):779–840, 2000.

[60] Jyrki Katajainen and Erkki Mäkinen. Tree Compression and Optimization with Ap-

plications. International Journal of Foundations of Computer Science, 1(4):425–448,

December 1990.

[61] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. In Proceedings

of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1998),

pages 668–677, San Francisco, California, United States, 1998.

[62] Wessel Kraaij, Thijs Westerveld, and Djoerd Hiemstra. The Importance of Prior Prob-

abilities for Entry Page Search. In Proceedings of the 25th ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 27–34, Tampere, Finland,

August 2002.

[63] John D. Lafferty and ChengXiang Zhai. Document Language Models, Query Models,

and Risk Minimization for Information Retrieval. In Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 111–119, New Orleans, USA, September 2001.

[64] D. Y. Lee, J. Hwang, and G. N. Bae. Effect of Disk Rotational Speed on Contamination

Particles Generated in a Hard Disk Drive. Microsystem Technologies, 10(2):103–108,

2004.

[65] Joon Ho Lee. Properties of Extended Boolean Models in Information Retrieval. In

Proceedings of the 17th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 182–190, Dublin, Ireland, 1994.

[66] Nicholas Lester. Efficient Index Maintenance for Text Databases. PhD thesis, RMIT

University, Melbourne, Australia, 2006.

[67] Nicholas Lester, Alistair Moffat, William Webber, and Justin Zobel. Space-Limited

Ranked Query Evaluation Using Adaptive Pruning. In Proceedings of the 6th Interna-

tional Conference on Web Systems Information Systems Engineering, pages 470–477,

New York, USA, 2005.

208 Multi-User File System Search

[68] Nicholas Lester, Alistair Moffat, and Justin Zobel. Fast On-Line Index Construction

by Geometric Partitioning. In Proceedings of the 14th ACM Conference on Information

and Knowledge Management, pages 776–783, Bremen, Germany, November 2005.

[69] Nicholas Lester, Justin Zobel, and Hugh E. Williams. In-Place versus Re-Build versus

Re-Merge: Index Maintenance Strategies for Text Retrieval Systems. In Proceedings

of the 27th Conference on Australasian Computer Science, pages 15–23, Dunedin, New

Zealand, 2004.

[70] Nicholas Lester, Justin Zobel, and Hugh E. Williams. Efficient Online Index Mainte-

nance for Text Retrieval Systems. Information Processing & Management, 42:916–933,

July 2006.

[71] Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitter, and Ramesh

Agarwal. Dynamic Maintenance of Web Indexes Using Landmarks. In Proceedings

of the 12th International World Wide Web Conference (WWW 2003), pages 102–111,

Budapest, Hungary, May 2003.

[72] Erkki Mäkinen. A Survey on Binary Tree Codings. The Computer Journal, 34(5):438–

443, 1991.

[73] M. Mallary, A. Torabi, and M. Benakli. One Terabit Per Square Inch Perpendicular

Recording Conceptual Design. IEEE Transactions on Magnetics, pages 1719–1724, July

2002.

[74] Udi Manber. Finding Similar Files in a Large File System. In Proceedings of the

USENIX Winter 1994 Technical Conference, pages 1–10, San Francisco, USA, January

1994.

[75] Udi Manber and Eugene W. Myers. Suffix Arrays: A New Method for On-Line String

Searches. SIAM Journal on Computing, 22(5):935–948, October 1993.

[76] Udi Manber and Sun Wu. GLIMPSE: A Tool to Search Through Entire File Systems. In

Proceedings of the USENIX Winter 1994 Technical Conference, pages 23–32, January

1994.

[77] Donald Metzler, Victor Lavrenko, and W. Bruce Croft. Formal Multiple-Bernoulli

Models for Language Modeling. In Proceedings of the 27th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 540–

541, Sheffield, United Kingdom, 2004.

Bibliography 209

[78] Patrick C. Mitchell. A Note about the Proximity Operators in Information Retrieval. In

Proceedings of the 1973 Meeting on Programming Languages and Information Retrieval

(SIGPLAN 1973), pages 177–180, Gaithersburg, USA, 1973.

[79] Alistair Moffat and Timothy C. Bell. In-Situ Generation of Compressed Inverted Files.

Journal of the American Society of Information Science, 46(7):537–550, 1995.

[80] Alistair Moffat and Justin Zobel. Compression and Fast Indexing for Multi-Gigabyte

Text Databases. Australian Computer Journal, 26(1):1–9, 1994.

[81] Alistair Moffat and Justin Zobel. Self-Indexing Inverted Files for Fast Text Retrieval.

ACM Transactions on Information Systems, 14(4):349–379, October 1996.

[82] Spencer W. Ng. Advances in Disk Technology: Performance Issues. The Computer

Journal, 31(5):75–81, May 1998.

[83] John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, Mike Kupfer,

and James G. Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System.

In Proceedings of the Tenth ACM Symposium on Operating Systems Principles (SOSP

1985), pages 15–24, New York, USA, 1985.

[84] Mark H. Overmars and Jan van Leeuwen. Dynamization of Decomposable Searching

Problems Yielding Good Worsts-Case Bounds. In Proceedings of the 5th GI-Conference

on Theoretical Computer Science, pages 224–233, London, UK, March 1981. Springer-

Verlag.

[85] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank

Citation Ranking: Bringing Order to the Web. Technical report, Stanford Digital

Library Technologies Project, 1998.

[86] Michael Persin, Justin Zobel, and Ron Sacks-Davis. Filtered Document Retrieval with

Frequency-Sorted Indexes. Journal of the American Society for Information Science,

47(10):749–764, October 1996.

[87] Jay M. Ponte and W. Bruce Croft. A Language Modeling Approach to Information

Retrieval. In Proceedings of the 21st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 275–281, Melbourne,

Australia, 1998.

210 Multi-User File System Search

[88] K. K. Ramakrishnan, Prabuddha Biswas, and Ramakrishna Karedla. Analysis of File

I/O Traces in Commercial Computing Environments. In SIGMETRICS ’92/PERFOR-

MANCE ’92: Proceedings of the 1992 ACM SIGMETRICS Joint International Con-

ference on Measurement and Modeling of Computer Systems, pages 78–90, New York,

USA, 1992.

[89] Yves Rasolofo and Jacques Savoy. Term Proximity Scoring for Keyword-Based Retrieval

Systems. In Proceedings of the 25th European Conference on IR Research, pages 207–

218, Pisa, Italy, April 2003.

[90] Dennis M. Ritchie. The UNIX Time-Sharing System: A Retrospective. Bell Systems

Technical Journal, 57(6):1947–1969, 1978.

[91] Dennis M. Ritchie and Ken Thompson. The UNIX Time-Sharing System. Communi-

cations of the ACM, 17(7):365–375, 1974.

[92] Stephen E. Robertson. The Probabilistic Character of Relevance. Information Process-

ing and Management, 13(4):247–251, 1977.

[93] Stephen E. Robertson, C. J. van Rijsbergen, and Martin F. Porter. Probabilistic Mod-

els of Indexing and Searching. In Proceedings of the Joint ACM/BCS Symposium on

Information Storage and Retrieval (SIGIR 1980), pages 35–56, Cambridge, UK, June

1980.

[94] Stephen E. Robertson, Steve Walker, and Micheline Hancock-Beaulieu. Okapi at TREC-

7. In Proceedings of the Seventh Text REtrieval Conference, Gaithersburg, USA, Novem-

ber 1998.

[95] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and

Mike Gatford. Okapi at TREC-3. In Proceedings of the Third Text REtrieval Conference,

Gaithersburg, USA, November 1994.

[96] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling. The

Computer Journal, 27(3):17–28, 1994.

[97] Airi Salminen and Frank William Tompa. Pat Expressions: An Algebra for Text Search.

Acta Linguista Hungarica, 41:277–306, 1994.

[98] Gerard Salton and Michael E. Lesk. Computer Evaluation of Indexing and Text Pro-

cessing. Journal of the ACM, 15(1):8–36, January 1968.

Bibliography 211

[99] Gerard Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing.

Communications of the ACM, 18(11):613–620, 1975.

[100] Falk Scholer, Hugh E. Williams, J. Yiannis, and Justin Zobel. Compression of Inverted

Indexes for Fast Query Evaluation. In Proceedings of the 25th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages

222–229, Tampere, Finland, August 2002.

[101] Ernst J. Schuegraf. Compression of Large Inverted Files with Hyperbolic Term Distri-

bution. Information Processing and Management, 12(6):377–384, 1976.

[102] Wann-Yun Shieh and Chung-Ping Chung. A Statistics-Based Approach to Incrementally

Update Inverted Files. Information Processing and Management, 41(2):275–288, 2005.

[103] Kurt A. Shoens, Anthony Tomasic, and Héctor Garćıa-Molina. Synthetic Workload

Performance Analysis of Incremental Updates. In Proceedings of the 17th ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 329–338,

Dublin, Ireland, January 1994.

[104] Z. K. Silagadze. Citations and the Zipf-Mandelbrot’s Law. Complex Systems, 11:487–

499, 1997.

[105] Fei Song and W. Bruce Croft. A General Language Model for Information Retrieval. In

Proceedings of the 8th International Conference on Information and Knowledge Man-

agement, pages 316–321, Kansas City, USA, 1999.

[106] Ken Thompson. Programming Techniques: Regular Expression Search Algorithm.

Commununications of the ACM, 11(6):419–422, June 1968.

[107] Anthony Tomasic, Héctor Garćıa-Molina, and Kurt Shoens. Incremental Updates of

Inverted Lists for Text Document Retrieval. In Proceedings of the 1994 ACM SIGMOD

Conference on Management of Data, pages 289–300, New York, USA, 1994.

[108] Stephen Tomlinson. Experiments with the Negotiated Boolean Queries of the TREC

2006 Legal Discovery Track. In Proceedings of the 15th Text REtrieval Conference

(TREC 2006), Gaithersburg, USA, November 2006.

[109] Howard Turtle and James Flood. Query Evaluation: Strategies and Optimization.

Information Processing & Management, 31(1):831–850, November 1995.

212 Multi-User File System Search

[110] Peter Weiner. Linear Pattern Matching Algorithm. In 14th Annual Symposium on

Foundations of Computer Science, pages 1–11, Iowa City, USA, October 1973.

[111] Eric W. Weisstein. Euler-Mascheroni Constant. From MathWorld –

http://mathworld.wolfram.com/Euler-MascheroniConstant.html.

[112] Hugh E. Williams and Justin Zobel. Compressing Integers for Fast File Access. The

Computer Journal, 42(3):193–201, 1999.

[113] Hugh E. Williams and Justin Zobel. Searchable Words on the Web. International

Journal on Digital Libraries, 5(2):99–105, April 2005.

[114] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes (2nd ed.):

Compressing and Indexing Documents and Images. Morgan Kaufmann Publishers Inc.,

San Francisco, USA, 1999.

[115] Peter C. K. Yeung, Stefan Büttcher, Charles L. A. Clarke, and Maheedhar Kolla. A

Bayesian Approach for Learning Document Type Relevance. In Proceedings of the 29th

European Conference on Information Retrieval (ECIR 2007), pages 753–756, Rome,

Italy, April 2007.

[116] Chengxiang Zhai and John Lafferty. A Study of Smoothing Methods for Language

Models Applied to Ad Hoc Information Retrieval. In Proceedings of the 24th ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 334–

342, New Orleans, Louisiana, USA, 2001. ACM Press.

[117] George K. Zipf. Human Behavior and the Principle of Least-Effort. Addison-Wesley,

Cambridge, USA, 1949.

[118] Justin Zobel, Steffen Heinz, and Hugh E. Williams. In-Memory Hash Tables for Accu-

mulating Text Vocabularies. Information Processing Letters, 80(6):271–277, 2001.

[119] Justin Zobel and Alistair Moffat. Inverted Files for Text Search Engines. ACM Com-

puting Surveys, 38(2):6, 2006.

[120] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted Files versus

Signature Files for Text Indexing. ACM Transactions on Database Systems, 23(4):453–

490, December 1998.

	Introduction
	What is File System Search?
	Thesis Organization

	Background and Related Work
	Traditional File System Search in UNIX
	Search Queries
	Boolean Queries
	Ranked Queries
	Boolean vs. Ranked Retrieval in File System Search
	Structural Constraints

	Index Data Structures
	Inverted Indices
	Dictionary
	Posting Lists
	Index Construction
	Index Compression

	Index Maintenance
	Incremental Index Updates
	Document Deletions
	Document Modifications

	Applications

	Evaluation Methodology
	Data Sets
	Hardware Configuration & Performance Measurements

	Index Structures
	General Considerations
	Statistical Properties of Inverted Files
	Generalized Zipfian Distributions
	Long Lists and Short Lists
	Notation

	Index Construction
	In-Memory Index Construction: Extensible Posting Lists
	Merge-Based Index Construction: The Final Merge Operation
	Performance Baseline

	Memory Requirements
	Dictionary Compression
	Interleaving Posting Lists and Dictionary Entries

	Document-Centric vs. Schema-Independent Inverted Files
	Query Flexibility
	Query Processing Performance

	Summary

	Secure File System Search
	The UNIX Security Model
	File Permissions
	Traditional File System Search in UNIX

	A File System Search Security Model
	Enforcing Security by Postprocessing
	Exploiting Relevance Scores
	Exploiting Ranking Results
	Exploiting Support for Structural Constraints

	Integrating Security Restrictions into the Query Processor
	Performance Evaluation
	Query Optimization
	Discussion

	Real-Time Index Updates
	General Considerations and Terminology
	Merge-Based Update
	Index Partitioning

	In-Place Update
	File-System-Based Update
	Partial Flushing
	In-Place vs. Merge-Based Update

	Hybrid Index Maintenance
	Hybrid Index Maintenance with Contiguous Posting Lists
	Hybrid Index Maintenance with Non-Contiguous Posting Lists
	Implementing the In-Place Index
	Complexity Analysis
	Experiments
	Hybrid vs. Non-Hybrid Index Maintenance

	File Deletions
	Utilizing Security Restrictions to Delay Index Updates
	Collecting Garbage Postings
	Performance Trade-offs and Garbage Collection Policies
	Experiments

	File Modifications
	Append Indexing Strategies
	Experiments

	Meeting Real-Time Requirements
	Discussion

	Interaction with the Operating System
	File System Notification
	Essential File System Events
	Event Notification in Linux: dnotify and inotify
	An Alternative to inotify: fschange

	Dealing with Different File Types
	Temporal Locality in File Systems
	Scheduling Index Updates

	Conclusion

